CANADIAN THESES ON MICROFICHE - R

| THESES GANADIENNES SUR MICROFICHE -~ \" .

/I* National Lrbrary of Ca da -

Collections Developme t Branch :

Bibliothéque nationale du Canada

Direction du développement des collections

- -
Canadian Theses on - Service des théses canadiennes "

" Microfiche Service sur microfiche : oo : .
. . .. . . . | . B

. Ottawa, Canada -

K1AON4

. v : . \_
NOTICE R AVIS

upon the quality -of ‘the’ orugmal thesis submitted for

microfilming.’ Every effort- has been made.to, .ensure:,

the hrghest qualrty of reproductlon possuble

If pages are missing, contact the umversrty whrch-v‘

) granted the degree

Some pages may- have lndnstmct prmt especrally,
if the orlglnal pages ‘were typed with a poor ‘typewriter

rlbbon or if the university sent us a poor photocopy ‘

e

Prevrously copyrlghted mater|a|s (journal artrcles :

' publlshed tests etc.) ‘aré not frlmed
, Reprodpctlon in full or‘in part of this film is ‘goV
erned .by the Canadian Copyright Act, R.S.C. 1970,

c. C-30. Please read- the authorlzanon forms whrch '

st

accompany this thesis.

" THIS DISSERTATION |
HAS BEEN MICROFILMED
EXACTLY AS RECEIVED |

UNL-339 (r. 82/08)

The gquality of this microfiche is- heavuly dependent ‘

X avec I unlverstte qui a conféré le grade B

‘La qualrte de cette mrcroﬂche depend grandement de
la--qualité de la thése soumise au mlcrofrlmage Nous
avons tout fait pour assurer une’ qualrte supeneure
de reproductlon : ‘ ;

S'il  manque - des veuillez

pages, comMiuniquer

5.

La qualrte d’ lmpressron ‘de certalnes pages - peut

laisser ‘3 -désirer, surtout si les pages orlglnales ont été

R dactylographuees a I'aide d’un ruban usé ousi I'univer-

»

quahte

sité nous a fait parVemr une photocopre de mauvarse'

_Les documerits qn"l font déja I'objet d'un droit

‘d’auteur (articles -de revue, examens pubhes etc.). ne

sont pas microfilmés.

La reproductlon méme partlelle de ce mlcrofllm -

est soumise a la-‘Loi canadienne sur le droit d’auteur,

SRC 1970, c. C-30. Veuillez prEndre connaissance des
] formules d’autorisation qU| accompagnent cette these

LA THESE A ETE. i
~ MICROFILMEE TELLE QUE *
- NOUS L'AVONS REGUE ,

/

‘ ,’ " Canad"'v -

.
e et e e ey



L 2 T

i

University — Umversuté

uV\&\/QJ$ Lhk O“Q | ‘(&\\)é\-m

© NL-91 (4/77)

Blbllothéque natuonale

O-3/1S-06062 N0

l* : Natlonal lerary
| . of Canada , . du Canada / 5
Canadian Theseg/Division  Division des théses Ganadiennes ]
‘Ottawa, Canad ‘ A i - . , P
K1A ON4 53942 | 1
PERMISSION TO MICROFILM — AUTOR|SAT|ON DE MICROFILMER . ]
o« ' v S - . ot \ A
s Please print or type — Ecrire en |ettres moulées ou dactylographler 3
Full Name of Author — Nom complet de l'auteur . / .
AR HRA%OK S wale WA 5 \
Date of Birth — Date de nalssance L Country_of Birth — Lieu de naissance :
e dE AT, \Cvm o : Cetnadel b
Permanent Address — Resudence fixe ’ o - i
Ret 254 o g '
: C/wc\ w rTL\ S*S‘@O‘A' u\‘ewa’V\“ : !
o | ‘::.QK \Bo - | !
Tltle of Thesus — ane de:la thése “
34\ K"Q’k v‘c-‘ZC\ ?\a&e, Q‘ﬂa\\(SLS \D\K J(\/\L \‘&\(\)Pk(& S%ress v

Flade BElewmad Wiethod | -

i

~ it
. 1

{

Degree for Wthh thesis was pre$ented —_ Grade pour lequel cette thése fut presentee

S“\’MC:L%_\‘CL\ Vv\c\L‘A‘exr\y\_r/\ LQ\/\'D> Oegk OL | (,\.\;k\ Eq"‘\w(@vr\v\c,\.

‘Year thisdegree conferred — Année d'obtention de ce grade .

=\ \q8 4

Name of Supervisor — Nom du directeur de thése , ’

. Permission is hereby granted to the NATIONAL LIBRARY OF
-GANADA to microfilm this thesis and to Iend or sell copies of

the film.

The author reserves other publication nghts and neither the

- thesis nor extensive extracts. from it may be pfinted or other-
- wise reproduced without the author’s written permission.

e v‘ “,\

o Ul \—\Y‘uﬂ\ej

N
L'autorisation est, par la présente, accordée a la BIBLIOTHE-

_ QUE NATIONALE DU CANADA de microfilmer cette thése et de
préter ou de vendre des exemplaires du film.

L'auteur se réserve les autres droits de publication; ni la these
ni. de longs extraits de celle-ci ne.doivent étre imprimés ou
autrement reproduits sans l'autorisation écrite de 'auteur.

¥

Date IR

Ok 01 g

Slg nature - ;

ﬂ?dw4t°¢\

hinrnat 5 muz

o



THE UNIVERSITY OF ALBERTA
Stiffened Plate Analysis by the Hybrid Stress Finite Element
' Method ’

A

by

@ Metro M. Hrabok T :

‘ | A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE
OF Doctor of Philosgphy L

. IN
o . - . . o
i at

Structural Engineering :

Department of Civil Engineering,

EDMONTON, ALBERTA

<:\§ | Fall 1981



THE UNIVERSITY OF ALBERTA

RELEASE FORM -

NAME OF AUTHOR Metro M. Hrabok ‘
TITLE OF THESIS  Stiffened Plate Analysis by the Hybrid

Stress Finite Element Method |
DEGREE FOR WHICH THESIS WAS PRESENTED DOCfOP Of Philosophy
YEAR THIS DEGREE GRANTED Fall 1981 _

« Permission is hereby granted toDTHE UNIVERSITY OF
ALBERTA LIBRARY tb reproducé éiﬁgleﬂcopies of this
thesis and to lend or sell such copies for private,

scholarly ér sCigntific research purposes only. ‘

The author reserves other publication rights, and
neither the thesis nor extensive extracfs frpm it may
be printed or otherwise reproduced without the author's

-

written permission.

~ (SIGNED) . .... N0 0.
PERMANEET‘ADDRESS:

LBOX 224 L e

. .Qudworth,, Saskatehewap, ... ... 0

LOKUIBQ L e

DATED ...September, 25, 1981



THE UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND' RESEARCH

7.

The undersigned cerfify that they have read, and
recommend to the Féculty of Graduate Studies and Research,
forlacceptance, ahﬁhesis entitled Stiffened Plate Analysis-
by the Hybrid Stress Finite Element Method submitted by |

' Metré M. Hrabok in partiél fulfilﬁent of the requirements
for the degree of Doctor of Philosophy in Structural

Engineering.

T M. Hrudey /1
Superv1sor)

. Kenned
SRR .A...l.-..!é«tatc

G.L. Kulak 4

. .%l’.’%ﬂﬁ oo

- _ D.W. Murray

>
7 /A/
//‘// //‘.//(///—('/—T) .)’.‘ o
S.H.
) £;2<:;)ZLM “'
N .
R.L. Taylg
_(External i
{Berkeley,

25,..1981

Date....>eptember



v":)
N ) '
. A

ABSTRACT

N

The hyb:id-s£reés finite element method is used fbr
the analysis of stiffened ﬁlates. A computer'program,
called HYBSLAB; is developed with the objectﬁve that it
| become a regular analysis.ai@d for practising engineers. The‘
program is intended for the analysis of floor syétems'under
serviceability conditions where‘the Sehaviqf is assumed to
be linearly elastic and the loads static. The elastic
constaﬁts‘cag be those of an ‘orthogonally isotropic
(orthotropic) magqrial. |
Prior to writing the program an extensive literature
search was conducted and the‘results,are summarized in a
'table}bf existing plate elements'. Some of the s;ﬁpler
elements are then.used in an element evaluation étudy.
vThe program generates stiffnqss matrices for a variety
of piane elasticity and flexural elemengg‘rahging‘in shape
from a triangie to a 6-sided polygon. After verifying that
the program and its elements ére:capable of satisfying éhe
'patch tesf', its ﬁse is demonstrated on full-size floor
sysfems. The program also provides the user with'%he option
-of modelling the ff%ite size of various shaped column cross
sections and the finite width of ‘beam stems. The error |

introduced by coupling beam elements to a plate is examined.

i



Separate from the above, is a proposed formulation for
including the effects of stress singularities at reentrant

corners. The formulation is tested by generating étiifness

. matrices and analysing plates with reentrant corners.

1
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N,

x

‘coordinate ‘system {(«,r,z), are used.

midsurface of the finite element plates:

4

List of SYMBOLS, NOTATIONS and SIGN-CoyVENTIONS,

The text of this the51s deals with t?é finite eléa?nf“

analy51s of plates. Both a r1ght handed/Carte51an

f

coordinate system (x,y,z), and a rlght handed polar

The fdllowing degf;és of fregdom are defiﬁed at the

s

Z

—>>0Ox ./ where,. o |
,K// ’ h ‘ < W = transverse displacement,
By B Bx= rotation about the X axis,
‘ S By= rotation about the Y axis,
U = in-plane .displacement
: (in the X direction),
V = in-plane displacement.
" (in the Y direction),

The‘directions of moments and shears are defined

according to the tensor sign convention as shown below:

X



The fo;lowing is a list of symbols, notations and
nomenclature used in the text. The notations for the beam
eleméhf and the Lagrange eleménf‘are presented lasé. The
notéti;ns afe‘aléo defined in the text where they first -

s
<

abﬁéar.

Matrix Symbols

[ 1 : denotes a rectangular matrix,
-t ‘ _
ﬁ[/T'ﬁ denotes the transpose of a reétangular'matrix,
{ } : denotes a one-dimensional column matrix,

" \ 3 ) ) » .
< > : denotes a one-dimensional row matrix,
. - 1

—
L

~
-
.e

denotes the partial differential g the quantity
in brackets with respect to the V¥¥able 'x;',

'( ),y : denotes the partial differential of the quantity
'in brackets with respect to the variable 'y',

.

{o} : denotes a null vector,

Displacements

w
{W}

Z displacement of any‘point in the element,

nodal displacements of W for the element, .
W,ij= second derivative of W (index notation),
Bx = rotation about the X"axis at. any point in an element,

By

]

rotation abo&t the Y axis at‘ahf point in an element,
fBn = rotation normal to an element side,

6t = rotation tangent to an elemént side,

6x ;= rotation Bx at>node.'i', |

{8x}= nodal;rotations Ox for an eiemenh,

Byi= rotation By;at node 'i',

{oyl= nodal rotations By'fOrvan element,

Xii



<
]

X displacement of any point in an element,

¥

AN

N

Eijkl

u; = value of U at node 'i',
 ‘V = Y displacement of'any‘ppint in an element,>
vi = value of V at node 'i',
Ui = ‘index noéation for any translational displacément,
- of a point in a solid,
Ui = préscribéd values of Ui,
{g}‘= matrix notation for all nodal displacements,
[L) = matrix.relating field values'of'displacements
to nodal degrees of fseedom,
StresseQL;Stréss Resultants and Tractions
gij = s£ress tensor in index notation,' |
M = momept stress résultant (forceXIength/igngth),
Mij = moment tensé; in indék'notation, |
Mn =m menf normal to aﬁ element side,
Mnt = tSﬁsting moment about a normal to a sidé,
Q = ofdin fy transverse shear at a plate edge,
- Kirchhoff shear,
Ti = tracti@ﬁ;vector in iﬁdex notation,‘
{T} = traction.vec;or in.matrix notatioh,
-Ti ‘= prescribed values of Ti,
Sx - _
| = southwell stress functions,
Sy o ,
Straihs and Material Properties
- €ij, =~Strain;tensor in index notation,
Cijkl
Dijkl

|'= fourth orde; tenSdrs'of material constants,

xiii



(D] = constitutive tensors in matrix form,

&~

-

-Energy Terms

£ strain energy, - _f/¢/<fi>
1T potential energy,
TTe

TImc= modified complementary potentiai energy,

"

complementary potentjal energy,

" General Terms

o]
n

coeff1c1ents of the patch test polynomials,

m
n

body force components (index notatlon)

¢

X
"

Hermltlan interpolation polynomials as functlons
of p, where the
" - superscript_'o' denotes the order of the family
T or the number of derivatives which the polynomial
' " can interpolate,
- subscript '1' denotes the dlsplacement being
interpolated (either W or its derivative),
- subscrlpt '2' denotes the node at which the
functlon has a unit value, :

—

= derivative of above.Herm1t1an wlth respect to 'p',

Q,
I
}

th
L1}

length along the side of an element,

3
.
u

component 'i' of a unit normal vector, N

non-dimensional parameter used to denote
length along a beam or element side,

©
"

Qo uniform loading in the Z direction,

q ‘non-uniform 1oading in the Z direction,

a L]

Hybrid Stress Matrices . ;

[P ] = matrix of terms for the?stress functions
without the B parameters, ,
[Ph)= [P ] for the homogeneous solution,
[Ppl= [P ] for the particular solution,
[Ps]l= [P ] for the singularity solution,

Xiv



[NP 1= matrix product of a matrix operator [N]
and the polynomial matrix [P ],
[NPh]l= [NP ] for the homogeneous. solution,
[NPp]= [NP ] for the particular solution,
[NPs]= [NP ] for the singularity ‘solution,

[Hhh] | ,
[Hpp] .
[Hss]
{Hhp] . .
 [Hhs] = matrices used to evaluate thé strain
» [Hps% energy of an element, .
[Hph T .
- [Hsh] ';*./ ‘
[HSP] ' i
. [Ghh]
[Gpp] = matrices used*to evaluate:the potential of
[Gss] * edge tractions for an element, '
N
{B} = vector of B; terms from the strésgﬂfunctions,
' . _where, ' , v o
{fh} = B parameters from the homogeneous solution,
{Bp} = B parameters from the particula solution,
{Bs} = B parameters from the singularity solution,
[GHG] = stiffness matrix for a hybrid stfess el ment;
{Peq} = work equivalent load vector‘for the hybri element,

AN

*

Singﬁlarity Functions (Section 4.4)

Ws = deflection function  for stress singuiarities,

Ws = values of/Ws;withodt B,

Ws,ar= second derivatiQe of Ws, with respect

: to 'a', and_'r‘,

VW o= W,xx + W,yy

[Bw] = a matrix of singularity displacemenﬁ)functiong,
C; = constants of Ws evaluated froﬁ the boundary

conditions prescribed along the reentrant edqes,

« . . = polar coordinate of rotationg_.
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B.

_ ='B; from'the singularity function Ws,

"

an eigenvalue,

= Poisson's ratio for an isotropic material,

rt-)

RIRY

= moment normal to an edge,

= a function used to denote part of the
singularity functlori Ws,

= third derlvatlve of F w1th respect to’ the angle,,a,

= functions calculated from Ws to obtain
moments and shears,

-
\J

= first derivative of G, with respect to 'a',

= radius. 'r' raised to the power '-1', -

= radius 'r' raised to the power ™',

" Offset Beam Element Matrix

e,
e,

y
ki

[Kb)

(K]

[Te]

i [

[Tr]=

'Y' eccentricity of a beam element,
'2' eccentricity of a beam or offset plate element,

angle of rotation of a beam element in the X-Y plane,

stlfgneSS cgefficient for a beam element
beam stiffness matrix in global coordxnates,
beam stlffness matrlx in local coordlnates,

linear transformatlon matrix relating geometr1c
degrees of freedom between the local and E
global coordlnate systems, :

rotation transformatlon matrix used to rotate

a beam in plan,

~ Lagrange Element (Appendix A)

6x

6y

rotation about the X axis of a normal
with respect to a tangent at the midsurface,

rotation about the Y axis of a normal
with respect to a tangent at the midsurface,
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, ‘\\ '
shape funct1ons used to rgiate the values

of ‘W, 6x, By, \x, and \y, to the1r
respective nodal parameters;

<N;>

|

<N;,x>= partiall derivative of <N;> with| respect to
{N;,x}= partiall derivative of {N;} withlrespect to
<N;,y>= partial derivative of <N;> with respect to
{N;,y}= partiall derivative of {N;} with respect to-

- \

KN XX

{F,} = work equ1valent load vector for! W load ,
{F,] = work elquivalent load vector for!8x load
{F,} = work equivalent load vector for '8y load
\X = Lagranglan multipliers in the x\dlrectlon,
\Y = Lagranglan multipliers 1n the b4 dlrecélon,
{Ax}b = nodal values of \x,
{\y} = nodal values of )y,
I = Lagrangian functional, N . N
[L{i)]= matrices evaluated from the product of the fﬁ\\g
Lagrangian and the displacement shape functions,
[K¢i)]= stiffness submatrix number 'i'. \\ 
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Chaptef»1

INTRODUCTION

El

1.1 General Information

The development of the finite elemént method. over ﬁhe
laét two decades rahks as éérhaps one of the most
significant aghievements in the history of engineering.
fhis fhalysis technique has a sound base in variational
‘calculus and with the aid of a computer prbvides é means of
Solving,compléx pfoblems which would otherwise be
intractable. With its use now well esfaslished in many
fields of engineering, the research frontiers in the finite
element mefh?d have moved to areas such as non-linear
applicatioﬁs and the mode}lihg of complex material behavior.
.As'discuséed recently by Clough**, even ip these fields the
rewards for reseaégﬁfhave reached the poiht of diminishing
_ returns. Also as diécussed by Clough, the trénd_now is
towards\analytical-experimental resegrch in an attempt to
model actual behaviorland verify the theorgtical model.

Théoretical developméhts in the finite element fieid
expetienced~a very rapid growth rate durihg the iatter part
of the 1960's and‘the early ?970'5. In addition to the-
anadytical—experimental type of research deééribed by
Clough, presenf day efforts are directed at either edging
back the ffonfieqs established during that period or making

practical use of existing theoretical formulations for



problem solving; The present study falls into both of these
cateéories, with the major portion being in the latter.

The need for practical-oriented studies is great.
Methodology employed by the majority of consulting firms
today lags seriodsly behind the state of the technology;

For example, the majority of structural consulting firms
still use beam/column elements to model plane stress and
plate. bending strustures.

The reluctance of practitiongrs to use’thé‘finite
element method can'be attributed to a numbe: of factors. .,
Probably the most significant is the lack of familiarity and
experience with the finite element method. This is mostly
due to lack of trairing in the aréa, compounded by the
nature of the solution which requires choosipg a grid and
- later interpreting the outputg The would-be user is also
faced withjfinding or writing a suitable computer program.”
The issue is/further complicated by the fact that witﬁin the
finiée elemént method ﬁhere'exist a‘numberiof different .
formulations. The one most familiar to engineers is the
displacement method. 1In plate bgnding, for example, £he usé
of the various formulations has resulted in a beyildering
numger of elements. After a prodgram 'is ‘obtained, the
question of costs arises. With the capability and
éfficiency of present.day computers, the dominant cost of
the ;nalysis is most likely to be associated with the cost
of manpower. Many finite element programs require éeVeral

man hours for preparation of input data and interpretation



of output data. The cost of actually 'running' the finite

element program can no longer be regarded as a deterrent to

IS

its use.,

The investigation presented here deals with the use of
the finite element method for the analysis of flat plates.
The study has two main goals. The first goal is a practical
one and is to provide design eng@neers with a design aid in
the form of a finite element plate bending computer program.
This program differs from existing programs in the following
ways: , . |

(1) The program is based on the hybrid stress method. For
reasons discussed in Chapter 3, this formulation appears
to be best su1ted for the analy51s of flat plate floor
systems.

" (2).1In modelling the structure, any element shape ranging
from a triangle to a six-sided polygon may be used.
Floors of arbitrary planform can be analysed and the
finite dimensions of column cross sectlons and the
finite width of beams may be included in the analysis.
Translational in-plane degrees of freedom have been
included to allow for displacements,. such as those
caused by eccentric stiffeners. The same subroutine
wvhich generates the flexural matrices for the various
shaped elements is also used to obtain the in- plane
matrices.

(3) In developing tﬁe,program, much emphasis has been placed
on reducing the user manpower demands. This has been
done by automating the input of data and by using

graphical displays to aid in the checking of input data
and the interpreting of output data.

The program is primarily intended for use by consulting
'"firms where at .present more approximate methods based on
equivalent frames predominate. In this sense, it represents

an advancement because plate structures can be analysed as



plates rather than a series of crossing beam elements with
incompatible displscements. At the same time, the program
has the capability of doing refined analysis of the type
required for research purposes.

The second goal is to develop an element for the stody
of stress singularities.at reentrant corners of plates. The
formulation proposed in this thesis and the results obtained

therefrom are believed to be original work,

\~

1.2 Scope and Objecfives

The scope of the investigation is restricted to the
static analysis of linear elastic orthotropic plates.
Classical Kirchhoff plate theory has been used to describe
the behavior of the plate.

The objectives of the present study are:

(a) to conduct an extensive literature review and in summary

) to provide a table of elements which can serve as a
guide and a quick reference to users of plate bending
elements, )

(b) to evaluate a number of plate bending elements and to
' choose the one which is most suited for the analysis of
flat plate structures,

(c) to include in the analysis the modelling of eccentric
' stiffeners of finite width and of columns with
finite-sized cross sections and various shapes,

(d) to study the effects of stress singularities at
reentrant corners,

(e) to develop a computer program capable of modelling
complex flat plate structures but intended for use by
- consulting firms,
N 5
(£) to illustrate the use of the program on actual floor
systems and to demonstrate that it is a viable
. . : N H



alternative to more approximate and traditional
approaches presently being adhered to; to incorporate
graphical output for the purpose of reducing the time
spent in checking of data, interpreting the results and
preparing the working drawings. )

1.3 Organization and Presentation

The presentation begins in Chapter 2 with an indepth
literature review highlighting the more significant eventé
in the development of plate bending elements. The number of
eiements which have evolved over‘éhe years is overwhelming
and an attempt is made in Table 2.2 to chronologically
J catalogue most of these elements. 1In the table, each
element is described by a sketch and accompanying comments.
This tybe of table is expected to be of4§réat assistance as
a reference Lhart to both users and researchers of plate
bending elements.

In Chapter 3 certain criteria are established to choose
candidate elements for.the desired plate bending program.
The candidate elements are then evaluated on four test cases
thought to be relevant to practise and the results are
'presented in tabular and graphical form. From these
results, one elemeht is chosen for the Compﬁtér program.

The .theory and use of‘the hybrid stress method for
'plate bending and plane elasticity pro%}ems is\dealt witﬁ in
Chapter 4. The in-plane matrices are necessary to model the
in-plane displacements caused by eccentric stiffeners. The

formulation for dealing with the stress singularities is
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included in this discussion of the theory, This is followed
by details on how various matrices are obfained for
polygonal shaped plane stress and flexural elements and the
L-shaped singularity elements. These matrices are then used
to calculate‘stiffness matrices and work equivalent load
vectors, With Chapter 4 as a basis, a computer program
which will be referred to as HYBSLAB was developed. |

The capabilities and the general set-up of the program
HYBSLAB are described in Chapter 5. As well, the methods
used in the program to model eccentric beam elements and
finite-sized columns are explained in detail.

Chapter 6 deals with the test cases used to verify the
element matrices of Chapter 4 and the program of Chapter 5.
The patch test and other similar tests are used torverify
the in-plane and the flexural stiffness matrices. ATest
problems are included to illustrate convergence trends for
the various shaped elements. The L-shaped singularity
elements are used to solve an example problem and the
importance of considering the singuarity functions in the
formulation is assessed. The chapter concludes‘with an
investigation into the magnitude of error caused by coupling
eccentric stiffeners to a plate.

The use of the program HYBSLAB to solve practical
problems is demonstrated in Chapter 7. Two actual floor
systems are considered. The first is a typical floor of a
high-rise building, while the second is an experimental test

slab with eccentric stiffeners. In the second case the
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I’ﬁihite_éize of the colqmns gnd the finite widfh ofAthe
stif?eners aré_accounted fot in the analysis.

The final ¢h$ptergcontains‘thé summary and conc1u$i§n§ 
| éf ;his'inveétigation. Also areas which still réquire

' additional research work are identified.



Chapter 2

LITERATURE REVIEW ‘

2.1 Review of Developments in Plate Bending

Solutions to typlcal plane stress, plane strain and
three -dimensional elasticity problems can be obtained by
solv1ng second order d1fferent1a1 equations such as the

Navier displacement eguations. The energy functional

associated with.these problems eontains only the first

‘aderivative of the displacements. | ,

n // ' In compérjson, plate analysis, even‘bi a simple plate
theory such as the classical Kirchhoff theory'®**, requires
the solution of a fourth brder gﬁfferential equation. For

’hnore.refined theories sueh as those established by
Reissner“’; Hencky“‘,‘and Kromm'* "', thelintegration order
may increase from four to six. These more exact theorieS'
d1ffer from the Klrchhoff plate theory by 1nc1ud1ng the
effects of transverse shear strains and thereby allow1ng the
use of all three’actual'boundarydconditions along the plateQ
‘edges. | |

Plate analysis by the finite element method was started
‘at the beginning of the 1960's by researchers such as
Cleugh", Adini’, Melosh”; and‘Tocher"’. These .
wresearchers used K1rchhoff plate theory and assumed
funct1ons for the deflected shape of the element. The:

finite element method provided a means_of replacing the



displacement form of the differentialleQUariOns of
equilibrium by a set of liﬁear.algebraic equations: The
eqoations were then solved for the unknown displacements;'
therefore, this approach came to be known as fhe
"dlsplacement method' ‘ ‘ K v -

" By the m1d 1960 s it was reallzed that t%ls type of
finite element analysis was based on . the varlatlonal
principle of minimization of potential energy for the
structure. The strain energy expressioh contains second
- derivatives of the displacement functions and is calculated
from the individual elements. For the variational‘princibye
to be valid, it is essential not to have any discontinuities
in either the transverse displécement or its first‘
derivatives at any point in the structure.‘ This requirement
of cont1nu1ty for the prime varlable and its first
derivatives has come to be knomn as the 'C' continuity'
requirement. Plane elastlclty problems require‘cohtfnuity
of the prime variable,a1oﬁe or 'C® gontinuity'. It is
bimportant to nofe that a complete linear polynomial function
can prov1de ce. cont1nu1ty, but nothlng less than a complete
cubic polynomlal will satisfy C' cont1nu1ty |

For elements based on K1rchhoff plate theory; the prime
variable is the transverse d;splecement.' Its first
derivativesnalong an edge are the normal and tangential

slopes. The shape functions used most often.are either the

polynomial_type obtained from Pascal's triangle or the
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Hermitian type of interpolation functions.t With these
types of functions there is no problem in obtaihihg full
continuity of the transverse displacement and fhe tangential
rotation along a common boundary. However, as éarly
researchers "soon discovered, obtainlng ﬁhe same continuity
"for the normal slope did prove to be difficult indeed. "
Physically, this incompatibility of normal slope represents
a kink in the structure at the'juﬁction of two neighboring
elements and hgnce these elements were labelled as 4
‘displacement noriconforming' or simply_'honéoﬂforhing'.’
’Moét early plate elements were nondonforming and this caused
much coﬁcern. The presence of the slqpe discontinuities
-violated one of the conditions of the_variatiopal'pfinéiple
and therefore there was no guarantee thétrthe solution would
E converge.‘ ' |

Five papers which were presented in 1965 at a

conference at the Wright P;tperson Air Force Base are worthf
of mention because .they not‘only desctibed the state of the
art as it then yaé,»bui théy set the stage for much of the
research to come. The publicatlons by Clough and Tocﬂer‘l,
Baieley, Cheung, Irons, and Zienkiewicz?®*, and Bogner, Fox
and Schmit’' established the impoftance of the éonstant
strain states and demonstrated that obtaining conformity for
plate elements was‘nbt going to be easy. These papers

marked the begihning of an era of plate bending research

-

+ Other shape functions have been used on occasion; in 1964,

Deak and Pian‘® used spline functions.
¢

e
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where the objectiye was either to provide c’ cohfofmity or
else provide alte:natives to it.

“In all three/papefs, a displacement formulation énd
classical Kirchhoff plate tﬁeory were the bases)fof the
elemént stiffness derivations. In addition ﬁo_the‘above,
the papers by Pian'*‘ and Herrmann’*’ are inciuded because
;they introduced‘the‘hybrid and mixed methods as alteratives
tqlthe displacement method. * Further discussions on the
contributigns of fhése researchers follows.

ﬁclough and‘Tochef's investigation was primarily a -
‘compérative study of aiSplacement accuracy for 3 rectangular
and'4 triangular elements. It consisted of 280 aﬁalyses
involving 8 plates. Aigfbf the .elements had corner nodes
;n1y>ahd the 3 geometfic degrees of freedom as nodal
parameters. The geometric degrees of freedom are defined as
the transverse:displacement and thg two rotations. The
elements which were used are discussed in more detail in
Section 2.2. ' | o

Clough 'and Tocher found that the rectangles generally
provided"befter results than the triahgular elements. ™
Unfortuhately, for certain cases, one Qf the nonconforming
rectangles and. all three of the nonconforminhg triangles
converged to incorrect values. fhese.researchers.correctly
_‘identif}ed the absence of a constant twist term, where |
applicable, as being responsible for the poor behavior.

However, Clough** stated in an earlier publication that

complete conformity is essential for convergence. As well,

11
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Clough and Tocher\}§§Ve‘th impreés1 -that the lack of

conformity is'responSHble or the.poo erformance of the

triangles.

Bazeley, Cheﬁng, Irons;zndAziénkiewicz took issue with
thisﬂstatement on ggnformity ;ﬁ@ set out to prove otherwise.
Theympostulated thgé, élthough ¢8mplete geometric conformi;y
is uséful because it ensunes-mbnotShgc convergencé'of strain -
energy, it is not essential for conve?@gpce to the true
values. Bazeley et al. stated that the only thing which is
essential is that the element, regardless of size or shape,
is capable of representing all the constant strain (or
‘curvature) states., | |
\ Today it is agreed that for trué convergence the
ihdividual'elements)must be able to represent the conétant
strain states exactly:‘ Although this is a necessary
’COndition,'it not sufficient. Conformity togéther with the
constant étrain or- 'completeness' condition guarantees true
convergence but conformity is not esséntial; it can be l
replaced by the 'patch test'. One intérpretation of the
patch test is that any gréup of elements, when subjected to
constant 5train conditions around the periphery of the
group, can reproduce exactly the constant strain conditions’
at all the iﬁlerior.pqints. For flat plates, elements of
any size or shape are expected.to meet these'requireménts.
Irons“5 isAcfedited with the development of the patch ﬁest,

but its brigin was in the work of Bazeley et al. More

| details on convergence and_the patch test are available in a
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number of publications by Irons.

Bazeley etval; considered triangular elements only.
They inproduced the use of 'area' coordinates as a means of
- obtaining element shape functions which were geométrically
isotropic. and were not affected by the orientation of the
element. 'Unfortunately, their shapé functions could not
satisfy the constant curvature conditions and it became .
necessary to add supplementary functions. These
supplementary shape functions by themselves had zero-valued
" transverse displacement and slopes at each of the element
nodes and therefore could be added to the existing shape
functions in any proportion. -The element could now
represent the constant strain states,. but still it was
noﬁconforming. To make the elément conforming they added
paraboiic corrective functions. These corrective shape
’functions were appliéd to the normal slope along element
sides and eliminated departures from a linéér variation
between the nodes. 4

Although their formulation does'become rather invélvéd,
Bazeley et al. do some example.problems and present the
following importantPresults. First, withoﬁt the corrective
functions, the eleménts ére nonconforming but they still
converge to the correct results. Thus the importance of the
constant strain conditions was established. Second; they
were successful in obtaining C' cbntinuity for'a triangular\
elemenf. More will be said about their method in‘the nexﬁ'

section. 'Third, the nonconforming elements gave results

®
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usually much superior t§ those obtained from the conforming
triangle. This was especially true for the coarsér grids,
so much so that Bazeley et al. recommend these elements for
actual use. | ‘

Bogner, Fox and‘Schmit" dealt with'conforming
rectangular elements.  They used Hermitian interpolation
functions to derive stiffneés matrices for 12 and 24 degree
ofrfreedoh rectanéular elements.. Each rectangle had corner
nodes4on1y, but the 24 degree of freedom element, in
addition to.tﬂe three geometric degrees of freedom, had
curvatures as nodal pérémeters.

