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Abstract 

The goal of this thesis is to contribute to the fields of data-driven medicine and computational 

psychiatry by attempting to demonstrate the viability of machine learning for use in psychiatry, 

specifically in predicting treatment outcomes for major depression. This is attempted in four 

ways:  

1. Chapter 2 is original research (and an intended article) describing a way to use ML to 

produce a learned classifier that takes as input patient clinical features to predict 

symptom remission after eight weeks of a specific antidepressant therapy. 

2. Chapter 3 is original research (and an intended article) describing a way to use automated 

machine learning software for predicting treatment response after eight weeks of 

antidepressant therapy. 

3. Chapter 4 is a literature review updating the reader on progress in how machine learning 

has been applied in the fields of psychiatry and personalized medicine. 

4. Chapter 5 is a viewpoint (and intended article) suggesting changes in psychiatric 

prescribing practice that will occur as a result of deploying machine learning tools. 

 

Chapter 2 uses data from 11 of Pfizer’s desvenlafaxine (DVS; trade name Pristiq) clinical trials 

to demonstrate the construction and use of a machine learned model for predicting treatment 

outcomes in depression after eight weeks of treatment. Results show that using pre-treatment 

baseline data comprising psychiatric scales, laboratory test data, demographic information, and 

medication-related data, is sufficient to produce a classifier capable of predicting symptom 

remission, defined as a Hamilton Depression Rating Scale (HAM-D) score of ≤ 7, with 69.0% 

accuracy, 6.9% above chance predictions (p<0.05). 
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Chapter 3 draws from the same dataset, using the automated machine learning software 

(RapidMiner) to train classifiers to predict treatment response, defined as a ≥ 50% reduction in 

symptoms, based on the HAM-D scale. Without including early response data, classifiers were 

only able to predict response at 58.90%; after including early response data, classifiers were able 

to predict response at 70.05% accuracy. 

 

Chapter 4 is framed as a conceptual review of machine learning in personalized medicine and 

psychiatry, focusing on recent applications of machine learning software to psychiatric care 

challenges. It covers four domains: data access, movement away from traditional statistical 

models, knowledge translation (KT) & commercialization of machine learning technology, and 

futurism. Within these domains, the chapter examines the development of Electronic Medical 

Records (EMR’s) as they relate to personalized medicine and the interaction of health data with 

developing technologies such as streaming data and data ownership, the interaction of health data 

and machine learning, the health implementation environment, and current mental health tools 

being deployed commercially. 

 

Chapter 5 is a viewpoint focusing on how we anticipate machine learning will affect clinical 

prescribing practice. Currently, clinical trials focus on demonstrating population-level safety and 

efficacy of new antidepressant drugs, but do not account for variance between individual 

patients. Deployment of machine learning and learned tools in the clinic will give clinicians the 

ability to compare the probabilities of different antidepressants being effective while minimizing 

side-effect profiles, on a patient-by-patient basis. This chapter focuses on the possible 

downstream effects of clinical machine learning tool deployment at different levels of the 

healthcare environment. 
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Among these four chapters, the thesis attempts to demonstrate the viability of using machine 

learning for prediction of psychiatric treatment outcomes, and to articulate how the field of data-

driven medicine is advancing quickly toward widespread use. This work has relevance for 

understanding ways in which machine learning, clinical practice, and future drug development in 

a transition to a future that will be characterized by a more data-driven, outcome-focused 

environment for individual patients. 
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Chapter 1. Introduction 

In diagnosis and treatment of major depressive disorder (MDD; also referred to as depression), 

there is no simple diagnostic blood test, scan, or questionnaire, or measure consistently and 

accurately applied to guide treatment choice. The lack of tests able to consistently predict 

treatment outcomes results in attempts at treating the patient’s disorder that rely on incomplete 

information, informed primarily by physician experience, clinical interviews, and further 

interactions with the patient. There is a significant downside to continuing to use this method: 

40-60% of psychiatric treatment attempts fail (Masand, 2003). This persists outside the normal 

clinical environment as well: individual antidepressants in clinical trials are only 63% effective 

(Masand, 2003; Gartlehner et al., 2011). When treatment fails, patients often discontinue 

treatment or lose faith in the ability of their physician to treat their condition (Bados, Balaguer & 

Saldaña, 2007; Olfson et al., 2009; Shamir, Szor & Melamed, 2010). This lack of reliable 

treatments has a significant impact. As a condition, depression is the most pervasive and 

contributes most to the global burden of disease: 350,000,000 cases exist worldwide, and it is 

responsible for 76.4 million years lost to disability (YLD), 10.3% of the total burden of disease 

(Smith, 2014).  

1.1 Diagnosis of Depression 

Historically, depression is recognized at least as far back as ancient Greece c. 460-357 BCE as a 

condition called melancholia (Kaplan, 2009), consisting of, “aversion to food, despondency, 

sleeplessness, irritability, and restlessness” (Hippocrates, 1923-1931). Hippocrates’ theory 

centered on four “humours,” defined as substances in the body regulating human behaviour: 

yellow bile, black bile, blood, and phlegm (Kaplan, 2009). Normative human behaviour was 

thought to stem from a balance between these substances in the body, while imbalances were 
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expressed as illnesses (Wikipedia contributors, 2019), with depression stemming from an excess 

of black bile attributed to a planetary influence, in this case Saturn (Kaplan, 2009).  

 

Understanding of depression progressed through Jean-Philippe Esquirol’s work in the mid-to-late 

1800’s, which connected the idea that mood disturbances underlie depression. This contrasted 

with previous views of depression as a primarily intellectual disorder: a form of insanity (i.e. 

disturbed thoughts and deranged reasoning) (Kaplan, 2009). This idea of distinguishing 

depression from other mental illnesses based on its mood-related symptoms was ushered into a 

more contemporary form by the psychiatrist Emil Kraepelin in the later 1800’s, who introduced 

the idea of syndrome-based classification. This centred on grouping mental illnesses based on 

common patterns of symptoms, called syndromes (Lawlor, 2012). The idea of delineating 

diseases based on course and outcome was revolutionary, and would later be used as a central 

ideology around which modern psychiatric classifications systems were designed (Shorter, 

2015). 

 

In modern North American psychiatry, the diagnosis of depression is codified in three major 

systems, the most prominent of which is the American Psychiatric Association’s DSM 

(Diagnostic and Statistical Manual of Mental Disorders; APA, 2013). These systems also include 

the ICD (International Classification of Disease; WHO, 1992), and RDoC (Research Domain 

Criteria; Insel, 2010). The first version of the DSM, the DSM-I, was released in 1952, as an 

adaptation of a 1943 Technical Bulletin outlining psychiatric nomenclature for the U.S. Army, 

“Medical 203,” from the Office of the Surgeon General (Houts, 2000; APA, 2019). It classified 

mental disorders into two major categories, disorders of brain function and failure of the 
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individual to adjust to their circumstances; depression was classified in the DSM-I as a failure to 

adjust (Grob, 1991). As the DSM was developed and updated, the next major change in 

understanding depression was seen in the DSM-III. This involved defining depression with a 

more communicable and precise criteria, rather than a contextual approach that focused on the 

appropriateness of the patient’s mood given their circumstances (e.g. if a family member died, 

low mood would be expected) (Horwitz, Wakefield & Lorenzo-Luaces, 2016). The American 

psychiatrist Robert Spitzer was responsible for chairing the committee in charge of DSM-III 

development. His view of the techne (structure) of psychiatric diagnosis leading to the DSM’s 

approach can be summed up in his 2003 paper, as, “…having each clinician creatively adopt 

their own definitions is no solution and would inevitably lead to a diagnostic Tower of Babel” 

(First & Spitzer, 2003). However, Spitzer’s view of the telos (essential purpose) of using such an 

approach was to enable physicians to communicate more efficiently: simply stating a diagnosis 

of “depression” captures not only the likely features expressed by a patient, but also rules out 

disorders (e.g. bipolar disorder), the range of treatments to be considered, and the patient’s likely 

future outcomes (First & Spitzer, 2003).  

The APA task force in charge of addressing weaknesses in the DSM-III during DSM-IV 

development was led by the American psychiatrist Allen Frances. This task force focused on 

generating an empirical basis for justifying changes to the disorder classification scheme via 

evidence from literature review, as well as increasing harmonization with ICD-10 structure 

(APA, 2019). The most notable change after developing the DSM-IV was the presence of 

“clinical significance” as a diagnostic requirement: patients now had to experience significant 

distress or impairment in a major domain of their life (e.g. social, occupational) (Wikipedia 

contributors, 2019). 
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Moving to the most recent incarnation of the DSM, the DSM-5 (APA, 2013), a diagnosis of 

depression requires five of the following nine symptoms as assessed by a clinician, including at 

least one of two primary symptoms related to mood or anhedonia (as denoted by a “*” below), 

persisting for at least two weeks: 

1. *Depressed mood 

2. *Loss of interest or pleasure 

3. More than 5% change in body weight in a month 

4. Insomnia/hypersomnia 

5. Observable psychomotor change (agitation or retardation) 

6. Fatigue/loss of energy 

7. Inappropriate feelings of guilt/worthlessness 

8. Reduced ability to concentrate or make decisions 

9. Thoughts of death/suicide, suicide attempt, or specific plan for suicide 

 

In addition, these symptoms must cause distress or impairment to normal functioning, cannot be 

attributed to the patient being affected by a substance’s physiological effects, cannot be 

attributed to another medical condition, are not better accounted for as being part 

of  schizophrenia or psychosis (and variations thereof), and do not exist in conjunction with 

symptoms of mania or hypomania.  

 

The DSM-5’s classification of depression differs from the other major disorder classification 

system, the ICD-10 (International Classification of Disease, 10th edition) (WHO, 1992). This 

version of the ICD is updated regularly, with the last major update occurring in 2016 (WHO, 

2016). A diagnosis of depression is made under Section V: Mental and behavioural disorders, 

and is less codified than the DSM-5 system. A description of depression is given, followed by 
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diagnostic windows and characteristics of mild, moderate, and severe depressive disorders. A 

“mild” depression diagnosis made with the ICD-10 requires two to three of the following 

symptoms, while a “moderate” diagnosis requires four, and “severe” requires “several”, and 

severe depression is checked for psychotic symptoms (e.g. hallucinations, delusions): 

1. Lowering of mood  

2. Reduction of energy 

3. Decrease in activity 

4. Reduced capacity for enjoyment 

5. Reduced capacity for interest 

6. Reduced capacity for concentration  

7. Marked tiredness after even minimum effort  

8. Sleep is disturbed  

9. Appetite is diminished  

10. Self-esteem is reduced  

11. Self-confidence is reduced  

12. Ideas of guilt or worthlessness are present 

13. Loss of libido 

 

The ICD-10 divides depression into mild, moderate, and severe categories, with the number, 

severity, and effect of symptoms on day-to-day life contributing to the severity of diagnosis. In 

addition, the presence of somatic symptoms and suicidal thoughts are considered hallmarks for 

cases of severe depression. This diagnosis excludes cases of adjustment disorder (changes to 

mood resulting from significant life changes or stressors), recurrent depressive disorder (repeated 

episodes of depression), and when combined with symptoms of conduct disorder (characterized 

by dissocial/aggressive/defiant conduct). 
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Both the ICD-10 and DSM-5 discuss depression in the context of the patient feeling distress, 

displaying impaired day-to-day functioning, and a lack of symptoms of mania. However, the 

ICD-10 does not account for the effects of drug abuse on producing depressive symptoms, nor 

does it ask physicians to consider whether depressive symptoms would fit better in the context of 

a schizophrenia or psychosis diagnosis.  

 

However, there has been increasing debate surrounding the ability of DSM-5 criteria to produce 

consistent diagnoses: the inter-rater reliability for a DSM-5 depression diagnosis is questionable, 

with a Cohen’s Kappa score of 0.28 (Regier et al., 2013; Lieblich et al., 2015). Cohen’s Kappa is 

a statistical measure used to determine the degree of consensus reached between two individuals 

making a qualitative assessment using categorical scale items. In concrete terms, a Kappa of 0.28 

means that two physicians will agree on a patient being diagnosed with depression in 4-15% of 

cases. This is a significant decrease from previous DSM releases: Cohen’s Kappas for depression 

diagnoses from the DSM III and IV, are 0.65 and 0.67 (Brown et al., 2001).  

 

First and Spitzer (2003) recognized that the DSM was to be used primarily as a clinical 

communication tool, and that multiple diagnoses were not to be used for inferring an underlying 

etiology. However, the concerns surrounding multiple diagnoses given for a constellation of 

symptoms that may have, “one or two underlying processes that are being expressed in a 

complex way” (First & Spitzer, 2003), and lack neuroscience-based evidence contributing to 

disorder etiology, gave rise to another classification scheme: the Research Domain Criteria 

(RDoC), developed by then-director of the National Institute for Mental Health, Dr. Thomas 
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Insel (Insel et al., 2010; Insel 2013). RDoC is composed primarily of a matrix that divides 

disorders into systems:  

1. Negative valence systems 

2. Positive valence systems 

3.  Cognitive systems 

4. Social processes 

5. Arousal and regulatory systems 

6. Sensorimotor systems 

These are then further divided by construct (e.g. Negative valence systems includes acute threat, 

potential threat, sustained threat, loss, and frustrative nonreward). Each construct is then divided 

into eight elements, each element constituting a specific type of evidence that contributes to our 

understanding of the disease (i.e. genes, molecules, cells, circuits, physiology, behavior, self-

report, and paradigms) (NIMH, 2019b). See Fig. 1.1 for a reproduced version of the RDoC 

negative valence systems matrix.  

 

Figure 1.1. Reproduction of RDoC Matrix for Negative Valence Systems  

 

Figure 1.1 is reproduced from https://www.nimh.nih.gov/research/research-funded-by-

nimh/rdoc/constructs/rdoc-matrix.shtml 

It should be noted that RDoC was developed with the intent of being a framework for researchers 

and clinical scientists to use as a guide for recruiting research study participants, and is not 
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intended to replace the DSM or ICD classification systems; rather, it is eventually intended to, 

“…inform diagnostic approaches using new laboratory procedures, behavioral assessments, and 

novel instruments to provide enhanced treatment and prevention interventions” (NIMH, 2019). 

At the current time, “the framework is directed toward constructs most germane to mental 

disorders, and makes no claim to span the entire gamut of functional behavior” (NIMH, 2019). 

The NIMH’s discussion of how RDoC fits with current definitions of disorders states that it 

focuses on developing knowledge of individual disorder mechanisms informed by behavioural 

neuroscience and genetics. Furthermore, it may provide novel definitions of disorders in the 

future, but in the short term is intended to improve information available regarding treatment 

choices (NIMH, 2019).  

 

Interestingly, the RDoC’s evidence-based approach is being reflected in recent initiatives such as 

the European College for Neuropsychopharmacology’s Neuroscience-based Nomenclature 

(ECNP NbN) (ECNP, 2019). NbN was developed to address patient confusion surrounding the 

naming of neuroscience-based medications, but takes a more aggressive approach compared to 

RDoC: it is intended for clinical use while development is ongoing (nbn2r.org, 2019). This 

classification schema proposes a nomenclature that, “reflects the current knowledge and 

understanding about the targeted neurotransmitter/ molecule/system being modified and the 

mode/mechanism of action” (nbn2r.org, 2019).  

 

Given the uncertainty surrounding depression diagnosis and treatment options, it is imperative 

that emerging approaches to improving treatment selection in depression provide clinicians with 

objective tools that focus on patient outcomes. Using techniques in a subfield of artificial 
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intelligence (AI) called machine learning (ML) may offer a novel approach to improving 

treatment outcomes. 

1.2 Machine Learning 

Machine learning is a branch of artificial intelligence research concerned with using 

computational models capable of learning patterns from data in order to make predictions (SAS, 

2019). Its primary goal is to optimize predictions according to some objective. Machine learning 

is split into three major fields: supervised learning, unsupervised learning, and reinforcement 

learning; each of these fields has a different optimization objective. Supervised learning is 

focused on minimizing classification error, unsupervised learning on maximizing the expected 

probability of data belonging to one class (given any number of classes), and reinforcement 

learning on maximizing an expected reward (e.g. a video game score) (van de Meent, 2018). 

Machine learning is concerned with creating intelligent machines that react like (or better than) 

humans. To differentiate the two, an example of AI that is not machine learning is an expert 

system, which uses human-programmed rules to make decisions. Different again is data mining, 

which like machine learning is concerned with finding patterns in data, but generally does not 

focus on optimizing predictions or making decisions. Instead, it focuses on generating useful 

descriptions of the data.  

 

To make the differences between these fields concrete, consider some patient data labeled with 

treatment responses to a medication. Data mining could be used to cluster patient cases together, 

and output similarities between patients. An AI-based expert system could use certain features 

from each patient to determine which treatment to give. A machine learning program could use 
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patient labels to learn a pattern in the data that predicts treatment response in novel, unlabeled 

patients. 

 

There are several important distinctions delineating machine learning and the more traditional 

statistical approach to modeling of using association studies. Association studies involve 

construction of a model of how the world is thought to work (i.e. a hypothesis), collecting data to 

test that hypothesis through an experiment, and determining whether the results of that 

experiment support the hypothesis (i.e. significance testing). Correlational association studies 

determine the strength of association between two or more variables (e.g. how does treatment 

response vary with age), in order to validate or refute the proposed model. Categorical 

association studies build a probability distribution of discrete values (e.g. how does treatment 

response vary with sex). There are two primary weaknesses of these two approaches being 

applied to personalized medicine. First, association studies work with distributions of data, rather 

than individual cases. This means that data is viewed as a sample of the underlying ground truth 

distribution that occurs at the population-level. This limits how individual cases can be assessed: 

it minimizes the contribution of valid cases that do not fit the population distribution. Second, the 

outcomes do not support actionable, objective predictions: the model tested is produced based on 

previous work attempting to answer a similar question, and tested against the sample distribution 

of data collected. Individual cases assessed with the proposed model are assessed in the context 

of the assumed distribution underlying the sample data collected. 

 

Machine learning classification takes a different approach. I will limit discussion here to 

supervised machine learning classification, which is most relevant to this thesis. Unlike an 

association study, machine learning is not concerned with whether two (or more) variables are 
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correlated, but rather with how well an algorithm can learn patterns in data that can be used to 

generate correct predictions on novel data. Algorithms are processes followed during problem-

solving operations; here, they will be discussed in the context of computer-based algorithms. An 

algorithm that has finished learning is called a trained classifier or learned classifier. Each patient 

or participant to be included in assessing a learned classifier must have data for an outcome 

variable with a known value. The outcome variable can have two or more classes (e.g. 0 and 1; 

respond and non-respond; treat or do not treat). While the training step is occurring, machine 

learning algorithms use data with visible classes (i.e. labeled data) to assess each produced 

classifier, before adjusting the parameters and assessing it again. Training finishes when no 

further performance improvement is seen over successive parameter adjustments. Trained 

classifier performance is then assessed by making predictions on novel, unlabeled data. A 

prediction here means assigning a class label to a data instance (i.e. a patient or participant; also 

called a case). During performance evaluation, the trained classifier is blinded to class labels: the 

true class of the novel data is known to the researcher and will be used to assess classifier 

performance, but is not seen by the trained classifier.  

 

A hypothesis for machine learning may include a specific performance target, or simply be 

“above chance.” This means that the classifier performs significantly better than simply 

assigning a random class to each data instance. If predictions are at chance level (analogous to 

the model simply guessing each prediction), the learned model has been unable to find a pattern 

of predictions. If above chance, the model has learned a useful pattern in the data.  
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However, there are caveats to taking a machine learning approach over an association study 

approach. Results, especially with complex trained models, may not as interpretable as an 

association study, because as the structure of the learned model increases in complexity, the 

contribution of each feature is more difficult to discern, as is the nature of feature-feature 

interactions. In addition, the amount of cases required to make accurate predictions increases as 

the complexity of the predictions being made increases. In other words, predicting treatment 

response to a complex disorder such as depression will require more patient cases to learn than 

learning to determine whether a line drawn on a piece of paper is horizontal or vertical. 

1.3 Machine Learning Regulation 

The FDA is a regulatory body in the United States that is broadly responsible for protecting 

consumers by assessing the safety, efficacy, and security of foods, drugs, electronics, medical 

devices, cosmetics, and tobacco (FDA, 2019b). Within medical devices, machine learned models 

are classified as Software as a Medical Device (SaMD), and include software for the treatment, 

diagnosis, cure, mitigation, or prevention of disease. Moving machine learned models from a 

research environment to being deployed in a clinical environment (i.e. “bench to bedside”) 

requires FDA approval in the United States. Health Canada has a similar scope compared to the 

FDA (Health Canada, 2017). The FDA clearly defines what does not constitute a SaMD: tools 

for administrative support or lifestyle enhancement, tools acting as electronic medical records, 

tools for data manipulation/visualization, and tools for specific, limited cases of clinical decision 

support (FDA, 2019).  

