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ABSTRACT

Pseudowords are used as stimuli in many psycholinguistic experiments. Yet, pseu-

doword responses remain largely under-researched. To better understand the cogni-

tive processing of pseudowords, we analysed the pseudoword responses in the Massive

Auditory Lexical Decision megastudy data set (Tucker et al., 2019). Linguistic char-

acteristics that influence the processing of real English words—namely, phonotactic

probability, phonological neighbourhood density, uniqueness point, and morpholog-

ical complexity—were also found to influence the processing time of spoken pseu-

dowords. Subsequently, we analysed how the linguistic characteristics of non-unique

portions of pseudowords influence processing time. We again found that the named

linguistic characteristics affect processing time, highlighting the dynamicity of acti-

vation and competition. We argue these findings also speak to learning new words

and spoken word recognition generally. We then discuss what aspects of pseudoword

recognition a full model of spoken word recognition must account for. We finish with

a re-description of the auditory lexical decision task in light of our results.
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1. Introduction

Certain linguistic characteristics of a word, such as its lexical frequency, can have

strong effects on how the word is processed. For example, lexical frequency signifi-

cantly affects the speed with which a word is recognised (Dahan et al., 2001; Dupoux

and Mehler, 1990; Ernestus and Cutler, 2015; Glanzer and Bowles, 1976; Howes, 1954).

When carefully interpreted, linguistic characteristics like lexical frequency can speak

to the structure and properties of lexical representations. Returning to lexical fre-

quency, its effect has been interpreted in many ways, such as each word having a

different resting level of activation or each word having different connection strengths

related to its frequency (Dahan et al., 2001). The present study continues the theme

of investigating linguistic characteristics that affect the processing of speech signals

to learn more about how spoken word recognition and lexical representation work. In

the present study, we focus on the processing of phonotactically legal pseudowords,

which are commonly used as distractors in experimental tasks designed for spoken

word recognition research.

Here, we define a “pseudoword” as a phonotactically licit phone sequence that could

form a word in a language but happens not to (such as blick in English), while “non-

word” is used to mean a phone sequence that could not form a word in a language (such

as bnick in English). Many spoken word recognition studies have used pseudowords

or nonwords largely as distractors during experimental tasks such as lexical decision.

In this way, responses to the real word stimuli involve linguistic processing. However,

these studies tend to leave the responses to the pseudowords unanalysed. The few

studies that have analysed pseudowords have investigated aspects of real word recog-

nition. This focus is in spite of the fact that recognising pseudowords makes up a large

portion—often half—of the behaviour of a participant in tasks like lexical decision.

Furthermore, the studies that examine pseudowords use only a small number of word

and pseudoword/nonword stimuli (e.g., Goldinger et al., 1989; Vitevitch and Luce,

1998). Overall, the restricted amount of research on pseudoword recognition points to

a lack of knowledge about how the human speech processing system determines that

an item is not in the lexicon. If the goal for models of spoken word recognition is to
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account for the experimental tasks used in research (let alone spoken word recognition

in non-laboratory environments), it is necessary to have an understanding of the full

process of word and pseudoword recognition.

In the context of examining how speech signals are recognised, it may seem inconse-

quential or ecologically invalid to investigate the processing of pseudowords. However,

an understanding of pseudoword recognition can be extended to how novel words are

recognised and processed. For example, consider the case when an adult or child hears

a word they’ve never encountered before in their native language. At that point, the

new word is effectively a pseudoword (although the listener likely assumes that what

they heard is a word and has meaning). Additionally, knowledge of pseudoword recog-

nition can be used to model how speech processing mechanisms detect that an error

has occurred when processing the speech signal. After all, an error when processing

the signal could first cause the listener to hear a pseudoword before correcting. In

general, understanding pseudoword recognition can account for various speech-related

processes that occur when the word recognition system determines that what has been

heard is not a word. Indeed, upon hearing an ostensible pseudoword in conversation,

a listener needs to determine if the incoming signal is a misperception of a word or if

it is a word they have not previously encountered.

In experiments like lexical decision where pseudoword recognition occurs, a number

of processes are at play. Principally, there is a recognition process whereby a listener

discerns the identity of the auditory stimulus. At some level, the listener determines

what the wordform is, whether that involves string recognition or some whole-form

recognition, all while lexical competition is ongoing. Subsequently, a listener renders

a judgement about whether the item is a real word or not. In contrast, in a typical

conversation, a listener does not hear isolated words and is continuously integrating

the auditory input into their representation of the discourse. Furthermore, listeners

generally assume everything they hear is meaningful. Although, listeners must also

have some capacity to detect that something they heard is not in their mental lexi-

con based on their ability to recover from a perception error that results in what is

effectively a pseudoword. Naturally, then, care is needed when inferences are made

about cognitive processes on the basis of a task like lexical decision and many other
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psycholinguistic tasks. The judgement process is distinct from recognition but may

also affect the listener’s responses. And, it must be noted that participating in an ex-

periment is different from being in a conversation. However, lexical competition must

also occur when hearing at least the non-unique portions of pseudowords because there

would be no way for a listener to know that they are hearing a pseudoword at that

point.

Analysing participant responses to pseudowords in experimental settings has a num-

ber of useful properties. The first among these is that it allows researchers to investi-

gate the effects that properties of lexical items have on speech processing mechanisms

in a more controlled manner. For example, since a good pseudoword stimulus should

theoretically have a lexical frequency of 0, there should not be a confound of lexical fre-

quency when investigating the effects of other characteristics of linguistic and/or pho-

netic sequences. Though, compare results from Hendrix and Sun (2020), who calculated

a form of lexical frequency for visual, orthographic pseudowords through the number

of results reported by Google searches for the pseudoword, suggesting that many pseu-

dowords may appear at some point in the written language but are not recorded in

a dictionary. However, from Google search results, it is difficult to tell whether the

results for a given search string contain writing errors, are in a foreign language, or

are proper nouns for which its lexical status for an entire language community is more

questionable (e.g., blick <https://web.archive.org/web/20200629162828/https:

//www.dickblick.com/>). Additionally, Google attempts to determine user intent

and return results based on that intent (such as with spelling correction and matching

synonyms) rather than searching literally. As such, more investigation on the method

of calculating the frequency of pseudowords using search engine results is needed.

What’s more, in the auditory modality, it is far more difficult to search for what may

be instances of a pseudoword, which may be recognised as an error by the listener

and corrected during the word recognition process. It still stands to reason, then, that

lexical frequency is unlikely to be a confound when investigating different linguistic

characteristics of experimental stimuli with pseudowords.

Pseudowords can also be designed to exhibit extreme values of lexical characteristics,

as in Goldinger et al. (1989), Luce and Pisoni (1998), and Vitevitch and Luce (1998).
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Note, though, that these studies did not investigate pseudoword processing in great

detail, but instead used pseudowords to inform an understanding of strictly real word

processing. Selecting such stimuli can prove more difficult with real words. As such,

knowing if pseudowords are processed in similar ways as real words would serve as

the basis for future experiments that use pseudowords as highly controlled stimuli in

experiments investigating the effects of lexical characteristics on participant behaviour.

This is especially true given results that pseudowords show variable wordlikeness,

which itself is correlated with other linguistic characteristics (Bailey and Hahn, 2001).

To account for participant behaviour during linguistic experiments and what it may

reveal about other aspects of language use, the processing of pseudowords per se mer-

its investigation. There have been several recent studies on pseudoword processing.

Yap et al. (2015) performed an extensive analysis of pseudowords in the visual modal-

ity, though linguistic predictors do not always have the same effect when compared

across visual and auditory modalities (compare Luce and Pisoni, 1998; Yates et al.,

2004). Chuang et al. (2019) and Chuang et al. (2020) modelled semantic activation

that occurs while hearing pseudowords. These two studies couched their analyses in

the linear discriminative learning and discriminative lexicon framework (Baayen et al.,

2019). Additionally, Hendrix and Sun (2020) examined the process of recognising vi-

sual pseudowords using piecewise exponential additive mixed models; however, the

auditory modality was not analysed in that study. In addition, while wordlikeness

studies like Bailey and Hahn (2001) often use pseudowords as stimuli, they generally

do not discuss the actual psychological process of recognising a pseudoword. Janse

and Newman (2013) investigated the identification of auditory pseudowords through

a transcription task. The selected stimuli were monosyllabic words, so multisyllabic

words still need more attention. And, Vitevitch et al. (1997) looked at the effects

of phonotactic probability on processing spoken nonwords, though only looking at

bisyllabic words.

Because there is not an overwhelming amount of work yet on how pseudowords

themselves are processed, the most fitting place to start is to work with what is

known about processing real words. In that vein, four linguistic characteristics stand

out as common predictors of behaviour in linguistic experiments that have implica-
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tions for modelling human behaviour, especially in an auditory lexical decision task.

These characteristics are phonotactic probability, phonological neighbourhood density,

uniqueness point, and morphological complexity. These four characteristics were se-

lected because they have been frequently used in previous research on spoken word

recognition and pseudowords specifically, in the hope that our results will be maximally

comparable to that body of research. These variables are used as proxies for different

aspects of competition that have been shown to occur in spoken word recognition.

Descriptions of these characteristics are elaborated in subsequent subsections.

1.1. Phonotactic probability

For real words, phonotactic probability is how likely a particular sequence of phones

is, given a language’s phonotactic distribution. As a simplified example, using a com-

bination of the CMU Pronouncing dictionary (Weide, 2005) and the Corpus of Con-

temporary American English (COCA) (Davies, 2008), it can be determined that /b/ is

more frequent than /N/ in English. As such, /bIb/ is more probable than /bIN/, when

using single phones as the unit of analysis. Although, it is possible to use other units

like diphones. The same principles apply to pseudowords. A pseudoword’s phonotactic

probability could be an indication of how word-like it is, or otherwise, how well it fits

a language’s phonotactic distribution.

