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Abstract

The rate of 30-day hospital readmission is a common measurement of hospital qual-

ity, which can affect the funding a hospital receives. Over a quarter of readmissions

are estimated to be preventable with adequate interventions, but these interventions

are themselves costly. For this reason, many projects have attempted to determine

which individuals are at a high risk of readmission, and thus whose prognosis may im-

prove with further testing and treatment. There are two common approaches to this

prediction problem. (1) Formulate risk indices, such as the LACE score. These are

common in a hospital setting; however, the simplicity often leads to poor predictive

performance. (2) Use machine learning to transform a set of hand-selected features

into the probability of readmission at a single future time-point. Unfortunately, fea-

ture engineering is time-consuming, and a physician may care about predictions at

time points other than 30 days. Both approaches rely heavily on domain knowledge.

In this thesis, I use Neural Multi-Task Logistic Regression (N-MTLR) to model

all-cause readmission-free survival as a function of time. N-MTLR, despite producing

probability predictions for all future time-points, out-performs XGBoost and Deep

Learning approaches trained specifically to predict readmissions at 30 days (AUROC

0.821± 0.004 (Std.Dev) versus 0.814± 0.003 and 0.810± 0.005). Further, I show that

N-MTLR, augmented with a sequence model, can learn a patient’s representation

directly from their history of medical codes, predicting 30-day all-cause readmission

with an AUROC of 0.846±0.003 using only sequences of administrative medical codes

as input. This approach significantly outperforms the LACE baseline of 0.659±0.001.

These results demonstrate the merit of medical code sequences to represent a patient’s
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past, and N-MLTR to model a patient’s future.
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using features informed by a linked administrative data Medical Concept Embedding
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Chapter 1

Introduction

1.1 Motivation

Far outreaching its roots in religion and magic, medicine represents an intricately in-

terconnected system of knowledge, data, and practice that aims to keep a population

healthy. This discipline has long been the subject of multiple competing and con-

spiring demands. Resource availability, pressures to scale, and capacity for strategic

future planning have all affected its trajectory.

The history of medicine can helpfully be viewed as analogous to the establishment

of a major city. Around the turn of the second century, the Romans founded Barcino,

a settlement in what is now the Catalina region of northeast Spain. Sprawling roads

were built in all directions as the population soared over the next two millennia,

areas were developed then repurposed many times over, control of the territory was

disputed and changed, and a large encircling defensible wall was erected. Because of

this continued growth, the town was suffocating under its own weight by the time

of the industrial revolution. Still confined by its medieval walls, Frankenstein-esque

archways and scaffolds atop buildings and roadways were constructed to support

more lodgings. With each passing year, the consequences of uncompromising and

future-blind over-development was felt increasingly by the citizens.

In the 19th century, during a time of fascination with urban renewal, a major

intervention was proposed and implemented: demolishing much of the wall and orga-

1



nizing new neighbourhoods into a brilliantly replicable pattern of major and minor

city blocks. This imposition of centralized city planning changed the fingerprint of

the city in a major way; intentional organization led to increased capacity, utility,

and scalability. What we see as the result of this history is modern-day Barcelona

(Figure 1.1), with its striking L’Eixample (and surrounding) districts.

Figure 1.1: Twenty-first century overhead view of Barcelona, Spain. Credit:
Shutterstock.

Up until a recent stage of modernity, medicine predominantly evolved organically,

similar to Old Barcelona, alongside the needs of humanity. Just as the develop-

ment of Old Barcelona was the result of pressures to support a growing population

presently, so too has medicine developed for purposes other than providing the

optimal care to some hypothetical future population. The mass amounts of

data captured—prescription histories, insurance claims, laboratory test results, med-

ical imaging, free-form text cataloguing patient-physician interactions—are to ensure

medical care offerings meet a certain minimum standard, and to ensure that medical

professionals are compensated for their hours. Much like with our developing city

example, medical care provision is a patchwork of quick-fixes and approaches that

maximize, perhaps short-sightedly, the effectiveness-to-cost ratio. Many artifacts of

this reactive dynamic exist in our medical datasets, such as the often-sub-optimal
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data quality and heavy siloing. It can be said with certainty that paving the way to

improve medicine through Machine Learning (ML) has not been at the forefront of

medical administrators’ minds throughout most of history.

We are currently watching medicine undergo a rapid transformation with the intro-

duction of reliable, digitized, standardized, and readily-available health record keep-

ing. An example is the adoption of Alberta’s ConnectCare1. One day, we will look

back at this era as medicine’s own L’Eixample (literally, “The Expansion”); this is a

crucial step towards the modernization of health. However, this reconstitution takes

time, and current medical systems are under significant stress now. Furthermore, even

if issues of current electronic health record robustness and integration are ignored,

the longitudinal nature of electronic health data makes its pairing with traditional

supervised learning techniques awkward at best. Thus, if we are going to practically

improve predicting clinical outcomes (such as hospital readmissions) through the use

of ML in a timely fashion, exploring ways around constraints of current and future

health data is an imperative.

Unfortunately, our efforts are moot if we do not set out to solve the right prob-

lems. The application of Artificial Intelligence (AI) has rapidly gained traction in

medical literature since the mid-2000s—yet, the adoption of AI in practical medical

contexts is dazzlingly scarce. Using education to reduce wariness of new technologies

and canning solutions into user-friendly software may help, but does not paint the

complete picture. The architect behind Barcelona’s Eixample, Ildefons Cerdà, who

has been praised for his meticulous attention to detail (and for his founding contri-

butions to the study of urbanization) would have understood this. During the design

process, he investigated how the working classes lived, mapped optimal distances to

amenities, and studied important associations between factors like street width and

disease. The result was a plan that not only supported the growth of the city, but

enhanced community well-being. To make medical AI tools whose benefits outweigh

1https://www.albertahealthservices.ca/cis/cis.aspx
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the risks, computing scientists and developers must, throughout the entire lifecycle

of an AI system, cater intentionally and deliberately to specific needs of the medical

end-user.

Thus, for those who wish to contribute to the future of medical AI, there exists

the need to shift our philosophy in (at minimum) two ways. First, we must focus

on cleverly circumventing the current limitations of our current and future data; and

second, we must practice intentionality whilst choosing which problems to solve and

how. From here, we can truly begin our journey.

1.2 Thesis Objectives

This dissertation contains two contributions to the larger body of medical AI knowl-

edge.

1. To effectively use the wealth of historic longitudinal medical data available to

us, we adopt techniques that allow us to embed knowledge about healthcare us-

age as a dictionary of dense vectors. We show that embedding-informed medical

history representations are useful for predicting 30-day all-cause hospital read-

missions, and in the more general task of predicting time-to-all-cause-hospital-

readmissions. These outcomes reinforce the idea that adapting medical data to

suit the fortuitously analogous context of Natural Language Processing can be

a viable strategy for extracting clinical insights agnostic to disease cohort.

2. Instead of predicting the probability of readmission at a single future time-

point, we use models that generate individual readmission-free survival distri-

butions (i.e., the probability of survival at all future time points) directly from

the sequence of a patient’s past medical codes. The combination of learning

from the progression of a patient’s medical history to model a patient’s prog-

nosis in the future achieves impressive performance on the 30-day all-cause

readmission prediction task, captures much of the information represented in

4



hand-engineered features automatically, and allows us to ask questions about

the time-to-readmissions for each patient.

1.3 Thesis Outline

We begin with a review of pertinent literature in Chapter 2. Next follows the ex-

ploration of ways to represent medical histories (Chapter 3) and validating these

representations in predictive tasks (Chapter 4). We close with a discussion of the

project’s implications in Chapter 5, and conclusions and future work in Chapter 6.

5



Chapter 2

Context and Literature Review

2.1 The State of Affairs

An Electronic Health Record (EHR) contains widely-accessible information about the

holistic health of an individual from many different sources [3]. In Alberta, Canada,

this takes the form of Alberta Netcare1, maintained by Alberta Health Services (AHS).

As an individual moves amid Health Service Providers (HSPs), information is up-

loaded to a centralized and secure storage system creating a trail of rich medical

information, covering medication history, lab test results, diagnostic images and re-

ports, hospital visits, and more. “Administrative data” is a subcategory of health

data captured within and beyond the Netcare EHR, and includes (but is not limited

to) medical expense claims, hospital in-patient episodes, ambulatory care provision,

medication dispensation events, and patient demographic information.

While Netcare and other data sharing endeavors have increased the speed and ef-

ficiency with which care can be provided, “How can these integrated data be used

to accurately predict health outcomes?” is a question of interest for both researchers

and doctors. Understandably, many different health data schemes and structures

create problems that impede using these data to the fullest extent. The prevalence

of “missing values” is one barrier. Phung et al. [4] categorize types of missing data

into two categories: systematic (due to changing data capture protocols) and non-

1https://www.albertanetcare.ca/
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deterministic (due to times where individuals fail to provide the requested data).

Indeed, examples of these types of missing data are abound in Alberta Netcare. For

example, the numeric result and abnormal status of many lab tests are not captured

in their designated structured field—instead, the field may read “see doctor’s note”,

which contains test findings in a wall of unstructured text. Further, values for im-

portant variables (e.g., demographic features like sex) occasionally go uncaptured if

a patient arrives at the hospital in poor shape and/or lacking in proper identification

documents.

However, null and misplaced values do not paint the complete picture of where we

truly struggle with the lack of data in EHRs. Imagine you would like to examine

lab test results, or a patient’s historical medical codes, to predict clinical outcomes.

Thousands of lab tests are available for order in Alberta hospitals, and more than

35,000 different medical codes were used in Alberta Netcare in the 2010s. Vectors

containing test results or medical events for a hospital visit would be high-dimensional

and rich in zeroes. Further, oversight in high-level data governance can exacerbate

this sparsity issue, as exemplified in Alberta by the reliance on multiple versions

of the International Classification of Diseases (ICD) coding system for different ad-

ministrative data sources. A comprehensive mapping between these versions (ICD-9

and ICD-10-CM) is not straightforward [5], which makes standardization of linked

datasets burdensome. It is true that many models of interest to clinicians (e.g., sur-

vival models) are often intolerant to sparse representations of multicollinear features,

which are prevalent in medical data [6]. So, what are we to do? Since defining a tab-

ulation of medical data representing historical information is not straightforward, the

new question becomes “How can these integrated data be represented to accurately

predict health outcomes?”

One way to represent historical medical information in tabular form is through

hand-engineering, which refers to the process an analyst performs, informed by

domain knowledge, to calculate the value of some feature from a larger collection of
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data. Using hand-engineered features in simple and practical heuristics in medicine

far predates hand-engineered features as inputs to ML models. The LACE index [7]

is one example of this practice. LACE attempts to rank a patient’s risk of hospital

readmission by capturing information about the Length of the current hospital stay,

if the current episode started in the emergency room (Acuity of admission), the pres-

ence of Comorbidities (Charlson Comorbidity Index, or CCI [8]), and the patient’s

Emergency department usage over the last six months. However, the simplicity of

this approach often leads to lackluster performance compared to more recent methods.

Further, some information needed at time-of-calculation is only available at discharge,

whereas planning for targeted interventions starts at hospital admission [9]. Alberta

Health Services does make use of the LACE index (as per the ConnectCare manual2),

which makes it a reasonable baseline against which to compare more sophisticated

readmission-prediction models (Section 3.3.1, 4.5.1). Extensions of the LACE score

(such as LACE+) improve upon the original in AUROC performance [10]; however,

some score components such as case mix group (CMG) codes—which the authors

themselves admit are “computationally expensive”—are not practical or straightfor-

ward to calculate with the data we have. Other notable readmission-related heuristics

like the HOSPITAL [11] and B-PREPARED [12] scores (which require lab test results

or the administration of a self-report respectively) also show moderate performance

and are not applicable universally. Au et al. [13] note that for predicting 30-day read-

mission due to heart failure, LACE, LACE+, and CCI scores only led to an AUROC

of between 0.57 and 0.61.

Simple heuristics for predicting outcomes (where the contributions of different fea-

tures towards the final score are prescribed rather than learned) most often involve

only a small number of features. This is likely because manually defining the weight-

ings of each of these factors becomes increasingly difficult to validate with more com-

plex inputs. Machine learning has enabled the automatic learning of these weights to

2https://manual.connect-care.ca/workflows/patient-movement/transition-planning
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model a future adverse outcome. Covariates designated as “highly predictive” for a

particular task are often published as risk factors in much of recent literature. For

example, Philbin et al. (1999) use logistic regression to predict congestive heart fail-

ure, and derive a risk scoring system based on factors related to an admission, such as

black race, Medicare and Medicaid insurance, ischemic heart disease, idiopathic car-

diomyopathy, prior cardiac surgery, peripheral vascular disease, and others [14]. Many

risk factors for 30-day readmissions (all-cause and otherwise) have been identified this

way from different research groups, including hospital-acquired Clostridium difficile

infection [15], cancer, pulmonary, liver, and kidney disease [16], residence out-of-area,

major or minor lack of procedure applied during index hospitalization, hyperten-

sion [17], and maintenance chemotherapy, Gabapentin ordered at index admission,

and ≥16 abnormal laboratory test results [18]—alongside many others. Engineering

attributes (like those mentioned above) from medical history data often require the

use of validated algorithms to calculate (e.g., when identifying the presence of chronic

conditions [19]). This is a time-consuming process and does not scale well with an

increasing number of features.

Further, most of the features mentioned previously only capture atemporal (de-

mographic or chronic condition-related) features, or features that only concern the

current hospitalization. Adequately capturing more of the past may prove advanta-

geous for tasks that concern the future of a patient. Medical codes (indicating diag-

noses, procedures, prescriptions, and beyond) are used universally in health centres,

and contain important information about an individual’s health history. Glossaries

of medical codes in hospitals can number in the tens of thousands; if one were to rep-

resent a patient as a multi-hot or count-based vector of medical codes, the resulting

vector would be highly sparse. In 2015, Yerex et al. used various feature extraction

techniques from this sparse representation to decrease the dimension of the feature

space for readmission prediction [20], and Sideris et al. [21] use a similar technique

for predicting heart failure severity. Grzyb et al. tried using hash maps to decrease
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the feature space [22] . However, the choice to represent medical medical events in

this multi-hot way discards any sense of order or temporality—when the codes are

attributed could be as important as the codes themselves. Some authors address

this by splitting the health history of an individual into multiple time-bins, where

the medical events in each bin are represented using a multi-hot feature vector [23].

In this example, Boltzmann machines were used to embed the medical events from

within these time-bins to predict suicide risk prediction, but this technique is not

appropriate when the observation window for each individual is not the same length.

Others apply medical event standardization procedures to represent histories before

applying machine learning, e.g., using the Fast Healthcare Interoperability Resources

(FHIR) format [24]. While effective, the flexibility of FHIR is restricted due to its

proprietary nature. This motivates the exploration of open-source algorithms that

can compute patient representations (that can incorporate the sequence of medical

events in a patient’s history) to predict adverse medical outcomes (Figure 2.1). The

adverse medical outcome we focus on in this dissertation is the all-cause hospital

readmission (Section 4.1.1).

Figure 2.1: How can we use the health of historical health data we have to
gain insight into the future of a patient?
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2.2 Natural Language Processing and Predicting

Health Outcomes

Much of humanity’s knowledge is stored in natural language. Computationally pars-

ing, distilling, and understanding this inherently hierarchical information promises

many benefits. The base unit of meaning is a token, which is often viewed as a

word or grouping of characters. Many tokens make up a sentence, and many sen-

tences make up a document. Many documents comprise a corpus. Idiosyncrasies at

any of these levels can cause difficulties with representation. Vocabularies of tokens

are complex, high-dimensional, and lead to sparse representations—words, sentences,

and documents come in varying lengths, and context and higher-order structures

can drastically change meaning. Natural Language Processing (NLP) refers to a

suite of algorithms designed specifically for handing these characteristics. Supervised

and semi/self-supervised NLP models often circumvent the aforementioned issues by

learning low-dimensional embeddings of words and combining them, informedly, into

sentence or document representations.

NLP is widely applicable to medical problems due to its power to represent in-

formation. While it can characterize factors that influence care from cancer support

discussion forums [25] and write published medical literature [26], most relevant to

this project is the use of NLP to predict downstream clinical outcomes. For ex-

ample, Huang et al. used BERT to embed free-form clinical notes, then fine tuned

the architecture to predict 30-day hospital readmissions. This model attained an

AUROC score of 0.714 [27]. Golas et al. show that adding information from clini-

cal notes can significantly improve 30-day heart failure readmission prediction [28].

While promising, free-form clinical text is noisy, sometimes unavailable due to its

potentially identifying nature, and was not included alongside our data extraction for

this project.