 

The IMDRF (International Medical Device Regulators Forum) has proposed a risk categorization 

framework for SaMD’s, where tools fall into three levels of information significance: (1) 

diagnosis/treatment tools, (2) clinical management drivers, and (3) clinical management 
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information support. Within each category, tools are divided by the state of condition to which 

they are applied: critical, serious, and non-serious (Medical Device Working Group, 2014). 

Based on the combination of information significance and seriousness of condition, tools are 

assigned an impact level from I-IV, which defines the risk associated with deploying the tool in a 

clinical environment. 

 

In an attempt to better define which tools need regulation, the IMDRF’s proposal has been 

integrated into the FDA’s proposed AI/ML regulatory framework for SaMD’s. The motivation 

behind the creation of the FDA’s framework is that currently, only “locked” algorithms- those 

where a given input will produce a deterministic (as opposed to stochastic) output- are regulated 

(and therefore, able to be deployed). Specifically, regulations currently require resubmission 

each time a change to the algorithm is made, and do not cover adaptive algorithms: those in 

which a given input may produce different outputs based on changes in the behaviour of the 

algorithm after it learns from new data available (FDA, 2019).  

 

With these changes, the FDA hopes to harmonize AI/ML development around four development 

principles (FDA, 2019): 

1. Quality control & software best practices 

2. Safety & efficacy testing of premarket software 

3. Incorporation of risk management practices & performance monitoring 

4. Creation of a transparent system focusing on real-world performance reporting 

 

As a result, adaptive machine learning algorithms are poised to become viable, regulated tools 

that can be deployed in clinical settings. Some outcomes of this deployment are still difficult to 

anticipate. For example, the effect of digital mental health apps on a digital therapeutic alliance 
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(i.e. between the patient and the app) is unclear: one review of the literature suggested that a lack 

of standardized outcome measurement to evaluate this alliance prevented conclusions from being 

drawn (Henson et al., 2019). Another suggested that it is simply too early to see the effects of 

these algorithmic approaches: although artificial intelligence and machine learning innovations 

directed at reducing suicide are currently nascent, clinical impact will be seen within 2-5 years 

(Torous et al., 2018).  

1.4 Thesis Statements 

The goal of this thesis is to contribute to the fields of data-driven medicine and computational 

psychiatry by attempting to demonstrate the viability of machine learning for use in psychiatry, 

specifically in predicting treatment outcomes for major depression. This is attempted in four 

ways:  

1. Chapter 2 is original research (and an intended article) describing a way to use machine 

learning to produce a learned classifier that takes as input patient clinical features to 

predict symptom remission after eight weeks of a specific antidepressant therapy. 

2. Chapter 3 is original research (and an intended article) describing a way to use automated 

machine learning software for predicting treatment response after eight weeks of 

antidepressant therapy. 

3. Chapter 4 is a literature review updating the reader on progress in how machine learning 

has been applied in the fields of psychiatry and personalized medicine. 

4. Chapter 5 is a viewpoint (and intended article) suggesting changes in psychiatric 

prescribing practice that will occur as a result of deploying machine learning tools. 

 

Chapter 2 uses data from 11 of Pfizer’s desvenlafaxine (DVS; trade name Pristiq) clinical trials 

to demonstrate the construction and use of a machine learned model for predicting treatment 
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outcomes in depression after eight weeks of treatment. Results show that using pre-treatment 

baseline data comprising psychiatric scales, laboratory test data, demographic information, and 

medication-related data, is sufficient to produce a classifier capable of predicting symptom 

remission, defined as a Hamilton Depression Rating Scale (HAM-D) score of ≤ 7, with 69.0% 

accuracy, 6.9% above chance predictions (p<0.05). 

 

Chapter 3 draws from the same dataset, using the automated machine learning software 

(RapidMiner) to train classifiers to predict treatment response, defined as a ≥ 50% reduction in 

symptoms, based on the HAM-D scale. Without including early response data, classifiers were 

only able to predict response at 58.90%; after including early response data, classifiers were able 

to predict response at 70.05% accuracy. 

 

Chapter 4 is framed as a conceptual review of machine learning in personalized medicine and 

psychiatry, focusing on recent applications of machine learning software to psychiatric care 

challenges. It covers four domains: data access, movement away from traditional statistical 

models, knowledge translation (KT) & commercialization of machine learning technology, and 

futurism. Within these domains, the chapter examines the development of Electronic Medical 

Records (EMR’s) as they relate to personalized medicine and the interaction of health data with 

developing technologies such as streaming data and data ownership, the interaction of health data 

and machine learning, the health implementation environment, and current mental health tools 

being deployed commercially. 

 

Chapter 5 is a viewpoint focusing on how we anticipate machine learning will affect clinical 

prescribing practice. Currently, clinical trials focus on demonstrating population-level safety and 

efficacy of new antidepressant drugs, but do not account for variance between individual 
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patients. Deployment of machine learning and learned tools in the clinic will give clinicians the 

ability to compare the probabilities of different antidepressants being effective while minimizing 

and predicting side-effect profiles, on a patient-by-patient basis. This chapter focuses on the 

possible downstream effects of clinical machine learning tool deployment at different levels of 

the healthcare environment. 

 

Among these four chapters, the thesis attempts to demonstrate the viability of using machine 

learning for prediction of psychiatric treatment outcomes, and to articulate how the field of data-

driven medicine is advancing quickly toward widespread use. This work has relevance for 

understanding ways in which machine learning, clinical practice, and future drug development in 

a transition to a future that will be characterized by a more data-driven, outcome-focused 

environment for individual patients. 

  



17 

 

1.5 References 

1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 

(DSM-5®). American Psychiatric Pub; 2013. 991 p. 

2. American Psychiatric Organization (APA). DSM History [Internet]. [cited 2019 Jun 10]. 

Available from: https://www.psychiatry.org/psychiatrists/practice/dsm/history-of-the-dsm 

3. Bados A, Balaguer G, Saldaña C. The efficacy of cognitive-behavioral therapy and the 

problem of drop-out. J Clin Psychol. 2007 Jun;63(6):585–92. 

4. Brown TA, Di Nardo PA, Lehman CL, Campbell LA. Reliability of DSM-IV anxiety and 

mood disorders: implications for the classification of emotional disorders. J Abnorm 

Psychol. 2001 Feb;110(1):49–58. 

5. Burton R. The Anatomy of Melancholy: What it Is, with All the Kinds, Causes, Symptoms, 

Prognostics and Several Cures of it. John C. Nimmo; 1886. 558 p. 

6. First MB, Spitzer RL. The DSM: Not Perfect, but Better Than the Alternative. Psychiatric 

Times [Internet]. 2003 Apr 1 [cited 2019 Jun 12]; Available from: 

https://www.psychiatrictimes.com/dsm-not-perfect-better-alternative 

7. Gartlehner G, Hansen RA, Morgan LC, Thaler K, Lux L, Van Noord M, et al. Comparative 

benefits and harms of second-generation antidepressants for treating major depressive 

disorder: an updated meta-analysis. Ann Intern Med. 2011 Dec 6;155(11):772–85. 

8. Grob GN. Origins of DSM-I: a study in appearance and reality. Am J Psychiatry. 1991 

Apr;148(4):421–31. 

9. Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry. 1960 

Feb;23:56–62. 

10. Health Canada. Health Portfolio - Canada.ca [Internet]. 2017 [cited 2019 Jun 14]. 

Available from: https://www.canada.ca/en/health-canada/corporate/health-portfolio.html 



18 

 

11. Henson P, Wisniewski H, Hollis C, Keshavan M, Torous J. Digital mental health apps and 

the therapeutic alliance: initial review. BJPsych open [Internet]. 2019;5(1). Available from: 

https://www.cambridge.org/core/journals/bjpsych-open/article/digital-mental-health-apps-

and-the-therapeutic-alliance-initial-review/84D2BF70EEA1EAD7E681FF012651B55E 

12. Hippocrates. Works of Hippocrates, Vol. I–IV. (Trans. W. H. S. Jones & E. T. 

Withington). Cambridge, MA: Harvard University Press; 1923-1931. 

13. Horwitz AV, Wakefield JC, Lorenzo-Luaces L. History of Depression. In: The Oxford 

Handbook of Mood Disorders. 2016. p. 1–24. 

14. Houts AC. Fifty years of psychiatric nomenclature: reflections on the 1943 War 

Department Technical Bulletin, Medical 203. J Clin Psychol. 2000 Jul;56(7):935–67. 

15. Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, et al. Research domain 

criteria (RDoC): toward a new classification framework for research on mental disorders. 

Am J Psychiatry. 2010 Jul;167(7):748–51. 

16. Insel T. Post by Former NIMH Director Thomas Insel: Transforming Diagnosis [Internet]. 

National Institute of Mental Health. 2013 [cited 2019 Feb 10]. Available from: 

https://www.nimh.nih.gov/about/directors/thomas-insel/blog/2013/transforming-

diagnosis.shtml/index.shtml 

17. Kaplan HI. Kaplan & Sadock’s Comprehensive Textbook of Psychiatry. Wolters Kluwer 

Health/Lippincott Williams & Wilkins; 2009. 4520 p. 

18. Lawlor C. From Melancholia to Prozac: A History of Depression. OUP Oxford; 2012. 265 

p. 



19 

 

19. Lieblich SM, Castle DJ, Pantelis C, Hopwood M, Young AH, Everall IP. High 

heterogeneity and low reliability in the diagnosis of major depression will impair the 

development of new drugs. BJPsych Open. 2015 Oct;1(2):e5–7. 

20. Masand PS. Tolerability and adherence issues in antidepressant therapy. Clin Ther. 2003 

Aug;25(8):2289–304. 

21. Medical Device (SaMD) Working Group. “Software as a Medical Device”: Possible 

Framework for Risk Categorization and Corresponding Considerations. In International 

Medical Device Regulators Forum; 2014. 

22. nbn2r.org - NBN New Knowledge, New Nomenclature [Internet]. [cited 2019 Jun 12]. 

Available from: http://nbn2r.org/ 

23. Neuroscience-based Nomenclature [Internet]. European College for 

Neuropsychopharmacology (ECNP). [cited 2019 Jun 12]. Available from: 

https://www.ecnp.eu/research-innovation/nomenclature.aspx 

24. NIMH » Discussion [Internet]. National Institute of Mental Health. [cited 2019 Jun 12]. 

Available from: https://www.nimh.nih.gov/research/research-funded-by-

nimh/rdoc/discussion.shtml 

25. NIMH » RDoC Matrix [Internet]. National Institute of Mental Health. [cited 2019 Jun 12]. 

Available from: https://www.nimh.nih.gov/research/research-funded-by-

nimh/rdoc/constructs/rdoc-matrix.shtml 

26. Olfson M, Mojtabai R, Sampson NA, Hwang I, Druss B, Wang PS, et al. Dropout from 

outpatient mental health care in the United States. Psychiatr Serv. 2009 Jul;60(7):898–907. 



20 

 

27. Regier DA, Narrow WE, Clarke DE, Kraemer HC, Kuramoto SJ, Kuhl EA, et al. DSM-5 

field trials in the United States and Canada, Part II: test-retest reliability of selected 

categorical diagnoses. Am J Psychiatry. 2013 Jan;170(1):59–70. 

28. SAS. Machine Learning: What it is and why it matters [Internet]. SAS Analytics Insights. 

2019 [cited 2019 Jun 13]. Available from: 

https://www.sas.com/en_ca/insights/analytics/machine-learning.html 

29. Shamir D, Szor H, Melamed Y. Dropout, early termination and detachment from a public 

psychiatric clinic. Psychiatr Danub. 2010 Mar;22(1):46–50. 

30. Shorter E. The history of nosology and the rise of the Diagnostic and Statistical Manual of 

Mental Disorders. Dialogues Clin Neurosci. 2015 Mar;17(1):59–67. 

31. Smith K. Mental health: a world of depression. Nature. 2014 Nov 13;515(7526):181. 

32. Torous J, Larsen ME, Depp C, Cosco TD, Barnett I, Nock MK, et al. Smartphones, 

Sensors, and Machine Learning to Advance Real-Time Prediction and Interventions for 

Suicide Prevention: a Review of Current Progress and Next Steps. Curr Psychiatry Rep. 

2018 Jun 28;20(7):51. 

33. U.S. Food and Drug Administration. About FDA [Internet]. U.S. Food and Drug 

Administration (FDA). 2019b [cited 2019 Jun 14]. Available from: 

http://www.fda.gov/about-fda 

34. US FDA Artificial Intelligence and Machine Learning Discussion Paper; 2019. Available 

from: 

https://www.fda.gov/downloads/MedicalDevices/DigitalHealth/SoftwareasaMedicalDevice

/UCM635052.pdf 



21 

 

35. van de Meent J-W. Unsupervised Machine Learning and Data Mining [Internet]. DS 5230 / 

DS 4420 Class Notes; 2018; Northeastern University. Available from: 

https://course.ccs.neu.edu/ds5230f18/assets/slides/ds5230-f18-lecture-01.pdf 

36. Wikipedia contributors. Diagnostic and Statistical Manual of Mental Disorders [Internet]. 

Wikipedia, The Free Encyclopedia. 2019 [cited 2019 Jun 12]. Available from: 

https://en.wikipedia.org/w/index.php?title=Diagnostic_and_Statistical_Manual_of_Mental

_Disorders&oldid=898942134 

37. Wikipedia contributors. Humorism [Internet]. Wikipedia, The Free Encyclopedia. 2019 

[cited 2019 Jun 7]. Available from: 

https://en.wikipedia.org/w/index.php?title=Humorism&oldid=899951997 

38. World Health Organization (WHO). ICD-10 Version:2016 [Internet]. 2016 [cited 2019 Jun 

12]. Available from: https://icd.who.int/browse10/2016/en 

39. World Health Organization. The ICD-10 classification of mental and behavioural 

disorders: clinical descriptions and diagnostic guidelines. Geneva: World Health 

Organization; 1992. 

  



22 

 

Chapter 2. Using machine learning to predict remission in patients with major 

depressive disorder treated with desvenlafaxine. 

James RA Benoit, MA1*, Serdar M Dursun, MD1, Russell Greiner, PhD2, Bo Cao, PhD1, 

Matthew RG Brown, PhD1, Raymond W Lam, MD3, Philip Cowen, MD4, Andrew J Greenshaw, 

PhD1 

 

1 Department of Psychiatry, University of Alberta, 1E1 Walter Mackenzie Health Sciences 

Centre, 8440 112 St NW, Edmonton, Alberta, Canada, T6G 2B7 

 

2 Department of Computing Science, University of Alberta, 2-32 Athabasca Hall, Edmonton, 

Alberta, Canada, T6G 2E8  

 

3 Department of Psychiatry, University of British Columbia, Detwiller Pavilion, 2255 Wesbrook 

Mall, Vancouver, BC, Canada, V6T 2A1 

 

4 Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX 

 

* Corresponding Author 

  



23 

 

Abstract 

 

Background 

Major depressive disorder (MDD) is a common and burdensome condition that has low rates of 

treatment success. Although antidepressant medications are effective for MDD, remission rates 

are low and patients often require several medication switches to achieve remission. Hence, 

selecting an effective antidepressant is primarily determined by trial and error. Techniques using 

machine learning hold potential for predicting treatment success with a particular medication. 

This study uses baseline clinical data in creating machine learning models that learn to predict 

remission status after desvenlafaxine (DVS) treatment. 

Methods 

We applied machine learning algorithms to data from 3776 MDD patients in 11 phase-III/IV 

clinical trials, to produce a model predicting symptom remission, defined as an 8-week Hamilton 

Depression Rating Scale (HAM-D) score of 7. We trained the model on a randomly selected 

90% of the data (n=3399), then evaluated that learned model on a holdout set (n=377).  

Outcomes 

Our resulting classifier, a trained linear support vector machine (SVM), had a holdout set 

accuracy of 69.0%, significantly greater than the probability of classifying a patient correctly by 

chance. We demonstrate that this learning process is stable by repeatedly sampling part of the 

training dataset and running the learner on this sample, then evaluating the learned model on the 

non-sample instances of the training set; these runs had an average accuracy of 67.0% +/- 1.8%. 

Our model, based on 26 clinical features, proved sufficient to predict DVS remission 

significantly better than chance. This may allow more accurate use of DVS without waiting 8 
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weeks to determine treatment outcome, and may serve as a first step towards changing 

psychiatric care by incorporating clinical assistive technologies using machine learned models. 

Funding 

Data for this project were provided by Pfizer Inc. through a data sharing partnership with the 

University of Alberta. 
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2.1 Background 

It is important for clinicians to identify the best treatment for patients with major depressive 

disorder (MDD). Unfortunately, when selecting a pharmacological treatment, there are currently 

no accepted, empirically-based clinical care strategies for determining which antidepressant is 

most likely to be efficacious and well-tolerated. Selecting an antidepressant generally relies on 

clinical features and side effect profile (Kennedy et al., 2016). However, meta-analyses of 

clinical trials for newer antidepressants found 37% of patients do not achieve response  (a 

relative reduction in symptoms) and 53% do not achieve remission (expressing less than an 

absolute threshold of symptoms) following 6-12 weeks of treatment (Gartlehner et al., 2011). 

These are troubling statistics, especially as early effective treatment of depression may improve 

functional recovery outcomes (Habert et al., 2016), and each treatment failure increases the 

chance of overall failure and increases treatment times (Kennedy et al., 2016). Unfortunately, 

there are currently no reliable, well-validated tests that identify the best treatment for each 

patient, as we cannot accurately predict a patient’s individual response to any antidepressant 

treatment. Hence, prescribing an effective antidepressant remains a trial-and-error process.   

 

Many clinicians now rely on the DSM-5 framework of symptom clusters as a primary 

information source for diagnosis (APA, 2013). However, the DSM-5 does not incorporate patient 

genetics, physiology, nor other domains of information that may contribute to improved 

diagnostic stratification and treatment recommendation, such as those found in other diagnostic 

approaches such as the Research Domain Criteria (RDoC) (Insel et al., 2010). In addition, test-

retest reliability for many DSM-5 diagnoses is questionable: studies have found less than 25% 

agreement between interviewers for the diagnosis of MDD in DSM-5 field trials (Regier et al., 

2013). While multi-domain diagnosis is still early in development and unlikely to replace the 
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DSM-5 in the near future, guidelines for personalized treatment plans to enhance treatment 

efficacy are beginning to emerge (Oluboka et al., 2018). In this study, the clinical trials used 

were conducted between 2003-2011, using the previous version of the DSM, the DSM-IV-TR 

(APA, 2000) for diagnosis, which showed better agreement between physicians between 35-63% 

for MDD (kappa of 0.67; Brown et al., 2001). 

 

Precision medicine attempts to identify which specific patients will respond to each specified 

treatment using models that can incorporate all available patient information. This approach uses 

outcomes, rather than symptom clusters, to divide patients into treatment groups, allowing for a 

data-driven approach. Machine learning, a subfield of artificial intelligence, includes techniques 

that lead to a precision medicine approach, as they are able to create accurate models of 

pharmacotherapy response, using potentially any type of patient information, including easily 

collected clinical measures (e.g. demographics, Hamilton Depression Rating Scale (HAM-D) 

items) (Chekroud et al., 2016; Hamilton, 1960). A major focus of machine learning in psychiatry 

has been producing models that diagnose mental health disorders, using neuroimaging data, 

including variants of Magnetic Resonance Imaging (MRI; e.g. the ADHD-200 competition) 

(Brown et al., 2012). Using machine learning tools to predict medication efficacy using patient 

information would move prescribing from inferential, trial-and-error practice to more precision 

medicine.  

 

In this study, we applied machine learning to a large, global, multi-site dataset from eleven 

phase-III/IV clinical trials of the serotonin and norepinephrine reuptake inhibitor (SNRI), 

desvenlafaxine succinate (DVS). DVS is the primary active metabolite of the SNRI venlafaxine 

(thereby avoiding venlafaxine’s interaction and metabolism by the liver enzyme CYP2D6), 
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acting as a reuptake inhibitor for both serotonin and norepinephrine with minimal effect on 

dopamine (Deecher et al., 2006).  

 

The objective of this study was to develop a predictive model for treatment remission using 

baseline clinical information. This model’s performance was evaluated on novel data, and the 

stability of its predictive accuracy confirmed on subsamples of the dataset. 

