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ABSTRACT
A calculation’of proton-proton bremsstrahlung is presented

. that is fully relativistic‘and gauge invariant. The external-

. v ‘ 4
emission part of the amplitude;cong&sts'of a sum of Bérn one—

’a

boson-exchange terms.. Elastic%pross -section data are- used as

input, to constrain the soft- -photon behaviour in- accordance with ';7

.4

the Burnett-Kroll theorem. The problems associatedawith the

non-unitarized one-boson-exchange model’ are disouéSedﬁin'getail.

Internal-emission co&tributions frog w radiative deca§ and A

excitation with = and p exchange are added coherently. Computed ol

ER

cross sections are compared with experiments with}incident—beam
energies 99 MeV and above. The w radiativeqdecay contribution
is found to be small but not negligible (<107) ﬁor the TRIUMF
experiment, and may have to be considered in- 8 careful comparison J
between potential—model calculations ‘and the experiment A large
discrepancy with the asymmetric geometry data from the Orsay )
experiment is noted' similar to that found previously in potential—

model calculations. The A excitation contributions-are- included

in a comparison with the data from the 730 MeV UCLA . experiment.
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CHAPTER .1

 INTRODUCTION - B o

-

‘There has been a great deal of work done in the field of
nucleon)nncleon bremsstrahlung (N+N—> N+N+ ¥ ) since the paper of
Ashkln and Marshak publlshed in 1949 [’L7 Interest 1n this |
reaotlon stems malnly from the posélblllty of learnlng\somethlng
about the off- shell behaviour of the N- N force. In partlcular,ﬂ
it is hopgd that the’ reaction can serve as an o!! shell testing
gronnd for the'various N-N potentiaIS'and otE;;Dmodels used in

the treatment of N-N scatterlng. Other reactions involving tﬁo

nucleons and at least one other partlcle‘(e g. pion productlon)

might also(serve this purpose, however the case where the third
particle is a- photon seems to be the 51mplest since it avoids
the complicatidns of three strongly interacting particles.

We should note that the oorfect off-shell N-N interaction is
important to onr underatanding of the properties of nucieag matter
and of other m%ny-body systems involving nucleons.

The first extensive calculation of proton-proton bremsstrah-
s : ,

" lung (henceforth abbreviated ‘as pp¥ ). was done by Sobel and

Cromer Zﬁ;7 in 1963. Soon thereafter, the first ekperimenté were
done at Harvard‘ by Gottschalk Shlaer, and Wang [7L7 with 158 MeV
incident protons, at Manitoba by Warner 1327 with Tlab:=48~MeV,
and at Rochester by Rothe, Koehler, ‘and Thorndike /87 with

Tiab-ZO# MeV 1n01dent protons.

*Bremsstrahlung from collisions of protons on complex
nuclei was first observed in 1952 by Wilson 1357, who attributed
the ¥ rays to n-p bremsstrahlung. Here we are mainly concerned
with bremsstrahlung from. protons on targets of free protons.

1



In the Harvard and Manltoba experlments the dlrectlons and
i e

‘energles of the twb flnal state protons were measured while the (
N S

photon was undetected"' such an arrangement 'is now commonly re-

ferred.to as HarVard geometry‘*’ Since the NPJY system has 5

o~ N

degrees of . freedom - 9 momentum components mlnus L energy—momentum,
constfa{J 8 - Harvard geometry once overdeterm1nes each event.
In- the*R chester experlment, on the “other hand the dlrectlons of

all t e flnal‘state part:cfes ahd the energxes of the protons

_:.ured thus overdetermlnlng each event three tlmes.

L - heless the experlments are dlfflcult because of large back-

grounds andliowvcountlnggrates —.the_plecross_sectlon is typ-

ically 50-4~tiﬁes the p—n'elastic'cross:5ection. | |
There have been several experlments pertorméd since the

ploneerlng ones mentloned above. Jovanov;ch 1217 has c1a551f1ed

the experlments as flrst or. Second generatlon,.ﬂthe former meas-

ure the angles of the protons through collimation in proton tel-

N

escopes, -while the latter use coordrnate-measurlng proton detec-
torssuch as wire chambers, a%low1ng a larger reglon of phase

space to be simultaneously observed. bAn important problem in

S

the analysis of the data is the'correction‘for finite SOIia-angie

acceptance (the acceptance wingow)’of'the'detectors. This is
less of avproblem in the second‘generation ekperiments since the
acceptance window can berarbitrariiy set in.the,computer”brogram;

a
P R

a

*The Harvard group used a éerenkov counter, but only to
confirm the presence of the bremsstrahlung photons.:

“The term "Harvard geometry" is used in a more restrlctlve

sense by some authors. Our usage- of this term is- the same as
that of Liou /7/. : , S



when the aata are analyzed. ) _ S | .

Besides - the Rochester expeflment there have been three ofher
seéond generat;on experiments: the 42 MeV ‘measurements at Manltoba
[?)7 and 200 MeV at Tr1umf [‘K)7, both in the Harvard geometry,
and the 730 MeV measurement at UCLA* L‘PL/ in the Rochester geome;
try. ‘ , s

The Aata from Harvard ge§métry eiperiments are usually pre-
sented in the form of distributions do/d Ry d R, d Oy (,ub/Sri-f) vs Oy
(where the polar axis is along_jthe iﬁcideét beam and the sub-
séripté 3, 4, .¥ refer to fhe scattered protons and the photon),
and integrated cross sections ‘4‘/HJ23anq (ub/sv*) . The
Rochesteg‘group'presehted its data in the form do/dRcp dRydk ,
where. dJl. is the solid-angle element qf'fé -_Sh and k is the
photon eneréy - all quantities being given in the;éghter—of-
momenfum frame. The 730 MeV UCLA data are repbrped in the lab
f|rame__.las spectra do'/dﬂ;dﬁwdk in k. ) -

‘For a more detailed,discuséion of the experigents_performed
vso_fdf:the reader is referred to two réview érficiés: éne by
bl‘Halbért»2fﬁg;7 covers the period up to 1971, the other by
\1Jovanov1ch Z:i7 covers the period since then till 1978. Table

e, compiled from these two’ papers, is a listing of the pp¥

experiments’ performed up to now with beam energy 99 MeV and

*In this experiment the directions of all three final-state
particles and the energy of one of the protons is.- measured' each
event is thua twice overdetermlned.

- above.

4 W
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Beam

U 4 : '
Energy. \ Institution. ?u?;icationlDazis Ref.
(eV) | ' FAR AR -

99 McGill Univ. 68 - 70 48

. 156 Orsay 72 54 ¢

158 Harvard Univ. . 65 -, 67 4
200 TRIUMF 77 --10
204 Univ. of Roché§ter 66 -~ 67 6
730 77 11

~UCLA

Table 1.1 ppy experiments with beam energy 99 MeV and
above {from refs. 8 and 12).

1.1 PotentialvModei
| Mosﬁ oflthe calculations have been done in the framework of the

pqtential model. It is hoped that differences in the cross sections
predicted withivgrious‘ﬁ—N potentiais;nil},be larger than experimental
errors, thus allowing us co rule out some of these potentials. Unfor—
tunately, in spite of the number of experiﬁents and calculepione this
condition hae.never been sufficientlyAsatisfied. fhe.reasonscare a
combinetibn of tnelfollowing fecto:s}”l._experiments have been performed
in kinematic.regions.whefe ncnel dependence is small; %;ﬂuncertainties
due to finice solid-angle detector acceptance; 3. large experimental
errors; 4. uncertainties in the predicted cross sections due toithe
“neglecf of eome corrections, snch as relativistic ekfects, coulomb
effect, rescattering terms, gauge terms, meson currents, etc. Anbther
problem is that che existing N-N pcgentials, such as the Hamada-
Johnston [ 677, Reid/['68_7 Br&an—Scdtt ['69_7,:etc.; are nct

really equivalent on the energy shell. These on-shell differenceS'
must somehow be taken into account before punely off- shell differences

can be' extracted. A common method for this correction (used for

example in ref. 13 and 14) has been. to consider the ratio of

¢

i
;
!
!
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-uiwhere WP“)(TF 0)15 the exact out301ng (1ncom1ng) wave functlon

the cross-sectlon computed w1th a glven potentlal to the Cross-

v

o sedtlon computed w1th the same potentlal in the on-ghell approx-

1matlon (dlscussed below) hr

The formulatlon and ploneerlng calculatlons of pp?7 u51ng
potentlals were done by Sobel and Cromer AEL7 The formalism'

starts w1th the dlstorted-wave Born—approxlmatlon (DWBA) ampli-
.‘.. ‘) X4 s
tude

- T;!L“_: </\/’(~)’v(¢m) { f+<4)> . 1)

pTY

with the nuclear potentlal VN,alone* ver is usually taken as -,

5

v((m) ~ :
(P?)-eép«+4 3(exk) (1.2),‘

» where e, M, and p.is the charge,‘magnetlc moment, and momentum

of the proton, and E? and k is the polarlzatlon and momen*um of .
5

the photon. Gauge terms arlslng from the replacement ?? —€FT4'

*'in V (whether V is. 1mp11c1t1y momentum dependent as from o

.-.,

orbltal angular momentum terms, or, expllcltly as is the case of

thé Bryan Scott potentlal) have been neglected Relat1v1st1c

i correctlons to ve have been considered by Llou et al 415,167

1

The amplltude then, 1s glven to flrst order in the electromag-

netic interaction’ and t'o all,Born orders in the strong‘interf

. . B

action. -

The matrix element (1.1) can be rewritten as

; (?m) ) ! : ™
T = VIR 6D b b 63 e
' (+) (em) o T - (1.3)
[N \ ! ‘ b

- ®

RS -

‘The Coulombtpotential .~ in the case of ppf - has been
neglected in most calculatlons, it has been considered by
Slgnell and Marker DS_] and by Heller and Rich 1177 '
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where Ga) = (E?H',,Igié\)—l }s the f.ree propagatof.‘and ‘
the éi(¢n MVQ\ A+5Q> is tﬁe'off-enérgy—shell two-nucleon"mafrii\

element. The'ﬂirst term in ($\3) represents nuclegr scattering

féllo ed.by photon_emissién, the second terg represents‘photon

ion followed by nuclear scattering,uand the third term is
the‘rescattering. (or double gcattering) term. These processes
are diagrammed in fig. 1. The rescattering term has been in-
cluded'by V.R. BroWn'Zf33J7, D;echsel and Maximon ZTEQJ7, apd by
Heller_anci Rich /177, ‘ ‘

The multitude of.published similar potenti;l—modellcal—
culations is partly a result of some se;iqgs diécrebégzies in the
early éalculations. - The cross éection'predicted by‘Sdbel and
Cromeflzzi7 was gbout four times fhe exﬁeri;ental‘value at.ﬂ58
MeV measured'binottéhalk.et al Zjﬁi7, and tén‘times the éxper_
imental value at 48 MeV measured by Warnef Z?L7. The calculation
was done in the lab frame (and in the>tgansverse gaﬁge, E':E’=0)
and neglected‘thé'réédattering»teré.“' Another_célculation was .

 done b& Duck and Pearce Zfél:7 baéed on the Sobel ané Cromer
formulation and using the Tabakin potential Zﬁﬁl7, Again the
reécatfering termiwas néglected.éndbthe transversg gaugé was tl)
used, but this time ?he aﬁplitudes weré'evaluated in the‘CM
frame. Thefresults-agreed withAexperimént at 158 MeV but were
smail by a:factor of three at 50 MeV. Subseéuently an grfbr ”/f”
was:discovered in tﬁe‘Sbbel andemeer equations. Now tﬁe Duck

v.and Peérée calculation agreed qualitativeiy with both gxperimenté,

while the Sobel and Cromer cross sections were approximately

correct at 158vMeV but were still a facto;‘of,6 too large at



48 Mev. Also there were problems with Sobel Anderémer's dif-
ferential cross éections_<ﬂd/th¢Lqu9f at 158 Mev;; at 48 MeV
they predicted a dipole distribution (although Warne; did not
obtéin-differential-cross sections frbm‘his éxperimeﬁt).

This discrepancy was resolved by Signell [227 who derived
an analytic expresslon for the differential .cross sect1on,
dayaﬂchquer in the very low iﬁcident—energy limit (scattering-

length limit). He found in the CM frame an electric-quadrupole

contribution from the singledscattering terms, while the rescat-

.. tering term was negligible. In the 1lab frame, on the other hand,

I

~

;he'single scattering‘%erms *have a 1aréé electric-dipole com?o—
nent but ﬁhis is cancelled by a large rescattering term. This
cancellation takes place in all Born orders (except, of course,
the lowest, whefe‘the rescattering term does not contribute).
Iﬁ the lah frame then, the rescattefing term is largé'even at

t ' . a

low energies, and must be included. Subsequent potential-modél

calculations were all done in the CM frame.*

1.2‘bModel-Indepéhdent'Calculatioﬂs o

Another method of obtain%ng bremsstrahlung cross sections
is to make an approximation such that only the on-éhell nucleon-

nucleon scattering amplitudes are used. ' This is what is meant
»

by ''model independence': although the on-shell amplitudeé may

be obtained from a model, the radiative amplitude is to

4
1]

*It is interesting to note that before this error (neglect
of the rescatterlng term in the lab frame) was known, an early
UCLA experimental group of Slaus et al [—237 measured distri-

“ butions in 6y which, they stated, were in agreement in shape

with the lab-frame calculation; i.e., their distributions appear
to have the incorrect dlpole shape. L .
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some approximation, un%quely specified. . Model-independent cal-
cuiations are useful for exploring kinematic regions and for
checking modellcalculafions. The approximations‘that havelbeen
USed'are of two tyées:- the two-energy approximation and the

soft-phbton‘approximation. We discuss each in turn.

Two-Energy On-Shell Approximation

| One of the important results of Sobel and Cromer's
analysis Zré%g7 is the gngulaf-momentum expansion of the off-
shell nuclear matrix element, hL <L¢h |V/ A+?0>} in terms of
the phése shifts aﬁd what they called thg "quasipha§e parameters";
'This:is éntirely analogous to the phase;shift expénsion, of

Stapp’ Ypsilantis, and Metropelis, for the elastic scattering

matrix elements. For the uncoupled states* the expansions
are’ ‘
S (8 (p) ‘ ‘
ol = ; (2L41) B (osB) € O A pa, po) (1.ka)
: ¢ S.(pg)
dpn= > (214D P(wsb) % AL (pn, p)  (1.4b)
L .

Here the matrix element.tni (tfn) is written in the initial
(final) nucleon-nucleon CM frame, Pi,'Pf, P ére the CM nucleon

momenta, SL(ﬁ)is the phase shift,
(. B (p.\ p) = -ngL(p.,,r3v () w e, Srdr (1.5)

is/the.quasiphase, and (AL(RQ) is the radial wavefunction with

A3
y

*To avoid the complications of nucleon spins, in these -
introductory remarks, the coupled states are not considered.
The equations including the coupled states and oﬁher details

are given in the paper by Sobel zfé%;7



the usual asymptotic condition:

w, (p,r> —-=> sin(pr —% + &_Cpﬁy
On the energy shell P, = pi_in tni a'nd_.g_n = Py in tfn,‘and the

quasiphase is simply

AL(pJpﬁ sin oo (p) (1.6)
Within the framework of the potential model the problem
then is to evaluate the integrals (1.5) for the quasiphases.
*Since the model dependence is all in the quasiphases, it can be.
investigated by comparing quasiphases evaluated with different
poﬁentials,»although any model dependence~found in this’ way must
be considszed asdpreliminarm sipce the total matrix elemenf may
involve cancellations. Often the quasiphases are divided by
their on-shell values (1.6) before the comparlson is made, in
Qrder to remoee on-shell differences. The results are that at,

incident lab energiegs less than about 100 MeV the model debend-

ence is small and not likely to be seen inlthe present experi-

ments. : » : K
The two-energy on-shell approximation'consists of the
replacement of the quesiphases by their on-shell values (the'

rescattering term being ignored).  The nuclear matrix elements,

tni and tf , then involve only the phase shifts at the momenta

Py and Py respectlvely. This approximation has been studied by
Signell and Marker 1_8 22, 2_7 \%hey foundflt to be accurate
at small 1nc1dent energles, ‘even at small proton exi angles «—
where the photon energles are 1argest, W1th the erroi\rising
rapldly with increasing 1n01dent energles. For examble, at

20 MeV and proton exit angles 9 35 (coplanar, symmetric . ¥

yo.

X
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Harvard geometry)tthey found the error in dd/&/%(iﬂq to be less

than 1%, rising to 10% at 61.7 MeV. 6 = 30° and about 15% at oo «%
99 MeV 6 = 300 These results discourage us from looking for k;~

off-shell effects in experlments performed at 1ow energies. n
Finally it should be mentioned that the two-enérgy approx-
imation is useful for examining the effect .of the on-shell dif-

“

" ferences among the potentials and for correcting for these dif-

ferences,

'Soft-Photon. gpproxlmatlon‘

The second type of modelrindependent calculation, the soft- . ,

photon approxlmatlon, is based -on Low's theorem [E§J7 For

photons of low energy k, the radlatlve amplltude nas a 1/k L ' Ki

singularity (resulting in the well known "infrared catastrophe')

and can be expanded in powers of k as- A - i

’

— T_" ' ' 2
T = 5+ +Tk - O(K) BENCR)

~

k Low's“theorem states that the leading two éerms ih this expangion,

“T_1 and To' depend only on the non-radiativeé amplitudes.  The

first term, T_1, is ‘proportional to the on-shell’amplitude, while

' To is proportional to the derivatives- of this amplitude (with - j
respect to the two invariants of the non- -radiative process). . I
The essential part of thlS theorem, that T is model 1ndependent ;

as ;ell as T_1,'is a consequence of gauge invariance. - The
exﬁlieit‘expressione for the coefficients,T_i, To were aegive&
for N-N scattering, by Nyman Z:ZZJ7 Nyman's'elasfie‘ampiitudes - ;
are glven at the Mandelsggg variables 5‘ Bﬁm+pb (prﬂﬁj/l

l‘and t= [(Ps p} *(Pq pﬁ&/ﬁ_ . The choice of the on-shell

£8 2 TPRRA AL VEL R TS e R LN S SN

atd AT
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. g .
p01nt has been shown by Fearing ['28,] to affect the radiative

amplitude only in 0(k) or higher*, as lohg‘asAthis on-shell point
has the correct limit as k approaches zero.wq

. In discussing bremsstrahlung it is useful to distinguish »
between the external-radiatiom processes’- nucleon-pole terms with
the photon being emitted from an external nucleon@line (the single
scattering terms of fig. 1),.and internal—radiaﬁiﬁn processes -

all the others. The latter type are represented 1a”fig 2., and

include the rescattering terms of fig. l; meson-current. terms,

and isobar excitation terms. ke

3

With Nyman's choice of the on-shell point, the leading term

. . ) ﬁ “ .

in the expansion (1.7) is solely due, to external radiation?and
-1s gauge invariant by itself, the 1/k singularity being due EQ!,

‘the nucleon propagator in the radiating leg.- The second term, Ty»

contains a part from the external processes, which-by itself is not"

gauge invariant, and avpart from internal processes. This internal
part'is‘indepehdent of k" and makes the»secondgterm gauge invariant
as well. | .
In the soft-photon approximation the two leading terms‘in

tne k erpanaidn.are obtained from‘the elastic-scattering amp-
litudes while higheg:order terms are irrelevant. The cal-
cnlations‘were first doneAb; Nynan'['27_]vwho used a numerical
representatiagcfor the amplitudes,to obtain the cross section.

