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Abstract

A flag of a finite dimensional vector space V is a nested sequence of subspaces

of V . The symplectic group of V acts on the set of flags of V . We classify the

orbits of this action by defining the incidence matrix of a flag of V and show-

ing that two flags are in the same orbit precisely when they have the same

incidence matrix. We give a formula for the number of orbits of a certain

type and discuss how to list the incidence matrices of all orbits. In the case

in which V is a vector space over a finite field, we discuss the permutation

representations of the symplectic group of V corresponding to these orbits.

For the case in which V = F4
q, we compute the conjugacy classes of the sym-

plectic group of V and the values of the characters of the previously discussed

permutation representations.
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Chapter 1

Introduction

Let V be a finite-dimensional vector space over a field F. A flag of V is a
nested sequence of subspaces of V . There is a natural action of GL(V ), the
general linear group of V , on the set of flags of V , and it is straightforward to
classify the orbits of this action in terms of the dimensions of the subspaces
of the flags. If the field F is finite, there is a permutation representation of
the finite group GL(V ) corresponding to each orbit of this action. In [11],
Steinberg showed that a large number of irreducible characters of GL(V ) may
be computed by taking alternating sums of the characters of these permutation
representations. In [9], James constructed the representations affording these
characters, and proved a number of theorems about them.

Now if a group acts on a set, any of its subgroups acts on the set as well, so
we can attempt to construct an analogous theory for any subgroup of GL(V ).
In the case in which V is an even-dimensional vector space endowed with a
non-degenerate alternate bilinear form B, a particularly interesting subgroup
of GL(V ) is the symplectic group of V , the subgroup of GL(V ) which preserves
B. Our goal in this thesis is to analyze the action of the symplectic group of
V on flags, and to study the corresponding representations and characters in
the case in which F is a finite field.

In Chapter 2, we summarize some of the background information which
will be needed in later chapters. We first review some of the basic definitions
and theorems from the representation theory and character theory of finite
groups, and then we define symplectic spaces and symplectic groups, and
discuss some of their properties.

Chapter 3 contains most of the new results of this thesis. After defining
flags and introducing some notation regarding them, we discuss the above-
mentioned situation for GL(V ) in more detail. We then introduce the inci-
dence matrix of a flag of a symplectic space. After developing some properties
of incidence matrices and showing how they reflect the structure of the flags,
we classify the orbits of the action of the symplectic group of V (Sp(V )) by
showing that two flags are in the same orbit of the action of Sp(V ) if and only
if they have the same incidence matrix. In the next section we derive a formula
for the number of orbits of a certain type, and in so doing we show how to
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compute recursively all the incidence matrices of all the flags of a symplectic
space, allowing us to list all the orbits of the action for a given dimension of
V . Finally, in the case in which F is a finite field, we derive formulae for the
degrees of the representations of Sp(V ) corresponding to the various orbits,
and describe two situations in which distinct orbits yield isomorphic represen-
tations. Computational examples designed to clarify the results are sprinkled
throughout the chapter.

In Chapter 4, we use the case in which V = F4
q (the 4-dimensional vector

space over the field of q elements with q odd) as a large computational example
which tests the extent to which the results of Chapter 3 can be used to com-
pute irreducible characters of Sp(V ). After discussing some general results on
canonical forms of matrices and their centralizers, we find explicit representa-
tives for the conjugacy classes of Sp(V ) = Sp(4, q), and compute their sizes in
terms of q. We then compute in terms of q the values on these class represen-
tatives of the characters of the representations discussed in Chapter 3. Using
techniques which prove effective in the case of GL(V ), we attempt to decom-
pose these characters into irreducible characters. We show that while these
techniques do produce a single non-trivial irreducible character of Sp(4, q) (the
well-known Steinberg character), they are not nearly so effective as in the case
of GL(V ).

2



Chapter 2

Background Information

2.1 Representations and Characters

We begin with a brief summary of the fundamentals of the theory of group
representations and characters. All the results in this section are proved in
[8].

2.1.1 Definition. Let G be a group, and let F be a field. An F-representation
of G is a homomorphism Φ : G → GL(V ), where V is a finite-dimensional non-
zero F-vector space and GL(V ) is the group of invertible linear transformations
of V . The degree of Φ is the dimension dim V of V .

By choosing a basis for the n-dimensional vector space V , we obtain an
isomorphism of GL(V ) with GL(n, F), the group of invertible n× n matrices
over F, and hence via composition the F-representation Φ yields a group ho-
momorphism Φ̂ : G → GL(n, F), which we call a matrix representation of G.
If A ∈ M(n, F), the set of all n × n matrices over F, then the trace of A, de-
noted Tr A, is the sum of the diagonal entries of A. A basic result from linear
algebra states that if B ∈ GL(n, F), then Tr B−1AB = Tr A. If T ∈ GL(V ),
and if β1 and β2 are any two bases for V , then the matrices for T with respect
to β1 and β2 are conjugate under the appropriate change of basis matrix, and
hence we can define the trace of T to be the trace of any matrix representing
T . This justifies the following definition.

2.1.2 Definition. The character of Φ is the function χ : G → F given by
χ(g) = Tr Φ(g) for g ∈ G. The degree of χ is the degree of Φ. A character of
G is a function G → F which is the character of some F-representation of G.

If h, g ∈ G, then the conjugacy-invariance property of the trace function
shows that χ(h−1gh) = χ(g), so that χ is really a class function on G; that
is, it is a function G → F which depends only on the conjugacy classes of G.

If Φ : G → GL(V ) is an F-representation of G on the vector space V , and
if W ≤ V is a non-zero subspace of V such that Φ(g)W = W for each g ∈ G,
then ΦW : G → GL(W ) given by ΦW (g)(w) = Φ(g)(w) is a representation of
G on the vector space W .
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2.1.3 Definition. A subrepresentation of Φ is an F-representation of the form
ΦW for some non-zero subspace W of V . The subrepresentation is said to be
proper if W %= V .

An F-representation automatically has itself as a subrepresentation, but it
need not have any proper subrepresentations.

2.1.4 Definition. An F-representation is irreducible if it has no proper sub-
representations. A character is irreducible if the representation to which it
corresponds is irreducible.

We are interested in the way in which representations can be decomposed
into irreducible subrepresentations. To describe this decomposition process,
we need two more concepts.

2.1.5 Definition. Let Ψ and Φ be F-representations of the group G on the
vector spaces U and V . Then the homomorphism Ψ ⊕ Φ : G → GL(U ⊕ V )
given by (Ψ ⊕ Φ)(g)(u + v) = Ψ(g)(u) + Φ(g)(v) is a representation of G on
U ⊕ V , called the direct sum of Ψ and Φ.

If we pick bases β1 and β2 of U and V and take β1∪β2 as a basis of U⊕V ,
then for any g ∈ G,

Ψ̂⊕ Φ(g) =

(
Ψ̂(g) 0

0 Φ̂(g)

)
,

and hence the character of Ψ⊕ Φ is the sum of the characters of Ψ and Φ.

2.1.6 Definition. Ψ and Φ are said to be isomorphic if there exists a vector
space isomorphism T : U → V such that for all g ∈ G and all u ∈ U
Φ(g)(T (u)) = T (Ψ(g)(u)).

Equivalently, Ψ and Φ are isomorphic if there exist bases of U and V such
that Ψ̂ = Φ̂ (that is, the corresponding matrix representations are equal), and
hence isomorphic representations have the same characters. Although much
of what follows is valid in a broader context, we now specialize to the case
F = C, the complex numbers, which is our primary concern in this thesis.
Henceforward the term representation will mean a C-representation, and G
will denote a finite group.

2.1.7 Theorem (Maschke’s Theorem). Every representation of G is isomor-
phic to a direct sum of irreducible representations.

It can be shown that this decomposition is unique up to isomorphism and
reordering of the irreducible representations, and also that, up to isomorphism,
G has only a finite number of irreducible representations. The use of characters
helps to clarify this situation.

4



2.1.8 Proposition. Let {Φ1, Φ2, . . . , Φk} be a set of representatives of the iso-
morphism classes of irreducible representations of G. Let β = {χ1, χ2, . . . ,χk}
be the corresponding characters. Then k is equal to the number of conjugacy
classes of G, and β is a basis for the vector space of C-valued class functions
on G.

Now if Φ is a representation of G with character χ, we know that Φ is iso-
morphic to a unique direct sum of the form

⊕k
i=1 kiΦi, where kiΦi =

⊕ki

j=1 Φi

if ki ∈ N, and Φi is omitted if ki = 0. Thus χ =
∑k

i=1 kiχi. If we know χ and
β = {χ1, χ2, . . . ,χk}, we can use linear algebra to express χ in terms of β, and
the coefficients in this expression will necessarily be the ki. Hence χ deter-
mines Φ up to isomorphism, and further, if we have computed the characters
of all the irreducible representations of G, we have an explicit computational
technique for decomposing any representation into irreducible representations.
Thus one of the main problems of group representation theory is determining
all the irreducible characters of G. Once these are found, one can choose an or-
dering χ1, χ2, . . . ,χk of the irreducible characters and an ordering c1, c2, . . . , ck

of the conjugacy classes of G and form the character table of G, the k × k
matrix with (i, j) entry χi(cj).

2.1.9 Example. The character table of the group GL(3, 2)1 is given in Table
2.1. The top row is a list of representatives of the conjugacy classes of GL(3, 2),
while the second row gives the sizes of these conjugacy classes. Technically,
the character table is the 6 × 6 matrix below the line, but it is often useful
to include other information, such as class sizes and orders of elements, above
the line.

g
(

1 0 0
0 1 0
0 0 1

) (
1 0 0
0 1 1
0 0 1

) (
1 1 0
0 1 1
0 0 1

) (
1 0 0
0 0 1
0 1 1

) (
0 0 1
1 0 1
0 1 0

) (
0 0 1
1 0 0
0 1 1

)

|Cl(g)| 1 21 42 56 24 24
χ1 1 1 1 1 1 1

χ2 3 −1 1 0 −1+i
√

7
2

−1−i
√

7
2

χ3 3 −1 1 0 −1−i
√

7
2

−1+i
√

7
2

χ4 6 2 0 0 −1 −1
χ5 7 −1 −1 1 0 0
χ6 8 0 0 −1 1 1

Table 2.1: Character Table of GL(3, 2).

Expressing a character as a Z≥0-linear combination of irreducible charac-
ters can be made easier through the introduction of an inner product on the
vector space of C-valued class functions on G.

1If F is the finite field with q elements, we denote GL(n, F) by GL(n, q).
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2.1.10 Definition. Let ρ and χ be class functions on G. The inner product
of ρ and χ is

〈ρ, χ〉 =
1

|G|
∑

g∈G

ρ(g)χ(g).

If c1, c2, . . . , ck are the conjugacy classes of G, then since ρ and χ are class
functions, we can compute their inner product as

〈ρ, χ〉 =
1

|G|

k∑

i=1

|ci|ρ(ci)χ(ci).

The irreducible characters of G behave particularly well with respect to this
inner product.

2.1.11 Proposition. If χ1, χ2, . . . ,χk are the irreducible characters of G then

〈χi, χj〉 = δij.

Hence if χ is a character of G and χ =
∑k

i=1 kiχi, we have ki = 〈χ, χi〉,
which allows us to decompose χ, while 〈χ, χ〉 =

∑k
i=1 k2

i , which allows us to
gauge how far χ is from being irreducible, even if the χi are unknown. For
example, if 〈χ, χ〉 = 3, then since 3 = 12 +12 +12 is the only way of expressing
3 as a sum of squares, χ must be the sum of 3 distinct irreducible characters.
In particular, 〈χ, χ〉 = 1 if and only if χ is irreducible. The inner product is
especially useful in constructing the character table of G, since if we have a few
irreducible characters of G, and a reducible character χ, we can determine the
coefficient of each of the irreducible characters in χ and subtract them from
χ accordingly, possibly obtaining a new irreducible character.

We now turn our attention to a specific class of representations, known
as permutation representations, which are of particular interest to us in this
thesis. Suppose G acts on a finite set X. Then there is a representation
ΦX of G on CX, the free C-vector space on the set X. If g ∈ G and X =
{x1, x2, . . . , xn}, then an arbitrary element of CX has the form

∑n
i=1 λixi for

λi ∈ C, and we define ΦX(g) (
∑n

i=1 λixi) =
∑n

i=1 λi(gxi).

2.1.12 Definition. ΦX is the permutation representation of G on the set X.

By definition, the degree of ΦX is the dimension of CX, which is simply
|X|. It is possible to compute the character χX of ΦX based solely on a
knowledge of the action of G on X.

2.1.13 Lemma. For g ∈ G, χX(g) is the number of x ∈ X such that gx = x.

Proof. With respect to the basis X, the matrix for ΦX(g) is a permutation
matrix, having a 1 in the (i, j) entry if gxj = xi and a 0 otherwise. χX(g) =
Tr(ΦX(g)) is the sum of all the (i, i) entries of the matrix, which equals the
number of (i, i) entries equal to 1, which equals the number of xi ∈ X such
that gxi = xi.
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If X = {x} is a singleton set, then G acts trivially on X. If g ∈ G, then g
fixes exactly one element of X, and hence χX(g) = 1. Now

〈χX , χX〉 =
1

|G|
∑

g∈G

χX(g)χX(g) =
1

|G|
∑

g∈G

1 = 1,

and so we have the following proposition.

2.1.14 Proposition. The class function χ defined by χ(g) = 1 for all g ∈ G
is an irreducible character of G.

We call χ the trivial character of G.
We will later use Lemma 2.1.13 to compute a large number of characters of

the 4-dimensional symplectic group over a finite field. In the next section, we
define symplectic spaces and groups and discuss some useful results concerning
them.

2.2 Symplectic Spaces and Symplectic Groups

Our development in this section is based primarily on [6], which contains
proofs of any results which we state without proof. The concept of a symplectic
space is somewhat analogous to that of ordinary Euclidean space, in that
a symplectic space consists of a vector space together with a bilinear form
defined on it. In particular, there is a notion of orthogonality for vectors in a
symplectic space. However, the fact that every vector in a symplectic space is
orthogonal to itself shows that there are also major differences between the two
concepts, and that we must be careful in transferring our intuitive geometric
notions of Euclidean space to symplectic spaces. We begin with some general
definitions. Throughout this section, F denotes an arbitrary field.

2.2.1 Definition. Let V be an F-vector space. A bilinear form on V is a
function B : V ×V → F such that for all u, v, w ∈ V and all λ, µ ∈ F we have

1. B(λu + µv, w) = λB(u, w) + µB(v, w)

2. B(u, λv + µw) = λB(u, v) + µB(u, w)

Now suppose β = {v1, v2, . . . , vn} is a basis of V , and that u =
∑n

i=1 λivi

and v =
∑n

j=1 µjvj are two vectors in V . Then

B(u, v) = B

(
n∑

i=1

λivi,
n∑

j=1

µjvj

)
=

n∑

i=1

n∑

j=1

λiµjB(vi, vj)

= (λ1, λ2, . . . ,λn)





B(v1, v1) B(v1, v2) . . . B(v1, vn)
B(v2, v1) B(v2, v2) . . . B(v2, vn)

...
...

. . .
...

B(vn, v1) B(vn, v2) . . . B(vn, vn)









µ1

µ2
...

µn




.
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In other words, if we let B̂ be the matrix with (i, j)-entry B(vi, vj), and if [u]β
and [v]β are the column vectors of coordinates of u and v with respect to β, we

have B(u, v) = [u]Tβ B̂[v]β. Conversely, if we have a basis of V , any A ∈ M(n, F)
can be taken as defining an F-valued function on pairs of basis elements, and
this function can be extended via bilinearity to a bilinear form on V . We
will usually define bilinear forms in this way. For both computational and
theoretical purposes it is important to know how the matrix B̂ of a bilinear
form B behaves with respect to a change of basis. So suppose β and β′ are
two bases of V , and that C is the change of basis matrix from β′ to β, so that
for u ∈ V , C[u]β′ = [u]β. Then if B̂ is the matrix for B with respect to β, we
have that for any u, v ∈ V

B(u, v) = [u]Tβ B̂[v]β = (C[u]β′)
T B̂ (C[v]β′) = [u]Tβ′

(
CT B̂C

)
[v]β′ ,

so that the matrix for B with respect to β′ is CT B̂C.
We are interested in a specific type of bilinear form.

2.2.2 Definition. A bilinear form B on V is alternate if B(v, v) = 0 for all
v ∈ V .

If B is alternate, it follows that B(u, v) = −B(v, u). In particular, if
β = {v1, v2, . . . , vn} is a basis of V , B(vi, vj) = −B(vj, vi), and so B̂T = −B̂.

Also, B(vi, vi) = 0, so all the diagonal entries of B̂ are 0. Conversely, if
A ∈ M(n, F) has all diagonal entries 0 and satisfies AT = −A, then the
bilinear form defined by A is alternate. (If the characteristic of F is not 2,
then AT = −A implies that all diagonal entries of A are 0, but in characteristic
2, both conditions are necessary.) If B is alternate, then B(u, v) = 0 if and
only if B(v, u) = 0, which allows us to define orthogonality as a symmetric
and reflexive relation on V .

2.2.3 Definition. Let B be an alternate bilinear form on V , and u, v ∈ V .
We say that u and v are orthogonal if B(u, v) = 0. Two subsets X and Y of
V are orthogonal if B restricted to X × Y is identically 0. If W is a subspace
of V , then the orthogonal complement of W is

W⊥ = {v ∈ V |B(v, w) = 0 for all w ∈ W}.

W⊥ is a subspace of V . If U ⊆ W are subspaces of V it follows from
the definition that W⊥ ⊆ U⊥, as in the Euclidean case. However, since
orthogonality is a reflexive relation on V , it is not necessarily the case that
W ∩W⊥ = 0.

2.2.4 Definition. Let B be an alternate bilinear form on the vector space V .
Let W be a subspace of V . Then the radical of W is Rad W = W ∩W⊥. W
is said to be non-degenerate if Rad W = 0. The form B is non-degenerate if
Rad V = 0.
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We can now define the concept of a symplectic space.

2.2.5 Definition. A symplectic space is a vector space V together with a
non-degenerate alternate bilinear form B on V . Such a form B is called a
symplectic form.

We now state some fundamental results, all of which are proved in [6].

2.2.6 Proposition. Let (V, B) be a symplectic space, and W a subspace of
V . Then

dim W⊥ = dim V − dim W and (W⊥)⊥ = W.

2.2.7 Proposition. Let B be an alternate bilinear form on the vector space
V . If W is a non-degenerate subspace of V , then V = W ⊕W⊥.

2.2.8 Theorem. Let B be an alternate bilinear form on the vector space V ,
let n = dim V , and let r = dim Rad V . Then there exists a basis of V with
respect to which the matrix B̂ of B has the block-diagonal form

B̂ =





M 0
. . .

M
0 0r




, where M =

(
0 1
−1 0

)
,

0r is the r × r zero matrix, and M appears n−r
2 times on the diagonal.

Since n−r
2 ∈ Z≥0 in Theorem 2.2.8, and since r = 0 if B is non-degenerate,

we obtain the following useful result.

2.2.9 Corollary. dim V ≡ dim Rad V mod 2. In particular, if V is symplec-
tic, dim V is even.

One more useful fact, which relates two important operations on subspaces,
is used implicitly without proof in [6].

2.2.10 Lemma. Let B be an alternate bilinear form on the vector space V ,
and let U and W be subspaces of V . Then

(U + W )⊥ = U⊥ ∩W⊥ and U⊥ + W⊥ = (U ∩W )⊥.

Proof. If v ∈ (U + W )⊥, then B(v, x) = 0 for all x ∈ U + W . In particular,
B(v, u) = 0 for all u ∈ U , so that v ∈ U⊥ and B(v, w) = 0 for all w ∈ W , so
that v ∈ W⊥, and so v ∈ U⊥ ∩W⊥. Conversely, if v ∈ U⊥ ∩W⊥, then for all
u ∈ U and all w ∈ W , B(v, u) = B(v, w) = 0, so for any x = u+w ∈ U+W , we
have B(v, x) = B(v, u+w) = B(v, u)+B(v, w) = 0, and hence v ∈ (U +W )⊥.

To prove the second equality, replace U and W with U⊥ and W⊥ in the
first equality. This shows that

(U⊥ + W⊥)⊥ = U ∩W,

9



and taking the orthogonal complement of both sides yields

U⊥ + W⊥ = (U ∩W )⊥.

For the remainder of this section, let V be a symplectic space of dimension
n = 2m over the field F with symplectic form B.

2.2.11 Definition. Let g ∈ GL(V ). Then g is a symplectic transformation
of V if for all u, v ∈ V we have

B(gu, gv) = B(u, v).

The symplectic group of V is the subgroup Sp(V ) of GL(V ) consisting of all
symplectic transformations of V .

Choosing a basis β for V yields an isomorphism of Sp(V ) with a subgroup
of GL(n, F). Let B̂ be the matrix for B with respect to β, and suppose
A ∈ GL(n, F) is the matrix for g ∈ GL(V ) with respect to β. Then to
determine whether g ∈ Sp(V ), we note that for u, v ∈ V ,

B(u, v) = [u]Tβ B̂[v]β

and
B(gu, gv) = (A[u]β)T B̂(A[v]β) = [u]Tβ (AT B̂A)[v]β.

Hence B(gu, gv) = B(u, v) for all u, v ∈ V if and only if

[u]Tβ B̂[v]β = [u]Tβ (AT B̂A)[v]β

for all u, v ∈ V , which holds if and only if AT B̂A = B̂. Hence Sp(V ) is
isomorphic to the matrix group

{A ∈ GL(n, F)|AT B̂A = B̂}.

Two different bases of V may yield different matrices B̂, but the corresponding
matrix groups will be conjugate under the appropriate change of basis matrix.
By Theorem 2.2.8 we can choose a basis of V for which B̂ is block diagonal,
with m copies of ( 0 1

−1 0 ) on the diagonal, which yields an isomorphism of
Sp(V ) with an unambiguously defined matrix group. (Note, however, that
any invertible matrix J satisfying JT = −J defines a symplectic from on V
with respect to a given basis, and so could be used in place of the specific B̂
mentioned above.) As a consequence, Sp(V ) is determined up to isomorphism
by n and F, and may be denoted by Sp(n, F). If dim V = 2, the preceding
comments allow us to determine Sp(V ) easily.

2.2.12 Proposition. If dim V = 2, then Sp(V ) = SL(V ), the subgroup of
GL(V ) consisting of those elements with determinant 1.
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Proof. Sp(V ) is isomorphic to the matrix group
{

( a b
c d ) ∈ GL(2, F)| ( a b

c d )T ( 0 1
−1 0 ) ( a b

c d ) = ( 0 1
−1 0 )

}
.

But
( a b

c d )T ( 0 1
−1 0 ) ( a b

c d ) = ( a c
b d )

(
c d
−a −b

)
=

(
0 ad−bc

−(ad−bc) 0

)
,

so this matrix group consists precisely of the matrices in GL(2, F) having
determinant 1, and thus is isomorphic to SL(V ).

As shown in [6], we also have the following more general relation between
the symplectic and special linear groups.

2.2.13 Proposition. For any vector space V of even dimension, Sp(V ) ⊆
SL(V ).

It will be useful to know how elements of Sp(V ) relate to the orthogonal
complement operator on subspaces.

2.2.14 Lemma. Let W be a subspace of V , and g ∈ Sp(V ). Then (gW )⊥ =
g(W⊥).

Proof. If u ∈ V , then u ∈ (gW )⊥ if and only if B(u, gw) = 0 for all w ∈ W .
Since g−1 ∈ Sp(V ), this is true if and only if B(g−1u, w) = 0 for all w ∈ W ,
which is true if and only if g−1u ∈ W⊥, which is equivalent to u ∈ g(W⊥).

We will have occasion to use the two following propositions, both of which
are proved in [6].

2.2.15 Proposition. Let Γ = {(u, v) ∈ V ×V |B(u, v) = 1}. Then the action
of Sp(V ) on Γ given by g(u, v) = (gu, gv) for g ∈ Sp(V ) is transitive.

If F = Fq is the finite field having q = pr elements for some prime p, we
will replace Fq with q in our notation for various types of matrix groups and
algebras, and so in particular we denote Sp(n, Fq) by Sp(n, q). Recall that
n = 2m is even.

2.2.16 Proposition. Sp(n, q) is a finite group of order

qm2
m∏

i=1

(q2i − 1).

We conclude this section with another proposition from [6] which, while
not particularly important for this thesis, demonstrates the importance of the
symplectic groups within group theory.

2.2.17 Proposition. The centre of Sp(V ) is Z(Sp(V )) = {±I}. If we define
PSp(V ) = Sp(V )/Z(Sp(V )), then PSp(V ) is a simple group unless F = F2

and dim V ∈ {2, 4} or F = F3 and dim V = 2.

The groups PSp(2m, q) form one of the infinite families of finite simple
groups in the classification theorem of finite simple groups.

11



Chapter 3

Flag Representations and
Incidence Theory of Sp(n, F)

3.1 Definitions and Examples

We begin by defining an object which is of central interest to us in this thesis.
Throughout this section, let F be a field, V a finite-dimensional vector space
over F, and n = dim V .