2.1.1 Research in Context 

 

2.1.1.1 Evidence before this study 

Predicting symptom remission is important in MDD because of the high (>50%) number of 

patients who fail to remit following treatment. We searched PubMed from inception to Feb 15 

2019, using the string (depression OR "major depressive disorder" OR MDD) AND ("machine 

learning" OR "treatment prediction" OR "response prediction"), with text available in any 

language. Of the 295 articles retrieved, we reviewed abstracts of the 78 where depress* AND 

predict* were in the title, and read full text articles based on abstract relevance.  

 

We found that there are two groups of studies: those working with small, in-house datasets, 

versus others using large-scale databases such as the STAR*D; 11 had a sample size >500. The 

most-used scales in predictive outcome assessment were the HAM-D, Montgomery-Åsberg 

Depression Rating Scale (MADRS), and Quick Inventory of Depressive Symptomatology 

(QIDS) scales. We identified no other studies that synthesized multiple clinical trials into a 

single dataset for building predictive models of treatment response, nor built a model of 

treatment response prediction for DVS. 
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2.1.1.2 Added value of this study 

First, we introduced a competing models approach to find the most effective of a group of 

machine learning algorithms at predicting patient response. Second, we expanded our scope 

beyond a large single-country trial (STAR*D) to using global data from multiple clinical trials, 

spanning 23 countries and 5 continents, with a large single-drug sample. We also expanded on 

previous methods of feature selection by applying a consistency-based feature selection method, 

which reduced the initial set of 92 clinical features down to 26 features, while demonstrating that 

the features picked were consistent across subsets of data. 

2.1.1.3 Implications of all the available evidence 

We show (1) that it is possible to synthesize multiple clinical trials into a large single dataset that 

can be used effectively for creating predictive models of MDD symptom remission; and (2) that 

the application of machine learning techniques to multimodal clinical trial data (psychiatric 

scales, lab tests, and demographic data) is beneficial for predicting symptom remission in MDD. 

2.2 Methods 

 

2.2.1 Datasets 

The clinical trial data included in this study were drawn from 11 DVS clinical trials. We selected 

studies that were completed phase III/IV DVS trials with adult participants, and had a Hamilton 

Depression Rating Scale (HAM-D) outcome measure (Hamilton, 1960). Data were obtained 

through a data access agreement between Pfizer Inc. and the University of Alberta. This study 

was approved by the University of Alberta Research Ethics Board, study Pro00064974, and all 

patients involved gave written consent for their anonymized data to be used. 
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As shown in Table 2.1, our dataset combined data from 11 phase-III/IV DVS clinical trials 

carried out between 2003 and 2011, with a total enrollment of 7051 patients. After data cleaning 

and preprocessing, our dataset included 3776 patients: a training set of 3399 patients, and a 

holdout set of 377 patients (a randomly-selected 10% of the participant group was held aside 

from the machine learning process; see Table 2). The primary reason behind the reduction from 

7051 patients to 3776 patients was a lack of week-8 HAM-D score, due to missing data or patient 

drop-out. 

Table 2.1. Clinical trial characteristics 

Dataset Locations DVS Remit % 

(included 

subjects) 

Year 

NCT01309542 Estonia,   Finland,   Former Serbia and 

Montenegro,   France,   Germany,   Latvia,   

Lithuania,   Poland,   Slovakia,   South Africa,   

United States 

56.7 2003-

2006 

NCT00384033 United States 26.3 2006-

2007  

NCT00445679 China,   India,  Republic of Korea, Taiwan 45.9 2007-

2009 

NCT00406640 Argentina,   Chile,   Colombia,   Mexico,   Peru,   

United States 

43.7 2006-

2008 

NCT00369343 United States 40.6 2006-

2008 

NCT00798707 Japan,   United States 20.8 2008-

2010 

NCT00863798 United States 20.3 2009-

2010 

NCT01121484 United States 23.5 2010-

2011 

NCT00824291 United States, Canada 38.0 2009 
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NCT00300378 Croatia,   Estonia,   Finland,   France,   Latvia,   

Lithuania,   Poland,   Romania,   Slovakia,   South 

Africa 

35.1 2006-

2007 

NCT00277823 United States 41.2 2006-

2007 

 

2.2.2 Inclusion criteria 

Patient inclusion criteria were: a primary diagnosis of MDD, treated in a DVS monotherapy arm 

of a trial, and completion of a 17-item HAM-D assessment at both baseline and 8 weeks. Patients 

were excluded if they had comorbid psychiatric diagnoses.  

 

Table 2.2. Dataset statistics: mean demographic information and HAM-D scores for 

training and holdout sets. 

 
Training Holdout  

n 3399 377 

Age (years) 44.0 43.6 

Sex (% Female) 69.8 67.9 

Ethnicity (% White) 65.1 65.0 

HAM-D Baseline 21.3 21.3 

HAM-D Week 8 10.9 11.3 

Remission Rate % 37.9 37.9 

 

2.2.3 Outcome measures 

We assessed treatment outcomes according to the clinician-reported 17-item HAM-D, obtained 

8-weeks after the start of the trial, with the key outcome symptom of remission defined by a 

HAM-D score of 7 (Trivedi et al., 2006).  
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2.2.4 Features considered  

Our training dataset D included 92 features, whose values were known for each patient at the 

start of the trial: psychiatric scale items (i.e. individual items from the Clinical Global 

Impressions Scale (CGI) (Guy, 1976), MADRS (Montgomery & Asberg, 1979), and HAM-D, 

demographic data (e.g. age, ethnicity), lab tests (e.g. free T4, white blood cell count), and adjunct 

medications including non-prescription drugs and supplements, summarized by a single feature 

indicating degree of polypharmacy at baseline: “How many different pills do you take each 

day?” We filled missing data points (e.g. a patient was missing the value for age), using mean 

imputation. 

2.2.5 Predictive model 

We applied our machine learning algorithm, which we call Concure (as it chose consistently 

picked features), to the labeled training dataset, D. This training dataset describes each patient 

using a set of clinical features, drawn from baseline measures taken when that patient entered the 

clinical trial. Each patient has a label of either “Remit” or “Non Remit”, depending on whether 

that patient remitted at 8 weeks, indicated by a HAM-D score of 7.  Using the training data, 

Concure returned a trained classifier, called CConcure(.), that predicts whether a novel patient, with 

his or her own values for these features, would experience symptom remission at 8 weeks. 

CConcure(Patient A) = Remit means  CConcure predicts patient A will remit, while CConcure(Patient B) = 

Non-Remit means  CConcure predicts patient B will not remit. Note that the Concure learner trains a 

classifier based on a set of labeled training data (here, D). That classifier then predicts a label for 

a novel patient; see Figure 1. 
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Figure 2.1. Distinguishing between the learning process (here using the “Learner 

(Concure)”; top to bottom) and the performance process using the classifier produced by 

the Learner (here, “Classifier (CConcure)”; left to right ). 

 

The Concure learner involves 3 sequential steps: (1) Identify the subset of features f* that appear 

most informative for predicting remission vs non-remission; (2) identify the best “base learner,” 

BL*  using these features (described below); and (3) run that BL* on the dataset projected onto the 

feature subset f*. Concure initially selects features from each training fold’s data using Lasso, 

then takes the intersection of these features to form a feature subset f*. Concure then considered 

11 base learners (each is an algorithm that produces a classifier from a training dataset; see 

Appendix) and found that a linear support vector machine (SVM) classifier did best. It then ran a 

linear SVM learner on all the labeled training data, using the feature set f*, to produce a final 

trained classifier, CConcure  (see section 2.7, Supplementary Materials, for details of this process). 
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We estimate CConcure‘s predictive accuracy in two ways. We chose “accuracy” (see section 2.7, 

Supplementary Materials, for equation) as our performance measure as it equally weights type I 

and II error. First, we use (external) cross-validation over the training data, D: Here, we run the 

entire Concure learning process (including the feature selection (Brown G et al., 2012), base 

learner selection, etc.) five times, each time on ⅘ of D, and evaluate that classifier on the 

remaining ⅕ of D (hence, evaluating it on the portion that it was not trained on). We report the 

average as an estimate. (Section 2.7, Supplementary Materials, provides a formal description of 

this process.) 

 

Second, we applied the trained CConcure classifier to our patient holdout dataset to determine whether 

this model generalizes to novel patients from datasets that were entirely separate from the dataset 

used to train the classifier. This returned a single accuracy value. To assess whether that 

accuracy value is significantly different from chance, we used bootstrapping, based on 10,000 

draws-with-replacement of size n=377 from the holdout set. The p-value for significance is 

determined by computing the percentage of sample means falling below the “chance probability” 

of correctly classifying a patient by guessing that all patients were non-remitters (here, 62.1%, 

corresponding to the majority class of patients, non-remitters). 

2.3 Results 

2.3.1 Feature selection 

The feature subset f*was found to include 26 features (grouped by feature type): 

1) Nine Countries of Origin (with each country considered as an individual binary feature): 

Argentina, Canada, China, Colombia, Croatia, Finland, Japan, Mexico, and USA. 

2) One Ethnicity (American Indian/Alaska Native) 

3) Eight HAM-D Scale Items: 

i) Anxiety/Somatic (anxiety concomitants, e.g. headaches, sweating) 
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ii) Feelings of Guilt (including rumination, delusions, hallucinations of guilt) 

iii) Genital Symptoms 

iv) Loss of Insight 

v) Insomnia/Early (difficulty falling asleep) 

vi) Somatic Symptoms/Gastrointestinal 

vii) Somatic Symptoms/General (e.g. muscle ache, loss of energy, fatigability) 

viii) Work & Activities (e.g. difficulty working or doing hobbies, being productive) 

4) Three MADRS Scale Items: 

i) Apparent sadness 

ii) Pessimistic thoughts 

iii) Reported sadness 

5) One measure of Polypharmacy (medication count including supplements, non-prescription 

drugs) 

6) Four lab tests: 

i) Albumin 

ii) Creatinine 

iii) Potassium 

iv) Urine pH 

 

2.3.2 Classifier selection 

The classifier learned by the SVM base learner, CSVM, was consistently the most accurate of the 

11 trained classifiers tested, in the internal cross-validation folds. This classifier considers the 26 

selected features in 26-dimensional space and generates a hyperplane that best separates the two 

classes.    

2.3.3 Estimating the quality of Concure 

As mentioned above, we evaluated our results in two ways. First, the 5-fold cross-validation 

accuracy (with respect to the training set) was 67.0% +/- 1.8% (SD). A two-tailed t-test shows 

this is significantly different from the 62.1% chance accuracy, p=0.0065. 
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2.3.4 Model validation, for CConcure 

Second, to explore the external generalizability of our learned 26-item CConcure model, we tested it 

on holdout data (n= 377, 37.9% remitters, 62.1% non-remitters). Its mean accuracy was 69.0%. 

We built an empirical distribution based on 10,000 bootstrap samples (SD = 2.4%), which was 

significantly different from chance accuracy at p = 0.0025; see Fig. 3.  

 

Figure 2.2. Holdout data bootstrap, mean accuracy= 69.0%, chance accuracy= 62.1%, 

10000 samples, n= 377/run, p= 0.0025 

2.4 Discussion 

Our Concure learning algorithm produced a classifier capable of identifying, with better-than-

chance performance, whether new patients diagnosed with MDD will experience symptom 

remission after 8 weeks of DVS monotherapy. This classifier demonstrates that a simple model, 

using 26 easily-obtained clinical features at baseline, can predict symptom remission at better 
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than chance levels, even when applied to a heterogeneous holdout dataset not used to train the 

classifier. 

 

For comparison to other studies, the clinical features suggested in Chekroud et al.’s (2016) model 

include six HAM-D items: overall score, loss of insight, somatic energy (equivalent to somatic 

symptoms/general), somatic anxiety, delayed insomnia, and suicidality. Even though their model 

was predicting response to a different antidepressant, citalopram, our models shared three HAM-

D features: loss of insight, somatic anxiety, and somatic energy. Interestingly if we split HAM-D 

items into four previously proposed symptom clusters based on principal component analysis 

(mood, sleep/psychic anxiety, weight/somatic anxiety, and insight/appetite) (Trivedi et al., 2005), 

both models contain HAM-D items from all four clusters. This may suggest that predicting 

treatment outcomes will be strongest in models that capture and consider multiple MDD 

subtypes.  

 

Comparing our model to Iniesta et al.’s combined outcome prediction model for escitalopram 

and nortriptyline (Iniesta et al., 2016), our model shared MADRS apparent sadness and HAM-D 

work & activities. Apparent sadness relates to a core feature of MDD (mood) and is therefore an 

expected feature to be included in models of treatment outcome, and workplace functioning has 

previously been shown to be improved by both DVS and escitalopram (Lee et al., 2018).  

 

Because our machine learning approach is agnostic in its consideration of features, it chose a 

disparate set of both expected and unexpected features.  Of the 26 features selected, 11 were 

items from well-validated psychiatric scales: 8 based on HAM-D items, and 3 on MADRS items. 
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It also included nine countries of origin, one ethnicity feature, four lab tests, and one measure of 

polypharmacy.  

 

Inclusion of the HAM-D “loss of insight” item is unexpected, as it is the least frequently 

occurring symptom of depression at baseline, and shows the least change of any item at 

treatment termination (McIntyre et al., 2002). However, this result is consistent with the findings 

of Chekroud et al. (Chekroud et al., 2016), suggesting that the machine learner finds value in 

including this feature across datasets and methodologies. 

 

The polypharmacy feature was also used as a predictor of DVS efficacy, even though the simple 

nature of the item (number of pills taken daily by the patient) does not allow a fine-grained 

model for each adjunct medication. As there were 1507 different medications and other 

supplements listed that varied across patients, adding each one to the model would likely 

increase the risk of overfitting. 

 

The lab findings were also unexpected features based on previous work. Albumin is typically not 

associated with remission from MDD: it is only mentioned in studies examining depression in 

patients with comorbid advanced kidney disease and cancer (Jhamb et al., 2018). Increased 

creatinine level has been associated with increased polypharmacy in older adults (Ersoy & 

Engin, 2018). As polypharmacy is also a feature in our machine learning prediction model, these 

may represent a latent predictive feature underlying both. Urine potassium has been weakly 

associated with fatigue and cortisol levels in subjects on a low-sodium-high-potassium diet 

(Torres, Nowson & Worsley, 2008), but there is currently no evidence that links it directly to 

remission from MDD. Similarly, the literature does not link urine pH with depression. 
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In addition, the specific features used by Concure are very convenient, as they are easily 

obtainable in low income jurisdictions and marginalized populations, with limited or no access to 

advanced medical technology such as MRI.   

 

We had a choice of using MADRS, CGI, or HAM-D scales to assess patient outcome. We 

selected the HAM-D since it has been a “gold standard” for 40+ years of MDD research (Bagby 

et al., 2004), and is one of the three FDA-accepted endpoints for assessing antidepressant 

efficacy (CDER, 2018). We hope to expand this method in future studies in two ways (with the 

caveat that each would require a demonstration of construct validity). First, testing scale-based 

outcomes against patient self-assessments of remission would allow us to create a better proxy 

measure conducive to predictive modeling. Second, using as outcome a label that combines 

symptomatic and functional assessment (e.g. HAM-D and Sheehan Disability Scale) would 

allow a combined outcome that incorporates both functional and symptomatic remission, giving 

a more complete picture of whether a patient responded to treatment (Sheehan et al., 2017).  

 

While the features selected have proven to be sufficient for significantly above-chance 

predictions, this analysis does not show them to be causally related to remission of depression 

(Pearl, 2009). While the literature has described associations between these features and 

depression treatment response, a different learning process (on this or a similar dataset) might 

select an entirely different set of features. That is not to say the features selected are irrelevant: 

given novel patient data, the analysis suggests that our trained classifier should accurately predict 

remission in 69.0% of patients taking DVS. 
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Other work in predicting MDD treatment outcomes has focused on applying a single learned 

algorithm to multiple cohorts. While useful for external validation of the model, those authors 

suggested that the models learned were specific to the mechanism underlying a particular 

treatment and might not generalize well across medications. 

 

We had to contend with missing data, which we addressed in a very simple way: mean 

imputation. We tried an alternative strategy, median imputation, but found this preprocessing 

step did not lead to classifiers that could accurately classify new patients as remitters versus non-

remitters. In some cases, we excluded features missing entirely from some datasets (e.g. BMI, a 

factor found to be important for treatment response prediction in another study) (Iniesta et al., 

2016). Our results could also have benefitted from more modalities of data (such as imaging or 

molecular data), as these pooled models have been shown to sometimes outperform models with 

fewer data types (Lee et al., 2018). We also used data from strictly controlled clinical trials, 

combined across many countries that do not mirror a clinical environment, and therefore patient 

behaviour may differ in the real world (e.g. less strictly monitored medication adherence).  

 

We plan to use this method to predict how MDD symptoms and symptom clusters respond to 

DVS monotherapy. For example, do patients with more severe somatic symptoms respond more 

consistently than patients with more severe mood symptoms? Based on patterns of these features, 

we may investigate whether subtypes of treatment response can be typified, and whether these 

subtypes of response can be matched to subtypes of depression, and hence to treatment response. 

It would be interesting to discover how well our algorithms work in other trials and larger 

datasets, and to discover a classifier with a stable set of features that accurately predicts 

remission across medications and trials. 
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Unlike previous work in MDD treatment response prediction, we had the opportunity to train a 

classifier on data that came from patients in many different health systems, with many different 

standards of care. Despite these differences, our learned model performed with significantly 

better-than-chance accuracy on holdout data, which suggests that global, multi-site clinical trial 

data can be combined for predictive modeling of treatment response. 

In addition, we have not yet explored an entire sector of participants in clinical trials: the placebo 

group. Predicting placebo responders would be a first step toward addressing this confound in 

clinical trials, and may lead to more effective testing of new medications. This would allow us to 

remove subjects from treatment response prediction who are likely to have a high placebo 

response. Machine learners run on a group of patients likely to exhibit low placebo response 

would be better at predicting medication effects alone, as opposed to our current prediction of 

medication with placebo effects. 

 

In summary, this machine learning approach is an important step forward for clinical practice, 

because it demonstrates the feasibility of using easily collected baseline data to improve 

prediction of antidepressant efficacy. A significant improvement in accuracy of predicting 

remission over chance confers an advantage to a machine learned strategy over current practice. 

Applied broadly, machine learned models of treatment prediction may change clinical practice in 

two ways. First, classification models (such as the one in this study) can identify which patients 

are likely to remit, for a specified drug. Second, machine learning regression models may allow 

clinicians to compare remission probabilities of many drugs, towards identifying the best class of 

drugs (or the best for a given cost, in terms of dollars, or for side effects. These two advantages 

will help clinicians target both a class of drugs and an individual drug, based on an individual 

patient’s characteristics.  



41 

 

Note regarding clinical dataset selection: one trial (NCT01309542) was open-label with a 

different dose range than other trials. It is possible that including this trial affected trained 

classifier accuracy. It will be interesting to explore the relationship of dose, trial type, and 

classifier performance in future work. 
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2.7 Supplementary Materials 

Table 2.3. List of 92 features included in the training dataset 

Lab Tests HAM-D Demographics 

Albumin Agitation Age 

Alkaline Phosphatase Anxiety/Psychic Sex 

Basophils Anxiety/Somatic Ethnicity 

Bilirubin Depressed mood American Indian or Alaska Native 

Chloride Feelings of guilt Asian 

Cholesterol Genital symptoms Black or African American 

Creatinine Hypochondriasis Hispanic or Latino 

Eosinophils Insight Middle Eastern or North African 

Free T4Z Insomnia/Early Native Hawaiian or Other Pacific 

Islander 

Gamma-glutamyl transferase Insomnia/Middle Other 

Glucose Insomnia/Late White 

HDL Cholesterol Loss of weight Study Location 

Hematocrit Retardation Argentina Poland 

Hemoglobin Somatic symptoms/ 

Gastrointestinal 

Canada Romania 

LDL Cholesterol Somatic symptoms/ General Chile Slovakia 

Lymphocytes Suicide China Taiwan 

Monocytes Work and Activities Colombia United States 

Neutrophils MADRS Germany Yugoslavia 

Platelet count Apparent sadness Estonia South Africa 

Potassium Concentration difficulties Finland 
 

Protein Inability to feel France 
 

Red blood cell count Inner tension Croatia 
 

SGOT (aspartate 

aminotransferase) 

Lassitude India 
 

SGPT (alanine 

aminotransferase) 

Pessimistic thoughts Japan 
 

Sodium Reduced appetite Korea 
 

Triglycerides Reduced sleep Lithuania 
 

Uric acid Reported sadness Latvia 
 

Urine pH Suicidal thoughts Mexico 
 

Urine specific gravity CGI Other 

White blood cell count Severity Polypharmacy count* 
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*Count of each reported prescription/non-prescription medication and supplement taken at 

baseline 

 

2.7.1 Details of the Concure learning algorithm: 

As shown in Figure 2.3 (a), Concure takes an input a labeled dataset D (each row describing a 

patient, and each column a component feature of the patient’s description, along with the 

outcome of Remit or No Remit), and returns a classifier CConcure = Concure(D); that classifier, in 

turn, takes a description of a patient, and returns the remission label.  