Vitevitch et al. (1997) and Vitevitch and Luce (1998) have argued that human

speech processing capabilities are aware of the frequency distributions of segment

combinations. Overall, the trend for real words was that as the probability increased,

the reaction time got slower, while the inverse was seen for the pseudowords, where the

low-probability stimuli were responded to more slowly. However, they also found that

the effect of phonotactic probability was overshadowed by a stimulus’s lexicality. Bai-

ley and Hahn (2001) examined the contributions of both phonotactic probability and

phonological neighbourhood density (discussed in the next section) to wordlikeness

ratings of real words and pseudowords. They found that both phonotactic probabil-

ity and phonological neighbourhood density had significant effects on participants’

responses. There is corroborating evidence from Frisch et al. (2000) that phonotactic

probability influences the spoken word recognition process. It thus seems likely that
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phonotactic probability has an effect on pseudoword recognition. And indeed, Janse

and Newman (2013), Chuang et al. (2019), and Chuang et al. (2020) have shown that

phonotactic probability influences response times to pseudo- and nonwords in auditory

lexical decision tasks. However, Chuang et al. (2019) and Chuang et al. (2020) focus

more on morphology and semantics than pseudoword recognition per se. More work

needs to be done on how phonotactic probability affects processing and recognition,

especially with multisyllabic pseudowords.

1.2. Phonological neighbourhood density

Phonological neighbourhood density is the number of phonological neighbours a word

has. And, a phonological neighbour is typically defined as a lexical item that differs

from the item in question by exactly 1 phoneme, as determined by Levenshtein distance

(Luce, 1986; Luce and Pisoni, 1998). The phonological neighbourhood density for a

given item, then, is a count of the phonological neighbours the item has. Generally,

items with higher phonological neighbourhood density are expected to take longer to

process because they will have more plausible competitors and, thus, take more time

to process. Such effects have wide experimental support (Goldinger et al., 1989; Luce,

1986; Luce and Pisoni, 1998; Luce et al., 1990). See Vitevitch and Luce (2016) for a

review. Note, however, that the neighbourhood density effect is not consistent cross-

linguistically. Vitevitch and Rodŕıguez (2005) reported the opposite trend for spoken

word recognition in Spanish.

While many spoken word recognition studies have reported effects of phonological

neighbourhood density for pseudowords, the analyses were focused on understanding

real word processing. To our knowledge, Janse (2009) is one of only a few studies to

investigate the effect of phonological neighbourhood density on pseudoword processing

itself. It was found that dense neighbourhoods increase response latencies to non-words

in auditory lexical decision tasks in aphasic listeners, though no other structure was

tested beyond CVC items. Chuang et al. (2019) and Chuang et al. (2020) also used

phonological neighbourhood density as a predictor in their models when analysing

multi-syllabic pseudowords, though not much explanation is given of its effect. Janse

and Newman (2013) also used phonological neighbourhood density in their analyses.
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Overall, though, the task of characterising the general effect of phonological neigh-

bourhood density in pseudoword recognition remains open.

1.3. Uniqueness point

The segmental or phonological uniqueness point for a word is the segment after which

only one item in the lexicon matches the stimulus being heard (Marslen-Wilson and

Tyler, 1980; Marslen-Wilson and Welsh, 1978). Although, it has also been defined as

when a lemma can be uniquely identified from all other possible outcomes (Ernes-

tus and Cutler, 2015). Marslen-Wilson and Zwitserlood (1989) used uniqueness point

in modelling responses in an audio-primed visual lexical decision task (cross-modal

priming). Participants were primed with an auditory stimulus and then performed a

visual lexical decision. Of the variety of experimental conditions that were assessed, a

priming effect was only observed when the auditory stimulus was semantically related

to the visual probe, and not, for example, if the auditory stimulus rhymed with the

word related to the visual probe. They claim the speech processing mechanisms can

use mismatches as they are heard to rule out possible candidates for recognising the

word contained in the audio signal being heard, thus preventing the visual rhyming

words from being primed.

Balling and Baayen (2012) found that the segmental uniqueness point has a signifi-

cant effect and has an effect size comparable to lexical frequency in statistical models of

responses in auditory lexical decision tasks. They also observed that a word’s unique-

ness point represents a moment of high entropy or surprisal, likely due to it being the

moment at which the word is identifiable; after the uniqueness point, the information

added by further segments in the word is redundant. The likely analogue for uniqueness

point in a pseudoword is the point at which it can be determined that what the listener

is hearing does not match any word in the lexicon; at that point, hearing further seg-

ments is redundant as well. The uniqueness point thus seems relevant to pseudoword

processing, though there seems to have been less work on its effects for pseudowords

than for some other linguistic characteristics. Note, though, that the uniqueness point

represents the moment when there are 0 candidate words left for pseudowords, which

may result in different processing effects for pseudowords. For this reason, it may not
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be a moment of high surprisal as Balling and Baayen described for real words.

1.4. Morphological complexity

A variety of studies have found the morphological structure of words to affect lan-

guage processing. Some evidence has come from priming experiments suggesting that

words are obligatorily morphologically decomposed (Beyersmann et al., 2016; Lázaro

et al., 2016; Rastle et al., 2004). In this process according to this account, all words

are obligatorily parsed into morphemes during the recognition process. The parsing

is blind as to whether or not a morphological parse is valid, such as breaking the

English corner into corn and -er. Other studies have found that priming effects of

obligatory decomposition can be explained in large part through other variables like

semantic similarity (Feldman et al., 2009; Järvikivi and Pyykkönen, 2011; Lõo and

Järvikivi, 2019). There are fewer studies that have examined the effects of morpho-

logical complexity on pseudowords, though. Morris et al. (2011) found evidence that

morphologically complex pseudowords like flexify from flex + -ify significantly primed

participants’ responses to target words in a visual lexical decision task. The evidence

is still sparse, though Morris et al.’s findings suggest that pseudoword processing may

be influenced by morphological complexity, as real words are.

Most studies investigating the effects of morphological structure on the processing

of language use visual tasks, and not auditory tasks. While previous research suggests

what trends may be observed in auditory processing, effects in the auditory domain still

need to be examined. In part, this is because there exist perception differences between

auditory and visual perception (Tucker et al., 2019). There are also differences in the

stimuli where words that could be pseudo-complex orthographically would not be from

a phonetic perspective. As an example, brother could be decomposed into broth + -er

orthographically. This decomposition is implausible in the auditory domain because

the first syllable of brother is [bô2D], while broth is [bôAT]. In addition, Emmorey

(1989) reported priming effects for spoken words that were morphologically related

but semantically unrelated, but processing costs were not discussed.

Demonstrably, the effects of morphological complexity on auditory pseudoword pro-

cessing need to be investigated. There are a handful of studies that have looked
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at the relationship between morphological complexity and pseudoword processing.

Moscoso del Prado Martiń et al. (2004) reported results in the visual domain that

morphological complexity has an effect on pseudoword processing. In addition, Chuang

et al. (2020) and Chuang et al. (2019) have found in the auditory domain that mor-

phological complexity has an effect on pseudoword processing for a limited scope of

morphological complexity measures. Overall, the preponderance of evidence from the

visual and auditory domains suggest that the morphological complexity of real words

affects language processing generally, whether through morphology itself or through

other means such as semantic similarity. However, further investigation in the auditory

domain is warranted with broader measures of morphological complexity.

1.5. The present study

In the present study, we seek to describe how pseudowords are recognised using the

Massive Auditory Lexical Decision (MALD) data set (Tucker et al., 2019). Many of

the studies discussed so far focused on learning more about real word processing and

not pseudoword processing per se (Bailey and Hahn, 2001; Janse, 2009; Luce, 1986;

Luce and Pisoni, 1998; Morris et al., 2011; Vitevitch and Luce, 1998; Vitevitch et al.,

1997). That is, they were not primarily investigating the process of what goes on when

listeners hear pseudowords (which is often half of what happens in an experiment in-

volving a mix of pseudowords and real words). As well, the discussed studies that have

looked at pseudoword processing have focused more on morphological and semantic

investigations (Chuang et al., 2019, 2020) or have been in the visual modality (Hendrix

and Sun, 2020; Moscoso del Prado Martiń et al., 2004). Understanding more about

auditory pseudoword processing will relate to a number of linguistic phenomena, such

as the aforementioned phenomena of learning a word a listener hasn’t heard before and

recovering from perception errors. We note, here, that we don’t necessarily believe that

there is a distinction between word and pseudoword processing. In both cases, lexical

processing is occurring. But, we recognise that it is convenient from an explanatory

perspective to separate words and pseudowords.

The overall motivating hypothesis is that pseudowords are processed using the same

architecture as real words. This hypothesis breaks down into specific sub-hypotheses
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related to the lexical characteristics discussed previously. For phonotactic probability,

we expect that more phonotactically probable pseudowords will take longer to reject

because they resemble common phonotactic tendencies in real words. For phonolog-

ical neighbourhood density, we expect that pseudowords with more neighbours will

take longer to reject because there are more competitors to narrow down from. For

uniqueness point, we expect that pseudowords with later uniqueness points will take

longer to respond to because more of the word will need to be heard before the re-

jection can be made. Finally, because some of the pseudowords being modelled are

morphologically complex, we believe that pseudowords with more morphological com-

plexity will take longer for listeners to reject. We use response latency in an auditory

lexical decision task as a measure of processing time, with the linking hypothesis that

longer response latencies relate to longer processing times due to a greater number of

cognitive operations occurring.

The remainder of the paper is structured as follows. In the first of two analyses,

more information about the data set being used is discussed. Then the modelling pro-

cedure for fitting a mixed-effects regression to the data is given. The first analysis

then focuses on modelling the response time data, and the results are presented and

discussed. However, standard analyses of response time data use linguistic character-

istics calculated using the entire word or pseudoword. In effect, such analyses are only

modelling endpoint characteristics of the stimuli, making the assumption that these

endpoint characteristics are relevant for the entire process of recognising a word or

pseudoword. In turn, this assumption leaves wide open the question of how the as-

pects of recognition that these linguistic characteristics represent evolve over time,

such as the number of competitors that might be in competition only a few phones

into the stimulus. This question is important to consider, especially because of the

prominence of the activation and competition metaphor in spoken word recognition

research.

