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Abstract

Our main interest has to do with a conjecture of Nori, based on the weak

Lefschetz theorem for Betti cohomology. We first prove Nori’s conjecture under

the assumption of the existence of a Bloch-Beilinson filtration. In the second

part of my thesis, I re-prove a result of Paranjape on smooth general complete

intersections, that supports Nori’s conjecture.
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Chapter 1

Introduction

We study the relation between the topology of a smooth projective variety and

a general subvariety. One of the measures of topology is a suitable cohomology

theory; specifically Betti = singular cohomology.

Another measure is the group of cycles modulo rational equivalence - the

Chow group. These two are conjecturally related by a series of conjectures of

A. A. Beilinson and S. Bloch (see [6]), and Nori (see [[13]]).

The classical (weak) Lefschetz theorem asserts that if X is a smooth pro-

jective variety with dimension n and Y is a smooth hyperplane section of X

with inclusion map j : Y ↪→ X. Then

j∗ : H i(X,Z) → H i(Y,Z)

is an isomorphism if i < n− 1, and injective for i = n− 1.

There is the hard Lefschetz theorem (HLT):
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Li
X : Hn−i(X,Q) → Hn+i(X,Q),

(LX the operation of intersecting with the hyperplane class) is an isomorphism,

and Hard Lefschetz conjecture (HLC).

The HLT is equivalent to the statement

Ln−i
X : H i(X,Q) → H2n−i(X,Q)

is an isomorphism, for i ≤ n.

Then for all i satisfying 0 ≤ i ≤ n, the hard Lefschetz conjecture states:

The inverse

Λn−i
X : H2n−i(X,Q) → H i(X,Q)

to Ln−i
X is algebraic, namely, induced by an algebraic cycle.

Nori’s conjecture is then:

Conjecture 1.0.1. If X is a smooth projective variety with dimension n and

Y is a smooth hyperplane section of X with inclusion map j : Y ↪→ X. Then

j∗ : CHr(X,Q)
∼−→ CHr(Y,Q)

if 2r < dimY .

We prove Nori’s conjecture under the assumption of the existence of a

Bloch-Beilinson filtration.
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If we prefer not to work with any assumptions, then the following result of

Paranjape can be proved, using different methods:

Theorem 1.0.2. Given integers 1 ≤ d1 ≤ d2 ≤ ... ≤ dr and any nonnega-

tive integer l, let X ⊂ Pn+r be a smooth complete intersection of multi degree

(d1, ..., dr). If n is sufficiently large then

CHl(X)Q � Q

More precisely, Kapil H. Paranjape proves this theorem and estimates the

values of n in his paper [13].

We prove the theorem for a smooth general (in the sense of the Zariski

topology, t ∈ PN(d1)× ...×PN(dr) general if t ∈ Zariski open subset of PN(d1)×
... × PN(dr) characterized by generic properties (eg Xt smooth, etc,...)) com-

plete intersection, using different methods. Our hope is that our proof will

provide effective values of n.
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1.1 Precise Results

In the second chapter we will give the definition of the algebraic cycles and go

over some examples. Then we will give the cycle class map and Hodge conjec-

ture. We will also give the construction of the Abel Jacobi map that is induced

from the kernel of the cycle class map, which will take us to the Mumford’s

famous theorem for 0-cycles on surfaces and Bloch-Beilinson conjecture.

In the third chapter, We will give some cohomological machinery, starting

by talking about spectral sequences and double complexes, then giving some

hypercohomology to end up by defining Deligne cohomology and giving a sim-

ple example.

In the fourth chapter, we will give Lewis filtration and make an approach for it

using the material given in the second chapter. At the end of the chapter, we

will prove Nori’s conjecture based on the conjectural Bloch-Beilinson filtration.

Lastly in the fifth chapter, we start by introducing Fano varieties, then re-

prove the result of Paranjape for a smooth general complete intersection and

providing some examples on finding the minimal value of n.
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Chapter 2

Preliminaries

Let us start with the definition of the complete intersection:

Definition 2.0.1. Let z = (z0, ..., zn+r) and assume given f1, ..., fr homoge-

neous polynomials of degrees (d1, ..., dr) in z such that the corresponding ideal

μ = (f1, ..., fr) is prime and that X = V (μ) ⊂ Pn+r is of dimension n. Then

X is called a complete intersection of type (d1, ..., dr). X is called smooth if at

every point of X, its Jacobian has the full rank r.

Example 2.0.2. Fermat’s Cubic. X = V (z30+z31+z32+z33) ⊂ P3 is a projective

algebraic manifold: It is given by the zeros of an irreducible cubic homogeneous

polynomial and X∩Ui = V (1+x3+y3+z3) for Ui = {[z0, ..., z3]|zi 	= 0} where

variables x, y, z adjusted according charts Ui
∼= C3. Then the Jacobian of the

polynomial has rank 1 at everywhere in X hence X is smooth.

Example 2.0.3. The elliptic quartic curve in P3. Let X = V (z20 − z0z2 −
z1z3, z1z2 − z0z3 − z2z3) ⊂ P3 is a projective algebraic manifold: It is given

by the zeros of an irreducible cubic homogeneous polynomials and for Ui =

{[z0, ..., z3]|zi 	= 0} , X ∩ U0 = V (1 − y − xz, xy − z − yz), X ∩ U1 = V (x2 −
xy−z, y−xz−yz), X ∩U2 = V (x2−x−yz, y−xz−z), X ∩U3 = V (x2−xz−
y, yz − x − z) where variables x, y, z are adjusted according charts Ui

∼= C3.

5



Then the Jacobian of these all have rank 2 and hence it is a smooth complete

intersection.
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2.1 Algebraic cycles

Let k = k be an algebraically closed field and W/k a quasi-projective variety

of dimension d say. Notice that k = k implies W (k) 	= ∅. where W (k) are

the k valued points (Nullstellensatz). Note again that W (k) represents the

codimension d points in W/k.

Definition 2.1.1. A codimension r algebraic cycle Z on W is a formal sum

(i.e. Z-linear combination) of codimension r irreducible subvarieties on W .

Example 2.1.2. A codimension d algebraic cycle Z =
∑m

j=1 nj·pj, where

pj ∈ W , m ≥ 1 and nj ∈ Z.

Definition 2.1.3. zr(W ) = zd−r(W ) is the free abelian group generated by

irreducible subvarieties of codimension r (= d− r) in W .

Example 2.1.4. The free abelian group generated by W (k), is denoted by

zd(W ) = z0(W ), where z0(W ) represents dimension. Any such point in W (k)

is the same thing as an irreducible subvariety of codimension d.

Example 2.1.5. Let W = P2. Put z̃1= V(z0z
2
2 − z31 − z20z1 − z30), z̃2 =

V(z0z
2
2 − z31) then 5z̃1 - 2z̃2 ∈ z1(P2) = z1(P

2).

Let us state the weak Lefschetz theorem now:

Theorem 2.1.6. (Weak Lefschetz) Let Y be a smooth hyperplane section of a

smooth projective variety X with dimension n with inclusion map j : Y ↪→ X.

Then

j∗ : H i(X,Z) → H i(Y,Z)
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is an isomorphism if i < n− 1, and injective for i = n− 1.

Assume 0 ≤ i ≤ n and let LX be the operator of taking cup product with

the hyperplane class on X (relative to a projective embedding of X ) then

Theorem 2.1.7. (Hard Lefschetz theorem) (HLT)

Li
X : Hn−i(X,Q) → Hn+i(X,Q)

is given by A → A ∩H1 ∩H2... ∩Hi where Hj ∼rat HX , where rational equiv-

alence defined in the next section, is an isomorphism.

Proposition 2.1.8. Let X, Y be projective algebraic manifolds of dimensions

n, m respectively, and let ξ ∈ zk(X×Y )Q be an algebraic cycle of codimension

k. Let r = k − n, and � ∈ Z. Then ξ induces ρξ : H
�(X,Z) → H�+2r(Y,Z) a

morphism of Hodge structures of type (r, r).

Definition 2.1.9. Let X, Y be projective algebraic manifolds of dimensions n,

m respectively and p, q be integers ≥ 0 such that p + q is even. A linear map

λ : Hp(X,Q) → Hq(Y,Q) is said to be algebraic if it is induced by algebraic

cycle ξ ∈ z(2n−p+q)/2(X × Y )Q.

Conjecture 2.1.10. (Hard Lefschetz conjecture) (HLC)

Recall the HLT

Ln−i
X : H i(X,Q) → H2n−i(X,Q)
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is an isomorphism. Then for all i satisfying 0 ≤ i ≤ n : The inverse

Λn−i
X : H2n−i(X,Q) → H i(X,Q)

to Ln−i
X is algebraic.

Note that Lefschetz’s theorems do not hold for singular spaces using singu-

lar cohomology, but there is a (co)homology theory where they do hold, namely

intersection (co-)homology invented by R. MacPherson and M. Goresky.
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2.2 Chow Groups

Definition 2.2.1. Let’s take two codimension r cycles Z1 and Z2 on W . We

say that Z1 and Z2 are rationally equivalent if there exists a codimension r

cycle Y in W × P1 such that

Z1 − Z2 = (πW )∗(W × {0} • Y )− (πW )∗(W × {∞} • Y ).

Definition 2.2.2. Let V ∈ zr−1(W ) be irreducible and f ∈ k(V )∗, then

div(f) = (f)0 − (f)∞ (zeros minus poles of f on Z, including multiplicities).

Definition 2.2.3. (Alternate definition of rational equivalence) The codimen-

sion r cycles Z1 and Z2 are rationally equivalent if Z1 − Z2 =
∑N

i=1 divVi
(fi)

where codim(Vi) = r − 1, fi ∈ C(Vi)
∗, i.e. fi is a rational function.

Example 2.2.4. Let D1 and D2 be codimension one cycles on X (also called

divisors) . Then they are rationally equivalent if D1 −D2 = (f), where f is a

rational function on X.

Definition 2.2.5. zrrat(W ) is the subgroup generated by divV (f) where V ∈
zr−1(W ) is irreducible and f ∈ k(V )∗.

Definition 2.2.6. CHr(W ) = zr(W )/zrrat(W ) is the r-th Chow group of W .