The method has the advantage over the two-energy approximation

of Signell in that it is gauge invariant and fully relativistic,

*More precisely, the first two terms in the expansion (1.7) may
individually change with the on—shell point but their sum must
changejonly in 0(k) or higher.
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and is therefore more useful for the higher energy experlments

(T 1ab > 1OO MeV) which are of most 1nterest to us.
—_— 1
Squaring (1.7) gives the following expansion for ||

_ll . ,Z‘Refzr,l—o
T = I’%‘ M +UTI F 2R (T, T )] O(k)(w 8)

The calculation of the first two terms is greatly 81mp11f1ed by

a theorem of Burnett and Kroll 1122J7 They showed (for fermion~
3 .

boson scattering) that for unpolarized cross sections (i.e.

>

/ R
fermion spins unspecified) the leading term is proportional to

-

the non-radiative croes seetiop and the‘secon& term is propor-
tionaltokthe derivatives of the non-radiative cross seetion,

. ged by Fearing
[/ 30/, who aise obtained a generalization of the Burﬁett-K;oll

The explicit formula for N-N scattering was deri

theorem for polarized cross sections (i.e. nucleon spins being

j?f;;Lfied)zré§J7. :

The complete model-independent caICulatlon reéulres the
1nclu51on of the- rr’ term in (1. 8) as well as the two leading -
terms’ discussed above. In certain kinematic regions neglect of
fﬁis term may even result in hegative "cross sections". The
iﬁbortance of the vdrious modeleindependeef terms depends on the
1n01dent energy, as discussed by Fearing AZFL7 We shall return

to this later.

.
4
3

1.3 Relativistic Boson;Exchahge Model o . S,
P 5% In this the51s we have computed the ppx'cross sectlons

d1rectly from relat1V1st1c perturbatlon theory; - the strong

o

1nteract10n uas generated by exchanges of mesons. In com-;**

12
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parison, thé potential mbdel has thetadvantage of treating the

strong interaction to all  orders but suffers. the disadvantage of -

being non relativistic - and one expects sizable relativistic
corrections even at 158 MeV incident lab energy. Furthermore,
none of the potential-model calculations is gauge invariant,

since, as mentioned before, gauge terms from the momentum-

/debendent pa}ts of the potential are neglected.

The present calculation is along similar‘iines to that of
Baier, Kithnelt, and Urban 1_32_7. It has the advantage over the
’ 7
potential method of being fully relativistic, gauge invariant and

automaﬁica11y5includes processes such as that in‘fig.'B, which

contain a virtual antibaryon in the intermediate state. It also

* suffers from a serious disadvantage: the strong interaction can

‘only be.handled easily'in lowest order, inclusion of processes

of higher order in the strong interaction is impractical with

this method. Unfoftunz:;lykthis difficulty does not appear to

have been fully appreci eq by Baier et al, with thg'reéult that-

their model fails to conform to the Lowfs theorem calculation in

soft-photon regions; such an agreement is m;ndatory for all'

models. This difficulty, and the method we used to handle it,

is discuBsed later in detail.

We have also studied contributions from isobar excitation

and meson currents.

13



}‘ - . CHAPTER 2

KINEMATICS AND PHASE-SPACE CONSIDERATIONS

2.1 Kinematics

We shall write the pp¥ reaétion symbolically é;,1+-2—%3 + 4 4
where particles 1 and 2 are the beam and target protons respeéte
ively, pafticles 3 and # are the scattered protons and ¥ is the
emitted phqton. For convenience the’photon will a156 bekdenoted

"as particle 5. Define a coordinate system in the lab frame with

!

the z axis along the beam and the x-z plane in the horizontal

K

¢
plane. In thls system the incident and target protons ‘have .

energies and momenta El = m + T, [ Tean (2m + T 4.4,3]
i | o
EL=»ﬁ) ‘Z==0 . We,consider only events in which the two final~-

state protons emerge on opp051te s1des of the y-~z plane, the
proton with a positive x component of momentum is 1abelled as - “
sparticle 3, that with a negative x component of momentum as

parficle L, In terms of sphérical coordinates we have

\ y

L

‘f—;z = Do (sin B, cost, 2 + sin B sin \P;g *‘(,0519;33 (=3, 4/5 (2.:1)

For non-coplanar events the momenta are sometimes given in

A -—A

terms of the Harvard angles-eg, %2 , defined as follows: O: is

the angle between the projectibn of pPc.onto the horizontal plane

and the beam axis, *Z is.the anglevof fi out of the horizontal

plane. Normally 6, is allowed to span the full circle, i.e.

0z B, £27 , with O< By < ’n;for k: positive; while 0, L
. éq érg restricted by the labeling convention to half éircles, ‘

oA

Cites 0< Oy, 0, £ . (see fig. 4).

‘ A



In terms of the Harvard angies the momenta are

_qu :b Plg(S:.V\§3 co_s:{a;&—v +5'.h@39 + Cos a;wsteg %\> v

TD:J:."PH (~sin 99 ;osYJ..,S..+S/'n \qu t cos 94 éosﬁ. %.—)

(2.2)
e = A . A - A A
: k = }? (,sfﬂ 9,. COS)Oy'x - Siv ‘loyg +  cos BY'cos‘P,zv

The transformaﬁién from spherical to Har#ard~ang1es’can be

obtained by equating the components of (2.1) and 12.2). For

k we have

Sin Qy cos“Pr = 5 97 cas‘Pr (2.3x)
S/h;\Pr = - 5By 8in P (2.3y)
cos 9; co.s’]qr = (os 97 (2.3z)
therefore
7 o= .- - . 23 7
\PB’ - SIY\l (_Slhgr SIH‘P\’>_ .~—'11T_ _A‘_ \Pr f_ ’/2_
5, = polar angle of the véctor,
(11 ,I‘L} = (CO-S 93” 5’)’1 9)« cos LP*); ) (2-4)
ide., B, = tdﬂ*('ﬁaner ax%?) .
taken in the appropriate branch.
Similarly
5 .= . . -7 O 7
‘ &93 = Sin (51h93‘5:h‘P3) ’/5_ é % f_ =z
93 = éasv;‘l(.éahes cos g_}) 0 é_ ‘93 é‘_ ‘271' . (2‘5)
. : A;}-\
.and - e
—_— 0~ . — Y
g‘D'~fd'5'\'1 (S:'h o, Slnﬂ,) 'g,-_: < P(_,é«l];
- | L | (2.6)
' 61,{ = tan ( ~tan 99 FOS\Pq) 0 £ 6 = '7%

|

.15
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. As a measure of noncoplanarity Gottschalk et al Zjﬁ7 de-
,fined the angle § =4 (tf?; *‘10..,) ; on the other hand Drechsel
_and Maximon ZréQJ7r who used spherical coordinates-defined the

angle ?f =% [‘fg,*(ﬂ‘“ﬂ.,)] | - VWhen 65 = §, = © these two

angles can be simply related as follows: rotate the coordinate .

systeﬁl about the beam axis so ‘that ‘\03 =q-f,. Then ;é =¥, =7- ‘P‘.,

and §_5 = ‘P,_, = “IDq and _from'(2;5)’,‘Wev have

S'lh 5 Av: .Sl"n G- an% (2.7)

Since the quantities involved are invariant under rotation about

& P

the béam_axis', this equ‘afion holds even when “103 # v —‘Pt.,

For a fixed 9, the noncoplanarity, ;‘? y has a maximum value

allowed by kinematics, ému (97\5 . Wh-en Oy is unrestricted the

noncoplanarity has a ni’aximum, %M“ , at a certain gamma-ray.
) (R .

momentum k, with angles 0y=0, ¥,=¥, - the "limiting gamma ray".

We shall now consider the energy-momentum equations explic-
. W

itly. In the lab system they are

PPk =P o (2.8
Ey+ L, vk = Ege - (2.9)
.where 'E;ﬂf = \/PJL ot

Eiot = Im + Tpuy -

For convenience, in what follows we shall consider the coordinate
system defined 50 that ‘()3 =T - ﬁ'l;_ 55 « . The components of

(2.8) in the x, ¥y, 2z directioﬁs,respectiiely are.

‘ . (Pg Sl‘n 93 T P-{ Sl.’V\ 9:,) COS_?!F + k 5|"h 87 L;COS \Pf = O (2-10)
e (P?} 5.,';,;93 + Py Sin 6\./) A_S/'h‘é-?'/“ f_krs.i:n 8; SIH\PY =4O’ T e (%.11)

/
/
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&Sq'uaring (2.7) and (2.8) and eliminating P, we get

(p3 sim 63 - Py 51'h~9~,32= ks Op — ﬁp3 Py Sin B3 sin by sind  (2413)

Eqs. (2.9) and (2.12) can be solved for Py = py (ps, By) "3
the result (see appendix A) is

: f
_'(Azl - V‘.‘\l Losze-,)_
- 2 A cos By

Acos&, 4 6059 [A rm?( cos® By —cos 001
cos®Py - costBy

- when cos 0y # cos 264
where A= (£ - EQ cos By . ( -3 cosB).

" when cos 0y = ws7'<9‘1

-0
£
"

(2.14)

Egs. (2. 13), (2.14) and (2.9) can now be comblned to give b as

*a function of py and By .. We havg_ maximized thls function

numerically with respect to p; and 05 to obtain E},,,;, and at

fixed fy with respect t'o "‘,ps to obtain ~§M, (9,) . Table 2.1 -
. . €

»s,h'oivs ;%;,,,4 and the angles &y, ¥y of .the limiting gkimma ray for

se've__ral energies and angles 93, 6y, | ' )

When the di‘rections of‘the final—stat;e prof:'*,ons are spec-
ifiea, the locus of poin_fs sa’éis’fyi_ng the kinematic equations
V(2 8) énd (2.9) depends on one other p!'a'.‘ra‘n‘lei’.e'r.,~ which' ¢an be

taken as the photon's polar angle 9r .- Sinée this. parametei‘

.is perlodlc, the locii are closed curves; these are normally

by experimentalists, and their properties are well knownf; For

dlsplayed 111 the Tl& - T3 plane. Such plots are commonly used

2 Iy

*See for example the review paper by Halbezg-[lj

,;.n:;;

]53 cos_‘(93 Py cés@«, + kcosBy = P - | ' (2'.12)>

17
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3 X
Tyav 63 o §é o J ¢
(MeV) 4 e 0 °
66 30 30 6.12 R -90
157 30 30 9.27 634 o -90
157 Lo Lo 2.41 60.0 -90
200 2" 12 46.27 63.0 -90
200 'n16.3. 16.3 30.12 62.7 -90
200 10 18 37.80 62.6 -84.7 -
200 25 25 15.43 61,4 90 o
200 30 30 10.38 60.3 -90
200 35 - 35 6.25 58.7 -90
200 40 40 2,57 56.3 -90
4oo 20 20 31.96 52.6 -90
. ‘ . . l -
Table 2.1 Maximum Agncoplanarity %M;;for several
energies, Tlab’ and angles © ey. Sq
.and Yo are the spHerical ang%es of the
limiting gamma ray. Labelllng is such
that 90°< ¥, < 2a70°, -90°< ¥, < 90° ; ‘ y

'/'T \Pl.' = ?3 -

All angles are in degrees.
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example the locii_of constant k are the lines T3 + T4 = Tl;b - k,

hence t;he.Tl+ - T, plots are convenient for locating regions with

3
maximum phdton energy. In appendix B we show, fér copizﬁﬁr
geometry, that the closed curves are approximately elliptical
when P?%w [;{n(?3+éihlqé< l ;i“the ellipses distort even éi low
energies Qhenw93€+ 94 is made sméll.a

B
2.2 Cross-Section Formulas

The (invariant) T hatrix is defined by

Spe = Spc @ny SCq)(P3+Pw*b‘P"P5

o 5 m 2 %
* [(277_)3/1] [5,5152;2}} S

According to tﬂe prescription given by ijrken.énd Drell ZT3§J7

(2.15)

the differential crossISection is

oy, 3 a3 )
do = - 'L,“L(-. | Tecl 57" (pg -pD) dp_;dp;,d;kv. (2.16)
A2n) W R EE 2K B e -~
where o pg = (py e py+k)™
and pit= (p+p
72 and'VE are the velocities of the beam and target proton

respectively. Eq. (2.16) is the starting point for deriving,/\_//

t
the expressions for the various phase-space factors we/§h£;1

_ | /
require. [

Rochester Cross Section™ ) }

From (2.16) we get , _ //f 4
d g/ , mt f psdp, /d’p, .
‘dJ?.-s AdRydk = (2n)° |7, -5 & £ = .

. - ‘ 2 _ _ R o . , '
X - —"l-Ts ITI g(ts*gw*l‘l*bﬂb (334»5:;2—"5"6} (2.17)

~

o

pins -
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’ ' 5
P4 .
where i‘ _ [Tl represents the sum of J7}¢r over Pinal-state
Spins ) .

proton spins and photon polarizafion and the average over

initial-state proton spins, The second delta function in (2.17)

determines'ﬁh as

— } - —
Ps = P~k - ps ‘
— 2 yl '
and £, = [(P,_'-k“Pa +m3] (2.18)
A . - s '
= | (ﬁ-;kY’f p; -~ 2 p; /—P,::—.E!COSO( + Vn’]

where o is the angle bétween'ﬁé and'ﬁa --§5
We now need to evéluate

§ 802D dps
with - ‘ _ -

J)(P;B =Ey +Ey -k =L, ‘ .‘ (2.19)

With [ = (P31+m1)gancf E, given by (2.18) we get
AP/ /dpy = Ps/E, +(Py = I B :l;fcosd)/élf

ama [ 6(PENdp = ( 508 dp =
4 \éi\ \d

l;

b =

des \f(pg 0

‘L\

= py By by ' (2.20)
{P;(E}*E§3 -7 (B JZBEQI

It is understood ‘that P4 is %A@efd of (2.19).
AN

Puttlng these results back into (2.17) we obtaln

' ——“—d = M4>S(' kL p’ H§ ‘ ' (2"“21"“)" R
g e '—.2 E-E:. > —p » °
dddk 2E@TREE RN @ 353\

~

-

The quantity in the denominator in (2.21) can be rewritten
‘simply in terms.ojfiz-as follows:
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l P;‘(E‘s vEy) - By (P —’G}g;' = lP; (E—:a'*g"f) —'ﬁa-(ﬁsfﬁﬁ)}'él ' :
: ) e e - (2.22)
, Pa E‘-I T Pat Py El 1 -
Ih hhe lab frame . '%2 = 0
L _ ; —‘.’L-: 3( ’
‘ Eamom (2.23)
\ Tl-}, = 31/5‘:
and (2.21) with (2.22) reads .
;3 7 . .
dg = _m kps HZ TV (eaaw)
ARy d v d k), 203 Py | py Ey ~Ba-Py Eaf o se '
. . . AN
. ) \
Invthe Center—of-momentum frame
‘Gn. = _?z = ?I/E| -
b= E ' (2.25)
Ber 0 |
and (2,21) reads .
o y ol oS ,
a V = m P3 H -’p-'..s . :
v c 1, — — — (2'.26)
L/(Q“Y P B |ps (B Eg)+ P ¥ &) o

dJts A dk

In the experlment of Rothe, Koehler, and Thorndlke Zﬁi/ the

d1fferent1al cross sectlons ‘were given not 1n te?MS of 93

Wg,but 8. ?< 4 the spher1ca1 angles of the vector q = p3 ?L

In thls case the cross sectlon 1s 427b7

(1n the CM frame)

dcr = _ni_& k% ‘*Zp..,'lﬂ - | (2 27)
bedﬁ k) B e gt (e -28.3 (B Eq)\

Using .the coordlnates of'a 1nstead of'g has the advantage that

in the soft photon limit Oq becomes the usual CM elastic-

scatterlng angle_QCH.




Note that for soft photons the phase-space factﬁie in
(2.24),,(2.26), (2.27) can be expanded as a power series in.k

with the leading term of 0(k).