Activation and competition are usually thought of as a dynamic process taking

place over the entire time course and not all at once after the offset of a (pseudo)word.

Indeed, there is a long history of evidence from gating studies (Grosjean, 1980) and

visual world paradigm studies (Allopenna et al., 1998; Teruya and Kapatsinski, 2019)
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that this process is dynamic and happens over time. As such, we believe it is crucial

to understand how linguistic characteristics of a phonetic signal affect the dynamics

of activation and competition over time—not just at stimulus offset—if language re-

searchers are to understand how spoken word recognition works at all. That is, these

linguistic characteristics can naturally be treated as time-series or sequential data, and

we treat them as such here.

The second analysis, therefore, focuses on the time course of the predictors used in

the first model by only calculating phonotactic probability, phonological neighbour-

hood density, and morphological complexity using the portion of the pseudoword that

occurs before its uniqueness point. In this way, the statistical model captures an ear-

lier snapshot of the recognition process than when the characteristics are calculated at

the stimulus offset. If the effects trend the same between the first and second models,

then this is evidence that pseudoword recognition uses the same mechanisms as real

word recognition, as suggested by Luce (1986), Luce and Pisoni (1998), and Norris

et al. (2000), especially since the same mechanisms are obligatorily in use before the

uniqueness point. Following the fitting of the model, the results are presented and

discussed.

Subsequently, a general discussion of both analyses is presented with the sort of

phenomena that spoken word recognition models would need to account for to com-

pletely handle pseudoword recognition. Current models include: original cohort models

(Marslen-Wilson and Tyler, 1980; Marslen-Wilson and Welsh, 1978), the Neighbor-

hood Activation Model (Luce, 1986; Luce and Pisoni, 1998), TRACE (McClelland

and Elman, 1986) and TISK You and Magnuson (2018), naive and linear discrimina-

tive learning Arnold et al. (2017); Baayen et al. (2019, 2011); Chuang et al. (2019,

2020), Shortlist B (Norris and McQueen, 2008), MERGE (Norris et al., 2000), and the

cohort-like DIANA (Nenadić et al., 2018; ten Bosch et al., 2013, 2015a,b). Observa-

tions are also made about the nature of the auditory lexical decision task. The paper

concludes by situating the results of the pseudoword analyses in the greater context

of spoken word recognition.

Some of the main contributions of the present paper are methodological in nature.

Methods by which to treat linguistic characteristics more like time-series are addressed
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and discussed in Analysis 2. There is then further discussion of how the different

linguistic characteristics correlate with each other (both pre-uniqueness point and at

the endpoint of items). In addition, the relationship between some of these variables

and the concepts they are supposed to represent is assessed in light of how the effect

directions and significance levels change depending on which portion of the items is

used for calculation.

2. Analysis 1

2.1. Data

For this analysis, participant responses from the aforementioned MALD data set were

analysed. The data from this mega-study comprises many responses to an auditory lex-

ical decision task. There are 232 unique monolingual native Canadian English speakers

present in the MALD data set. Together, they responded to 26,800 real English words

and 9,592 phonotactically legal pseudowords. There were a total of 227,179 responses

in the data set, and there was a mean of 11.83 responses for each pseudoword, with a

standard deviation of 1.18 responses.

The real word stimuli were selected from a variety of sources, including words from

the Buckeye Corpus of Conversational Speech (Pitt et al., 2007), the CELEX database

(Baayen et al., 1995), and the word list from the English Lexicon Project (Balota et al.,

2007). The pseudowords were then created using the Wuggy (Keuleers and Brysbaert,

2010) program modified to work with phonological representations of words instead

of orthographic representations. The parameters were set to create one pseudoword

per word. Wuggy replaced one third of the sub-syllabic segments in the input word to

create a pseudoword. Wuggy also maintained the length (in syllables and segments) of

the input item. The stimulus items were recorded by a 28-year-old male native speaker

of Western Canadian English who was trained in phonetics. The speaker was instructed

to produce the words and pseudowords as naturally as possible when recording. The

stimuli were then presented to participants from the University of Alberta Department

of Linguistics subject pool who participated for course credit. A session of participation

consisted of 400 real words and 400 pseudowords, and the order of presentation of the
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stimuli in an experiment was randomised at the start of each run of the experiment.

Each participant could participate in up to three sessions on separate days. More

information on the data set and its creation, including a comparison of some lexical

characteristics between real words and pseudowords, can be found in Tucker et al.

(2019).

Using this data set allows for larger-scale analyses to be done with large sample

sizes. In addition, it lets a wider variety of words and pseudowords be analysed than

the monosyllabic or disyllabic items in previous studies. Overall, the stimuli present

a better match for the speech that listeners are exposed to in everyday life than the

single syllable stimuli often used in this type of experiment.

The data were subset so as to remove implausible responses or responses for which

the variables of interest could not be calculated. Only correct responses were analysed

so as to remove any responses where the listener judged the pseudoword to be a real

word, potentially not using the same processing mechanisms as for other pseudowords.

Initially, there were 96,049 correct responses to pseudowords in the data set. Some

responses were dropped because they had transcription errors that resulted in them

not being able to be parsed consistently by the guesser (n = 7, 814, 8.86%). Initially,

there were 88,235 accurate responses to pseudowords. Items were removed if they

had responses faster than 500 ms (n = 88, 0.09%), a phonotactic probability of 0

(n = 969, 1.01%; these items tended to have errors in the transcriptions rather than

that they were phonotactically illicit), and responses before the offset of the stimulus

(n = 1079, 1.12%). After removing these items, 86,099 (89.64% of the initial number)

responses remained to be analysed.

2.2. Linguistic predictors

The four linguistic predictors discussed above, phonotactic probability, phonological

neighbourhood density, segmental uniqueness point, and morphological complexity

were used in the analysis. The segmental uniqueness point is a positional measure—

the phone position at which the pseudoword no longer matches any real words—as

opposed to a temporal measure—the time at which the pseudoword no longer matches

any real word’s phone sequence. We used the phonological neighbourhood density and
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uniqueness point calculations included and described in the MALD data set in Tucker

et al. (2019). Briefly, the phonological neighbourhood density for a given item was

the number of items in an augmented form of the CMU Pronouncing Dictionary v0.6

(Weide, 2005) that had a Levenshtein distance of 1 from the item. As a note, we

acknowledge that segmental uniqueness point does not account for when phonological

processes like vowel nasalization might distinguish an item earlier than the segmental

uniqueness point. However, we are choosing these variables due to their classical use

in modelling psycholinguistic data, even though there are shortcomings to using them.

Phonotactic probability is not included in the MALD data set. Multiple methods

for calculating phonotactic probability have been described in the literature. Vitevitch

and Luce (2004) defined positional uniphone and diphone measures of phonotactic

probability. Their method has been used in a number of later studies (e.g., Berent

et al., 2007; Chuang et al., 2019, 2020; Gierut et al., 2010). Bailey and Hahn (2001)

defined phonotactic probability as the geometric mean of the transitional probabilities

between the segments of an item. The procedures for both of these methods have

shortcomings, so we instead calculated phonotactic probability as a co-occurrence

probability. This involves the product of the probability of occurrence of the diphones

in the pseudowords. See Appendix A for a detailed discussion of the previous methods

and the procedure we used for calculating phonotactic probability.

Morphological complexity for the pseudowords was operationalised as the number

of possible morphological parses or decompositions the pseudoword could undergo.

This particular measure was chosen over the number of morphemes because counting

morphemes in pseudowords is not well defined, and the chosen measure provides more

detail than a binary simplex/complex coding could. Morphemes were chosen as a unit

of convenience, rather than by theoretical motivation.

To determine the number of morphological parses, a morphological guesser was

developed for English. Because no orthographic representation of the pseudowords

was available (and most English morphological parsers are designed to only work with

English orthography), the guesser was designed to use phonological transcriptions.

Note that primary stress was not indicated in the transcriptions provided in the MALD

data set. As a result, stress could not be accounted for in the morphological analysis
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presented here.

The guesser was built using the Foma finite state transducer package (Hulden, 2009).

A finite state transducer is a formal way of specifying transitions between states. In the

context of examining words, it was used to describe the possible sequences of prefixes,

then roots, and then suffixes for an English word or pseudoword. For the present study,

the finite state transducer was designed to look for all possible combinations of 0 or

more prefixes, 1 root, and 0 or more suffixes, based on English prefixes and suffixes. The

guesser returns all possible morphological parses that the phonological string can be

broken up into, based on the prefixes and suffixes coded into it. These parses are based

on potential underlying forms and not surface forms such that a pseudoword ending

in [-s] would yield parses indicating a plural noun, a 3rd person singular inflection of a

verb, and the possessive form of a noun. We believe this is preferable to only looking

at surface level parses because there is some evidence that morphologically ambiguous

real words take longer to process (Järvikivi et al., 2009; Tsang and Chen, 2013; Xiang

et al., 2011). Additionally, it is impossible to predict whether a listener may gravitate

towards parsing such a pseudoword as a noun or verb, or considering both types of

parse, so analyzing potential underlying parses better reflects the uncertainty of the

listener’s behaviour.

As an example, for the pseudoword [AbôIz], the guesser’s results would include

(among others) [AbôIz] as an infinitive verb; as the non-productive prefix [Ab-] (as

in obstacle and obstruct) and the root [ôIz] and classed as an infinitive verb; and the

noun root [AbôI] with the plural suffix [-z]. Note that the root [AbôI] does not seem

to follow general phonotactic rules for English by ending in [I]. However, the motivat-

ing idea behind these parses is that they are potential parses that a listener might

consider while listening to the pseudoword. In a computational account, the listener

may remove a parse from consideration on the basis that it does not follow phonotactic

constraints, but processing power must still be used to remove it. And in connectionist

accounts that fully-specify all possible connections between units, such forms would

receive some level of activation.