Bogner et ai: did some example problems and conclﬁded
that the.elemenﬁs exhibited monotonic convergence and good
accuracy. However, the converéenée was to incorrect valgés
because the constgqt‘twist term had been omitted. 1In an
addendum to the paper, they removed this deficiency and’
rederived 16 and 36 degree of freedom stiffness matrices to
replace the earlier 12 and 24 degree ;f freedom versions,
YThegﬁew elements exhibited extremely rapid convergence.

| vAlthqugh the work of Bogner et al. did show the
'iﬁportaqce{of including_all constant strain staies, their
main contribution is that théy were successful in obtaining
full conformjty for réctangular elements. However,"ﬁhey
found that in order to get conformity it was necessary to
use the twist term ~“ich is a second derivative of the
transverse displacem me clarification on this was

provided in 1965 ° Draper''®. They showed that

{
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it was impossibie to use simple polynomial§ with only the 3
"geometrfg degrees ofvfregdom as nodal parameters and get
complete conformity.

There was considerable discontent with the C'
continuify requirement gnd researchers looked for alternate
formulations. Not only.was C' continuity difficult to
obtain for most elements, but, -when finally achieved, the
resulting elements were‘often found to be too stiff. The
research which followed went two separate ways. Followers
of the displacement method turned to higher order
.polynomials and elements with more nodes o;‘pore nodal
parameters. Oth#r researchers abéndoned the displacement
method ana searched for alternate formulations. These
alternatives were also based on vériational principles.

A logical Jlternative was tb use the principle of
minimpm complementary potential energy and an 'equilibrium

formulation'. It would appear that all‘éﬁe needs to do
again is to use iﬁterpolation functibns, but this time to
describe7the stress field. The chosen_functions would be
required to saﬁisff eqhilibrium at every point in the
structure and the stressvcohditions on the boundaries.
However, as described by Zienkiewicg?°*, 'despite'many
trials of horrifying complexify' seldom has this been
achieved directly with stresses as variables. One of the
major difficulties is satisfying the kinematig boundéry

conditions.
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Initial work in this field was done by de Veubeke’*®.
To avoid a redundan§ force analysis, de Veubeke formed
_element flexibility matrices directly, inverted them to get
stiffness matrices, and then proceeded with a diéplacement
type of solutioﬁ. Problems arose with this abproach when
the assembled stiffness matrix was found to be positive
semi-definite; this indica;ed that the structure was _\
kinematically unstable.

~Another means of using the compiementary energy

principle is to use the 'flexibility' or 'force' approach
where a set of redundant self-equilibrating forces is chosen
as the unknowns. In finite element analysis, d;fficulties
with automating the selectiqn of the redundant force system
have causga this approach to be all but abandoned. «

ConSiderable.clarificétion and simplification in the

o

use of the equilibrium method is attributed to Morley'?®?,"'?**
and Elias’®, who implemented the use of element stress
functions. Stresses are calcUlaﬁédwfrom the second
derivatives of these'fuhétions and therefore the stress
functions must still pdssess C' continuity, but choosing
these functions is made easier by 'the principle of
duality'; .According to this principle, the Airy stress
function, ¢, from an eqguilibrium solution in plané
elasticity;rhas the same form as the conforming displacement
function, W, for a plate bending problem. Conyerseiy, the
¢onforming displaéement fdnctions, U and V, from a plane

~

stress solution can serve as the Southwell stress functions,
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Sx and'Sy, for an equilibrium solution to a plate bending
problem. These analogigs have been discussed extensively in
the literaéure by South;ell"’, Zienkiewicz and de
Veubeke*®, Morley'?®?®, Elias’°, and Sander'’°. 1In spite of
Morley's and élias' contributions, problems still exist with
choosing the stress functions, defining the applied loads
‘state and specifying the boundary conditions for the stress
functiohs. As well, the displacements do not possess unigue
values because they can.only be 5btained from integrating
the strains. More detailed_digcussions on obtaining
solutions from the principle of minimum compLémentary energy
are given in Chapter 7 of Gallagher;‘ and in Chapter 12 of
Zienkiewicz?*°*,

Another alternative to the displacement method is theL
hybrid stress method of Pian'*‘¢, '*?, Using a modified A
potential energy principle, Pian chose, to his advantgge,
stress polynomials for the interior of the element and
displaceménts around the perimeter of the element. éince
this method has traits of both the displacement énd
equilibrium methods, it became known as a hybrid stress
method. In 1965, Pian'‘® successfully used his method to
derive stiffness matrices and obtain solutions for both
in-pighe and plate bending problems; His method has
- attracted the interest of researchers such as Severn'’',
Henshell’*¢, Wolf?°°, Cook®*, and Yoshida’;;.

Other researchers, such as Hansteen'?, Tong'®‘, and

Kikuchi and Ando'?*°, déveloped various displacement hybrid
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approaches based on a modified principle of minimum
potential energy. Due to difficulties in obtaining some of
the component matrices and other ptoblems identified Ly Mang
and Gallagher'?*, this approach d&gs not enjoy the same
success as Pian's stress hybrid,

A third alternative to the displacement method was
presented at the same conference by Herrmann’® and was based
on a modified Reissner variational principle. Using this
method, different combinations of displacements and stresses’
can be assumed én the interior as well as on the boundaries
of the element. Herrmann relaxed the coniinuity
requirements for displacements but 1mposed continuity
conditions” on the stress'f1e1d. The result was that C°
continuity was required from both sets of trial functions.
Computations for the element Stiffness are reduced because
lower order polynomials can be used, but neither equilibrium
nor compatibility may be satisfied in totality'®. 1In
general, with the mixed methods, Lagrangian multipliers are
inclﬁded in the final equations and the pivots must be
chosen carefully because ‘the equafions are positive
sémi—definite",2°‘.

~ The developments from thé mia 1960's to the éariy
1970's are ?egarded by many writers as beihg the most
51gn1f1cant in the development of the finite element method.
The most important contribution from this era was the
establishment of variational pr1nc1ples as the bases for the

various finite element methods in structural engineering. A
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comparison of these methods 'is presented in Table 2.1. This
table is basically the same as that published in 1969 by

Pian and Tong'®! except for the addition of the generalised
éisplacement and the generalised equilibrium methods to the
mixed category. ol |

In the 'generalised displacement method’, Aonconforming
elements are used in conjuction with interelement Lagrangian
multipliers. The Lagrangian multipliers are present in the
global equations and can be iaentified as forces which are
attempting to remove the discontinuities in normal slopes
between the elements. This approach appears to have been
initiated by}Jones"’, Greene et al.'!, Anderheggen'?, and
Harvey and Kelsey’?®.

Similarily, in the 'generalised equilibrium method',
the Lagrangian multipliers are applied to the global set of
equations but now are identified as displacemeﬁts. These
displqcements restore equilibrium conditions between
elementé in an overall or integral sense. Such a solution
was used in 1969 by Anderheggen'' and later by Sander'7”®.
With these two mixed methods, as with the mixéd me thod
described earlier, Lagrangian multipliers are included in
the final solution and the equations are positive
semi-definite. ‘Mori§§‘;’ has devéloped an approximation
technique to ensure that the final equations are positive
definite. Due to the increased number of unknowns and the
more complicated nature oﬁjihese solutions, they are seldqg}

used.
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fhe period from the early 1970's onward was
considerably less rewarding in terms of plate bending
element research. Nevertheless, there were many papers
published primarily dealing with C' continuity or
alternatives to it. This period saw the introduction of
techniques such as reduced integration”and penalty number
formulations, the use of substitute shape fuqctidns'and
derivative smoothing, and the use of discrete Kirchhoff
constraints. Some of these topics and the resulting
elements are discussed in the next section.

One of the most significant developments which emerged
from this period was the use of the displacement formulation

1
based on Mindlin plate éheory and reduced integration

schemes. A discussion of these schemes and two related

approaches follows after a brief description of the Mindlin

~v

plate theory. “ -

Discontent with the C' continuity reguirement and the
desire to include shear deformations caused some researcpers
to abandon the Kirchhoff plate theory in favour of other
fheories such as that due to Mindlin'?', For flexural
equilibrium of plates, Mindlin's plate theory is very
similar to Reissner's'*‘®*, Both theories recognize three
sepérate boundary conditions along the edge 3f a plate and
Reissner's theory can be considered as a speciél case of the
more general Mindlin theory. A comparison of the two

methods is given by Mindlin'?',

S
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~ 4 In Mindlin plate theory the rotatiohs at the plafe

@Pgidsurface are not solely dependent on the transvemse
d1splacement of the plate.' For a finite element: azady51s,

- this means that 1ndependent shape functlons can be used for
the 3 geometr1C'degrees of freedom.; Only}the flrst.
derivative of‘thelvariableg appears'in_the energy functional
and therefore“only ce COntinu{ty is reddired of,the shapé
fUnctions.. As well, the shape fdnctions from plane
élasticity.elements‘can he used for‘the\plate bending
elements-and the elements can be distorted or mapped ihtO‘
isoparametric shapes. |

‘This approach worked fine for thick'plates, but as the
plate thlckness decreased the shear stlffness became so
large as to render the computat1ons useless’°‘. Therefore,
for thin plates, 1t,became necessary to elther impose the
Kirchhoffﬂcohditions_of normality directly as cohstraints or
elge make;the'shear strain matrix rank deficieht hy using
reduced integration;r This:type of approach hadvbeen'used

‘w1th some success 1n 1969 by Doherty et al.*¢ for overly

“stlff plane stress elements. For plate bendlng,'it vas .
introduced simultaneopsly in 1971 by Zienkiewicz, Taylor and
Too’°’ and by Pawsey and Clough'*?. -

In both publacatlons, 1ts use was demonstrated on

Ahmadfsteight—node serendipity shell'element’. In |
eValuating the‘shear strain energy, both research groups

purposely underlntegrgled the shear strain terms while

evaluatlng the flexural terms exactly. This procedure has

°

A
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come to be known as 'selectivé ;educgdlihtegration'.
Zienkieﬁic; and co-workers also tried underin£egratipg all =
}tefms by'dne'érderﬂof integration. Suéh a procedure is now
referred toAas 'quform reduced integrétion‘., Both methods
gave much improved results and led to the method of
selective reduced integration with Mindlin plate theéry.
_This was to dominate the plate bending research,fieid ffom
the mid 1970‘5 to the present. fhe main contributions to
this area have COme'from-r;search‘groups aééociated with
Hugheé"’;‘°’,‘°"and Hinton'*®,'°°, Some of the elements
from this de-velo;.)mg are used in the next chapter.

| Oﬁe alternative to;using selective reduced integration
for Mindlin plate elements is to impose, at the element
level, the Kﬁrchhoffkconstraintstof normality at discrete
iécétions\such as the Gausﬁ'inﬁegratiOn bdints or the Loof
nbdes'é'.' Although this is a systematic approach, it is not
always successful and C° continuity is not always
preserved®°*, This idea was introduced in 1968 by Wempner
et al.'’* and has been used for plates by reseafchers éuch
as Stricklin'®*°, Baldwin'®, Fried*',6 Irons''*, and Lyons'??,

.A second alternative is to impose the Kirchhoff
‘constraints in a weighted integrél sense by using Lagrangian
.multipiieré;"The details of using this abproaéh to obtain
an element stiffness matrix are presented in Appendix A..

Neither of the last two approaches is as simple or
effective as the selectivé‘reduéed integrafioq technique.

In 1980, 'the use of the selective reduced integration scheme
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was_extended.to hybgid-stress formulatipns by Spilker'’”’.
" all of the methods discussed thus far are not
indepéndent and a more'comprehensive treatment of.these'
topics and the eguivalences between certain methods are
discussed in Chapters 11 and 12 of Ziénkiewicz’°‘ and in
Chapter 12 of Gallagher®*. As well, Malkus and Hughes'?®

and Spilker'?’’ show the equivalenpe of selective reduced

integration and some mixed methods.

& . ’ ,
A radically different approach to all the methods which

have been discussed thus far is the 'direct method’

introduced in 1975 by Bergan and Hanseen:’'. The method is

not based on any variational principle, and any element

matrix which satisfies certain conditions is acceptable.

_The conditions consist of representing the rigid body modes

and the consﬁant‘Strain conditions‘and satisfying the patch

test. The method does not reguire involved éomputations_as

some of.thé pfevious methods, and Bergan and Hanseen have

derived avtriangle which is quite accurate,. |
Various other methods exist for the finite element

analysis of plates. One of these is the 'constraint' method

used by Rossow'*’. Another approach, which has unlimited

* . . /4
‘applicability,»is to use three-dimensional elements for

plate analysis. WNeither of these methods is discussed in

this review.
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2.2 Existing Elements ' \ .

.. The purpose of this section is to identify most of the
elements which have resulted from the developments discussed
in the réview.section.i Some of the qprg pfominent elements
are discussed fifst»and then a table of elements is
presentedﬁ The rectangular elements are considered first
and then the.triangles. Quadrilateral elements can be
obtained from rectangles by a ﬁransformation of coordinates,
but unfo;tuna;ely the constant curvature states are\@fteh
destroyed?®¢. Therefore quadrilateral elements are“ssﬁally
derived from triangles and.will not be discussed separately.

The derivation of stiffness matrices for plate bending -

~elements was initiated by three simple rectangles. All

three elements had corner nodes only‘ahd‘the 3 égometric
degrees of freedom at each node.
The most weil known of these elements was presented at

the beginning of the 196bfs and is the Adini-Clough-Melosh

'A C M' element. This is a displacemen£.element based on
Qelve term polynorriial displacement function ‘cbnsisting of
a complete cubic and two quartic terms. Although this |
element is nonconforming, its shape function does'satiSfy

the plate's differential equation of equilibrium and

~biharmonic displacement equation. The principle of minimum

potential energy does not require'the shape functions to
satisfy either of these two equations.
The second rectangle waé'presented in 1961 and is often

-

referred to as the Melosh or ''M' element'?**®. To derive the
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stiffness natrix for this element, Melosh'used the Hermitian
beam functions along the edges of the element and assumed a
linear decay to zero at the opposite and parallel side.

The third element is based on a prodnct of two cubic
“Hermitian polynomials, one along the local X axis and the
‘other along the Y axis. This element is sdmetdmes referred
to as the element with crossing- beam dlsplacement functions.
It was presented in 1959 by Papenfuss"°, but d1d not
receive much attention untll rederived by Bogner, Fox and
SchmitAin 1965. Although conforming, this element suffers
from the lack of a constant twist term and may not converge
to the correct result.- ~

- The above. three simple rectanguiar elements initiated
the derivation of plate bending matrices. Several other
rectangular"elements based on various functions and
/formulationslare presented in Table,2.2. Two of the more
prominent types from these developments are the hybrid
stress elements and those based on Mindlin plate theory and
selectine reduced integration. ;

The hybrid stress elements were put forward by Pian in
the mid’1;60‘s. Since that time a large number of elements
have been derived by his method; several of these are
presented in Table 2.2.

Thebrectangles based on selective reduced integration

and Mindlin plate theory ‘are a recent development due mainly

to the efforts of researchers such as Hughes and Hlnton._

Most of the elements developed by this approach are included

«ef
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in Table 2.2, fwo of the more,proﬁising of these elements
'aré.the simple bilinear rectangle and the 'heterbsjs'
element. These elements will be encountered again in the
next chapter.

The derivation of stiffness matrices for triangﬁlér
elements has been the most'challenging of all. The problem
“with triangles arises from the fact that it is very
"difficult to obtainuconforﬁity and retain'geometficIisotropy
because the number of terms in a suitable shapeifuqction
seldom equals the total number of nodal parameters. Adding -
internal degréeé of freedom does not help conformity. 1In
the following baragraphs, a survey of élement types
originating from various. solutions is presented.

. Beginning with the work of Adini® in 1960, and
Tocher'*® in 1962, it was soon apparenf that for the basic 9
. degree of freedom triangle it was not going.to be easy to -
obtain a stiffness matrix which converged to the correct
resulﬁ. The problems ;rose because’a.complete cubic
displéceant function has 10 terms but the basic triangle
has only 9 degrees of freedom. Therefore, the choice
regarding which terms to omit is almost arbitrary; but
symmetry should be maintairied. Clough and Tocher*’
presented 3 nonconfbrming ériangles, none of which was
satisfactory. One of theée,.derived éarlier by Adini*, had
the xy term omittea and convefged to an incorrect value.,
The second one, derived by Tocher'*®, had the ¥*y and xy?
terms éombined. Unfortunately, for some orientations of thg

.7

il

}
\
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element,'problems are encountered with Singular
matrices'*,'?’,2°¢,  The third triangle, “known as the 'T-10"
triangle, was alsd derived. by Tocher. KGI 10 terms of the
cubic pO}yn0mial were used and én internal degree of freedom
was added to the triénglé. This degree of freedom could be
eliminated fromAthe stiffness matrix by static condgnsation.
It was found that the resulting stiffness matrices were too
flexible and conQerged to incorrect-values.  The problem
with this element‘is unique’ié the sense that it can satisfy.
the constantlgtrain conditions but it cannot pasé the patch
test. : _ ,

The fourth triangle presented by Clough and To;heriis
conforming and marked the beginning of a method which
Gallagher®® has labelled as thei'subdomain approach’'. 'To
use this approach, a triangular element is sdbdivided into 3
sqbtriangleg and independent dispiacement functions are
chosen for each. Cloﬁgh and Tﬁcher.used oniy'9 terms of the
cubic function, but chose the local coordinates for each
subtriangle in such a manner that Jeometric isotropy was
preserved. They began with 27 degrees of freedom, but/ﬂy
imposing COmpatibility;conditions at the nodes and alJ;g
subtriangle bounaariés, reduced the pumber of degrees of_
freedom to 9. This conforming triangle is known as the
'HCT' or Hsieh—Clopgh—Tocher'element and has been found to
be spmeWhaf stiff. .The excessive stiffness has been
attributed to the constraint of linear variation of normal

slopes between the nodes.
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In 1968, Clough and Feiippa“ improved on this method
by using all 10 terms of the cubic polynomial. In addition
to.obtaining a stiffnéss matrix for a triangulér elehent,
they also used 4 subtriangles to derive a conforming matrix
for a quadrilateral:\_This element is one of the better
'plate bending quadrilatefals available and is still being
used in the SAP4?* computer pfogram. |

 Several researchers have used the subdomain apprbach or
variations of it. Elements derived by this approach are
identified in Table 2.2vby showing the subtriangles within
thg element. R

Instead of using the subdomain approach; a number of
researéhers devised 'single field' approaches®*. Some of -
the elements resulting from'these efforts are discussed
below. .,

Bazeley et al.'s?*® approach of superimposing various
shape functions was discussed in Section 2.1. |
Zienkiewicz?°* has labelied-theSe types of displacement
_fUnctions as 'conforminé shape functions with nodal
~singularities'. The singularity refers to the fact that the
second 6rder derivatives oﬁ curvatures are not uniquelj
defined between elements. Because of this singularity, a
high order of numerical integration is necessary to compute -
the stiffness matrix?°*. Bazele;;et al.'s approdch could
probabiy be used to obtain shape functions which give

results identical to Clough's subdomain approach, but in its

present form it has not enjoyed the same usage.



29

A significant improvement to Bazeley's abprqach was
- presented by Irons and Razzaque''’,'‘* through the use of
'substitute sﬂape functions’ aﬁa'the ' smoothed derivative
technique'; In a conforming glement, thé termslof the
highest.ordef complete polynomial govern the rate of,
convergence., Terms above this- order are necessary for
conformity, but these same terms are respons1b1e for the
excessive stiffness displayed by many cpnformlng elements.
~ The substitute §hape‘functions'geplace the original
“functions but retain the same order of completeness’and
approximate the derivatives whicﬁ appear in the stiffness
matrlx computatlons in a least squares semse*°‘; The
resulting elements.are nonconforming and have convergence
rates which ;arallel those of their conforming predecessors,
but, the new elements are much more accurate. A more
detailed discussion is given in Chapter 11 of Zienkiewicz?®¢,
and in Chapter 12 of Gallagher"} Two eleménts, a 9 and a
12 degrée of  freedom triangle, were derived'by.RazzadLe and
Irons ahd are included in Table 2.2.

Many attgmpts were made to get a single triangle to
confbrm by using the complete cubic polynomial and an
interior node. To obtain conformity, techniques ranging
ffom constraint equations and Lagfangian multipliers to
calculating of 'co;rective matrices' have been.usedt_ A
discussion bf these approacheé is given in Chaptér 12 of

Gallagher®* and several of the resulting elements are

included in Tab&e 2.2,

\;
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To avoid the 9 degrée of freedom triangle, éome
researchers reduced he nu of nodal parameters to 6,
while others kept on increasing the order of the polynomial.
Some df the elements obtained from these various trials
warrant mentioning.

) The complete quadratic function with its 6 terms was
used by Morley"‘ to derive the 'constant moment triangle'.
This triangle has 6 nodes-and 6 degrees of freedom
consisting of the transverse displacement at each vertex and
.avnormal rétation'at each midside node. Along element
boundaries this element does not satisfy displacement
continuity but it is able to meet all the conditions of
equilibrium both intéénally’and between elements. Therefore
it can be derived from tﬂe complementary energy principle as
an equilibrium element; this was done by Allman*. As well,
the same element can bé-derived from a. mixed method as was
done by Herrmann’’. Later the same stiffness hatfix was
obtained from a bybrid displacement method by Kikuchi and
Ando'?*°® and from thg hybrid stress approach by. Yoshida®*°®.
The constant moment triangle iﬁ plate bending is analogous
to the constant strain triangle in‘plane elasticity.

A;diécussion of triangular elements would not be
complete without mentioning the quintic conforming triangle.
The corner nodes of this element have 6 degrees of_fféédom
consisting of the 3 geometric parameters plus the 3
curVatﬁreé. Since a complete guintic polynomial has 21

terms, midside nodes with the normal slope as a degree of

k3



31
freedom were added.to the element. The 21 degree of freedom
matrix for this element was derived by Felippa’?®, Withum'’’,
Bosshard??, Argyris'®, Bell?‘, and Irons'''. Since the
midside node does present an inconvenience, it can be
eliminated by coﬁstraining the variation of the normal slope
to be cubic. This was done independently and almost
simultaneously by Cowper et al.*®**‘, Argyris'®, Bell?*, and
Butlin and Fgrd". The resulting element has 18 degrees of
freedom, is conforming, and gives results very similar to
the 21 degree of freedom tfiangle". These elements are
often referred to as the 'T-21' and 'T-18' triangles.
Continuing with higher order polynomials, Argyris used
sextic and septic functions to complete his TUBA family‘ff“

‘This was folIowed by the work of Zenisek?°*®* who proposed énd’
proved a general.interpolatiqn.theorem for triangles of many
orders. | |
‘ The most recent elements are based onlMindlin plate
theory and seléctive redﬁced integration. A triangular
element based on the disp{acement method was presented in
1980 by Batoz and co-workers?’. Also in 1980, Spilker'”’
presented a series of 4-node hybrid stress\a:adrilateréls
based on selective reduced integration and Mindlin plate
theory. | |

The table which follows, presents all the elements
discussed thus far and many more which have not receivea

much coverage in the literature. An attempt has been made

to present these in chronological order with rectangles
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first and then the triangles and. the quadrilaterals. An
extensive list of references and bibliography is provided at

the end of the text for the interested reader.

<



33

T

"SPOYIBN juBWa |3 d3juUt 4 JO UOjIeD} 3iSse|) }°C ®1Qel
SJdy 1 d}3Lnw Awurwswumpamvuv - T-NPYS ABuasu3 AOH1 3W
ueibueube] pue A sJa) |(di} I hw Butiedqi iinbl Adejuawa | dwo) WNIABININO3I
(6961 )usbbaydsapuy sjuswade|ds})Q LepoN uejbueube pue SNnonuU|}uU0)n P3i 31 PONW G3Z1Tvd3IN3OD
(1164 )A98 3N RABAURH Sud} |di3L1hw - (sassau1s) ABasu3l QOHL 3N
(oL6t )uabBayaapuy ue|buedbe pue sud} tdyy 1nw sjuawadse|dsiq ey 3udi10d AN3W3IOVIdSIA a
(6961 ) 1@ 1@ 8udauy |[sjuswade|dsiq (epoN ue|Buedsbe’ SNONU | 3U0D Pa@i3POWN | Q3ZITVYINID 3
- = X
Suoj3ioed] puwv - sjuswadse|ds; g pue SUO} IQuUN4 L uuewJJBH 1
({6961 )buoy g ueyd sjyuswase|dsiq suojiydoea} Asepunog juswase|dsiq pue |Aq paijipow se IN4IONI NG w
(L9611 G961} JuuRWIIOH 40 SUO} jeU|qwo) 4O SUO|jeU|qwo) SS843}S SNONU} IUO) |poyldnw JBUSS Y[ S, YINSSIIA
(TL6I)OPUY B 1UINAIA sjuawaoe(ds|q . ABasu3 UOHL 3N a
(oL64 )Buoy sjuawase(ds.g a1q}iedwuo) siuawaseydsiq te13ualjod ALNIWIOVdSIAa 1
{ RRON pauwnssy sNoNuU§ U0 PB4 PON Ald8AH - |
a
L sjuawadne|dsiq " S9SS843S ABasu3l QOH13INW A
(5961 ‘p961 )uvid “8juswadsuidsig a1qriedwod Buiiedqilinbi Adejuawa | dwo)d SS3A4S H
T LepoN pawnssy pue snonujiuo) P3| 31 POW QIY8AH
(8961 )s®} 13 suojaueded
(89°L961 )Aa(JOoN (Q ss841S (q suo}3oed) $88Sd4}S ABuauil
siuBwaseds g Adepunog bujiedqy L 4nb3 Adrjudwa|dwo) WNIHAI1IN03
(r96} )on2gnapn ap (® pazy fwJauan (e wnyJqgy | nb3 pue sNoNuUj} 3uo) wNw U W
’ ABasu]l (Bujwaojiuo))
(E961 )USO| 3N sjusawsdeidsq A} 11 iQliedwo) sjuswade(dsiq te}13uaiod IN3W3OVIdSIa
(EP6L )IURINOD LepoN juawase|(dsig snonu | 3u0) WNW U W
sSuocjienbl (euy 4 Wwfumvtjom Iuawad|a ay) apisuy 37dIONIdd QOHL3INW

S3ON3IH343Y

uj sumoudufn

juswe|eudju]l Buoyy

SU0) 3IDUN4 PBWNSSY

AYNOTLVIYVA

IN3W3I13 31INIA




34

ELEMENT

DESCRI PTION

1) 12 dof

P

Displacement Type (Conforming)

- Kirchhoff Plate Theory

- Nodal dof= < W W,x W,y >

-~ References:
Papenfuss(1959), Clough and Tocher (1965
Bogner ,Fox, and Schmit(1965)

- used crossing-beam functions; twist term
'xy' omitted, frroneous convergence.

)

2) 12 dof

ACM

"= Rirchhoff Plate

heoty

Displacement Typé\éionconforming)
W,y >

Nodal dof= < W
References:
Adini and Clough(1960), Melosh(1963),
Zienkiewicz and Cheung(1964),Dawve(1965)
- 12 term polynomial(cubic and x’y + xy?)

- Dawe also forms a consistent mass matrix.

3) 12 dof

M

stplacement Type (Nonconforming)
Kirchhoff Plate Theory

- Nodal dof= < W W,x W,y >

- References: .
Melosh(1961)

- cubic beam functions along edges with a
linear variation to the opposite side.

4)/ 12 dof

~ Nodal dof= < W W,x

Hybrid Stress Type . b
- Kirchhoff Plate Theory
W,y > .

- References:

Pian(1964-68) - also stress- free edges,

Severn and Taylor(1966),
Henshell and co- orkers(1972-§gﬂf»
- various combinag’éns of W and M,

5) 16 dof

BFS-16

Displacement Type (Conforming)

- Kirchhoff Plate Theory

- Nodal dof= < W W,x W,y W,xy >

~ References:
Bogner ,Fox and Schmit(1965),
Butlin and Leckie(1966), Hansteen(1966)
Mason(1968).

Table 2.2

A Table of Existing Plate Elements.

-
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ELEMENT

DESCRIPTION

6) 24 dof

Dlsplacement Type (Conforming)
- Kirchhoff Plate Theory .-
- Nodal dof=< W W,x W, y W, xx W xy W,yy . >
- References:
-Bogner et al(1965)- Hermitian functions,
Popplewell and MacDonald(1971),
Gopalacharyulu(1973,; 1975)*‘QUart1c poly.
_ Watklns(1974 1975)- blended Hermltlahs,

+17) 36 dof

Dlsplacement Type” (Conforming) -
.~ Rirchhoff Plate Theory
- Nodal dof= < W Ww,x W,y W, xx W, Xy W Yy
, W xxy W,xyy W,xxyy >
- References:
ﬁegper Fox and Schmit (1965).

S——

8) 12 dof

Displacement Type (Nonconforming)
- Kirchhoff Plate Theory _
- "Nodal dof="< W W,x W, y >
- References:
. Dawe(13967)- modlf1ed the ACM polynomlal
to reduce the coefficients which were
causing the W,n discortinuity.

19) 12 dof

- Kirchhoff ‘Plate Theory
- Nodal dof= < W W,x W,y >
- Reference5°

Harvey and Kelsey(1971) (trlangles)
- Lagrangian multipliers are used at a
global level to restore cont1nu1ty

110) '16 dof

Hybr1d Stress Type e
Kirchhoff Plate Theory Bes
- .Nodal dof= < W W,x W,y W~xy >
- References:
Pian angd: Tong(1968) Plan(1973)
.~ spurious energy modes may appear for this

linear - Pian & Mau(1972), Holand(1975).

=

,
4R
(&Y P

» = N PEDE

[ERRY

Mixed Type(Géheralized Displacement Method) |-

Greene,Jones,Mclay and Strome(1968 1969)

and other elements if assumed moments arel
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ELEMENT

DESCRIPTION

11) 36 dof

4D15p1acemapt Type (Conforming)
- - Nodal dof= < W~ W,x W,y W,xx W,xy W,yy

Love's Moderateley Thick Plate Theory

‘ W xxy W,xyy W,xxyy >
- References:
Smith(1968), Smith‘and Duncan(1970)
- also form a 24 dof rectangle by ignoring
" the last 3 nodal dof. :

12) 12 dof

- - Nodal dof= < W W, X W,y >

- derived 4 rectangles and 4 trzangles by

Hybrld Displacement Type(Slmpllfled Method)
Kirchhoff Plate Theory

- References:
Kikuchi and. Ando(1972)

us1ng various dlsplacement combinations,
(' correctlve matrix enforces ContanIty)

113)

O
P T ™
o

N O

dof -
"¢ Nodel dof= < W >

- References:

- this is the 'Constant Moment Rectangle'.

Hybrld Displacement Type
- Kirchhoff Plate Theory

Node2 dof= < W,n or Mn >

Kikuchi and Ando(1972); (as.above)
Poceski(1975) - mixed method, x

14) 24 dof

Displacement Type (Nonconforming)

- Kirchhoff Plate Theory

- Nodal dof=< W W,x W,y- W,xx W,xy W,yy >

- References: \
Wegmuller and ﬁ%stem(1972 1973)
Wegmuller (1973)

- complete qu1nt1c polynomlal and the terms
X%y, x’y®, and xy°® , ,

15)y 16 dof

o .

Dlsplacement Type (Dlscrete Kirchhof f)

- Mindlin Plate Theory

Nodel dof= < W 6x .8y >

Node2 dof= <  6n >

References: (also a parallelogram)
Razzaque (1972),Baldwin(1973),Irons(1976)
reduced 24 dof to 16 by using 8 discrete
conditions at the Gauss points,
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ELEMENT

DESCRIPTION

16) 16 dof

O
A4

1 2

Dlsplacement Type (Discrete Kirchhoff)
Mindlin Plate Theory

- Nodel dof= < W B6x B8y >
Node2 dof= < én >

- References: (also-a quadrilateral)

‘Baldwin,Razzaque and Irons(1973)

- reduyced 25 dof to 16 by u51ng constraints

_at 8 Loof nodes and a perimeter integral.