To employ NLP in the absence of free-form clinical text, the structural similari-
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ties between natural language and sequences of medical codes can be exploited. A

previously-mentioned example is the work of Rajkomar et al. [24], who apply the

FHIR format to represent historical medical codes, and use these representations as

input for LSTM (Long Short Term Memory) models and TANNs (Time-Aware Neural

Networks). This procedure performs notably well on many tasks, including predicting

in-hospital mortality (AUROC 0.93–0.94), 30-day unplanned readmission (AUROC

0.75–0.76), and prolonged length of hospital stay (AUROC 0.85–0.86). Pham et al.

introduced DeepCare [29] for modeling disease progression and predicting diabetes-

related readmissions, also relying on longitudinal medical event data fed into LSTMs.

Doctor AI (from E. Choi et al., 2016 [30]) uses Gated Recurrent Unit neural net-

works [31] (GRU networks) to mimic how a physician diagnoses patients—by pre-

dicting, at the end of each hospital episode, all diagnosis and prescription codes in

the subsequent visit. Suo and colleagues augmented GRU neural networks with an

attention mechanism to monitor disease progression via the diagnosis results of pre-

vious records [32]. GRUs have been further utilized by Chakraborty in 2021 [33]

(who note that GRU-based models far out-perform simpler models on the task of

generating readmission risk scores from sequential Claims data), and by E. Choi et

al. [34] [35]); the authors show in both publications that incorporating temporally-

sensitive features improves upon heart failure-specific readmission prediction. Given

the previous successes of the GRU network and medical code sequence combination

(and the computational efficiency of GRU networks compared to other models like

LSTMs), GRU networks are our sequence model of choice to represent patient his-

tories for predicting readmission-related outcomes in this project (Sections 4.3.3 and

4.4.2).

This “patient medical code history = natural language document” analogy can

also be used to represent medical concepts, codes, or events in vector form. Most

projects do this by making use of the “distributional hypothesis” to capture medical

meaning—that is, words (or medical codes) that appear in similar settings (are used
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to describe a patient close in time to one another) have similar meanings. Herein

lie all the projects relying on various implementations of the Word2Vec embedding

architecture, originally introduced in 2013 by Mikolov et al. [36]. Y. Choi et al. first

proposed the use of Word2Vec to generate vector embeddings of medical codes from

Claims data, and demonstrate how related medical concepts appear meaningfully

similar in vector space [37] using this technique. Even though this idea was proposed

in 2016, these “Medical Concept Embeddings” (MCEs) have remained of interest

to researchers in recent years. For example, in 2022, Wang et al. demonstrate that

manifold learning shows promise in refining Word2Vec-generated medical concept

embeddings [38].

MCEs, and the medical meaning captured therein, can provide rich information

for machine learning models, increasing downstream task performance. In the same

year as Y. Choi proposed the medical concept embedding [37], E. Choi and coauthors

proposed the same idea3, and demonstrated its usefulness on the downstream binary

classification task of (heart-failure-related) 30-day hospital readmission prediction.

E. Choi’s idea is simple—to represent a patient, extract embeddings corresponding

to some number of recent medical codes, perform a summation on these vectors,

and use the resulting vector to represent a patient’s medical history. This simple

representation, combined with a Deep Neural Network, achieved an AUROC higher

than 0.8, which is high compared to numbers reported for the same task in other

studies. An extension of this approach, Med2Vec (also from E. Choi [39]) simultane-

ously learns representations of both medical codes and entire hospital visits. While

Med2Vec visit-level embeddings out-perform the summation of Word2Vec medical

concept embeddings (on the task of predicting future medical codes), this multi-level

architecture relies on clear boundaries between medical “episodes” in the data, which

is not always realistic, and indeed is not straightforward with Alberta Netcare data.

Creating Medical Concept Embeddings is not restricted to Word2Vec—for example,

3You can imagine how confusing this was.
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RNN and topic modeling approaches were hybridized by Xiao et al. to jointly learn

event and patient representations (similar to Med2Vec) for predicting readmissions

for congestive heart failure patients. However, the AUROC score did not exceed

0.62 [40]. CEHR-BERT [41] incorporates temporal information from EHR data into

event and patient-level representations, once again to only moderate success in the

task of 30-day heart failure readmission. Some have attempted to use generative lan-

guage models (GLMs) to represent patients based on sequences of historical medical

codes. However, GLM-based representations did not decidedly out-perform the use

of summed Word2Vec medical code embeddings [42] on the task of predicting 30-day

all-cause hospital readmission. For these reasons, we use the original procedure from

E. Choi: create a MCE dictionary using Word2Vec and sum recent medical code

embeddings to create a representation (Sections 3.2.2, 3.3.5).

While not strictly borrowing from natural language processing, multiple projects

make use of Convolutional Neural Network (CNN) filters to “sweep” across events in

medical histories to learn higher-level, sequence-preserving, increasingly-abstract pa-

tient representations. Zhang et al. [43] use this approach to predict comorbidity risk,

and Cheng et al. [44] use it to predict the risk of onset of chronic conditions. Nguyen et

al. propose Deepr [45], a CNN that detects clinical motifs and predicts all-cause hos-

pital readmissions at 3 and 6 months. Deepr is initialized with Word2Vec embeddings

of medical concepts, which led to improved performance; initializing GRU-RNNs with

MCE dictionaries can similarly lead to higher performance at evaluation [35].

In all these publications, the problem is formulated as a classification task—often

predicting a 1 if the event of interest happens within a certain time-frame, and 0

otherwise. This is limiting in two key ways. One, an event’s presence or absence

at a particular time-point is only a coarse level of information, and may not paint a

complete picture of a patient’s prognosis. Two, restricting a prediction to a particular

time-point (e.g., 30-days) requires the (perhaps arbitrary) definition of a time-point,

when the event predictions at other time points may also be of medical interest. These
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sacrifices are not necessary; classes of algorithms exist that can make use of timing

information and can make predictions at many/all time-points.

2.3 Event-Free Survival Prediction

The information stored in the binary target label of “30-day readmission” is quite

coarse; there is no measure of gradation to distinguish those who were readmitted in

one week vs. one month, nor those who were readmitted in 31 days vs. never readmit-

ted within the study period. If we instead consider some measure of time-until-event

as the target, the model can learn a more fine-grained relationship between the input

features and the adverse outcome of interest. However, if we would like to consider this

temporal information, a problem arises. A model would ideally capture information

about events at differing future timepoints with approximately equal robustness; how-

ever, some patients may move away, or they may never experience an adverse outcome

during the study period. Any event that disconnects us from measuring our adverse

outcome of interest is called a “censorship” (Figure 2.2). Garmedia et al. (and others)

choose a naive approach to predict time until emergency-room readmission, opting

to remove all censored patients and treat it as a regression problem [46]—however,

this approach causes the model to chronically underestimate survival time [47] which

compromises overall utility.

Survival analysis and survival prediction models are used to understand how the

future of a “system” (e.g., patient, machine, business) may unfold with respect to

some event of interest (e.g., death, mechanical failure, bankruptcy) [47], and are

formulated specifically to deal with these censoring events. The fact that the numeric

target of interest for survival analysis problems is often partially obscured in the

training dataset differentiates it from a classic regression problem. Survival models

learn from a survival dataset, where every system is associated with both a “time-

to-event” and a bit denoting if the event indicates true “survival time” or censorship.

Haider et al. [48] suggest three axes on which a survival prediction model may be
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Figure 2.2: Censorship illustration with three example patients. Patient 1 is
uncensored, as we understand their time-until-event. Patients 2 and 3 are both cen-
sored, as Patient 2 moved away before experiencing an event, and Patient 3 remained
event-free until the end of the study. Some patients may never experience an adverse
outcome.

classified; whether the model’s predicted output is 1) a risk score (R) vs. probability

of event (P ), 2) a single value (1t∗ , 1∀) vs. a range of values over future timepoints

(∞), and 3) applied on the individual level (i) vs. to a cohort or population (g).

The Cox Proportional Hazards (CoxPH) model [49] (discussed further in Section

4.4.1) falls into the category [R, 1∀, i], generating a single, individualized risk score.

“Proportional hazards” refers to the assumption that a covariate’s effect on survival

does not change with the passage of time. Given the model’s simplicity, it is used

often in medical survival analysis. In 2013, McAlister et al. [50] used CoxPH trained

on time-dependent covariates to understand the risk of readmission or death after a

heart failure event using Alberta Health Services data. Mixon et al.(2016) attempt to

understand how discharge “preparedness” influences 30 and 90-day readmission risk

using CoxPH [51], and similarly, Glasgow et al. use CoxPH to understand how leaving

against medical advice impacts readmission risk [52]. Grzyb and coauthors propose

a multi-task CoxPH model for predicting risk of 30-day unplanned readmission and

binary 30-day unplanned readmission [22], but performance was lackluster.

While risk scores generated by CoxPH (and others algorithms, such as Random

Survival Forests [53]) are commonplace for understanding the effect of different fac-

tors on survival, modeling survival probabilities (especially over multiple timepoints)
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is more useful for understanding the progressions of individual patients in a stan-

dalone way. The Gail model [54] and PredictDepression [55] both use a time-to-

event dataset to predict the probability of event-free survival (“event” being breast

cancer onset and depressive episode onset, respectively) at a particular time-point.

These algorithms do not provide information for times other than the chosen t∗, and

would be classified as [P, 1t∗ , i]. The Kaplan-Meier estimator [56] ([P,∞, g]) models

event-free survival as a function of time for a population or sub-population of indi-

viduals, but is more useful for comparing treatment or cohort effects, and neglects

individual-level survival information. The aforementioned limitations motivate the

need for survival-prediction systems that can model the individualized probability of

event-free survival at arbitrary future time-points—i.e., models that generate Indi-

vidualized Survival Distributions (ISDs). The CoxPH risk score can be combined

with a baseline survival function to generate an individual survival distribution, such

as with the Kalbfleisch-Prentice [57] extension or using Breslow’s Estimator [58].

Multi-Task Logistic Regression (MTLR) [59] is an algorithm specifically designed to

use a survival dataset to generate an Individual Survival Distributions, either alone

or combined with Deep Neural Networks (DNNs) [60]. MTLR trains a sequence of

connected logistic regression modules which each predict the probability of event-

free survival within a particular future time range. This approach has been used to

model length-of-hospital-stay for COVID-19 patients [61], time until readmission for

COVID-19 patients using ECG inputs [62], cardiovascular-related hospitalizations for

hypertensive individuals [63], breast cancer onset [64], Alzheimer’s disease progres-

sion [65], and many other classes of medical events. We employ both CoxPH with

Breslow’s estimator and MTLR to model all-cause-readmission-free survival.

Very few publications have harnessed both NLP-powered medical concept embed-

dings and algorithms that model individual time-to-event probability distributions.

In 2022, Kalmady and colleagues used Med2Vec representations of medical events and

MTLR to model ISDs for heart-failure-specific hospital readmissions [66]. However,
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the Med2Vec hospital visit embeddings used to predict readmissions only contained

information from the index admission, ignoring the events of an individual’s previous

medical history. To the best of my knowledge, nobody has explored the combina-

tion of ISD-generating algorithms and sequence models to represent medical histories

(with and without the addition of contextual medical concept embeddings).

2.4 Practical Considerations for Readmission Pre-

diction

As of the early 2010s, hospital readmissions cost approximately 2 billion Canadian

dollars per year in Canada [67] and 26 billion US dollars per year in the United

States [68]. In the US, the Centers for Medicare & Medicaid Services financially

penalize hospitals with high 30-day readmission rates [69], making a reliable 30-day

readmission prediction system highly sought after in medical AI literature. Studies

estimate that anywhere from 10-60% of these readmissions are avoidable [70] [11] [71].

Predicting the readmission risk of individual patients alongside a hospital stay could

help better target expensive transitional care interventions, which may save money

and shed light on the complex factors associated with re-hospitalization events. Even

with the most conservative estimates of readmission preventability, the potential sav-

ings from better anticipating and targeting hospital readmissions (in both dollars and

suffering) are massive. Despite these promised benefits, and the continually balloon-

ing body of medical AI literature [72], very few of these systems are implemented in

practice [73]. In this section, I explore and coalesce some of the factors that may

be deepening the divide between what we know about predicting readmissions versus

what we can use.

Perhaps the problem lies in the way we define our target populations. In a review

of the literature for hospital readmission risk prediction up until 2019, only 17 out

of 41 eligible studies were all-cause—the remaining were specific to disease cohort,

with most being about heart failure [9]. Although rates of hospitalization for heart
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failure are increasing in the US, these admissions still only account for approximately

0.5% of all hospital visits [74]. If a heart-failure-specific readmission model were to

be integrated with an EHR, its output would not be validated on (or even apply

to) roughly 995 out of every 1000 hospital discharges4. In a general hospital setting,

an increasing number of cohort-specific models would be necessary to cover greater

fractions of admissions; this approach would be costly and eventually plateau in

practicality. For this reason, we choose to predict all-cause readmissions (with as few

cohort-related caveats5 as possible) to ensure maximal model coverage.

The data used as model input (and therefore when the readmission prediction can

be made), may also compromise model utility. The majority of studies use information

from the duration of the index hospitalization [9], despite the fact that strategizing

about treatment courses and discharge often begins at the first day of a hospital

admission [75]. Predicting readmissions at the time of admission is widely considered

to be a more difficult problem [18], which many studies [18] [76] [77] attempt to tackle

for various cohorts; however, few compare them to their full length-of-stay counterpart

models. One exception is Nguyen et al. [15], who show that adding features from the

hospital stay only moderately increased readmission prediction performance (AUROC

of 0.69 vs 0.64-0.67). In our study, alongside full-stay models, we examine versions of

our proposed systems that use only information at or prior to admission.

Choosing models wisely (and involving a diversity of opinions surrounding these

choices) may increase downstreammodel usability. Simple models—even if inaccurate—

are the ones most often deployed [24], as the demand for model interpretability is

prevalent in the medical field [78]. We propose simple versions of our models (both

in model complexity and feature set used), an added benefit being the lower com-

putational cost associated with training and evaluation. Further, many papers re-

viewed were published in association with a quantitative department (e.g., computing

4These systems may still be useful at a heart-condition-specific ward or clinic.
5See Section 4.1.1 for our all-cause readmission definition.
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science), with no co-authors in (or acknowledgements to) medical sciences experts.

Cronin et al. [75] developed a real-time 30-day readmission prediction system that

was implemented at the Massachusetts General Hospital, despite their model achiev-

ing an AUROC score of only 0.705 on retrospective testing data. The authors note

the importance of inviting hospitalists to be part of the model development process,

as this was crucial for the project’s success. Two physicians (Drs. Raj Padwal and

Finlay A. McAlister) contributed to the design of our lightweight 30-day readmission

models and the patient representation step to ensure compatibility with the health-

care system. Another factor that may stave off model adoption is administrative

decision ambiguity—hospital administrators may not wish to arbitrarily decide “this

hospital needs a 30-day readmission prediction system”, rather than “this hospital

needs a 1-year readmission prediction system”. The merits of Individual Survival

Distributions—explored in this study—to model readmissions (rather than a risk

score or single probability) were noted in Section 2.3.
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Chapter 3

Representing Medical Histories for
Readmission Prediction

Imagine your life represented as a timeline. No doubt there are markers that indicate

many types of events—from meaningful, like a wedding, to something as mundane as

renewing a driver’s license. For most of us, a recognizable number of these markers

are related to our health. First, you were born, likely in a hospital. Various vaccines

and strep throat swabs were administered throughout your childhood. You fell off

your bicycle in eighth grade and broke your arm, and in the same year, you were

prescribed anti-dandruff shampoo and accutane. In your early twenties you had your

appendix removed, which resulted in complications that were monitored closely by

your general practitioner. Like it or not, we spend a non-trivial percentage of our lives

in and around health centres, and an non-trivial amount of effort to avoid returning

once we leave.

Healthcare data is longitudinal in nature, taking the form of episodes of events

separated by variable lengths of time. The number of events can vary wildly between

individuals. These irregularities (Figure 3.1), alongside imperfect data capture, cause

considerable difficulty when trying to leverage this rich information for predictive ma-

chine learning. Previously, the favoured approach has been hand-engineering features

to capture important details from a patient’s medical history. This takes the form

of whatever a physician believes to be an important factor for the task at hand; for
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example, the number of ER visits in the previous six months is likely related to the

patient’s risk of hospital readmission. However, this engineering process is labour-

intensive, subjective, and highly specific to both the task and the idiosyncrasies of

a hospital’s data capture and storage processes. This necessitates the exploration

of ways to represent a patient automatically (potentially making use of all histori-

cal medical events), rather than manually. In this chapter, we examine a technique

that allows us to capture important medical meaning numerically, which can be used

downstream to represent patient medical histories in a fashion that is a) amenable

to machine learning, b) model-agnostic, and c) can take into account the ordering of

(and timing between) events1.