Harvard Cross Section

" From (2.15) ‘we have in the lab frame

do 7 o = . sinBy (5(‘43(;3# p:. T I Py dp quP kdkd Py 2 28
AJG dJZL,dQ, 2(271");}3;‘ E;E_L, “1 ( ‘

N

This'phase-space integral.is evaluated by Drechsel and Maximon

Zfzqi7;f the result is : .»'
do =’ Pal'P-l-hs»\.Q i . * |
R e 4 mby L T 2.
dﬂ}, olJZH (JQY ‘ 2 (QTT> 'P| ‘ E3 E‘f IN! HS;JI ( . 29)
where N = (P"f Sin 9L{ - P3 s:n@QCo;QU (Slh (93"'51./\ U3SIh 911 'U'Lf Smg;}

-k (’U‘3 Sin 94 -, Slh63\ Sin’ 91—\

+ 2',S_l'vi 95«5/}\94* }/.Hlf [ P? cos 93 - pl.’ cos gq - (7)'5 Pa "’D-c.’ PL» <os 9‘.—]

,It is understood here that the coordlnate system is deflned so

that Y; =7 = ¥L i; The phase-space factor 1n (2 29) ig "~ o

"singular when f %:"x (9,} Thls is easyﬂlt:) eee for
symxﬁetf’:’.‘c 'events, e ",=‘ 94 = 9 _% Emnx (0}when ‘f’r——bu | ,‘
ﬁlmplylng (from the symmetry) that p3 = p4 and hence that N van—
..ishes. . Furthermore when O,.=0orq only coplanar events are

: allowed hence %mx (o) éﬁma,(ﬂ 0. For events with.

O< <:§mqthere .are no solutlons ‘to the klnematlcs when 6% 1s

such that ébmx(é;)< ¢> For example conslder the sltuatlon

oA,

-Tlab'“ 200 MeV 93 Q 16 3 ’.§ 5 . FlS- 5 is a plot-of ‘



s

émﬂ(eﬁ and shows that %m“ {9,\:§ at 9, =6° ,dn.d at 6} ’3-'/6,3° ,
hence there are no solutions for' & < é°and for By 7 163°% . Be- ’

cawse of these two problems - singularily of phas_e-space factor

at the kinematic limits and restricted range of £y - Gottschalk
et al defined a different angle, Yy s, that avoids the probleins
ana réduces to & in th_é coplanar géémefry.' "/‘r is defined in
terms of the limiting’ gamma ray |

ko = ko Siv 90 a;sPo?z + k. sin 6, sfh‘f’og + ke 50590 2 (2.30)

in the following way: consider the vector

—ay

B = & - ok _ . ‘ | (2.31)

1

where o is a scalar such that kK has no y component (this can

always be done since ko has a non-zero y component), then 'Y’r is

. -/ ' s
the angle between k ‘and the z axis; i.e., -

-

—_

R = k Slh Zt. + h ws")“,—z L (2.32)
The angle"/' as deflned by (2.32) can range from O to 2n. (see

flg. 6) The components of (2.31) read

h SIZ\,’\" »_~, leSmG, Cos()or‘ o(ka /Sl‘hgol...CoS  RE (2.33x) |
) O kS(ngt SIH\OY - o( ko Slheo Slh\P (2.33y)
kww '-*'keoser' - d kocosby L @33

“From (2. 33y) we have

o (k Sin 9;— 5m‘ﬂr>/(5m9 s:n‘Pov

Substituting'this into (2.33x), (2.332) we solve for Vi1
k; = E/sin"}’r > khsinOy (0s¥ = sinPr ot %) |

/ (2-34) »
ka h/,cog‘Pv,z k(tosBy — sinby sinPr cotBo csc (P,,B

i

.’Y/., is the polar; angle in. the X, = X5 plahe of the point

(:z~ 'z,\) (cos 93 ~'5m9~, Slh\Pf co'tQ., csc'f, sin .9.r(cos\°f ~sinPr ot )

J-.
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The phasé-space integral of th? Harvard cross section,.
,.dd/dJZBa(Rq d#ﬁr , is e'valuated by Liou and Sobel [-16_7 in

terms of the Harvard coordlnates o. it ?i defined in sectlon 2.1.
The result is rather lengthy and canxbe found in the appendlx

of their paper; in terms of their factor F, the cross section

is given by

)

do -

- . ' i z
adqd ¥, Z2m° P, F HZ Tl (2.35)

Spins

Flastic ¢ dss section
~

We shall also need the differential cross section for

'elastid N-N scattering. Here

| ' . h |
ot (2a , ' m' To.
&p L > 5 (P3‘* Py=h - %21)3/] LE;E E_J ﬁ,L (2.36)
The notation” is the. same as before; row k = O.

4 4 |
do = (Zn)q 5’ )(P;e",PD /Tfl ‘:'—3(;] ———"31—— d3p3 d3/:u,’

N v (2m% B EEE,
-— ) l " L L T * v |
=y g S RE R el s
X ] . S ceEy B ‘

therefore

.

| _ mt 2
C{O’/dJZB (l/l) l——n —-'}I S(.t5+bq b, h)[/ ‘_[ A.:—E—h—_ P3 dpa (2.37)

In the CM system

f«a-v'- e 7= B =% i
Ryt =55 dis=dR. :
N . ‘ ,
do = _1_ __E_S(ZE ~28) | T\ " dp! (2.38)

dRwm (27 2p £? 5'1 P de
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Integratidng over the delta function: , _ .

‘W§S(QE“QE7dep/='S.é(lJPﬂ+&1-;5é> ﬁ&dpf‘  ‘" %,J
.= L pE et £=E

Putting this result intq (2.38) and summing'gver the spigslwq

get thevexpression

de -1 L ml LS ITIZ s
Afm (2mrd B | H : (2.39)

SpPiRs, ™
do‘ )2

Sometimes the invariant d(-f)is required, where t = (p1 - pj

i§/_the invariant ‘mémentunz transfer. . In the CM system

'& = —ﬁ‘ P'LS/'V\Z_G‘;“'M = _-2 Pl(l - COSQCM) (‘52040)

where QCM is the. 'angle‘ between —1?’ and ?. Since AdLem =8 Bc me d@cmdﬁ_‘

and because of symmetry with respect to the azimuthal angie \\
de  _ g’ do = ., o . Aot
A Dem __ ‘ aﬂ(h 5'"9<m 4.PCM - 21 sin B¢ e

therefore

do . ] de. -

= T do S
S d(-t) 2psinBcm dBcm P* dRem (2.41)

Substituting from (2.39) we get

) | T|z) | (2.42)

Yy
de - _! m

Aty léem  Erp?

/
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S CHAPTER 3
, ONEFBOSON EXCHANGE MOPEL CALCULATION —
- " EXTERNAL EMISSION

,-if, 3.7 Intrdducfidﬂ“'i e j-;ffﬁ e

In v1ew of the good agreement w1th experlments rePOrted »4_ .

f by Baier,’Kﬁhnelt and Urban [T3§J7 (BKU), we dec1ded to use’-

the1r method to obtaln a ba51c calculatlon of ppi “We could

‘then add gpther contributions such as‘those due.to meson currents. -

-{‘; " hand A exc1tat10n as reflnements to thelr baBIC model.., vfr S

Ty L-f Although we were able to reproduce the results of BKU we
found their model to be 1n gross dlsagreement wlth the data of
Nefkens et al [71;7 and with other calculatlons at very small

3

/ predicted~crossvsections»that were much too 1afge. The problem

14

- .= = o
¢ photon»energles (for e.g. at Tlab = 200 MeV- @ _794..40 )4 1#

was clarified when we applied the same model to elastic N-N

«
¥

- N . B . ) | - 3 !
scattering: che S-partial wave was found to be in serious error

_ due to the-neglect of unitarization.
In our calculation we have attegpted to»cofrect for this
deficiency by %yposing agreement kith the Soft-phqton theorem
as a constraint 6n_£hé4model.‘v For the N-N interaction part of

the amplitude we use the model of Erkelenz;,Holinde, Machleidt

(henceforth ei%ed as EHM) ZTB%J7 in the Born approximation with

‘It is true that this" experlment isoutside: ‘the .range of
. the model, because of; the large: 730 MeV bean energy. . However
the calculated cross sectlon was abdut 16 times- the measured

jper51sted» &hough not at the same magnltude. at iower 1nc1dent;_,
ehergles., ' . . . !

Vil !,cross section -even at. small’ photon energles, ‘and ‘this: problem'f*‘“' 



the parameters modified to satisfy the constraint mentioned
above.

3.2 THe Model

The OBE amplltude is a som of external -emission diagrams
"w1th one nucleon leg off mass shell (flg. 7) The strong
1nteract10n is represented by the. 1owest order exchange of;
pseudoscalar, scalar, .and vector_mesonslw;th form factors j
included at the meson-nucleon vertices. We have used the,EHM»
OBEwmodel“as a guide to mesonvparameters;, appendix C‘is'a

N summary of thls model. ' For more detalled 1nformat10n the

'*';‘reader is referred to refs. Z_k 35, 3_7'and the rev1ew artlcle

| '. by Erkelenz [-36 7.

In our_pp{ calculation we pavé~tfiea to use,fhevmesonsr.
couplings, form factors and coupling constaﬁtsﬂasvgiven'by-EHﬁ~
(table C.1 anc eq. C.B), However-since we did not iperate
- our N-N T matrix throughIthe'Lippmann-Schwinger equafion, as

EHM did, modlflcatlons had to be made to restpre the flt to

the N-N data. We used ‘the crlterlon that the ppY¥ cross sectlon

‘mustrhave the correct soft—photonvbehaviour. A necessary con-
dition then, according'to the Burnett-Kroll theoremi(section
1.2), is that the model'predict the correct elastic cross
section and its derivatives. AThis condition iﬁ;f:}¢isfied'by

modifying the form-factor parameters (the.cﬁtoffs).and‘by

.

. multlplylng the ppf cross sectlons by a correctlon factor,

"*iﬂj R ; equal to the ratlo of the é&perlmental elastlc cross.

W

g

sect1on to the computed elastlc cross sectlon at the on-shell

o p01nt (s t) wlthr_‘i_i::;;'i;ui,"‘"*“'?;5..g“:gj/:~;<]*f roe
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LCpepd + (paep3] /2

Wl
I

b = 2 s (7o)

T

t = [(Ps P+ (py- Pa]/2 S
;The correspondlng Tl b and 5CM1are
SN - . _
- :‘ S —Hpm? ’ .
T(AL" lm :
‘ (3.‘?‘)_'

CM.

‘too close to the Coulomb peak the comﬁhtedﬂelastic'cross‘sec-’

'we.fonnd'that»as,long as JOO"MeVﬂ<$iéS<(730ﬂMeV3ana§g::;wésﬁﬁstffjgi“'w‘

--tlons had approxlmately the correct dependence on QCM . The
correctlon factor, therefore, can only have a weak dependence

»

" oh Gdﬁ and it. is suff1c1ent to evaluate'R_ at a 51ngle CAVES

We tabulated R at QC 60 at’ several energ1es,from-9.69 MeV

to 730. 5 MeV the correction factor_at any energy was then‘
- : ~ '

obtained through interpolation.;; The result is plotted in =~

fig. 8. The slight waree in this graph are artifacts of the

-
* v

28

Cublc—spllne 1nterpdlatlon‘ ' The cross sectlons were computed oo

w1th the T ‘matrix - glven by eqs. (C #) and (C 5). The param-tii

eters used are those of table C. 1 with the exceptlon of cut-
offs, which are \
Ax = A = As = 1250 Mev
Ao = 1000 MeV R
NAp = Nw = Ay = 650 MeV. (3-3)
Av= 2500 MeV
These are ‘just the cutoffs taken from EHM (table C.1) scaled

It

”™

<‘Slnce the points contain statistical uncertainties curve
“flttlng would be .more appropriate. Interpolation was used
: because it 1s much easier and glves adequate results.

.



v b& a factor of 0.5 (with the exdeption OfAv) The scallng
factor was treated as a, parameter, determlned 51mply by tr1a1

and error-to glve the correct dependence of d@&J? on QCM and
Tiabs R

v The Coulomb 1nteract10n was treated approx1mate1y and
1ncompletely by addlng a one—photon-exchange dlagram with the

. p’
"dipole" form factors,_} The Y¥pp vertex %;ﬁywﬂé is
‘ S e : o P,

B2 57) U '“'”’c'b;’ ’F;(”%s)' | T o (3.4)

e electric and

‘where the F, and'Fz are defined in terms o

magnetic formgfactors'f7'LH;:,“.
ﬁ Ge ()= F (&) +

cand. L Gu(R)= R+ 2m R (D) 133

with GE and GM‘accurately given.b& [46/

GE (%l\ = ]+ 7(_ - (/ 0.7 GcV")_ ) (3.6)

- 3 ‘
where1-*7L252579 is the proton magnetic ‘moment in units of -

nuclear magneton.f

, Flg. 8 shows tHat for 1oo Mev <T <730 MeV.and. GCM 6o°~‘

the model glves a reasonably good dependence on the lab energy.
& : .

. The dlstrlbutlons in GCM at a few energles are shown 1n flg. 9.

For N-N bremsstrahlung the 1nvar1ant T matrix was deflned

by (2.15). We factor out the. polarization vector, eu, of the emitted

photon to obtain a four vector T i.e.,

T = e TM_.‘, BEEERNCRD

(For notatlonal 51mp1101ty we shall often not dlstlngulsh between”

a matrlx and the matrlx element) -~ VWe - use the meson-nucleon o

coupllngs as given. in egs. (C 3). ’ For the sum-of the two
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- diagrams of‘fig._10

(“ (I 3 AH) - =:  _-€~- 32‘) F(:) ( (p, —PQI)

v

"l,(.3[r’ (p_gk) 5(P3+é>/‘1u Dy MA) SCP, QF (p“ﬂ] w, - (3.8)° o

(d 'B)

- - ) v
Xy Mg L Ka A;a) (P‘f" p2)

~ where the index :x~spé¢ifies the meson exchanged; the index

,i‘=ﬂ1,l...t}4 in the:Spinors spécifiés-both the spin~and_md7~“:j'f

mentum, thus*u, = u(si, pi);.

N

S(p) (ﬁ +"“>/(P D) . (3.9)

is“the;nucleon.propagafor;~« C*(P3,is the photon-emission

=, A (¢, 8)
vertex; v and M.’

LS .
p01nts A and B of flg. 10 respectively; '[S<,y - is‘the’meson

-propagator, 'aﬁd' F;(Qf)are the strong . 1nteract10n form factors
‘defined in table c.1. “
FBr reasons glven in’'section 3.3, in wrltlng down the
rfpﬁétqgégmisé;on‘vertex Tzh’we neglec Jthe fact that one of the
’ndcléon'iéés';é>§ff-maséhshell. ;A}thls statlc 11m1t

’ . L Y

A

where e“%ﬁvﬁ is the anomalous part of the proton magnetic
moment (x=1. 79)
_ The\@eson propagators and meson—proton vertlces are.

giveq.below,:ln table 3.1, with q* (pl+ )A .

v are the meson-nucleon vertices at

L Y C ATy
I T LO’v.k’ — o ,
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_example

‘

The gauge term

ol -

LI

&
M ,A M_(‘gt-,fn) v AUK
Meson Moo S )

I
scalar. ] 1 —
D T oms

pseudo-. . . ]

1 scalar L ¥s L Y5 " T
R SRRP" G = ey

vector Yo v L0 T LY lo, e e "
. QM. Am % - m(v)
Table 3.1. Defi%ition of the meson-proton

vertices and the meson propagators -
used in eq. (3.8).

W

2

%

- a
™ vd

B SN

‘s

Z, ‘m

k3

\

‘(MV, BBI . ) g

. not ‘contribute because it couples to a.conserved current.
s T P, . CR ‘ ) s .- A T

= o (’¢H

p,z.) L(.

Kz 9

P

\51nce both splnors satlsfy the Dlrac equatlon.

in the vector-meson propagator does

‘For

The last two dlagrams shown in- flg. 7 can be obtalned

from (3.8) by the trgp5formatlon 81P1&>8,P, , 53p3e»shp4, while

the exchange terms required by the Pauli principle can be’

is then

='e;"T”‘ =

m(a 54, 37

. fo;matlon 53236%84pu an@ a?chagge of sign.

é“'ZfT&‘{(l,J_;

S ;143) -

, obtainéd from the fourldiagrams considered above by the trans-

The total T matrix

3H)
“@,; 34)]

(3.11)
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Because of the larga numﬁer_of tefms in the amplituda
(3.11), the uaual trace mathod'pfosumming,W'Tléovpr fhe proton
spins is.not practical. We evaluated the matrix element for
each of the 16 proton spin states (aﬁd for each w ) numericall& 
and simply summed the mod—squarea of thése complex numbers.

The sum over the photon palarization was done by means of the

relation
— M :

LETYETY = -T 1 G

€
To make use of this formula it is necessary that the amplitude
be gauge invariant. Then - k™ T —Oand o

— * - = —%z =
(ke TVRTY = (E-T)(k-TY) < 7. T*
\

Since k* is a null vector thls means that L

T°T° éTT*

l.€., T is a space -like or null vector and the rlght hand
ide of (3 12) will always ‘be a non-negatlve. o
It is easy to show that each of the four ‘terms 1ﬁ (3 11)

‘1s 1nd1v1dua11y gauge 1nvar1ant. For i = 3,4,-AJ-= 1,2

@A)

h'“ W, [Nl_'M (p: +k) S{p: +EOM * qu S(P\,' "'QP#(PJ'D] uy

=T [Jé(;z B K ) M"‘”‘ + M “’”(,g ;{m)){} W
zpu k- -de R

T [ ms 2k I Y £ -2

2;% k ‘ - RJ

-

= . E_Mca,D Jr-\Mw"Q)] u = sed

In the above we used the commutatioa relation for the gamma
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matrices A¥ + P A = ‘-2a.b and the fact that the spinors satisfy
the Dirac equation (ﬁi - m) u; = Ei (8 - m)4= 0.

Note that since e“T; is an invariant and we do not work
in any particﬁlar gauge it makes no difference whether the
matrix elem;ht is evaluated in the lab or CM frame (in contrast
to the potential model calculations). Also the gaugé condition
b“z;=0 provides a handy numericai check - in particular at
0¢=0, since then k*“= (k, 0, O, k) a;nci ™ = 3.

