
University of Alberta

D i s c o v e r i n g a n d R a n k i n g O u t l i e r s i n V e r y L a r g e D a t a s e t s

by

Yaling Pei

A thesis submitted to the Faculty of Graduate Studies and Research in partial ful­
fillment of the requirements for the degree of Master of Science

Department of Computing Science

Edmonton, Alberta
Fall 2006

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-22342-0
Our file Notre reference
ISBN: 978-0-494-22342-0

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Abstract

Outlier detection aims to discover exceptional instances in datasets. It has long been

studied in the literature of statistics. In recent years, outlier detection has gained

much interest in data mining and found many important applications. Current work

on outlier detection mainly focuses on three aspects: definition of outliers, efficient

methods for finding meaningful outliers and evaluation methodology. In this thesis,

we propose a new method that uses the relative degree of density with respect to a

set of reference points to estimate the neighborhood density of a data point. Can­

didate outliers are ranked based on the outlier score that is assigned to each data

point. The running time of our reference-based algorithm is O (R nlogn) where n

is the size of the dataset and R is the number of reference points. Analysis and ex­

periments show that our method is very effective and highly scalable to very large

datasets. To facilitate experimental tests for outlier analysis and automate the gen­

eration of diverse datasets, we developed a generic framework for synthetic data

generation. The system can efficiently produce datasets with various characteristics

such as size, shape, density as well as cluster and outlier distributions.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Acknowledgements

First of all, I would like to thank my supervisor, Dr. Osmar Zaiane, for his advice

and encouragement. This thesis is by far the most significant academic accom­

plishment in my life and it would have been impossible without his guidance and

inspiration. His deep vision, broad knowledge and constructive suggestions have

guided me over the years.

I want to thank my other committee members, Dr. Jorg Sander, Dr. Vadim

Bulitko, and Dr. Scott Dick, for reading my thesis draft. Their comments are

invaluable for the completion of this thesis.

I wish to express my gratitude to many people with the department, in particular,

to Dr. Mario A. Nascimento, Dr. Jia You, Dr. Herb Yang, Dr. Russ Greiner, Dr.

Dekang Lin and Dr. Li-Yan Yuan. I sincerely thank them for their supervision

and help during my study in the department. Thanks are also devoted to graduate

student advisors Edith Drummond and Karen Berg. They were always there to help

and made me feel so spoiled.

Thanks to Dr. Rong-Qing Jia from Department of Mathematical and Statistical

Sciences for teaching me how to think and solve problems from the mathematics

perspective.

I would also like to thank Natural Sciences and Engineering Research Council,

iCore and University of Alberta for the support of my graduate study.

Thanks, as well, to my husband Yong Gao for many helpful discussions on our

research work. I am grateful to my parents for their unconditional love and support

that have been with me throughout the years.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table of Contents

1 Introduction 1
1.1 Problem Statem ents.. 3
1.2 C on tribu tions.. 6
1.3 Organization of this thesis ... 7

2 Related Work 8
2.1 Statistical Outlier D etection... 9

2.1.1 Graphical t o o l s .. 10
2.1.2 Distribution-based Outlier D etection... 11
2.1.3 Depth-based Outlier D etec tion ... 13

2.2 Outlier Detection in Clustering A n a ly s is .. 14
2.3 Distance-based Outlier D etection... 15

2.3.1 Basic C o n cep ts .. 15
2.3.2 Algorithms for Mining Distance-based O u tlie rs 18
2.3.3 Summary of Distance-based Outlier Detection Methods . . 22

2.4 Local Outlier D etec tion ..24
2.4.1 Density-based Outlier Detection: Local Outlier Factor (LOF) 24
2.4.2 Connectivity-based Outlier Detection: Connectivity-based

Outlier F ac to r(C O F).. 27
2.4.3 Algorithms for Finding Connectivity-based Local Outlier

F a c to r ...30
2.4.4 Summary of Local Outlier D etection..31

2.5 Neural network Outlier Detection ..31

3 An Efficient Reference-based Approach to Outlier Detection in Large
Datasets 33
3.1 M otivation...33
3.2 Review of Distance-based O u tlie rs ..35
3.3 Reference-based Outlier Detection Method ... 36

3.3.1 Compatibility with Distance-based M e th o d 38
3.3.2 Algorithm and Its Im plem entation...41
3.3.3 Determination of Reference P o in ts ...43
3.3.4 Detecting Global and Local Outliers in Complex Datasets . 44

3.4 Empirical E v a lu a tio n ...50
3.4.1 Results on Synthetic Datasets ... 50
3.4.2 Results on Hockey D a t a ... 54

3.5 C o n c lu s io n ... 56

4 A Synthetic Data Generator for Clustering and Outlier Analysis 58
4.1 In troduction ... 59
4.2 Existing Work on Synthetic Data G eneration... 60

4.2.1 IBM Quest Synthetic Data G e n e ra to r .. 61

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.2.2 Synthetic Data Generation in Other Research Fields 62
4.3 Mathematical Tools and T ech n iq u es .. 63

4.3.1 Uniform D istribution... 63
4.3.2 Normal D is tr ib u tio n ... 64
4.3.3 Box-muller Transformation .. 65
4.3.4 Linear T ransform ation .. 65

4.4 A Comprehensive Approach to Synthetic Data G e n e ra tio n 68
4.4.1 Generation of Clusters in a Dataset ... 71
4.4.2 Generation of Outliers/Noise in a D a ta s e t 76

4.5 Experiments and E v a lu a tio n ... 79
4.5.1 Generating Very Large D a ta s e ts ..80
4.5.2 Testing with Clustering and Outlier Analysis Algorithms . . 82

4.6 C o n c lu s io n ... 91

5 Conclusions and Future Work 93

Bibliography 95

A A GUI-based Web Application for Data Clustering and Outlier Detec­
tion 101
A .l G o a l s ... 101
A.2 A Virtual Lab for Learning Clustering m e th o d s103
A.3 An Interactive Web-based Testbed for Clustering A n a ly s is 105

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

List of Tables

2.1 A variation of NL algorithm for finding distance-based outliers [8] . 20

3.1 Outlier detection result 1 on NHL(03/04) d a t a ... 55
3.2 Shooting percentage on NHL(03/04) d a t a .. 55
3.3 Outlier detection result 2 on NHL(03/04) d a t a ..56

4.1 Detailed description of the parameters for the datase ts............................ 82
4.2 Description of the clustering a lg o rith m s ...82

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

List of Figures

1.1 Examples of different types of o u tlie rs ... 3

2.1 Classification of outlier detection methods in [6 6] 9
2.2 Example of a box p lo t ... 10
2.3 Example of a scatter p l o t .. 11
2.4 standard normal d is tr ib u tio n .. 12
2.5 Some depth contours for a dataset containing 500 points 13
2.6 Example of D B(p, D)-outlier detection, where p = 95%, and D = 20 17
2.7 Failure of detecting outlier o l using distance-based methods 23
2.8 Failure of Outliers detection using L O F ..28
2.9 A simplified example showing outlier detection using C O F 28
2.10 A schematic view of a fully connected replicator neural network . . 32

3.1 Reference-based nearest neighbors in the one-dimensional dataset X p 37
3.2 Reference-based nearest neighbors satisfying the triangle inequality 39
3.3 A 2D dataset containing multiple clusters with local outliers 45
3.4 Finding top eight outliers (a) using reference-based method and (b)

using the traditional K N N m ethod...46
3.5 Finding top 76 outliers (a) using reference-based method and (b)

using the traditional K N N m ethod...47
3.6 Finding local outliers using reference-based app roach 48
3.7 Log-scale execution time vs data size for reference-based approach

a n d O rca ...51
3.8 Outlier detection result from KNN-based a p p ro a c h53
3.9 Outlier detection result from L O F ... 53
3.10 Outlier detection result from R O S ...54

4.1 PDF and CDF of uniform d is tr ib u tio n ...63
4.2 PDF and CDF of normal d istribution..64
4.3 Linear transformation: expansions and con tractions............................... 66
4.4 Linear transformation: sh ears ... 66
4.5 Linear transformation examples ...67
4.6 A screen shot of the synthetic data generation s y s te m 69
4.7 Difficulty level 1: each cluster contains 500 2D p o in ts72
4.8 Difficulty level 2: each cluster contains 300 2D p o in ts73
4.9 Difficulty level 3: each cluster contains 500 2D p o in ts 73
4.10 Difficulty level 4: each cluster contains 500 2D p o in ts74
4.11 Difficulty level 5: each paired cluster contains 1,000 2D data points,

of which 500 are assigned to each single c lu s te r75
4.12 Outliers level none: outliers are those exterior points of a cluster . . 77
4.13 Outliers level low: outliers are randomly distributed............................... 78
4.14 Outliers level high: outliers are either randomly distributed or have

simple p a t te r n s ..79

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.15 Each generated dataset has the following properties: number of
clusters is 5; data distribution in a cluster is either uniform or nor­
mal; difficulty level ranges from 1 to 5, density level is 3, and noise
level is low .. 81

4.16 With each difficulty level, the system generates a dataset of 100,000
that contains both uniformly and normally distributed clusters. . . . 81

4.17 Clustering results on dataset 1. (a): k-mans with k — 4; (b): DB-
SCAN with e = 15 and M in P ts — 10; (c): CURE with k — 4,
a = 0.3, and t = 10; (d): CHAMELEON with k — N N = 15, Min-
Size=2.5%, and k — 4; (e): WaveCluster with r = 5 and r = 0.2;
(f): A utoC lass... 84

4.18 Clustering results on dataset 2. (a): k-mans with k = 4; (b): DB-
SCAN with e = 15 and M in P ts = 10; (c): CURE with k = 4,
a = 0.3, and t = 10; (d): CHAMELEON with k - N N = 15, Min-
Size=2.5%, and k = 4; (e): WaveCluster with r = 5 and r = 0.2;
(f): A utoC lass... 85

4.19 Clustering results on dataset 3. (a): k-mans with k = 5; (b): DB-
SCAN with e = 15 and M in P ts = 10; (c): CURE with k = 5,
a = 0.3, and t = 10; (d): CHAMELEON with k — N N = 15, Min-
Size=2.5%, and k = 5; (e): WaveCluster with r = 5 and r = 0.2;
(f): A utoC lass... 86

4.20 Clustering results on dataset 4. (a): k-mans with k = 5; (b): DB-
SCAN with e = 15 and M in P ts = 10; (c): CURE with k = 5,
a = 0.3, and t = 10; (d): CHAMELEON with k - N N = 15, Min-
Size=2.5%, and k = 5; (e): WaveCluster with r = 5 and r = 0.2;
(f): A utoC lass...87

4.21 Clustering results on dataset 5. (a): k-mans with k = 5; (b): DB-
SCAN with e = 15 and M in P ts = 10; (c): CURE with k = 5,
a = 0.3, and t = 10; (d): CHAMELEON with k - N N = 15, Min-
Size=2.5%, and k = 5; (e): WaveCluster with r = 5 and r = 0.2;
(f): A utoC lass... 88

4.22 Clustering results on dataset 6. (a): k-means with k — 7; (b): DB-
SCAN with e = 20 and M in P ts = 30; (c): CURE with k = 7,
a = 0.3, and t = 10; (d): CHAMELEON with k - N N = 15, Min-
Size=2.5%, and k — 7; (e): WaveCluster with r = 4 and r = 0.2;
(f): A utoC lass... 89

A .l Data clustering analysis - w elcom e... 102
A.2 Data clustering analysis - a lgo rithm s.. 103
A. 3 Data clustering analysis - a p p l e t ...104
A.4 UML of the Web-based clustering s y s te m .. 106
A. 5 Clustering testbed introduction p a g e ... 109
A.6 Clustering testbed registration p a g e ...109
A.7 Clustering testbed registration validation p a g e110
A.8 Clustering testbed algorithm selection p a g e .. 110
A.9 Clustering testbed algorithm parameter p a g e .. I l l
A. 10 Clustering testbed algorithm output p a g e ... I l l
A. 11 Clustering testbed output presentation p a g e .. 112

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 1

Introduction

The huge amount of data available provides us with a rich source of information, but

it also makes it extremely hard for human experts to gain knowledge by manually

observing the raw data or using the traditional methods that are not scalable to large

data sets. With the increasing demand of specialized techniques and tools for ac­

curate data analysis, data mining has become an interdisciplinary field and gained

much popularity in both research and industrial communities in the last decade.

Also known as Knowledge Discovery in Databases (KDD), data mining is the pro­

cess of non-trivial extraction of implicit, previously unknown, and potentially useful

information from data [25].

Data mining involves various tasks of pattern discovery in large datasets. In

[31], these tasks are classified into two major categories: descriptive and predictive.

Descriptive mining activities aim to summarize the general properties of the data.

Predictive mining activities try to make predictions based on the characteristics of

the current datasets. Most data mining tasks such as classification, clustering and

association rule mining attempt to identify useful data patterns implied in the major­

ity of the dataset. Outlier analysis, on the other hand, deals with identifying a small

portion of the data. This small amount of data are usually significantly different in

some or all the dimensions from the remaining data points. Being an important task

in data analysis, outlier detection and analysis has drawn much attention in the area

of data mining in recent years. Raw data collected from real-life activities are often

imperfect and contain aberrant values. These aberrant values can be noise that leads

to a poor data model. To avoid the influence of such noise in the process of mining

1

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

data regularities, data cleaning serves as an important step in the KDD process to

eliminate unwanted data values. But in many situations, the exceptional cases are

not necessarily bad data points and are often more interesting than common events.

The identification of such outliers can provide valuable information not only about

the data collecting and recording process but also about the abnormal activities.

The goal of outlier detection is two-fold: to screen for exceptional data values, and

to uncover the implicit patterns of those rare cases that contain knowledge of par­

ticular interest. Further study and analysis on the characteristics of the identified

outliers are often conducted to build knowledge models of the abnormal behavior.

Outlier detection has found many real life applications, where the identification

of outliers is essential in finding rare and suspicious activities. Some typical exam­

ples are fraud detection [11], for example, detecting credit card fraud and finding

criminal activities in E-commerce, network intrusion identification [19, 49], video

surveillance monitor [47], sports and market analysis [45, 14].

In this thesis, we will concentrate on outlier detection. We investigate different

techniques and methods, discuss recent work and existing problems in outlier anal­

ysis in the area of data mining. We propose a new approach to outlier detection. The

proposed outlier detection method uses the relative degree of density with respect

to a set of reference points to approximate the degree of density defined in terms of

the k nearest neighbors of a data point. Candidate outliers are ranked based on the

reference-based outlier score that has been assigned to each data point. The worst

case running time of our algorithm is 0 (R n log n), where n is the size of the dataset

and R is the number of reference points. Analysis and experiments demonstrate that

our method is a feasible and efficient alternative for detecting distance-based out­

liers. In order to facilitate the evaluation of our outlier algorithm, we designed and

implemented a generic framework for synthetic data generation. It can dynamically

generate datasets of different probability distributions with various difficulty levels

in terms of clusters and outliers.

2

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

f

{a} Outliers w.r.t a dtstelbution (b) 0 uiuei s *r.t. a pattern (c) time series outliers

Figure 1.1: Examples of different types of outliers

1.1 Problem Statements

In physics, the statistical term outlier is often included in the more general term

“noise”. Intuitively, an outlier is a data value that lies far away from the rest of the

data. While there is no universal definition for an outlier, some widely accepted

definitions given in statistics include

• “An outlier is an observation that deviates so much from other observations

as to arouse suspicions that it was generated by a different mechanism” [33]

• “an observation (or subset o f observations) which appears to be inconsistent

with the remainder of that set of data” [6]

Although there exists some controversy over what constitutes an outlier, it is

generally considered that an outlier has unusual or exceptional data value. It is

an observation that appears to be inconsistent with the remainder of the dataset.

Outliers are often interesting observations which need close investigation to see

the reasons “behind the scene”. However, the underlying data models vary over

different datasets, which makes it non-trivial to define outliers in a universal way.

Figure 1.1 shows the ambiguity and difficulties in defining outliers through three

basic types of outliers with respect to their data models. Outliers are marked by

circles or dotted lines. In this example with only two dimensional data, (a) demon­

strates a group of outliers in relation to a normal distribution. The marked outliers

can be either extreme values or contaminants emanated from another nearby dis­

tribution. The data in (b) is relatively structured and can be described by a linear

regression model. We can see that none of the three marked outliers have extreme

3

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

values in either x or y dimension. They are outliers due to the fact that they deviate

from the main body of the data, thus break the expected data pattern. The example

indicates that extremes are not necessarily always outliers. Such outliers are indeed

very common with multi-dimensional distributions. Figure 1.1(c) is a set of time

series data that are prevailing in financial, industrial, meteorological and sociologi­

cal processes. Outliers in this type of data are presented as those occasional sharp

spikes along the time sequence.

Nearly all the datasets are imperfect. They are subject to the contamination of

noise, exceptional cases, or incomplete data points, which are part of the overall

picture in data collection and recording. Outliers can arise from various mecha­

nisms and occur in any datasets. In statistics literature [4, 6], the causes for outliers

are generally divided into two major groups:

• errors in the data that originate from data collection and data entry where

inaccuracy or mistakes occur in the process of data reading, calculating or

recording; and

• inherent variability of the data, which is common with observational studies

where outliers reflects the natural variation of the data;

Depending on the definition of outliers and the specific application domains, it is

likely that outliers arise from sources other than the above categories. For example,

outliers can be rare events that are surprising or unexpected observations. They have

legitimate data values, but do not fit into the main body of the data. For example,

most students start university at the age of seventeen or eighteen. However, there

are exceptional cases that a few students start university at a much younger age such

as fourteen. Such outliers may deliver valuable information about the process under

investigation. It is therefore important to identify these outliers so that further study

can be conducted to understand what these outliers really represent.

Outlier detection and analysis has long been studied in the literature from statis­

tics community. A common approach in Statistics assumes an underlying distribu­

tion model of the data. Statistical discordancy tests are performed to identify some

small percentage of points that deviates from the rest of the data. Based mainly

4

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

on probability distribution and distribution parameters, more than 100 statistical

discordancy tests have been developed [6].

With the rapid development of technologies and increased volume of datasets,

outlier analysis is now faced with new challenges and requirements. Apart from

the size of the datasets, which forms the fundamental difference between classi­

cal statistical applications and data mining [22, 32], high dimensionality, diverse

characteristics and constantly evolving are major concerns of the datasets that are

commonly used in data mining activities. Statistical modeling methods that require

fitting the data points to a stochastic distribution become increasingly difficult and

inaccurate to handle complex datasets. Quadratic complexity is hardly acceptable

with large datasets. The problem now centers around how to efficiently and effec­

tively identify outliers in very large datasets.

In data mining, outlier detection and analysis is often referred to as outlier min­

ing. The main issues involved in outlier mining research include (1) definition of

an outlier for a given dataset; (2) well-performed algorithms; and (3) evaluation

methodology, including datasets, visualization and user interaction.

A common definition of outlier mining is as follows: Given a set o f N data

objects, find those objects that are fa r outside the norm in one or more dimensions.

In the case when the expected number of outliers is given, for example, mining the

top-n outliers in a dataset [59, 40], outlier mining would be described as: Given a

set o fN data objects, and O, the expected number of outliers, find the top n objects

that are far outside the norm in one or more dimensions.

Like most of the current work on outlier detection, our work is based on two

basic assumptions:

• Outliers are only a very small portion of a dataset, i.e., normal data signifi­

cantly out-number abnormal data.

• Outliers are inconsistent with and deviate from the rest of the data in one or

more dimensions.

Test datasets play an important role in the evaluation of outlier detection. Be­

sides the real-life data collected in numerous situations, some synthetic benchmark

5

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

datasets would help validate and visualize the results of the designed outlier de­

tection algorithms. Currently, little work has been done on developing benchmark

data repositories. Existing outlier detection methods tend to use different data to

assess their performance, which may result in biases toward the specific models.

One Challenge in data analysis, including data clustering and outlier detection is to

build a generic framework and automate the data generation process. Therefore, a

data generator that can dynamically produce synthetic datasets with various distri­

butions, shapes and densities is an important task in data mining community.

1.2 Contributions

This thesis addresses the issues in outlier analysis and detection in the area of data

mining. There are four major contributions.

• A new notion of outliers: We proposed reference-based outliers that are

considered in the whole data space as well as each respective dimension with

respect to a set of reference points. The new notion integrates the distance-

based global outliers and the density-based local outliers. Unlike the tradi­

tionally defined outliers that considers the whole dataset from only a single

viewpoint, the reference-based outliers are analyzed dynamically in the data

space. That is, the degree of density for each data point in a dataset is ana­

lyzed from different view points where the reference points are located.

• An efficient outlier detection approach: Based on the new notion of reference-

based outliers, we proposed a fast and effective outlier detection method. The

method is compatible with distance-based outlier approaches yet capable of

identifying local outliers in terms of data patterns in a dataset. The execution

time of our algorithm is 0 (R n log n) where n is the size of dataset and R is

the number of reference points. Candidate outliers are ranked based on the

Reference-based Outlier Score (ROS). Experimental results indicate that our

method is effective and highly scalable to very large datasets.

6

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

• A generic framework for synthetic data generation: The system automates

the generation of multi-dimensional synthetic data generation. A distribution-

based and transformation-based approach is used to systematically generate

various datasets in terms of data clusters and outliers. The approach is very

efficient and the generated 2D dataset is visualized for user inspection.