Example 2.2.7. CHn−r(Pn) = CHr(P
n) = ZPr.
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Proof. Consider the short exact sequence CHr(P
n−1) → CHr(P

n) → CHr(P
n−

Pn−1).

For r = n we have CHn(P
n) = ZPn.

For r < n we have Pn − Pn−1 = Cn and CHr(C
n) = 0.

Now, CHr(P
n−1) → CHr(P

n) is surjective.

Donig injuction on n, assume that CHr(P
n−1) = ZPr

Claim 2.2.8. ZPr → CHr(P
n) is injective.

Proof. As Pr ⊂ Pn we can always find a complimenatry projective space in Pn

such that Pn−r ∩ Pr = p0.

Now, ZPr → Zp0 , ZP
r is not raionally equivalent to 0 since Pn−r∩Pr = p0.

Hence, ZPr → CHr(P
n) is injective.

And so, ZPr → CHr(P
n) is an isomorphism. Hence, CHr(P

n) = ZPr and

we are done.

That the group CH•(W ) :=
⊕d

r=0 CH
r(W ), has a ring structure under in-

tersection ifW is smooth and quasi-projective, is due to the following theorem.

Theorem 2.2.9. If W is smooth and quasi-projective, then the following holds:

1. Given ξ1 ∈ zr1(W ), ξ2 ∈ zr2(W ), there exists ξ′2 ∈ zr2(W ), ξ′2 ∼rat ξ2

such that ξ1, ξ′2 meet properly, viz., of codimension r1 + r2.
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2. Given the correct intersection property in 1., we have an appropriate

definition of intersection multiplicity inducing the ring structure:

CHr1(W )⊗ CHr2(W )
∩−→ CHr1+r2(W ).

12



2.3 Hodge Theory

Definition 2.3.1. Let A ⊆ R be a subring, most commonly, A = Z, Q.

An A-Hodge structure (HS) V of weight N ∈ Z is given by the following datum:

1. A finitely generated A-module V , and either of the two equivalent state-

ments:

2. VC =
⊕

p+q=N V p,q,satisfying V p,q = V̄ q,p, where − is complex conjuga-

tion induced from conjugation on the second factor C of VC := V ⊗ C.

Equivalently,

2′. A (finite) descending filtration:

VC ⊃ · · · ⊃ F r ⊃ F r+1 ⊃ · · · ⊃ {0}, satisfying VC = F r
⊕

F̄N−r+1, ∀r ∈
Z.

Remark 2.3.2. The equivalence of above conditions 2. and 2′. can be seen as

follows. For the decomposition in condition 2., put

F rVC =
⊕

p+q=N, p≥r

V p,q.

Conversely, given {F r} in condition 2′., put V p,q = F p ∩ F̄ q.

Example 2.3.3. We can multiply Hodge structures using tensor product. If

H1 is a Hodge structure of weight i and H2 is a Hodge structure of weight j

then H1 ⊗H2 is a Hodge structure of weight i+ j.
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Example 2.3.4. (Hodge) Let W/C be smooth, projective. Then H i(W,Z) is

a Z-Hodge structure of weight i.

Example 2.3.5. A(r) := (2πi)rA is an A-Hodge structure of weight −2r and

of pure Hodge type (−r,−r), called the Tate twist.

Example 2.3.6. LetW/C be smooth projective. Then H i(W,Q(r)) := H i(W,Q)⊗
Q(r) is a Q-Hodge structure of weight i− 2r.

Theorem 2.3.7 (Poincaré and Serre duality). Let W/C be a smooth projective

variety of dimension d . The following pairings

H i(W,C)×H2d−i(W,C) → C.

Hp,q(W,C)×Hd−p,d−q(W,C) → C induced by

(w1, w2) �→
∫
W

w1 ∧ w2,

are non-degenerate.

Hence Hr(W ) � H2d−r(W )∨, Hp,q(W ) � Hd−p,d−q(W )∨.

Theorem 2.3.8 (Poincaré duality with twists). Let W/C be smooth with di-

mension d and Y is a subvariety then

1. H i(W,Q(r)) � H2d−i(W,Q(d− r)).

More generally,
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2. H i
Y (W,Q(r)) � H2d−i(Y,Q(d − r)) (Note that 2. ⇒ 1. by setting

Y = W ).

Corollary 2.3.9.

H i(X,C)

F rH i(X,C)
� {F d−r+1H2d−i(X,C)}∨.

Definition 2.3.10. An A-mixed Hodge structure (A-MHS) is given by the

following datum:

• A finitely generated A-module VA,

• A finite descending “Hodge” filtration on VC := VA ⊗ C,

VC ⊃ · · · ⊃ F r ⊃ F r+1 ⊃ · · · ⊃ {0},

• A finite increasing “weight” filtration on VA ⊗Q := VA ⊗Z Q,

{0} ⊂ · · · ⊂ W�−1 ⊂ W� ⊂ · · · ⊂ VA ⊗Q

such that {F r} induces a (pure) HS of weight � on GrW� := W�/W�−1.

Theorem 2.3.11. (Deligne [4]) Let Y be a complex variety. Then H i(Y,Z)

has a canonical and functorial Z-MHS, which agrees with the aforementioned

(pure) Hodge structure in the case where Y is smooth and projective.

Example 2.3.12. Let Ū be a compact Riemann surface, ∅ 	= Σ ⊂ Ū a finite

set of points, and put U := Ū \ Σ. According to Deligne, H1(U,Z(1)) carries

a Z-MHS. The Hodge filtration on H1(U,C) is defined in terms of a filtered

complex of holomorphic differentials on U with logarithmic poles along Σ.
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One can “observe” the MHS via weights as follows. Poincaré duality gives

us H1
Σ(Ū ,Z) � H1(Σ,Z) = 0 since Σ is finite, and the localization sequence in

cohomology below is a sequence of MHS (Deligne, op. cit.).

... → H1
Σ(Ū ,Z(1)) → H1(Ū ,Z(1)) → H1(U,Z(1)) → H2

Σ(Ū ,Z(1)) → H2(Ū ,Z(1)) → 0

Notice that, H2
Σ(Ū ,Z(1)) � H0(Σ,Z(0)) and H2(Ū ,Z(1)) � H0(Ū ,Z(0)).

But H1
Σ(Ū ,Z(1)) = H1(Σ) = 0.

And H2(Ū ,Z(1)) = H0(Ū ,Z(0)) = Z{p} since Ū is path connected implies

that

H0(Σ,Z(0))◦ := ker
(
H2

Σ(Ū ,Z(1)) → H2(Ū ,Z(1))
) � Z(0)|Σ|−1.

So we get

0 → H1(Ū ,Z(1)) → H1(U,Z(1)) → H0(Σ,Z(0))◦ → 0,

where

W0 = H1(U,Z(1)), W−1 = Im
(
H1(Ū ,Z(1)) → H1(U,Z(1))

)
= H1(Ū ,Z(1)

since the map is injective., W−2 = 0.

Then GrW−1H
1(U,Z(1)) � H1(Ū ,Z(1)) has pure weight −1 and GrW0 H1(U,Z(1)) �

Z(0)|Σ|−1 has pure weight 0. As they has pure Hodge structure since Ū and Σ

are both smooth projective.

Definition 2.3.13. Let V be an A-MHS. We put

16



ΓAV := homA−MHS(A(0), V ),

and

JA(V ) = Ext1A−MHS(A(0), V ).

In the case where A = Z or A = Q, we simply put Γ = ΓA and J = JA.

Example 2.3.14. Suppose that V = VZ is a Z (pure) HS of weight 2r. Then

V (r) := V ⊗ Z(r) is of weight 0, and (up to the twist) one can identify ΓV

with VZ ∩ F rVC = VZ ∩ V r,r := ε−1(V (r,r), where ε : VZ → VC .

Example 2.3.15. (see [3], [6]) Suppose that V be an A-MHS. There is the

identification due to J. Carlson

J(V ) � W0VC

F 0W0VC +W0V
,

where in the denominator term, V := VA is identified with its image

VA → VC (viz., quotient out torsion).

For example, if {E} ∈ Ext1MHS(Z(0), V ) corresponds to the short exact

sequence of MHS:

0 → V → E
α−→ Z(0) → 0,

then one can find x ∈ W0E and y ∈ F 0W0EC such that α(x) = α(y) = 1

(see [10]).
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Then x− y ∈ VC descends to a class in W0VC

/{F 0W0VC +W0V },
which defines the map from Ext1MHS(Z(0), V ) to W0VC

/{F 0W0VC +W0V }.

Let us define the cycle class map:

Definition 2.3.16. The cycle class map for a smooth projective X over k̄ ⊆ C

is the Poincaré dual of the fundamental class map,

clr : CH
r(X) → Γ

(
H2r(X,Z(r))

)
,

where

H2d−2r(|ξ|,Q(d− r)) → H2d−2r(X,Q(d− r)) � H2r(X,Q(r))

ξ �→ (2πi)r−d{ξ} �→ (2πi)r[ξ].

This map fails to be surjective in general for r > 1.([8], 67).

Conjecture 2.3.17 (HodgeQ). (HC)

clr : CH
r(X)⊗Q → Γ(H2r(X,Q(r))),

is surjective.

18



2.4 Abel-Jacobi Map

Let us define the Abel-Jacobi map first.

Definition 2.4.1. Abel-Jacobi map

AJX : CHr
hom(X) → J(H2r−1(X,Z(r))),

is defined as follows. Recall that

J(H2r−1(X,Z(r))) � F d−r+1H2d−2r+1(X,C)∨

H2d−2r+1(X,Z(d− r))
,

Prescription for Φr: Let ξ ∈ CHr
hom(X). Then ξ = ∂ζ bounds a 2d − 2r + 1

real dimensional chain ζ in X. Let {w} ∈ F d−r+1H2d−2r+1(X,C).

Define:

Φr(ξ)({w}) = 1

(2πi)d−r

∫
ζ

w (modulo periods).

That Φr is well-defined follows from the fact that F �H i(X,C) depends only

on the complex structure of X, namely

F �H i(X,C) � F �Ei
X,d−closed

d
(
F �Ei−1

X

) ,
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where we recall that Ei
X are the C∞ complex-valued i-forms on X.