17) 16 dof
Semi- Loof

1 2

Dlsplacement Type (Discrete Klrchhoff)
Mindlin Plate Theory

- Nodel dof='< W >
‘Node2 dof= < 8n > , (Loof nodes)

- References: . _

Irons(1976), Martins and Owens{1978)

- reduced 27 dof to 16 by using constraints

at 8 Loof nodes and 3 area integrals.

18) 12 dof

Bi.MPT

‘Displacement Type (Selective Integration)
-- Mindlin Plate Theory

Nodal dof= < W Bx B8y >

- References: , )
Pugh(1976), Pugh,Hinton and Zienk.(1978)

Hughes, Taylor and Kanoknukulchai(1977)

bilinear displacement functions,

- two 'spurious energy modes (Hughes1977-78)

i

19) 24 dof

' Dlsplacement sze (Selective Integratlon)

" - basically the sameg

Mindlin Platé Theory

- Nodal dof= < W ©Ox .8&
- References: (Quadratic
Pugh(1976), Pugh, Hif

v-lplty Reduced
id Zienk.(1978)
gid's rediced
At may diverge
“(Pugh et al.1978) |

‘intedration plate
or converge errati

20) 27 dof
& QLR
¢ . <

Displacement Type (Selective Integration)

- Mindlin Plate Theory. '

- 'Nodal dof= < W 68x By > '

- References: (Quadratic Lagrange ‘Reduced)
Pugh(1976), Pugh,Hinton and Zienk.(1978)

- fouszpurzous energy modes for S2x2.
reduced integration,

- can be mapped into a guadrilateral.
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” ELEMENT

DESCRIPTION‘

21) 36 dof. D1splacement Type (Selectlve Integration)
v - Mindlin Plate Theory
CSR - Nodal dof= < W 6x 8y >

L

» §,5..and clamped plates (Pugh et al.1978)

- References: (Cubic Serendipity Reduced)
Pugh(1976), Pugh,Hinton and Zienk.(1978)

- no spurious energy ‘modés for S3x3 reduced
integration, but the element locks for

22) 48‘aof

09—
[}
[ ]
@

* = Mindlin Pla;e Theory

Displacement Type (Selective Integration) .

- Nodal dof= < W 6x 8y >

- References: (Cubic Lagrange Reduced) ‘
Pugh(1976), Pugh,Hinton and Zienk.(1978)

- four spurious energy modes for S3x§\
reduced 1ntegratlon. : .

Dlsplacemen% Type (Discrete Klrchhoff)
Mindlin Plate Theory
- Nodal dof= < W 6x 86y >
- References:
Lyons(1977)
- reduced 23 dof to 12 by using 8 Loof
nodes and 3 shear integrals.

-

1

=;Mindlin Plate Theory . -

Displacement Type (Discrete Kirchhoff)

%dﬂ dof= < W 6x By > _ :
de2 dof= < én > - ’
- References: T
Lyons(1877)
- reduced 27 dof to 16 by using 8 Loof
nodes-and 3 shear integrals.

25) 26 dof
HETEROSIS

o2 ¢

)

" Displacement Type (Selective Integration)

- Mindlin Plate Theory

- Nodel dof= < W Ox By >

- Node2 dof= < 6x 6By >

- References: (also 44 and 66 dof elments)
Hughes(1978,1979)

- Serendlplty shape function for W . and .
Lagrangian shape functions for 8x and By.
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ELEMENT

DESCRIPTION

26) 12,24,36"
© dof

Hybrld Stress Type (Selective Integration)
Mindlin Plate Theory
- Nodal dof= < W 0Ox
- References:
Spilker (1980) _
- derived matrices for thickland thin plate
rectangles with 12, 24, and 36 dof,
used Serendipity shape functions.

6y >

27) 12'dof

- LAGRANGE

- References:

D1splacement Type (Integral K1rchhoff)
Mindlin Plate Theory ’

- Nodal dof= < W 6x 6y >
Hrudey and Hrabok(1981) =«

- Kirchhoff normality conditions for thin
plates are imposed in an integral sense
by using Lagrangiah multipliers.

28) 9 dof
A (Adini)

"= Kirchhoff Plate Theory

w Adini(1961),

Displacement Type (Nonconformlng)

- Nodal dof= < W W,x
- References:

W,y >

Clough and Tocher(1965)
- constant twist term 'xy' omitted;
erroneous convergence (too stiff).

29) 9 dof
T (Tocher)

-

L - Nodal dof= < W -W,x

Displacement Type (Nonconformlng)

- Kirchhoff Plate Theory

W,y >

- References:

: Tocher(1962) Clough and Tocher(1965)

- combined x'y and xy?

- singular matrix encoungered for certain
shapes or orientations of the element.

30) 10 dof -

T-10 ~

—

Displacement Type (Nonconforming) .
- Kirchhoff Plate Theory _
- Nodel dof= < W W,x W,y >
Node2 dof= < W >
- References: —
Tocher (1962), Clough and ‘Tocher(1965)
- element too flexible, does not pass the
"patch test'; can be reduced to.9 dof.
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ELEMENT DESCRIPTIé@
31) 9 dof Displacement Type (Conforming)
HCT - KRKirchhoff Plate Theory

V

Nodal dof= < W W,x W,y )

References: (H51eh Clough Tocher element)
Clough and Tocher(1965)

beglnnlng of the 'subdomain\approach',

- 'geometric isotropy' preserved by. spec1al

choice of axes; linear - W,n\ enforced.

32) 9
Z(nc)

V

Displacement Type (Nonconformin\)

- Kirchhoff Plate Theory
Nodal dof= < W W,x W,y >
References:

Bazeley,Cheung,Irons and Zienk.\(1965)
introduced the use of 'area coordinates'
_to retain geometric isotropy; algg begin

the 'substitute shape function' approach.

33) 9 dof

V

z(c)

Displacement Type (Conforming)
- Kirchhoff Plate Theory -
- Nodal dof= < W W,x W,y >
- References:
Bazeley,Cheung,Irons and denk (1965)
- as above, but corrective shape functigns
~ used to obtain conformity (very stiff)
- requires very high order of integratio .

34) 12 dof

v

- trial functlons neéd only C° cont1nu1ty.

Mixed Type (modified Relssner Prlnc1p1e)
- Reissner Plate Theory :
- Nodal dof= < W Mx My Mxy >
- References:

Herrmann(1965)
- Chatterjee and Setlur(1972)
- assumed linear variation of W and M ,

35) 9 dof

v

Displacement Type (Discrete Klrchhoff) \

- Mindlin Theory or (Thick Plate Theory ‘-
displacement functions for U, V, and WX
- References: .
Melosh(1965),Utku(1967,71) Martm(1968q
Wempner et al(1968) Dhatt (1969- 70), O\
Stricklin et a1(1969) Fried(1973), \
Hinton et al(1975), Batoz et al(1980).
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DESCRIPTION

36) 9 dof

| Equilibrium Type(Argyris' Natural Approach)

- Kirchhoff Plate Theory
- Nodal dof= < W W,x W,y >
- References:’
Argyris(1965)
- obtained a 6x6 flexibility matrix by
lu51ng the Un1t Load method.

37) 9 dof

N

- assumed quadratic M and cubic W .

Hybrid Stress Type "

- Kirchhoff Plate Theory

- Nodal dof= < W W,x W,y >

- References: A
Severn and Taylor(1966) -

38) 21 dof
T-21

Displacement. Type (Conforming)

- Kirchhoff Plate Theory

Nodel dof=< W W,x W,y W,xx W,xy W,yy >
Node2 dof= < W,n ~>

References: Fel1ppa(1966) Withum(1966)
Argyris(1968), Bell(1968),Bosshard(1968)
Visser(1968), Irons(1968)

- used a complete quintic polynomial.

39) 6 daf

CMT

1

Methods : CONSTANT MOMENT TRIANGLE
Displacement ; Morley(1971)

Equilibrium ; Allman(1970)

Hybrid Stress; Yoshida(1972)

Hybrid Disp. ; Kikuchi and Ando(1972)
Mixed ;Herrmann(1967) ,Hellan(1967)
- Nodel dof= < I or Q>

Node2 dof= < W,n or Mn >

40) 42 dof

Equilibrium Type (Duality Approach)

- Kirchhoff Plate Theory

- Nodal dof= < &x Sy >

- References:
Morley(1967,68), Sander.(1970)

- quadratic moment functions,

- nodal parameters are the Southwell
stress functions.
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41)

9»dof

Hybrid Stress Type

- Kirchhoff Plate Theory

- Nodal dof= < W W,x W,y >

- References
Dungar,Severn and Taylor(1967),
Allman(1970),
Neale, Henshell and Edwards(1972),
Yosh1da(1972 1974), Batoz et al(1980)

42)

12 dof
Lcct-12

.~ Node2 dof= < W,n >

Displacement Type (Conforming)
- Kirchhoff Plate Theory
- Nodal dof=.< W W,x“ﬁﬁ,y >

- References:

Clough and Felippa(1968)
-improved the subdomain approach by using a
complete cubic and reducing 30 dof to 12.

Displacement Type (Nonconforming)
-~ Kirchhoff Plate Theory
- Nodal dof= < W W,x W,y >
Node2 dof= < W W,n >
- References:
Bell (1968, 1969)
Chu and Schnobr1ch(1972)
- used complete guartic shape functions.

Displacement Type (Non-Conforming in W)
- Kirchhoff Plate Theory :
- Nodal dof= < W W,x W,y >
- References:
~ Connor and W1ll(1968) :
- discarded the x?y term, conforming in W,n|
but not. in W along one of the sides,
- used in the STRUDL2 computer program.

45)

12 dof
LMT.

Equilibrium Type

- Kirchhoff Plate Theory

-~ Nodal dof=< W >

-~ Side dof= < averaged 1ntegral value of W

and 2 weighted edge rotations >

- References: (Linear Moment Triangle)
de Veubeke and Sander(1968),
Somervaille(1974)-also presented QMT.
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46) 9 dof

Dlsplacement Type (Conforming)
Kirchhoff Plate Theory
- Nodal dof= < W W,x W,y >
- References:
Shieh et al(1968)
- used a ghadratic function and reduced
18 dof to 9 dof, element cannot satisfy
interior displacement comptability.

47) 18 dof
T-18

Displacement Type (Conforming)

- Kirchhoff Plate Theory
- Nodal dof=< W W,x W,y W,xx W,xy W,yy >
- References:
Cowper et al(1968) Argyris(1968),
Butlin and Ford(1968) Bell(1968-69)

* - derived from T-21 tr1angle by 1mp051ng a

T a CUblC variation of W,n

48) 21 dof
TUBA-6

1

Dlsplacement Type (Conforming)

~ Kirchhoff Plate Theory

- Node1 dof= < W W,x W,y W,xx W xy W, yy >
Node2 dof= < W,n >

- References: '

Argyris(1968) - identical to T-21,

-complete quintic displacement polynomlal
element-r has 6 nodes and 21 dof.

49) 28 dof
" TUBA-13

-—t

Displacement Type (Conforming) .
- Kirchhoff Plate Theory
- Nodel dof= < W W,x W,y W,xx W,xy W,yy >
Nodei dof= various dof at remaining nodes
- References:
Argyris(1968)
-complete sextic displacement polynomlal
element has 13 nodes and 28 dof.

50) 36 dof

TUBA-15

—_

Displacement Type (Conforming)
- Kirchhoff Plate Theory '
- Node1 dof= < W W,x W,y W,xx W,xy W,yy >
Nodei dof= various dof at remaining nodes
- References:
Argyris(1968), Zenlsek(1970)
-complete septic displacement polynomial,
element has 15 nodes and 36 dof.

e
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51) 6 dof

V

Equilibrium Type

- Kirchhoff Plate Theory

Nodal dof= < Sx Sy >

- References:

Elias(1968), Sander(1970) ~
nodal parameters are Southwell functions,
assumed linear moment functions.

52 12 dof

~—

|V

Mixed Type (Herrmann's Method)
- Reissner Plate Theory

- Nodal dof= < W Mx My Mxy >
- References:
Visser(1969), Boot(1978) ,

9 dof obtainable by static condensation,
parabolic variation of W and
a linear variation of M .

53) 18 dof

“W

Dlsplacement Type (Conforming)
Kirchhoff Plate Theory ,

- Nodetl dof= < W W,x W,y >
Node2 dof= < W W,n W,nt >

- References:

Irons(1969)

- used all 15 terms of a quartic plus 3

basic or 'singularity' functions.

54) 24 dof

V

‘Mixed Tyﬁe(GeneraliiedvEquilibrium Method)

- Linear Stress Variation across thickness:
- Nodal dof= < Mx My Mxy >
- Side dof= < 2 Lagrange multlpllers to
: restore shear continuity >
- References:

Anderheggen(1969), Meek(1975)

55) 9 dof

Hybrid Stress Type
- Kirchhoff Plate Theory
- Nodal dof= < W W,x W,y >
- References:
Dungar and Severn(13969),
- various combinations'of M and W,
- variable thickness, also triangles with
stress-free edges, and hybrid beams.

v
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56) 9 dof

V

Hybr1d Displacement Type
Kirchhoff Plate Theory _

- Nodal dof= < W W,x W,y >

- Referenges: - ,
Hansteen(1969), Yosh1da(1972) Allman(1976)

- Allman's cubic W for interior and edges
is identical to a stress hybrid with
cubic W and linear M .

57) 12 dof

V

Mixed Type(Generallzed Dlsplacement Method)

- Kirchhoff Plate Theory

Nodal dof= < W W,x W,y >

- Side dof= < welghted average of Mn (used
to restore interelement cont1nu1ty)>

References:

Anderheggen(1970)

complete cubic, one dof is 1ntegral of W

58) 12 dof

“W

- Nodel dof= < W W,x

Hybrld Stress Type
Kirchhoff Plate Theory

W,y >
Node2 dpf= < W,n >

- References: ‘
Allman(1970), Bartholomew(1976)

- element with linear M and cubic W is
identical to Razzague's 'A-12',

59) 9,10 dof

‘V

Mixed Type(Generalized Displacement Method)
- Kirchhoff Plate Theory

- Nodel dof= < W W,x W,y >

- Node2 dof= < W >, can Be condensed out.

- References: _ .

Harvey and Kelsey(1971), Meek(1975)

- Lagrangian multipliers restore continuity

at a global level, similar to Anderheggen

60)

N
Q,
[0}

Hh

.- Reissner Plate Theory
- = Npdal dof= < W Mx

Mixed Type (Herrmann's Method)

My Mxy >
- References:

Tahiani(1971)

Bron and Dhatt(1972)
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61) 24 dof

V

Mixed Type (Herrmann's Method)
- Reissner Plate Theory
- Nodal dof= < W Mx My Mxy >
- References:

Tahiani(1971)

Bron and Dhatt(1972)

~

(62) 9 dof

Displacement Type (Nonconforming)

- Kirchho¥f Plate Theory

-~ Nodal dof= < W W,x W,y >’

- References:
Irons and Razzaque(1972-73)

*.used 'derivative smoothing' and
'substitute shape functions'

- identical results to Allman(1970) hybrld

63

M. N
o

o]

A Hh

Displacement Type (Conform1ng)

-~ Kirchhoff Plate Theory’

- Nodel dof= < W W,x W,y >
Node2 dof= < W,n >

- References:

" Irons and Razzaque(1972-73)

- used 'derivative smoothing' but element
identical to Allman's(1970) stress hybrid

64)

0
Q.
Q

rh

Hybrld Displacement Type(Slmpllfled Method)
Kirchhoff Plate Theory
- Nodal dof= < W W,x W,y >
- References:
Kikyehi and Ando(1972)

- us complete cubic and a 'corrective
m to derive 4 rectangles and 4
trlaﬁqles.

65)

‘V

w
w A
w
Q.
O
s

Displacement Type (Conforming)
- Kirchhoff Plate Theory
- Nodel dof=< W W,x W,y W,xx W,xy W,yy >

Nodei dof= various dof at remaining nodes
- References:

Svec and Gladwell(1973)

- similar to TUBA-15 but reduced to 33 dof,
- 10 node element used for contact problems




47

ELEMENT

DESCRIPTION

66) 9 dof

V

Hybrid Stress Type

- Love's Plate Theory

- Nodal dof= < W W,x

- References:
Cook(1972-74)

- various aspects of the hybrid stress
method; emphasis on transverse shear,

- also formed quadrilaterals from triangles

W{y >

67) 9 dof

'Direct Approach’

- Kirchhoff Plate Theory

- Nodal dof= < W W,x W,y >

- References:
Bergan and Hanseen(1975)

- not based on any variatiopal pr1nc1p1e
but must satisfy constant strain states
and pass the 'patch test'.

[ S}

M1xed Type (modified Herrmann's method)
Kirchhoff Plate Theory
- Nodel dof= < W Mx My >,
Node2 dof= < W Mn > '
Node3 dof= < W > ,(linear M along 2-2)
- References: (constant M along 1-2)
Poceski(1975)

- stress polys. partly dependent on disps.

Displacement Type (Conforming)
- Kirchhoff Plate Theory
- Nodel dof= < W W,x W,y >
Node2 dof= < W W,x W,y W,nt >
- References:
Caramanlian, Selby and Will(1978) -

‘“C‘fMlndlln Platewmheory

Displacement Type (Selective Integration)

Referances« . g

-.Batoz’,Bathe. afd Ho (49801,

'study -of . Jdof trlanglesiyhlch included
““conventionalidisp,,  hybrid- ‘stress, and
' Klrchhoff elements.'

T

/',';";’

EART—
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71) 12 dof Methods:
Rhombics Displacement ; Sander(1970)

|

Sander(1970)
Wolf(1973)
w, y >

Equilibrium -;

Hybrid Stress;

- Nodal dof= < W W,x
- References:
Pian(1973)

72) 12 dof

D

D1sp}acement Type(Argyr1s Natural Method)
Kirchhoff Plate Theory
- Nodal dof= < W W,x W,y >
-~ References:
Argyris(1965)
- derived 9x9 'natural flexibility matrix'’
from which the 12x12 stiffness matrlx

was obtalned

73) 12 dof

8

Displacement Type (Nonconforming)
- Kirchhoff Plate Theory
- Nodal dof= < W W,x W,y >
- References:
Dawe (1966),
» Ramstad and Holand(1966), Ramstad(1967)
- Dawe uses the ACM polynomial in an
oblique coordinate system.

74) 16 dof

D

Displacement Type (Conforming)
- Kirchhoff Plate Theory
- Nodal dof= < W W,x W,y W,xy >
- References:
Granheim(1968)

75) 12,24,36

o
: ‘ o}
h

Equ111br1um Type (Duality Approach)
Kirchhoff Plate Theory

- Nodal dof= < Sx Sy >

- References:
Sander (1970)

- derived a family ofsequilibrium linear,
qguadratic, and cubic parallelograms and

triangles (also sub- and hyper- elements)

4

5;‘\
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* DESCRIPTION ,

ELEMENT
LEMRNT | _ PR e \
6) 16 dof Displacement Type (Conforming)
‘ - Kirchhoff Plate Theory :
co-16 - Nodel dof= < W W,x W,y > o'
~ : © Node2 dof= < W,n > -

References: ' :
Sander(1964), de Veubeke(1965,1968)

12 dof quad. may be obtained’'by imposing
a linear variation of normal slopes.

<7

177)

Displacement Type (Conforming)
- Kirchhoff Plate Theory
- Nodal dof= < W W,x W,y >

o= References.

Clough and Fellppa(1968)
- the guadrilateral used in the SAP4
computer program.

178) '24 dof

=

D1sp1acement Type : (Conformlng)

‘| - Kirchhoff Plate Theory

- Nodal dof=< W W,x W,y W,xx W, xy W,yy >
- References: R
Clough, and Fel1ppa(1968@%

79 16 dof

2

MlXEd Type(Genera11zed stplacement Method

= Kirchhoff Plate Theory
- Nodal dof= < W W,x W,y >
--References:

Greene,Jones Mclay and Strome(1968,1969
- used Lagrang1an multipliers to restore

cont1nu1ty at a global level.

)

)

80) Eplygoﬁs’

-- Nodal dof= < W W,x

“Hybr1d Stress Type

Kirchhoff Plate- Theory B
“/y)
~ References: )
Allwood and Cornes(1969)
~ reported .results for work done on
polygons with '3 to 9 sides.
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81) 24 dof

- Ahmad's quadratic thick shell element.

Displacement Type (C°’Conformity)

- Nodal dof=g< W 6x 8y >
- References:

Ahmad,Irons and Zienkiewicz(1968,1970) |

- a plate element obtained from a °
gegenerated solid, found to be too stiff
for thin plates. ' '

82) 24 dof

Displacement Type (Selective Integration)
- Ahmad's shell element underintegrated.
- Nodal dof= < W Bx 86y > -
- References: '
Pawsey and Clough(1971)
Zienkiewicz,Taylor and Too(1971)
~ both 'selective' and 'pniform' reduced
integration used to séften the element.

83) 12,24, 36

< a quadrilateral can be obtained from a

Mapping of Rectangles to Quadrilaterals.
- Kirchhoff Plate Theory - -

- Nodal dof= < W W,x W,y >

- References: . }

..~ Henshell,Walters and Warburton(1972)

- rectangle by a transformation of
coordinates, but the constant curvature
states may be destroyed (Zienkiewicz1977)

84) 16 dof

. - Reissner Plate Theory

.= linear W and linear M.

Mixed Type (Herrménp's Method)

- Nodal dof= < W Mx My Mxy > e -

- References: ‘ :
Bron and Dhatt(1972)

|85)

24 dof

. Mixed Type (Herrmann's Method)

- - Nodal dof= < W Mx My Mxy.>

.- quadratic W and quadratic M.

- Reissner Plate Theory

- References:. .
Bron and Dhatt(1972)

o
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86)

12 dof

Hybrld Stress Type
- Kirchhoff Plate Theory
‘- Nodal.dof= < W W,x W,y >
- References:
' Torbe and Church(1975)
- also derived the in-plane matrices.

87)

24 dof,

Hybrld Dlsplacement - Trefftz s Pr1nc1ple
Kirchhoff Plate Theory

- Nodgl dof=< W W,x W,y W~xx W XY W,yy >‘

- Refeéerences:
Jirousek and Leon(1977) <
- independent disp. functions for interior
and perimeter; attempt to satisfy the
-differential equations .of equ111br1um.

' Hybrld Stress Type (Selectlve Integrgklon)
4% - Mindlin Plate Theory .
., /[- Nodal dof= < W 6x By >
| - References: g

Sp11ker(1980)
- derived a series of 4-fibde quadrllaterals
-'also derived Serendipity quadratic and.
cubic elements for thick plates.




Chabter 3
0

EVALUATION AND TESTING OF ELEMENTS &

3.1 Selection Criteria for Test Elements

. From theviiterature review of the preceding chapter, it

" is obvious that there is a bewildering number of elements

from which to choose.  However, ther&ntent of this ;esearch/
project is to develop a program %or practicalbuse and this
will eliminate a considerable number of elementsfb The
factors considered to be important for the selection process

will be dealt with shortly The property of conformity is_

felt to be of secondary 1mportance and is not used in the

‘selectlon of candldate elements.

As well, to a1d in the search for the 'best' element,
there exist a number of studies where»Warious plate bending

elements have been compared. The findings of two of these

studies, one by Smith and Duncan'’%;and the other by Abel
"and Desai', are thought to be particularly useful and will

also be discussed

The first selectlon cr1ter1on is, that only the

transverse-dlsplacement,vw; and the two rotatlons, Bx and

By, will.be used as nodal degrees of freedom. TheseQnodal

parameters are often referred to as the 'engineering',
'geomefric' or 'basic' degrees of~freedom.: Elements which
have nodal parameters consisting of second and higherkprder
derivatives of W have been labelled as elements with?

-
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.excessxve nodal cont1nu1t1es"’,’°‘. The terminology stems
from the:. fact that in a displacement tprmulatlon based on
classical plate theory the variational prlnc1p1e requ1res
pniy c! eontinuity In this chapter theuphrase 'higher
order‘parameters' will be used 1nterchangeably with |
'excessive nodal continuities'. The)reasons for not using
higher order patameters as nodal degrees of freedom are
' dlscussed in the following paragraphs. |

A study by Smith and DuncanHs compared dlsplacements
and moments versus the number of unknowns for four different
rectangular.and parallelpgram shaped elements. The four
elements were the‘nenconforming A C M element, the Bogner,
Fox and Sehmjt 16 and 36 degree of freedom conforming |
rectangles, and Smith's 24 degree of freedom rectangle.
4More information on these elements is conta1nwd in Table
2.2. Smith and Duncan formulated the stiffness matr1ces in
terms of skew coordlnates and analysed rhombic plates with
various angles of skew. They concluded that for thln plate

flexure there was nb,substantlal 1mprovement in using

elements with excessive nodal continuities. This is one of

»
&

the reasons for “not insisting~that the higher order degrees

v

of freedom be us as -nodal pargmeters. At the same time,

however, it is necedgary to mention that elements such asp
the T-18 triangles yith curvatures as degrees of freedoﬁ‘are'
capahle of providipg vety accurate results. .

A second reaso kfor choosinghpnly the geometric T

parameters is that each™Jegree of freedom of the structure

s
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_ | o
physically represents a displacement or load quantity which

can easily be visualized.  This makes it easier for a.
designer to specify the kinematic boundary conditions and

the loading and later to interpret the results.

%

A third reason-is\that in some structures the higher

Ve

order parameters are not continuoué.m For example, in a beam

or plate with an abrupt change 1nsgross sect1on or moment of
w? 'y
~inertia, equilibrium requires that the bending moment

remains continuous. If the member - i's homogeﬁious then the
bending curvature cannot be contlnuous. This causes
problems for elements with excessive nodal cont1nu1t1es.
The problem can be resolved by using dlscont1nuous degrees
of freedom, but this is undesirable because it causes

inconveniences in the modelling of the st¥ucture and

-

increases the total number of unknowns.

A similar problem arises when coupllng adjoining plate

a

elements at such locations as corners of columns. The
problem can agaln be rectified by using discontinuous

: . _ S
degrees of freedom, but this has the same disadvantages as

discussed in the above paragraph. L
‘ u

Another complication with the higher order parameters
arises when coupling eccentric 'beam og plate elements to the
maln plate. The geometric degrees of freedom are zero and
first order tensors in the X-Y plane, and, as such, have
transletional and rotational tranéformations.which.are

simple to obtain because the coupling action between the

degrees of freedom can be v1suallsed The same is not true
. Q“b{‘% [} ’
Bt

r"w\

e
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for the higher order nodal parameters where it is difficuit

to decide which degrees of freedom are coupléd to which.

Fér the reasons discussed above, elements with
excessive nodal paramefers were eliminated in the
preliminary selectlon process. d

The second selection crlterlon.deals with the number of
nodes per element and the degrees of freedom at these nodes.
For conVvenience of 'use and versatil}ty in coupling‘beams to
plaﬁes,.any element withoﬁt the same set of nodal parameters
at each node is unde51rab1e Thls~g11m1nates a large number
of .plate bending elements which have hodal parameters such
as 'W' and 'W,n' at midside or 1nter10r nodes. Most higher
order elements are of this type and'therefore,-after the
second selection critérion is apﬁlied, most of the eléments
which remain are of fhe simplg type with corner nodes oﬁly.
Evidence to show tﬁat simple elements are not necessérily’

: : \
inferior to the higher order elements was presented by Abel

and Desa1 in 1972

Abel and Desa1 did a displacement accuracy study and
used 12 different elements to analyse simply supported and
fixed square plates subjected to centra14point loads. The

elements included the A C M and M.reétangles,“the HCT

triangle, Clough and Felippa's triangle and quadrilateral,

~

‘de Veubeke's displacement conforming quadrilateral and

_equ111br1um triangle, Anderheggen' s mixed method with

{»

equilibrium triangles, Elias' equ111br1um trlangle, Argyrls

Tuba-6 triangle, the BFS-16 rectanglejand Severn and

{m;\‘d 2



Taylor's hybrid stress rectahgle.’ADetails-on these elements
can be found in Chapter 2 and Table 2.2.

For all the cases, quadrilétérals or an eguivalent
assemblagé of triangles were usé@. Abel and Desai compared
displacement accuracy versus NB??iwhére "N’ is‘the'total
_number of unknowns and 'B' is the Semi—band width. . Their
graphs indicate that the M rectangle is the best overall
element and that the more compliqatedbelements a:e'really'
not superior to the simple rectangles,

Abel and Desai's, and Smith and Dgncan‘s studiés do not
consider the work required to‘obtain the elemént matrix, but
- their cpmparisbns are much more valid than most studies'
which simply compare displacements versus the number of
elements. The latter type of comparison definitely favors
the higher order elements. |

The result of gpplying the two selectfdn:criteria is
that the candidate glements must have nodes with only the 3
geometric degrees of freedom as nodal parameters. AAt this
point it was decided to use rectangulér elements for the
evaluation. The reasons for making this chéice are
discussed‘in the paragraphs which follow. The test cases
which were used are described in the next section.

The decision to use rectanguléf'elements was based on
two main considerations. First, most_floor plans in |
practise can be répresented almost. entirely by a rectangular
gridwork. This type of grid is desirable because it

simplifies the operations of automatic catNon for
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input data, post-processing of the soluéion data and
produc;ion oflgraphical output, Second, fof the simpler
type of elemeﬁ;s being considered here, rectangular eiements
usually provide better resulfs"than an equivalent nﬁmber of
trianglee; This is to be expected of the displaﬁement
elements where the ineefpolation polynomials forga‘rectangle

are usually of a higher order than for a triangle, but it

.

has also been found to be true’for other methodé"‘,"‘.
Therefore, wherever possible, the.use ofvrectangular
elements is prefefred. .

Using the guidélines established fhus fer, it was -
decided to use the following rectangles in the evaluation:

(a) The well known A C M rectangle based on a displacement
formulation and Kirchhoff plate theory. The
displacement function for this element is a twelve- term
polynomlal consisting of a complete cubic and two
quartic terms. The element is nonconforming. It was
discussed in Chapter 2 and appears as element (2) in
Table 2.2.

(b) A hybrid stress element similar to that initially
developed by Pian and later by Severn and Taylor. The
element has 12 displacement degrees of freedom and its
derlvatlon is based on a.modified complementary
potent1al energy principle and Kirchhoff plate theory.
The internal bending moments are represented by complete
quadratic polynomials, while along the element edges the
transverse ‘displacement and the normal rotation are '
represented by cubic and linear polynomials .
respectively. This element is listed as element (4) in
Table 2.2.° -

~(c) The elemenﬁ*fefemred to as the Bi.MPT element in this
study. This is a bilinear displacement element based on
minimum potential energy, Mindlin plate theory and
.selective reduced integration. It appears as element
(18) in Table 2.2. The flexural strain energy is
evaluated exactly using a 2x2 order of Gauss integration
- while the shear strain energy is underintegrated, by
~ising a 1x1 Gauss order. The shear strain energy is
L'yrposely underlntegrated to prevent. 'locking''®’, This
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element was introduced by Hughes et al.'®’ in 1977 and
was quoted as being 'the simplest effective plate
bending element yet proposed' and described as being
'highly efficient' and 'surprisingly accurate'.

(d) The fourth element of this study does not meet the
requirement of having the same degrees of freedom at all
nodes. However, the so-called 'heterosis' element
developed in 1978 by Hughes and Cohen'®® is included
because it looks sufficiently promising and has been
highly recommended by Hughes. This element is listed as
member (25) of Table 2.2. It is a higher order
displacement element based on Mindlin plate theory and
selective reduced integration. The element has nine
nodes and uses Serendipidty shape functions for the
transverse displacement, while Lagrangian shape |
functions are used for the rotations. The flexural
strain energy is evaluated exactly using a 3x3 Gauss
order of integration, while the shear strain energy is
underintegrated by using a 2x2 order.

(e) The fifth and last element is a 12 degree of freedom
displacement element where independent shape functions
have been used to describe the transverse displacement

-and the rotations. Lagrangian multipliers are then used
to impose the Kirchhoff conditions of normality. This
element appears as member (27) in Table 2.2 and for lack
of a better name is referred to as the 'Lagrange'’
element’. The details of its derivation are given in
Appendix A. '

Details of the element evaluations are contained in the next
section.

After this work was completed, the results of a similar
study were published in 1980 by Batoz, Bathe and Ho’?.
However, the'work of Batoz et al. deals only with basic S
degree of freedom triangular elements and therefore, can be
considered as being compiementary to this study on

rectangles.
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3.2 Test Cases and Results C
Four test plates were chosen for the element

evaluations. The.test cases ‘were categorized according to
the following sets of boundary conditions:
(1) Simply supported edges.
(2) Clamped edges. a
(3) Corners simply-supr;ted and edgeS»free;
(4) Corners clamped and edges free to displace but with zero

normal slopes. In practise, this test case could
répresent a typical interior panel of a floor 'system.