Figure 3.1: How can we represent highly diverse medical histories in a fixed-
width vector?

3.1 Data

3.1.1 Sources and Characterization

Linked administrative health data collected within the province of Alberta were used

for this study. We extracted the following information for all individuals who inter-

acted with Alberta Health Services from years 2011 to 2017:

1For the purposes of this project, we define a “medical event” as the ascription of a medical code
or an emergent/non-emergent admission or discharge.
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1. Hospitalizations from Discharge Abstract Database (DAD), including admit and

discharge dates, discharge disposition, diagnosis codes, and procedure codes

2. Ambulatory visits from National Ambulatory Care Reporting System (NACRS),

including visit date, emergent status, disposition, diagnosis codes, and proce-

dure codes

3. Physician office visits from insurance data (Claims), including visit date and

procedure/diagnosis codes from primary care physicians (family medicine), in-

ternal medicine specialists, and general surgery specialists

4. Drug prescriptions from Pharmaceutical Information Network (PIN), including

prescription date and Anatomical Therapeutic Chemical (ATC) code

The extracted data also included sex, age, and the first three alpha-numerics of

postal code for each individual. Diagnosis codes were ICD-10-CA except those in

Claims, which are ICD-9. All procedure codes are following the Canadian Classifi-

cation of Health Interventions (CCI), except those in Claims, which were the Health

Service Canadian Classification of Procedures Extended Codes (CCPX). All data used

in this study were collected pre-ConnectCare, and were extracted and anonymized by

the Alberta Strategy for Patient Oriented Research (SPOR) SUPPORT Unit.

3.1.2 Index Admissions and Study Population

We build representations for patients who were discharged from any Albertan hospital

during the index period of January 1, 2015 to December 31, 2016 (Figure 3.2). We

select valid index episodes (each constituting an entire hospital “event”, potentially

including transfers between locations), thereby determining our target population,

using the following procedure (Figure 3.3A).

The set of all records from 2011 to 2017 contained 520,960 patients. Admissions

from routine hospital admissions for baby births were not included in the initial data
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Figure 3.2: Study and example patient timelines. The study timeline is split
into three periods: the pre-index period for training Medical Concept Embeddings,
the index period from which index admissions are selected, and the post-index period
to determine at least one year of a patient’s future post-index-admission-discharge.
The patient timeline is split into two periods: the lookback period of patient his-
tory (which includes all information until the index admission discharge) and the
time-to-readmission (the period of readmission-free survival). Time-to-readmission is
calculated from the discharge of the index admission to the day of the next admis-
sion. If time-to-readmission extends beyond the end of the study period, it becomes
time-to-censorship.

extraction. DAD records whose discharge date occurred within 2015 and 2016 were

selected (number of unique patients n = 472339). Patients who were associated with

at least one record from outside of Alberta (n = 21024) or had an invalid patient

identifier (n = 408) were removed. Patients with only psychiatric admissions (ICD-

10-CM diagnosis of F00-F99 except F10-F19, n = 16140) were excluded, alongside all

other psychiatric admissions, due to characteristic patterns of readmission separating

them from other hospital users. Patients whose only hospitalization ended in death

(discharge disposition code 07, n = 3931) were also excluded. Records for each of the

remaining 430836 patients that were separated by no more than one day (regardless

of discharge disposition) were collapsed into admission “episodes”2. Episodes ending

2See Section 4.1 for how this was later used to define our target variables.
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with further transfers (discharge disposition 01), in-hospital deaths (discharge dispo-

sition 07), or a failure to return from pass (discharge disposition 12) were removed

from the selection pool, leaving 421089 patients. Patients who reportedly experi-

enced at least one post-mortality hospital admission (n = 1) were also removed,

leaving 421088 unique patients. Throughout 2015 and 2016, the same individual may

have been admitted and discharged multiple times. Our study randomly retrains one

index episode per-individual. Table 3.1 contains summary statistics for each patient

and associated index admission.

Figure 3.3: Overview of procedures used for dataset procurement, model
training, and model evaluation. (A) Procedure used to arrive at the final dataset
of index admissions and study population. (B) Details of external cross-validation for
evaluation and internal cross-validation for tuning.
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3.2 Representing Medical Concepts

The success of transfer learning has shown that providing a starting-off point can

improve the performance of a new model [79], while also decreasing the time a model

takes to converge. Further, black-box machine learning is the subject of ire in the

medical community [78]. In the pursuit of effectively representing a patient’s medical

history (Section 3.3), an intermediate step—one that can be sanity-checked—could

increase accuracy and ease unrest in the minds of medical administrators and prac-

titioners. One way to do this is by first capturing information about medical codes

through examining the provision of medical care.

3.2.1 The Medical Biography

Medical histories viewed sequentially are similar to natural language passages in

many ways. This is first evident at the word level, with a vocabulary of medical

codes (or “tokens”) that convey specific meaning when assigned. Similarly, medical

“episodes”—defined as single contiguous experiences with the healthcare system in-

volving the incurrence of medical codes—may be viewed as analogous to sentences.

On the patient level, medical sentences are separated by “punctuation”, which indi-

cate eras of relative wellbeing. All these sentences, taken in order, represent the story

of a patient’s life history with the healthcare system—a document containing their

“medical biography” (Figure 3.4). The medical biographies containing information

from 2011 to 2014, from patients discharged from Alberta hospitals during 2015 and

2016, constitute our “medical corpus”.

To construct each person’s medical biography, records with the same patient iden-

tifier were extracted from the DAD, NACRS, Claims, and PIN datasets, and were

sorted by timestamp. These records contained 36834 unique codes indicating emer-

gent and non-emergent admissions, diagnoses, procedures, prescriptions, and acute

care and ambulatory discharge dispositions. Highly specific codes were “rounded” to
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Figure 3.4: The Patient Document analogy. Just as words can be read sequen-
tially to understand the meaning of a passage, medical codes “read” sequentially
encompasses important health history information about a patient.

decrease granularity; the first three alphanumerics of ICD-9 and ICD-10-CM codes

and the first five alphanumerics of ATC and CCI codes were kept, and CCPX codes

were cleft once place after the decimal. Codes with fewer than 100 occurrences were

replaced with the generic code “RAREWORD”. These steps decreased the vocabu-

lary size to under 40003. Following suggestions from E. Choi and Nguyen [30] [35] [45],

codes documented more than seven days apart for a single patient were separated by

a “timecode”: “0-1m” for fewer than 31 days, “2-3m” for an interval of 31 to 90 days,

and “3-6m”, “6-12m”, and “12+m” for periods of three to six, six to twelve, and more

than twelve months respectively. Further, long, repeating stretches of codes were of-

ten observed in the data; for example, patients with chronic conditions may refill a

single prescription on a near-weekly basis for many years. For this reason, continuous

single-code repeats between timecodes were replaced with a single instance of the

code.

3The exact number varied between folds.
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3.2.2 Medical Code Embeddings using Word2Vec

Word2Vec [36] uses a single-hidden-layer neural network architecture to learn low-

dimensional vector embeddings of words (Figure 3.5). Two implementations of this

architecture exist: CBOW (Continuous Bag-Of-Words)—concerned with predicting

a masked word given its immediate context—and (skip-gram), where the word is used

to predict its immediate context. For both formulations, training requires pairs of

vectors, both the size of the vocabulary (|V |): a one-hot vector where each index is

associated with a word w ∈ V , and a Context Probability Vector (CPV), where each

element holds the probability that every other word in V occurs in some predefined

context of w. The CPV for each w is calculated from the sentences in the training

corpus. For our purposes, we use the skip-gram algorithm with a context window size

of ±5 and a hidden layer with 100 nodes. Word2Vec is a self-supervised algorithm

in the sense that no outcome label is used in the generation of the embeddings.

When the network weights are trained to completion, the lower-dimensional repre-

sentation for each word is calculated by extracting the values at the network’s hidden

nodes. The values at the output layer—those that hold the prediction for the CPV—

are discarded. Intuitively, resulting embeddings representing similar concepts should

themselves be similar, relying on the assumption that related concepts appear in

analogous contexts.

We use Word2Vec to develop a dictionary of Medical Concept Embeddings

(MCEs) for every medical code (e.g., prescription) and event (e.g., time-skip) that

appears with sufficient frequency in the medical biographies found in our training data

corpus. Some further considerations exist in this pursuit. Timestamps associated with

certain medical codes (used to determine the order of codes in a medical biography)

are occasionally not reflective of the exact time of medical event. For example, Claims

dataset entries are captured when the insurance claim is processed, rather than when

the actual care was provided. In addition, many codes are assigned on the same day
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Figure 3.5: An example Word2Vec skip-gram architecture with a hidden
layer size of 100 and a vocabulary size of 3691. This would generate 100-
dimensional embeddings for each of the 3691 medical codes in V .

in datasets where only the event date (not event time) is captured. To account

for these issues, codes occurring within medical sentences (i.e., between timecode

“punctuation”) were randomly re-ordered (following the suggestion of E. Choi et al.

in [80] and [34]). This shuffling has previously been shown to decrease bias found

in Word2Vec models [81]. If a new medical code (that did not exist in the V of

our training set) occurred in the test set, the code would be represented using the

embedding associated with our generic “RAREWORD”. Our MCEs were trained

only on data that was (1) from the pre-index period (Figure 3.2), and (2) was not

used to determine our final reported performance metrics. For more information
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about the train/test splits, see Section 4.2 and Figure 3.3B.

3.2.3 Medical Code Embedding Illustrative Examples

One can determine how similar a vector a⃗ is from a vector b⃗ (where a⃗, b⃗ ∈ Rn) using

cosine similarity: the cosine of the angle between the two vectors:

SC(a⃗, b⃗) = cos(θ) =
a⃗ · b⃗

∥a⃗∥∥b⃗∥
(3.1)

If Medical Code Embeddings contain the desired contextual medical information,

vectors representing similar concepts should themselves be similar. As a sanity-check,

for four prevalent chronic conditions: asthma, diabetes, hypertension, and heart fail-

ure (each with their own ICD-10-CM diagnosis code), we examine the top five most

similar codes to each using cosine similarity.

Results are shown in Table 3.2. Five out of five of the extracted similar codes for

each of the chronic conditions were deemed medically related to the original condition

by our physician collaborators, and the dictionary of Medical Code Embeddings was

given verbal approval.

3.3 Patient Representations for Clinical Predic-

tive Tasks

This section describes how we transform a patient’s health history and general infor-

mation into input for our predictive models. Some features are either available di-

rectly alongside longitudinal health record information, or are hand-engineered based

on domain knowledge. Others contain strings detailing medical history biographies,

or are informed by these biographies and the Medical Code Embedding dictionaries

obtained in Section 3.2.2.

In the pursuit of training useful models, we can categorize features into those

that use information from the duration of the index admission, and those that do

not. A model that predicts readmissions would be best used at the beginning
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of an index admission to facilitate the planning of the care trajectory [75], when

information such as “length of stay” is as-of-yet unknown. For all the features detailed

in Sections 3.3.1 to 3.3.3, we note if they require information from the duration of the

index admission (incl idx), or if they only use information up until and including

the time of admission (b4 idx). See Table 3.3 for details.

3.3.1 LACE Score

The index admission “length of stay” is calculated using the admit and discharge

dates of the index episode. We extract the the emergent status of the index admis-

sion by searching for emergent NACRS records (associated with MIS codes 713100000,

715130000, 715140000, 713102000) from the day before or the day of the beginning of

the index episode. The comorbidipy4 library is used to calculate Charlson Comor-

bidity Index [8] from DAD data. NACRS is queried to find the number of times an

individual was admitted to the emergency department in the six months preceding

their index admission. The singular LACE score (ranging from 0-19), is calculated for

each patient’s index episode i using the above four features and mappings originally

detailed by van Walraven et al. [7].

3.3.2 Bare Features

Bare features are defined as those that:

1. appear in raw form alongside every index admission, or

2. must be manually calculated, but given what is already available in Alberta

Netcare, would not require extra work on the part of an analyst or expert to

engineer.

“Raw” features include an individual’s sex (M, F, or O), age, and discharge dispo-

sition (the code characterizing the patient’s departure from the hospital). Alongside

4https://comorbidipy.readthedocs.io/
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the raw features, we include the LACE score and all the features that were deter-

mined to calcuate LACE—namely the length of stay, emergent status of admission,

the Charlson Comorbidity Index calculated using information from the index admis-

sion, and the number of times emergency services were utilized in the previous six

months.

3.3.3 Detailed Features

Beside the Bare features that would surely appear alongside every index admission,

38 extra features that capture important information from an individual’s medical

history and hospital usage are also included. This is meant to approximate what

information is possible to represent using domain knowledge and manual extraction

from administrative health data. These Supplementary features were chosen from

surrounding medical AI literature with help from our physician collaborators, and are

combined with the Bare features to form our Detailed feature set.

From the span of the index episode, we capture the number of: procedures (to-

tal), procedures (unique), ICD-10-CM diagnoses codes (unique), prescription (total),

prescriptions (unique), and days prescribed (total). Prior to the index admission,

from DAD we capture the number of hospital episodes (in 6 months, 1 year), and the

total length of stay in hospital in the previous 6 months and 2 years. From Claims,

we calculate the number of visits to General Practitioners (GPs), General Surgeons

(GNSG), and Internal Medicine Specialists (INMD) in the previous 6 months and 1

year. From the previous 2, 3, and 4 years, the binary variable of ‘visited GP” and

the total cost of the user to the health system were also calculated from Claims. We

extracted (from the two years preceding the index episode) the number of prescrip-

tions (total), prescriptions (unqiue) and prescribed days (total) from PIN. NACRS

can tell us the number of emergent and non-emergent admissions in the previous 6

months and 1 year. The discharge disposition of the patient’s most recent admission

(if any) is captured from DAD, and the Charlson Comorbidity Index (not including
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records the index episode) is calculated from DAD diagnoses as described in Section

3.3.2. Finally, the binary presences of asthma, chronic heart failure, diabetes, and

hypertension from the previous two years were calculated from ICD-9 and ICD-10-

CM codes in Claims, DAD, and NACRS using an algorithm validated by Tonelli et

al. [19]—examining records both including and excluding those associated with the

index episode—to form two different sets of four comorbidity features.

3.3.4 Raw Sequence Features

A number of models that take sequential input (Seq input) are tested as part of this

study. Strings containing the chronological medical biographies of each patient from

the entire study period (as they exist after the post-processing of Section 3.2.1) are

prepared in the following ways and associated with each index episode.

incl idx Seq features: The 200 most recent codes accumulated before and dur-

ing the index episode (ending at the day of discharge) are retained.

b4 idx Seq features: We retain the 199 most recent codes accumulated before the

index episode (ending the day before the index admission). A new admission token

“ADM” is added to the end of the list of codes, representing the index admission event.

For many people, their index episode is the first (and potentially only) interaction

with the healthcare system captured these data. In this case, we assign a trivial

medical biography (“ADM”), only denoting that an index admission event happened.

3.3.5 Aggregated Sequence Features

The MCE dictionary (Section 3.2.2) is used to map a sequence of events from a

patient’s medical biography to a sequence of medical code embeddings. Recall that

w⃗ ∈ R100 for each medical code embedding w⃗. A simple summation of the k most

recent code embeddings in a patient’s i care history (prior to and potentially including

the index admission) is used to create a feature vector b⃗
(i)

k ∈ R100. k = 20 or
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Table 3.3: All clinical features used in this study. Features are categorized
by the information they require—using information from the duration of the index
admission (incl idx) or not (b4 idx), and whether the feature would be guaran-
teed directly available from AHS (Bare) or may need to be manually engineered
(Supplementary). The Bare and Supplementary features together form the De-
tailed feature sets.