3.1.1 Definition. A flag of V is a sequence W = {W0, W1, . . . ,Wk} of sub-
spaces of V such that W0 = V , Wk = 0, and Wi+1 is properly contained in Wi

for i = 0, . . . , k − 1. To emphasize the nested character of the sequence, we
write

W = {W0 ⊃ W1 ⊃ · · · ⊃ Wk}.

We may also have occasion to write

W = {Wk ⊂ · · · ⊂ W1 ⊂ W0}.

In either case, the inclusions specify the order of the sequence. If U is a flag
which can be obtained from W by deleting some of the Wi, we call U a subflag
of W .

The concept of the orthogonal complement of a subspace extends readily
to flags of symplectic spaces.

3.1.2 Definition. Suppose V is a symplectic space and let

W = {W0 ⊃ W1 ⊃ · · · ⊃ Wk−1 ⊃ Wk}

be a flag of V . Then the orthogonal complement of W is the flag

W⊥ = {W⊥
k ⊃ W⊥

k−1 ⊃ · · · ⊃ W⊥
1 ⊃ W⊥

0 }.

The following definition introduces some useful notation.
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3.1.3 Definition. A composition of a number m ∈ N is a finite sequence
µ = {n1, n2, . . . , nk} with ni ∈ N such that

∑k
i=1 ni = m. If ni ≤ ni+1 for

i = 1, . . . , k − 1, then µ is called a partition of m.

If W = {W0 ⊃ W1 ⊃ · · · ⊃ Wk} is a flag of V , then by canceling adjacent
terms, we see that

k∑

i=1

dim(Wi−1/Wi) =
k∑

i=1

(dim Wi−1 − dim Wi) = dim W0 − dim Wk = n.

This justifies the following definition.

3.1.4 Definition. The type of the flag W is the composition

λ = {dim(W0/W1), dim(W1/W2), . . . , dim(Wk−1/Wk)}

of n. If µ is any composition of n, a µ-flag of V is a flag of V of type µ.
The set of all µ-flags of V will be denoted by Fµ. If µ = {1, 1, . . . , 1} is the
composition of n consisting entirely of ones, then a µ-flag is called a full flag.
A flag of any other type is called a partial flag.

If we delete a subspace Wi from a λ-flagW , the type of the resulting subflag
is obtained by adding dim(Wi−1/Wi) and dim(Wi+1/Wi) in the composition
λ. Thus a λ-flag has a subflag of type µ if and only if µ can be obtained from
λ by adding certain consecutive elements of λ.

3.1.5 Definition. Let λ = {λ1, . . . ,λk} and µ = {µ1, . . . , µl} be compositions
of n. Then we write µ 0 λ if there exist ni ∈ Z such that 0 = n0 < n1 < · · · <
nl and

µi =
ni∑

j=ni−1+1

λj

for all i.

In light of the preceding comments, we have the following proposition.

3.1.6 Proposition. LetW be a λ-flag of V and let µ be any other composition
of V . If µ 0 λ, then W has a unique subflag of type µ, which we denote Wµ.
Otherwise, W has no subflag of type µ.

We now give some examples of the geometric significance of flags of various
types.

3.1.7 Example. If 0 < m < n, then by definition an {n −m, m}-flag of V
consists of a sequence W = {V ⊃ W ⊃ 0}, where W is a subspace of V of
dimension m, but since V and 0 add no information, we usually identify the
set of {n−m, m}-flags of V with the m-dimensional subspaces of V .
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3.1.8 Example. If n = 3, there are 4 different types of flags. The only {3}-
flag is {V ⊃ 0}, which we regard as trivial. {2, 1}-flags correspond to lines,
while {1, 2}-flags correspond to planes, and a full flag consists of a line within
a plane.

Now if T ∈ GL(V ), T permutes the m-dimensional subspaces of V , with
T mapping W ⊂ V to TW , the image of W under T . Further, if W1 ⊃ W2

are two subspaces of V , then TW1 ⊃ TW2. Hence we see that if λ is any
composition of n, GL(V ) acts on Fλ, and by restriction, so does any subgroup
H of GL(V ), including Sp(V ). If the field F = Fq is finite, Fλ is a finite set,
and so we get a permutation representation of GL(V ), or any of its subgroups,
on the set Fλ. We refer to these representations as flag representations. In
the case of GL(n, q), flag representations can be used to compute explicitly a
significant number of irreducible characters. We illustrate this procedure with
an example before commenting on the general situation.

3.1.9 Example. Let G = GL(3, 2), and for a given composition λ of 3, let
ρλ be the character of the permutation representation of G on Fλ. Thus by
Lemma 2.1.13, ρλ(g) is the number of λ-flags fixed by g. Table 3.1 gives the
values of ρλ on the classes of G for λ = {3}, {1, 2}, and {1, 1, 1}.

g
(

1 0 0
0 1 0
0 0 1

) (
1 0 0
0 1 1
0 0 1

) (
1 1 0
0 1 1
0 0 1

) (
1 0 0
0 0 1
0 1 1

) (
0 0 1
1 0 1
0 1 0

) (
0 0 1
1 0 0
0 1 1

)

|Cl(g)| 1 21 42 56 24 24
ρ{3} 1 1 1 1 1 1
ρ{2,1} 7 3 1 1 0 0
ρ{1,1,1} 21 5 1 0 0 0

Table 3.1: Flag Characters of GL(3, 2).

We have omitted ρ{1,2} because ρ{1,2} = ρ{2,1}. Notice that in the notation
of Example 2.1.9, ρ{3} = χ1, the trivial character of G. Since

〈χ1, ρ{2,1}〉 =
1

168
(7 + 21 · 3 + 42 · 1 + 56 · 1 + 24 · 0 + 24 · 0) = 1,

χ1 appears once in the expression of ρ{2,1} as a sum of irreducible characters.
Hence ρ{2,1} − χ1 is a character of G with fewer irreducible constituents. In
fact, the values of ρ{2,1} − χ1 are

6 2 0 0 −1 −1 ,

so ρ{2,1}−χ1 = χ4 is an irreducible character of G, as may easily be confirmed
by checking the 〈χ4, χ4〉 = 1. Similarly, we can compute that

〈χ1, ρ{1,1,1}〉 = 1 and 〈χ4, ρ{1,1,1}〉 = 2,

so we obtain the reduced character ρ{1,1,1} − χ1 − 2χ4 with values

8 0 0 −1 1 1 .

This character is equal to χ6, and is also irreducible.
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The general situation for GL(n, q) is analogous. As proven by Steinberg in
[11], there is, for each partition λ of n, an irreducible character Γλ of GL(n, q)
which is obtained as an alternating sum of characters of the form ρµ. For
a given partition λ, the partitions µ for which ρµ appears in the alternating
sum are all less than or equal to λ under a certain partial ordering of the
partitions of n. Hence there is an ordering λ1, λ2, . . . ,λp(n), where p(n) is the
number of partitions of n, such that ρλ1 = Γλ1 is irreducible, and for each
i ≥ 2, Γλ1 , . . . , Γλi are the only irreducible constituents of ρλi , so that Γλi

can be computed by subtracting multiples of the already determined charac-
ters Γλ1 , . . . , Γλi−1 from ρλi , with the particular multiple being determined by
taking inner products. These characters are referred to as the unipotent char-
acters of GL(n, q), and they constitute one of the main families of irreducible
characters of GL(n, q).

In group representation theory, one is often interested not only in finding
the irreducible characters of a group G, but also in constructing the irreducible
representations of G to which they correspond. This problem is discussed
for the unipotent characters of GL(n, q) in [9], in which James shows how to
construct in a natural way subrepresentations of the flag representations whose
characters are the unipotent characters. He also discusses various properties of
these representations, proving, for example, that if µ and λ are compositions
of n which yield the same partition if their entries are arranged in increasing
order, then the permutation representations on Fλ and Fµ are isomorphic.
(Thus the equality ρ{1,2} = ρ{2,1} noted in Example 3.1.9 is a special case of a
more general result.)

Our goal in this thesis is to provide a foundation for a similar study of
the flag representations of Sp(n, q), and to determine the feasibility of using
the corresponding characters to compute irreducible characters of Sp(n, q). In
attempting to study the flag representations of Sp(n, q), one immediately en-
counters a striking difference between the flag actions of general linear groups
and symplectic groups.

3.1.10 Proposition. If V is a vector space of dimension n, then for any
partition λ of n, the action of GL(V ) on Fλ is transitive. However the cor-
responding action of Sp(V ) (assuming n is even) is not transitive unless λ is
{n}, {n− 1, 1}, or {1, n− 1}.

Proof. If U andW are any partial flags of the same type, we can add additional
subspaces to each to obtain full flags U ′ and W ′ having U and W as subflags.
If there exists T ∈ GL(V ) such that TU ′ = W ′, then certainly we must have
TU = W . Hence it suffices to prove that GL(V ) acts transitively on full flags.
To accomplish this, let {e1, e2, . . . , en} be a basis of V , let

E = {E0 ⊃ E1 ⊃ · · · ⊃ En},

where
Ei = 〈e1, e2, . . . , en−i〉,
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and let
W = {W0 ⊃ W1 ⊃ · · · ⊃ Wn}

be any other full flag of V . Choose a basis {w1} of Wn−1, and extend this to
a basis {w1, w2} of Wn−2. Iterating this process, we eventually obtain a basis
{w1, w2, . . . , wn} of V such that Wi = 〈w1, w2, . . . , wn−i〉. Let T be the unique
element of GL(V ) satisfying Tei = wi. Then TEi = Wi, and so TE = W , so
that the orbit of E is the entire set of full flags of V .

If n is even, then we may also consider the action of Sp(V ) on Fλ. Once
we have developed the concept of the incidence matrix of a flag, it will be
easy to see when this action is or is not transitive. The reason Sp(V ) fails to
be transitive on Fλ in most cases is that elements of Sp(V ) preserve B, and
hence preserve the dimensions of the intersections of subspaces and orthog-
onal complements of subspaces from the flags, and except in the three cases
mentioned, there are different possibilities for these dimensions. For example,
if n = 2m ≥ 4, and B has the matrix with m copies of ( 0 1

−1 0 ) on the diagonal,
then dim Rad〈e1, e2〉 = 0, whereas dim Rad〈e1, e3〉 = 2, so the {n− 2, 2}-flags
corresponding to 〈e1, e2〉 and 〈e1, e3〉 are contained in different orbits.

In general, if a finite group G acts on a set X, and O1, . . . ,Ok are the
orbits of this action, then G acts on each Oi by restriction, and so the per-
mutation representation ΦX is isomorphic to the direct sum ⊕k

i=1ΦOi . Thus
any attempt at decomposing a permutation representation into irreducible
subrepresentations should begin with finding the orbits of the corresponding
action. In this chapter, we will determine the orbits of Sp(V ) on Fλ for any
composition λ. Although we are primarily interested in the case in which F
is a finite field, the decomposition into orbits turns out to be independent of
F, so we will present the solution over an arbitrary field. Our main tool will
be introduced in the next section.

3.2 The Incidence Matrix of a Flag

Throughout this section, let F be any field, and let V 2 F2m be the vector
space of dimension n = 2m over F. Let B be the symplectic form on V whose
matrix with respect to the basis

{e1, . . . , e2m}

is 


0 1
−1 0

...
0 1
−1 0



 .

(Recall that any symplectic space has a basis with respect to which the sym-
plectic form has the above matrix, so there is no loss of generality here.) As
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a result, if i ≤ j, then

B(ei, ej) =

{
1, if (i, j) = (2l − 1, 2l) for some l,
0, otherwise.

This fact will be used throughout this chapter in determining the orthogonal
complements of various subspaces. We are now ready for the central definition
of this section.

3.2.1 Definition. Let λ be a composition of n, and let

W = {W0 ⊃ W1 ⊃ · · · ⊃ Wk}

be a λ-flag of V . Then the incidence matrix of W is the (k − 1) × (k − 1)
matrix I(W) with (i, j) entry given by

I(W)i,j = dim(W⊥
i ∩Wj).

If the need arises, we may subscript I(W) with the partition λ.

Note that since the intersection of any subspace with V or with 0 is de-
termined automatically, I(W) has entries only for the proper non-trivial sub-
spaces of W . However, for notational convenience we may occasionally use
the notation I(W)i,j to refer to dim(W⊥

i ∩Wj) even when it is possible that
i or j is 0 or k.

The relationship between the incidence matrix of a flag and the incidence
matrices of its subflags is fairly obvious: deleting a subspace from a flag corre-
sponds to deleting the row and column involving it from the incidence matrix.
It will be useful to establish some notation which describes this process.

3.2.2 Definition. Let λ = {λ1, . . . ,λk} and µ = {µ1, . . . , µl} be compositions
of n, and suppose that µ 0 λ, with

µi =
ni∑

j=ni−1+1

λj

for certain ni ∈ Z. If A is any (k − 1)× (k − 1) matrix, define Dλ,µ(A) to be
the (l − 1) × (l − 1) matrix obtained by deleting each entry of A whose row
or column index is not equal to

∑m
j=1 nj for any m. (If λ = {1, . . . , 1}, we

denote Dλ,µ simply by Dµ.)

The following proposition makes precise the relationship between the in-
cidence matrices of a flag and its subflags.

3.2.3 Proposition. In the notation of Definition 3.2.2, if W is any λ-flag of
V , we have I(Wµ) = Dλ,µ(I(W)).

Proof. The entries of I(W) with row and column indices of the form
∑m

j=1 nj

are precisely the entries which correspond to subspaces of W contained in Wµ,
and therefore by deleting all other entries, we obtain I(Wµ).
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We now give several examples of incidence matrices.

3.2.4 Example. If W = {V ⊃ W ⊃ 0} is any {n− r, r}-flag of V , then

I(W) = dim Rad W.

3.2.5 Example. If n = 6 and W =

{V ⊃ 〈e1, e2, e3, e4, e5〉 ⊃ 〈e1, e2, e4, e5〉 ⊃ 〈e1, e2, e5〉 ⊃ 〈e1, e5〉 ⊃ 〈e5〉 ⊃ 0},

then to compute I(W), we first note that W⊥ =

{0 ⊂ 〈e5〉 ⊂ 〈e4, e5〉 ⊂ 〈e3, e4, e5〉 ⊂ 〈e1, e3, e4, e5〉 ⊂ 〈e1, e2, e3, e4, e5〉 ⊂ V }.

Computing I(W) amounts to determining the dimensions of the intersections
of all possible pairs of subspaces from W⊥ and W . Since each subspace is
spanned by certain ei, the dimension of each intersection is just the number of
indices appearing in the bases of both subspaces. Thus I(W) can be computed
by filling in the following array, with each entry being the number of digits
which appear in both the row and column labels.

12345 1245 125 15 5
5
45
345
1345
12345

Hence

I(W) =





1 1 1 1 1
2 2 1 1 1
3 2 1 1 1
4 3 2 2 1
5 4 3 2 1




.

3.2.6 Example. If n = 6 and W =

{V ⊃ 〈e1, e2, e3, e4, e5〉 ⊃ 〈e1, e3, e4, e5〉 ⊃ 〈e1, e3, e4〉 ⊃ 〈e3, e4〉 ⊃ 〈e3〉 ⊃ 0},

then

I(W) =





1 1 0 0 0
2 2 1 0 0
2 2 1 0 0
3 2 1 0 0
4 3 2 1 1




.

Taken together, the two preceding examples show that two flags of the
same type need not have the same incidence matrix. It is, however, the case
that two flags in the same orbit of Sp(V ) have the same incidence matrix.
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3.2.7 Theorem. If W is any flag of V and if g ∈ Sp(V ), then I(gW) = I(W).

Proof. Suppose
W = {W0 ⊃ W1 ⊃ · · · ⊃ Wk},

so that
gW = {gW0 ⊃ gW1 ⊃ · · · ⊃ gWk}.

Let 1 ≤ i, j ≤ k − 1. By Lemma 2.2.14, (gWi)⊥ ∩ gWj = g(W⊥
i ) ∩ gWj, and

since g is a bijection, g(W⊥
i )∩ gWj = g

(
W⊥

i ∩Wj

)
. Hence since any element

of GL(V ) preserves subspace dimensions, we have

dim
(
(gWi)

⊥ ∩ gWj

)
= dim g

(
W⊥

i ∩Wj

)
= dim W⊥

i ∩Wj,

which shows that I(gW)i,j = I(W)i,j as desired.

We will eventually prove that the converse of Theorem 3.2.7 also holds,
so that incidence matrices completely classify the orbits of the flag actions
of Sp(V ). As a first step toward this goal, we abstract some properties of
incidence matrices of full flags.

3.3 Incidence Matrices of Full Flags

3.3.1 Proposition. The following properties hold for any full flag W of V .

1. I(W)j,i = I(W)i,j + j − i.

2. I(W)i,j − I(W)i,j+1 ∈ {0, 1}.

3. I(W)i+1,j − I(W)i,j ∈ {0, 1}.

4. I(W)i,i ≡ i mod 2. In particular, I(W)1,1 = I(W)n−1,n−1 = 1.

5. I(W)i+1,i+1 − I(W)i,i = ±1.

6. If I(W)i,j = I(W)i,k, then I(W)l,j = I(W)l,k whenever 1 ≤ l ≤ i.

7. I(W)i,j ∈ {0, 1, . . . , n− 1}.

Throughout, we assume the various indices are such that elements of the
(n− 1)× (n− 1) matrix I(W) are referenced.

Proof. We will use freely Proposition 2.2.6, Lemma 2.2.10, and the linear
algebra result which states that if U and W are subspaces of V , then

dim(U + W ) + dim(U ∩W ) = dim U + dim W.

We let W = {W0 ⊃ W1 ⊃ · · · ⊃ Wn} as usual.
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1. We have

I(W)j,i = dim
(
W⊥

j ∩Wi

)
= n−dim

(
W⊥

j ∩Wi

)⊥
= n−dim

(
W⊥

i + Wj

)

= n−
(
dim W⊥

i + dim Wj − dim
(
W⊥

i ∩Wj

))
.

dim Wj = n− j by construction, and dimW⊥
i = n−dim Wi = i, so that

I(W)j,i = n− (i + n− j − I(W)i,j) = I(W)i,j + j − i.

2. Since Wj+1 ⊂ Wj, we have that

I(W)i,j+1 = dim
(
W⊥

i ∩Wj+1

)
= dim

(
(W⊥

i ∩Wj) ∩Wj+1

)

= dim
(
W⊥

i ∩Wj

)
+ dim Wj+1 − dim

((
W⊥

i ∩Wj

)
+ Wj+1

)
.

Now dim
(
W⊥

i ∩Wj

)
= I(W)i,j. Since W is a full flag, Wj+1 is a sub-

space of Wj of codimension 1, and hence

dim
((

W⊥
i ∩Wj

)
+ Wj+1

)
=

{
dim Wj+1 if W⊥

i ∩Wj ⊂ Wj+1,
dim Wj otherwise.

Thus

I(W)i,j+1 =

{
I(W)i,j if W⊥

i ∩Wj ⊂ Wj+1,
I(W)i,j − 1 otherwise,

which proves 2.

3. Property 3 follows by applying Property 1 to the equation in Property
2.

4. By construction, the subspaces W0, W2, . . . Wn have even dimension,
while W1, W3, . . . Wn−1 have odd dimension, so dimWi ≡ i mod 2. But

I(W)i,i = dim
(
W⊥

i ∩Wi

)
= dim Rad Wi,

and by Corollary 2.2.9,

dim Rad Wi ≡ dim Wi mod 2,

so I(W)i,i ≡ i mod 2. If i ∈ {1, n − 1}, then one of Wi and W⊥
i has

dimension 1. Hence I(W)i,i = dim
(
W⊥

i ∩Wi

)
≤ 1, and is odd, and so

must be 1.

5. We have I(W)i+1,i+1 − I(W)i,i =

(I(W)i+1,i+1 − I(W)i+1,i)− (I(W)i,i − I(W)i+1,i) .

By Properties 2 and 3, each of the two terms is 0 or −1, and hence their
difference is in {−1, 0, 1}. But by 4, I(W)i+1,i+1−I(W)i,i ≡ (i+1)−i ≡
1 mod 2, and so I(W)i+1,i+1 − I(W)i,i ∈ {−1, 1}.
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6. Without loss of generality, we may assume that j < k. Hence Wj ⊃ Wk,
and so W⊥

i ∩ Wj ⊃ W⊥
i ∩ Wk. But I(W)i,j = I(W)i,k, so these two

subspaces have the same dimension, and hence W⊥
i ∩Wj = W⊥

i ∩Wk.
Now since 1 ≤ l ≤ i, Wl ⊃ Wi, and hence W⊥

l ⊂ W⊥
i . Using these facts,

we see that

I(W)l,j = dim
(
W⊥

l ∩Wj

)
= dim

(
W⊥

l ∩
(
W⊥

i ∩Wj

))

= dim
(
W⊥

l ∩
(
W⊥

i ∩Wk

))
= dim

(
W⊥

l ∩Wk

)
= I(W)l,k.

7. I(W)i,j is the dimension of a proper subspace of the n-dimensional vec-
tor space V .

The properties in Proposition 3.3.1 place strong restrictions on what sort of
matrix can be the incidence matrix of some full flag. In fact, we can use them
to enumerate all possible incidence matrices of full flags for small dimensions.

3.3.2 Example. If n = 4, Properties 4 and 5 imply that the diagonal of any
incidence matrix of a {1, 1, 1, 1}-flag must be (1, 0, 1) or (1, 2, 1). By Property
1, the entries below the diagonal are determined by those above it, so we only
need to determine the possibilities for the entries above the diagonal. The

only way to fill in the above-diagonal entries of
(

1
0

1

)
so that the entries

decrease along rows, and increase along columns, as required by Properties 2

and 3 is
(

1 0 0
0 0

1

)
. We can fill in

(
1

2
1

)
in two ways, as either

(
1 1 0

2 1
1

)
or as

(
1 1 1

2 1
1

)
. Computing the below-diagonal entries via Property 1, we see that

the only possible incidence matrices for {1, 1, 1, 1}-flags are




1 0 0
1 0 0
2 1 1



 ,




1 1 0
2 2 1
2 2 1



 , and




1 1 1
2 2 1
3 2 1



 .

To see that these are actually incidence matrices of full flags, we note that
they correspond to the flags

{V ⊃ 〈e1, e2, e3〉 ⊃ 〈e1, e2〉 ⊃ 〈e1〉 ⊃ 0},

{V ⊃ 〈e1, e2, e3〉 ⊃ 〈e1, e3〉 ⊃ 〈e1〉 ⊃ 0},

and
{V ⊃ 〈e1, e2, e3〉 ⊃ 〈e1, e3〉 ⊃ 〈e3〉 ⊃ 0}.

Thus in the case n = 4, every 3 × 3 matrix satisfying the properties of
Proposition 3.3.1 is the incidence matrix of some full flag. We will prove
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shortly that this is true for any n; that is, Proposition 3.3.1 completely de-
scribes incidence matrices of full flags. In proving this we will proceed induc-
tively; given a matrix M satisfying the properties of Proposition 3.3.1 and
a flag {V ⊃ Wi ⊃ · · · ⊃ Wn} of type {i, 1, . . . , 1} whose incidence matrix
is the (n − i) × (n − i) submatrix in the bottom right corner of M , we will
show that it is always possible to choose a vector v so that the incidence ma-
trix of the {i − 1, 1, . . . , 1}-flag {V ⊃ 〈v〉 ⊕ Wi ⊃ Wi ⊃ · · · ⊃ Wn} is the
(n− i + 1)× (n− i + 1) submatrix in the bottom right corner of M . In order
to do this, we need to know all the different possibilities which are allowed by
Proposition 3.3.1 for those entries of the larger submatrix which correspond
to 〈v〉⊕Wi, and how to choose v so that each of these possibilities is realized.
The following lemma provides precisely this information. (By Property 1 of
Proposition 3.3.1, we only need to consider entries above the diagonal.)

3.3.3 Lemma. Let

{W0 ⊃ W1 ⊃ · · · ⊃ Wi−1 ⊃ Wi ⊃ · · · ⊃ Wn}

be a full flag of V , and let 2 ≤ i ≤ n−1. If v ∈ Wi−1\Wi, then Wi−1 = 〈v〉⊕Wi,
and the entries on or above the diagonal in rows i − 1 and i of I(W) take
either the form

k+1 k ... k k−1 ... k−1 ... 1 ... 1 0 ... 0
k ... k k−1 ... k−1 ... 1 ... 1 0 ... 0 (Form 1)

or the form

j−1 j
k−1 k−1 ... k−1 k−2 ... k−2 ... l−1 ... l−1 l−1 ... l−1 ... 1 ... 1 0 ... 0

k ... k k−1 ... k−1 ... l ... l l−1 ... l−1 ... 1 ... 1 0 ... 0
(Form 2)

for some l with 1 ≤ l ≤ k, and with the indicated entries lying in columns
j − 1 and j. (It is possible for no zeros to be present at the end of one or
both of the rows, or for the row beginning with the smaller number to consist
entirely of zeros. It is also possible to have j = n, in which case Wj = 0.)
Further, they take Form 1 if and only if

v ∈ (Wi + W⊥
i )\Wi,

and Form 2 if and only if

v ∈ (Wi + W⊥
j )\(Wi + W⊥

j−1).