Only square pletes were used and each plate was
analysea using 4 different finite element gridworks. The
loading.cond%tions for each plate eonsisted of a uniformly
distributed load and a central point load. A sketch of the
plate and a tfpical 4x4 grid are shown in Figure 3.1. For
all cases, the plate was assumed to be.isotropie and a
Poisson's ratioc of 0.30 was used.

The results of the analyses are presented in Tables 3.
to 3.6 and in Figures 3.2 to 3.9. Numerical comparisons of
deflectlons and moments for the four test cases and both
load cases are presented in Tables 3.1 to 3.4, The
deflections are those calculated 5£ the centre of the plate.
The location of the.moments is indicated in the tables. The’
normalized values of these moments are shown in Tables 3.5
and 3.6. Graphs of 'displacement error' versus 'number of
unknowns' on logérithmic axes are presented 'in Figures 3.2

to 3.9. - Although the graphs and tables are for the most

Y
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‘part self-explanatory, the following informétion may be of
interest.

The ratio of plate side dimension to the thickness
(L/t) 1is 190, excépt for the Bi.MPT and heterosis elements.
Iﬁ an attempt to reduce the effects of shear aeflections,
values of 10f were initially used for the Bi.MPT element and

10¢ for the heterosis element. These were the upper limits
of plate slenderness as recommended by Hughes et al.'°’ for
the Bi.MPT element and by Hughes and Cohen'®*® for 'the
heterosis element. For larger L/t vélues, the element
matrices may be expected to degenerate numerically due to
the overwhelming shear stiffness. To confirm that these
limits wére acceptable, the test cases wére run for both
elements using L/t values of 10%, 10¢, and 10°. For the
heterosis element the ;atio of 10¢ was also used. A
comparison of the displacements from eééh of the L/t values
revealed that numerical deterioration was evident for both
~elements for L/t ratios greater than 10*. This was |
especially true for the finer grids. Based on these
comparisons, it was decided to use L/t=10* for both thé
Bi.MPT and the heterosis element.

A sécond point of interest is the behavior.oﬁlthe
Bi.MPT element for the last#gwo festucases as indicated iﬁ
Tables 3.3 and 3.4. Fo/yl these’ applications, the Bi.MPT
element maérix is'éImdét singular and the results become
very erratic, alternating-between extremely large positive

and negative numbers. The same problem was encountered .by



“& mw

- t;MQ g%ﬁuct&%% sq@p¢rted'at 1ts centre by a sing ﬁé%mde.

IR
]

The Einghlar glément:matrix %s caused by a ,sﬁﬁtious'
‘or false ZeTos enerq? mode.wﬁg,ﬁpurfbus energy mode is a
deformed shape of g&e giement which ' has zeyo strain energy.
It occurs as a resul§%§tﬁéﬁ% “low order @% integration and
'usually does not, appear%’or the structure as a whole Fecause &
it has been ellm;nated by the kinematic boundary conditions
and the assembly procedure. For the Bi.MPT element, Hughes
and co-workers'®’,'®’ identify two such modes. One }s an
in-plgne constant twist mode while the other is a «
W-hoyrglass mode. It is interesting to note that if the
flexyral strain'energy had also been undérintegtated, then
R the element would have four spurious energy modes. For
strﬁctures which have only one suppressed transverse
displacement, the W-hourglass mode is the spurious energy} .
mode causing the singularity problem. Hughes et al.'®’ haJ¢ 
overcome this problem by suppreséing additiohgl‘trangvers§’
displacements. This type of remedial work-was ﬁdt doné~i;;

C e

the present study.

3.3 Discussion of Results and Conclusions
With the aid of the tables .and graphs of phe previous,
section, thé\process of element selection may‘begin.fﬁTﬁié'

is done in the following paragraphs by a process of

successive elimination.
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The first element to be eliminated is the heterosis
element. A comparison of displacement accuracy versus

aﬁumber of unknowns in ?igures 3.2 to 3.9 indicates that this
element 1is not superior to the simpler elements. It is
expected that a comparison based on NB® wouid make the
elemeﬁt iook éven less favorable. )

A second reason for not using the heterosis elgmeét is
the presence of the centre node which does not have the same
nodal parameters as the remaining nodes. Although the
‘centre degree of freedom can be eliminated by static
condensation, this does require additional computation and a
modificat;on to the work equivalent load vector. It is felt
that this is not worth the effort because better elements

exist.

The next element to be eliminated is the Bi.MPT
element. Although the element provides géog.éfsults for the
first two test cases,'it encounters difficulties with ‘
singular matrices for the last two. To obtain solutidng for
problems simflar to the last two test cases, it is‘neéessary
to provide artificial consgraints to suppfess'more
»gransve:se displacements.. This complication is a feature

\/
which precludes its use in a practical .analysis program.

The Bi.MPT element is eliminated mainly for this reason, and

also because it does not exhibit behavior superior to some
of the other elements.
The third element to be eliminated is the Lagrange

element.  From the graphs in_Figures 3.2 to 3.9, it can be

@

&

e

B



observed that this element's behavior is very similar to

that of the A C‘M~element. However, obtaif* t éhe stiffness

matrix for the Lagrange‘element requires siqntﬁiééntly more
| computatibnal’eﬁfort and therefore it .is abandoned in favokaw\
of the A C.M element. ‘ |
The final.choice.is to be made between the A-C M and
the hybridbstfess{element. After_studying,the tables and
gtaphS'of_displacements, it is clear that-the)hybrid element
is the better overall element. A similar comnarison of
Tables 3. 5 and”3 6 1nd1cates that the same statement is
aga1n(true for the stress resultants. In addltlon to the
satisfactory“performance of the'element, there arevtw0»other
factors which strongly influencelthe decisionhtofuse the
hybrld stress method | | @ “
One factor is the ease with whlch stlffness matrlces
for nonrectangular shapes can be derlved by thls,method.
These spec1a1 shapes w1ll be requ1red 1n s1tuat10ns where,
1;ectangular elements are not capable ‘of modelllng the
geqmetry of the.structure. The second {actor‘1s‘the c Ty ;ﬁég}
qapability.of the methodFte'inciudevthe"effects-of stress
singdlarities*in the formulation’of the element matrix.
These- two factons; together Vlth the _accuracy demonstrated
nearl1er, 1nd1cate‘that the hybrld stress method appears to
~ be 1deally su1%ed for the"analysis of flat plates. Thus yt
ja“s decided to use the hybrid stress formulatxon for the \
:;melndetuof(thlsulnvesrlget1on. The’ chapters which follow
deal solely with *tie theory ‘and use"of :t'hijs method.' ot
_ A ' .
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'Uniform Load:

qulection‘=_Coefficien£ *(qL‘/D)/1000

. : ; ) : LA

Grid ACM Hybrid Bi .MPT |Heterosis| Lagrange|
2x2 | 5.06323 | 3.90625 | 3.18878 | 3.82544 | 4.88769
4x4 4,32819 | 4.05156 | 3.96899 | 4.02407 | 4.29079
8x8 4,12928 | 4.06166 | ,4.04142 4.05473 4.,12080
16x16 4.079410 4.06231 4,05721 | 4.06095 4,07703

Timoshenko (Navier's solution, 25 terms): 4.062353 .
- - -
Moment (centre) = Coefficight‘i qL5/100
-Grid ACM ‘Hybrid Bi .MPT Heterosis Lagrangq
© 2x2 | 6.602 4,906 | 3.316 |. - -
“4x4 N 5217 4,827 | 4.777 - -
(Bx8 4 4892 4.799 | 4.790. - -
C16%16 W 8.814 |14, 751 4.789 - -
Timoshenko (Levi's solution, 5 terms): &.7886
N . & ] B
' Central Point Load: .
Deflection = Coefficient *(BL?/D)/1000’

Grid ACM Hybrid | Bi.MPT |Heterosis| Lagrange
2x2. | 13.7841 | 10.4498 | 12.7551 | 10.5131 |. 12.9940
4x4 12.3272 | 11.3819 | 11.5093 | 11.3808 | 12.1528°
8x8 11.8285 | 11.5514 11.5382 11.5464 11.7805

16x 16 11.6694 11.5888 11.5786 11.5873 11.6560

| Timoshenk¥ (Navier's solution, 250 terms): -11.60083

Twisting Moment(corners)'=-Coefficient * P /100

Grid ACM Hybrid .~ | Bi.MPT Heterdsié 'Lagrapge
2x2 | 7.008 5.768 7.144 - -
4x4 6.440 6.484 6.840 . - -
Bx8 6:212 6.192 6.296 - -
6.128 6.120 6.140 - -

16x16

" Timoshenko (ﬁevY's solution, 10 terms): 6.0953

Tabie‘ﬁQL

Oy K

D“eflec'ti_on%angxMoipent Comparisons —
Square Plate with Simply Supported Edges.
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;Jﬁhiféfm Load: b

Deflection = Cogfficient~f(qL‘/D))1000

< [Gd
Grid ACM Hybrid '| Bi.MPT Heterosis| Lagrange

2x2 1.47964 | 1.33501 0.00357 1.54093 1.25313
4x4 1.40334 1.23884 | 1.21124 1.2344°9 1.37122
. 8x8 1.30394 | .1.26009 1.25069 1.25722 1.29813
16x16 1.27518 1.26454 1.26165 1.26368 1.27388

Timoshenko (coeﬁfi%}ent method, 20 equations): 1.265319

/ ,

Moment (centre) = Coeffycient * qL2/100

Grid ACM Hybrid Bi .MPT %g{erosis"Lagrange

2x2 4.616 | 3.394 0. - -

4x4 2.778 © 2.250 2.519 - : -

8x8 2.405 2.295 | 2.331 - - ,
16x16 2.319 To2.292 2.300 - .-

Timoshenko (coefficient method, 20 equations): 2.3067

Central Point Load:

Deflection = Coefficient *(PL?/D)/1000.

Grid ACM | Hybrid |- Bi.MPT- Heterosis| Lagrange

2x2 5.91856 | 5.340D06 | 0.01429 | 6.16371 | 5.01253

4x4 6.13445 | 5.,34963 4.84496 5.38977 5.95282 |, .
- 8x8 "'| 5.80257 | 5.55001 5.40373 5.55149 5.75670 4
16x16 | -5.67214 5.59801 5.55464 5.59683 . 5.6596L '

Timoshehko»(COeffiQient‘method, 20 equations): 5.612017

e

Momehf(midsidé)= Coefficient * P /100

Grid A C M .HYbrid Bi .MPT Heterosis Lagraﬂée
2x2 14.20 14.48 0.0 - -
4x4 11.78 ©12.85 7.75 - ) -
8x8 12.33 12,61 " 9,16 ~ | -

16x16 12.50 | 12,57 10.54 - -

Timoshénko‘(coefficient ﬁethod, 20 equations):,12.5775

Table 3.2 Deflection and Moment Comparisons —
Square Plate with Clamped Edges.

' ﬁ;‘

2 ) L -
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“Uniform Load:

6

6

Deflection =.Coef§}Eient *(gL*/D) /1000
Grid ACM Hybrid | Bi.MPT |Heterosis| Lagrange
2x2 | 21.7898 | 25.4618 |  * 27.6998 | 21.8228
« 4xé 24.2956 25,5035 erratic 25.9715 | 24.3000
‘8x8 25.1778 | 25.5058 | results 25,6244 25.1924
16x16 25.4219 | 25.5064 X 25.5374 25.4335:
(Marcus:24.87), (Galerkin:26.48), (Lee&@allesteros:26;48)

Moment (centre)

Coefficient * qL?*/100

w

Grid ACM Bi .MPT |Heterosis| Lagrange
2x2 11.75 - 11.07 * - C -
4x4 11.55 11.23 erratic -
B8x8 11.27 11,18 results -
16x16 11,20 11,17 * - -
(Marcus:10.90), (Galerkin:11.09), (Lee&Bailesterds:11.04)
Central Point Load: A J ’
Deﬁlectlon = Coeff1c1ent *(PL’/D)/TOOO
Grid. | ACM Hybrid Bi.MPT |Heterosis| Lagrange
2x2 | '34.70471 | 38.9753 £ | 41.7874 | 34.7085
" 4x4 37.8161 38.9978 erratic 39,5096 | 37.7582
8x8 38.8260 39.0965 results 39,2225 | 38.81489
16x16 39.0718 39.1301 * 39,1622 39.0753
e,
£
'Moment (midside)= Coefficient * P /100
Grid ACM Hybrid Bi. MPT - Heterosisi Lagrange
2x2 20.96 |  20.26 * - -
4x4 19.87 20.86 | erratic - -
Bx8 20.34 20.42 results - -
'$ 16x16 120.29 20.33 * - -
; N i
‘L‘ '
Table 3.3 Deflectlon and Moment Comparlsons -

Square Plate with Simply Supported Corners

IS

\.
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Uniform Load: |
Deflection = Coefficient #*(qL*/D)/1000
Grid ACM Hybrid ﬁitMPT Heterosis| Lagrange
2x2 5.20833 | 5.20833 + - | 5.20834 | 5.20834
4x4 5.78512 5.67104 erratic 5.75558 | 5.72883
. Bx8 5.84288 5.75616 results 5.77021 5.81898
16x16 5.82276 5.78871 * 5.79110 5.81516
Bares (series solution): 5.81
Moment = Coefficient * gL?*/100
Grid | ACM Hybrid | Bi.MPT |Heterosis| Lagrange|
2x2 2.780 1.809 * - -
4x4 3.712 3.854 erratic -
Bx8 3.643 3.599 results -
16x16 3.600 3.588 * -
Bares (series 30;ut;pn): 3.59
Central Point Load: o
Deflection= Coefficient *(PL?/D)/1000
Sy ’e “
. — £33 : 1 -
Grid AgM Hybrid “Bi.MPT |Heterosis Lagrange
2x2 10.4167 | 10.4167", * 10.4167,,] 10.4167
4x4 1.5702 | 11.3421 | erratic 11.51 r 11.4577
8x8 11.6858 11.5123 results 11.54 ] 11.6380
43’“%}{16 11.6455 | 11.5774% * 11.5821 | 11.6303
g e ‘ . -1
: 7"‘“‘
TN o
. . . :‘3 B .
Moment (midside)= Coéfficient * P /100
Grid | A C M | Hybrid - Bi;MPT‘ Heterosis -Lagrange
2% 2 8.748 " 8.752 * - -
4x4 - 6.016 6.812° | erratic = pg%“‘ww@@ B
8x8 6,148 6.276 results - -7
16x16 | 6.112 6.144 | % - -
Table 3.4 Deflection and Moment Comparlsons -

*

Square Plate with Clamped Corners and Edge W,n= 0.

y

v
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Moment norma¥ized w.r.t. 4.7886 qL*/100
Grid ACM Hybrid Bi .MPT most accurate
2x2 1.379- 1.025 | 0.692 hybrig
“4x4. 1.089 1.008 0.996 "Bi.MPT

8x8 1.022 1.002 1.000 Bi .MPT
16x16 1.005 1.001 1.000 Bi .MPT

Clahped Edges: ~

Moment normalized>v.f.t. 2.291 §L2/100
Grid | ACM Hybrid Bi.MPT most’ accurate

2x2 | 2.015 1.481 0.0 hybrid

@£§4x4 1.213 0.982 1.100 hybrid -t
U Thgkx8 | 1.050 1.002 1.017 hybrid

*ixi6 | 1.012 1.000 | 1.004 hybrid

- & e . R ,‘-%E“x" o

"
,(""éimply Supported Corners:

Moment normalized w.r.t., 11.17. gL*/100 = ‘iﬁb
‘Grid | A°CM | Hybrid | Bi.MPT most accurate
2x2 1.052 | . 0.991 * “hybrid

4x4 1.034 1.005 erratic hybrid

Bx8 1.009 1.001~ results hybrid
16x16 1.003 1.000 X hybrid

Clamped Corners, Edge W,n=0:

£y

Moment normalized w.r.t.’r3.585 qL?/7100

Grid ACM Hybrid Bi . MPT most accurate
- 2x2 0.775 0.505 % ACM

4x4 1.035 ©1.075. erratic ACM

8x8 1.016 1.004 results hybrid
16x16 1.004 1.001 x hybrid

Taple 3.5 Normalized Moment Compafisons for Uniform Loading.

i

N
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Moment normalized w,r.t. 6;0953 P /100

" erid A C M Hybrid Bi.MPT most accurate
2x2 1.150 0.946 1.172 hybrid
ax4 1.057 1.064 1.122 ACM
8x8 1.019 1.016 1.033 . hybrid
16x16 1.00 1.004 1.007 hybrid

IClé%ped‘Edges:

Moment normalized w.r.t. 12.57 g¢ /100

Grid .| A C M Hybrid Bi.Mg; -most accurate
2x2 .| 1.130 F.152 | 0.0 ACM

4x4 0.937 - |+ #.022 | 0.617 hybrid

8x8 -0.981" +1,003 . ?ﬁ@&??@ ‘hybrid

16x16 | 0.994 1.000 ='f 0.839 hybrid
’ 0 sp,v i = ’

Simply Supporfed Corners :

o,

Moment normalized w.r.t. 20.25 P /100

5

Clamped Corners, Edgebw,n=0:

6rid ACM Hybrid Bi ,MPT most accurate
2x2 1.035 1.000 £ hybrid
4x4 - 0.981 1.030 erratic ACM
+ Bx8 1.004 . 1,008 results ACM
1.092 1.004 * ACM
T

Moment normalized w.r.t. 6.095 P /100
Gr#¥ | ACM Hybridﬁwiiﬁgﬁﬁak:“:‘ _most accurate
ey ‘?f

2x2 1.435 1,436 * A CM

4x4 0.987 1.118 erratic ACM

8x8 1.009 1.030 results ACM

16x16 1.003 1.008 \w@g? ACM

Yol
Table 3.6 Normalized Moment Cofjfirisons for Point’Load.

i



i

Figure 3.1

Square Test Plate with Typicgl 4;4_Grid..
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Chapter 4

THE HYBRID STRESS METHOD

4.1 Theory of The Hybrid Stress Methed

A complete dérivatibn of the hybrid stress method along
with its proof of convergence-waé giveﬁ in the late 1960's
by Pian ahd Tongzs’,"'. The method as propésed by Pian and
Tong requires that a set of stress functions be chosen to
~ describe the stress field inside the elemeﬁt.f A second set
of independent functions is required to describe the
disblacement field along the element bounaaries and to
provide interelement displacement compatibility.

The presentation given in this section‘is“én extension,
of Pian and Tong's work to iﬁclude the effects of stress
singularities.‘ Although this type of approach has been used
for in-plane probléms to detérmine stresses at the tipé of
shafp‘cracks;53, to the best of thé author's knowledge, it
has not as yet been used for ‘plate bending prqblems;‘ 

The presentation will proceed by describing the energy
functional on which the hybrid stfess‘method is baséd. Then
the components of this functional, namely the the strain
energy of the element and the elastic potential of the edge’
tractions, will be considered. These expressions will then

be used to obtain an element stiffness matrix.

79 a
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The Variational Principle: . ‘,

The energy functional from which the hybrid stress
method is obtained is a ﬁodiﬁied version of the principle of
minimum complementary potential energy. This has been ‘
described in detail by Pian and Tong'®*?*. For the purposes
of review and to provide a base for future discussion some
of the main points of their derivation are given here.

The principle of minimum complementary potential energy

for a structure may be written as:

TTe
where, )
ij = stress tensor which must satisfy the

differential equations of equilibrium over

the volume 'V', and the prescribed boundary
- tractions over the region Sv,

1/2/0’1;’ Cijkl Okl av -/Ti Ui dsu (4.1)
\Y/ , S

u

"Cijkl = constitutive matrix of elastic constants
which relates the stress and strain tensors,
V = volume of the structure,
Su = surfaces with prescribed displacements,
Ti = traction field on the surfaces Su, as
derived from the sttress tensor ij,
and, :
Ui = prescribed displacements on the surfaces Su.

In applying the finite element method, [[c of Equation
4.1 is evaluated on a subfegion or by a piecewise approach

as shown in Eguation 4.2 below.

TTe Z(?/Z/O’ij Cijkl k1l av —/Ti Ui dsu) -
n v _ Su (4.2)
n n
‘where,

n

the element under consideration.
\ ,

Furthermore, in using the hybrid stress formulation,

the choice is made to specify stress functions independently
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for each element. Thfs means that the stresses will be
single-valued wifhin the element and along its boundaries,
but the bound;ry values of two adjoining elements will not
necessarily be the same at the common boundary. However,
for equilibrium éo be satisfied it is necessary that the
'tractions across interelement boundaries be continuous. As
well, the element must remain in equilibrium in the presence
of the prescribed tractions. Since these equilibrium
conditions are difficult to satisfy exactly on a pointwise
basis, an alternate and approximate approach is used where
only overall equilibrium of the element is enforced. A
convenient way of imple@enting this approach is to regard
the interelement equilibfium conditions as constraint
~equations and to impose tﬁese constraints by using
Lagfangian multipliers. This has been done by Pian and
‘Tong, and the Lagrangian multipliers have béen identified as
being the displacements along element boundarie;.‘ The
eneréy functional is now in a modified or augmented form
because [Jc includes the constraint equations and can be
written as: | |

" J Su 'S1

TTme= 3 (1/2f i3 Cijkl Okl av —/Ti Ui dsu —/Ti Ui dsi)
n \

n , n n

= Z (1/2’/O'ij Cijkl Jk1 av —fTi Ui @as + Ti Ui asv)
n A S Sv
n n n

where, ' (4.3)
n = the element being considered,
S = Su + Sv + Si = total surface,
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a23'= surfaces with prescribed displacement,
Sv = surfaces with prescribed tractions,
§i = surfaces between elements.

Whereas the original complementary energy functional
involved only the stress components és unknowns, the
modified complementary energy functional of Equation 4.3 has
both stresses and displacements as variables. 1In using the
hybrid stress method separafe functions are used to describe
each set of variables. Proof that‘a finite element analysis
based on such an approach would‘convefge was presented in
1969 by Tong and'Pian“'. | ‘

. Equation 4.3 will be used latér to derive the element
and global stiffness matrices. A discussion of the

individual integrals follows.

Strain Energy, £:

For an elastic structure, there exists a scalar
function known as the strain energy or elastic potential
which can be calculated from the components of the stress

and strain tensors as shown below in Equation 4.4.

£ = 1/2 /dij €ij av’
: \Y
= 1/2 /o'ij Cijkl Okl av - (4.4)
where, , ' ’

£ = s&rdin energy,
Jij = stress tensor,
€ij = strain tensor,
Vv =

volume of integration.

S S
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At this point in the derivation it is convenient to
regard the equilibrium stress field as consisting of a
superposition of three stress fields as described below:

(1) The stress from the homogeneous or complementary

solution., This solution must satisfy the hamogeneous

equations of equilibrium for the element. It is not
necessary for this solution to satisfy any of the
prescribed traction boundary conditions.
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(2) The stress from the particular solution. The particular
solution must satisfy the equations of equilibrium with

the prescribed body forces acting and it must also
satisfy the prescribed traction boundary conditions.

This solution includes all the known stress parameters
while the homogeneous solution includes the unknowns.

(3) The stress from the singularity solution. This solution
like the homogeneous solution must satisfy the equations
of equilibrium in the absence of any loading, but unlike

the homogeneous solution it must give rise to stresses

wvhich may be caused by the geometry of the element.

For convenience, the singularity solution has been separated

.from the homogeneoué part so that the homogeneous solution

does not contain any singularity terms.

In equation form the stress field may be written as:

h Op S
dij = Jij + 0ij + dij (4.5)
where,

h : .
Jij = stress from the homogeneous solution,
Ogj = stress from the particular solution,

s S _ ‘
Jij = stress from the singularity solution.

It is not essential that any of the above solutions satisfy

kinematic boundary conditions. These will be enforced on a

global level when the structure's stiffness matrix is being

k/
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assembled.
By substituting Equations 4.5 into Equation 4.4, the

following expression can be obtained for the strain energy:

N .
1/2/613' Cijkl Okl av + l/zfdipj Cijkl Oxk)l dv
\'4 \Y%

a:a}
L]

-+

s S h Op
1/2/dij Cijkl k1l av + fdij Cijkl Okl av
\Y A" '

h | S S -
+ /dij Cijkl Okl av + fd?; Cijkl Okl av
\Y v
‘ 4 (4.6a)
(or, in matrix notation)
| |
£ =$ﬁ/<d> [C] (™., 1/2'/<c'f> [C] {0} av
i v
A 'e_: : P P
+1/2f<d>[c1{d}dv+ /<0’>[c1{6}dv
V s VvV h p
+ /<0’>[C]{J}dv+ /<d>[c]{d}dv
V h V p s :
(4.6b)

The second assumption is that each of the stress fields of
Equation 4.4 can be adequately represented by the type of

expressions shown in the following equations:

{O’h} = [Ph] {Bh}

{0} = [Ppl {Bp} | (4.7)
p

{0} = [Ps] {Bs}
S .

In the above set of equations, the [P ] matrices contain

polynomial or trigonometric expressions in terms of spatial

~

coordinates. The unknown or free parameters are the {8}
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terms. The values of {Bp} can be assigned as soon as the

loading is known. The components of {Bh} and {B8s} can only

be determined after the set of global equations is solved.

By substituting Equation set 4.7 into Equation 4.6b,

‘the final form of & can be obtained as:

£ = 1/2 <Bh> [Hhh] {Bh} +
+ 1/2 <Bs> [Hss] {Bs} +

+ <ph> [Hhs]) {Bs} +
where,
- T
[Hhh] = v/ﬂ[Ph]
f \Y
T
[Hpp] = /[Pp]
\Y4
T
[Hss] = /[Ps]
V.
T
[Hhp] = f[Ph]
v.
_ T
" [Hhs] ='v/ﬂ[Ph]
v
T
[Hps] = /[Pp]
v

The remaining terms of
4.3 involve the 'Ti Ui' and

discussed next. .

1/2 <Bp> [Hppl {Bp!}
<Bh> [Hhp] {Bp}
<Bp> [Hps] {Bs} - (4.8)

[C]

(C]

[C]

[C]

the

'Ti

[Ph]

[Pp]

[Ps]

[Pp]

[Ps]

[Ps]

<\

[

TTmc functional of Equation

Ui’

terms.

These will be
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Potent lal of Edge Tractions:

The second integral of Equation 4.3 involves the
quantity 'Ti Ui' over the entire surface. Integrals of the
'Ti Ui' quantities will be referred to as the potential of
edge tractions.

The tractions, Ti, on any surface can be calculated
from:

Ti dji  nj (4.9)

L]

where,

nj components of an outward unit

vector normal to the surface.

By using Equation 4.9 and the expressions {J} = [P ]{B} from
Equation 4.7, the tractions may be rewritten in matrix form
as:

{T} = [NPh]1{Bh} + [NPpPl{Bp} + [NPs]{Bs} (4.10)

" The explicit forms of the [NP ] matrices are described in
detail in later sections.

“The diéplacements, Ui, of the integral.term involving
'Ti Ui' have been identified earlier as being displécements
alohg the edges of the element. Although it may be possible
to obtain a displacement field by integrating the stress
functions, the amount of effort required for nonrectangular
shapes is prohibitive; furthermore, this type of approach is
not necessary. In the hybrid stress method, the element
displacement functions and the stress functions are chosen
separately. Because this is done, the hybrid stress method

is sometimes referred to as a 'two-field approach'.
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The assumed displacement functions which relate edge
displacements to nodal displacements must be chosen to be
compatible between elements and can be represented by

Equation 4.11 as shown below.

{uy = (L] {U} (4.11)
where, »
U = displacements along element edges,
L = displacement interpolating functions,
U = element nodal displacements. !
Equation 4.1t can be used with Equation 4.10 to obtain

the following expression:

J/ﬁTi Ui das =
S

. <Bh>[Ghh]{U} + <Bp>[Gppl{U} + <Bs>[Gss]{U}

where, (4.12)
' T
{Ghh] = v/ﬂ[NPh] (L] 4s
S .
T
(Gpp] = j/.[NPp] (L] as
S
T .
[Gss] = d/ﬁ[NPs] (L] ds
)

The last integral term of Equation 4.3 is 'Ti Ui'.
This can be rewritten in a matrix form similar to Eguation

4,12 as:

Ti Ui asv
Sv

/<‘f> (L] asv (U}
Sv .

<P> {U} (4.13)
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The St iffness Matrix:
The final form of []mc can be obtained by substituting

Equations 4.8, 4.12 and 4.13 into Egquation 4.3 to get:

TTme

]

1/2 <Bh>[Hhh]{gh} + 1/2 «ﬂpﬁ[pr]lﬁp}"'

v /2 <ﬂs»[HssI{ﬁsi + <Bh-{Hhpligpl

+ <Bh~[Hhs) {As} + ~Bp-[Hps]ifs}

- <gh~>[Ghh1{U} - <Bp-[Gpp)lU} - -fs-[Gss]iU]

+ <> (U]} (4.14)

The only unknown guantities of Equation 4.14 are {fgh},
{Bst and {U}. ‘The terms of {Bp} are known because the
applied loading and prescribed tractions are specified. To
obtain a stiffness matrix from Equation 4.14, the functional
TTmc is minimized with respect to the parameters contained
in the two unknown {B} vectors and the terms of the {U}
displacement vector. This is necessary because {f} and {U}
are independent vectors and the stationary value of TTmc can
only be obtained if it is minimized with respect to both

-
sets of variables.

The minimization with respect to the {Bh} and {Bs}
vectors eliminates all the stress fields for which J[c does
not have a stationary value. The minimization with respect
to {U} is discussed later.

The result of the minimization of [[mc with respect to

{Bh} and {Bs} vectors respectively results in the following

set of equations:
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]
[Hhh]{Bh] + (th)(ﬁpl + [Hhs){ps) - [Ghh}iu) - {ol
[Hss]{As] « [Hsh)Y(Bh) + (Hsplipp)l - [Gss]{u}l = Lol
where, (4.15)
T
(Hph) « [$ihp)
T

[Hsh] = [HMhs

—_— 3

(Hsp) -A[Hps
and the matrices [Hhh], [Hpp) and [Hss] are symmetrical.
Equation 4,15 can be‘substituted into Equation 4.14 and
the functional J]mc can be rewritten so that the only
unknowns are {Ul. To accomplish this, it 1S necessary to
solve the equations in 4.15 for {Bh} and {Bs}. This task 1is.
simplified i1f the two unknown vectors {Bh} and {Bs}] are i

combined into a single vector {Bhs}. After this 1s done,

Equation 4.15 can be rewritten as:

[Hhhss]{Bhst= [Ghhss]{U} - [Hhspl{Bp!

-1
{Bhs}= [Hhhss] ([Ghhss]{U} - [(Hhspl{Bp})

where, (4.16)
{Bh}
{Bhs} =

{Bs} .
(#hh] | [Hhs]

[Hhhss] =
[Hsh] [Hss])
[Hhp])

[Hhsp] =
[Hsp] .
[Ghh]

[Ghhss] =
[Gss]

e

With the above expressions, [[mc of Equation 4.14 can be
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rewritten as: C
TIme = 1/2‘<Bhs>[Hhhss]iBhs}
+ <Bhs>[Hhspl{Bp} + 1/2 <Bp>[Hppl{Bp}
- <phs>[Ghhss]{U} - <gp>lGppl{u} + <¥>{U}" : )
‘ : 4.17

Equationv4.16 can aléé be obtained by'mihimizing TTmc
of Equation 4.{7 with respéct to {Bphs}. After‘eliminating
{Bhs} and combining like terhs, the following equation can
be written:

ﬂmc«-_-”""z}(—f/z <g>[GHG]{g} + <PAeq'>{!} + Co)

: where, o - L (4.18)
. -1 .-
= ' [GHG] = [Ghhss] [Hhhss] [Ghhss].
<Peg> = <Bp> ([Hhspl[Hhhss][Ghhss] - [Gppl) + <P>
and, | , |
T =1 o
Co = <Bp> ( 1/2[Hppl '~ [Hhspl[Hhhss][Hhspl) {Bp}

.a constant..