Bare Supplementary

Index episode dicharge disposition Total number of procedures in index

Index episode length-of-stay Number of unique procedures in index

LACE Score Number of unique ICD codes in index

If index episode admission was emergent Total number of prescription records in index

Index-informed Charlson Comorbidity Score Number of unique drugs prescribed in index

Index-informed presence of hypertension

Index-informed presence of diabetes

Index-informed presence of asthma

incl idx

Index-informed presence of chronic heart failure

Age at admission Discharge disposition of most recent admission

Sex Number of admissions (6m, 2y)

Number of emergency admissions (6m) Total length-of-stay (6m, 2y)

Number of general practitioner visits (6m, 1y)

Number of general surgery visits (6m, 1y)

Number of internal medicine visits (6m, 1y)

Presence of a general practitioner visit (2y, 3y, 4y)

Total cost to the healthcare system (2y, 3y, 4y)

Total number of prescription records (2y)

Number of unique drugs prescribed (2y)

Number of days prescribed (2y)

Number of emergency admissions (1y)

Number of non-emergency admissions (6m, 1y)

Index-uninformed presence of hypertension

Index-uninformed presence of diabetes

Index-uninformed presence of asthma

Index-uninformed presence of chronic heart failure

b4 idx

Index-uninformed Charlson Comorbidity Score
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k = 25 is used to compute this representation, selected using internal cross-validation

separately for each fold. Please see Appendix B for more details about the search

for the most favourable k for this summation. We create different versions of these

AggSeq features using both incl idx and b4 idx medical biographies.

The intuition behind the summation step lies in an important property of Word2Vec,

that certain vector operations performed on the numeric vectors (e.g., addition, sub-

traction) are meaningful. A well-known example demonstrating this is:

−−→
king−−−→man +−−−−→woman ≈ −−−→queen (3.2)

Assuming that data for training the numeric representations are representative enough,

the above equation should hold for a set of Word2Vec vector representations. There-

fore, the summation of the vectors representing a patient’s medical history is a com-

pelling way approximating the patient, as they exist at the time of admission or

discharge, in vector space.
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Chapter 4

Predicting Clinical Outcomes

4.1 Tasks

We now explore how these previously-defined patient representations may be used

for predicting adverse downstream clinical events. The two tasks of interest are 1)

binary readmission prediction (detecting the presence of a readmission to the

hospital within 30 days), and 2) readmission-free survival prediction (modeling

the more general progression of a patient, examining the probability of “surviving”

without a readmission event as a function of time.) Of interest in this project is how:

1. different models,

2. using different combinations of features (LACE, Bare, Detailed, Aggregated-

Sequence, and raw-Sequence),

3. calculated with versus without information from the index admission,

perform on our selected tasks. Table 4.1 summarizes the five models used. Figures 4.1

and 4.2 showcase the architectures and inputs used to create these models, separated

by their reliance (or lack thereof) on deep learning. We call deep-learning models

“heavyweight” models, and non-deep-learning models “lightweight”.
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Table 4.1: A summary of models used in this study. Each of the five models
is classified based on the complexity of their architecture and the type of survival
information modeled.

Lightweight

- No deep learning

- Cannot take sequence inputs

Heavyweight

- Deep learning

- Can take sequence inputs

Models risk of

readmission
LACE Model (LACE) -

Models probability of

readmission at 30 days
XGBoost (XGB) Deep Neural Network (DNN)

Models individual

readmission-free survival

distribution

CoxPH with Baseline

Survival Function (Cox)

Neural Multi-Task Logistic

Regression (N-MTLR)

4.1.1 Label Calculation

We define an all-cause readmission event for a singular individual, i, as the first

hospital episode (Section 3.1.2) whose start date is at least two days after the

discharge date of the index episode, and begins in either the index period or the

post-index period (Figure 3.2). More concretely, this definition allows the models

to learn associations between hospitalizations that are not due to psychiatric events

or baby births and the first successor hospitalizations that is also not due to

psychiatric events or baby births.

The label necessary to train our 30-day binary readmission models is readmitted

(r(i)). For the readmission-free survival models, the labels required are time (t(i), time

until event) & event (δ(i), censorship status). We begin with the set of all selected

index hospital episodes (see Footnote 2 in Section 3.1.2) that end in the index period

(see Figure 3.2). For every i’s index admission, we calculate the number of days from

discharge until the next valid hospital episode from the same patient (TTR: time to

readmission), and the number of days from discharge until the end of the study period

(TTLTF: time to lost to followup). A standard assumption is that an individual’s TTR
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Figure 4.1: Architectures and inputs of lightweight (non-deep-learning)
models used in this study. (a) LACE model taking the LACE score as input,
(b) XGBoost and CoxPH models taking tabular features as input. The CoxPH risk
score is combined with a baseline survival function to generate an individual survival
distribution. LACE Score table credit: Saluk et al. [82].

and TTLTF would be independent. If no future admissions exist, TTR is assigned to be

∞. The numeric time label t(i) and the binary event label δ(i) are defined as follows:

t(i) = min(TTR, TTLTF) (4.1)

δ(i) =

{︄
1, if TTR ̸= ∞
0, otherwise

(4.2)

and the binary “30-day readmission” target is defined as follows:

r(i) =

{︄
1, if ti ≥ 30 ∧ δi = 1

0, otherwise
(4.3)

The distributions of t(i) and δ(i) are visualized in Figure 4.3, and a Kaplan-Meier
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Figure 4.2: Architectures and inputs of heavyweight (deep learning) models
used in this study. Option #1 corresponds to the DNN model, and Option #2
corresponds to N-MTLR. (a) Heavyweight model architectures only taking tabular
features as input, (b) heavyweight models taking only sequence features, and (c)
heavyweight models that take in both tabular and sequence features.

plot of dataset-wide survival, split by sex, can be seen in Figure 4.4. 5.08% of indi-

viduals experienced a readmission event (r(i) = 1) within 30 days. The mean t(i) is

603.8 (Std.Dev 296.5 days). The maximum event time is 1095 days, and the minimum

event time is 2 days. 71.8% of cases are censored (δ(i) = 0).

Censorship Events

Censorship obfuscates the true time until the outcome of interest. While multiple

types of censorship exist (including left and interval censoring, where the beginning

and some middle section of the time-until-event are unknown respectively), the only

relevant type of censorship in this study is right censorship, where we lose track of

an individual some time before they experience the outcome of interest (Figure 2.2).
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Figure 4.3: The differing distributions of t(i) based on δ(i). Note that in “Time-
to-Censorship”, the x-axis starts at 365 days, which is the censoring time of individuals
whose index episode discharge coincided with the last day of the index period.

One potential cause of right censorship is an individual moving out of the geo-

graphical region which is considered for defining the study population. In our case,

there exist some individuals whose postal codes are not consistently in Alberta, but

we did not have enough information to directly determine when they moved out of

the province and began using other health services. These 21,024 individuals were

excluded from the study (Section 3.1.2). The remaining (measurable) censoring in

our dataset’s survival label is due to the end of the study/post-index period on De-

cember 31st, 2017. There exists no patient i, under our definition of r(i), with a

measurably missing/incomplete (or “censored”) r(i) target, as our index selection pe-

riod is succeeded by a one-year period where even readmissions occurring in the last

30 days of our index period are successfully captured. A complicating factor is that

patient deaths are only collected within these available data if the death occurred
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Figure 4.4: Kaplan Meier group survival curves, separated by sex. Crosses
starting at x = 365 indicate censoring events. Individuals with no sex indicator are
excluded from this visualization. Note that the y-axis does not go down to zero.

during a hospital visit, leading to a DAD discharge disposition of 07. Therefore,

those who pass away outside the hospital setting are indistinguishable from those

who live readmission-free for all our targets: t(i), δ(i), and r(i). Further discussion of

the implications of this can be found in Chapter 5.

4.2 Data Splits

Five-fold external cross validation is used to report all final numbers, and a five-fold

internal cross-validation within each of the non-test folds was used for parameter

tuning. The experimental set-up is detailed in Figure 3.3B.

The set of index episodes of interest were randomly split into five folds. Each fold

acted as the test set in turn. The validation set was chosen as the fold positioned

directly after the test fold (or was taken to be 1 if the test fold was 5). The training

set consisted of every fold that was not used in testing or validating. The MCE
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dictionary was calculated from the training and validation sets at the beginning of

each outer fold, and was used for feature generation and model training for all within-

fold experiments. Internal-cross-validation was used to tune any hyperparameters:

the outer-fold training set was again split into five folds, and the best model for

each outer-fold was selected based on the average loss of each model setting on the

five inner folds. The best experimental settings were then used to train a model

on the entire outer-fold training set (using evaluations on validation set to prevent

overfitting), and then tested on the outer-fold test set. Outer test folds all contained

84217 or 84218 patients. Performances across all outer folds are averaged, and the

standard deviation is examined to understand performance consistency.

4.3 Binary Readmission Models

The models described in this section use input features representing a patient’s demo-

graphics and/or medical history to predict the true value of r(i): whether the patient

i exists a hospital readmission within 30 days of the index episode discharge.

4.3.1 Lightweight Model: LACE Baseline

The baseline to which we compare our more sophisticated readmission models is a one

that uses the LACE risk score as a single input feature. Recall that the calculation

of the LACE index is described in Section 3.3.1. LACE is used in a practical

setting by binning patients into categories (e.g., “high risk” and “low risk”), which

requires the definition of a risk threshold. A simple model can be trained to find

the threshold that most accurately bins patients based on readmission status. We

implement logistic regression to find this threshold (following the procedure described

by Damery et al. [83]) using a Pytorch model with a single sigmoid layer, and binary

cross-entropy loss for training (Figure 4.1A).
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4.3.2 Lightweight Model: XGBoost

XGBoost (EXtremeGradient Boosting) [84] is a popular ensemble-based model with

a structure consisting of multiple decision trees. XGBoost is trained using a combi-

nation of bootstrapping (selecting subsets of the training data with replacement and

training multiple “weak learners”), and boosting, in which weak learners are trained

on the residuals of previous weak learners. The efficiency of XGBoost makes it an

attractive lightweight option that would be minimally computationally burdensome

if implemented in a practical hospital setting. We fit xgboost’s XGBClassifier using

default parameters on combinations of tabular Bare, Detailed and AggSeq inputs

(Figure 4.1B). We use the predict proba function to extract the predicted 30-day

readmission probabilities for each patient i.

4.3.3 Heavyweight Model: Deep Neural Network (DNN)

We test deep-learning architectures to take advantage of extra (and more flexible)

representational power for the task of 30-day readmission prediction. Combinations

of tabular features (Bare, Detailed and AggSeq) and medical history Sequences

form the inputs. See Figure 4.2 for an overview of the architecture, inputs, and

outputs.

Tabular Inputs

Tabular features enter a 32-unit hidden layer with a Rectified Linear Unit (ReLU,

R(x) = max(0, x)) activation function.

Sequence Inputs

Patient biographies are padded to the maximum length of 200. This sequence infor-

mation is fed into an embedding layer, which can be initialized with the self-supervised

Word2Vec MCE dictionary. If an embedding dictionary is provided, the embedding

layer is frozen such that no further training of embeddings is allowed. The embedding
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size is set to 100 to match the dimension of our pre-trained embeddings. From the em-

bedding layer, the representations pass into a fully Gated Recurrent Unit (GRU) [85]

layer. The hidden state of a normal recurrent unit at time/position t is defined as

follows [86]:

ht(xt) = σh(Whxt + Uhht−1 + bh) (4.4)

where xt is the input vector at time (or position) t, ht is the hidden layer representation

of all inputs up until and including xt, σh is the activation function, and Wh, Uh, and

bh are all vectors or matrices of learnable parameters. GRU layers improve upon

normal recurrent layers by introducing an “update gate” vector zt and a “reset gate”

vector rt:

zt(xt) = σg(Wzxt + Uzht−1 + bz) (4.5)

rt(xt) = σg(Wrxt + Urht−1 + br) (4.6)

At each t, a candidate hidden state is calculated, ĥt, which incorporates information

in ht−1 using the reset gate:

ĥt(xt) = ϕh(Whxt + Ur(rt ⊙ ht−1) + br) (4.7)

which is weighted against ht−1 in the final calculation of ht by the update gate zt:

ht(xt) = (1− zt)⊙ ht−1 + zt ⊙ ĥt (4.8)

This allows tokens (in our case, medical codes) that do not contribute ample predictive

information to be diminished in importance upon the calculation of the final hT . The

forget gate can also help overcome the vanishing gradient problem, where inputs seen

relatively early in the sequence contribute relatively little to the final representation.

Outputs

To use both tabular and sequence features, the output representations of both types

of features are concatenated into a 132-dimensional output vector, which is fed into
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another 32 ReLU densely connected hidden layer. This is connected to the predictor

module, a single-unit densely connected sigmoid layer. To use sequential features

only, the GRU-RNN patient representation hT is fed into a dense 32-unit layer with a

ReLU activation, which is connected directly to the predictor module. To use tabular

features only, the output of the tabular section is fed directly into the predictor

module.

DNNs were implemented as a custom model class in PyTorch. Models were trained

for up to 1000 epochs on the training set, and the validation set was used to monitor

for overfitting. Early stopping was used with a patience of 10 (i.e., the model was

allowed to train up to 10 extra epochs without improvement on the validation loss)

and a minimum improvement per-epoch of 0.001. The best model settings according

to the validation loss were used for evaluation on the test set.

4.3.4 Binary Readmission Model Evaluation

Preamble

For our binary task, r(i) = 1 if an individual is readmitted within 30 days of the index

episode i, and r(i) = 0 otherwise. The predicted class, according to a model M that

outputs a probability of readmission PM(r(i) = 1|x⃗(i)), and a selected threshold τ , is

calculated as

r̂(i) =

{︄
1, if PM(r(i) = 1|x⃗(i)) ≥ τ

0, otherwise
(4.9)

This leads to four possible combinations of r(i) and r̂(i):

1. True positive (TPτ ): r
(i) = 1 ∧ r̂(i) = 1

2. False positive (FPτ ): r
(i) = 0 ∧ r̂(i) = 1

3. False negative (FNτ ): r
(i) = 1 ∧ r̂(i) = 0

4. True negative (TNτ ): r
(i) = 0 ∧ r̂(i) = 0
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Accuracy, or simply the proportion of correct predictions, is an intuitive way of

evaluating a classifier:

Accuracyτ =
TPτ + TNτ

TPτ + FPτ + TNτ + FNτ

(4.10)

However, the number of non-readmitted patients in our data outnumbers the read-

mitted patients by 20 times. This means a no-skill classifier that only predicts the

majority class could achieve an accuracy of 95%. Further, we do not have an ex-

act definition of the cost associated with each of the true and false positives and

negatives: therefore, determining an optimal τ is beyond the scope of this project.

Appendix A uses Youden’s J-statistic as τ to report results for these (and other)

threshold-dependent metrics.

Receiver Operating Characteristic AUC @ 30 Days

The most common method of evaluating binary classification models in medical litera-

ture is by reporting the Area Under the Receiver Operating Characteristic (AUROC)

curve. This measures how well a model makes the trade-off between the True Pos-

itive Rate (TPR, also called sensitivity/recall) and the False Positive Rate (FPR, or

1−specificity):

TPRτ =
TPτ

TPτ + FNτ

(4.11)

FPRτ =
FPτ

TNτ + FPτ

(4.12)

when the threshold τ used to assign r̂(i) varies between 0 and 1. Intuitively, the AU-

ROC is the probability that a randomly selected patient who experienced a hospital

readmission will be ranked higher by the model than a randomly selected patient who

did not experience a readmission. A perfect AUROC score is 1, which means that

a model has perfectly ranked individuals—i.e., every readmitted person was ranked

more severely than every non-readmitted person. An AUROC of 0.5 is what would

be expected for a random model with no discriminative ability, where every person
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who experienced the event has a 50% chance of being ranked more severely than one

who did not experience the event.

AUROC is a discriminative measure in the sense that it measures a model’s abil-

ity to discriminate between “high risk” and “low risk” patients. We calculate the

AUROC using the predicted probability of readmission at 30 days as a stand-in

for risk. The calculation of AUROC is generally equivalent to how the c-score/c-

statistic/concordance is calculated, but these may use different predicted values as

the risk scores.

Precision-Recall AUC @ 30 Days

The Area Under the Precision-Recall Curve (AUPRC) is a single-valued way to sum-

marize how well a model balances precision and recall. Precision, Pτ (the fraction of

positive predictions that were correct), and recall, Rτ (the fraction of positive cases

that were correctly identified), at a particular threshold τ are defined as follows:

Pτ =
TPτ

TPτ + FPτ

(4.13)

Rτ =
TPτ

TPτ + FNτ

= TPRτ (4.14)

The AUPRC score is then defined thusly:

AUPRC =
∑︂
τ

(Rτ −Rτ−1)Pτ (4.15)

A no-skill classifier would lead to an AUPRC score equal to the percentage of the

data in the positive class (i.e., those who experienced a readmission). AUPRC is also

commonly referred to as the AP (average precision) score.

Brier Score @ 30 Days

The Brier Score [87] is a strictly proper scoring rule sensitive to a model’s discrimina-

tion and calibration [88]. Intuitively, the Brier score is the mean squared error between

the “forecast” for an instance i from model M (in our case, PM(r(i) = 1|x⃗(i))) and the
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true observation (r(i): 1 or 0—whether a readmission event was experienced or not).