Let {w} and {w̃} ∈ (F d−r+1E2d−2r+1)d−closed be given, such that [w] =

[w̃] ∈ F d−r+1H2d−2r+1.

Then w − w̃ ∈ dF d−r+1E2d−2r
X so there exists

η ∈ F d−r+1E2d−2r
X , w − w̃ = dη.

Now
∫
ζ
w − ∫

ζ
w̃ =

∫
ζ
dη =

∫
∂ζ
η =

∫
ξ
η = 0 by the Hodge type,

and we’re done.

Alternate take for Φr: Let ξ ∈ CHr
hom(X).

First observe thatH2r−1
|ξ| (X,Z) � H2d−2r+1(|ξ|,Z) = 0 as dimR |ξ| = 2d−2r.

Secondly there is a fundamental class map ξ �→ {ξ} ∈ H2d−2r(|ξ|,Z(d −
r)) � H2r

|ξ|(X,Z(r)) (Poincaré duality).

Further, since ξ is nulhomologous, we have by duality

[ξ] ∈ H2r
|ξ|(X,Z(r))◦ := ker

(
H2r

|ξ|(X,Z(r)) → H2r(X,Z(r))
)
.

Hence ξ determines a morphism of MHS, Z(0) → H2r
|ξ|(X,Z(r))◦.

From the short exact sequence of MHS
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0 → H2r−1(X,Z(r)) → H2r−1(X\|ξ|,Z(r)) → H2r
|ξ|(X,Z(r))◦ → 0,

we can pullback via this morphism to obtain another short exact sequence

of MHS,

0 → H2r−1(X,Z(r)) → E → Z(0) → 0.

Then Φr(ξ) := {E} ∈ Ext1MHS

(
Z(0), H2r−1(X,Z(r))

)
.

This class {E} is easy to calculate in J(H2r−1(X,Z(r)))), in terms of a

membrane integral.

Note that via duality,

E ⊂ H2r−1(X\|ξ|,Z(r)) � H2d−2r+1(X, |ξ|,Z(d− r)),

and that if ζ is a real 2d − 2r + 1 chain such that ∂ζ = ξ on X, then

{ζ} ∈ H2d−2r+1(X, |ξ|,Z).

One can show that the class x ∈ W0E corresponding to the current

1

(2πi)d−r

∫
ζ

,

maps to 1 ∈ Z(0).
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Now choose y ∈ F 0W0EC also mapping to 1 ∈ Z(0), (see [10]).

By Hodge type alone, the current corresponding to x − y in the Poincaré

dual description of Jr(X) is the same as for x = 1
(2πi)d−r

∫
ζ
,

which is precisely the classical description of the Griffiths Abel-Jacobi map.
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2.5 Mumford’s famous theorem for 0-cycles

on surfaces

Theorem 2.5.1. (See [8] (Ch. 15)) [Mumford’s famous theorem for 0-cycles

on surfaces]

Let X be smooth projective surface over C, with geometric genus := dimC

H2,0
C 	= 0, i.e, there exists a nontrivial holomorphic 2-form on X. Then

ker
(
AJX : CH2

hom(X) → J(H3(X,Z(2)))
)

is enormous.

Note that enormous means that the kernel cannot be represented as an

abelian variety.

Outline of proof of the theorem: Consider the N−th symmetric product

S(N) := XN/{action of the symmetric group on the N − letters}.

Let ξ ∈ S(N)(X) be in the form ξ = p1+...+pN , means ignoring the ordering

of the N− tuple. Where S(N) is the connected component of the Chow variety

of effective 0−cycles of degree N on X, so its known to be projective algebraic.

Now, the singularities of S(N) are concentrated on {p1 + ...+ pN |
not all of the {p1, ..., pN} are distinct}.

Let kN : S(N) → CH0(X) given by A → [A] [and kN,M : S(N) × S(M) →
CH0(X) given by (A,B) → A− B].

Lemma 2.5.2. The fibres of kN are c-closed. [The fibres of kN,M as well]. [

Where c-closed means countable unions of closed subvarieties of SN)].
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Idea of the proof : Let ξ1, ξ2 ∈ S(N)(X). Then ξ1 and ξ2 are rationally

equivalent. and as mentioned before that ξ1 and ξ2 are rationally equivalent if

there exists a map f : P1 → S(N+k)(X)× S(k)(X)

such that f(0) = (A0, B0), f(∞) = (A∞, B∞), ξ1 = A0 − B0, ξ2 = A∞ − B∞),

for some k ≥ 1.

Then rational curves in S(N+k)(X)× S(k)(X) is a Chow variety and repre-

sented by a countable union of projective varieties.

Now, just vary k ∈ N and relate this to S(N)(X) to get the result.

Now, since the c-closed sets have a unique decomposition into irreducibles,

the dimension of a c-closed set make sense.

Thus we can define δN := dimkN(S
(N)(X)) = 2N −min{ dimensions of

fibres of kN}.

Let ω be a nontrivial holomorphic 2-form on X. Thus in local holomor-

phic coordinates z = (z1, z2) on X, ω = h(z)dz1∧dz2, where h(z) holomorphic.

Now, ω(p) : Tp(X) × Tp(X) → C is an alternating map, for p ∈ X, non-

degenerate if ω(p) 	= 0, i.e. , if h(p) 	= 0.

Let prj : X
N → X, 1 ≤ j ≤ N be the j-th projection.

Then
∑N

j=1 pr
∗
j (ω) is a holomorphic 2-form on XN that is invariant under

the action of the symmetric group.

So there is an induced 2-form ζN on S(N)(X), which is meromorphic along

S(N)(X)sing.

Lemma 2.5.3. Let S be a smooth quasi projective variety, and f : S →
S(N)(X) a morphism.
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Then f ∗(ζN) is a holomorphic 2-form on S ( even if f(S) ⊂ S(N)(X)sing);

moreover if f(s)s∈S are rationally equivalent to each other, then f ∗(ζN) = 0.

Now back to the proof of the Theorem. It is enough to show that Pg(X) 	=
0 =⇒ {δN}N∈N is an unbounded sequence.

Let ω be a nonzero holomorphic 2-form on X, Then ζN is nonzero over a

nonempty Zariski open subset UN ⊂ S(N)(X)\S(N)(X)sing.

Suppose that ΣN → UN by f is a nonsingular quasi-projective variety for

which f(t)t∈ΣN
are rationally equivalent to each other.

Then f ∗(ζN) = 0. For p ∈ ΣN , Tp(ΣN) ⊂ Tp(UN) � C2N is an isotropic

subspace for ζN(p).

But the maximal isotropic subspace have dimension = 2N/2 = N .

Now dimΣN ≤ N , so δN ≥ 2N −N = N . Now just let N → ∞ and were

done.
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2.6 Bloch-Beilinson conjecture

Mumford’s theorem implies that CH•(W/C;Q) can be highly complicated.

Further, it was shown by C. Schoen, Griffiths-Green, Lewis, [6] that for any

subfield k ⊂ C of transcendence degree ≥ 1 over Q, that there exists smooth

projective W and an r such that

AJW : CHr(W ) → J
(
H2r−1(W,Z(r))

)
has non-zero kernel. This leads us

to:

Conjecture 2.6.1 (Bloch-Beilinson Conjecture (BBC)). If W/k is smooth

and projective over a number field k then the Abel-Jacobi map

AJW : CHr(W/k;Q) −→ J(H2r−1(W,Q(r))),

is injective.
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Chapter 3

Cohomological machinery

3.1 A primer on spectral sequences

Spectral sequences were invented by Jean Leray.

Let us consider a bounded complex (K•, d) of abelian groups, where for

simplicity K•<0 = 0. [Note that K•>>1 = 0].

K0 d−→ K1 d−→ K2 d−→ · · · , d2 = 0.

Thus we have

Hp(K•) :=
ker d : Kp → Kp+1

dKp−1
.

Next, we will assume that this complex has a descending filtration of sub-

complexes:
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K• = F 0K• ⊃ F 1K• ⊃ F 2K• ⊃ · · · ⊃ FN+1K• = {0},

where again F •≥0 is out of convenience, and being a subcomplex means

that dF νKp ⊂ F νKp+1.

This induces a corresponding associated ν-th graded complex (GrνFK
•, d).

Now put

F νHp(K•) :=
F νKp

d−closed

F ν ∩ (dKp−1)
.

This gives

Hp(K•) = F 0Hp(K•) ⊃ F 1Hp(K•) ⊃ · · · ⊃ F νHp(K•) ⊃ F ν+1Hp(K•) ⊃ · · ·

Definition 3.1.1. A spectral sequence is a sequence {Er, dr}, (r ≥ 0), of bi-

graded groups

Er =
⊕
p,q

Ep,q
r ,

with differentials

dr : E
p,q
r → Ep+r,q−r+1

r , d2r = 0,
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such that H∗(Er) = Er+1.

Proposition 3.1.2. Given a filtered complex (K•, d, F •), then there exists a

spectral sequence {Er} with:

Ep,q
0 =

F pKp+q

F p+1Kp+q
=: GrpFK

p+q

Ep,q
1 = Hp+q(GrpFK

•)

Ep,q
∞ = GrpF

(
Hp+q(K•)

)

We say that the spectral sequence abuts to H•(K•) and write

Er ⇒ Hp+q(K•).

Proof. The Ep,q
0 term is already defined. Let d0 be induced by d:
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Ep,q−1
0

d0−→ Ep,q
0

d0−→ Ep,q+1
0

∣∣∣∣
∣∣∣∣

∣∣∣∣
∣∣∣∣

∣∣∣∣
∣∣∣∣

F pKp+q−1

F p+1Kp+q−1

d−→ F pKp+q

F p+1Kp+q

d−→ F pKp+q+1

F p+1Kp+q+1

Then Ep,q
1 is by definition the cohomology in the middle part, which is

precisely Hp+q(GrpFK
•). Next, let us define

Ep,q
r :=

{
ξ ∈ F pKp+q

∣∣ dξ ∈ F p+rKp+q+1
}

{
d
(
F p−r+1Kp+q−1

)
+ F p+1Kp+q

}⋂
Numerator

,

which is consistent with Ep,q
0 and Ep,q

1 . Obviously, for r >> 1.