The next step is to minimize Equation-4.18‘withorespect to
{u}. The'{g} vec£dr-contains the second set of'independent
variables which were earlier derived frém the Lagrangian
multipliers. The Lagrahgian multipliers aré'requined to
ensure that” the elements remain in;eéuilibriﬁm. Therefore
upon minimizing J[mc of Equatioh~4.18 with respect to {U}
the following set of eguilibrium eQuations is,obtained:

2 [GHG]{u} = E{Peq}' (4.19)

o




/

From this point on, with [GHG] as a'stiffness matrix,

and {Peqg} as aAload vector, the hybrid §€res§ method is
identical in format to the staﬁdard'diéﬁlacement method.
‘- In the remaining sections of thie chapter, element

stif fness matrices are derived for the following four cases:
(1) A plane stress element withoUéABOdy forces and without

stress singularities. The element shape can range from
a triangle to,a six-sided irregular polygon.

—

LN

(2) A plate bending element with body forces but without
stress singularities. The element shape can range from

‘a triangle to a six-sided irregular polygon.

(3) An L-shaped plate bending element with the stress
singularity included. The two sides which meet at the
reentrant corner have 'free edge' boundary conditions.

(4) An L-shapeamp;atefbending element with the stress

singularity included. The two sides which meet at the
reentrant cotrner have 'fixed edge' boundary conditions.

Before proceeding with the derivations, some guidelines
and requirements pertaining to the selection of stress
functions are discussed.  Although many choices are possible
for the stfess functions, it is necessary to satisfy two
important requirements.

Firsf, it is essential that the number of independent
{B}/parameters must not be less then the displacement rank
ofathe element stiffﬁess matrix. The displacement rank of
an element stiffness matrix is equal to the total number of
element degrees of freedom minus the number of riéia body
modes. It is the number of'linearly independent rows in the
element stiffness matrix. If this condition is not met,

then the element stiffness matrix will be rank deficient'®®,




Although this is a necessary condition, it is not sufficient
to guarantee that spurious energy'modes‘do.not appear. Some
researchers'®®,?? have encountered extraneous zero-Qalued
eigénvalues when using lineér stress functions. 1In each
case, these energy modes were successfully eliminated by the
addition of some quadratlc terms -‘Therefore, it is )
recommended that linear stress functions not be used without
checking the number of zero eigenvalues in the stiffness
matrix. » |

At the same time, an excess of {B} parameters tends to

overstiffen the element and should be avo;ded Work on the

. ) . R Y
‘subject of optimum number of {B}]paramete"“has been done by

Henshell’* and Pian'®*'., Although no egact equation is-
given, the qbnsensus is that the order of the’stress

. functions should be compatible with the order of the
displacement functions and.that neither sét should be
changed without a sorresponding chahge in the other.
Henshell?’ ¢ élso recommends that the number of {Bj'parameters
approximately eqﬁals the‘displacemen; rank of the stiffness
matrix.

The second important requiremsnﬁ is that the stress
functions satisfy the differential equations of equilibrium
as given by, 0ji,j + Fi = 0.

These requ1rements and guidelines will be followed in
the derivations of element stiffness matrlces which follow

in Sections 4.2 to 4.4.

inn b i s
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4.2 Polygonal Element In-Plane Matrices

This section contains the derivation of in-plane
stiffness matrices for plane stress elements with three to
six sides. These stiffness matriges are reqguired to model
ﬁplates with in-plane displacemeﬁts'caused‘by eccentric -
stiffners. Because of the intended use of these elements;
tﬁe body forces and prescribed tractions can be HégleCted.?
As weli it i% assumed that stress singuiarities do not haQe
to be considered.t Tﬁerefore only the [Hhh] and [Ghh]

matrices are needed to obtain the stiffness matrix.

[Hhh]:

In order to obtain [Hhh] it is necessary to assume
Stress functions for (Ox, Oy, and Oxy. A set of partial
quadratic. stress functions were chosen to describe the
stress field inside the element. These functions are shown
below in Equa£i6n 4,20 and satisfy the equilibfium‘and rank
requirements d;scussed at the end of Section 4.1:

Ox= B, + xB: + yB: * xyB.
Oy= B, + xB. + yB. * xyB. | (4.20)
Oky= ~ yB. - 0.5y%B. - xB, = 0.5x*8, + B,
In matrix form this can bé written as stated earlier in
Equation 4.7:

{0} = -[Ph] {Bn} . | (4.21)
3x1 3x9 9x 1

¥ The situations where stress singularities do occur are
not common and details of these cases are discussed by
Morley'?? and Williams'’*®.

B
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where,

@ - {3 -
i dy : .

'Since the abbve stress polynomials are not complete,
coordinétg invariénce,fbr rectangular shapes can only be
guaranteed if the polynomialé.are evaluated in a local
coordinate system which remains parallel to the sides of the
rectangle. Although this type of invariance is a desirable
property, it is not essentiai.

\ .
The constitutive matrix is assumed to be of the form:

c, | C, . :
[C] = C., c, . : ' (4.22)
'; . C‘

. The matrix [Hhh] can now be calculated from the

expression in Equation 4.8 which is repeated below:

[Hhh]

o -
J/A[Ph] [C] [Ph] @&V
v _ .

t‘/r[Ph? [C] [Ph] aA
where, § (4.23)c
t = ;hickness of the'element.

Siq;e any‘polygonal element can be constructed from an
assemblage of triangular.and’trapezoidal shapes,‘it was
"decided to evaluate the explicit form of [Hhh] for a
trapezoidal region. Triangular shapes are defined as a
trapezoid with one of the paralLél sides equal to zero. fhe}
explicit form is then used in the computer program HYBSLAB
and [Hhh] for the element as a whole is obtained from a

summation of [Hhh]'s from the trapezoids. Additional
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details of this procedure are prqovided in the next chapter.

N

[Ghh]:
The matrix [Ghh) is obtained from the expression in

Equation 4.12 which is shown below:

[Ghh]

i
<
R}
jo gl
—
—
~
—
Q,
wn

t [NPh] [L] A%

L}

where, : | (4.24)
t = thickness of the element,
£ = length along the element's perimeter.

The [NPh] matrix is obtained from 'Ti Ui' and for a
pléne stress element‘its form can be determined as indicated
below in Equation 4.25. 1In this equation, n, and n., are the
cdmponents of an outward unit normal vector located at a -
point on the element's boundary. The matrix {U} consists of
'U' and 'V' which are the'in;plaqe x and y displacemgnts of
the point, As well, the set of indices ',' and '.', are
used interchangeably with the set 'x' and 'y'. The
following steps in Eguation 4.25 indicate how [NPh] is

obtained from 'Ti Ui':

/Ti Ui ds
s
t/Ti Ui af

s
t (051 nj Ui) df
£



-
¥

(and, in matrix form)

(or)

t <gh> | [Ph] [N]

t <Bh>

t/<dx,dy,dxy>
£

: T
t/‘<d> (N {U} as
£

T T

1x9 £ 9x3 3x2

1x9 £ 9x%2 2x4

»

n,

Na

Na

n,

[L]) as
2x4

T
[NPR] [L] @£ {U}

4x1

{u}

daf

4x1 .,

S,‘
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(4.25)

.As indicated in the last two steps of the above equation,

[NPh]. is the product of the [N] and [Ph] matrices. At

this

time it is noted that Equation 4.25 reguires integration

along the element sides only. This means that [Ghh] can be

calculated in a step-by-step manner by considering one side

at a time.. The explicit form of [NPh] for one side is a

(2x9) matrix which can be written as:

[NPh] =
n, n,x n.y n,xy o . -Nn,.x —nzxi/z na
N,y "nzy’/2 \
-n.y . -n,y*/2 n. n.x | n.y n.xy n.
-n,x |-n,x?*/2
(4.26)

The next step is to choose the shape functions of the

matrix [L] which relates edge displacements to nodal

displacements.

For an element side, defined by nodes 1 and

2, a suitable set of displacement functions is the linear

set shown below in Equation 4.27.



v 7
{Ut = [L] {U}
(or) u,
y) _ 1-p . p - . v,
{V} - . 1-p . p u,
Vi
where, (4.27)
U = in-plane X displacement along the element side,
V = in-plane Y displacement along the element side,
p = non-dimensional coordinate measured along the

element side from node 1 to node 2.

The matrix product of [NPh] [L] is integrated to form a
resultant matrix which will be called [Ghh],, where the
subscript ',' indicates that only one sidé has been
considered. The ith] matrix ig'formed by a direct entry
and'summatioﬁ brocedure of’the‘[th]° matrices.

The element stiffness matrix [GHG] is evaluated from

Equation 4.28 as shown below:

T -1 ‘
[GHG] = [Ghh] [Hhh] [Ghh] ‘ (4.28)
MmXm mx9  9x9 Sxm ‘

where, m = number of element degrees of freedom < 12

If any external in-plane loads exist they can be
proportioned directly to the nodes.

A£ this time it is again pointed out that the chosen
stress functions have only nine independent B parameters and
therefore the element cannbt have more than six nodes.

Details of the computer Bubroutine which is used to
calculate the stiffness matrix can be found in thé‘program

HYBSLAB which is discussed in Chapter 5.
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4.3 Polygonal Element Flexural Matrices

_?his section contains the derivation of flexural
stﬁ&?ness matrices for plate elements with three to six
sidés.‘ The derivation is based on the following assumptions -

and conditions:

(1) Classical Kirchhoff plate theory is used to describe the
behavior of the plate.

(2) Body forces are included but prescribed tractions are
not considered. These assumptions are discussed, in more
detail in the paragraphs which follow.

(3) Stress singularities are not considered in the
derivation,. ‘

Disregarding the pfescribed tractions means, that in
the JImc functional of Equation 4.3, 'Ti' is assumed to be
zero-valued., This assumption is t;ue where elements share a
common boundary and the equation, Ti= Oﬁi nj , gives the
cﬁrrect values of edge tractions. However, it is not valid
for cases where the edge tractions are specified beforehand.
A common example is the free edge condition.

For a free edge, only in the limit will the the assumed
stress functions provide a stress-free condition. This
problem is not unique go the hﬁgrid'fdrmulation and similar
statements can be made for ‘the displacement and mixed
methods. In the hybfid stress method the situation may be
‘rectified in' one of two ways. The first approach was
introduced by Pian and Tong'®'(gnd requires a';eformulation

of the [NPh] matrix so that the stress functions do

reproduce the desired traction conditions. The second



approach consists of adding corrective Ti values to those
calculated from Tj= Jij ni in such a manﬂer'that the
desired boundary conditions are obtained. Since neither
approach is easily implemented and because good results were
obtained in the previous chapter without making any
corrections, it was decided to formulate the stiffness
matrix for a typicalyinterior element only.

This stiffness matrix is to be used for all elements
regardless of edge conditions. In doing so, no serious
probléms are expected, because the error decreases with
element size and although the rate of convergence may be
changed, the values to which the solution converges remain
unchanged. )

From Equations 4.16 to 4.18 it can be seen that the
matrices which are reguired to calculéte a stiffness matrix
are: [Hhh], [Hhpl, [Hppl, [Ghhl, and [Gppl. Before
consideringvxhe functions required for these matrices, the
equations of Section 4.1 will be.modified so that moments
and curvatures appeér in place of stresses and strains.

The term 'homent' is being used in the context of plate
bending and denbtes a stress resultant which has the units
of 'force x distance/ distance'. In equation form tﬁié

moment, denoted by 'Mij', is defined as:

Mij = /z Jij daz ' (4.29)

where, ' :
Z= distance from the plates's midsurface
to the fibre being considered, measured
along the +Z coordinate direction.
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Using Kirchhoff plate theory the strain tensor, €ij,
may be written in terms of curvatures, W,ij, as shown below
¢
in Equation 4.30, Partial differentiation is indicated by
using the comma notation.
€ij = -z W,ij (4.30)
where,
W = transverse displacement of the midsurface
of the plate and is a function of the X and
and Y coordinates only.
As well, it is assumed that there are constitutive

tensors, Dijkl and Eijkl, which relate the moment and

curvature tensors according to:
W,ij = - Dijkl Mkl (or) Mij = - Eijkl W,kl (4.31)

With the above three equations, the expression for

'0ij €ij' may be rewritten to get the following eduation:

dij €ij av
v . i

(-z W,ij) dz da

-/Mij W,ij da
Ja

+/Mij Dijkl Mkl da (4.32)
A

]
=
Q

(or, in matrix notation)

= +“/P<M> [D] {M} da
A .
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where,
<M> = < Mx My Mxy >
-and, . *
A = midsurface area of the element as
defined by the X and Y coordinates.

By following through Equations 4.4 to 4.8 and replacing the
stress and strain tensors by moment and curvature tensors

the following sets of equations can be obtained:

&

{M} = [Ph] {Bh}
h
{M 1} = [Pp] {Bp} (4.33)
p
{M} = <[Ph] {Bs}
s
(and)
T
[Hhh] = ~/F[Ph] [D] [Ph] AaA
A
. T
(Hpp] = ~/P[Pp] [D] [Pp] dA
A -
T
[Hss] = ~/P[Ps] [D] [Ps] da
A
(4.34)
T e
[Hhp] = /[Ph] [D] [Pp] aaA
A .
-A T
[Hhs] = V/ﬁ[Ph] [D] [Ps] dAa
A .
<T
[Hps] = ~/ﬂ[Pp] (D] [Ps] da
A

The individual matrices [Hhh], [Hhp]), [Hppl are

discussed in the‘following paragraphs.
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(Hhh]:

To describe the moment field inside the element, it is
necessary to assume functions for Mx, My, and Mxy . A set of
complete guadratic moment functions were chosen. These
functions are sﬁﬁwn below in Equation 4.35 and satisfy the
equilibrium and rank requirements discussed at the end of
Section 4.1,

Mx= B, + xB, + yB, * x’B, + xyBs * y'B.
My= B, + xB. *+ yB, *+ x'B,s + xyBi\v * y'B., (4.35)
Mxy= - xyB. = xyB.. + B.s * xBiu + yB.s * X8, * ¥'B.,
In matrix form, the above can be written as:
{M } = [Ph] {Bh} (4.36)
h

The moment functions of Equation 4.35 have a total of

seventeen independent B parameters. The plate bending

elements have as nodal degrees of freedom < W, 6x , 8y>,

where:
W = transverse displacement in the +Z direction,
Bx = rotation about the +X axis (= W,y),
By = rotation about the -Y axis (= W,x).

"Hence, the moment functions of Equation . 4.35 can be used to
formulate stiffness matrices for any plate element with six
nodes or less.

The constitutive matrix is assumed to be of the form:

a4, :
(0] = (& 14, : (4.37)
: g
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The matrix [Hhh] can now be calculated from the
expression in Equation 4.34 which is repeated below:

~ T
[Hhh] = (Ph] (D} [Ph] dA
A 17x3 3x3 3Ix17

(Hpp]:

The matrix [Hpp)] 1s calculated from the moment
functions of the particular solution. Although many such
solutions exist, Tong and Pian'**® have shown that the
introduction of body forces does not change the stiffness
matrix at all. This statement can be verified by examining
Equation 4.18. However, as can also be seen from Equation
4,18, the form of the equivalent load vector {Peg} is very
much dependent on the particular solution. Therefore, one
might expect that the finite element solution would depend
on the choice of particular solution, but Tong and Pian'*®
have proved that this is not so if a certain reguirement is
met. The requirement is: if all the terms of the different
[Ppl{Bp} particular solutions appear in the polynomials of
the homogeneous soiﬁtion [Ph]{gh} then the finite element
solution is independent of the choice of particular
solution.

In keeping with the above reqguirement, 1f a uniform
load, G., is to be accommodated then the [Ph] polynomials
must be at least complete guadratics. &he moment functions

of Equation 4.35 satisfy this requirement. The various
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‘particular solutions, which can be chosen, contain only
Quadratic and lesser order terms. The Quadfatié‘terms

. satisfy the equilibrium equation:

Mx,xx‘+ 2 Mxy,xy + My,yy = - Qo
.while tﬁe constant‘andAlinear terms drop out upon double
'dlfferentlat1on ‘f |

Some p0551ble partlcular solutlohs are:
(1) <M>= <x2/2, o , o >a.
p | :
(2) <M>= < o,<-y*/2, o g, -  (4.38)
, p '

S(3) <M > = < 'o , o) ,}fky/2> o

. p. . .
An infinitg nﬁmber of’other partiéular solutions can be

obtained from combinations of the above %ﬁgee solutions.

The last two solutions. were used at différent tihes in the

HYBSLAB program to confirm that the d1splacements and

stresses were not dependent on the ch01ce of partlcular

- solution.

The last pa}tiéular soiution shdwn in Equation 4.38
will be used in £his chapter. vThe matrix [Hpp] can be
calculéﬁed from the second expression 6bequation 4.34 which
ié'fepeated~belbw: '
ool = [ tPo] (D] [Pp] aa
: . A 1x3 3x3 3x1t
where, .

[Ppl
{Bp}

T

<o , 0, -xy/2>
and, :

do
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[Hhp]:

The matrix [Hhp] is calculated from the homogeneous and
particular solutions according to the followihg expression
of Equation 4,34: |

: T
[Hhp] = ~/ﬂ[Ph] (D] [Pp]l dA
A 17x3 3x3 3x1

7

The explicit forms of [Hhh], [th] and [Hpp] wére
evaluated for a trapezoidal region as described earlier and

used in the computer program HYBSLAB.

[Ghh] apd [Gppl:
The matrices [Ghh] and [Gppl are obtained from the

following expressions of Eguation 4.12:

T
f[NPh] (L] as
S -

' T
f[NPp] (L] as
S .

[Ghh]

[Gpp]

The [NP ] hatri;es are obtained from 'Ti Ui’ and for a
plate‘bending element ‘their férm can bé determined as
indicated below in Equation 4.39. 1In thislequation, n, and
n, are the components of an outward unit normal vector
located at a point on the element's boundary, and 'Mn' and
'Mnt' denote the normal and twisting,moménts at ‘this same
‘point. The ordinary transverse shear is denoted by '@',
(Kirchhoff's shear will be denoted by '¥'). The indices ',’

and ',', are used interchangeably with 'x' and 'y'.
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/Ti Ui das
S

= /(—Mn W,n - Mnt W,t + Qn W) df
" £

(or)

= ./r(-Mji nj W,i + Qi ni W) ¢ )
£ ‘ A

= v/ﬁ{-(Mx ny * Myx n,)(By) - (Mxy n, + My n,)(Bx) +
£ _
(Mx,x + Myx,y)(n,) (W) + (Mxy,x + My,y)(n,)(W)} @£

(and, in matrix operator form:)

: n, (),, . -n,
o w
=“/”<MX‘} My , Mxy> n. (), -n, . < Bx da£
£ : : ' 6y
n, (), -n,. -n. ‘
+n, (), )
(or) ‘ .
! T '
=v/” <M> [N] {U} dg- (4.39)
£ 1x3 3x3 3x1 . i

(if <M> of the homogeneous solution is considered then;)

T

o | —
= <Bh>. ~[Ph] IN] L) az {U}
1x17 £ 17x3 3x3 3x6 6x1

, - T ' .

= <Bh> [NPR] [L] af {ul} (4.40)

1x17 £ -17x3 3x6 6x1

As indicated in the above‘equqtion, the product of [N] from
Equation 4.39 and [Ph] from Equation 4,35, providés the
[NPh] matrix. The explicit form of [NPh] for one side of an

element can be determined as:
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. —n| ﬂ|~

+n, . ~N.X Bz

. -n,y BJ

n,x n.y n,xy “N.X* + N,Xx B.

my . —N,Xy Bs

. -n,y? B«

—nz . B7

T ‘n,x . ' Bl'

[NPh] = -n.y . B,
_ -n,x? ~ . Bio

Nn,x~ . ~N,Xy . "By

-N,Xx + N,y +N,Xy = n,y? naxy B

N, -Nn,; B,

-N.X ~N.X B

-y -n.y Bts

2 NaX -N,x? -N,x? B,

2 N.y -n,y: -n.y? B

(4.41)

Likewise, the form of [NPp] can be calculated as:
T ' ‘ S

[NPP] = <-(n,x+n,y)/2, +n.xy/2, +n.,xy/2> (4.42)

The next step is to choose the shape functions of the

matrix [L] which relate edge displacements to nodal

displacements. For an element side, defined by nodes 1 and

2, and orientation specified by n, and n., the Hermitian

interpolation functions shown ih»Equation 4.43 were used.

Acéording to these interpolation functions, W and Bt have a

cubic variation between nodes, while 8n varies linearly.

U} = [L]
o 3x1 3x6
where,
W
{U}t = Bx
By
and:

{u}l
6x1

and

{U}

n
A

- a

W,
0x,
By,
W,
0x,

L8y )

(4.43)
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(L] =
H",, n, H =N, H:| Ht‘:z n, H:a‘ it Y H:z
N, dH;, n3i H:, n,n.HY, n, dH;, n; Hg. n.n.HS,
+n? dH},1-n,n.,dH,;, +n? @H),|-n.n, dH.2
-n, dH,, n.,n. Hs, ni - =N, dH: . n.n, H: ni H3
_n1nde=| +n; dH:| —n|nde:1 +n; dH
where, -
61 = 1 -9
22 = p
;';. = 1 - 3p? +,2p"‘
02 = 3p? - 2p°
',o= £( p - 2p% + p?)
1. =" E(-p? + p?)
dH;, = 6(~p + P’)/ £ . .
dH), = 6( p - p?)/ £ _
dH!, = ( 1 -4p + 3p*) /
dHl, = (-2p + 3p?) :
and,

p = non-dimensional .coordinate measured along the
element side from node 1 to node 2
£ = length of the ‘element side from node ‘1
to node 2.
To form the [Ghh] matrix, -the matrix product of [NPh] [L] is
integrated and the resultént matrix is called [Ghh].,. The
[Ghh] matrix is formed by a direct entry and summation
procedure of the 1ndlv1dual [Ghh], matrices.

The procedure is repeated with the [NPp] and [L]

matrices to obtain [Gpp].

[GHG]+ |
The stiffness matrix [GHG] énd the equivalent load
Qector {Peq} can now be calculated from the set of equations
shown below: | .
T -1

[GHG] = [Ghh] [Hhh] [Ghh] | (4.45)
mXm mx17 17x17 17xm
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'(and);
T -1 -
<peqg> = <Bp> ([Hhp] [Hhh] [Ghh] - [Gppl )
1xm °  I1x1 1x17 17x17  17xm 1xm

where, m = number of element degrees.of freedom < 18.

The procedure described in this section and the
previous one has been used in a subroutine called 'STIFFS'
of the program HYBSLAB to éenerate the in-plane and flexural

stiffness matrices for the various shaped elements.

4.4 L-Shaped Singularity Elements

;fIn this sectioﬁ, the effects of stress singularities aﬁ
thej;eentrant corner of an L-shaped element are included in
the formulation of the flexural stiffness matrix. It is
assumed tha£ the plate material is isotropic. Two types of
elements ére'considered.A The distinction between the two
types is made on the basis'of.the boundary conditions along
the two sides which meet. at the feentrant corner. The first
element type has 'free edge' conditions along these‘eages'
while the second'type has 'fixéd' or clamped edges.

.. The various matrices which are required to obtain a
stiffngss matrix are shown in Equations 4.16 and 4.18 of
Section 4.1. The matrices [Hhh], [th]; [pr], [Ghh] and
'lGpp] have been dealt with in the previoué'section and can
‘be reused without any changes. The remaining matrices
[Hsé], [Hsh],‘[Hspli'and [Gss] are still réquited and this

section deals solely with these four matrices.
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Tﬁe formulation is based on a singularity deflection
function, Ws. The form of this function was established and
verified by Williams'’” in the early 1950's. It consists of
a trigonometric series and in terms of polar coordinates?t it

may be written as:

Ws = £ 1) (F) (Bo) (4.46)
vhere,
F = C,sin{X+1)a + C,cos(\+1)a + C,sin(\-1)a + C,cos(\-1)a

r = radius from the reentrant corner- to some
point in the element (see Fig. 4.1),
\ = an eigenvalue determined from a
characteristic equation,
(i=1,2,3,4), constants of 'Ws' to be
determined from the boundary conditions
along the reentrant edges,
« = an in-plane angle defining the position
"of 'r' and serving as the rotational polar
coordinate (see Fig. 4.1), _
a 'stress singularity factor' which indicates
the intensity of the singularity.

@]
"

Bo

A sketch of a typical L-shaped element and its
coordinate systems is shown in Figure 4.1. The derivation
which will be presented iﬁ this section is valid for any
orientation éf the element. - In Figure 4.1, point 1 is the
reentrant cornef and sides 'a' and 'f"which meet @t point 1
will be referred to as the reentrant sides.

With the aid of the deflection function, Ws, the

intended meaniné of the term 'singularity' will now be

explained. The type of singularity being considered here is

+ Polar coordinates are most often represented by 'r' and
'6', but since '8' is already being used for rotation of the
midsurface, the polar coordinates will be denoted by 'r' and

'a'.




often referred to as a singularity of'the "first type''*?.
-In this type of singularity the prime variable remains
finite-valued or 'non-singular' but its derivatives:cén
become unbounded or 'singular'. For the plate bending
‘problem being‘cqnsidered here, one can bé more specific and
state that neither the prime variable, Ws, nor its first
derivative éré gingular but that its second and third
derivatives may become unbounded. The second derivatives
are reguired to calculate momegzs while the third
dérivativés are needed to calculate.shears, hence the
terminology 'stress singularities'. All singplarities
referred to in this study are stress singularities. Also,
unless otherwise noted, all moments and sheérs-in this
section will be those calculated from Ws of Equation 4.46.
Referring to Figure 4.1, along each of the reentrant

sides éf and 'f' there exist two boundary conditions. From
these conditions a set of four simuliqneous eguations can be
obtained with Fhe unknowns C,, C,, C,, C, and \; For both
the ffee—free case and zhe fixed-fixed case, the boundary
conditions?are such tQat the set of equations is
homogengoﬁs;‘that is,v%he ;ight hand side is a null vector.
For these t&pes of equation sets, a non-trivial solution“can
onlj be obtained fbr/eertain characteristic values of
'eﬂéenvalues' of N\. The eigenvalues are obtained by setting

the determinant ' the coefficient matrix equal to zero and

then solving for

aQ
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‘a) L-Shaped Element with‘Free Edge Conditions:
The derivation of the stiffness matrix [GHG] for the
free edge element will begin by obtaining the )\ values.
For both sides, 'a' and 'f', the free edge conditions

are:

(1) the normal moment, Ma 0.

0.

(2) the Kirchhoff shear, ¥

In equation form, the zero moment condition can be written

as:
Mae = -D [ r‘-?) Ws,aa + r¢ " ') Ws,r + ~v Ws,rr])
T oD rov [ D1\ F + F ] | “

(and, for Ma = 0)

(\+1)(1+vX\) F + F = 0 o (4.47)

The Kirchhoff shear condition can be written as shown below,

where vil= W,rr + "W, r + W, e,
W = -D[ " (vW),a + (1=v)(r‘""'Ws,ra - r*-*'Ws,a),r]
= =D rr [ (D + XN(1=v)(\-1)) F + F ]
e . ‘
(and, for ¥ =0 ) ‘
[(A+1)7 + N(1-v){\-1)] F + F =0 (4.48)

where,
(from Eq. 4.46)

F = C,sin(\+1)a + C,cos(A\+1)a
+ C,sin(\-1)a + C,cos(A\-1)a
and, . ’
F= F,a 8 (A\+1) [C,cos{\+1)a - C,sin(\*+1)a]
+ (N\=-1) [C,cos(\=-1)a - C,sin(\-1)a]

o,
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» [-C,cos(N\+1)a + C,sin(\+1)a]
3 [-C,cos(\-1)a + C,sin(\-1)a]

o
(]

flexural rigidity of the plate

E t>/[12(1 = v?)]

By substituting the values of a for the two sides 'a' and
"f' into Equations 4.47 and 4.48, the set of four equations
.discussed earlier can be obtained. These equations are

shown below:

a,sin(\+1)af+a,cos(\+1)afa,sin(\-1)al+a,cos(\-1)al(cC,

o
a,cos{\+1)al|-a,sin(\+1)ala.cos(\-1)al-a,sin(\-1)al|)Cc.|_Jo
a,sin(\+1)f|+a,cos(A+1)f|a,sin(\-1)f|+a,cos(A\=-1)Ff[] C, [ ) o
a,cos(\+1)f|-a,sin(\+1)fla,cos(\-1)f|-a,sin(\—-1)Ff|\C, o)

where, o (4.49)
a, = (\+1) (1+v)) - (\+1)?
a, = (\+1) (1+vX\) - (N\-1)?
a, = (\+1) (1=v} (X)) (\-1) ,
a, = (\-DLON+1)2 + (1-v) (X)) (N-1) = (\=1)2]
and, ~ .
a = a value of side 'a'
f = a value of side 'f'

The charadteristic:equation from the above set of
equations has ;rigonometrid terms and there exist an
infinite number .of characteristic values which satisfy it.
However, the eigehvalues required for this study are those
between 0.0 and 2.0, The reasons for Qsing this range are
based on the behavior of the plate at the reentrant corner -
(r=0).

| From a physical point of Qiéw, negative eigenvalues are

not permissible because the transverse displacement and'the

’



114

slopes at the reentrant corner must remain finite. A zero
eigenvalue is of no interest because it results in the
trivial soiution, Ws=0.

The need for eigénvalues above 0.0, but less than 2.0
can be explained with the aid of Equations 4.47 and 4.48.
Values between 0.0 and 1.0 cause singularities in both the
moment and shear at the reentrant cornér. Eigenvalues
starﬁing at 1.0 but less than 2.0 cause sinqularities in the
shear oniy.

From the charact%ristic equation(4.49) thé'following
five real eigenvalues were calculated:

0.637865868034631
0.698211827331357
{\} = 1.27520788054242
1.39718494820201
1.91141012573973
There are no complex eigenvalues for this case.

To obtain the constants C; (i=1,2,3,4), only three of
the four equationé of 4.49 are independent and a solution
can only be obtained in terms of one of the Ci COnstahts.
The remaining eqﬁation can be used to check the accuracy of
the computations. In this study, the equations were
normalﬁzed with respect to C, and a large number of digits
for the )\ values were required to satisfy the 'checking'
equation. This was especially true for the second and third
eigenvélues. |

"With \ and the C; constants evaluated, the deflection

function, Ws, now contains only the three unknowns 'r', 'a',
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and 'B.'. In the process of evaluating the TTme functional;

values are assigned to the polar coordinates and therefore
the only unknown which remains is 'B,'.

Since Ws is available, it is advantageous to express
the strain energy in terms of line integrals rather than
area integrals. This can be done by using Gauss' theorem as

shown below:
~/”Mij Dijkl Mkl da
A

=/w,ij Eijkl W,kl da

ﬁw,i Eijkl W,kl),j daa -ﬁw Eijkl W,3kl1),i da
‘ +/(w Eijkl W,ijkl) aa

~/;Mji nj W,i) d4£ +/20i ni W) as —/q W aa

w
~%;Oi-ni, -M;, ni, -M;, ni> <W,.=6x) df - y/ﬂq W aa
W,|=8y

(4.50)
where, _

g = ql{x,y) = transverse loading on the plate.
There ;re a number of reasons for making the above
conversion and some of these are discussed below.

First, when using numerical integration to integrate
non-polynomial expressions it is usually computationally
more efficient to evaluate the line integrals than an area
integral. This is especially true when the integrand
involves a tfigonometric series and the value of the

integral can only be approximated.
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Second, since [Hss], [Hsh] and [Hsp] can now be
evaluated by either an area integral or a line integral,
this provides a convenient means of checking the
computations of a computer program. This was done in the
program which was used to obtain the stiffness matrices for
the singularity example problems of Chapter 6.

The third reason may be the most important of all. In
s§me circumstances, even though the area integral itself is
finite-valued, its integrand may at times be singular. For
such cases, the change from an area to a line integral may

eliminate this problem.

[Hhs], [Hps], and [Hss]:
The expression '(-Mji nj W,i) + (Qi ni W)' appears in
both Equations 4.50 and 4.39 and is the product of two
"vectors. One vector is '<Oi}ni, -Mi, ni, -M;, ni>' and it
~was shown in Equations 4.39 and 4.40 that it could be
rewritten as a matrix product '<8 >[NP ]'.
The other vector, as indicated in Equation 4.50,
consists of W and its first derivatives. If this vector is

rewritten in the form '[Bwl{B8s}' then [Hhs], [Hps], and

[Hss] can be written directly from Equation 4.50 as:

h s T
~/ﬂMij Dijkl Mkl dA = <Bh> [NPh] [Bw] df {Bs}
1x17 17x3 3xe ex
‘ ‘ (4.51a)
= <Bh> [Hhs] {Bs}

BT
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\

TP S : T -
,/’Mij Dijkl Mkl dA=<Bp> ¢[(NPp) [Bw] df {Bs} - /lq<Ws>dA {As]

1x1 1x3 3xe ex! Ixe ex
= <fp> [Hps] {Bs} (4.51b)
S [ A T o
/Mij Dijkl Mkl dA = <Bs> [NPs]) [Bw] df {Bs}
I1xe ex3 3xe ex|
= <fBs> [Hss] {Bs} ' T (4.51¢)

where,
e = number of eigenvalues being considered,

Wis = set of Ws displacement functions
but with the B, factors omitted.