Proof. Since Wi has codimension 1 in Wi−1, it is automatic that Wi−1 =
〈v〉 ⊕Wi for any v ∈ Wi−1\Wi. That the above-diagonal entries of rows i− 1
and i take one of the above-mentioned forms is a direct consequence of the
properties in Proposition 3.3.1. First, since the entries of I(W) increase along
columns, and since I(W)n−1,n−1 = 1, every entry in the last column of I(W)
is 0 or 1. Hence since entries decrease along rows, if I(W)i,i = k, then the
above-diagonal portion of row i of I(W) must have the form
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k ... k k−1 ... k−1 ... 1 ... 1 0 ... 0 ,

with each number in {k, k− 1, . . . , 1} occurring at least once, and 0 occurring
zero or more times. Now consider the form row i− 1 must take. By Property
3 of Proposition 3.3.1, each entry of row i − 1 is equal to or one less than
the entry below it in row i. It is possible that rows i − 1 and i are identical
in the entries in questions, in which case the rows take Form 1. Otherwise,
let j be the index of the leftmost column in which rows i and i − 1 have the
same entry, and let that entry be l − 1 for some l with 1 ≤ l ≤ k. (If rows i
and i− 1 do not have the same entry in any column, we take j to be n.) By
the properties of Proposition 3.3.1, we see that rows i − 1 and i must have
the same entries in all columns with index j′ ≥ j, and by construction, their
entries differ by 1 in all columns with index j′ < j. In particular, in order for
Property 2 of Proposition 3.3.1 to hold, the entries in column j − 1 must be
l − 1 and l. Thus the entries in question take Form 2 for the number l and
index j.

To prove that the entries have Form 1 if and only if v ∈ (Wi + W⊥
i )\Wi,

suppose first that v ∈ (Wi + W⊥
i )\Wi. Since Wi−1 = 〈v〉+ Wi, we have

W⊥
i−1 ∩Wi = (〈v〉+ Wi)

⊥ ∩Wi = 〈v〉⊥ ∩
(
W⊥

i ∩Wi

)
.

Now
v ∈ Wi + W⊥

i =
(
W⊥

i ∩Wi

)⊥
,

so W⊥
i ∩Wi ⊂ 〈v〉⊥, and hence 〈v〉⊥ ∩

(
W⊥

i ∩Wi

)
= W⊥

i ∩Wi. Hence

W⊥
i−1 ∩Wi = W⊥

i ∩Wi,

and so I(W)i−1,i = I(W)i,i, which occurs only when the entries have Form 1.
Suppose conversely that the entries in question have Form 1. Then by

Property 1, I(W)i,i−1 = k + 1. Hence

dim
(
W⊥

i ∩Wi−1

)
= k + 1 > dim

(
W⊥

i ∩Wi

)
= k,

so there is some vector u ∈ W⊥
i ∩Wi−1\W⊥

i ∩Wi. Since u ∈ Wi−1 = 〈v〉+Wi,
there exist λ ∈ F and w ∈ Wi such that

u = λv + w.

Since u /∈ Wi, λ %= 0, and hence v = λ−1u − λ−1w, which shows that v ∈(
Wi + W⊥

i

)
\Wi.

Finally, we prove that the entries have Form 2 for the number l and index
j if and only if v ∈ (Wi + W⊥

j )\(Wi + W⊥
j−1). Suppose first that v ∈ (Wi +

W⊥
j )\(Wi + W⊥

j−1), for some j, and let l = I(W)i,j−1. We claim that the
submatrix

I(W)i−1,j−1 I(W)i−1,j

I(W)i,j−1 I(W)i,j
equals

l − 1 l − 1
l l − 1

.
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Since (Wi + W⊥
j )\(Wi + W⊥

j−1) contains v,

Wi + W⊥
j " Wi + W⊥

j−1 ⇒ W⊥
i ∩Wj # W⊥

i ∩Wj−1,

so that I(W)i,j < I(W)i,j−1, which means I(W)i,j = l − 1 by Property 2.
Once again using Wi−1 = 〈v〉+ Wi, we have

W⊥
i−1 ∩Wj = 〈v〉⊥ ∩

(
W⊥

i ∩Wj

)
.

Since v ∈ Wi + W⊥
j , W⊥

i ∩Wj ⊂ 〈v〉⊥, and so the preceding equality reduces
to

W⊥
i−1 ∩Wj = W⊥

i ∩Wj,

which implies that I(W)i−1,j = I(W)i,j = l − 1. By construction, v ∈ Wi−1,
so v ∈ Wi−1 + W⊥

j−1. But by hypothesis, v /∈ Wi + W⊥
j−1, so Wi + W⊥

j−1 #
Wi−1 + W⊥

j−1. Taking orthogonal complements then shows that

W⊥
i−1 ∩Wj−1 # W⊥

i ∩Wj−1,

and so I(W)i−1,j−1 < I(W)i,j−1, which implies that I(W)i−1,j−1 = l − 1 by
Property 3. We have shown that the entries in question include the submatrix

l − 1 l − 1
l l − 1

,

and so the entries must have Form 2 for the number l, as this is the only form
in which such a submatrix can occur.

Suppose conversely that the entries have Form 2 for the number l and
index j. Then I(W)i−1,j−1 = I(W)i−1,j = I(W)i,j = l−1, but I(W)i,j−1 = l,
and so

W⊥
i−1 ∩Wj−1 = W⊥

i−1 ∩Wj = W⊥
i ∩Wj,

and all three subspaces are properly contained in W⊥
i ∩Wj−1. Taking orthog-

onal complements, we see that

Wi−1 + W⊥
j−1 = Wi−1 + W⊥

j = Wi + W⊥
j ,

and that all three subspaces properly contain Wi + W⊥
j−1. Hence we may

choose some vector w ∈
(
Wi + W⊥

j

)
\

(
Wi + W⊥

j−1

)
, and write w = w1 + w2,

with w1 ∈ Wi and w2 ∈ W⊥
j \W⊥

j−1. By the equality of subspaces mentioned
above, we also know that

w ∈ Wi−1 + W⊥
j−1 = 〈v〉+ Wi + W⊥

j−1,

so we can write w = λv + w3 + w4 for some λ ∈ F, w3 ∈ Wi, and w4 ∈ W⊥
j−1.

Since w /∈ Wi + W⊥
j−1, λ %= 0, and so we can equate the two expressions for w

and solve for v to obtain

v = λ−1(w1 − w3) + λ−1(w2 − w4).
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By considering the subspace in which each wα is contained, and noting in
particular that W⊥

j−1 ⊂ W⊥
j , we see that this expression for v shows that

v ∈ Wi+W⊥
j . However, if v were in Wi+W⊥

j−1, the equation w = λv+w3+w4

would force w to be in Wi+W⊥
j−1, contrary to our choice of w, so v /∈ Wi+W⊥

j−1,
as desired.

With this technical lemma established, we can now prove that the proper-
ties of Proposition 3.3.1 completely determine incidence matrices of full flags.

3.3.4 Theorem. Any (n − 1) × (n − 1) matrix having the properties listed
in Proposition 3.3.1 is the incidence matrix of some full flag of V .

Proof. Let M be such a matrix. Since M satisfies Property 1, we only need to
show that the upper triangular portion of M is the upper triangular portion
of I(W) for some flag W . We will proceed by downward induction, and
show that for any i with 1 ≤ i ≤ n − 1, there exists an {i, 1, . . . , 1}-flag of
V whose incidence matrix is D{i,1,...,1}(M), the (n − i) × (n − i) submatrix
in the bottom right corner of M . When i = n − 1, this is automatic; for
by Property 4, Mn−1,n−1 = 1, and if w is any non-zero vector in V , the
sole entry of the incidence matrix of the {n − 1, 1}-flag {V ⊃ 〈w〉 ⊃ 0}
is dim

(
〈w〉⊥ ∩ 〈w〉

)
= dim〈w〉 = 1. Now suppose that for some i, with

2 ≤ i ≤ n− 1, there is an {i, 1, . . . , 1}-flag

W = {V ⊃ Wi ⊃ Wi+1 ⊃ · · · ⊃ Wn = 0}

whose incidence matrix is D{i,1,...,1}(M). (We have indexed the subspaces
of W as if they were the corresponding subspaces of the same dimension in
a full flag of V .) Since M satisfies the properties of Proposition 3.3.1, the
above-diagonal entries of M in rows i − 1 and i must take one of the forms
described in Lemma 3.3.3. (Recall that these forms were derived entirely from
the properties of Proposition 3.3.1.)

Suppose first that they take Form 1, so that Mi,i = k and Mi−1,i−1 = k +1
for some k. We claim that k < i. To see this, observe that since M1,1 = 1, and
since by Property 5 entries increase by at most 1 from one diagonal entry to
the next, Mj,j ≤ j for any j, with Mj,j = j occurring only when the diagonal
entries increase by 1 at every step up to j. Since Mi−1,i−1 = k + 1 > Mi,i,
entries do not increase at every step before i, and so Mi,i < i. Hence since
D{i,1,...,1}(M) is the incidence matrix of W ,

dim
(
Wi + W⊥

i

)
= n− dim

(
W⊥

i ∩Wi

)
= n− k > n− i = dim Wi.

Thus Wi + W⊥
i properly contains Wi, and so there is some vector v ∈ (Wi +

W⊥
i )\Wi. If we set

W ′ = {V ⊃ 〈v〉+ Wi ⊃ Wi ⊃ Wi+1 ⊃ · · · ⊃ Wn},

then by Lemma 3.3.3, the incidence matrix of W ′ is D{i−1,1,...,1}(M).
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Now suppose that the above-diagonal entries in rows i − 1 and i are of
Form 2 for some l and j as specified in the notation of Lemma 3.3.3. Then
since D{i,1,...,1}(M) is the incidence matrix of W , we have

dim
(
Wi + W⊥

j

)
= n− dim

(
W⊥

i ∩Wj

)
= n−Mi,j

= n− (l − 1) > n− l = n− dim
(
W⊥

i ∩Wj−1

)
= dim

(
Wi + W⊥

j−1

)
,

and so there exists some vector v ∈ (Wi+W⊥
j )\(Wi+W⊥

j−1). Hence by Lemma
3.3.3, if we set

W ′ = {V ⊃ 〈v〉+ Wi ⊃ Wi ⊃ Wi+1 ⊃ · · · ⊃ Wn},

then I(W ′) = D{i−1,1,...,1}(M).
Thus in all cases we can find an {i−1, 1, . . . , 1}-flag whose incidence matrix

is D{i−1,1,...,1}(M), and so, by induction, each D{i,1,...,1}(M) is the incidence
matrix of some {i, 1, . . . , 1}-flag. In particular, we may set i = 1 to conclude
that M itself is the incidence matrix of some full flag.

3.4 The Orbit Classification Theorem

In proving the converse of Theorem 3.2.7, we will proceed by induction on
the dimension of the space. Most of the technicalities needed in the induction
step are contained in the following lemma, which gives a procedure for relating
a full flag of a symplectic space V to a full flag of a non-degenerate index 2
subspace of V in a canonical way, and describes how incidence matrices behave
under the procedure.

3.4.1 Lemma. Let V be the symplectic space of dimension n = 2m, where
n ≥ 4, and let

W = {W0 ⊃ W1 ⊃ · · · ⊃ Wn}
be a full flag of V . Then there exists a unique j ∈ {0, 1, . . . , n− 2} such that
the last column of I(W) is (0, . . . , 0, 1, . . . , 1)T , with the first 1 appearing in
row j + 1. There exist w ∈ Wn−1 and v ∈ Wj with B(v, w) = 1, and for any
such v, w, if we set

U = 〈v, w〉⊥ and Ui = U ∩Wi,

then Wi = Ui ⊕ 〈v, w〉 if 0 ≤ i ≤ j and Wi = Ui ⊕ 〈w〉 if j + 1 ≤ i ≤ n − 1.
Further, U is isomorphic to the symplectic space of dimension n− 2 and

U = {U0 ⊃ U1 ⊃ · · · ⊃ Uj ⊃ Uj+2 ⊃ · · · ⊃ Un−1}

is a full flag of U whose incidence matrix has entries given by

I(U)k,l =






I(W)k,l if k, l ≤ j
I(W)k,l+1 if k ≤ j and l ≥ j + 1
I(W)k+1,l − 1 if k ≥ j + 1 and l ≤ j
I(W)k+1,l+1 − 1 if k, l ≥ j + 1

.
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Proof. That the last column of I(W) takes the specified form for a unique
j ∈ {0, 1, . . . , n−2} is a direct consequence of Properties 3 and 4 of Proposition
3.3.1. For this j we have W⊥

j ∩ Wn−1 = 0, which implies that the one-
dimensional subspace Wn−1 is not contained in W⊥

j . Hence there must exist
w ∈ Wn−1 and v ∈ Wj such that B(v, w) %= 0, and by scaling w appropriately
we can assume that B(v, w) = 1. Now let U = 〈v, w〉⊥ and Ui = U ∩ Wi.
Since the subspace 〈v, w〉 is non-degenerate, Proposition 2.2.7 implies that

V = U ⊕ 〈v, w〉.

Now suppose that 0 ≤ i ≤ j. If x ∈ Wi, then by the direct sum decomposition
given for V , there exist unique u ∈ U and y ∈ 〈v, w〉 such that x = u + y.
Since 〈v, w〉 ⊂ Wi, y ∈ Wi, and so also u ∈ Wi. Thus x ∈ Ui ⊕ 〈v, w〉, and we
conclude that Wi ⊂ Ui ⊕ 〈v, w〉. The opposite inclusion is automatic, so

Wi = Ui ⊕ 〈v, w〉.

If j + 1 ≤ i ≤ n − 1, then since I(W)i,n−1 = 1, dim
(
W⊥

i ∩Wn−1

)
= 1,

which implies that Wi ⊂ W⊥
n−1 = 〈w〉⊥. If x ∈ Wi, then by the direct sum

decomposition of V we can write uniquely x = u + λv + µw for u ∈ U and
λ, µ ∈ F. Since x, u and w are all contained in 〈w〉⊥, we must have λv ∈ 〈w〉⊥,
and so since B(v, w) = 1, λ = 0. Thus x = u + µw, and so since w ∈ Wi,
u ∈ Wi as well. This shows that x ∈ Ui ⊕ 〈w〉, and so Wi ⊂ Ui ⊕ 〈w〉. Once
again, the opposite inclusion is automatic, so

Wi = Ui ⊕ 〈w〉.

Since 〈v, w〉 is a non-degenerate subspace of dimension 2, U is a non-
degenerate subspace of dimension n− 2, and hence is isomorphic to the sym-
plectic space of dimension n− 2. By comparing the dimensions of Ui and Wi,
we see that

dim Ui =

{
(n− i)− 2 if 0 ≤ i ≤ j
(n− i)− 1 if j + 1 ≤ i ≤ n− 1

,

and the subspaces Ui are nested by definition, so noting that Uj = Uj+1, we
conclude that

U = {U0 ⊃ U1 ⊃ · · · ⊃ Uj ⊃ Uj+2 ⊃ · · · ⊃ Un−1}

is a full flag of U . It remains to justify the formula for the incidence matrix of
U . In doing this, we will need to discuss orthogonal complements of subspaces
in both U and W ; by the notation U⊥

k we will mean the orthogonal complement
of Uk in W , so if we wish to refer to the orthogonal complement of Uk in U ,
we will use the fact that this subspace equals U⊥

k ∩ U . Let 0 ≤ l ≤ n − 1.
Observe first that if 0 ≤ k ≤ j, then

W⊥
k ∩Wl = (Uk ⊕ 〈v, w〉)⊥ ∩Wl = U⊥

k ∩ U ∩Wl
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=
(
U⊥

k ∩ U
)
∩ (U ∩Wl) =

(
U⊥

k ∩ U
)
∩ Ul.

If j + 1 ≤ k ≤ n − 1, then dim
(
W⊥

k ∩Wn−1

)
= 1, so 〈w〉 ⊂ W⊥

k , but also,
〈w〉 ⊂ Wk, so W⊥

k ⊂ 〈w〉⊥. Hence since 〈w〉 ⊂ Wl as well,

〈w〉 ⊂ W⊥
k ∩Wl ⊂ 〈w〉⊥.

If x ∈ W⊥
k ∩Wl, then, as before, there exist unique u ∈ U and λ, µ ∈ F such

that x = u+λv+µw. Since x, u, and w are all contained in 〈w〉⊥, λv ∈ 〈w〉⊥,
and so λ = 0. Hence since x and w are contained in W⊥

k ∩Wl, so is u, and
thus W⊥

k ∩ Wl ⊂
((

W⊥
k ∩Wl

)
∩ U

)
⊕ 〈w〉. The opposite inclusion is again

automatic, so
W⊥

k ∩Wl =
((

W⊥
k ∩Wl

)
∩ U

)
⊕ 〈w〉.

But (noting that U ⊂ 〈w〉⊥) we have

(
W⊥

k ∩Wl

)
∩ U =

(
(Uk ⊕ 〈w〉)⊥ ∩ U

)
∩ Ul

=
(
U⊥

k ∩ 〈w〉⊥ ∩ U
)
∩ Ul =

(
U⊥

k ∩ U
)
∩ Ul,

and so
W⊥

k ∩Wl =
((

U⊥
k ∩ U

)
∩ Ul

)
⊕ 〈w〉.

As a result of these expressions for W⊥
k ∩Wl, we see that

dim
((

U⊥
k ∩ U

)
∩ Ul

)
=

{
dim

(
W⊥

k ∩Wl

)
if 0 ≤ k ≤ j

dim
(
W⊥

k ∩Wl

)
− 1 if j + 1 ≤ k ≤ n− 1

.

Hence noting the shift in indexing which occurs in the flag U as a result of
the equality of Uj and Uj+1, we see that

I(U)k,l =






dim
((

U⊥
k ∩ U

)
∩ Ul

)
if k, l ≤ j

dim
((

U⊥
k ∩ U

)
∩ Ul+1

)
if k ≤ j and l ≥ j + 1

dim
((

U⊥
k+1 ∩ U

)
∩ Ul

)
if k ≥ j + 1 and l ≤ j

dim
((

U⊥
k+1 ∩ U

)
∩ Ul+1

)
if k, l ≥ j + 1

=






I(W)k,l if k, l ≤ j
I(W)k,l+1 if k ≤ j and l ≥ j + 1
I(W)k+1,l − 1 if k ≥ j + 1 and l ≤ j
I(W)k+1,l+1 − 1 if k, l ≥ j + 1

.

We can now prove the converse of Theorem 3.2.7 for full flags.
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3.4.2 Theorem. If

W = {W0 ⊃ W1 ⊃ · · · ⊃ Wn} and W ′ = {W ′
0 ⊃ W ′

1 ⊃ · · · ⊃ W ′
n}

are two full flags of V such that I(W) = I(W ′), then there exists g ∈ Sp(V )
such that gW = W ′.

Proof. We proceed by induction on the dimension n of V , which we recall is
necessarily even. If n = 2, then any full flag of V has the form W = {V ⊃
〈w〉 ⊃ 0} for some non-zero w ∈ V , so we can identify full flags with lines in
V . Thus all full flags of V have incidence matrix (1). Further, by Proposition
2.2.12, Sp(V ) = SL(V ) when n = 2, and SL(V ) acts transitively on the set of
lines in V for any vector space V .

Now assume that for some even number k ≥ 2, Sp(W ) acts transitively
on the set of full flags of W with a given incidence matrix for all symplectic
spaces W with dim W ≤ k, and suppose V is a symplectic space of dimension
k + 2. Suppose

W = {W0 ⊃ W1 ⊃ · · · ⊃ Wk+2} and W ′ = {W ′
0 ⊃ W ′

1 ⊃ · · · ⊃ W ′
k+2}

are two full flags of V such that I(W) = I(W ′). Then we can apply Lemma
3.4.1 to both W and W ′ to conclude that for some index j determined solely
from the common incidence matrix of W and W ′, there exist vectors v ∈ Wj,
v′ ∈ W ′

j , w ∈ Wk+1, and w′ ∈ W ′
k+1 such that B(v, w) = B(v′, w′) = 1, and if

U = 〈v, w〉⊥, U ′ = 〈v′, w′〉⊥, Ui = U ∩Wi, and U ′
i = Ui ∩W ′

i , then

W = {U0 ⊕ 〈v, w〉 ⊃ · · · ⊃ Uj ⊕ 〈v, w〉 ⊃ Uj+1 ⊕ 〈w〉 ⊃ · · · ⊃ Uk+1 ⊕ 〈w〉 ⊃ 0}

and

W ′ = {U ′
0⊕〈v′, w′〉 ⊃ · · · ⊃ U ′

j⊕〈v′, w′〉 ⊃ U ′
j+1⊕〈w′〉 ⊃ · · · ⊃ U ′

k+1⊕〈w′〉 ⊃ 0}.

By Proposition 2.2.15, there exists g0 ∈ Sp(V ) such that g0v′ = v and g0w′ =
w. Then by Lemma 2.2.14

g0U
′ = g0

(
〈v′, w′〉⊥

)
= (g0〈v′, w′〉)⊥ = 〈v, w〉⊥ = U.

Hence if we let W ′′ = g0W ′, and U ′′
i = g0U ′

i , we have that

W ′′ = {U ′′
0 ⊕〈v, w〉 ⊃ · · · ⊃ U ′′

j ⊕〈v, w〉 ⊃ U ′′
j+1⊕〈w〉 ⊃ · · · ⊃ U ′′

k+1⊕〈w〉 ⊃ 0}.

(Note that U ′′
0 = U0 = U .) Now by Theorem 3.2.7, I(W ′′) = I(W ′), which

by hypothesis is I(W). Also, if we denote the subspaces of W ′′ by W ′′
i , then

v ∈ W ′′
j and w ∈ W ′′

k+1 satisfy B(v, w) = 1 and U ′′
i = U ∩ W ′′

i . Hence by
Lemma 3.4.1, U is a symplectic space of dimension k, and both

U = {U0 ⊃ U1 ⊃ · · · ⊃ Uj ⊃ Uj+2 ⊃ · · · ⊃ Uk+1}
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and
U ′′ = {U ′′

0 ⊃ U ′′
1 ⊃ · · · ⊃ U ′′

j ⊃ U ′′
j+2 ⊃ · · · ⊃ U ′′

k+1}

are full flags of U , and further, their incidence matrices may be computed
from I(W) and I(W ′′) by the formula given in that lemma. Thus since
I(W) = I(W ′′), I(U) = I(U ′′), and so by our induction hypothesis, there
exists h ∈ Sp(U) such that hU ′′ = U . Since V = U ⊕ 〈v, w〉, we can extend
h to an element of GL(V ) by noting that any element x ∈ V can be written
uniquely in the form x = u+y, u ∈ U , y ∈ 〈v, w〉, and defining h(x) = h(u)+y.
In fact, it is easily checked that under this definition, h ∈ Sp(V ). Hence since
hU ′′

i = Ui, but h restricts to the identity map on 〈v, w〉, hW ′′ = W , so that
if we define g = hg0 ∈ Sp(V ), gW ′ = W . Hence Sp(V ) acts transitively on
full flags of V with a given incidence matrix, and so, by induction, the result
holds for symplectic spaces of any dimension.

We wish to extend Theorem 3.4.2 to all flags of V . The basic idea is that if
λ is a composition of n, and two λ-flags of V have the same incidence matrix,
then we can insert subspaces into the flags to obtain two full flags with the
same incidence matrix, and then apply Theorem 3.4.2. In order to justify this
argument, however, we need to be sure that there is a way of extending a
λ-flag with a given incidence matrix to a full flag which is independent of the
choice of flag having that incidence matrix. That such a canonical extension
method exists is the content of our next lemma.

3.4.3 Lemma. Let λ = {λ1, λ2, . . . ,λk+1, . . . ,λm+1} be a composition of n
such that λk+1 ≥ 2, but λi = 1 for i > k + 1 (possibly k = m). Let

W = {V = W0 ⊃ W1 ⊃ · · · ⊃ Wk ⊃ Wk+1 ⊃ · · · ⊃ Wm+1 = 0}

be a λ-flag of V . Then there exists w ∈ Wk\Wk+1 such that if W ′ is the λ′-flag

{W0 ⊃ W1 ⊃ · · · ⊃ Wk ⊃ 〈w〉 ⊕Wk+1 ⊃ Wk+1 ⊃ · · · ⊃ Wm+1},

where λ′ = {λ1, λ2, . . . ,λk+1−1, 1, . . . ,λm+1}, then I(W ′) is given by a formula
which depends only on I(W) (and λ), not W .