3.3 . Discussion

We shall first discuss the problem of using thé'off shell
N-N amplitudé in Born approximatién. Aa\meﬁtioned before, EHM
unitgrized t&e meson-exchange pole terms through the Lippmann- -
Schwinger equation. Since we avoided this procedure,” we had
to apply corrections in order to restore agreement wifh the
-soft-photon theorem.ﬂ'

To sfugfwthis¢yLoblem in more détail in terms of partial
waves weiused_the simple four-pole N-N model of Arndt, Bryan,
and MacGregor (ABM) /387. The four mesons considered were

¢

the n, p, w, and a scalary, T=0 meson of mass of about LOO MeV.

»

The L 21 partial-wave amplitudes were then unitarized geo-
metrically; this amounts, for the uncoupled states, to pfo-
jecting the Born amplitudes onto the unitary circle. Two
‘methods of doing this were used by thé authors: 1. taking
the Born gmplitude, BL’ as the real part of the unitarized
amplitude - the imaginary part being determined by elgstic
unitarity, i.e. By = Sin &, cos &, ; 2. taKing the Born

amplitude as the phase shift, i.e. ‘BL =& . We should note



T
& -
that this geometric unitarization is only valid when the model
amplitude is small (18L1<<%j for uncoupled waves).
: ’

In this (ABM) model the coupling constants were obtained
ftom a fit to N-N data in the energy range from 25 to 350tMeV.
by means of the reduced second-derivative matrix of Arndt and
MacGregor}[BQJ7. The 150,331 ’ 3D,], and €,, phase.shifts were
excluded from the fittand were treated as free parameters.

For PP scattering thenilthe model gives the L2 1 phase shifts;
- the S wave can be put in from phase-shift analysis in order to
.compute obseryables*

The authots found the unitarity corrections to be un-
important. This result was used by’Baier, Kihnelt, and Urban
to Just1fy the use of the Born amplitudes in their NN¥cal-
culatlon. The fallacy here 'is that the S wave was excluded
from\con51derat10n by Arndt, Bryan and MacGregor and must be

supplled externally, otherw1se the result can be a catastrophic

disagreement with data, as we illustrate below.

~

' - do
Fig. 11 shows the elastic cross sections, dNlem 3
evaluated at three energies. The calculations were done by

T

prQJectlng out the partial waves and summing these according to
the formulas in Stapp, Yp811antls and Metropolls (SYM) ZTLQJ7
the series was continued until the desired accuracy was reached.

The expressions for the OBE partial-wave amplitudes are quite

lengthy, but have been written out in a number of papers (see

] , . Tt @

*Although to. minimize the chi-squared one should use the
S wave obtalned from the reduced second derlvatlve fit.



for;e;g; refs. e andiﬁé). .. We took the Couioﬁb scattering
"into account by adding the non-relativistic Coulomb amplitude
;(as,éiven in SYﬁ); i.e. we set the Coulomb phases in the nuc-
«leaflpart of the total amplitude to zero. This amounts to

' neglectlng the Coulombwpotentlal in the reglon of strong inter-

actlon and is an acceptable approx1mat10n here, because we are

mainly 1nterestea_1n the region Tlab> 90 MeV and © large

CM
enough that Coulomb scattéring is small and we are looking at
effects fhat are considerably lérger. The solid-curve in

- fig. 11 is the résult with no unitarization and with fhe S wave
‘taken from thé OBE model unmodified. The dashed curve is the
result with the L2 1 waves geometrically unitafized;according

to B, = s8iné_ cosS_ (see appendix E for more‘details)u Both

of these calculations are in gross disagreement with data ZT?1;7.
The effect of the unitarization is rélatiVely small and ihcreases
with increasing energy and décreasing scattering angle. As‘the
energy increases, generally the L2171 phase shifts increase and
unitarity corrections becoﬁe increasingly important. On the
other hand the largest partial waves ~ the P waves - are odd
functions of cos © and therefore make a vanishing contribution

CM
as © approaches 900.
CM v —
Fig. 12 shows differential cross sections computed at the
same three ehergieg, but this time the S.wave was put in from

8¢ 503 . '
phase-shift analysis (according to o, = ¢ sin §C'S) ).

*Egs. - (Aﬂc) and'(AJ7d) in this paper- contaln a typographical
"error: . the expressions should not be multlplled by 2J + 4 (as
they are).‘rather they should be divided by thls factor.

(‘,,.(—ﬂ'

A
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The solid curve is the result with/y§:1 unitarized as abbve,
while the dashed curve is the result with no unltarlﬁatlon
(except the S wave which~was unitary). ‘This time tﬁe agree-
ment with experiments is much better and the unitarization
‘makes a small 1mprovement at the hlgher energies. » The remeip-
ing, relatively small discrepancy can be attrlbuted.to the |
approximation in the handling of the ,Coulomb scattering and

errors in the input of the S wave.

The above study demonstrates that the problem lies in the

S wave, which the unmodified meson-pole model gives incorrectly*

This,‘of course, is not surprisiﬁg since the S waves are known
to be outside the eeOpe of the meson~pole model. We should
also poiﬁt out thaf the problgm'getsyﬁorse with increasing
energy, for unlike the'true S wave amplitude, thcﬁ goes
through zero at Tl b..250 MeV, the model S wave increases with
energy and continues to dominate the total amplltude. In the
OBE model of EHM the S wave is corrected partly by adJustlng
the cutoffs in thelr form factors, but mainly by un1tar1z1ng
~through the Lippmann-Schwinger equation. ThuS,;un?tarity ;"
correctioes are small when the S wave is excluded ~ as in the
ABM model, but are very important when applied to the total
amplitude - as in the EHM medel.

We shall now make a few remarks about the prev1ous OBE
NNy calculatlon, of Baier, Kithnelt and Urban 132_7 since

the autﬁbrs appear nbt_to»have fully appreciated the problem

*This was confirmed by examining the partiaL-&ave
amplitudes and the phase shifts.

'
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discussed above. Their statement, that the S-wave phase ghifts'

(of the ABM model) are within two or three standard dev1a ions

kY

of the tabulated values, is incorrect, because. the S—w ve phase

shlfts that ABM refer to are those from the reduced second-

4 derivative matrlx £767; 1i.e., it is not a model phase shift, rather

-

it is that S-wave phase shift whlch along wlth the model phase

N

shlfts glves the best fit to the data.
- It is not surprising, therefore, that Baier et al found
gro dlsagreement when using a—number of N~N OBE models coupllng

in Born‘approxlmatlon these models should

constants. When u
gi#e the correct tz£1 par 1 waves but,unbredlctable S’waves;
Baier et al used_the'coupling constants‘from the model of ABM,
but made small corrections to these to improve the sgreementvof
their photon angular distributions with expefimeut. Houever,
we fouhd the elastic cross sections and the'paptlalfWave

amplltudes to be quite sen51t1ve to these variations in the

cdupling constants. F1g. 13 shows the effect of the changes
in the partial-wave amplltudes. The dashed- dottedAcurves in

/ .
/ fig.' 12 are the elastic cross sections evaluated with the

‘modified coupling constants*'- compare these with the.cross
?
<

‘sectlons from unmod1f1ed‘coup11ng constants (SOlld curve in
fig. 11). We find that the cross sectlons are much improved

by these changes,‘although they are st111 not satlsfactory.

N

-\ #*hese curves were computed d1rectly from the \Eizlvp(/’,//“
relativistic Borm amplitudes without partial wave decompo io .
The Coulomb scattering was included by ‘adding- photon-exchange
dlagrams with form factors as given in (3.1), (3.2), (3.3).

,)\‘ A



. .We can thus understand the improvement in the radiative cross
sections in terms of the corresponding improvement in the
) , )
‘predicted elastic cross sections.

Any model used in NNy.calgulation must have the correct .

.« . soft-pho
model independence). In view of the Burnett-Kroll theorem this
v ‘ - g% . '
means that the model must first predict correct elastic cross

S

sections and their derivatives :(with respect to.s and t). This-.- - -° -

]

requirement i{s clearly not satisfied'by'the uncorrected meson-

pole model, as we haﬁé seen; The correction used in the present
calculation consists of usiqg on-shell data‘to modify ghe form
fa;i;rgtand to pogmalize the radiative crossfsectioqsem;o@;lined,,}-
in sectionm 3.2. I? should be péinted oﬁt thaf‘;he choice of the
'dﬁ¥sﬁéll point (aé given by (3.1) and (3.2)) at which we obtain 

the normalization factor i§ afbitrary; sin%e theré‘is no unique -

on-shell point for the expansion (1.7). Fortunately this is not .

£

usually'importang for two reasons: 1. aé long as the cheice of the
on-shell point (s,t) satisfies continuity‘requirements (such as,
that (s,t) lie within ﬁhe rectangle.s.s [(pi + pz)z, (p3 + p4)%],
t e [(p3 - Pl)z, (p4 - pé)z], 1£ can affect ITppYIZ on;y in O(ko)*

although it affects the first two terms in the expansion (1.8)

_ ' individually,,if makes no difference to their sum to O(k_l)) [j28;7;

. 2, we confine most of our calculations to the region where Rc is

- %It is because of this property that the Low theorem can be

applied unambiguously (i.e., there’is on’ambigﬁity to two orders
. f_ ’ . ) ‘ R

in k).

ton behaviour given by Low's ‘theorem (the principleof s



R e

a fairiy flat'function of Tl gé Hence for soft photons the choice
of our on—shell point will not affect results throughout ‘the energy

range but when terms of O(k ) can be important we must ensure that

the;kinetic energy corresponding tqys = (py + 1 )?'is reater than

P

about 90 MeV

~

" A remark is in order with respect to the form factors F (q )

.(table C.1l. with parameters .given by (3 3)) These now carry

part of the burden of correcting for the uge’ of'the Born approx—

Coes K
LB N [

1mation in treating the. strong interaction .and ‘are much more

":strongly damping; Thu they can no 1onger be regarded as the

iz

true strong interaction form factorS. In the case of the vector :
mesons the cutoffs are smaller“than‘the meson masses, ‘hence the

~.F fq%) aré»undefined on~thelmeson pole. Note also that the forms
of F (q ). used by EHM are probably not realistic to begin with

even with their parameters, since the values of the 'coupling
. ;;] s B e . -' ! .
constants , g v (mvz), are unrealistically large, - ;.

”,

\ LT

Photon—Emission\Vertex
With one nucleon leg off mass shell the most‘general form of
: {
.the vertex F', diagrammed in fig 14, contains two form factors

and can be written in the form / 44 /

a‘(pv Te (P=pek) = TV fm —i g k"

Lo ’+M . v L L .ﬁ_. . ° .-«i .
X [F::(P'l)- ;Im + IL;.‘(P'I)%% } S '(,‘3.1‘3)”'\,

In the limit as P” > P = m the vertex, Puf becomes

AT A L s

.

-~ .

[ P
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-ywhere g,n 15 the anomalous proton magnetlc moment. E The form L

) factors 1n (3 13), therefore, have the mass shell 11m1ts

Fy_ (Vlﬂl) % )
o e o (3.15)
F1 ~(m1\,:~?\ o

A is a c‘on'Stant' defined by '(3'1'5)« : Note that the form of the

.wnucleon propagator glven by (3 9) follows from the Ward 1dent1ty .

oc(;a) 5—'(;:/)— <P ,cy*z,«C[.Q/7 (p = prh} ' (3'1,6-)
and eq. (3.73) for the form of (A.(pw fj (ff)

Nyman Z7ﬂ+7 derlved the form factors from thelr dlsper516n
relatlons 17657 with the assumptlon of threshold domlnance*, and
aused them in his soft-photon approximation to 1nvestlgate the
effect-on<the bre;sstrahlong cross section. . He found. that
whereas the O dlstrlbutlons are llttle affected by variations

4

in the form factors, the 1ntegrals, dfiy d y are quite

¢’

een51t1ve. Thls is not surprlslng since 1t is known that
with the static electromagnetic vertex,'the anomalous-moment
vterms éive a fairly flat photon—ahgular aistributioﬁ, whereas
the charge terms are respon51ble for the‘gzadrupole humps
'Furthermore, the - error in ajargjl due to an incorrect fofm
factor can be much 1arger than the discrepancy between a cal-
culation w1th the static vertex and experlment. Thus, until

the form factors are determlned from measurements it 1s ‘not

deemed safe to use those obtained from 51mple assumptlons (such

L0
RS

'The functlons F (W ) develop 1mag1nary parts above'
pion-production threshold,~ i.e. when W2m + m“ -
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The Coulomb Effect

The proper treatment wauld require the 1nclu31on of a
)
large number of diagrams, to order e’ s as showﬁ in fig. 15.

_Furthermore, the Coulomb effect has been studied by Slgnell L

" and Marker [:187 and by Heller and Rlch [7177 and{' they found theA .

pure Coulomb bremsstrahlung (correspondlng to the f1rst dlagram N

of flg. 15) to be only a small part of the tqul Coulomb effect.

Nevertheless we 1ncluded the one- photon exchange simply because

we already had the machlnery to handle vector-bOSon exchange.
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_ CHAPTER 4

A CONTRIBUTION FROM w RADIATIVE DECAY /737

.imbalance

4.1 Intfoduction
- In this chapter we con81der the contrlbutlon of the w
radlatlve -decay process (flg. 16) to the pp¥ croéss sectlon.

Thls is an internal- radiation process and is of O(k) in the

soft-photon limit. The vanlshlng of thls contrlbutlon as, k=0

can be understood ‘in: terms of the effect the characterlstlc

1ength of the radiating system has on its eff1c1ency._ In the
case of the external radlatlon the characterlstlc length .d,

[

is the dlstance the radlatlng nucleon can move with energy

NE = [(pyv V] -

- ‘g' v = yn:( |+ v%;E%;§j> -

- -
~ E3°.__k = L + O(Ps)

Thus d = ’U'A't ~ U’l;{ and becomes 1ncrea51ng1y large as k%O

LIn internal radiation, on the other hand, the photon is emitted

'
[

from within the region of the strong interaction; thus the
characteristic length is a constant: it is the range of the

nuclear force (or for e.g. the pion Compton wavelength) There-
EX

*fore the internal processes make 1ncrea51ngly less eff1c1ent

radlators as k—)O qnd become negligible in this limit.
% Ueda.thzj7 had made a rough estlmate of the P radlatlve—
decay contrlbutlon. and set its upper bound at 2% of the Born

terms. . We anticipated the w radiative-decay process to be,

42
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more ihportant forctwo~rea30ns:'“1)>the Lupp coupllng is larger

,-than f)pp coupllng (SU(}) symmetry w1th the Okubo~Zweig-Iizuka

"radlatlve width - 880

(0z1) rule and”the\assumptlon of pure F-type coupling imply

‘gupp BgPPP )3 2) the w radiative width is larger than the f

¥ 50 keV against 35 ¥ 10 keV. By this

argument‘ the.intefference from the w-n process can be expected

-~

'to be about 15 timés that due to p-N process. , If Ueda'e

estimatévof the upper limit is taken aeriously then this could
be an important>contributioh. " Furthermore the inclusion of

the wW-T%¥ process has been found to be necessary in calculation

of neutral pion photoproduction: it is needéd to reproduce the

_T= 3% magnetic dipoles ZTRQJ7:‘V; BRI

In view of “the above arguments we have carried out a fully
relativistic'calculation of the process shown in fig. 16. Thls :
calculatlon, done in momentum space, is presented in sectiomn 4.2.

A-non—relat1v1stic reduction is dgge,iafsecf363i§,51———-

To.ascertain the 1mportance of the relativistic correctlons

at Tl b = 158 MeV we have calculated the differential cross , ff,l~

section for'graph (a) of fig. 16 both relativistically and in the

noh-relativistic 1imit; As the T matrix for each éraph is

individually gauge 1nvar1ant this is a meanlngful comparlson.‘ﬂ

In section 4.3 we have also derived the space-structure

of the non;relativistic amplitudes, which. shows that the 7T

probagator makes'thia_a long-range process.

Fel
Ad

.1
- *An important factor excluded here 'is the fact that the

< w has almost no tensor coupllng to the nucleon, while the P

has ( -f?/gp "L}).
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. 4,2 The Matrix‘Element el -: : | /f>\
We ﬁeglect the tensorbcoupiihg of the w, which is generally

- assumed to be small szQJ7. The interaction Lagrangian is taken

0¥ <

‘to'be.
Lo = ¢ In %7”5?'_7? /lYLN BN ;QEN V,u%d w* - (4a1) |

The wny vertex is parametrized through the w—>n° T matrix.

.

> : 4

where églﬁ(é?,y) is the W -meson (photon) polarization vector

o . » . u— .
Tw'ﬂ"& 4.— ﬁuf‘rr‘(r épvdpé(l‘:g 6(73 k PP ) (4.2)

- g, : ' oy
and k (}DP> is the photon (pion) momentum. From (4.2) we get

the decay width of the w as

‘ . — - ) 2 . -
/F‘(wﬁ'ﬂﬂ = Sere (mh =) | (4.3)

The matrix element. for the process shown in fig. 16a is
aay _'- P —_ ' s
T - ¢ & ¥ ("‘-3 RPN U-D évc,SP (Pr_" P3j

| - (4.1)
* (py - p2)

v ) ] — -
Uy s Wy

(P=PY'=miy  (Py=P2)-my

(for clarity of notation we do not write the product of the

coupling constants grp 9y, Gury ). Since

k= (p, - et - (py-pY L (4.5)

T | .
replacing €y by k¥ causes (4.4) to vanish; hence T ig
N v . N "

gauge invariant.

Introducing the following notation:

-

44,
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~ D(A, ((.JB\ [’(PL _Pjvl _ VV\ZW]

. I)n-<¢Jj}

~1
3 2 (4.6)
[ (po-psY = min] |
(S : * §
<F|P = ¥ évqsp leo— (‘SPH - Pz)
we can write ' ' 4 A
T = () €6py (Ta fp ) Dol Dr2,49)(y 5 1) 47

Similarly

16y -/ . P , : R , - ‘
T = e (T fapta) Do (2,9) Da(l, (05 % w) (4.8
"where | = Q . | T -. : | él: . |
'PlP - 7 éuq'sp R (Ps—PD .
The contributions of the exch#hge graphs, fig. 16c_and 164, are

obtained by therinterGhange of labels 3¢*4 in the expressions

(4.7) and (4.8). The complete matrix element is then

_Cix) — ) (e -——fld~
Tcht=v1' *IC”")—T)'I ) (4.9)
This was evaluaﬁed numerically and added to the OBE'matrix
element as given in section 3.2. The rest of the calculation

is the same as in the OBE case.