 

First, Concure needs to determine the appropriate subset of features to include. To do this, 

Concure partitions the labeled training dataset D into 5 disjoint sets of patients 𝐷 =  𝐷1 ∪ 𝐷2  ∪

 ⋯ ∪  𝐷5, and sets 𝐷−𝑗  =  𝐷 −  𝐷𝑗 .  For each i, Concure fits a Lasso (Least Absolute Shrinkage 

and Selection Operator) model with Lars (Least Angle Regression) using AIC (Akaike 

Information Criterion) to D-j. This produces 5 classifiers, each using its own set of features -- 

here 5 feature subsets { 𝑓1,. . . , 𝑓5 } . Concure computes the intersection of the features of these 

sets to produce a set of common features, 𝑓∗ = 𝑓1  ∩  𝑓2. . . ∩ 𝑓5, and then focuses on just 

these common features within D, which we call D[𝑓∗]. 

 

Next, Concure wants to identify a good base learner BL*.  It considers the following 11 base 

learners {BLi } (more information on each learner can be found on the scikit-learn website, 

scikit-learn.org):  
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7 stand-alone learners:  

● random forest (max tree depth= 5, no bootstrapping, max # features= # input features) 

● extra trees (aka extremely randomized trees, (max tree depth= 5, no bootstrapping, max # 

features= # input features) 

● k nearest neighbors (neighbors = # input features, uses manhattan distance for the 

Minkowski metric) 

● naive bayes (default parameters) 

● decision tree (max tree depth= 5, no bootstrapping, max # features= # input features, uses 

information gain criteria for measuring split quality) 

● (linear) support vector machine (L1 penalty) 

● neural net (initial learning rate= 0.0001, 500 iterations max, 3 hidden layers, each of size 

= ⅔ * # input features) 

 

3 meta-learners that combine a standalone learner in various ways: 

● gradient boosting (loss set to ‘exponential’: recovers AdaBoost algorithm, 2 nodes per 

tree) 

● adaboost (default parameters) 

● bagging (random forest base learner) 

 

A voting learner (MM) is also considered that first trains the three individual meta-classifiers 

shown above, then returns a single trained classifier  CMM. When given a novel patient, CMM 
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returns a label based on the label and confidence in that label given by its 3 trained (meta-) 

classifiers. 

 

To determine the best base learner, Concure needs to estimate the quality of each base learner 

BLi(.).  Here, we would like to first run each such learner on the full dataset D, and then evaluate 

that learned classifier on another test dataset, from the same “target distribution” -- the one that 

gave rise to D.  However, we cannot use D as the test dataset, as the target should be disjoint 

from the training dataset.  So, instead, Concure estimates the quality of applying the base learner 

BLi(.) to D, by instead running BLi(.) on D’, where D’ is similar to D, then evaluating the 

resulting base classifier,  BCi = BLi(D’) on a set D” that is similar to D, but (importantly) is 

disjoint from D’.  
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Figure 2.3. Data splitting process for CConcure 

 

Figure 2.3 shows the data splitting process for (a) 𝐶𝐶𝑜𝑛𝑐𝑢𝑟𝑒 (training & evaluation of a final 

trained classifier  𝐶𝐶𝑜𝑛𝑐𝑢𝑟𝑒∗) , (b) 𝐵𝐿𝑖∗  selection to determine a base learner to be used in 

𝐶𝐶𝑜𝑛𝑐𝑢𝑟𝑒, (c) Training of one of five 𝐶𝑗∗ to provide a meaningful estimate of 𝐶𝐶𝑜𝑛𝑐𝑢𝑟𝑒 quality, 

and (d) 𝐵𝐿𝑖𝑗
∗  selection to determine which base learner will be used for 𝐶𝑗.  

 

Here, we use 5-fold cross-validation, using the same { Di } shown above (but here, using only the 

𝑓∗ features for each). For each j = 1..5, Concure runs each of 11 base learners on 4 of the 5 

subsets  𝐷−𝑗  =  𝐷 −  𝐷𝑗 ; this produces 11 classifiers trained on the 𝑓 ∗projection of 𝐷−𝑗 -- one 

for each base learner -- call each 𝐵𝐶𝑖,−𝑗(. ) for the base learner BLi(.). It then runs each on the 

“held-out’ fifth subset, 𝐷𝑗  -- and uses the results to compute its empirical accuracy:   

𝑎𝑖,𝑗  =   𝑎𝑐𝑐(  𝐵𝐶𝑖,𝑗(. ), 𝐷𝑗  )  =   
1

|𝐷𝑗|
∑(𝑥,𝑦) ∈𝐷𝑗

𝐼[ 𝑦 ==  𝐵𝐶𝑖,𝑗( 𝑥 ) ]   
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where 𝐼[ 𝑦 ==  𝐵𝐶𝑖,𝑗( 𝑥 ) ]   is 1 if 𝑦 is equal to 𝐵𝐶𝑖,𝑗( 𝑥 ) , and is 0 otherwise. 

 

The cross-validation process actually runs this “train on ⅘, then test on remaining ⅕” process 

five times, each time holding-out one of the 5 folds.  This produces 5 values { 𝑎𝑖,1, 𝑎𝑖,2, . . . , 𝑎𝑖,5 }, 

for each base learner 𝐵𝐿𝑖. Concure then computes the average for each 𝐵𝐿𝑖: 

 𝑠(𝐵𝐿𝑖)  =  
1

5
∑5

𝑗=1 𝑎𝑖,𝑗  

then claims the best base learner is the one with the highest score 𝑗∗ =  𝑎𝑟𝑔𝑚𝑎𝑥𝑖{ 𝑠(𝐵𝐿𝑗  ) } .  

Here, Concure(.) found that the SVM base learner had the highest accuracy. (As MM = 𝐵𝐿11, j* 

= 11.) 

 

Given this, Concure then ran the best base-learner 𝐵𝐿𝑗∗ = SVM, on 𝐷[𝑓∗ ] (the 26 feature 𝑓∗ 

projection of the entire dataset D), to produce our trained classifier  𝐶𝐶𝑜𝑛𝑐𝑢𝑟𝑒 (. ). 

 

2.7.2 Estimating Predictive Accuracy of Concure Classifier (𝑪𝑪𝒐𝒏𝒄𝒖𝒓𝒆 ) 

We now want to estimate the predictive accuracy of this resulting 𝐶𝐶𝑜𝑛𝑐𝑢𝑟𝑒 (. ). We obtain this 

estimate by running 5-fold cross -validation: 

 

Here, we again divided 𝐷  into 5 disjoint sets of patients, but now, we ran the entire Concure(.) 

process on each subset 𝐷−𝑗: Concure partitions each 𝐷−𝑗 into 5 partitions, uses those partitions to 

find the best feature set 𝑓∗
𝑗
, then uses 𝐷−𝑗[ 𝑓∗

𝑗
] to find the best base learner, indexed by 𝑖𝑗

∗ , 
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then runs this base learner 𝐵𝐿𝑖
𝑗

∗on 𝐷−𝑗[ 𝑓∗
𝑗
]  to produce a classifier, here 𝐶𝑗  =Concure( 𝐷−𝑗). 

We then run each of these 𝐶𝑗’s on the associated held-out 𝐷𝑗’s, to find its accuracy.  We then 

return the average of these accuracies, as our estimate of the quality of  Concure( D )’s  CConcure . 

 

N.b., the 5 feature sets { 𝑓∗
1

, . . . , 𝑓∗
5

 }may be different for different 𝑗’s, and from Concure(D)’s 

26-feature 𝑓∗ , the various base learners selected {𝐵𝐿1𝑗∗ , . . . , 𝐵𝐿5𝑗∗ }may be different from each 

other, and from Concure(D)’s base learner 𝐵𝐿𝑗∗= SVM, and the classifiers {𝐶1, . . . , 𝐶5} may be 

different from one another, and from Concure( D )’s  CConcure. 

This is irrelevant -- the only reason to generate these 5 𝐶𝑗(. ) classifiers, and then evaluate them 

on their respective held-out subsets, is just to produce the 5 accuracy values, whose average is 

used as an estimate of the quality of running Concure on D. 

 

N.b., the Concure(.) learning process is completely automated, and does not involve any human 

intervention -- in particular, it identified the relevant features, and the best learner, based only on 

the data it sees. 
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Table 2.4. Accuracy comparison of classifiers.  

 
j (fold) 

 

1 2 3 4 5 iaverage 

 

i  

(base learner)  

Random Forest accrf, 1 accrf, 2 accrf, 3 accrf, 4 accrf, 5 accrf 

Extra Trees accet, 1 accet, 2 accet, 3 accet, 4 accet, 5 accet 

Voting (MM) accmm, 1 accmm, 2 accmm, 3 accmm, 4 accmm, 5 accmm 

... ... ... ... ... ... ... 

Linear SVM accsvm, 1 accsvm, 2 accsvm, 3 accsvm, 4 accsvm, 5 accsvm 

 

One classifier is produced from each combination of base learner and fold. Each classifier 

produces one accuracy value. The base learner with the highest average accuracy is chosen as i*  
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Connection Between Chapters 2-3 

Remission or non-remission after eight weeks of desvenlafaxine treatment can be predicted with 

69.0% accuracy, based on a support vector machine (SVM) classifier trained on data from 3399 

patients. The production of this model was accomplished with caveats, both practical and 

theoretical. Practically speaking, it is difficult for non-domain experts in machine learning to 

engage with this software in its current form- in order to do so they must first overcome a large 

knowledge barrier, or collaborate with a domain expert. The broad implications of this barrier are 

that it leads to a lack of engagement of non-experts in the field. In order to move machine 

learning into the realm of general clinical use, and drive communication between experts in 

machine learning and healthcare, the tools being produced  (in this case a learned model) must be 

as interpretable and accessible as possible to all audiences. In addition, experience using machine 

learning tools will create a greater sense of ownership over these new techniques, decreasing the 

barriers for adoption and deployment of machine learning tools. As discussed in the next chapter, 

we attempt to reduce this barrier by introducing automated machine learning software that can be 

learned and applied to data with minimal effort. It requires an understanding of basic data 

structure (i.e. each patient case is a row, each clinical feature a column), and the overall objective 

of using machine learning on clinical data (i.e. predicting something about patients).  

 

In addition, the next chapter considers the role that performance measures play in choosing 

between algorithms and evaluating classifier performance. While common measures such as 

accuracy are useful, interpretable performance measures, other measures such as F1 score and 

ROC-AUC (Receiver Operating Characteristic- Area Under the Curve) may offer information 

that is not as prone to being affected by, e.g., large differences between patient class sizes. 
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Abstract 

Background 

Major depressive disorder (MDD) contributes the most of any disease to the global burden of 

health, as measured in disability adjusted life years. It has low rates of treatment response, and 

few tools are available that contribute to treatment planning based on predictive accuracy: 

selecting an effective antidepressant is primarily determined by trial and error. Patients are often 

required to switch medications several times before one with an acceptable treatment response 

profile is found. Algorithms based on machine learning have potential for predicting treatment 

response; this study uses baseline and two-week data from desvenlafaxine clinical trials for 

creating machine learning models capable of predicting response or non-response after eight 

weeks of desvenlafaxine (DVS) treatment. 

Methods 

We used automated machine learning software, to train machine learning algorithms on data 

from 2860 MDD patients in 11 phase-III/IV desvenlafaxine clinical trials. Nine classifiers were 

trained to predict treatment response, defined as an eight-week Hamilton Depression Rating 

Scale (HAM-D) score of 50% of a patient’s baseline score. We trained each model on 60% of the 

data (n=1716), then evaluated that learned model on a validation set (n=1144), using accuracy as 

a performance measure. A technique called a cost curve was used to determine whether the same 

trained classifier should be used for predicting patient response across different patient 

populations. 

Outcomes 

The best performing classifier was a trained generalized linear model (GLM), at 70.0% accuracy 

on a held-out test set, significantly greater than the 54.0% probability of classifying a patient 

correctly by chance. This model includes six features: CGI-S (Clinical Global Impression-
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Severity) score at baseline, and five HAM-D questions taken from two week early response data: 

anxiety/psychic, feelings of guilt, hypochondriasis, early insomnia, and work/activities.  

We demonstrate through cost curves that the GLM is not significantly outperformed by other 

classifiers tested, suggesting it is sufficient for predicting treatment response across a range of 

patient populations. 

This may allow more accurate use of desvenlafaxine by providing evidence for or against 

continued treatment response by two weeks after treatment onset. This may contribute to 

improving psychiatric care through the incorporation of clinical assistive technologies using 

machine learned models. 

Funding 

Data for this project were provided by Pfizer Inc. through a data sharing partnership with the 

University of Alberta. 
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3.1 Background 

Depression has been aptly described as a “blight” on humanity because of the large number of 

cases (350 million), and years-long duration of disease; half of the world’s population lives with 

negligible access to a psychiatrist for treating this illness (Smith, 2014). Even if every depressed 

patient in the world were provided with a personal psychiatrist giving them appropriate 

pharmacological treatment, the number of cases would only drop to 130 million after one 

treatment attempt: meta-analyses of clinical trials for newer antidepressants found 37% of 

patients did not achieve a response following treatment for 6-12 weeks (Gartlehner, 2011). While 

this is a significant drop, albeit using a rather costly solution, it does not address those 130 

million non-responders. A path toward improving depression treatment outcomes can be 

addressed by improving how delivered treatment outcomes can be optimized for efficacy. 

 

Test-retest reliability for many DSM-5 diagnoses is questionable: studies have found less than 

25% agreement between interviewers for the diagnosis of MDD in DSM-5 field trials (Regier, 

2013). In considering treatment delivery outcomes in depression, there are currently no tests that 

identify the best treatment for each patient, as we cannot accurately predict a patient’s individual 

response to any antidepressant treatment. As a result, the process of prescribing antidepressants 

is based on a sequence of trials, until finding one that is effective. While symptom clusters 

identified in the DSM-5 framework remain a primary information source for diagnosis (APA, 

2013), there is no commonly accepted framework or process for utilizing these data in 

comparing treatment options; e.g., combined low mood and insomnia cannot be used as a 

biomarker indicating which antidepressant should be prescribed. In addition, the DSM-5 does not 

incorporate patient genetics, physiology, nor other domains of information that may contribute to 
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improved diagnostic stratification and treatment recommendation, such as those found in other 

approaches such as the Research Domain Criteria (RDoC) (Insel et al., 2010).  

 

While we anticipate that treatment outcomes could be improved by considering patients’ genetic 

data, physiology, and other domains of information, doing so requires consideration of three 

issues related to care delivery: access to these tests is not widespread, the tests require 

specialized equipment to administer, and the cost of administering these tests is not insignificant; 

an important consideration in resource-scarce healthcare systems. Treatment delivery could be 

improved by, e.g., improving access to psychiatric care (e.g. via telehealth), or via the 

development of protocols that inform nurses and general practitioners which psychiatric 

treatment is most likely to have an effective, tolerable outcome.  

 

In this study, we develop an algorithm that can predict patient treatment response to 

desvenlafaxine (DVS) treatment. This algorithm uses data from eleven clinical trials to 

determine how to use clinical data to distinguish treatment responders from non-responders. 

Because early response to antidepressants has shown to be a useful predictor of antidepressant 

efficacy, we included data from HAM-D (Hamilton Depression Rating Scale) (Hamilton, 1960) 

scores taken at two-weeks after treatment onset (Henkel et al., 2009; Olgiati, 2018). We used 

these data to train an algorithm called a machine learning classifier on labelled patient data, and 

test its performance on data where the classifier was blinded to the patient label (see Figure 3.1). 
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Figure 3.1. Distinguishing between the learning process (top to bottom) and the 

performance process using the classifier produced by the Learner (left to right). 

 

Machine learning is a subdomain of artificial intelligence focused on creating predictive decision 

making algorithms. It is becoming a useful technique applied to psychiatry, as it can create 

accurate models of pharmacotherapy response, using patient information, e.g. easily collected 

clinical measures such as demographics and Hamilton Depression Rating Scale (HAM-D) items. 

We diverge from most current machine learning studies by using the RapidMiner machine 

learning platform to train a machine learning classifier (RapidMiner, 2016). RapidMiner creates 

an automated pipeline for data preprocessing, producing machine learned classifiers, and 

generating comparisons between classifiers. Two previous studies have used RapidMiner in the 

context of psychiatry: an early adopter using it for drug assessments (Kornhuber, 2009), and a 

recent adopter for assessing MRI images for predicting chronic fatigue syndrome (Sevel, 2018). 

Similar automated machine learning platforms defined as leaders in the field by Gartner 
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Analytics’ 2019 report: KNIME, TIBCO Software, and SAS (Piatetsky, 2019). These have only 

been used for non-machine learning studies in the context of psychiatry, focusing on association 

studies (e.g. Baur et al., 2015). Programs classified as “Challengers” in the field of machine 

learning, Dataku and Alteryx, remain unused in the literature, based on a PubMed search for 

each term. Automated machine learning software enables users, who are not experts in machine 

learning, to use a suite of tools and techniques that would otherwise be inaccessible. The 

availability of this choice is an important conceptual advance: it shows that integrated machine 

learning tools are now available to mainstream medical research, and may aid in reducing the 

knowledge barrier between computing science and clinical practice. 

 

Predicting treatment response can be improved with prior knowledge of a population’s response 

probability and the cost of misclassifying a responder as a non-responder, or vice-versa. Cost is 

usually framed in terms of the economic cost of misclassification, but can also be viewed in 

terms of cost to the patient (e.g. in DALY, Disability Adjusted Life Years). However, the 

specifics of our patient population’s cost of misclassification is currently undetermined.  

Cost Curves are a technique developed to determine when a classifier’s performance is best, and 

visualize the results better than AUROC (Area Under the Receiver Operating Characteristic) 

curves. AUROC curves plot classifier performance on a graph with False Positive Rate (FPR) on 

the X-axis, and True Positive Rate (TPR) on the Y-axis. Each binary classifier tested appears as a 

point on this graph; the better a classifier is, the lower its FPR and higher its TPR. By contrast, 

cost curves plot each classifier as a line on a graph (each line is equivalent to an AUROC point; 

this is called a point-line dual), with Probability Cost on the X-axis, and Normalized Expected 

Cost on the Y-axis. Probability Cost is given by the formula: 
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𝑃𝐶(𝑎) =
𝑝(𝑎) ∗ 𝐶(𝑎|𝑎)

𝑝(+) ∗ 𝐶(−|+) + 𝑝(−) ∗ 𝐶(+|−)
 

Where 𝑎 is − or + class, 𝑝(𝑎) ∗ 𝐶(𝑎|𝑎) refers to the misclassification cost of 𝑎 (composed of the 

probability that 𝑎 is the class multiplied by the cost of incorrectly classifying 𝑎, and the 

denominator is the total cost of misclassification (Drummond & Holte, 2006). Normalized 

Expected Cost is given by the formula: 

Norm(E[𝐶𝑜𝑠𝑡]) = FNR ∗  𝑃𝐶(+) + FPR ∗  𝑃𝐶(−) 

where FNR is False Negative Rate, FPR is False Positive Rate, 𝑃𝐶(+) is the probability cost of 

misclassifying a positive case, and 𝑃𝐶(−) is the probability cost of misclassifying a negative 

case (Drummond & Holte, 2006).  

In treatment response prediction, cost curves are useful as a means of visualizing trained 

classifier performance and comparing classifier performance. Here, Cost Curves are used to 

determine when to use which classifier to make treatment response predictions across the 

spectrum of probability costs (provided we accept that the definition of “best”, here, means the 

lowest expected cost, a ratio of population composition and misclassification cost) (Drummond 

& Holte, 2006). It should be noted that different patient populations may incur different costs of 

misclassification, depending on how misclassification is defined. For example, if we are using 

DALYs incurred as our definition of cost, a patient responding to depression with predominantly 

physical symptoms may incur a different misclassification cost than one responding with more 

mood-based symptoms (e.g. sadness) or motivation-focused symptoms (e.g. anhedonia).  

3.2 Methods 

3.2.1 Datasets 

Clinical data included in this study were drawn from 11 clinical trials of desvenlafaxine. Studies 

included adult participants ages 18-86, from phase III/IV trials, with HAM-D ≥20 consistent 



65 

 

with criteria used in previous studies (Soares et al., 2014). These data were obtained as part of a 

data access agreement between the University of Alberta and Pfizer Canada Inc. Approval for 

this study was given by the University of Alberta Research Ethics Board, study Pro00064974, 

with all participants providing written consent for their anonymized data to be used prior to 

analysis being carried out. 