Proof. Observe that W⊥
0 ∩Wk = W⊥

0 ∩Wk+1 = 0, whereas W⊥
m+1∩Wk = Wk %=

Wk+1 = W⊥
m+1∩Wk+1. Hence there must exist a smallest j with 1 ≤ j ≤ m+1

such that W⊥
j ∩Wk %= W⊥

j ∩Wk+1. Since W⊥
i ∩Wk ⊃ W⊥

i ∩Wk+1 for any
i, I(W)i,k ≥ I(W)i,k+1, with equality if and only if W⊥

i ∩Wk = W⊥
i ∩Wk+1,

and so j is the smallest row index for which the entries in columns k and k+1
of I(W) are distinct. (If columns k and k + 1 of I(W) are identical, then
j = m + 1.) Thus j can be determined from I(W) alone. Now select any
w ∈

(
W⊥

j ∩Wk

)
\

(
W⊥

j ∩Wk+1

)
, and consider the λ′-flag

W ′ = {W0 ⊃ W1 ⊃ · · · ⊃ Wk ⊃ 〈w〉 ⊕Wk+1 ⊃ Wk+1 ⊃ · · · ⊃ Wm+1}.
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We need to show that I(W ′) can be determined entirely from I(W). Since W ′

is constructed by adding one additional subspace to W , any entry of I(W ′)
not in row or column k+1 corresponds naturally to an entry of I(W). Further,
the entries in row k + 1 can be determined from those in column k + 1 using
the partial flag analogue of Property 1 of Proposition 3.3.1. (Proposition 3.3.1
applies only to full flags, but since any partial flag is a subflag of some full
flag, each property in Proposition 3.3.1 yields information about partial flags
as well. Property 1 can be applied to a partial flag by determining in which
entry (i, j) a particular number appears in the incidence matrix of a full flag
having the partial flag as a subflag.) Thus we only need to show how to
determine the numbers

dim
(
W⊥

i ∩ (〈w〉 ⊕Wk+1)
)

and
dim

(
(〈w〉 ⊕Wk+1)

⊥ ∩ (〈w〉 ⊕Wk+1)
)

from I(W). Now if i ≥ j, W⊥
i ⊃ W⊥

j , so w ∈ W⊥
i . Hence

W⊥
i ∩ (〈w〉 ⊕Wk+1) = 〈w〉 ⊕

(
W⊥

i ∩Wk+1

)
,

so that
dim

(
W⊥

i ∩ (〈w〉 ⊕Wk+1)
)

= dim
(
W⊥

i ∩Wk+1

)
+ 1.

If i < j, then by our choice of j, W⊥
i ∩Wk+1 = W⊥

i ∩Wk. But

W⊥
i ∩Wk+1 ⊂ W⊥

i ∩ (〈w〉 ⊕Wk+1) ⊂ W⊥
i ∩Wk.

Hence W⊥
i ∩ (〈w〉 ⊕Wk+1) = W⊥

i ∩Wk+1, and so

dim
(
W⊥

i ∩ (〈w〉 ⊕Wk+1)
)

= dim
(
W⊥

i ∩Wk+1

)
.

If j ≤ k + 1, then W⊥
j ⊂ W⊥

k+1, and so w ∈ W⊥
k+1, and as always, w ∈ 〈w〉⊥.

Hence

(〈w〉 ⊕Wk+1)
⊥ ∩ (〈w〉 ⊕Wk+1) =

(
〈w〉⊥ ∩W⊥

k+1

)
∩ (〈w〉 ⊕Wk+1)

= 〈w〉 ⊕
(
〈w〉⊥ ∩W⊥

k+1 ∩Wk+1

)
= 〈w〉 ⊕

(
W⊥

k+1 ∩Wk+1

)
,

(since Wk+1 ⊂ 〈w〉⊥), which shows that

dim
(
(〈w〉 ⊕Wk+1)

⊥ ∩ (〈w〉 ⊕Wk+1)
)

= dim
(
W⊥

k+1 ∩Wk+1

)
+ 1.

If j > k + 1, then by our choice of j, W⊥
k+1 ∩Wk+1 = W⊥

k+1 ∩Wk. Hence

(〈w〉 ⊕Wk+1)
⊥ ∩ (〈w〉 ⊕Wk+1) ⊂ W⊥

k+1 ∩Wk = W⊥
k+1 ∩Wk+1,

and so since by Property 5 of Proposition 3.3.1, the difference between

dim
(
(〈w〉 ⊕Wk+1)

⊥ ∩ (〈w〉 ⊕Wk+1)
)
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and dim
(
W⊥

k+1 ∩Wk+1

)
is ±1, we must have

dim
(
(〈w〉 ⊕Wk+1)

⊥ ∩ (〈w〉 ⊕Wk+1)
)

= dim
(
W⊥

k+1 ∩Wk+1

)
− 1.

Since k, j, and dim
(
W⊥

i ∩Wk+1

)
can be determined from I(W) and λ, we are

thus able to determine I(W ′) from I(W) and λ, and so I(W ′) is independent
of the λ-flag W having incidence matrix I(W).

We can now complete the classification of the orbits of the action of Sp(V )
on Fλ.

3.4.4 Theorem (The Orbit Classification Theorem). Let λ be a composition
of n, and W ,U ∈ Fλ. Then there exists g ∈ Sp(V ) such that gW = U if and
only if I(W) = I(U).

Proof. The first direction is Theorem 3.2.7, so conversely, suppose that I(W) =
I(U). If λ is not the composition {1, 1, . . . , 1}, then by Lemma 3.4.3 we can
construct λ′ flags (where λ′ is a composition of n in which 1 occurs more
times than in λ) W ′ and U ′ having the same incidence matrix, and having
W and U as subflags. Thus by repeatedly applying Lemma 3.4.3, we will
eventually obtain full flags W ′′ and U ′′ having W and U as subflags and hav-
ing the same incidence matrix. By Theorem 3.4.2, there exists g ∈ Sp(V )
such that gW ′′ = U ′′, and so certainly for the corresponding subflags we have
gW = U .

In light of this theorem, any orbit of a flag action of Sp(V ) is completely
determined by its type λ and its incidence matrix I, and therefore we will
denote it by O(Iλ), or simply O(I) when λ is understood.

3.5 Orbit Counting and Listing

Now that we understand the nature of the orbits of the flag actions of Sp(V ),
we can begin to answer various questions about them. In this section we will
show how to list all the orbits of these actions for a given dimension of V , and
prove a general formula for the number of orbits on the set of full flags. We
begin by noting that listing the orbits can be reduced to listing the orbits on
the set of full flags. For any λ-flag is a subflag of some full flag, and so by
Proposition 3.2.3 every incidence matrix of a partial flag is equal to Dλ(I) for
some full flag incidence matrix I. Consequently, if we have listed all incidence
matrices of full flags, we can obtain all incidence matrices of partial flags by
appropriate deleting of rows and columns. Since full flag incidence matrices
are completely determined by the properties of Proposition 3.3.1, the number
of orbits of the flag actions of Sp(V ) of each type and the incidence matrices
of those orbits depend only on n = dim V , and in particular are independent
of the field F.
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3.5.1 Example. In Example 3.3.2 we listed all incidence matrices of full flags
for n = 4. Thus by applying Dλ to these matrices for all compositions λ of 4,
we conclude that the incidence matrices of the orbits of Sp(V ) on the set of
all flags of various types are as listed below.




1 0 0
1 0 0
2 1 1





{1,1,1,1}




1 1 0
2 2 1
2 2 1





{1,1,1,1}




1 1 1
2 2 1
3 2 1





{1,1,1,1}
(

1 0
1 0

)

{1,1,2}

(
1 1
2 2

)

{1,1,2}

(
1 0
2 1

)

{1,2,1}

(
1 1
3 1

)

{1,2,1}
(

0 0
1 1

)

{2,1,1}

(
2 1
2 1

)

{2,1,1}

(1){3,1} (2){2,2} (0){2,2} (1){1,3} ∅{4}
( ∅{4} corresponds to the orbit whose single element is the trivial flag {V ⊃ 0}.)

Our next theorem counts the number of full flag orbits of V in any dimen-
sion, and is proved in a manner that is sufficiently constructive to demonstrate
how to list the corresponding incidence matrices.

3.5.2 Theorem. If V is a symplectic space of dimension n = 2m, then the
number of orbits of the action of Sp(V ) on the set of full flags of V is

m∏

k=1

(2k − 1).

Proof. By Theorems 3.4.4 and 3.3.4, we can identify the orbits of the action of
Sp(V ) on the set of full flags of V with the set In of (n−1)× (n−1) matrices
satisfying the properties of Proposition 3.3.1. To simplify notation, we adopt
in this proof the convention that if I ∈ In, then for any i with 0 ≤ i ≤ n,

I0,i = 0, In,i = n− i, Ii,0 = i, and Ii,n = 0.

Thus if W is any full flag of V , I(W)k,l = dim
(
W⊥

k ∩Wl

)
, even when k or l

is 0 or n.
We now proceed by induction on m. If m = 1, then, as noted before,

there is only one orbit and only one incidence matrix, namely (1). Since∏1
k=1(2k − 1) = 1, the result holds when m = 1. Now suppose that for some

m ≥ 1,

|I2m| =
m∏

k=1

(2k − 1).

We need to show that

∣∣I2(m+1)

∣∣ =
m+1∏

k=1

(2k − 1),
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which by our induction hypothesis amounts to showing that

∣∣I2(m+1)

∣∣ = (2m + 1) |I2m| .

Thus it is natural to construct a bijection between I2(m+1) and {0, 1, . . . , 2m}×
I2m. To define one direction of this bijection, we can use Lemma 3.4.1. That
is, for I ∈ I2(m+1), we define Φ(I) = (j, I ′), where j is the smallest index such
that the last entry of row j + 1 of I is 1, and

I ′k,l =






Ik,l if k, l ≤ j
Ik,l+1 if k ≤ j and l ≥ j + 1
Ik+1,l − 1 if k ≥ j + 1 and l ≤ j
Ik+1,l+1 − 1 if k, l ≥ j + 1

.

By Lemma 3.4.1, I ′ ∈ I2m whenever I ∈ I2(m+1).
Conversely, for (j,J ) ∈ {0, 1, . . . , 2m}× I2m, define Ψ(j,J ) ∈ I2(m+1) by

Ψ(j,J )k,l =






Jk,l if 1 ≤ k, l ≤ j
Jk,l−1 if 1 ≤ k ≤ j and j + 1 ≤ l ≤ n + 1
Jk−1,l + 1 if j + 1 ≤ k ≤ n + 1 and 1 ≤ l ≤ j
Jk−1,l−1 + 1 if j + 1 ≤ k, l ≤ n + 1

.

(Here we are using the notational convention mentioned at the beginning of
this proof.) We must show that Ψ(j,J ) ∈ I2(m+1). To do this, we show that it
is the incidence matrix of a flag which results from a construction dual to that
used in Lemma 3.4.1. So let n = 2m and suppose V is the symplectic space of
dimension n + 2. Fix v, w ∈ V with B(v, w) = 1, and let U = 〈v, w〉⊥. Then
V = U ⊕ 〈v, w〉, and U is isomorphic to the symplectic space of dimension n,
so In is identified with the set of orbits of the action of Sp(U) on the set of
full flags of U . So now choose a full flag

U = {U0 ⊃ U1 ⊃ · · · ⊃ Un}

of U such that I(U) = J . Let W be the full flag of V given by

W = {U0 ⊕ 〈v, w〉 ⊃ · · · ⊃ Uj ⊕ 〈v, w〉 ⊃ Uj ⊕ 〈w〉 ⊃ · · · ⊃ Un ⊕ 〈w〉 ⊃ 0}.

We claim that I(W) = Ψ(j,J ). To see this, first note that if A is either 〈v, w〉
or 〈w〉, then by reasoning identical to that used in the proof of Lemma 3.4.1,
we have that for any k, l with 0 ≤ k, l ≤ n,

(Uk ⊕ 〈v, w〉)⊥ ∩ (Ul ⊕ A) =
(
U⊥

k ∩ U
)
∩ Ul,

while
(Uk ⊕ 〈w〉)⊥ ∩ (Ul ⊕ A) =

(
U⊥

k ∩ U
)
∩ Ul ⊕ 〈w〉.
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Now by definition I(W)k,l equals





dim
(
(Uk ⊕ 〈v, w〉)⊥ ∩ (Ul ⊕ 〈v, w〉)

)
if 1 ≤ k, l ≤ j

dim
(
(Uk ⊕ 〈v, w〉)⊥ ∩ (Ul−1 ⊕ 〈w〉)

)
if 1 ≤ k ≤ j and j + 1 ≤ l ≤ n + 1

dim
(
(Uk−1 ⊕ 〈w〉)⊥ ∩ (Ul ⊕ 〈v, w〉)

)
if j + 1 ≤ k ≤ n + 1 and 1 ≤ l ≤ j

dim
(
(Uk−1 ⊕ 〈w〉)⊥ ∩ (Ul−1 ⊕ 〈w〉)

)
if j + 1 ≤ k, l ≤ n + 1

,

which by the above-mentioned subspace equalities equals





dim
((

U⊥
k ∩ U

)
∩ Ul

)
if 1 ≤ k, l ≤ j

dim
((

U⊥
k ∩ U

)
∩ Ul−1

)
if 1 ≤ k ≤ j and j + 1 ≤ l ≤ n + 1

dim
((

U⊥
k−1 ∩ U

)
∩ Ul

)
+ 1 if j + 1 ≤ k ≤ n + 1 and 1 ≤ l ≤ j

dim
((

U⊥
k−1 ∩ U

)
∩ Ul−1

)
+ 1 if j + 1 ≤ k, l ≤ n + 1

,

which is, by definition, Ψ(j, I(U))k,l = Ψ(j,J )k,l. Thus Ψ is, in fact, a map

{0, 1, . . . , n}× In → In+2.

We claim that Ψ = Φ−1. To show this, suppose first that (j,J ) ∈ {0, 1, . . . , n}×
In, and let (j′,J ′) = Φ(Ψ(j,J )). To show that j′ = j, recall that j′ is the
smallest index for which the last entry of row j′ + 1 of Ψ(j,J ) is 1. Since
Ψ(j,J )j,n+1 = Jj,n = 0, whereas Ψ(j,J )j+1,n+1 = Jj,n + 1 = 1, this in-
dex is j. Hence using j in the definition of Φ(Ψ(j,J )), we can compute J ′.
If 1 ≤ k, l ≤ j, then J ′

k,l = Ψ(j,J )k,l = Jk,l. If k ≤ j and l ≥ j + 1,
then J ′

k,l = Ψ(j,J )k,l+1 = Jk,l+1−1 = Jk,l. If k ≥ j + 1 and l ≤ j, then
J ′

k,l = Ψ(j,J )k+1,l − 1 = (Jk+1−1,l + 1) − 1 = Jk,l. Finally, if k, l ≥ j + 1,
then J ′

k,l = Ψ(j,J )k+1,l+1 − 1 = Jk,l. Thus in all cases, J ′
k,l = Jk,l, and so

Φ(Ψ(j,J )) = (j,J ).
Now suppose that I ∈ In+2, and consider Ψ(Φ(I)). If we let (j, I ′) = Φ(I),

then it is automatic that j is the index which appears in the formulae for I ′
and Ψ(j, I ′). By definition,

Ψ(Φ(I))k,l =






I ′k,l if 1 ≤ k, l ≤ j
I ′k,l−1 if 1 ≤ k ≤ j and j + 1 ≤ l ≤ n + 1
I ′k−1,l + 1 if j + 1 ≤ k ≤ n + 1 and 1 ≤ l ≤ j
I ′k−1,l−1 + 1 if j + 1 ≤ k, l ≤ n + 1

.

We must show that in all four cases the entry in question is Ik,l. If neither k
nor l is j +1 this follows directly from the definition of I ′ in the same manner
as in the previous case. By Property 1 of Proposition 3.3.1, if I and Ψ(Φ(I))
agree in column j + 1, they will also agree in row j + 1, so we only need to
consider the case in which l = j + 1. By definition

Ψ(Φ(I))k,j+1 =






I ′k,j = Ik,j if k ≤ j
I ′j,j + 1 = Ij,j + 1 if k = j + 1
I ′k−1,j + 1 = Ik,j if k ≥ j + 2

.
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It is not immediately obvious that this formula always yields Ik,j+1. However,
by the definition of j, Ij,n+1 = 0, while Ij+1,n+1 = 1. Thus by Property
1 of Proposition 3.3.1, In+1,j = In+1,j+1 = n + 1 − j, and so by Property
6, Ik,j = Ik,j+1 for all k ≤ n + 1. This proves Ψ(Φ(I))k,j+1 = Ik,j+1 for
k %= j + 1, and since applying Property 1 to the equation Ij,j = Ij,j+1 shows
that Ij,j = Ij+1,j − 1, we can conclude that

Ψ(Φ(I))j+1,j+1 = Ij,j + 1 = Ij+1,j = Ij+1,j+1.

Thus Ψ(Φ(I)) = I, and we conclude that Ψ = Φ−1. Hence Φ is a bijection,
and so

∣∣I2(m+1)

∣∣ = |{0, 1, . . . , 2m}× I2m| = (2m + 1) |I2m| =
m+1∏

k=1

(2k − 1)

as desired.

We note that the orbit formula can be written in terms of factorials, using
the identity

m∏

k=1

(2k − 1) =
(2m)!

2mm!
.

The utility of the proof of Theorem 3.5.2 compensates fully for its inele-
gance, for the map

Ψ : {0, 1, . . . , n}× In → In+2

provides a straightforward recursive algorithm for computing In for any even
dimension n. For we know that I2 = {(1)}, and if we already know In, we
can easily compute

In+2 = Ψ ({0, 1, . . . , n}× In)

using the formula provided for Ψ.

3.5.3 Example. Using the already computed set I4 from Example 3.3.2, we
can compute Ψ ({0, 1, 2, 3, 4}× I4) to find that I6 consists of the 15 incidence
matrices listed in Table 3.2. If (j,J ) ∈ {0, 1, 2, 3, 4} × I4, we list Ψ(j,J ) in
the row labelled by j and column labelled by J .
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(
1 0 0
1 0 0
2 1 1

) (
1 1 0
2 2 1
2 2 1

) (
1 1 1
2 2 1
3 2 1

)

0

(
1 1 1 1 1
2 2 1 1 1
3 2 1 1 1
4 3 2 2 1
5 4 3 2 1

) (
1 1 1 1 1
2 2 2 1 1
3 3 3 2 1
4 3 3 2 1
5 4 3 2 1

) (
1 1 1 1 1
2 2 2 2 1
3 3 3 2 1
4 4 3 2 1
5 4 3 2 1

)

1

(
1 1 0 0 0
2 2 1 1 1
2 2 1 1 1
3 3 2 2 1
4 4 3 2 1

) (
1 1 1 0 0
2 2 2 1 1
3 3 3 2 1
3 3 3 2 1
4 4 3 2 1

) (
1 1 1 1 0
2 2 2 2 1
3 3 3 2 1
4 4 3 2 1
4 4 3 2 1

)

2

(
1 0 0 0 0
1 0 0 0 0
2 1 1 1 1
3 2 2 2 1
4 3 3 2 1

) (
1 1 1 0 0
2 2 2 1 0
3 3 3 2 1
3 3 3 2 1
4 3 3 2 1

) (
1 1 1 1 0
2 2 2 1 0
3 3 3 2 1
4 3 3 2 1
4 3 3 2 1

)

3

(
1 0 0 0 0
1 0 0 0 0
2 1 1 1 0
3 2 2 2 1
4 3 2 2 1

) (
1 1 0 0 0
2 2 1 1 0
2 2 1 1 0
3 3 2 2 1
4 3 2 2 1

) (
1 1 1 1 0
2 2 1 1 0
3 2 1 1 0
4 3 2 2 1
4 3 2 2 1

)

4

(
1 0 0 0 0
1 0 0 0 0
2 1 1 0 0
3 2 1 0 0
4 3 2 1 1

) (
1 1 0 0 0
2 2 1 0 0
2 2 1 0 0
3 2 1 0 0
4 3 2 1 1

) (
1 1 1 0 0
2 2 1 0 0
3 2 1 0 0
3 2 1 0 0
4 3 2 1 1

)

Table 3.2: Incidence Matrices of Full Flags for dimV = 6.

Having shown how to list the orbits of the flag actions of Sp(V ), we now
begin a consideration of the corresponding representations which arise when
the field F is finite.

3.6 Flag Representations of Sp(n, q)

Throughout this section, let F = Fq be the field of q elements, and let V
be the symplectic space of even dimension n = 2m over Fq. We denote the
symplectic group of V by Sp(n, q). Corresponding to each orbit O(Iλ) of the
action of Sp(n, q) on the set of flags of V we get a permutation representation
of Sp(n, q) which we denote by Φ(Iλ), or simply Φ(I) when the composition
λ is understood. In this section we will show how to compute the degrees
of these representations and discuss certain isomorphisms which occur among
them.

As is the case with any permutation representation, deg Φ(Iλ) = |O(Iλ)| .
Thus to compute the degrees of these representations, we need a technique for
counting the number of flags in a given orbit. We will first determine how to
count the number of full flags in a given orbit, and then extend the method to
partial flags. First, we need some notation. If β = {v1, v2, . . . , vn} is a basis
of V , then let W(β) be the full flag of V given by

{V ⊃ 〈v1, . . . , vn−1〉 ⊃ · · · ⊃ 〈v1, v2〉 ⊃ 〈v1〉 ⊃ 0}.

Since it is easier to count the number of bases β of V such that W(β) is a full
flag in a given orbit than to count the number of flags in the orbit directly,
we will have need of the following lemma.

37



3.6.1 Lemma. Let W be a full flag of V . Then the number of bases β of V
such that W(β) = W is

n∏

i=1

(
qi − qi−1

)
.

Proof. Let W = {W0 ⊃ W1 ⊃ · · · ⊃ Wn}. We need to determine the number
of bases β = {v1, v2, . . . , vn} of V such that Wn−i = 〈v1, . . . , vi〉. In choosing
such a basis, we must choose v1 so that Wn−1 = 〈v1〉. Since dim Wn−1 = 1, we
can choose any non-zero vector in Wn−1 for v1, and hence there are |Wn−1|−1 =
q − 1 choices for v1. In general, if we have already chosen v1, . . . , vk so that
Wn−i = 〈v1, . . . , vi〉 for i ≤ k, then we will have Wn−(k+1) = 〈v1, . . . , vk+1〉 if
and only if vk+1 ∈ Wn−(k+1)\Wn−k, so there are

∣∣Wn−(k+1)

∣∣−|Wn−k| = qk+1−qk

choices for vk+1. Hence multiplying these quantities, we conclude that the total
number of choices for β is

(q − 1)(q2 − q) . . . (qn − qn−1) =
n∏

i=1

(
qi − qi−1

)
.

We can now give a method for counting the number of full flags in a given
orbit. Recall from Lemma 3.3.3 that if I is the incidence matrix of a full flag,
then for some k the above-diagonal entries of any two consecutive rows of I
take either the form

k+1 k ... k k−1 ... k−1 ... 1 ... 1 0 ... 0
k ... k k−1 ... k−1 ... 1 ... 1 0 ... 0 (Form 1)

or the form

k−1 k−1 ... k−1 k−2 ... k−2 ... l−1 ... l−1 l−1 ... l−1 ... 1 ... 1 0 ... 0
k ... k k−1 ... k−1 ... l ... l l−1 ... l−1 ... 1 ... 1 0 ... 0 (Form 2)

for some l with 1 ≤ l ≤ k.

3.6.2 Theorem. Let I be the incidence matrix of some orbit of the action
of Sp(n, q) on the set of full flags of V . Define a sequence {(ai, bi)}1≤i≤n by
(a1, b1) = (n, 0), (an, bn) = (n, n− 1), and if 1 < i < n, then

(ai, bi) =

{
(n− k, i− 1) if rows n− i + 1 and n− i take Form 1
(n + 1− l, n− l) if rows n− i + 1 and n− i take Form 2

,

with k and l being the entries of I corresponding to the form the rows take.
Then the number of full flags with incidence matrix I is

deg Φ(I) = |O(I)| =
∏n

i=1

(
qai − qbi

)
∏n

i=1 (qi − qi−1)
.
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Proof. We begin by counting the number of bases β = {v1, . . . , vn} of V such
that I(W(β)) = I. Choosing such a basis roughly amounts to following the
procedure used in Theorem 3.3.4. That is, we first choose a non-zero vector
v1, and then assuming we have chosen v1, . . . , vj so that the incidence matrix
of {〈v1, . . . , vj〉 ⊃ · · · ⊃ 〈v1〉 ⊃ 0} is D{n−j,1,...,1}(I) (the j × j submatrix in
the bottom right corner of I), we use Lemma 3.3.3 to choose vj+1 so that
the incidence matrix of the corresponding flag beginning with 〈v1, . . . , vj+1〉 is
D{n−(j+1),1,...,1}(I). Doing this for j = 1, 2 . . . , n − 1 will yield a basis β with
I(W(β)) = I, and any such β can be obtained in this way.

We claim that the number of possible choices for vj at any step in this
procedure is qaj − qbj . Since v1 can be any non-zero vector in V , there are
qn − 1 = qa1 − qb1 choices for v1. If 1 < i < n and we have already chosen
v1, . . . , vi−1, then the number of possible choices for vi depends on the form
of rows n− i + 1 and n− i. If the above diagonal entries of these rows are of
Form 1 for the number k, then by Lemma 3.3.3 the set of possible choices for
vi is

(
W + W⊥)

\W , where W = 〈v1, . . . , vi−1〉. Hence the number of choices

for vi is qdim(W+W⊥) − qdim W . Of course dim W = i − 1. dim
(
W + W⊥)

=

n − dim
(
W + W⊥)⊥

= n − dim
(
W⊥ ∩W

)
= n − k, since by our choice of

v1, . . . , vi−1, dim
(
W⊥ ∩W

)
= In−i+1,n−i+1 = k. Thus the number of possible

choices for vi is qn−k − qi−1. If the above diagonal entries in the rows in
question are of Form 2 for the numbers k and l, then by Lemma 3.3.3 the
set of possible choices for vi is (W + U⊥)\(W + U ′⊥), where again W =
〈v1, . . . , vi−1〉, and if the rightmost appearance of l in row n−i+1 is in column
n − j, then U ′ = 〈v1, . . . , vj〉 and U = 〈v1, . . . , vj−1〉 (if j = 1 then U = 0).

