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Abstract

Outlier detection aims to discover exceptional instances in datasets. It has long been 

studied in the literature of statistics. In recent years, outlier detection has gained 

much interest in data mining and found many important applications. Current work 

on outlier detection mainly focuses on three aspects: definition of outliers, efficient 

methods for finding meaningful outliers and evaluation methodology. In this thesis, 

we propose a new method that uses the relative degree of density with respect to a 

set of reference points to estimate the neighborhood density of a data point. Can­

didate outliers are ranked based on the outlier score that is assigned to each data 

point. The running time of our reference-based algorithm is O (R nlogn)  where n 

is the size of the dataset and R  is the number of reference points. Analysis and ex­

periments show that our method is very effective and highly scalable to very large 

datasets. To facilitate experimental tests for outlier analysis and automate the gen­

eration of diverse datasets, we developed a generic framework for synthetic data 

generation. The system can efficiently produce datasets with various characteristics 

such as size, shape, density as well as cluster and outlier distributions.
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Chapter 1 

Introduction

The huge amount of data available provides us with a rich source of information, but 

it also makes it extremely hard for human experts to gain knowledge by manually 

observing the raw data or using the traditional methods that are not scalable to large 

data sets. With the increasing demand of specialized techniques and tools for ac­

curate data analysis, data mining has become an interdisciplinary field and gained 

much popularity in both research and industrial communities in the last decade. 

Also known as Knowledge Discovery in Databases (KDD), data mining is the pro­

cess of non-trivial extraction of implicit, previously unknown, and potentially useful 

information from data [25].

Data mining involves various tasks of pattern discovery in large datasets. In 

[31], these tasks are classified into two major categories: descriptive and predictive. 

Descriptive mining activities aim to summarize the general properties of the data. 

Predictive mining activities try to make predictions based on the characteristics of 

the current datasets. Most data mining tasks such as classification, clustering and 

association rule mining attempt to identify useful data patterns implied in the major­

ity of the dataset. Outlier analysis, on the other hand, deals with identifying a small 

portion of the data. This small amount of data are usually significantly different in 

some or all the dimensions from the remaining data points. Being an important task 

in data analysis, outlier detection and analysis has drawn much attention in the area 

of data mining in recent years. Raw data collected from real-life activities are often 

imperfect and contain aberrant values. These aberrant values can be noise that leads 

to a poor data model. To avoid the influence of such noise in the process of mining

1
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data regularities, data cleaning serves as an important step in the KDD process to 

eliminate unwanted data values. But in many situations, the exceptional cases are 

not necessarily bad data points and are often more interesting than common events. 

The identification of such outliers can provide valuable information not only about 

the data collecting and recording process but also about the abnormal activities. 

The goal of outlier detection is two-fold: to screen for exceptional data values, and 

to uncover the implicit patterns of those rare cases that contain knowledge of par­

ticular interest. Further study and analysis on the characteristics of the identified 

outliers are often conducted to build knowledge models of the abnormal behavior.

Outlier detection has found many real life applications, where the identification 

of outliers is essential in finding rare and suspicious activities. Some typical exam­

ples are fraud detection [11], for example, detecting credit card fraud and finding 

criminal activities in E-commerce, network intrusion identification [19, 49], video 

surveillance monitor [47], sports and market analysis [45, 14].

In this thesis, we will concentrate on outlier detection. We investigate different 

techniques and methods, discuss recent work and existing problems in outlier anal­

ysis in the area of data mining. We propose a new approach to outlier detection. The 

proposed outlier detection method uses the relative degree of density with respect 

to a set of reference points to approximate the degree of density defined in terms of 

the k nearest neighbors of a data point. Candidate outliers are ranked based on the 

reference-based outlier score that has been assigned to each data point. The worst 

case running time of our algorithm is 0 (R n  log n), where n  is the size of the dataset 

and R  is the number of reference points. Analysis and experiments demonstrate that 

our method is a feasible and efficient alternative for detecting distance-based out­

liers. In order to facilitate the evaluation of our outlier algorithm, we designed and 

implemented a generic framework for synthetic data generation. It can dynamically 

generate datasets of different probability distributions with various difficulty levels 

in terms of clusters and outliers.

2
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{a} Outliers w.r.t a dtstelbution (b) 0  uiuei s  *r.t. a pattern (c) time series outliers

Figure 1.1: Examples of different types of outliers

1.1 Problem Statements

In physics, the statistical term outlier is often included in the more general term 

“noise”. Intuitively, an outlier is a data value that lies far away from the rest of the 

data. While there is no universal definition for an outlier, some widely accepted 

definitions given in statistics include

• “An outlier is an observation that deviates so much from other observations 

as to arouse suspicions that it was generated by a different mechanism” [33]

•  “an observation (or subset o f observations) which appears to be inconsistent 

with the remainder of that set of data” [6]

Although there exists some controversy over what constitutes an outlier, it is 

generally considered that an outlier has unusual or exceptional data value. It is 

an observation that appears to be inconsistent with the remainder of the dataset. 

Outliers are often interesting observations which need close investigation to see 

the reasons “behind the scene”. However, the underlying data models vary over 

different datasets, which makes it non-trivial to define outliers in a universal way.

Figure 1.1 shows the ambiguity and difficulties in defining outliers through three 

basic types of outliers with respect to their data models. Outliers are marked by 

circles or dotted lines. In this example with only two dimensional data, (a) demon­

strates a group of outliers in relation to a normal distribution. The marked outliers 

can be either extreme values or contaminants emanated from another nearby dis­

tribution. The data in (b) is relatively structured and can be described by a linear 

regression model. We can see that none of the three marked outliers have extreme

3
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values in either x or y  dimension. They are outliers due to the fact that they deviate 

from the main body of the data, thus break the expected data pattern. The example 

indicates that extremes are not necessarily always outliers. Such outliers are indeed 

very common with multi-dimensional distributions. Figure 1.1(c) is a set of time 

series data that are prevailing in financial, industrial, meteorological and sociologi­

cal processes. Outliers in this type of data are presented as those occasional sharp 

spikes along the time sequence.

Nearly all the datasets are imperfect. They are subject to the contamination of 

noise, exceptional cases, or incomplete data points, which are part of the overall 

picture in data collection and recording. Outliers can arise from various mecha­

nisms and occur in any datasets. In statistics literature [4, 6], the causes for outliers 

are generally divided into two major groups:

•  errors in the data that originate from data collection and data entry where 

inaccuracy or mistakes occur in the process of data reading, calculating or 

recording; and

•  inherent variability of the data, which is common with observational studies 

where outliers reflects the natural variation of the data;

Depending on the definition of outliers and the specific application domains, it is 

likely that outliers arise from sources other than the above categories. For example, 

outliers can be rare events that are surprising or unexpected observations. They have 

legitimate data values, but do not fit into the main body of the data. For example, 

most students start university at the age of seventeen or eighteen. However, there 

are exceptional cases that a few students start university at a much younger age such 

as fourteen. Such outliers may deliver valuable information about the process under 

investigation. It is therefore important to identify these outliers so that further study 

can be conducted to understand what these outliers really represent.

Outlier detection and analysis has long been studied in the literature from statis­

tics community. A common approach in Statistics assumes an underlying distribu­

tion model of the data. Statistical discordancy tests are performed to identify some 

small percentage of points that deviates from the rest of the data. Based mainly

4
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on probability distribution and distribution parameters, more than 100 statistical 

discordancy tests have been developed [6].

With the rapid development of technologies and increased volume of datasets, 

outlier analysis is now faced with new challenges and requirements. Apart from 

the size of the datasets, which forms the fundamental difference between classi­

cal statistical applications and data mining [22, 32], high dimensionality, diverse 

characteristics and constantly evolving are major concerns of the datasets that are 

commonly used in data mining activities. Statistical modeling methods that require 

fitting the data points to a stochastic distribution become increasingly difficult and 

inaccurate to handle complex datasets. Quadratic complexity is hardly acceptable 

with large datasets. The problem now centers around how to efficiently and effec­

tively identify outliers in very large datasets.

In data mining, outlier detection and analysis is often referred to as outlier min­

ing. The main issues involved in outlier mining research include (1) definition of 

an outlier for a given dataset; (2) well-performed algorithms; and (3) evaluation 

methodology, including datasets, visualization and user interaction.

A common definition of outlier mining is as follows: Given a set o f N  data 

objects, find those objects that are fa r  outside the norm in one or more dimensions. 

In the case when the expected number of outliers is given, for example, mining the 

top-n outliers in a dataset [59, 40], outlier mining would be described as: Given a 

set o fN  data objects, and O, the expected number of outliers, find the top n objects 

that are far outside the norm in one or more dimensions.

Like most of the current work on outlier detection, our work is based on two 

basic assumptions:

• Outliers are only a very small portion of a dataset, i.e., normal data signifi­

cantly out-number abnormal data.

• Outliers are inconsistent with and deviate from the rest of the data in one or 

more dimensions.

Test datasets play an important role in the evaluation of outlier detection. Be­

sides the real-life data collected in numerous situations, some synthetic benchmark

5
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datasets would help validate and visualize the results of the designed outlier de­

tection algorithms. Currently, little work has been done on developing benchmark 

data repositories. Existing outlier detection methods tend to use different data to 

assess their performance, which may result in biases toward the specific models. 

One Challenge in data analysis, including data clustering and outlier detection is to 

build a generic framework and automate the data generation process. Therefore, a 

data generator that can dynamically produce synthetic datasets with various distri­

butions, shapes and densities is an important task in data mining community.

1.2 Contributions

This thesis addresses the issues in outlier analysis and detection in the area of data 

mining. There are four major contributions.

•  A new notion of outliers: We proposed reference-based outliers that are 

considered in the whole data space as well as each respective dimension with 

respect to a set of reference points. The new notion integrates the distance- 

based global outliers and the density-based local outliers. Unlike the tradi­

tionally defined outliers that considers the whole dataset from only a single 

viewpoint, the reference-based outliers are analyzed dynamically in the data 

space. That is, the degree of density for each data point in a dataset is ana­

lyzed from different view points where the reference points are located.

•  An efficient outlier detection approach: Based on the new notion of reference- 

based outliers, we proposed a fast and effective outlier detection method. The 

method is compatible with distance-based outlier approaches yet capable of 

identifying local outliers in terms of data patterns in a dataset. The execution 

time of our algorithm is 0 (R n  log n) where n is the size of dataset and R  is 

the number of reference points. Candidate outliers are ranked based on the 

Reference-based Outlier Score (ROS). Experimental results indicate that our 

method is effective and highly scalable to very large datasets.

6
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•  A generic framework for synthetic data generation: The system automates 

the generation of multi-dimensional synthetic data generation. A distribution- 

based and transformation-based approach is used to systematically generate 

various datasets in terms of data clusters and outliers. The approach is very 

efficient and the generated 2D dataset is visualized for user inspection.

• A GUI-based Web Application for data clustering analysis and outlier 

detection: The Web portal serves as a data analysis virtual lab to demon­

strate visually how some well-known clustering algorithms works to identify
»

clusters and detect outliers. Registered users are allowed upload datasets and 

test their datasets with different clustering algorithms running on the server 

side.

1.3 Organization of this thesis

The rest of this thesis is organized as follows: In Chapter 2, we review the existing 

outlier analysis methods and algorithms in both statistics and data mining commu­

nities. In Chapter 3, we present a new reference-based approach to outlier detection 

and an efficient algorithm for finding global and local outliers. A synthetic data 

generation system is discussed in Chapter 4. We conclude the thesis with a brief 

summary and point to the directions for future work in Chapter 5. Appendix A 

introduces a web-based data analysis application that serves as an on-line tool to 

assist the learning of data clustering.

7
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Chapter 2 

Related Work

Outlier detection and analysis in the literature are mostly from statistics. In the last 

decade, it has become an important and active research area in data mining due 

to the increased demand for finding rare but informative cases in large datasets. 

Different notions of outliers were proposed and many outlier detection algorithms 

have been developed. One suggested way to classify the existing outlier detection 

methods is to divide them into two broad categories: set-based and spatial-set-based 

as shown in Figure 2.1 [66]. The main idea of such classification is to divide the 

existing methods into spatial and non spatial groups. We can see that set-based 

methods consist only of the classical distribution-based approaches, which identify 

outliers by fitting the data into a stochastic model constructed for one or more at­

tributes. Spatial set-based methods that are further divided into multi-dimensional 

metric spatial data set and graph-based spatial data set, include almost all the re­

cently developed outlier detection methods. This category of methods considers 

both attribute values and spatial relationships of the data. One major disadvantage 

to classify outlier detection in the above way is that different notions of outliers are 

grouped together, which can cause confusion as to the definition and scope of an 

outlier, for example, whether an outlier is global or local.

In this thesis, we adopt the classification that is based on the way to define 

outliers. Under this classification, the outlier detection methods are grouped into 

five categories, namely statistical methods, including distribution-based and depth- 

based, clustering-based methods, distance-based methods, density-based methods 

and machine learning methods. With the goal of mining outliers effectively and
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Figure 2.1: Classification of outlier detection methods in [66]

efficiently, researchers in data mining now focus on developing algorithms that can 

scale to large and high dimensional datasets. In this chapter, we will concentrate on 

different notions of an outlier, discuss state-of-the-art algorithms for outlier detec­

tion and compare their performance.

2.1 Statistical Outlier Detection

In statistics, the presence of outliers can seriously bias statistical estimates, which 

results in inference errors and reduction of the power of statistical tests. Therefore, 

it is critical to identify those extreme or influential data values for reliable and ac­

curate statistical modelling. For decades, many researchers have been engaged in 

finding ways to detect outliers. Barnett and Lewis discussed approximately a hun­

dred discordancy tests for normal, exponential, poisson and binomial distributions 

in their book “Outliers in Statistical Data” [6]. Although we do not plan to cover 

all these discordancy tests, we are going to discuss some of the widely used outlier 

detection methods in statistics literature.
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Figure 2.2: Example of a box plot

2.1.1 Graphical tools

There exist quite a few graphical tools to present data for exploratory data analysis 

and visual inspection, for example, bar graph, pie chart, histogram, line graph and 

so on. In this section, we will focus on two graphical methods that have been widely 

used in outlier detection.

Box Plot

A box plot is a graphical approach for conveying the information of data location 

and variation. It can check outliers in one or more sets of data. Figure 2.2 shows 

a box plot created using the online software StatCrunch4.0 [68]. In this example, 

a normally distributed dataset containing three hundred one-dimensional data is 

examined. The box plot provides us with a five marked summary of the important 

features of the data distribution. The line in the center of the rectangular box at 160 

represents the median, which divides the data into two equal halves. The two ends 

of the rectangle at 149 and 174, represent the lower quartile and the upper quartile, 

of which the lower quartile is defined as the 25th percentile and the upper as the 

75th percentile. Specifically, 25% percent of the data values are less than 149 while 

75% of the data values are less than 174. Thus the box itself has 50% of the data. 

The whiskers (short vertical line segments at 115 and 214) show the minimum and 

maximum values of the data being considered normal. They are determined using a
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Figure 2.3: Example of a scatter plot

heuristic function that depends on the lower and upper quartiles. Data points outside 

the whiskers are displayed as outliers. In Figure 2.2, six data points are marked as 

outliers.

Scatter Plot

A scatter plot is a graphical tool widely used to display measurements of two vari­

ables. The resulting pattern indicates the relationship between the two variables. 

Figure 2.3 is a scatter plot created by StatCrunch4.0 [68]. The dataset in this sam­

ple have 300 points in a 2-D space. Both of the variables have a normal distribution 

and they are generated independently. The plot reveals that variation of y  does not 

depend on x in the dataset. Outliers in the plot are exhibited as the data points lying 

on the outer skirt of the data body.

In summary, box plots and scatter plots graphically display the spread of the 

data. They are useful tools for visual inspection of outliers in a dataset. However, 

the limitation of displaying data with only one or two dimensions has excluded 

them from receiving much attention from the data mining community.

2.1.2 Distribution-based Outlier Detection

As the name suggests, the definition of a distribution-based outlier is based on a 

standard probability model, such as Normal, Poisson or Binomial distribution. The 

most well-known method for detecting distribution-based outliers is to compute
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Figure 2.4: standard normal distribution

2-score for each data point. In a 2-score test, the data is fitted into a normal distri­

bution. The 2-score for each data point indicates how far and in what direction it 

deviates from the mean of the data distribution, in other words, it is the number of 

standard deviations from the mean. The value of 2-score is calculated based on the 

mean /i and standard deviation a  of the entire dataset. The formula for 2-score is as 

follows:
x  — a

z  = -------- .
a

Outliers are identified by following the heuristic that any data point with a z- 

score greater than three is an outlier. Figure 2.4 illustrates a standard normal distri­

bution where the mean is 0 and the standard deviation is 1. As shown with vertical 

lines of different shades of the color, about 68%, 95%, and 99.7% of the data fall 

within 1, 2, and 3 standard deviations from the mean in a normal distribution, which 

explains why 2 =  3 is usually used as a cutoff value to differentiate between normal 

and abnormal. While the rule is simple as well as effective in many situations, this 

method suffers from inaccuracy when the data is skewed, especially when the sam­

ple size is small since the test parameters mean and standard deviation are obtained 

from the entire data, including the outliers.