3.2.2 Inclusion Criteria 

Patient inclusion criteria were a primary MDD diagnosis, completion of treatment with DVS for 

eight weeks from trial inception, and completion of a 17-item HAM-D assessment at baseline, 

two weeks, and eight weeks. Treatment response was defined by a participant’s eight-week 

HAM-D score being ≤ 50% of baseline HAM-D score. Patients with comorbid psychiatric 

diagnoses were excluded. Missing data points (incomplete cases) were filled using mean 

imputation. In addition, features were excluded when all subjects from one or more studies 

lacked that feature (e.g. patient weight). After removal of subjects not meeting the inclusion 

criteria, 2860 subjects and 92 features remained. 

 

Table 3.1. Dataset demographic information and HAM-D17  mean score averages. 

n 2860 

Age (years) 43.4 

Sex (% Female) 68.4 

Ethnicity (% White) 60.3 

HAM-D17 Baseline 23.5 

HAM-D17 Week 2 15.8 

HAM-D17 Week 8 11.5 

Response Rate % 54.0 
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3.2.3 Features considered 

We considered scores from baseline lab tests, baseline and two-week HAM-D scores, baseline 

MADRS (Montgomery-Åsberg Depression Rating Scale) scores (Montgomery & Asberg, 1979), 

baseline CGI (Clinical Global Impressions scale) scores (Guy, 1976), baseline patient 

demographics, and baseline medication data in the form of degree of polypharmacy (a sum of the 

number of reported medications being taken at baseline, including non-prescriptions and 

supplements). A complete list of these features can be found in Table 3.2. 
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Table 3.2. List of 109 features included in the training dataset 

Lab Tests HAM-D17 (baseline and week two) Demographics 

Albumin Agitation Age 

Alkaline Phosphatase Anxiety/Psychic Sex 

Basophils Anxiety/Somatic Ethnicity 

Bilirubin Depressed mood American Indian or Alaska Native 

Chloride Feelings of guilt Asian 

Cholesterol Genital symptoms Black or African American 

Creatinine Hypochondriasis Hispanic or Latino 

Eosinophils Insight Middle Eastern or North African 

Free T4Z Insomnia/Early Native Hawaiian or Other Pacific Islander 

Gamma-glutamyl transferase Insomnia/Middle Other 

Glucose Insomnia/Late White 

HDL Cholesterol Loss of weight Study Location 

Hematocrit Retardation Argentina Poland 

Hemoglobin Somatic symptoms/ Gastrointestinal Canada Romania 

LDL Cholesterol Somatic symptoms/ General Chile Slovakia 

Lymphocytes Suicide China Taiwan 

Monocytes Work and Activities Colombia United States 

Neutrophils MADRS Germany Yugoslavia 

Platelet count Apparent sadness Estonia South Africa 

Potassium Concentration difficulties Finland 
 

Protein Inability to feel France 
 

Red blood cell count Inner tension Croatia 
 

SGOT (aspartate 

aminotransferase) 
Lassitude India 

 

SGPT (alanine aminotransferase) Pessimistic thoughts Japan 
 

Sodium Reduced appetite Korea 
 

Triglycerides Reduced sleep Lithuania 
 

Uric acid Reported sadness Latvia 
 

Urine pH Suicidal thoughts Mexico 
 

Urine specific gravity CGI Other 

White blood cell count Severity Polypharmacy count* 

*Count of each reported prescription/non-prescription medication/supplement being used at baseline 
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3.2.4 Automated machine learning 

3.2.4.1 Data cleaning 

After loading the dataset in RapidMiner, we ensured all features were correctly identified by type 

(e.g. categorical, numerical), used its automated data cleansing option to remove features that 

were unlikely to contribute to the trained classifiers’ accuracy (also called high stability 

features), and normalized all features to values between 0-1. The cleansing process removed 28 

features from the original 109 features, leaving a features space of 81. These 81 features were 

used to train classifiers to discriminate between two classes: responders and non-responders at 

eight weeks, as defined previously.  

 

 

3.2.4.2 Auto Model Process 

 

Figure 3.2 RapidMiner's Auto Model process 

 

Figure 3.2 shows RapidMiner’s Auto Model process from start to finish. This process works in 

three basic steps for each classifier produced: data preprocessing, model creation, and 

performance evaluation. The point of showing this figure is not to read each step; rather, it is to 

show an overall picture of the machine learning pipeline created by RapidMiner. 
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Preprocessing steps are carried out on an ad-hoc basis based on the types of data present in the 

dataset (e.g. numerical, text); this dataset includes missing value mean imputation and 

alphabetical column reordering.  

Once data cleaning and preprocessing are complete, RapidMiner partitions the dataset (n=2860) 

into primary training (60% of cases, n=1716) and disjoint validation (40% of cases, n=1144) 

sets. The “feature selection” option was turned on during the classifier training process and set to 

optimize predictive accuracy over model simplicity. In feature selection, the training set is split 

again into a secondary training and test set, and RapidMiner repeatedly picks a subset of patient 

cases and features from the training set, optimizes the weights of those features (i.e. trains a 

classifier) on that set, and tests the trained classifier’s performance on the secondary test set. The 

classifier with the best performance on the test set is then selected, and the primary training and 

validation sets are cut to its feature set. Then, the same type of classifier is re-trained on the 

primary training set, and its performance evaluated on the validation set to produce a final 

trained classifier.  

This process is repeated for each type of classifier produced. RapidMiner’s Auto Model process 

trains nine classifiers, each based on a different type of machine learning classifier. These 

include: 

1. Naive Bayes 

2. Generalized Linear Model 

3. Logistic Regression 

4. Fast Large Margin 

5. Deep Learning 

6. Decision Tree 

7. Random Forest 

8. Gradient Boosted Trees 
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9. Support Vector Machine 

 

Once all classifiers are trained, the test set performance data, confusion matrix, and classification 

instances are extracted, and performance compared based on one of the available performance 

measures. 

3.2.4.3 Performance measures 

The confusion matrix output produced from the test set of each classifier in each experiment was 

used to calculate accuracy, classification error, F1 score, ROC-AUC, precision, recall, 

sensitivity, and specificity. Because of the relatively balanced responder/non-responder classes 

(54.0%/46.0%, respectively), accuracy was used as a primary performance measure. In cases 

where accuracy was not significantly different between classifiers, model simplicity was 

compared, and the simplest model chosen. 

3.2.5 Cost Curves 

A cost curve was constructed to compare the nine trained classifiers produced (See Figure 3.3). 

Significance testing was carried out on classifiers that were part of the lower envelope (i.e. 

classifiers with the lowest normalized expected cost at each probability cost) but differed from 

the most accurate classifier produced by RapidMiner. This was carried out by sampling 1143 

cases (with replacement) from the 1143 classification instances of each classifier, creating a new 

classifier performance line from this sampled data, subtracting one classifier line from the other 

to produce a line indicating the performance difference between classifiers, and repeating this 

process 500 times. Then, the highest and lowest 5% of classifier difference lines were discarded, 

leaving the middle 90% of classifier differences (equivalent to a 90% confidence interval). 

Ranges on the cost curve where the difference between classifiers was above or below 0 in all 

instances of the 90% remaining classifier differences are considered to represent significant 
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differences between the two classifiers (see Figures 3.4 and 3.5). If none of these exist within the 

cost curve operating range, other classifiers do not show a significant performance difference 

compared to the most accurate trained classifier. 

3.3 Results 

 

3.3.1 Classifier performance comparison 

Of the nine trained classifiers produced, a Generalized Linear Model (GLM) classifier was most 

accurate at 70.05% ± 1.17%. The performance measures for this classifier are summarized in 

Table 3.3. 

Table 3.3. Most accurate classifier performance measures 

 
Baseline + two-week data 

Classifier Generalized Linear Model 

Accuracy 70.05% ± 1.17% 

Classification Error 29.95% ± 1.17% 

F1 score 72.17% ± 1.28% 

ROC-AUC 0.752 ± 0.019 

Precision 72.18% ± 2.57% 

Recall 72.25% ± 2.31% 

Sensitivity 72.25% ± 2.31% 

Specificity 67.47% ± 4.38% 

 

3.3.2 Feature Selection 

The trained GLM classifier was composed of six features: a baseline CGI score and five HAM-D 

scores taken at two weeks after treatment began. Table 3.4 summarizes the model produced: 
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Table 3.4. GLM trained classifier features and coefficients 

Feature Coefficient 

Two week Work and Activities -0.472554315 

Two week Feelings of guilt -0.371111036 

Two week Insomnia/Early -0.356185245 

Two week Anxiety/Psychic -0.279534481 

Two week Hypochondriasis -0.256536738 

Baseline CGI Score 0.308041628 

 

A positive feature coefficient indicates that scoring highly on that feature will increase the 

likelihood that a patient will experience a positive treatment response to desvenlafaxine. The 

magnitude of each coefficient indicates how sensitive the classifier is to changes in that feature’s 

value. 
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3.3.3 Cost Curves 

 

Figure 3.3. Cost Curve comparison of classifier performance 

In Figure 3.3, the black line is the lower envelope composed of four classifiers (with each line 

segment composing it corresponding to one trained classifier), yellow lines are trivial classifiers, 

red lines indicate non-trivial classifier operating range (where classifier performance was better 

than trivial classifiers that always respond “yes” or “no” to treatment response), and light grey 

lines are portions of classifiers not part of the lower envelope. The classifiers composing the 

lower envelope can be found in Table 3.5. Three classifiers fall within the operating range of the 

cost curve: GLM, Fast Large Margin (FLM), and Deep Learning. Table 3.5 summarizes the 

lower envelope: 
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Table 3.5. Lower envelope composition and boundaries from Figure 3.3 

 
Lower bound 

(Probability Cost) 
Upper bound 

(Probability Cost) 

FPR 0, TPR 0 (trivial 

classifier; always guess “No”) 
0 0.31 

Fast Large Margin 0.31 0.40 

Generalized Linear Model 0.40 0.69 

Deep Learning 0.69 0.71 

FPR 1, TPR 1 (trivial 

classifier; always guess “Yes”) 
0.71 1 

 

Significance testing of the top performing classifier (in this case, GLM) compared to each non-

trivial classifier forming the lower envelope, shows that FLM  and deep learning do not offer 

significantly different performance from GLM in the cost curve operating range (Probability 

Cost 0.31-0.71) (See Figures 3.4 and 3.5, respectively). 

 

Figure 3.4. Significance testing for trained GLM classifier against trained FLM classifier 
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In Figure 3.4, The three red diagonal lines indicate the confidence interval for classifier 

differences; the horizontal red line at y=0 must fall outside this confidence interval to indicate 

significant differences in classifier performance. The FLM classifier does not outperform the 

GLM classifier significantly at any point in the curve’s 0.31-0.71 Probability Cost operating 

range. 

 

Figure 3.5. Significance testing for trained GLM classifier against trained deep learning 

classifier 

In Figure 3.5, the deep learning classifier does not perform significantly better than the GLM 

classifier within the cost curve operating range. 
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3.4 Discussion 

Many combinations of confusion matrix outputs are commonly used when considering 

performance measures with which to evaluate a trained classifier (Wikipedia contributors, 2019), 

including accuracy, F1 score, or ROC-AUC (Receiver Operating Characteristic- Area Under the 

Curve). An appropriate performance measure should satisfy three criteria: it should reflect 

classifier performance over data properties such as severely unbalanced classes, be intuitive to 

understand, and  be the same as similar research in the area, in order to allow for direct 

comparisons (Straube & Krell, 2014). To this end, accuracy most clearly fills the second and 

third goals of interpretability and comparability, but its use is dependent on dataset composition. 

In some unbalanced datasets, accuracy can make classifier performance appear to be high, even 

if the classifier is simply guessing the majority class; this has been addressed previously by 

reporting whether classifier accuracy is significantly above the majority class proportion 

(Chekroud et al., 2016). In the clinical trial data we used, the classes are relatively balanced 

(54.0% responders, 46.0% non-responders), suggesting accuracy was the preferred performance 

measure. While the GLM classifier was the most accurate, five of the nine classifiers were not 

significantly less accurate than it (p<0.05). However, the GLM classifier was the simplest, using 

the fewest features (6 vs 9-15 in the five similar-performing models), and drawing only from 

questionnaire data (vs at least one of lab test, demographic, or medication data that were 

included in all other models), further supporting GLM’s use.  

 

Only six of the 81 features were included in the GLM classifier: CGI-S (Clinical Global 

Impression-Severity) score at baseline (Guy, 1976), and five HAM-D features from two-week 

data collection:  

1. Anxiety/psychic  
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2. Feelings of guilt  

3. Hypochondriasis 

4. Early insomnia  

5. Work and activities 

 

While increased values in CGI are related to an increased likelihood of eight-week treatment 

response, increased values in any of the five HAM-D features taken at two weeks decrease the 

likelihood of a treatment response. This suggests that baseline clinical data, alone, is of limited 

use to predicting eight-week treatment response – it is better to also use the two-week data. We 

ran a second experiment, excluding two-week HAM-D data, and found the most accurate 

classifiers were FLM and Logistic Regression, each with 58.90% accuracy. This is an 11.15% 

drop in accuracy vs the GLM classifier containing two-week HAM-D data. These results support 

monitoring early response to antidepressants, as well as the creation of clinical tools meant to be 

deployed at two weeks after treatment onset. 

 

The CGI severity scale is a physician-answered questionnaire consisting of a subjective 

comparison of the patient’s severity of illness to all other patients that clinician has seen. The 

inclusion of this feature in the GLM classifier supports the importance of the therapeutic 

alliance, as well as clinician experience in predicting DVS treatment outcomes. The other five 

HAM-D questions taken at two weeks after treatment onset are drawn from all three dimensions 

of previous models that attempted to divide HAM-D items into symptom clusters for predicting 

late response to antidepressants: mood, sleep/psychic anxiety, and somatic anxiety/weight (with 

hypochondriasis as part of the somatic anxiety/weight cluster) (Trivedi et al., 2005).  
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Hypochondriasis is not well supported as a feature for treatment outcome prediction: one study 

suggested that it was one of a constellation of symptoms (including another feature in the GLM 

classifier, HAM-D Anxiety/Psychic) that predicted depression relapse and recurrence within a 

two-year period following cognitive therapy (Mallinckrodt et al., 2007). Desvenlafaxine 

treatment outcomes can be predicted by early response to treatment as measured by HAM-D 

composite score (Lam et al., 2014), suggesting that lower HAM-D item values at two weeks are 

associated with better treatment outcomes, consistent with the GLM classifier produced. Anxiety 

was not predictive of patient response to rTMS (repetitive Transcranial Magnetic Stimulation), 

although this was based on a 14-item composite score from the Depression, Anxiety, and Stress 

Scale (DASS), and not the HAM-D, as well as using a different modality of treatment (Lovibond 

& Lovibond, 1996; Krepel et al., 2019). Patients who responded to treatment with one of four 

different SSRI’s were shown to have lower scores on the Depression and Anxiety Cognition 

Scale (DACS) than non-responders (Masuda et al., 2017), supporting our trained GLM 

classifier’s results for anxiety. Desvenlafaxine has been shown to have a significant effect on 

guilt (Kornstein et al., 2009). A composite measure of negative affect consisting of guilt,  

hostility/irritability, and fear/anxiety items on the HAM-D, has been used to suggest that patients 

with higher negative affect scores respond better to SSRI (Selective Serotonin Reuptake 

Inhibitor) treatment (Gerra et al., 2014). However, this measure was not specific to guilt, 

suggesting it has limited applicability to this study. Insomnia is not supported as a predictor of 

mono or combination drug therapies in depression, although its presence has been associated 

with worse treatment outcomes in clinical trials (Sung et al., 2015). This suggests that the feature 

may have limited applicability in a clinically deployed classifier, and supports the use of clinical 

data, as opposed to clinical trial data, in future response prediction work aiming to create 
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deployable classifiers. However, the differences between these data types has not been 

quantified. 

 

3.4.1 Cost Curve Classifier Evaluation 

Cost curves assume that the specific cost of misclassifying a patient as a responder or non-

responder, as well as the proportion of responders to non-responders, will be known when the 

classifier is deployed. Toward this end, they give the useful operating range of each classifier 

over all possible patient populations, and show the ranges for which each classifier should be 

used. Here, two trivial classifiers (i.e. always predict “responder” or always predict “non-

responder”) are present at the extremes of the probability cost spectrum, and three classifiers are 

present within the produced cost curve operating range. However, the GLM classifier was not 

significantly outperformed at any point within the cost curve operating range. Taken together 

with model simplicity, these findings indicate that a trained GLM classifier should be used to 

predict treatment response unless facing a patient population with an extreme composition of 

responders or non-responders, or extremely high or low costs of misclassification (or a mixture 

of both that causes the ratio of costs to fall outside the classifier operating range). However, it 

should be noted that this finding is representative only of DVS data drawn from clinical trial 

populations after the application of exclusion criteria that would not be present in general clinical 

use. 

 

It would be interesting to extend this work to include more types of two-week response data, to 

determine whether lab tests, demographic data, and other psychiatric scales provide useful 

features for treatment response prediction. In addition, including four-week response data may 

provide another increase in treatment outcome prediction accuracy (Olgiati et al., 2018).  
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3.6 Supplementary Materials 

Table 3.6. Desvenlafaxine clinical trial datasets 

Dataset Trial Locations Year 

NCT01309542 Estonia,   Finland,   Former Serbia and Montenegro,   France,   Germany,   Latvia,   

Lithuania,   Poland,   Slovakia,   South Africa,   United States 
2003-

2006 

NCT00384033 United States 2006-

2007  

NCT00445679 China,   India,  Republic of Korea, Taiwan 2007-

2009 

NCT00406640 Argentina,   Chile,   Colombia,   Mexico,   Peru,   United States 2006-

2008 

NCT00369343 United States 2006-

2008 

NCT00798707 Japan,   United States 2008-

2010 

NCT00863798 United States 2009-

2010 

NCT01121484 United States 2010-

2011 

NCT00824291 United States, Canada 2009 

NCT00300378 Croatia,   Estonia,   Finland,   France,   Latvia,   Lithuania,   Poland,   Romania,   

Slovakia,   South Africa 
2006-

2007 

NCT00277823 United States 2006-

2007 
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Connection Between Chapters 3-4 

The viability of machine learning in predicting treatment response was shown by our trained 

classifier achieving 70.0% accuracy. First, this demonstrated that the RapidMiner automated 

machine learning software is a viable tool for rapid prototyping of machine learned algorithms, 

allowing non-domain experts to access ML technology without the steep learning curve that 

Python-based machine learning entails. Second, it showed the utility of including early response 

(two-week) data, as it increased predictive accuracy over baseline data alone by 11.15%.  

However, there is a gap between producing a trained classifier and deploying it in a live 

healthcare setting. Moving from the production machine learned classifiers, we now turn to the 

broader field of data-driven personalized medicine and use examples from computational 

psychiatry to illustrate how machine learning is being applied in the context of the current health 

environment. This is accomplished through a conceptual review examining four domains of 

machine learning: access to medical datasets, realigning the expansion of health data with 

machine learning priorities, machine learning commercialization, and future applications of 

clinically-oriented machine learning. 
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4.1 Introduction 

4.1.1 The need for personalized treatment: one size does not fit all 

The field of medicine is focusing increasingly on "personalized healthcare". Rather than treat 

everyone with one disease in the same way, the goal now is to identify (or even generate) the 

specific treatment that is best for each individual patient, based on the patient’s attributes. This has 

the potential to significantly improve patients’ lives and reduce costs by reducing the chance of 

ineffective treatments. This new direction is being enabled by two recent developments. First is 

the plethora of extensive databases of electronic medical and electronic health records, describing 

many aspects of large sets of previous individual patients: symptoms, histological reports, images, 

and now, the wave of “omics” data (Heart, Ben-Assuli & Shabtai, 2017). Importantly, many of 

these datasets also identify the “outcome” of whether the patient had a specific disease, or how 

well said patient responded to a specific treatment. The second enabler is the development of 

powerful tools (many from machine learning) that can use this information about earlier people to 

produce systems capable of making accurate predictions about novel patients — for example, 

diagnosis of a certain disease, or whether a specific patient will respond well to a certain treatment 

(Shickel et al., 2018).  