The only matrices in the above equations which have not been
explained as yet are [NPs] and [Bw]. This will be done now.

The [NPs] matrix could be calculated from the product
of [N] and [Ps] in the manner described earlier for [NPh].
This time however, rather than working with a [Ps] matrix,
[NPs] 11 be obtained directly from Equation 4.50 by
expanding the vector < Oini; -M;.ni, -M;,ni>. Each term of

this vector can be written as:

Qi ni = (Mx,x + MyX,y) n, + (Mxy,x + My,y) n, (4.52a)

-Mi, ni= -Mxy n, - My n, ., (4.52b)
=M, ni= -Mx n, - Myx n, (4.52c)
where,

Mx,x = cosa Mx,r - r¢" ') sina Mx,a

Myx,y = sina Myx,r + ‘"'’ cosa Myx,a

Mxy,x = cosa Mxy,r - rf°"’ sina Mxy,a

My.,y = sina My, r + r' ') cosa My,a



. Mx o= ‘—D rf ‘X' Y6, B . .u'
‘Mx,r = -D r‘*.2> (\-1) G, B ‘ . I
Mx’a = -—D r()\") .G‘ B° .

where, . , .
G, = [(cosa*+vsina?)(\?+\) + (sina’+vcosa?)(\+1)] F

- 2(cosa sina) (1-v)(X) F

+ (sina*+vcosa?) F

G, = %Z(C6sa sina)(1-v)(\;;1) F -

+ [-2(cosd‘—sina’)(1-v;\.+ (cg;a’+vsina’)(\’+\) +
| (éina’+vcosa’)(\+1)] F

+ 2(cosa sina) (1=v) (1=X\) F

+ (sina?+vcose?) F

® 6 8 0 0 5 0606 00 0 0 0 0 000 F e s LS IE S e s
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My =-D ri¢*'" G, ﬁo
My,r = -D r(*-2) (\?1) G, po

My,a = =D rb‘nx"’

where,

"G, = [(sina*+vcosa®) ¢ +\) + (cosa’+vsina®)(\+1)] F

. X .
+ 2(cosa sina) (1-v)( Q
+ (cosa?+vsineg?) F
G, = 2(cos&wsina)(4—v)<\’—1)/'F
.“ (c05u’+vsina’)(\+1)]? F’
+-2(cosa-sina)(1zv)(\’1) é.

o o0

+ (cosa?+vsina?) F

-------- coo.ao_oo.o&o.-uooou.o
.

Mxy . = -b r‘*"5‘ﬂ1fV) G, B.
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D £ (1-v) (\-1) G, B.

My,r =
My,a = -D r(*1) (1-v) G, B,
where, : v
G, = (cosa sina)(\?-1) °F
» .
+ (N\)(cosa?*-sina?) F
- (cosa sina) %.
G, = (cosa*-sina?)(\*-1) F
+ (cosa sina)[-4X\ + (\?-1)] é
+ (cosa?~sina?)(\-1) ﬁ.
-~ (cose sina) B
The matrixv[NPs] can now be written as:
[NPs] {Bsl}=
: _ ~
— — (8.,
0'1 nl/ ﬁot o R=mme- // ——————— > i Bo:
» S ‘ ~ 1
-M;, ni/ B, repeat for each ¢ .
—7 /— .
-M;, ni/ Bo. eigenvalue .
. | Bue
(3xe) (ex1)
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(4.53)

The '/ Bo,' term simply indicates that [NPs] consists of the

unknown term 'B,' factored out. Th;refbrev[NPs]vcontains
only known quantities and can be’calculated from the
information given in Equations 4.52.

Equation set 4.52 also contains all the information
required tb calculate [Hshj, [Hsb], [Hss] from- area |

integrals. To evaluate these same matrices by using the

_expressions given in Equations 4.52a) to 4.52c) but with the
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line integral approach the [Bw] matrix is still required. -
The [Bw) matrix is calculated from Ws and its first

-, . . . '
derivatives according to:

[Bw] {Bs}= .
( N
Ws/ B, ‘ <====- J/m=m=——= > B
T 7 ‘ /— .
-Ws,./ Bo, repeat for each < .7
v _ Vomn S
~Ws,./ B, eigenvalue .
. . e
(3xe) (8x1)
(4.54)
where, ) . ‘ :
Ws = r{ 1 F B,
Ws,. = sina Ws,r + r‘-') cosa Ws,«

= r‘2\ [(\+1) sina F + cosa' é] Bo

Ws,, = cosa MWs,r - r'"'") sina Ws,«a

= r'2 [(\+1) cosa F =~ sina F] B,

[Gss]:
The only remaining matrix which has not been discussed
thus far is [Gss]. This matrix is calculated from the

following expression of Equétion 4,12,

. -

T
[Gss] = ~/‘[NPs] [L] 4%
’ £

Since [NPs] has just been discussed, and [L] was given
in Equation 4.27 of the previous section, [Gss] can be

calculated by the procedure described in the last section.

o AR o T Vi
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[GHG]: :
The stiffness matrix [GHG] can now be obtained from the
expressions of Equation\§.18 which are repeated below:

T -1
[GHG] = [Ghhss]

18x18 18x fxf fx18°
and, _ _
» T -1 N
<Peqg> = < ([Hhsp] [Hhhss] [Ghhss] - [Gppl ) l
18x 1 “1xd 1xf  fxf fx18 . 1x18 Qg
whefe, :
f = 17 + e, (e = the number of eigenvalues).

Before proceeding with the next element,. a problem

N
k)

which was encountered at the reentrant corner will be

discussed. In evaluating the singularity liné integrals for

[Gés],élong>elemegf sides 'a' and 'f', problems were

encountered with the terms 'r‘*-'’' and 'r‘}-2)' at the
reentrant corner (r=0). To overcome this problem the |
'xpression‘ '(4MnAW,n - Mnt W,t + Qn W) ag' from_Equation

4.39 was rewritten as:

v/ﬂ(-Mn W,n - Mnt W,t + Qn W) d£
¢ _

- f[-(Mn W,n) - (Mnt W),t + (Mnt,t W) + (@n W)] as
£

(and, when integrated from point 1 to point 2 )

. 2. '
-(Mnt W)l + ~/.[:-(Mn W,n) + (Mnt,t + Qn)(W)] as
1 ' '

Y

For the following reasons the integrand in the above

(4.55) .

e Nl e 3 o < SR 8 L A T
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equation is zero. The quantity '(Mn W,n)' is zero because
the normal moment, Mn, is zero along the free edges. The
remaining part of the integrand is zero because the guantity

'"(Mnt, t +'Cn)' is the Kirchhoff shear and it also is zero

‘along free edges.

Therefore, the 'Ti Ui' contributioﬁ of the two free
edges to the [Gss) matrix simply consists of the qLantity
'(Mht W)]' evaluated at ;ornefs 1,2, and 6 of thg element
shown in Figure 4.1. Since the contributions of sides 'a'

and 'f' at point 1 are equal but opposite, only poihts 2 and

6 have to be considered.

b) L-Shaped Element with Fixed Edge Conditions:

The stiffness matrix for an L-shaped element with

" clamped reentrant edges is described in this part. For this

case, the eigenvalues of interest consist of one real number
and a conjugate pair of complex numbers.
After the reai eigenvalue and related C; constants have

been determined, then the procedure outlined in part a) of

" this section can be used without any modifications.

In order to include the complex eigenvalues consider-

able revision is reqguired to most of the presentation given

thus far in this section. Because substantially more work

is still required and becéuse of the time factor involved,

these values were not included in this study. Assessing the.

importance of the complek'eigenvalues in the formulation of

D

v st e vl B 7
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the stiffness matrix is left as a subject for future

research.

The remainder of this section deals with the

calculation of the eigenvalues for the case where edges 'a'
and 'f' are assumed to be clamped. Along these two -edges
the boundary conditions are: |

(1) the transverse displacement, Ws = 0.

(2) the normal rotatioh, Ws,a = 0.

In equation form, the zero transverse displacement cdndition
can be written as:

‘Ws = -D r»" F B, = 0..
(and, for rtX* ')z O , Bo.# 0)

F = 0. v (4.5§)
(or)

C,sin(\+1)a + Czcosk\+1)a + C,sin(\=-1)a + C,cos(\-1)a =0

The zero normal slope condition can be written as:

.Ws,a_= -D ‘i1 é B. = 0..
(and, for r{\+1)# d , Bo.# 0)
F=0. S - (4.57)
(or) | - o
(\+1)  [C,cos(\+1)a = C.sin(\+1)a] I :
+ (\-1) [C,cos(A\-1)a - C.sin(\-17a} = 0.

By substituting the values of « for the two sides 'a’

and 'f' into Equations 4.56 and 4.57, the set of four



124

equations can be obtained. These equations are shown below:

sin(n\+1)a cos(h+1)al] sin(\-1)a cos(h\-1)al(c,

o
a,cos(\+1)al-a,sin(\+1)ala.,cos(\-1)aj-a,sin(A\-1)a|JC. {_} o
sin(\+1)f cos(\+1)f sin(\-1)f cos(\-1)f|]|C, o
a,cos(\+1)f|-a,sin(\+1)f|a,cos(\-1)f|-a,sin(A\-1)Ff|\C, o
where, ' (4.58)
a, = (N\+1) : '
a, = (\-1)
and, : , »
a, = a value of side 'a’ -~
a, = a value of side 'f'

As discussed earlier, the only eigenvalues of interest
for this study are those between 0.0 and 2.0. From the
characteristic equation of 4.58 the following eigenvalues

were calculated: ‘ ”\\

J
-

0.54448 |
N | S
1.62925 + 0.23125 i

For the real eigenvalue, a stiffness matrix was
calculated according to the procedure described in Part a)
of this section. This stiffness matrix was then used for an

. \
. example problem in Chapter 6.
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Figure 4.1 Typical L-Shaped Element and Coordinate Systems.
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/ : Chapter 5
/ .~ THE COMPUTER PROGRAM 'HYBSLAB'

5.1 Introductioh

The hybrid stress finite element method as described in
the previous chapter was used as the basi§ for a Fortran IV
computer program called HYBSLAB;. The projfam was written
for the elastic analysis of flat plate st;uctures with the
intent that_it could be used for. analysing the type' of floof
systems typically found in buildings.

From a technical poiht of view, for a program to serve
such a purpose it must not only be capable of providing
stiffness matrices for a variety of element shapes but it
hust also be capable of modelling beams which are eccentric
.'Eb the plate. As well, in certain situations il may be
desirable to modelrthé columns not only as point supports
but also as finite-sized mehbers. | -

From a practical point of view, ény program intended
for design office use must be cost-competitive. This means
that the time‘épent in.the‘préparation and checking of input
data and the interprétation of fhe output must be kept to a
minimum.: As well; the cost of 'running' the program must
not be‘unreasonablé.

In addition to the tipe gactor and the data qhecking.
demands, the user of a finite element program is al%o faced
“with the challenge of_choosing a gridwork which will provide

BN
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values suitable for the design phase. The choosing of
gridworks. is best learned fhrough repeated use of the finite
element method, but it is hoped that the test cases of
Chapter 3 and the eiample problems of the next chapter may
provide some guidelines., ‘

There are very few programs available which have the
features and capabilities discussed thus far, and none of
these are based on the hybrid stress method. The remainder
of'this chapter is devoted to explaining how’the program
HYBSLAB has been written to meet the technical and practical
reduirements discussed so far. The-presehtation consists of .
a genéral description of the program in the next section,
followed by two more sections which deal with the modélling

of beams and columns.

. 5.2 General~De;criptipn

| The program HYBSLAB is based on the hybrid stress
method and the stress functions and related matrices as
presented in the previous chapter. The calcu}ation of
stiffness matrices for the L-shaped singularity elements has
not been included directly in the brogram. However, these
matrices and the associated load vectors are available from
another proéram and can be accessed by HYBSLAB. |

The dérivation of flexural stiffness matrices for

quadrilaterél and polygonal shapes by théihybrid streSs

method is relatively easy when compared to the other
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methods. Thereforg, the focal point of technical interest
is probably the subroutine 'STIFFS' which calculates the
_in—planevand flexural stiffness.hatrices for the various
shaped elements. As mentiéned earlier, the element shapes
may vary from a triangle to a polygon with six nodes or
léss. Some possible element configurations are shown in
Figure 5.1,

In the subroutine 'STIFFS' the‘stréin energy of the
element is evaluated in a piecewise manner by explicit
integration of the streﬁs polynomials bver.trapezoidal
regions. The individual [Hhh], [Hhpl and [Hpp] matrices are
then summed to obtain thé corresponding matrices for the
element as a whole. The orientation of a typical trapézoiq
and the limits of ‘integration are shown in Figure 5.2.

In the p;esent version of HYBSLAB, the local
coordinates axes'of an element may be placed at any location
reﬁative-to the global axes but the tw& sets must remain
‘parallel. As discussed in Section 4.2, the lack of complete
order expressioné for the in-plane stress polynomials
suggests a potenfial problem with lack of invariance. To
assess the significance of the lack of complete quadratic
expressions, tests were conducted where rectangular grids
were rotated in the X-Y plane. The tests consisted of a
rectangular 2x2 grid with ﬁinimal éupport provided at two
corners and a point- load applied at a third corner. The
tests indicated that, even though the grids were rotated,

the displacementsvat'all nodes remained invariant. This
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appears to suggest that the contribution from the quadratic
terms is insignificant.

The potential of edge tractions as described in the
previous chapter requires the evaluation of line integrals
necessary for the calculation of the [Ghh] and [Gpp]
matrices. In the current version of the program these
integrals are evaluated by using a Gaussian numerical
integration procedure. This completes the discussion of the
subroutine 'STIFFS'. The program has a number of other
technical features which may be of interest.

| Provisions have been made in the program to accommodate
‘the singularity elements and other elements for which
HYBSLAB cannot generate a stiffness matrix and load vector.
For example, the stiffness matri} and load vector for the
singularity‘elements'are gene;ated'by the singularit&
program and are stored in a file which is later accessed by
HYBSLAB. Thfs file is separate from the file which contains
the data for the main problem and will be referred to as an
auxiliary file.‘ |

To model eccentric stiffeners, the user can useueither
beam elements or other plate elements which have midsurfaces
offset from the midsurface of the main plate. Details of
this procedure are given in the next section.

‘The effects offcolumns may be lumped ét a single node
or the. finite dimensions of the column cross section may be
represented. A more det&iled discussion of this topic’is

contained in the last section.

A

, .
i~
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The program has a number of special features that may
be required for certain problems. For example, the user may
specify non-zero values for any degree of freedom or
constrain two or more degrees of freedom to have the same
value. As well, additional stiffness may be added to the
diagonal term associated with any degree of freedom.

The.501ution for nodal displacements is obtained by
using an in-core banded Gaussian elimination routine. The
problem size that may be solved with the present version on
the AMDAHL 470/V8 is 1500 unknowns with a semi-band of BQ.
These values may be varied subject to the condition that
their product must be compatible with the in-core storage
limifs of the/computer facility being used.

The folléwing measures have been taken to assist the
user with the bractical aspects of time and cost, and error
detection.

The input data may be specified in one of three ways,
which will be reférred to as 'automatic', 'semi—autématiq:
and 'manual'. The automatic data generating subroutine,
called 'RECDAT', is specificallj»intended for rectangular
element gridworks and requireé very little input from the
uéer. The semi-automatic data generating subroutine, called
'LINDAT', operates from 2 two-dimensional integer matrices,
one of which contains the joint numbers of the structure |
thle the other contains the element numbers. The input
required for this subroutine basically consists of

specifying the rows of the matrices, but with provisions
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made to automatically generate subsequent rowg from any
given fow and numbers within a row. The third method js to

manually specify the input data, element by ejéement. rhis

is the most inefficient and time-consuming way tO Prépare o
the déta and should only be used when no othay option jg M};ﬁ‘
available. To provide the user with added flgXibility jn ;;K“
data preparation, all three methods may be us¢d at the same 'f - e

time in a given problem.

To reduce computational costs, elements ith idengjcal
stiffness matrices are placed in the same groyP so that only
one element stiffness matrix needs to be calcylated. o

Aftgnlthe input data has been prepared, ¢he user an fe
@

run the program without calculating any stiffpess matrjces
and create an auxiliary data file. This data file can thenp
be used to produce a drawing of the structure complete with

node and element ' numbers. This type of graphjcal disp)ay

provides a quick and easy means of detecting grfrors in the

‘ R
¥

connectivity data of the structure. *&?
The program odtput-fo: eacﬁgiohd case copSists of che{i‘

nodal displacements and rotations, element nodal and centte
point stress values, and internal nodal forces: AS Well, at-
each node, stresses averaged from the values pSsociateq with

A

the adjoining elements are printed along with the principal

flexural stresses. ' ,t
The solution output may alse be obtaineqd in a graphical‘
form. In the current version of the program, two auXiliagY

files are required to store output data for cofitour Plots.

Y
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7 The. first of these files contains the nodal values of the
transverse displacemeat, while the ?econd-file contains the
avéraged nodal values of Mx, My, Mxy, Mp; and Mp,, where»Mp.
and Mp. are the principal moments. For example, in the
des1gn of relnforced concrete slabs if the r21nforc1ng 'is to
be placed in the“X and Y coordrnate d1rect1ons,.then contour

T .

plots pf the orthogonal moments Mx.and My would be most

. e

uséful. If these plots are done to the same'scale as the
.work1ng drawings, then the de51gner can do the steel layout
directly on the contour draw1ngs.~ Examples of such moment

plots are provided in Chapter 7.

5.3 Modelling of Eccentrhcfstiffeners
When a plate is stiffened by a beam which has its

centroidal axis in a plane not coinciding with the plate's

midsurface, then in-plane or membrane strains are introduced
ihto the structure. Th€ applled loads are carried jointly °*

by flexural actlon and membrane actlon in proport1on to the
I
“relative rigidities of the plate and the beam and the amountg,

ki
A

of eccentr1c1ty In order to analyse these types of

degrees of freedom,-<’w , Bx , 8y>, but also, the 1nfplanev
displacements, < U ,QV>. Before descrlblng the method used

in HYBSLAB? a brief dlscuss1on w111 be glven of some of the

°

- more common methods used in the past e ‘ ; .

3

a
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structures it is npecesary. to con51der not only the geometrlc‘;g
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A
Priqr to the finite element.era, three general methods

were uséd to analyse p%gtes with.integrAi stiffeners. The
first method was to replacé the plate and beam structure
with an equivalént grillage. The‘secona method was to apply
orthotropic plate thedfy to the problem and replace the beém
and plate system by an equivalent oéthotropic plate. The
‘third approach igﬁores the‘interface shear between the beam
and the Pléte but then édjggts the flexura}\iFiffg;sé of the

. ' ; A
‘beam to compensate for the composite action. All th?ée

approaches have the disadvantage of requiring considkrablgf”“”

Wi

engineering, judgement in assigning equivalent pfopertigg;
Aslwell,othe final results are for an eduivalent member from
which it may be impossible to separate the beam forces.

" In the finite-élement method, the use of beam elements
with plate éiéments appears to have started in the late
1960's with the work of Zienkiewicz and co-workers?®’,*z,%’,
‘In one of these publiéaﬁidns, Daviés, Pa;ekh, and
Zienfiewiéz" cémpared finite giement analysi$~égainst test
results from perspex models for plates with concentric and
eccentric edges béams.' They modelled the eccentric beams
'botﬁ by verti;al plate elements and by an equivalent
concentric beam which had its moment of inertia calculated
from the comppgite cross section., They found that the more

accurate approach was to use the eguivalent concentric beam.
d

The advantage of the concentric beam approach is  that

in-plane degrees of freedom are not required. The - g:?@Jﬁﬂﬁ

ive flange widthﬂmd&} be

L -

disadvantage is that an effect

: - ° . }( .’v 43

e

O
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assumed in order to lccéte the neutral axis of the coﬁposite
"section. )
: An alternative to the equivalent concentric beam
abproach is to.caicpléte the stiffness matrix of a
rectangular‘beam about its own centroid'and then tfansfér it
to the midsurface of the plate. The transfer is done by .
pre- énd pbst-mqltiplying the beam matrix by a linear
transformation matrix. In essence, the transformation
matrix relates the nodal actions by attaching the beam node
to the plate node by a rigid bar. This is equiValent to
specifying that plane sections rema}n plane. Even though
this method introduces'additional unknowns in the form of
in-plane degrees of'freedom, it has bééome quite pBpular
because it does away with estimating the location of the

nelitral axis in theicomposite section. This approach has

been used in the SAP4 computer program and will also be used

in HYBSLAB. -In this study it willebes ed to as the
’Coupling"approach. However, bef Fogr :eding with the

details of the transformation ma -is necessary to

K
\ ;

draw attention to an error introduéeo by this method.

H The nature of the_gfror was identified in 1977 by Gupta
and Ma*’. The error arises from a conflict in aescribing
the axial displacement field of the beam element. T1f plane
sections are aséﬁmed to remain plane, then é rétation at a
\\\node in the platé causes the axial diéplacements in thé beam

‘to_vary according to the plate functions. Thé.plate

functions are usually quadratic or higher order and the
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. ‘\‘
conflict afises because a linear funcnion'ﬁas used to derive
the beam's axial stiffness. The magnitude of the error is
problem dependent and is discussed in more detail in the K
next chapter. It is important to nota ‘that published |
articles tend to-exaggerate the error by‘not dsing‘the
overall height of the beam. This is illustratea in the next\
chapter and measures whicﬁ‘can be taken to reduce the error
are discussed.

An obvious solution to the problem is to eli;?nate the
error entirely by adding intermediate axial displacement
degrees of freedom to the beam element. Such a solution was
published in 1980 by Miller'®°, but it has the arawback that
the additional deg;ees of freedom cannot:be eliminated until
after the beam-matrixihas been combined with the plate
matrices. ’

The stlfig£$s matr1x for the beam element and the
linear transformatlon matrlx which were used in HYBSLAB will
now be presented. The beam axis 1is 1n1t1ally assumed to be
parallel to the global X axis. To obtain theistiffness
‘matrix of the beam in terms of the global coordinates, it is
necessary to pre- and post-multiply the centroidal matrix by
a transformation matrix. Since the beam's centroidal 10x10
stiffness matrix consists of fouf very simiiar submatrices,
it is neceésary to consider - only one of the submatrices.

The 5x5 submatrlces have terms which are 1dent1cal except

for the signs and each ‘supmatrix is of the form:
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(5.1)

—
I= .
: [ S}
L}
o |o [ e |

|

. Kle (e Ao
-

XNle . o.-
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The stiffness submatrix in the global X-Y plane is
T BN
[TellK][Te] where the terms of of [Te] are given below in

Equation 5.2. In this matrix, the offsets between the béam

and the plate node are e, and e,, where e, is measured in

.the +Y direction and e, along the +2 direction,

1.0 —e, . . e
[ . 1.0 B . .
[rel = [ . . 1.0 . . (5.2)
- . . . . +e, 1.0 . ' :
. +e, . . 1.0
wheng, : : '
e, = Y(plate) - Y(beam)
/ e, = Z(plate) - Z(beam)

'If the beam is to be rotated in plan (X-Y plane) then
it is also necessary to pré— and post-multiply by a
rotational transformation matrix [Trl. The final form of

the. beam submatrix in the global system will be denoted as’

-[Kb] and can be written as:

T T
[Kb] = [TrllTel{K]l[Tel[Tr) (5.3)
where,
1.0 . . L
. +c +s .
[Tr] = . -s +c .
. . +c =S
. +s +C
“and,
c = cos(y),
s = sin(y),

the angle between the global X axis and the beam's
longitudinal axis (positive counterclockwise).



In explicit form [Kb] can be written as:
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length of the beam.

The matrix shown above in Equation 5.4 was used in the

progrém HYBSLAB}

[Kb]=
+k -ce,k, + ‘sk,| +se,k, + ckq . .
-ce,k, c?eilk,-cse,k,|-cselk,-csk,*| +cse,k, +s’e,k,
+sk, +c?k,-cse,k,|s?’e,k,-c?*e,k,| -cse,k, +c?e, ks,
+s*k,+s?elk,| +csk,+cseik,
_ +c?elk, -cselik,
+se,k, -csetk,-csk;*+|s*etk,+cse k.| +c’e,k, +cse, k.,
+ck, s*e,k¢-c’e,k,| +s*k,+cse,k,| +s’e,k; -cse Kk
+csk,+cseik,| +c?k,+c?elk, [
~cseik; +s?ejks
. tcse k, +c?e,k, +c?k, +csk,
_ --cse ks +s?e,k; +s5%k, -csks
. +s?e.k, +cse,k +csk, +s2Kk
+c?eyks -cse, ks . ~-csks +C2k,
(5.4)
where, :
Signs for Submatrix:
(1,1) (2,2) (1,2)
k,= 12 E Ix/ L* + + -
k,= G J/ L + +! -
" k;= 4 E Ix/ L + +
k.= EA/L + + -
ke= 12 E 1y/ L? + + -
ki= 6 E Ix/ L?. + - +
k,= 6 E Ix/ L? + - -
and.,. ‘ ’
E = modulus of elasticity,
G = shear modulus, ‘
Ix = moment of inertia resisting W displacements,
1y = moment of inertia resisting V displacements,
'J = St. Venant's uniform torque constant,
L =
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The process aescribed thus far haé dealt with the
répreséntation of eccentric line beams. Provisions have
also been made to allow the user to model the fiﬁite width
of a beam. When this option is used the beam will bé
referred to as a wide beam.

To modél wide beams, thick piate elements are ﬁsed and
the stiffness matrix which ié calculated at the midsurfgce |
of the thick plate is transferred to the global midsurface
by pre- and post-multiplying it by a transformation matrix.
The transformation matrix consists of diagonal submatrices

‘obtained from [Te] of Equation 5.2 but with e,=0.

5.4 Modelling of Cblumns'

Typiqglly,'floo; systems of buildings are supported'
either by columns or by load'bearing walls or a combination
of the twg. The column support dimensions are usually of
the same order of magnitude_as the plate or slab thickness
and are'considerébly less than the spanddimengions. For
these cases it is customary to assume that the plate is
restiﬁg on point supports. In making this assumption, a
concern immediately arises because, according to plate
theory, even thoﬁgh the deflections at a point support
remain finite the bending moments and shearsvbecome 

infinite. Because of this stress singularity, it is not

clear if a numerical method such as the finite element ¢

method can provide meaningful stress results in the vicinity
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of the column. This problem was investigated in connec;ioﬁ
with slab bridges by Cheung, King and Zienkiewjcz*? in-j968.
By comparing moment contours from the finite el ent method
against those from an exact soiusion, they concluaed that
despite the sinéﬁlarity even the’coérsest subdivision (a 4x4
triangular grid / quarter plate) illustrated the trend
acéurately and gave values suitable for engineering design.
In the program HYBSLAB provisions have been made to

allow the designer to use either pointhized\or finitefsized
columns. To use either type df.column, the program requires
as input the column's axial and flexural stiffnesses at the
location where the cblumn and the midsurface of the plate .
meet. Since these values are very muéh dependent on the far
end cquitions, the material properties of fhe column, and
the joint connection detail, the assigning of these values
is left solely to the discretion of the engineef. The
remaining input consists of the X and Y coordinates for thg
colgmn_centroid and the‘joint numbers to which the
centroidal stiffnesses are to be distributed.

| For finitefsized columns, the joints to which the

distribution is made are those which lie on the perimeter of

s

the column. The distribution is done in such a manner that

two conditions are satisfied. The first is that the

. centroid of the column and the joints on the column's

perimeter define an X-Y region which can undergo rigid body
motions only. This>region will be referred to as a 'column

head' and the following constraint equations are assumed to



140

apply in this region:

Wi =W, + (yi-ye) 6%, + (x;-x,) By,
Ox; = OBx, | (5.5)
By; = By,

‘where, the subscript ',' denotes the column centroid,

and ';' denotes a joint in the rigid body region.

The second condition is that the substitute system of .
distributed stiffnesses at the perimeter joints contributes
the same strain.enérgy to the structure as the original
-system, . An alternate view of this method is that rigid bars
have been used to attach each perimeter joint to the }
centrbid of the column, , J

For point-sizéd columns thé same method is used but
only one fiﬂife element joint is usually involved. The
advantage of using'this method for point supports is that
_the_éentroid of the column and a joint of the finite element
model do nbt have to coincide. This permits the user to use
more rectangles when doing the grid layout. However, the
Fransfer distances between the two poirts shduld be kept
small so that‘the épqstraints in Equation 5.5 still apply.

To implement the’constraint equations for finite-sized
columns two separate approaches were tried. The first
apprﬂach involvgd the use of substructuring-around the

column head. The second approach was to use artificially

thick elements to represent the column head.
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The substructuring approach was considered because it
is more economical to impose the constraint equations on an
individual column head at a substructure level than on a
global level. The procedure consists of forming the
sti fnessvmatrik for the entire~substructuré and then
/imp sing the constraint eguations'to eliminate the dependeht

fdegrees of freedom. All the degrees of freedom on the
fpefimeter of the cljolumn can be eliminated, while the degrees
Qf.freedom at the [centroid of the column are retained. The

resulting stiffneds matrix and load vector can now be

partitioned and the interior degrees of freedom eliminated

-according to the standard method of substructures's®*.

If no intefi i joints are pfeéent in the substructure,
then further savihgs in computational effort can be realised
because a number of operations involving the partitioning,
inverting and multiplying of matrices are not required. The
geometry in the vicinity of the column ﬁead is such that it
.can bé represented by a substructure which has only boundary
joints,'joints on the perimeter of the column, and a joint
at the centroid of the column. After the-substrudture
matrix has been formed and modified by the constraint
equations, the only degrees of freedom which remain‘are
those of the boundary joints and the joinﬁ at the centfoid
of the column. This matrix can now be enterea directly into
the global stiffness Matrix. After the complete set of

equations for the structure have been solved, all the -

displacements within the substructure can be calculated
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directly from the constraint equations; it is not necessary
to recalculate the stiffness matrix of the substructure.

The substructuring approach satisfies the constraint
equations exactly but.it has the disadvantages of increasing
fhe complexity of the program and widening the semi-band
width of the.problem. Therefore, an alternate approach was
tried wherein the constraint equations were satisfied only
approximately.

The alfernate approach consists of using artificially
thick elements to provide the rigid body behavior described
by Equatioﬁ 5.5, The accuracy of such an approach can only
be assessed by considering specific problems. One such
problem which was consedered involved an 8.0 inch slab
spanning 20.0 feet and'supported.by 24.0 inch square columns
11.5 feet in length. In representing the column heads,
800.0 inch.thick elements were used and a comparison of
nodal rotations and transverse displacements between this'
method and the substructuring method indicated agreement of
the first four digits. It appears that the thick element
approach can be made as accurate as desired for practical
usage. Therefore, in the HYBSLAB program, the more involved
substructuring approach waS'abandonedvin favor of the thick
elem;nt approach. No additional comparisons were done
because when using the program, the designer‘can alwayé
determine the extent of column head 'mushrooming' by looking

at the displacement output for the column head.
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Figure 5.1 Some Possible Element Configurations.

m,x + b,

Figure 5.2 Regions for Evaluating [Hhhl, [Hhp] and [Hpp].



Chapter's

VERIFICATION OF ELEMENT MATRICES

6.1 fntroduction

In this chapter the program HYBSLAB is usedrto solve a
wide range of test problems. The problems involve a variety
og:element shapes and were chosen to check the program and
to verify the matrices given in Chapter 4. The next shapter
will deal with the analysis of actual floor.systems; but
before analysing such structures it is necessary to verify
that the elements, when assembled, are able to represent the
constant strain states. As well, for modelling floors with
eccentric stiffeners, it is necessary to know the magnitude
of the error caused by coupling such stiffeners to the
plate.