• A GUI-based Web Application for data clustering analysis and outlier

detection: The Web portal serves as a data analysis virtual lab to demon­

strate visually how some well-known clustering algorithms works to identify
»

clusters and detect outliers. Registered users are allowed upload datasets and

test their datasets with different clustering algorithms running on the server

side.

1.3 Organization of this thesis

The rest of this thesis is organized as follows: In Chapter 2, we review the existing

outlier analysis methods and algorithms in both statistics and data mining commu­

nities. In Chapter 3, we present a new reference-based approach to outlier detection

and an efficient algorithm for finding global and local outliers. A synthetic data

generation system is discussed in Chapter 4. We conclude the thesis with a brief

summary and point to the directions for future work in Chapter 5. Appendix A

introduces a web-based data analysis application that serves as an on-line tool to

assist the learning of data clustering.

7

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

Chapter 2

Related Work

Outlier detection and analysis in the literature are mostly from statistics. In the last

decade, it has become an important and active research area in data mining due

to the increased demand for finding rare but informative cases in large datasets.

Different notions of outliers were proposed and many outlier detection algorithms

have been developed. One suggested way to classify the existing outlier detection

methods is to divide them into two broad categories: set-based and spatial-set-based

as shown in Figure 2.1 [66]. The main idea of such classification is to divide the

existing methods into spatial and non spatial groups. We can see that set-based

methods consist only of the classical distribution-based approaches, which identify

outliers by fitting the data into a stochastic model constructed for one or more at­

tributes. Spatial set-based methods that are further divided into multi-dimensional

metric spatial data set and graph-based spatial data set, include almost all the re­

cently developed outlier detection methods. This category of methods considers

both attribute values and spatial relationships of the data. One major disadvantage

to classify outlier detection in the above way is that different notions of outliers are

grouped together, which can cause confusion as to the definition and scope of an

outlier, for example, whether an outlier is global or local.

In this thesis, we adopt the classification that is based on the way to define

outliers. Under this classification, the outlier detection methods are grouped into

five categories, namely statistical methods, including distribution-based and depth-

based, clustering-based methods, distance-based methods, density-based methods

and machine learning methods. With the goal of mining outliers effectively and

8

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Spatial
grap h -b ased

(SGESQD)

S et-b a sed Spatial se t -b a se d

D istan ce-b ased D epth threshold

D istance to
k-th neighbor

(FindOut)
W avelet-

b a sed

G raph-based
spatial data s e t

(Optics-OF)
D ensity in

neighborhood

Outlier D etection M ethods

Multi-dimensional
metric spatial data s e t

Statistical
distribution of
attribute value

Figure 2.1: Classification of outlier detection methods in [66]

efficiently, researchers in data mining now focus on developing algorithms that can

scale to large and high dimensional datasets. In this chapter, we will concentrate on

different notions of an outlier, discuss state-of-the-art algorithms for outlier detec­

tion and compare their performance.

2.1 Statistical Outlier Detection

In statistics, the presence of outliers can seriously bias statistical estimates, which

results in inference errors and reduction of the power of statistical tests. Therefore,

it is critical to identify those extreme or influential data values for reliable and ac­

curate statistical modelling. For decades, many researchers have been engaged in

finding ways to detect outliers. Barnett and Lewis discussed approximately a hun­

dred discordancy tests for normal, exponential, poisson and binomial distributions

in their book “Outliers in Statistical Data” [6]. Although we do not plan to cover

all these discordancy tests, we are going to discuss some of the widely used outlier

detection methods in statistics literature.

9

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

100 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0 220
x

Figure 2.2: Example of a box plot

2.1.1 Graphical tools

There exist quite a few graphical tools to present data for exploratory data analysis

and visual inspection, for example, bar graph, pie chart, histogram, line graph and

so on. In this section, we will focus on two graphical methods that have been widely

used in outlier detection.

Box Plot

A box plot is a graphical approach for conveying the information of data location

and variation. It can check outliers in one or more sets of data. Figure 2.2 shows

a box plot created using the online software StatCrunch4.0 [68]. In this example,

a normally distributed dataset containing three hundred one-dimensional data is

examined. The box plot provides us with a five marked summary of the important

features of the data distribution. The line in the center of the rectangular box at 160

represents the median, which divides the data into two equal halves. The two ends

of the rectangle at 149 and 174, represent the lower quartile and the upper quartile,

of which the lower quartile is defined as the 25th percentile and the upper as the

75th percentile. Specifically, 25% percent of the data values are less than 149 while

75% of the data values are less than 174. Thus the box itself has 50% of the data.

The whiskers (short vertical line segments at 115 and 214) show the minimum and

maximum values of the data being considered normal. They are determined using a

10

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

220

200

1 80

160

140

120

100

1 0 0 120 1 4 0 1 6 0 1 8 0 2 0 0 220
x

Figure 2.3: Example of a scatter plot

heuristic function that depends on the lower and upper quartiles. Data points outside

the whiskers are displayed as outliers. In Figure 2.2, six data points are marked as

outliers.

Scatter Plot

A scatter plot is a graphical tool widely used to display measurements of two vari­

ables. The resulting pattern indicates the relationship between the two variables.

Figure 2.3 is a scatter plot created by StatCrunch4.0 [68]. The dataset in this sam­

ple have 300 points in a 2-D space. Both of the variables have a normal distribution

and they are generated independently. The plot reveals that variation of y does not

depend on x in the dataset. Outliers in the plot are exhibited as the data points lying

on the outer skirt of the data body.

In summary, box plots and scatter plots graphically display the spread of the

data. They are useful tools for visual inspection of outliers in a dataset. However,

the limitation of displaying data with only one or two dimensions has excluded

them from receiving much attention from the data mining community.

2.1.2 Distribution-based Outlier Detection

As the name suggests, the definition of a distribution-based outlier is based on a

standard probability model, such as Normal, Poisson or Binomial distribution. The

most well-known method for detecting distribution-based outliers is to compute

11

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

68%

Figure 2.4: standard normal distribution

2-score for each data point. In a 2-score test, the data is fitted into a normal distri­

bution. The 2-score for each data point indicates how far and in what direction it

deviates from the mean of the data distribution, in other words, it is the number of

standard deviations from the mean. The value of 2-score is calculated based on the

mean /i and standard deviation a of the entire dataset. The formula for 2-score is as

follows:
x — a

z = -------- .
a

Outliers are identified by following the heuristic that any data point with a z-

score greater than three is an outlier. Figure 2.4 illustrates a standard normal distri­

bution where the mean is 0 and the standard deviation is 1. As shown with vertical

lines of different shades of the color, about 68%, 95%, and 99.7% of the data fall

within 1, 2, and 3 standard deviations from the mean in a normal distribution, which

explains why 2 = 3 is usually used as a cutoff value to differentiate between normal

and abnormal. While the rule is simple as well as effective in many situations, this

method suffers from inaccuracy when the data is skewed, especially when the sam­

ple size is small since the test parameters mean and standard deviation are obtained

from the entire data, including the outliers.

For the multivariate cases, a common method that has been used in statistics is

the Mahalanobis distance which, roughly speaking, is defined as the distance be­

tween two data points weighted by the covariance matrix of an assumed underlying

distribution.

12

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

250

200

150

100

50

0
0 50 100 150 200 250

Figure 2.5: Some depth contours for a dataset containing 500 points

While a large number of discordancy tests have been developed for different

scenarios, there are two key drawbacks of distribution-based techniques. The first

drawback is obvious, i.e., they require prior knowledge of the data distribution.

Another drawback is that most of the statistical tests are designed in terms of a

univariate distribution and they are specific to certain distributions and number of

outliers. In numerous data mining activities, we do not usually have enough knowl­

edge about the underlying data model or expected number of outliers. Moreover,

fitting a set of complex data into a standard distribution is too expensive and in

some cases, impossible. The ever-increasing data size and attributes are also nega­

tive factors that prevent distribution-based methods from being applied to practical

problems in data mining activities.

2.1.3 Depth-based Outlier Detection

Based on computational geometry, depth-based method organizes data in layers of

a convex hull. The method then computes the depth contours [63] or different layers

of the convex hull. Outliers are expected to be found in the data lying in the outside

perimeter layers. To be more concrete, we borrow the graph from [44] showing the

13

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

first few depth contours for a dataset having 500 points in Figure 2.5.

The advantage of depth-based methods is two-fold. On one hand, it avoids

the assumption of a probability distribution for the data. On the other hand, it is

able to identify outliers without requiring any distance function in the feature space

which is an advantage over some newly developed methods such as the distance-

based methods to be discussed in the next section. However, the key issue with

depth-based method is that the complexity of computation of a convex hull with
k

A:-dimension has a lower bound Q (N 2), which makes this approach not very useful

for large high dimensional datasets.

2.2 Outlier Detection in Clustering Analysis

Being one of the unsupervised learning tasks, clustering is the process of group­

ing similar data objects into classes. Research on clustering analysis has attracted

attentions from different areas, including statistics, data mining, machine learning,

text retrieval and document categorization. While there has been a rich literature on

clustering analysis [31], recent efforts have been focused on finding efficient and

effective clustering methods that can handle large multi-dimensional datasets.

Existing clustering methods can be broadly classified into four categories: parti­

tioning methods, hierarchical methods, density-based methods and grid-based meth­

ods. While all these methods aim to find meaningful clusters in the database, some

have been designed to be able to detect outliers while the clustering is conducted.

We will briefly discuss the ideas used in some of the clustering algorithms where

outlier detection is considered.

CLARANS [53], a partitioning clustering method gives each object a silhou­

ette coefficient to specify how much the object belongs to a cluster. An outlier is

identified if the silhouette coefficient is below a certain threshold. The hierarchical

method BIRCH [53], marks an object as an outlier if it is far enough from the rep­

resentative object, or seed. WaveCluster [65] is a grid-based method that is able to

filter out noise or outliers through Wavelet transforms. In all of the above methods,

outliers are merely identified as a by-product of the clustering process.

14

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The density-based method DBSCAN [20] defines outliers among the data ob­

jects. Outliers have a low density in their neighborhood so that they can not be

grouped into any clusters. A more recent work [17] shows some interesting re­

lations between DBSCAN and some outlier detection methods to be discussed in

the next section. It demonstrates that DBSCAN and one of the distance-based ap­

proaches, DB-outlier \ are almost complementary; and DBSCAN is also comple­

mentary with density-based and connectivity-based outlier schemes within a den­

sity cluster or far away from some clusters. Interested readers are referred to the

work in [17] for details. TURN* [24], a density-based approach developed in our

research lab, clusters data objects based on a series of resolutions. A density factor

is defined for each object and outliers are those external points with low density

values.

Clustering methods aim to achieve optimization in classifying data into groups.

Outliers are considered noise and once identified, are usually removed to reduce

their influence on the clustering process. The major issue of using these methods

to detect outliers is the efficiency and accuracy. Since normal data accounts for the

majority part of a dataset, the computation for clustering data objects is often ex­

pensive, which in most cases is unnecessary for outlier detection. A well-designed

outlier detection method should be able to find meaningful outliers without worry­

ing about how data are assigned to clusters.

2.3 Distance-based Outlier Detection

2.3.1 Basic Concepts

An important topic in outlier detection and analysis is the formulation, or formal

definition of outliers. As discussed above, most statistical approaches model the

data points using a probability distribution such that an outlier is defined with re­

spect to the underlying data model. Such definition is not feasible for most data

mining activities due to the increasing difficulty and cost of fitting large and multi­

variant data to stochastic models.

1 An object O in a dataset T is a D B (p , D)-outlier if at least fraction p o f the objects in T lies
greater than distance D from O [45].

15

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The concept of distance-based outlier was introduced in 1998 by Knorr and Ng

[45]. A distance function is used as a metric to identify outliers in large datasets with

unknown probability distribution. The basic idea is intuitive and easy to understand,

i.e., points that do not have enough neighbors are outliers. Therefore, outliers are

identified on the basis of the nearest neighborhood density. Thus, how to define the

local neighborhood of a point is the essence of the distance-based method.

Defintion 2.3.1. An object O in a dataset T is a DB(p, D)-outlier i f at leastfraction

p o f the objects in T lies greater than distance D from O [45, 47].

An object is marked as a DB(p, D)-outlier if less than or equal to (1 — p) * N

objects are within distance D of the object. In other words, a point is considered

normal if it has sufficient close neighbors. If the neighbors of a point lie relatively

far away, it is regarded as exceptional and classified into outliers. Figure 2.6 shows

a small dataset containing 105 points. To identify DB(p, D)-outliers in this sample

dataset, let p — 95%, and D = 20. The Euclidean distance is used as the metric

between points. We can see that points o l has no neighbors in the circle (radius

D = 20) and points o2, o3, o4 and o5 all have less than five points within their

respective neighborhood. On the other hand, every point in the big cluster has

more than five points within its D = 20 neighborhood. Based on Definition 2.3.1,

ol, o2, o3, o4 and o5 are considered D B (9 5%, 20) outliers.

Motivated by this work, more research on outlier analysis has been conducted

and different definitions of distance-based outliers have been proposed. In [59], the

authors argue that the distance parameter D used in DB(p, D) -outlier could be hard

to figure out priori and its selection often involves trial and error. They proposed a

method which identifies outliers based on the distance of a point to its kth nearest

neighbor. The main idea is straightforward: the farther away a point is from its k th

nearest neighbor, the more likely it is an outlier. A ranking mechanism is introduced

for outlier identification and the top n points having the lowest rank are declared to

be outliers. The definition is formalized as follows [59].

Defintion 2.3.2. Given an input data set with N points, parameters n and k, a

point p is a D kn outlier i f there are no more than n — 1 other points p' such that

16

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

240

220

800

180

180

140

1®

100

SO

40

« m 80 100 120 140 160 100 200 220 240 260

Figure 2.6: Example of DB(p, D)-outlier detection, where p = 95%, and D = 20

D k(p') < D k(p), where D k(p) denotes the distance o f point p from its k th nearest

neighbor.

The work enhances distance-based outliers through the use of kth nearest neigh­

bor from the point. The intuition behind this definition is very simple, i.e., given

the parameter n which is the number of outliers to be mined, assign each data

point a neighborhood density and output the n points that have the lowest density.

Therefore, the top n points with the greatest distance to their respective kth near­

est neighbors are outliers. With the notion of D k outliers, the neighborhood of a

point is specified by its kth nearest neighbor instead of the radius D and density p

required in Definition 2.3.1.

Similar to this, Eskin et al [19] reformulated distance-based outliers in terms of

the nearest neighbors of a point. The difference lies in that the method used in [19]

computes the sum of the distance to the k-nearest neighbors of the point instead of

the distance to the kth nearest neighbor. Each data point is assigned a k-NN score,

which is the sum of the distance to its k nearest neighbors. A data point is declared

as an outlier if its k-NN score is high. The major advantage of this definition over

the one in Definition 2.3.2 is that it integrates the information of all the k closest

17

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

nearest neighbors for a given data point rather than only its kth nearest neighbor.

2.3.2 Algorithms for Mining Distance-based Outliers

Compared to traditional outliers studied in statistics, the definition of distance-based

outliers is distribution-free, more flexible, and more computationally feasible. The

major issue in detecting distance-based outliers is how to efficiently find such out­

liers. Since a nearest-neighbor search is required for each of the n data points,

straightforward implementations such as the Nested-Loop [45] need to compute the

distance between each pair of data points, resulting in an 0 (n 2) running time. In an

effort to quickly find outliers in a large dataset, a number of researchers have been

working on improving the efficiency of the algorithm by eliminating unnecessary

computation. Techniques used for this purpose include different index structures,

pruning rules and the partition of the feature space. The common goal is to develop

such algorithms that are scalable to large and high dimensional datasets.

In the following discussion of distance-based algorithms, N is the number of

data objects in a dataset, and k is the dimensionality of the data.

Index-based Algorithms

Since distance-based methods define an outlier in term of its neighborhood, i.e., the

distance to its close neighbors, finding distance-based outliers can be transformed to

the problem of nearest neighbor search for each point. A spatial indexing structure

such as R-trees [30], KD-trees [9, 64] or X-trees [10] can be used to organize the

data so that the search for neighbors of a query point can be sped up. Outliers

are selected among those candidates that have least number of close neighbors or

farthest from its neighbors depending on the definition.

Using a spatial index, the number of distance computation can be significantly

reduced. Analysis of the approach reveals that it works extremely well and the av­

erage running time can be reduced to 0 (n log n). Since most of the index structures

are designed to work well only in low to moderate dimensional spaces, as dimen­

sionality increases, nearest neighbor search with index structure gets progressively

harder. Under the worst case scenario, the complexity of an index-based algorithm

18

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

is 0 (k n 2), where k is the number of dimensions.

Nested-loop (NL) Algorithms

A well-known class of methods in outlier detection is the nested-loop algorithm in

which distance between points is calculated iteratively. The algorithm is straight­

forward but the obvious drawback is its quadratic complexity due to the pairwise

distance computations between data points. A number of methods have been pro­

posed to improve its efficiency. In order to avoid brute-force search, Knorr and Ng

[45] proposed the block-oriented NL algorithm that reads data in blocks so that 10

access is minimized.

Recent study on nested-loop algorithms for finding outliers has achieved a near

linear time performance given that the input data is in random order [8], which can

be done in linear time by repeatedly shuffling the data into random piles and then

putting these piles together. The key point in the modified NL algorithm is the use

of a pruning rule so that a data point is removed as soon as it is classified as a

non-outlier. The number of distance computation is therefore significantly reduced.

Table 2.1 shows the details of this variation of the nested loop algorithm presented

in [8].

The algorithm assumes that the input data are already in random order. The

score function is based on the distance from a point to its k nearest neighbors.

The algorithm proceeds by keeping track of the closest neighbors for each data

point. The score, which is either the distance to the /cth nearest neighbor, or the

average distance to the k neighbors, of the weakest outlier found so far is set as the

cutoff value that increases while more data are processed leading to more outliers

being found. Data points that have a score lower than the cutoff value are marked

as non-outliers and removed immediately. This reduces the number of distance

computation since non-outliers are eliminated at some early stages. With random

ordered data points, the algorithm achieves near linear performance and scales well

to large multi-variant datasets.

19

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table 2.1: A variation of NL algorithm for finding distance-based outliers [8]

Procedure: Find Outliers
Input: k, the number of nearest neighbors; n, the number of outliers to return;
D, a set of examples in random order.
Output: O, a set of outliers.
Let maxdist(x, Y) return the maximum distance between x and an example in Y.
Let Closest/a:, Y, k) return the k closest examples in Y to x.
begin
1. c <— 0 //set the cutoff for pruning to 0
2. O <— <p //initialize to the empty set
3. while B <— get-next-block/D) { load a block of examples from D
4. Neighbors/^) <— <f> for all 6 in B
5. for each d in D {
6. for each b in B, b ± d {
7. if | Neighbors/!)) | < /;: or distance/6, d) < maxdist(6, Neighbors(6)) {
8. Neighbors(6)«— Closest(6, Neighbors(6)U d, k)
9. if score(Neighbors(6), 6) < c {
10. remove 6 from B
11. » } }
12. O <— Top/// U O. n) // keep only the top n outliers
13. c <— min(score(o)) for all o in 0 //cutoff = score of the weakest outlier
14. }
15. re tu rn O
end

20

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Partition-based Algorithm

A few partition-based algorithms have been developed to speed up the search for

outliers. By partitioning the space into regions, such algorithms aim to prune out

data points that cannot be outliers. Distance computation for finding outliers is

conducted only among the remaining data, which can be far less than the original

data.

One of such methods is proposed by Knorr and Ng [45], in which the data

space is partitioned into equal sized cells. After each data point is mapped to an

appropriate cell, the algorithm quickly eliminate two types of cells: (1) cells that

contain too many data points, and (2) cells that are the immediate neighbors of those

in (1). Execution time is thus significantly reduced since a large number of data

points are pruned without implicit distance computation. As pointed out in [45],

cell-based algorithm has a time complexity linear in the data size, but exponential

in the dimensionality k when k > 2. Experiment results reveal that NL algorithm

outperforms cell-based algorithm when k > = 5.

Another version of partition-based algorithm uses a linear time clustering al­

gorithm such as the pre-clustering phase of BIRCH [79] to generate the desirable

partitions by clustering the dataset [59,19]. In [59], the authors show that partition-

based methods outperform both the index-based and block NL algorithms.

Projection-based Algorithms for High Dimensional Data

Most of the outlier methods we have discussed compute the distance between points

in the full feature space. Such distance measure can be meaningless for many ap­

plications where data contain hundreds of dimensions because data are sparsely

distributed in high dimensional space. The notion of finding meaningful outliers

in very high dimensional data becomes far more complex. To tackle this problem,

a few solutions have been proposed. Aggarwal and Yu in [2] addressed this prob­

lem by defining outliers in lower dimensional projections. Outliers are identified

according to the density distribution of data projections onto subspaces. Before

projection is performed, data are first discretized into grids and each attribute of

21

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

the data is divided equi-depth ranges. A sparsity coefficient is used to measure the

density of the projected data cube. Cubes having negative sparsity coefficient con­

tain data with low densities. Two algorithms were discussed in [2]: a naive brute

force algorithm and an evolutionary algorithm. It is shown that the brute-force algo­

rithm is slow but gives the best results. The fundamental problem lies in that it can

hardly deal with high dimensional data. Compared to the brute-force methods, the

evolutionary algorithm is close in effectiveness in most cases but far more efficient.