All pseudowords had at least five potential parses (due to there being separate parses

for interpreting the entire pseudoword as a noun or as a verb, for example), and the
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number of potential parses for a pseudoword was taken as an index of its morphological

complexity. Note that this measure of morphological complexity does not account for

pseudo-compounding, e.g., [k>aUnt@ôzuvz], which could be interpreted as starting with

the English word counter. However, the measure as proposed here should have a high

correlation with one that does account for pseudo-compounds. We readily acknowl-

edge that there are shortcomings to operationalizing morphological complexity in this

fashion. It is a noisy predictor, and it includes potential parses that the listener may

not actually consider, such as bases ending in vowels that are phonotactically disal-

lowed in word-final position, such as [AbôI]. However, there is no canonical method by

which to morphologically parse pseudowords. Extant morphological parsers could not

be used because the pseudowords were generated from phonological and not ortho-

graphic strings, and the available parsers expect orthographic strings. This variable

also ignores nuances in complexity like whether an item has a prefix or a suffix, which

may influence results. However, it is not trivial to devise a scheme by which to parse

pseudowords in absence of any sort of sentential or phrasal context and where mor-

pheme boundaries cannot be stated with the same level of certainty that they often

can with real words. And, we do believe that this variable will generally index mor-

phological complexity and that the trend of which items have fewer or more potential

parses will align with which items have less or more complexity generally.

2.3. Results and discussion

A linear mixed-effects regression model was fit to the response time data using the

lme4 (version 1.1-28 Bates et al., 2015) package in the R statistical computing en-

vironment (version 4.1.2 R Core Team, 2021). The model fitting process followed a

stepwise backwards-fitting procedure for the random effect structure and a stepwise

forward-fitting procedure for the fixed effect structure. The log-likelihood test from the

anova function in lme4 was used to compare models. For modelling, reaction times

were measured from the offset of the stimulus. In part, this decision served to factor

out some of the spurious correlation between phonotactic probability from response

time because longer items would have longer response times when measured from stim-

ulus onset, and longer items have lower phonotactic probability. In a model that is
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already struggling with multicollinearity, we chose to measure reaction time from stim-

ulus offset. Choosing instead to covary the effect of length would have worsened the

multicollinearity problem since length is substantially correlated with some linguistic

predictors (e.g., neighbourhood density Kapatsinski, 2005).. This relationship between

item length and log phonotactic probability is a result of using a product when cal-

culating phonotactic probability. Reaction times were logged because the residuals in

the model were not normally distributed when reaction time was in linear space.

In addition, we employed a version of the moving average previous response

latency—as described by ten Bosch et al. (2018)—as a control predictor. Following

Nenadić and Tucker (2020), we set the α parameter to 0.1 globally. The α parameter

dictates how long previous trials will continue to significantly influence the moving

average. At a value of 0.1, roughly 10 previous trials will significantly influence the

moving average (consult ten Bosch et al., 2018).

Each predictor was centred and scaled when possible to help the model converge

and put their effects on similar scales. Phonotactic probability was logged because the

relationship between phonotactic probability and the response times was more linear

in log space (r = 0.26) than linear space (r = 0.01). The final model had a by-subject

random intercept with random slopes for trial number and moving average response

latency, in addition to a by-item random intercept with a random slope for moving

average response latency. Other random effect structures were attempted, but there

were not enough observations in the data set to avoid a singular fit.

Control predictors such as age and sex were in the initial fixed effect structure,

though no significant effects were found, and as a result, they were removed during

the fitting process. We applied the model criticism procedure from Baayen and Milin

(2010). We found that the residuals suggested the initial model was not predicting

lower values of response time very well. As such, observations whose associated resid-

uals in the model are at least 2.5 standard deviations away from the mean residual

value were dropped, and the model was refit on the subset data. The subsequent model

was noticeably less stressed and predicted lower values of response time better. A total

of 1,870 or 2.17% of observations were dropped. The results of the final model after

applying model criticism are presented in Table 1. Note that this model is considered
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Table 1. Table of coefficients for fitted model. All predictors were centred and scaled before fitting the model.

Term Estimate Std. Error t value

Intercept 6.022 0.015 409.029
Log phonotactic prob. 0.029 0.006 5.102
Neighbourhood density 0.074 0.014 5.233
Uniqueness point 0.036 0.003 13.523
Log moving average response latency 0.189 0.007 26.234

Trial number -0.068 0.004 -16.343
Item duration -0.193 0.004 -47.075
Number of morphological parses 0.017 0.003 6.529
Log phonotactic prob.*Neighbourhood density -0.034 0.008 -4.051

more conservative.

The effects of each of the tested linguistic characteristics are as expected. An effect

plot of uniqueness point is provided in Figure 1 to help situate the effect on the reaction

times. On the whole, though, the more word-like a pseudoword is—as exemplified

by it having higher values of the various linguistic variables of interest—the longer

it takes the participants to reject the pseudoword. For the effects of phonological

neighbourhood density and phonological uniqueness point, these effects mirror what

has been observed for real words (Luce, 1986; Luce and Pisoni, 1998; Marslen-Wilson

and Zwitserlood, 1989), where responses are slower for higher neighbourhood density

and later uniqueness point. Similarly, pseudowords exhibiting greater morphological

complexity took more time to process.

We believe that the effect of the number of potential morphological parses arises

from consistent contact between the (pseudo)wordform being recognised and semantic

content. Indeed, Revill et al. (2008) found that there is constant activation cascading

from form to meaning during audition for real words, which must also be happening

for pseudowords since listeners do not know that they are listening to a pseudoword

until they have heard at least a portion of the pseudoword. The recognition process

would involve any possible meaningful subcomponent of the pseudoword being paired

with its corresponding semantic content throughout the listening process. Under this

account, every time that [s] or [z] is heard in a position where it could be the phonetic
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Figure 1. Effect plot for segmental uniqueness point on reaction time.

realisation of a plural marker at that point in time, the semantic content related to

the English plural marker is activated. However, the activation would die off quickly

because it is unlikely (to the extent of being ungrammatical) to have the plural marker

-s occur in the middle of a word, which the listener could detect when the phonetic

signal continues immediately thereafter. This is not to say that the semantic activation

is substantial enough for the listener to completely experience the semantic content

associated with the acoustic patterns being heard (and we could not make such a claim

with our data), but rather that some degree of semantic activation occurs and impacts

processing. Note, however, that the listener’s speech processing systems may also need

to contend with the possibility of a word boundary within the pseudoword, e.g., that

[s] or [z] might mark a word boundary, and this additional processing may also slow

the listener’s responses.

The effect of phonotactic probability requires special attention to its interpreta-

tion. It was log-transformed, so the effect that was modelled was its base-e order of
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magnitude and not its specific value. As such, the model shows evidence that when

participants reject a pseudoword as not a real word, participants are sensitive to gross

differences in phonotactic probability. It is possible that participants are also sensitive

to more fine differences in phonotactic probability, but we do not have the appropriate

evidence in our models to make such a claim.

Of all the possible two-way interactions between the tested linguistic characteristics,

only the interaction between log phonotactic probability and neighbourhood density

was significant. This effect is visualised in Figure 2. The effect can be bifurcated based

on the number of phonological neighbours. 66.06% of pseudowords in the data set

have no phonological neighbours. So, for those pseudowords, log phonotactic proba-

bility cannot vary in terms of phonological neighbourhood density. The interaction

is only relevant, then, for pseudowords with phonological neighbours. It is possible

that this effect is merely a statistical artefact of the presence of so many items with no

phonological neighbours, which can be seen by the amount of white in Figure 2. This is

not unexpected, though; data sets with many 0 values for phonological neighbourhood

density are attested, with Kapatsinski (2005) reporting that 58% of the real words in

the English lexicon they used had no phonological neighbours either. Note also that

since phonotactic probability is strongly related to item length, this interaction could

also be interpreted as one between neighbourhood density and item length.

Broadly speaking, the results match the trends seen for responses to real words,

which supports our hypothesis that it is the same processes used for pseudowords as

for real words. In general, the process of spoken word recognition can be thought of as

convergence from the acoustic signal onto a word, as Marslen-Wilson and Tyler (1980)

suggested. Should the acoustic signal diverge from all items in the lexicon, pseudoword

recognition is the outcome. Specifically, we believe that it may be the process where a

word form is recognised, but little to no semantic information is retrieved in relation

to it, allowing listeners to make a pseudoword judgement. Word form recognition here

is intended to refer to a listener having recognised that they have heard a string of

speech segments that they have no semantic pairing for, that is, a sequence of speech

for which insubstantial semantic activation occurred.

The first moment at which the acoustic signal can completely diverge from every
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Figure 2. Contour plot of interaction between phonotactic probability and phonological neighbourhood den-
sity. Predictions for which there were no nearby observations in the data are not plotted (i.e., they are white

in the plot). Blue values indicate shorter response times, whereas orange values indicate longer response times.

All predictors not visualised herein were held at their mean of 0 (by centring and scaling) for numerical predic-
tors and at their reference level for factor predictors. Note that the phonological neighbourhood density and

phonotactic probability values presented in the figure are centred and scaled.

entry in the lexicon is the uniqueness point. Quite simply, a pseudoword cannot be

detected until it is determined to not match any item in the lexicon. After the unique-

ness point, the signal only contains negative evidence of any item in the lexicon. And

yet, as noted in the data cleanup section, there were few responses recorded before

stimulus offset, mirroring Ernestus and Cutler (2015). Though, Marslen-Wilson and

Zwitserlood (1989) observed that the nature of auditory lexical decision requires par-

ticipants to wait until the end of the stimulus to respond because a word could, at any

point, have a phone shifted to make it a nonword or pseudoword, so the listener must

wait until the end. Nevertheless, this observation does not apply to the pseudowords

being analysed in the present study because the uniqueness point gives a definitive

answer before the stimulus offset as to whether the item is a real word or a pseu-

doword. Ultimately, the effect of uniqueness point on pseudoword recognition raises
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the question of the time course of when the studied linguistic characteristics start to

truly affect processing time and whether certain kinds of information factor in sooner

or later in the process.