] ’ 2
As a check, the calculation of -qZZ I €. TL:: i ,
: Sping &
—<although tedious - was also done analytically. The two

methods gave identical results.

The coupling constants used in ‘the evaluation ofvTint were

!
2
—3—;— = 14.0 Ju = 54 Gume = H.87%/072 6y (4.10)

T T

\ ~
\ \

5 ) : 3
\ .

\\ -
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5

4.3 Non-Relativistic Reduction and. the Coordinate-
. Space._Structure of the Matrix Element

©  The non-relativistic reduction of the matrix elements

Tt

(4.7) and (4.8) is done by means of the approximations
) T ) - » ~ + . : -
- (/(,(" b’# ud - (/(.t_' 7o L(,J’ = i ,Xd ’ .

. ) + ) .—’J_ _-—D', - )

. LAy Zwm J

v

- =l - (4.11)
A I s P

N

e p-mi] = (32wl ] 7=, -

The above replacements yield , : A . T
S P - S U N ﬂ(m*“'* S
Ny, a ( +M 3(_,2*M’r) . L
o
; S+
T o 2 RHB) L el EReA)
.Y, | K .
St 2m (i) (F rmid o a3 °
Each of these terms represents a conserved current. In the

arguments that follow.we consider only the term T(1a)

t

. To

obtain the non-relativistic cross section we use the identities

- \* :-;*z'L_ —»’;a 2

; (€AY A (Lﬁ_);_j
~ k

- N : (Go1k)

and Zl(x 32 fo)I = 24> ] : a L

Spln

for any 3-vector A. We get
.
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T e (P am Y (B e (4.15)

o

The relativistic version of (4.15), derived from (4.7), is

Z | T 10; 2 {(k P)«Pa ‘O(P. ) +
( k)(Ps P)) - P (P/ k\)(Ps k’:) - (k PB} (4.16)

x[_(pﬁ-PQ-mi}[Ild(L3) Dn(z,qﬂ

Eq. (4.155 can also be derived by non-relativistically reducing
(4.16). The-cross section is obtained by multiplying (4.15) or
(L. 16) by ( 91 Yuw 3wﬂf )2 x (phase—space factor).

In ta%le L,1 we show both the relativistic and non-

relativistic values of the differential cross section as obtainedg -

from T(1a) above. It is clear that at T, , = 158 MeV the
reativistic corrections are important
L
Q,(deg) Relativistic Non-relativistic
. ; o
0 0.5k 1.4
30 1.89 - 3.02
60 1.83 . 2.88
90 ' 0.83 1.52
120 0.16 , 0.38
150 - 0.27 : 0.00
180 1.03 0.29

Table 4.1. dq/dﬁs,,(ﬁ.,dgr(Mb/sr_,ad) ot Ten = M58 MeV .
' ' (6, =6, =30%)
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Coordinate-Space ‘Structure

Define the coordinateg

. - ’
— — _ __L_ — —n
_v?:Y“—l",_, R_l,r|+r1.
. ~ - A
- o (4.17)

Q

1]

__'_2_ (_}—3',,__.'13 , P = ?, *':};z.

-
&y »

and analogous expre551ons for -the- prlmed quanfltles wh1ch refer

-

to the f1na1 stateﬁcoordlnates and momenta. The Fourler trans-

. form is thpn defined a§ ZT51J7

+iQ P =

— el =~y ‘L—”‘E/
T+ R’ R‘>=<—2'—n>ag~ep | T(P PQ)
" FR-GR ,
X 563)( -B'-%) e R7eQ o P'J3Q &P d%Q (8.18)
Inserting Téfiz for ‘i‘(g,fQ.;f' ,@') from (4.12) o’ne gets‘
— Cta) /_ ,——m L—k. D o =/ ’ _A
T (F > R) ? SRR (ka9
| | N GED T"‘“m .
where .Fa N }
T—(B(v\ = -~¢ [k’((V?""} ‘!>] (’X_;’XB
- — (4.20)
_ x[(x*?x] (V +iLkﬂT(4 k) :
where . .

L s

3/8 2 E
R - (?“) g[(?ui 3’+mn][< ';?)‘fmTJ (ha21)

.
} \

- For low-energy photons (k—>0)

(e R - =Y » - ey .
TUD = E (RxVE) (5 0) [(30) %lI6,0) 400

where

_ - —mnw i;mur
16, 0) = e (2 = > (.23)

3

\

N
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(1b)

The‘coordiﬁate space expression for T is obtained by the simple
replacement O, —> O, . Clearly the amplitude has a short-range
part and a long-rangebtail. At r = 0, I(r,0) = ﬂAﬁﬁS(mu,+ iﬂ ).
Thus the large mass of w does indeed suppress the overall con-

tribution of this internal-radiation process.

L.4 A Discussion on the Coupling Constants

2

First, we point out that in the calculation of the OBE con-
‘tribution we were constréined to using éhe parameters of th? EHM
model (albeit with some mod;fications as discussed preVioﬁsly)"in
order to not disturb the fif to the elast%p data. This was not
the case in the other contributions we considerea: here we were
free to use the known neutral-meson masses, and coupling constants
consistent with physical principles andAexperimentS. For example,
we disagree with the qonstrainé imposed by EHM on-their vector
mesbn;ﬁUCleon couplinghcoﬂstants that g%: gi : gi, = 1: %: 9.

Wé do not expect the ¢ , which is a pure A7 state in the ideal
nonet-mixing scheme, to couple to protons, which havé no strangé
fquari( content. This is the statement of the 0ZI ruie 4—52_7.

We shall now examine the constraint; imposed on the(coupling con-
stants by vgétor-meson dominance (VMD) and unitary symmetry.

Con;ider the coupling of the nucleon to the electromagnétic

field as in fig. 17a. The invariant'amplitude (from the Dirac
coupling alone) for this diagram can be generaily written as
\

e NG v e [F2 (o) v 2, BV ey chaw

/

where F:(qa) and F:(q?) are the isoscalar and isovector charge

49
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&
_ form factors (Fi(d) = F:(O) = 3). If we assume the isoscalar
pért of fig. 17a to be dominated by w and ¢ exchange, and the

isovector by p exchange (fig. 17b) the amplitude is
- .

- ' (4.25)
. 2 » 1 ‘
N em w -
é;) ngfyxu[ 2:; :?1 - + %":;1 _3:’_\.,1+T3e,m‘g 9e. | N(p)
WM PLMETYS 2% mh-gilerso
ey _ - o
where 27, (v=<,o,9§)P°> is the V-Y coupling constant. Com-
parison of (4.24) and (4.25) gives #he constraint . -
e+ % — .
Y ’
i (4.26)
a0 =

thus VMD makes no statement on 8w Or gg separately. We shall
now look at the SU(3) constraints.
.The SU(3) structure of the electromagnetic current in fig.

17 is .
Jem -~ LZJ B.(£5,; + _J‘Ié‘: £7:) Bj o (4e27)

( #hid are the SU(3) antisymmetric structure constants) sinéé'ig*f

i ‘ !
must transform like Q= F3 +F F, . Comparison of (4.27)

E

‘with that due to the gengrél SU(3) invariant F-type BBV coupling,
— . . ' _ : )

2 ] B. fecy Bj Ve, shows thit the photon couples only

LJJ)» - : L i . X

to the combination

R S (h.28)

t

where (Jp(Lp)is the octet (singlet) isoscalar. If we assumé'

ideal (»-¢ mixing

y
|

b

50
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- 2 ! .
¢,v 3 Ws —‘ 3 UJo
- [
W T E J_ (Wo
OR - [T T ' ’ oL T > (4.29)
~w8:_3¢+gw o 29
! .
we =~ B IERNE
the combination (4.28) is
\.Po s T Lw - (4.30)
o 3, 3 .
t : . :
If we ignore the mass spllttlngs (recall the VY coupllng constant
fis €Vﬂv”/(23§§ ) the three 1ndependent XP)XB, Yoo are re- .
duced to one by the constraint
Trr Ll = 920 (4.31)
| e -2
Egs. (%#.31) and (4.26) can now be combined to give
(4.32)

R PR ER S
Thé 0ZI rhle\(é¢ = 0) then gives ;
ol 4t = 110 A - (4.33)

?P‘ . 3¢ :[ju

This constraint can be generalized to allow_for both f-

and d- type coupling of the mesonroctet to .the baryon octet as

follows. The general SU(3) invariant BX”B‘V {2pupling of

tﬁe meson nonet to the baryons is
L= ;,Zw gp-[\ot\dmzd- BlewaB Ve (1= R, )
—_ = o (4.34)
,- B (3, B v ] *i 9o B (1) B; V. /

3= qd> PPwa T 90 PPWo t 'other'tfeﬁns




With the w-g mixing as given by (4.32) this is’

L= 5 (3 -4a) - a, [T B od
[ qp 12 5 J J;—J | T )
wLgp B0~ 3. (3| Prpe -
. We'can read off gy an;i gw from (4-35);‘ setting 3¢ = 0 gives
9o =" o3 (3-44)
qw = (34D

BN

(4.36)

‘which reduces.to (4.33) when o '= o. Note that in this argument
we did not useWD. |

Ouric'hoi_ce of gaw (5.10) is dictated by the reasonin"g‘ pre-
sented above; 32w,,, . was determined from (4.3) with F‘(L«.J—>7rx7

= 0.89 MeV /537.

S~
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CHAPTER 5

- - "~ RESULTS AND DISCUSSION

The co'planar,‘ .syx;metric cross sections, dkg\/\c\fﬂ3 dR, d@,;,.
at‘Qarious.lab energies.qu anglgs 93, 94 are show%\plotted in
figs. 18:3#. The curves marked "OBéﬁ are the results of the
bBE—externaleemission calculation outlined in chépter 3.  We
Qere not able to fix the sign of the w-m° amplitude (eq. 4.9)

relative to the OBE, we therefore show the results for both

»
v

g2 ‘ signS. . These ére'marked "OBE I internal" in theé fiéures. The
cross sections were calculated&at 10° intervals in 6y ; the
curves were then drawn by interpolétionf. .
Fig. 19 shows a éomparison with the preliminary results of
the Triumf expefiment of Beveridge et‘al'zfaqg7 and:twq other
calcu}gtions: a Hamada-Johnston potential daléulatio#Agf
Bohdnﬂbnv(marked "HJ") and‘a sbftQphoton.appgbximation éalculéiibn
éfFFearing:(ma;ked "SPA")f The experimentél and thg two sets of
\caléulatedéo%nts were adapted from fig. 6 of ref: 31*t The
differences am;ig the'éalculations are sf&ll too’smail relafive
to the»experimental'errors.k The SPA-is almost consisfénfly

ldw, while the HJ calculation is high; - however part of this

differeﬂbe is.probably'due to relativistic corrections not model

*Since all observables are generally differentiable fyn-
ctions in 6y they must have a zero slope at 8y = 0 and 180 in
the symmetric geometry. . As can be seen in the figures this’
requirement was sometimes not met by the interpolation procedure.

**The OBE calculation shown in this figure did not include
the correction described in chapter 3.

By

a
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- we know the photon energy.

dependence. Relativistic cbrrections, as discussed by Liou ana
qubel 1?6;7; lower the cross section and are'largest‘at forwérd

and backward angleé; A comparison of tﬂe OBE and the SPA cal-
culation provides a better indicator of modei'dependence since

both are fully relativistic. It appears unlikely a definite
conclusion regarding potéﬁtials widl be made on the basis of

this eﬁpériment. Fig. 37 is a plot of the off-shell parameters
CLlp kS e, D pae W ety [(pgr )= m™) /e [(pyrkY =Y
aAd.the photon energy) k, as a function ofVQ,'. It shoﬁs that )
the virtual nucleon is farther off-mass shell at the forward and 4
backward angles - the reg?on wheré fhg largest modei dependénce S

is observed.. On the other hand the photon-energy distribution;

" k(®y ), does not appear to be a useful indicator of where (in

© ¢ ) model dependence should be observed. The problem here is

that we do not know how the higher order terms in the k expansion

o,
2

.depend‘onleg_ to be .able to predict their importance - even when

-

The w radiative—decay_qoqtribution (labelled-"internal"‘in

fig. 19) is not negligible fer this experiment: it is largesf

"~ 'in the forward and backward photon direct{ons (abbut_fo% at the

forward_direction). ‘We aré thus faced with having to inciude
meSon—éurfent correction as well as reé&atfering, Coulomb effect
and relaf&vistic Eorréctiohs-before meaningful comparisons can be
made between potential-modél caiculations'and the ;xpériment.
'Shduldfeipgfiméﬁfs‘be performed a£ larger énergiéé'aﬁd’

smaller proton angles the meson-current corrections will be even



larger; At T, = 400 MeV, 05 = 8, = 12° (fig. 15) the w-7°
contribution is abont 27% in the forward photgn direetion and 23%
in the backward photon direction; the effect on the integrated.
cross eectionj d“/ajhciﬁﬁ"is 18%, asjcan bei;een:;n_table 5.5;
Fig. 29 shows that at 158 MeV 65 = 94 ' 30% w-7° ‘con-
tribution ie a fraetibn oflthe size of the error bare; for
b£i35°i(Tléb = 158 MeV) it is negligible. This behaviour is
expected since the phgfon energy, k, decreases with increasing
proton angle'e and the w-7° a‘mpli;ude is of 0(k) in the soft-

photon limit. - S (\

The 99 MeV calculations (flgs. 31 and 33 and table S. 1)
are actually beyond the range of this model and should not be
taken seriously. The maximum values of Tl by @5 computed from

'S

% [(p, + pa)2 + (pg + p4).__7, are 71.3, 63.6 and 58.4 MeV for

6 35 , 30° and 25° respectively. R&% that the present OBE
model is not valid when T1 ab {100 MeV. IWhat the‘calculetions
of flgs. 14 and 16. show is that the one—photon-exchange con-Tu
tribution is indeed negllglble as’ observed prev1ously by Heller
and ‘Rich Z_’l'7_7 and Slgnell and Marker 118_7

In figs. 21 to 28 we present a-study of the various con- |
fribnfions to the 200 MeV *] n/16.3° calculation. Figs. 21 and -
22 show how eaehhcontnibution affects éhe coherent sum, while
n_flg. 23-28 show ﬂhe distributions due to each contrlbutlon
1nd1v1dua11y. We observe that the scalar-meson exchange

enhances the cross sectlon, partlcularly at the peaks of the

quadrupole humps, while the vector mesons reduce the cross

sedtibn:‘ The general enhancement ‘at the,backward photon o~

v,

e

‘55
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' 56

~direction is due to the phase-space factor, which has a minimum

at ¢ '7o°g | ’
x@? get ‘a bettep understandlng of. the shape of these dis-

trlbutlons from flg. 34 whlch shows the contrlbutlons from the

Dirac ("1¢ = O"bcurve) and anomalous -magnetic moment (”‘xevterm"

curve) cdhphﬁﬁg;of th gphoton to the\radlatlng proton.’ The

L it

Cel U I'“‘:;ﬁ . N
Dlrac term contains -a; charge and magnetlc—momant -paF I.e the
- g N L TEC a0 g e
. b - @ , EFEEY
anomalous term contains only & magnetlc mome nt part. ¥ ingl

BURY PO
that the main contrlbutlon is due to the magnetlc-moment

~amplitude, which is roughly 1sotroplc.! ‘The charge amplitude

.m’

B
stlll gives rlse to the quadrupole dlgkflbutlon, but thls ‘is not

large enough to be seen in the total distribution. . o
Finally, we come to the comparison of our calculation with

the results from Orsay [3%;7. This"is one of the two experiments.

s

where cross-section_data‘were obtained at small and unequal proton

2

. g .
exit angles 93 and 94. The dlscrepancy W1th prev1ous calculatlons

has been discussed by a number of authors Ag 17, 55, 56/. —It““
has been suggested (by Jovanov1ch Z:1ZJ7) that thls experlment

p0551bly indicates a fallure of the Hamada Johnston potent1a1 -

off-energy sheil. However_our calculation (figs. 35 and 36)

was_done in a completely'different way and yet we find essentially

.

the same discrepancy. - Furthermore, we find‘that this cannot be

accounted for by the wo-m° current correction or relativistic

corrections*. Jovanovich ZTHZJ7 has suggested that the 42 MeV

s

l *Relativistic correctlons in the context_of this experiment
have also been discussed by Celenza et al 455



. : N
Manitoba experiment shows the same type of discrepancy at é@all

P . . N\ .
and unequal proton angles. The Orsay results thus remain aé\an

enigma.



Table 5.1

.photon-approximatior calculation of Nyman [27].°

C.e
¢ ) ’
Present work Hamada~
. : - SPA Johns ton
Tiab 95 8, " OBE OBE - OBE 271  Potential  Cxperiment
(MeV) (deg) +internal -internal {191
99 25 4.19 3.77 4+ 0.23*%* [48b)
30 5.94 £5.0%  5.14 + 0.22** [48b]
35 8.96 =7.3* 9.0 + 0.3** [48b] ~
40 19.8 a17% 18.8 + 1.2%* [48b)
. ‘ . o
156 15, 18 ~4.05 . 3.96 4.17
15, 21 4.28 4.21 4.40
, 15, 24 4.40 4.33 4.50.
15, 27 4.41 4.35 4.50
158 30 8.71 8.65 8.84 7.9 9.1% 10.2 + 1.7 [4e]
. . 7.9 + 1.6 [4b)
5 12.7 11.8 13.2  14.7 + 2.5 [4c]
. 12.4 + 2.5 (4b)
40 32.5 33.0 23.8 + 4:8 [4b)
200, 12 . 3.42 3.25 3.66
16.3 4.85 4.66 <~ 5.13
25 8.38 8.21 8.69
30 11.6 10.0 12.1  13.0 % 2.4 [6])
35 17.1 15.3 17.5 14.0 + 2.7 [6]
40 46 .4 46.3 46.5¢ 49.1 29.0 + 6.0 [6]
400 12 10.7 ® 5.09 13.1
<
i)
Integrated cross sections da /d iy d Ry (ﬂb/sr‘) .