4.1.2 Differentiating standard (bio)statistics vs supervised ML 

There are many ways to analyze a dataset. The prevailing approach is to seek biomarkers: features 

that, individually, are correlated with the outcome. This approach has proven effective at helping 

to understand the underlying etiology of the disease, and identifying which test to run next, to 

better understand the disease (Kalia & Silva, 2015). However, this approach was not designed to 

diagnose a new patient, nor is it capable of adapting to patients expressing the same symptoms 

with different underlying causes. In psychiatry, there are no accepted biomarkers for 

schizophrenia, major depressive disorders, and bipolar disorders, or any other category of 
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psychiatric disorder (Lozupone et al., 2019). In order to understand the types of questions in 

personalized medicine that are well addressed with a machine learning approach, as well as its 

caveats, it will be useful to briefly consider the history of the field.  

 

4.1.3 History 

Machine learning and the development of modern computing have developed together since 

Turing’s test in 1950 (i.e. whether a computer could appear indistinguishable from a human) 

(Copeland, 2004) and Grace Hopper’s contributions to English-language programming in 1952 

(Wikipedia Contributors, 2019). Less than ten years later, Arthur Samuel, who coined the term 

“machine learning,” was able to demonstrate that an organized collection of wire and vacuum 

tubes (aka the IBM model 701) could beat a human at checkers (Wikipedia Contributors, 2019). 

Further developments saw computers increasingly capable: identifying objects with an artificial 

eye (Rosenblatt, 1958), navigating a cart through an obstacle course (Moravec, 1983), and 

learning to speak (Sejnowski & Rosenberg, 1987). However, the unrivaled promise of AI 

(Artificial Intelligence) in 1967 went undelivered: that,  

“Within a generation ... the problem of creating 'artificial intelligence' will substantially be 

solved” -Marvin Minsky (Minsky, 1967) 

The first AI Winter occurred when cutbacks to DARPA funding in the US and a damning expert 

report in the UK resulted in a lack of funding support for AI research in the 1970’s. The ironic 

failure of commercial AI technology to adapt to the market, and repeated failures to develop a 

general purpose robot, resulted in a second AI Winter, beginning in the mid 1980’s (Wikipedia 

Contributors, 2019). IBM’s 1997 resurrection of machine learning as a chess program capable of 

beating the best human players (Kasparov vs Deep Blue), heralded a new era for artificial 

intelligence: solving specific problems as part of a larger system, rather than attempting general 
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purpose solutions. Medical applications of expert systems that lay the groundwork for AI began 

in the 1970’s with Mycin (a system for identifying infection etiology and recommending a dose-

adjusted antibiotic) (Shortliffe & Buchanan, 1975); these systems are now common in cardiology 

for EKG automated diagnosis and CHD risk assessment, and in radiology for X-ray 

interpretation (Deo, 2015). In all of these examples, an artificial system is learning how to 

complete a task using information. As a result of this learning process, systems that learn a 

pattern in the information successfully are able to complete that task. 

 

4.1.4 Current use  

One branch of machine learning is called supervised machine learning, where a learning 

algorithm is given a labeled dataset. This type of dataset may describe a set of people, along with 

a “label” (typically case vs control), where each person is described using various features: 

clinical, or genomics data or MRI scans (or combinations thereof). In contrast to machine 

learning, the traditional bio-statistics approach often involves finding “biomarkers”— identifying 

which single gene (or individual metabolite or brain region) is most associated with a disease 

phenotype. While these univariate associations can be extremely useful for understanding the 

disease itself, and perhaps identifying which further experiment to perform (e.g., which gene to 

knock out), they do not, by themselves, necessarily determine the diagnosis nor the best 

treatment for a specific patient, as that typically requires determining the set of features that 

collectively predict the phenotype. ML provides technologies that can find such combinations of 

features from earlier data. In contrast, AI is a more general term that covers the development of 

human-like capabilities in machine form (e.g. creating vision processing systems). 
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4.1.5 Domains covered by this review 

Data access: Medical datasets are growing exponentially in their size, complexity, and 

availability. Among these will be the eventual application of Electronic Medical Records 

(EMRs) into current practice, towards an improved standard of care. Awareness of the need for 

health data standardization for machine learning tasks, as well as consideration of the ethical 

implications status of health data interacting with newer technologies (e.g. streaming data, data 

ownership), is important as healthcare becomes a decentralized service. 

 

Movement away from traditional statistical models: There is a clear need to realign the 

expansion of health data with machine learning as we prepare to move away from smaller 

samples of the population and toward true population-sized datasets. It is becoming important to 

review and develop objective measures of data (measures created based on objects, e.g. using 

neuroimaging features and/or human-administered psychiatric scales for diagnosing depression) 

that are also useful to machine learning prior to one measure becoming the standard for use. This 

is especially important for areas such as biomarker development, which has faced issues of 

reproducibility. 

 

KT/commercialization: Moving into a population-level era of streaming data while maintaining 

rapid progress on-par with new technology will necessitate a move towards industry 

partnerships. However, there are clear concerns surrounding trust and certification of commercial 

applications, especially with sensitive data. Here, a key question is how an environment of trust 

can be created and maintained between patients and commercial entities, while developing a 

health implementation environment that will not stifle innovation. 
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Futurism: Finally, we examine how machine learning can be used creatively in the clinic. We 

present a number of present-day examples, and consider possible tools such as an AI-based 

consultant capable of understanding and contributing to health care team meetings. 

 

4.2 Data Access 

4.2.1 Practicality of data collection & data management 

4.2.1.1 Dataset Accessibility  

Access to datasets is becoming a mainstream priority in technology development, as evidenced 

by the deployment of tools that provide researchers with a unified search platform such as 

Google’s Dataset Search (Dataset Search, 2019). The availability of resources to store and work 

with extremely large datasets is also rapidly becoming a reality due to the expansion of Cloud 

computing, the use of storage and computational resources on the internet (Iniesta et al., 2016). 

With these advances in access, datasets are being used to generate new knowledge, disseminate 

knowledge faster, translate personalized medicine into practice, and empower patients by 

enabling easier access to their medical information (Murdoch & Detsky, 2013). For psychiatrists, 

machine learning programs will be able to search through long natural language records of 

patient visits from, e.g. clinician notes, and finding patterns of language. Accessibility of the 

free-text medical record will be crucial for the success of automated clinical decision support 

tools (Sittig et al., 2008). Current work in this area includes creating systems for accessing 

patients’ personal health records (PHRs) that integrate blockchain technology for record security 

and the capability to pull data from different health providers in order to create a single unified 

PHR (Roehrs, da Costa, & da Rosa Righi, 2017). 
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4.2.1.2 Machine Learning Tool Accessibility  

Domain expertise in machine learning is slowly being phased out as a requirement of applying 

machine learning tools in research. Improvements to usability and automated machine learning 

pipelines in commercially available machine learning packages such as Rapidminer, Alteryx, and 

KNIME, are creating environments nearing readiness for use by researchers. The Gartner 

Analytics Magic Quadrant report is one metric that rates these tools by their completeness of 

vision (composed of, e.g., product strategy and innovativeness), and ability to execute 

(composed of, e.g., user experience and product functionality) (Gartner Reprint, 2018; Piatetsky 

2019).  

 

 

Figure 4.1. Reproduction of Magic Quadrant for Data Science and Machine Learning 

Platforms  
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Figure 4.1 is reproduced from from https://www.gartner.com/doc/reprints?id=1-

65WC0O1&ct=190128&st=sb. 

However, these tools still lack the level of rigour required by medical machine learning. 

Exporting tool performance measures (e.g. Receiver Operating Characteristic (ROC) curves), is 

not possible with some tools (e.g. RapidMiner). End-users must therefore rely on domain experts 

to create secondary programs enabling capture or production of the fine-grained data required for 

study reproducibility.  

4.2.2 Problems of data standardization  

4.2.2.1 What is being collected/stored/shared (and is available for analysis)  

Healthcare data being used for machine learning appears to have a limited lifetime of utility for 

some predictive tasks, decaying in usefulness by half for every 4 months of age due to changing 

clinical practice patterns (Chen et al., 2017). One of the primary heuristics for deciding on 

whether data is useful to collect for machine learning in medical applications is whether the 

prediction to be made with that data would already be obvious to a clinician (Chen & Asch, 

2017). While many disciplines of medicine are fielding machine learning results with high 

reported accuracies, these results detract from more difficult-to-approach problems by providing 

a basis for too-hasty generalizations. For example, if two research questions are asked in the 

same domain (e.g. health research), with similar data inputs (e.g. a hip MRI vs. a brain MRI), a 

common assumption is that machine learning performance will be similar between the two. This 

is an important assumption to address, toward preventing what Chen & Asch (2017) refer to as a 

“trough of disillusionment,” one of the factors that precipitated falling into an AI winter, as 

previously discussed. 

One issue for data collection is multi-source data integration. Medical data exists in at least 10 

different modalities (e.g. clinical trials, clinical registries, biometric sensor data), but is often 
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collected using different scales (e.g. lab tests in ng/mL vs g/L), is missing information, or is 

incongruent between modalities (Lee & Yoon, 2017). 

 

4.2.2.2 Are we collecting the right data points (how is data being collected)  

In EMR development, physicians feel there is a tension between standardized form entry and 

entering text freely: while entering data into a common set of fields contributes to EMR utility, 

free text enables nuanced entries that do not lose situational context (Terry et al., 2014). This is 

an important distinction for machine learning, related to Natural Language Processing (NLP) – a 

field that develops computers’ abilities to understand human language without specific input 

structures (e.g. single-word entry forms). Computers analyzing patient records need to be able to 

adapt to an uncommon medical lexicon not used in standard speech or writing. 

In drug development, machine learning can be applied to detect relative sensitivities of different 

modalities of data to the effects of a new treatment, enabling removal of less sensitive data 

modalities and informed decisions, maximizing data contribution to data cost ratios and ensuring 

the most salient data is being collected (Doyle, Mehta & Brammer, 2015).  

Missing data is also a concern for large datasets, and a three-case taxonomy for missing data has 

been suggested: data can be missing completely at random (MCAR), missing at random (MAR) 

and not missing at random (NMAR) (Lee & Yoon, 2017). MCAR data has the same probability of 

being missing across all subject cases and variables, while MAR data can be traced to observed 

data points (e.g. certain patients dropping out of a study), and NMAR data is dependent on 

unobserved data points (e.g. 50% of the values for a given feature are not recorded). 
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4.2.2.3 Issues collecting from multiple sites: batch effects, covariate shift, and domain shift  

The benefits of including more subjects in a learning model are diminished by batch effects: 

error produced by biases in data collection between groups of subjects resulting from, e.g., 

different locations, equipment, or group demographics. Correcting for batch effects is difficult, 

but possible: an empirical Bayes method called ComBat has been used successfully for 

correcting epigenetics data in a machine learning study of MDD (Malki et al., 2016). MRI 

scanners are especially susceptible: two identical scanners at the same location, scanning the 

same patient, will produce different images (Kostro et al., 2014). These effects can be reduced 

through the application of cross-modality software tools. Previous work has shown the efficacy 

of using genomics batch correction software using ComBat, for the correction of DTI images in 

studies looking at psychiatric illness vulnerability, and autism (Fortin et al., 2017).  

Similar to sample selection bias (in which data is selected non-randomly for inclusion in an 

analysis), covariate shift is a case in learning problems where the training set distribution is 

different than the testing set distribution (Bickel, Brückner & Scheffer, 2009). This difference has 

been shown to occur in observational studies of treatment effects, due to physicians assigning 

treatment protocols based on disease severity. Using these biased observations of treatment effects 

is problematic when, e.g. estimating antidepressant treatment effects (Wen, Hassanpour & 

Greiner, 2016).  

As evidenced by changes in the DSM between versions, the nature of how mental health disorders 

are measured changes over time. While it is unlikely that humans have evolved new 

neurochemical processes and accompanying deficits since 1952, the way we measure the same 

underlying disorders has changed. Domain shift in psychiatry refers to changing metrics for 

measuring disease processes (Quiñonero-Candela, 2009), and can occur both longitudinally and 

cross-sectionally. Heterogeneity of measurement methods across study sites produces a dataset 
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that requires one of two equally poor solutions: change part of the data to mimic the feature or 

label of the other site, or change both sites’ data to fit a hybrid model of measurement between 

metrics. Making each metric its own variable in this case is a third possible solution, provided the 

learning algorithm can successfully cope with missing data. 

4.2.3 Ethics of Data 

4.2.3.1 Impact of using personal healthcare data  

Kaelber et al (2008) bring up an interesting topic related to the impact of personal healthcare 

data: who controls access to a child’s PHR (personal health record), and should children be 

allowed to access their own data (Kaelber et al., 2008)? Considering this case through the lens of 

ethical jurisprudence reveals a number of issues. For example, when children reach their age of 

majority (ignoring issues such as whether that age is tied to the individual or can change with 

location, and whether it applies to decentralized data): who owns their PHR entries? If the parent 

or guardian has been keeping records on behalf of their child, is there an obligation from the 

incipient adult to curate their own records? And what is the appropriate balance of beneficence if 

the impact of entering data will eventually cause negative consequences (e.g. denial of 

insurance) to the child, but is immediately useful to their wellbeing? One solution for adolescents 

is to be given graduated access to their records, such that sensitive conditions are kept private 

while conditions requiring parental involvement are shared (Sittig & Singh, 2011).  

This becomes an important issue as we move towards the use of healthcare apps for paediatrics 

such as AddressHealth (http://addresshealth.in/web/). There is already significant controversy 

surrounding newborn screening (NBS) programs, which can lack consent and continued-use 

regulation (O’Doherty et al., 2016).  

 

http://addresshealth.in/web/
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4.2.3.2 Data storage and accessibility by PHR 

If data is irrelevant to treatment and wellbeing of the patient, should it be kept for posterity, and 

at what point do we have enough evidence that stockpiling data will result in diminishing returns 

to the standard of care? There is certainly interest in provisioning PHR access tools: 94% of 

postpartum women expressed interest in PHR access (Fernandez et al., 2017), and at the same 

time key early EHR adopters such as Kaiser Permanente Northwest are driving this process 

forward. Another important issue for the volume of data collected is equity between urban and 

rural patients: internet access, PHR management, and contact with healthcare providers is all 

decreased in rural areas (Greenberg et al., 2018). In psychiatry, this disparity may be somewhat 

offset by differences in need: urban dwellers are more likely to develop mental illness (Vassos et 

al., 2016).  

 

4.2.3.3 Data privacy 

Data privacy should be discussed in a sliding context when considering how to prevent data 

being attributed to individuals when moving from an EMR to EHR environment. The 

identifiability of subjects using information derived from, e.g., DNA markers or microbiome 

profiles (Jensen, Jensen & Brunak, 2012), will become a greater concern as tools for reverse-

engineering these data to identify individuals in the study proliferate and improve. However, 

these concerns will not necessarily impact patient choices of which health data they choose to 

share. A qualitative study examining patient perspectives on sharing anonymized data suggested 

that although there were concerns about data being shared inappropriately, the vast majority 

(98%) of patients accepted these risks after considering the perceived altruistic benefit of sharing 

their data (Spencer et al., 2016). 



98 

 

Since historical data is stable over time, the cumulative probability of it being accessed 

inappropriately will increase unless a strategy for long-term management is implemented. These 

strategies potentially include two types of approaches: bottom-up and top-down. 

In addition to EMRs, there are now thousands of mobile health (mHealth) apps, of which at least 

24 are used for mobile Personal Health Record (mPHR) access (Zapata et al., 2014). The primary 

concerns with these apps center around practical issues: privacy policy accessibility, ensuring 

only the intended user is accessing the data, and whether the app follows security standards (e.g. 

conformity to HIPAA (the U.S. Health Insurance Portability and Accountability Act of 1996). 

Similarly, within the mental health app ecosystem, privacy is the first and most pressing concern. 

This is followed by a hierarchy of app efficacy, user engagement, and data sharing, respectively 

(APA, 2019). This hierarchical framework suggests that apps intended for clinical use should not 

continue to be considered for use if they fail to meet the standards of use at each stage of 

assessment (Torous et al., 2018). 

 

4.2.3.4 Bottom-up strategy for data privacy 

Blockchains (Fortney, 2019) are digital ledgers, with a few special properties that make them 

extremely difficult to corrupt (Wikipedia contributors, 2019). They enable new options to keep 

health data secure and uncorrupted without requiring the time to encrypt and transfer an extremely 

large dataset. For example, storing EMR data in a hospital, but keeping hashes (dictionaries for the 

data) in a blockchain, would enable efficient retrieval of records (Esposito et al., 2018). For 

machine learning purposes, this necessitates moving the algorithms to the stored data, which is a 

much more computationally palatable option as the algorithms are generally small and do not 

require encryption to move from place to place. 
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An alternative approach to blockchain has been suggested, in order to emphasize patient control 

over data: adding DRM (Digital Rights Management)-like features to EHR data to prevent 

negligent storage and inappropriate movement (Jafari, Safavi-Naini & Sheppard, 2011). This 

approach suggests that patients own their own data, but can issue licenses for access and use. This 

presents potential problems for the machine learning community, since access and use are required 

for development of new tools. In addition, it risks skewing all datasets by only including subjects 

who are willing to share their data. This has implications for tool generalizability, and may limit 

the development of optimal, population-level machine learning solutions. 

Maintaining transparency of data is key to gaining public acceptance to data sharing- the failed 

care.data initiative in the UK is a good example of how a failure in public trust over sharing data 

with researchers and businesses has the potential to derail healthcare data sharing initiatives 

(Kostkova et al., 2016). One solution proposed by Kostkova et al. (2016) is to involve the public 

in shared goal setting to determine data sharing core principles, and as part of this process include 

mechanisms for strong disclosure and notification systems for data sharing violations (Kostkova et 

al., 2016).  

 

4.2.3.5 Top-down strategy for data privacy 

This strategy mandates that health data not be used in areas where health-based discrimination 

from algorithmic bias could occur (Hajian, Bonchi & Castillo, 2016), such as insurance providers 

using it as part of a client risk assessment. One solution may be to enact policies that allow 

individuals with objections to sharing data to be able to opt out of data sharing. However, this 

point merits consideration of the detriments to society in allowing data control: how do we decide 

the consequences of and boundaries to limiting access to data (Kaplan, 2016)? Clinicians have a 

common concern about how data they enter into an EMR will be shared, centered around 
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unknowns of who will be able to access data, especially relating to secondary access: for example, 

should researchers doing secondary analysis get the same level of access as primary care providers 

(Terry et al., 2014)? In a similar thread, having data available on any centralized online system 

increases the damage potential from a breach. This is an important consideration in light of the 

2017 Equifax data breach that compromised the name, birthday, and social security number of 

almost half of U.S. citizens (Gressin, 2017).  

4.3 Movement away from traditional statistical models  

4.3.1 Model-driven vs data-driven approach 

4.3.1.1 Population vs sample data 

As more health authorities switch to an EHR-based system, data will be curated and available for 

machine learning at a population level. When data becomes available on this scale, the predictive 

models used can be simplified, data no longer requires expert annotation, and missing data points 

can potentially (depending on why the values are missing) be effectively filled in from a corpus 

of data with millions of examples (Halevy, Norvig & Pereira, 2009). As a result, these data can 

allow for a data-driven approach.  

4.3.2 Predictive vs associative modeling 

4.3.2.1 Biomarker discovery (long term) vs. tools to use with patients (short term) 

An important distinction between prediction and association studies is the type of finding: 

biomarker discovery (long term) vs. tools to use with patients (short term). Association studies 

attempt to explain a biological process by seeking the best (most highly correlated) features in a 

dataset, while prediction studies seek a model, based on a set of features capable of predicting the 

class label of new patients. This set of features is sufficient for prediction tasks, but is not 

necessary or causal- it does not explain the process at hand. Therefore, if finding biomarkers to 

explain a process is the goal of a study, an association study is warranted, while a study focusing 
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on making the best medical decisions will be better served by a prediction (machine learning) 

study. 

 

4.3.2.2 New drug development is time- and cost-prohibitive 

The out-of-pocket cost for a new drug is over $1.3 billion as of 2013 (DiMasi, Grabowski & 

Hansen 2016), and for some fields, have less than 1% chance of success (e.g. Alzheimer’s drugs 

have a 99.6% failure rate since 2002) (Cummings, Morstorf & Zhong, 2014). An associative 

modeling approach to this problem relies on basic science to develop biomarkers and disease 

models in order to create principled approaches to new therapy development. Importantly, as these 

approaches become more complete and nuanced, we could develop models that (also) predict 

adverse effects, facilitating the development of drugs that would have decreased treatment non-

adherence and discontinuation (Bull et al., 2002).  

4.3.3 Evaluating Outcomes  

4.3.3.1 Biases in data 

Machine learning tasks begin by defining a performance task. This identifies the population of 

interest, range of desired outcomes, and evaluation criteria. Data can then be collected relevant to 

the performance task. However, some elements of performance tasks can be unknown (e.g. we are 

predicting treatment response in a new or poorly defined disease).  