Over every patient i, one can calculate the Brier score as:

BS =
1

N

N∑︂
i=1

(PM(r(i) = 1|x⃗(i)) − r(i))2 (4.16)

A random classifier that predicts a 50% probability of event for every instance

would result in an overall Brier score of 0.52 = 0.25. Censoring is often handled in

Brier scoring by re-weighting using the inverse probability of censorship. However,

as shown in Figure 4.3, there are no censored observations with a time t < 365. The

Brier score can be extended to handle multiple timepoints, which is discussed further

in Section 4.4.3.

4.4 Readmission-Free Survival Models

Recall that survival prediction concerns the use of a “survival dataset” or “time-to-

event” dataset:

D = {[x⃗(i), t(i), δ(i)]}i∈N (4.17)

where x⃗(i) contains information about a patient’s demographic information and med-

ical history, t(i) is the time until event (readmission or censorship), and δ(i) is a bit

indicating if the event was a readmission (1) or censorship (0). We consider two mod-

els that learn Individual Survival Distributions (ISDs, denoted SM(t, x⃗(i)))—each

of which provide, for all future time ts, an estimate of having survived until at least

t without experiencing the event of interest. See Figure 4.5 for details.

4.4.1 Lightweight Model: Cox Proportional Hazards

Cox Proportional Hazards [49] (CoxPH) is most often used to generate individualized

single-scalar risk scores. If the risk score for patient A is higher than the risk score for

patient B, the model is predicting that A will be readmitted sooner than B. CoxPH

first models an individual hazard function (otherwise known as the failure rate—

roughly the chance that an event will occur at time t given event-free survival up
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(a) Survival prediction experimental set-up (b) ISD

Figure 4.5: Survival prediction and individual survival distributions. (a) A
survival dataset D is used to train a survival model, which can provide insights into
the future of a new patient. (b) The structure of an Individual Survival Distribu-
tion (ISD). The x axis is measured in time, and the y axis denotes the probability
of reaching that time event-free. A prediction for time-to-event can be reached be
examining the median survival time (cross and dotted lines).

until t) as:

hcox(t, x⃗
(i)) = λ0(t) exp(θ⃗

⊺
x⃗(i)) (4.18)

where θ⃗ represents a vector of learned weights, and λ0(t) is a baseline hazard function.

If we assume the effect of covariates remains constant over time, λ0(t) can be ignored,

and exp(θ⃗
⊺
x⃗(i)) can be taken as an individual risk score ∈ R+.

Given a baseline survival function S0(t), exp(θ⃗
⊺
x⃗(i)) can be extended to generate

an Individualized Survival Distribution:

Scox(t, x⃗
(i)) = S0(t)

exp(θ⃗
⊺
x⃗(i)) (4.19)

To generate ISDs representing readmission-free survival, CoxPH is implemented

using scikit-survival with Breslow’s estimator used to approximate S0(t) [58].

See Figure 4.1 for model inputs and schema.

4.4.2 Heavyweight Model: (Neural) Multi-Task Logistic Re-
gression

The Multi-Task Logistic Regression (MTLR) algorithm for generating ISDs was in-

troduced by Yu et al. in 2011 [59]. MTLR models event-free survival progression
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using a system of dependent logistic regressors trained to predict a sequence of bits

indicating an individual’s event status over time. First, the time-to-event range from

the training set is split into J bins, where each bin covers a time interval aj = [tj−1, tj)

such that j ∈ [[1, J ]], t0 = 0, and tJ = ∞. For each i, an outcome vector y⃗(i), is created

as follows:

y⃗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1 = 0

y2 = 0
...

ys−1 = 0

ys = 1
...

yJ = 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.20)

where each yj is an indication of whether an individual’s event has already happened

or not, and s indicates the beginning of the first post-event interval. If an individual

is censored (i.e., δ(i) = 0), every yj such that j ≥ s is designated as “unknown”. The

loss function used to train the matrix of logistic model parameters Θ is as follows:

l(Θ) =
N∑︂
i=1

δ(i) log
(︁
f(as, x⃗

(i))
)︁
+ (1− δ(i)) log(S(ts−1, x⃗

(i))) + αl2

(︁
∥Θ∥2

)︁
(4.21)

where f(as, x⃗
(i)) and S(ts−1, x⃗

(i)) are density and survival functions respectively, and

the final term acts as a model weight regularizer. Upon the completion of training,

the y⃗ for a new patient is fed into the system, which generates a survival prediction

probability of each of the J intervals. Interpolation can be used to examine the

probabilities of readmission at more granular timepoints.

The simple logistic models used to model survival probabilities for each time bin

may be replaced by a more complex architectures: using neural networks for this

purpose is called N-MTLR [60]. N-MTLR can capture more sophisticated information

from the training set, and lend flexibility in the types of input the model can learn

from. We use N-MTLR to learn ISDs that model readmission-free survival time. The

output vector y(i)⃗ is calculated for every i with J = 30 time bins. J = 30 was chosen
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because it made a favourable trade-off between detail captured and training time.

The time-bin boundaries are calculated such that an approximately equal number of

uncensored events happen in each. A custom model class was designed in PyTorch

that uses the torchMTLR1 implementation for the predictor module. As detailed

in Section 4.3.3, Seq inputs are transformed using an embedding layer (potentially

initialized with the MCE dictionary). Tabular inputs are fed through a 32-hidden-

node ReLU layer. To use only sequence inputs, the GRU layer connects to a 32-

hidden-node ReLU layer, which is used as input to the MTLR predictor module. To

use only tabular inputs, the MTLR predictor module is connected directly to the

32ReLU layer. To use both, the outputs of the GRU layer and the 32ReLU tabular

layer are concatenated, fed through another 32ReLU layer, and connected to the

MTLR predictor module. These architectures are visualized in Figure 4.2.

4.4.3 Readmission-Free Survival Model Evaluation

Evaluations @ 30 Days

To directly compare our Readmission-Free Survival models (that generate ISDs) to

our 30-day readmission models, we use the ISD’s 1 − SM(t = 30, x⃗(i)) (equivalent to

the probability of a readmission by 30-days) to calculate AUROC @ 30-days, AUPRC

@ 30 days, and Brier Score @ 30 Days (Section 4.3.4). Recall that censoring is not

a concern at this time-slice due to the censoring distribution, as nobody is censored

earlier than 30 days (Figure 4.3).

Concordance

Concordance (also known as the c-statistic or c-index) is a discriminative measure

commonly used to evaluate a model that assigns individuals a risk score r(x⃗(i)) based

on a feature vector x⃗(i). Concordance is a generalization of the AUROC score that

applies to all risk scores ∈ R+, rather than only probabilities ∈ [0, 1]. If r(x⃗(i)) >

1https://github.com/mkazmier/torchmtlr/tree/master

53

https://github.com/mkazmier/torchmtlr/tree/master


r(x⃗(j)) according to M , the model is claiming that i will experience the adverse

outcome of interest before j. An ISD provides a wealth of information, meaning there

are multiple numbers that could act as a predicted risk score; we use the negative of

the median predicted time-to-readmission provided by the ISD:

r(x⃗(i)) = −t̂
(i)

0.5 (4.22)

to calculate the concordance. This is in contrast to our use of AUROC @ 30 days,

where the risk is calculated as r(x⃗(i)) = 1 − SM(t = 30, x⃗(i)). If a model with a

concordance of 0.8 predicts that r(x⃗(i)) > r(x⃗(j)), i’s event will happen before j’s 80%

of the time over all pairs of i and j.

There are
(︁
n
2

)︁
comparable pairs of patients to compare in a fully uncensored case.

If VU denotes the set of patients who do not experience a censorship event, the un-

censored concordance statistic is calculated as:

C-index(VU , r(·)) =
1(︁|VU |
2

)︁ ∑︂
[x⃗(i),t(i)]∈VU

∑︂
[x⃗(j),t(j)]∈VU :t(i)<t(j)

I[r(x⃗(i)) > r(x⃗(j))] (4.23)

Note that the time t is strictly “time until readmission” in the set of uncensored

instances. To account for censoring, the calculation of the model’s concordance only

considers pairs of all individuals where the smaller event time of the two is not cen-

sored to be “comparable”. As with AUROC, the c-statistic ranges from 0 (perfectly

incorrect) to 1 (perfectly correct), with a no-skill classifier resulting in a score of 0.5.

Integrated Brier Score

The Brier Score (4.3.4), normally calculated for a particular timepoint t, can be

extended to cover a series of time points. For an uncensored dataset VU , a maximum

timepoint τ , and an estimated survival distribution S, the integrated Brier score is

IBS(VU , S(·|·)) =
1

τ

∫︂ τ

0

BSt(VU , S(t|·))dt (4.24)

which provides an average Brier score over all timepoints considered. To account for

the information we lose due to censoring, Graf et al. propose that the Inverse Prob-

ability of Censoring Weights (IPCW) provides a reasonable re-weighting scheme [89]
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for calculating the Brier score at a particular timepoint. A “censoring survival func-

tion” of sorts (estimated using a Kaplan Meier curve, but with all δ(i) bits flipped) is

used to weight the patients who die later more highly in the calculation than those

whose event is earlier. Intuitively, this helps to overcome the sparsity of readmission

observations as time increases.

L1-Loss

Hospital-readmission ISDs can be used to consider the question “How long will it

be until a patient experiences a readmission event?”—thereby viewing the survival

prediction problem as akin to regression. “What is the average distance between the

predicted number and the true number?” is an intuitive way to evaluate a regression

model. We use the median survival time t̂
(i)

0.5 predicted by the ISD as our time-to-event

prediction, which can be directly compared to the true survival time for uncensored

instances. The L1-Loss, evaluated on the uncensored set of instances VU , is as follows:

L1-Loss =
1

|VU |
∑︂
i∈VU

|t(i) − t̂
(i)

0.5| (4.25)

Censored observations makes calculating the difference between the actual and

predicted survival times difficult. We use a variant [90] of L1-loss that considers

pseudo-observations ([91] and [92]) as surrogate event values in the case of censoring.

Given a survival dataset D and a censored patient i’s censoring time c(i), the surrogate

event time e
(i)
PO is calculated as follows:

e
(i)
PO(ci, D) = N × Et[SKM(D)(t)] − (N − 1)× Et[SKM(D−c(i) )

(t)] (4.26)

where N is the number of individuals in the dataset, Et[SKM(D)(t)] is the expected

survival time of individuals in the dataset (including patient i) according to the

Kaplan-Meier estimator, and Et[SKM(D−c(i) )
(t)] is the Kaplan-Meier estimated survival

time for individuals in dataset D without patient i included. The pseudo-observation

of a censored individual can be viewed as the “contribution” a patient makes to
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the unbiased time estimation. This value will always be greater than the censoring

time, ci. We then estimate the L1-Loss over the entire dataset using the following

weighting scheme:

E[L1-Loss] =
1∑︁

i∈D wi

∑︂
i∈D

wi|(1− δ(i)) · e(i)PO(c
(i), D) + δ(i) · t(i) − t̂

(i)

0.5| (4.27)

where uncensored subjects are assigned wi = 1, and censored subjects are assigned

wi = 1 − SKM(D)(c
(i)). This weighting allows us to consider patients we know more

about more highly.

1-calibration

1-calibration helps us understand if the sets of predicted readmission probabilities

(at a particular time-point t∗) approximately correspond to the number of events one

would expect to see. For a dataset of uncensored patients, probabilities of readmission

at t∗ are sorted. A number of bins B is chosen (here, B = 10), and the 1/B individuals

with the highest predicted probabilities are assigned to the first bin (B1), the second

1/B individuals based on predicted probability are assigned to the second bin (B2),

and so on for every further bin j ∈ {1, 2, ..., B}. Next, for each bin, we calculate the

number of events expected to occur :

pj =
∑︂

x⃗(i)∈Bj

(1− S(t∗|x⃗(i))) (4.28)

Let Oj be the number of patients in the jth bin who experienced a readmission in

the 30 days following episode i. We can then compute Hosmer-Lemeshow (HL) test

statistic:

HL(VU , S(t∗|·)) =
B∑︂
j=1

(Oj − pj)
2

pj(1− pj
|Bj |)

(4.29)

Censoring can be accounted for using a within-bin Kaplan Meier curve in place

of Oj [93]. For a model 1-calibrated at t∗, the HL is expected to follow a χ2
B−2

distribution. This allows us to compute a p-value, which generally, if less than 0.05,

suggests the model is not meaningfully calibrated at this time. However, because the
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HL test statistic is calculated with respect to the number of individuals in the dataset,

minor deviations in calibration may cause an otherwise well-performing model to

fail the statistical test on population-level data. A model’s predictions at one time

(e.g., t = 30) may be calibrated whilst being un-calibrated at other timepoints (e.g.,

t = 365).

D-Calibration

D-calibration is a novel measure introduced by Haider et al. [48], which aims to

overcome 1-calibration’s restriction to a particular time-point t∗. Recall that the

median survival time t̂
(i)

0.5 generated for a patient i by an ISD model can be used as

a prediction for time-to-event. It follows that for a trustworthy time-to-readmission

prediction model (with no censoring), one would expect approximately 50% of the

patients to be readmitted before their t
(i)
0.5, and the other 50% would be admitted

after. This intuition can be extended to deciles. For each uncensored patient i, we

examine the probability SISD(t
(i), x⃗(i)) that their readmission event happened by their

real readmission time. Patients are then sorted based on SM(t(i), x⃗(i)), and assigned

to B = 10 bins. For a D-calibrated model, we would expect roughly 10% of patients

to be readmitted in each of the 10 bins. From here, a straightforward Pearson’s

X2 test can be applied to determine if the bins are uniform. A p-value > 0.05 is a

good indication that the predicted survival curve is provides trustworthy predictions.

The details of how to cope with censored individuals can be seen in Haider et al.’s

manuscript.

Like 1-calibration, D-calibration relies on a parametric statistical test. Similarly

again, calculating the test statistic relies on the number of samples, which can cause

calibrated-appearing models to generate a calibration-test-failing p < 0.05.

Concordance, IBS, L1-loss, 1-calibration, and D-calibration were calculated using

the SurvivalEVAL repository2.

2https://github.com/shi-ang/SurvivalEVAL
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4.5 Results

In this section, we report multiple evaluation metrics to understand the effect that

1) feature set and 2) model choice have on the effectiveness of a readmission pre-

dictor. Each result is the average of model performances using external five-fold

cross-validation, and the spread of these performances is measured with the standard

deviation in the text and tables, and standard error in the figures. Fold-wise paired

t-tests on AUROC (for 30-day readmission models) and concordance (for ISD models)

are used to statistically compare performances, unless otherwise stated. We do not

adjust the p-value for multiple comparisons.

4.5.1 AUROC, AUPRC, and Brier Score @ 30 Days

30-day AUROC, AUPRC, and Brier score are calculated for all five model architec-

tures (Table 4.1) and combinations of feature sets (LACE, Bare, Detailed, Ag-

gSeq, and Seq). AUROC and AUPRC scores for all models and features are plotted

in Figure 4.6. AUROC, AUPRC, and Brier scores are shown in Table 4.2.

Using the XGBoost model, Bare and Detailed feature sets provide enough infor-

mation for AUROCs of 0.7546±0.005 and 0.8002±0.003 respectively. AggSeq+Bare

features with XGBoost (AUROC 0.8025± 0.005) leads to statistically indistinguish-

able performance from XGBoost using Detailed feature set (p = 0.121). Recall that

the Detailed features include Bare features. XGBoost using AggSeq+Detailed

(AUROC 0.8138 ± 0.003) features statistically outperforms the same model when

trained on Detailed features alone (p = 0.0002). When paired with the AggSeq

features alone, XGBoost achieves an average AUROC of 0.7884± 0.002.

When comparing XGBoost and Deep Neural Networks using tabular features alone,

XGBoost achieves statistically better performance onBare (0.7546±0.005 vs. 0.7147±

0.003, p < 0.00001) andDetailed (0.8002±0.003 vs. 0.7821±0.004, p = 0.001) feature

sets. The DNN performs marginally better than XGBoost on theAggSeq feature vec-
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tor (0.7948±0.005 vs. 0.7884±0.002, p < 0.04), and the two achieve indistinguishable

performance using AggSeq+Bare (p = 0.439) and AggSeq+Detailed (p = 0.10)

features. Adding Seq features to the Detailed feature DNN leads to an AUROC

of 0.8212 ± 0.003. This Detailed+Seq DNN achieves better results than both the

Detailed+AggSeq DNN (0.8103±0.005, p = 0.0003) and Detailed+AggSeq XG-

Boost model (0.8138± 0.003, p = 0.001).