"OBE" 1is the present one-boson-exchange external-emission calculation.

"OBE + internal™ includes the w radiative-decay cgntribdtion
"SPA" {is the sofc-

(chapter 4), coherently added with either relative sign.

* Egtimated from figs. 13 and 14 of ref. 19.
#** Additional normalization factor of 1 + 0.02 to be applied.
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4.

- CHAPTER - 6~

A CONTRIBUTION FROM A EXCITATION N

B

6.1 Introductiqn

In this chapter we conside; the simplest radiative prd-
cesses involving A excitation with = and'F exchange (fig. 38).
This contribution is bf particular interest at the larger incident
energy of 730 MeV of the UCLA experiment 171;7, where in certain
kinematic situations it can dominate the cross section. Recently,

Tiator, Weber, and Drechsel Zfézi7 published the results of a

calculation in which the above mentioged A graphs were added

o ¥

N | ] :
incoherently to the first term of the Low expansion. In the
present work these & graphs are added coherently to the-OBE
model of chapter 3 and the results are compared with the UCLA

idata. We find the interfg;ence terms to be very important, and

when they are included gomé’of the conclusions made in‘[%§J7
need to be modified.
To estimate, a priori, the importance of this process we

evaluated the four-momenta-squared of the virtual baryon:

= 200 MeV,

2

_ (p1 - k)%, (p2 - k)z, (p3 + k)?, (p4 + k)Z. At

Tlab
93 = 94 = 120, the smallest and largest value of these invariants
is 0.64 GeVZ and 1.06 GeV®. The on-shell value is m° = 0.88
GeV?. Compared with mi = 1.52 Gévgfthe off-shell excursions
afe.hdéAiarge, therefore we expgct’the“gucleon-pole terms to

dominate. On the other hand at T = 670.

lab 3
Py = -1.095 Oy = 50.5°, Yy = 180°(G7 geometry of the UCLA

= 730 MoV ©

experiment /11/) the smallest and largest value of the
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invarianté is .52 GeV2 and 1.27 GeVZ. The larg'est value is now

s'omewhat closei"; to m%. We therefore expected that the- & con-
tribution may be significant at the energy of the UCLA experiment.

6.2 The Matrix Element ' . - ”

v

ANT Vertex and A Propagator o

The most general .charge independent ANT, interaction' can

ﬁrlze written 1_57_7 ' _ . g
o R - , |
"ﬁANn = 3* /‘PA# T e,u.u 471/'\] BV(}_E': + L} C (6.1)

ES

A, Z are complex constants, 0

? are 4 x 2 matrices in isospin space analogous to
the 7 -matrices in NNm coupling, N
' N ’ Zf* M : : R ;
e = At and Af/N ) [P] ’ * )
AN ’ n
A—‘\

\ ~',_ .
aThe explicit isospin structure can be obtained by forming the

L

invariant ™y .
. o

LAY

TARE s et E RO A

(6.2)

The (m%a, m = +1, O, -1, are annihilation operators of the
9. N
R

T™ ;% infterms of the cartesian fields ¢, they are
ﬁ“:"\.v

(6.3)
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The-?>matricés can now be read off from (6.2) (up to an overall

real constant*):

.\» ’ ’ ,6
Tew =<0t e ] 20> 200 o

-é* T . . -1
2
- % “‘(u) | o (6.4)
Yt - , . | ' :
5 : 6§(D>J§ g e<ﬁ‘)7§ ,
E | EENE S 2 E
- : ;3/ O 2(-/3
The coupllng (6. 1) is commonly and convenlently wrltten in terms
of doublets N* = % T, (or N*. = Ti a ). According to (6.4)
they are /
. ) . o
S T YK} ' |
Nes g N | \
+ -— .
AT - A : J o
| . A+12 o _. A\/‘;'
S + A/B> ' (6.5)
1 - —— . N
E A"‘/ﬁ + A_
-’_
i AT
\ N = — /2
bR . ,

The general spin 3/2 propagator is a sum of the Rarita-

Schwlnger propagator é?ﬁ27 and a non—pole term that depends on

the parameter A, defined above Zf52577 thls term vanishes when

A= 1. The total Lagranglan (free-field part plus 1nteract10n)

is found to be invariant’ under the p01nt transformatlon

‘

*Phe minus . 51gn in (6.4) with the Condon and Short
convention used here results in the doublets, N*
in the literatures

sign
(6.5), as given



-

v

‘where £( P*v

/SLA/“': /\L:‘ + a“b}#\o'/\ /}LA?\

{l

A= (- ;za>/(r o)
T
b = ¢r

(6.6)

The S matrix is fhereforé independent of A; without loss of

generality we took A = -1 to gef the simplest A -propagator:
+m - -¥.7 +,L(T *;‘J‘.X"’. -
Spu(p) = 4 f;——% [fhw " s pP%:,vay (6.7)
P _MA. . 2 % o '
R
. ’ M YY‘A .
To take the width of the 4 into account and to remove the
p*2 = mi singularity we made the replacement in the above
propagator:
% 2 2 2 3
P =—ma p* —mz + LMAP_{QCP ) (6.8)

(- /\ \>
(threshold value of p"‘2 for the decay
A—> NTI) = (m + mq )2

VAN

[ is the A width = 115 MeV

Olsson, Turner and Osypowski Zfé?,/ found from their

analysis of TN scattering that 7Z must lie in the range

-0. 8‘ zZ% O._ Olsson and Osypowski Z:5§J7 further restricted 2

by comparlng with a multipole ana1y51s ‘of pion photoProductlon

4in the A -resonance region: they concluded that 2 = ot . A

We have nevertheless used Z =';% sinée, along with A = -1, it



considerably simplifies the ANT interaction; i.e. we have
used ' ’

Lowe = 9 (NI N2+ UNT 2om)

(6.9)
For the case of Afp'ﬂ°coupling this reads '
. f/,‘S*PTW = -9 ‘(:-—;‘ (/\% 1’9“'¢71 +/V’41L ”BMQSTTB (6.10)
- 4 » . ‘ o ’
where Y% 4 én arevthe A" , proton, and T’ fiek?é/
respectively. _ O
We cannow write the matrix elements corresponding to
diagrams I and II of fig. 39:
N L-gxx |
- (2 (age Toeay M)
_ 2"05 ' . oo
thus Ve P (ir.)———:» g ;

in both diagrams and

Lo Bt i

T (6.11)
E,——s*'j-zu(psc Aum ' |

AN ¥ Vertex

The general, gauge-invariant AN Y

couplings were investigated
by Gourdin and Salin /rqu/

They showed that for free fields:
. N~ . ' t !
there are two such copplings:

R - . L %
Yk/*'xuwg'ﬂg F* # lhoe
and - o

2 F e f FPU o e

o

. )
the first of these'produqing mainly magnetic. transitions, the
other primarily electri¢ tramsitions. 'VFrom analysis of pion’
photbprodgction experiments it is known that the process

4%’
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¥ p—~>0 = N \ is dominated by the magnetic transition®.

Ve consider only! the dominant. K}"}écoupiing. Olsson and
“

Osypowski L?K)7 add an oij -shell term to this coupling so that

the total Lagrangian is 1nvar1ant under the p01nt transformation

i

defined,in (6.6). (Thls extra term vanishes when the O field.

is.on mass sheli). The resultant 1nteractlon is 4?V\\
_ NELD ' VA ‘
iA*{N - — e C N %’»v? N ‘F v C"“»A (6.12)

where Foa = 0 Aa _‘?) Ay ’

?

Boun s L DY £l B 0

/

Y is an arbitrary constant,

and A 1s the cons;ant defined before, which we set as A = =1.

.\. B . y

- The authors determined, from a comparlson with pion- photoproductlon
multipole analysis, that Y = % . For 51mpl;c1ty we took
Y = -}, the value that .along with A = -1 removes the off-shéll

term in (6.12). For the Ay p (6.12) reads

Ly = e FC[Fmig¥EL - Fariws s F ] (6.13)

s

n

o R
(In the notation of Pecceil ZT31J7 c =‘§%,’where.m = nucleon mass).

We can now obtain the matrix elements for diagrams I and II of

~

*For example, the’ ana1y51s ‘of Berends and Donnachie [59/
suggests that the isospin: .3/2, electric-quadrupole amplltude
vanishes near the .resonance region. Note that because ‘of parity
and angular-momentum conservation only two-multipoles can con-
tribute to ’V'N'_’Ag—9 m+N . the magnetic dipole M7, , and
electric quadrupole E (the superscript is tw1ce the total
isospin).

. "
. ' ) \’ -
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fig. 40 A C:ﬂ ~ & ( a © + gt f_L z),

‘ : : _ —c e x . " L ke
)\) ﬁ# ~ i b'u é/“ (~_CL £ . + a’ € ,

for both diagrams 'bv,é),u — [k, &,

‘and TI: ~.€(J“—1Cp>v L’o’s(/(_ CP) L(k'é }?{/ﬂ->
eCf_ u.(FD(ék'» K<) v wH(pr)

Sy o o (6.amy
T = —eCfF & *(PD (,é}e _K e 7 ulp)

ANP Vertex

In analogy to the ANY coupling (eq. (6.12) without the of/f—-

-
,'/V‘

shell term) we took the ANp coupling to be v . J

,'/

‘fANp = ‘Ci/}—l’A,L ?%LUS"/’N (BA]—O’V—}V?/‘B + k c. vv(6.15)

In _particula_l_'
Lo = 3¢ [ A # v vy o Frin ¥4

x (-a/«Pv ~ v PPX | (6.1?)‘

IFWe can relate the: coupling gonstant C' to C by assuming vector—v,
meson dominénce.(VMD)
Conslder the coupling of a’ photon to the A p under the
assumption of VMD (fig. 41); note that isospin conservatg(on )
forbids the w and @ , so that only the’ ,D is 1nvqlved. The

matrix element for fhiq process, ACCo:ding'to (6‘16)3.15,

”

&\
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,,./'\,‘ T = = ew\;: “-g()‘\'\ SOW (—‘Clg>

e

\ <y 2
. v ' ' '
B @) (éfp ku = K €pu) s %(P) , (617

making the replacement

Y €, ‘ k" (6.18)
Epry € S T Gan T -
N (a E(pdv NE e |

with k = 0 we have .
T' ) '_ eC J‘ T (o) ( ém eu ~ K €n) Vs wCP) (6.19)

Comparing (6.19) wivth Tr of (6.14), and using Tp = 3P (eq.
4.2é)we get o _ -, @

ol = » :
T 290 C (6.20)
4 . :

The Bremsstrahlung Matrix Element

Putting the: vérious pieces together we get the following

matrix element for the T -_é:’cchange processes shown inffi'g_._ L2,

M - -

o Toyeay = e C"g*ﬁnf(g’)l‘ Us [(b"‘k f- )/3""?\')‘(5 Spw(ppb}
%" ~-mh r (pyk} mbumbp-ﬁfpﬁb}) 6.21)
- % Seu (P;'Q(‘o’;‘ k"= Kk 3“")‘0’5] w, (EL, Y u,_)
(PR i om TR (pkY)
~-\where

Spv () =,(¢*+mb{—33”+vpn s (Pl pp) + 2, p’ﬂ
. C .8 - t _ A

\ N \ ')Q(p-‘a) is defined in (6.8)



F(qz) is a form factor appearing at each vertex involving an.
exchanged meson. Following /[ 64 7 and /63 ] we take the

monopole form (the same for each vertex)

T ' N ‘
Fed' = A/ (A -gY) (6.22)
With</\ ='1.5 GevZ,
For the p -exchange processes the corresponding matrix element is

P . v ’ SN » . |
ll](la-)%- (1) = -2— € CC./‘jP F(%"B ) ((L3 g(‘b"u Avp _%Q}AP)XSV

X Spu (pat k) (g %P - ¢ 998)%5
(P3“'h> ~ma Fimy [ %@((Pa*’!)j

+ (gf ¥ - ggfﬂ) s Spv (py-k)Nv R k’g»w)

(6.23)
(Pllk37 ma *LUm, M Pp-k))
X"Usf"" Ly (Ya - 5.%& z* *’/{39)%1(-_#)
200 7_ 3
R o D T D Tmn
- Values of the coupling constantsv: o - P
I o=y e =06 . Fof, =37
Y v . Yrno -
¥ ; | -5 ' .
‘ .5_ (ANTTX = /. &75 x/)0 MeV from the A decay
T . :

S width (appendix F),
= 0,352 mgpty  (with mn = 137 MeV))

Y ' SN :f/_’/_‘:_} , from the multipole analysis of
Il (N_A‘a 3/(2 rn} pion photoproduction of Olsson [65_7

/ = A5 '
C_ (Nap) -= 2 C 9p from the VMD argument given above (6.20).

P
An important aspect was the determination of the relative

signs of - these constants, as the interference terms critically
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depend on these. The relative signs are as foliows: g*gn. < O -
~determined from’the quarh—model constraint (E.19); C<KO0 - from =
the quark -model constralnt (G.5); gp > O (2~~¢:"3P'¢‘“'%P#

+ derlvatlve coupllng) - from analogy with £~n7 i ' < O -
from the VMD constralnt (eq. 6.20). These sign relationships arg

 summarized in fig. k3.

6.3 Results and Discussion

‘The dlfferentlal cross sections ‘*d%;Jlgdtchlk vs k are
plottedsin figs. 44-49; the results are compared with data from
the five photon detectors, G7, G8, G10, G11, and G12 of the
‘ 730 MeV UCLA experiment 411 7 - As expected %or small photon
energles, k, the predlcted results show a 1/k dependence and
are in approxlmate agreement w1th the EED calculatlou nf Nefkens’

et al K‘P17* - At larger photon energ1es‘our cross sections

1ncrease w1th the photon energy thus show1ng a minimum at some.
1ntermed1ate k. This behav1our is qualltatlvely in agreement
with that of the complete soft-photon calculation of Fearing Z?ﬂ;7.
It should be pointed out that the preeence of higher order terms
in the expansion in k of the cross section is.not necessarily due
to off-ahell-effétts. wThese may be due to the expansion of the
phase space factor or the, momentum varlables in the amplltudes. ;
.Indeed, the phase- space factor is 51ngu1ar at the maximum A

klnematlcally allowed k.

~ The above applles to the OBE calculatlon with and w1thout

*The 'external-emissionfdominancef‘or 'EED' is a calculation
from the leading term of Low's expansion. '



’

( ' L
‘the A term. added. We turn our attention to the region ol Zarger
photon energy (k X 80 MeV), where the A terms become significznt.
We can write the total cross section asg
' . ‘ . T 2 - "
l ’pa's + T(bﬂf\ *' T(A_,p)s - l /oats, + (2 Re Toes T(Aﬂ‘)
o N , : 2 (6.23)
2 , -
+ I_ch,ﬂ‘ ) * (2 Re Toas Teae) *2Re Tte,m T(:,@ " I T“%le >
The last three terms invﬁrackets in (6.23) are the result of
adding the (A,p) amplitu&e; In general T(bfh ané T(a,m
differ in phase by 180°% and the tegm lQeinbﬂﬁ 7}%@1s negative.

Thls is 111ustrate& in fig. 46 for the spectrum of G8, saand is in

agreement’with the flndlng of Tiat r, Weber and Drechsel /63,/.
HoWeQer when the other interference terms of (6.23) are included
‘the addltlon of (A ﬁ)process -can actually enhance the total
isobar effect, as is the_case in the-G? s ectrum»(flg. 4i4) and ;
perf of thetG8 spectrum (f&g. 45}, In thf§ case ( 2.297}9. T“Ja
+ I'Tm,g‘) is negative, and 2?c729;7}A‘g 1s\p081t1ve but smaller.
in absolute value than the negatlve 2QeT@,37@\% + f/(Apﬂ part,
vBecause of this cancellation the (A, p) process causes only a
slight decrease in’Cross section. In the G10, G11 G12 spectra
.(flg. 47, 48, 49) T(A,ylnterferes constrqctlvely w1th\Tog; and
N \

Ta,p 1nterferes destructively w1th Togs - The effect is that

(H,M ) causes a large increase in cross section while (A

causes a substantial decrease;' Thus the isobar terms can i

or decrease the cross sectlon, dependlng on the klnematlc situation..

=7 \
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- When the ( AFQ}) decreases the cross section the (A, p ) can enhance

the total isobar effect, even though T(A,) and T(A)y)lnterfere

_destructlvely.
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' calculations are not corrected for this).

70

B

We find good agreement with ;he5expériment‘ex0ept in the
cases of the G11 and G12 spectra where -the Calculatidn falls
below the data; farticﬁlarly at small k. | A>similér discrepancy
between4¥£;-éii;wé12 épeqtra at low k and the EED prediction was
noted bf the experiméntalisfs [Talji. "It is suspected that this

§gascrepaﬁcy s due to the.rgpid_variation of the chSsvsection

over the solid angle acceptance of the photon counters.  (The

»/.'