2.3.3 Summary of Distance-based Outlier Detection Methods

The notion of D B (p , D)-outliers is a breakthrough in outlier detection in data min­

ing. It generalizes the notion of distribution-based outliers [45] and is more suitable

for numerous applications where no standard fitting distribution can be observed

for the datasets. Although a reasonable distance function is assumed in D B (p, D)-

outlier detection, there is no need to define an explicit distribution and the fact that it

is computationally feasible for large datasets makes it a promising direction toward

outlier analysis.

In summary, distance-based outliers are defined by using some degree of den­

sity of a data point relative to its nearest neighbors under a distance metric, or its

neighborhood density. Let X — { x x, • ■ •, xn} be the dataset and let d(-, •) be a dis­

tance metric. The neighborhood density of a data point x G X can be defined in the

following three ways:

1. 0-1 Density D (x ,k , t) where k and t are two parameters: D (x ,k , t) = 0 if

there are fewer than k other data points within distance t and D (x ,k , t) = 1

otherwise;

2. Max Density D m(x ,k): the reciprocal of the distance to the fc-th nearest

neighbor;

3. Average Density D a(x ,k): the reciprocal of the average distance to the k

nearest neighbors.

It is clear that the first definition divides a dataset into exactly two groups: inliers

and outliers. There is no measure of how much a data point is outlying and the

22

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

C2

* *

Cf

02

Figure 2.7: Failure of detecting outlier o l using distance-based methods

identified outliers are not ranked. The second and third definitions introduce the

ranking mechanism based on the distance to the k nearest neighbors of a point. In

such cases, each outlier is assigned a value indicating the degree of its deviation

from its close neighbors.

Although distance-based methods enjoy many practical advantages over tradi­

tional outlier detection methods, they have their limitations.

• A distance-based method tends to find outliers global to the whole dataset,

which is adequate for homogeneous data or data with consistent characteris­

tics, but is not satisfiable for datasets consisting of clusters of diverse density.

A typical example is shown in Figure 2.7.

• Only binary property is assumed for each data point, i.e., either an outliers or

not.

• Outliers are either not ranked or ranked based purely on the distance to a

point’s k nearest neighbors. While the ranking is appropriate for global out­

liers, it can be misleading for outliers local to their own neighborhood.

In Figure 2.7, the dataset contains two clusters C l and C'2 as well as two outliers

ol and o2. With the appropriate selection of parameters(p and D or a single k), o2

can be easily marked as an outlier by using distance-based methods. In contrast,

o l can not be successfully marked as an outlier since it has similar neighborhood

23

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

density as many points in C 2. In such case, it is almost impossible to determine the

right values for the parameters. If the distance parameter D as defined in Definition

2.3.1 has a big value, o l is very likely to be grouped into cluster C l. Otherwise, it

will be an outlier along with many of the points in cluster C 2. The problem of being

unable to identify outliers local to their own neighborhood leads to the discussion

in the next section on the local outlier detection.

2.4 Local Outlier Detection

In an effort to overcome the shortcomings of distance-based methods and effec­

tively discover meaningful outliers for a wide variety of datasets, Breunig et al.

[12, 13] advocated finding density-based local outliers. A new concept local out­

lier factor (LOF) was introduced to measure the degree to which an object is iso­

lated from its surrounding neighborhood. Another work is the connectivity-based

method, which is developed to enhance the LOF scheme by effectively identifying

outliers that cannot be distinguished from the surrounding data patterns exclusively

by neighborhood density.

In the following subsections, we will review the definition of local outlier and

the algorithms to mine local outliers.

2.4.1 Density-based Outlier Detection: Local Outlier Factor (LOF)

Unlike the definition of distance-based outliers that is intuitive and self-explainable,

the definition of LOF is based on a number of new concepts as defined in [13].

Let D be a dataset. Let k be a positive integer and let d(p, q) denote the distance

between two objects p and q in D.

Defintion 2.4.1. (^-distance of p)

The k-distance of data point p, denoted as k-distance(p), is defined as the distance

d(p, o) between p and data point o such that:

1. for at least k objects o' E D \ {p} it holds that d(p, o') < d(p, o), and

2. fo r at most k — 1 objects o' E D \ {p } it holds that d(p, o') < d(p, o).

24

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The uniqueness of the above definition lies in that fc-distance of p is defined

with respect to a specific data point o. With the traditional kth nearest neighbor

definition, if there are more than one kth nearest neighbors, only one of them is

used in density calculation. With this definition, all of these kth nearest neighbors

are used in density calculation.

Defintion 2.4.2. (fc-distance neighborhood of p)

The k-distance neighborhood of p is a subset of data points that contains every

object whose distance from p is not greater than the k-distance. It is denoted as

N k - d i s t a n c e (p) (p) = {<? G D \ {p}\d(p, q) < k - d istance(p)}.

As the object o defined in /c-distance(p) may not be unique, it is possible that

there are more than k objects in the fc-distance neighborhood of p. Though we call

Nk - d i s t an ce { p) (p) the fc-nearest neighbors of p, the number of items in the nearest

neighbor set is actually greater than or equal to k.

Defintion 2.4.3. (reachability distance of p w.r.t object o)

The reachability distance of object p with respect to object o is defined as

Note that the higher the value of k, the more likely the reachability distance for

objects within the same neighborhood has the same value.

Defintion 2.4.4. (local reachability density of p)

The local reachability density o fp is defined as

Clearly, the local reachability density for an object p is the reciprocal of the av­

erage distance between p and those objects in its -neighborhood. It is an estimation

of the density around p ’s neighborhood.

Defintion 2.4.5. (outlier factor of p)

The local outlier factor o fp is defined as

reach — d is tk(p, o) = m ax{k — distance(o), d(p , o)}.

lrdk(p) = l / [
X) reach — d is tk(p, o)

oeNk(p)

irak{o)
J z v ,TJM

m P)\

lrdk(o)
l rdk (p)

L O F k(p)

25

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

LOF is the average of the ratio of the local reachability density of p and those of

p ’s fc-nearest neighbors. What distinguishes it from the previous outlier detection

methods is that it takes into account not only the neighborhood density of p but

also the neighborhood densities of its k- nearest neighbors. Being assigned a LOF

value, each data object has a degree of being outlying relative to its local cluster,

i.e., the cluster it is in, or the clusters that are close to it. A higher value of LOF

for an object p indicates that p lies in a sparse region in the context of its local

neighborhood. Some general properties of LOF include

• objects deep in a cluster have an LOF value close to 1, which favors uniformly

distributed data;

• LOF value changes non-monotonically with k.

• Generally, LOF(jp) is bounded and the lower and upper bounds are associated

with p ’s direct and indirect neighborhood.

Algorithms for Finding Density-based Local Outlier Factor

A two-step algorithm has been proposed to detect local outliers. In the first step, the

algorithm finds the fc-nearest neighbors for each point. A spatial index structure has

been used to improve the efficiency. The average complexity for k nearest-neighbor

query is 0 (n log(n)) with low dimensional data. In the second step, the local outlier

factor (LOF) is computed. The algorithm scans the database twice. The first scan

finds the estimation of the density for each object so that LOF can be calculated in

the second scan. The time complexity of this step is 0 (n).

Experiments show that density-based method is more powerful in identifying

local outliers than distance-based methods. However, the tradeoff is the high com­

putation cost. In order to improve the efficiency, Jin et al. introduced in [40] the

concept of “micro-cluster” and proposed the micro-cluster-based local outlier de­

tection algorithm. Observing that outliers are only a very small portion of a dataset,

Jin et al. attempt to reduce the computation cost by constraining the A;-nearest-

neighbor search to only the top-n local outliers. A “cut-plane” method is designed

26

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

to identify the boundary between a data point and a constructed micro-cluster. The

algorithm works in three steps.

• Building micro-clusters using BIRCH’s [79] preclustering algorithm.

• Computing upper and lower bounds on the LOF value for micro-clusters.

• Detecting top-n outliers by their rank.

Experiments conducted in [40] indicate that the micro-cluster TOP-n LOF min­

ing method outperforms the two-step algorithm. It is scalable to large and high

dimensional datasets.

2.4.2 Connectivity-based Outlier Detection: Connectivity-based
Outlier Factor(COF)

As shown in Figure 1.1 (b) in the introduction, an important type of outliers is the

structured outliers that are considered w.r.t. data pattens. They are data points that

do not fit into the data model or data pattern. Such outliers may or may not have

similar densities as the data patterns in their neighborhood. Although LOF suffices

for identifying outliers having lower density than their neighborhood density, it

may rule out outliers that have similar density with the neighboring non-outlier

patterns. The connective-based outlier detection scheme was proprosed by Tang

et al. in [71]. The motivation behind this scheme is to separate the notion of low

density from that of isolativity. The notion of “low density” refers to the fact that an

object is in a relatively sparse region while “isolativity” refers to the degree that an

object is connected to other objects. With this scheme, each data object is provided

with a connectivity-based outlier factor (COF) measuring the degree to which it is

deviating from a connected pattern. Figure 2.8 is an instance of an isolated outlier

used in [71]. For a dataset like this, LOF would fail to identify the single outlier ol

due to the low density patterns around its neighborhood.

While we do not provide the detailed concepts and definitions for COF, we will

illustrate the method using a simplified example as shown in Figure 2.9. For formal

definitions, please refer to [71] for details.

27

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 2.8: Failure of Outliers detection using LOF

11

1 0

11

10

• •

5\
4

(a) m

Figure 2.9: A simplified example showing outlier detection using COF

28

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Let D be a dataset. Let p be an object in D. Let A: be a positive integer. Let

d(p, q) denote the distance between p and q. Let G = {p i,P 2 , where r is a

positive integer, be a subset of D. Let Nk(p) be the A;-neighborhood of p as defined

for LOF. In the example in Figure 2.9, D = { 1 ,2 ,3 ,4 ,5 ,6 , 7 ,8 ,9 ,10 ,11}, k = 8.

SBN-path (set based nearest path)

The SBN-path of an object expands itself by including the nearest neighbors. As a

result, SBN-path exhibits the order in which the nearest objects are presented. For

neighbors having the same distance to an object, a pre-defined order is taken so that

the SBN-path is unique for each object.

In Figure 2.9 (a), the A:-neighborhood of object 1 is iVs(l) = (3, 2 ,5 ,6 ,4, 7 ,8,9},

thus,

Si = < 1 , 3 , 5 , 4 , 6 , 7 , 8 , 9 , 2 > .

SBN-trail (set based nearest trail)

From Figure 2.9 (b), we have SBN-trail for data point 1 as

tr , = < (1,3), (3,5), (5,4), (5 ,6), (6 , 7), (7 ,8), (8 ,9), (1,2) > .

Average chaining distance

The average chaining distance from p\ to G \ p\ is defined as

1 r_1 2 (r — i)
ac — distG(pi) = ---- V ' -------------- distieA.

r — 1 r-f r4= 1

The average chaining distance is the average of the weighted distances in the

cost description of the SBN-trail. It provides a measure of how tight the objects on

an SBN-trail are chained. It is the use of weight here that differentiating COF from

LOF. Corresponding to the average chaining distance, the local reachability density

of an object p calculated for LOF treats all the objects in p ’s k distance neighbor­

hood in the same manner. As a consequence, LOF can not successfully detect cer­

tain outliers if an improper value of k is used. By adding weight in the computation

of average chaining distance, COF distinguishes the roles of the neighboring points.

29

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Larger weights are assigned to the earlier items appeared in SBN-trail. Therefore,

edges close to pi contribute more for ac — dists(p i) if they have large values.

Consider the dataset in Figure 2.9. Suppose we have the following cost descrip­

tion (length of edges) for object 1 :

^ = { 1 ,2 ,1 ,1 ,1 ,1 ,1 ,3 } ,

we can compute the average chaining distance for object 1 and have

ac—distNk(i)u{i}(l) = T̂ j— 7t—-(8T+7-2+6T +5T 4-4T -I-3T -I-2T +T 3) = 1.25
(y — 1) • y

COF (connectivity-based outlier factor)

The connectivity-based outlier factor at object p with respect to its k-neighborhood

is defined as
C O F p) = l ^ b) ! • a c ~ d i s t Nk{P)

J2o€Nk(o) a c ~ d i s t N k (o)

COF of an object p is the ratio of the average chaining distance of p to the

average of the average chaining distance of p ’s k-distance neighbors. It captures the

degree to which an object is shifted away from the surrounding pattern or structure.

High value of COF for an object indicates that the object is strongly shifted away

from its close pattern and is more likely to be an outlier.

Apart from the capability to identify outliers deviating from low density patterns

as demonstrated with the above example, it is indicated in [71] that connective-

based method is nearly as powerful as density-based method in detecting outliers

deviating from high density patterns. Like LOF, COF also has the two properties.

• COF value for an object deep inside a cluster is close to 1.

• There exist upper and lower bounds for COF.

2.4.3 Algorithms for Finding Connectivity-based Local Outlier
Factor

The design of the COF algorithm is identical to that of the two-step algorithm for

obtaining LOF. In the first step, the algorithm searches for the k-nearest neighbors

30

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

and computes the SBN-trails for each object. COF values are calculated in the

second step. By applying an index tree, this algorithm has a similar time complexity

as the LOF algorithm.

2.4.4 Summary of Local Outlier Detection

In general, the notion of an outlier based on a comprehensive outlier factor is very

important in outlier detection for real world datasets. In many applications, datasets

are often more complex and can exhibit various characteristics. The definition of

outlier factor (LOF or COF) is able to capture the degree to which an object is devi­

ating from the other points in its neighborhood. One remarkable common property

of such score-based methods is that the identified local outliers are ranked, which

makes it superior in dealing with datasets containing different clusters and patterns

(in density and shape) than many existing methods.

Both LOF and COF require a user-defined parameter k, or M in P ts . The au­

thors in [13] presented some guidelines for choosing k within a range of values.

However, it remains to be an issue as to how to select an appropriate value for a

user-defined parameter in any outlier detection method.

2.5 Neural network Outlier Detection

Neural network has proven to be an effective approach to classifying patterns. A

Replicator Neural Network (RNN) is a feed-forward multi-layer perception net­

work with three hidden layers. This type of neural networks has powerful approxi­

mation capabilities. They have been used as a tool in image and speech processing

[1, 35]. RNN-based outlier detection method was first proposed by Hawkins et al.

in [34]. Figure 2.10 is a schematic view of the fully connected Replicator Neural

Network used in [34].

An RNN model is trained from a set of sample data by capturing the most im­

portant features. The input variables are also the output variables so that an implicit

and compressed data model is constructed during the training phase. Reconstruc­

tion error is then used as the measure indicating how far an individual object is

31

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 2.10: A schematic view of a fully connected replicator neural network

outlying. The insight is that outliers tend to be reproduced poorly by a trained data

model. Outlier Factor (OF) is defined as the average reconstruction error over all

features for each data object. It provides a score for measuring how much a certain

object is outlying against the rest of the data in the dataset. Since outliers deviate

from the common data pattern, they tend to have higher reconstruction errors, lead­

ing to a higher value of OF. The RNN-based method consists of three steps. First,

sampling the data; second, training of the RNN; and third, Computing OF value for

each data object. Outliers are ranked according to their OF scores. The higher the

score, the stronger an outlier is.

A comparative study conducted between RNN and three other methods is pre­

sented in [76] by the same authors who developed the RNN method. They provide

an empirical evaluation of the RNN approach based on both small statistical datasets

and large data mining datasets. The experiment results show that RNN method per­

forms satisfactorily for both small and large datasets. However, the drawback of

long training cycles which leads to high computation costs often prevents RNN-

based method from being applied to practical problems. In addition, like other

flexible nonlinear estimation methods (e.g., kernel regression), RNN-based method

can suffer from either underfitting or overfitting the data, which will affect the ef­

fectiveness of outlier identification.

32

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

Chapter 3

An Efficient Reference-based
Approach to Outlier Detection in
Large Datasets

A bottleneck to detecting distance and density based outliers is that a nearest-

neighbor search is required for each of the n data points, resulting in a quadratic

number of pairwise distance evaluations. In this chapter, we propose a new method

that uses the relative degree of density with respect to a set of reference points to es­

timate the neighborhood density of a data point. The running time of our algorithm

based on this approximation is 0 (R n log n) where n is the size of the dataset and R

is the number of reference points. Candidate outliers are ranked based on the outlier

score assigned to each data point. Theoretical analysis and empirical studies show

that our method is effective, efficient, and highly scalable to very large datasets.

3.1 Motivation

Detecting distance-based outliers has attracted much attention over the last decade.

Compared to traditional outliers studied in statistics [6,33], the definition of distance-

based outliers is distribution-free, more flexible, and more computationally feasible.

A bottleneck to the detection of distance-based outliers is that a nearest-neighbor

search is required for each of the n data points. Consequently, straightforward im­

plementations such as the Nest-Loop method need to compute the distance between

each pair of data points, resulting in an 0 (n2) running time.

33

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Since the seminal work of Knorr and Ng [45], much effort has been devoted

to improving the efficiency of algorithms for detecting distance-based outliers. By

using spatial index data structures such as the k-d tree and its variants, the average

running time can be reduced to 0 (n log n) with a hidden constant depending expo­

nentially on the dimension of the data. Several heuristics have also been proposed

to reduce the number of required nearest neighborhood search. In [45], a cell-based

approach for detecting distance-based outliers was investigated, which is still expo­

nential in the dimensions, but linear in the size of the dataset under the assumption

that both of the two negatively-correlated parameters (percentage p and radius D)

of the algorithm are set to their ideal values. In [59], some clusters of data points

are eliminated from consideration based on the result of pre-clustering the dataset,

a task that is dual to outlier detection. In [8], it is observed that by keeping track

of the closest neighbors found so far, the nearest neighbor search for a specific data

point can be stopped if it becomes clear that the data point cannot be one of the

pre-specified number of outliers. While the algorithm can indeed prune many dis­

tance calculations, the worst-case running time is still 0 (n 2). Empirical evidence

and theoretical arguments under some assumptions in [8] show that the algorithm

based on this observation may have a sub-quadratic running time in practice. The

study of fast algorithms for the nearest neighbor problem is a traditional topic in

algorithm and there is a huge amount of literature discussing various approaches to

solve the nearest search problem in a time and space efficient way. For the case of

two dimensional space, there exist algorithms that solve the problem in 0 (n log n)

time. For datasets in high dimensional space, there are a variety of exact, approxi­

mation, and randomized algorithms with different time and space time complexity

[26, 39],

In this chapter, we propose a new approach to reducing the number of distance

evaluations. The idea is to rank the data points based on their relative degree of

density with respect to a given set of reference points. For each reference point, we

calculate its distance to each of the data points and transform the original data space

into a one dimensional dataset. Based on the obtained one-dimensional dataset that

contains the distances from a reference point to each data point, the relative degree

34

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

of density (w.r.t the reference point) of each data point is calculated. The overall

relative degree of density of a data point is defined as the minimum relative de­

gree of density over all the reference points. The running time of the algorithm

is 0 (R n log n) where R is the number of reference points and n is the size of the

dataset. The method is further optimized by gradually increasing the number of ref­

erence points. For distance measures that satisfy the triangle inequality, data points

identified by our reference-based method as outliers are most likely considered as

outliers by the distance-based approach. In addition to the properties that distance-

based method has, our approach can also find local outliers specific to various data

patterns in complex datasets.

In the following discussion, let X = { x X) ■ • ■, xn} be the dataset and let d(-, •)

be a distance metric.

3.2 Review of Distance-based Outliers

Distance-based outliers are defined by using some degree of density relative to the

nearest neighbors, or the so called neighborhood density of a data point under a

distance metric [45, 59, 19]. Let x be a data point in X, k be an integer and t be a

real number, the neighborhood density of a data point x G X can be defined in the

following three ways:

Defintion 3.2.1. 0-1 Density D (x , k , t): D (x , k , t) = 0 if there are fewer than k

other data points within distance t and D(x, k, t) = 1 otherwise;

The definition considers being an outlier as a binary property such that the ob­

tained density for each data point divides the whole dataset into exactly two groups:

inliers and outliers. There is no measure of how much a data point is outlying and

the identified outliers are not ranked.

Defintion 3.2.2. Max Density D m(x, k): D rn(x, k) is the reciprocal o f the distance

to the k-th nearest neighbor.

Defintion 3.2.3. Average Density D a(x. k): D a(x, k) is the reciprocal o f the aver­

age distance to the k nearest neighbors.

35

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Definition 3.2.2 and 3.2.3 introduce the ranking mechanism based on the dis­

tance to the k nearest neighbors of a point. The identified outliers are more mean­

ingful since the information of the degree of being an outlier has been integrated

into the analysis process.