Thé importance of representing the constant strain (or
constant stress states) was discussed in Chapter 2. For the
individual elements, no tests are required because each of
the polynomial stress functions in Chapter 4. contains a

. «

fconstadtgﬁ taﬁm Thewefore eadh of the constant stress

“g L E. B ‘a»

.istatgs has been“inciuded «ah assqmblage, the elements
Lo e i
ﬁabchgtest Thennature and the

»gef; deScrxbed in Chapter 2. If the

cqﬁgaln that as the grldworkvls ref1ned the results will

\cdﬁgerge ‘to the correct values
i

144 ot
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In this chapter the testing 6f the hybrid elements is
done through the use of simple test problems, The nature of
some of the constant strain tests is such that they can be

P
labelled as pdtch tests. Section 6.2 contains the constant

strain tests for the in-plane stiffness matrices while g
Section 6.3 deals with the constant curvature states for the ;}
4 N

flexural matrices. As well, some simple test structures are , *
included to compare the convergénce characteristics of the
various element shapes.

In Section 6.4 two stress singularity problems are
cbnsidersd. The first problem uses the free edge
singularity element, while the second problem uses the fixed
edge element developed in Section 4.4.
| Some numericgl results are presented in Section 6.5 for
the error introduced when coupling eccentric beam elements

to a plate. The error was identified earlier in Section 5.3

and some example problems are done in Section 6.5 to

.“ ‘ &

illustrate how it can be reduced. I . %gz.
- co

6.2 Plane Stress Problems
‘This section contains the test problems used to verify
that the in-plane stiffness matrices are able to represent .
the constant strain states for €x, €y, and €xy. The
gridworks and element shapés which were used are shown in f

Figures 6.1 and 6.2.

s
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In addition to these tests, similar elements shapes are
J‘*-(‘\T’ ‘ ) . ’ - . . .
used to analyse a cantilever beam supporting a point load at
: g ) . . .
its free end. This test case was included to COmp?re the

accuracy and convergence characteristics for the different

element shapes. The results for tﬁé'cantilever beam are

‘presented after dealing with the constant strain cases.

For the test cases shown in Figure 6.1, the patch test
for constant strains was applied in the following manner.

The in-plane displacements, U-and'V, were prescribed at the

perimeter nodes of each groﬁp of elements according to the

equations shown below.

v U-=a, + a,x + a,y
| (6.1)
N v .

i 37

a ., + asX + a.y. ni%

From this set of equétions, the following expressions for

stresses and strains .can be obtained.

€Ex = a,
\)ey ’= as ‘
€xy = (a, + a,)/2 '
“and, - ‘ : | (6.2)
dx = ) E (az + Va‘) .
‘ (1-—v7?) ’ N

Oy = E (va, + ay)

Zl-vzj ) . )
JXY = . E " (a, + as)

2(1+v)

To use the program HYBSLAB it is necessary to assign
numerical values to the a; coefficients. Since the choige
of these coefficients is arbitrary, it was decided to assign

to each coefficient the value of its subscript, that is,
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ah=1, a,=2, ...; ‘-6. With these values and E=27.300 ksi,
v=0,3, ‘and  t=0.1 1nches, the following results were |
obtained.
For all interior points of the'element groups in Figure
6.1, the U and. % displacements were output to 7 digits of
accutaey and agreed exactly with the values calculated from
Equation 6.1. The stresses at all nodal points, both on the
aperimeter and on the interior, were Ox=+114.0 ksi,
Oy=+198.0 ksi, and Oxy=+84.00 ksi. These numbers are
1dent1cal to the ‘values calculated f?ﬁﬁ Equatlon 6.2,
Based on the above results, it can be concluded that
‘the hybrid in-plane matrlces are capable of representing the »
constant Straln states and that'r1gld’body motion does-not
cause straining of the element. However, it was decided‘to
do some addltlonal testing on these element groups by
ana1y51ng them as supported struqtures subjected to nodal
‘loads. The pr1mary reasons for d01ng this was to prov1de
additional checklng of the HYBSLAB program and to determine
if the unsymmettical_gridworks could still provide acdufate
:eSults with 6n1y a minimum pumber of constrained joints.
The nature of the load cases wasisuch that they would cause
constant strain conditions in the structure, Values of
E=27300 ksi, v=0.3, and t=0l1 inches were used"for eachv
case. Three separate cases were consideted;
‘ For the'first case, the structures of“FigurefG 1 were
'supported at X=0 and loaded at X= 20 1nches w1th loads of

Px=100 kips. The resultlng X dlsplacements for the loaded
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nodes were U=Q.07326007 ;nches, and tpe stréssés at all
“ nodal points‘were Ox=+100.0 ksi, y=0.0 ksi, and Oxy=0.0
ksi. |
For-the second case, the same structures were supported
at Ysb, and loads of Py +100 kips were 'applied at Y=10
inches. The resultlng Y displacements of the loaded nodes
were V=0. 01831502 inches, and the stresses at all nodal
p01nts were C&=O 0 ksi, Oy=+50.00 ksi, and Oxy=0.0 ksiy
For the third case, thet,of pure shear, the groups of-
elements shown in Figure 6.2 were used. In each of these[
struetures, theaﬂbde at X=0 ¥=0 was prevenfed from moving;

o m

whlle the ndde at X=20 1nches was permltted to move in the X

dlrectlon only. The loads were calcuigted from a pure shear'
of 10.0 ksi, aeting-along the sides of the structuré. The
calculated’dispiacements from HYBSLAB at X=20 inches were
U=0. 009523810 1nches, and the stresses at all nodal poxnts .
were Ox=+10.00 ksi, .0y=-10.00 ksi, and @b%y 0.0 k51.,/Tﬁ |
~all three of the above test cases, the values from the
HYBSLAB program were. 1dent1cal to the expected values. -
The results from these three cases and the patch tests

;'f, g

done earller indicate that the 1n—plane‘st1ffness matrices,
- as gene:ated by HYBSLAB, are cspablevof providing an exact
anelysis ef constant strain structures. The impoftasce of
‘tRis capability is that, in the limit, exact results can be
obtained for any structure. r’ v |

To get an 1nd1cat10n of the convergence characteristics

.

for the different shaped elements, a cantilever beam was
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analysed. A,sketch of the beam and‘ﬁhe~gridﬁorks‘are'shown
in Figure 6.3. The (x,y,z) dimensions 6f,§he be%; are
(20.0,2.0,1.2), yhere the length is 20.0 inches and the
‘depth is 2.0 inches. Only a single rectangular element was
used to model the depth, thle gridworks based on 1, 4, and
10 eéﬁal recténgular}SubdiQisions were uSeé along the length
of the beam. The loading condition consistgﬁ.of an end load
of .Py=?100 kiﬁs. | .‘ ‘

The results of the analees'are shown as ‘normalized
va;ues in Table 6.1j As well, the results froﬁ a bilinear
conforming displacement élemeht‘have also been inciuded.

Frém these results it can be concluded that, with the
exception of the triangular elements, éll of the element
shapes perform reasonably well. The gxéessive stiffness.
displayed by the triéngulér elements can be attributéd tow
the relatively large number of B pafametérs in comparison t6
the low order of the dispiapement functions and the;low
displacement rank of the triangufar stiffness matrix. This

was discussed earlier in Section 4.1.

-

6.3 PureiBéhafpg'Pféblemé

InV}hyg;sgctioﬁ ﬁest'césé; arevpregented‘to &étermine
if thethbrfé fléxural mafrites are capable of representing
the;conétant gUrQature'stétes‘ W,xx», W,yy ,.and W,xy .~
‘The gfidwofks and element shapes used for the teét’cases are

the same as those used in the previous section and are shown

.

L
X
v
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in‘Figures_6.1 and 6.2.

‘fn addition to the above, two more test cases were
added to investigate the convergence chérgctefistics of tﬂg
different element shapes. The fifst of these cases is the

"cantilever beam used in the previous section. The second is
a_clamped square p1ate subjected to uniform and point
loading. The results of these two test cases will be dealt
with after the constant curvature states are discussed.

In addition to examining the various grouﬁs of elements
in Fig 6.1 for the constant curvature states; it was also
decided to test for_line;rkcurvatures. fo achieve this, the
following equation was ﬁsed for W .

W=a, + a,x + a,y + a,x? + a;xy + a,y?

(6.3)
+ . a.,x* + a,xXx'y + a,xy? + a,,.y’

ey
L

From Egquation 6.3 the following expressions can be obtained.

Ox = a, + a¢x + 2a,y *+ a,x? + 2a,xy * 3a,.y?

By = a, + 2a,x + a,y + 3a,x* + 2a,xy * a,y’
W,xx = 2a, + 6a,x + 2a.yv : 2(6.4)
QW,yy = 24‘ + 2a;x + 6a,0y
W,xy =§wés + 28,x + 2a,y"

. LS ;
The moments can be calculated from the above expressions as:

Mx = .-D [(2a.,+ 6a.x+ 2a,y) + v(2a,+ 2a,x*+ 6a,.y)]
My = —Dr[ﬁ(éa‘+ 6a.,x+ 2a,y) + (2a.+ 2a,x+ 6a,.y)] (6.5)
Mxy = -D (1-v)(as+ 2a,x+ 2a,y) o e
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As discussed earlier, the choice of4the a; coefficients is
quite afbftrary,vand again the value of each coéfficiéﬁt was
assigned equal to itsvsubscript.
The constant curvature states were considered first,

and for these cases it is necessary to reset thg values of
a,, s, a,rand a,, to zero. Before running the program

.&""4«

HYBSLAB, the values of W, Bx, ﬁad By were calculated from ﬁ}

jp

in Figure 6.1.'AValues‘of E= 27300 ks1, vio 3, and t= 0.1

the above equat1ons and prescrlbed for the perimeter nodes
inches were used again.

The resﬁlts.of the analyéis Qefe the same for each
group of elements. At all interiorcpoints, the W, 6x, 8y
values were output to 7 digits of accuracy and agreed -
exactly with the values calculated frqm Equations 6.3 and .
6.4. The moments at all nodal points, both on the perimeter

and on the interior, were Mx=-29.00 kip.in/in, My=-36.00

)

kip.in/in, and Mxy=-8.750 kip.in/in. These values agree
with those calculated from Eguation 6.5. l

In addition to the above test cases, another test was
done for pure shear by using the éiément groups shoﬁn
earlier in Figure.6.2. ‘Three corners of each group were
simply suppérﬁed, while the‘fourth corner was subjected to a
‘load of 1.0 kips in the'Z direction. For each structure,
w1th E=27300 k51, v= 0.3, and t=0.1, thé resulti;g
displacement at the point of loadlng was +57. 14286 1nches

At all nodes, both interior and eXterior, the bendihg

i

moments wegs s Mx=-0.5000 kip.in/in, My=+0.5000 kip.in/in,
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and Mxy=0.0 kiﬁ??&/in. These values agree well with the
published results of W¥0.7142858'PL’/D and principal moment
values of 0.5000 P. The output for the displacement at the
centreé of the plate was +14.28571 inches. This is the same
value as calculated from MW=k,Xy , which is the equation of
‘the deflected surface, with k, a constant and the (X,y)
coordinate system at 45 degrees to the X axis.

From the results obtained thus far, it can be stated
that the hybrid flexural matrices generated by HYBSLAB are
capable of reﬁresenting the conﬁtant curvature states in a
structure.

Testing of the element gfoups for linear curvatures can
be done in the same manner as described‘for‘the constant
curvature conditions. The only difference is that all ten
a; coefficients of EQuation 6.3 are used to’describe W . An
analysis of the element groups shown in Figure 6.1 revealed
that the values of W, B8x and By could not be reproduced
exactly at all interior points. It was ghereforé concluded.
that linear variétiohs of curvatures cannot be represented
within a single element.

The next test case conéidered is the cantilever beam of
Figure 6.3. This time, to cause bendi&g about the Y axis,
the free end of the cantilever was loaded‘wi;h a pbintgload
of Pz=10.0 kips. The results for the same gridworks as
those used in the previous section are shown in Table 6.2.

From the results presented in thi¥s table, it is

interesting to note that all elgmentrshapes,'even the
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triangular elements, provide rather accurate values for the
end displacement. The much better results for the coarser
grids can be attributed to the fact that cubic functions are
used fo describe W, whereas only linear functions were used
for U and V of the in-plane matrix.

Another}test»éase wvhich was done on the cantilever beam
involved the use of the 1x1 rectangular grid‘and a Poisson's:
ratio of zero. Under these conditions, a rectangular plaﬁe
element should degenerate to the classical beam element and
give exactly thg]same rgsulﬁs. Although seldom discussed in
the literature, this is a performance test which any
‘rectangular plate element should pass.

To do the test, a single rectangle was used to model a
’cantilevef beam éarrying a point load at its free end.

Under these conditions, the curvature variation in thevx
direction is linear. The output from HYBSLAB.for'the free
end displacement and rotation agreéd with the expected
values to 7 digits of accuracy. The stresses at both ends
of the beam were‘also calculated correctly.

The last test case to be considered is a clamped plate
subjected to uniform and point loading. The varioﬁs"
gridworks which were used are shown in Figure 6.4. Values
of E=27300 ksi, v=0.3, t=0.1 inches, and @,=-1.0 ksl were
used in the analysis. | '

| ‘Displacement and moment results from the progfam
HYBSLAB are shown in Tables 6.3 and 6.4. The results

indicate that, for all element shapes, both the
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displacements and moments are converglng to the accepted
values. The quadr11ateral shapes with reentrant corners do
not‘appear to cause any convergence problems. It is aga1n
‘noted that the tables only 1nd1cate accuracy versus the
number of rectangular subdivisions. The total number of
unknowns does not enter into the.comparison. "gt also
appears that, of all the element shapes, thé rectangular
shape is the most accurate. General conclusions regarding
convergence rates cannot be made because many alternate

choices exist for defining the nonrectangular element grids.

- 6.4 Singularity Problems
The singularity eléments derived in Chapter 4 are used

in this section for two example problems with reentrant
corners. The=first,problem is that of a simply supported
square piate with a concentric square opéning as shown in
Figure 6.5. The second problem uses the same plate but with
all edges clamped..

» For both problems the analysis was first done by using
a number of gridworks with square elements only. A typicél
8x8 grid is ghown“in Figure 6.5. This was then followed by

an analysis which involved one L-shaped singularity element

c;sn";“h

at the reentrant corner with the remaining elements being
rectangles. Two such gridworks were considered and a
typical 7x7 L-grid is shown in Figure 6.5. The plate with

tge-square openingwill be discussed first,ufollowed by the
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plate with fixed edges. The following values were used for

both cases: E=27300 ksi, v=0.3, and t=0.75 inches.

Two load conditions were considered for the plate with
the square opening. The first load case was a uniform load,
while the second load case consisted of four equal Pz poiht
loads applied at the reentrant corners.

The results from the program HYBSLAB are presented in
Tables 6.5 and 6.6. The locations of points 'a', 'b', 'c',
and '@’ are shown‘in Figure 6.5. As discussed earlier in
Section 4.4, there are five eigenvalues of interest and
therefore the analysis was done with e=0,1,2,3,4, and 5,
where 'e' is the ﬁumber of eigenvalues. From the'fesults it
appears that for this problem the second and third
eigenvaiuesfare the moét impértant and that.the remaining
three have litfle, if any, influence on the solution. No
eiplanation is offered as to why the first eigenvalue does
not play a more promiﬁent role.

From the comparison'6f displacements in these tables,
it can be concluded that, for both gridworks and for both
load cases, the results with the eigenvalues are at least as
accurate as those without them. As a matter of fact, with
the exception of the first eigenvalue, the results with the
eigehvaiﬁes are significantly better.

A comparison of moments at point 'a' indicates that
when the eigenvalues are included there is only a modest
increase in accuracy. This'can be attributed to the fact

that point 'a' is far removed from the singularit oint.
, g yp

~
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A graphical comparison of moments along side 'a-b' is
presented in Figure 6.6 for the uniform load and the 7x7L,
8x8, and 24x24 grids. The use of the sinqularity element
reduces significéntly the number of elements required. The
7x7L solution with a singularity. element is seen to be
‘combarable to the 24x24 solution obtained using square
elements only.

The second test ®ase to be considered isrthe same plate
but with all edges fixed. For this case, only the real
eigenvalue discussed in Section 4.4 b) waé used. The same
grids were used as for the previous problem, but only
uniform loading was considered. Results for deflection and
moments from the HYBSLAB program are shown in Table 6.7. Aé
well, bending moments nofmal to the fixea edge are shown in
graphical form in Figure 6.7.

The deflection comparisons in Table 6.7 indicate that
af point 'c'vthe results basically remain unchanged when the
singularity functions\arg inclﬁded. This is not surprising,
as point 'c' is far remoueé from the reentrant corner. The
deflection results at point 'd' are improved significanfly
for the 3x3 L-grid, but there is only a modest improvement
for the 7x7 L-grid. A similar gtatement also applies to the
bendiné momentshat point 'd';‘these values are not shown in
Table 6.7.

The deflection and moment values for a fixed end beam
along 'a-c' are also given in Table 6.7. These values are |

included simply to provide an estimate of the deflection at
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point 'c' and the moment at point 'a'.

In Figure 6.7 the bending moment normal to the clamped
edge 'a-b' is shown for the 24x24 square grid. The values
for all the other sguare grids fall below this curve and
were omitted for clarity. From this graph, it can be seen
that the rapid increase in moment does not occur until -one
gpproaches the immediate vicinity of the reentrant corner.
~ For comparison, the data points for the 7x7 L-grid aré also
shown in the same figure. Although the 7x7 L-grid is less
accurate along most of the edge, it appears torbe as
accurate as the 24x24 grid in the immediate vicinity of the
reentrant corner. More detailed results cannot -be presented
because stresses were not calculated within‘the singularity
element.

The results discussed thus far indicate that the grids
" with the singularity elements appear to provide more
accurate results than those without. Additional work on
this subject is still required for the clamped edge element
to assess the importance of including the complex eigenvalue
discussed in Section 4.4. As Qell, extensive testing of

both elements is still required.

¢ 5 Errors in Modelling Eccentric Stiffeners
An error which occurs when eccentric beams are coupled
. _ ‘

to a plate was identified in 1977 by Gupta and discussed

earlier in Section 5.3. Before undertaking the analysis of
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'do th1s’, m1t Qas& déc, edf tQ ana}yse a cantxlevered T-beam
supporm1ngma po%nt load ag,;ts free end.

The beam a;% 1ts eross sect1on are shown :in Figure 6.8.
Also, as inditate&%&n”éﬁﬁs flgure, t@o ch01ces exist for

B

representing: the flar

\;e and the stem of the cross section.
The fltst chotce, referred to as the 'layered' approach, is
to regard the plate as having the same width and thickness
as the overall flange and the beam being only the portion
which protrudes above or pbelow the slab. The sétond cnoice,
:efefred to as the 'overall thickness' or 'overall height'
approach, is to consider the plate as being only the
overhanging portions of the T-beam flange. J
To illustrate the magnitude of the error, Gupta nsed%“

the layered approach and replaced the plate element with,ai |

beam element. He then derived the following'expression,w

A.Azez - . . b o
error= - : L s (6.6)
4(A,+A,)(1,+1,) - .

Where, [} . ' M
A;= area of the cross section for beam 'i’ (1-1 2)
I;= moment of inertia for beam 'i', (¥#1,2),
e = the distance between the beam Centroids:

Using the above equation for the T—been shOWﬁlin Figure
6.8, the error for the layered cross sect1on can be.
calculated as 0.600. This means that if the entlre length

of the T-beam is represented by a2 single beam element, then
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the calculated displacement will be 1.600‘times thelcqrrect
value, However, what éupta fails to mention is that the
same expression is valid for the overall appfoach and the
error calculated for the overall cross section shown in
Figure 6.8 is only 0.136 . |

With this information, it was decided to try both the
layered and the overall approaches for the T-beam with the
dimensions shown in Figure 6.8. As well, it was decided not -
only to use beam elements as Gupta had done, but also to°
model each créss section by~using plate elements only; the
corresponding models are shown in Figure 6.9. The ﬁse of
the of;sét plate elements to model beam stems was discussed
earlier in Section 5.3,

The choice to use both a layered and an overall
épproach'and either beam or plate elements leads to four.

different representations of the cross section. For each of

PR
these. cross section models, it was decidedﬁio use

1,2,4,8;16, and 32 equal subdivisions in the X direction
along the lendth of the T—beami‘ For the pléte element
models, the dimensiong of the plates in the Y direction were
kept equal and constant#at 12.0 inches for all the

‘ ' N
gridworks. The results from the HYBSLAB program are aTﬁen
in Table‘6.8. The following observations can be made for
this T-beam. | i | |

. For the beam models with only one subdivision'a}ong the

length, the results are identical to those calculated from

Gupta's expression diven in Equation 6.6. For thé coarser
pta’ P ‘

e

&

P
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'grldworks, the overall height approach is mgch more accurate

than the layered approaeh; Both the oveﬁgyl and the layered

:w S
Fi

methods converge to the correct value..
The plate models both appear to be’ converg1ng to a 1

normalized value between 0,997 and 0.998. This slight

' dicrepancy‘can be attributed to Poisson's ratio and the.

modelling of the T-beam support conditions. The boundary
conditions at the fixed end are suspected of causzng some
restra1nt‘of the Y displacement. To - conf1rm this, the 32-
subdivision gridwork was rerun with a Poisson's ratio of

Zero andfthe normalized values were found to be T.QOS for

the layered approach'and'1.004 for the .overall approach.

B Again for the plate models as for the beam modelss$ with'

the coarser grids, the overall apgroach is much'more

- accurate than the,layered approach. Also for the&coarser'

RSP AN

‘grids, the plate modelsiare'more accurate than their «;

counterpart beam models.

A totally unexpected convergence trend is 1nd1cated hy,,

Vwl
gt

the. values in the' last column for the plate model HGre S

% .
convergence begins at a value above 1.000 for the first two

grids and‘thenAdrops sharply and converges from below.

;Although in the hybrld method there is no reason to expect

monotonic convergence, thlS type of behaviour appears to be
totally out gf character for a member in single curvatdre.
Fo; the 4- ~subdivision grldwork extensive backcheck1ng of

the data. and independent calculat1ons of the stlffness
‘ . Al
matrices failed to reveal any errgrs and therefore it is "

:("»

| 4
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assumed that the results being p:ézénted are correct.

Although the‘reﬁults presented in Table 6<8 are for a
partlcular cross section, the following generalestate;;nts
can be made. Gupta's expre551on as given in® Equatlon 6. 6
can be used to estimate thetdxsplacementverror;for both the
beam and the off;et plate model,‘”The ovefall*ﬁﬁickness

approach is expected to be more-accuratg‘thdﬁﬁxhe'layeréd oy
) . . - . N \/(

approach for both the beam and.the plate models.
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Cantilever Beam with Point Load, Py, at the Free End.

Y-Deflection at Free End, normalized w.r.t. PL®/ 3EI
GRID | 1x1 T a1 10x 1
Rectangles 0.02568 0.32787 - 0.88181
 Triangles 0.01286 0.1007¢ | 0.23118
Quadrilaterals| . 0.02440 0.3089¢ |  0.83454
Polygons 0.21594 ~0.86521 | 0.94888 ' -
Disp. Rectangle 10.02547 - 0.28776 - 0.67323

Table 6.1  Cantilever Beam In-Plane-DiSplacements.

Cantilever Beam with Point Load, Pz, at the Free End.

'Z-Dsflection at Free End, normalized w.r.t: PL?/ 3Ei = | |
GRID IR PE I ax1 ook ///
' °Rectahgles :  '7 0.93167 0;97861, : 0.98794L
Triangles - 0.91102 0.96235, k 0.98179
Quadrilaterals|  0.93012 0.97694 | = 0.98623
Polygons o 0.95503 0.98357 0.98930

Table 6.2 Cantilever Beam Flexural Displacementé,
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Deflections for Uniform Lpéding:
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Deflection at centre, nofmalized w.r.t. 0.001265319 qL“/D

//2///,~”i Triangular

ol

@i1p 2x2 4x4 - gx8 " 16x16

Rectangular 1.055 0.979 0.996 .0.999
0.564 0.928 0.979 10.995
Quadrilateral 1.009 0.961 - 0.989 0.998
Polygonal 0.964 0.981 1 0.997 0.999
Transitjons | 1.110 | 0.9 0.998 1.000
N

Moments for ‘Uniform Loading: - o
Moment at céngke, normalized w.r.t. 0.02291 gL*®
" GrID . 2x2 axd 8x8 16x 16
Rectangular 1.481 ‘0.982 1.boz\ 1,000
Triangular 0.218 0.898 0.948 0.982
olisdrilateral| 1.540 0.834 0.950 0.986
Polygonal 0.940 0.970 0.990 . 0.997
Transiﬁions 1.339 1,013 1.007 1.002

[

Table 6.3 Clamped Plate: Deflections and Moments for
~ Various Shaped Elements

(Uniform Load).
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‘Deflections for Central Point Load:

Deflection at centre, normalized w.r.t. 0.005612017'PL’/D
'GRID 2x2 ax4 | 8xB 16x16
Rectangular 0.952 - 0.953 0.989 0.998
Triangular 0.377 0.857 0.957 | 0.988
Quadrilateral| 0.914 | 0.933 0.980 0.998
Polygonal 0.955 © 04979 | 0.995 0.9%9"
Transitions 1.362 1.078 1.020 1,005
e : .
Moments for Central Point Load: ) e
Moment at midside, normalized w.r.t. 0.1257 P
GRIé?a: T 22 4x4. axaL 16x16
Rectangular 1;152-9‘ -1.022 1.003; 4{1.000
Triangular 0.456 ;- 0.779  0¢ J?: 0.924
%ﬁ?uadr&;aterahﬂ 1;j61%%§g 9.811 0;895 0.955
Polygonal 0.780 0.877 0.930 0.965
Transitions 4.053 | - 1.057 1.021 ©1.006
»

. 7‘? . . .
Table 6.4 Clamped P&ate: Deflections and Moments for
Various Shaped Elements (Point Load).

&3

R
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e

Uniform Load Deflections and Moments:

Deflectién/ (qL*/100D) | Moment/(qL?)
GRID e . -
N Point 'a' Point 'Db' Point 'a'
2x2 | - | 0.30716 0.22169 | . 0.0204
4x4 | - |  0.31539 0.22293 0.0239
8x8 | - 0.31811 0.22749. 0.0240.
16x16 - 0.31915 0.22930 0.0240
S 24x24 | - 0.31943 0.22979 0.0240
et : :
Yoo 33| 0 | 0.32726 @) 0.24251 0.0232
sl 3x3 L 1| 0.32726 0.24251 0.0232
siﬁt U 3x3 L 2 0.31877 \ . 0.22717 0.0236
3xk3<L | 3 0.31897% | " 0.22866 4P, 0234
33 L | 4 0.31897 0.22865 0.0234
3x3L | 5 0.31897 0.22866 0.0234
7x7 L 0 0.32320 ~0.23658 0.0236
7x7 L | 1 | 0.32320 0.23658 0.0236
7x7 L | 2 0.31965 0.23011 0.0238
w7 L | 3 | o0.31050F | 0.23018 0.0238
7x7 L | 4 ©0.31957 0.23017 0.0238
7x7L | 5 |. 0.31957 ©0.23017 0.0238

Table 6.5 Deflections and Moments for the Singularity Test
Case with the Free Edge Opening (Uniform Load).



Point_Load Deflections and Moments:

: Deflection/ (PL?/10D) Moment/ P
GRID e °’ '
‘ Point ‘'a Point 'b\' Point 'a'
.2x2 - Q.30218 0.21944 0.068
4x4 - 0.31620 0.23660 0.146 .
8x8 - 0.32107 ¥ 22073 0.145
16x16 | - *0.32310 $'0.24826 0.145
24x24 | - 9.32367 | 0.24927 0.145
33 L | 0 | - 0.34229 0.28702 0108
©3x3 L | 1 0.34229 "% 0428702 0.108
"3x3 L | 2 0.32386 0.25371 0.117
3x3 L | 3 0.32288 0.24732 0.125
3x3L | 4 0.32287 0.24732 0.125
3x3 L 5 10.32287 0.24732 0.125
@m L| o 0.33217 0.26521 0.138
7x7 L 1 0.33217 0.26521 0.138
7x7 L | 2 0.32441 0.25104 0.143
7x7°L | 3 0;3241‘2& ~0.25017 0.142
_‘ﬁ% L | 4 0.32410°" 0.142
7x7 L | 5 0.32411 10.25016 0.142
| . A ' §
Table 6.6 Deflections and Moments for the Singularity Test

Case with the'Ft‘*@Edgg\Opgning (Point Loads).
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Uniform Load Deflections and Moments: .
Deflection/ (gL*/100D) Moment/100gL?
GRID ‘
Point ‘e Point 'd’ Point 'a'
4x4 0.10134 0.11299 0.464
Bx8 0.10114 0.11835 0.505
16X16 0.10113 ©0.12015 0.515
24x24 0.10112 0.12068 0.517 B
3x3 L. 0.10140 0.14086 0.474 .
3x3 L 0.10150 0.11929 0.491, 7
’ ’:A}w{ 'Mx}‘ B
CaxT L | 0.10102. 0.12696 0.507 '
7x7 L | 0.10117 0.12077 0.509
3 ‘ - .{ ‘il
Fixed : "ﬁ
Beam 0.10173 - 0.521 .

[

Table 6.7 Deflections and Moments for the Sihgularity Test ' .

Case with the Clamped Edge Opening (Unifprm

Load).

B
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CantiléQéf T-Beam with Point Load, Pz; at the Free End;

7-Deflection at Free End, normalized w.r.t. PL®/3EI
"BEAM MODELS| PLATE MODETLS
Grid : .
along LAYERED OVERALL LAYERED OVERALL
X-axis| APPROACH TH APPROACH THICKNESS
1 1.600 1.136 1.486 Nk’1.064
2 1.150 1.034 ol.106 1.001
4 1.038 1.009 1.019 0.993
8 | & 1.009 1.002 1..002 0.995
16 1.002 1.004 - 0.999 0.996
32 1.001 12500 0.998 0.997
Table 6.8 Error Comparison for Modelling of .

Eccentric Stiffeners.
. ,,,‘ih N
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Figure 6.3 Cantilever Beam Test Case and Element Grids.
AL e

e



172

*Sp1ao juswalg pue ase) 3Isal 2a3efd paduel)d ¥°9 mu,:mE

. | . y

&

\\

V.

i TV

N
‘4‘

LA

/4

do
¥

/4



8x8
Rectangular
Grid

7X7 L-Grid

Figure 6.5

-

R 173

»
/ 707 ’f |
/ L/4
/ L2
/// // ey
3
12.000"
b
c d
T 8 @ 1.50"
a& bl = 12.000"
—& ‘ - )
e 16800" ——
y g * '
3@ 1.50"
= 4.500" |
2.%5//’ *
’ . ¥ .
3@1.75"
A 4 =5.250" -
e |
A - : 0

Singularity Test Plate and Element Grids.



\ 300 LB ‘I - Ll I L T - 1l . 1- T T
290 | , | S
) O 8x8  Rectangular Grid
280)}" 9

o 24 >{24 Rectangular Grid

\'2 70 | A 7X7  Singularity Element ‘
Otherwise Rectangular Grid

260 | B
2501 i
240 . N
. 230} vy
S 20p
N~ ~ - '
£ 7//// L/4
& 220p a| ,V :
g T P e
20.0 — I‘E - <+ A ) 3>
42>< . , B X
- 1901 £——>L—> ~

: L/4 L/4 .

18.0° : i

1700 i

160} i

15.0 1

14.0 E = 27300 ksi

| == o t =0.75in

130 | q=10ksi |
| o " v =03 |

120} L = 24in A4
‘ :1’ L 1 L “l ‘ L _
00 g 14 15 24 5 1.0

4x /L

Figure 6.6 Free Edge Opening; Moments along Edge a-b.
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entation of Cross Sections.
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Chapter 7.

APPLICATIONS TO FULL-SCALE FLOOR SYSTEMS

7.1 lntroduéti n | .

In this chapter the program HYBSLAB is used for the
analysis of actual floor systems. Two reinforced concrete
floors were chosen. The firsf is'presented-in Section 7.2
and is a flat /plate without»stiffeners. The second case is
dealt with in/ Section 7.3 and is a plate with eccentric

&

stiffeners. Whereas in the first case the columns are

oint supports, in the second case finite-sized

modelled as

A Y
LS

columps are jused. ,

For the first case, a typical flodr_of a high—riée
buildihg is apalysed. Often in dealing with this type of

' structure,/ circumstances allow the designer to use one-
dimensional beam elements and plane frame or Biane grid
computer 'programs to do the analysis. For example, the CSA -
and ACI building codes®®,? for the design of reinforced
concrete struétufes perhit deéigners to analyse gwo-wéy
slabs by an equivalent frame method. This method is
satisfactory and practipal for most floor systems which have
'tolumns laid out onh a rectangdlér grid; However, as floor
plans are selected to meet functional requirgments, it is
often necessary to move or even remove columns from a |

rectangular layout. The resulting column layout may become

so irregular that it is virtually impossible to model the

| | e
' |
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floor system by an equivalent frame method; Similarly, the
presence of large floor openings or load bearing walls can
further complicate the frame ahalysis. It is for these
situafions that the finite element method is particularly
suited and the use of eqﬁivalent frame methods is highly
quéstionabig.