For the multivariate cases, a common method that has been used in statistics is 

the Mahalanobis distance which, roughly speaking, is defined as the distance be­

tween two data points weighted by the covariance matrix of an assumed underlying 

distribution.
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Figure 2.5: Some depth contours for a dataset containing 500 points

While a large number of discordancy tests have been developed for different 

scenarios, there are two key drawbacks of distribution-based techniques. The first 

drawback is obvious, i.e., they require prior knowledge of the data distribution. 

Another drawback is that most of the statistical tests are designed in terms of a 

univariate distribution and they are specific to certain distributions and number of 

outliers. In numerous data mining activities, we do not usually have enough knowl­

edge about the underlying data model or expected number of outliers. Moreover, 

fitting a set of complex data into a standard distribution is too expensive and in 

some cases, impossible. The ever-increasing data size and attributes are also nega­

tive factors that prevent distribution-based methods from being applied to practical 

problems in data mining activities.

2.1.3 Depth-based Outlier Detection

Based on computational geometry, depth-based method organizes data in layers of 

a convex hull. The method then computes the depth contours [63] or different layers 

of the convex hull. Outliers are expected to be found in the data lying in the outside 

perimeter layers. To be more concrete, we borrow the graph from [44] showing the
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first few depth contours for a dataset having 500 points in Figure 2.5.

The advantage of depth-based methods is two-fold. On one hand, it avoids 

the assumption of a probability distribution for the data. On the other hand, it is 

able to identify outliers without requiring any distance function in the feature space 

which is an advantage over some newly developed methods such as the distance- 

based methods to be discussed in the next section. However, the key issue with 

depth-based method is that the complexity of computation of a convex hull with
k

A:-dimension has a lower bound Q (N 2 ), which makes this approach not very useful 

for large high dimensional datasets.

2.2 Outlier Detection in Clustering Analysis

Being one of the unsupervised learning tasks, clustering is the process of group­

ing similar data objects into classes. Research on clustering analysis has attracted 

attentions from different areas, including statistics, data mining, machine learning, 

text retrieval and document categorization. While there has been a rich literature on 

clustering analysis [31], recent efforts have been focused on finding efficient and 

effective clustering methods that can handle large multi-dimensional datasets.

Existing clustering methods can be broadly classified into four categories: parti­

tioning methods, hierarchical methods, density-based methods and grid-based meth­

ods. While all these methods aim to find meaningful clusters in the database, some 

have been designed to be able to detect outliers while the clustering is conducted. 

We will briefly discuss the ideas used in some of the clustering algorithms where 

outlier detection is considered.

CLARANS [53], a partitioning clustering method gives each object a silhou­

ette coefficient to specify how much the object belongs to a cluster. An outlier is 

identified if the silhouette coefficient is below a certain threshold. The hierarchical 

method BIRCH [53], marks an object as an outlier if  it is far enough from the rep­

resentative object, or seed. WaveCluster [65] is a grid-based method that is able to 

filter out noise or outliers through Wavelet transforms. In all of the above methods, 

outliers are merely identified as a by-product of the clustering process.
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The density-based method DBSCAN [20] defines outliers among the data ob­

jects. Outliers have a low density in their neighborhood so that they can not be 

grouped into any clusters. A more recent work [17] shows some interesting re­

lations between DBSCAN and some outlier detection methods to be discussed in 

the next section. It demonstrates that DBSCAN and one of the distance-based ap­

proaches, DB-outlier \  are almost complementary; and DBSCAN is also comple­

mentary with density-based and connectivity-based outlier schemes within a den­

sity cluster or far away from some clusters. Interested readers are referred to the 

work in [17] for details. TURN* [24], a density-based approach developed in our 

research lab, clusters data objects based on a series of resolutions. A density factor 

is defined for each object and outliers are those external points with low density 

values.

Clustering methods aim to achieve optimization in classifying data into groups. 

Outliers are considered noise and once identified, are usually removed to reduce 

their influence on the clustering process. The major issue of using these methods 

to detect outliers is the efficiency and accuracy. Since normal data accounts for the 

majority part of a dataset, the computation for clustering data objects is often ex­

pensive, which in most cases is unnecessary for outlier detection. A well-designed 

outlier detection method should be able to find meaningful outliers without worry­

ing about how data are assigned to clusters.

2.3 Distance-based Outlier Detection

2.3.1 Basic Concepts

An important topic in outlier detection and analysis is the formulation, or formal 

definition of outliers. As discussed above, most statistical approaches model the 

data points using a probability distribution such that an outlier is defined with re­

spect to the underlying data model. Such definition is not feasible for most data 

mining activities due to the increasing difficulty and cost of fitting large and multi­

variant data to stochastic models.

1 An object O  in a dataset T  is a D B (p ,  D )-outlier if  at least fraction p  o f  the objects in T  lies 
greater than distance D  from O  [45].
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The concept of distance-based outlier was introduced in 1998 by Knorr and Ng 

[45]. A distance function is used as a metric to identify outliers in large datasets with 

unknown probability distribution. The basic idea is intuitive and easy to understand,

i.e., points that do not have enough neighbors are outliers. Therefore, outliers are 

identified on the basis of the nearest neighborhood density. Thus, how to define the 

local neighborhood of a point is the essence of the distance-based method.

Defintion 2.3.1. An object O in a dataset T  is a DB(p,  D)-outlier i f  at leastfraction 

p o f the objects in T  lies greater than distance D  from O [45, 47].

An object is marked as a DB(p,  D)-outlier if less than or equal to (1 — p) * N  

objects are within distance D of the object. In other words, a point is considered 

normal if it has sufficient close neighbors. If the neighbors of a point lie relatively 

far away, it is regarded as exceptional and classified into outliers. Figure 2.6 shows 

a small dataset containing 105 points. To identify DB(p,  D)-outliers in this sample 

dataset, let p — 95%, and D  =  20. The Euclidean distance is used as the metric 

between points. We can see that points o l has no neighbors in the circle (radius 

D =  20) and points o2, o3, o4 and o5 all have less than five points within their 

respective neighborhood. On the other hand, every point in the big cluster has 

more than five points within its D  =  20 neighborhood. Based on Definition 2.3.1, 

ol, o2, o3, o4 and o5 are considered D B (9 5%, 20) outliers.

Motivated by this work, more research on outlier analysis has been conducted 

and different definitions of distance-based outliers have been proposed. In [59], the 

authors argue that the distance parameter D  used in DB(p,  D ) -outlier could be hard 

to figure out priori and its selection often involves trial and error. They proposed a 

method which identifies outliers based on the distance of a point to its kth nearest 

neighbor. The main idea is straightforward: the farther away a point is from its k th 

nearest neighbor, the more likely it is an outlier. A ranking mechanism is introduced 

for outlier identification and the top n  points having the lowest rank are declared to 

be outliers. The definition is formalized as follows [59].

Defintion 2.3.2. Given an input data set with N  points, parameters n and k, a 

point p is a D kn outlier i f  there are no more than n  — 1 other points p' such that
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Figure 2.6: Example of DB(p,  D)-outlier detection, where p =  95%, and D  =  20

D k(p') < D k(p), where D k(p) denotes the distance o f point p from its k th nearest 

neighbor.

The work enhances distance-based outliers through the use of kth nearest neigh­

bor from the point. The intuition behind this definition is very simple, i.e., given 

the parameter n which is the number of outliers to be mined, assign each data 

point a neighborhood density and output the n points that have the lowest density. 

Therefore, the top n points with the greatest distance to their respective kth near­

est neighbors are outliers. With the notion of D k outliers, the neighborhood of a 

point is specified by its kth nearest neighbor instead of the radius D  and density p 

required in Definition 2.3.1.

Similar to this, Eskin et al [19] reformulated distance-based outliers in terms of 

the nearest neighbors of a point. The difference lies in that the method used in [19] 

computes the sum of the distance to the k-nearest neighbors of the point instead of 

the distance to the kth nearest neighbor. Each data point is assigned a k-NN score, 

which is the sum of the distance to its k  nearest neighbors. A data point is declared 

as an outlier if its k-NN score is high. The major advantage of this definition over 

the one in Definition 2.3.2 is that it integrates the information of all the k  closest

17

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



nearest neighbors for a given data point rather than only its kth nearest neighbor.

2.3.2 Algorithms for Mining Distance-based Outliers

Compared to traditional outliers studied in statistics, the definition of distance-based 

outliers is distribution-free, more flexible, and more computationally feasible. The 

major issue in detecting distance-based outliers is how to efficiently find such out­

liers. Since a nearest-neighbor search is required for each of the n data points, 

straightforward implementations such as the Nested-Loop [45] need to compute the 

distance between each pair of data points, resulting in an 0 ( n 2) running time. In an 

effort to quickly find outliers in a large dataset, a number of researchers have been 

working on improving the efficiency of the algorithm by eliminating unnecessary 

computation. Techniques used for this purpose include different index structures, 

pruning rules and the partition of the feature space. The common goal is to develop 

such algorithms that are scalable to large and high dimensional datasets.

In the following discussion of distance-based algorithms, N  is the number of 

data objects in a dataset, and k is the dimensionality of the data.

Index-based Algorithms

Since distance-based methods define an outlier in term of its neighborhood, i.e., the 

distance to its close neighbors, finding distance-based outliers can be transformed to 

the problem of nearest neighbor search for each point. A spatial indexing structure 

such as R-trees [30], KD-trees [9, 64] or X-trees [10] can be used to organize the 

data so that the search for neighbors of a query point can be sped up. Outliers 

are selected among those candidates that have least number of close neighbors or 

farthest from its neighbors depending on the definition.

Using a spatial index, the number of distance computation can be significantly 

reduced. Analysis of the approach reveals that it works extremely well and the av­

erage running time can be reduced to 0 ( n  log n). Since most of the index structures 

are designed to work well only in low to moderate dimensional spaces, as dimen­

sionality increases, nearest neighbor search with index structure gets progressively 

harder. Under the worst case scenario, the complexity of an index-based algorithm
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is 0 ( k n 2), where k is the number of dimensions.

Nested-loop (NL) Algorithms

A well-known class of methods in outlier detection is the nested-loop algorithm in 

which distance between points is calculated iteratively. The algorithm is straight­

forward but the obvious drawback is its quadratic complexity due to the pairwise 

distance computations between data points. A number of methods have been pro­

posed to improve its efficiency. In order to avoid brute-force search, Knorr and Ng 

[45] proposed the block-oriented NL algorithm that reads data in blocks so that 10 

access is minimized.

Recent study on nested-loop algorithms for finding outliers has achieved a near 

linear time performance given that the input data is in random order [8], which can 

be done in linear time by repeatedly shuffling the data into random piles and then 

putting these piles together. The key point in the modified NL algorithm is the use 

of a pruning rule so that a data point is removed as soon as it is classified as a 

non-outlier. The number of distance computation is therefore significantly reduced. 

Table 2.1 shows the details of this variation of the nested loop algorithm presented 

in [8].

The algorithm assumes that the input data are already in random order. The 

score function is based on the distance from a point to its k nearest neighbors. 

The algorithm proceeds by keeping track of the closest neighbors for each data 

point. The score, which is either the distance to the /cth nearest neighbor, or the 

average distance to the k neighbors, of the weakest outlier found so far is set as the 

cutoff value that increases while more data are processed leading to more outliers 

being found. Data points that have a score lower than the cutoff value are marked 

as non-outliers and removed immediately. This reduces the number of distance 

computation since non-outliers are eliminated at some early stages. With random 

ordered data points, the algorithm achieves near linear performance and scales well 

to large multi-variant datasets.
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Table 2.1: A variation of NL algorithm for finding distance-based outliers [8]

Procedure: Find Outliers
Input: k, the number of nearest neighbors; n, the number of outliers to return; 
D,  a set of examples in random order.
Output: O,  a set of outliers.
Let maxdist(x, Y)  return the maximum distance between x and an example in Y.
Let Closest/a:, Y, k) return the k closest examples in Y  to x.
begin
1. c <— 0 //set the cutoff for pruning to 0
2. O <— <p //initialize to the empty set
3. while B  <— get-next-block/D) { load a block of examples from D
4. Neighbors/^) <— <f> for all 6 in B
5. for each d in D  {
6. for each b in B, b ±  d {
7. if | Neighbors/!)) | <  /;: or distance/6, d) <  maxdist(6, Neighbors(6)) {
8. Neighbors(6)«— Closest(6, Neighbors(6)U d, k)
9. if score(Neighbors(6), 6) < c {
10. remove 6 from B
11. » } }
12. O  <— Top/// U O. n) // keep only the top n outliers
13. c <— min(score(o)) for all o in 0  //cutoff =  score of the weakest outlier
14. }
15. re tu rn  O
end
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Partition-based Algorithm

A few partition-based algorithms have been developed to speed up the search for 

outliers. By partitioning the space into regions, such algorithms aim to prune out 

data points that cannot be outliers. Distance computation for finding outliers is 

conducted only among the remaining data, which can be far less than the original 

data.

One of such methods is proposed by Knorr and Ng [45], in which the data 

space is partitioned into equal sized cells. After each data point is mapped to an 

appropriate cell, the algorithm quickly eliminate two types of cells: (1) cells that 

contain too many data points, and (2) cells that are the immediate neighbors of those 

in (1). Execution time is thus significantly reduced since a large number of data 

points are pruned without implicit distance computation. As pointed out in [45], 

cell-based algorithm has a time complexity linear in the data size, but exponential 

in the dimensionality k when k >  2. Experiment results reveal that NL algorithm 

outperforms cell-based algorithm when k > =  5.

Another version of partition-based algorithm uses a linear time clustering al­

gorithm such as the pre-clustering phase of BIRCH [79] to generate the desirable 

partitions by clustering the dataset [59,19]. In [59], the authors show that partition- 

based methods outperform both the index-based and block NL algorithms.

Projection-based Algorithms for High Dimensional Data

Most of the outlier methods we have discussed compute the distance between points 

in the full feature space. Such distance measure can be meaningless for many ap­

plications where data contain hundreds of dimensions because data are sparsely 

distributed in high dimensional space. The notion of finding meaningful outliers 

in very high dimensional data becomes far more complex. To tackle this problem, 

a few solutions have been proposed. Aggarwal and Yu in [2] addressed this prob­

lem by defining outliers in lower dimensional projections. Outliers are identified 

according to the density distribution of data projections onto subspaces. Before 

projection is performed, data are first discretized into grids and each attribute of
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the data is divided equi-depth ranges. A sparsity coefficient is used to measure the 

density of the projected data cube. Cubes having negative sparsity coefficient con­

tain data with low densities. Two algorithms were discussed in [2]: a naive brute 

force algorithm and an evolutionary algorithm. It is shown that the brute-force algo­

rithm is slow but gives the best results. The fundamental problem lies in that it can 

hardly deal with high dimensional data. Compared to the brute-force methods, the 

evolutionary algorithm is close in effectiveness in most cases but far more efficient.

2.3.3 Summary of Distance-based Outlier Detection Methods

The notion of D B (p , D)-outliers is a breakthrough in outlier detection in data min­

ing. It generalizes the notion of distribution-based outliers [45] and is more suitable 

for numerous applications where no standard fitting distribution can be observed 

for the datasets. Although a reasonable distance function is assumed in D B (p, D)- 

outlier detection, there is no need to define an explicit distribution and the fact that it 

is computationally feasible for large datasets makes it a promising direction toward 

outlier analysis.

In summary, distance-based outliers are defined by using some degree of den­

sity of a data point relative to its nearest neighbors under a distance metric, or its 

neighborhood density. Let X  — { x x, • ■ •, xn} be the dataset and let d(-, •) be a dis­

tance metric. The neighborhood density of a data point x G X  can be defined in the 

following three ways:

1. 0-1 Density D (x ,k , t ) where k and t  are two parameters: D ( x ,k , t ) =  0 if 

there are fewer than k other data points within distance t and D ( x ,k , t) =  1 

otherwise;

2. Max Density D m(x ,k ): the reciprocal of the distance to the fc-th nearest 

neighbor;

3. Average Density D a(x ,k ): the reciprocal of the average distance to the k 

nearest neighbors.

It is clear that the first definition divides a dataset into exactly two groups: inliers 

and outliers. There is no measure of how much a data point is outlying and the
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Figure 2.7: Failure of detecting outlier o l using distance-based methods

identified outliers are not ranked. The second and third definitions introduce the 

ranking mechanism based on the distance to the k nearest neighbors of a point. In 

such cases, each outlier is assigned a value indicating the degree of its deviation 

from its close neighbors.

Although distance-based methods enjoy many practical advantages over tradi­

tional outlier detection methods, they have their limitations.

•  A distance-based method tends to find outliers global to the whole dataset, 

which is adequate for homogeneous data or data with consistent characteris­

tics, but is not satisfiable for datasets consisting of clusters of diverse density. 

A typical example is shown in Figure 2.7.