Some local outlier detection methods [13, 70] generalize the above concepts

further. For example, the well-known local outlier factor (LOF) introduced in [13]

measures the degree of being an outlier by taking into consideration the data point’s

relative density as compared to those of its nearest neighbors. The advantage of

LOF is that the local densities of the non-outlier data points will have less impact

on the ranking of the outliers. The major parameter in LOF is MinPts, the minimum

number of the nearest neighbors to consider. This parameter is highly application-

dependent and some insight into the structure of the dataset is required in order to

set it correctly. What makes the selection of MinPts even harder is the fact that the

LOF of a given data point is not monotone in MinPts, as has been observed by the

authors [13]. Another related issue with LOF is the existence of duplicated data in

a dataset. Roughly speaking, the LOF of duplicated data points is infinity unless the

MinPts is larger than the number of duplicated data points. As has been mentioned

in [13], this difficulty can be overcome by slightly changing the original definition

of LOF to ignore the neighboring data points that are duplicated.

Our approach follows Definition 3.2.3. Based on the average distance to the k

nearest neighbors, each data point is assigned an outlier score indicating the degree

of its deviation from its close neighbors. Outliers are those with a low neighborhood

density but high outlier scores.

3.3 Reference-based Outlier Detection Method

We use the relative degree of neighborhood density with respect to a given set of

reference points to approximate the degree of density defined in the distance-based

method. Let X — {xi , . . . ,xn} be a dataset and p be a point (not necessarily in X).

Consider the vector that consists of the distances between p and each of the data

36

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 3.1: Reference-based nearest neighbors in the one-dimensional dataset X p

points in X :

X p = {d(xi ,p), 1 < i < n},

which can be viewed as a one-dimensional representation (w.r.t. p) of the original

data.

Defintion 3.3.1. Given a data point x £ X . A data point y <E X , (y f x) is a

reference-based nearest neighbor of x with respect to the vector X p if

\d{x,p) - d{y, p)| = min |d(x,p) - d{xh p)\
1 < i < n

where the minimum is taken over all the and x, 7 ̂ x.

The above idea is illustrated in Figure 3.1, where p is a reference point and the

dataset contains only five points: x 1 ,x 2 , x3, x 4 and x5. To find the reference-based

nearest neighbor of each data point, we first find the distances from each point to

p as shown in the figure. We now have a one-dimensional data set, whose values

are the distances to p , i.e., X p = {d(xi , p) , d(x 2 , p) , d(x 3 , p) , d(x 4 , p) , d(x 5 ,p)}.

For a given data point, the reference-based nearest neighbor is the closest point to

it in the one dimensional data space X p. For example, the reference-based nearest

neighbor of x 4 is x 5 and the reference-based nearest neighbor of x 2 is x \ . Intuitively,

reference-based nearest neighbors with respect to p are not necessarily the closest

in the original dimensional space. For 2D data, points located on the same circle (p

is the center) have a reference-based distance of 0. This property indicates that we

usually need more than one reference points to improve the distance approximation

in order to find global outliers. On the other hand it is a major factor to contribute to

the successful identification of local outliers in a complex dataset. We will discuss

this in detail in the next section.

37

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Defintion 3.3.2. Let x be a data point in X and { . X i , . . . X k } be the set o fk reference-

based nearest neighbors to x. The relative degree of density for x in the one­

dimensional data space X p, denoted as D(x, k, p), is defined as

D{x, k, p) = — -k----------- .
£ E I d(xj ,p) - d(x,p) |

j = i

Given a reference point, the neighborhood density of x is the reciprocal of the

average distance to its k reference-based nearest neighbors in the one-dimensional

space X p = {d(xi ,p), 1 < i < n}.

Defintion 3.3.3. Let P = { p i , • • • ,p r } be a set of R reference points. We define

the neighborhood density of a data point x w.r.t. P as

D p (x,k) = min D(x , k , p r)
1 <r<R

where k is a fixed parameter, indicating the number o f reference-based nearest

neighbors considered for each reference point.

Essentially, data points deviating from their surrounding data patterns will get

lower neighborhood density values. We will discuss the details in the next few sec­

tions. Based on the neighborhood density, each data point is assigned a reference-

based outlier score, or ROS, which is defined as

1 < i < n

Data points in a given dataset are ranked according to their relative degree of

density computed on a set of reference points. Outliers are those with higher values

of outlier scores.

3.3.1 Compatibility with Distance-based Method

By using a set of reference points, we want to obtain the best approximation of the

nearest neighbor search in the original data space, i.e. to approximate the distances

between each data point in the original data space. If the distance metric satisfies

the triangle inequality, we have the following observations that demonstrate the

38

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

effectiveness of using the relative degree of density to approximate the traditional

definition of density. Consider a reference point p and two data points xt ,Xj € X.

Based on the triangle inequality, we have

|d(xi ,p) - d(xj , p)| < d(xi,Xj).

Note that the two sides in the above equation are equal when p, and Xj are on the

same line.

x 5

x-3

x5

(a) (b)

Figure 3.2: Reference-based nearest neighbors satisfying the triangle inequality

Using the dataset in Figure 3.1 as a simplified example, we can see from Fig­

ure 3.2(a) that the reference-based nearest neighbor of x:i is x2, and

d(x3,p) < d(x2,p) + d(x2, x3)

if Euclidean distance is used. Therefore, we have

\d(x3,p) - d(x2,p)\ < d(x2, x3),

as outlined in Figure 3.2(b).

Formally, we have the following

Lemma 3.3.4. For any set of reference points P and any data point xt £ X —

{x \ , X2, ’ * •, xnf

D p {xi}k) > D a{Xi,k)

where D a(xi, k) is the average density as defined in Definition 3.2.3.

39

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Proof. Let {x^ , • ■ ■, x ik} be the k nearest neighbors of xt with respect to the dis­

tance in the original data space X . Then,

1 & i k

~Y^\ d{xi , p) - d (x ij tp)\ < (3.1)
K j = i K 3=1

Although { xH, • • •, xik} are the real k nearest neighbors defined in the original

data space, they are not necessarily the k referenced-based nearest neighbors of

Xi in the data space X p. We show in definition 3.3.1 that reference-based nearest

neighbors have the minimum distance difference in X p. Therefore, the average

distance from { x .n , • • •, x ik} to p is greater than or equal to that of the reference-

based nearest neighbors. Thus we have by Definition 3.3.2

D(xi , k,p) > — -k--------- -- ---------------- (3.2)
\ £ Id(xi ,p) - d(xijtp)|

3 = 1

where the left hand side is the inverse of the average distance from { xh , ■ ■ ■ , x ik}

to p. From equations 3.1 and 3.2, we get

D(x i , k , p) > — -k— ---------
\ £ d{xh xij)

3 = 1

Since the above holds for any reference point in P, it follows that

D p (xh k) > D a(Xi,k),

where D a(xi, k) is the average density as defined in Definition 3.2.3. □

The above shows that for a given data point x, the reference-based density is

lower bounded by the neighborhood density computed using the traditional k near­

est neighbor search method. If a data point has a small enough density to be iden­

tified as an outlier using the reference-based approach, it will have an even smaller

density value using the distance-based method. If a threshold a is used to deter­

mine the outliers, then the above analysis indicates that outliers detected using our

reference-based density are also outliers identified by the KNN-based density.

The following special cases are also interesting and provide further justification

to our proposal. When the data set is one-dimensional, a single reference point

40

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

(say 0) is sufficient and our approach is equivalent to the traditional distance-based

approach. On the other hand, if the dataset itself is used as the set of reference

points, then our approach is identical to the traditional KNN approach. Formally,

we have the lemmas which are easy to prove.

Lemma 3.3.5. Assume that the dataset X — {x'i, • • • , xn} is one dimensional.

Then,

D p {xh k) = D a(xi ,k) , \ /xi e X

for any set P o f reference points.

Lemma 3.3.6. For any data point xt £ X that is contained in the set P of the

reference points, we have

D p (xi,k) = D a(xi,k)

Proof. When Xi is in P, we have

D p (xi ,k) < D(xi ,k,Xi) = D a(xi,k).

The result follows from Lemma 3.3.4. □

3.3.2 Algorithm and Its Implementation

Let P = {pr, 1 < r < R} be a given set of reference points. The algorithm finds

the potential outliers in the dataset X in three major steps:

1. For each reference point p £ P, sort the original dataset X in the one­

dimensional space X p = {d(xi ,p), 1 < i < n}, i.e., data points in X are

ordered according to the distances to p.

2. For each data point x £ X, find the k reference-based nearest neighbors and

compute the average neighborhood density D(x, k,p);

3. Set D p (x, k) of each point x to be the minimum of D(x, k, pr) w.r.t. P and

compute the outlier score ROS.

41

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Outliers tend to have a higher value of ROS and they are ranked according to their

ROS values. The detail is shown in Algorithm 1.

It takes 0(n) time to compute the distance vector X p for each reference point

p G P. The calculation of the average neighborhood density D(x , k , p) involves

finding the k reference-based nearest neighbors. Since the reference-based nearest

neighbors are calculated on the one-dimensional space X p, it suffices to find them

by sorting the original dataset X using the values in X p, or the distances to the

given reference point p as the key. Sorting the distance vector X p can be done in

0 (n log n) time. Once the distance vector X p has been sorted, the calculation of

D(x, k , p) for each data point x € X can be done in constant time. Thus, the overall

time of Algorithm 1 is R (n \ogn + n), which gives a complexity of 0 (R n log n)

where R is the number of reference points.

Algorithm 1 The Algorithm for computing D p (x, k)
Input: dataset X = { x i} 1 < i < n}, reference point set P = {pr , 1 < r < R}
Let X p be the vector containing distances to a reference point p and k be a
positive integer

p = pi
X s = mergeSort(A) //according to the distance vector X PI
for each x € X do

D(x, k, p)=computeDensity(x, X s)
D p (x, k) = D(x, k , p)

end for
for each 2 < r < R do

p = pi //next reference point closest to p
X s = sort(X) according to the distance vector X Pi
for each x £ X do

D(x, /c, jj)=computeDensity(:c, X s, k)
if D(x, k , p) < D p (x, k) then

D p (x, k) = D(x, k , p)
end if

end for
end for

42

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Further Speedup

To further improve the efficiency in computing D p (x, k), we make the following

observation. Assume that px and p 2 are two reference points and that d(px, p2) is

small. Then, data points in X sorted according to their distances to p x are usually

“almost” sorted according to their distances to p2. Thus, if we have processed px

and recorded the corresponding sorted order X Pl = { xn , • • ■, xin}, we can calcu­

late D(x, k , p2) by sorting the ordered list X Pi = { x ix. • ■ •, xin } with the various

adaptive sorting algorithms that can take advantage of the “near sortedness” of the

vector X Pl. One example of such adaptive sorting algorithms is the simple insertion

sort whose running time is in 0 (n + REV) where R E V is the number of pairs of

the elements whose relative order is wrong [21]. Therefore, while the worst case

execution time of computing D p (x, k) is 0 (R n log n), the practical execution time

of our algorithm can be much lower.

3.3.3 Determination of Reference Points

In reference-based approach, each reference point is not necessarily a data point

in X, it is actually a virtual point. The determination of suitable reference points

plays an important role in terms of both the effectiveness and the efficiency of our

algorithm.

In our implementation, we use as reference points the vertices on a grid obtained

by partitioning the axes in the data space to facilitate the selection of the closest

next reference point in the second for loop of the above algorithm. The advantages

of using vertices on the grid over randomly selecting reference points is two-fold:

(1) Reference points are evenly distributed in the whole data space, and (2) the

outlier detection result is deterministic, i.e., the obtained results would be the same

with each run. Another way to position the reference points is to put them on a

convex hull. While it is good in low dimensional spaces, it is not practical for
k

high dimensional data due to the lower bound complexity of fl(n 2) for finding the

convex hull, where k is the number of dimensions.

Recall that the overall running time of our algorithm is in 0 (R n log n) where

43

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

R is the number of the reference points that is independent of the data size n. It is

a constant that is determined by the features of the datasets. For a simple dataset

that contains one cluster, a few reference points (say 9 for 2D data) are enough to

correctly detect the outliers in even very large datasets. Domain knowledge of a

given dataset can usually help in determining the number of reference points. With

real world data, we do not usually have such domain knowledge. By using the grid

vertices approach, we are able to partition the space incrementally from coarse res­

olution to fine resolution to determine the appropriate number of reference points.

Also, notice that all calculations in the current partition are not lost in the next par­

tition, and only calculation for additional reference points is computed. Due to the

sparse property of high dimensional data, it is not necessary to partition the data

space based on all dimensions. The grids can be built on just a few dimensions so

that the number of reference points remains a constant value. We leave the question

of how to select these dimensions for partitioning the space in high dimensional

datasets as an open issue for future work.

3.3.4 Detecting Global and Local Outliers in Complex Datasets

The distance-based method is static in that it uses parameters with fixed values

for all the data points in a dataset. It ignores the cases where data patterns have

different densities, thus considers all data points in a dataset in the same setting. As

a consequence, it always assigns low density values to data points located in sparse

regions though some of them are deep in sparsely distributed clusters. The authors

in [13] also argue that the distance-based outlier detection method can only take a

global view of the dataset, resulting in failure to identify outliers local to certain

clusters in a complex dataset.

By using a set of reference points, our reference-based approach is dynamic

and able to see the whole dataset from various viewpoint. It is possible that the

reference-based nearest neighbors of a given data point are different with respect

to different reference points. Therefore, at one reference point, the local outliers

may have a high neighborhood density due to false nearest neighbors, while at

another reference point, it may be shown lying in a very sparse neighborhood. Since

44

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

C1

C2

C3

Figure 3.3: A 2D dataset containing multiple clusters with local outliers

the reference-based neighborhood density of a data point x is determined by the

minimum among all its densities computed based on the set of reference points, it

is guaranteed that with a set of reference points evenly covering the data space, false

nearest neighbors will be eliminated and data deviated from the surrounding data

patterns will be assigned lower density values. Next, we will use examples to show

both theoretically and experimentally that reference-based method can successfully

identify local outliers as well as global outliers in complex datasets that contain

clusters of different densities.

we generated a small dataset using the synthetic data generating system that we

implemented to automate the generation of various datasets. Details of the syn­

thetic data generator will be discussed in the next chapter. The generated dataset X

contains 850 2D data points.

As shown in Figure 3.3, there are three clusters Cl , C2 and C 3, where data in

clusters C l and C2 are uniformly distributed and data in C3 are in normal distri­

bution. Cluster C l has a lower density compared to C 2 and C 3. In addition to the

three clusters which form the main body of the dataset, there are a few local outliers

as well as some global outliers in the given dataset. In our experiment, we set the

number of reference-based nearest neighbors k = 4. To ensure that the reference

points are evenly positioned in the 2D data space, we set the number of reference

point to be 16 which is 4 to the power of the dimensionality so that each axes is

45

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

a

C3

(a)

C3

Figure 3.4: Finding top eight outliers (a) using reference-based method and (b)
using the traditional K N N method

divided evenly. In the first run to mine the top 3 outliers, the three global outliers

oi ,o2 and o3 are found. Since we want to check if the local outliers specific to the

clusters can be found, the program is set to mine the top eight outliers in the second

run. The result is displayed in Figure 3.4 (a), where the outliers are marked with a

cross.

We tested the distance-based outlier detection method with the same dataset.

The implementation is based on Definition 3.2.2, where the neighborhood density

D m(x, k) is the reciprocal of the distance to the kth nearest neighbor. As above,

we set A; = 4. The top 3 outliers identified are the same as those identified using

our method. However, it fails to find the two local outliers specific to cluster C 2

when mining the top 8 outliers. The result is shown in Figure 3.4 (b), where the

undetected local outliers are marked with arrows. It is observed that D m(x,k)

method tends to consider data in sparse regions as outliers such as those located in

the perimeter of cluster Cl . The ranking result shows that using D m(x, k) method,

05 is ranked in the 9th place but 0 4 is ranked in the 76ih place. In order to find

the local outlier o4, the distance-based method has to falsely mark many other data

points as outliers.

This actually poses an interesting question: what will happen if the number

46

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

of real outliers in a dataset is less than the number of top outliers the program is

set to mine? Such issue can be important with large real world datasets whose

domain knowledge is unknown. We test both reference-based approach and the

distance-based approach to mine the top 76 outliers, when 0 4 can only be identified

using the distance-based method. The result is shown in Figure 3.5, where (a) is

*** ■

.»■# X

(a) (b)

Figure 3.5: Finding top 76 outliers (a) using reference-based method and (b) using
the traditional K N N method

the result using the reference-based method and (b) is the one using the distance-

based method. We can see that in Figure 3.5 (b) many data points deep in the

relatively sparse cluster C l are falsely marked as outliers before distance-based

method is able to find the real local outlier o4. Although there are a few points inside

cluster C 1 are marked as outliers by our approach, their rank are lower than those

real outliers. Careful observation shows that they are the next best outliers within

C l compared to those points on the border of C l. The overall outliers identified

indicate that the reference-based approach is more likely to consider the data points

deviating from or lying on the edge of the data patterns as outliers.

The above examples demonstrate that compared to distance-based approach,

reference-based method is not only superior in differentiating data deep inside a

sparsely distributed cluster from local outliers deviated from a dense pattern in a

dataset, but also capable of eliminating false identification of outliers inside the

47

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

 ?. - .

. . i

Figure 3.6: Finding local outliers using reference-based approach

sparse data patterns of a complex dataset.

One of the intentions of the reference-based approach is to best approximate

the distance measure obtained using the traditional k nearest neighbor approach so

that global outliers can be effectively identified but in a rather efficient way. In this

sense, the more the number of reference points, the better the distance approxima­

tion and the more accurate the identification of global outliers in a dataset. How­

ever, when the whole dataset is used as the set of reference points, reference-based

approach is reduced to the traditional distance-based approach, which can lead to

false identification in detecting local outliers in a complex dataset. While this is an

intrinsic problem with the existing distance-based approach, it can be easily solved

in our reference-based method by starting at a few number of reference points and

then incrementally increasing the number of reference points. Since the reference-

based nearest neighbors of the data points computed with respect to a given set of

reference points can be reused for the next round when more reference points are

added, such adjustment will have little impact on the performance of the outlier de­

tection method. The detection process stops when certain outliers have been found

and such inspection often involves human intervention.

To further explain why a small number of reference points can facilitate the

48

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

identification of local outliers, we use the previous dataset as an example. Suppose

we have a set of 16 reference points P = {pi, . . . ,pw }, which are the vertices on

a grid obtained by partitioning the axes in the data space as shown in Figure 3.6.

Take the reference point pi as an example. If we draw circles with pi as the cen­

ter and the distance to each data point as the radius, the k reference-based nearest

neighbors of a data point x with regard to pi would be those on or closest to the

circle where x is located. As is shown in the plot, there are no other data points

that fall on the same circle as the local outlier 04 does. In contrast, data deep in

clusters Cl , C 2, and C 3 generally have nearest neighbors with little or no distance

difference. Consequently, 0 4 will have a relatively smaller neighborhood density in

the one dimensional data space X PI than those data in the clusters. Though with

another reference point, say, p2, it is possible that o4 may be assigned a high den­

sity if the circle (p2 as the center and d(p2, o4) as the radius) pass through one or

more dense data patterns, the overall neighborhood density is determined by the

minimum among all the calculated densities for x in terms of X Pr. Assume that

the reference points are sparsely distributed such that each data point in the data

patterns are not isolated by the circle around a reference point, then data deep in

clusters are ensured to have very close neighbors which contribute to high neigh­

borhood densities with regard to each reference point. Therefore, o4 will have a

lower neighborhood density and a higher outlier score than data in the clusters.

One should also notice that there is indeed a tradeoff between the number of ref­

erence points and the ability of the reference-based method to detect global and/or

local outliers. On the one hand, if all the data points in the original dataset are used

as the reference points, then our approach reduces to the traditional KNN approach.

On the other hand, by using a small set of reference points, local outliers will have

a better chance of being detected at the potential cost of some inaccuracy in the

overall quality of all the detected outliers. We leave it as a future research topic to

investigate how to achieve such a tradeoff and how to integrate our approach with

the various approaches to local and/or global outlier detection in the literature such

as LOF [13].

49

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3.4 Empirical Evaluation

In this section, we show experimentally that the proposed method can efficiently

identify local and global outliers in various datasets. We compare the performance

of our approach with the existing KNN-based approaches, including distance and

density-based methods.

3.4.1 Results on Synthetic Datasets

To compare the performance of the proposed reference-based approach with the

existing KNN-based approach, our first test is to see how fast each method can find

outliers in large datasets. Since it is well accepted that the evaluation of outlier de­

tection involves human intervention, we limit our experiments to two-dimensional

synthetic data so that the evaluation can be performed by simple visual inspection.

Using our synthetic data generating system we generated a set of synthetic datasets.

The size of these datasets ranges from 1,000 to 500,000 data points. To be consis­

tent, each dataset has a major data pattern that is normally distributed. Based on

the fact that outliers accounts for only a very small portion of data in a dataset, the

number of outliers to be mined is set to be 1% of the data size in all the follow­

ing experiments. For the reference-based approach, the number of reference points

can be set to a constant for all these datasets. This is because all the test datasets

have similar probability distribution and each of them contains only one normally

distributed cluster. In such cases, a few reference points that cover different areas

in the data space are sufficient to ensure the successful detection of outliers. As

discussed before, the reference points are evenly located in the grid vertices of the

data space. In our experiment, the number of reference points is set to 9 for all

these datasets. We implemented the reference-based method in Java to facilitate

the visualization of the outlier detection results. For the KNN-based method, we

downloaded the executable version of Orca, the C implementation of the distance-

based method discussed in [8] from the author’s website. Since Orca is based on the

distance-based algorithm that has near linear performance, it is believed to be one

of the fastest KNN-based outlier detection method. To compare the two programs,

50

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Reference-based
-© - Orca

o
EF=

Data Size

Figure 3.7: Log-scale execution time vs data size for reference-based approach and
Orca

we run our method in command line mode so that the execution time includes data

loading and writing results to the standard output as does Orca. Orca also requires

preprocessing the data to randomize the order of the original data and then convert

the data to binary format prior to outlier detection. In our experiments, the cost

of data preprocessing for Orca is not counted in the recording of Orca’s execution

time. The number of nearest neighbors is set to be k = 6 for both programs.