Seq inputs paired with N-MTLR models show the highest performance numbers

out of every feature and model combination, with AUROCs of 0.8460± 0.003 (Seq),

0.8467 ± 0.004 (Bare+Seq), and 0.8491 ± 0.004 (Detailed+Seq). According to a

one-way ANOVA, there exists no detectable difference between these three means

(p = 0.497). Given the same heavyweight deep-learning architecture and feature

combinations, predicting 30-day readmissions using the N-MTLR ISD output is sig-

nificantly better than using the DNN 30-day binary output (Seq: ∆ = 0.0346,

p = 0.0003; Seq+Bare: ∆ = 0.0293, p = 0.0001; Seq+Detailed: ∆ = 0.0279,

p < 0.00001). Between the lightweight models, XGBoost achieves higher scores than

CoxPH on every feature set, with the most notable difference appearing when only

Bare features are used (0.7546±0.005 vs. 0.6585±0.002). The simple LACE Index

baseline model achieves an AUROC score of 0.6587±0.003. This performance is statis-

tically comparable to CoxPH performance on the Bare feature set alone (∆ = 0.0002,

p = 0.236), but is significantly out-performed by the next lowest-performing model on

the Bare feature set, the DNN (p < 0.00001). Visually, performance increases when

using features that capture medical histories with increasing detail (Figure 4.6).

For all evaluations already reported, the sequence embedding layer of the heavy-

weight models was initialized with our Medical Concept Embedding dictionary (Sec-

tion 3.2.2), and the training of this layer was frozen. Recall that DNN and N-MTLR

models accept sequence inputs. When initialized with the MCE dictionary, perfor-

mance increased for both the DNN model (AUROC: 0.7887±0.005 to 0.8144±0.007,

∆ = 0.0257, p = 0.005) and N-MTLR (AUROC: 0.8392 ± 0.004 to 0.8460 ± 0.003,
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Table 4.2: AUROC, AUPRC, and Brier score evaluations of different com-
binations of models and feature sets at 30 days. Bold indicates the highest
score within model (column). Results are reported as Metric±Std.Dev.

Features 30-Day AUROC±Std.Dev

Clinical

Features

AggSeq

Features

Seq

Features

Logistic

Regression
XGBoost CoxPH DL N-MTLR

LACE Score - - 0.6587±0.003 - - - -

Bare - - - 0.7546±0.005 0.6585±0.002 0.7147±0.003 0.7348±0.004

Detailed - - - 0.8002±0.003 0.7279±0.003 0.7821±0.004 0.7938±0.005

- ✓ - - 0.7884±0.002 0.7558±0.004 0.7948±0.005 0.8015±0.003

Bare ✓ - - 0.8025±0.005 0.7634±0.005 0.8035±0.003 0.8087±0.006

Detailed ✓ - - 0.8138±0.003 0.7718±0.004 0.8103±0.005 0.8183±0.004

- - ✓ - - - 0.8114±0.007 0.8460±0.003

Bare - ✓ - - - 0.8174±0.006 0.8467±0.004

Detailed - ✓ - - - 0.8212±0.003 0.8491±0.004

Features 30-Day AUPRC±Std.Dev

Clinical

Features

AggSeq

Features

Seq

Features

Logistic

Regression
XGBoost CoxPH DL N-MTLR

LACE Score - - 0.0996±0.001 - - - -

Bare - - - 0.1682±0.004 0.1165±0.002 0.133±0.002 0.1458±0.004

Detailed - - - 0.2274±0.006 0.1378±0.002 0.1934±0.005 0.2046±0.006

- ✓ - - 0.2361±0.004 0.1420±0.004 0.2222±0.007 0.2246±0.006

Bare ✓ - - 0.2595±0.003 0.1530±0.003 0.2351±0.005 0.2388±0.009

Detailed ✓ - - 0.2877±0.005 0.1683±0.003 0.2509±0.006 0.2604±0.004

- - ✓ - - - 0.2406±0.013 0.3325±0.007

Bare - ✓ - - - 0.2576±0.011 0.3343±0.006

Detailed - ✓ - - - 0.2666±0.002 0.3383±0.009

Features 30-Day Brier Score±Std.Dev

Clinical

Features

AggSeq

Features

Seq

Features

Logistic

Regression
XGBoost CoxPH DL N-MTLR

LACE Score - - 0.0471±0.001 - - - -

Bare - - - 0.0453±0.001 0.0470±0.001 0.0463±0.001 0.0459±0.001

Detailed - - - 0.0435±0.001 0.0462±0.001 0.0423±0.001 0.0441±0.001

- ✓ - - 0.0436±0.001 0.0459±0.001 0.0437±0.001 0.0436±0.001

Bare ✓ - - 0.0428±0.001 0.0456±0.001 0.0432±0.001 0.0431±0.001

Detailed ✓ - - 0.0419±0.001 0.0452±0.001 0.0427±0.001 0.0423±0.001

- - ✓ - - - 0.0431±0.001 0.0404±0.001

Bare - ✓ - - - 0.0426±0.001 0.0402±0.001

Detailed - ✓ - - - 0.0444±0.001 0.0401±0.001
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Table 4.3: Comparison of heavyweight model performances when trained
from scratch vs. initialized with the MCE dictionary. Only Seq features are
used as input. Results are reported as Metric±Std.Dev.

DNN N-MTLR

AUROC AUPRC Brier AUROC AUPRC Brier

Trained from scratch 0.7887±0.005 0.2188±0.008 0.0440±0.001 0.8392±0.004 0.3086±0.008 0.0411±0.001

Initialized with MCE 0.8114±0.007 0.2406±0.013 0.0431±0.001 0.8460±0.003 0.3325±0.007 0.0404±0.001

∆ = 0.0068, p = 0.001). These scores, alongside AUPRC and Brier, are reported in

Table 4.3.

4.5.2 Readmission-Free Survival Models: Other Evaluations

Additionally, we report the c-statistic, integrated brier score, and L1-loss with pseudo-

observations for models that generate survival curves (Table 4.4). The highest concor-

dance statistic (0.7522± 0.004) is achieved by N-MTLR paired with Detailed+Seq

features. This model also achieves the lowest IBS overall (0.1310 ± 0.001), and

the lowest L1-loss (1104.9 ± 15.4 days). Among N-MTLR models (according to

three separate one-way ANOVA tests), the performance using Seq, Bare+Seq, and

Detailed+Seq features is not significantly different in IBS (p = 0.15) and l1-PO

(p = 0.94), but is marginally different in concordance (p = 0.04). Across N-MTLR,

Detailed+AggSeq features lead to a higher c-statistic (0.7322± 0.005) than when

using the Detailed feature set alone (0.7223 ± 0.005), p = 0.004. N-MTLR using

Bare+AggSeq features matches the performance of N-MTLR using Detailed fea-

tures (p = 0.315). When using AggSeq+Detailed features, the concordance does

not significantly differ between CoxPH and N-MTLR (0.7322±0.005 vs. 0.7305±0.001,

p = 0.133). However, N-MTLR using Seq features alone does significantly out-

perform the best CoxPH model (0.7533 ± 0.004 vs. 0.7305 ± 0.001, p = 0.001). For

the CoxPH model, the performance and spread of L1-loss with pseudo-observations

is highly variable, with a standard deviation of up to 1561 days. The standard de-

viations for L1-loss calculated for N-MTLR models do not exceed 21 days. Survival
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Table 4.4: Comparison of the ISD models, CoxPH and N-MTLR, according
to the Concordance, Integrated Brier Score (IBS) and L1-Loss calculated
with pseudo-observations. Bold indicates the highest score among feature sets
(within-column). Results are reported as Metric±Std.Dev.

Features CoxPH N-MTLR

Clinical

Features

AggSeq

Features

Seq

Features
Concordance IBS l1-PO Concordance IBS l1-PO

Bare - - 0.6652±0.001 0.1526±0.001 1425.9±142.4 0.6937±0.003 0.1514±0.001 1183.3±16.9

Detailed - - 0.7052±0.001 0.1472±0.001 2304.9±1561.1 0.7223±0.003 0.1427±0.001 1156.0±16.5

- ✓ - 0.7109±0.001 0.1474±0.001 1224.4±2.9 0.7167±0.003 0.1416±0.001 1154.8±20.7

Bare ✓ - 0.7205±0.001 0.1443±0.001 1311.8±139.1 0.7245±0.005 0.1383±0.001 1133.0±19.3

Detailed ✓ - 0.7305±0.001 0.1417±0.001 1641.5±741.8 0.7322±0.005 0.1355±0.001 1114.5±19.5

- - ✓ - - - 0.7458±0.004 0.1319±0.001 1108.5±17.9

Bare - ✓ - - - 0.7504±0.001 0.1313±0.001 1105.0±17.7

Detailed - ✓ - - - 0.7533±0.004 0.1310±0.001 1104.9±15.4

curves generated by the two ISD models (CoxPH and N-MTLR) for three example

patients can be seen in Figure 4.7. None of the reported models are 1-calibrated at

30 days (or D-calibrated) with a test set size of 84217 or 84218. Plots showing the

bins used to calculate the 1-calibration and D-calibration test statistics can be see in

Figure 4.8 for our best-performing model—N-MTLR with Detailed+Seq features.

4.5.3 Binary Readmission Models: Feature Importances

Feature importances according to model “gain” can be extracted from a trained XG-

Boost classifier. To rank a feature by “gain” is to calculate the increase in accuracy

before and after a branch is split on that attribute, averaged over each tree in the

ensemble model. We examine the ten most important features according to gain

for our XGBoost models trained on AggSeq+Bare (dimension of 100+14 after one-

hot-encoding) and Aggseq+Detailed (dimension of 100+59 after one-hot-encoding)

features.

When only Bare clinical features are included alongside AggSeq features, five

of the ten highest ranking features come from the automatically-generated AggSeq

vector. This decreases to 3/10 when the entire suite of Detailed hand-engineered

features are included as predictors alongside the AggSeq feature vector. The LACE
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score appears as the most important feature from the AggSeq+Bare set, and the

second-most important input feature out of all AggSeq+Detailed features. The

gain was not distinguishable from zero for features indicating male sex (for Ag-

gSeq+Bare) and some previous-admission discharge dispositions (02, 03, 06, 12),

the presence of a GP visit in the previous 2, 3, and 4 years, and the presence of

hypertension and asthma (for AggSeq+Detailed).

4.5.4 Pre-Index Readmission Prediction Models

We test XGBoost, CoxPH, Deep Learning, and N-MTLR on the task of predicting

readmissions from only information within our study period captured at or before

the moment of admission. The baseline LACE model was not included, as one can-

not calculate the index admission length-of-stay (L) until discharge. Models that

include features from the duration of the index admission consistently perform more

favourably than models only using information from the time of admission and before

(Figure 4.9). The AUROC of the best-performing model overall (Detailed+Seq

N-MTLR) decreased from 0.8491 ± 0.004 to 0.7643 ± 0.003. As before, when Seq

features are included, N-MTLR achieves a better AUROC than the otherwise equiv-

alent DNN models (Seq: p = 0.0003, Seq+Bare: p = 0.003, Seq+Detailed:

p = 0.00009, respectively). Differently than with incl idx features, the DNN model

trained on Detailed+Seq input is out-performed by the DNN model trained on

Detailed+AggSeq inputs: 0.7429 ± 0.005 vs. 0.7485 ± 0.004, p = 0.01. This

is also true for DNN models with Bare+Seq vs. Bare+AggSeq: 0.7344 ± 0.008

vs. 0.7421± 0.005, p = 0.01. All scores (AUROC, AUPRC, and Brier at 30-days) are

reported in Table 4.5.

Table 4.6 provides ISD-specific evaluations. The highest concordance statistic us-

ing only b4idx features (0.7162 ± 0.002) is achieved by N-MTLR paired with De-

tailed+Seq features. N-MTLR with Detailed+Seq features also achieves the low-

est IBS and L1-loss (0.1427 ± 0.001; 1140.9 ± 11.2 days). None of the models are

63



1-calibrated at 30 days or D-calibrated.

64



Table 4.5: b4idx AUROC, AUPRC, and Brier score evaluations of different
combinations of models and feature sets at 30 days. Bold indicates the highest
score within model (column). Results are reported as Metric±Std.Dev.

b4idx Features 30-Day AUROC±Std.Dev

Clinical

Features

AggSeq

Features

Seq

Features
XGBoost CoxPH DL N-MTLR

Bare - - 0.7008±0.004 0.5937±0.004 0.6631±0.017 0.6934±0.001

Detailed - - 0.7306±0.006 0.6994±0.003 0.7300±0.005 0.7343±0.001

- ✓ - 0.7224±0.005 0.7146±0.004 0.7333±0.003 0.7421±0.004

Bare ✓ - 0.7340±0.005 0.7096±0.003 0.7421±0.005 0.7515±0.004

Detailed ✓ - 0.7400±0.004 0.7247±0.003 0.7485±0.004 0.7585±0.004

- - ✓ - - 0.7399±0.002 0.7600±0.003

Bare - ✓ - - 0.7344±0.008 0.7643±0.004

Detailed - ✓ - - 0.7428±0.005 0.7643±0.003

b4idx Features 30-Day AUPRC±Std.Dev

Clinical

Features

AggSeq

Features

Seq

Features
XGBoost CoxPH DL N-MTLR

Bare - - 0.1176±0.002 0.0784±0.002 0.1007±0.004 0.1074±0.001

Detailed - - 0.1520±0.004 0.1248±0.002 0.1511±0.005 0.1607±0.005

- ✓ - 0.1330±0.004 0.1224±0.002 0.1459±0.002 0.1494±0.003

Bare ✓ - 0.1484±0.003 0.1226±0.003 0.1582±0.005 0.1659±0.002

Detailed ✓ - 0.1577±0.003 0.1418±0.001 0.1694±0.003 0.1789±0.001

- - ✓ - - 0.1455±0.002 0.1714±0.004

Bare - ✓ - - 0.1426±0.006 0.1816±0.003

Detailed - ✓ - - 0.1608±0.005 0.1829±0.003

b4idx Features 30-Day Brier Score±Std.Dev

Clinical

Features

AggSeq

Features

Seq

Features
XGBoost CoxPH DL N-MTLR

Bare - - 0.0467±0.001 0.0481±0.001 0.0472±0.001 0.0468±0.001

Detailed - - 0.0459±0.001 0.0467±0.001 0.0458±0.001 0.0454±0.001

- ✓ - 0.0465±0.001 0.0466±0.001 0.0459±0.001 0.0457±0.001

Bare ✓ - 0.0461±0.001 0.0468±0.001 0.0456±0.001 0.0455±0.001

Detailed ✓ - 0.0459±0.001 0.0463±0.001 0.0452±0.001 0.0451±0.001

- - ✓ - - 0.0458±0.001 0.0451±0.001

Bare - ✓ - - 0.0459±0.001 0.0451±0.001

Detailed - ✓ - - 0.0455±0.001 0.0448±0.001
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Table 4.6: b4 idx comparison of the ISD models, CoxPH and N-MTLR,
according to the Concordance, Integrated Brier Score (IBS) and L1-Loss
calculated with pseudo-observations for censored individuals. Bold indi-
cates the highest score among feature sets (within-column). Results are reported as
Metric±Std.Dev.

b4idx Features CoxPH N-MTLR

Clinical

Features

AggSeq

Features

Seq

Features
Concordance IBS l1-PO Concordance IBS l1-PO

Bare - - 0.6241±0.001 0.1589±0.001 1360.0±111.6 0.6611±0.003 0.1575±0.001 1208.9±19.4

Detailed - - 0.6878±0.001 0.1502±0.001 1388.0±357.6 0.7015±0.002 0.1488±0.001 1175.1±21.9

- ✓ - 0.6907±0.001 0.1504±0.001 1227.2±12.4 0.6821±0.007 0.1495±0.001 1188.9±20.6

Bare ✓ - 0.6926±0.000 0.1502±0.001 1493.2±400.8 0.7011±0.002 0.1470±0.001 1168.2±12.4

Detailed ✓ - 0.7058±0.000 0.1471±0.001 1401.6±253.5 0.7083±0.002 0.1446±0.001 1155.4±14.1

- - ✓ - - - 0.7103±0.003 0.1443±0.001 1151.8±18.1

Bare - ✓ - - - 0.7157±0.004 0.1427±0.001 1140.9±11.2

Detailed - ✓ - - - 0.7162±0.002 0.1429±0.002 1147.9±17.7
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Figure 4.6: Plots showing AUROC and AUPRC scores using different fea-
ture and model combinations.
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Figure 4.7: Survival curves generated for three example patients by ISD
models: CoxPH and N-MTLR. According to the proportional hazards assump-
tion relied on by CoxPH, the curves for different patients will never cross.