•  Only binary property is assumed for each data point, i.e., either an outliers or 

not.

•  Outliers are either not ranked or ranked based purely on the distance to a 

point’s k nearest neighbors. While the ranking is appropriate for global out­

liers, it can be misleading for outliers local to their own neighborhood.

In Figure 2.7, the dataset contains two clusters C l  and C'2 as well as two outliers 

ol and o2. With the appropriate selection of parameters(p and D  or a single k), o2 

can be easily marked as an outlier by using distance-based methods. In contrast, 

o l can not be successfully marked as an outlier since it has similar neighborhood
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density as many points in C 2. In such case, it is almost impossible to determine the 

right values for the parameters. If the distance parameter D  as defined in Definition

2.3.1 has a big value, o l is very likely to be grouped into cluster C l. Otherwise, it 

will be an outlier along with many of the points in cluster C 2. The problem of being 

unable to identify outliers local to their own neighborhood leads to the discussion 

in the next section on the local outlier detection.

2.4 Local Outlier Detection

In an effort to overcome the shortcomings of distance-based methods and effec­

tively discover meaningful outliers for a wide variety of datasets, Breunig et al. 

[12, 13] advocated finding density-based local outliers. A new concept local out­

lier factor (LOF) was introduced to measure the degree to which an object is iso­

lated from its surrounding neighborhood. Another work is the connectivity-based 

method, which is developed to enhance the LOF scheme by effectively identifying 

outliers that cannot be distinguished from the surrounding data patterns exclusively 

by neighborhood density.

In the following subsections, we will review the definition of local outlier and 

the algorithms to mine local outliers.

2.4.1 Density-based Outlier Detection: Local Outlier Factor (LOF)

Unlike the definition of distance-based outliers that is intuitive and self-explainable, 

the definition of LOF is based on a number of new concepts as defined in [13].

Let D  be a dataset. Let k be a positive integer and let d(p, q) denote the distance 

between two objects p and q in D.

Defintion 2.4.1. (^-distance of p)

The k-distance of data point p, denoted as k-distance(p), is defined as the distance 

d(p, o) between p and data point o such that:

1. for at least k objects o' E D \  {p} it holds that d(p, o') < d(p, o), and

2. fo r  at most k — 1 objects o' E D \  {p } it holds that d(p, o') <  d(p, o).
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The uniqueness of the above definition lies in that fc-distance of p  is defined 

with respect to a specific data point o. With the traditional kth nearest neighbor 

definition, if there are more than one kth nearest neighbors, only one of them is 

used in density calculation. With this definition, all of these kth nearest neighbors 

are used in density calculation.

Defintion 2.4.2. (fc-distance neighborhood of p)

The k-distance neighborhood of p is a subset of data points that contains every 

object whose distance from p is not greater than the k-distance. It is denoted as

N k - d i s t a n c e ( p ) ( p )  =  {<? G D \  {p}\d(p, q) <  k -  d istance(p)}.

As the object o defined in /c-distance(p) may not be unique, it is possible that 

there are more than k objects in the fc-distance neighborhood of p. Though we call 

Nk - d i s t an ce { p )  (p) the fc-nearest neighbors of p, the number of items in the nearest 

neighbor set is actually greater than or equal to k.

Defintion 2.4.3. (reachability distance of p w.r.t object o)

The reachability distance of object p with respect to object o is defined as

Note that the higher the value of k, the more likely the reachability distance for 

objects within the same neighborhood has the same value.

Defintion 2.4.4. (local reachability density of p)

The local reachability density o fp  is defined as

Clearly, the local reachability density for an object p  is the reciprocal of the av­

erage distance between p  and those objects in its -neighborhood. It is an estimation 

of the density around p ’s neighborhood.

Defintion 2.4.5. (outlier factor of p)

The local outlier factor o fp  is defined as

reach — d is tk(p, o) =  m ax{k  — distance(o), d(p , o)}.

lrdk(p) =  l / [
X) reach — d is tk(p, o)

oeNk(p)

irak{o)
J z v ,TJM 

m P)\

lrdk(o)
l rdk (p)

L O F k(p)
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LOF is the average of the ratio of the local reachability density of p  and those of 

p ’s fc-nearest neighbors. What distinguishes it from the previous outlier detection 

methods is that it takes into account not only the neighborhood density of p but 

also the neighborhood densities of its k- nearest neighbors. Being assigned a LOF 

value, each data object has a degree of being outlying relative to its local cluster,

i.e., the cluster it is in, or the clusters that are close to it. A higher value of LOF 

for an object p  indicates that p lies in a sparse region in the context of its local 

neighborhood. Some general properties of LOF include

•  objects deep in a cluster have an LOF value close to 1, which favors uniformly 

distributed data;

•  LOF value changes non-monotonically with k.

•  Generally, LOF(jp) is bounded and the lower and upper bounds are associated 

with p ’s direct and indirect neighborhood.

Algorithms for Finding Density-based Local Outlier Factor

A two-step algorithm has been proposed to detect local outliers. In the first step, the 

algorithm finds the fc-nearest neighbors for each point. A spatial index structure has 

been used to improve the efficiency. The average complexity for k nearest-neighbor 

query is 0 (n  log(n)) with low dimensional data. In the second step, the local outlier 

factor (LOF) is computed. The algorithm scans the database twice. The first scan 

finds the estimation of the density for each object so that LOF can be calculated in 

the second scan. The time complexity of this step is 0 (n ).

Experiments show that density-based method is more powerful in identifying 

local outliers than distance-based methods. However, the tradeoff is the high com­

putation cost. In order to improve the efficiency, Jin et al. introduced in [40] the 

concept of “micro-cluster” and proposed the micro-cluster-based local outlier de­

tection algorithm. Observing that outliers are only a very small portion of a dataset, 

Jin et al. attempt to reduce the computation cost by constraining the A;-nearest- 

neighbor search to only the top-n local outliers. A “cut-plane” method is designed
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to identify the boundary between a data point and a constructed micro-cluster. The 

algorithm works in three steps.

•  Building micro-clusters using BIRCH’s [79] preclustering algorithm.

•  Computing upper and lower bounds on the LOF value for micro-clusters.

•  Detecting top-n outliers by their rank.

Experiments conducted in [40] indicate that the micro-cluster TOP-n LOF min­

ing method outperforms the two-step algorithm. It is scalable to large and high 

dimensional datasets.

2.4.2 Connectivity-based Outlier Detection: Connectivity-based 
Outlier Factor(COF)

As shown in Figure 1.1 (b) in the introduction, an important type of outliers is the 

structured outliers that are considered w.r.t. data pattens. They are data points that 

do not fit into the data model or data pattern. Such outliers may or may not have 

similar densities as the data patterns in their neighborhood. Although LOF suffices 

for identifying outliers having lower density than their neighborhood density, it 

may rule out outliers that have similar density with the neighboring non-outlier 

patterns. The connective-based outlier detection scheme was proprosed by Tang 

et al. in [71]. The motivation behind this scheme is to separate the notion of low 

density from that of isolativity. The notion of “low density” refers to the fact that an 

object is in a relatively sparse region while “isolativity” refers to the degree that an 

object is connected to other objects. With this scheme, each data object is provided 

with a connectivity-based outlier factor (COF) measuring the degree to which it is 

deviating from a connected pattern. Figure 2.8 is an instance of an isolated outlier 

used in [71]. For a dataset like this, LOF would fail to identify the single outlier ol 

due to the low density patterns around its neighborhood.

While we do not provide the detailed concepts and definitions for COF, we will 

illustrate the method using a simplified example as shown in Figure 2.9. For formal 

definitions, please refer to [71] for details.
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Figure 2.8: Failure of Outliers detection using LOF
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Figure 2.9: A simplified example showing outlier detection using COF
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Let D  be a dataset. Let p be an object in D. Let A: be a positive integer. Let 

d(p, q) denote the distance between p  and q. Let G  =  {p i,P 2 , where r is a

positive integer, be a subset of D. Let Nk(p) be the A;-neighborhood of p as defined 

for LOF. In the example in Figure 2.9, D  =  { 1 ,2 ,3 ,4 ,5 ,6 , 7 ,8 ,9 ,10 ,11}, k =  8.

SBN-path (set based nearest path)

The SBN-path of an object expands itself by including the nearest neighbors. As a 

result, SBN-path exhibits the order in which the nearest objects are presented. For 

neighbors having the same distance to an object, a pre-defined order is taken so that 

the SBN-path is unique for each object.

In Figure 2.9 (a), the A:-neighborhood of object 1 is iVs(l) =  (3, 2 ,5 ,6 ,4, 7 ,8,9}, 

thus,

Si = <  1 , 3 , 5 , 4 , 6 , 7 , 8 , 9 , 2  >  .

SBN-trail (set based nearest trail)

From Figure 2.9 (b), we have SBN-trail for data point 1 as

tr ,  = <  (1,3), (3,5), (5,4), (5 ,6), (6 , 7), (7 ,8), (8 ,9), (1,2) >  .

Average chaining distance

The average chaining distance from p\ to G \  p\ is defined as

1 r_1 2 (r — i)
ac — distG(pi) = ----   V ' --------------  distieA.

r — 1 r-f r4= 1

The average chaining distance is the average of the weighted distances in the 

cost description of the SBN-trail. It provides a measure of how tight the objects on 

an SBN-trail are chained. It is the use of weight here that differentiating COF from 

LOF. Corresponding to the average chaining distance, the local reachability density 

of an object p calculated for LOF treats all the objects in p ’s k distance neighbor­

hood in the same manner. As a consequence, LOF can not successfully detect cer­

tain outliers if an improper value of k is used. By adding weight in the computation 

of average chaining distance, COF distinguishes the roles of the neighboring points.
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Larger weights are assigned to the earlier items appeared in SBN-trail. Therefore, 

edges close to pi contribute more for ac — dists(p i)  if they have large values.

Consider the dataset in Figure 2.9. Suppose we have the following cost descrip­

tion (length of edges) for object 1 :

^  =  { 1 ,2 ,1 ,1 ,1 ,1 ,1 ,3 } ,

we can compute the average chaining distance for object 1 and have

ac—distNk( i)u{i}(l) =  T̂ j— 7t—-(8T+7-2+6T +5T 4-4T -I-3T -I-2T +T 3) =  1.25
( y  —  1 ) • y

COF (connectivity-based outlier factor)

The connectivity-based outlier factor at object p  with respect to its k-neighborhood 

is defined as
C O F p )  =  l ^ b ) !  • a c  ~  d i s t Nk{P)

J2o€Nk(o) a c  ~  d i s t N k (o)

COF of an object p  is the ratio of the average chaining distance of p  to the 

average of the average chaining distance of p ’s k-distance neighbors. It captures the 

degree to which an object is shifted away from the surrounding pattern or structure. 

High value of COF for an object indicates that the object is strongly shifted away 

from its close pattern and is more likely to be an outlier.

Apart from the capability to identify outliers deviating from low density patterns 

as demonstrated with the above example, it is indicated in [71] that connective- 

based method is nearly as powerful as density-based method in detecting outliers 

deviating from high density patterns. Like LOF, COF also has the two properties.

•  COF value for an object deep inside a cluster is close to 1.

•  There exist upper and lower bounds for COF.

2.4.3 Algorithms for Finding Connectivity-based Local Outlier 
Factor

The design of the COF algorithm is identical to that of the two-step algorithm for 

obtaining LOF. In the first step, the algorithm searches for the k-nearest neighbors
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and computes the SBN-trails for each object. COF values are calculated in the 

second step. By applying an index tree, this algorithm has a similar time complexity 

as the LOF algorithm.

2.4.4 Summary of Local Outlier Detection

In general, the notion of an outlier based on a comprehensive outlier factor is very 

important in outlier detection for real world datasets. In many applications, datasets 

are often more complex and can exhibit various characteristics. The definition of 

outlier factor (LOF or COF) is able to capture the degree to which an object is devi­

ating from the other points in its neighborhood. One remarkable common property 

of such score-based methods is that the identified local outliers are ranked, which 

makes it superior in dealing with datasets containing different clusters and patterns 

(in density and shape) than many existing methods.

Both LOF and COF require a user-defined parameter k, or M in P ts . The au­

thors in [13] presented some guidelines for choosing k within a range of values. 

However, it remains to be an issue as to how to select an appropriate value for a 

user-defined parameter in any outlier detection method.

2.5 Neural network Outlier Detection

Neural network has proven to be an effective approach to classifying patterns. A 

Replicator Neural Network (RNN) is a feed-forward multi-layer perception net­

work with three hidden layers. This type of neural networks has powerful approxi­

mation capabilities. They have been used as a tool in image and speech processing 

[1, 35]. RNN-based outlier detection method was first proposed by Hawkins et al. 

in [34]. Figure 2.10 is a schematic view of the fully connected Replicator Neural 

Network used in [34].

An RNN model is trained from a set of sample data by capturing the most im­

portant features. The input variables are also the output variables so that an implicit 

and compressed data model is constructed during the training phase. Reconstruc­

tion error is then used as the measure indicating how far an individual object is
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Figure 2.10: A schematic view of a fully connected replicator neural network

outlying. The insight is that outliers tend to be reproduced poorly by a trained data 

model. Outlier Factor (OF) is defined as the average reconstruction error over all 

features for each data object. It provides a score for measuring how much a certain 

object is outlying against the rest of the data in the dataset. Since outliers deviate 

from the common data pattern, they tend to have higher reconstruction errors, lead­

ing to a higher value of OF. The RNN-based method consists of three steps. First, 

sampling the data; second, training of the RNN; and third, Computing OF value for 

each data object. Outliers are ranked according to their OF scores. The higher the 

score, the stronger an outlier is.

A comparative study conducted between RNN and three other methods is pre­

sented in [76] by the same authors who developed the RNN method. They provide 

an empirical evaluation of the RNN approach based on both small statistical datasets 

and large data mining datasets. The experiment results show that RNN method per­

forms satisfactorily for both small and large datasets. However, the drawback of 

long training cycles which leads to high computation costs often prevents RNN- 

based method from being applied to practical problems. In addition, like other 

flexible nonlinear estimation methods (e.g., kernel regression), RNN-based method 

can suffer from either underfitting or overfitting the data, which will affect the ef­

fectiveness of outlier identification.
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Chapter 3

An Efficient Reference-based 
Approach to Outlier Detection in 
Large Datasets

A bottleneck to detecting distance and density based outliers is that a nearest- 

neighbor search is required for each of the n data points, resulting in a quadratic 

number of pairwise distance evaluations. In this chapter, we propose a new method 

that uses the relative degree of density with respect to a set of reference points to es­

timate the neighborhood density of a data point. The running time of our algorithm 

based on this approximation is 0 (R n  log n) where n is the size of the dataset and R  

is the number of reference points. Candidate outliers are ranked based on the outlier 

score assigned to each data point. Theoretical analysis and empirical studies show 

that our method is effective, efficient, and highly scalable to very large datasets.

3.1 Motivation

Detecting distance-based outliers has attracted much attention over the last decade. 

Compared to traditional outliers studied in statistics [6,33], the definition of distance- 

based outliers is distribution-free, more flexible, and more computationally feasible. 

A bottleneck to the detection of distance-based outliers is that a nearest-neighbor 

search is required for each of the n data points. Consequently, straightforward im­

plementations such as the Nest-Loop method need to compute the distance between 

each pair of data points, resulting in an 0 (n2) running time.
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Since the seminal work of Knorr and Ng [45], much effort has been devoted 

to improving the efficiency of algorithms for detecting distance-based outliers. By 

using spatial index data structures such as the k-d tree and its variants, the average 

running time can be reduced to 0 (n log n) with a hidden constant depending expo­

nentially on the dimension of the data. Several heuristics have also been proposed 

to reduce the number of required nearest neighborhood search. In [45], a cell-based 

approach for detecting distance-based outliers was investigated, which is still expo­

nential in the dimensions, but linear in the size of the dataset under the assumption 

that both of the two negatively-correlated parameters (percentage p  and radius D) 

of the algorithm are set to their ideal values. In [59], some clusters of data points 

are eliminated from consideration based on the result of pre-clustering the dataset, 

a task that is dual to outlier detection. In [8], it is observed that by keeping track 

of the closest neighbors found so far, the nearest neighbor search for a specific data 

point can be stopped if it becomes clear that the data point cannot be one of the 

pre-specified number of outliers. While the algorithm can indeed prune many dis­

tance calculations, the worst-case running time is still 0 (n 2). Empirical evidence 

and theoretical arguments under some assumptions in [8] show that the algorithm 

based on this observation may have a sub-quadratic running time in practice. The 

study of fast algorithms for the nearest neighbor problem is a traditional topic in 

algorithm and there is a huge amount of literature discussing various approaches to 

solve the nearest search problem in a time and space efficient way. For the case of 

two dimensional space, there exist algorithms that solve the problem in 0 (n log n) 

time. For datasets in high dimensional space, there are a variety of exact, approxi­

mation, and randomized algorithms with different time and space time complexity 

[26, 39],

In this chapter, we propose a new approach to reducing the number of distance 

evaluations. The idea is to rank the data points based on their relative degree of 

density with respect to a given set of reference points. For each reference point, we 

calculate its distance to each of the data points and transform the original data space 

into a one dimensional dataset. Based on the obtained one-dimensional dataset that 

contains the distances from a reference point to each data point, the relative degree
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of density (w.r.t the reference point) of each data point is calculated. The overall 

relative degree of density of a data point is defined as the minimum relative de­

gree of density over all the reference points. The running time of the algorithm 

is 0 (R n  log n) where R  is the number of reference points and n is the size of the 

dataset. The method is further optimized by gradually increasing the number of ref­

erence points. For distance measures that satisfy the triangle inequality, data points 

identified by our reference-based method as outliers are most likely considered as 

outliers by the distance-based approach. In addition to the properties that distance- 

based method has, our approach can also find local outliers specific to various data 

patterns in complex datasets.