Since each dataset contains a single cluster that is normally distributed, both

programs can effectively mark the data lying farther away from the mean as outliers

in a dataset. There is hardly any difference in the identified outliers using the two

methods. However, the difference of execution time between our reference-based

approach and Orca gets bigger and bigger with the increase of the data size despite

the fact that our implementation of ROS is in Java while Orca is in C. It is easy to

see that the execution time for ROS is a function of n only since R has a constant

value for all the datasets. Figure 3.7 is the log-scale plot of execution time vs

data size for the two methods. Although the plot for Orca does not include the

data preprocessing time, Figure 3.7 shows that with large datasets, reference-based

51

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

approach has orders of magnitude improvements in execution speed compared to

Orca, the optimized implementation of the distance-based approach. It is also worth

noting that the execution time of the reference-based approach is near linear with

the increase of the data size while the execution time of Orca tends to be near

linear only from a certain point, i.e., data size has to be sufficiently big. The results

further demonstrate that our approach is very efficient and highly scalable to very

large datasets.

Outliers are defined as data points that deviate from the main patterns of a

dataset. They are most likely to be considered in the context of clusters with dif­

ferent types of data distributions. That is, an object is marked as an outlier if it

is isolated from the clusters in a given dataset. To test if the reference-based ap­

proach can effectively find meaningful outliers in a complex dataset, we generated

a dataset of 10,000 datapoints. There are six data patterns. Three of them are uni­

formly distributed and the other three are normally distributed, but they all have

different densities.

Unlike the datasets containing only normally distributed data where outliers lie

on the outer fringe of each cluster, this dataset has two types of outliers: outliers

uniformly distributed around the main data patterns and outliers lying on the outer

skirt of the three normally distributed clusters. To identify outliers in such complex

datasets, the value for R, the number of reference points is usually higher than

that for simple datasets since relatively more view points inside the data space can

achieve better view of the data. As being discussed, the number of reference points

for can be decided by incrementally fine tune the resolution and we set the value

to be 196. To demonstrate the effectiveness of reference-based approach in finding

both global and local outliers, we implemented LOF according to [13] that has

been well known for its performance in detecting local outliers. We run the three

methods: distance-based, LOF and our ROS. For distance-based and ROS, we set

k = 4. For LOF, we set M in P ts = 30 as recommended in [13].

Figure 3.8, 3.9 and 3.10 are the screen shots showing the results for mining

the top 100 (1% of data size) outliers. In all three graphs, outliers are marked with

crosses. Visual inspection shows that the distance-based method, LOF, and ROS

52

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

^ ? . - f

• ■ • ■ : m b
, tsstf

Figure 3.8: Outlier detection result from KNN-based approach

i $K p

Figure 3.9: Outlier detection result from LOF

53

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 3.10: Outlier detection result from ROS

are all able to discover the global outliers. Furthermore, two local outliers (the two

crosses surrounded by small light-colored circles in Figure 3.10) are discovered by

our reference-based method ROS, while LOF can only find one of them and the

distance-based method fails to find either of them. Therefore, our approach is not

only effective in finding outliers that lie far away from the major patterns in the

dataset, it also achieves similar or even better results than LOF in detecting local

outliers.

3.4.2 Results on Hockey Data

The National Hockey League (NHL) data have been used as benchmark testing

datasets in several outlier analysis works [45, 13, 60]. We use the statistics of NHL

2003-2004 season obtained from the NHL website[54]. The dataset contains 916

entries. For performance evaluation, we compare our approach with both Orca and

LOF. The goal is to see if our approach can efficiently find the outliers identified by

Orca and/or LOF in real-world datasets. Given a 3D dataset, which is moderate in

dimensionality, we can build a cube in the 3D space with all data inside the cube

and set 8 reference points that are located on the vertices of the cube. We set k = 4

for both Orca and our approach and M in P ts = 30 for LOF to ensure LOF finding

54

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table 3.1: Outlier detection result 1 on NHL(03/04) data
Our
Rank

LOF
Rank

Orca
Rank Player Games

Played
Goals
scored

Shooting
Percentage

1 1 1 Milan Michalek 2 1 100
2 2 2 Pat Kavanagh 3 1 100
3 3 3 Lubomir Sekeras 4 1 50

minimum 1 0 0

median 57 4 6 . 6

maximum 83 41 1 0 0

Table 3.2: Shooting percentage on NHL(03/04) data
Shooting Percentage
(goals/shots)

0-10 10.1-20 20.1-30 30.1-40 41.1-100

Number of Players 654 235 18 6 3

meaningful outliers.

We conduct the experiment in a similar way as other outlier analysis works. It

consists of two tests. The first test mines the outliers based on the three attributes:

games played, goals scored and shooting percentage. LOF, Orca and our reference-

based approach achieve identical results and the top three outliers are listed in Ta­

ble 3.1.

The outlier status of the three identified players are obvious. They only played

a few games and scored once. But their shooting percentage are unusually high as

explained by Table 3.2.

The second test is to mine outliers based on the three attributes: points scored,

plus-minus statistic and penalty minutes. The top 3 outliers found by our reference-

based approach are listed in Table 3.3. Sean Avery is on top because his points and

plus-minus figures are moderate but the number of penalty minutes is the highest

among all the players. LOF gets similar result to ROS while Orca’s result is slightly

different. The top rank from Orca, Zdeno Chara, is ranked as the 9th outlier by

our approach and 2Qth outlier by LOF. Careful investigation shows that outliers

identified by Orca tend to be in a sparse region regardless of the data distribution.

Our reference-based method instead favors outliers that deviate from the main data

55

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

patterns and the results are close to LOF in this aspect. For example, Jody, who is

ranked third by our approach lies far away from the trend of the data body due to his

low points and plus-minus statistic but extremely high penalty minutes. With 3D

________ Table 3.3: Outlier detection result 2 on NHL(03/04) data_______
O ur LO F O rca Points Plus- Penalty
R ank R ank R ank r layer

Scored M inus minutes
1 1 3 Sean Avery 28 2 261
2 2 2 Chris Simon 28 15 250
3 7 15 Jody Shelley 6 -10 228

9 26 1 Zdeno Chara 41 33 147
minim um 0 -46 0

m edian 1 2 -1 26
maximum 94 35 261

datasets of size about 1,000, the execution time for each of these methods is within

0.1 seconds and can be neglected.

3.5 Conclusion

In this chapter, we have proposed an efficient reference-based outlier detection

method that uses the relative degree of density with respect to a set of reference

points to calculate the neighborhood density of a data point. In addition to being

compatible with the traditional distance-based outlier detection methods, our ap­

proach performs better in identifying local outliers that deviate from the main pat­

terns in a given dataset. The execution time of our algorithm is 0 (R n log n) where

n is the size of dataset and R is the number of reference points. Candidate outliers

are ranked according to ROS that has been assigned to each data point. Theoretical

analysis and empirical studies show that in addition to being highly efficient and

scalable to very large datasets, our method can detect both global and local out­

liers. When all the data points are used as references points, our method becomes

a distance-based approach finding global outliers. When less reference points are

used, local outliers relative to the data patterns are discovered. We advocate the use

56

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

of a small number of reference points uniformly distributed over the data (using a

grid) to find global and local oultiers effectively and efficiently.

57

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 4

A Synthetic Data Generator for
Clustering and Outlier Analysis

We present a distribution-based and transformation-based approach to synthetic

data generation and demonstrate that the approach is very efficient in generating

different types of multi-dimensional numerical datasets for data clustering and out­

lier analysis. We developed a data generating system that is able to systematically

create testing datasets based on user’s requirements such as the number of points,

the number of clusters, the size, shapes and locations of clusters, and the density

level of clusters and noise/outliers in a dataset. Two standard probability distribu­

tions are considered in data generation. One is uniform distribution and the other

is normal distribution. Since outlier detection, especially local outlier detection,

is conducted in the context of clusters of a dataset, our synthetic data generator is

suitable for both clustering and outlier analysis. In addition, the data format has

been carefully designed so that the generated data can be visualized not only by our

system but also by some popular statistical rendering tools such as statCrunch [68]

and statPoint [69] that display data with standard statistical graphical approaches.

To our knowledge, our system is probably the first synthetic data generation system

that systematically generates datasets for evaluating the clustering and outlier anal­

ysis algorithms. Being an object-oriented system, the current data generator can be

easily integrated into other data analysis systems.

58

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.1 Introduction

Clustering analysis and outlier detection are two important techniques widely used

in data mining and automatic knowledge discovery. Although research on outlier

analysis is relatively a new topic in the area of data mining as compared to data

clustering, they have both been addressed by many researchers and there exist a

large number of approaches to clustering and outlier analysis. While different algo­

rithms have their own strength in finding clusters and/or outliers, the performance

of a particular algorithm can be quite different on different datasets. Therefore, the

choice of clustering or outlier analysis methods depends on the specific purpose of

the application as well as the datasets available. This in turn poses one of the most

important issues in data analysis: How do we assess a data analysis algorithm?

It is hard to say that one algorithm is better than the other since different al­

gorithms usually use different testing datasets with certain constraints such as data

distribution, dimension and density in the analysis of the effectiveness and effi­

ciency. There exist some databases with a variety of datasets obtained from real

life environment. These datasets could be in various formats and distributions that

make it difficult to use them in testing and comparing different clustering and/or

outlier algorithms. Surprisingly, little work has been done on systematically gen­

erating artificial datasets for the analysis and evaluation of data analysis algorithms

in data mining area.

In this work, we explore the idea to automatically generate datasets in two or

more dimensional space given the total number of points N and the number of clus­

ters K in a dataset. We use data points to represent objects with multiple attributes.

The properties of each dataset, including the space between clusters, the cluster

distributions and outlier densities are specified by the user but controlled automati­

cally by the system. Each dataset is generated along with a difficulty level, a density

level, an outlier level and a certain data distribution. Given a fixed number of points

in a dataset, the size and density of clusters are closely related and are both con­

trolled by the density level. The spreading and density of outliers with respect to

the main body of the data are determined by the outlier level. The difficulty level is

59

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

defined in terms of the existing clustering algorithms and they are roughly classified

into three groups:

• easy level - the datasets at this level have only spherical or convex clusters;

• medium level- the datasets have long thin or arbitrarily shaped clusters;

• difficult level - the datasets can have clusters within clusters with all possible

shapes.

The data generator can be used not only in the evaluation and testing of data

clustering analysis and outlier detection but also in visualizing various data distri­

butions . Our goal is to develop a general framework for the generation of testing

datasets with controlled level of clustering difficulties and devise a heuristic that

can be improved upon in a meaningful way in high-dimensional and categorical

space in the future. We investigate current research and implementation on data

generation and proceed in different stages. An important part of data generation is

to display the produced datasets in a graphical user interface for visual inspection.

Hence, we combine the algorithm design with the implementation together in each

stage of the development. Several methods such as distribution-based approaches

and transformation-based approaches, or their combination have been employed in

generating meaningful datasets. Java Swing is used as the programming language

since the implementation of the data generation system relies heavily on the graph­

ical user interface (GUI). In addition to generating datasets that satisfy the user’s

specific requirements and displaying the data in a GUI for visual inspection, the sys­

tem has other functionalities including saving and exporting the generated datasets

to local files as well as importing and visualizing the existing data.

4.2 Existing Work on Synthetic Data Generation

An important issue in evaluating data analysis algorithms is the availability of rep­

resentative data. When real-life data are hard to obtain or when their properties are

hard to modify for testing and comparing various algorithms, synthetic data become

an appealing alternative. Most existing work on clustering and outlier analysis uses

60

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

both synthetic data and real-life data to test the validity and performance of the

proposed algorithms.

Data generation has been an important topic in mathematics and statistics. There

are some state-of-the-art techniques on generating data of certain distribution, for

example, random sequences and normal distribution, which serve as the funda­

mental tools for synthetic data generation systems in many applications. Despite

increasing interest, the research on synthetic data generation in the area of data

mining is still in its early stage. There exist some well-known datasets that have

been widely used as benchmark datasets to test the performance of many clustering

algorithms. Among them, one is provided by the team that developed the clustering

algorithm CHAMELEON [42]. The dataset has 10,000 2D points and includes not

only different shapes of clusters but also different type of outliers. Unfortunately,

there is no description of how these datasets are generated.

In the literature of software testing, a large number of methods to automate test

data generation have been studied [18]. In recent years, research areas such as data

mining [38], sensor networks [77], artificial intelligence [62] and bioinformatics

[74] are paying more attention to the development of data generation systems to

systematically generate synthetic data for numerous applications. In this chapter,

we will briefly discuss some existing data generation methods and systems.

4.2.1 IBM Quest Synthetic Data Generator

A well-known synthetic data generation system is developed by the IBM’s QUEST

data mining group [38]. The system consists of two data generators. One is used

to generate transaction data for mining associations and sequential patterns. Given

some parameters, the system can produce a set of data containing information of

customer transactions. The other generator produces data intended for the task

of classification. The output is a person database in which each entry has nine

attributes. QUEST also developed a series of classification functions of increasing

complexity that use the nine attributes to classify people into different groups.

The generated datasets contain only numerical values. Values of non-numerical

attributes are converted to numerical values according to some pre-defined rules.

61

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.2.2 Synthetic Data Generation in Other Research Fields

Synthetic data generation also plays an important rule in many different fields of

computer science such as Information retrieval, software engineering and artificial

intelligence, although in each field the focus and the requirement of generating

synthetic data are quite different.

The GSTD algorithm proposed in [72] uses three operations to generate spa-

tiotemporal datasets by gradually altering the three parameters that control the du­

ration, the location, and the size of spatiotemporal objects. Such a data generator

serves as an integral part of the benchmark environment for spatiotemporal data

access system.

The main focus of test data generation in automatic software testing is to gen­

erate input data to test the correctness of a given computer program or software

system. To have a sufficient coverage on the execution of a computer program, a

data generation system first needs to analyze the control flow of the program to

identify target execution paths to be tested. Input data with which the execution of

the program follows a specific path are usually generated by using either symbolic

evaluation techniques or solving a properly formulated optimization problem.

In the field of artificial intelligence, many important problems are NP-hard such

as the Boolean satisfiability problem (SAT). To test the performance of solvers and

algorithms for these problems, one also needs to generate testing problem instances.

In addition to real-world and manually compiled benchmarks, a recent trend is to

generate problem instances randomly from some probability distribution. As a mat­

ter of fact, the study of the typical-case hardness of randomly-generated problem

instances and the performance of various algorithms on these instances has been

an important research topic in artificial intelligence. On the one hand, many deep

theoretical results on the complexity of NP-hard problems and useful insights into

the design of more efficient algorithm have been obtained. On the other hand, hard

testing problem instances generated at the so-called phase transition region of some

random problem model have been one of the driving forces in the development of

the start-of-the-art solvers for these AI problems.

62

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 4.1: PDF and CDF of uniform distribution

4.3 Mathematical Tools and Techniques

In an effort to systematically generate test datasets for data analysis, we make use

of some mathematical tools such as probability distributions and linear transforma­

tions. By applying these tools, the proposed method provides the mechanism that

datasets are not only generated automatically but also controlled by the parameters

from the user input. This section introduces the mathematical concepts and tools

related to our proposed approach.

4.3.1 Uniform Distribution

The uniform distribution is the simplest continuous distribution in probability. A

random variable x has the uniform distribution if all possible values of the variable

are equally probable [61]. It is also called rectangular distribution.

Uniform distribution is specified by two parameters: the end points a and b. The

distribution has constant probability density on the interval (a, b) and zero proba­

bility density elsewhere. The probability density function(PDF) and cumulative

distribution function(CDF) for a continuous uniform distribution on (a, b) are

1 a < x < 6;b—a ’

o, otherwise.

o, x < a;
x —a a < x < bb—a ’

l, x > b.

63

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 4.2: PDF and CDF of normal distribution

In Figure 4.1, (a) is a plot of the uniform PDF and (b) is a plot of the uniform

CDF. The standard uniform distribution is the case where a = 0 and 6 = 1 .

We aim to generate data from a multivariate uniform distribution. The dataset D

is composed of a set of multi-dimensional points. Each point in D — { x \ , X 2 , - - . , x m }

is obtained by generating uniform random numbers for x it where i = 1 , 2 , . . . , m .

The attribute values of each variable are uniformly distributed in (0,1). Since the

joint distribution of two or more independent one-dimensional uniform distribu­

tions is also uniform, the points in D are uniformly distributed in the feature space

of all variables.

4.3.2 Normal Distribution

A continuous random variable x has a normal distribution or Gaussian distribution

if its probability density function is

1
f (x) = — l 2°

where n is mean, a 2 is the variance and —o o < a : < o o [6 1] .

Figure 4.2(a) is the plot of the normal PDF and Figure 4.2(b) is the plot of the

normal CDF respectively. Standard normal distribution is the normal distribution

given fi — 0 and a 2 = 1.

In our implementation, covariance matrix that controls the attributes of data

points has been widely used to generated various shaped normal distributions.

64

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.3.3 Box-muller Transformation

Box-Muller transformation allows us to transform a two-dimensional continuous

uniform distribution to a two-dimensional bivariate normal distribution (or com­

plex normal distribution) [52], Let x\ and x 2 be two independent random variables

uniformly distributed between 0 and 1. The basic form of Box-Muller transforma­

tion is defined as

yi = y — 2 In x i cos (2^X2),

2/2 = \ r ~ 2 \ n x i s i n { 2 ' K X 2),

where yi and y 2 have a normal distribution with mean y — 0 and variance a 2 = 1.

In our data generation system, rather than using the normal cumulative distri­

bution function to generate normal distributions, which does not have an explicit

expression, we adopted Box-muller transformation. By applying the above formu­

las, we are able to transform uniformly distributed random variables x\ and x 2 to

two random variables yi and y 2 with a joint normal distribution.

4.3.4 Linear Transformation

A linear transformation between two vector spaces U and V is a mapping T : U —>

V such that

1. T(ui + u2) = T(u{} + T (u 2), for any vectors u\ and u2 in U,

2. T (a u) = aT(u), for any scalar a and arbitrary vector u in U.

Suppose U — R 2 and V — R 2, T : Ft!2 R 2 is a linear transformation if and

only if there exists a 2 x 2 matrix A such that T(u) = Au for all u in R 2 [36]. Ma­

trix A is called the standard matrix for T. Linear transformation in two dimensional

vector space has been extensively used in our data generation system to dynami­

cally produce two dimensional datasets of various characteristics. Once we have

obtained the basic dataset, which will be detailed in section 4.4, we can control the

shape, density and location of each cluster in the output dataset by applying to each

vector/point in the basic dataset linear transformations such as shears, reflections,

65

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

¥

Y
---j a-*s:

3F|

V

m « * i j

(a) (b)

Figure 4.3: Linear transformation: expansions and contractions

H

(a) (b)

Figure 4.4: Linear transformation: shears

contractions, expansions and translations. The linear transformation of a normal

distribution is still a normal distribution, but the linear transformation of a uniform

distribution is not necessarily a uniform distribution.

Figure 4.3 and 4.4 are examples used in [36] to illustrate the action of a linear

transformation T : R 2 —> R 2. The image of a unit square under T is employed to

demonstrate the geometric meaning of different types of linear transformation.

Figure 4.3(a) indicates how expansion and contraction along x-axis work. Given

a set of column vector \px py]T, expansion and contraction along x-axis is given by

the standard matrix

Thus, the vectors “stretch” along the x-axis to [kpx py]T for k > 1 and “compress”

along the x-axis for 0 < k < 1.

Similarly, Figure 4.3(b) is an example showing the expansion and contraction

of the unit square along y-axis. The standard matrix used here is

66

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

(a)

Figure 4.5: Linear transformation examples

A 1 0

0 k

which takes the vectors \px py]T to [px kpy]T. In this case, the standard matrix A

stretches the vector along y-axis when k > 1 and compresses it along y-axis when

0 < k < 1.

A shear in the ^-direction is shown in Figure 4.4 (a). It is achieved using the

standard matrix

A =
1 k
0 1

to convert vectors \px py]T to \{jpx + kpy) py]T.

A shear in the y-direction is given in Figure 4.4 (b), in which the standard matrix

A =
1 0

k 1

is used taking \px py]T to [(px + kpy) py]T.

To generate datasets with various patterns and densities, we often use a more

complicated standard matrix to transform a set of data. The operation can be con­

sidered as the composition of several linear transformation, such as a rotation, a

magnification, and a translation. A typical example is shown in Figure 4.5 where a

unit circle is transformed into an enlarged oval as in (a) and a contracted oval as in

67

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

(b), where the standard matrices leading to these transformations are

and

A =

A =

- 1.2 1.1
2 1

0.3 0.8
0.9 0.3

respectively. The transformed ovals may be shifted to a different location by trans­

lations through vector addition.