Ep,q
r = Ep,q

∞ =

{
ξ ∈ F pKp+q

∣∣ dξ = 0
}

{
d
(
Kp+q−1

)
+ F p+1Kp+q

}⋂
Numerator

=: GrpFH
p+q(K•).
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Therefore it suffices to show that for all r ≥ 0:

Ep,q
r+1 =

ker dr : E
p,q
r → Ep+r,q−r+1

r

dr
(
Ep−r,q+r−1

r

) .

But this follows from the definitions (drop “
⋂

Numerator” for notational

convenience):

Ep−r,q+r−1
r ==

{
ξ∈F p−rKp+q−1

∣∣ dξ∈F pKp+q
}

d
(
F p−2r+1Kp+q−2

)
+F p−r+1Kp+q−1

dr

⏐⏐⏐�
⏐⏐⏐�d

Ep,q
r ==

{
ξ∈F pKp+q

∣∣ dξ∈F p+rKp+q+1
}

d
(
F p−r+1Kp+q−1

)
+F p+1Kp+q

dr

⏐⏐⏐�
⏐⏐⏐�d

Ep+r,q−r+1
r ==

{
ξ∈F p+rKp+q+1

∣∣ dξ∈F p+2rKp+q+2
}

d
(
F p+1Kp+q

)
+F p+r+1Kp+q+1

where

Ep,q
r+1 =

{
ξ ∈ F pKp+q

∣∣ dξ ∈ F p+r+1Kp+q+1
}

d
(
F p−rKp+q−1

)
+ F p+1Kp+q
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3.2 Double complexes and the Grothendieck

spectral sequences

Again, for simplicity of notation, we will assume non-negative indices.

Consider a (bounded) double complex

K•,• =
⊕
p,q≥0

Kp,q, d : Kp,q → Kp+1,q, δ : Kp,q → Kp,q+1,

with

d2 = δ2 = 0, dδ + δd = 0.

We can form the associated single complex

sKn :=
⊕

p+q=n

Kp,q, D = d+ δ,

where we observe that

D2 = d2 + δ2 + dδ + δd = 0.
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The total complex (sK•, D) has two descending filtrations, viz.,

′F νsKn :=
⊕

p+q=n,p≥ν

Kp,q

′′F νsKn :=
⊕

p+q=n,q≥ν

Kp,q.

This automatically leads to two spectral sequences:

′Er ⇒ Hp+q
D (sK•)

′′Er ⇒ Hp+q
D (sK•).

Note that

′Ep,q
1 = Hp+q

D (Grp′F sK
•) = Hq

δ (K
p,•),

′′Ep,q
1 = Hp+q

D (Grp′′F sK
•) = Hq

d(K
•,p).
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Note that

D = d+ δ =

⎧⎨
⎩
d on ′E1

δ on ′′E1

,

hence

d1 = d : Hq
δ (K

p,•) = ′Ep,q
1 → ′Ep+1,q

1 = Hq
δ (K

p+1,•)

d1 = δ : Hq
d(K

•,p) = ′′Ep,q
1 → ′′Ep+1,q

1 = Hq
d(K

•,p+1).

Therefore

′Ep,q
2 = Hp

d

(
Hq

δ (K
•,•)

)
,

′′Ep,q
2 = Hp

δ

(
Hq

d(K
•,•)

)
.
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3.3 Hypercohomology

Let (S•≥0, d) be a (bounded) complex of sheaves on X. One has a Cech double

complex

(
C•(U ,S•), d, δ

)
,

where U is an open cover of X. The k-th hypercohomology is given by the

k-th total cohomology of the associated single complex

(
M• := ⊕i+j=•C i(U ,Sj), D = d± δ

)
,

viz.,

Hk(S•) := lim
→
U

Hk(M•).

Associated to the double complex are two filtered subcomplexes of the as-

sociated single complex, with two associated Grothendieck spectral sequences

abutting to Hk(S•) (where p+ q = k):

′Ep,q
2 := Hp

δ (X,Hq
d(S•))

′′Ep,q
2 := Hp

d(H
q
δ (X,S•)).
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The first spectral sequence shows that quasi-isomorphic complexes yield

the same hypercohomology. The second spectral sequence is generally used

for calculations.

Alternate take. Two complexes of sheavesK•
1, K•

2 are said to be quasi-isomorphic

if there is a morphism h : K•
1 → K•

2 inducing an isomorphism on cohomology

h∗ : H•(K•
1)

∼−→ H•(K•
2).

Take a complex of acyclic sheaves (K•, d) (viz., H i>0(X,Kj) = 0 for all j)

quasi-isomorphic to S•.

Then from the second spectral sequence,

Hi(S•) := H i
(
Γ(K•)

)
,

where in this situation we define Γ(K•) := Γ(X,K•) := H0(X,K•).

For example if L•,• is an [double complex] acyclic resolution of S•, then the

associated single complex K• = ⊕i+j=•Li,j is acyclic and quasi-isomorphic to

S•.

3.4 Deligne cohomology

Let A ⊆ R be a subring and r ≥ 0 an integer. We recall the Tate twist

A(r) = (2πi)r · A, and declare A(r) a pure A-Hodge structure of weight −2r

and of (pure) Hodge type (−r,−r).
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We introduce the Deligne complex AD(r):

A(r) → OX
d−→ ΩX

d−→ · · · d−→ Ωr−1
X .

Definition 3.4.1. Deligne cohomology1 is given by the hypercohomology:

H i
D(X,A(r)) := Hi(AD(r)).

Example 3.4.2. When A = Z, we have a quasi-isomorphism

ZD(1) ≈ O×
X [−1],

hence

H2
D(X,Z(1)) � H1(X,O×

X) =: Pic(X) � CH1(X).

H1
D(X,Z(1)) � H0(X,O×

X) � C× � H0
Zar(X,K1,X) =: CH1(X, 1).

1This definition applies to any complex manifold, not just projective algebraic X. It is
the definition of analytic Deligne cohomology.
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Chapter 4

Lewis Filtration

4.1 Leray Filtration

This is one of the most versatile spectral sequences in the literature. First

some business about a push-forward.

Let f : X → Y be a continuous map of ‘nice’ spaces, and F a sheaf on X.

The push-forward

f∗F (or direct image sheaf) is the sheaf on Y given by

U ⊂ Y open �→ f∗F(U) := F(f−1(U)).

Assume given a flasque resolution of F , viz.,

0 → F → A•.
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Note that f∗A is flasque for any flasque sheaf A on X. Furthermore be-

cause of flasqueness,

Hi(f∗A•) = H i
(
Γ(Y, f∗A•)

)
= H i

(
Γ(X,A•)

) � H i(X,F).

The E2-term of one of the Grothendieck spectral sequences associated to

Hi(f∗A•) is again, via flasqueness:

Ep,q
2 = Hp(X,Hq(f∗A•)) = Hp(X,Rqf∗F) ⇒ Hp+q(X,F).

Keep in mind that Rqf∗F , called the Leray cohomology sheaf, is really the

sheaf associated to the presheaf:

U ⊂ Y open �→ Hq(f−1(U),F).
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4.2 Lewis Filtration

The complexity of Chow groups is measured in terms of a filtration.

Theorem 4.2.1. [9] Let X/C be smooth projective of dimension d. Then for

all r, there is a filtration,

CHr(X;Q) = F 0 ⊃ F 1 ⊃ · · · ⊃ F ν ⊃ F ν+1 ⊃

· · · ⊃ F r ⊃ F r+1 = F r+2 = · · · ,

which satisfies the following

(i) F 1 = CHr
hom(X;Q).

(ii) F 2 ⊂ kerAJX ⊗Q : CHr
hom(X;Q) → J

(
H2r−1(X,Q(r))

)
.

(iii) F ν1CHr1(X;Q) • F ν2CHr2(X;Q) ⊂ F ν1+ν2CHr1+r2(X;Q), where • is the

intersection product.

(iv) F ν is preserved under the action of correspondences between smooth pro-

jective varieties over C.

(v) Let grνF := F ν/F ν+1 and assume that the Künneth components of the diag-

onal class [ΔX ] = ⊕p+q=2d[ΔX(p, q)] ∈ H2d(X×X,Q(d))) are algebraic. Then

ΔX(2d− 2r + �, 2r − �)∗
∣∣
grνFCHr(X;Q)

= δ�,ν · Identity.
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(vi) Let Dr(X) :=
⋂

ν F
ν. If BBC+HC holds then Dr(X) = 0.

4.2.1 Approach via Lewis

Consider Deligne complex AD(r):

A(r) → OX
d−→ ΩX

d−→ · · · d−→ Ωr−1
X .

So we have a short exact sequence

0 → Ω•<r
X [−1] → AD(r) → A(r) → 0,

Ω•<r
X = Ω•

X/Ω
•≥r
X .

And Hi(Ω•
X) = H i(X,C).

We have a fact that H i(F pΩ•
X) = F pH i(X,C).

And H i(Ω•<r
X ) = H i(X,C)/F rH i(X,C).

Now from

0 → Ω•<r
X [−1] → AD(r) → A(r) → 0,

we have
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H2r(Ω•<r
X [−1]) → H2r(AD(r)) → H2r(A(r)) → H2r+1(Ω•<r

X [−1]),

But

H2r+1(Ω•<r
X [−1]) = H2r(Ω•<r

X ) = H2r(X,C)
F rH2r(X,C)

.

So

H2r−1(X,C)

F rH2r−1(X,C) +H2r−1(X,A(r))
→ H2r

D (X,A(r)) → H2r(X,A(r)) → H2r(X,C)

F rH2r(X,C)
.

Putting Q instead of A getting that there is a short exact sequence:

0 → J(H2r−1(X,Q(r))) → H2r
D (X,Q(r)) → Γ(H2r(X,Q(r))) → 0.

Suppose X is a quasi-projective, Beilinson introduces an absolute Hodge

cohomology H2r
H (X ,Q(r)), very similar to Deligne cohomology, and shows that

we have the following short exact sequence:

0 → J(H2r−1(X,Q(r))) → H2r
H (X,Q(r)) → Γ(H2r(X,Q(r))) → 0.
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Consider a Q-spread ρ : X → S, where ρ is smooth and proper.

Let η be the generic point of S, and put K := Q(η).