In the following discussion, let X  =  { x X) ■ • ■, xn} be the dataset and let d(-, •) 

be a distance metric.

3.2 Review of Distance-based Outliers

Distance-based outliers are defined by using some degree of density relative to the 

nearest neighbors, or the so called neighborhood density of a data point under a 

distance metric [45, 59, 19]. Let x be a data point in X,  k be an integer and t be a 

real number, the neighborhood density of a data point x G X  can be defined in the 

following three ways:

Defintion 3.2.1. 0-1 Density D ( x , k , t ): D ( x , k , t ) =  0 if there are fewer than k 

other data points within distance t  and D(x,  k, t) =  1 otherwise;

The definition considers being an outlier as a binary property such that the ob­

tained density for each data point divides the whole dataset into exactly two groups: 

inliers and outliers. There is no measure of how much a data point is outlying and 

the identified outliers are not ranked.

Defintion 3.2.2. Max Density D m(x, k): D rn(x, k) is the reciprocal o f the distance 

to the k-th nearest neighbor.

Defintion 3.2.3. Average Density D a(x. k): D a(x, k) is the reciprocal o f the aver­

age distance to the k nearest neighbors.
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Definition 3.2.2 and 3.2.3 introduce the ranking mechanism based on the dis­

tance to the k nearest neighbors of a point. The identified outliers are more mean­

ingful since the information of the degree of being an outlier has been integrated 

into the analysis process.

Some local outlier detection methods [13, 70] generalize the above concepts 

further. For example, the well-known local outlier factor (LOF) introduced in [13] 

measures the degree of being an outlier by taking into consideration the data point’s 

relative density as compared to those of its nearest neighbors. The advantage of 

LOF is that the local densities of the non-outlier data points will have less impact 

on the ranking of the outliers. The major parameter in LOF is MinPts, the minimum 

number of the nearest neighbors to consider. This parameter is highly application- 

dependent and some insight into the structure of the dataset is required in order to 

set it correctly. What makes the selection of MinPts even harder is the fact that the 

LOF of a given data point is not monotone in MinPts, as has been observed by the 

authors [13]. Another related issue with LOF is the existence of duplicated data in 

a dataset. Roughly speaking, the LOF of duplicated data points is infinity unless the 

MinPts is larger than the number of duplicated data points. As has been mentioned 

in [13], this difficulty can be overcome by slightly changing the original definition 

of LOF to ignore the neighboring data points that are duplicated.

Our approach follows Definition 3.2.3. Based on the average distance to the k 

nearest neighbors, each data point is assigned an outlier score indicating the degree 

of its deviation from its close neighbors. Outliers are those with a low neighborhood 

density but high outlier scores.

3.3 Reference-based Outlier Detection Method

We use the relative degree of neighborhood density with respect to a given set of 

reference points to approximate the degree of density defined in the distance-based 

method. Let X  — {xi ,  . . . ,xn} be a dataset and p be a point (not necessarily in X).  

Consider the vector that consists of the distances between p and each of the data
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Figure 3.1: Reference-based nearest neighbors in the one-dimensional dataset X p

points in X :

X p =  {d(xi ,p),  1 <  i <  n},

which can be viewed as a one-dimensional representation (w.r.t. p ) of the original 

data.

Defintion 3.3.1. Given a data point x £  X . A data point y <E X , (y f  x) is a 

reference-based nearest neighbor of x with respect to the vector X p if

\d{x,p)  -  d{y, p)| =  min |d(x,p)  -  d{xh p)\
1 < i < n

where the minimum is taken over all the and x, 7  ̂ x.

The above idea is illustrated in Figure 3.1, where p  is a reference point and the 

dataset contains only five points: x 1 ,x 2 , x3, x 4  and x5. To find the reference-based 

nearest neighbor of each data point, we first find the distances from each point to 

p  as shown in the figure. We now have a one-dimensional data set, whose values 

are the distances to p , i.e., X p =  {d(xi , p) , d(x 2 , p) , d(x 3 , p) , d(x 4 , p) , d(x 5 ,p)}.  

For a given data point, the reference-based nearest neighbor is the closest point to 

it in the one dimensional data space X p. For example, the reference-based nearest 

neighbor of x 4 is x 5  and the reference-based nearest neighbor of x 2  is x \ . Intuitively, 

reference-based nearest neighbors with respect to p  are not necessarily the closest 

in the original dimensional space. For 2D data, points located on the same circle (p 

is the center) have a reference-based distance of 0. This property indicates that we 

usually need more than one reference points to improve the distance approximation 

in order to find global outliers. On the other hand it is a major factor to contribute to 

the successful identification of local outliers in a complex dataset. We will discuss 

this in detail in the next section.
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Defintion 3.3.2. Let x be a data point in X  and { . X i , . . . X k }  be the set o fk  reference- 

based nearest neighbors to x. The relative degree of density for x in the one­

dimensional data space X p, denoted as D(x, k,  p), is defined as

D{x, k, p)  =  — -k-----------   .
£ E  I d(xj ,p)  -  d(x,p)  | 

j = i

Given a reference point, the neighborhood density of x is the reciprocal of the 

average distance to its k reference-based nearest neighbors in the one-dimensional 

space X p =  {d(xi ,p),  1 <  i <  n}.

Defintion 3.3.3. Let P  =  { p i , • • • ,p r } be a set of R  reference points. We define 

the neighborhood density of a data point x w.r.t. P  as

D p (x,k) =  min D( x , k , p r)
1 <r<R

where k is a fixed parameter, indicating the number o f reference-based nearest 

neighbors considered for each reference point.

Essentially, data points deviating from their surrounding data patterns will get 

lower neighborhood density values. We will discuss the details in the next few sec­

tions. Based on the neighborhood density, each data point is assigned a reference- 

based outlier score, or ROS, which is defined as

1 < i < n

Data points in a given dataset are ranked according to their relative degree of 

density computed on a set of reference points. Outliers are those with higher values 

of outlier scores.

3.3.1 Compatibility with Distance-based Method

By using a set of reference points, we want to obtain the best approximation of the 

nearest neighbor search in the original data space, i.e. to approximate the distances 

between each data point in the original data space. If the distance metric satisfies 

the triangle inequality, we have the following observations that demonstrate the
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effectiveness of using the relative degree of density to approximate the traditional 

definition of density. Consider a reference point p and two data points xt ,Xj € X.  

Based on the triangle inequality, we have

|d(xi ,p) -  d(xj , p)| <  d(xi,Xj).

Note that the two sides in the above equation are equal when p,  and Xj are on the 

same line.

x 5

x-3

x5

(a) (b)

Figure 3.2: Reference-based nearest neighbors satisfying the triangle inequality

Using the dataset in Figure 3.1 as a simplified example, we can see from Fig­

ure 3.2(a) that the reference-based nearest neighbor of x:i is x2, and

d(x3,p) <  d(x2,p) +  d(x2, x3)

if Euclidean distance is used. Therefore, we have

\d(x3,p) -  d(x2,p)\ <  d(x2, x3),

as outlined in Figure 3.2(b).

Formally, we have the following

Lemma 3.3.4. For any set of reference points P  and any data point xt £ X  —

{x \ , X2, ’ * •, xnf

D p {xi}k ) > D a{Xi,k)  

where D a(xi, k) is the average density as defined in Definition 3.2.3.
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Proof. Let {x^ , • ■ ■, x ik} be the k nearest neighbors of xt with respect to the dis­

tance in the original data space X . Then,

1  & i  k

~Y^\ d{xi , p)  - d ( x ij tp)\ <  (3.1)
K j = i  K 3=1

Although { xH, • • •, xik} are the real k nearest neighbors defined in the original

data space, they are not necessarily the k referenced-based nearest neighbors of 

Xi in the data space X p. We show in definition 3.3.1 that reference-based nearest 

neighbors have the minimum distance difference in X p. Therefore, the average 

distance from { x .n , • • •, x ik} to p  is greater than or equal to that of the reference- 

based nearest neighbors. Thus we have by Definition 3.3.2

D(xi ,  k,p) > — -k--------- -- ----------------  (3.2)
\  £  Id(xi ,p) -  d(xijtp )|

3 = 1

where the left hand side is the inverse of the average distance from { xh , ■ ■ ■ , x ik} 

to p. From equations 3.1 and 3.2, we get

D( x i , k , p ) >  — -k—  ---------
\  £  d{xh xij)

3 = 1

Since the above holds for any reference point in P,  it follows that

D p (xh k) >  D a(Xi,k),  

where D a(xi, k) is the average density as defined in Definition 3.2.3. □

The above shows that for a given data point x, the reference-based density is 

lower bounded by the neighborhood density computed using the traditional k near­

est neighbor search method. If a data point has a small enough density to be iden­

tified as an outlier using the reference-based approach, it will have an even smaller 

density value using the distance-based method. If a threshold a  is used to deter­

mine the outliers, then the above analysis indicates that outliers detected using our 

reference-based density are also outliers identified by the KNN-based density.

The following special cases are also interesting and provide further justification 

to our proposal. When the data set is one-dimensional, a single reference point
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(say 0) is sufficient and our approach is equivalent to the traditional distance-based 

approach. On the other hand, if the dataset itself is used as the set of reference 

points, then our approach is identical to the traditional KNN approach. Formally, 

we have the lemmas which are easy to prove.

Lemma 3.3.5. Assume that the dataset X  — {x'i, • • • , xn} is one dimensional. 

Then,

D p {xh k) =  D a(xi ,k) , \ /xi e  X  

for any set P  o f reference points.

Lemma 3.3.6. For any data point xt £ X  that is contained in the set P  of the 

reference points, we have

D p (xi,k) =  D a(xi,k)

Proof. When Xi is in P, we have

D p (xi ,k) <  D(xi ,k,Xi)  =  D a(xi,k).

The result follows from Lemma 3.3.4. □

3.3.2 Algorithm and Its Implementation

Let P  =  {pr, 1 <  r <  R}  be a given set of reference points. The algorithm finds 

the potential outliers in the dataset X  in three major steps:

1. For each reference point p £ P,  sort the original dataset X  in the one­

dimensional space X p =  {d(xi ,p),  1 <  i <  n}, i.e., data points in X  are 

ordered according to the distances to p.

2. For each data point x £ X,  find the k reference-based nearest neighbors and 

compute the average neighborhood density D(x,  k,p);

3. Set D p (x, k) of each point x to be the minimum of D(x,  k, pr) w.r.t. P  and 

compute the outlier score ROS.
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Outliers tend to have a higher value of ROS and they are ranked according to their 

ROS values. The detail is shown in Algorithm 1.

It takes 0( n)  time to compute the distance vector X p for each reference point 

p  G P.  The calculation of the average neighborhood density D( x , k , p ) involves 

finding the k reference-based nearest neighbors. Since the reference-based nearest 

neighbors are calculated on the one-dimensional space X p, it suffices to find them 

by sorting the original dataset X  using the values in X p, or the distances to the 

given reference point p  as the key. Sorting the distance vector X p can be done in 

0 ( n  log n) time. Once the distance vector X p has been sorted, the calculation of 

D(x,  k , p ) for each data point x € X  can be done in constant time. Thus, the overall 

time of Algorithm 1 is R (n \ogn  +  n ), which gives a complexity of 0 ( R n  log n) 

where R  is the number of reference points.

Algorithm 1 The Algorithm for computing D p (x, k)
Input: dataset X  =  { x i} 1 <  i <  n},  reference point set P  =  {pr , 1 <  r  <  R}  
Let X p be the vector containing distances to a reference point p  and k be a 
positive integer

p =  pi
X s = mergeSort(A) //according to the distance vector X PI 
for each x €  X  do

D(x,  k, p)=computeDensity(x, X s)
D p (x, k) =  D(x,  k , p ) 

end for
for each 2 <  r  < R  do 

p  =  pi //next reference point closest to p 
X s = sort(X) according to the distance vector X Pi 
for each x £ X  do

D(x,  /c, jj)=computeDensity(:c, X s, k) 
if D(x,  k , p ) <  D p (x, k) then 

D p ( x, k ) =  D(x, k , p)  
end if 

end for 
end for
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Further Speedup

To further improve the efficiency in computing D p (x, k), we make the following 

observation. Assume that px and p 2 are two reference points and that d(px, p2) is 

small. Then, data points in X  sorted according to their distances to p x are usually 

“almost” sorted according to their distances to p2. Thus, if we have processed px 

and recorded the corresponding sorted order X Pl =  { xn , • • ■, xin}, we can calcu­

late D(x,  k , p2) by sorting the ordered list X Pi =  { x ix. • ■ •, xin } with the various 

adaptive sorting algorithms that can take advantage of the “near sortedness” of the 

vector X Pl. One example of such adaptive sorting algorithms is the simple insertion 

sort whose running time is in 0 ( n  +  REV)  where R E V  is the number of pairs of 

the elements whose relative order is wrong [21]. Therefore, while the worst case 

execution time of computing D p (x, k) is 0 ( R n  log n), the practical execution time 

of our algorithm can be much lower.

3.3.3 Determination of Reference Points

In reference-based approach, each reference point is not necessarily a data point 

in X,  it is actually a virtual point. The determination of suitable reference points 

plays an important role in terms of both the effectiveness and the efficiency of our 

algorithm.

In our implementation, we use as reference points the vertices on a grid obtained 

by partitioning the axes in the data space to facilitate the selection of the closest 

next reference point in the second for loop of the above algorithm. The advantages 

of using vertices on the grid over randomly selecting reference points is two-fold: 

(1) Reference points are evenly distributed in the whole data space, and (2) the 

outlier detection result is deterministic, i.e., the obtained results would be the same 

with each run. Another way to position the reference points is to put them on a 

convex hull. While it is good in low dimensional spaces, it is not practical for
k

high dimensional data due to the lower bound complexity of fl(n  2) for finding the 

convex hull, where k is the number of dimensions.

Recall that the overall running time of our algorithm is in 0 ( R n  log n) where
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R  is the number of the reference points that is independent of the data size n. It is 

a constant that is determined by the features of the datasets. For a simple dataset 

that contains one cluster, a few reference points (say 9 for 2D data) are enough to 

correctly detect the outliers in even very large datasets. Domain knowledge of a 

given dataset can usually help in determining the number of reference points. With 

real world data, we do not usually have such domain knowledge. By using the grid 

vertices approach, we are able to partition the space incrementally from coarse res­

olution to fine resolution to determine the appropriate number of reference points. 

Also, notice that all calculations in the current partition are not lost in the next par­

tition, and only calculation for additional reference points is computed. Due to the 

sparse property of high dimensional data, it is not necessary to partition the data 

space based on all dimensions. The grids can be built on just a few dimensions so 

that the number of reference points remains a constant value. We leave the question 

of how to select these dimensions for partitioning the space in high dimensional 

datasets as an open issue for future work.

3.3.4 Detecting Global and Local Outliers in Complex Datasets

The distance-based method is static in that it uses parameters with fixed values 

for all the data points in a dataset. It ignores the cases where data patterns have 

different densities, thus considers all data points in a dataset in the same setting. As 

a consequence, it always assigns low density values to data points located in sparse 

regions though some of them are deep in sparsely distributed clusters. The authors 

in [13] also argue that the distance-based outlier detection method can only take a 

global view of the dataset, resulting in failure to identify outliers local to certain 

clusters in a complex dataset.

By using a set of reference points, our reference-based approach is dynamic 

and able to see the whole dataset from various viewpoint. It is possible that the 

reference-based nearest neighbors of a given data point are different with respect 

to different reference points. Therefore, at one reference point, the local outliers 

may have a high neighborhood density due to false nearest neighbors, while at 

another reference point, it may be shown lying in a very sparse neighborhood. Since
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Figure 3.3: A 2D dataset containing multiple clusters with local outliers

the reference-based neighborhood density of a data point x is determined by the 

minimum among all its densities computed based on the set of reference points, it 

is guaranteed that with a set of reference points evenly covering the data space, false 

nearest neighbors will be eliminated and data deviated from the surrounding data 

patterns will be assigned lower density values. Next, we will use examples to show 

both theoretically and experimentally that reference-based method can successfully 

identify local outliers as well as global outliers in complex datasets that contain 

clusters of different densities.

we generated a small dataset using the synthetic data generating system that we 

implemented to automate the generation of various datasets. Details of the syn­

thetic data generator will be discussed in the next chapter. The generated dataset X  

contains 850 2D data points.