Hence the number of possible choices for vi is qdim(W+U⊥)− qdim(W+U ′⊥). But
dim

(
W + U⊥)

= n − dim
(
W⊥ ∩ U

)
= n − In−i+1,n−j+1 = n − (l − 1), and

dim
(
W + U ′⊥)

= n− dim
(
W⊥ ∩ U ′) = n− In−i+1,n−j = n− l, so this means

the number of possible choices is qn+1−l − qn−l. Thus in all cases if 1 < i < n,
the number of possible choices for vi is qai − qbi . Finally, once we have chosen
v1, . . . , vn−1, we can choose vn to be any vector in V \〈v1, . . . , vn−1〉, and so
there are qn− qn−1 = qan − qbn choices for vn. Thus for each j, the number of
possible choices for vj is qaj − qbj .

Hence multiplying the number of possible choices at each step, we conclude
that the number of bases β with I(W(β)) = I is

n∏

i=1

(
qai − qbi

)
.

By Lemma 3.6.1, each flag U with incidence matrix I has
∏n

i=1 (qi − qi−1)
different bases β with W(β) = U , so the total number of flags with incidence
matrix I is ∏n

i=1

(
qai − qbi

)
∏n

i=1 (qi − qi−1)
.
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We now wish to extend this method to partial flags. The basic idea is that
any λ-flag of V can be extended to a full flag of V in a certain number of
ways (depending only on λ), and so we can count the number of λ-flags with
a given incidence matrix by counting the number of full flags which have such
a flag as a subflag and dividing by the number of ways of extending a λ-flag
to a full flag. Thus we need the following lemma.

3.6.3 Lemma. Let λ = {λ1, . . . ,λk} be a composition of n, and let W be a
λ-flag of V . Set µi = λk+1−i. Let S0 = 0 and for 1 ≤ i ≤ k let

Si =
i∑

j=1

µj.

Then the number of full flags of V with W as a subflag is

E(λ) =

∏k
i=1

(∏µi

j=1

(
qSi − qSi−1+j−1

))

∏n
i=1 (qi − qi−1)

.

Proof. Let W = {W0 ⊃ W1 ⊃ · · · ⊃ Wk}. We begin by counting the number
of bases β = {v1, . . . , vn} of V such that W(β) has W as a subflag, which is the
number of β such that Wk−i = 〈v1, . . . , vSi〉. (By construction Si = dim Wk−i.)
To choose such a β, we must first choose v1, . . . , vS1 so that 〈v1, . . . , vS1〉 =
Wk−1. Hence the total number of choices for v1, . . . , vS1 is the number of bases
for Wk−1, namely

S1∏

j=1

(
qS1 − qj−1

)
=

µ1∏

j=1

(
qS1 − qS0+j−1

)
.

Assuming that for some i ≥ 2 we have already chosen v1, . . . , vSi−1 so that
Wk−j = 〈v1, . . . , vSj〉 for all j ≤ i− 1, we must choose vSi−1+1, . . . , vSi so that
Wk−i = 〈v1, . . . , vSi〉. For each vSi−1+j which we choose in this process, the set
of possible choices is Wk−i\〈v1, . . . , vSi−1+j−1〉, so the number of possibilities
for vSi−1+j is qSi − qSi−1+j−1. Hence multiplying these numbers, we conclude
that the total number of possibilities for vSi−1+1, . . . , vSi is

µi∏

j=1

(
qSi − qSi−1+j−1

)
.

Multiplying these numbers from 1 to k shows that the total number of β such
that W is a subflag of W(β) is

k∏

i=1

(
µi∏

j=1

(
qSi − qSi−1+j−1

)
)

,
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and hence dividing by the number of bases for each full flag, we conclude that
the number E(λ) of full flags of V with W as a subflag is

∏k
i=1

(∏µi

j=1

(
qSi − qSi−1+j−1

))

∏n
i=1 (qi − qi−1)

.

The preceding lemma allows us to compute the number of λ-flags with a
given incidence matrix for any composition λ. Recall that In denotes the set of
all (n−1)× (n−1) incidence matrices of full flags, and that for I ∈ In, Dλ(I)
is the (uniquely determined) incidence matrix of any λ-flag which occurs as
a subflag of a flag in O(I). Thus for an incidence matrix Jλ of a λ-flag,
D−1

λ (Jλ) is the subset of In consisting of all incidence matrices of full flags
whose subflags of type λ have incidence matrix Jλ.

3.6.4 Theorem. Let λ be a composition of n, and let O(Jλ) be the orbit of
the action of Sp(n, q) on Fλ with incidence matrix Jλ. Then

|O(Jλ)| =
1

E(λ)

∑

I∈D−1
λ (Jλ)

|O(I)| .

Proof. A full flag W of V has a subflag of type λ with incidence matrix Jλ

if and only if W ∈ O(I) for some I ∈ D−1
λ (Jλ). Hence the total number of

such full flags is ∑

I∈D−1
λ (Jλ)

|O(I)| .

Since each λ-flag in O(Jλ) is a subflag of E(λ) different full flags represented
in this sum, there must be

1

E(λ)

∑

I∈D−1
λ (Jλ)

|O(I)|

different λ-flags in O(Jλ).

3.6.5 Example. In Example 3.5.1 we listed all incidence matrices of flags of a
4-dimensional symplectic space. We will now use the results of this section to
compute the degrees of the corresponding representations of Sp(4, q) for any q
(that is, the number of flags with each incidence matrix). We begin with the
full flag incidence matrices, for which we use Theorem 3.6.2. In the notation

of that theorem, if I =
(

1 0 0
1 0 0
2 1 1

)
, we have (a1, b1) = (4, 0) and (a4, b4) = (4, 3).

Rows 3 and 2 take Form 2 with l = 1, so (a2, b2) = (4, 3), while rows 2 and
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1 take Form 1 with k = 0, so (a3, b3) = (4, 2). Hence according to Theorem
3.6.2,

|O(I)| = (q4 − 1)(q4 − q3)(q4 − q2)(q4 − q3)

(q − 1)(q2 − q)(q3 − q2)(q4 − q3)

= (q3 + q2 + q + 1)q2(q + 1) = q6 + 2q5 + 2q4 + 2q3 + q2.

The computations for the other two full flag incidence matrices are identical,

except that for
(

1 1 0
2 2 1
2 2 1

)
, we have (a2, b2) = (3, 1) and (a3, b3) = (4, 3), while

for
(

1 1 1
2 2 1
3 2 1

)
we have (a2, b2) = (3, 1) and (a3, b3) = (3, 2).

Table 3.3 gives |O(I)| for each full flag incidence matrix I.

I |O(I)| = deg Φ(I)(
1 0 0
1 0 0
2 1 1

)
q6 + 2q5 + 2q4 + 2q3 + q2

(
1 1 0
2 2 1
2 2 1

)
q5 + 2q4 + 2q3 + 2q2 + q

(
1 1 1
2 2 1
3 2 1

)
q4 + 2q3 + 2q2 + 2q + 1

Table 3.3: Full Flag Orbit Sizes for Sp(4, q).

To compute the degrees of the representations corresponding to the remain-
ing orbits, we need the quantity E(λ) given by the formula in Lemma 3.6.3
for each composition λ of 4. The formula is relatively straightforward. For
example, if λ = {2, 1, 1}, then we have µ1 = 1, µ2 = 1, µ3 = 2, S1 = 1, S2 = 2,
and S3 = 4, and so

E ({2, 1, 1}) =
(q − 1)(q2 − q)(q4 − q2)(q4 − q3)

(q − 1)(q2 − q)(q3 − q2)(q4 − q3)
= q + 1.

Table 3.4 gives E(λ) for each composition λ of 4.

λ E(λ)
{1, 1, 1, 1} 1
{1, 1, 2} q + 1
{1, 2, 1} q + 1
{2, 1, 1} q + 1
{1, 3} q3 + 2q2 + 2q + 1
{2, 2} q2 + 2q + 1
{3, 1} q3 + 2q2 + 2q + 1
{4} q6 + 3q5 + 5q4 + 6q3 + 5q2 + 3q + 1

Table 3.4: Values of E(λ).

Now we can apply Theorem 3.6.4 to compute |O(Iλ)| for each remaining
orbit O(Iλ). We will give two examples of how this is done. If Iλ = ( 2 1

2 1 ){2,1,1},
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then D−1
λ (Iλ) =

{(
1 1 0
2 2 1
2 2 1

)
,
(

1 1 1
2 2 1
3 2 1

)}
, since these are the full flag incidence

matrices for which Iλ is the submatrix obtained by removing the first row and
column. Hence

|O(Iλ)| =
(q5 + 2q4 + 2q3 + 2q2 + q) + (q4 + 2q3 + 2q2 + 2q + 1)

q + 1

= q4 + 2q3 + 2q2 + 2q + 1.

If Iλ = (0){2,2}, then

D−1
λ (Iλ) =

{(
1 0 0
1 0 0
2 1 1

)}
,

since this is the only full flag incidence matrix with a 0 in the (2, 2) entry.
Hence

|O(Iλ)| =
q6 + 2q5 + 2q4 + 2q3 + q2

q2 + 2q + 1
= q4 + q2.

Table 3.5 lists |O(Iλ)| for each partial flag incidence matrix Iλ.

Iλ |O(Iλ)| = deg Φ(Iλ)
( 1 0

1 0 ){1,1,2} q5 + q4 + q3 + q2

( 1 1
2 2 ){1,1,2} q4 + 2q2 + 2q2 + 2q + 1

( 1 0
2 1 ){1,2,1} q5 + 2q4 + 2q3 + 2q2 + q

( 1 1
3 1 ){1,2,1} q3 + q2 + q + 1

( 0 0
1 1 ){2,1,1} q5 + q4 + q3 + q2

( 2 1
2 1 ){2,1,1} q4 + 2q3 + 2q2 + 2q + 1
(1){1,3} q3 + q2 + q + 1
(2){2,2} q3 + q2 + q + 1
(0){2,2} q4 + q2

(1){3,1} q3 + q2 + q + 1
∅{4} 1

Table 3.5: Partial Flag Orbit Sizes for Sp(4, q).

Examining the computed degrees of these representations, we notice that
in many cases, two or more different representations may have the same degree.
For example, the representations corresponding to (1){1,3}, (2){2,2}, (1){3,1}, and
( 1 1

3 1 ){1,2,1} all have degree q3 + q2 + q + 1. It is natural to ask whether this
is mere coincidence, or whether these representations are, in fact, isomorphic.
We will see in the next chapter that Φ((2){2,2}) and Φ((1){3,1}) have different
characters, and thus are not isomorphic, but based on the next two results,
equality of degree does imply isomorphism for all pairs of representations not
including Φ((2){2,2}). The first of these isomorphism theorems describes a
situation in which one or more subspaces in a flag are completely determined
by the remaining subspaces and the incidence matrix of the flag.
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3.6.6 Theorem. Let Iλ be the incidence matrix of some λ-flag of V , and
suppose µ is a composition of n with µ 0 λ. Let Jµ = Dλ,µ (Iλ). Then the
representations Φ(Iλ) and Φ(Jµ) of Sp(n, q) are isomorphic if and only if they
have the same degree.

Proof. Obviously two isomorphic representations have the same degree. Con-
versely, note that in general we can define a linear map Tλ,µ : CO(Iλ) →
CO(Jµ) on the basis O(Iλ) of CO(Iλ) by

Tλ,µ(W) = Wµ.

Tλ,µ is at least a homomorphism of representations, since if g ∈ Sp(n, q), we
will get the same result if we apply g to a flag W before or after removing
subspaces of certain dimensions, and thus Tλ,µ(gW) = gTλ,µ(W). Further, Tλ,µ

is always surjective, for if U ∈ O(Jµ) and W ∈ O(Iλ) we must have Tλ,µ(W) =
Wµ ∈ O(Jµ). By Theorem 3.4.4, there exists g ∈ Sp(n, q) such that gWµ = U ,
and hence Tλ,µ(gW) = U . This shows that the image of Tλ,µ contains a basis
of O(Jµ), and so Tλ,µ is surjective. Hence if deg Φ(Iλ) = deg Φ(Jµ), this
surjective homomorphism of representations must be an isomorphism.

The second isomorphism theorem describes an isomorphism which cor-
responds to taking the orthogonal complement of a flag. If A is a k × k
matrix, denote by tA the backward transpose of A (the matrix with (i, j) en-
try Ak+1−j,k+1−i), and if λ is a composition of n, denote by λ the composition
of n consisting of λ taken in reverse order.

3.6.7 Theorem. If W is a λ-flag of V , W⊥ is a λ-flag of V and I(W⊥) =
tI(W). The mapping W 5→ W⊥ induces an isomorphism between the repre-
sentations Φ(Iλ) and Φ(tIλ) of Sp(n, q).

Proof. That W⊥ is a flag of type λ follows directly from the fact that for
any subspaces U ⊂ W of V , we have dim (W/U) = dim

(
U⊥/W⊥)

. To see
that I(W⊥) = tI(W), note that if λ = {λ1, . . . ,λk}, the ith subspace in the

flag W⊥ is W⊥
k−i. Hence by definition I(W⊥)i,j = dim

((
W⊥

k−i

)⊥ ∩W⊥
k−j

)
=

dim
(
W⊥

k−j ∩Wk−i

)
= I(W)k−j,k−i, which is the (i, j) entry of tI(W), since

I(W) is a (k − 1)× (k − 1) matrix.

Since
(
W⊥)⊥

= W for any flag W , by an extension of Proposition 2.2.6,
the mapping W 5→ W⊥ defines a bijection between O(Iλ) and O(tIλ), and
so induces a vector space isomorphism between CO(Iλ) and CO(tIλ). If
g ∈ Sp(n, q), we have (gW)⊥ = g(W⊥) by an extension of Proposition 2.2.14,
which implies that this vector space isomorphism is, in fact, an isomorphism
of representations.

We can now see several isomorphisms among the representations of Exam-
ple 3.6.5. For example, if Iλ = ( 1 1

2 2 ){1,1,2},
tIλ = ( 2 1

2 1 ){2,1,1}, so the two corre-

sponding representations are isomorphic by Theorem 3.6.7. If Iλ =
(

1 1 0
2 2 1
2 2 1

)
,
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then D{1,2,1}(Iλ) = ( 1 0
2 1 ){1,2,1}, so since the corresponding representations have

the same degree, they are isomorphic by Theorem 3.6.6. Table 3.6 partitions
the incidence matrices of flags of V for n = 4 into classes which yield isomor-
phic representations.

Incidence Matrices Common Degree of Representations
∅{4} 1

(1){1,3}(1){3,1} ( 1 1
3 1 ){1,2,1} q3 + q2 + q + 1

(2){2,2} q3 + q2 + q + 1
(0){2,2} q4 + q2

( 1 0
1 0 ){1,1,2} ( 0 0

1 1 ){2,1,1} q5 + q4 + q3 + q2

( 1 1
2 2 ){1,1,2} ( 2 1

2 1 ){2,1,1}

(
1 1 1
2 2 1
3 2 1

)

{1,1,1,1}
q4 + 2q3 + 2q2 + 2q + 1

( 1 0
2 1 ){1,2,1}

(
1 1 0
2 2 1
2 2 1

)

{1,1,1,1}
q5 + 2q4 + 2q3 + 2q2 + q

(
1 0 0
1 0 0
2 1 1

)

{1,1,1,1}
q6 + 2q5 + 2q4 + 2q3 + q2

Table 3.6: Isomorphism Classes of Flag Representations of Sp(4, q).

From Table 3.6, we see that there are actually only 8 representations of
Sp(4, q) corresponding to the various flag actions. In the next chapter, we will
compute the characters of these representations.
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Chapter 4

Conjugacy Classes and Flag
Characters of Sp(4, q)

Our goal in this chapter is to provide a complete list of the conjugacy classes of
Sp(4, q), together with their sizes, and to compute the values of the previously
discussed flag characters on these classes. We will also show how the inner
product defined in Section 2.1 can be used to compute an irreducible character
of Sp(4, q) from the flag characters. We restrict our attention to the case in
which q is odd, since when q is even, the list of conjugacy classes takes a
slightly different (though simpler) form. First, we review some background
information.

4.1 Canonical Forms and Centralizers

In this section, we discuss some general results and computational techniques
which will be needed for producing a list of class representatives of Sp(4, q)
and computing the sizes of the classes. Throughout this section let F be a
field, and let F be the algebraic closure of F. For convenience, we also assume
that F is a perfect field, so that any irreducible polynomial of degree n in
F[x] has n distinct roots in F. Every finite field is perfect, as is every field
of characteristic zero [3]. We begin by discussing canonical forms of matrices
over F and F. The Jordan canonical form is well-known. See, for example, [5]
page 145.

4.1.1 Proposition. Any matrix A ∈ M(n, F) is similar to a block diagonal
matrix with each block having the form

λIk + Jk =





λ 1

λ
. . .
. . . 1

λ
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for some λ ∈ F. (Throughout this section a blank entry will indicate a 0.)
Here Ik is the k × k identity matrix, and Jk is the k × k matrix with a 1 in
each entry immediately above the diagonal, and a 0 in every other entry. Up
to reordering of the blocks, A is similar to a unique matrix of this form.

Since we will generally be working over finite fields, which are not alge-
braically closed, we need the modified version of the Jordan canonical form
for F which is used in [4]. To describe this form, we first fix some notation.

4.1.2 Definition. If µ = {n1, n2, . . . , nk} is a composition of n, then B(µ, F)
is the subalgebra of M(n, F) consisting of all block diagonal matrices of the
form 



B1

B2

. . .
Bk




,

where Bi ∈ M(ni, F). The above element of B(µ, F) may be written more
compactly as

Bµ(B1, B2, . . . , Bk),

and in this notation the composition µ may be omitted when there is no
danger of confusion about the block sizes.

4.1.3 Definition. If f(x) = xd+b1xd−1+· · ·+bd−1x+bd is a monic polynomial
in F[x], then the companion matrix of f is

C(f) = C1(f) =





−bd

1 −bd−1

1 −bd−2

. . .
...

1 −b1





In [5] it is shown that f is the minimal polynomial, and hence also the
characteristic polynomial of C(f). We define the block matrix Ck(f) for k ≥ 2
to be 



C(f) Id

C(f)
. . .
. . . Id

C(f)




,

with C(f) appearing k times on the diagonal. If µ = {a1, a2, . . . , ak} is a
partition of some integer m, then we define Cµ(f) to be the block diagonal
matrix

Bν(Ca1(f), Ca2(f), . . . , Cak
(f)),

where ν is the partition {a1d, . . . , akd} of md. Although Green uses in [4] a
slightly different matrix in place of C(f), his matrix is similar to ours and the
result he uses is still valid for our choice.
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4.1.4 Theorem. Let A ∈ M(n, F) have characteristic polynomial
∏k

i=1 fmi
i ,

with each fi an irreducible monic polynomial in F[x]. Then there exist unique
partitions µi of mi such that A is similar to the block diagonal matrix

C = Bν(Cµ1(f1), Cµ2(f2), . . . , Cµk
(fk)),

where ν is the composition {n1, . . . , nk} of n, with ni = mi deg fi.

Proof. If f is an irreducible polynomial of degree d which appears with mul-
tiplicity m in the characteristic polynomial of A, then if λ1, . . . ,λd are the
distinct roots of f in F there exists some partition µ = {a1, a2, . . . , ak} of m
such that the Jordan canonical form of A includes the blocks

λ1Ia1 + Ja1 , . . . ,λdIa1 + Ja1 ,

λ1Ia2 + Ja2 , . . . ,λdIa2 + Ja2 ,

...

λ1Iak
+ Jak

, . . . ,λdIak
+ Jak

.

(Note in particular that to each block λ1Ij + Jj there corresponds a block
λiIj + Jj of the same size for each root λi of f .) We claim that the block
matrix

Af,aj = B
(
λ1Iaj + Jaj , . . . ,λdIaj + Jaj

)

is similar to Caj(f). To see this, note that if we conjugate Af,aj by the appro-
priate permutation matrix, we obtain the matrix





D Id

D
. . .
. . . Id

D




,

where D is the d× d diagonal matrix

B(λ1, . . . ,λd).

Now D is the Jordan canonical form of C(f), the companion matrix of f ,
since D has the distinct eigenvalues of f , the characteristic polynomial of C(f),
along its diagonal. Hence there exists B ∈ GL(d, F) such that BDB−1 = C(f).
But then





B
B

. . .
B









D Id

D
. . .
. . . Id

D









B−1

B−1

. . .
B−1
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=





BDB−1 BIdB−1

BDB−1 . . .
. . . BIdB−1

BDB−1




=





C(f) Id

C(f)
. . .
. . . Id

C(f)





= Caj(f),

so Af,aj and Caj(f) are similar over F. Applying this result for each aj ∈ µ
then shows that the matrix consisting of the blocks corresponding to f in the
Jordan form of A is similar to Cµ(f), and applying this to each irreducible
factor of the characteristic polynomial of A shows that the Jordan form of
A is similar to the matrix C. By transitivity of similarity, A is also similar
to C over F. But A and C both have entries in F, so they must also be
similar over F (see, for example, [5], page 143). Uniqueness follows from the
uniqueness of the Jordan canonical form up to reordering, and the fact that
the assumed factorization of the characteristic polynomial and the requirement
that partitions be increasing sequences specifies an ordering of the blocks of
C.

To illustrate Theorem 4.1.4 we now use it to describe a set of representa-
tives of the conjugacy classes of GL(4, F).

4.1.5 Example. According to Theorem 4.1.4, every matrix in GL(4, F) is
conjugate to a matrix from the following list. Here λi ∈ F∗, and x2 − α1x −
α2, x2 − α3x− α4, x3 − β1x2 − β2x− β3, and x4 − γ1x3 − γ2x2 − γ3x− γ4 are
irreducible polynomials in F[x].

( λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

) ( λ1 1 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ3

) ( λ1 1 0 0
0 λ1 0 0
0 0 λ2 1
0 0 0 λ2

) ( λ1 1 0 0
0 λ1 1 0
0 0 λ1 0
0 0 0 λ2

) ( λ1 1 0 0
0 λ1 1 0
0 0 λ1 1
0 0 0 λ1

)

( 0 α2 0 0
1 α1 0 0
0 0 λ1 0
0 0 0 λ2

) ( 0 α2 0 0
1 α1 0 0
0 0 λ1 1
0 0 0 λ1

) ( 0 α2 0 0
1 α1 0 0
0 0 0 α4
0 0 1 α3

) ( 0 α2 1 0
1 α1 0 1
0 0 0 α2
0 0 1 α1

) (
0 0 β3 0
1 0 β2 0
0 1 β1 0
0 0 0 λ1

)( 0 0 0 γ4
1 0 0 γ3
0 1 0 γ2
0 0 1 γ1

)

We note also that the completeness of the list of representatives of the
conjugacy classes of GL(3, 2) given in Example 2.1.9 follows from Theorem
4.1.4 and the fact the the only irreducible polynomials of degree 2 or 3 over
F2 are x2 + x + 1, x3 + x + 1, and x3 + x2 + 1.

Now suppose we are given a matrix A in the canonical form of Theorem
4.1.4. We will find it useful to have an explicit description of the centralizer of
A, the subalgebra CM(n,F)(A) of M(n, F) consisting of all matrices which com-
mute with A. In constructing this description, we will need some terminology.

4.1.6 Definition. Let A ∈ M(n, F). Then A is said to be semisimple if A is
similar over F to a diagonal matrix. A is nilpotent if An = 0.
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Equivalently, A is semisimple if its minimal polynomial has no repeated
roots, and A is nilpotent if it has characteristic polynomial xn. A result found
on page 95 of [7] can be adapted to our use as follows:

4.1.7 Proposition. Let A ∈ M(n, F). Then there exist unique AS, AN ∈
M(n, F) such that A = AS + AN , AS is semisimple, AN is nilpotent, and
ASAN = ANAS. Further,

CM(n,F)(A) = CM(n,F)(AS) ∩ CM(n,F)(AN).

The following proposition is easily checked.

4.1.8 Proposition. If Bµ(A1, . . . , Ak) is a block diagonal matrix, then

Bµ(A1, . . . , Ak)S = Bµ((A1)S, . . . , (Ak)S)

and
Bµ(A1, . . . , Ak)N = Bµ((A1)N , . . . , (Ak)N).

Now if C is a matrix in the canonical form of Theorem 4.1.4, it is easy to
decompose C into semisimple and nilpotent parts. For recall that C is block
diagonal, with each block having the form

Cl(f) =





C(f) Id

C(f)
. . .
. . . Id

C(f)




.

But Cl(f) = Cl(f)S + Cl(f)N , where

Cl(f)S =





C(f)
C(f)

. . .
C(f)




and Cl(f)N =





Id

. . .
Id




.