" The measured G10 spectrum suggests an increase gf k 280 MeV

which requifés the incluéion of the A terms. However due to

" the crudeness of the OBE calculation anQ the size of the error

bars a definite cbné;usion cannot be made. Furthermore, for the

| measured G7 and G8 sﬁ?ctra the OBE calculation alone provides a
g : : :

s \
satisfactory fit.. \



CONCLUDING REMARKS

We have used a simple relativistic model based on the one-

& ‘

boson-exchange model of N-N scattering of Erkelenz, Holinde, and

Machleidt /34 / and constrained by the soft-photon theorem. The
2 - © !

model yields ppY¥ cross sections, for lab energies in the range

of 158 MeV to 730 MeV, that are in reasonable agreement with

most experiments. The exceptions are the Orsay measurements

/547 and the G11 and G12 spectra of the UCLA experiment [ -

they are data points.ﬁhere.other calculationg show a similar
.discrepancy. ‘ |

We have conéidered t@e contributien oftfhe_ud-ﬂ cﬁrrent~»
diagram (fig. 16) to thebpp;' orosé{gecfion. For ‘the 200 Mev
'Q‘;‘16.3° Triumf geometry this cah‘ﬁebas large as 10%; for
other eipefiﬁenfs it is negligible. It isvthus another
correction whiCh.must be cpnsidéred in potential-model calcu1;
ations when comparing with the Triumf data.: e

The A;—excitatﬁon &iggrams, on the other hénd, are sig-
nificanf only at the upper end of the phofonkspectrézof'the 730
MeVMEE%ﬁ experiment. The interferencé.ﬁetweeﬁ'the A terms and
the background‘Was found to be important. In some cases the A
excitatioﬁ lowered the cress sectibn #ndvthe O terms with oo -
exchangé enhanced the total isobar effect.' |

We conclude by making.a suggestioﬁﬁregardingﬂfuture
expgriments; it appeérs that in all the experiments pérformed
so far wé have not been able to measure significant-model

differences. Going to higher energies (above 200_MeV);maj

« . ' ‘ . ' »
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prove to be self defeating as it will increase the corrections 7

and uncertainties in the potential-model calculations. An

investigation of Fearing [ 66_7 suggests that asymmetries in pp¥ * °

may Se,more sensitive to the‘off-sheil effects. Of special .
.interest are those asymmetries that. are forbidden (Ly parity
conservation) in elastic‘scattéring, since, in this case, the : _. é.
soft-photon theorem determines only the leading term in the k
expansion [—747]. It may well turn out that experiments with
polarized proton beéms are more suitabie for seeing off-shell
effects. The answer will have td await fufther’calculatiéns.
Finally, in‘view of the fact that a numbéé of calculations
show: d similar,discrepancyﬁwith.the Orsay data it would be useful

-

to have the measuremengs repeated. This. could be done §erhaps by

e i o e AN A 3 ey e S i AT

running the experiment at Triumf at’thé ésymﬁetric anglés of  the

Orsay measurements.

[

- e N . ~ v
. .

*The asymmetry along the direction T is defined as
A = '(do*,,—dcr_)/(dcr; +rdo.) , where dd= is the pp¥ cross section
, with the incident proton spin parallel or antiparallel to 1.
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Figure 3. Pair—creatign current: a -diagram not included
in a potential-model calculation.

.
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Figure 4. Proton momenta in terms of the Harvard angles.

~ ‘The photon momentum, k, (not shown) has a
negative y component and may have a positive

(04 Euévﬂ") or negative (m {'6y< 27) x com—
ponent, éccording to”engrgy—momentum conservation.
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Figure 6.

-/

Definition of ¥y . Ko is th

entum of the

limiting gamma ray; e is ch¢sen such that koy =

thus k' = k - o kg, has nd y/component.’

angle between k' and the

’)‘f( is :the
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R'c .

6 - 100 200 300 400 500 600 700 .

T (MeV)

Figure'8. The ratio of experimental to calculated
- ' - elastic p-p scattering differential cross
section. ,Rc -de /dSem(exp. )/dd/dﬂ.cm(calc )
“at " Bem = 6Q°, where do /d fQoy(cale.)
. 1s the differential cross section computed with ,
. the model of Erkelenz, Holinde, and Machleidt [34]
in Born approximation with the form factors
» . modified as given in eq. (3.3). '
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do[dQy  (mb/s2)

80

L L R 1] ¥ T
» N
7 _
95 MeV
6 - , T
155 MeV |
5 -4 . ™
345 MeV
4 4
31 : 7]
681 MeV |
2 Y =T —T" AR -1 T |
20 30 L0 50 60 70< 80 90.
o B¢y (deg)
. Figure 9. Elastic differential éross,Seqtion.

I computed from the EHM model in Born -
approximation with the modified form -
‘facto:s.(asrgiven_in eq. (3.3)).
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do/dQ, (b/s

13

1

10

—

Figure 11.

50 70 a0

13 v . ; N w
s Ocm (degr
Elastic'(p-p) differential.crOss'sections
from the four-pole model of Arndt, Bryan,

and Macgregor [3§] with no unitarization
(solid curves) and with L2 1 waves : .

unitarized (dashed~curves). In both casés_

the S wave was obtained from the unmodified

_Born ;erms. : R | : &
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-+ four-pole“model of Arndt, Bryan and Macgregor [38)
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° obtained from experiment (solid curve), with
L 21 waves not unitarized and the S wave obtained
from experiment (dashed curves), and with model .
 parameters as modified by Baier, Kithnelt and ' 4 -
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S Figure 15. SbméfOBE”diagrémsjtd third order

in the electromagnetic interaction.
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» ‘ cross section § the coplanar, symmetric o .
. geometry. ''OBE" is the result from the
'OBE external-emission model (chapter 3).
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Figure 19. See daption to fig. 18. "HJ" is a Hamada-
Johng ton potential-model calculation. '"SPA"
- 1is goft-photon-approximation calculation.
The' data points (solid circles) aré pre-
liminary results from Trimuf [ 107. The
HJ, SPA, and data points were taken from
fig. 6 of ref. 31.

89
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Figure 20. See caption to fig. 18. The w radiative-

decay contribution is negligible here.
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do/dQ, df, 8y (ubfsr?-n)

:’-;f;‘b

Figure 21. Contributions to the OBE external-emission

model for Tlab = 200 MeV, 83 = 64 = 16.3

(Triumf geometry). The curves show the
coherent addition of the indicated meson—
exchange contributions.
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-  points are from ref. 4.
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Figure 31. See caption to fig. 18." The curve
marked "OBE + ¥ exchange'" includes
the one-phdton-exchange contribution. -
The data are from ref. 48. '
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FigureA33. See caption to fig.:18. The curve

marked "OBE + ¥ exchange" includes

the one-photon-exchange contribution.

The data are from ref. 48R
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Figure 34.

Differential cross section for the Triumf
geometry (T, .= 200 MeV, 63 = 84 = 16.39)
computed from the OBE external-emission model
The plot shows the contribution from the Dirac
coupling (dash~dotted curve), anomalous,
magnetic-moment coupling (dashed curve), and
the complete calculation (solid curve). g

is the anomalous moment of the proton. The
dotted curve 1s the anomalous magnetic

moment cross section divided by xs -
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Figure 35. See‘caption to fig. 18. The
data points are from ref. 54.
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Figure 36. See caption to fig. 18. The

‘data points are from ref. 54.
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Figure 44.

(nb/sr?2 - MeV), as a function of the photon energy,
k, for the geometry of the UCLA experiment [ 117
(Tlab = 730 MeV, 93 = 50.50, ‘?3 = 180°). The

The solid curve is the OBE extefnal—emission (nucleon' '
pole) result; the dashed curve includes the A- ' -
excitation-with- ¥ —exchange diagrams (added .
coherently); the dotted curve includes the total A-
excitation effect, as described in chapter 6. The

data points are from ref. 11. (The angles = and B

of this reference are related to By and Py ,

" defined in section 2.1, by 8y = 360° - & ,

Py =-B)-



—

CROSS SECTION

16

14

12

10

113

T T T | ¥ 1)
4 ‘G8 i
6y = 68.3°
i ¥ = 339.5° .
;J -
} | L § Ll 1 ] ] '{ ¥ L]
0 .40 80 120 160
PHOTON ENERGY (MeV) —~—-->



S

CROSS SECTION

10

114

8

0y = 68.3° i

Py = 339.5°
i R .l T T T L] 1 ] h
20 40 60 80 100 120 140 160

g
,PﬂQTON ENERGY (MeV) =—=->
Figure 46. The differential cross section,
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to fig. 44) from the A excitation
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only the TV -exchange diagrams while
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See caption to fig. 44.

The long-dashed curve is the
contribution from the A
excitation with T exchange..
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h}v_{jformed when (A 2) was squared

Appendix A

The equation of momentum conservatlon along the beam axis-

‘”(from eqs. (2 9) and (2 12)) :

-

| a -
Ps ces 93 * Py cosBy *..(5+°_+h‘ £z "5‘1) Cos@y = Py

s
- ié solved here fo}'p4" p4 (ps, 91).ﬁ  f o “' ‘. o o
(A 1) can be rewrltten as - o o 7
Pq cos 9«, + A = (p; F ) os O (A.2)
whefe A = (E.,,o-p ‘E}d cos@», (P) Pa cos 63}
- Squarlng (A 2) glves the quadratlc equatlon ‘
py (cos’6, "60393 2 py Arcos&,. t A e0s’0) 20 (4.3)
2 2 N .
When cos 9# = cos bethe solution is .
py.= - (ﬂ,‘vm Cosgr\ L f”'UP:ljf(At#)?ibﬁ”ftttfﬁ
- 2 2, N 5 -
when cos Ghi cos"®y (A.3) has the two roots
Py = ~_Acesb, | A (4.5)
' cos Qy ~cos by . '

where the discriminant

A

1}

Atco»s_zbeq. - (Coszlgq - C.oszgx'\) (A - mzwslar\

\-‘C’%;z_jey [Az + mz(["os q T Cos 973]

» The root w1th the lower 51gn is in fact an extraneous root

To demonstrate this reexpreSS'

. the solutlons (A 5) 1n terms of- p4 u81ng eq. (A 1) thls muSt

ML EE <.
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lead to an 1dent1ty (thls procedure is 51m11ar to substltutlng

the solutions back into eq. (A 1)). We flnd
A'—-’ E,_, cosDY - pq co594~ .

D AN cosBy (E., LoSQx;(- Py w:@\ _ -
A - L

) Pq = (_’, A cos Qq ua oS 9YA> /(COSagq - ¢329,r3

-2 LL, sy ws@r + Py (o5’ Bc, + wsfm A i?;ir

cos? 91..'! = (55 0y 7

This shows that the root w1th the lower 51gn is not a solutlon

~.pf'(A.ﬁ).‘ The complete solutlon of (A 1) is’

_(AI =~ m"},osze,«\ -f’or covs‘ze; = co:zgq
® 2 A COSBL{

Dy = ' . L (a.6)
o . -Aws&, + r,os9~r [/—) + (Los 9;, COS (9 3]
’ e o - co:"eq COSIQ’( -
L 1o T " a{or cos Bf 7": Cos 91.;
- - AT -



T 5in(B3464)
the kinématicai locus in the
_ Condition (B,1) implies that

matics:

P —]——-<p, StnB..,

. L Sin

Pq = _;‘(Pts'"g?:

SIV\ K3

JEENS

where 8 _ =

o

M

‘Eq. (B #) implies k

—

- Appendix B

_'<i<\

T3 - Tl+ plane is

e (amy

s =%t O O3v =

< Pl P'

(B.‘])—

an ellipse.
4 S

we may use non-relativistic kine- . - - -

~

~ k sin Qq‘r»‘

(B.2)
v ksfﬁps;B'” (B.3)
(B,

93 = .,QT

94 + ‘9

<< P

Therefore as a flrst approxlmatlon we may set 'k to-zerd, and get

an 1mproved solutlon by 1terat1ng eqs.. (B 2) to (B L)

,e k.(oﬁ = 0 J } (B-5)
) . o } PB(O) - J | = S'I:).'\ 9‘1 (B.6)
C s B SRt
P._,(Pj = I P sin g, (B.7)
SM.BSj ’
N
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o
(D) - P 7_ L2 20 _ ' 8
B = oz (1= sim?6, + sim wj =T (B.8)
“ . 75'%"95
Wi’lel‘e A = / - 5(n2«95 + S:‘hzgq 1}
) SI.V\IQ_S ) ‘.
P;b :: (P, Slh 91., "T,ASth«’]/\ ' (5.9)
¢ Sin 95 . ’ ’
- -S""‘ & R S Py
- P ( St Bs T St b < v
Pwm o= Pr(sm 6, _ p /) sw«%,) (B.10)
. 8/“’\95 -—;:\ S‘Y\B_S ) :
s ll ' g _ 9
-E: /q (Srh 93 Sin 937 + S/h 94, Slh 997}:} 5
+__E‘_ ,A,(s(h Qg,yf sin® n’)?
= P,,l [A_,. | Pvl‘ ~’,____ AB ‘.’ P'l1 ﬁ ] : (B.'“’?
B
where
B = (J/.y\ 93 sin 93\( + 5 9(, Sl’h'@(lr>/5"y\9
C = (sin*B3y + sv/'y\z&,y‘\)/s/nz&s
_ s.h 9; T Sinbs 2
(B.12)
S "__P_‘lu————‘ AR sin Our

3

. o 3
[ . )
: S/nBs 2 * O( m3 )J
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D - . ' ‘ K
Py = P [S/'heg - P __',__ Asin Q3y -
Sin.Og T SmBs 2
(B.13)
2 : 3
- P | AB s 931 .. O( P \
Tt sthis 2 - BoE 5
- ) ‘ R ;]
(3D 2 : '
k= pl oAl s P 1B o« pT ,-;
“ 2m m o SinBs _;:‘L sinBs ;
X 4?
[B ) (Slh Oyy * i 977’3——] O(m3 sin 9533 (B.14)
The iteration evidently generates a power-series expansion in ' _?
o [ _
—;\_’\— SI.V\ 95

. for p4, p,y k*. Therefore, when condition"

‘(B Ty 15'satisfied'the itéféfioh‘is convergent.-a-EquatibnsA
‘(B 12), (B 13), (B 14) -give the- first three terms-in the 5

[

expan51ons. .The»klneth -energies- T3 JTQ ‘ares - . R ;ﬁ
—[—3 : - p31 P, [ Sllnzgq . ‘P| ‘ i A Sin 91{ Sin 977
R T QM st O - " sinDBs S B (B.15)
+ ( PI l )
X O mt StW0s
3
X .
7:1 = P [ sin By ] | A sinby sin Bsy
7. L shmi0,  Tm sS85 T simbs

s Bs

(B.16)

s , i
2 i K
m srin 2O

*The term ———g— is 1ncluded in the expansion parameter
£}

because for small g high- -order terms can become large, even
" though El is small.
- A

e e ie S I e TR T
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Keeping the first two terms in the expansions B.15, B.16 the

. lomils T3. = T3 (91)( .

TL+ = Tq (Qb«/) is now shown to be an ellipse by expressing
x2 2
it in the standard form =5 + = 1.
2 2
a b
Let
- T _ (o) _ _ ) ’
‘j - 3 7:5 - D Sin QL/ Sin 59\( ' (B.17)
r
S A ,
x -‘L - TL, = -D Slh193 Sin 93‘( (B.18)
,// T
{ AN 3
where- D P, P A
2 rn m 5.'n195
Y :‘D"(gf'nz@q 05Oy * simBy cosOy sinby ) (B.17)
(<4
x = -D ( sn205 cosQy = s/ B3 cosOs th-@f) (B.18)
. s:'v\2 93(:) - 51\419:., x = —DSl'w91< Sl'hzeg Sin 97 w:&,
+s5im Oy sin B3 cosf
! ) (B.19)
= - DSI’V\QY Sl'y;93 Sin (911 smés
Sim 93 (.05933 + sthL, cosBOy x
¥ = D LOSQT (Sl.h 83 COSQ'_’, .S/')«'\IQV + Sin 8‘1 COSB‘j Sl’h1935 (B 20)

- - D ('059‘6' $l'h 93 ka\@(_{ sin 6’;

Therefore from‘(B. 19) : .
cos @y = | — (smibyy - sl'hl&ﬂ:)

2 .o .
D* sin'0y sin By 5/n0s

and.
(si 6 i %) = Disin0y sinBy i
S/n@; cos stj +Sin 0'., Coqux D sin 93 Sth Bv Sin 9J

' 2
—_ (Sr'mzegg - s/'y,zfl, CI)



2 (sl'n-zeq cos By + S’/'hq&-r) + (ﬂ'z (sin’; os®By + S'.h993>
+ 22y (sin 6y o363 8nby cocBy ~ s/n'bs S8y )
_ t3 .2 P 8 2 ’
= D Sth 03 Sihn 8114 Sih 95

OR i
x2 s/'n799 + (37.;/?"2(93 t+ QD.:] s,heg si'n 99 cos‘Q_y

= D? Sn'hieg S/'hzeq Sin 2-65

(B.21)

define rotated coordinates x', y!
= = = cos & —fjl sm &

=x/ Sin & + U""‘w’s ¥

I

9

and choose the angle ) so.vthat-_the coefficient of X'y' is zero.
. ¢ s . oy X ) -

. 2 ©0s85mE 5Byt 28 bos S sin'0,

2 (cos*s ~sim?8) $imBs sin Oy cosB5 =0

'coi 24 (Slh 8, —:/h 8_-,)/(2 S/ (935‘/n9¢,(059> (B.22)

Y

-

L] .
In 'the rotated system the locus is
2 ) .
=’ (Coszcg Su-\l@q tSin SS/n 6y + Slh25 S/nl9_3 simBy CosB_;)

+ '2 (ws?S 5/h193 +5in’S sin? ,9'1 - ‘S’hzgs.me"‘slhe‘f Co.r@_;) (B.23)

= D Sl‘b\ 93 Stn 6&, S/'h"B_g

Therefore, ‘the ellipse is centred at Tlio), T

angle & given by (B.22); and has semi-major, semi-minor axes:

a :v._'Q A %li&h By s:n9s e W2 - )(3.24)

.3 Py

. 2. ‘ I/
(Cos S 5-,,,\ @‘l 45 5 8'n 93 t sinadd 5'4,,63 .S/'th COSBJ')?

<

y L W @

|

'
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L . T
. and as 620 (subject to condition B.1) the-ellipse degenerates
R : s ‘ % .