4.4 A Comprehensive Approach to Synthetic Data Gen­
eration

In this section, we present a hybrid approach to synthetic data generation. The pro­

posed approach is aimed at providing a basic modelling framework for generating

data that can be used to evaluate and test clustering and outlier analysis algorithms.

It has been well recognized that the performance of different data analysis algo­

rithms depends heavily on the testing datasets. Among the existing clustering algo­

rithms, the partitioning methods can easily identify clusters with spherical shapes,

but they are unable to find clusters of irregular shapes and tend to split an elongated

cluster into different groups. Although the density-based methods can handle clus­

ters of arbitrary shapes and various sizes, they are very sensitive to the density of

each cluster in a given dataset, which may lead to failure in detecting clusters with

unevenly distributed data. Since outliers are data that deviate from the main pattern

of a dataset, they are always considered in the context of clusters. That is, an object

is marked as an outlier if it is isolated from the clusters in the dataset. The causes

for such isolation can be generalized in two categories: (1) outliers are located in

a less dense region compared to the density of the clusters; and (2) outliers do not

fit into the cluster patterns. Therefore, outlier detection, especially local outlier de­

tection that defines outliers with respect to the neighborhood density and patterns is

often conducted by differentiating them from data in clusters.

In our method of synthetic data generation, each output dataset is specified by

a difficulty level, which is defined in terms of data distributions and cluster shapes.

68

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

t Data Generator Q | j g
File

Param eters:

Number o f points: 13000

Num of c lusters: 4

Cluster ratio: i10. 2 0 .3 0 ,4 0

.\3»W r»
i! 6 " f t .

gg
Diff leveld-S): 1 l J

Unirunn O G aussian i

- D ense leveld-S): 3 =— * ^ 4 ^ * =

Mixed Outlier level: low

Create D ataset < umpuuiid data Example

Figure 4.6: A screen shot of the synthetic data generation system

69

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Since the difficulty level of a dataset indicates the complexity in identifying clusters,

it provides us a measure of how a clustering algorithm works. Apart from the

difficulty level, each dataset is also assigned a density level and a noise level. Like

the difficulty level, the noise level is used to define the distribution and density of

outliers or noise. Other parameters from user input are the number of points, the

number of clusters and the percentage of points for each cluster in a dataset. The

created data objects are represented by points, e.g., points in two dimensional space

with x and y being floating point numbers. We built a graphical user interface to

display the generated 2D dataset for visual inspection. Figure 4.6 is a screen shot

of the synthetic data generation system. As is shown in the figure, the shape and

density of the output clusters as well as the distance between the means of different

clusters in a dataset are determined by the standard distribution, the difficulty level

and the density level.

To automate the data generation process, the system proceeds in two steps. The

first step is to create the basic dataset, in which the data in each cluster have a

standard distribution. For the uniform distribution, the x and y values of all the

points in the basic dataset are in (0,1). For normal distribution, the basic dataset

contains clusters that have a standard normal distribution with mean n = 0 and

variance a 2 = 1. The second step is to apply some mathematical techniques to

generate the required dataset. Once we have the basic dataset, three major methods

are used in creating clusters and outliers with different shapes and densities.

• Linear transformation, which involves matrix multiplication to translate, shear,

contract or expend the the clusters in the basic dataset.

• Linear equation, which controls the line-shaped clusters and outliers.

• Circle equation, which controls the curve-shaped clusters.

The technical details of synthetic data generation will be presented in two as­

pects. One is the dynamic control and generation of clusters. The other aspect is

about how the outliers are distributed. To make the concept concrete to the readers,

a visual approach is taken in presenting the method.

70

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.4.1 Generation of Clusters in a Dataset

The generation of clusters of a dataset involves the determination of cluster densi­

ties, sizes, shapes and relative locations. By analyzing the user input, the synthetic

data generation system automatically controls all these aspects. Two parameters

density level and cluster ratio are the major factors to contribute to the density and

size of each cluster in a dataset. Given a density level, an appropriate standard ma­

trix is calculated to transform the basic clusters 1 into ones with either expanded or

contracted sizes. The higher the density level, the smaller the cluster size and the

more compacted the data in the clusters. By default, data are evenly distributed to

each cluster in a dataset. For example, if dataset D has 1,000 data objects that form

4 clusters, the system would automatically assign 250 data to each cluster. The

parameter cluster ratio provides the user with an option to set the number of data

objects for each cluster. It consists of a sequence of integers indicating the percent­

age of data in each cluster over the total number of data in a dataset. By parsing the

cluster ratios, the system adjusts the number of data in each cluster to satisfy the

user’s specific requirements. This, in turn, will change the density of each cluster

since each cluster size remains unchanged.

Cluster shapes and relative locations are mostly determined by the parameter

difficulty level. In the following, we will discuss the generation of datasets classi­

fied into five difficulty levels based on the distribution of the data in clusters. Given

a difficulty level, the specific locations and shapes of the clusters in a dataset is con­

trolled by the system in a random manner, i.e., the cluster can have any of the shapes

belonging to this difficultly level and lie in any region in the dataset. The distances

between clusters are checked to ensure that clusters are not overlapping. This is

especially important for simple datasets with low difficulty levels. Alternatively, a

dataset may consist of randomly produced clusters from different difficutly levels

when one prefers to have a sophisticated set of data. Therefore even with identical

parameter sets, there are hardly any datasets that are exactly the same due to the

randomness in deciding cluster locations and shapes. Apart from being visualized,

the generated data can be saved to a file in case that the same data are required for

'Attribute values in such clusters are usually in (0 ,1)

71

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 4.7: Difficulty level 1: each cluster contains 500 2D points

later inspection or testing different data analysis algorithms.

Datasets with Difficulty Level One

The datasets at this level are the simplest in terms of the definition of clusters. There

are two major features of the clusters in such a dataset.

• All clusters have only spherical or square shapes.

• Clusters are well separated.

Following the generation of the basic datasets, the transformation of contraction

and/or expansion are applied to generate the datasets that satisfy the user-specified

density level. Figure 4.7 shows the typical clusters in a dataset having a difficulty

level of one. It can be seen that such design of the data distribution ensures that

data are clearly divided into well-formed groups which makes it relatively easy for

clustering algorithms to find the clusters. When evaluating clustering methods with

these type of datasets, we are mostly concerned with how fast a certain method can

identify the clusters in a large dataset.

Datasets with Difficulty Level Two

The datasets have long and thin clusters with straight or curved shapes. Like clus­

ters in level one, clusters in a particular dataset are well separated. Figure 4.8 gives

some of the example clusters in the datasets having a difficulty level of two. Based

on the input parameters, linear equations and transformations of contraction, expan­

sion, rotation and translation are performed on the basic dataset to create level-two

72

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 4.8: Difficulty level 2: each cluster contains 300 2D points

datasets. Although the clusters are at an easy level and are as intuitive as the first

level ones, their enlongated shape can make some clustering methods fail in identi­

fying them. For example, the algorithms k-means [51] and k-medoids [43] are most

likely to split such a cluster into two or more groups as they favor spherical shaped

clusters.

Figure 4.9: Difficulty level 3: each cluster contains 500 2D points

Datasets with Difficulty Level Three

The clusters in the dataset with difficulty level three have simple arbitrary shapes

such as rings, crosses and stairs. Different clusters are clearly separated. Some typ­

ical clusters are given in Figure 4.9 in which the three clusters on top have uniform

distributions and the two at the bottom have underlying normal distributions. In

73

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

order to generate these datasets, linear transformations such as contraction, expan­

sion, rotation and translation as well as linear equations and circle equations have

been performed on the basic dataset of either uniform or normal distribution.

Compared to the first two level datasets that contain only basic convex clus­

ters, the level-three datasets have clusters that do not necessarily have an object

defined as the mean. For example, there is not any object that can be considered

as the explicit mean for a ring shaped cluster. Consequently, the irregular shape of

clusters will increase the difficulty in finding meaningful clusters for any clustering

algorithm that uses a data point as the mean of a cluster.

Datasets with Difficulty Level Four

The clusters in the dataset with difficulty level four have arbitrary shapes with some

obvious space inside a cluster. There are no nested clusters. To enrich the diver­

sity of cluster shape, clusters with uniform distribution are specifically designed to

be any of the twenty-six letters of the alphabet which are evenly positioned in a

particular dataset. Each letter is treated as an individual cluster. The system pro­

vide two options for generating the required number of alphabet clusters. One is

to randomly produce any of the letters. The other option allows the user to input

letters of his own interest. The operations used to control the distribution and shape

of the letters involve all the techniques previously mentioned including equations

and transformations. Example clusters are shown in Figure 4.10 in which the let-

Figure 4.10: Difficulty level 4: each cluster contains 500 2D points

74

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ters have uniform distributions and the other two clusters are generated by applying

covariance matrix, linear equations and circle equations to standard normal dist ri-

butions. Since the letters encompass a wide range of cluster shapes, it is hard for

most clustering methods to find all the different letter-shaped clusters. Although

density-based algorithms such as DBSCAN work well with datasets containing di­

verse cluster shape, they will fail in identifying some of the clusters if the densities

between clusters are quite different.

&

. Vja*
ry,
.'V-

. s't

■\ ̂ < . J 7 . } ‘
Vi .

t e i.'

i # -■

§

H.J- ,a.
•d i^rV •

Figure 4.11: Difficulty level 5: each paired cluster contains 1,000 2D data points,
of which 500 are assigned to each single cluster

Datasets with Difficulty Level Five

The datasets contain clusters within clusters or single clusters with irregular shapes.

In the case of one cluster within the other cluster, the two clusters can either be

clearly separated or they are connected with bridges of points, which can cause

much trouble to many clustering algorithms in correctly identifying the clusters.

Nested clusters also raise a question as to how to define a cluster: should we con­

sider a nested cluster as one cluster or several clusters? Figure 4.11 displays some

of the clusters in datasets having a difficulty level of five. In addition to the genera­

tion mechanism for creating clusters of the other levels, special attention is paid to

75

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

positioning the nested clusters at this level by either controlling the mean value or

applying transformations and equations.

4.4.2 Generation of Outliers/Noise in a Dataset

As discussed in the previous chapters, outliers and noise are unavoidable in real life

datasets collected from numerous application domains. The mechanism of adding

outliers or noise is another important contribution of our synthetic data generation

system. While there is no strict distinction between outliers and noise in most data

analysis tasks, we will use outliers as a generic term in the following discussion.

It is well accepted that outliers in a dataset are not consistent with the rest of

the data. This leads to the exploration of outlier detection based on the distance

to a point’s neighboring points. Many existing outlier detection methods use the

neighborhood density of a point as a criterion to differentiating abnormalities from

normalities. Points located in a less dense region are usually considered as outliers.

While intuitive, such definition raises new issues: how do we specify the cutoff

density value to guarantee real outliers and meaningful clusters? Should the points

located in the outer layers of a normal distribution as shown in Figures 4.7 through

4.11 be marked as outliers? Or should all the data in a less dense cluster be treated

as outliers?

Because the definition of outliers is subjective, the notions of outliers and inliers

in a dataset are ambiguous in many situations. Data object being identified as out­

liers by one data analysis method could be legitimate inliers with the other method.

Therefore, To produce outliers with respect to local and global clusters, our effort

is focused on how to generate those data points that can be objectively identified as

outliers by the existing outlier detection algorithms.

The method of generating outliers is similar to that of generating clusters. Stan­

dard distribution and linear transformation have been widely used. The distribution

and density of outliers are determined by the system through the parameter: outlier

level. The value of outlier level can be none, low and high and are specified by the

user. Depending on the selected level, the number of outliers is a controlled per­

centage of the total number of points in a dataset. For example, the outliers account

76

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 4.12: Outliers level none: outliers are those exterior points of a cluster

for 10% of the data when 90% of the data are in clusters. This ensures that the total

number of points from the user input is preserved while outliers are being added.

Next we will discuss the generation of the three level outliers. The examples used

are all complex mixed datasets that contain clusters of different difficulty levels.

Outliers Level None

The name of “level none” is self-explaining. No outliers are intentionally added to

a dataset. However, this does not necessarily mean that a set of generated data does

not contain outliers. A dataset often consists of clusters with different distributions

and densities. Depending on the definition of a specific outlier detection algorithms,

data points in clusters of different difficulty levels as described before can be out­

liers. For example, a cluster itself can be considered as a collection of outliers if

the size of the cluster is much smaller than those of other clusters or the data in the

cluster are very sparsely distributed compared to the majority of the data. Most out­

lier detection algorithms would mark the exterior points in a normally distributed

cluster as outliers. Such examples are demonstrated in Figure 4.12.

77

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

" Data Generator

< . 1 . L :, . ..►.
N um to of points: il» rao DW leveKM): 1 U ' ’ ’ -~ Dense IbvbI(1.S|: 3 ■- 1 ^ -

NumofclusUirs: 5 Uniform Gaussian Mixed Outlier level: low - - i j -

Cluster idtirc Vo, 20,20,20, 30 ■ Create Dataset , Compound data ,) fcxampii* Itnsit

Figure 4.13: Outliers level low: outliers are randomly distributed

Outliers Level Low

This is the basic type of outliers. For a given dataset, the system randomly dis­

tributes a small percentage of the data in the whole data space. Figure 4.13 shows a

dataset containing 4,000 points including outliers.

Outliers Level High

In addition to generating randomly distributed outliers, the data generator produces

outliers of controlled shape and distribution. Since there is no universal agreement

on what constitutes outliers, our intention is to provide a prototype of outlier dis­

tribution in a dataset. Figure 4.14 gives an example dataset containing 5,000 2D

points in which outliers count up to 15% of the total data. Three types of data

points can be classified as outliers in this dataset:

1. points that are located in a sparse neighborhood;

2 . exterior points of the clusters that have normal distributions; and

3. points that form certain patterns, such as the lines, each of which has much

78

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 4.14: Outliers level high: outliers are either randomly distributed or have
simple patterns

less data than those major clusters. Some may not consider these points as

outliers because they form a major pattern. Depending on the density of the

lines, these points can be classified into either points in clusters or outliers.

We will demonstrate this in section 4.5 with experimental results.

Many clustering and outlier analysis algorithms can easily identify the first two

type of outliers that have sparse neighborhoods. But the third type of outliers can

cause problems in the process of data clustering. For example, the density-based

clustering algorithm DBSCAN has been well recognized as an effective method in

finding clusters of arbitrary shapes as well as identifying and eliminating outliers.

However, it may merge two or more clusters together when the lines or the so-called

bridges of points join these clusters into a group.

4.5 Experiments and Evaluation

One of the most effective ways to evaluate the generated dataset is to visualize

the data for human inspection. The GUI of the data generating system has been

79

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

designed to serve this purpose. In addition to visual inspection, we test the perfor­

mance of our system in two aspects:

• the efficiency of producing large datasets that satisfy user’s requirement;

• the effectiveness of a benchmark instance generator for clustering analysis

and outlier detection.

In this section, we report experiments and evaluation results of our synthetic data

generation system.

4.5.1 Generating Very Large Datasets

We first test how the size of the generated datasets affects the execution time. For

any dataset with size up to 1,000,000 points, the execution time for generating the

data (excluding writing the data to a file) is less than three seconds. This is demon­

strated in Figure 4.15, which is a plot of the execution time against the size of the

generated datasets. It is observed that to generate a dataset containing less than

4,000,000 data points, the execution time is linear to the size of the dataset regard­

less of difficuty levels, density levels and outlier levels.

Since the difficulty level is the major factor that determines the distribution and

shape of each cluster in a dataset, we also ran the program to show how the exe­

cution time is affected by the difficulty level. For each difficulty level (from 1 to

5), we input the same parameters which include data size, number of clusters, den­

sity and outlier levels so that the difference of data generating time is exclusively

based on the change of difficulty levels. Despite the use of the same parameters,

each dataset produced may contain clusters of different distributions, shapes and

densities. In order to precisely show the execution time of generating a dataset, we

ran the program at least five times for each difficulty level and then computed the

average excution time. The plot in Figure 4.16 demonstrates that with the change

of difficulty levels, there is little change of average execution time to generate a

certain type of dataset.

80

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

14

12

10

6v0)v>
F 6

4

2

0
50.5 1.5 2 3 3.5 4 4.50 1 2.5

Data Size

Figure 4.15: Each generated dataset has the following properties: number of clus­
ters is 5; data distribution in a cluster is either uniform or normal; difficulty level
ranges from 1 to 5, density level is 3, and noise level is low

0.7

v 0.6

F 0.5

| 0.4

0.3

0.1

2.5 3.5 4.5
Difficulty Level

Figure 4.16: With each difficulty level, the system generates a dataset of 100,000
that contains both uniformly and normally distributed clusters.

81

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.5.2 Testing with Clustering and Outlier Analysis Algorithms

We generated six sets of two dimensional spatial data. Each dataset contains outliers

as well as clusters that consist of either uniformly or normally distributed data. The

details of the datasets are given in Table 4.1. Clusters in each of the first five datasets

exhibit the typical cases of data distributions and shapes of a specific difficulty

level. The sixth dataset, however, contains a mixture of clusters that are randomly

generated from different difficulty levels. The sizes of the datasets are moderate for

easy inspection and illustration.

Table 4.1: Detailed description of the parameters for the datasets
Dataset Size Number of clusters Difficulty level Noise level
datasetl 2,000 4 1 low
dataset2 2,000 4 2 low
dataset3 2,000 4 3 low
dataset4 2,000 5 4 high
dataset5 2,000 5 5 high
dataset6 10,000 7 mixed high

Table 4.2: Description of the clustering algorithms
Algorithm classification Parameters

k-means partition-based k
DBSCAN density-based radius e, M in P ts

CURE hierarchical k, shrinking factor a, representative points t
CHAMELEON hierarchical k — N N , M in S ize, k

WaveCluster grid-based resolution r, signal threshold r
AutoClass model-based N/A

Using these datasets as benchmark instances, we conducted experimental evalu­

ation upon six existing clustering algorithms: k-means [43], DBSCAN [20], CURE

[27], CHAMELEON [42], WaveCluster [65] and AutoClass [15, 16]. The CURE

code is kindly supplied by the Department of Computer Science and Engineering,

University of Minnesota. The AutoClass is the public C version from [75]. The

other four programs were locally implemented. Some basic characteristics of these

clustering methods are generalized in Table 4.2.

82

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Our experiments proceed from easy datasets to hard datasets. The complexity

of a dataset is defined by the difficulty levels as described in the previous section.

Our intension is not to explore the different clustering mechanisms, instead, we

aim to show experimentally how each of these six clustering algorithms performs

with different datasets consisting of a diversity of clusters and difficulty levels. We

show the clustering results on each dataset graphically to give a concrete idea of

the clustering ability of different clustering methods. We assume that we have the

specific domain knowledge of each dataset. When performing the experiment, such

domain knowledge plays an important role in the selection of certain parameters,

such as k, the number of clusters involved in some of the algorithms. To avoid the

bias caused by inappropriate use of parameters for different algorithms, we also

conduct many test-and-trials to select the set of parameters that lead to the best

clustering results of the algorithm being tested.

In Figure 4.17 to 4.22, different colors have been employed to indicate discov­

ered clusters in a dataset after the clustering process. Since some of these clustering

methods, such as DBSCAN, CURE and WaveCluster, are able to identify outliers,

red color is reserved to mark outliers in all the clustering results of the following

figures. Figures 4.17 to 4.22 can be viewed in two ways:

• Given a certain dataset, inspect the clustering abilities of different clustering

algorithms, and

• For a certain clustering method, check its clustering results over different sets

of data.

83

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

(a) k-means

(c) CURE

430

400

TCOSCO

m
200 aco 40& so© eoo

(e) WaveCluster

300 400 SCO 1600

(b) D BSC A N

400

300

SO TOO393 400

(d) CHAMELEON

200 300 400 SO 1800

(f) AutoClass

Figure 4.17: Clustering results on dataset 1. (a): k-mans with k = 4; (b): DBSCAN
with e = 15 and M in P ts = 10; (c): CURE with k = 4, a = 0.3, and t = 10; (d):
CHAMELEON with k - N N = 15, MinSize=2.5%, and k = 4; (e): WaveCluster
with r — 5 and r = 0.2; (f): AutoClass

84

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

(a) k-means (b) DBSCAN

m 0

450

4C0

4 ‘ 350

- ■ / ' I
0 M * ' v ’if

. . . k,-,JPSSfcSf‘t . * ‘ %

<60

400
SO

aco ** ■ " ̂ •? ‘ " 4 ’
*<*t * . . . , ..*

250

300
*

200 250 300 2 0 400 4S0 SOO

(c) CURE

(e) WaveCluster

300 250 3DQ SO 400 450 900 S30

(d) CHAMELEON

sbJ * .*. -*:a
SO

; - „ ' \ +

300 300 * it
-450 450 . ■ v ■ r *
400

$

% ' ' i. N
400 . / ’ f f

SO ■«W tea jm t f* H * *■ ^
a W * * C

SO -

SO
* ** *

s o % "A"‘ *

20 i> % * * 20 ’ .• .