As shown in Figure 3.3, there are three clusters Cl ,  C2  and C 3, where data in 

clusters C l  and C2  are uniformly distributed and data in C3  are in normal distri­

bution. Cluster C l  has a lower density compared to C 2 and C 3. In addition to the 

three clusters which form the main body of the dataset, there are a few local outliers 

as well as some global outliers in the given dataset. In our experiment, we set the 

number of reference-based nearest neighbors k =  4. To ensure that the reference 

points are evenly positioned in the 2D data space, we set the number of reference 

point to be 16 which is 4 to the power of the dimensionality so that each axes is
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Figure 3.4: Finding top eight outliers (a) using reference-based method and (b) 
using the traditional K N N  method

divided evenly. In the first run to mine the top 3 outliers, the three global outliers 

oi ,o2  and o3  are found. Since we want to check if the local outliers specific to the 

clusters can be found, the program is set to mine the top eight outliers in the second 

run. The result is displayed in Figure 3.4 (a), where the outliers are marked with a 

cross.

We tested the distance-based outlier detection method with the same dataset. 

The implementation is based on Definition 3.2.2, where the neighborhood density 

D m(x, k) is the reciprocal of the distance to the kth nearest neighbor. As above, 

we set A; =  4. The top 3 outliers identified are the same as those identified using 

our method. However, it fails to find the two local outliers specific to cluster C 2 

when mining the top 8 outliers. The result is shown in Figure 3.4 (b), where the 

undetected local outliers are marked with arrows. It is observed that D m(x,k)  

method tends to consider data in sparse regions as outliers such as those located in 

the perimeter of cluster Cl .  The ranking result shows that using D m(x, k) method, 

05 is ranked in the 9th place but 0 4  is ranked in the 76ih place. In order to find 

the local outlier o4, the distance-based method has to falsely mark many other data 

points as outliers.

This actually poses an interesting question: what will happen if the number
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of real outliers in a dataset is less than the number of top outliers the program is 

set to mine? Such issue can be important with large real world datasets whose 

domain knowledge is unknown. We test both reference-based approach and the 

distance-based approach to mine the top 76 outliers, when 0 4  can only be identified 

using the distance-based method. The result is shown in Figure 3.5, where (a) is

*** ■

.»■# X

(a) (b)

Figure 3.5: Finding top 76 outliers (a) using reference-based method and (b) using 
the traditional K N N  method

the result using the reference-based method and (b) is the one using the distance- 

based method. We can see that in Figure 3.5 (b) many data points deep in the 

relatively sparse cluster C l  are falsely marked as outliers before distance-based 

method is able to find the real local outlier o4. Although there are a few points inside 

cluster C 1 are marked as outliers by our approach, their rank are lower than those 

real outliers. Careful observation shows that they are the next best outliers within 

C l  compared to those points on the border of C l.  The overall outliers identified 

indicate that the reference-based approach is more likely to consider the data points 

deviating from or lying on the edge of the data patterns as outliers.

The above examples demonstrate that compared to distance-based approach, 

reference-based method is not only superior in differentiating data deep inside a 

sparsely distributed cluster from local outliers deviated from a dense pattern in a 

dataset, but also capable of eliminating false identification of outliers inside the
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Figure 3.6: Finding local outliers using reference-based approach

sparse data patterns of a complex dataset.

One of the intentions of the reference-based approach is to best approximate 

the distance measure obtained using the traditional k nearest neighbor approach so 

that global outliers can be effectively identified but in a rather efficient way. In this 

sense, the more the number of reference points, the better the distance approxima­

tion and the more accurate the identification of global outliers in a dataset. How­

ever, when the whole dataset is used as the set of reference points, reference-based 

approach is reduced to the traditional distance-based approach, which can lead to 

false identification in detecting local outliers in a complex dataset. While this is an 

intrinsic problem with the existing distance-based approach, it can be easily solved 

in our reference-based method by starting at a few number of reference points and 

then incrementally increasing the number of reference points. Since the reference- 

based nearest neighbors of the data points computed with respect to a given set of 

reference points can be reused for the next round when more reference points are 

added, such adjustment will have little impact on the performance of the outlier de­

tection method. The detection process stops when certain outliers have been found 

and such inspection often involves human intervention.

To further explain why a small number of reference points can facilitate the
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identification of local outliers, we use the previous dataset as an example. Suppose 

we have a set of 16 reference points P  =  {pi,  . . . ,pw }, which are the vertices on 

a grid obtained by partitioning the axes in the data space as shown in Figure 3.6. 

Take the reference point pi  as an example. If we draw circles with pi  as the cen­

ter and the distance to each data point as the radius, the k reference-based nearest 

neighbors of a data point x with regard to pi  would be those on or closest to the 

circle where x is located. As is shown in the plot, there are no other data points 

that fall on the same circle as the local outlier 04 does. In contrast, data deep in 

clusters Cl ,  C 2, and C 3 generally have nearest neighbors with little or no distance 

difference. Consequently, 0 4  will have a relatively smaller neighborhood density in 

the one dimensional data space X PI than those data in the clusters. Though with 

another reference point, say, p2, it is possible that o4 may be assigned a high den­

sity if the circle (p2  as the center and d(p2, o4) as the radius) pass through one or 

more dense data patterns, the overall neighborhood density is determined by the 

minimum among all the calculated densities for x in terms of X Pr. Assume that 

the reference points are sparsely distributed such that each data point in the data 

patterns are not isolated by the circle around a reference point, then data deep in 

clusters are ensured to have very close neighbors which contribute to high neigh­

borhood densities with regard to each reference point. Therefore, o4 will have a 

lower neighborhood density and a higher outlier score than data in the clusters.

One should also notice that there is indeed a tradeoff between the number of ref­

erence points and the ability of the reference-based method to detect global and/or 

local outliers. On the one hand, if all the data points in the original dataset are used 

as the reference points, then our approach reduces to the traditional KNN approach. 

On the other hand, by using a small set of reference points, local outliers will have 

a better chance of being detected at the potential cost of some inaccuracy in the 

overall quality of all the detected outliers. We leave it as a future research topic to 

investigate how to achieve such a tradeoff and how to integrate our approach with 

the various approaches to local and/or global outlier detection in the literature such 

as LOF [13].
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3.4 Empirical Evaluation

In this section, we show experimentally that the proposed method can efficiently 

identify local and global outliers in various datasets. We compare the performance 

of our approach with the existing KNN-based approaches, including distance and 

density-based methods.

3.4.1 Results on Synthetic Datasets

To compare the performance of the proposed reference-based approach with the 

existing KNN-based approach, our first test is to see how fast each method can find 

outliers in large datasets. Since it is well accepted that the evaluation of outlier de­

tection involves human intervention, we limit our experiments to two-dimensional 

synthetic data so that the evaluation can be performed by simple visual inspection. 

Using our synthetic data generating system we generated a set of synthetic datasets. 

The size of these datasets ranges from 1,000 to 500,000 data points. To be consis­

tent, each dataset has a major data pattern that is normally distributed. Based on 

the fact that outliers accounts for only a very small portion of data in a dataset, the 

number of outliers to be mined is set to be 1% of the data size in all the follow­

ing experiments. For the reference-based approach, the number of reference points 

can be set to a constant for all these datasets. This is because all the test datasets 

have similar probability distribution and each of them contains only one normally 

distributed cluster. In such cases, a few reference points that cover different areas 

in the data space are sufficient to ensure the successful detection of outliers. As 

discussed before, the reference points are evenly located in the grid vertices of the 

data space. In our experiment, the number of reference points is set to 9 for all 

these datasets. We implemented the reference-based method in Java to facilitate 

the visualization of the outlier detection results. For the KNN-based method, we 

downloaded the executable version of Orca, the C implementation of the distance- 

based method discussed in [8] from the author’s website. Since Orca is based on the 

distance-based algorithm that has near linear performance, it is believed to be one 

of the fastest KNN-based outlier detection method. To compare the two programs,
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Figure 3.7: Log-scale execution time vs data size for reference-based approach and 
Orca

we run our method in command line mode so that the execution time includes data 

loading and writing results to the standard output as does Orca. Orca also requires 

preprocessing the data to randomize the order of the original data and then convert 

the data to binary format prior to outlier detection. In our experiments, the cost 

of data preprocessing for Orca is not counted in the recording of Orca’s execution 

time. The number of nearest neighbors is set to be k =  6 for both programs.

Since each dataset contains a single cluster that is normally distributed, both 

programs can effectively mark the data lying farther away from the mean as outliers 

in a dataset. There is hardly any difference in the identified outliers using the two 

methods. However, the difference of execution time between our reference-based 

approach and Orca gets bigger and bigger with the increase of the data size despite 

the fact that our implementation of ROS is in Java while Orca is in C. It is easy to 

see that the execution time for ROS is a function of n only since R  has a constant 

value for all the datasets. Figure 3.7 is the log-scale plot of execution time vs 

data size for the two methods. Although the plot for Orca does not include the 

data preprocessing time, Figure 3.7 shows that with large datasets, reference-based
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approach has orders of magnitude improvements in execution speed compared to 

Orca, the optimized implementation of the distance-based approach. It is also worth 

noting that the execution time of the reference-based approach is near linear with 

the increase of the data size while the execution time of Orca tends to be near 

linear only from a certain point, i.e., data size has to be sufficiently big. The results 

further demonstrate that our approach is very efficient and highly scalable to very 

large datasets.

Outliers are defined as data points that deviate from the main patterns of a 

dataset. They are most likely to be considered in the context of clusters with dif­

ferent types of data distributions. That is, an object is marked as an outlier if it 

is isolated from the clusters in a given dataset. To test if the reference-based ap­

proach can effectively find meaningful outliers in a complex dataset, we generated 

a dataset of 10,000 datapoints. There are six data patterns. Three of them are uni­

formly distributed and the other three are normally distributed, but they all have 

different densities.

Unlike the datasets containing only normally distributed data where outliers lie 

on the outer fringe of each cluster, this dataset has two types of outliers: outliers 

uniformly distributed around the main data patterns and outliers lying on the outer 

skirt of the three normally distributed clusters. To identify outliers in such complex 

datasets, the value for R, the number of reference points is usually higher than 

that for simple datasets since relatively more view points inside the data space can 

achieve better view of the data. As being discussed, the number of reference points 

for can be decided by incrementally fine tune the resolution and we set the value 

to be 196. To demonstrate the effectiveness of reference-based approach in finding 

both global and local outliers, we implemented LOF according to [13] that has 

been well known for its performance in detecting local outliers. We run the three 

methods: distance-based, LOF and our ROS. For distance-based and ROS, we set 

k =  4. For LOF, we set M in P ts  =  30 as recommended in [13].

Figure 3.8, 3.9 and 3.10 are the screen shots showing the results for mining 

the top 100 (1% of data size) outliers. In all three graphs, outliers are marked with 

crosses. Visual inspection shows that the distance-based method, LOF, and ROS
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Figure 3.8: Outlier detection result from KNN-based approach
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Figure 3.9: Outlier detection result from LOF
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Figure 3.10: Outlier detection result from ROS

are all able to discover the global outliers. Furthermore, two local outliers (the two 

crosses surrounded by small light-colored circles in Figure 3.10) are discovered by 

our reference-based method ROS, while LOF can only find one of them and the 

distance-based method fails to find either of them. Therefore, our approach is not 

only effective in finding outliers that lie far away from the major patterns in the 

dataset, it also achieves similar or even better results than LOF in detecting local 

outliers.

3.4.2 Results on Hockey Data

The National Hockey League (NHL) data have been used as benchmark testing 

datasets in several outlier analysis works [45, 13, 60]. We use the statistics of NHL 

2003-2004 season obtained from the NHL website[54]. The dataset contains 916 

entries. For performance evaluation, we compare our approach with both Orca and 

LOF. The goal is to see if our approach can efficiently find the outliers identified by 

Orca and/or LOF in real-world datasets. Given a 3D dataset, which is moderate in 

dimensionality, we can build a cube in the 3D space with all data inside the cube 

and set 8 reference points that are located on the vertices of the cube. We set k =  4 

for both Orca and our approach and M in P ts  =  30 for LOF to ensure LOF finding
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Table 3.1: Outlier detection result 1 on NHL(03/04) data
Our
Rank

LOF
Rank

Orca
Rank Player Games

Played
Goals
scored

Shooting
Percentage

1 1 1 Milan Michalek 2 1 100
2 2 2 Pat Kavanagh 3 1 100
3 3 3 Lubomir Sekeras 4 1 50

minimum 1 0 0

median 57 4 6 . 6

maximum 83 41 1 0 0

Table 3.2: Shooting percentage on NHL(03/04) data
Shooting Percentage 
(goals/shots)

0-10 10.1-20 20.1-30 30.1-40 41.1-100

Number of Players 654 235 18 6 3

meaningful outliers.

We conduct the experiment in a similar way as other outlier analysis works. It 

consists of two tests. The first test mines the outliers based on the three attributes: 

games played, goals scored and shooting percentage. LOF, Orca and our reference- 

based approach achieve identical results and the top three outliers are listed in Ta­

ble 3.1.

The outlier status of the three identified players are obvious. They only played 

a few games and scored once. But their shooting percentage are unusually high as 

explained by Table 3.2.

The second test is to mine outliers based on the three attributes: points scored, 

plus-minus statistic and penalty minutes. The top 3 outliers found by our reference- 

based approach are listed in Table 3.3. Sean Avery is on top because his points and 

plus-minus figures are moderate but the number of penalty minutes is the highest 

among all the players. LOF gets similar result to ROS while Orca’s result is slightly 

different. The top rank from Orca, Zdeno Chara, is ranked as the 9th outlier by 

our approach and 2Qth outlier by LOF. Careful investigation shows that outliers 

identified by Orca tend to be in a sparse region regardless of the data distribution. 

Our reference-based method instead favors outliers that deviate from the main data
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patterns and the results are close to LOF in this aspect. For example, Jody, who is 

ranked third by our approach lies far away from the trend of the data body due to his 

low points and plus-minus statistic but extremely high penalty minutes. With 3D

________ Table 3.3: Outlier detection result 2 on NHL(03/04) data_______
O ur LO F O rca Points Plus- Penalty
R ank R ank R ank r  layer

Scored M inus minutes
1 1 3 Sean Avery 28 2 261
2 2 2 Chris Simon 28 15 250
3 7 15 Jody Shelley 6 -10 228

9 26 1 Zdeno Chara 41 33 147
minim um 0 -46 0

m edian 1 2 -1 26
maximum 94 35 261

datasets of size about 1,000, the execution time for each of these methods is within

0.1 seconds and can be neglected.

3.5 Conclusion

In this chapter, we have proposed an efficient reference-based outlier detection 

method that uses the relative degree of density with respect to a set of reference 

points to calculate the neighborhood density of a data point. In addition to being 

compatible with the traditional distance-based outlier detection methods, our ap­

proach performs better in identifying local outliers that deviate from the main pat­

terns in a given dataset. The execution time of our algorithm is 0 (R n  log n) where 

n  is the size of dataset and R  is the number of reference points. Candidate outliers 

are ranked according to ROS that has been assigned to each data point. Theoretical 

analysis and empirical studies show that in addition to being highly efficient and 

scalable to very large datasets, our method can detect both global and local out­

liers. When all the data points are used as references points, our method becomes 

a distance-based approach finding global outliers. When less reference points are 

used, local outliers relative to the data patterns are discovered. We advocate the use
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of a small number of reference points uniformly distributed over the data (using a 

grid) to find global and local oultiers effectively and efficiently.
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Chapter 4 

A Synthetic Data Generator for 
Clustering and Outlier Analysis

We present a distribution-based and transformation-based approach to synthetic 

data generation and demonstrate that the approach is very efficient in generating 

different types of multi-dimensional numerical datasets for data clustering and out­

lier analysis. We developed a data generating system that is able to systematically 

create testing datasets based on user’s requirements such as the number of points, 

the number of clusters, the size, shapes and locations of clusters, and the density 

level of clusters and noise/outliers in a dataset. Two standard probability distribu­

tions are considered in data generation. One is uniform distribution and the other 

is normal distribution. Since outlier detection, especially local outlier detection, 

is conducted in the context of clusters of a dataset, our synthetic data generator is 

suitable for both clustering and outlier analysis. In addition, the data format has 

been carefully designed so that the generated data can be visualized not only by our 

system but also by some popular statistical rendering tools such as statCrunch [68] 

and statPoint [69] that display data with standard statistical graphical approaches. 

To our knowledge, our system is probably the first synthetic data generation system 

that systematically generates datasets for evaluating the clustering and outlier anal­

ysis algorithms. Being an object-oriented system, the current data generator can be 

easily integrated into other data analysis systems.
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4.1 Introduction

Clustering analysis and outlier detection are two important techniques widely used 

in data mining and automatic knowledge discovery. Although research on outlier 

analysis is relatively a new topic in the area of data mining as compared to data 

clustering, they have both been addressed by many researchers and there exist a 

large number of approaches to clustering and outlier analysis. While different algo­

rithms have their own strength in finding clusters and/or outliers, the performance 

of a particular algorithm can be quite different on different datasets. Therefore, the 

choice of clustering or outlier analysis methods depends on the specific purpose of 

the application as well as the datasets available. This in turn poses one of the most 

important issues in data analysis: How do we assess a data analysis algorithm?