Each block C(f) of Cl(f)S has characteristic polynomial f , which is irreducible
over F, and thus has distinct roots in F. Hence each C(f) is semisimple, and
so Cl(f)S is semisimple. All entries on or below the diagonal of Cl(f)N are 0,
so Cl(f)N has characteristic polynomial xn, and thus is nilpotent. It is easily
checked that Cl(f)SCl(f)N = Cl(f)NCl(f)S Hence by Proposition 4.1.8, CS

is block diagonal, with each block of the form Cl(f)S (which is itself block
diagonal, with blocks C(f)), while CN is block diagonal, with each block of
the form Cl(f)N . Note in particular that if C ∈ M(n, F), then CS and CN

are also in M(n, F). Since any matrix A ∈ M(n, F) is similar over F to some
such matrix C, the semisimple and nilpotent parts of A are also similar to
those of C over F, and thus are in M(n, F). Hence Proposition 4.1.7 holds
with F replaced by F. With this decomposition in mind, we can prove the
following lemma, which reduces the computation of the centralizer of C to the
computation of the centralizer of each Cµ(f).
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4.1.9 Lemma. If f1, . . . , fk are distinct irreducible polynomials, and µ1, . . . , µk

are partitions of m1, . . . ,mk ∈ N, and if ni = mi deg fi and ν = {n1, . . . , nk}
is the corresponding composition of some n ∈ N, then the centralizer of

C = Bν(Cµ1(f1), . . . , Cµk
(fk))

is
CM(n,F)(C) = Bν(CM(n1,F)(Cµ1(f1)), . . . , CM(nk,F)(Cµk

(fk))),

the subalgebra of B(ν, F) consisting of all block diagonal matrices with block
i an element of the subalgebra CM(ni,F)(Cµi(fi)) of M(ni, F).

Proof. A matrix Bν(A1, . . . , Ak) ∈ B(ν, F) commutes with C if and only if each
Ai commutes with Cµi(fi). Hence it suffices to show that CM(n,F)(C) ⊆ B(ν, F).
By Proposition 4.1.7, CM(n,F)(C) ⊆ CM(n,F)(CS), which in turn is contained in
CM(n,F)(CS). Now

CS = Bν(Cµ1(f1)S, . . . , Cµk
(fk)S),

where Cµi(fi)S = B(C(fi), . . . , C(fi)) has mi copies of C(fi) along the di-
agonal. Hence for each i there exists a matrix Xi ∈ GL(ni, F) such that
XiCµi(fi)SX−1

i = Di, where Di is a diagonal matrix having roots of fi along
the diagonal. Thus if we set

X = Bν(X1, . . . , Xk),

we have
XCSX−1 = D,

where
D = Bν(D1, . . . , Dk).

Conjugation by the invertible matrix X being an automorphism of M(n, F),
we see that CM(n,F)(CS) = X−1CM(n,F)(D)X. Now suppose A ∈ CM(n,F)(D) has
(x, y) entry Ax,y, and that D has diagonal entries d1, . . . , dn. Then DA = AD
implies (DA)x,y = (AD)x,y, and so

dxAx,y = Ax,ydy.

But if (x, y) is an index outside the blocks of CS, dx and dy are roots of distinct
irreducible polynomials, and so dx %= dy, which implies that Ax,y = 0. Hence
A ∈ B(ν, F), and so CM(n,F)(D) ⊆ B(ν, F). Thus since also X ∈ B(ν, F), we
must have

X−1CM(n,F)(D)X = CM(n,F)(CS) ⊆ B(ν, F),

and so
CM(n,F)(C) ⊆ B(ν, F)

as desired.
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By the preceding lemma, we need only concern ourselves with deter-
mining CM(n,F)(Cµ(f)), which, by Proposition 4.1.7, amounts to determining
CM(n,F)(Cµ(f)S) and CM(n,F)(Cµ(f)N). We first consider CM(n,F)(Cµ(f)S).

4.1.10 Lemma. Let f be an irreducible polynomial of degree d, µ a partition
of m ∈ N, and n = md. Then if A = CM(d,F)(C(f)) we have

CM(n,F)(Cµ(f)S) =




A . . . A
...

...
A . . . A



 ,

the algebra of n× n matrices whose m2 d× d blocks are all elements of A.

Proof. Independent of the partition µ, we have

Cµ(f)S = B(C(f), . . . , C(f)),

with m occurrences of C(f) along the diagonal. Now suppose A ∈ CM(n,F)(Cµ(f)S),
and split A into m2 d× d blocks Ai,j, 1 ≤ i, j ≤ m, so that

A =




A1,1 . . . A1,m

...
...

Am,1 . . . Am,m



 .

Then Cµ(f)SA

=




C(f)

. . .
C(f)








A1,1 . . . A1,m

...
...

Am,1 . . . Am,m





=




C(f)A1,1 . . . C(f)A1,m

...
...

C(f)Am,1 . . . C(f)Am,m



 ,

whereas

ACµ(f)S =




A1,1C(f) . . . A1,mC(f)

...
...

Am,1C(f) . . . Am,mC(f)



 .

Equating corresponding blocks of Cµ(f)SA and ACµ(f)S yields

C(f)Ai,j = Ai,jC(f),

which implies that A ∈ CM(n,F)(Cµ(f)S) if and only if each block Ai,j is con-
tained in A.

In light of this lemma, we should next determine CM(d,F)(C(f)).
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4.1.11 Theorem. If f ∈ F[x] is an irreducible polynomial of degree d, then
CM(d,F)(C(f)) = 〈C(f)〉, the subalgebra of M(d, F) generated by C(f).

Proof. Let λ be a root in F of the irreducible polynomial f . Then the ex-
tension field F[λ] is a vector space over F of dimension d, with basis β =
{1, λ,λ2, . . . ,λd−1}. Multiplication by λ is an F-linear map F[λ] → F[λ], and
its matrix with respect to β is C(f). Since the F-algebra generated by λ is
the field F[λ], 〈C(f)〉 and F[λ] are isomorphic as F-algebras. For an element
x ∈ F[λ], let Mx be the matrix in 〈C(f)〉 representing multiplication by x.
Then for any y ∈ F[λ], if we view elements of F[λ] as column vectors with
respect to the basis β, we have Mxy = xy = yx = Myx. Now suppose we
are given a matrix A ∈ CM(d,F)(C(f)). Viewed as a matrix with respect to
the basis β, A determines an F-linear map F[λ] → F[λ]. In particular, there
is some element a = A1 ∈ F[λ]. But A commutes with C(f), and hence also
with any element of the subalgebra generated by C(f). Hence for any x ∈ F[λ]
we have

Ax = AMx1 = MxA1 = Mxa = Max,

which implies that A = Ma ∈ 〈C(f)〉, since any matrix in M(d, F) is com-
pletely determined by its action on F[λ]. This proves that CM(d,F)(C(f)) ⊆
〈C(f)〉, and it is automatic that 〈C(f)〉 ⊆ CM(d,F)(C(f)), so we conclude
CM(d,F)(C(f)) = 〈C(f)〉.

In practice, one should interpret Theorem 4.1.11 as allowing us to identify
C(f) with a root λ of f , its centralizer A with F[λ], and md×md matrices built
from d×d blocks A ∈ A with elements of M(m, F[λ]). Under this identification
one sees, for example, that Lemma 4.1.10 states that the centralizer in M(n, F)
of the matrix corresponding to λIm ∈ M(m, F[λ]) is precisely the subalgebra
of M(n, F) corresponding to M(m, F[λ]).

It now remains to determine CM(n,F)(Cµ(f)N). So suppose deg f = d and
that µ = {a1, . . . , ak} is a partition such that ν = {da1, . . . , dak} is a partition
of n. For l ∈ N, we let Jl,d be the nilpotent part of Cl(f). That is,

Jl,d =





Id

. . .
Id




.

Then
Cµ(f)N = Bν(Ja1,d, . . . , Jak,d).

Now suppose A ∈ M(n, F), and divide A into k2 blocks Ai,j, with 1 ≤ i, j ≤ k,
and the block Ai,j a dai × daj matrix. Equating corresponding blocks of
ACµ(f)N and Cµ(f)NA shows that A ∈ CM(n,F)(Cµ(f)N) if and only if

Ai,jJaj ,d = Jai,dAi,j
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for all i, j. Now divide Ai,j into aiaj d× d blocks Bx,y, so that

Ai,j =





B1,1 B1,2 . . . B1,aj

B2,1 B2,2 . . . B2,aj

...
...

...
Bai,1 Bai,2 . . . Bai,aj




.

Then

Ai,jJaj ,d =





0 B1,1 . . . B1,aj−1

0 B2,1 . . . B2,aj−1
...

...
...

0 Bai,1 . . . Bai,aj−1




,

whereas

Jai,dAi,j =





B2,1 B2,2 . . . B2,aj

...
...

...
Bai,1 Bai,2 . . . Bai,aj

0 0 . . . 0




.

Equating corresponding blocks shows that Ai,jJaj ,d = Jai,dAi,j if and only if
for all 1 ≤ x ≤ ai − 1 and 2 ≤ y ≤ aj, we have Bx,y−1 = Bx+1,y and also
Bx,y = 0 if y = 1 and x %= 1 or x = ai and y %= aj. When applied repeatedly,
the condition Bx,y−1 = Bx+1,y shows that the blocks of Ai,j must be constant
along each diagonal, while the second condition asserts that all but the first
block in the first column is zero, and all but the last block in the last column is
zero. Of course, if one block along a diagonal is zero, equality along diagonals
forces the entire diagonal to be zero. Hence the only diagonals of Ai,j which are
non-zero are those which extend from the top row of Ai,j to the last column.
The number of these diagonal is the smaller of ai and aj. In summary, we
have proven the following proposition.

4.1.12 Proposition. CM(n,F)(Cµ(f)N) consists of all block matrices with block
sizes determined by ν and such that each block Ai,j has the form





0 . . . 0 B1 B2 . . . Bai

0 0 B1
. . .

...
...

. . . . . . B2

0 . . . . . . . . . . . . 0 B1
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if ai ≤ aj and the form




B1 B2 . . . Baj

0 B1
. . .

...
... 0

. . . B2
...

. . . B1
... 0
...

...
0 . . . . . . 0





if ai ≥ aj for some Bl ∈ M(d, F).

Taken together, the results of this section show how to compute the cen-
tralizer of any element C of M(n, F) in canonical form. By Lemma 4.1.9 we
need only compute the centralizers of the blocks Cµ(f) of C corresponding to
the different irreducible factors f of the characteristic polynomial of C. For
such an f , we first compute the centralizer of C(f), which by Theorem 4.1.11
is the linear span of {I, C(f), C(f)2, . . . , C(f)deg f−1}. Then we split an arbi-
trary matrix of the appropriate size into blocks corresponding to the partition
µ, and construct each block by placing arbitrary elements of the centralizer
of C(f) along its diagonals according to the rule of Proposition 4.1.12. We
illustrate this with an example using a matrix from M(17, Q).

4.1.13 Example. Suppose we wish to find the centralizer over Q of the matrix

C = B{8,6,3}(C{1,3}(x
2 − 2x− 2), C{1,2,3}(x− 3), C{1}(x

3 − 5)).

Thus

C =





2
1 2

2 1
1 2 1

2 1
1 2 1

2
1 2

3
3 1

3
3 1

3 1
3

5
1

1





.

The centralizer of C(x2−2x−2) is the Q-span of I and C(x2−2x−2), namely
{(

a 2b
b a+2b

)∣∣ a, b ∈ Q
}

,

while the centralizer of C(x3−5) is the Q-span of I, C(x3−5), and C(x3−5)2,
namely {(

a 5c 5b
b a 5c
c b a

)∣∣∣ a, b, c ∈ Q
}

.

Of course the centralizer of 3 is simply Q. Hence putting numerous copies of
these elements into a 17 × 17 matrix according to the rules specified in the
preceding results shows that CM(17,Q)(C) consists of all matrices of the form
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a 2b c 2d
b a+2b d c+2d
e 2f g 2h i 2j k 2l
f e+2f h g+2h j i+2j l k+2l

g 2h i 2j
h g+2h j i+2j

g 2h
h g+2h

m n o
p q r s t

q s
t u v w x y

u w x
w

z 5β 5α
α z 5β
β α z





,

as the letters used range over Q.

4.2 Conjugacy Classes

The conjugacy classes of Sp(4, q) were determined by L. E. Dickson in [2] us-
ing methods similar to ours, so our description of the associated computations
will only be representative of the complexities involved, not complete. First,
though, we give a brief description of the form the list will take. Since our
list of conjugacy classes is to be valid for any q, the representatives of the
conjugacy classes must be given in terms of parameters from Fq. There will
be many different types of representatives (about 20, depending on the nota-
tion chosen), and for each type we will determine under what circumstances
different values of the parameters give rise to the same classes and how many
different classes of the given type there are. In general, the latter number will
be a polynomial in q, as will the common size of the classes of a given type.
A second issue which arises is the particular copy of Sp(4, q) within GL(4, q)
which is used for the computations. For if J is any invertible matrix satisfying
JT = −J , we know that Sp(4, q) is isomorphic to the matrix group

Sp(4, q)J = {A ∈ GL(4, q)|AT JA = J},

and, in general, different matrices J yield distinct (though isomorphic) matrix
groups. For the final list, we will take the version of Sp(4, q) for which J is

the matrix B̂ =

(
0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

)
, but since many conjugacy classes have much

nicer representatives for more complicated choices of J , we will occasionally
use other matrices for J in our computations. The method we use in the
computations begins with Example 4.1.5: we know that any matrix in Sp(4, q)
can, for the appropriate choice of J , be written in one of the canonical forms
listed below.

( λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

) ( λ1 1 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ3

) ( λ1 1 0 0
0 λ1 0 0
0 0 λ2 1
0 0 0 λ2

) ( λ1 1 0 0
0 λ1 1 0
0 0 λ1 0
0 0 0 λ2

) ( λ1 1 0 0
0 λ1 1 0
0 0 λ1 1
0 0 0 λ1

)

( 0 α2 0 0
1 α1 0 0
0 0 λ1 0
0 0 0 λ2

) ( 0 α2 0 0
1 α1 0 0
0 0 λ1 1
0 0 0 λ1

) ( 0 α2 0 0
1 α1 0 0
0 0 0 α4
0 0 1 α3

) ( 0 α2 1 0
1 α1 0 1
0 0 0 α2
0 0 1 α1

) (
0 0 β3 0
1 0 β2 0
0 1 β1 0
0 0 0 λ1

)( 0 0 0 γ4
1 0 0 γ3
0 1 0 γ2
0 0 1 γ1

)
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Thus for each canonical form A in this list, we determine, if possible, a matrix
J and conditions on the parameters in A such that A ∈ Sp(4, q)J . We then
determine what conditions on the parameters yield distinct representatives of
the same conjugacy class and how many different conjugacy classes occur as
the parameters range over the allowable values. We may need to distinguish
numerous special cases corresponding to equality of certain parameters or
values of ±1 for the parameters. Finally, to compute the size of the conjugacy
class of each A, we use the results of Section 4.1 to write down the general form
X of an arbitrary element of CM(4,q)(A) and then apply the equation XT JX =
J to determine the size of CSp(4,q)(A) = CM(4,q)(A)∩Sp(4, q)J . Note that we do
not need to show explicitly that we have found all classes which correspond to
canonical forms of a given type, since at the end of the computations we can
compute the total number of elements in the various classes we have found
and check that this number is equal to |Sp(4, q)|, which by Proposition 2.2.16
is

(q − 1)2q4(q + 1)2(q2 + 1).

Before we begin analyzing specific canonical forms, we state one useful fact
which allows us to see immediately when many of the above canonical forms
are contained in Sp(4, q) bB.

4.2.1 Lemma. A matrix of the form A = B{2,2}(A1, A2) satisfies AT B̂A = B̂
if and only if A1, A2 ∈ SL(2, q).

Proof. Since A and B̂ are both contained in B({2, 2}, q) (the subalgebra
of M(4, q) consisting of all block diagonal matrices with two 2 × 2 blocks),
AT B̂A = B̂ if and only if AT

i MAi = M for i = 1, 2, where M = ( 0 1
−1 0 ), and

by Proposition 2.2.12 this is true if and only if Ai ∈ SL(2, q).

A second useful fact concerns matrices which are diagonalizable over Fq,
the algebraic closure of Fq.

4.2.2 Lemma. Suppose A ∈ Sp(4, q) is similar to a diagonal matrix in
GL(4, Fq). Then there exist λ, µ ∈ Fq such that the 4 (not necessarily distinct)
eigenvalues in Fq of A are λ, λ−1, µ, and µ−1.

Proof. Suppose A is conjugate to a diagonal matrix D ∈ GL(4, Fq) via the
matrix P . Since Sp(4, q) ≤ Sp(4, Fq), and conjugation by P maps one copy
of Sp(4, Fq) within GL(4, Fq) to another, there must exist J ∈ GL(4, Fq) such

that JT = −J and DT JD = J . Suppose that D =

(
α

β
γ

δ

)
and that

J =

( 0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0

)
. Then the equation DT JD = J implies that aαβ = a,

bαγ = b, cαδ = c, dβγ = d, eβδ = e, and fγδ = f . Since J is invertible, at
least one of a, b, and c must be non-zero, and so at least one of β, γ, and δ
is α−1. Since the matrix must have determinant 1 by Proposition 2.2.13, the
two remaining eigenvalues must also be inverses of each other.
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We now turn to analyzing specific canonical forms. First we consider the
diagonal matrices of the form

( λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

)
.

By Lemma 4.2.1, such a matrix is contained in Sp(4, q) bB if and only if there
are x, y ∈ F∗q such that λ1 = x, λ2 = x−1, λ3 = y, and λ4 = y−1. Thus we let

ax,y =

( x 0 0 0
0 x−1 0 0
0 0 y 0
0 0 0 y−1

)
.

We need to determine under what circumstances two elements of this type

are conjugate. If C1 =

(
0 1 0 0
−1 0 0 0
0 0 1 0
0 0 0 1

)
, then C−1

1 ax,yC1 = ax−1,y, so cl(ax,y) =

cl(ax−1,y). If C2 =

(
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

)
, then C−1

2 ax,yC2 = ay,x, and in general,

C−1
2 B{2,2}(A1, A2)C2 = B{2,2}(A2, A1).

Thus cl(ax,y) = cl(ay,x). By combining these two class equalities, we see that
for any x, y ∈ F∗q all elements of the forms axi,yj and ayj ,xi for i, j ∈ {1,−1} rep-
resent the same conjugacy class in Sp(4, q) bB. However, if {x1, x

−1
1 , y1, y

−1
1 } %=

{x2, x
−1
2 , y2, y

−1
2 }, ax1,y1 and ax2,y2 have different characteristic polynomials,

and so are not conjugate.
We now distinguish several different types of elements of the form ax,y.

The elements a1,1 and a−1,−1 together constitute the centre of Sp(4, q), and
so each is the unique representative of a distinct conjugacy class of size 1.
If x /∈ {−1, 0, 1}, then since cl(ax,x) = cl(ax−1,x−1) there are q−3

2 distinct
classes with a representative of the form ax,x. Similarly, there are q−3 classes
with representatives of the form ax,±1 for x /∈ {−1, 0, 1}, and one additional
class with representative a1,−1. Finally, we have the most general class with
representative of the form ax,y, namely that for which |{x, x−1, y, y−1}| = 4.
(Thus neither x nor y is ±1, and x and y are neither equal nor inverses of each
other.) In choosing x and y to produce an ax,y of this type, we can choose any
element of Fq besides 0 and ±1 for x, but y must also not be equal to x±1.
Thus the number of ax,y of this type is (q − 3)(q − 5). But by the conjugacy
relations noted previously, each ax,y is conjugate to 7 other elements of the

same form, and so there are (q−3)(q−5)
8 classes with representatives of this form.

We now determine the size of the conjugacy class of each of these elements.
Since ax,x is not one of the canonical forms whose centralizer can be determined
from Section 4.1, we first note that conjugation by the permutation matrix

P =

(
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

)
maps Sp(4, q) bB to Sp(4, q)J , where

J = P T B̂P =

(
0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

)
=

(
0 I
−I 0

)
,
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and maps ax,x to

a′x,x = P−1ax,xP =

(
x 0 0 0
0 x 0 0
0 0 x−1 0
0 0 0 x−1

)
.

By the results of Section 4.1, CM(4,q)(a′x,x) = B({2, 2}, q), the set of all matrices
of the form (

A 0
0 B

)

for A, B ∈ M(2, q). But

(
A 0
0 B

)T (
0 I
−I 0

) (
A 0
0 B

)
=

(
0 AT B

−BT A 0

)
,

which equals
(

0 I
−I 0

)
if and only if B =

(
AT

)−1
. Hence

CSp(4,q)J
(a′x,x) = CM(4,q)(a

′
x,x)∩ Sp(4, q)J =

{(
A 0

0
(
AT

)−1

)∣∣∣∣ A ∈ GL(2, q)

}
,

and so
∣∣CSp(4,q) bB

(ax,x)
∣∣ = |GL(2, q)| = (q − 1)2q(q + 1). Hence

|cl(ax,x)| =
(q − 1)2q4(q + 1)2(q2 + 1)

(q − 1)2q(q + 1)
= q3(q + 1)(q2 + 1).

The sizes of the classes of ax,±1, a1,−1, and ax,y are determined similarly, except
that now the computations are most easily carried out in Sp(4, q) bB. For exam-
ple, when x, y, x−1 and y−1 are all distinct, CM(4,q)(ax,y) = B({1, 1, 1, 1}, q), the
set of all diagonal matrices, and since, as noted before, a diagonal matrix is in
Sp(4, q) bB if and only if its diagonal entries come in two inverse pairs, there are
(q − 1)2 diagonal matrices in Sp(4, q) bB. Thus |cl(ax,y)| = q4(q + 1)2(q2 + 1).
Table 4.1 lists, for each type of class discussed so far, the necessary restrictions
on the defining parameters, the size of the class, and the number of classes of
that type.

Representative Parameters Class Size # of Classes
a±1,±1 − 1 2
ax,x x /∈ {−1, 0, 1} q3(q + 1)(q2 + 1) q−3

2

ax,±1 x /∈ {−1, 0, 1} q3(q + 1)(q2 + 1) q − 3
a1,−1 − q2(q2 + 1) 1

ax,y |{x, x−1, y, y−1}| = 4 q4(q + 1)2(q2 + 1) (q−3)(q−5)
8

Table 4.1: Class Sizes of Sp(4, q) Part 1.

We now consider the classes of matrices with canonical form
( λ1 1 0 0

0 λ1 0 0
0 0 λ2 0
0 0 0 λ3

)
.
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By Lemma 4.2.1, such a matrix is in Sp(4, q) bB if and only λ2
1 = 1 ⇒ λ1 = ±1

and λ3 = λ−1
2 . Thus we let

b±1,x = b1
±1,x =

( ±1 1 0 0
0 ±1 0 0
0 0 x 0
0 0 0 x−1

)
.

Now let ε be a generator of F∗q. (Recall that the multiplicative group of any
finite field is cyclic.) Then all the elements of F∗q which are squares form a
subgroup of F∗q of index 2, and so ε is not the square of any element of F∗q.
As a result, it follows that the matrices ( 1 1

0 1 ) and ( 1 ε
0 1 ) are not conjugate in

SL(2, q). To see this, suppose they were conjugate via the matrix ( a b
c d ). Then

we must have
( a b

c d ) ( 1 ε
0 1 ) = ( 1 1

0 1 ) ( a b
c d )

⇒
(

a aε+b
c cε+d

)
=

(
a+c b+d

c d

)
,

which implies that c = 0 and d = aε. But then if ( a b
c d ) ∈ SL(2, q), we must

have ad − bc = 1 ⇒ a2ε = 1 ⇒ ε = (a−1)2, contradicting our choice of ε. A
similar argument shows that if we let

bε
±1,x =

( ±1 ε 0 0
0 ±1 0 0
0 0 x 0
0 0 0 x−1

)
,

then b1
±1,x and bε

±1,x are not conjugate in Sp(4, q) bB, despite having the same
canonical form in GL(4, q). If a ∈ {1, ε}, then cl(ba

±1,x) = cl(ba
±1,x−1) but

with this exception, distinct values of a and x yield representatives of distinct
conjugacy classes. Hence there are 4 classes with representatives of the form1

ba
±1,±1, 4 of the form ba

±1,∓1 and 2(q − 3) of the form ba
±1,x for x /∈ {−1, 0, 1}.

We will show how to compute
∣∣cl(ba

±1,±1)
∣∣, the computations for ba

±1,∓1

and ba
±1,x being similar and easier. By the results of Section 4.1, we see that

CM(4,q)(b1
±1,±1) consists of all matrices of the form

( a b i j
0 a 0 0
0 g c d
0 h e f

)
,

as the various parameters used range over Fq. Now b1
±1,±1 is conjugate to

bε
±1,±1 in GL(4, q) via the diagonal matrix D = B(1, ε, 1, 1), so conjugation by

D maps CM(4,q)(b1
±1,±1) to CM(4,q)(bε

±1,±1). But

D−1

( a b i j
0 a 0 0
0 g c d
0 h e f

)
D =

( a bε i j
0 a 0 0
0 gε c d
0 hε e f

)
,

which is again in CM(4,q)(b1
±1,±1), and hence CM(4,q)(b1

±1,±1) = CM(4,q)(bε
±1,±1).

1We adopt the convention that if the symbol ±1 is used twice in an equation it means
either 1 in both places or −1 in both places, and similarly, ∓1 = −(±1).
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Thus
∣∣CSp(4,q) bB

(ba
±1,±1)

∣∣ is simply the number of matrices of the form

( a b i j
0 a 0 0
0 g c d
0 h e f

)

which are contained in Sp(4, q) bB. If B is the symplectic form corresponding

to B̂, then any matrix in M(4, q) with columns c1, c2, c3, c4 is contained in
Sp(4, q) bB if and only if B(c1, c2) = B(c3, c4) = 1 and B(c1, c3) = B(c2, c3) =

B(c1, c4) = B(c2, c4) = 0. Applying these equations to the matrix

( a b i j
0 a 0 0
0 g c d
0 h e f

)
,

we see that for it to be contained in Sp(4, q) bB we must have

a2 = 1, cf − ed = 1,−ia + ge− ch = 0, and − ja + gf − dh = 0.