300

V

* 300 • , _ • '

300 SO s o s o 400 450 SCO 530 i .) a i o » « i a s o s jo

(f) AutoClass

Figure 4.18: Clustering results on dataset 2. (a): k-mans with k = 4; (b): DBSCAN
with e = 15 and M in P ts = 10; (c): CURE with k = 4, a = 0.3, and t = 10; (d):
CHAMELEON with k - N N = 15, MinSize=2.5%, and k = 4; (e): WaveCluster
with r = 5 and r = 0.2; (f): AutoClass

85

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

(a) k-means (b) DBSCAN

SCO

400 SO

(c) CURE

300 3 © 400 SCO 800 TOO

(d) CHAMELEON

300 303 400 300 600 TOO

(e) WaveCluster

TOO200 400 SCO

(f) AutoClass

Figure 4.19: Clustering results on dataset 3. (a): k-mans with k = 5; (b): DBSCAN
with e = 15 and M in P ts = 10; (c): CURE with k = 5, a = 0.3, and t — 10; (d):
CHAMELEON with k — N N — 15, MinSize=2.5%, and k = 5; (e): WaveCluster
with r — 5 and r = 0.2; (f): AutoClass

86

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2D© 250 3C© ISO 400 450 50© S3) 6C0 63>

(a) k-means

M*'

a x s o 1 0 4co 4 io s :o s d eoo s n

(c) CURE

400

300

(e) WaveCluster

(b) D BSC A N

(d) CHAMELEON

400

(f) AutoClass

Figure 4.20: Clustering results on dataset 4. (a): k-mans with k = 5; (b): DBSCAN
with e = 15 and M in P ts = 10; (c): CURE with k — 5, a — 0.3, and t = 10; (d):
CHAMELEON with k - N N = 15, MinSize=2.5%, and k = 5; (e): WaveCluster
with r = 5 and r = 0.2; (f): AutoClass

87

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

SCO

300

330 S O 300 350 400 4'50 900

(a) k-means

200 3 0 300 K B 400 -ISO SCO

(c) CURE

200 290 300 2G0 400 450 SCO

(b) D BSC A N

400

SCO SO 900 33© 400 450 SCO

(d) CHAMELEON

so© * *
300

450 » S * .
t r * ■'

430

•f*' ■ ...■■■■■ ̂ ' .
400 .. - y - — ^

400 . / •
350 350r y * ~ 7 •
900 300

250 25©

200 200

(e) WaveCluster (f) AutoClass

Figure 4.21: Clustering results on dataset 5. (a): k-mans with k = 5; (b): DBSCAN
with e — 15 and M in P ts = 10; (c): CURE with k — 5, a = 0.3, and t = 10; (d):
CHAMELEON with k — N N = 15, MinSize=2.5%, and k = 5; (e): WaveCluster
with r = 5 and r = 0.2; (f): AutoClass

88

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

100 2C0 300 430 900 600 TOO

(a) k-means

Sffefli?»Fn.»V. «*■« »•
' f o - -

« i

m .
- 9

o • •'s
. 1 #

 ̂Hi i \ ^ : r>

100 200 300 *X> SCO 100 TCO

(c) CURE

ICO 2CG 300 430 SCO 600 TOO

(e) WaveCluster

300

'0010© 3D0
(b) D BSC A N

ICO

‘0010O
(d) CHAMELEON

10D 2£0 300 CO 900 600 700

(f) AutoClass

Figure 4.22: Clustering results on dataset 6. (a): k-means with k = 7; (b): DB­
SCAN with e = 20 and M in P ts = 30; (c): CURE with k = 7, a = 0.3, and
t = 10; (d): CHAMELEON with k - N N = 15, MinSize=2.5%, and k = 7; (e):
WaveCluster with r = 4 and r = 0.2; (f): AutoClass

89

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The definition of clusters and outliers is often subjective. Meaningful clusters

and real outliers should be considered in the context of application domains. Even

with the synthetic datasets used in our experiments, it is sometimes not easy to

mark clusters from clusters or to distinguish clusters from outliers. For example, in

Figure 4.21, CURE and AutoClass treat the diagonal line pattern as a single cluster

while other methods consider it either as part of another cluster or as outliers. An­

other example is the clustering results shown in Figure 4.22 obtained from dataset

6 , where the small oval and big rectangle (cluster in cluster) are grouped into one

cluster by all the six clustering methods although they might well be considered

as two clusters. Pros and cons of various clustering algorithms have been widely

discussed in the literature, we evaluate these algorithms based on the quality of the

clustering results on the given datasets.

Some interesting observation from the experiments can be generalized as fol­

lows.

1. K-means is well known for being able to quickly find spherical shaped clus­

ters. Through the experiments on datasets of different levels, it is found that

k-means can successfully identify irregular shaped clusters if the distances

between clusters are big enough and the initial set of centroid have been well

selected. Three major factors that mostly affect the clutering results of k-

means are: (1) domain knowledge for the selection of parameter k; (2) initial

location of the set of centroid; and (3) distribution of outliers.

2. Given the appropriate values for the two parameters: neighborhood radius

e and MinPts, DBSCAN achieves the best clustering results among the six

algorithms. It can not only find arbitrary shaped clusters but can also detect

most outliers. One intrinsic shortcoming of DBSCAN is that it may merge

two or more clusters if there exist “bridges” of outliers joining clusters such

as Figure 4.21 (b).

3. CURE is designed to not only find arbitrary-shaped clusters, but also iden­

tify outliers in a dataset. Our experiments indicate that CURE can success­

fully find meaningful clusters that have identical densities, but it also marks

90

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

many points that are located in the uniformly distributed clusters as outliers

as demonstrated with all the six datasets. A big problem with CURE is that

it might fail to find some real clusters when the densities of these clusters

are relatively less than those of the other clusters in a dataset as shown in

Figure 4.18 (c).

4. Like k-means, CHAMELEON can not handle outliers. Although it is ex­

tremely slow, it is more effective than k-means as it can find clusters of arbi­

trary shapes regardless of the distances between clusters.

5. In most cases, WaveCluster is effective in finding clusters and outliers in a

dataset. Although the number of resulted clusters is often more than the actual

number of clusters in a dataset as shown in Figure 4.19 (e), 4.20 (e), 4.21

(e) and 4.22 (e), major clusters usually stand out since they contains far

more data objects than those small clusters. A further step to eliminate small

clusters and mark the data objects in these clusters as outliers would surely

improve the effectiveness of WaveCluster.

6. The most interesting clustering algorithm used in our experiments is Auto­

Class. It is an unsupervised Bayesian classification system that seeks a max­

imum posterior probability classification [75]. Such method has been widely

used in statistics and machine learning. The uniqueness of AutoClass is that

it can find data clusters that might not be identified as clusters by visual in­

spection. For example, the blue clusters in Figure 4.19 (f) and Figure 4.20 (f).

This is due to the fact that AutoClass is able to find clusters that is maximally

probable with respect to the underlying data model. Though not designed

to identify outliers, AutoClass can generally classify outliers into one group

even though they are usually separated by clusters.

4.6 Conclusion

In this chapter, we present a comprehensive approach to synthetic data generation

for data analysis and demonstrate that the approach is very effective in generating

91

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

testing datasets for clustering and outlier analysis algorithms. According to the user

requirements, the approach systematically creates testing datasets based on different

data distribution and transformation. Given the number of points and number of

clusters, each dataset is controlled by data distribution, difficulty level, density level

and outlier level. The difficulty level determines the overall characteristic (shape,

position) of the clusters in a dataset, the density level mostly determines the size

and density of each cluster. The generated datasets contain clusters of two standard

distributions: the uniform distribution and/or the normal distribution. While the

synthetic data generation system is effective in generating two-dimensional testing

datasets to satisfy user’s requirement, it is also efficient in generating very large

dataset with arbitrary shaped clusters.

92

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

Chapter 5

Conclusions and Future Work

This thesis addresses outlier analysis and detection in the area of data mining. We

investigate different techniques and methods, discuss recent work and existing prob­

lems in outlier mining. A novel approach to outlier detection is presented. The pro­

posed method uses the relative degree of density with respect to a set of reference

points to approximate the degree of density defined in terms of the k nearest neigh­

bors of a data point. Candidate outliers are ranked based on the reference-based

outlier score (ROS) that has been assigned to each data point. The worst case exe­

cution time of our algorithm is 0 (R n log n), where n is the size of the dataset and

R is the number of reference points. Detailed analysis and experiments show that

our method can quickly find meaningful outliers in both synthetic and real world

datasets and are highly scalable to very large dataset.

Synthetic data generation is an interesting topic in data mining. In many re­

search areas, benchmark datasets are essential in evaluating the quality of a pro­

posed technique. Methods of generating datasets for different purposes can be quite

different. Our work concentrates on the generation of test instances for clustering

and outlier analysis algorithms. We presented a distribution-based and transformation-

based approach to synthetic data generation. Based on this approach, we designed

and implemented a generic framework for synthetic data generation. It can dynam­

ically generate datasets of different probability distributions with various difficulty

levels in terms of clusters and outliers. We test our data generator in two aspects:

generating various large datasets and using the generated datasets to test the existing

clustering algorithms. Experiment results demonstrate that the proposed approach

93

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

is very efficient in generating very large datasets of different types. The generated

datasets can be used as benchmarks to test and compare different clustering and

outlier analysis algorithms. In addition, most of the example datasets used in this

thesis are generated by our synthetic data generator. To our knowledge, our system

is probably the first synthetic data generation system that systematically generates

datasets for evaluating the clustering and outlier analysis algorithms.

Future Work

In addition to further improving the computational efficiency of the proposed reference-

based outlier detection approach, one important direction of future work is the deter­

mination of reference points. As has been discussed in Chapter 3, the performance

of our algorithm, efficiency and accuracy, is closely related to the number of refer­

ence points and the location of the reference points. In addition to the grid-based

progressive approach to the selection of the reference points explored in Chapter

3, it is worthwhile to investigate the possibility of using other reference selection

approaches that take into consideration the domain knowledge of the dataset to

achieve a better tradeoff. Integrating the proposed approach with other methods of

outlier detection in the literature is also an interesting line of research.

Our work on synthetic data generation concentrates on the generation of test in­

stances for clustering and outlier analysis algorithms. There are still much room for

improving the current data generating system. (1) We plan to redesign the interface

to visualize not only 2D but also 3D data. (2) The size of a cluster is controlled

by the density level, which ensures that the number of points in a cluster is fixed,

but also poses a problem, i.e., similarly shaped clusters with a specific density have

basically the same size. Finding a better way to address this problem can produce

various sized clusters with the same density in a dataset. (3) In another more or less

theoretical direction, it would be interesting to discuss the meaning of the difficulty

of the datasets.

94

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Bibliography

[1] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm for
boltzmann machines. Cognitive Science, 9:147-169, 1985.

[2] C. C. Aggarwal and P. S. Yu. Outlier detection for high dimensional data. In
Proceedings o f the ACM SIGMOD International Conference on Management
of Data, 2001.

[3] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace
clustering of high dimensional data for data mining applications. In Proc.
ACM-SIGMOD Int. Conf. Management of Data (SIGMOD), pages 94-105,
1998.

[4] F. J. Anscombe. Rejection of outliers. Technometrics, 2, 1960.

[5] A. Arning, R. Agrawal, and P. Raghavan. A linear method for deviation de­
tection in large databases. In Proceedings of the International Conference on
Knowledge Discovery and Data Mining, pages 164-169, 1996.

[6] V. Barnett and T. Lewis. Outliers in Statistical Data. John Wiley & Sons,
1994.

[7] S. Bay. Orca: A program for mining distance-based outliers. Internet page,
h t t p : / / w w w . i s l e . o r g / ~ s b a y / s o f t w a r e / o r c a / .

[8] S. Bay and M. Schwabacher. Mining distance-based outliers in near linear
time with randomization and a simple pruning rule. In Proceedings of the
ninth ACM SIGKDD international conference on Knowledge discovery and
data mining, 2003.

[9] J. L. Bentley. Multidimensional binary search trees used for associative
searching. CACM, 18(9):509-517,1975.

[10] S. Berchtold, D. Keim, and H.-P. Kreigel. The X-tree: an index structure for
high-dimensional data. In Proceedings o f the 22nd International Conference
on Very Large Databases, pages 28-39, 1996.

[11] R. J. Bolton and D. J. Hand. Statistical fraud detection: A review. Statistical
Science, 17(3):235-255, 2002.

[12] M. Breunig, H.-P. Kriegel, R. Ng, and J. Sander. OPTICS-OF: Identifying
local outliers. In Proc. 3rd European Conf. on Principles and Practice of
Knowledge Discovery in Databases (PKDD’99), pages 262-270, September
1999.

95

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

http://www.isle.org/~sbay/software/orca/

[13] M. Breunig, H.-P. Kriegel, R. Ng, and J. Sander. LOF: Identifying density-
based local outliers. In Proceedings of the ACM SIGMOD International Con­
ference on Management o f Data, pages 93-104, May 2000.

[14] S. Chakrabarti, S. Sarawagi, and B. Dom. Mining surprising patterns using
temporal description length. In Proceedings of the 24th VLDB Conference,
pages 606-617,1998.

[15] P. Cheeseman, J. Kelly, M. Self, J. Stutz, W. Taylor, and D. Freeman. Auto­
class: A bayesian classification system. In PProceedings o f the Fifth Inter­
national Conference on Machine Learning, pages 54-56. Morgan Kaufmann
Publishers, June 1988.

[16] P. Cheeseman and J. Stutz. Bayesian classification (autoclass): Theory and
results. In U. Fayyad, G. Paitesky-Shapiro, P. Smyth, and R. Uthurusamy,
editors, Advances in Knowledge Discovery and Data Mining, pages 153-180.
AAAI Press, 1995.

[17] Z. Chen, A. Fu, and J. Tang. On complementarity of cluster and outlier detec­
tion schemes. In Proceedings of 5th International Conference on Data Ware­
housing and Knowledge Discovery, (DaWaK), pages 3-5, September 2003.

[18] J. Edvardsson. A survey on automatic test data generation. In Proceedings
of the Second Conference on Computer Science and Engineering in Linkping
(CCSSE’99), October 1999.

[19] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo. A geometric frame­
work for unsupervised anormaly detection: Detecting intrusions in unlabeled
data. In Proc. Data Mining for Security Applications, 2002.

[20] M. Ester, H-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Proceedings of the
Second International Conference on Knowledge Discovery and Data Mining,
1996.

[21] V. Estivill-Castro and D. Wood. A survey of of adaptive sorting algorithms.
ACM Computing Surveys, 24, 1992.

[22] U. M. Fayyad, S. G. Djorgovski, and N. Weir. Automating the analysis and
cataloging of sky surveys. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smith,
and R.Uthurusamy, editors, Advances in Knowledge Discovery and Data Min­
ing, pages 471-493. MIT Press, 1996.

[23] A. Foss, W. Wang, and O. R. Za'iane. A non-parametric approach to web log
analysis. In Proc. of Workshop on Web Mining in First International SIAM
Conference on Data Mining (SDM2001), pages 41-50, April 2001.

[24] A. Foss and O. R. Zai'ane. A parameterless method for efficiently discover­
ing clusters of arbitrary shape in large datasets. In Proceedings of the IEEE
International Conference on Data Mining (ICDM’2002), pages 179-186, De­
cember 2002.

[25] W. Frawley, G. Piatetsky-Shapiro, and C. Matheus. Knowledge discovery in
databases: An overview. In G. Piatetsky-Shapiro and W. Frawley, editors,
Knowledge Discovery in Databases, pages 1-27. AAAI/MIT Press, 1991.

96

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[26] M. H. Goldwasser, D. S. Johnson, and C. C. McGeoch. Data Structures, Near
Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementa­
tion Challenges. American Mathematical Society, 2002.

[27] S. Guha, R. Rastogi, and K. Shim. CURE: An efficient clustering algorithm
for large databases. In In Proceedings of ACM SIGMOD International Con­
ference on Management of Data, pages 73-84, 1998.

[28] S. Guha, R. Rastogi, and K. Shim. ROCK: a robust clustering algorithm for
categorical attributes. In Proceedings of the 15th International Conference on
Data Engeneering (ICDE), pages 512-521, 1999.

[29] N. Gupta, A. Mathur, and M. L. Soffa. Automated test data generation using
an iterative relaxation method. In ACM SIGSOFT Foundations o f Software
Engineering, pages 231-244, November 1998.

[30] R. Guttmann. A dynamic index structure for spatial searching. In Proceed­
ings o f the ACM SIGMOD International Conference on Management of Data,
pages 47-57, 1984.

[31] J. Han and M. Kamber. Data Mining: concepts and Techniques. Morgan
Kaufmann Publishers, 2001.

[32] D. Hand, H. Mannila, and P.Smyth. Principles of Data Mining. The MIT
Press, 2001.

[33] D Hawkins. Identification of Outliers. Chapman and Hall, 1980.

[34] S. Hawkins, H. X. He, G. J. Williams, and R. A. Baxter. Outlier detecting
using replicator neural networks. In Proc. DaWaK, 2002.

[35] R. Hecht-Nielsen. Replicator neural networks for universal optimal source
codeing. Science, 269, 1995.

[36] HMC. Geometry of linear transformations of the plane. Internet page,
h t t p : / /w w w . m a t h . h m c . e d u / c a l c u l u s / t u t o r i a l s / .

[37] V. J. Hodge and J. Austin. A survey of outlier detection methodologies. Arti­
ficial Intelligence Review, 22, 2004.

[38] IBM. Intelligent information systems. Internet page,
h t t p : / / w w w . a l m a d e n . i b m . c o m / s o f t w a r e / q u e s t / r e s o u r c e s /

[39] P. Indyk. Nearest neighbors in high-dimensional spaces. In J. E. Goodman and
J. O’Rourke, editors, to appear in Handbook of Discrete and Computational
Geometry. CRC Press LLC, 2004.

[40] W. Jin, A. K. H. Tung, and J. Han. Mining top-n local outliers in large
databases. In Proceedings o f the seventh ACM SIGKDD international con­
ference on Knowledge discovery and data mining, August 2001.

[41] J. J. Jung and G.-S. Jo. Semantic outlier analysis for sessionizing web logs.
In EWMF’03 Workshop, 2003.

[42] G. Karyapis, E.-H. Han, and V. Kumar. CHAMELEON: A hierarchical clus­
tering algorithms using dynamic modeling. IEEE Computer, 32(8):68—75,
1999.

97

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.math.hmc.edu/calculus/tutorials/
http://www.almaden.ibm.com/software/quest/resources/

[43] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction
to Cluster Analysis. John Wiley & Sons, 1990.

[44] E. M. Knorr. Outliers and Data Mining: Finding Exceptions in Data. PhD
thesis, University of British Columbia, April 2002.

[45] E. M. Knorr and R. T. Ng. Algorithms for mining distance-based outliers in
large datasets. In Proceedings of the 24th VLDB Conference, pages 392-403,
August 24-27 1998.

[46] E. M. Knorr and R. T. Ng. Finding intensional knowledge of distance-based
outliers. In Proceedings o f the 25th VLDB Conference, 1999.

[47] E. M. Knorr, R. T. Ng, and V. Tucakov. Distance-based outliers: Algorithms
and applications. The VLDB Journal, 8(3):237-253, 2000.

[48] B. Korel. Automated software test data generation. IEEE transactions on
software engineering, 16(8), 1990.

[49] A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Srivastava. A comparative
study of anomaly detection schemes in network intrusion detection. In Third
SIAM Conference on Data Mining, May 2003.

[50] J. K. Ludedeman and S. M. Lukawecki. Elementary linear algebra. West
Publishing Company, 1986.

[51] J. MacQueen. Some methods for classification and analysis of multivariate
observations. In Proceedings o f the fifth Berkeley symposium on mathematical
statistics and probability, volume 1, pages 281-297. University of California
Press, 1967.

[52] Mathworld. Box-muller transformation. Internet page,
h t t p : / / m a t h w o r l d . w o l f r a m . com/.

[53] R. Ng and J. Han. Efficient and effective clustering method for spatial data
mining. In Proceedings, of 1994 Int’l Conf. on Very Large Data Bases
(VLDB’94), pages 144-155, September 1994.

[54] NHL.com. Nhl.com. Internet page, h t t p : / / www .nhl .com.

[55] J. W. Osborne and A. Overbay. The power of outliers (and why researchers
should always check for them). Practical Assessment, Research, and Evalua­
tion, 9(6), 2004.

[56] Y. Pei and O. Zaiane. http://www.cs.ualberta.ca/ yaling/cluster/. Internet page,
h t t p : / / w w w . c s . u a l b e r t a . c a / ~ y a l i n g / C l u s t e r / .

[57] Y. Pei and O. Zaiane. A synthetic data generator for clustering and outlier
analysis. Technical report, TR06-15, Department of Computing Science, Uni­
versity of Alberta, June 2006.

[58] F. Preparata and M. Shamos. Computational Geometry: an Intrduction.
Springer-Yerlag, 1988.

[59] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining out­
liers from large data sets. In Proceedings o f the ACM SIGMOD Conference,
pages 427-438, June 2000.

98

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

http://www.nhl
http://www.cs.ualberta.ca/
http://www.cs.ualberta.ca/~yaling/Cluster/

[60] D. Ren, B. Wang, and W. Perrizo. Rdf: A density-based outlier detection
method using vertical data representation. In Proc. of the Fourth IEEE Inter­
national Conference on Data Mining (ICDM’04), pages 503-506, 2004.