Figure 4.8: 1- and D-Calibration plots. This figure summarizes sizes of bins
used to calculate the test statistics for 1-calibration and D-calibration for our best-
performing model—N-MTLR using Detailed+Seq features.
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Figure 4.9: AUROC evaluations of different using different models with and
without b4idx features. Bold indicates the highest score within model (column).
XGBoost and CoxPH models used AggSeq+Detailed features. DNN and N-MTLR
models used Seq+Detailed features.
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Chapter 5

Discussion

Feature Sets and Model Performance

Five sets of features are compared in this study: LACE, Bare clinical features, De-

tailed clinical features, AggSeq representations (based on summed embeddings of

recently acquired medical codes) and raw strings containing the patient’s sequence of

previous medical codes (Seq). Models able to utilize the Seq strings showed better

performances than those that did not, even in the absence of Bare and Detailed

clinical features. Adding Bare features to models already utilizing Seq features did

not noticeably improve performance (AUROC 0.8460 versus 0.8467)—indicating that

much of this information (such as age and sex) is already encoded in an individ-

ual’s medical event history. All sets of features showed stronger predictive power

than the LACE score across all evaluation metrics. However, the LACE score was

an important tabular input feature for the XGBoost models, even in the presence

of Detailed manually engineered features or the 100-element AggSeq vector con-

taining information about recent medical events. This demonstrates that important

medical information can indeed be contained in simple heuristics, despite achieving

only mediocre performance as a single predictor.

Within a Medical Code Embedding dictionary trained on co-occurrence data, codes

that point to similar medical events will be close in vector space. While this idea

is intuitive, one may wonder whether the creation of these embedding vectors is
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adequately helpful in the context of this study. The MCE dictionary is utilized in

this project in two ways—one, to generate the AggSeq patient representation (which

can be paired with any machine learning model)—and two, to initialize the sequence

models that learn target-informed representations of patients directly from medical

codes. The addition of AggSeq features to the Detailed feature representation

improves performance, implying that representational gaps exist between the 38 hand-

calculated features chosen to represent diverse medical history information. Also, with

even the most conservative estimates of performance, if AggSeq features are paired

with theBare features available within an EHR, the performance at least matches the

Detailed feature set performance (which also includes Bare features—see Section

3.3.3)1. In conclusion, the results of this study imply that the MCE AggSeq+Bare

features can either replace Detailed features and achieve the same performance on

all-cause readmission prediction tasks, or that AggSeq features can supplement the

Detailed features and improve all-cause readmission prediction performance2.

Another merit of the MCE dictionary (especially to generate tabular AggSeq fea-

tures) lies in its simplicity of use, which is makes it relatively easy to explain. If

a doctor understands the intuition behind the distributional hypothesis (codes co-

occurring are assigned similar sets of numbers), the intuition behind summing code

vectors to represent an individual follows easily. If the resulting AggSeq features

are still not penetrable enough (i.e., the user needs to know what each element of

the 100-dimensional embedding vector indicates), Word2Vec embeddings can be gen-

erated with a non-negative constraint (as seen in 2016 by E. Choi [39]), such that

the top k codes that have the largest values for the ith coordinate of the embedding

can be used to “explain” that element. A physician could then intuit what each

1The summation of one-hot vectors representing a patient’s historical medical codes could be used
in the place of the MCE-informed AggSeq representation. However, this would have a dimension of
at least 3000 (one index for each medical code); using these sparse vectors can be computationally
difficult and often lead to lower performance.

2Which one is better? The answer to this question depends on how a hospital administrator values
small gains in performance against extra effort spent on engineering a more detailed representation.
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element is “measuring” based on the most associated medical concepts—this allows

for a level of decipherability not often seen with machine-generated features. Beyond

informing the AggSeq patient representation, the Medical Concept Embedding dic-

tionary also increases performance when used to initialize the embedding layer of a

sequence model, contributing to the best performing model reported in this disserta-

tion. Initializing machine learning models with baseline knowledge frequently leads

to increased performance; models that use lower-dimensional inputs also train fewer

parameters, which can decrease overfitting. Embedding dictionaries are especially

helpful when the coding system contains multiple codes for the same concept. This

is common both in natural language (with synonyms) and medical codes3.

There are two general axes on which categorize the models used in this study:

lightweight (LACE, XGBoost, and CoxPH) versus heavyweight (DNN and N-MTLR),

and estimates a single value (LACE, XGBoost, DL) versus estimates an ISD

(CoxPH and N-MTLR) (Figure 5.1, Table 4.1). The best lightweight model (XG-

Boost using AggSeq+Detailed features) performs admirably with an AUROC of

0.8138, out-performing the other lightweight model, CoxPH, by a significant mar-

gin for 30-day readmission prediction. Interestingly, the lightweight XGBoost also

out-performs the heavyweight DNN approach when relying only on clinical features.

XGBoost is highly regarded as a classification powerhouse (especially when using cat-

egorical features as input), so this result is not surprising. When comparing the two

heavyweight models, N-MTLR significantly out-performs the DNN approach given

the same model architecture (aside from the predictor module) when given Seq fea-

tures. This speaks to the power of using a time-to-event target and/or modeling event

probabilities at multiple timepoints when learning from sequential past events. Ev-

ery machine learning model—even the lightweight models paired with only the barest

clinical features—noticeably out-perform the LACE baseline. Readmission predic-

tion models with a 30-day AUROC score of greater than 0.8 are generally considered

3There is a nearly analogous ICD-10-CM code (NACRS and DAD) for every ICD-9 code (Claims)
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to be very good. All models but except LACE and Cox have the capacity meet this

threshold using (at minimum) the Detailed and/or Bare+AggSeq features sets.

Figure 5.1: Categorizing models used in this study. Each model either relies on
deep learning (heavyweight) or does not (lightweight) and either generates a single
value (risk score or probability at timepoint) or a range of values over multiple time-
points.

The c-statistic/c-index/concordance, as used in this study, is (roughly) a time-

agnostic version of the 30-day AUROC score. The former measures how well the

model ranks patients by median survival time, and the latter measures how well the

model ranks patients by their 30-day readmission probability. Similarly, the Inte-

grated Brier Score measures the model’s average brier score over time. We see that in

both cases, the metric specific to the 30-day time-point indicates better performance

than its time-independent counterpart. This likely implies that the time-specific

AUROC and Brier scores for our ISD models drop as time progresses. This makes

sense given the days-until-readmission and censoring distribution of our dataset (Fig-

ure 4.3)—very little information about readmission events exist for the models to

learn from nearing three years post-discharge, which may make the task of learning

far-future prognosis more difficult. Therefore, readmission-free survival probabilities

towards the tail end of the curve should be interpreted with appropriate caution.
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Two calibration-specific measures were used to evaluate our models (1-calibration @

30 days and D-calibration), but no combination of architecture and feature set pro-

duced a calibrated model according to either test. Despite the p < 0.05 (for 30-day

1-calibration especially) high or moderately-high agreement is shown between ex-

pected and observed bins (Figure 4.8). Hosmer-Lemeshow or χ2 tests used for these

calibration calculations can be too sensitive for a large-population-level dataset; it is

possible that when evaluated on a sample of the test set, the models would be appear

both 1 and D-calibrated.

N-MTLR consistently generates higher quality ISDs than CoxPH using the same in-

put features, despite both learning from a time-to-event dataset. This can be partially

explained by the neural layers that augment the MTLR module, allowing the learn-

ing of richer input feature representations—in contrast, CoxPH is restricted by the

assumption that relationships between features are linear. Another major drawback

of Cox models is the reliance on the proportional hazards assumption. This dictates

that the impact of any particular feature does not change with the progression of

time, therefore the survival curves for different patients will never cross. N-MTLR is

not restricted by such an assumption. Figure 4.7 shows a situation where Cox ranks

patient C the riskiest for readmission, A the second riskiest, and B the lowest risk.

This ranking remains the same every time-point. Differently, N-MTLR understands

that patient A may be highly likely to be readmitted early post-discharge, however,

if they are not readmitted in this risky time-frame, their probability of event-free

survival begins to plateau. At 30 days, N-MTLR ranks A the riskiest, then C, then

B. The curves for A and C cross at around the 150 day mark, which changes the

ranking to match Cox’s. Thus, N-MTLR is able to rank patients more flexibly, likely

leading to better AUROC, concordance, and other scores. This shows that using

time-to-event data is not enough to achieve state-of-the-art performance—the model

chosen must also be able to adequately represent patients’ past and futures.

N-MTLR, allowed to learn from sequences of historical medical codes (Seq inputs),
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is the most promising model and feature combination explored in this study. At pre-

dicting the presence of a readmission by 30 days, this combination out-performs all

other models (including the deep learning approach) trained specifically to predict

30-day readmissions. This can likely be explained by three factors. First, the survival

dataset’s time-to-event target provides granular information about post-discharge

progression. The model can learn to predict a lower probability of readmission at

30 days for someone whose time-to-readmission is 600, compared to an individual

with a time-to-readmission of 60. Second, specifically modeling probabilities at many

future time-points (both before and after 30 days) may cause the model’s 30-day

readmission prediction to consistently fall closer to the actual observation. Third,

the combination of accessing a patient’s sequence of past events (including codes re-

lated to the passage of time) pairs uniquely well with an algorithm that models a

sequence of event-free survival probabilities in the future. This favourable combina-

tion of sequential event-related inputs and modeling event probabilities at all future

time-points could likely improve performance on other tasks as well: both medical

(such as modeling cancer progression) and otherwise (e.g., predicting time until an

industrial machine fails given past sequences of evaluations and repairs).

We evaluate the performance of all our models using features from the entirety

of the index admission and prior (incl idx) and features only using information

from at or before the time of admission (b4 idx). With the b4 idx restriction, per-

formance decreased regardless of model and granularity of features used. Our best

model (N-MTLR) was able to achieve a AUROC of 0.7643 and an AUPRC of 0.1829

using Detailed+Seq features. The general decrease in scores may be based on a

number of factors. One, information associated with the urgency of a hospital ad-

mission can be highly predictive for future hospitalizations, and is absent (except for

capturing the emergent status of the hospital visit) in b4 idx features. Additionally,

the number of features available to learn from was smaller—for example, numeric fea-

tures characterizing hospital usage during the index admission (e.g., number of unique
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drugs prescribed whilst in the hospital) were foregone entirely in our Detailed b4 -

idx feature set. Two, for some patients, their index admission was their first and

only hospitalization during the study period. This means that their b4 idx Seq

and AggSeq representations only contained information from a single code (“ADM”),

further decreasing the useful information. Despite this drop in performance, even

our lightweight models (XGBoost AUROC: 0.7400, AUPRC: 0.1577) using b4 idx

AggSeq+Bare features out-performs LACE (AUROC: 0.6587, AURPC: 0.0996),

which relies on features from the entirety of the hospital episode. Additionally, even

lightweight models trained on only Bare b4 idx features out-perform the incl idx

LACE score. This motivates the adoption of recent machine learning techniques in

practical settings, as more sophisticated models can offset the drop in accuracy from

temporally restricting feature inputs. This leads to more clinically useful models

without compromising performance.

Many studies engage with problems similar to this one, but comparing perfor-

mances between studies using restricted-access medical data is difficult. Even within

studies that use EHR data from AHS, data extraction and pre-processing will almost

necessarily differ in subtle ways. The years of the study period used is one variable,

as is the target population exclusion criteria, along with the methods for selecting the

index admissions or combining admissions into an index episode, and how readmis-

sion status and/or time-to-event targets are calculated. Further, studies may opt to

predict readmissions at six months or one year, or use a different lookback time period

(how much medical history consider as model input). Evaluation metrics reported

can also vary wildly. All these factors make it difficult to make claims about a model

architecture’s merit in comparison to those already published. However, comparing

against a common baseline (such as LACE) places new scores in the context of what

is applied in practice, lending credence to our proposed approaches. Using a publicly

available dataset such as MIMIC4) is one approach some authors choose to partially

4https://physionet.org/content/mimiciii/1.4/
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overcome this problem.

The mean and standard deviation of each combination of model and feature-set

were computed using external five-fold cross validation. Standard deviation and stan-

dard error are intuitive measures of spread, but bootstrapping is generally preferred

to report a non-parametric 95% confidence interval for model performance. In our

case, bootstrapping was not computationally feasible, as the MCE dictionary must

be calculated for every sampled training set to avoid potential data leakage.

Data Sources and Target Definition

One of the strengths underlying this study is the data our machine learning mod-

els rely upon. The province of Alberta has a single payor, universally accessible,

integrated health system, which enables the collection of comprehensive administra-

tive data with minimal loss to follow-up. However, some limitations exist—most

notably, linked administrative data is a less complete and less detailed information

source than comprehensive electronic health records. Accordingly, information from

the latter type of repository (such as narrative physician and allied health notes) may

further improve prediction accuracy if incorporated. Revisiting the approaches in this

study as Alberta continues robust data collection with ConnectCare may also lead to

further performance improvements.

There exist many nuances in deciding how to define the adverse outcome of all-

cause readmissions to the hospital. One regards the study population whose outcomes

we are interested in predicting. As detailed in Section 3.1.2, we do not restrict our

study population to a particular disease or population cohort. However, our index

episode selection criteria does preclude hospital admissions on the basis of psychiatric

admissions and routine admissions related to childbirth. Our models make predictions

for all age ranges, covering both medical and surgical admissions, and is otherwise

not limited to patients with a specific condition. As motivated in Chapter 2, all-cause

readmission models may be more amenable to the general hospital setting.
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Previous studies distinguish between “planned” vs. “unplanned” readmissions, or

even “preventable” vs. “unpreventable” readmissions. There exists no agreed-upon

algorithm for reliably determining readmissions that fall under the “preventable” cat-

egory, although attributes of a preventable readmission may include proximity to the

index admission, similarity to index admission in cause, and evidence of complica-

tions from care given in the index admission [94]. Given the degree of extra con-

sideration this label requires to calculate (and the lack of guarantee the label would

be correct), our readmission definition includes readmissions that may not have been

“preventable”. In the Discharge Abstract Database (DAD), the code ADMITCAT (Ad-

mit Category) classifies the visit type as either “Elective” or “Urgent/Emergent”,

which would allow an analyst to determine if a hospitalization was “planned” or “un-

planned”. Unfortunately, this variable was not available to us at the time of initial

data extraction, nor was it available in a follow-up data extraction in later months.

Another way to determine whether a hospitalization was “planned” vs. “unplanned”

is to look at emergent status—whether the patient arrived at the institution through

the use of ambulatory services. This would be determined by searching the NACRS

database for records of an emergent admission that coincided with the day of (or day

previous to) the beginning of the hospitalization episode5. However, many individuals

are triaged through the Emergency Department in serious condition after arriving at

the hospital using their own means of transportation—if we were to restrict read-

missions to those that arrived by ambulance, this would be failing to capture many

unplanned and potentially life-threatening admissions.

Therefore, another limitation of this study is that our models may be learning

associations between index admissions and planned follow-ups. In certain scenarios,

this could lead to an overestimation of model performance on the cohorts we really

care about—those who may benefit from targeted interventions. One example of this

could be that patients with a certain condition, when admitted for a procedure, are

5This is indeed how we calculated the A in the LACE score – see Section 3.3.3.
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recommended to visit the hospital for a follow-up procedure within six weeks. The

model may be able to encode this relationship, and achieve a higher performance for

the positive class because these individuals are included with those who are urgently

readmitted. Regardless, our models’ out-performance of the LACE baseline—which

is (1) implemented in practice, (2) contains comorbidity information, and (3) is tested

against our models using the same readmission definition—still indicates a positive

delta of usefulness regardless of exact performance numbers. In the very most conser-

vative of estimates, where our models only match LACE performance on the cohort

we care about, our ISDs still provide more information for physicians than the LACE

risk score. Further analysis, and access to the “ADMITCAT” code would be necessary

to more completely understand this relationship.

Perhaps the most difficult peculiarity of our data to disentangle is that it only

captures within-hospital deaths. This means that patients who were discharged and

passed away are treated identically to those who were discharged and never read-

mitted. The former cohort are likely in dire condition in some way (which is likely

captured in their medical history-based features), and the latter are likely associated

with features that indicate relative health. The fact these two cohorts are so different

yet are categorized in the same way could be hurting model performance by obscuring

the boundary between health and sickness. One could expect that reformulating this

problem as modeling time until readmission or death (as is seen often in the litera-

ture) would more effectively group patients, and could allow for further improvements

at evaluation time.