It is hard to say that one algorithm is better than the other since different al­

gorithms usually use different testing datasets with certain constraints such as data 

distribution, dimension and density in the analysis of the effectiveness and effi­

ciency. There exist some databases with a variety of datasets obtained from real 

life environment. These datasets could be in various formats and distributions that 

make it difficult to use them in testing and comparing different clustering and/or 

outlier algorithms. Surprisingly, little work has been done on systematically gen­

erating artificial datasets for the analysis and evaluation of data analysis algorithms 

in data mining area.

In this work, we explore the idea to automatically generate datasets in two or 

more dimensional space given the total number of points N  and the number of clus­

ters K  in a dataset. We use data points to represent objects with multiple attributes. 

The properties of each dataset, including the space between clusters, the cluster 

distributions and outlier densities are specified by the user but controlled automati­

cally by the system. Each dataset is generated along with a difficulty level, a density 

level, an outlier level and a certain data distribution. Given a fixed number of points 

in a dataset, the size and density of clusters are closely related and are both con­

trolled by the density level. The spreading and density of outliers with respect to 

the main body of the data are determined by the outlier level. The difficulty level is
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defined in terms of the existing clustering algorithms and they are roughly classified 

into three groups:

•  easy level - the datasets at this level have only spherical or convex clusters;

• medium level- the datasets have long thin or arbitrarily shaped clusters;

• difficult level - the datasets can have clusters within clusters with all possible 

shapes.

The data generator can be used not only in the evaluation and testing of data 

clustering analysis and outlier detection but also in visualizing various data distri­

butions . Our goal is to develop a general framework for the generation of testing 

datasets with controlled level of clustering difficulties and devise a heuristic that 

can be improved upon in a meaningful way in high-dimensional and categorical 

space in the future. We investigate current research and implementation on data 

generation and proceed in different stages. An important part of data generation is 

to display the produced datasets in a graphical user interface for visual inspection. 

Hence, we combine the algorithm design with the implementation together in each 

stage of the development. Several methods such as distribution-based approaches 

and transformation-based approaches, or their combination have been employed in 

generating meaningful datasets. Java Swing is used as the programming language 

since the implementation of the data generation system relies heavily on the graph­

ical user interface (GUI). In addition to generating datasets that satisfy the user’s 

specific requirements and displaying the data in a GUI for visual inspection, the sys­

tem has other functionalities including saving and exporting the generated datasets 

to local files as well as importing and visualizing the existing data.

4.2 Existing Work on Synthetic Data Generation

An important issue in evaluating data analysis algorithms is the availability of rep­

resentative data. When real-life data are hard to obtain or when their properties are 

hard to modify for testing and comparing various algorithms, synthetic data become 

an appealing alternative. Most existing work on clustering and outlier analysis uses
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both synthetic data and real-life data to test the validity and performance of the 

proposed algorithms.

Data generation has been an important topic in mathematics and statistics. There 

are some state-of-the-art techniques on generating data of certain distribution, for 

example, random sequences and normal distribution, which serve as the funda­

mental tools for synthetic data generation systems in many applications. Despite 

increasing interest, the research on synthetic data generation in the area of data 

mining is still in its early stage. There exist some well-known datasets that have 

been widely used as benchmark datasets to test the performance of many clustering 

algorithms. Among them, one is provided by the team that developed the clustering 

algorithm CHAMELEON [42]. The dataset has 10,000 2D points and includes not 

only different shapes of clusters but also different type of outliers. Unfortunately, 

there is no description of how these datasets are generated.

In the literature of software testing, a large number of methods to automate test 

data generation have been studied [18]. In recent years, research areas such as data 

mining [38], sensor networks [77], artificial intelligence [62] and bioinformatics 

[74] are paying more attention to the development of data generation systems to 

systematically generate synthetic data for numerous applications. In this chapter, 

we will briefly discuss some existing data generation methods and systems.

4.2.1 IBM Quest Synthetic Data Generator

A well-known synthetic data generation system is developed by the IBM’s QUEST 

data mining group [38]. The system consists of two data generators. One is used 

to generate transaction data for mining associations and sequential patterns. Given 

some parameters, the system can produce a set of data containing information of 

customer transactions. The other generator produces data intended for the task 

of classification. The output is a person database in which each entry has nine 

attributes. QUEST also developed a series of classification functions of increasing 

complexity that use the nine attributes to classify people into different groups.

The generated datasets contain only numerical values. Values of non-numerical 

attributes are converted to numerical values according to some pre-defined rules.
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4.2.2 Synthetic Data Generation in Other Research Fields

Synthetic data generation also plays an important rule in many different fields of 

computer science such as Information retrieval, software engineering and artificial 

intelligence, although in each field the focus and the requirement of generating 

synthetic data are quite different.

The GSTD algorithm proposed in [72] uses three operations to generate spa- 

tiotemporal datasets by gradually altering the three parameters that control the du­

ration, the location, and the size of spatiotemporal objects. Such a data generator 

serves as an integral part of the benchmark environment for spatiotemporal data 

access system.

The main focus of test data generation in automatic software testing is to gen­

erate input data to test the correctness of a given computer program or software 

system. To have a sufficient coverage on the execution of a computer program, a 

data generation system first needs to analyze the control flow of the program to 

identify target execution paths to be tested. Input data with which the execution of 

the program follows a specific path are usually generated by using either symbolic 

evaluation techniques or solving a properly formulated optimization problem.

In the field of artificial intelligence, many important problems are NP-hard such 

as the Boolean satisfiability problem (SAT). To test the performance of solvers and 

algorithms for these problems, one also needs to generate testing problem instances. 

In addition to real-world and manually compiled benchmarks, a recent trend is to 

generate problem instances randomly from some probability distribution. As a mat­

ter of fact, the study of the typical-case hardness of randomly-generated problem 

instances and the performance of various algorithms on these instances has been 

an important research topic in artificial intelligence. On the one hand, many deep 

theoretical results on the complexity of NP-hard problems and useful insights into 

the design of more efficient algorithm have been obtained. On the other hand, hard 

testing problem instances generated at the so-called phase transition region of some 

random problem model have been one of the driving forces in the development of 

the start-of-the-art solvers for these AI problems.
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Figure 4.1: PDF and CDF of uniform distribution

4.3 Mathematical Tools and Techniques

In an effort to systematically generate test datasets for data analysis, we make use 

of some mathematical tools such as probability distributions and linear transforma­

tions. By applying these tools, the proposed method provides the mechanism that 

datasets are not only generated automatically but also controlled by the parameters 

from the user input. This section introduces the mathematical concepts and tools 

related to our proposed approach.

4.3.1 Uniform Distribution

The uniform distribution is the simplest continuous distribution in probability. A 

random variable x has the uniform distribution if all possible values of the variable 

are equally probable [61]. It is also called rectangular distribution.

Uniform distribution is specified by two parameters: the end points a and b. The 

distribution has constant probability density on the interval (a, b) and zero proba­

bility density elsewhere. The probability density function(PDF) and cumulative 

distribution function(CDF) for a continuous uniform distribution on (a, b) are

1 a < x <  6;b—a  ’

o, otherwise.

o, x <  a;
x —a a < x <  bb—a  ’

l, x >  b.
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Figure 4.2: PDF and CDF of normal distribution

In Figure 4.1, (a) is a plot of the uniform PDF and (b) is a plot of the uniform 

CDF. The standard uniform distribution is the case where a =  0 and 6 = 1 .

We aim to generate data from a multivariate uniform distribution. The dataset D  

is composed of a set of multi-dimensional points. Each point in D — { x \  , X 2 , - - . , x m }  

is obtained by generating uniform random numbers for x it where i  =  1 , 2 , . . . ,  m .  

The attribute values of each variable are uniformly distributed in (0,1). Since the 

joint distribution of two or more independent one-dimensional uniform distribu­

tions is also uniform, the points in D  are uniformly distributed in the feature space 

of all variables.

4.3.2 Normal Distribution

A continuous random variable x  has a normal distribution or Gaussian distribution 

if its probability density function is

1
f ( x )  =  — l 2°

where n is mean, a 2  is the variance and —o o < a : < o o [ 6 1 ] .

Figure 4.2(a) is the plot of the normal PDF and Figure 4.2(b) is the plot of the 

normal CDF respectively. Standard normal distribution is the normal distribution 

given fi — 0  and a 2  =  1.

In our implementation, covariance matrix that controls the attributes of data 

points has been widely used to generated various shaped normal distributions.
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4.3.3 Box-muller Transformation

Box-Muller transformation allows us to transform a two-dimensional continuous 

uniform distribution to a two-dimensional bivariate normal distribution (or com­

plex normal distribution) [52], Let x\ and x 2  be two independent random variables 

uniformly distributed between 0 and 1. The basic form of Box-Muller transforma­

tion is defined as

yi =  y  — 2 In x i cos (2^X2),

2/2 =  \ r ~  2 \ n x i s i n { 2 ' K X 2),

where yi and y 2  have a normal distribution with mean y  — 0  and variance a 2  =  1.

In our data generation system, rather than using the normal cumulative distri­

bution function to generate normal distributions, which does not have an explicit 

expression, we adopted Box-muller transformation. By applying the above formu­

las, we are able to transform uniformly distributed random variables x\ and x 2  to 

two random variables yi and y 2  with a joint normal distribution.

4.3.4 Linear Transformation

A linear transformation between two vector spaces U and V  is a mapping T  : U —> 

V  such that

1. T(ui +  u2) =  T(u{} +  T ( u 2),  for any vectors u\ and u2  in U,

2. T (a u ) =  aT(u), for any scalar a  and arbitrary vector u in U.

Suppose U — R 2  and V  — R 2, T  : Ft!2 R 2 is a linear transformation if and 

only if there exists a 2 x 2 matrix A  such that T(u) =  Au for all u in R 2  [36]. Ma­

trix A  is called the standard matrix for T. Linear transformation in two dimensional 

vector space has been extensively used in our data generation system to dynami­

cally produce two dimensional datasets of various characteristics. Once we have 

obtained the basic dataset, which will be detailed in section 4.4, we can control the 

shape, density and location of each cluster in the output dataset by applying to each 

vector/point in the basic dataset linear transformations such as shears, reflections,
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Figure 4.3: Linear transformation: expansions and contractions
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Figure 4.4: Linear transformation: shears

contractions, expansions and translations. The linear transformation of a normal 

distribution is still a normal distribution, but the linear transformation of a uniform 

distribution is not necessarily a uniform distribution.

Figure 4.3 and 4.4 are examples used in [36] to illustrate the action of a linear 

transformation T  : R 2  —> R 2. The image of a unit square under T  is employed to 

demonstrate the geometric meaning of different types of linear transformation.

Figure 4.3(a) indicates how expansion and contraction along x-axis work. Given 

a set of column vector \px py]T, expansion and contraction along x-axis is given by 

the standard matrix

Thus, the vectors “stretch” along the x-axis to [kpx py]T for k >  1 and “compress” 

along the x-axis for 0 <  k <  1.

Similarly, Figure 4.3(b) is an example showing the expansion and contraction 

of the unit square along y-axis. The standard matrix used here is
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(a)

Figure 4.5: Linear transformation examples

A 1 0 

0 k

which takes the vectors \px py]T to [px kpy]T. In this case, the standard matrix A 

stretches the vector along y-axis when k > 1 and compresses it along y-axis when 

0 < k <  1.

A shear in the ^-direction is shown in Figure 4.4 (a). It is achieved using the 

standard matrix

A =
1 k 
0 1

to convert vectors \px py]T to \{jpx +  kpy) py]T.

A shear in the y-direction is given in Figure 4.4 (b), in which the standard matrix

A =
1 0 

k 1

is used taking \px py]T to [(px +  kpy) py]T.

To generate datasets with various patterns and densities, we often use a more 

complicated standard matrix to transform a set of data. The operation can be con­

sidered as the composition of several linear transformation, such as a rotation, a 

magnification, and a translation. A typical example is shown in Figure 4.5 where a 

unit circle is transformed into an enlarged oval as in (a) and a contracted oval as in
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(b), where the standard matrices leading to these transformations are

and

A =

A =

- 1.2  1.1
2 1

0.3 0.8
0.9 0.3

respectively. The transformed ovals may be shifted to a different location by trans­

lations through vector addition.

4.4 A Comprehensive Approach to Synthetic Data Gen­
eration

In this section, we present a hybrid approach to synthetic data generation. The pro­

posed approach is aimed at providing a basic modelling framework for generating 

data that can be used to evaluate and test clustering and outlier analysis algorithms.

It has been well recognized that the performance of different data analysis algo­

rithms depends heavily on the testing datasets. Among the existing clustering algo­

rithms, the partitioning methods can easily identify clusters with spherical shapes, 

but they are unable to find clusters of irregular shapes and tend to split an elongated 

cluster into different groups. Although the density-based methods can handle clus­

ters of arbitrary shapes and various sizes, they are very sensitive to the density of 

each cluster in a given dataset, which may lead to failure in detecting clusters with 

unevenly distributed data. Since outliers are data that deviate from the main pattern 

of a dataset, they are always considered in the context of clusters. That is, an object 

is marked as an outlier if it is isolated from the clusters in the dataset. The causes 

for such isolation can be generalized in two categories: (1) outliers are located in 

a less dense region compared to the density of the clusters; and (2) outliers do not 

fit into the cluster patterns. Therefore, outlier detection, especially local outlier de­

tection that defines outliers with respect to the neighborhood density and patterns is 

often conducted by differentiating them from data in clusters.

In our method of synthetic data generation, each output dataset is specified by 

a difficulty level, which is defined in terms of data distributions and cluster shapes.
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Figure 4.6: A screen shot of the synthetic data generation system
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Since the difficulty level of a dataset indicates the complexity in identifying clusters, 

it provides us a measure of how a clustering algorithm works. Apart from the 

difficulty level, each dataset is also assigned a density level and a noise level. Like 

the difficulty level, the noise level is used to define the distribution and density of 

outliers or noise. Other parameters from user input are the number of points, the 

number of clusters and the percentage of points for each cluster in a dataset. The 

created data objects are represented by points, e.g., points in two dimensional space 

with x and y  being floating point numbers. We built a graphical user interface to 

display the generated 2D dataset for visual inspection. Figure 4.6 is a screen shot 

of the synthetic data generation system. As is shown in the figure, the shape and 

density of the output clusters as well as the distance between the means of different 

clusters in a dataset are determined by the standard distribution, the difficulty level 

and the density level.

To automate the data generation process, the system proceeds in two steps. The 

first step is to create the basic dataset, in which the data in each cluster have a 

standard distribution. For the uniform distribution, the x and y  values of all the 

points in the basic dataset are in (0,1). For normal distribution, the basic dataset 

contains clusters that have a standard normal distribution with mean n =  0 and 

variance a 2  =  1. The second step is to apply some mathematical techniques to 

generate the required dataset. Once we have the basic dataset, three major methods 

are used in creating clusters and outliers with different shapes and densities.

•  Linear transformation, which involves matrix multiplication to translate, shear, 

contract or expend the the clusters in the basic dataset.

• Linear equation, which controls the line-shaped clusters and outliers.

•  Circle equation, which controls the curve-shaped clusters.

The technical details of synthetic data generation will be presented in two as­

pects. One is the dynamic control and generation of clusters. The other aspect is 

about how the outliers are distributed. To make the concept concrete to the readers, 

a visual approach is taken in presenting the method.
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4.4.1 Generation of Clusters in a Dataset

The generation of clusters of a dataset involves the determination of cluster densi­

ties, sizes, shapes and relative locations. By analyzing the user input, the synthetic 

data generation system automatically controls all these aspects. Two parameters 

density level and cluster ratio are the major factors to contribute to the density and 

size of each cluster in a dataset. Given a density level, an appropriate standard ma­

trix is calculated to transform the basic clusters 1 into ones with either expanded or 

contracted sizes. The higher the density level, the smaller the cluster size and the 

more compacted the data in the clusters. By default, data are evenly distributed to 

each cluster in a dataset. For example, if dataset D  has 1,000 data objects that form 

4 clusters, the system would automatically assign 250 data to each cluster. The 

parameter cluster ratio provides the user with an option to set the number of data 

objects for each cluster. It consists of a sequence of integers indicating the percent­

age of data in each cluster over the total number of data in a dataset. By parsing the 

cluster ratios, the system adjusts the number of data in each cluster to satisfy the 

user’s specific requirements. This, in turn, will change the density of each cluster 

since each cluster size remains unchanged.