Datasets from clinical trials and research studies are rarely equivalent to the real-world setting 

containing the disease/process they attempt to model. While limiting the number of variables 

creates a good testing environment, machine learning performed on this data will not account for 

variance removed for the purpose of creating a better disease model. To attempt to account for this 

discrepancy during the learning process, a number of techniques can be applied. First, the costs 

can be balanced between groups by applying a cost-sensitive learning function. This ensures a 



102 

 

classifier does not simply learn to guess the majority class. Second, we can reframe a classification 

problem using severely unbalanced groups in terms of anomaly detection rather than 

classification, allowing different techniques to be applied to the data (Soni, 2018).  

4.3.3.2 Progress in outcome evaluation 

There are many assessments for evaluating classifier performance: a few commonly used in 

evaluation of medical machine learning tools are accuracy, AUROC score, and 

sensitivity/specificity. However, these scores and significance tests fail to incorporate the varying 

probabilities of seeing a positive case, against the cost of misidentifying that case. This is an 

important distinction for personalized medicine, because it would allow us to break down the 

operational range of tools based on an assessment of a condition’s rarity against the cost of getting 

a test wrong. In psychiatry, for example, there are distributions of how well patients respond to an 

antidepressant, and the cost of misidentifying the treatment as effective will vary with their degree 

of depression. In this case, two patients with the same condition may need to be assessed 

differently: not just in terms of whether they should take a drug or not, but in terms of which scale 

(or machine learned tool) should be used for assessment. The question of validity is important 

here: current “gold standard” scales such as the  HAM-D (Hamilton Depression Rating Scale), 

may only be the best test within a certain range of symptom severities. A related problem is dose 

management, especially salient in heterogeneous areas (e.g. urban zones) where patient 

populations with diverse ethnic backgrounds show significant variance in CYP2D6 expression 

(McLellan et al., 1997), which will have different costs associated with misclassification based on 

the drug given: some drugs have more serious misdosing effects than others. Solutions to this 

ambiguity involve using an assessment tool called a Cost Curve, which assesses classifiers across 
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a broad range of population compositions and misclassification costs (Drummond & Holte, 2000; 

Drummond & Holte, 2004; Drummond & Holte, 2006).  

4.3.4 Which subset of clinical questions benefit from a ML approach? 

4.3.4.1 Use in Screening, Diagnosis, Prognosis  

Machine learning is set to disrupt current medical practice in three areas: improving prognostic 

models, outdoing human medical image interpretation, and reducing diagnostic errors (Obermeyer 

& Emanuel, 2016). With recent advances in deep learning, health event prediction across multiple 

centers using EHRs is now possible, even without harmonization of data between centers 

(Rajkomar et al., 2018). This technique is especially accurate at predicting within-hospital events 

such as mortality and duration of stay. Another study showed that suicide attempts and 

completions could be predicted from five years of EHR demographic and clinical data (Simon et 

al., 2018). 

 

4.3.4.2 Accuracy as a goal 

Increasing machine learning’s predictive accuracy can translate into patient safety- for example, 

the patient safety movement focusing on zero preventable deaths in hospitals by 2020 

(https://patientsafetymovement.org/), is working on reducing the 1500 annual suicides in US 

hospitals. An effective machine learning classifier has been shown to contribute to this goal, 

predicting a patient’s suicide attempts or completion (Simon et al., 2018).  

Clinical questions that will benefit the most from machine learning as tools and techniques 

improve, have a common set of data characteristics contributing to better-performing models: the 

ability to collect an exponentially larger number of cases for model training, manually cleaned 

datasets, and training cases that clearly belong in a classification category of interest (Zhu et al., 

2015). 

https://patientsafetymovement.org/
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4.3.4.3 Access to labeled datasets  

Bipolar patients often require a change in therapy after weeks or months. With a complex, variable 

response phenotype, results suggest that no clear distribution of subjects response is currently 

available for bipolar disorders (Pisanu, Heilbronner & Squassina, 2018). In addition, the frequent 

changes to treatment that are required suggest a partial or incomplete response profile may be used 

as outcome labels on the training data. These techniques should account for changes in response 

state after measurement, requiring more data collection (e.g. by using streaming data past initial 

outcome measurements), in order to produce appropriate machine learning models predicting 

pharmacotherapy response. As Zhu et al. (2015) point out in their analysis of factors contributing 

to image classification performance, training examples that clearly correspond to a classification 

category contribute to model performance. 

 

4.3.4.4 Objective label measurement 

While new datasets are rapidly being made available, the response variables available in 

psychiatric data have been questioned, especially for binary predictions. Psychiatric treatment 

response data likely contain significant variability within subjects based on the heterogeneity of 

symptom profiles (Atkinson & Batterham, 2015), and a high measurement error of individual 

response to treatment (i.e. measuring the outcome variable with low precision), suggesting that 

carrying out classification tasks for these individuals would be inappropriate (Norbury, 2018). 

These sources of error become clear problems when attempting novel biomarker validation: 

reproducible results with high specificity and sensitivity are difficult to obtain, creating a low 

translation rate into the clinical environment (Drucker & Krapfenbauer, 2013).  
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4.4 KT & Private sector engagement & commercialization of software 

4.4.1 Woebot  

Woebot (https://woebot.io/) is a web-based cognitive-behavioural therapy (CBT; psychosocial 

therapy focused on reducing cognitive distortions) app designed to reduce therapy non-adherence  

through conversation abilities. RCT evidence demonstrated Woebot was able to demonstrate 27% 

less participant attrition than other online interventions for depression and anxiety (Fitzpatrick, 

Darcy & Vierhile, 2017). Woebot’s effectiveness (e.g. 2.53 point drop in PHQ-9 score) was 

significant, and attributed to the bot’s ability to express empathy. Other tools, such as DBT Coach 

for borderline personality disordered individuals, have demonstrated an average Beck Depression 

Inventory score reduction of 5.59 points after a similar treatment period (Rizvi et al., 2011).  

 

4.4.2 Cognoa  

Cognoa (https://www.cognoa.com/) is an automated childhood screening tool for Autism 

Spectrum Disorder (ASD) designed to offset the recent increase in wait times for ASD screening. 

It applies two machine learned classifiers to bin children into one of four risk categories for ASD 

(low, medium‐non ASD, medium, and elevated): one classifier using parents’ questionnaire 

responses, and another using an analyst’s scores from a video recording of the child (Kanne, 

Carpenter & Warren, 2018). Cognoa performs at 71% accuracy (AUC 0.696), comparable to other 

scale-based ASD screening measures, but allows a single, smartphone-based test to be used for 

children under 6, while avoiding the multiple screening tests used current practice. 

 

4.4.3 Babylon Health 

Babylon (https://www.babylonhealth.com/) is a London-based AI company that developed a 

health app allowing patients to book virtual consultations with a GP (Iacobucci, 2017). Babylon 

https://woebot.io/
https://www.cognoa.com/
https://www.babylonhealth.com/
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can access the EHR for each patient, look at treatment history, and assess disease symptoms prior 

to patients having a brief face-to-face conversation with a GP via smartphone video call. 

Preliminary work comparing Babylon’s efficacy to human physicians found that it identified the 

condition with comparable precision and recall (Babylon F1 score of 57.1% vs physician F1 

57.0% based on diagnosis of realistic clinical vignettes), and provided safer (97.0% vs 93.1%) 

triage advice, although the triage solutions were slightly less appropriate (0.5% more solutions fell 

outside the recommended range of triage options) than those recommended by human doctors 

(Razzaki et al., 2018).  

4.4.4 Certification for use in mental health: standards of validity & efficacy 

4.4.4.1 FDA 

The FDA has released a Digital Health Innovation Action Plan (DHAP) to ensure the quality, 

safety, and efficacy of healthcare-focused digital technology (US FDA, 2018). This plan is 

focused on regulating digital health products that are assessed as a higher risk to patients, are 

made for specific conditions (as opposed to general wellness), and are not related to MDDS 

(Medical Device Data Systems; technologies that focus on medical data collection, storage, and 

movement) (US FDA, 2018b). The Software Precertification Pilot Program included in the 

DHAP is a streamlined process designed to accommodate medical software development. This 

program was created based on the FDA’s assessment of their approach to moderate/high risk 

medical hardware development as lacking the agility and speed required to respond to medical 

software developers’ needs. Part of this transition follows closely the evolution of medical 

devices from hardware-centric to a SaMD (Software as a Medical Device) approach. This 

program focuses on creating a responsive framework for FDA/developer communication, 

focusing on real-world software performance and KPI’s (Key Performance Indicators), real-time 

consultations, and software quality management (Abram, 2017). Importantly for AI research, this 
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includes guidelines for how to carry out clinical trials, and how to assess AI system performance 

based on real-world measures (Jiang et al., 2017). In addition, the trials that assess AI are able to 

use an adaptive study design, enabling planned changes to the study design based on evidence 

collected during the trial (Graham, 2016).  

 

4.4.4.2 Health Canada 

Canada has been developing a similar plan (launching in 2020), emphasizing AI, telerobotics, and 

regulatory alignment with other HTA’s (Health Technology Assessment organizations). These 

organizations, such as CADTH (Canadian Agency for Drugs and Technologies in Health), offer, 

“a comprehensive evaluation of the clinical effectiveness, cost-effectiveness, and the ethical, legal, 

and social implications of health technologies on patient health and the health care system” 

(CADTH, 2019). In addition, Health Canada’s plan adds weight to considerations of 

cybersecurity, development of medical apps on mobile devices, and device interoperability. This 

plan also addresses care access and needs in rural and remote communities a priority, which will 

be an important consideration given the recent options to transition from face-to-face to mobile-

based doctor appointments (Health Canada, 2017; Health Canada, 2018).  

 

4.4.4.5 NHS (UK)  

The UK’s NHS Digital division has opted to harmonize medical device regulations with the 

European Commission’s May 2017 regulations. These regulations begin treating software as a 

medical device, include risk to the patient as a measure in classifying new software, and like 

Canada, focus on cybersecurity, device interoperability, and mobile device platforms as delivery 

mechanisms (NHS, 2019).  
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4.5 Futurism & implications for ML in mental health 

Understanding the details of how advanced machine learning tools (such as deep learning) work 

has been a major thrust of the artificial intelligence research community for years. The reasons 

behind it working have been explored with success, and improvements made to their 

expressibility, efficiency, and learnability (i.e. broader applications of neural networks that take 

less resources to run, and learn more quickly) (Lin, Tegmark & Rolnick, 2017). However, these 

tools have yet to integrate mental health to a significant degree: after assessing 309 health-related 

apps across Amazon’s Alexa and Google’s Assistant, only seven were focused on mental health 

(Chung et al., 2018).  

4.5.1 Future vision: using AI as a full member of case consults (“Alexa in the room”) 

AI advances surrounding NLP (Natural Language Processing) allows review and analysis of EHR 

data. For example, ADEPt is data mining software that identifies a patient’s adverse drug events 

from UK psychiatric EHRs with 83% accuracy (Iqbal et al., 2017). NLP data is difficult to use in 

the context of mental health, only recently becoming available in the form of neuropsychiatric 

clinical notes as part of the 2016 CEGS N-GRID Shared Task in Clinical Natural Language 

Programming (Filannino, Stubbs & Uzuner, 2017). These data have been used to create a predictor 

that is better than chance at using a patient’s history of present illness to predict common mental 

conditions such as anxiety (Tran & Kavuluru, 2017).  

4.5.2 The future looks data-driven: moving towards streaming data 

Beyond formal EHR text, mining social media has been used with deep learning to extract 

psychiatric stressors for suicide, allowing for earlier suicidality detection and prevention (Du et al., 

2018). On a larger stage, streaming data has the potential to change the practice of medicine. By 

combining a network of sensors (the “Internet of Things”) into a proactive system, incipient 

diseases can be caught, personalized treatment created from tracking users’ medical history, and 
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the financial and personnel burdens on healthcare reduced (Hassanalieragh et al., 2015). In mental 

health, this technology would work by training machine learning tools to correlate databases of 

mobile device sensor readings with users’ psychiatric diagnoses, and using these trained tools to 

predict changes in psychiatric state based on current sensor readings (Hassanalieragh et al., 2015). 

4.5.3 Exportability of AI solutions to manage off-site healthcare  

Moving on to the global stage, smartphones are being applied to mental health during travel to 

other countries: one recent study tracked travellers’ phones in Southeast Asia as a means of 

mapping spots where adverse health events were likely to occur (Farnham et al., 2018). This 

research built on a previous study by the same group, showing that daily tracking of health risks 

in Thailand using a mHealth app provided deeper data with less recall bias (errors in 

recollection) than post-trip questionnaires (Farnham et al., 2016). This is especially interesting 

from a mental health perspective, as a follow-up analysis showed that lethargy, anxiety, and 

irritability were all commonly reported symptoms during travel (at 80.0%, 34.7%, and 34.7%, 

respectively) (Farnham et al., 2017). The implications of this tracking could benefit mental 

health during travel, especially through the application of machine learning techniques that use 

phone sensors to capture data from travelers, and use it to create personalized behavioural 

recommendations to decrease mental health events (Sano et al., 2015; Bragazzi, Guglielmi, and 

Garbarino, 2019). 

4.6 A note on search parameters 

Throughout this review, we introduced papers across many domains of study. Some of the topics 

covered appeared to have few-to-no associated papers, until a shift in both search terms and search 

location was made. In the case of searching for (“covariate shift” + psychiat* + “machine 

learning”), for example, PubMed shows few results; the same is true for Google Scholar. 
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However, changing the term “psychiat*” to “antidepressant” reveals a literature on drug 

development and treatment prediction using psychiatry-specific datasets within Scholar only (e.g. 

Wen, Hassanpour & Greiner, 2016, using CO-MED data). We recommend that in the case of 

emerging interdomain topics, a sampling of common terms within the topic be used to find a more 

complete literature (e.g. using terms such as antipsychotic, anxiolytic, or drug discovery to better 

cover machine learning studies of psychiatry-related topics). 
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Connection Between Chapters 4-5 

The impact on psychiatric practice caused by the deployment of machine learning-based tools 

has not yet been assessed. However, with such a disruptive and broadly applicable technology on 

the horizon, changes resulting from the deployment of these tools is now an area of growing 

interest. The next chapter builds on the description of ML in personalized medicine and 

psychiatry in Chapter 3, and establishes a viewpoint for the future: how deploying machine 

learning in the clinic will change prescribing practice in psychiatry.  

Choosing which antidepressant to prescribe is currently based on a clinician’s experience with 

the choices available, and the tolerability of that choice to the patient. Statistical support to 

inform those choices is available from clinical trial data, including information such as 

medication efficacy, safety, and side-effect tolerability. However, these comparisons are made at 

a population level, without accounting for individual differences in medication response, and do 

not include measures of outcome certainty (analogous to predictive accuracy). At best, these data 

support prescription of the medication most likely to be effective for patients in general – but 

does not allow individualized prescriptions, determining if a specific patient will benefit. If 

machine learning models are put into clinical use, they stand to disrupt this treatment model by 

providing clinicians with patient-specific outcome predictions with a known failure rate. The 

following chapter discusses possible effects of this disruption at a patient, physician, and 

pharmaceutical company R&D level. 
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Clinical trials for antidepressants generate three useful endpoints for clinical decision making: 

statistics of effectiveness, safety, and tolerability. Effectiveness measures an antidepressant’s 

function in real-world settings, while safety involves pharmacovigilance identifying the 

antidepressant’s adverse effects, and tolerability examines how well those adverse effects are 

withstood by patients. These measures are fundamental for the development of treatment 

recommendations such as the American Psychiatric Association’s guidelines for treating major 

depressive disorder (MDD) (Gelenberg et al., 2010).  

Prescribing practice for depression is a recent focus of machine learning research, which aims to 

predict antidepressant treatment outcomes at baseline from clinical data (Chekroud et al., 2016). 

The motivation behind this research is to avoid therapeutic delays by accurately prescribing an 

effective, safe, and well-tolerated antidepressant on the first try. This approach can use as input 

all the data outputs of a clinical trial: primarily patient demographics, lab tests, and psychiatric 

scale data. These data have two dimensions: the number of patient cases, and number of clinical 

measurements (in machine learning parlance, “features”) for each patient. As part of creating a 

machine learning model, clinical measurements are assessed agnostically (i.e. without bias based 

on previous knowledge of how those measures are expected to vary between patients) for 

whether their inclusion in the treatment outcome prediction model will be beneficial to the 

model’s predictive accuracy. The quality of feature assessment as well as the accuracy of the 

final model is improved as sample size increases (Patel, Khalaf & Aizenstein, 2016); as the 

quality of data fed into a machine learning algorithm improves (i.e. it has few missing datapoints 

or erroneous entries), the quality of model produced by the algorithm improves. 

Therefore, machine learning models predicting treatment outcome in patients with MDD will be 

improved as the volume and quality of data available to them increases. As these models move 
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from the lab bench toward deployment in real-world healthcare settings (e.g. hospitals, clinics, 

and telehealth) there will be a range of models available as clinical decision support tools to 

assist psychiatrists’ prescription decisions. These models will assess the likelihood that their 

patient’s depression will respond to a particular antidepressant. Based on the amount and quality 

of data that went into each model, treatment outcome prediction models for some antidepressants 

will be more accurate than other models. This begs the question: if one antidepressant can be 

prescribed more accurately than another, do physicians have a duty to their patients to first 

consider prescription of antidepressants with the most accurate models predicting treatment 

outcome?   

Currently, prescription of antidepressants is currently a trial-and-error process: clinical trial 

meta-analyses for newer medications found that 37% of patients do not respond and 53% do not 

remit following 6-12 weeks of treatment (Gartlehner et al., 2011). There is no way of accurately 

predicting treatment outcome for an individual, aside from relying on a clinician’s experience 

with a particular antidepressant. However, accurate models predicting treatment outcome are on 

the horizon: The machine learned model described in Chekroud et al. (2016) predicted treatment 

response to citalopram with 64.6% accuracy, and Iniesta et al. (2016)’s machine learned model 

predicted remission following escitalopram or nortriptyline treatment with ROC AUC’s of 0.75 

and 0.72, respectively (Iniesta et al., 2016). With these early successes, it is clear that using 

machine learning-based models of treatment response prediction is a viable pathway towards 

producing better treatment outcomes for patients. When these models are deployed in the real 

world, physicians will have a duty to use them in prescribing antidepressants: they reduce the 

risk of harm to patients and provide a measurable benefit to the MDD patient population. 
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If we take it as true that (1) these treatment outcome prediction models will eventually be used in 

a clinical setting, (2) the models with the most patient cases informing them will outperform 

other models, and (3) clinicians will continue to carefully administer their duty of care, it follows 

that antidepressants with the lowest expected cost (where cost is defined as detriment to the 

patient) models available for predicting their treatment outcomes should be considered for use 

before antidepressants with more costly models underlying their treatment outcomes. 

In an ideal setting, where multiple models of treatment outcome prediction are available, all 

models would be considered before prescribing an antidepressant. The reality in the clinic is that 

time is a limited resource, and information gathering for the features used by these models (e.g. 

lab tests, physician-administered psychiatric scales) should be made as cost-effective as possible. 

There is no guarantee that different models of treatment outcome prediction will need the same 

information from patients: looking at the field as a whole, it is apparent that different models will 

invariably differ in the information they need to make accurate predictions (Shatte, Hutchinson 

& Teague, 2019). Therefore, collecting clinical features from patients relevant to the most 

accurate models predicting antidepressant treatment outcomes will be prioritized. 

Prioritizing the probability that a particular antidepressant will work on a particular patient (i.e. 

the prescribed drug with the lowest expected cost to the patient) over the group efficacy of an 

antidepressant will create a new objective in which pharmaceutical research holding the best 

evidence for accurately predicting treatment outcome of their antidepressant, will see it being the 

first considered for prescription. If the most accurately prescribed drug is considered first, it lays 

the groundwork for a new competition between pharmaceutical companies: a race towards 

accurate outcome prediction tools, fueled by data. See Figure 5.1 for an example use case. 



127 

 

 

Figure 5.1. Use case example for classification accuracy-based prescription system 

 

Data from an established antidepressant can generate a treatment outcome prediction model that 

is superior to the model for other antidepressants and will therefore be widely considered for 

prescription first. Even if the model only suggests a drug be prescribed in a quarter of assessed 

patients, that antidepressant will still maintain a 25% share of the patient demographic among all 

available antidepressants. Given the 21 widely available antidepressants currently available to 

patients (Cipriani et al., 2018), a 25% capture of potential patients will provide a significant 

incentive in pharmaceutical development to compete to produce the most accurate model 

predicting treatment outcomes (the 75% of patients not prescribed the first considered 
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antidepressant would then be tested on additional antidepressant treatment outcome prediction 

models until one is found that supports the patient’s response to that treatment). 