Hence we must have a = ±1,
(

c d
e f

)
∈ SL(2, q), i = a−1(ge − ch), and j =

a−1(gf − dh), but we can choose b, g, and h freely from Fq. Hence
∣∣CSp(4,q) bB

(ba
±1,±1)

∣∣ = 2 |Fq|3 |SL(2, q)| = 2(q − 1)q4(q + 1),

and so
∣∣cl(ba

±1,±1)
∣∣ =

(q − 1)(q + 1)(q2 + 1)

2
.

Computing the remaining class sizes similarly, we get Table 4.2.

Representative Parameters Class Size # of Classes

ba
±1,±1 a ∈ {1, ε} (q−1)(q+1)(q2+1)

2 4

ba
±1,∓1 a ∈ {1, ε} (q−1)q2(q+1)(q2+1)

2 4

ba
±1,x a ∈ {1, ε}, x /∈ {−1, 0, 1} (q−1)q3(q+1)2(q2+1)

2 2(q − 3)

Table 4.2: Class Sizes of Sp(4, q) Part 2.

We now consider classes of matrices with canonical form
( λ1 1 0 0

0 λ1 0 0
0 0 λ2 1
0 0 0 λ2

)
.

If such a matrix is contained in Sp(4, q) bB, we must have λ1 = ±1 and λ2 = ±1.
As in the previous case, we can replace a 1 above the diagonal with a generator
ε of F∗q to obtain a representative of a different class. Thus if we let

ca
±1,±1 =

( ±1 a 0 0
0 ±1 0 0
0 0 ±1 1
0 0 0 ±1

)
and ca,b

1,−1 =

(
1 a 0 0
0 1 0 0
0 0 −1 b
0 0 0 −1

)
,

where a, b ∈ {1, ε}, we can show that there are 4 distinct classes with repre-
sentatives of the form ca

±1,±1 and 4 with representatives of the form ca,b
1,−1.
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To determine whether a matrix of the canonical form under consideration
with λi %= ±1 can be contained in Sp(4, q)J for some other form matrix J , we
note that if J is any matrix for a symplectic form, we can write

J =

( 0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0

)

for values of the parameters such that J is non-singular. The system of equa-
tions corresponding to

( λ1 1 0 0
0 λ1 0 0
0 0 λ2 1
0 0 0 λ2

)T ( 0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0

) ( λ1 1 0 0
0 λ1 0 0
0 0 λ2 1
0 0 0 λ2

)
=

( 0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0

)

has, among others, a family of solutions of the form

λ1 = x, λ2 = x−1, a = b = e = f = 0, c = x, d = −x−1

for any x ∈ F∗q, so if we set

Jx =

( 0 0 0 x
0 0 −x−1 0
0 x−1 0 0
−x 0 0 0

)
and c′x,x−1 =

(
x 1 0 0
0 x 0 0
0 0 x−1 1
0 0 0 x−1

)

we see that c′x,x−1 ∈ Sp(4, q)Jx . Under the matrix

(
x−1 0 0 0
0 0 0 1
0 0 x 0
0 1 0 0

)
, c′x,x−1 is conju-

gate to

cx,x−1 =

(
x 0 0 x
0 x−1 0 0
0 x−1 x−1 0
0 0 0 x

)
∈ Sp(4, q) bB.

Thus since cx,x−1 and cx−1,x are conjugate, there are q−3
2 classes with represen-

tatives of the form cx,x−1 for x /∈ {−1, 0, 1}.
The sizes of the classes of ca,b

±1,∓1 and cx,x−1 are relatively easily deter-
mined, although for the latter one should work in Sp(4, q)Jx , but determining∣∣cl(ca

±1,±1)
∣∣ is sufficiently difficult to warrant further discussion. We will need

the following lemma.

4.2.3 Lemma. Let k, l ∈ F∗q. Then

∣∣{(x, y) ∈ F2
q

∣∣ x2 − ky2 = l}
∣∣ =

{
q − 1 if k ∈

(
F∗q

)2

q + 1 if k /∈
(
F∗q

)2 ,

where
(
F∗q

)2
is the subgroup of squares in F∗q.

Proof. If k is a square in F∗q, then x2 − ky2 = l ⇒ (x +
√

ky)(x −
√

ky) = l,

so if we set λ = x +
√

ky, we have l
λ = x−

√
ky, and so

x =
1

2

(
λ +

l

λ

)
and y =

1

2
√

k

(
λ− l

λ

)
.
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Conversely, if we define x and y by the above formulae for any λ ∈ F∗q, a
simple computation shows that x2−ky2 = l. Thus there is a bijection between
solutions of x2 − ky2 = l and F∗q, and so the number of solutions is q − 1.

Now suppose that k is not a square in F∗q. Then Fq[
√

k] is a degree 2
extension of Fq, and thus can be identified with Fq2 . Now recall that in general,
if L is a finite extension of the field K of degree d, there is a homomorphism
NL/K : L∗ → K∗ such that the value of NL/K on any element of L is the
determinant of any matrix for the element in GL(d, K). Further, when L and
K are finite fields, NL/K is surjective. (See, for example, [5] page 115.) Thus

there is an epimorphism N : F∗q2 → F∗q given by N(x +
√

ky) = x2 − ky2, and
so the set of solutions of x2− ky2 = l is in bijection with a coset of the kernel
of N . Since N is an epimorphism,

|ker N | =

∣∣∣F∗q2

∣∣∣
∣∣F∗q

∣∣ =
q2 − 1

q − 1
= q + 1,

as desired.

We will now show how to compute
∣∣cl(cε

±1,±1)
∣∣; the computations for c1

±1,±1

follow identically by replacing ε with 1. Since cε
±1,±1 is not in the canonical

form of Section 4.1, we conjugate it by the matrix D =

(
1 0 0 0
0 ε 0 0
0 0 1 0
0 0 0 1

)
to obtain

c′±1,±1 =

( ±1 1 0 0
0 ±1 0 0
0 0 ±1 1
0 0 0 ±1

)
∈ Sp(4, q)J , where

J = DT B̂D =

(
0 ε 0 0
−ε 0 0 0
0 0 0 1
0 0 −1 0

)
.

By the results of Section 4.1, CM(4,q)(c′±1,±1) consists of all matrices of the form

A =

(
a b c d
0 a 0 c
e f g h
0 e 0 g

)
.

Applying the condition AT JA = J yields the equations

e2 + εa2 = ε, g2 + εc2 = 1, eg + acε = 0, and fg − eh + bcε− adε = 0.

Now ε is non-square in F∗q, so −ε is non-square if and only if −1 is a square
in F∗q. But −1 is square or non-square according as q ≡ 1 mod 4 or q ≡ 3
mod 4. Thus by Lemma 4.2.3, the number of (e, a) ∈ F2

q with e2 + εa2 = ε is
q + 1 if q ≡ 1 mod 4 and q − 1 if q ≡ 3 mod 4.

Now suppose we have fixed a pair (e, a) with e2 + εa2 = ε. If e = 0, the
equations

g2 + εc2 = 1 and eg + acε = 0

imply c = 0 and g = ±1, while if e %= 0, they imply that c = ±eε−1 and
g = ∓a. Thus in all cases there are two possibilities for (g, c). Once we have
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chosen a, e, f , and g, at least one of a and e must be non-zero, so we can select
3 of b, d, f , and h arbitrarily from Fq and use the equation

fg − eh + bcε− adε = 0

to solve for the fourth. Multiplying the number of choices at each step, we
see that

∣∣CSp(4,q)J
(cε
±1,±1)

∣∣ =

{
2q3(q + 1) if q ≡ 1 mod 4
2q3(q − 1) if q ≡ 3 mod 4

,

and from here, the class sizes are easily determined. Table 4.3 records the
usual data.

Representative Parameters Class Size # of Classes

c±1,±1 −
(q−1)q(q+1)2(q2+1)

2 if q≡1 mod 4

(q−1)2q(q+1)(q2+1)
2 if q≡3 mod 4

2

cε
±1,±1 −

(q−1)2q(q+1)(q2+1)
2 if q≡1 mod 4

(q−1)q(q+1)2(q2+1)
2 if q≡3 mod 4

2

ca,b
1,−1 a, b ∈ {1, ε} (q−1)2q2(q+1)2(q2+1)

4 4
cx,x−1 x /∈ {−1, 0, 1} (q − 1)q3(q + 1)2(q2 + 1) q−3

2

Table 4.3: Class Sizes of Sp(4, q) Part 3.

If we attempt to use the technique which produced c′x,x−1 to find a matrix
J such that ( λ1 1 0 0

0 λ1 1 0
0 0 λ1 0
0 0 0 λ2

)
∈ Sp(4, q)J

for some λ1, λ2, we find that the resulting equations have no solutions for
which J is non-singular. Hence no elements of Sp(4, q) have this canonical
form.

If we use this technique for matrices with canonical form
( λ1 1 0 0

0 λ1 1 0
0 0 λ1 1
0 0 0 λ1

)
,

we find that for any a ∈ F∗q, if Ja
±1 =

(
0 0 0 a
0 0 −a ±a
0 a 0 0
−a ∓a 0 0

)
, then

d′±1 =

( ±1 1 0 0
0 ±1 1 0
0 0 ±1 1
0 0 0 ±1

)
∈ Sp(4, q)Ja

±1
.

If we set D =

(
1 0 0 ∓a−1

0 0 0 a−1

0 0 1 0
0 a−1 0 0

)
, then DT Ja

±1D = B̂, and so conjugation by D

maps d′±1 to an element of Sp(4, q) bB, namely

da
±1 =

(
±1 0 ±1 a−1

0 ±1 0 0
0 a−1 ±1 0
0 0 a ±1

)
.
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If we write down the general form of a matrix by which d1
±1 is conjugate

to dε
±1, the equations for membership of this matrix in Sp(4, q) bB have no

solution, so d1
±1 and dε

±1 are not conjugate. Thus there are 4 distinct classes
with representatives of the form da

±1 for a ∈ {1, ε}. By working in Sp(4, q)Ja
±1

,
we can readily compute the size of these classes, yielding Table 4.4.

Representative Parameters Class Size # of Classes

da
±1 a ∈ {1, ε} (q−1)2q2(q+1)2(q2+1)

2 4

Table 4.4: Class Sizes of Sp(4, q) Part 4.

We now consider the classes of matrices with canonical forms
( 0 α2 0 0

1 α1 0 0
0 0 λ1 0
0 0 0 λ2

)
and

( 0 α2 0 0
1 α1 0 0
0 0 λ1 1
0 0 0 λ1

)

for t2−α1t−α2 irreducible in Fq[t]. By Lemma 4.2.1, if a matrix of either type
is contained in Sp(4, q) bB we must have α2 = −1. For the first, we must have
λ2 = λ−1

1 , while for the second we must have λ1 = ±1. Thus for t2 − xt + 1
irreducible in Fq[t], y ∈ F∗q, and a ∈ {1, ε} we define

ex,y =

( 0 −1 0 0
1 x 0 0
0 0 y 0
0 0 0 y−1

)
and fa

x,±1 =

(
0 −1 0 0
1 x 0 0
0 0 ±1 a
0 0 0 ±1

)
.

Since different irreducible polynomials t2−xt+1 give rise to representatives
of different classes, we need to know how many irreducible polynomials of this
type are contained in Fq[t]. If ε is the usual non-square element of F∗q, then the
roots of any irreducible polynomials of degree 2 in Fq[t] are contained in Fq[

√
ε].

Further, if ξ = u +
√

εv is a root of such a polynomial for u, v ∈ Fq, the other
root of the polynomial is the conjugate of ξ, ξ = u −

√
εv. If ξ and ξ of this

form are roots of t2−xt+1, we must have ξξ = 1 ⇒ u2−εv2 = 1 ⇒ N(ξ) = 1,
where N : F∗q2 → F∗q is the homomorphism used in the proof of Lemma 4.2.3.
As noted in that proof, there are q + 1 elements ξ in F∗q2 such that N(ξ) = 1,
and if one excludes ξ = ±1, these elements are precisely the roots in F∗q2

of the irreducible polynomials of the form t2 − xt + 1. Since there are two
roots corresponding to each such polynomial, there must be q−1

2 irreducible
polynomials of this type.

With this in mind, we see that there are q− 1 classes with representatives
of the form ex,±1. Since ex,y and ex,y−1 are conjugate, there are (q−1)(q−3)

4
classes with representatives of the form ex,y for y /∈ {−1, 0, 1}, and since
f 1

x,±1 and f ε
x,±1 are not conjugate in Sp(4, q) bB, there are 2(q − 1) classes with

representatives of the form fa
x,±1.

Determining the sizes of these classes is relatively simple. For example,
the results of Section 4.1 imply that CM(4,q)(ex,y) consists of all matrices of the

form

(
a −b 0 0
b a+bx 0 0
0 0 c 0
0 0 0 d

)
. According to Lemma 4.2.1, such a matrix is contained in
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Sp(4, q) bB if and only if d = c−1 and a2 + abx+ b2 = 1. But if ξ is a root in Fq2

of t2−xt+1, then for any a, b ∈ Fq, N(a+ bξ) = a2 +abx+ b2, where N is the
homomorphism of Lemma 4.2.3, so pairs (a, b) ∈ F2

q such that a2+abx+b2 = 1
are in bijection with kerN . Hence there are q + 1 choices for a and b, and
q − 1 choices for c, so that

∣∣CSp(4,q) bB
(ex,y)

∣∣ = (q − 1)(q + 1), and from this the
class size follows. Table 4.5 records the usual data; in addition to the listed
restrictions on the parameters, we require that t2 − xt + 1 be irreducible in
Fq[t].

Representative Parameters Class Size # of Classes
ex,±1 − (q − 1)q3(q2 + 1) q − 1

ex,y y /∈ {−1, 0, 1} (q − 1)q4(q + 1)(q2 + 1) (q−1)(q−3)
4

fa
x,±1 a ∈ {1, ε} (q−1)2q3(q+1)(q2+1)

2 2(q − 1)

Table 4.5: Class Sizes of Sp(4, q) Part 5.

We now consider classes with representatives of the form

( 0 α2 0 0
1 α1 0 0
0 0 0 α4
0 0 1 α3

)
.

Such a matrix is contained in Sp(4, q) bB if and only if α2 = α4 = −1. Thus for
t2 − xt + 1 and t2 − yt + 1 irreducible in Fq[t] we define

gx,y =

(
0 −1 0 0
1 x 0 0
0 0 0 −1
0 0 1 y

)
.

There are q−1
2 classes with representatives of the form gx,x. Since cl(gx,y) =

cl(gy,x), there are 1
2

q−1
2

(
q−1
2 − 1

)
= (q−1)(q−3)

8 classes with representatives of
the form gx,y for x %= y.

To obtain one more type of class with representatives of this form, let
J =

(
0 I
−I 0

)
. Recall from the computations for ax,x that a matrix of the form

( A 0
0 B ) is contained in Sp(4, q)J if and only if B =

(
AT

)−1
. Thus if A =

(
0 y
1 x

)

for t2 − xt − y irreducible in Fq[t], we should set B =
(
−xy−1 y−1

1 0

)
to obtain

the element

h′x,y =

( 0 y 0 0
1 x 0 0
0 0 −xy−1 y−1

0 0 1 0

)

of Sp(4, q)J . The matrix h′x,y is conjugate in GL(4, q) via a permutation matrix
to

hx,y =

( 0 0 y 0
0 −xy−1 0 y−1

1 0 x 0
0 1 0 0

)
∈ Sp(4, q) bB.

Provided y %= −1, hx,y is not conjugate to any gx,y. Thus since cl(hx,y) =
cl(h−xy−1,y−1), the number of conjugacy classes with representatives of this
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type is half the number of monic irreducible quadratics t2−xt−y with y %= −1.
Since Fq2 contains q2 − q elements of degree 2 over Fq, there are q2−q

2 monic
irreducible quadratics in Fq[t]. Hence since q−1

2 of these have y = −1, there

are q2−q
2 − q−1

2 = (q−1)2

2 irreducible quadratics with y %= −1, and thus (q−1)2

4
classes with representatives of the form hx,y.

Determining |cl(gx,y)| is straightforward. Determining |cl(hx,y)| is rela-
tively straightforward, but is best done through h′x,y. (Care must be taken
in applying the results of Section 4.1, since h′x,y is not quite in the canonical
form of that section.) By the results of Section 4.1, CM(4,q)(gx,x) consists of all
matrices of the form (

a −b c −d
b a+bx d c+dx
e −f g −h
f e+fx h g+hx

)
.

Applying the condition that this element is contained in Sp(4, q) bB yields equa-
tions which are equivalent to the statement that if ξ and ξ are the roots in
Fq2 of t2 − xt + 1, then

(
a+bξ e+fξ
c+dξ g+hξ

) (
a+bξ c+dξ
e+fξ g+hξ

)
= I,

and so CSp(4,q)(gx,x) is isomorphic to U(2, q2), the group of unitary matrices
over Fq2 . Hence

∣∣CSp(4,q)(gx,x)
∣∣ = |U(2, q2)| = (q−1)q(q+1)2. (For a treatment

of the basic properties of the unitary groups, including their orders, see [6].)
Table 4.6 records the usual information; we assume the parameters are such
that the corresponding quadratics are irreducible.

Representative Parameters Class Size # of Classes
gx,x − (q − 1)q3(q2 + 1) q−1

2

gx,y − (q − 1)2q4(q2 + 1) (q−1)(q−3)
8

hx,y y %= −1 (q − 1)q4(q + 1)(q2 + 1) (q−1)2

4

Table 4.6: Class Sizes of Sp(4, q) Part 6.

If we attempt to solve the equations on the various parameters correspond-
ing to membership of ( 0 α2 1 0

1 α1 0 1
0 0 0 α2
0 0 1 α1

)

in Sp(4, q)J , where J =

( 0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0

)
and t2−α1t−α2 is irreducible, we find

that we must have α2 = −1, a = 0, e = b = cx
2 , and d = c

(
x2

2 − 1
)
, where

x = α1. (To arrive at these equations it is helpful to note that since Sp(V ) is
contained in SL(V ) for any vector space V , we must have α2 = ±1. If α2 = 1,
the equations imply α1 = 0, which contradicts the irreducibility of t2−α1t−α2.
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Thus α2 = −1, and from here the remaining equations follow easily.) To keep

J relatively simple, we set c = 2 and f = 0, so that J =

( 0 0 x 2
0 0 x2−2 x
−x 2−x2 0 0
−2 −x 0 0

)
.

Then if we set k′x =

(
0 −1 1 0
1 x 0 1
0 0 0 −1
0 0 1 x

)
we have that k′x ∈ Sp(4, q)J for t2 − xt + 1

irreducible. If we set D =




1 0 −x 0
0 0 2 0
0 0 0 1

x2−4

0 1
2 0 −x

2x2−8



, then DT JD = B̂, and so if we set

kx = D−1k′xD =





x
2

x
4

x2

2 −2 − 1
4

0 x
2 0 − 1

2
1
2

1
4

x
2

−x
4x2−16

0 2−x2

2 0 x
2



 ,

we see that kx ∈ Sp(4, q) bB for t2−xt+1 irreducible. (Note that since t2−xt+1
is irreducible, x %= ±2, and thus all denominators in the previous expressions
are non-zero.) The number of classes with representatives of this form is
equal to the number of irreducible quadratics of the form t2−xt+1, which, as
previously calculated, is q−1

2 . Now by the results of Section 4.1, CSp(4,q)J
(k′x)

consists of all matrices of the form

A =

( a −b c −d
b a+bx d c+dx
0 0 a −b
0 0 b a+bx

)
.

Setting AT JA = J yields a seemingly complicated system of equations which
reduces to a2 + abx + b2 = 1 and ac + (ax + b)d = 0. Thus by previous results
there are q + 1 choices for (a, b), and since for each of these either a %= 0 or
ax+ b %= 0, we can solve for one of c and d in terms of the other, so that there
are q choices for (c, d). Hence

∣∣CSp(4,q) bB
(kx)

∣∣ = q(q + 1), which yields Table
4.7. (As usual, we require that t2 − xt + 1 be irreducible in Fq[t].)

Representative Parameters Class Size # of Classes
kx − (q − 1)2q3(q + 1)(q2 + 1) q−1

2

Table 4.7: Class Sizes of Sp(4, q) Part 7.

A matrix of the form

(
0 0 β3 0
1 0 β2 0
0 1 β1 0
0 0 0 λ1

)
for t3−β1t2−β2t−β3 irreducible cannot

be contained in Sp(4, q)J for any form matrix J . To see this, note that such
a matrix is diagonalizable in GL(4, q3), and therefore if it were contained in
Sp(4, q)J for any form matrix J , Lemma 4.2.2 would imply that its eigenvalues
formed two pairs, with each pair consisting of a number and its inverse. But
we know that the eigenvalues of the matrix in question are λ1, an element of
Fq, and the three roots of t3 − β1t2 − β2t − β3, which have degree 3 over Fq,
and so no such pairing of the eigenvalues is possible.
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Finally, we consider matrices of the form

( 0 0 0 γ4
1 0 0 γ3
0 1 0 γ2
0 0 1 γ1

)

for m(t) = t4 − γ1t3 − γ2t2 − γ3t − γ4 irreducible. Since such a matrix is
diagonalizable in GL(4, q4), Lemma 4.2.2 implies that its eigenvalues, the four
distinct roots of m(t), come in inverse pairs. Now suppose that ξ is a root of
m(t). Since the Galois group of Fq4 over Fq is cyclic of order 4, being generated
by the automorphism σq such that for α ∈ Fq4 , σq(α) = αq (see, for example,
[3] page 452), the other 3 roots of m(t) must be ξq, ξq2

, and ξq3
. Since the

eigenvalues of the matrix come in inverse pairs, one of these 3 roots must be
ξ−1. But if ξq+1 = 1 or ξq3+1 = 1, it follows that ξq2−1 = 1, which implies
that ξ ∈ Fq2 . This cannot be the case if m(t) is irreducible, so we must have
ξ−1 = ξq2

, or in other words, ξq2+1 = 1. Now since m(t) has ξ, ξ−1, ξq, and
ξ−q as roots,

m(t) = (t− ξ)(t− ξ−1)(t− ξq)(t− ξ−q).

Multiplying this expression out shows that γ1 = γ3 and γ4 = −1, so that for
certain x, y ∈ Fq,

m(t) = t4 − xt3 − yt2 − xt + 1.

Thus we set

m′
x,y =

(
0 0 0 −1
1 0 0 x
0 1 0 y
0 0 1 x

)
.

If we attempt to solve the equation (m′
x,y)

T Jm′
x,y = J for the unknown form

matrix J , we find that m′
x,y ∈ Sp(4, q)J for

J =

(
0 0 1 x
0 0 0 1
−1 0 0 0
−x −1 0 0

)
.

m′
x,y is conjugate in GL(4, q) to the matrix

mx,y =

(
0 0 0 −1
0 x 1 y
1 0 0 x
0 1 0 0

)
∈ Sp(4, q) bB.

To determine the number of classes with representatives of the form mx,y, we
note first that we get one such class for each irreducible quartic in Fq[t] whose
roots ξ satisfy ξq2+1 = 1. Since each of these quartics has 4 distinct roots,
the number of classes is one-fourth the number of elements ξ ∈ Fq4 which are
of degree 4 over Fq and satisfy ξq2+1 = 1. Since F∗q4 is cyclic, the elements

satisfying ξq2+1 = 1 form a subgroup of order q2 + 1; but not all of these
elements are of degree 4 over Fq. More specifically, Fq2 is the unique maximal
proper subfield of Fq4 containing Fq, so if ξq2+1 = 1, but ξ is not of degree 4
over Fq, we must have ξ ∈ Fq2 . But this implies that ξq2−1 = 1, which when
combined with ξq2+1 = 1 shows that ξ = ±1. Hence there are q2 − 1 degree
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4 elements in the subgroup, and so there are q2−1
4 classes with representatives

of the form mx,y.
To determine the size of these classes, first choose an m′

x0,y0
∈ Sp(4, q)J

such that the roots of t4 − x0t3 − y0t2 − x0t + 1 generate the subgroup of
F∗q4 of order q2 + 1. Then m′

x0,y0
itself has order q2 + 1, and so the cyclic

subgroup H it generates contains representatives of all the classes which have
representatives of the form mx,y (with respect to B̂). Further, since all of
the elements of H except ±I correspond to elements of Fq4 of degree 4 over
Fq, they all generate the same subalgebra 〈m′

x0,y0
〉 of M(4, q), one isomorphic

to Fq4 . By Theorem 4.1.11, 〈m′
x0,y0

〉 is self-centralizing in M(4, q), and hence
any element of H except ±I has as its centralizer in Sp(4, q)J the subgroup
〈m′

x0,y0
〉 ∩ Sp(4, q)J . This subgroup obviously contains H. It cannot properly

contain H, for if it did, it would necessarily contain elements with eigenvalues
in Fq4 of degree 4 over Fq and of order not dividing q2+1. But as seen earlier, no
element of Sp(4, q) can have eigenvalues of this sort. Hence

∣∣CSp(4,q) bB
(mx,y)

∣∣ =
|H| = q2 + 1. Table 4.8 records the usual data; we require, of course, that
t4 − xt3 − yt2 − xt + 1 be irreducible in Fq[t].