Write XK := Xη then X = Xη × C = XK × C. From [9] we introduced a

decreasing filtration FνCHr(X ;Q), with the property that GrνFCH
r(X ;Q) ↪→

Eν,2r−ν
∞ (ρ), where Eν,2r−ν

∞ (ρ) is the ν-th graded piece of the Leray filtration on

the lowest weight part H2r
H (X ,Q(r)) of Beilinson’s absolute Hodge cohomology

H2r
H (X ,Q(r)) associated to ρ.

That lowest weight part H2r
H (X ,Q(r)) ⊂ H2r

H (X ,Q(r)) is given by the im-

age H2r
H (X ,Q(r)) → H2r

H (X ,Q(r)), where X is a smooth compactification of

X .

There is a cycle class map CHr(X ;Q) := CHr(X/Q;Q) → H2r
H (X ,Q(r)),

which is conjecturally injective under the Bloch-Beilinson conjecture assump-

tion, and using the fact that there is a short exact sequence

0 → J(H2r−1(X ,Q(r))) → H2r
H (X ,Q(r)) → Γ(H2r(X ,Q(r))) → 0.

To see this, consider the diagram,

0 → CHr
hom(X,Q) → CHr(X,Q) → CHr(X,Q)/CHr

hom(X,Q) → 0

⏐⏐⏐� AJ

⏐⏐⏐�ψr

⏐⏐⏐� clr

0 → J(H2r−1(X ,Q(r))) → H2r
H (X ,Q(r)) → Γ(H2r(X ,Q(r))) → 0
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(Let ξ ∈ CHr(X/Q;Q) goes to 0 ∈ H2r
H (X ,Q(r)) then it will go to 0 ∈

Γ(H2r(X ,Q(r)))

and therefore, ξ ∈ CHr
hom(X ,Q(r)) so it will go to 0 ∈ J(H2r−1(X ,Q(r))) by

the AJ and hence ξ = 0 by BBC).

Regardless of whether or not injectivity holds, the filtration FνCHr(X ;Q)

is given by the pullback of the Leray filtration on H2r
H (X ,Q(r)) to CHr(X ;Q).

Recall that Rqρ∗Q is the sheaf associated to the presheaf given by

U ⊂ S → Hq(ρ−1(U),Q).

It is proved in [9] that the term Eν,2r−ν
∞ (ρ) fits in a short exact sequence:

0 → Eν,2r−ν
∞ (ρ) → Eν,2r−ν

∞ (ρ) → Eν,2r−ν

∞ (ρ) → 0,

where

Eν,2r−ν

∞ (ρ) = Γ(Hν(S, R2r−νρ∗Q(r))),

Eν,2r−ν
∞ (ρ) =

J(W−1H
ν−1(S, R2r−νρ∗Q(r)))

Γ(Gr0WHν−1(S, R2r−νρ∗Q(r)))

⊂ J(Hν−1(S, R2r−νρ∗Q(r))).

[Here the latter inclusion is a result of the short exact sequence:
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W−1H
ν−1(S, R2r−νρ∗Q(r)) ↪→ W0H

ν−1(S, R2r−νρ∗Q(r)) � Gr0WHν−1(S, R2r−νρ∗Q(r))].

One then has (by definition)

F νCHr(XK ;Q) = lim
→

U⊂S/Q

FνCHr(XU ;Q), XU := ρ−1(U).

F νCHr(XC;Q) = lim
→

K⊂C

F νCHr(XK ;Q).

Further, since direct limits preserve exactness,

GrνFCH
r(XK ;Q) = lim

→
U⊂S/Q

GrνFCH
r(XU ;Q),

GrνFCH
r(XC;Q) = lim

→
K⊂C

GrνFCH
r(XK ;Q).
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4.3 Goals

• We intend to study the complexity of CHr(X,Q)/Dr(X). This will require

the joint work of Lewis-Shuji Saito (See [11]).

• Another filtration Fν naturally occurs. We would like to compare Fν with

the Lewis filtration.

• Higher Chow analogues.

One approach to these problems is to look at cases where the “motive” of X

degenerates, viz., ΔX ∼rat Γ0+· · ·+ΓN where the supports of Γj are restricted.

• We intend to prove Nori’s Conjecture in the sense of Lewis BB filtration.

• We plan to prove Kapil H. Paranjape theorem [13] for the smooth general

subvariety by a different method and give some precise information for the

minimum values of n.
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4.4 Partial results

Let k ⊆ C be a subfield and denote by Sm(k) the category of smooth projec-

tive (geometrically irreducible) varieties over k.

Now let X ∈ Sm(C). The dimension of X will be denoted by dX . Put

δX(r, ν) := dX + ν − r. [F νCH = Lewis filtration, FνCH defined below].

4.4.1 A new filtration

Definition 4.4.1. Let X ∈ Sm(C) be given. Let us introduce the descending

filtration {FνCHr(X;Q)}ν≥0 by the formula

FνCHr(X;Q) =
⋂

Y ∈Sm(C)

w∈CHδX (r,ν)−�(X×Y ;Q)

1≤�≤ν

{
kerw∗ : CHr(X;Q) → CHν−�(Y ;Q)

}
.

Claim 4.4.2. F0CHr(X;Q) = CHr(X;Q).

Proof. Obvious.

Claim 4.4.3. F r+1CHr(X;Q) = 0.

Proof. Choose � = 1, ν = r + 1 and Y = X. Then the diagonal ΔX ∈
CHdX (X ×X;Q) = CHδX(r,ν)−�(X × Y ;Q), has kerΔX,∗ = 0.
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Thus we have a descending filtration

CHr(X;Q) = F0 ⊃ F1 ⊃ F2 ⊃ · · · ⊃ F r ⊃ 0.

Claim 4.4.4. Fν is functorial with respect to correspondences between smooth

projective varieties.

Proof. Obvious.

Definition 4.4.5. Let’s take a codimension r cycle Z on W . We say that Z

is numerically equivalent to zero if

< Z, Y >= 0 for all Y > 0 and Y ∈ Zr(W ).

Claim 4.4.6. F1CHr(X;Q) = CHr
num(X;Q).

Proof. First of all, suppose that ξ1 ∈ CHr
num(X). Then according to Defini-

tion 7.1 , ν = � = 1, and for any given pair (Y, w), with w∗ : CHr(X;Q) →
CH0(Y ;Q), we have w∗(ξ1) ∈ CH0

num(Y ;Q) = 0.

Thus CHr
num(X;Q) ⊆ F1CHr(X;Q).

To arrive at the reverse inclusion, let ξ1 ∈ CHr(X;Q). If ξ1 	∈ CHr
num(X;Q),

then by definition of CHr
num(X;Q), there exists ξ2 ∈ CHdX−r(X;Q) such that

deg(ξ1 ∩ ξ2) 	= 0.

Now choose w = ξ2×X ∈ CHdX−r(X×X;Q) to show that ξ1 /∈ F1CHr(X;Q).

Therefore F1CHr(X;Q) ⊆ CHr
num(X;Q), and hence F1CHr(X;Q) = CHr

num(X;Q).
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Claim 4.4.7. If Dr(X) = 0, then F νCHr(X;Q) ⊆ FνCHr(X;Q), ∀r.

Proof. Obvious.

Claim 4.4.8. We have

{
kerAJX : CHr

hom(X;Q) → J
(
H2r−1(X,Q(r))

)} ⊆ F2CHr(X;Q).

Proof. Bearing in mind that F2 ⊂ F1, it makes sense to consider � = 1, ν = 2,

and w ∈ CHδX(r,ν)−�(X × Y ;Q).

We end up with a commutative diagram

CHr
hom(X;Q)

w∗−→ CH1
hom(Y ;Q)

AJX

⏐⏐⏐�
⏐⏐⏐��

J
(
H2r−1(X,Q(r))

) [w]∗−−→ J
(
H1(Y,Q(1))

)
,

where the RHS (�) is due to the theory of the Picard variety. The rest is

clear.

Definition 4.4.9. Let’s take two codimension r cycles Z1 and Z2 on W . We

say that Z1 and Z2 are algebraically equivalent if there exists a curve E and a

codimension r cycle Y in W × E such that
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Z1 − Z2 = (πW )∗(W × {c} • Y )− (πW )∗(W × {d} • Y ).

where c and d are points on the curve E .

Let CHr
alg(V ) be the subgroup of CHr(V ) of those rational equivalence

classes which are themselves algebraically equivalent to zero.

Definition 4.4.10. Let z ∈ CHr
alg(V ) and (Y, S) a couple consisting of a

smooth projective variety S, Y ∈ CHd−r+1(S × V ). Put

Y (z) = prS(S × z) • Y ).

The cycle class [z] ∈ CHr
alg(V ) is called incidence equivalent to zero if Y (z) = 0

for all couples (S, Y ).

Corollary 4.4.11. Under the assumption of the HC,

F2CHr
alg(X;Q) = CHr

alg,inc(X;Q) = CHr
alg,AJ(X;Q),

where the latter equality (requiring the HC) comes from [8].

Corollary 4.4.11 is the original motivation for introducing Fν .

There are two conjectures that are of interest:

Conjecture 4.4.12. The filtration is compatible with products:
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Fν1CHr1(X;Q)×Fν2CHr2(X;Q)
•−→ Fν1+ν2CHr1+r2(X;Q),

where • is the intersection product.

Conjecture 4.4.13. (Factoring through the Grothendieck motive.) Let’s as-

sume given an algebraic Künneth decomposition of the diagonal class ΔX ,

modulo numerical equivalence, viz.,

ΔX =
⊕

p+q=2dX

ΔX(p, q).

Then

ΔX(2dX − 2r + s, 2r − s)∗

∣∣∣∣
GrνFCHr(X;Q)

= δs,ν · IdX ,

where δs,ν is Kronecker’s delta function.
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4.5 Nori’s conjecture

In this section we prove Nori’s conjecture under the assumption of the exis-

tence of a Bloch-Beilinson filtration [13].

Consider fields k ⊂ K ⊂ C, where K/k is finitely generated. We consider

the Bloch-Beilinson filtration constructed in [9] We recall:

Conjecture 4.5.1. (Hard Lefschetz conjecture) (HLC) Recall the HLT

Ln−i
X : H i(X,Q) → H2n−i(X,Q)

is an isomorphism. Then for all i satisfying 0 ≤ i ≤ n : The inverse

Λn−i
X : H2n−i(X,Q) → H i(X,Q)

to Ln−i
X is algebraic.