The second floor system analysed is an experimentaiv
test slab with eccentric beams. For this floor both the
finite size of the columns and thé finite width of the beams
is conside:ed; This case is included not dnly to illustrate
the use of the program but also to provide analytical data
which can ge correléted with experimental test data. The
experimental data was obtained from a 3/4 scalelﬁest
conducted in 1962 by the Portland Cement Association®’®.

Such correlation studies are essential to verify that that
an elastic finite element model can represent accurately the
behavior of a real structure under service lbads. The
results of the dafa cérrelation are the subject of a

" continuing study and will not be discussed in this chapter.

\
Vo

7.2 Typicai Floor of an Apartment Building )

To illustrate the use of the program HYBSLAB énd to
demonstrate fhe feasibility of using this program for the
anaiygis of real floor systems, the floor plan shown in
Figure 7.1 was chosen. It is a typical floor of a recently

constructed 17 story condominium apartment building. This
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plan is characterized by an irregular layout of columns,
large openings, cantilevered corners and load bearing walls.
All of these features make it particularly‘difficult to

choosaw set of equivalent frames for analysis purposes. It

ipée the type of problem which is ideally suited for
#h“%#h}ﬁt igment analysis. The floor plan shown in Figure,
*7i¥} as ;éerall plan dlmen51ons of 109.0 feet by 81.7 feet
and a slab thickness of 7.0 inches. The strength of the
concrete was assumed to be 3500 psi‘and a single load case
of 0.225 ksf was appliéd to the structure.

The {;ﬁite element gridwork is shown in Figure 7.2. A
total of 504 joints and 430 elements were used. For this
gridwork’, the amount of data and the number of man hours
réQuired to produce it aré comparable to the aata and
preparation time required by an equivalent frame anélys£§.

Several guidelines were followed in selecting the
gridwork. Réctangles were used wherevef possible with an
effort made to maximize the number of elements having the
same dimensions. On the basis of the results from the
square test plates in Chapter 3, an attempt Qas made to use
at least four plate elements per panel side. This grid was
felt'to be adequate because, for the uniformly loaded square
plate, the following errors in maximum positive moment. were
obtained: 0.80% for the simply supported plate, 1.79% fo:»
the clamped plate, O.54%vfor the corner supported plate with
free edges, and 7.50% for the clamped corners plate with

zero normal slope along the edges.
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In-plane displacements weré not considered because the
structure is a flat plate without any eccentric stiffeners.
The chosen gridwork resulted in a problem with 1378 unknowns
and a semi-band of 75. The analysis required 40.6 seconds
of execution timé on the AMDAHL 470/V7 computing system. ‘At
current(1981) commerical computing rates this run would cost
approximately $55. This cost can be considered as
insignificant compared to the cost associated with the
manpower demands onia{dgsugn project of this type.

To check the re 2& from the an* ‘ku@ comparison
was made between the HYBSLAB solution and ;gtapprox1mate
'equ1valent frame method. An exten51ye comparison of the
methods is. not possible for this problem due to the
difficulties in selecting suitable equivalent frames in most
regions”bf the floor. Ode-fraqe which can be chosen with
~some confidence is in the X direction along the row of
columns located approximately midway between the edge of the
building and‘the core. The frame is supported by the wall
aﬁ nodes 5, 15 and 26, and the columns at nodes 122, 182,
262, 351, 441, and 496.

‘Negative moments at the columns and positive moments at
or near midspans were compared and the results are shown in
Table 7.1. 1In this table, the locatién of the moment is
indicated by joint numbers along the section and the
suffixed letters 'L' and ‘ﬁ' denote the left and right s{de'
of the section. Tﬁe width of the strip or section is also

indicated and is the same for the equivalent frame as for
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the finite element model.

The numbers in Table 7.1 indicate that from joints 26
to 397 the equivalent frame values raﬂggﬁ from 0.93 to 1.35
times the finite element values. From joints 441 to 496
this factor increased to 2.04. The larger aiscrepancy in
this region can be attributed to the fact that the
equivalent frame model which was used is not capable of
modelling the free edges caused by the termination of the
slab. The;two free edges as shown in Figure 7.2 are
connected by joints 436 to 441 and ﬁoints 496 to 504. The
ratios of column axial loads are also shown in Table 7.1 and
cémpare quite favorably, except for the corner column at
node 496. Again_the discrepancy for the corner column can
be attributed to the difference in moment restraint of the
two models at the free edge.

The ratios cited above are clearly dependent on the
choice of the finite element gridwork and the aséumed lines
of zero shear which define the width of the equivalent
frame. However, comparisons and cross-checking of this,type
are necessary for structures where no other solutions exist.

On the assumption thétkthe‘reinforcing steel is to be
placed in the X and Y directions, contour plots of Mx and My
were produced and are presented in Figures 7.3 and 7.4. It
is felt that plots of this type are particularly useful to a
designer. QualitatiVely, they provide a means of observing
the overall behavior of the structure and detectiné gross

errors in the analysis. As well, the contour plots provide
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a means of identifying potential aread of cracking, since
unexpected tension zones can be readily detected.
Quantitatively, ghey contain sufficien; information so ‘that,
when drawn to fhe same scale as the working drawings, the
steel layout can be done directly on the contour plots. Tﬁe
zero moment contours or lines of con£raflexure are useful in
avoiding unintentional termination of reinforcing in a

. tension zone.

* The contour plots shown in Figures 7.3 and 7.4 were
produced from the finite element solution by using the
SURFACEZ? plotter package. Some minor problems have been
experienced with this process. The solution data supplied
to the plotting routine is for element node pointé. In some
regions, the combination of node spacing and the changes in
the data between nodes may be such that the piotting routine
has difficulty in proéucing the true contours. 'In these
regions, contours have been found to touch or cross over.

As well,.the plotting routine has difficulty in plotting the
contours‘along!supporting walls and in representing the
normal moments along free and simply sdpported edges. The
latter problem is due in part to the fact that the finite
element solution produces zero normal moments along free
edges only in the limit as the gridwork is refined.

Aithough these free edge moments are sufficiently\small for
design purposes, they do tend to distort the contour plots.
The situation can be rectified prior to plotting by editing

the auxiliary data file which contains the moment values.
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The more serious problems with SURFACE2 are the method
in which openings inside the plot areas are handled and the
cost of running the program. It is felt that a simple
plotting program can be developed which draws the contour
lines for one element at a gime. This would overcome the
problems associated with irreqular geometry and openings in
the floor plan. As well, it would be more economical and
would provide more meaningful blots because the datg at the
nodal points would be used directly. This would eliminate
the costly and approximate operation in SURFACE2 of
transferring the nodal data to rectangular grid points. The
two main disadvantages of this simple approach are that the
contour lines would appear as a series of straight line
segments and also it may be difficult to label the contours.
The development of such a plotting program was not

undertaken in this study, but it is felt that it would be a

worthwhile project.

7.3 Experimental Test Floor

The second floor chosen to test the HYBSLAB program is
the experimental test floor with eccentric beams. One of _
the main reasons for using this floor is to illustrate the
use of the computer program for plates supported by beams
and finite-sized columns. The floor plan ié shown in Figure
7.5 and has overall dimensions of 46.0 feet x 46.0 feet with

a slab thickness of 5.25 inches. Two different sizes of
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edge beams are present in the structure., Along the edge at "'
X=0 and the edge at Y=45 feet, the edge beams are 12 inches
wide and have an overall depth of 8.25 inches. Along the
other two edges, the beams are 6.0 inches wide and have an
overall depth of 15.75 inches. These members will be called
the "narrow' beams, while the i2.0 inch wide members will be
referred to as the 'wide' beams. The columns are indicated
on the plan and are identified by numbers { to 16 inclusive,
The structure is symmetrical about a diagonal joining column
4 to column 13, The modulus of elasticity of the floé} was
assumed to be 3670 ksi and a Poisson's ratio of 0.15 was
used. The columniﬂ&iffnesses were calculated from a column
length of 42.375 inches and a 'fixed end' condition was
assumed at the far ends of the columns. A single loaavcase
of 0.100 ksf was applied to the structure.

The finite element model for the floor system is shown
in Figure 7.6. A total of 295 joints and 282 elements were
used. The elements consist of 256 rectangles, 24 beams and
2 rectangular transition elements.

The edge stiffeners were modelled both as eccentric
beam elemeﬁts and as offset plate elements. The overall
approach as described earlier was used to represent thf
cross section. The wide edge beams were modelled as line
beams along the edge at X=0 and as offset plate elements
along the edge at Y=45;feet. The narrow edge beams were
modelled as line beams along the edge at Y=0 and as offset

.

plate elements along the edge at X=45 feet. These two

*w;
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different mbédels were used in the same structure with the
intent that the results from the twos approaches could be
compared And would serve as a cros;-check on each other,
The comparisons are possible because the structure is
symmetrical about its diagonal. With the two different
models, the values at points of symmetry will not remain
1dentical, but it is expected that the differences will not
be significant for design purposes. 1If tﬁis is true, then
the designer is free to use the two models interchangeably.

The columﬁ cross sections were modelled by rectanqgular
shaped elements with thicknesses equal to 100 times the slab
thickness. This approach, which was discussed at the end of
Chapter 5, 1is used to make a column head very stiff so that
it undergoes a minimal amount of deformation and basically
behaves as rigid body.

In-plane displacements were permitted in the vicinity
of the edge beams but were suppressed on the interior of the
structure. The nodes at which the in-plane displacements
were assumed to be zero are contained in the square block of
nodes defined by joints 55, 65, 229, and 239.

The chosen gridwork resulted in a problem with 1195
unknowns and a semi-band of' 97. The analysi's required 35.3
seconds of execution time on the AMDAHL 470/V8 computing
system. At current(1981) commerical computing rates this
run would cost approximately $45,

To check the resuits from the program HYBSLABJ a number

of statics checks were done on the structure. These checks

.
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were done at midspan of each bay in both directions and

confirmed that the conditions of statics were satisfied.

_Additional checks were done by calculating the axial load in

‘each column based on an assumed tributary area. These

results were found to be quite close fo the values obtained
from HYBSLAB and are not presented.

‘The effect of the"two different beam models on tné

‘columns was studied by comparing the forces at the column

centroids. ° The comparison of these values 'is indicated in

Table 7.2. 1In this table, the bracketed number denotes the
columnrwhich has symmetrical values. The percent difﬁerence 
forkthebaxialoloads is less than 3.5%, buf the diffefences

in the more significant column moments‘reach.yalues'as high

as 18%. Somé,of the discrepancy in the column moments 1is

~expected to be due to the difference in elements used to

-

model the column cross sections. Comparisons ofztransverse

displacements were also done for each edge beam and the
midspan values were found to be quite 51m11ar.

A study of the rotations of each column head indicated
that 'all nodes on the perlmeter had undergone the same
amount of rotation to within 4 and Sﬂgigits of accuracy.-
This indicates that the column heads are bosically acting as
rigid members. - | L

To illustrate another plotting facility of thé'program,
the’ 1sollnes for the transverse dlsplacement W, were
plotted as shown in Figure 7.7. Since the displacement

profiles of this floor can be visualized rather easily, this
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type of plot servee'as a means of detecting gross errors in .
the analysis. As well, the plot can be folded about the

;

diagonal of symmetry and deflections at points of symﬁetg&
can be compared. S | ' | ’
The intent of rdnning the program for this floor system
was to indicate some addltlo@al capab111t1es of HYBSIAB and
the versatlllty of the finite element method to handle such
.problems. The amount of checklng done thus far has been
aimed at verifying that the results from HYBSLAB satlsfy the
conditions of statlcs and that the output da;a looks
reasonable. The checking is by no means edﬁplete*and work
is continuing on additional checking and/EOmparing’the
finite‘element results to the»experimenéal test data.  The

outcome of thlS correlation study w1ll be made avallable

under separate cover.
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Model and an Equivalent Frame Model.

Typical Floor of High Rise Building:
Nodes Strip Finite Equivalent Ratio
s Wwidth _Element Frame (Frame/FEM)
(Negative | (feet) (ft.kips) (ft.kips)
Moments)
24-->30 17.0 -162.1 -152.3 0.94
120-->125L] 17.0 -101.9 -138.0 1.35
120-->125R| 17.0 -62.5 -58.3 0.93
180-->186L| 17.0 -39.4 -44.,6 1.13
180-->186R| 12.5 -47.5 " -51, 1 1.08
260-->264L| 12.5 -56.2 -59.1- 1.05
260-->264R{ 12.5 -53.9 ~68.8 1.28
349-->353L{ 12.5 -60.5 -70.5 1.17
349-->353R| 42.9 ~64.9 «=79.0 1.22
439~-->444L| 12.9 ~41.5 -71.6 1.73
439-~->444R| ~7.35 -28.3 -40.0 1.41 “~” 
496-->498R 7.35 -13.1 -26.7 _2.94 45
(Positive (feet) (ft.kips) (ft.kips)
Moments)
 82-->87 17.0 +67.9 +68.5 1.01
220-~>224 12.5 +30.7 +28.5 0.93
302-->306 12.5 +29.2 +35.1 1.20
395-->399 12.9 +36.2 +39.7 1.10
476-->479 7.35 +14.6 "+17.6 1.21
| (Axial Load (Kips) (Kips) -
in Column)
122 - -66.6 -64.5 0.97
182 - =41,2 =43.0 1.04 .
262 - -55.0 -46.4 0.84
351 - -45.9 - -50.7 1.10
441 - -37.9 . -39.3 1.04
496 - - 8.4 =121 1.44
Table 7.1 Compafison of Forces . for the Finite Element
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Column Axial Load X-axis Moment| Y-axis Moment
1 (16) - 5.248 ~10.488 - B8.144

2 (12)|  -11.907 -20.746 +2.738

3 (8) -11.857 -20.111 - 2.6601

4 - 5.005 - 8.715 + 9.626

5 (15) -11.677 + 1.861. -22.129

6 (11) -24.118 o+ 2,736 + 2,713

7 -23.731 o+ 2,612 - 1.499

8 (3) -12.270 + 2.911 +23.005

9 (14)| " -11.602 - 1.684 - -21.145

10 -23.968 - 2.405 + 2,780

11 (6) -23.595 -~ 2.314 - 1.596

12 (2) —12.211 - 2.841 +23.334

13 - 5,567 +11.176 -10.898

14 (9)| . -11.800 +22.621 + 1.833

15 (5) -11.676 +21.917- - 1.403

16 (1)) < - 5.370 + 9,234 +12.562

Table 7.2 Experimental qubr,,Comparison of Columh Forces.
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Chapter 8

SUMMARY AND CONCLUSIONS‘

8.1 Summary

At the outset it was stated that this investigation was
undertaken with two objectives in mind. The first of these
was to develop a general purpose csﬁputer program for
practical use. To this end the program HYBSLAB was written.
The second objective was to present and use a formulation
which could take into account ‘the effecté of stress
singularities at reentrant corners of plates in flexure.

The prograﬁ is based on the hybrid stress method-and
uses elements with only geometric degrees of freedom as
nodal parameters. The choice to use the hybrid stress
formulation was made after an extensive literature search
and testing of a number of rectangular elements.

The theory of the hybrid stress method is reviewed and
a formulation is proposed to include the effects of stress
singularities at reentrant corners. This is followed by a
presentation and discussion of the explicit forms of the
various cohponent matrices required to calculate stiffness
matrices for multi-sided elements. With these matrices as a
basis, the program HYBSLAB was developed. A general
description of the program HYBSLAB is given and the methods

used to model eccentric stiffeners and finite-sized columns

are discussed.

198



199

e s et = e

To test the program and its variety of element shapes,
a number of test cases are used. The patch test is used to
verify that aSSemblagés of elements with arbitrary config-
urations are capable of representing the constant strain
states for plane stress and constant curvature states for
flexure. Additional test cases with various grids are
presented to demonstrate that the various element shapes do
converge to the correct values. This is followed by the use
of the singularity elements on plates with reentrant
corners. In the vicinity of the reentrant corner, the
singularity elements appear to be capable of proviaing !
significantly better results than analyses which do not
consider the singularity. : !

The error caused by coupling eccentric stiffeners to a
plate is considered. A T-beam is analysed and the cross
section is ;épresented by a 'layered' and an 'overall'
model. As well, both line beams and offset plate elements
are Qsed to model the T-beam member. For all cases tested,
the overall approach was found to be more accurate than the
layered model. )

In closing, it is demonstrated that the program HYBSLAB
can be used for the analysis of actual floor systems. The
first case considered is a typical floor bf a high-rise
building. This floor is modelled in a manner similar to
that expected to be used by a design engineer. The

structure is represented as a flat plate supported by

point-sized columns and the effects of stress singularities
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are not included. The second case is a slab which was
tested by the Portland Cement Association in 1962. The
finite element model for this floor takes into account the
finite dimensions of the columﬁ cross section and the finite
width of the beam stem. At present, another study i1s under

way which is correlating the finite element values with the

experimental results.

8.2 Conclusions

The work done in this investigation demonstrates that
the finite element method is a viable alternative to some of
the more approximate traditional methods presently being
used by-design engineers. From an economical point of view,
it has been shown that the finite element method can be used
competitively against equivalent frame methods to analyse
floor systems. From an analytical point of view, there is
no question as to which method is more appropriate for the
anal}sis of plates.

'The merits of using a finite elemeﬁt based program such
as HYBSLAB are many. The most important is the nature of
the solution. The analytical solution is fér a structure
which is represented by a series of finite-sized plate
elements connected at the nodal points. First, the solution
cbngists of nodal displacément values which are compatible.
There are no discontinuities in the transverse displacement,

’

Ehe two nodal rotations and the two in-plane translations.

| \\\
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‘Second, the calculated nodal forces are such that each and

'evefy»element is in equilibrium under the action of the

applied loading. This ig the type of solution that many

designérs intuitivély feel is adequate for design purposes.,

~Whether the numerical values come from a finite element

providing the type of solution just discussed.

solution or elsewhere is immaterial to most designers. No

other method exists which is as simple to use as the finite

element method and, at the same time, is as capable of
From'a designer's point of view, another advantage of
the finite element method is the consistency introduced into

the design procedure. After the gridwork for the structure

‘and the boundary conditions have been decided upon, the

remaining procedure is straightfqrward.' In contrast,
non-standard floor systems designed by equivalent frame f@i
approaches leave much to the discretion of the engineer.

This often leads to differences of opinions regarding

‘matters such as the ziz-zagging of a frame to -include nearby

columns and the mhltiplé branching or 'forking' of a frame
to include columns on eithér side.

| Other advantages of using the finite element method are
the standardiéation which can be introduced into the design

procedure. This has time-saving advantages in the sense

~that the checking of a design would simply consist of

verifying that the input for the model is correct. This

L 4

would be followed by spot checks on the output to determine

if the results look reasonable. Additional time-saving
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features wnich could be'standardized are the graphical
output of the connectivity data and the plotting of moment
and displacement contours as illustrated in Chapter\?.

It is concluded that, althougn more traditional
_ analysis techniques like the equivalent frame methods are
~quite satisfactory forfmany‘floor systems, there are
situations where the finite element method offers 'a number
of-advantaées while remaining competitive in terms.of cost,
Thus, while not proposing the abandonment of the frame
metho&s{ it is suggested that designers‘should give serious
consideration to adopting the finite element method for
problems to whigh it is part1cularly su1ted ‘kr

- It is also felt that the'automatic data generating

capab111t1es of HYBSLAB make it compet1t1ve with the frame
.methods for floor systems with regular column layouts.
Through repeated use of the program on simple structures the
designer would become more efficient at this type of
analysis and would be more qualified to model a complicated
structure; The question of the importance of including the
effects of stress singularities atnreentrant'corners is not
addreSsed in any amount of detail in this study. A
formulation to include the singularities has been proposed.
This approach has been used to obtain stiffness matrices for
L-shaped singularity elements, and'ﬁlates with’reentrant
-corners were analysed in Chapter'e. The results from’the
analysis appear to be reasonable and it is concluded that

the formulation is valid.
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8.3 Recommendations for‘Fﬁture Studies
Additioﬁai research is still required on a‘number-of

topics. Probably the most demanding'of}these is continuing
the work on the singularigy elements. As discussed in
Chapter 4, onlY’the real eigenvalue was considered for the
L-shaped element with clamped réentrant edges. A
_considerable amount of work remains to be done in»obtaining
the matrices éssociated with thé complex eigenvalue. For
both the free edge and the fixed edge elements, a more
indepth study is.requifed to-assegs thg iﬁportance of the
singularities for aAwidé range of\problems. The problemé in
Chapter. 6 were done to demonstrate the use of the proposed |
fprmulation. The results look encouraging enough that
further studies are warranted. | o . |

.-.Regarding the: program HYBSLAB, few-technicél revisions
are envisiongd.k The program has been used for a wide range
of problems and appears to be working satisfactorily. 1If
thé.program continues to be used,~érrots,will surface but
these~are'notwexpected to cause major revisions to the
program. | |
| Additional testing is sﬁill required to-aséess more
fﬁ;ly the behavior characteristics of a number of elements,
such as the multi-sided elements ané the offset &lements
used‘to model stiffeners; As well, the ﬁse'of the five- and

six-noded rectangular elements as transition elements for

changing grid sizes has not been investigated.
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- A complete listing of the_proéram HYBSLAB and a related
user's manual'®* will be available from the Univefsity of

Alberta where this research was done.
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APPENDIX A

THE LAGRANGE MULTIPLIER ELEMENT

In this section a formulation is presented for
obtaining stiffness matrices from a method which combines
Mindlin plate theory, the principle of minimum potential
- energy, and Lagrangian multipliers. A genéral form of the
stiffness matrix is obtained first and then certain
conditions are prescribed to obtain stiffness matrices for a
number of different elements. Among these elements are the
'Lagrange’' element and the selective reduced integration
rectangles.

By using plate theories such as Mindlin's, the effects
of transverse shear can be includeé in the .formulation. 'As
shown in Figure A.1, the total rotation of a plane section,
iﬂitially nofmal‘to the midsurface, consists of a rotation
due to flexure pihs an adéitional rotation due to shear.
The ﬁotal rotations can be written as:
| Bx W,y + 8x

By = W,x + 8y

(A.1)

where, _

‘ Ox= total rotation of an equivalent plane
section-about the X axis,

Oy= total rotation of an eguivalent plane
section about the Y axis,

W = transverse displacement of the plate's
‘midsurface, : .

Ex= rotation about the X axis of a normal
with respect to a tangent at the midsurface,

By= rotation about the Y axis of a normal

- with respect to a tangent at the midsurface,

226 .
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Figure ‘A.1 Rotations at the Midsurface of the Plate.

Va
The x and y displacements, U and V, respectively, of a

point located at a distance 'z' above the neutral surface
can be written as:

U= -z 8y~

V = -z 0x

(A.2)

ons for U and V, the following

From the above expressi‘

strains can be obtained:

€Ex = U,x
€y V,y

-(z)(8y,x)
-(2)(8x,y)
+(V,x + U,y)= -+(z2)(Bx,x + By,y)

Exy
(n.3)
€yz= +(W,y + V,z)= +4(W,y - Bx)

Exz= +(W,x + U,z)= +¥+(W,x - By)

The finite element method has the unique feature that
displacement functions can‘be specified independently for
~each element. Tﬁe Mindlin plate theory is characterised by
the assuﬁption that midsurface rotations are not solely

dependent on the transverse displacements. Therefore, the
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element shape functions, <N;>, for plate flexure can be
{identical to those from plane elasticity. The importance of
this aspect is that the elements can be distorted
isoparametrically. In equation form, the field values of
the independent variables can be related to their respective
nodal values as:

W = <N,> {W}

Bx= <N,> {0x} (A.4)

6y= <N3 > {QY}
o
Substituting the above expressions into the strain-

diiagzcement Equations A.3 results in Equations A.5 shown

be 1ty Partial differentiation is denoted by the comma

L3

€x = -z <N,,x>{8y}

M
<
"

-z <Nzry>{9_)(}
€Exy= -+(2z) (<N, ,x>{6x} + <N,,y>{§yj)
eyz= ++-(<N|,y>{_“_/} - <N2>{§x})

€xz= ++ (<N, ,x>{W} - <N,>{8y})

The constitutive matrix is assumed to relate stresses

to strains according to the following equations:

{d}= [E){€E} ' (A.6)
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where,
E*) E| [ [ [
EI ) E_Y [ ‘- ..
[E] R i » - Exy ‘ . .
. . . Eyz .
. . . . Exz

‘ The potential energy of the structure, T[, consists of

the¥str5iﬁ energy, &, and the potential of external“qj

applied loads, Ve. The expression for "the strain energy can

'pe written as:

£ = 1/2'f0'ij €ij av (A.7)

- 3 <8y>[K 1By} + <@x>[K'* 1{By) + + <6x>[K'>’1{8x}
++ <§x>[K“’]{§x} +-<@x>[K * 1{8y} + % <@y>[K'¢’]{gy}
44 <W>[KCD WY

<W>[KR *>]{ex} + ¥ <§x>[K"’J{gx}
++ <W>[RC0 J{W} - <W>[K© ' 1{gy} + + <By>[K‘'?>]{@y]}

vhere, _ - A
RO ] = (t=/12)‘/{n,,x} Ex “N,,x> dA |
K] = <-t.f/1?)fwz,y} E, <N,,x> dA

ikk’{] = (t’/12l~/”{N;,y}vEyf<N,,y>,dA:
txf'jl - (t’/24);/~{N,,x} Exy <§;,x>,aA A :
K3 ] = (t’/24)/{N;,x} Exy <N3,Ay"‘>v dA.

ke = '(t‘»/?43_/{N3,y}‘ Exy<;,',y> aa
'[K‘”,‘] = v(yt/Z)f{N,,y} EyzWKN.‘,de;\‘

[K‘”]l - (yti/lz)‘/{u.i,y} ,Eyé <N,>'-d5. m

- R . .
: = RS
e < . g
o .
4 - i
7
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L

. i .
[K¢*) ] =-(yt/2)/{N,} Eyz <N,> dA
% P |
[K“°’]5"(7t/2)~/i{ﬂ,,x}_Exz <N, ,x> dA

RO )= (yt/2)~/P{N..X} Exz <N,> dA

[K(yi)]é (yt/Z)v/ﬂ{N:} Exz <N,> d4A

In the-aboveréquations, 'y' is the shear factor hhich
accounts for the nonuniform distribution .of the shear
stresses in the Z direction.

The potential of the external loads can be written as:

Ve?fquA +./My6di +'/Mx6ydAY
' : ' . (a.8)

= <W>{F,} + <8x>{F,} + <@y>{F.}

where,

"
{r,}';/{n,} (q) da
{F.} =/{n,} (My) an - A

_ S
{FJ} =/{N:} (Mx) dA \

\
Fo?v?gféx'plates,bthe funcgional'TT'could now be
minimized wigﬁ‘respect to the di&placement vggtor§ {ﬂ},‘
{éx}, ahd {gy}‘;o obtain a reasonable stiffness matrix.
ﬁé;ever, for thin plates the shear rigidity is so large that
it causes the element to 'lock' or become so stiff that when
loaded it virtually‘unaergoé; no displacement. To rectify

the situation, researchers such as Clough, Zienkiewicz,
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Hnghes, and Hinton have aeVeloped the technique of using
selective reéuced integration. A second method is to impoée
the Kirchhoff cbnditions‘ofanormality as tqnstraints at
discrete locarions; this was done by Lyons in 1977. The
:third method, the one being presented here, is to impose the
Rirchhoff constraints in an integral sense through the use -
of Lagrangian multipliers. - The ﬁirchhoff conditions of
normality for thin plates are: |

W,y - 0x

W,x - 8y

0 ;
_ (A.9)
0.

A convenient approach for minimizing the functional TT
subject to these constraints is to usé'Lagrangian |
multipliers and work with thé augmented functional TTg.

‘ The field values of,ﬁhe Lagrangian multipliers are
assumed to be’related to their reapéctive nodal values by
shape functions similar to those used for displacements. : I
‘matrik equation form this can be written as:
AX
Ay

<N,> {Ax}

<N,> {LY}

&
The modified functional, [[g, can be written as:

3

T + ¥ - (A

I

. J/i\x)({,y -"ax) da +~/?\y) (W,x - By) 4Aa

<5x> [L")]{E} - <§x> {L"’]{Qk}
+ <hy> [L(Ji]{ﬂ} _.<5y>.[L(4)]{gy}A
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where,

[L"’i_= /‘{N4}_/<N,,y> .dA
Lo /{n.} N> an

[Le2]= .f{N,} <N, ,x> dA
ERSAREE f{y,} <N,> dA

To obtain a stationary value, the functional J]g is

minimizedeith respect to {W}, {6x}, {8y}, {Ax}, and {\y}.

ek
A

Xhe results of this operation are shown in the set of
SRS : _ ‘

“gﬁéﬁ&fions below. o © .
, , T T [ 11 1
[K<7)] ,_[K(l)] _['K(lt)] +{Lt"] +[L(:')] {ﬂ} {F,}
+[K(“1‘o)] ) .
T [Re20] : T ' '
(K] [+[R 0] | k2] |-[nee) .| |{8x}| |{F,}
+[K(’)] +[K(s)] . .
Cr| ke ] [Re ]~
(k<] 1 [+[KRC] : {8y} |=|{F.}
. +[RC2 ] |+[RU1 2]
+[L(;’] ~[L(z)] ‘ e R | . . {AX}‘ {o}
‘+[L(J)] . . -[LC)] . . S _ {AY} {o}
(A.12)

In-the above equations, the Lagrangian multipliers can

be set equal to zero and stiffness matrices obtained for the
. . ' . s ..

Bi.MPT element, the higher order Lagrangian andvéerendlplty

rectangles, and the heterosis elements. Setting {\x} and
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'{Ay}’ts zero eliminates the last two rows and columns of
Ysubmatriqésw ané Equations A.12 become identical to those
typically associated with a Mindlin type of formulation.
For thick plate elements these_equaﬁioﬂs are usually

A ' -
evaluated exactly, while for thin plates selective reduced

~integration is used. °
To obtain the stiffness matrix for the Lagrange element
‘_of Chapter 3, the following procedure was uSed.v The element
was initially‘assumed ﬁo have 4 corner nodés and 4 midside
nodes. The A C M element shape functions were used to
represent W and its first"derivati&es at the corner nodes.
Complete quadratic Serendipity shapg functions were used for
‘éﬁ, By, \x, and \y. The resultlng element has 44 degrees of
freedom' the parameters at the corner nodes are v
< W W x Wy 8x By \x \y>, and < Bx By \x \y> at the m1d51de
nodés The resultlng matrix from Equation A.12 is 44x44 and
Can be reduced to 12X12 by using static condensation. The
condensed elemgnt has corner nodes only with < W 8x By> as " -
‘nodal degrees of ;freedom. |

In using the.above'elemént teo sé;arate céées Qere
Considered. For the first case, Eyz and Exz were assigned
.equal to Exy. Fbr‘the second cdse, Eyz and Exz weré
assigned zero”values relative to Exy. For the 4x4 and fiher‘
gfids of Chapter 3; the results from the two cases were very

similar -and only the results from the second case were

requted.
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The element from the first case is a Mindlin element
and the Lagrange multibliers prevent the 'locking' normally
experienced by these elements when analysing thin plates.
The element defived from the second case is, in essence, a
Kirchhoffﬁelement because the strain energy from transverse
shear deformations is not included.

The sfiffness métrix for either case can be evaluated
by numerically evaluating the coefficients of Equation A,12
and then eliminéting‘tﬁe Lagragian multipliers by static
condehsation. The remaining stiffness matrix contains only
‘the geoﬁetric degrees of freedom. This is the approach
vhich was used to obtain the 12512 stiffness.matrix for the
Lagrange eiement of~Chapter 3. The results of this
'operatien were checked by using a separéte approach where
transverse shear strains were neglected from the beginning

and the'Légrange multipliers were eliminated from the

explicit form of the stiffness matrix.