Cluster shapes and relative locations are mostly determined by the parameter 

difficulty level. In the following, we will discuss the generation of datasets classi­

fied into five difficulty levels based on the distribution of the data in clusters. Given 

a difficulty level, the specific locations and shapes of the clusters in a dataset is con­

trolled by the system in a random manner, i.e., the cluster can have any of the shapes 

belonging to this difficultly level and lie in any region in the dataset. The distances 

between clusters are checked to ensure that clusters are not overlapping. This is 

especially important for simple datasets with low difficulty levels. Alternatively, a 

dataset may consist of randomly produced clusters from different difficutly levels 

when one prefers to have a sophisticated set of data. Therefore even with identical 

parameter sets, there are hardly any datasets that are exactly the same due to the 

randomness in deciding cluster locations and shapes. Apart from being visualized, 

the generated data can be saved to a file in case that the same data are required for

'Attribute values in such clusters are usually in (0 ,1)

71

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Figure 4.7: Difficulty level 1: each cluster contains 500 2D points

later inspection or testing different data analysis algorithms.

Datasets with Difficulty Level One

The datasets at this level are the simplest in terms of the definition of clusters. There 

are two major features of the clusters in such a dataset.

•  All clusters have only spherical or square shapes.

•  Clusters are well separated.

Following the generation of the basic datasets, the transformation of contraction 

and/or expansion are applied to generate the datasets that satisfy the user-specified 

density level. Figure 4.7 shows the typical clusters in a dataset having a difficulty 

level of one. It can be seen that such design of the data distribution ensures that 

data are clearly divided into well-formed groups which makes it relatively easy for 

clustering algorithms to find the clusters. When evaluating clustering methods with 

these type of datasets, we are mostly concerned with how fast a certain method can 

identify the clusters in a large dataset.

Datasets with Difficulty Level Two

The datasets have long and thin clusters with straight or curved shapes. Like clus­

ters in level one, clusters in a particular dataset are well separated. Figure 4.8 gives 

some of the example clusters in the datasets having a difficulty level of two. Based 

on the input parameters, linear equations and transformations of contraction, expan­

sion, rotation and translation are performed on the basic dataset to create level-two
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Figure 4.8: Difficulty level 2: each cluster contains 300 2D points

datasets. Although the clusters are at an easy level and are as intuitive as the first 

level ones, their enlongated shape can make some clustering methods fail in identi­

fying them. For example, the algorithms k-means [51] and k-medoids [43] are most 

likely to split such a cluster into two or more groups as they favor spherical shaped 

clusters.

Figure 4.9: Difficulty level 3: each cluster contains 500 2D points 

Datasets with Difficulty Level Three

The clusters in the dataset with difficulty level three have simple arbitrary shapes 

such as rings, crosses and stairs. Different clusters are clearly separated. Some typ­

ical clusters are given in Figure 4.9 in which the three clusters on top have uniform 

distributions and the two at the bottom have underlying normal distributions. In
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order to generate these datasets, linear transformations such as contraction, expan­

sion, rotation and translation as well as linear equations and circle equations have 

been performed on the basic dataset of either uniform or normal distribution.

Compared to the first two level datasets that contain only basic convex clus­

ters, the level-three datasets have clusters that do not necessarily have an object 

defined as the mean. For example, there is not any object that can be considered 

as the explicit mean for a ring shaped cluster. Consequently, the irregular shape of 

clusters will increase the difficulty in finding meaningful clusters for any clustering 

algorithm that uses a data point as the mean of a cluster.

Datasets with Difficulty Level Four

The clusters in the dataset with difficulty level four have arbitrary shapes with some 

obvious space inside a cluster. There are no nested clusters. To enrich the diver­

sity of cluster shape, clusters with uniform distribution are specifically designed to 

be any of the twenty-six letters of the alphabet which are evenly positioned in a 

particular dataset. Each letter is treated as an individual cluster. The system pro­

vide two options for generating the required number of alphabet clusters. One is 

to randomly produce any of the letters. The other option allows the user to input 

letters of his own interest. The operations used to control the distribution and shape 

of the letters involve all the techniques previously mentioned including equations 

and transformations. Example clusters are shown in Figure 4.10 in which the let-

Figure 4.10: Difficulty level 4: each cluster contains 500 2D points
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ters have uniform distributions and the other two clusters are generated by applying 

covariance matrix, linear equations and circle equations to standard normal dist ri- 

butions. Since the letters encompass a wide range of cluster shapes, it is hard for 

most clustering methods to find all the different letter-shaped clusters. Although 

density-based algorithms such as DBSCAN work well with datasets containing di­

verse cluster shape, they will fail in identifying some of the clusters if the densities 

between clusters are quite different.
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Figure 4.11: Difficulty level 5: each paired cluster contains 1,000 2D data points, 
of which 500 are assigned to each single cluster

Datasets with Difficulty Level Five

The datasets contain clusters within clusters or single clusters with irregular shapes. 

In the case of one cluster within the other cluster, the two clusters can either be 

clearly separated or they are connected with bridges of points, which can cause 

much trouble to many clustering algorithms in correctly identifying the clusters. 

Nested clusters also raise a question as to how to define a cluster: should we con­

sider a nested cluster as one cluster or several clusters? Figure 4.11 displays some 

of the clusters in datasets having a difficulty level of five. In addition to the genera­

tion mechanism for creating clusters of the other levels, special attention is paid to
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positioning the nested clusters at this level by either controlling the mean value or 

applying transformations and equations.

4.4.2 Generation of Outliers/Noise in a Dataset

As discussed in the previous chapters, outliers and noise are unavoidable in real life 

datasets collected from numerous application domains. The mechanism of adding 

outliers or noise is another important contribution of our synthetic data generation 

system. While there is no strict distinction between outliers and noise in most data 

analysis tasks, we will use outliers as a generic term in the following discussion.

It is well accepted that outliers in a dataset are not consistent with the rest of 

the data. This leads to the exploration of outlier detection based on the distance 

to a point’s neighboring points. Many existing outlier detection methods use the 

neighborhood density of a point as a criterion to differentiating abnormalities from 

normalities. Points located in a less dense region are usually considered as outliers. 

While intuitive, such definition raises new issues: how do we specify the cutoff 

density value to guarantee real outliers and meaningful clusters? Should the points 

located in the outer layers of a normal distribution as shown in Figures 4.7 through 

4.11 be marked as outliers? Or should all the data in a less dense cluster be treated 

as outliers?

Because the definition of outliers is subjective, the notions of outliers and inliers 

in a dataset are ambiguous in many situations. Data object being identified as out­

liers by one data analysis method could be legitimate inliers with the other method. 

Therefore, To produce outliers with respect to local and global clusters, our effort 

is focused on how to generate those data points that can be objectively identified as 

outliers by the existing outlier detection algorithms.

The method of generating outliers is similar to that of generating clusters. Stan­

dard distribution and linear transformation have been widely used. The distribution 

and density of outliers are determined by the system through the parameter: outlier 

level. The value of outlier level can be none, low and high and are specified by the 

user. Depending on the selected level, the number of outliers is a controlled per­

centage of the total number of points in a dataset. For example, the outliers account
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Figure 4.12: Outliers level none: outliers are those exterior points of a cluster

for 10% of the data when 90% of the data are in clusters. This ensures that the total 

number of points from the user input is preserved while outliers are being added. 

Next we will discuss the generation of the three level outliers. The examples used 

are all complex mixed datasets that contain clusters of different difficulty levels.

Outliers Level None

The name of “level none” is self-explaining. No outliers are intentionally added to 

a dataset. However, this does not necessarily mean that a set of generated data does 

not contain outliers. A dataset often consists of clusters with different distributions 

and densities. Depending on the definition of a specific outlier detection algorithms, 

data points in clusters of different difficulty levels as described before can be out­

liers. For example, a cluster itself can be considered as a collection of outliers if 

the size of the cluster is much smaller than those of other clusters or the data in the 

cluster are very sparsely distributed compared to the majority of the data. Most out­

lier detection algorithms would mark the exterior points in a normally distributed 

cluster as outliers. Such examples are demonstrated in Figure 4.12.
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Figure 4.13: Outliers level low: outliers are randomly distributed 

Outliers Level Low

This is the basic type of outliers. For a given dataset, the system randomly dis­

tributes a small percentage of the data in the whole data space. Figure 4.13 shows a 

dataset containing 4,000 points including outliers.

Outliers Level High

In addition to generating randomly distributed outliers, the data generator produces 

outliers of controlled shape and distribution. Since there is no universal agreement 

on what constitutes outliers, our intention is to provide a prototype of outlier dis­

tribution in a dataset. Figure 4.14 gives an example dataset containing 5,000 2D 

points in which outliers count up to 15% of the total data. Three types of data 

points can be classified as outliers in this dataset:

1. points that are located in a sparse neighborhood;

2 . exterior points of the clusters that have normal distributions; and

3. points that form certain patterns, such as the lines, each of which has much
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Figure 4.14: Outliers level high: outliers are either randomly distributed or have 
simple patterns

less data than those major clusters. Some may not consider these points as 

outliers because they form a major pattern. Depending on the density of the 

lines, these points can be classified into either points in clusters or outliers. 

We will demonstrate this in section 4.5 with experimental results.

Many clustering and outlier analysis algorithms can easily identify the first two 

type of outliers that have sparse neighborhoods. But the third type of outliers can 

cause problems in the process of data clustering. For example, the density-based 

clustering algorithm DBSCAN has been well recognized as an effective method in 

finding clusters of arbitrary shapes as well as identifying and eliminating outliers. 

However, it may merge two or more clusters together when the lines or the so-called 

bridges of points join these clusters into a group.

4.5 Experiments and Evaluation

One of the most effective ways to evaluate the generated dataset is to visualize 

the data for human inspection. The GUI of the data generating system has been
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designed to serve this purpose. In addition to visual inspection, we test the perfor­

mance of our system in two aspects:

•  the efficiency of producing large datasets that satisfy user’s requirement;

•  the effectiveness of a benchmark instance generator for clustering analysis 

and outlier detection.

In this section, we report experiments and evaluation results of our synthetic data 

generation system.

4.5.1 Generating Very Large Datasets

We first test how the size of the generated datasets affects the execution time. For 

any dataset with size up to 1,000,000 points, the execution time for generating the 

data (excluding writing the data to a file) is less than three seconds. This is demon­

strated in Figure 4.15, which is a plot of the execution time against the size of the 

generated datasets. It is observed that to generate a dataset containing less than 

4,000,000 data points, the execution time is linear to the size of the dataset regard­

less of difficuty levels, density levels and outlier levels.

Since the difficulty level is the major factor that determines the distribution and 

shape of each cluster in a dataset, we also ran the program to show how the exe­

cution time is affected by the difficulty level. For each difficulty level (from 1 to 

5), we input the same parameters which include data size, number of clusters, den­

sity and outlier levels so that the difference of data generating time is exclusively 

based on the change of difficulty levels. Despite the use of the same parameters, 

each dataset produced may contain clusters of different distributions, shapes and 

densities. In order to precisely show the execution time of generating a dataset, we 

ran the program at least five times for each difficulty level and then computed the 

average excution time. The plot in Figure 4.16 demonstrates that with the change 

of difficulty levels, there is little change of average execution time to generate a 

certain type of dataset.
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Figure 4.15: Each generated dataset has the following properties: number of clus­
ters is 5; data distribution in a cluster is either uniform or normal; difficulty level 
ranges from 1 to 5, density level is 3, and noise level is low
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Figure 4.16: With each difficulty level, the system generates a dataset of 100,000 
that contains both uniformly and normally distributed clusters.
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4.5.2 Testing with Clustering and Outlier Analysis Algorithms

We generated six sets of two dimensional spatial data. Each dataset contains outliers 

as well as clusters that consist of either uniformly or normally distributed data. The 

details of the datasets are given in Table 4.1. Clusters in each of the first five datasets 

exhibit the typical cases of data distributions and shapes of a specific difficulty 

level. The sixth dataset, however, contains a mixture of clusters that are randomly 

generated from different difficulty levels. The sizes of the datasets are moderate for 

easy inspection and illustration.

Table 4.1: Detailed description of the parameters for the datasets
Dataset Size Number of clusters Difficulty level Noise level
datasetl 2,000 4 1 low
dataset2 2,000 4 2 low
dataset3 2,000 4 3 low
dataset4 2,000 5 4 high
dataset5 2,000 5 5 high
dataset6 10,000 7 mixed high

Table 4.2: Description of the clustering algorithms
Algorithm classification Parameters

k-means partition-based k
DBSCAN density-based radius e, M in P ts

CURE hierarchical k, shrinking factor a, representative points t
CHAMELEON hierarchical k — N N , M in S ize, k

WaveCluster grid-based resolution r, signal threshold r
AutoClass model-based N/A

Using these datasets as benchmark instances, we conducted experimental evalu­

ation upon six existing clustering algorithms: k-means [43], DBSCAN [20], CURE

[27], CHAMELEON [42], WaveCluster [65] and AutoClass [15, 16]. The CURE 

code is kindly supplied by the Department of Computer Science and Engineering, 

University of Minnesota. The AutoClass is the public C version from [75]. The 

other four programs were locally implemented. Some basic characteristics of these 

clustering methods are generalized in Table 4.2.
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Our experiments proceed from easy datasets to hard datasets. The complexity 

of a dataset is defined by the difficulty levels as described in the previous section. 

Our intension is not to explore the different clustering mechanisms, instead, we 

aim to show experimentally how each of these six clustering algorithms performs 

with different datasets consisting of a diversity of clusters and difficulty levels. We 

show the clustering results on each dataset graphically to give a concrete idea of 

the clustering ability of different clustering methods. We assume that we have the 

specific domain knowledge of each dataset. When performing the experiment, such 

domain knowledge plays an important role in the selection of certain parameters, 

such as k, the number of clusters involved in some of the algorithms. To avoid the 

bias caused by inappropriate use of parameters for different algorithms, we also 

conduct many test-and-trials to select the set of parameters that lead to the best 

clustering results of the algorithm being tested.

In Figure 4.17 to 4.22, different colors have been employed to indicate discov­

ered clusters in a dataset after the clustering process. Since some of these clustering 

methods, such as DBSCAN, CURE and WaveCluster, are able to identify outliers, 

red color is reserved to mark outliers in all the clustering results of the following 

figures. Figures 4.17 to 4.22 can be viewed in two ways:

•  Given a certain dataset, inspect the clustering abilities of different clustering 

algorithms, and

•  For a certain clustering method, check its clustering results over different sets 

of data.
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Figure 4.17: Clustering results on dataset 1. (a): k-mans with k =  4; (b): DBSCAN 
with e =  15 and M in P ts  =  10; (c): CURE with k =  4, a  =  0.3, and t =  10; (d): 
CHAMELEON with k -  N N  =  15, MinSize=2.5%, and k =  4; (e): WaveCluster 
with r — 5 and r  =  0.2; (f): AutoClass
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Figure 4.18: Clustering results on dataset 2. (a): k-mans with k =  4; (b): DBSCAN 
with e =  15 and M in P ts  =  10; (c): CURE with k =  4, a  =  0.3, and t =  10; (d): 
CHAMELEON with k -  N N  =  15, MinSize=2.5%, and k =  4; (e): WaveCluster 
with r  =  5 and r  =  0.2; (f): AutoClass
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Figure 4.19: Clustering results on dataset 3. (a): k-mans with k =  5; (b): DBSCAN 
with e =  15 and M in P ts  =  10; (c): CURE with k =  5, a  =  0.3, and t — 10; (d): 
CHAMELEON with k — N N  — 15, MinSize=2.5%, and k =  5; (e): WaveCluster 
with r  — 5 and r  =  0.2; (f): AutoClass
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Figure 4.20: Clustering results on dataset 4. (a): k-mans with k =  5; (b): DBSCAN 
with e =  15 and M in P ts  =  10; (c): CURE with k — 5, a  — 0.3, and t  =  10; (d): 
CHAMELEON with k -  N N  =  15, MinSize=2.5%, and k =  5; (e): WaveCluster 
with r =  5 and r  =  0.2; (f): AutoClass
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Figure 4.21: Clustering results on dataset 5. (a): k-mans with k =  5; (b): DBSCAN 
with e — 15 and M in P ts  =  10; (c): CURE with k — 5, a  =  0.3, and t =  10; (d): 
CHAMELEON with k — N N  =  15, MinSize=2.5%, and k =  5; (e): WaveCluster 
with r  =  5 and r  =  0.2; (f): AutoClass
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Figure 4.22: Clustering results on dataset 6. (a): k-means with k =  7; (b): DB­
SCAN with e =  20 and M in P ts  =  30; (c): CURE with k =  7, a  =  0.3, and 
t =  10; (d): CHAMELEON with k - N N  =  15, MinSize=2.5%, and k =  7; (e): 
WaveCluster with r  =  4 and r  =  0.2; (f): AutoClass
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The definition of clusters and outliers is often subjective. Meaningful clusters 

and real outliers should be considered in the context of application domains. Even 

with the synthetic datasets used in our experiments, it is sometimes not easy to 

mark clusters from clusters or to distinguish clusters from outliers. For example, in 

Figure 4.21, CURE and AutoClass treat the diagonal line pattern as a single cluster 

while other methods consider it either as part of another cluster or as outliers. An­

other example is the clustering results shown in Figure 4.22 obtained from dataset 

6 , where the small oval and big rectangle (cluster in cluster) are grouped into one 

cluster by all the six clustering methods although they might well be considered 

as two clusters. Pros and cons of various clustering algorithms have been widely 

discussed in the literature, we evaluate these algorithms based on the quality of the 

clustering results on the given datasets.