Conjecture 4.5.2. (Nori)

If X is a smooth projective variety with dimension n and Y is a smooth

hyperplane section of X with inclusion map j : Y ↪→ X. Then

j∗ : CHr(X,Q)
∼−→ CHr(Y,Q)

if 2r < dimY.
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Theorem 4.5.3. Given the Lewis BB filtration, with all the required assump-

tions (HC + BBC)), then conjecture (4.5.2) holds.

Proof. Consider a Q-spread ρ : X → S, where ρ is smooth and proper, X and

S are smooth and quasi projective.

Recall that Rqρ∗C is the sheaf associated to S and the operation U ⊂ S →
Hq(ρ−1(U),C).

We have short exact sequences:

0 → Eν,2r−ν
∞ (ρX) → Eν,2r−ν

∞ (ρX) → Eν,2r−ν

∞ (ρX) → 0,

And

0 → Eν,2r−ν
∞ (ρY ) → Eν,2r−ν

∞ (ρY ) → Eν,2r−ν

∞ (ρY ) → 0,

Let t ∈ S,

Now, we have by HLT

j∗ : H2r−ν(Xt,Q)
∼−→ H2r−ν(Yt,Q), with algebraic inverse (j∗)−1H2r−ν(Yt,Q)

∼−→
H2r−ν(Xt,Q), using the Hodge conjecture.

But we have by definition
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(R2r−ν
X ρ∗Q)t � H2r−ν(Xt,Q).

And

(R2r−ν
Y ρ∗Q)t � H2r−ν(Yt,Q).

Implies that

Eν,2r−ν
∞ (ρX) � Eν,2r−ν

∞ (ρY ) and

Eν,2r−ν

∞ (ρX) � Eν,2r−ν

∞ (ρY ).

Then by Five lemma,

Eν,2r−ν
∞ (ρX) � Eν,2r−ν

∞ (ρY ).

Now, we have the inclusions GrνFCH
r(X,Q) ⊂ Eν,2r−ν

∞ (ρX), G
ν
FCH

r(Y,Q) ⊂
Eν,2r−ν

∞ (ρY ) and an isomorphism j∗ : Eν,2r−ν
∞ (ρX) � Eν,2r−ν

∞ (ρY ).

By a commutative diagram

GrνFCH
r(X,Q) ↪→ Eν,2r−ν

∞ (ρX)

⏐⏐⏐�
⏐⏐⏐��

GrνFCH
r(Y,Q) ↪→ Eν,2r−ν

∞ (ρY )

, this provides an injection j∗ : Gν
FCH

r(X,Q) ↪→ Gν
FCH

r(Y,Q). But the

54



inverse (j∗)−1 is also algebraic by the Hodge conjecture, and determines an

injection (j∗)−1 : Gν
FCH

r(Y,Q) ↪→ Gν
FCH

r(X,Q). This implies the isomor-

phism: GrνFCH
r(X,Q) � GrνFCH

r(Y,Q).

Consider the short exact sequence,

0 → GrνFCH
r(X,Q) = F rCHr(X,Q) → F r−1CHr(X,Q) → Grν−1

F CHr(X,Q) → 0

⏐⏐⏐��
⏐⏐⏐�

⏐⏐⏐��

0 → GrνFCH
r(Y,Q) = F rCHr(Y,Q) → F r−1CHr(Y,Q) → Grν−1

F CHr(Y,Q) → 0

By the Five lemma, we have,

F r−1CHr(X,Q) � F r−1CHr(Y,Q).

So we get,

0 → F r−1CHr(X,Q) → F r−2CHr(X,Q) → Grν−2
F CHr(X,Q) → 0

⏐⏐⏐��
⏐⏐⏐�

⏐⏐⏐��

0 → F r−1CHr(Y,Q) → F r−2CHr(Y,Q) → Grν−2
F CHr(Y,Q) → 0
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By the Five lemma again, we have

F r−2CHr(X,Q) � F r−2CHr(Y,Q).

So by induction, we get

F 0CHr(X,Q) � F 0CHr(Y,Q).

Which is equal to

CHr(X,Q) � CHr(Y,Q).
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Chapter 5

Fano Varieties

5.1 Introduction to Fano Varieties

Definition 5.1.1. G(k + 1, N + 1) = k + 1− dimensional subspaces Ck+1

⊂ CN+1 = k − dimensional subspaces Pk ⊂ PN is a Grasmannian space with

dimension (k + 1)(N + 1− (k + 1)) = (k + 1)(N − k).

Definition 5.1.2. Let X ⊂ Pn be a variety. Then ΩX(k) = {Pk’s ⊂ Pn|Pk ⊂
X} ⊂ G(k + 1, N + 1) is called the Fano variety of Pk’s in X.

Theorem 5.1.3. (Borcea) [2] Let X ⊂ Pn+r be a generic complete intersection

of type (d1, ..., dr). Then ΩX(k) is non-empty and smooth of pure dimension

δ = (k+1)(n+ r− k)−∑r
j=1

(
dj+k
k

)
, provided δ ≥ 0 and X is not quadric. In

the case X is a quadric, we require n ≥ 2k. Furthermore, if δ > 0 or if in the

case X quadric, n > 2k, the ΩX(k) is connected (hence irreducible).

Example 5.1.4. Let X ⊂ P3 be a smooth cubic surface. That is X = V (f),

where f is a cubic homogeneous polynomial with a Jacobian of rank 1. Then

dimX = 2, and degX = 3.

Lets calculate δ for k = 1, n = 2, r = 1 and d = 3 : δ = (1+1)(3−1)−(
(3+1)

1

)
=

4− 4 = 0. Implying ΩX(1) consists of points.
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In fact, it is a well-known result that there are 27 lines on a cubic smooth

surface on P3. Hence ΩX(1) consists of 27 points.

Example 5.1.5. Let X ⊂ P5 be generic quintic fourfold. That is n = dimX =

4, and d = degX = 5, r = 1.

Lets calculate δ for k = 1 : δ = (1 + 1)(5 − 1) − (
(5+1)

1

)
= 8 − 6 = 2. Also

n − 2k = 4 − 2 > 0 so by Borcea Theorem, ΩX(1) is smooth irreducible of

dimension 2.

Now, we will define the cylinder correspondence and cylinder homomor-

phism.

Definition 5.1.6. [12]

P (X) = {(c, x) ∈ ΩX(k)×X | x ∈ Pk
c},

is called the cylinder correspondence and the cylinder homomorphism map φ∗
is induced by the intersection with P (X); φ∗ : Hn−2k(ΩX(k),Q) → Hn(X,Q)

given by φ∗(γ) = Pr2,∗((γ ×X ∩ P (X)))ΩX(k)×X .

It is well-known that via Poincaré duality, φ∗ defines a cohomological map

preserving Hodge structures (see [8], Lecture 7]), and in particular, the im-

age of φ∗ in Hn(X,Q) defines a subHodge structure of weight ≤ min{n −
2k, dim ΩX(k)}.

We define the level of the Hodge structure

Definition 5.1.7. [7] Level(H∗(X)) = max{p− q|H(p,q)(X) 	= 0}

We conclude that a necessary condition for φ∗ to be surjective is that:

dim ΩX(k) ≥ n− 2k where n− 2k = level of Hn(X,Q).
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[We can assume that n− 2k ≥ 0, otherwise Hn(X,Q) = 0].

Definition 5.1.8. Let X be a projective variety ⊂ Pn with dimension d. Then

degX = deg(Pn−d ∩X).

Let X ⊂ PN be a complete intersection of dimension n given by r homoge-

neous polynomials, this means X is obtained by taking exactly r hypersurface

sections of PN , i.e, X = V (f1, ..., fr). By the weak Lefschetz theorem for i < n

we have:

H i(PN ,Z)

→H i(X,Z).

The cohomology groups of PN ;

H i(PN ,Z) = Z if 0 ≤ i ≤ 2N is even and 0 otherwise.

Now by the strong Lefschetz theorem we have : Hn−i(X,Q) � Hn+i(X,Q), 0 ≤
i ≤ n , hence the only nontrivial cohomology of X is Hn(X,Q).

Hence X ⊂ Pn+r a smooth generic complete intersection of multidegree

(d1, ..., dr) with dimX = n. we have Level (H∗(X)) = level(Hn(X)) provided

that Hn(X) 	= 0.

In fact, we know the value of the level from [1] where the Hodge level of Hn(X)

is given by n− 2k with

k = [(n−∑
s �=j (di − 1)/ds]

and ds = max{d1, ..., dr}. Note that this means we have Hn(X,C) =

F kHn(X,C).

From now, let X ⊂ Pn+r be a smooth generic complete intersection of

multidegree (d1, ..., dr) and Let Z ⊂ Pn+r+1 be a smooth generic complete in-
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tersection of multidegree (d1, ..., dr) such that X = Z ∩ Pn+r.

Proposition 5.1.9. Let Z ⊂ Pn+r+1 be a smooth generic complete intersection

of multidegree (d1, ..., dr) and assume l ≥ 0 where l = k(n + 1 + r − k) −∑r
j=1

(
dj+k
k

)
. Then through every point of Z there passes a Pk ⊂ Z.

In particular, there is an l-dimensional family of Pk’s in a general Z passing

through a generic point p ∈ Z. Finally , we have l ≥ 0 if and only if φ∗
surjectivity condition holds for X = Z ∩ Pn+r.

Corollary 5.1.10. Given Z in Proposition 5.1.9. If φ∗ surjectivity condition

holds, then Z is covered by a family of Pk’s; moreover, for a general Z and a

generic point p ∈ Z, there passes an l-dimensional family of Pk’s.

Proof. If φ∗ surjectivity condition holds then by Proposition 5.1.9 we have

l ≥ 0 and through every point p ∈ Z there passes a Pk
p implying Z =

⋃
p∈Z Pk

p.

We can view X as a hyperplane section of Z with the inclusion map

j : X ↪→ Z. Then if φ∗ surjectivity condition holds and by Borcea Theo-

rem and the Corollary 5.1.10 we have:

(i) ΩX(k) is non-empty, smooth and of pure dimension (n − 2k) + l = δ,

where l ≥ 0 is given in the previous Proposition.