[61] S. Ross. A first course in probability. Prentice Hall, 1997.

[62] S. Russell and P. Norvig. Artificial Intelligence: A Modem Approach. Prentice
Hall, 2nd edition, 2003.

[63] I. Ruts and P. Rousseeuw. Computing depth contours of bivariate point clouds.
Computational Statistics and Data Analysis, 23, 1996.

[64] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-
Wesley, 1990.

[65] G. Sheikholeslami, S. Chatterjee, and A. Zhang. WaveCluster: A multi­
resolution clustering approach for very large spatial databases. In Proceedings
of 24th International Conference on Very Large Data Bases, August 1998.

[66] S. Shekhar, C. T. Lu, and P. Zhang. Detecting graph-based spatial outliers.
International Journal of Intelligent Data Analysis (IDA), 6(5):451-468, 2002.

[67] S. Shekhar, C.T. Lu, and P. Zhang. Detecting graph-based spatial outliers:
Algorithms and applications. In Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and data mining, 2001.

[68] StatCrunch. Statistical software for data analysis on the web.
h t t p : / /www. s t a t c r u n c h . c o m / .

[69] Statlets. Statpoint internet statistical computing center. Internet page,
h t t p : / / w w w . s t a t l e t s . c o m / .

[70] P. Sun and S. Chawla. On local spatial outliers. In Proc. of the Fourth IEEE
International Conference on Data Mining (ICDM’04), pages 209-216, 2004.

[71] J. Tang, Z. Chen, A. Fu, and D. W. Cheung. Enhancing effectiveness of outlier
detections for low density patterns. In Proc. 6th Pacific-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD-02), May 2002.

[72] Y. Theodoridis and M. Nascimento. Generating spatiotemporal datasets on
the www. ACM SIGMOD Record, 29(3), September 2000.

[73] A. Turner. Density data generation for spatial data mining applications. In
Proceedings o f the 5th International Conference on GeoComputation, August
2000.

[74] VBRC. Viral bioinformatics resource center. Internet page,
h t t p : / / a t h e n a . b i o c . u v i c . c a / t e c h D o c / .

[75] T. Will. NASA ames research center: The autoclass project. Internet page,
h t t p : / / i c . a r c . n a s a . g o v / i c / p r o j e c t s / b a y e s - g r o u p / .

[76] G. Williams, R. Baxter, H. He, S. Hawkins, and L. Gu. A comparative study
of RNN for outlier detection in data mining. In Proc. ICDM, Dec. 2002.

[77] Y. Yu, D. Ganesan, L. Girod, D. Estrin, and R. Govindan. Synthetic data
geneartion to support irregular sampling in sensor networks. In Geo Sensor
networks, October 2003.

99

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

http://www.statcrunch.com/
http://www.statlets.com/
http://athena.bioc.uvic.ca/techDoc/
http://ic.arc.nasa.gov/ic/projects/bayes-group/

[78] O. R. Zaiane, A. Foss, C.-H. Lee, and W. Wang. On data clustering analy­
sis: Scalability, constraints and validation. In Proc. o f the Sixth Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD’02), pages
28-39, May 2002.

[79] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an efficient data clus­
tering method for very large databases. In Proceedings o f ACM SIGMOD
International Conference on Management of Data, pages 103-114, Montreal,
Canada, June 1996.

100

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Appendix A

A GUI-based Web Application for
Data Clustering and Outlier
Detection

Data clustering has attracted the attention of many researchers in different disci­

plines. It is an important and useful technique in data analysis. A large number of

clustering algorithms have been put forward and investigated. Many of the existing

clustering approaches are able to identify outliers/noise as well as clusters. The

web portal serves as a place for both research and educational learning in the area

of data mining, specifically, data clustering analysis. It is an on-line source to pro­

vide data mining researchers with implementations of some well-known clustering

algorithms and a virtual lab to compare clustering results obtained from different

approaches on various datasets.

A.l Goals

The Web-based data analysis system 1 is designed for two types of users in the

area of data mining: beginners to learn the basics of existing clustering methods

and researchers to conduct experiments on clustering analysis. It aims to do the

following tasks:

• Discuss the concept and recent development in data clustering analysis and

their applications.

1 http://www.cs.ualberta.ca/ yaling/Cluster

101

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.cs.ualberta.ca/

i j i B n T "
We Wit View Favorites Tools Help

Bade * * 2̂ j %> / Favorites * „ V* T

s-yAj'Sss ^ ht̂ »:/̂ ww.cs.û t>erta.ca/~ŷ)/Cluster/ gSf&J w - 0Snsj}Tt kj

Data Clustering Analysis

Fri, April 21,2006

W elcom e

D ata clustering has attracted the attention o f many researchers m dtflerenf disciplines. It is
an important and useful technique in data analysis. A large raimber o f clustering algorithms
have been put forward and investigated. This web site serves as a place for both research
and educational learning m the area o f data mining, specifically, data clustering analysis, it is
an on-line source to provide data mining researchers with tested implementations o f known
clustering algorithms and datasets, and a virtual tab to compare clustering results with a
variety o f approaches.

D a ta Analysis V irtual Dab is designed to do the following:

• Discuss die most recent development in data mining and data clustering analysis and
their applications.

• Demonstrate some known clustering algorithms to help die user learn some data
clustering basics.

• Allow die user to publish their implementations (C code or Java code) o f known
clustering algorithms, upload datasets as well as test different clustering algorithms.

• Provide an automatic generator o f muitidimentional datasets which c a i be
downloaded by the user to test and compare different clustering algorithms.

• Allow the user to visualize data sets and clustering results.

iD o n e ___ # Internet

Figure A.l: Data clustering analysis - welcome

• Demonstrate some well-known clustering algorithms visually to help the user

learn some data clustering basics.

• Provide a GUI-based Web interface for various clustering algorithms which

are originally implemented in standalone applications.

• Allow the user to run clustering algorithms without logging into any remote

machines. The user may upload their own datasets and test these datasets

with different clustering algorithms.

• Visualize the clustering results obtained from different clustering algorithms

so that the user can view the output as well as compare and evaluate different

algorithms.

The screen shot of the welcome page is shown in Figure A.I.

102

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

S i ^ S S S B ^ 5
.•F ile.'E d it ' FflyodtM Tools H dp

: j s j j s c t - | J J - i j j I H j J D se a rc h :

At f 1 6 1 1 , „ i • --- -- S J .I

*

• © S n a g K 1 0 (

■‘H i

iS 'ffiSSSB B Data Clustering Algorithms
Ŝfcigti&r

Fri, April 21,2005

fne tho tis

Introduction

There exist quite a few well-known clustering algorithms. Different algorithms may group
a certain data set at different ways and result m either similar or different output- The
choice o f a particular method depends on many factors, such as domain knowledge,
performance o f the method, hardware and software facilities as well as die size of the
dataset. In general, data clustering algorithms are classified into five categories:

• P artitioning m e th o d s

• H ierarch ical m eth o d s

• D e n sity -b a sed m eth o d s

• G rid -b ased m e th o d s

• M o d el-b ased m eth o d s

Home I O verv iew [A lgorithm sj p a f a s e ts | A pp |e t$ { ^ p e r |m e n ta l T e s tb e d j L inks | C o ^ c t

S Did dutttticj aMiyiis '■>*}:,
4$ # internet

Figure A.2: Data clustering analysis - algorithms

A.2 A Virtual Lab for Learning Clustering methods

As shown in Figure A.2, we adopt the well known classification of clustering tech­

niques: Partitioning methods, hierarchical methods, density-based methods, grid-

based methods and model-based methods. Different algorithms may group a certain

data set in different ways and result in either similar or different output. The choice

of a particular method depends on many factors, such as domain knowledge, per­

formance of the method, hardware and software facilities as well as the size of the

dataset. We provide in this Web site brief reviews and links to the original papers

of each clustering method. Interested readers are referred to the Web site for details

of various clustering techniques and their applications.

In addition to the discussion of each method, we also provide a Java applet to

demonstrate visually the working mechanisms of the well-known clustering meth­

ods: Kmeans, Kmedoids, DBSCAN and CLIQUE. Explanation of the algorithms

and the user manual for running the applet are provided along with the applet. Fig-

103

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

*■ Algorithm P-sTumt'ters PfajPe)

DBSCAN Is a density-based method based on
connected regions with sufficiently high
density. It requires two parameters:

Epst Maximum radius of die neighbobood of
the object

MinPts: Minimum number o f points In an Eps-
neighbrhood of the object

D8SCAN

^ 1 0 r 15 20 25250

j-jaya Applet Window

Clear

450

242133
171116
226130
229125
231 149
226153
202163

it by

x ls an
y is an

201121

Ob

Figure A.3: Data clustering analysis - applet

104

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ure A.3 displays a screen shot of the applet showing the running result of DBSCAN

with Eps = 20 and M in P ts = 5 on a set of randomly generated data. The applet

has the following functionalities:

• Allow the user to select an algorithm and set the parameters specific to the

selected algorithm from a separated window.

• Allow the user to import his own datasets as well as using the default datasets

provided by the system to run different algorithms.

• Allow the user to export and save the data.

• Allow the user to choose the running speed.

• Copy and save the running result in a separate window to facilitate compari­

son of different algorithms on a given dataset.

A.3 An Interactive Web-based Testbed for Cluster­
ing Analysis

We migrate the following clustering algorithms: Kmeans, DBSCAN, CURE, ROCK,

CHAMELEON, CLIQUE, WaveCluster and AutoClass to an interactive Web-based

application system. Based on the structural analysis and program understanding of

the existing command line implementation of these clustering algorithms, we de­

cide to keep the original source code for the clustering task, and write a wrapper for

Web enabling purpose. We then further extend the system by displaying the clus­

tering results graphically on Web browser at the client side. Without logging into

any remote machines, users are able to run the algorithms directly from the server

side once the applications are Web enabled.

System Design and Tools

The original implementation of the clustering algorithms are either written in C or

Java. They are command line based standalone applications. To run each program,

105

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Web ServerWeb browser

VisualizationCluster applications

Figure A.4: UML of the Web-based clustering system

a user has to type in the command line the necessary parameters which require sig­

nificant application domain knowledge. To enable the existing implementation on

Web, the first question in our design phase is: What components of the system will

be exposed to the Web? In our interactive system, we address only the accessibility

of data and presentation.

Although we try to wrap the standalone applications as they are, we found that

minor modification of the original implementation is necessary due to the command

line interaction between users and the running program. As we intend to encapsu­

late the internal mechanism with a wrapper, we have to disable any user intervention

while the program is running.

HTML forms are used for submitting user queries. After running an algorithm

on the server side, the clustering result is to be displayed on the client side. There­

fore, the target system provides support for visualizing the clustering results. Fig­

ure A.4 presents the UML of the infrastructure of the Web-based interactive system.

The implementation in building the clustering testbed and migrating the existing

106

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

applications into Web-based systems involves mostly four programming languages:

• PHP - a server-side scripting language for displaying and submitting user

input as well as wrapping the original application

• Javascript - a client-side scripting language for program parameter selection

• Python - an object-oriented programming language used for parsing parame­

ters, read and write to files

• Java Applet - visualizing two-dimensional clustering results on Web browser

System Functionalities

We explain how the clustering testbed works by walking through the Web pages.

Figure A.5 through A .l 1 show the steps from logging into the system to getting the

clustering result. In general, there are five major steps in running the application to

obtain the clustering result.

1. Select an algorithm as shown in Figure A.8.

2. Select a dataset and enter the parameter values in the text boxes that are pro­

vided dynamically based on the selected algorithm as shown in Figure A.9.

3. Run the algorithm and check the parameters and clustering result.

4. Visualize the cluster result.

Many users without domain knowledge may want to run the clustering algo­

rithms to evaluate the clustering results. They do not care about the internal mech­

anism as to how the system works. Even those users who are expert in clustering

analysis may run the system only for the purpose of evaluating their algorithms and

results. In both cases, it is not reasonable to ask users to specify all the parameters

associated to the selected algorithm in order to run the program. To simplify the

parameter selection task, we provide an extra text field to allow users to input an

XML file name to save job history. When the user wants to run the same algo­

rithm with the same setting for different datasets, the user does not need to type in

107

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

these parameters repeatedly. Instead, by selecting the previously saved XML file,

the system will automatically parse the parameters and run the program as desired.

The benefit of saving job history can be more obvious when the system gets larger.

In short, our Web-based interface eases users from checking the domain specific

information.

Notice that the textual presentation of the clustering results provides no clue

about how the data are distributed. For a dataset with even more than a hundred

data points, it is almost impossible to evaluate the clustering results based only

on the text information. As part of the testbed evaluation process, we decide to

extend the original system by visualizing the clustering results, restricted to two-

dimensional data. Java applet is used for this task so that it can be easily integrated

with the Web-based system.

The user interface for visualizing the results as shown in Figure A. 11 is designed

to have a simple and clear layout. Two-dimensional data are represented as points

on Web browser. To distinguish among resulting clusters, different colors are used

for each cluster to help users understand the clustering results. Moreover, the applet

also displays the relevant parameters such as algorithm name, total number of data

and number of final clusters.

108

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Hie 6 4 t - ' :V lew .:.Favw itesv;;fo^C '-H « lp . *
■ 0 6>tk ' . j . * ' s ' areh Favorites f f ■ U *...

i |D h ttp ://w w w ,« .uaberta .ca /~ y t^ /^ sta^a jec t/S r< ^testbedJrrtrD .p fcp v t e jo ® - ^ S n a s t l t ^

• r - ■

;AJ

Data Clustering Testbed

I Fri, April 2 1 ,2Q06

Testbed Introduction

Data Clustering Testbed provides a place where users can. experiment different
clustering algorithms with selected datasets. So far, eight algoritlims have been
implemented, some of winch are provided by die authors who came up with the
algorithms. The implemented algorithms are;

• K-means
• DBS CAN (provided by the authors)
• CURE (algorithm part provided by the authors)
• RO C K (algorithm part provided by the authors)
. CHAMELEON
. CLIQUE
• WaveCfuster
• AtttoClass

W e have some datasets available for you to test with die algorithms. Or you can
upload your own datasets to test with different algorithms.

Testbed login

T es tb e d

In troduc tion

NSW U«»f

Existing u s e r

Home j O v e rv iew (A lgorithm s j D a ta se ts \ A p p le ts ! £ x p erim e n ta lT es tb ec J | L inks j C on tact

£ Dm tftttetef KVlytU 2$£2>iSCS

__ # Internet

Figure A.5: Clustering testbed introduction page

m m -M t o n
Fie Edit Mew . Favorites " Tools '..-Help

’ f iw # *) / S « r * ' Favontes

;4M ias3:.i^htipr//w w w .cs.«a& erte,ca/~yaling/C luster^,foiec^Src/5o<jrWew'.pfp « 0 “ '

t

_ “ -#J, - & Snaglt fc?

Computing Science

M arne > L h s s to r u u j t e s t b e d < \ o g o u t :

Data Clustering Testbed

T es tb e d ' i

in tro d u ctio n

New u s e r

Existing u s e r

Experimental Testbed Register

Login aam e: iy3^ 9

Passw ord: :♦♦♦♦♦♦

E a te r passw ord again: • • • • * *

Y ear email: jyaling@cs.u3lbert3.cal

I Register j

Home I O verv iew | A lgorithm s j D a tase t*J A pp lets (E xperim ental T estbedij Links [C o n tac t

e Ota duswvij 2</;2-2&t

Figure A.6: Clustering testbed registration page

109

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www,%c2%ab.uaberta.ca/~yt%5e/%5esta%5eaject/Sr%3c%5etestbedJrrtrD.pfcp
mailto:jyaling@cs.u3lbert3.cal

3 DATAO <•'>!■ U Wt’lrwwi • Microsoft jrternft i xptorer
Fte rg^ t 'View favorites Tods Heip

^ Back - ^ s y ' Sear* Favorites ^ ^

felŜ t-is ;̂ } bttp://wA'W.is.uafoerte.M/vyaiiigyausteffrojectj5rĉ ogiii.php a ® :

Data Clustering Testbed
H om e > C luste ring t e s tb e d < L ogout :

FtI, April 21,2008

W e present b this testbed eight implemented data clustering algorithms: K-iwaans, DBSCAN, CURB, ROCK,
CHAMtLEON, CLIQUE, TURN, WaveCluster and A utcClass. To experiment with any one of tlte
algorithms, die user has two choices:

« run a id compare the algorithms with the datasets we provide;
• nm and compare die algorithms with liis/hei ower datasets.

If vou would Ske to use die given datasets, just press die button Go to algorithm page. Otherwise, you can
upload the datasets o f your own and then press the button Go to algorithm page.

It you wish tu us e \o u r u

[. G o to .a lgorithm p a g e

H ome J O v e rv ie w } Algo.rtthms j p a m e t e j A p p le ts . [E x p e r im e n t* ^

S Oatt eteairiej tsalyii*jeOWODS

Figure A.7: Clustering testbed registration validation page

3 DAfA CJJJSTfR - • W elcom e - M icrosoft In te rn e t I x p toror

file Befit View Favorites Tods Help

Q s a c k • t y Search Favorites ^ ^

http://wvM.is.uaberte.ca/~yaling/C!uster,^cjett^c/ask_aigo.php £}do * * ^ * Ŝnafllt fcj1

Data Clustering Testbed
H om o > C luste ring te s tb e d A tb g b u t •

C hoose an algorithm:

'i, April 21. 2006

RO CK
CH A M ELEO N
CLIQUE
WavaCfoster
A u to C lass

S u b m it A lgorithm

MW
H o m e |O v e fv ie w |A lg o rith m s jD a ta se ts |A p p { e ts jE x p e r im e m a lT e & tb e d lU n k s |C o m a c t

W..m
* Du* ctaittring uijlysi* 2£CC-iO!54 -

$ internet

Figure A.8: Clustering testbed algorithm selection page

110

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://wvM.is.uaberte.ca/~yaling/C!uster,%5ecjett%5ec/ask_aigo.php

Fie Erft VSew .'F^bffteSf^rKfe:'' Hep: ' f

Q b » * * ^ *1 21 J y Sm A _ F».wt« <g“

i i^ http://w»w,cs.uatoerta.a/~yafing/Cluster^r^ect/5re/arftjMram.php

f g g § | . M pRM MW pW M pV

' 0 1 , 1 1 11

Data Clustering Testbed

Ffi. April 21, 200S

Algorithm: K~tn&an$

C hoose a d a ta se t:
tes!2 txt * ^2-dimensionaldala

Ftopsiljei: | Total points: 2000
tesf3bd v jj„.

O r use an uploaded d a ta set:
myData1.dat

L E n ter th e Bomber of d a ta to b e d u s te re d : 2000

E n te r the num ber of d u s te rs K : 5.....

E n te r an X M L file Bame to save iapat param eters: <means.xmi

[Run Algorithm J

I Ulc-iu i t i i f l i . jo u c.iu iub th i ilgurilfain wish ihe old input iIj i j .

| I Luose the ap p ru p iu te soil file ■kmeansxml v

1 (Run Algorithm with parameters savedin ae/ected.file :|

ItfjD one ^ I n t e r n e t : : : : j

Figure A.9: Clustering testbed algorithm parameter page

3 H A M C.i SISTFR • W d o -m o M u iv s o f f in n v o i- t i x p ln r e r

Bfe F flew F»v«riteS.;r<M te''' Heip''.

0 “* • « ii » ! / s“d' < <?■ ■ *-
M htip:/Aw«v,£s.uatoefta.ca/~ydhg/austef/Praject/&c/5etj«u!t.php fc' ©Snajlt ttf

* d C B S B B S Data Clustering Testbed

Frf. April 21,2«H

A lgorithm: X-means
D atapath : .JD3taset$/Dat$setQ/test2-2.txt
N um ber o f objects: 2QOO
N um ber o f d u s te rs : S
X M L file u sed to sav e iaput: .Jmstory/Kmaam.xmi

Visualize cluster results)

Homo | O verv iew [A lgorithm s | D a ta se ts {A p p le ts j E xperim ental T e s tb e d [Links [C o n ta c t

t Dili dwrt«ift| MaSysts 20®2:-2C$i
& Internet

Figure A.10: Clustering testbed algorithm output page

111

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://w%c2%bbw,cs.uatoerta.a/~yafing/Cluster%5er%5eect/5re/arftjMram.php

File eat: «ew Favorites Tods ■Hefp. ■ :

Back * _ - -x j *N Search Favorites ^

<u;c5<iss i/g j htipv,/www.cs.ualbefts.ca/'-^abng/Ouster ̂ ro}ecl/Src/Visuali2aboiVrerTdering.ph[> *£. ” Snaglt £ j

Visualization Applet

'CVi V&Jfth'**'', t ,•, /.•■‘‘S'
* •*’

' • * - ?V

* ? : T "

* |T* * V>*.*»• f#" * >’*W».4*W •
r*v '*'*/* *,,« .< . ;&t\ .

^5} Applet Visualizstjori S tarted::.

*■ ■ ■

4^' *
',45S*3Sl%'.* .''">44: •:< •’ ■

Figure A .l 1: Clustering testbed output presentation page

112

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.cs.ualbefts.ca/'-%5eabng/Ouster