Some interesting observation from the experiments can be generalized as fol­

lows.

1. K-means is well known for being able to quickly find spherical shaped clus­

ters. Through the experiments on datasets of different levels, it is found that 

k-means can successfully identify irregular shaped clusters if the distances 

between clusters are big enough and the initial set of centroid have been well 

selected. Three major factors that mostly affect the clutering results of k- 

means are: (1) domain knowledge for the selection of parameter k; (2 ) initial 

location of the set of centroid; and (3) distribution of outliers.

2. Given the appropriate values for the two parameters: neighborhood radius 

e and MinPts, DBSCAN achieves the best clustering results among the six 

algorithms. It can not only find arbitrary shaped clusters but can also detect 

most outliers. One intrinsic shortcoming of DBSCAN is that it may merge 

two or more clusters if there exist “bridges” of outliers joining clusters such 

as Figure 4.21 (b).

3. CURE is designed to not only find arbitrary-shaped clusters, but also iden­

tify outliers in a dataset. Our experiments indicate that CURE can success­

fully find meaningful clusters that have identical densities, but it also marks
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many points that are located in the uniformly distributed clusters as outliers 

as demonstrated with all the six datasets. A big problem with CURE is that 

it might fail to find some real clusters when the densities of these clusters 

are relatively less than those of the other clusters in a dataset as shown in 

Figure 4.18 (c).

4. Like k-means, CHAMELEON can not handle outliers. Although it is ex­

tremely slow, it is more effective than k-means as it can find clusters of arbi­

trary shapes regardless of the distances between clusters.

5. In most cases, WaveCluster is effective in finding clusters and outliers in a 

dataset. Although the number of resulted clusters is often more than the actual 

number of clusters in a dataset as shown in Figure 4.19 (e), 4.20 (e), 4.21 

(e) and 4.22 (e), major clusters usually stand out since they contains far 

more data objects than those small clusters. A further step to eliminate small 

clusters and mark the data objects in these clusters as outliers would surely 

improve the effectiveness of WaveCluster.

6. The most interesting clustering algorithm used in our experiments is Auto­

Class. It is an unsupervised Bayesian classification system that seeks a max­

imum posterior probability classification [75]. Such method has been widely 

used in statistics and machine learning. The uniqueness of AutoClass is that 

it can find data clusters that might not be identified as clusters by visual in­

spection. For example, the blue clusters in Figure 4.19 (f) and Figure 4.20 (f). 

This is due to the fact that AutoClass is able to find clusters that is maximally 

probable with respect to the underlying data model. Though not designed 

to identify outliers, AutoClass can generally classify outliers into one group 

even though they are usually separated by clusters.

4.6 Conclusion

In this chapter, we present a comprehensive approach to synthetic data generation 

for data analysis and demonstrate that the approach is very effective in generating
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testing datasets for clustering and outlier analysis algorithms. According to the user 

requirements, the approach systematically creates testing datasets based on different 

data distribution and transformation. Given the number of points and number of 

clusters, each dataset is controlled by data distribution, difficulty level, density level 

and outlier level. The difficulty level determines the overall characteristic (shape, 

position) of the clusters in a dataset, the density level mostly determines the size 

and density of each cluster. The generated datasets contain clusters of two standard 

distributions: the uniform distribution and/or the normal distribution. While the 

synthetic data generation system is effective in generating two-dimensional testing 

datasets to satisfy user’s requirement, it is also efficient in generating very large 

dataset with arbitrary shaped clusters.

92

R eproduced  with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.



Chapter 5 

Conclusions and Future Work

This thesis addresses outlier analysis and detection in the area of data mining. We 

investigate different techniques and methods, discuss recent work and existing prob­

lems in outlier mining. A novel approach to outlier detection is presented. The pro­

posed method uses the relative degree of density with respect to a set of reference 

points to approximate the degree of density defined in terms of the k nearest neigh­

bors of a data point. Candidate outliers are ranked based on the reference-based 

outlier score (ROS) that has been assigned to each data point. The worst case exe­

cution time of our algorithm is 0 (R n  log n), where n is the size of the dataset and 

R  is the number of reference points. Detailed analysis and experiments show that 

our method can quickly find meaningful outliers in both synthetic and real world 

datasets and are highly scalable to very large dataset.

Synthetic data generation is an interesting topic in data mining. In many re­

search areas, benchmark datasets are essential in evaluating the quality of a pro­

posed technique. Methods of generating datasets for different purposes can be quite 

different. Our work concentrates on the generation of test instances for clustering 

and outlier analysis algorithms. We presented a distribution-based and transformation- 

based approach to synthetic data generation. Based on this approach, we designed 

and implemented a generic framework for synthetic data generation. It can dynam­

ically generate datasets of different probability distributions with various difficulty 

levels in terms of clusters and outliers. We test our data generator in two aspects: 

generating various large datasets and using the generated datasets to test the existing 

clustering algorithms. Experiment results demonstrate that the proposed approach
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is very efficient in generating very large datasets of different types. The generated 

datasets can be used as benchmarks to test and compare different clustering and 

outlier analysis algorithms. In addition, most of the example datasets used in this 

thesis are generated by our synthetic data generator. To our knowledge, our system 

is probably the first synthetic data generation system that systematically generates 

datasets for evaluating the clustering and outlier analysis algorithms.

Future Work

In addition to further improving the computational efficiency of the proposed reference- 

based outlier detection approach, one important direction of future work is the deter­

mination of reference points. As has been discussed in Chapter 3, the performance 

of our algorithm, efficiency and accuracy, is closely related to the number of refer­

ence points and the location of the reference points. In addition to the grid-based 

progressive approach to the selection of the reference points explored in Chapter 

3, it is worthwhile to investigate the possibility of using other reference selection 

approaches that take into consideration the domain knowledge of the dataset to 

achieve a better tradeoff. Integrating the proposed approach with other methods of 

outlier detection in the literature is also an interesting line of research.

Our work on synthetic data generation concentrates on the generation of test in­

stances for clustering and outlier analysis algorithms. There are still much room for 

improving the current data generating system. (1) We plan to redesign the interface 

to visualize not only 2D but also 3D data. (2) The size of a cluster is controlled 

by the density level, which ensures that the number of points in a cluster is fixed, 

but also poses a problem, i.e., similarly shaped clusters with a specific density have 

basically the same size. Finding a better way to address this problem can produce 

various sized clusters with the same density in a dataset. (3) In another more or less 

theoretical direction, it would be interesting to discuss the meaning of the difficulty 

of the datasets.
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Appendix A

A GUI-based Web Application for 
Data Clustering and Outlier 
Detection

Data clustering has attracted the attention of many researchers in different disci­

plines. It is an important and useful technique in data analysis. A large number of 

clustering algorithms have been put forward and investigated. Many of the existing 

clustering approaches are able to identify outliers/noise as well as clusters. The 

web portal serves as a place for both research and educational learning in the area 

of data mining, specifically, data clustering analysis. It is an on-line source to pro­

vide data mining researchers with implementations of some well-known clustering 

algorithms and a virtual lab to compare clustering results obtained from different 

approaches on various datasets.

A.l Goals

The Web-based data analysis system 1 is designed for two types of users in the 

area of data mining: beginners to learn the basics of existing clustering methods 

and researchers to conduct experiments on clustering analysis. It aims to do the 

following tasks:

• Discuss the concept and recent development in data clustering analysis and 

their applications.

1 http://www.cs.ualberta.ca/ yaling/Cluster
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W elcom e

D ata clustering has attracted the attention o f  many researchers m dtflerenf disciplines. It is 
an important and useful technique in data analysis. A  large raimber o f  clustering algorithms 
have been put forward and investigated. This web site serves as a place for both research 
and educational learning m the area o f data mining, specifically, data clustering analysis, it  is 
an on-line source to provide data mining researchers with tested implementations o f known 
clustering algorithms and datasets, and a  virtual tab to  compare clustering results with a  
variety o f approaches.

D a ta  Analysis V irtual Dab is  designed to  do the following:

• Discuss die most recent development in data mining and data clustering analysis and 
their applications.

•  Demonstrate some known clustering algorithms to  help die user learn some data 
clustering basics.

• Allow die user to publish their implementations (C  code or Java code) o f  known 
clustering algorithms, upload datasets as well as test different clustering algorithms.

• Provide an  automatic generator o f  muitidimentional datasets which c a i  be 
downloaded by the user to test and compare different clustering algorithms.

• Allow the user to visualize data sets and clustering results.

# iD o n e _______________________________________________________________________________________________________________________________ #  Internet

Figure A.l: Data clustering analysis - welcome

•  Demonstrate some well-known clustering algorithms visually to help the user 

learn some data clustering basics.

•  Provide a GUI-based Web interface for various clustering algorithms which 

are originally implemented in standalone applications.

• Allow the user to run clustering algorithms without logging into any remote 

machines. The user may upload their own datasets and test these datasets 

with different clustering algorithms.

•  Visualize the clustering results obtained from different clustering algorithms 

so that the user can view the output as well as compare and evaluate different 

algorithms.

The screen shot of the welcome page is shown in Figure A.I.
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Introduction

There exist quite a few well-known clustering algorithms. Different algorithms may group 
a  certain data set at different ways and result m either similar or different output- The 
choice o f a  particular method depends on many factors, such as domain knowledge, 
performance o f the method, hardware and software facilities as well as die size of the 
dataset. In general, data clustering algorithms are classified into five categories:

•  P artitioning m e th o d s

• H ierarch ical m eth o d s

•  D e n sity -b a sed  m eth o d s

• G rid -b ased  m e th o d s

• M o d el-b ased  m eth o d s
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Figure A.2: Data clustering analysis - algorithms

A.2 A Virtual Lab for Learning Clustering methods

As shown in Figure A.2, we adopt the well known classification of clustering tech­

niques: Partitioning methods, hierarchical methods, density-based methods, grid- 

based methods and model-based methods. Different algorithms may group a certain 

data set in different ways and result in either similar or different output. The choice 

of a particular method depends on many factors, such as domain knowledge, per­

formance of the method, hardware and software facilities as well as the size of the 

dataset. We provide in this Web site brief reviews and links to the original papers 

of each clustering method. Interested readers are referred to the Web site for details 

of various clustering techniques and their applications.

In addition to the discussion of each method, we also provide a Java applet to 

demonstrate visually the working mechanisms of the well-known clustering meth­

ods: Kmeans, Kmedoids, DBSCAN and CLIQUE. Explanation of the algorithms 

and the user manual for running the applet are provided along with the applet. Fig-
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Figure A.3: Data clustering analysis - applet
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ure A.3 displays a screen shot of the applet showing the running result of DBSCAN 

with Eps =  20 and M in P ts  =  5 on a set of randomly generated data. The applet 

has the following functionalities:

•  Allow the user to select an algorithm and set the parameters specific to the 

selected algorithm from a separated window.

• Allow the user to import his own datasets as well as using the default datasets 

provided by the system to run different algorithms.

• Allow the user to export and save the data.

• Allow the user to choose the running speed.

•  Copy and save the running result in a separate window to facilitate compari­

son of different algorithms on a given dataset.

A.3 An Interactive Web-based Testbed for Cluster­
ing Analysis

We migrate the following clustering algorithms: Kmeans, DBSCAN, CURE, ROCK, 

CHAMELEON, CLIQUE, WaveCluster and AutoClass to an interactive Web-based 

application system. Based on the structural analysis and program understanding of 

the existing command line implementation of these clustering algorithms, we de­

cide to keep the original source code for the clustering task, and write a wrapper for 

Web enabling purpose. We then further extend the system by displaying the clus­

tering results graphically on Web browser at the client side. Without logging into 

any remote machines, users are able to run the algorithms directly from the server 

side once the applications are Web enabled.

System Design and Tools

The original implementation of the clustering algorithms are either written in C or 

Java. They are command line based standalone applications. To run each program,
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Web ServerWeb browser

VisualizationCluster applications

Figure A.4: UML of the Web-based clustering system

a user has to type in the command line the necessary parameters which require sig­

nificant application domain knowledge. To enable the existing implementation on 

Web, the first question in our design phase is: What components of the system will 

be exposed to the Web? In our interactive system, we address only the accessibility 

of data and presentation.

Although we try to wrap the standalone applications as they are, we found that 

minor modification of the original implementation is necessary due to the command 

line interaction between users and the running program. As we intend to encapsu­

late the internal mechanism with a wrapper, we have to disable any user intervention 

while the program is running.

HTML forms are used for submitting user queries. After running an algorithm 

on the server side, the clustering result is to be displayed on the client side. There­

fore, the target system provides support for visualizing the clustering results. Fig­

ure A.4 presents the UML of the infrastructure of the Web-based interactive system.

The implementation in building the clustering testbed and migrating the existing
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applications into Web-based systems involves mostly four programming languages:

• PHP - a server-side scripting language for displaying and submitting user 

input as well as wrapping the original application

•  Javascript - a client-side scripting language for program parameter selection

•  Python - an object-oriented programming language used for parsing parame­

ters, read and write to files

• Java Applet - visualizing two-dimensional clustering results on Web browser

System Functionalities

We explain how the clustering testbed works by walking through the Web pages. 

Figure A.5 through A .l 1 show the steps from logging into the system to getting the 

clustering result. In general, there are five major steps in running the application to 

obtain the clustering result.

1. Select an algorithm as shown in Figure A.8.

2. Select a dataset and enter the parameter values in the text boxes that are pro­

vided dynamically based on the selected algorithm as shown in Figure A.9.

3. Run the algorithm and check the parameters and clustering result.

4. Visualize the cluster result.

Many users without domain knowledge may want to run the clustering algo­

rithms to evaluate the clustering results. They do not care about the internal mech­

anism as to how the system works. Even those users who are expert in clustering 

analysis may run the system only for the purpose of evaluating their algorithms and 

results. In both cases, it is not reasonable to ask users to specify all the parameters 

associated to the selected algorithm in order to run the program. To simplify the 

parameter selection task, we provide an extra text field to allow users to input an 

XML file name to save job history. When the user wants to run the same algo­

rithm with the same setting for different datasets, the user does not need to type in
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these parameters repeatedly. Instead, by selecting the previously saved XML file, 

the system will automatically parse the parameters and run the program as desired. 

The benefit of saving job history can be more obvious when the system gets larger. 

In short, our Web-based interface eases users from checking the domain specific 

information.

Notice that the textual presentation of the clustering results provides no clue 

about how the data are distributed. For a dataset with even more than a hundred 

data points, it is almost impossible to evaluate the clustering results based only 

on the text information. As part of the testbed evaluation process, we decide to 

extend the original system by visualizing the clustering results, restricted to two- 

dimensional data. Java applet is used for this task so that it can be easily integrated 

with the Web-based system.

The user interface for visualizing the results as shown in Figure A. 11 is designed 

to have a simple and clear layout. Two-dimensional data are represented as points 

on Web browser. To distinguish among resulting clusters, different colors are used 

for each cluster to help users understand the clustering results. Moreover, the applet 

also displays the relevant parameters such as algorithm name, total number of data 

and number of final clusters.
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Data Clustering Testbed provides a place where users can. experiment different 
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implemented, some of winch are provided by die authors who came up with the 
algorithms. The implemented algorithms are;

•  K-means
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.  CHAMELEON
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Figure A.5: Clustering testbed introduction page
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O r use  an uploaded d a ta  set:
myData1.dat

L E n ter th e  Bomber of d a ta  to  b e  d u s te re d : 2000

E n te r the num ber of d u s te rs  K : 5..... ...............

E n te r an X M L  file Bame to save iapat param eters: <means.xmi

[  Run Algorithm J

I  Ulc-iu i t i i f l i .  jo u  c.iu iub th i ilgurilfain wish ihe old input iIj i j .

|  I  Luose the ap p ru p iu te  soil file ■kmeansxml v

1 (  Run Algorithm with parameters savedin  ae/ected.file :|

ItfjD one ^ I n t e r n e t : : : :  j

Figure A.9: Clustering testbed algorithm parameter page
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* d C B S B B S Data Clustering Testbed

Frf. April 21,2«H

A lgorithm: X-means
D atapath : .JD3taset$/Dat$setQ/test2-2.txt 
N um ber o f objects: 2QOO 
N um ber o f d u s te rs : S
X M L  file u sed  to  sav e  iaput: .Jmstory/Kmaam.xmi

Visualize cluster results )

Homo | O verv iew  [ A lgorithm s | D a ta se ts  {A p p le ts j E xperim ental T e s tb e d  [ Links [ C o n ta c t

t Dili dwrt«ift| MaSysts 20®2:-2C$i
&  Internet

Figure A.10: Clustering testbed algorithm output page
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Back * _ - -x j  *N Search Favorites ^
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Visualization Applet
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Figure A .l 1: Clustering testbed output presentation page
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