(ii) ΩZ(k) is non-empty, smooth and of pure dimension (n+ 1− k) + l.

(iii) Through a generic point p ∈ Z, there passes an �-dimensional family

of Pk’s.

Now, consider one of the irreducible components of ΩZ(k) which describes

a covering family of Pk’s on Z, let us denote it by Ω̃Z .

Let ΩZ be a subvariety cut out by � general hyperplane sections of Ω̃Z and
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define ΩX = ΩX(k) ∩ ΩZ .

For what follows, we need to introduce the dual projective space.

Definition 5.1.11. PN,∗ = {PN−1’s ⊂ PN} = (G(N,N+1), where [a0, ...aN ] ∈
PN,∗ corresponds to PN−1 = V (a0z0 + ...+ aNzN) ⊂ PN .

Theorem 5.1.12. (Bertini’s theorem) Let X ⊂ PN be a smooth projective va-

riety of dimension n. Then there is a non-empty Zariski open subset U∗ ⊂ PN,∗

such that for any t ∈ U∗ :

(a) PN−1
t ∩X is smooth ( i.e, PN−1

t is nowhere tangent to X.

(b) if n ≥ 2 then PN−1
t ∩X is irreducible.

Recall that:

Definition 5.1.13. Let V ∈ zr−1(W ) be irreducible and f ∈ k(V )∗, then

div(f) = (f)0 − (f)∞ (zeros minus poles of f on Z, including multiplicities).

Let X be a smooth projective variety. Recall:

Definition 5.1.14. [5] Two divisors D1 , D2 are linearly (rationally) equiva-

lent if they differ by a principal divisor : D1 −D2 = (f) for some f ∈ C(X)∗.

We recall the standard definition of a linear system.

Definition 5.1.15. [5] If D =
∑t

j=1 njZj ∈ Div(X), then,
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L(D) = {f ∈ C(X)|f = 0 or f 	= 0 and (f)+D ≥ 0, i.e., all coefficients of (f)+

D are nonnegative}
= {f ∈ C(X)|ordZi

(f) ≥ −ni, 1 ≤ i ≤ t and ordZ(f) ≥ 0 all other Z}.

A complete linear system on a general variety V is defined as the set of all

effective divisors linearly equivalent to some given divisor D. It is denoted by

|D|.

Definition 5.1.16. [5] A linear system is a subset L of some |D| such that

V = {f ∈ C(X)|f = 0 or f 	= 0 and (f) +D ∈ L}

is a vector space over C. Equivalently, L is a linear subspace of |D| in
its structure of projective space. The linear systems |D| themselves are called

complete linear systems. The base points of a complete system L are defined by

(Base pts. of L) = ∩D′∈L(support of D
′
).

Theorem 5.1.17. (Second theorem of Bertini) A generic element of a linear

system on an algebraic variety X cannot have singular points that are not base

points of the linear system or singular points of X.

By Bertini’s theorem we can assume:

(iv) ΩZ is smooth and irreducible of dimension n+ 1− k.

(v) ΩX is smooth and of pure dimension n− 2k.

We have a commutative diagram where the π’s and ρ’s are projections: We

consider the following diagram
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P (X)
πX−→ X

↘ i π ↗ ↘ j

X̃ Z

↘ πZ ↗

ρX

⏐⏐⏐� ρ

⏐⏐⏐� P (Z)

↙ ρZ

ΩX ↪→ ΩZ

(5.1)

We have:

(a) X̃ = π−1
Z (X) is smooth by the second theorem of Bertini.[X̃ is a gen-

eral member of a linear system on P (Z) with no base points, obtained by the

pullback of linear systems on Z to P (Z)].

(b) π and πZ are generically finite to one and onto of degree q say.

(c) ρX : P (X) → ΩX and ρZ : P (Z) → ΩZ are Pk bundles. ( i.e

ρ−1
X (c) = Pk

c since ρ−1
X (c) = {(c, p)|p ∈ Pk

c} and P (X) is a manifold.

(e) dimX = dimX̃ = n, dimZ = dimP (Z) = n + 1, dimP (X) =

n− k, dimΩX = n− 2k, dimΩZ = n− k+ 1 [ Note that all varieties here are

smooth].
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Definition 5.1.18. [7] A hypersurface is general if it corresponds to a point

in a non-empty Zariski open subset of P(
n+1+d

d )−1 governed by certain generic

properties (eg. smoothness of the Fano variety of Pk’s on X, etc.).

Example 5.1.19. To illustrate the general idea, we give a cohomological exam-

ple. Assume given a general (in the sense of the Zariski topology) projective

variety X ⊂ P5 be generic quintic fourfold. That is n = dimX = 4, and

d = degX = 5.

We have k = [5/5] = 1 and a general hypersurface Z ⊂ P6 with dimZ = 5 and

degZ = 5 such that Z ∩ P5 = X.

ΩX = {P1 ⊂ P5 | P1 ⊂ X}.

Furthermore, dimΩX = (1 + 1)(5− 1)− (
(5+1)

1

)
= 8− 6 = 2.

Recall

ΩZ = {P1 ⊂ P6 | P1 ⊂ Z}.

Then dimΩZ = 4. Also recall

P (X) = {(c, x) ∈ ΩX ×X | x ∈ P1
c},

and

P (Z) = {(c, z) ∈ ΩZ × Z | z ∈ P1
c}.

πX : P (X) → X, ρX : P (X) → ΩX .

We refer to diagram (5.1).

Let c ∈ ΩZ. Then P1
c either meets X in a single point (hence c ∈ ΩZ\ΩX) or P

1
c

lies in X (hence c ∈ ΩX). Recall X̃ = π−1
Z (X), and diagram:
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X̃\P (X) ↪→ X̃ � BΩX
(ΩZ) ←↩ P (X)

�
⏐⏐⏐� ρ

⏐⏐⏐�
⏐⏐⏐�ρX

ΩZ\ΩX ↪→ ΩZ ←↩ ΩX

It follows that from the fact that X̃ � BΩX
(ΩZ) and from the diagram 5.1

that

H4(X̃,Q) � H4(ΩZ ,Q)⊕H2(ΩX ,Q) � ρ∗H4(ΩZ ,Q)⊕ ρ∗XH2(ΩX ,Q).

Now by 5.1(b), π∗ ◦ π∗ = ×q, and therefore π∗ : H4(X̃,Q) → H4(X,Q) is

surjective.

Under the decomposition of H4(X̃,Q), the surjective morphisim π∗ : H4(X̃,Q) →
H4(X,Q) is a sum of two morphisms:

π∗ : ρ∗(H4(ΩZ ,Q)) → H4(X,Q)

π∗ : i∗ ◦ ρ∗X(H2(ΩX ,Q)) → H4(X,Q).

Now, we have from the diagram 5.1:

π∗ ◦ ρ∗ = π∗ ◦ (ρZ ◦ j)∗ = π∗ ◦ j∗ ◦ ρ∗Z = j∗ ◦ πZ,∗ ◦ ρ∗Z.

Hence π∗ ◦ ρ∗(H4(ΩZ ,Q)) ⊂ j∗(H4(Z,Q)).

Let HX be a hyperplane section of X. Then applying the weak Lefschetz

theorem to the inclusion map j, we deduce that
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j∗(H4(Z,Q))
PD� j∗(H4(Z,Q)) = QHX ∧ HX . Hence π∗ ◦ ρ∗(H4(ΩZ ,Q)) =

QHX ∧HX .

And then since H4(H
2
X ,Q) � QH2

X � Q, we conclude that the cylinder

homomorphism

φ∗ : H2(ΩX ,Q) → H4(X,Q)/H4(H
2
X ,Q) is surjective.

Note that to extend these ideas to Chow groups, Z has to be choosen care-

fully with regard to a general X.
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5.2 Some evidence towards Nori’s theorem

Theorem 5.2.1. Given integers 1 ≤ d1 ≤ d2 ≤ ... ≤ dr and any nonneg-

ative integer l, Let X ⊂ Pn+r be a smooth general subvariety of multidegree

(d1, ..., dr). If n is sufficiently large then

CHl(X)Q � Q.

Proof. Let X ⊂ Pn+r be an n-dimensional smooth complete intersection with

multidegree (d1, ..., dr), i.e, X = V (F1, ..., Fr) where Fi are homogeneous poly-

nomials of degree di, and Z ⊂ Pn+r+1 such that Z∩V (zn+r+1) = Z∩Pn+r = X,

Z = V (G1, ..., Gr) where Gi = Fi for all i = 1, ..., r − 1 and Gr = Fr + zdrn+r+1.

Now consider the projection from [0, ..., 0, 1], ν : Z → Pn+r . LetW = ν(Z)

that is if p = [p0, ..., pn+r+1] ∈ Z then ν(p) = [p0, ..., pn+r] ∈ W .

Note that, p = [p0, ..., pn+r+1] ∈ Z means Fi(p0, ..., pn+r) = 0 for i =

1, ..., r − 1, and Fr(p0, ..., pn+r) + pdrn+r+1 = 0. There are two possibilities:

1. pn+r+1 = 0 ⇒ [p0, ..., pn+r] ∈ X.

2. pn+r+1 	= 0 ⇒ [p0, ..., pn+r+1] /∈ X.

Hence X ⊂ W and W = V (F1, ..., Fr−1).

Now consider the inclusion maps j : X ↪→ Z, i : X ↪→ W .

Proposition 5.2.2. Let X, Z, and W be given as above. Then, as correspon-

dences, the following diagram is commutative
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X
j−→ Z

↘ i ↙ ν

W

Proof. νj = i : Let [p0, ..., pn+r] ∈ X, then νj([p0, ..., pn+r]) = ν([p0, ..., pn+r, 0]) =

[p0, ..., pn+r] ∈ W . Also i([p0, ..., pn+r]) = [p0, ..., pn+r].

Proposition 5.2.3. Let X, Z, and W be given as above. Then, as correspon-

dences, the following diagram is commutative

Z
drj∗−−→ X

↘ ν∗ ↗ i∗

W

Proof. We have to show that i∗ν∗ = drj
∗ : Let p ∈ W , we can see that

ν−1(p) = p if p ∈ i(X) and dr distinct points if p /∈ i(X) so deg(ν) = dr.