Indeed, pseudoword recognition is not an instantaneous process. As such, it would

be beneficial to know if the aspects of recognition these predictors capture have an

influence across the duration of the stimulus or only after the offset. For example,

can the effects of phonological neighbourhood density be seen before the end of the

pseudoword? Before the uniqueness point? And, what about phonotactic probability?

Are its effects notable before the uniqueness point? From the present analysis, it’s not

ascertainable. In the next analysis, we will address some of the temporal effects.

3. Analysis 2

The activation and competition metaphor, at its core, describes a dynamic process

that unfolds over time. Various possible targets in the lexicon are vying to be recog-

nised, and activation is continually given to targets based on how well they match the

phonetic signal. We believe that the field as a whole recognises this and believes that

the recognition process is dynamic. Yet, this image of activity is at odds with the way

that the characteristics of a phonetic signal are calculated and analysed. Linguistic

characteristics of a phonetic signal are generally calculated at the endpoint of the sig-

nal, leaving the temporal dynamics of activation, competition, and recognition to be

extrapolated based on just the information contained at that one time point. In effect,

the dynamics of the recognition process are estimated based only on the information a

listener has at the end of hearing a word or pseudoword. For example, consider phono-

logical neighbourhood density as it is classically calculated. It is based on whole word

forms, which a listener would only have access to at the end of hearing a stimulus.

But, it is plausible that competition between candidates is occurring throughout the

entirety of the signal. Our goal in this analysis is to re-cast the linguistic characteristics

of the phonetic signal as time-dependent.

As such, we consider each linguistic characteristic to be a time-series in this analysis,

similar to how a waveform in a recording is a time-series of amplitude measurements.
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To illustrate this point, consider phonological neighbourhood density as a way of count-

ing the number of plausible competitors to a signal. The number of competitors will

change over time, with activation rising and falling across large numbers of words.

So, phonological neighbourhood density can be calculated incrementally as each new

phone is heard to provide a coarse temporal representation of how many words are in

competition at discrete time points in the signal. Each time point represents a new

snapshot of the information that a listener has access to at that point in time. As

this approach seemed to be not well attested in the literature, we did not examine the

entire time course of each of the linguistic characteristics. Rather, we chose a simpler

starting place and focused on analysing how the state of the listener’s recognition sys-

tem at the moment before the uniqueness point affects the recognition and decision

process. Focusing on the characteristics of certain portions of the phonetic signal has

been done before. However, Vitevitch (2002) and Vitevitch et al. (2004) examined

what they term “onset density”, or the proportion of phonological neighbours of a

word that share the onset of the word. Yet, the calculation of the onset density still

involves calculating phonological neighbours based on the offset or end state of items

in the lexicon. While a listener may have access to coarticulatory information (e.g.,

Öhman, 1966; Whalen, 1984) over several segments, a listener would generally not

have access to the end of a multisyllabic word or pseudoword they are hearing when

they hear the beginning of the word, so the state of their recognition process would

not necessarily reflect this information. In fact, as an anonymous reviewer pointed out,

this may be part of the reason that item length is an important predictor in lexical

decision since it can take longer to encounter cues that an item is a pseudoword for

longer items.

Calculating a variable at various points in time and using them as predictors in this

way is not unheard of in developmental studies in language acquisition (Goodman and

Bates, 1997). Casting phenomena as time series data in this way is not unheard of in

other fields either, such as in health sciences. For example, consider that an individ-

ual’s height, body weight, and blood pressure change over time. Earlier measurements

of these variables can be used to predict future information for an individual. For

example, Cook et al. (1997) used childhood blood pressure, childhood height, and
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childhood weight to predict young adult blood pressure. In addition, Stovitz et al.

(2008) used childhood height, childhood body mass index, and interactions thereof

to predict adult body mass index. The same logic of using variables calculated at

previous time points to predict future behaviour undergirded the present analysis of

using the linguistic characteristics of the signal just before the uniqueness point. Our

decision to use the uniqueness point as the cutoff was predicated on the thought that

the uniqueness point is the first moment when the pseudoword can be identified and

decided upon. This makes the uniqueness point a meaningful time point at which

to recalculate the linguistic characteristics of the signal. The re-calculated linguistic

characteristics thus represent a snapshot of the information the listener would have

just before the uniqueness point is reached.

Survival analysis, or other related methods, could also be used to analyse the time-

course effect of the predictors as well. However, survival analysis uses static versions

of the predictors in modelling the dynamics of their effect on the response variable.

We are interested in how the dynamic nature of the linguistic predictors could affect

the participants’ response latency. This dynamic nature is of particular interest be-

cause participants would not have access to much of the information that predictors

like neighbourhood density represent until stimulus offset. It is thus unclear for the

moment how the linguistic predictors would need to be calculated for survival analysis

to effectively analyse the time-course of their effects on response latencies.

Since phonological neighbourhood density, log phonotactic probability, and the num-

ber of morphological parses were significant predictors when looking at the entirety of

the stimuli, they should be predictive before the uniqueness point as well. However,

it would certainly be possible to calculate these predictors at other points during the

course of hearing the pseudoword as well, such as after the first phone. Note that, of all

the pseudowords present in the MALD item data set (n = 9592), 16.59% (n = 1591)

have their uniqueness point after the last phone, meaning that there are real words

that begin with the same phone string but that the phone string itself is not a word.

Some examples include the pseudoword [æf], which includes the same onset as after,

and the pseudoword [twi], which includes the same onset as tweak. This is, of course,

natural for real words too, since cat [kæt] contains the same onset as cats [kæts] and

25



catastrophic [kæt@stôAfIk].

To calculate the phonological neighbourhood density for these segments of pseu-

dowords, the Levenshtein distance was calculated between the non-unique portions

of each pseudoword (up to but not including the phone indicated by the positional

uniqueness point in the data set) and each entry in the augmented CMU Pronounc-

ing Dictionary. The dictionary entries were truncated to be the same length as the

non-unique portion of the pseudoword if dictionary entries were longer than the non-

unique portion of the pseudoword. The number of comparisons that had a Levenshtein

distance of 1 was taken to be the pseudoword’s phonological neighbourhood density be-

fore the uniqueness point. The phonological neighbourhood density values were overall

higher when calculated on these sub-portions of the items (M = 108.51, SD = 384.89)

in comparison to values from the previous analysis (M = 5.12, SD = 13.69).

Phonotactic probability was calculated by only considering the probabilities of the

diphones of the non-unique portion of each pseudoword, with no offset token. These

values were also higher when calculated in this fashion (M = 4.0× 10−9, SD = 9.3×

10−8) when compared to the original formulation form Analysis 1 (M = 7.5× 10−11,

SD = 7.4× 10−9).

The number of potential morphological parses for the non-unique portion of a pseu-

doword was calculated similarly to phonotactic probability. The non-unique portion

of each pseudoword was run through the finite state transducer from before. Then,

the number of guesses made for the structure of the pseudoword was taken as the

number of potential parses. The average number of parses for the non-unique portion

was slightly smaller (M = 6.82, SD = 4.05) compared to the number of parses for the

entirety of each pseudoword (M = 9.348, SD = 8.29). This is to be expected because

there are fewer possible phone combinations for shorter strings, which would deflate

the number of parses that could be performed. That is, the average number of parses

is related to the number of possible substrings of a string, and longer strings always

have a greater number of possible substrings than a shorter string.

For a control variable similar to item duration, the temporal uniqueness point was

calculated for each pseudoword as an indication of how much time had elapsed by the

time the positional uniqueness point occurred. Finally, positional uniqueness point
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was not used in the modelling process. Even though uniqueness point has a strong

relationship to response latency, it is incompatible with this type of analysis because

it is information that the listener, by definition, will not have access to.

As before, all applicable variables were centred and scaled. Observations where

the response time was before the offset or 500 ms were dropped, leaving 87,033 re-

sponses (90.61% of the original correct responses) to analyse. No responses needed

to be dropped for the reason of having a phonotactic probability of 0 (which cannot

be meaningfully logged). Phonological uniqueness point was not present in the model

because it is information the listener would not have at the time point being analysed.

Distribution plots comparing these pre-uniqueness point predictors to their full-length

counterparts can be found in the supplementary materials. Log neighbourhood density

plots are also provided because the linear space version of the phonological neighbour-

hood density plots are difficult to interpret due to outliers.

3.1. Results

The fitting process was the same as for the previous analysis. The resulting model had

log phonotactic probability, neighbourhood density, number of morphological parses,

temporal uniqueness point, log moving average response latency, and trial number

as fixed-effects. All two-way interactions between the phonological uniqueness point,

log phonotactic probability, and the number of potential morphological parses were

checked. Those interactions that did not contribute to the model fit during the fixed-

effect fitting procedure were dropped, leaving only the interaction for log phonotactic

probability by number of morphological parses. The model also had a by-subject ran-

dom intercept with a random slope for moving average response latency and a by-item

random intercept with a random slope for moving average response latency. We at-

tempted to fit random slopes for trial number, but the rePCA function from the lme4

package suggested that the random slope was not adding much explanatory power, so

we opted for the more conservative model that did not include the random slopes for

trial number. This model was subjected to model criticism as in analysis 1. The original

model was also not predicting lower values of reaction time well, as indicated by the

residuals; the model resulting from the model criticism procedure predicted the lower
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values far better. The results of the more conservative model from the model criticism

procedure on the final model are presented in Table 2. Note that the reported interac-

tion is insignificant. It was kept in the model because it was significant before adding

the random slopes for the moving average response latency, but it was insignificant

afterwards. Notably, the effect of neighbourhood density was not significant either.

Table 2. Table of coefficients for the model fitted with the pre-uniqueness point data. All predictors were

centred and scaled before fitting the model.