Representative Parameters Class Size # of Classes

mx,y − (q − 1)2q4(q + 1)2 q2−1
4

Table 4.8: Class Sizes of Sp(4, q) Part 8.

We claim that the preceding list of conjugacy classes is complete. To
prove this, one can simply check that sum over all the preceding tables of the
product of the ’Class Size’ and ’# of Classes’ entries is, indeed, |Sp(4, q)| =
(q − 1)2q4(q + 1)2(q2 + 1).

Tables 4.9 and 4.10 summarize the list of conjugacy classes of Sp(4, q)
derived in this section. The matrix for each class representative is given with
respect to B̂. The ’Repetitions’ column gives the number of representatives
of each class of the given type which occur as the parameters range over the
allowable values.
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4.3 Flag Character Values

Now that we have a list of the conjugacy classes of Sp(4, q), we can compute
the values of the characters of the permutation representations corresponding
to the orbits of the action of Sp(4, q) on flags. If O(Iλ) is the orbit corre-
sponding to the incidence matrix Iλ, recall that we denote the permutation
representation of Sp(4, q) on O(Iλ) by Φ (Iλ). We denote the character of
Φ (Iλ) by χ (Iλ). If g ∈ Sp(4, q), then by Lemma 2.1.13, χ (Iλ) (g) is the
number of flags in O(Iλ) which are fixed by g. Since a flag is fixed by g if
and only if all of its subspaces are fixed, it will useful for purposes of these
computations to know which subspaces of F4

q are fixed by each of the class
representatives discussed in the previous section. Any subspace can be repre-
sented by a matrix whose columns form a basis for the subspace. Hence via
row reduction, we see that any 1 or 2-dimensional subspace (line or plane)
can be represented uniquely by one of the following matrices.

(
1
0
0
0

) ( α
1
0
0

) (
α
β
1
0

) (
α
β
γ
1

) (
1 0
0 1
0 0
0 0

) (
1 0
0 α
0 1
0 0

) (
α β
1 0
0 1
0 0

) (
1 0
0 α
0 β
0 1

) (
α β
1 0
0 γ
0 1

) (
α β
γ δ
1 0
0 1

)

A 3-dimensional subspace is fixed if and only if its 1-dimensional orthogonal
complement is fixed, so it is unnecessary to list fixed 3-dimensional subspaces.
Tables 4.11 and 4.12 list, for each class representative g, the lines and planes
which are fixed by g. In all cases, the parameters used may vary over Fq.
Below each plane, we list the number of fixed lines it contains.

In reference to the construction of Tables 4.11 and 4.12, we note that deter-
mining the lines fixed by any g simply amounts to determining the eigenspaces
of g according to the usual methods and listing all the lines they contain. De-
termining the planes fixed by g is somewhat more difficult; usually this can be
done by considering the eigenspace structure of g and using the fact that the
minimal and characteristic polynomials of the restriction of g to a fixed plane
must divide the minimal and characteristic polynomials of g. If necessary,
the fixed planes can be computed by multiplying the six different types of
4× 2 matrices corresponding to the planes by g, and determining under what
conditions on the parameters the resulting matrix represents the same plane
as the original matrix.
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g Lines fixed by g Planes fixed by g
a±1,±1 All All

ax,x

(
1
0
0
0

) (
α
0
1
0

) (
0
1
0
0

) (
0
α
0
1

) (
1 0
0 0
0 1
0 0

)

q + 1

(
0 0
1 0
0 0
0 1

)

q + 1

(
1 0
0 1
0 0
0 0

)

2

(
1 0
0 α
0 0
0 1

)

2

(
0 α
1 0
0 1
0 0

)

2

(
α 0
0 β
1 0
0 1

)

2

ax,±1

(
1
0
0
0

) (
0
1
0
0

) (
0
0
1
0

) (
0
0
α
1

) (
0 0
0 0
1 0
0 1

)

q + 1

(
1 0
0 1
0 0
0 0

)

2

(
1 0
0 0
0 1
0 0

)

2

(
1 0
0 0
0 α
0 1

)

2

(
0 0
1 0
0 1
0 0

)

2

(
0 0
1 0
0 α
0 1

)

2

a1,−1

(
1
0
0
0

) (
α
1
0
0

) (
0
0
1
0

) (
0
0
α
1

) (
1 0
0 1
0 0
0 0

)

q + 1

(
1 0
0 0
0 1
0 0

)

2

(
1 0
0 0
0 α
0 1

)

2

(
α 0
1 0
0 1
0 0

)

2

(
α 0
1 0
0 β
0 1

)

2

(
0 0
0 0
1 0
0 1

)

q + 1

ax,y

(
1
0
0
0

) (
0
1
0
0

) (
0
0
1
0

) (
0
0
0
1

) (
1 0
0 1
0 0
0 0

)

2

(
1 0
0 0
0 1
0 0

)

2

(
1 0
0 0
0 0
0 1

)

2

(
0 0
1 0
0 1
0 0

)

2

(
0 0
1 0
0 0
0 1

)

2

(
0 0
0 0
1 0
0 1

)

2

ba
±1,±1

(
1
0
0
0

) (
α
0
1
0

) ( α
0
β
1

) (
1 0
0 1
0 0
0 0

)

1

(
1 0
0 α
0 1
0 0

)

1 if α %= 0
q + 1 if α = 0

(
1 0
0 α
0 β
0 1

)

1 if α %= 0
q + 1 if α = 0

(
α β
0 0
1 0
0 1

)

q + 1

ba
±1,∓1

(
1
0
0
0

) (
0
0
1
0

) (
0
0
α
1

) (
1 0
0 1
0 0
0 0

)

1

(
1 0
0 0
0 1
0 0

)

2

(
1 0
0 0
0 α
0 1

)

2

(
0 0
0 0
1 0
0 1

)

q + 1

ba
±1,x

(
1
0
0
0

) (
0
0
1
0

) (
0
0
0
1

) (
1 0
0 1
0 0
0 0

)

1

(
1 0
0 0
0 1
0 0

)

2

(
1 0
0 0
0 0
0 1

)

2

(
0 0
0 0
1 0
0 1

)

2

ca
±1,±1

(
1
0
0
0

) (
α
0
1
0

) (
1 0
0 1
0 0
0 0

)

1

(
1 0
0 α
0 1
0 0

)

1 if α %= 0
q + 1 if α = 0

(
aα β
0 α
1 0
0 1

)

1

ca,b
1,−1

(
1
0
0
0

) (
0
0
1
0

) (
1 0
0 1
0 0
0 0

)

1

(
1 0
0 0
0 1
0 0

)

2

(
0 0
0 0
1 0
0 1

)

1

Table 4.11: Lines and Planes Fixed by Elements of Sp(4, q) Part 1.
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g Lines fixed by g Planes fixed by g

cx,x−1

(
1
0
0
0

) (
0
0
1
0

) (
1 0
0 1
0 0
0 0

)

1

(
1 0
0 0
0 1
0 0

)

2

(
0 0
0 0
1 0
0 1

)

1

da
±1

(
1
0
0
0

) (
1 0
0 0
0 0
0 1

)

1

ex,±1

(
0
0
1
0

) (
0
0
α
1

) (
1 0
0 1
0 0
0 0

)

0

(
0 0
0 0
1 0
0 1

)

q + 1

ex,y

(
0
0
1
0

) (
0
0
0
1

) (
1 0
0 1
0 0
0 0

)

0

(
0 0
0 0
1 0
0 1

)

2

fa
x,±1

(
0
0
1
0

) (
1 0
0 1
0 0
0 0

)

0

(
0 0
0 0
1 0
0 1

)

1

gx,x −

(
1 0
0 1
0 0
0 0

)

0

(
α −β
β α+βx
1 0
0 1

)

0

gx,y −

(
1 0
0 1
0 0
0 0

)

0

(
0 0
0 0
1 0
0 1

)

0

hx,y −

(
1 0
0 0
0 1
0 0

)

0

(
0 0
1 0
0 0
0 1

)

0

kx −

(
1 0
0 0
0 1
0 0

)

0
mx,y − −

Table 4.12: Lines and Planes Fixed by Elements of Sp(4, q) Part 2.
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With Tables 4.11 and 4.12 at hand, we now discuss the computation of
the values of the various flag characters. The computation of χ

(
(1){3,1}

)

is particularly easy, since for any g ∈ Sp(4, q), χ
(
(1){3,1}

)
(g) is simply the

number of lines fixed by g, and this can be read off the tables. For example,
since ba

±1,±1 fixes 1 line of type (1, 0, 0, 0)T , q lines of type (α, 1, 0, 0)T , and q2

lines of type (α, 0, β, 1)T , χ
(
(1){3,1}

)
(ba
±1,±1) = q2 + q + 1.

The computation of χ
(
(2){2,2}

)
and χ

(
(0){2,2}

)
is similar, except that we

must distinguish between two different types of planes. Flags of types (2){2,2}
and (0){2,2} correspond to planes with radicals of dimensions 2 and 0 respec-
tively. The dimension of the radical of a plane can be determined by comput-
ing the value of B on the two basis vectors in a matrix representing the plane.
If B takes the value 0 on these basis vectors, the radical of the plane is equal
to the plane, and thus has dimension 2, while if B is non-zero on these basis
vectors, the radical of the plane has dimension 0. (In computing B, we must
recall that in Tables 4.11 and 4.12, we are using the version of Sp(4, q) for
which J = B̂.) For example, in the case of ax,x, the fixed planes represented
by (

1 0
0 0
0 1
0 0

)
,

(
0 0
1 0
0 0
0 1

)
,

(
1 0
0 0
0 0
0 1

)
,

(
0 0
1 0
0 1
0 0

)
, and

(
α 0
0 −α−1

1 0
0 1

)
α %= 0

are of type (2){2,2}, while all the remaining fixed planes are of type (0){2,2}.
Hence χ

(
(2){2,2}

)
(ax,x) = q +3, while χ

(
(0){2,2}

)
(ax,x) = (q2 +2q +3)− (q +

3) = q2 + q. In computing these characters, a slight complication occurs for
the elements ca

±1,±1. These elements fix all the planes represented by matrices
of the form (

aα β
0 α
1 0
0 1

)
.

The value of B on the columns of this matrix is aα2 +1, which is 0 if and only
if α2 = −a−1. Hence if −a−1 is a square, there are two values of α for which
such a plane is of type (2){2,2}, while if −a−1 is not a square, all such planes
are of type (0){2,2}. Since a is either 1 or ε, a non-square element of F∗q, this
amounts to determining whether −1 is a square, which depends on whether q
is congruent to 1 or 3 modulo 4. Taking into account the other types of fixed
planes as well, we get the character values for ca

±1,±1 listed in Table 4.13.

a χ
(
(2){2,2}

)
(ca
±1,±1) χ

(
(0){2,2}

)
(ca
±1,±1)

1 2q+1 if q≡1 mod 4
1 if q≡3 mod 4

q2−q if q≡1 mod 4
q2+q if q≡3 mod 4

ε 1 if q≡1 mod 4
2q+1 if q≡3 mod 4

q2+q if q≡1 mod 4
q2−q if q≡3 mod 4

Table 4.13: Character Values Depending on the Value of q mod 4.
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The only other complication occurs for the elements of the form gx,x. A
fixed plane of the form (

α −β
β α+βx
1 0
0 1

)

is of type (2){2,2} if and only if α2 + αβx + β2 = −1. Since this is equivalent
to N(α + βξ) = −1, where N : F∗q2 → F∗q is the usual homomorphism, there
are q + 1 planes of this form which are of type (2){2,2}.

Once it has been determined which planes are of type (2){2,2} and which

are of type (0){2,2}, the computation of the characters χ
(
( 2 1

2 1 ){2,1,1}

)
and

χ
(
( 0 0

1 1 ){2,1,1}

)
is straightforward. For a flag of type ( 2 1

2 1 ){2,1,1} consists of a

plane of type (2){2,2} containing a line, while a flag of type ( 0 0
1 1 ){2,1,1} consists

of a plane of type (0){2,2} containing a line. Hence for any g ∈ Sp(4, q),

χ
(
( 2 1

2 1 ){2,1,1}

)
(g) is the sum over all the planes of type (2){2,2} fixed by g of

the number of lines which are contained in the plane and fixed by g. Since
the number of fixed lines contained in each fixed plane is recorded in Tables
4.11 and 4.12, this sum is easily computed. For example, in the case of ax,x,
the fixed planes (

1 0
0 0
0 1
0 0

)
and

(
0 0
1 0
0 0
0 1

)

of type (2){2,2} each contain q + 1 fixed lines, while the other fixed planes of
type (2){2,2}, namely

(
1 0
0 0
0 0
0 1

)
,

(
0 0
1 0
0 1
0 0

)
, and

(
α 0
0 −α−1

1 0
0 1

)
α %= 0,

each contain 2 fixed lines. Thus χ
(
( 2 1

2 1 ){2,1,1}

)
(ax,x) = (q +1)+ (q +1)+2+

2 + 2(q − 1) = 4q + 4. The computation of χ
(
( 0 0

1 1 ){2,1,1}

)
is similar.

In computing the values of χ

((
1 1 0
2 2 1
2 2 1

)

{1,1,1,1}

)
= χ

(
( 1 0

2 1 ){1,2,1}

)
, it is

useful to translate information about 3-dimensional subspaces to informa-
tion about their 1-dimensional orthogonal complements. By definition, a

flag of type
(

1 1 0
2 2 1
2 2 1

)

{1,1,1,1}
consists of a 3-dimensional subspace containing

a plane of type (2){2,2} containing a line which is not the orthogonal com-
plement of the 3-dimensional subspace. But since a plane of type (2){2,2} is
its own orthogonal complement, a 3-dimensional subspace contains a plane of
type (2){2,2} if and only if the plane contains the orthogonal complement of

the 3-dimensional subspace. Thus a flag of type
(

1 1 0
2 2 1
2 2 1

)

{1,1,1,1}
corresponds

naturally to a plane of type (2){2,2} containing an ordered pair of distinct

lines. Hence for g ∈ Sp(4, q), we can compute χ

((
1 1 0
2 2 1
2 2 1

)

{1,1,1,1}

)
(g) by

taking the sum over all the planes of type (2){2,2} fixed by g of l(l − 1),
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where l is the number of fixed lines contained in the plane. For exam-

ple, referring to the example for χ
(
( 2 1

2 1 ){2,1,1}

)
, in which the number of

fixed lines contained in each fixed plane was noted for ax,x, we see that

χ

((
1 1 0
2 2 1
2 2 1

)

{1,1,1,1}

)
(ax,x) = (q+1)q+(q+1)q+2+2+2(q−1) = 2q2 +4q+2.

The computation of χ

((
1 0 0
1 0 0
2 1 1

)

{1,1,1,1}

)
is similar, but slightly more compli-

cated. By definition, a flag of type
(

1 0 0
1 0 0
2 1 1

)

{1,1,1,1}
consists of a 3-dimensional

subspace containing a plane of type (0){2,2} containing a line, but on taking the
orthogonal complement of the 3-dimensional subspace, we can translate this
to a plane of type (0){2,2} containing a line together with a line contained in the

orthogonal complement of the plane. Thus to compute χ

((
1 0 0
1 0 0
2 1 1

)

{1,1,1,1}

)
(g),

we take the sum over all planes of type (0){2,2} fixed by g of the number of
fixed lines in the plane times the number of fixed lines in the orthogonal com-
plement of the plane. For example, ax,±1 fixes two planes of type (0){2,2},
namely (

0 0
0 0
1 0
0 1

)
and

(
1 0
0 1
0 0
0 0

)
,

and these planes are orthogonal complements of each other. Since the first
contains q + 1 fixed lines, while the second contains 2 fixed lines,

χ

((
1 0 0
1 0 0
2 1 1

)

{1,1,1,1}

)
(ax,±1) = (q + 1)2 + 2(q + 1) = 4q + 4.

Tables 4.14 and 4.15 give the values of all the flag characters of Sp(4, q) on
the various conjugacy classes. When two numbers are given in a box, the top
number corresponds to q ≡ 1 mod 4, while the bottom number corresponds
to q ≡ 3 mod 4.

From these tables, we can see that although the characters χ
(
(1){3,1}

)
and

χ
(
(2){2,2}

)
have the same degree, they take different values on most conjugacy

classes, and therefore, as was claimed in the previous chapter, the correspond-
ing representations are not isomorphic.
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C
h
ar

ac
te

r
a ±

1
,±

1
a x

,x
a x

,±
1

a 1
,−

1
a x

,y
ba ±

1
,±

1
ba ±

1
,∓

1
ba ±

1
,x

χ
( ∅

{4
})

1
1

1
1

1
1

1
1

χ
( (1

) {
3
,1
})

q3
+

q2
+

q
+

1
2q

+
2

q
+

3
2q

+
2

4
q2

+
q

+
1

q
+

2
3

χ
( (2

) {
2
,2
})

q3
+

q2
+

q
+

1
q

+
3

2q
+

2
q2

+
2q

+
1

4
q

+
1

q
+

1
2

χ
( (0

) {
2
,2
})

q4
+

q2
q2

+
q

2
2

2
2q

2
2

2

χ
( (

2
1

2
1
) {

2
,1

,1
})

q4
+

2q
3
+

2q
2
+

2q
+

1
4q

+
4

4q
+

4
2q

2
+

4q
+

2
8

q2
+

2q
+

1
2q

+
2

4

χ
( (

0
0

1
1
) {

2
,1

,1
})

q5
+

q4
+

q3
+

q2
2q

2
+

2q
q

+
3

2q
+

2
4

q3
+

2q
2

q
+

2
3

χ
( (

1
0

2
1
) {

1
,2

,1
})

q5
+

2q
4
+

2q
3
+

2q
2
+

q
2q

2
+

4q
+

2
4q

+
4

2q
2
+

4q
+

2
8

q3
+

2q
2
+

q
2q

+
2

4

χ

(
(

1
0

0
1

0
0

2
1

1

) {1
,1

,1
,1
})

q6
+

2q
5
+

2q
4
+

2q
3
+

q2
4q

2
+

4q
4q

+
4

2q
2
+

4q
+

2
8

2q
3
+

2q
2

2q
+

2
4

T
ab

le
4.

14
:

V
al

u
es

of
F
la

g
C

h
ar

ac
te

rs
of

S
p
(4

,q
)

fo
r

q
od

d
P
ar

t
1.
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C
h
ar

ac
te

r
c ±

1
,±

1
cε ±

1
,±

1
ca

,b
1
,−

1
c x

,x
−

1
da ±

1
e x

,±
1

e x
,y

f
a x
,±

1
g x

,x
g x

,y
h

x
,y

k x
m

x
,y

χ
( ∅

{4
})

1
1

1
1

1
1

1
1

1
1

1
1

1
χ

( (1
) {

3
,1
})

q
+

1
q

+
1

2
2

1
q

+
1

2
1

0
0

0
0

0
χ

( (2
) {

2
,2
})

2
q+

1
1

1
2
q+

1
1

3
1

0
0

0
q

+
1

0
2

1
0

χ
( (0

) {
2
,2
})

q2
−

q
q2

+
q

q2
+

q
q2
−

q
2

0
0

2
2

2
q2
−

q
2

0
0

0

χ
( (

2
1

2
1
) {

2
,1

,1
})

3
q+

1
q+

1
q+

1
3
q+

1
2

4
1

0
0

0
0

0
0

0
0

χ
( (

0
0

1
1
) {

2
,1

,1
})

q2
−

q
q2

+
q

q2
+

q
q2
−

q
2

0
0

q
+

1
2

1
0

0
0

0
0

χ
( (

1
0

2
1
) {

1
,2

,1
})

q2
+

q
q2

+
q

2
2

0
0

0
0

0
0

0
0

0

χ

(
(

1
0

0
1

0
0

2
1

1

) {1
,1

,1
,1
})

q2
−

q
q2

+
q

q2
+

q
q2
−

q
2

0
0

0
0

0
0

0
0

0
0

T
ab

le
4.

15
:

V
al

u
es

of
F
la

g
C

h
ar

ac
te

rs
of

S
p
(4

,q
)

fo
r

q
od

d
P
ar

t
2.
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4.4 An Irreducible Character of Sp(4, q)

In this section we will show how to extract an irreducible character of Sp(4, q)
from the characters computed in the last section. Since we know the values
of the various flag characters on the classes of Sp(4, q), as well as the size of
those classes and the number of each type of class, all as functions of q, we
can compute the inner product of any two flag characters as a function of q.
This is best done by means of a computer algebra system. Table 4.16 gives
the inner product of any two of these characters. For brevity, our indexing
uses only the incidence matrix to which the character corresponds.

∅ (1) (2) (0) ( 2 1
2 1 ) ( 0 0

1 1 ) ( 1 0
2 1 )

(
1 0 0
1 0 0
2 1 1

)

∅ 1 1 1 1 1 1 1 1
(1) 1 3 2 3 4 5 6 8
(2) 1 2 3 2 4 3 5 6
(0) 1 3 2 q + 2 4 q + 4 q + 5 2q + 6

( 2 1
2 1 ) 1 4 4 4 8 8 12 18

( 0 0
1 1 ) 1 5 3 q + 4 8 2q + 9 2q + 12 6q + 16

( 1 0
2 1 ) 1 6 5 q + 5 12 2q + 12 2q + 18 6q + 26(

1 0 0
1 0 0
2 1 1

)
1 8 6 2q + 6 18 6q + 16 6q + 26 2q2 + 16q + 36

Table 4.16: Inner Products of Flag Characters of Sp(4, q).

Examining the diagonal entries of this table, we see that for most of the flag
characters χ, 〈χ, χ〉 is quite large, and often depends on q. This means that
most of these characters have either a large number of irreducible constituents,
or a few irreducible constituents repeated numerous times. In particular,
〈χ, χ〉 is never equal to 2, so we cannot obtain any irreducible characters
simply by subtracting the trivial character from a flag character. Thus it
is unlikely that we will be able to obtain a significant number of irreducible
characters of Sp(4, q) simply by taking linear combinations of flag characters,
as we could in the case of GL(n, q). Nevertheless, we can obtain one irreducible
character by this process. To see how, let us focus on the characters χ for
which 〈χ, χ〉 does not depend on q, namely ρ1 = χ

(
∅{4}

)
, ρ2 = χ

(
(1){3,1}

)
,

ρ3 = χ
(
(2){2,2}

)
, and ρ4 = χ

(
( 2 1

2 1 ){2,1,1}

)
.

By definition, ρ1 = χ1, the trivial character of Sp(4, q). Since 〈ρ2, ρ2〉 = 3,
and since 3 = 12 + 12 + 12 is the only way to express 3 as a sum of squares, ρ2

is the sum of 3 distinct irreducible characters. Since 〈χ1, ρ2〉 = 1, one of these
is χ1; we label the other 2 as χ2 and χ3. Thus

ρ2 = χ1 + χ2 + χ3.

Likewise, ρ3 is the sum of 3 distinct irreducible characters, one of which is χ1.
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Since 〈ρ2, ρ3〉 = 2, one of the other 2 irreducible constituents of ρ3 is also a
constituent of ρ2. Without loss of generality, we can assume it is χ2. Thus
there is an additional irreducible character χ4 such that

ρ3 = χ1 + χ2 + χ4.

Since 〈ρ4, ρ4〉 = 8, an irreducible constituent of ρ4 can appear at most twice.
Since 〈χ1, ρ4〉 = 1, χ1 appears only once, but since 〈ρ2, ρ4〉 = 〈ρ3, ρ4〉 = 4,
at least one appears twice. The only decomposition of 8 as a sum of squares
which involves both 1 and 2 is 8 = 12 + 12 + 12 + 12 + 22, so ρ4 is the sum
of 5 distinct irreducible characters, of which exactly one appears twice. The
character which appears twice must be a constituent of both ρ2 and ρ3 to
produce the listed inner products, so it must be χ2. In order to produce the
listed inner products, χ3 and χ4 must also be constituents of ρ4. Thus there
is one additional irreducible character χ5 such that

ρ4 = χ1 + 2χ2 + χ3 + χ4 + χ5.

Based on these equations, we see that

χ5 = ρ4 − ρ3 − ρ2 + ρ1.

Since the values of the ρi are already known, we can easily compute the
values of χ5, as shown in Table 4.17.

g a±1,±1 ax,x ax,±1 a1,−1 ax,y ba
±1,±1 ba

±1,∓1 ba
±1,x ca

±1,±1 ca,b
1,−1

χ5(g) q4 q q q2 1 0 0 0 0 0
g cx,x−1 da

±1 ex,±1 ex,y fa
x,±1 gx,x gx,y hx,y kx mx,y

χ5(g) 0 0 −q −1 0 −q 1 −1 0 1

Table 4.17: Values of the Character χ5.

Using the values given in the table, it is straightforward to check that
〈χ5, χ5〉 = 1, so that χ5 is, indeed, an irreducible character of Sp(4, q). By
examining its values, we see that χ5 is the Steinberg character of Sp(4, q). (For
a discussion of this character in a much more general context, see Chapter 6
of [1].) We note that the computation of an irreducible character of Sp(4, q)
is nothing new. In fact, Srinivasan computed all the irreducible characters
of Sp(4, q) in [10]. Nevertheless, the results of this section do show that flag
characters provide a relatively elementary method of calculating one of these
irreducible characters.
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