132

b'= B Bsmbyswmbs T mes) -

- ‘ )
(cos*S 2n?B0y + sin28 sin* By —5(n28 5/ B3 5B, w;@,)/’-

respectively. Note that a8 es'—-v.gL (elastic limit) the
eccentricity goes to zero; when 6, =1 , a-= b.= 0. If we
want a) b, then (B.24) and (B.25) imply that _

| 7 £ 2% £0 | - (B.26)
This defines the branch of the cot function in (B.22)*. |

For the symmetric‘case, 93 = Gk = 6, we have . }

’

o526 } ' |
A = " 2cwosO Deimbssmbysmbs =2 T p, cos?b .(B.27)
Y T cos?b
- T P ot 8
@ T 22 m  sinb wsb (B.28)
. T P cot2e
b= S/ Tm os2D ~ (B.29)
: BERAN

b/a = | tanb : (B-.‘30)

i.es the eccentricity increases as the opening angle ©O. decreases;

77 ‘ )
for © near 7; the ellipse is nearly a circle (as noted before), -

“to a line segment. 7 B o

*The other distinct solution of (B.22) is a 90o rotation
with respect to this solution. ~ -



Appendix C

A Summary of the OBE Model of N-N Scattering of
Erkelenz, Holinde, Machleidt /347

EHM take the Feynman amplitude correspdnding to the exchange
of a number of mesons as the Born approximation to the full T
matrix. Specifically, if ?;Jf§/is the initial, final CM mom=-"
>/ » . o . . .
entqm of thevnucleons, VOBE ( P. P ) is the relativistic OBE
amplitude, and V(?;j7$ ) the p-space potential, then the authors

set _~ .
Vk (‘—'5 oss(—*l_av ( > o (C.1)

The T matrix is obtained by putting V(ﬁl,?;) into the Lippmann-

Schwinger equation (LSE):

(F) P> B F) - g VB3 1 &P (.o
(QT!) % _Tg -l € ,

In eléstic scafterihg = B=us _ . B !

The LSE is solved in the hélicity'representation, ij1).)z>,
then transformed to the ’]P1LS> representation. The phase shifts
are then obtained from_elastic unitarity. | | |

The model parameters are aetermined to give the correct
deutron binding energy and a best fit to the nucléon phése-shift
ana1y81s up teo 330 MeV The authors llst the predicted phase
;shlfts, low energy and deutron parameters, and nuclear-matter
parameters, With the exception of the deutron D-state prob-
ability, Wthh is about a factor of 2 too 1arge, the agreement

w1th experiment is good.
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The meson-nucleon couplings used by EHM (in writing down Vypg)

are, for scalar, pseudo-scalar and vector mesons respectively
) . . s - - - <= -

Lo e

-[s = 9s ,\?,\F qS(S) .
"CPJ = ﬂp_g /? L‘o’;l‘{’ ¢(P‘) ] ' (c.3)
Lm g Bt B0« f T o b phn g

. Hrm

¢
For isovector mesons the fields ¢> are replaced by the isovector ;?
and the isovector 7’ is sandwiched between the nucleon f1est ”W

and '% VOBE(a ,D ) is formed by summing the Lorentz-invariant

amplitudes of the var10us one—boson—exchangevdiagrams; i.e.,

3 44
< s Pa Sy P'-tl Voes | s, Py Sa Pz-7 ?Z; "
. : | | 1 2
= _Z-s [33«\(‘73 )Ty wy) < }
5.8 T Mmwy

iy

tgpi— 3ioEs %5 “wl( 1% “‘\%‘%t - *“‘MJ

| N
+Z [yn wz(“d"ucr\’:"\_ﬁﬁL_ @Ju.

oy 3™

Xy (¥ ~igv _p(d) cr\)u'2
9(01) m

X ( 3/*‘*)/(‘6 %x - W‘uQJ

V' d
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where qs = pz - Pg = -(P§ - Pf )
and the spbsqript_dn‘the‘sﬁinoerenOtes;both.the'spin»prbjection'
. L . | . ‘ ‘l’ N .-l..“.:‘ -;’ -; .., '.v w‘-v--o:‘; '4'-'; 97' - ‘.”"‘:? e R e R
" vlﬁ‘aqd momentum.” * = 20 b we e ar w e BT e ot et a e fan e wel o B aoe a o ats y

‘From the theory of integral equations it is known that in order
that the Born series from (C.2) converge, the equation must be of

the Fredholm type; -i.e., the kernel ~"" -~ -~ ' = _ o o0t

-—-.2 T

(27’ /P’”r? 4

must satisfy the condition .

K(B)3) = —m  V(F =

This‘requirement"is satisfied in the model through the use of form,
factors: &;) is replacga'by g«sﬁd)(q“ qu ). The "coupling

constant" is then defined as
' . — . . ’ 2 . ’0 .
Jooy ¥ Guy Fans ( '."*) o (C.5)

The exchanged mesons, their massefl/gggpling strengths go) s

guﬁ, angd fqrm factors_as’uséafin the EHM model are listed in v'

Table C.1 below. I g
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Appendlx D

"Phase Shlf‘ts from Geometrlc Unltarlzatlon

'I‘he partlal-wave progectlons, « ., are defined in- terms c'>f‘ ‘

; the scatterlng matrlx S by

“ - e s ¢

) - A EOE . .
» . . “ e , RN EIRIE . ps »

S =1+ 2ca o <b.1)

These are the «'s of SYM /%0/ divided by 2i. For uncoupled
states the singlet and triplet amplitudes are «; and oldj

(ived o{l\'j"""with 1 =" j)' respectively. For coupled states
L . « \:'-IJJ =8

“"(J ” - ,
oY “J-o'r,fd' 1

_ /the unltarlty condition S8”1 = 1 reads

%dJ: (Reoi\,)z . (5«»1%32

ljfm“"d"j = ('Reog\i) +($motdd\)2
| (D.2)
Yo //a = (g Y + (Re flo; //)
P
a; = QXP(i 5-\) Si'n &
olJJ = CXP({. 5“\ Sth SJJ \ |
’cx’l_ | (21.\) [cos.?é EXP(JL SAJ ] ‘ | "zJ :[[ 4 (D.3)

-The (real) Born amplitudes as giyen by the meson-pole model are
denoted by B's, with the indices defined ‘as for thek d\y's‘. We -

unitarize by taking A‘the model amplitude, B, as the real part of |
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the unitary amplitude o ; ¢,the;imaéinary;pa;t.Qf\gt{cagAthFQ.be .

obtained either ffom,(D.E)»or_(D,}).n, Thus

BJ’-: cos 5J Sl'ngJ = '13_ Sv.h-'g‘v)' o : ‘ .‘(D,l-{.a)_
e densio o

B.

C = ! . . ' ; o . )
5o,y T mecos2€ sin2850,0 L (Do)

BJ..I,J = %: co.s‘zed St'h-?Sd';,)J‘ | (D.Ld) TN

L ' ' .

B = =% sind€; cos By . S . (Dbe) T
where A, = SSJJJ + 5;u,d S e

Q

: Obté&ning the phésé shifts for 'the coupled states requires the -
solution of the simultaneous non-linear equations (D.kc) to (D.be)
for 53—',J P 5J+fJJ R and €; . W9 used the NewtqnfRapysont
method for this: define

x = Sd-\JJ

q = Oty
z

= € '
: -f)nCQJEiJZ\ = _'2— 50522 sindx - BJ-',J
A (*Jﬂ' D s ocoszz »5'""":7 ;-, Byany : (D.5)"
o -f; (=,49,3) > 4 c/n22 ;cos (tf«d) |
For the:zeroth‘épprQXimatipﬁ'we take €= O, découpling‘the
st#tes: -  i,~ o - | | i
B,y T % sinla, .
Y Biviy =% s 24, (D.6)

oW B 20___0



.where

. L3
“~ U - - B
. 4 . .
& - DT g “
t «
-
RN

“let (x5, ¥4 z;) denote the zero of (D.5) after i iterations..

‘By the. Newton-Raphson ‘method '

—

, -en)ﬂc ' ?»,3'-
' ’Pz,z : ?25}3

xl:“ = :rl- + S:t)

cosd? cosdx

0.

-4 St 2 Sin (3"*53

| ¥3’:! t .%)3)3. .

w151 )

Faz ,t52m - .jﬁl

Yoo = Yt 53', FRIRE A R Si‘_

' The derivative. matrix on the left-hand side of (D.7) is

o L —5InRZ sinx
Lcosdz osdy . - 522 Sin 9‘7‘ :

__!2__ SimZz .Sllh('lt‘_j) ,COSQE ‘cés(a*‘:‘)}

e | sy |="10] (D.7)

-
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Appendix E

. “qu:éz;k—bfl.o'del Constraint on g*

The purpose of this exercise is to relate the sign of the
ANT vertex to that of ‘the NNm vertex in the (A, ) diagram

through the quark.model.

-~ Consider the NNw derivative coupling:

B If,.,;w = %’W [Iq:'(sa' /\L ,_g .+ ,¢Xs7f°:?+’ aozjl ' (E.‘:-"l)” |

. ‘ - " \'
with . VT S

v = (_o »)_ . ‘0’53‘-;(—04-’ o) | 70 =(0 -
. I © 0 gl : .
'Red_uc'ing no'n-vrelativistically ‘ ‘
- B (2 | XE
__E X ol X

Qm

- fzulu ==y =P7m~ “0’5 re ’.L?"/‘ 'b,, gsn-
mn ,
= 4’1‘,»:»4(')(*",' -t 3 "’E') ( | j ( '&?(E 3) .
mn 2

;e\io

m
& —-)Dn'NN’X' ST X A

m’l‘l’

(3
By analogy we take the non relativistic %%ﬂ' coupling to be
+

‘fn-sﬁrz - Prgs ’xb—’g O'Z'Xbbg‘??ﬂ ' - (E.b4)

mn

In particular*consider matriﬁ: element of the 'pﬂp vertex with

- the pion momentum k=p"P along the z direction, and proton spln

140

“ "

a
—



1471

up

v

_ . e ) t : . | g ’ .,
T = e Y Ty o Ky LR e ke (E.5)

wT mnr

| We use the labels p, n, A for the three quarks with

<pJL3Ip7 Cnl Tyl ==l <z|'r3-lg>=o
and make use of the quargs structure of the proton w1th spin up:
Jproton 17 = [zlpT pT wiY = IpT pl W12 - lpd T Y
e +.21Pr nl ety = IpT wlpdy —Ipb w1 oY  (E6)
+ 2wl pl pty InT pT ply —Int pl pT>] |

The matrix element in the,quark model (1mpu1$e approximation

with interaction given by (E.4)) is

= = ’P"Hb <pro¢on T‘i O'(D ;D l proton 17 (i k’z» - (E.7)

mp

.Only=diagénal terms'contribute'to (E.?7); furthermore the three
5 v

-

' permutations in (E.6) contribute equally. Thus

" T = fngq ka 5 (E.8)
’ . 3 .

Comp%;1ng (E.5) and -(E. 8) we have
#’anJ ‘—35 Pres B | (E.9)

Now conslder the z&hln . coupling given in (6.9). To re-

late g* to ?“bt we agaln concentrate on a vertex with 51mp1e
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o . | : , N .
quark and spin structure; we choose the [f P nt vertex with

Sz (A™) = +34 5, (prado) =1 .
Using the identity
. . ,
AL— BL = A+ 8— + 'A* 8+ + A3 83

where

Ae = (A SLAAT
B+ = (B, 2.:8)//7

with

i

(B = gD/FE = -4
(@ +¢ $)/JT =  o |

my

i

TJi-

we get from (6.9)

. _ N Ty A : +
Lanm = - g° N%3 N Bum

- Where h -

New = (N7 +. R/
: . O e ?uzw;)
: [(Z*“/B - - (K"/ﬁ + A- J
A+
(5o

In particular
f - ++ M +
Attt = ‘3’* A P Ou TX

‘The matrix element of the vertex in fig, 39I (with the pion

i

four momentum = k*) is then
T= gt R wlpy ik
: . _ A
,52 = +34 :zJu(Fg) = Zi(ﬂf) éj74(+)>.

For

r

hED 00t ey

‘ (,E.1o)

(E.11)

(E.12)

—'—E’XT



Non-relati;{étically‘v
T= L’j“ (_é“‘ —E) (’Y+ ‘7+—"_é'§ "t
- C o 1 2.7
2 P X+ ).
' ma T (E.13)

A

~ Now we compute-the same amplitude in the quark model:

L S

I_A++ Sz = +Hy = ,p'T ) pT> - (B8

Erigy = ’Pn%'s (! T+?7(b Vs (2, = (T'*"TD/J%\)

T = ‘Png% <A++52‘3/1’i7<0ﬁ(‘ T:

Prmh» : (E.15)
p '

Only the terms J—iO' lb(_) (where lq() ky ~C ky , = Ta+l 3

contribute to (E. 15) Therefpre \i ,

) N “
T )p’l’b% h() < A Sz = *%ti ¢ - iylpro'*oh T>
: : ' (E.16)
= 20 Py ke VT
n ~
Comparing (E.13) with (E.16) we get e
g° = 202 $rgg = J— fmm : " (E.17)

£z
5

ma mTI

*



In the present case the two nucleon fields are on shell

and the 1nteract10n (E 1) ¢an be rewritten as

\
where 3w = —-%fi ngN

. , .
.9 = 5y2 ™ In (E.19)
' { % - - .
With ég% = 14 (E.19) gives 7gi' =~ 1.14 x 10 2 ‘MeV 2, however
we use the value of g‘a as obtained from the width of the decay
B *
A-—)\N-v-'n s w9 = 1 875 x 10 - MeV 2.
b7
N , ’
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: ~ Appendix F-
f ; ' R

A Width and the Value of g*

In this appéqdix the width corresponding to the process of

fig. 50 1s derlved»from the Af+
‘3“}F’W‘B¢n

- To w1th1n a phase

p'n+ interaction givén by

L j .
1 z 4
N '“”yéﬁ(Pﬂ{r@ e

the sum over the A ‘énd nucleon spins are done with the closure

N

properties:
i 2 > " .
Z MV“ = ZTVIA (F{$+mA\(—Y:-‘A Pxr Po —3}4\) | \
)pln .
and - o $ (F.2)
: L owi = (Baem)/am
Spin
/
— . ‘
i A KEARIUN G A
T R I ) o Rt
- . Ma ey

Trace calculation:

. .
'b’-f# 'r—h-A Pw Pv TG TN A

.::VF# Pv _rt;‘ p- P“' - ,3,‘\..‘ gP"‘P *H(Pi Pr = P:. P,“\ LT
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)QVY\YY\A

———

ma

o..“—l’jT;. au’/‘* u\)u’: 4 ( 'P*

)

Pr Py

ma

(F.4)

- 3ﬁu'mA)  (F.5)

The factor % in (F.5) comes from avéraging over the initial four

A spin states.

Decay probabili tyA =
) spms ?

w

= Z 3" mmy, (21) & (p*- -p- 1,)VT

e 7_1';)—‘3 O VEPEWaw

" L x,z(PP +m)[(f°%3 %m?"

. ' 2 3 3 -
Replace —_— _Y____ d’q d”p
?,Z-p? (@m)¢

S
3

(3106

I;lmmA

Ewaw

)
- Decay rate = [ v 9 * (d % d3P m oy (QWB 6 (P = p- %>

12 vmm,

X‘VQ(M +_,,:)[(P 8) ~ 3 m:}

L2V

In the rest frame of.the £

Wesm,, RB=-3, P

=0

and
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I

M = ’3"‘2 ] gd3<6 [ S(MA —.E-w\ (E-_"”'VD%1
- T lam Ew ‘
Define Ep = E+ o -
; dais :g‘@”%z”'"z * g emy
E o
?nd Cb d% = E—w o{EP
- by
" | N ' ?
= 2
[ T s 7 g% E‘g: dEg _‘_w S(MA—EQ(E}m)%_
% Y, K
= g9 m | R . (F.8) -
un 3wy » \; A
R
o )1‘5,‘/
From ma = (Brem® = (22 mi) ’
ve get E = (mi+m =m3)/ 2 m)
With ''=119.3 Mev [62] , Ma= 1232 MeV, m=9389 Moy,
and myg = 137 MeV ’
b
% . -6 -2
we get ‘\3_ = /?'“75"‘ 10 Mev = | -

' (F.7‘)

‘ N

the value used in our calculation.

|



Ap;gendix G

Quark-Model Constraint on C.

We write the nonfrelativiétic amplitgde for‘th; pfocess of
fig. 40p with ‘the ihfceraction L o= -eE K”V:vvixs g da Fuv .

aad in the quark model. v For 51mp11c1ty we assume the A to
have spin S ='d and the proton to have spin +%. From'(6.14)

( Tz ) we have (with Z(+)) = —7L (l, LJo) = -€,)
T = <CF Ty CP) ( €cnyk, k em)v 45 s (p et
~ —eC'r wf( P (o ks - kemﬂ (i _;)_uT (5
S Bl (B e B, o

:-/"ecg (,é(ﬂz k, - kz é(‘b‘}»

‘Now‘ﬁe‘calculate the am

from the quark model.

| A" sp=+%) = & [Ipr pl m)

(G.2)
+ ,PT VVT pT> + \hT PT PT>J 4
I proton T> is giy;_'n in ‘(E.6). | \
T - S ' ' e
With the quark-¥ interaction e /
Ly =T e'a Mp x+13 (K x m\'X (@3

where "Qb»z § for the p quark
' -3 for the n quark
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and ,U.p— 2.79 e _
2m

rThé matrix element corresponding to fig. 40y ig
T = _L/"‘P Z < pro+ohT ‘ e' g(rx Z(‘O\\ A+ S;=+¥>
 ='— -C Up Z <pro+omT|'€ O'_(k)(éu)) ,A 5,-+3/>
= {—3'-‘: Mp (kxé('))-’-_
2 e :
:’_E /up[(b Xé(\«)\)j — L (‘l"é(z)>3]

= —_E,#.P‘ L Rz €yz ~ka €ayz ~¢ kaﬂé(ﬂz "k é(ﬂ:’] “

= ET Mp [ €z k+ n kzyé(ﬂJ (G4
'Comparing (G-4) with (G.l)‘we have : o . | -
w =~ -239 [72
. T |
_ . o y _
= T2.10 #1107 MeV . . (G.5)

' This compares with C = -2.31 x 1073 MeV ~ - the value used in our

calqulation.