Term Estimate Std. Error t value

Intercept 6.027 0.013 451.360
Log phonotactic prob. 0.018 0.004 4.436
Trial number -0.055 0.002 -29.875
Neighbourhood density 0.012 0.009 1.254
Log moving average response latency 0.195 0.006 31.087

Temporal uniqueness point 0.054 0.004 14.955
N. morph. parses -0.016 0.003 -4.773
Log phonotactic prob.*N. morph parses -0.008 0.004 -1.948

We subsequently performed a correlation analysis to verify that the regression us-

ing the pre-uniqueness point linguistic variables was representing information that

was different from the previous model with linguistic variables calculated for the full

item. We further subset the data set used for the current analysis so that no items

with a full-length phonotactic probability of 0 were in the data set, thereby dropping

an additional 934 data points (1.07% of the data used in the regression models). A

corrgram visualising the correlations between the variables, which Tomaschek et al.

(2018) suggested as a diagnostic for multicollinearity, is presented in Figure 3.

The correlations between the full-length variables and their pre-uniqueness point

counterparts were negligible, with the exception of the number of morphological parses.

This is to be expected, however, based on the method in which the number of mor-

phological parses was calculated. Specifically, the number of possible parses by the end

of the word must be greater than or equal to the number of possible parses by the

uniqueness point. And, because there will very likely be more parses when the parser

analyses potential suffixes, it is reasonable and unsurprising that a high number of

morphological parses before the uniqueness point is predictive of a high(er) number
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Figure 3. Corrgram displaying the correlations between the linguistic variables used in analyses 1 and 2.

The color of the number in each cell is an indication of the magnitude of the correlation. The more red, the

greater the magnitude of the correlation, and the more blue, the smaller the magnitude of the correlation. Each
column heading also serves as a row heading for all values to the left. ”Lg pre ph pr” is the log pre-uniqueness

point phonotactic probability, ”Pre up ND” is the pre-uniqueness point neighbourhood density, ”Temp UP”

is the temporal uniqueness point, ”Pre m parse” is the number of pre-uniqueness point morphological parses,
”Lg ph pr” is the log phonotactic probability of the full item, ”ND” is the neighbhourhood density of the full

item, ”UP” is the uniqueness point of the item, ”M parse” is the number of morphological parses for the full
item, and ”N phones” is the number of phones in the full item.

of parses for the full item, and vice-versa. To verify that this switch in direction was

not due to removing uniqueness point from the model as a control for item length, we

fitted an additional model that also had the positional uniqueness point variable in it,

applying model criticism to it as before. Neither the trend direction nor the level of

significance for the number of morphological parses changed. The table of coefficients

for this additional model can be seen in Table S1 in the supplemental materials. Many

of the other effects changed direction in the model—likely due to problems with mul-

ticollinearity. Since this additional model was fitted strictly to check the effect trend

of the number of morphological parses, it was not interpreted further.

There is a high negative correlation between log pre-uniqueness point phonotactic

probability and full-item uniqueness point. We are confident that this is due to the

manner in which we calculated phonotactic probability, where each successive diphone

would decrease the probability by a similar order of magnitude. As such, cutting the

probability calculation off at the phone before the uniqueness point should make the

actual uniqueness point readily predictable from the log phonotactic probability. In

the grander scheme, we believe this result speaks to a weakness inherent in phonotactic

probability as a predictor since a lot of its effect may be reducible to some form of the

number of phones, diphones, or some other unit in the word.

We performed an additional analysis on the pre-uniqueness point and full-item
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neighbourhood density values. This analysis was to allay any doubt that the low cor-

relation between the pre-uniqueness point neighbourhood density and full-item neigh-

bourhood density values was due merely to the number of full-item neighbourhood

densities that had a value of 0. Consequently, we calculated the correlation between

only those responses to items that had a phonological neighbourhood density value

greater than 0. No pre-uniqueness point neighbourhood density values were less than

1, so the subsetting process only involved the full-item neighbourhood density val-

ues. From the 87,033 responses in the data used in the modelling, 57,644 responses

were dropped (66.23% of the responses used in the regression analysis), leaving 29,389

responses. The resulting correlation coefficient was r = 0.12.

Most of the linguistic characteristics were significant in the model, with the excep-

tion of neighbourhood density. Based on the correlation analysis, it seems that the

effect of log phonotactic probability may simply be due to its correlation with unique-

ness point. Both the insignificance of neighbourhood density and the correlation of log

phonotactic probability with uniqueness point suggest that these characteristics are

not good proxies for the dynamics of competition before the uniqueness point.

Regarding neighbourhood density, there are two possibilities. The first possibility is

that it is a poor proxy for competition. While there is a wealth of literature reporting

its effects when calculated for full-length words and pseudowords, it may not generalise

well to being calculated at other points of the pseudoword. The second possibility is

that the sort of competition effects neighbourhood density represents arise after the

offset of the item. Either of these possibilities suggests that the nature of competition

is more complex than neighbourhood density would suggest. We do not believe this is a

novel conclusion, and, in fact, it seems that some researchers likely already believe this

(Kapatsinski, 2005; Nelson and Wedel, 2017; Vitevitch and Luce, 2016). Yet, continued

usage of just the one-edit definition (Artiunian and Lopukhina, 2020; Chuang et al.,

2020; Diaz et al., 2021) of phonological neighbours fails to accord with prevailing

thoughts on lexical competition.

The effect of log phonotactic probability suggests that the likelihood of the set of

diphones that occur before the uniqueness point in a pseudoword already has a tangible

effect on response latencies. That is, more likely sequences are making the recognition
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process take more time even by the time the uniqueness point is reached. The effect

is overall similar to the effect phonotactic probability had when calculated at the

end of the word in Analysis 1. That being said, because of its high correlation with

uniqueness point, the results of the regression model are unclear. The model cannot

contain both log phonotactic probability and uniqueness point as predictors and still

be interpretable, so the effect of log phonotactic probability cannot be reasonably

interpreted as separate from the effect of uniqueness point. And, because a monotonic

sum is proportional to the number of items being summed—where a sum is equal

to the number of items being summed times the arithmetic mean of the items—it is

actually unclear whether log phonotactic probability and string length are conceptually

different. It is beyond the scope of this study to determine which concept has primacy

over the other, if either does.

The effect of the number of potential morphological parses of a pseudoword has

changed direction in comparison to the first analysis. It suggests that there is a cat-

egorical shift in behaviour at the uniqueness point. Before the uniqueness point, the

number of potential morphological parses makes it take less time to recognise a pseu-

doword. While, after the uniqueness point, it takes more time to recognise a pseu-

doword. For the moment, we do not have enough evidence to disconfirm any hypothe-

ses about this behaviour. It could be that the categorical shift has to do with a change

in behaviour once the recognition system realises it is no longer hearing a real word. It

could be that this manner of quantifying morphological complexity does not generalise

very well across experiments and analyses. Or it could be that real words also exhibit

this behaviour. Evidence is needed on how real words behave to determine whether

the categorical shift could plausibly be due to the recognition system shifting from

recognising a real word to recognising a pseudoword.

Finally, the temporal uniqueness point is an indication of the duration of the pseu-

doword before the uniqueness point. Its effect merely describes how the more time it

takes to get to a pseudoword’s uniqueness point, the longer it takes to respond to.

And, this result is intuitive; the item can’t be identified as a pseudoword until after

the uniqueness point, so having to wait longer for that point means a response will

take longer. Note that this effect is the reverse of the effect of duration in the previous
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model, where longer items were faster to respond to. This discrepancy is expected

because we measured the response time from stimulus offset in both analyses. Longer

item durations allow for more processing time before stimulus offset, meaning that

response latencies should be slower. Whereas, for the aforementioned reason, a later

temporal uniqueness point should indicate longer response times.

Overall, the results of this analysis are inconclusive, at best. Calculated before the

uniqueness point, the effect of phonological neighbourhood density was insignificant,

and the effect of log phonotactic probability could be reduced to the effect of phono-

logical uniqueness point. The effect of the number of potential morphological parses

changed in direction, though, which could indicate a shift in the cognitive processing

techniques at play while the participant is listening to the pseudoword.

Because spoken word recognition is widely thought to be dynamic, there is a strong

reason to believe that there should be a way to treat the number of competitors as a

time series and make predictions about how the number of competitors at a certain

time point affects response latency in lexical decision. However, phonological neigh-

bourhood density was not generalisable to this sort of analysis. For neighbourhood

density, we believe this is because the one-edit definition of a neighbour is not a

good indicator for being neighbours, which Kapatsinski (2005) also argued. Even Luce

(1986) highlights that this method of determining whether items are neighbours is

more of a convenience method and should eventually be replaced. We suspect quan-

tifying competition on the basis of acoustic distance like in Kelley and Tucker (2022)

would yield results which better correspond to actual distance. Per a comment from

an anonymous reviewer, it may also prove fruitful to weight the differences between

segments by using distinctive features, given some evidence that they relate to cohort

sizes (Kotzor et al., 2017; Lahiri, 2018; Lahiri and Reetz, 2010) and that some featural

changes matter more than others (Connine et al., 1991).

4. General discussion

The results from the present study indicate that linguistic characteristics which have

previously been shown to affect the processing of real words also affect the recognition
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of pseudowords. However, some of these linguistic characteristics were not robustly

enough related to actual cognitive processing that they could be generalised to model

the state of lexical competition at an earlier point in the word, even though there must

be a dynamic, time-bound nature to how pseudowords are recognised. These findings

have implications for models of spoken word recognition, as well as how auditory lexical

decision data should be interpreted.

The notion of recognising a pseudoword has historically been nebulously defined.

The closest descriptions of this process comes from the aforementioned neighborhood

activation model (Luce and Pisoni, 1998) and the Merge model (Norris et al., 2000).

In the neighbourhood activation model, a failure to activate a lexical candidate suf-

ficiently results in the identification of a pseudoword. Similarly, in Merge, reaching

a deadline for no lexical entry receiving enough activation will prompt pseudoword

recognition. To reiterate the conceptualisation of spoken word recognition from our

analyses, there are ultimately two extreme outcomes of spoken word recognition: the

signal converges on a lexical item, or the signal diverges from all lexical items. This

description is also similar to the convergence description Marslen-Wilson and Tyler

(1980) gave. Pseudoword recognition is the end result of divergence from all items in

the lexicon. In effect, then, the default behaviour of the recognition system is to recog-

nise real words, and the end result of the signal diverging may require suppressing this

behaviour. And, when the incoming signal is more word-like with, for example, high

phonotactic probability, the suppression would require effort (and thus takes more

time).