Note that (graph)t(i) ◦ graph(ν) = (graph)t(j) as sets in Z × X and

(graph)t(j) is irreducible since X is.

So as varieties there are multiplicities: i∗ ◦ ν∗ = l.j∗ for some l ∈ N.

To show that l = dr, let’s consider l.X = < l.j∗(Z), X >X = < i∗ ◦
ν∗(Z), X >X = < i∗(deg(ν)).W,X >X = dr < i∗W,X > = dr.X.
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Proposition 5.2.4. Let X ⊂ Pn+r be a general complete intersection with

multidegree (d1, ..., dr) satisfying that dim ΩX(k) ≥ n− 2k and let Z ⊂ Pn+r+1

be given as above. Then ΩZ(k) is smooth and of pure dimension (n+1−k)+�,

where � is given in proposition [ 5.1.9 ].(see [14] for the proof).

Claim 5.2.5. If X = V (F1, ..., Fr) ⊂ Pn+r is an n-dimensional smooth com-

plete intersection with multidegree (d1, ..., dr) and W = V (F1, ..., Fr−1) ⊂
Pn+r, described as above, is a smooth complete intersection with multide-

gree (d1, ..., dr−1) then Z = V (F1, ..., Fr−1, Fr + zdrn+r+1) ⊂ Pn+r+1 is an n+1-

dimensional smooth complete intersection with multidegree (d1, ..., dr).

Proof. Note that a variety Y ⊂ PN is smooth if and only if Cone(Y ) − 0 ⊂
CN+1 is smooth.

From our assumptions Cone(X)−0 = V (F1, ..., Fr) ⊂ Cn+r+1 and Cone(W )−
0 = V (F1, ..., Fr−1) ⊂ Cn+r are smooth complete intersections. That means

that the Jacobian of both have full rank at every point of theirs.

Lets consider the Jacobian of Cone(Z)− 0:

Jacobian of Cone(Z)− 0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

Jacobian of Cone(W )− 0 .

.

0

(dFr/dz0)...(dFr/dzn+r) drz
dr
n+r+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Now let p = [p0, ..., pn+r+1] be any point in Z. Then

1. If pn+r+1 = 0 then from the proof of the last Proposition, [p0, ..., pn+r] ∈
X ∩W and

Jacobian of Cone(Z)− 0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

Jacobian of Cone(X)-0 .

.

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Then in this case the Jacobian of Cone(Z) − 0 will have full rank at

[p0, ..., pn+r+1] as the Jacobian of Cone(X)− 0 has rank r at [p0, ..., pn+r].

2. If pn+r+1 	= 0 then from the proof of Proposition 5.2.2 and the fact that

[0, ..., 0, 1] /∈ Z, [p0, ..., pn+r] ∈ W −X .

Then the Jacobian of Cone(W )−0 will have rank r-1 at [p0, ..., pn+r] implying

the Jacobian of Cone(Z)− 0 will have full rank at [p0, ..., pn+r+1] .
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Hence, in any case the Jacobian of Cone(Z)−0 will have full rank at every

point of Cone(Z) − 0, implying Z = V (F1, ..., Fr−1, Fr + zdrn+r+1) ⊂ Pn+r+1 is

an n+1-dimensional smooth complete intersection with multidegree (d1, ..., dr)

( [8], Lecture 1 , 1.17).

By taking hyperplane sections, we can assume that dim ΩX = n− 2k and

dim ΩZ = n− k + 1.

We refer to diagram (5.1), where it is known from [14] that X̃ is still

smooth, despite our specially choosen Z for a general X.

dim πX(P (X)) = n− k = { dimension of fibres + dimension of the base =

k +n-2k, recall that ρX , ρZ are Pk-bundles} implying that πX is not surjective

since dimP (X) = n− k < dimX = n .

Now consider the cylinder homomorphism map:

φX,∗ : CHl−k(ΩX(k))Q
πX,∗◦ρ∗X−−−−−→ CHl(X)Q

by c ∈ ΩX goes to Pk
c ⊂ X.

If we fix l and let n → ∞ then k → ∞ [ Note that k = [(n−∑
s �=j (di − 1)/ds].

Let ds = max{d1, ..., dr}. Note that this means we have Hn(X,C) =

F kHn(X,C).
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This implies that l − k < 0 and so CHl−k(ΩX(k))Q = 0 for n >> 1 .

But as we mentioned in example 5.1.19 X̃ = {ΩZ − ΩX}
∐

P (X).

So CHl(X)Q = π∗(CHl(X̃)Q) = φX,∗CHl−k(ΩX(k))Q + j∗CHl(Z)Q [7].

If r ≥ 1, Take W as described before with n >> 1, then by proposition

5.2.3, CHl(X)Q = j∗CHl(Z)Q = i∗CHl(W )Q � Q, i.e., one needs to prove

CHl(W )Q) � Q, by induction.

If r = 1 then X ⊂ Pn+1 so W = Pn+1 and therefore CHl(W )Q � Q.

Suppose that our statement is true for r, X = V (F1, ..., Fr) and CHl(X)Q

= Q then CHl(W )Q = CHl(V (F1, ..., Fr−1)) = Q, by induction.

Now, for r+1, X = V (F1, ..., Fr+1) then W = V (F1, ..., Fr) and so by the

inductive assumption, CHl(W )Q � Q.
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5.2.1 Some examples on finding the value of n

We will give some examples now on finding the value of n, that is minimal with

regard to this process. Whether this process gives effective values of minimal

n is unclear.

Example 5.2.6. Let X be a hypersurface with degree d and dim n then recall

that from the proof

φX,∗ : CHl−k(ΩX(k))Q
πX,∗◦ρ∗X−−−−−→ CHl(X)Q.

We show that l − k < 0 ends by

CHl(X)Q � Q.

So since k = [(n+ 1)/d], we take k = l + 1 then l − k < 0

implies that l + 1− [(n+ 1)/d] ≤ 0 hence, n ≥ dl + d− 1.

Hence a minimum value of n by this process is dl + d− 1.

Example 5.2.7. Let X be a complete intersection with degree d and dim n.

Then recall that from the proof

φX,∗ : CHl−k(ΩX(k))Q
πX,∗◦ρ∗X−−−−−→ CHl(X)Q.

We show that l − k < 0 ends by

CHl(X)Q � Q.

So since k = [(n−∑
s �=j (di − 1)/ds]

and ds = max{d1, ..., dr}, take k = l + 1 then l − k < 0 implies that

l + 1− [(n−∑
s �=j (di − 1)/ds] ≤ 0 .
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hence, n ≥ l + 1 + [
∑

s �=j (di − 1)/ds].

Hence l + 1 + [
∑

s �=j (di − 1)/ds] is the minimum value of n.

But � = k(n+ 1 + r − k)−∑r
j=1

(
dj+k
k

) ≥ 0.

So (l + 1)(n+ 1 + r − l − 1)−∑r
j=1

(
dj+l+1
l+1

) ≥ 0.

So n ≥ ∑r
j=1

(
dj+l+1
l+1

)|(l + 1) + l − r.

Therefore, a minimum value of n is
∑r

j=1

(
dj+l+1
l+1

)|(l + 1) + l − r.

Now for W in the Theorem we have W = V (F1, ..., Fr−1) so a minimum

value of n is
∑r−1

j=1

(
dj+l+1
l+1

)|(l + 1) + l − r − 1 .

Consider that ZW = V (G1, ..., Gr−1) where Gi = Fi for all i = 1, ..., r − 2

and Gr−1 = Fr−1 + z
dr−1

n+r . Where ZW is subset from Pn+r such that ZW ∩
V (zn+r) = ZW ∩ Pn+r−1 = X.

And now consider ν : ZW → Pn+r−1 . Let W1 = ν(ZW ) that is if

p = [p0, ..., pn+r] ∈ ZW then ν(p) = [p0, ..., pn+r−1] ∈ W1.

Note that, p = [p0, ..., pn+r] ∈ ZW means Fi(p0, ..., pn+r−1) = 0 for i =

1, ..., r − 2, and Fr−1(p0, ..., pn+r−1) + p
dr−1

n+r = 0. There are two possibilities:

1. pn+r = 0 ⇒ [p0, ..., pn+r−1] ∈ W .

2. pn+r 	= 0 ⇒ [p0, ..., pn+r /∈ W .

Hence W ⊂ W1 and W1 = V (F1, ..., Fr−2).

In the same way of the proof of Theorem 5.2.1, we have
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CHl(W )Q � Q

.

Hence, in the same way we get a minimum value of n is
∑r−2

j=1

(
dj+l+1
l+1

)|(l + 1)+

l − r − 2 .

Continuing with the same procedure we end up by Wr−1 = V (F1) and hence

a minimum value of n is
(
d+l+1
l+1

)
/(l + 1) + l − 1.

Example 5.2.8. Let X be a general intersection of two cubics ⊂ Pn+2.

Then X is a complete intersection and we have d1 = d2 = 3 .

If we find W in the same way of the theorem then W = V (one cubic).

Let l = 2 and k = l + 1 = 3.

Now, recall that k = [(n−∑
s �=j (di − 1)/ds]

and ds = max{d1, ..., dr}.

And recall that � = k(n+ 1 + r − k)−∑r
j=1

(
dj+k
k

) ≥ 0. But we have here

r = 1 and d1 = ds = 3 .

Then � = 3(n+ 1− 3)− (
6
3

) ≥ 0.

n ≥ 2 + (20/3) implies that a minimum value of n is 8.

Example 5.2.9. Let X be a general intersection of a cubic and quartic ⊂ Pn+2.
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Then X is a complete intersection and we have d1 = 3, d2 = 4.

If we find W in the same way of the theorem then W = V (a cubic)

Let l = 3 and k = l + 1 = 4.

Now, recall thet k = [(n−∑
s �=j (di − 1)/ds]

and ds = max{d1, ..., dr}.

And recall that � = k(n+ 1 + r − k)−∑r
j=1

(
dj+k
k

) ≥ 0. But we have here

r = 1 and d1 = ds = 3.

Then � = 4(n+ 1− 4)− (
6
4

) ≥ 0.

n ≥ 3 + (15/4) implies that a minimum value of n is 6.
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