Although our results can be considered generalizable to other single-payor, univer-

sally accessible health systems (such as those in other Canadian provinces), generaliza-

tion beyond this setting should be performed with caution. Population size, available

input features, and data quality will vary between institutions, as will medical code

embedding dictionaries given differences in coding schema. These, plus differences in

location-based demographics could cause a decrease in model performance.
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Readmission-Prediction Models in Practice

For an AI system to be adopted in a medical context, health administrators must

decide that the perceived benefits of adopting these systems outweigh potential draw-

backs. These drawbacks can be numerous. Operationalizing these systems is expen-

sive and often requires highly qualified personnel for implementation and mainte-

nance. Once a system is in place, healthcare professionals must be trained to use it.

The topic of blame surrounding medical AI causes uneasiness—if a medical mistake

is caused by a machine learning system, the legality of fault is still murky, as the

accountable parties have not yet been agreed upon. Perhaps most crucially, trust in

AI and AI systems (from health practitioners and the public) has not had time to ad-

equately develop, given the recency with which widespread AI adoption has erupted.

The goal of this project is to propose tools and explore approaches that will help tip

the scale in the favour of AI, and may one day inform medical decisions regarding

rehospitalization management.

There are a number of attributes that make Individualized Survival Distributions

favourable for a clinical setting (e.g., implemented within an electronic health record),

beyond demonstrating improved performance by exploiting time-to-event targets.

One is that the ISD stands alone: it is useful in the absence of information about

the wellbeing of other patients for comparison. The same cannot be said for models

that compute a risk score in isolation. Second, the information captured in an ISD is

made available in a way that is visual and intuitive. A physician would not have to

parse through numbers or text to understand the prognosis of an individual. Finally,

survival curves provide insight into a far broader number of questions than other

classes of models; questions such as “How many days may pass until patient x will

be readmitted?”, “What is the probability patient x will be readmitted in 30 days?

What about 9 weeks?”, “How risky is x for readmission within 1 year compared to

patient y? How risky is x compared to y for a readmission overall?” can all be tackled
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with an ISD. The ISD is elegant in its ability to convey comprehensive, self-contained

survival information hastily. Further, if the desired outcome is understanding how

differing demographics or treatments may affect survival (a question more aligned

with survival analysis), ISDs can be aggregated to simulate the information of a Ka-

plan Meier plot. A log-rank test could then similarly be applied to these aggregated

survival curves to inspect group effects.

To implement any of our models within an EHR, we would need to link admin-

istrative data to create patient sentences, compute the numeric representations of

the sentence components (e.g., diagnosis codes, procedure codes, etc), and build the

prediction model a priori. Once the model is trained, we can make a prediction for

a new patient by first converting his/her records into a sentence (thereby creating

our Seq inputs), computing the AggSeq features of the patient (by using the pre-

viously obtained MCE dictionary), and computing the Detailed clinical features if

required. To save on computation, a running Seq and/or AggSeq representation

may be stored in a patient’s EHR, and updated at the onset of new medical events.

Note that all steps after model training can be automated in practice, and require the

same privileges as the LACE model, as both rely on linked administrative data. To

facilitate early care-trajectory planning, an initial prediction (either a 30-day read-

mission probability or an ISD) could be made on the day of admission using a b4 idx

version of the model. Then, on the day of discharge (incorporating information from

the duration of the hospital episode), a new prediction could be made, which would

allow the attending physician to tweak the care strategy based on model outputs if

appropriate. The MCE dictionary (Section 3.2.2) and prediction models should be

occasionally re-trained to account for data drift and/or new medical codes entering

common use.
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Chapter 6

Conclusions

This study seeks to improve upon the individualized 30-day all-cause hospital read-

mission prediction task. We do this by 1) exploring methods of effectively represent-

ing a patient’s sequential medical history using machine learning, and 2) utilizing

algorithms that can model a patient’s readmission-free survival prognosis using time-

to-event data. An intentional problem-solving approach was followed throughout the

course of this study; practical issues surrounding adoption and specific needs and de-

sires of the medical-end user were considered, including the inclination towards models

that predict readmission at the beginning of a hospital episode. Our proposed meth-

ods are tested and validated on retrospective population-wide linked administrative

data from Alberta Health Services.

To represent a patient automatically, we consider aggregating vector embeddings

representing various events (such as diagnoses, prescriptions, and procedures) from

their medical histories. Pairing these computer-generated representations with simple

clinical features showed potential for increased prediction accuracy over the combina-

tion of simple and manually-calculated features, and over the LACE model, a practical

single-scalar heuristic implemented to predict readmissions in Alberta hospitals. We

show further improved performance using deep-learning models that can learn directly

from the sequence of historical medical codes. However, all aforementioned models

learn to predict the probability of a patient experiencing a hospital readmission at or
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before 30 days, thereby viewing the problem as a binary classification task. Neural

Multi-Task Logistic Regression (N-MTLR), a survival prediction algorithm, learns

from time-to-readmission information, and makes readmission-free survival probabil-

ity predictions at all future time-points. When allowed to learn representations of

patients from longitudinal medical event histories, N-MTLR out-performs all models

trained specifically on the task of predicting readmissions at 30-days, at the task of

30-day readmission prediction. Ultimately, we show that state-of-the-art 30-day all-

cause readmission prediction performance (compared to gradient-boosting and deep-

learning approaches) can be achieved through jointly learning from past sequential

events and modeling prognosis across a sequence of future time-points.

There are many possible future directions for this work. One may involve validat-

ing N-MTLR and sequential medical code inputs with a publically available dataset

to better understand where this approach sits in the context of available research.

Another is addressing limitations by restricting our dataset to only emergent index

admissions, and by incorporating deaths into the definition of our “adverse outcome

of interest” alongside readmissions. Exploring the potential of longitudinal event-

based features and N-MTLR for other problem settings (medical and otherwise) may

also prove worthwhile. We note that deep-learning architecture and hyper-parameter

tuning was not performed in this study—therefore, our numbers are a lower bound

of what is possible using this approach. For example, an attention layer may further

improve performance. A computationally-expensive grid-search would elucidate this

gap. Finally, studying how physicians would interact with a tool like this, and how

to best explain its use, would contribute valuable insights into barriers preventing the

widespread adoption of medical artificial intelligence.
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Appendix A: 30-Day Readmission:
Threshold-Dependent Metrics

For most binary classification algorithms, the predicted probability of event must

be mapped to a class prediction. This is done by choosing a probability threshold

τ , where probabilities above are mapped to the positive class, and those below are

mapped to the negative class. AUROC, AUPRC, and Brier score at 30 days are

all threshold independent metrics, meaning the score considers all values of τ . For

other metrics, the τ value must be chosen. Youden’s J statistic [1], calculated as

Jτ = TPRτ −FPRτ , provides an informed way to choosing τ . We can find τ∗ fromt

the training set, which indicates the cutoff that maximizes the distance between a

ROC curve and the no-skill line:

τ∗ = argmaxτ (Jτ ) (A.1)

We then use this cut-off to calculate threshold-dependent metrics. Accuracy is the

percentage of classifications that were made correctly:

Accuracyτ∗ =
TPτ∗ + TNτ∗

TPτ∗ + FPτ∗ + TNτ∗ + FNτ∗

(A.2)

Specificity, or the number of True Negatives correctly classified, is defined as:

Specificityτ∗ =
TNτ∗

TNτ + FPτ∗

(A.3)

Recall the definition of Precision and Recall/Sensitivity from Section 4.3.4. The

F1-score summarizes precision and recall scores at a particular threshold:

F1-scoreτ∗ =
2× Pτ∗ ×Rτ∗

Pτ∗ +Rτ∗

(A.4)
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Table A.1: XGBoost threshold-dependent 30-day readmission prediction
performances. Boldface indicates the best performance over the metric across this
table (XGBoost) and Table A.2 (Deep Neural Network). AUROC, AUPRC, and Brier
scores (threshold-independent) are included for comparison.

XGBoost: 30-Day Readmission Score (Std.Dev)

Bare Detailed AggSeq AggSeq+Detailed

TN 60546.0 (1274.7) 65423.8 (362.4) 66035.8 (420.8) 67427.6 (770.4)

FP 19397.2 (1234.5) 14519.4 (365.8) 13907.4 (395.6) 12515.6 (811.0)

FN 1620.6 (87.1) 1648.4 (71.5) 1825.6 (14.6) 1681.4 (83.6)

TP 2653.0 (107.1) 2625.2 (18.0) 2448.0 (71.7) 2592.2 (64.1)

recall-sensitivity 0.6207 (0.021) 0.6144 (0.011) 0.5727 (0.008) 0.6067 (0.016)

specificity 0.7574 (0.016) 0.8184 (0.005) 0.8260 (0.005) 0.8434 (0.010)

precision 0.1205 (0.003) 0.1532 (0.002) 0.1497 (0.004) 0.1720 (0.008)

F1 0.2017 (0.003) 0.2452 (0.003) 0.2373 (0.005) 0.2678 (0.009)

accuracy 0.7504 (0.014) 0.8080 (0.004) 0.8132 (0.005) 0.8314 (0.009)

AUROC 0.7546 (0.005) 0.8002 (0.003) 0.7884 (0.002) 0.8138 (0.003)

AUPRC 0.1682 (0.004) 0.2274 (0.006) 0.2361 (0.004) 0.2877 (0.005)

brier 0.0453 (0.001) 0.0435 (0.001) 0.0436 (0.001) 0.0419 (0.001)

We report the results for True Negatives, False Positives, False, Negatives, True

Positives, Recall/Sensitivity, Specificity, Precision, F1-score, and Accuracy, which are

summarized for XGBoost (Table A.1) and Deep Neural Network architectures (Table

A.2) using various feature sets. Using XGBoost with AggSeq+Detailed features

lends the best performance in terms of True Negatives, False Positives. Using a

DNN with only Seq features showed the best numbers for False Negatives, True

Positives, and Recall/Sensitivity. DNNs trained on Seq+Detailed features gave

the best threshold-independent (AUROC, AURPC, and Brier score) performances.

Maximizing model usefulness in practice would require a domain-expert-informed cost

matrix for True Positives, True Negatives, False Positives, and False Negatives, rather

than relying on Youden’s J-statistic.
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Appendix B: AggSeq Feature
Tuning

AggSeq features are created using a summation of MCE vectors corresponding to the

k most recent codes in an individual’s medical history. Internal cross-validation was

used to determine the optimal k for each of the five outer cross-validation folds by

examining the average internal-fold XGBoost (30-day readmission prediction) binary-

cross-entropy loss. AggSeq vectors using k = 5, 10, 15...100, paired with Bare clini-

cal features, were used as inputs. Bare features were included to encourage the model

to find a k which captures information that is not already present in easily-available

clinical features. The average Binary-Cross-Entropy losses from each set of inner folds

are visualized in Figure B.1.

Figure B.1: Average losses over k, used to determine the optimal k for each
of the outer folds.
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Table B.1: For each metric, evaluations using the data-set-wide k (according
to loss), and the best and worst k according to that metric.

25CodesScore BestNCodes BestNCodesScore WorstNCodes WorstNCodesScore

logloss 0.17 25 0.17 5 0.176

TN 41616.04 10 41816.16 90 41144.28

FP 6349.88 10 6149.76 90 6821.64

FN 1212.4 35 1203.04 5 1350.36

TP 1351.76 35 1361.12 5 1213.8

recall-sensitivity 0.527 35 0.531 5 0.473

specificity 0.868 10 0.872 90 0.858

precision 0.176 25 0.176 100 0.163

F1 0.264 25 0.264 5 0.243

accuracy 0.85 10 0.853 90 0.841

AUROC 0.795 20 0.795 100 0.774

AUPRC 0.247 30 0.247 5 0.210

brier 0.043 30 0.043 5 0.045

The best k varies slightly depending on the input data—k = 20 for Folds 2 and 3,

and k = 25 for Folds 1, 4, and 5. The general trend over all folds is the loss dropping

sharply as k approaches 15-20, then the loss increasing steadily as k increases after

20-25. It is likely that low values of k do not capture enough information, and high

values of k are too noisy to be useful. Dataset-wide, the optimal value of k is 25. The

best and worst values of k for all threshold dependent and independent evaluation

metrics are reported in Table B.1. A k within [10, 35] generally leads to favourable

results, while k = 5 or a k in [90, 100] leads to poorer performance. However, when

varying k, the absolute differences between the best and worst values is not large in

an absolute sense.
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Appendix C: Experiments with
Un-Sampled Index Episodes

To define our dataset of index episodes, we sampled one hospital episode per-person.

This is to ensure high-cost hospital users with many admission events are not biasing

the evaluation. However, this is not making use of all the data available. In this

section, we model 30-Day readmission risk, 30-day readmission probability, and indi-

vidual survival distributions using an unrestricted version of the dataset. The choice

not to sample index admissions changes the summary statistics, including the per-

centage of admissions associated with a readmission (previously 5.1%, now 10.3%).

Table C.1 shows this and more. The average number of admissions within the index

period per-patient is 1.377, with the highest number of unique admissions during this

time being 31.

The procedure to generate these results is similar to what was reported in the main

text. An admission’s membership to one of the five folds was determined by patient ID

to ensure no data leakage. The AUROC and Brier scores for each of the five model

types (evaluated at 30 days) are reported in Tables C.2 and C.3 respectively, and

compared with the corresponding results from the main text. Non-sampled AUPRC

scores are not reported/compared with their sampled counterparts, as the no-skill

classifier performance changes as the positive class percentages changes.

We see a slight decrease in AUROC performance overall when using the un-sampled

dataset. For example, the AUROC of N-MTLR with Bare+Seq features signifi-

cantly decreases from 0.8467± to 0.8310 ± 0.002, p = 0.0002. Brier scores using the
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Table C.1: Breakdown of attributes in sampled vs. un-sampled dataset ver-
sions.

Summary Statistic Sampled Unsampled

Number Rows 421088 579817

Average Age (Years) 47 49

Average LACE Score 6.53 7.45

Average Index Length-of-Stay (Days) 7 8

Percentage Readmitted @ 30-Days 5.1% 10.3%

Percentage Uncensored 28.2% 41.5%

Average Days-to-Event 604 508

sampled version of the dataset are in the range of 0.04, whereas Brier scores using

the non-sampled dataset range from 0.0897 (LACE model) to 0.0750 (N-MTLR with

Bare+Seq features). This increase could be explained by a greater focus on the posi-

tive class by the model, given the higher number of readmissions. The N-MTLRmodel

with Bare+Seq inputs has a concordance of 0.7688±0.002, out-performing the sam-

pled dataset model with a concordance of 0.7504±0.001, p = 0.00002. The Bare+Seq

N-MTLR model has an AUPRC@30 of 0.4208 ± 0.006, and IBS of 0.1562 ± 0.001.

Notably, N-MTLR’s L1-loss with pseudo observations using the non-sampled dataset

is quite low at 709.1 ± 42.5 days, compared to 1104.9 ± 15.4 in the main text. This

could partially be because the model has more data to learn from and can model time-

to-event more accurately. However, it could also be because a smaller percentage of

instances are predicted to have long time-to-event, because of the higher chance of

readmission from repeated inclusions of high-risk users.
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Table C.2: AUROC performance for various feature sets when not restrict-
ing the dataset to one admission per-person. “Sampled Index” is what was
reported in the main text, “Unsampled Index” is new to this section. Bold indicates
best performance across models.

Features 30-Day AUROC

Clinical

Features

AggSeq

Features

Seq

Features

Logistic

Regression
XGBoost CoxPH DNN N-MTLR

- - - 0.6587±0.003 - - -

Bare ✓ - - 0.8025±0.005 0.7634±0.005 - -
Sampled

Index
Bare ✓ - - - 0.8174±0.006 0.8467±0.004

- - - 0.6600±0.002 - - -

Bare ✓ - - 0.7899±0.002 0.7514±0.003 - -
Unsampled

Index
Bare - ✓ - - - 0.8144±0.004 0.8310±0.002

Table C.3: Brier score performance for various feature sets when not re-
stricting the dataset to one admission per-person. “Sampled Index” is what
was reported in the main text, “Unsampled Index” is new to this section. Bold indi-
cates best performance across models.

Features 30-Day Brier

Clinical

Features

AggSeq

Features

Seq

Features

Logistic

Regression
XGBoost CoxPH DNN N-MTLR

- - - 0.0471±0.001 - - - -

Bare ✓ - - 0.0428±0.001 0.0456±0.001 - -
Sampled

Index
Bare ✓ - - - 0.0426±0.001 0.0402±0.001

- - - 0.0894±0.001 - - - -

Bare ✓ - - 0.0801±0.001 0.0852±0.001 - -
Unsampled

Index
Bare - ✓ - - - 0.0775±0.000 0.0750±0.001
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