It is unclear from our data or previous data, though, what exactly pseudoword

“recognition” is. It may be that the general cognitive system has a distinct state it

can be in when some linguistic input has not matched any entries in the lexicon. Or,

it is possible that the “recognition” state is simply a form of nothingness or inactivity

due to no lexical entry being sufficiently activated. Whatever it is, though, following

recognition, a listener in an auditory lexical decision task must then proceed to their

decision process, a point which we will take up again shortly.

The meanings of the lexical predictors for pseudowords are united under the conver-

gence/divergence idea. Phonological neighbourhood density is, instead of the number
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of competitors, the number of items that the signal shows some level of convergence

toward. The uniqueness point marks the moment when the signal begins to diverge

overall from the items in the lexicon. The number of morphological parses is an oper-

ationalisation of what potential smaller units of meaning there are in the pseudoword,

which is related to how much semantic activation could occur while listening to the

signal. And, phonotactic probability is a reflection of how well the acoustic patterns in

the data match a listener’s expectations based on the phonotactics of their language

and how many items may remain in competition at a given point in time; when the

acoustic patterns don’t match the phonotactics, there should be greater divergence

and fewer potential matches, which facilitates pseudoword recognition.

The idea that items are processed at various levels is not new. As previously men-

tioned, Vitevitch and Luce (1998), for example, posit that words are processed at

both a lower, sublexical level, where phonotactic probability plays a role, and at a

lexical level where phonological neighbourhood density plays a role. However, it is

possible that these different levels of processing are epiphenomena of the processing

system, where longer-term activation patterns—like those for whole words—that yield

semantic activation can be observed as “higher-level” effects, and shorter-term acti-

vation patterns—like those for affixes—that yield little to no semantic activation can

be observed as ”lower-level” effects. While it is possible to argue for the existence of

classical hierarchical processing from this concept—e.g., phonological, morphological,

and syntactic levels of processing—doing so would situate them as nothing more than

metaphorical summaries of acoustic activation patterns.

Naturally, these ideas lead to a need to reconsider the broader picture of spoken

word recognition. Pseudoword recognition has some demonstrably systematic aspects

to it, based on the results from our analyses. And this point makes sense in light

of the fact that humans can learn new words. After all, what is a pseudoword but

a new, decontextualised word that someone hasn’t told you the meaning of? Then,

pseudoword recognition seems to be a necessary—though not sufficient—task for word

learning.

In sum, it is apparent that the recognition of pseudowords uses the same processes

as real words. As such, models of spoken word recognition or participant behaviour
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in auditory lexical decision tasks that do not have some sort of pseudoword recogni-

tion mechanism are necessarily incomplete. This incompleteness parallels neglecting

to implement conditional behaviour in the reverse-engineering of an algorithm based

on inputs and outputs. To be sure, though, the “output” for spoken word recognition

is not well-defined enough to say for sure what kind of modelling or algorithm should

be proposed. Yet, it is obvious based on our results and previous results that cognitive

processing goes on when the mind handles pseudowords, and they must be handled in

a similar way as real words because cognitive proxies like phonological neighbourhood

density and uniqueness point are relevant for real words and pseudowords alike.

Following the algorithm reverse-engineering analogue, we believe there are a number

of aspects of behaviour regarding pseudowords that can be described. Any model of

spoken word recognition that seeks to be complete must account for these aspects.

First and principal among these aspects is that a model of spoken word recognition

must explicitly lay out how pseudowords are handled by the recognition system. Or

else, the system must be general enough that pseudowords are already handled by the

available mechanisms. There is a more open question of whether it is more advisable

to have pseudoword recognition incorporated as a possible outcome of the system or if

pseudoword recognition is better handled with a post hoc decision mechanism, or some

combination thereof. Nevertheless, it is clearly necessary for complete models of spo-

ken word recognition to describe what happens when there is no suitable recognition

candidate for the incoming signal.

Second, a complete model of spoken word recognition must allow the number of

real word competitors to influence the cognitive processing of pseudoword stimuli.

The results of our first analysis make this point very clearly because phonological

neighbourhood density is significant. While the results from our second analysis add

to evidence that it is an inadequate proxy for the number of competitors, phonological

neighbourhood density is at least a noisy index of how much competition is occurring

during the audition process for a particular item. Perhaps the most well-known ex-

ample of a model of spoken word recognition that allows the number of competitors

to influence the recognition results is the Neighborhood Activation Model (Luce and

Pisoni, 1998). However, the DIANA model (ten Bosch et al., 2015a,b) is far more

35



mathematically and computationally explicit about how the number of competitors

influences the recognition and decision process.

Third, a complete model of spoken word recognition must process meaningful chunks

of an item as it is being processed. The necessity of this behaviour is shown by the

effect of the number of potential morphological parses in the first and second analyses.

We do not believe that this specifically means morphemes and affixes, though our

operationalisation of morphological complexity assuredly was built on those notions

out of convenience. The naive discriminative learning (Baayen et al., 2011) and linear

discriminative learning (Baayen et al., 2019) frameworks have modelled morphologi-

cal effects, even without explicitly coding them into the models. Applications of the

techniques to spoken word recognition (e.g., Arnold et al., 2017; Chuang et al., 2020;

Shafaei-Bajestan et al., 2020) should also exemplify this kind of behaviour. However,

because naive discriminative learning and linear discriminative learning are simply the

application of solving a least-squares problem in linear algebra, the effects of morpho-

logical complexity could even be explicitly coded into specific models as one of the

variables in a matrix.

It is difficult to say a priori whether any model already does account for these

phenomena. It is possible that an inspection of the code or math involved in such a

model may reveal its sensitivity to some or all of these phenomena, it would ultimately

be more fruitful to actually use the models in computational simulations, as in Nenadić

and Tucker (2020). There are, however, two difficulties in performing these simulations.

The first is that many models lack easily accessible computational implementations,

such as the neighbourhood activation model—for which the PARSYN implementation

does exist (Luce et al., 2000) but was not released with its associated publication.

Second, few models use acoustic information, so they only relate so much to spoken

word recognition. Notable exceptions are DIANA, some naive/linear discrimination

models, EARSHOT (Magnuson et al., 2020), and Fine-Tracker (Scharenborg, 2010).

Ultimately, we do not believe that any of the models currently available seem

equipped at this moment to handle pseudowords. While pseudowords in and of them-

selves are not necessarily the most ecological kind of data to account for, they are

analogous to a novel real word that has been encountered for the first time. What all

36



the models discussed seem to lack, then, is an in-built mechanism to account for the

acquisition of new vocabulary. Certainly, it is feasible to extend some of them, and

merely recognising pseudowords as we have outlined here may indeed be a good first

step toward building the capacity in the models to handle new items in the lexicon.

Currently, this remains an area of growth for these models, however.

Finally, a note on the auditory lexical decision process as it relates to the idea of the

signal converging or diverging on lexical items. Based on the effect of morphological

complexity in both regression models, the pseudowords could be said to be making

contact with semantic information when possible, as Chuang et al. (2019) and Chuang

et al. (2020) also found. Or rather, it could be said that meaningful units are acti-

vated whenever the acoustic information matches them, whenever possible. There is

a general affinity between this idea and results from Vroomen and de Gelder (1997)

where words embedded within other words effected priming in certain contexts. In this

understanding, the process of spoken word recognition becomes a continuous process,

as opposed to a discrete one. And, this is exactly what the activation and competition

metaphor suggests. When hearing a real word, substantial semantic patterns are acti-

vated over time, corresponding to the times that a listener has heard that real word.

A real word represents then a longer-term acoustic pattern than an affix, for example.

And, indeed, the convergence process has the potential to be modelled using some sort

of acoustic distance over time from the input signal to all the items in the lexicon. The

accumulation of acoustic distance would suggest divergence from an item over time,

while having little acoustic distance accumulating over time would suggest the signal

converging on a lexical item. But, that remains for future work.

Per some insightful comments from L. Boves (personal communication, Sep. 23,

2020), there are two other distinct decision strategies that participants may use during

lexical decision. The first of these is that a participant may judge that the stimulus

is too acoustically distant from any word in their lexicon and reject the item for that

reason. And, acoustic distance has indeed been found to relate to word recognition in

auditory lexical decision, where greater average distance from a word to the lexicon

facilitates responses and vice-versa (Kelley and Tucker, 2022). The second of these is

that there may be some features of the stimulus that clue the listener in that they
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are hearing a pseudoword. Ford et al. (2018), for example, found that shorter phone

durations facilitated word recognition in auditory lexical decision. It seems reasonable

that the inverse may be true as well, that longer phone durations facilitate pseudoword

recognition, which would give the listener some sort of stimulus feature to latch onto

when rendering their decision in the lexical decision task. The decision process is likely

a complex conjoint of these processes and others, and it should not be neglected when

creating models of spoken word recognition.

What is currently unknown is how little semantic information must be contacted,

how much acoustic distance must accumulate, or how prevalent pseudoword-specific

features must be before a pseudoword is judged to have been recognised, let alone

how these aspects should be measured and quantified. That being said, there is reason

to suspect that virtually any disruption at the segmental or higher level can render

the semantic activation insubstantial. Otherwise, changing a single segment in a word

would not have the ability to render it a pseudoword. Future research in spoken word

recognition should work to describe the nature of the convergence/divergence process

of spoken word recognition and where a gradient or discrete threshold may exist for

participants determining whether they have heard a pseudoword or not.

In light of the results of the pre-uniqueness point analysis, future research on this

topic should investigate the variables that are commonly used as predictors in psy-

cholinguistic experiments and whether they are truly distinguishable from each other.

Consider log phonotactic probability, which correlated at a very high level with item

length. If phonotactics is supposed to come to bear on the processing of pseudowords,

perhaps an alternative operationalisation of phonotactics should be found that does

not correlate so highly with item length, such as factorisation into mean diphone

probability across the item and item length. We similarly acknowledge that our oper-

ationalisation of morphological complexity is simplistic and coarse and likely misses

much of the variability in responses expected with a more granular measure of mor-

phological structures. We additionally hope that the MALD pseudoword data is used

as the basis for more sophisticated analyses of the effects of morphology (and other

linguistic phenomena, including wordlikeness) on pseudoword recognition in the future.
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5. Conclusion

The present study aimed to provide a detailed description of pseudoword processing.

The focus was on ascertaining whether or not linguistic characteristics that have been

found to be predictive for word processing are also predictive for pseudoword pro-

cessing. In each case, the linguistic characteristics had significant effects in regression

models of response time in auditory lexical decision tasks. These effects were signifi-

cant whether the predictors were calculated at the uniqueness point of a pseudoword

or at the end of a pseudoword. Such findings indicate that lexical characteristics of

a pseudoword could provide predictive ability even before the pseudoword could be

identified as not belonging to the lexicon, suggesting that the discrimination process is

ongoing throughout the time course of the signal a listener is experiencing. Moreover,

lexical processing seems to continue after the uniqueness point occurs, suggesting that

the uniqueness point is not as important to recognition as cohort-like models of spoken

word recognition make it out to be. From these results, a description of the spoken

word recognition process was offered whereby the recognition occurs when the audio

signal converges on items in the lexicon, while a failure to recognise a word occurs

when the signal diverges from all items in the lexicon.

Many spoken word recognition models proposed over the years generally do not han-

dle pseudowords particularly well. Framing pseudoword recognition as the divergence

of the acoustic signal from items in the lexicon requires that such models account for

the recognition of pseudowords, as it is a natural outcome of the recognition process.

Going forward, pseudowords provide a promising landscape for investigating what hap-

pens when the audio signal does not converge on any items in the listener’s lexicon.

Additionally, pseudowords can be confidently used to investigate the effects of lexical

characteristics in a controlled manner. Finally, pseudowords should be thought of as

more than mere distractors in experiments, since they involve the same processing

mechanisms as real words.
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Appendix A. Phonotactic probability

Vitevitch and Luce (2004) define phonotactic probability positionally, giving options

for both uniphone- and diphone-based measures. The lexical frequency information

comes from Kučera and Francis (1967), while drawing the phonetic transcriptions and

words from an online version of the Merriam-Webster Pocket Dictionary. For the uni-

phone positional measure, and for each particular phone and position pairing possible

in the lexicon, the sum of the logged frequency counts of all the words containing that

pairing was divided by the sum of the logged frequency counts of all words with that

position available for a phone. Formally, this is given in Equation A1:

p(s, i) =

∑
σ∈Si

log10 fσ∑
ω∈Wi

log10 fω
, (A1)

where p(s, i) is the probability of segment s at position i, Si is the set of all words

containing s at position i and Wi is the set of all words containing any segment at

position i (that is, all words that have at least i segments). For a given item, then, its

phonotactic probability is taken as the sum of this calculation for each of its segments,
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accounting for their positions. The function for calculating the phonotactic probability

of a word, pp(w) is given formally in Equation A2:

pp(w) =
∑

(s,i)∈w

p(s, i) , (A2)

where (s, i) is a pair containing a segment s of word w and the position i where s

occurs in w. The diphone version was calculated analogously, only they used diphones

instead of single phones.

Vitevitch and Luce (2004) claim that the use of the log function helps the measure

better represent human sensitivity to log frequency effects. However, some character-

istics of this definition of phonotactic probability are undesirable. Principally, taking

the log transform of count data before performing the division operation, as in Equa-

tion A1, makes it more difficult to interpret the output in a well-defined manner. This

is perhaps easier to see when expressed in an equivalent manner, as in Equation A3,

which is clearly not recognisable as a traditional probability value. It may well be

that the result is a good predictor of participant behaviour, but it can’t reasonably be

conceived of as a probability value to represent phonotactic probability.

p(s, i) = log10


(∏

σ∈Si

fσ

) 1∏
ω∈Wi

fω

 (A3)

There are other methods that can be used to account for the concern that logged

values better reflect human perception. One example is to calculate the probability

based on count data first and then log that probability value. This is what is known

as “log probability”, and it can be easily mapped back to a standard probability value

between 0 and 1. It is also more transparent in terms of what it represents about the

count data.

An additional concern is that words that have a frequency count of 1 will not come
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to affect the probability values for any sequence because log(1) = 0. Vitevitch and Luce

(2004) also do not state how they account for items with a frequency of 0, for which

the log function is undefined. Finally, while 0 is the lower bound for their method of

calculating phonotactic probability for a word, there is no theoretical upper bound.

As such, a word or pseudoword could be assigned a phonotactic probability value

greater than 1, violating the definition of classical probability. Consider counting the

beginning of a word as a phone as a simple example demonstrating this property. For

example, the word cat would be represented as /#kæt/ with the “#” representing the

beginning or onset of a word. All words would have such a beginning symbol, so the

numerator and denominator in the fraction defining phonotactic probability are equal

when considering /#/ in the first position, thus its calculated value of occurring at

the first position is 1. Having even one phone following the /#/ with a non-zero value

will yield an overall value greater than 1. Whether in practice such values are often

observed remains to be seen. But, it is nevertheless difficult to argue that these values

can be interpreted as a proper probability if it is even possible for values greater than

1 to be obtained.

Bailey and Hahn (2001) used a similar approach to Vitevitch and Luce (2004) with-

out the log functions to calculate transitional probabilities for diphones and triphones,

though the source of the frequency counts for this metric does not seem to be men-

tioned in their paper. For the composite word scores, they took the geometric mean of

the conditional probability scores of the segments that make up the word to calculate

the score for the word. By calculating the geometric mean instead of the arithmetic

mean, a true probability value is initially calculated, but it becomes less clear what

the value is once it is raised to the power of 1
n to finish calculating the geometric mean.

Janse and Newman (2013) used a similar method involving a mean, though CELEX

(Baayen et al., 1995) was used for frequency counts. This manner of calculating phono-

tactic probability will converge toward a value for the word or item in question, though

it is unclear what this value would be or represent. Adding subsequent segments would

not necessarily drive the probability of the sequence down, which does not match the

intuition that a word or pseudoword consisting of, say, 500 segments is improbable.

For the purposes of this study, we operationalised phonotactic probability as the
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probability that a particular sequence of diphones would co-occur, based on the relative

frequency counts of each diphone in the language. We made this decision based on the

results from Bailey and Hahn (2001), in that diphones seemed the least complex unit

to achieve the greatest predictive power. They also stated that diphone treatments of

phonotactic probability are the most common. As well, Pierrehumbert (2003) claimed

that triphones are difficult to learn in comparison to diphones, so diphones seem

the best choice for predictive power and closeness to speaker knowledge. The idea of

using a co-occurrence probability, which is calculated with a product like Coleman

and Pierrehumbert (1997) do, is not new. Yet, because previous and popular methods

of calculating and defining phonotactic probability have not done this, we believe it

worth being explicit about this choice.

We used the same augmented CMU Pronouncing Dictionary version 0.6 (Weide,

2005) used by Tucker et al. (2019), as well as COCA in our calculations. We began by

finding the overall frequency-based probability of occurrence for each diphone found

in the CMU Pronouncing dictionary. The frequency of each diphone was calculated

by taking each occurrence of it in the CMU Pronouncing Dictionary, multiplying it

by the frequency of the word in COCA, and adding the resulting product to the tally

of occurrences of the diphone in question. This results in a token frequency instead

of a type frequency. Richtsmeier suggested using type frequencies instead, but they

correlated at a value of approximately 0.99, so we don’t believe there would be much

of a difference. Word onset and word offset were considered phones, such that cat,

for example, would be processed as onset+k, kæ, æt, t+offset. Words that did not

occur in both datasets were dropped. The probability of occurrence of each diphone

was calculated as the diphone’s frequency divided by the total count of all diphones

observed. This process is given formally in Equation A4

p(s) =

∑
σ∈S

fσ

F
, (A4)

where S is the set of all words containing the diphone s, fσ is the frequency of a word

σ containing diphone s, and F is the number of diphones in a word times the word’s
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frequency, summed over all words occurring in both the CMU Pronouncing Dictionary

and COCA. Effectively, F is the total number of diphones observed in the subset of

COCA words that have pronunciations in the CMU Pronouncing Dictionary.

We then took the phonotactic probability of a pseudoword to be the product of the

probabilities of occurrence of each diphone in the pseudoword, which is what Vitevitch

and Luce (2004) and Bailey and Hahn (2001) refer to as the co-occurrence probability.

Formally, our function for calculating the phonotactic probability of a word pp(w) is

given in Equation A5:

pp(w) =
∏
s∈w

p(s) . (A5)

Note that defining phonotactic probability as a product instead of a mean or sum-

mation of pseudo-probabilities has a few important properties. The first among them

is that it concentrates the information revealed about the phonotactic probability of a

sequence at the beginning. While multiplication is often commutative and associative,

there is a natural given order in which to carry out the operations here, that being

the order in which the diphones occur in the pseudoword. And, the rate at which the

probability converges toward 0 will slow down as later and later terms are encountered.

Analogously, the first few segments in a word or pseudoword are likely where the most

discriminative information would be contained. This is due to the fact that the number

of good possible matches for what’s being heard decreases quickly at the start of the

sequence and slowly at the end of the sequence, with the largest decreases happening

upon hearing the first few phones. Second, the probability converges asymptotically

toward 0 for sufficiently long sequences of segments, matching the linguistic intuition

that a sequence of, for example, 500 phones is an improbable occurrence for a word in

a language. The implementation of this method of calculating phonotactic probability

used in this study is available in the Phonetics.jl package (Kelley, 2020) for the

Julia programming language (Bezanson et al., 2017).
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