Patients stand to benefit from this scenario: patients' needs will be better served because they will 

be prescribed effective antidepressant medications with higher accuracy. Clinicians will have 

well-validated tools produced by a competition for predictive accuracy. Pharmaceutical R&D 

will compete to collect as much data as possible for predicting antidepressant treatment 

outcomes, which will lead to novel research being produced on depression diagnosis and 

treatment. At the same time, these benefits will not come without drawbacks: in choosing among 

antidepressants to be considered for prescription first, new medications will have difficulty 

obtaining the volume of evidence necessary. As a result, a few antidepressants may come to 

dominate the market, and possibly stagnate further antidepressant development. However, if 

models of treatment outcome converge on a set of common clinical features, concurrent 

treatment outcome assessment of multiple antidepressants (including new medications) may 

become possible. 

Another solution to the issue of having multiple models of treatment outcome involves active 

classifiers. These are systems specialized in ranking features in order of how much they 

contribute to reducing the system’s error. Active classifiers can also stop mid-classification to 

ask the human (referred to as the “oracle”) for pieces of missing information. These are a natural 

fit with systems such as the one suggested above, which promote democratized access to 

healthcare, because they are capable of adapting to healthcare systems that are resource, 

equipment, and personnel-scarce, with minimal patient impact (Greiner et al., 2002; Settles 

2009).  
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With wearables and other devices in the Internet of Things (Wikipedia contributors, 2019) 

producing personalized health data, patient electronic health records becoming more widely 

available to researchers, and clinical trial data becoming more accessible, a favourable 

environment has been created for machine learning innovation surrounding antidepressant 

treatment outcome prediction. With the advent of treatment outcome prediction models being 

deployed in clinical settings, the psychiatric prescription model will begin shifting away from 

overall antidepressant efficacy towards prescription accuracy, changing antidepressant 

prescribing practice for major depressive disorder from trial-and-error to machine learning-

informed.  
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Chapter 6. Conclusion 

The goal of this thesis was to contribute to computational psychiatry and data-driven medicine 

by demonstrating the viability of machine learning for clinical use, focusing on predicting 

treatment outcomes in MDD. To support this goal, I demonstrated through two original research 

articles that predicting symptom remission and treatment response are possible above chance 

using machine learning software, used a conceptual review to provide an overview of what other 

machine learning -based solutions are being developed in the current healthcare environment, 

and extended how these solutions might affect clinical practice in the future through a viewpoint 

article. In addition, I used Python to develop and publicly release a machine learning pipeline for 

predicting treatment response that can be applied to any clinical trial data (see Appendix 1). 

 

Machine learning has the potential to advance personalized, data-driven psychiatric care. It is 

approaching deployment in a clinical environment for predicting patient response to 

antidepressant treatment. This is supported by the development of FDA and IMDRF regulatory 

frameworks for adaptive algorithms, the increasing number of companies devoted to ML-based 

health solutions, and the exponential increase in research publications in the field of data-driven 

medicine over the last 10 years. The deployment of ML-based software in psychiatry stands to 

benefit all strata of the healthcare environment, and should be considered from a number of 

different perspectives, including: 

1. Patients and patient families 

2. Clinicians, specifically psychiatrists 

3. Healthcare insurers 

4. Provincial health authorities 
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5. Federal regulatory bodies 

6. Clinically-oriented ML research 

 

One of the most important considerations for ML-based tools is how they will be perceived and 

trusted by patients. Inherently, tools that offer objective predictions for how the world works, 

have been shown to make more accurate predictions of treatment outcome than physicians, and 

have a known error rate. However, the clinical reality of the importance of a physician-patient 

relationship may be better reflected by Balint, “...by far the most frequently used drug in general 

practice was the doctor himself.” (Balint, 1955) Data from the uptake and acceptance of these 

tools after broad integration into practice will be a welcome addition to our knowledge of 

patient-algorithm interactions. Interestingly, machine learning-based solutions in Canada may 

stand to benefit three marginalized patient populations the most. Rural, arctic, and indigenous 

patients have significant barriers of access to psychiatric care: geographical, cultural, and socio-

economic (Marrone, 2007). Enabling them to receive the same quality recommendations for 

treatment as patients living in urban centers will improve their agency as patients. 

 

From a psychiatrist’s perspective, the addition of data-driven tools for forecasting treatment 

outcomes may have wide-ranging effects on prescribing practice: as discussed in Chapter 4, 

these tools may impact which drugs are considered first for prescription. Physicians will be 

asked to place their trust in a new technology, and the incorporation of safety, efficacy, and risk 

management requirements for tools in the proposed FDA SaME regulatory framework (FDA, 

2019), suggest that the elements contributing to that trust will be a focus of the first wave of 

adaptive (as opposed to deterministic) algorithms for healthcare. 
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Building on the theme of trust, one element not yet considered is how tool errors will contribute 

to the public perception of integrating ML into clinical practice. As discussed in chapter 3, a hard 

lesson learned from the first AI winter in the 1970’s will be to mitigate drops in public 

confidence stemming from over-promising and under-delivering on ML tool performance 

(Wikipedia contributors, 2019). This is especially important when interacting with vulnerable 

populations such as depressed patients, where visible failures to treat with novel technology have 

more potential to produce public outcry than established treatments. 

 

One of the most marked improvements yet to be implemented in machine learning is determining 

which features will contribute the most to an algorithm’s predictive accuracy. While there is 

ample research into face and construct validity of psychiatric questionnaires, these tools do not 

take into account how a machine learning algorithm may interpret data (e.g. there has been no 

attempt to determine how re-wording questions affects predictive accuracy). To accomplish this, 

clinical, lab, and demographic data must be made more available to researchers (Ross, Lehman 

& Gross, 2012). Initiatives such as the Clinical Study Data Request 

(ClinicalStudyDataRequest.com, 2019), are attempting to remedy this lack of access. 

 

The work in this thesis should be extended in several ways. First, clinical trial data from more 

antidepressants should be evaluated using the trained classifier CConcure produced in Chapter 2 to 

determine how generalizable this tool is across medications, and the stability of features chosen 

by the model across medications. Second, more finely grained definitions of patient populations 

(e.g. divided geographically, by medication response time, by depression severity, or divided 

using a computational technique such as k-means clustering) should be compared, to determine 

the relative effectiveness of using one classifier trained on all patients’ data compared to a 
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plethora of classifiers, each trained on the data from one group of patients. This will allow 

assessment of dataset size requirements for effective classifier training. Third, moving from 

running a shell-based machine learning program to an mHealth (mobile Health) app would 

greatly decrease the learning curve and accessibility of this software for non-domain experts. 

Since this type of tool has not yet been deployed in a clinical setting, there is no data for how it 

will be adopted by clinicians, its intended vs. real-world use cases, or changes that will need to 

be made in order to make it a viable addition to the treatment decision-making process. Fourth, 

future machine learning tools produced should integrate and test new learners such as those 

found in the PyTorch and TensorFlow libraries.  

 

Aside from classifier-related improvements, adding more to features’ predictive value could be 

accomplished through assessing the nature of data being collected in clinical trials. While data is 

collected based on well-established, validated measures of patient demographics, lab tests, and 

psychiatric scales, the validation process supporting these measures is based on techniques 

drawn from association studies; for example, the HAM-D uses questions that have been shown, 

on average, to elucidate specific dimensions of a patient’s depression (Rush et al., 2006; Bobo et 

al., 2016). It is unknown whether these narrow categories would serve a classifier as well as 

asking more broadly worded or differently phrased questions at the time of data collection.  

 

In order to generate classifiers that are trained on the same distribution of data they are expected 

to draw on for predictions, determining the composition of real-world patient populations will 

allow for classifier creation that reflects a clinical environment. While clinical trials provide a 

large, organized base of data on which to train classifiers, there is a significant difference 

between patients who enter a clinical trial (e.g. meeting certain exclusion criteria such as a lack 
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of previous antidepressant use), and those entering a clinic for treatment. The cost of 

misclassifying real-world patients should also be assigned a meaningful value, in order to better 

determine which classifier would best serve the patient population. In Chapter 3, we examined 

the benefit of using cost curves to determine when to use each classifier, but these curves cannot 

be used in machine learning tool development until a population’s misclassification costs are 

known. 

 

While there are many areas of machine learning that merit further inquiry, it shows enormous 

promise for contributing to treatment outcome prediction in psychiatry. It is exciting to consider 

how data-driven approaches will benefit future patients, creating a new frontier to explore 

improvements in mental health, seek out new ways to alleviate strife in those suffering from 

depression, and boldly go where medicine has not gone before. 
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Appendices 

Appendix 1. Code for Chapter 2 Concure Classifier 

A1.1 Data Preparation 

 

#!/usr/bin/env python3 

 

import pandas as pd 

import os, scipy.stats 

import numpy as np 

import pathlib 

 

def Misc():     

     

    #VARIABLES 

     

    #Encode a categorical variable as an integers (not onehot or dummy) 

    demow['ETHNIC']=pd.Categorical(demow['ETHNIC']).codes 

 

    #Quick way to encode/binarize 

    df.set_index('PATIENT') 

    df['ones']=1 

    df.pivot(columns='MEDGNX', values='ones') 

    df=df.fillna(value=0) 

 

    #Recode a variable 

    df['Severity of illness']=df['Severity of illness'].replace(to_replace='Borderline ill', 

value='Borderline mentally ill') 

 

    #PIVOTS & JOINS 

 

    #pivots table 

    d60p= d60.pivot(index='PATIENT',columns='TESTS',values='VALN') 

     

    #pivot each column of 'lab' to its own table (lab1, lab2, etc) 

    lab1= lab.pivot(index='PATIENT',columns='LPARM',values='LVALN') 

     

    #relabels columns so join works 

    lab1.columns='lab1-'+lab1.columns 

     

    #joins tables  

    labs=lab1.join([lab2, lab3]) 

 

    #Returns vals in df1 that are ALSO in df2 
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    np.intersect1d(df1['PATIENT'],df2['PATIENT']) 

 

    #Returns vals in df1 that are NOT in df2 

    np.setdiff1d(df1['PATIENT'],df2['PATIENT']) 

 

    #Remove a study's participants (e.g. if missing data) 

    dfs3=dfs2.drop(labels=df.index, errors='ignore') 

     

 

    #MISC 

     

    #Descriptive statistics: central tendency, dispersion and shape 

    df['HAMD Total'].describe() 

     

    #drops duplicates if both column 1 AND column 2 have the same row value 

    lab=lab.drop_duplicates(subset=['PATIENT', 'LPARM'], keep='first') 

 

    #Quick way to sample a class to even out classes 

    a=labels.columns[0] 

    b=labels[a].value_counts() 

    df2=labels.loc[labels[a]==0] 

    df3=labels.loc[labels[a]==1] 

    df4=df2.sample(min(b)) 

    df5=df3.sample(min(b)) 

    df6=[df4, df5]  

    df7=pd.concat(df6) 

    df8=df7.sort_index() 

 

    #Quick way to cut data to labels 

    data=data[data.index.isin(labels.index)].sort_index() 

 

 

    #Sample for holdout set at same frequency of labels as dataset 

    #Using ~ to cut the holdout set out of the main set, or not using it to get just the holdout set on 

its own 

 

 

holdout=labels.groupby('HAM-D17 1=REMIT').apply(pd.DataFrame.sample, 

frac=0.1).reset_index(level='HAM-D17 1=REMIT', drop=True).sort_index() 

     

holdout_labels=labels[data.index.isin(holdout.index)].sort_index() 

labels_excluding_holdout=labels[~data.index.isin(holdout.index)].sort_index() 

holdout_data=data[data.index.isin(holdout.index)].sort_index()  

data_excluding_holdout=data[~data.index.isin(holdout.index)].sort_index() 
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holdout_labels.to_csv(path_or_buf='/media/james/ext4data/current/projects/pfizer/refined-

combined-study/holdout-labels.csv', index_label='PATIENT') 

labels_excluding_holdout.to_csv(path_or_buf='/media/james/ext4data/current/projects/pfizer/refi

ned-combined-study/labels_excluding_holdout.csv', index_label='PATIENT') 

holdout_data.to_csv(path_or_buf='/media/james/ext4data/current/projects/pfizer/refined-

combined-study/holdout-data.csv', index_label='PATIENT') 

data_excluding_holdout.to_csv(path_or_buf='/media/james/ext4data/current/projects/pfizer/refin

ed-combined-study/data_excluding_holdout.csv', index_label='PATIENT') 

     

    #Cgi ordered categories, -1 indicates NaN 

    df=df.set_index('PATIENT') 

    cat=['Normal, not at all ill', 

    'Borderline mentally ill', 

    'Mildly ill',   

    'Moderately ill', 

    'Markedly ill', 

    'Severely ill', 

    'Among the most extremely ill'] 

    df['CGI SEVERITY']=pd.Categorical(df['Severity of illness'], categories=cat).codes        

     

    df[df['CGI SEVERITY']==-1] 

    >>>output: 89CHQS 

    df=df.drop(['89CHQS']) 

     

    #CGI process 

    info=pd.read_csv('/media/james/ext4data1/current/projects/pfizer/combined-study/3151a1-

3364-csv/deid_cgi.csv', encoding='utf-8')  

 

    info=info[info['CPENM']=='BASELINE DAY -1']  

 

    info=info.drop_duplicates(subset='PATIENT', keep='first')    

 

    data= info.pivot(index='PATIENT',columns='TESTS',values='VALX')  

 

    data.to_csv(path_or_buf='/media/james/ext4data1/current/projects/pfizer/combined-

study/3151a1-3364-csv/deid_cgi_ready.csv',index_label='PATIENT')   

     

    #demow ordered sex/race 

    cat=['Male', 'Female'] 

     

    #split off a variable 

    dftherdur=df['THERDUR'].to_frame() 

    del df['THERDUR'] 

     

    #ethnicity ordering- alphabetical like NIH 

    eth=['American Indian or Alaska Native', 
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     'Asian',   

     'Black or African American', 

     'Hispanic or Latino', 

     'Middle Eastern or North African', 

     'Native Hawaiian or Other Pacific Islander', 

     'Other', 

     'White'] 

 

    #sex ordering- alphabetical 

    sex=['Female','Male'] 

 

    #ethnic recode 

    df1['ETHNIC RECODE']=df1['ETHNIC RECODE'].replace({ 

 'American Indian or Alaska Native':'American Indian or Alaska Native', 

 'Arabic':'Middle Eastern or North African', 

 'Asian':'Asian', 

 'Black':'Black or African American', 

 'Black or African American':'Black or African American', 

 'Chinese':'Asian', 

 'Hispanic':'Hispanic or Latino', 

 'Indian':'Asian', 

 'Korean':'Asian', 

 'Native American':'American Indian or Alaska Native', 

 'Native Hawaiian or Other Pacific Islander':'Native Hawaiian or Other Pacific Islander', 

 'Oriental(Asian)':'Asian', 

 'Other':'Other', 

 'Other: (Mixed race)':'Other', 

 'Other: Alaskan Native':'American Indian or Alaska Native', 

 'Other: Coloured.':'Black or African American', 

 'Other: Mid eastern':'Middle Eastern or North African', 

 'Other: Middle eastern':'Middle Eastern or North African', 

 'Other: Mixed':'Other', 

 'Other: Mixed race.':'Other', 

 'Other: Mixed.':'Other', 

 'Other: Panaminian.':'Hispanic or Latino', 

 'Other: Russian':'White', 

 'Other: XXXXXXXXXX':'Other', 

 'Other:Bi-Racial.':'Other', 

 'Other:Brazilian':'Hispanic or Latino', 

 'Other:Cauc/Asian-pacific islander':'Other', 

 'Other:INDIAN':'Asian', 

 'Other:Mixed':'Other', 

 'Other:Mixed race.':'Other', 

 'Other:Mixed.':'Other', 

 'Other:Slavic':'White', 

 'Taiwanese':'Asian', 
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 'White':'White'}) 

     

    return 

 

def Labeler(): 

    hamd=pd.read_csv('/media/james/ext4data1/current/projects/pfizer/303-

data/deid_hamd17a.csv') 

    df['HAMD 1=REMIT']=np.where(df['HAMD-17 questions Total score derived']<=7, 1, 0) 

             

    df.to_csv(path_or_buf='/media/james/ext4data1/current/projects/pfizer/combined-study/class-

labels.csv', index_label='PATIENT') 

         

    return 

 

 

def GroupDefiner(): 

    labels=pd.read_csv('/media/james/ext4data1/current/projects/pfizer/labels-d60-placebo-

remitters.csv', encoding='utf-8').set_index('PATIENT').sort_index() 

    placebos=pd.read_csv('/media/james/ext4data1/current/projects/pfizer/placebo-

patients.csv').set_index('PATIENT').sort_index() 

    therapy= pd.read_csv('/media/james/ext4data1/current/projects/pfizer/therapy-60-

completed.csv').set_index('PATIENT').sort_index() 

     

    placebos=placebos[placebos['TPNAME']=='Placebo'] 

     

    therapy=therapy[therapy['THERDUR>=60']==1]    

     

    final= labels.join([placebos, therapy], how='inner') 

     

    del final['TPNAME'] 

    del final['THERDUR>=60'] 

     

    final.to_csv(path_or_buf='/media/james/ext4data1/current/projects/pfizer/labels-final.csv', 

index_label='PATIENT') 

 

    return 

     

     

def Homeopathy(): 

    #Cuts all tables to subjects in labels-final 

    patients=pd.read_csv('/media/james/ext4data1/current/projects/pfizer/labels-final.csv', 

encoding='utf-8').set_index('PATIENT').index 

     

    path= '/media/james/ext4data1/current/projects/pfizer/303-data-baseline/' 

    csvs= os.listdir(path) 

    for i in csvs: 
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        a= pd.read_csv(path+i) 

        b= a[a['PATIENT'].isin(patients)] 

        b= b.set_index('PATIENT') 

        b.to_csv(path_or_buf='/media/james/ext4data1/current/projects/pfizer/303-data-

baseline/cut-'+str(i), index_label='PATIENT') 

     

    return 

 

#>>> 

#NOW /CUT/ENCODE THE TABLES DOWN MANUALLY 

#>>> 

 

def Binarizer(): 

    #Use if you're making binarized variables 

    csv= ['deid_adverse', 'deid_aemeddra', 'deid_medhist', 'deid_medhist2', 'deid_nsmed', 

'deid_othtrt'] 

    for i in csv: 

        info=pd.read_csv('/media/james/ext4data1/current/projects/pfizer/3151A1-303-

csv/'+str(i)+'.csv', encoding='utf-8') 

        a= info.set_index(['PATIENT']) 

        b= pd.get_dummies(a)         

        d= {} 

        for j in list(set(b.index)): 

            d[j]= b.loc[j].values.flatten() 

         

        maxlen=len(d[max(d, key=lambda k: len(d[k]))])             

        for m in d: 

            d[m]=np.append(d[m], [0]*(maxlen-len(d[m])))         

        d= pd.DataFrame.from_dict(d, orient='index') 

        d.columns=list(b.columns)*scipy.stats.mode(b.index).count[0]        

        

d.to_csv(path_or_buf='/media/james/ext4data1/current/projects/pfizer/vecs/vecs_'+str(i)+'.csv', 

index_label='PATIENT') 

        #this gives a dataframe with all variables binarized  

 

    return 

 

 

def Harvester(): 

    '''Because it's a combine. Aha. Ha.''' 

    #But seriously, joins all tables together by patient row 

     

    info= pd.read_csv('/media/james/ext4data1/current/projects/pfizer/labels-d60-placebo-

remitters.csv', encoding='utf-8').set_index('PATIENT').drop('GROUPLABEL', axis=1) 

     

    path= '/media/james/ext4data1/current/projects/pfizer/303-data-baseline-final/' 
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    csvs= os.listdir(path)     

    for i in csvs: 

        a=pd.read_csv(path+i).set_index('PATIENT') 

        info=info.join(a, how='inner') 

     

    info.to_csv(path_or_buf='/media/james/ext4data1/current/projects/pfizer/joined-vecs.csv', 

index_label='PATIENT') 

     

    return 

 

def CombineStudies(): 

    '''Combines all studies in a directory with the same column headers''' 

     

    basedir=input('Click and drag DIRECTORY here: ') 

    root=basedir.strip('\' ') 

    dirname= os.path.basename(root) 

     

    basefiles=[] 

     

    for path, subdirs, files in os.walk(root): 

        for name in files: 

            fpath= os.path.join(path, name) 

            basefiles=basefiles+[fpath] 

     

    combinedframe= pd.DataFrame() 

     

    for i in basefiles: 

        print(i) 

        data=pd.read_csv(i, encoding='utf-8').set_index('PATIENT') 

        combinedframe=pd.concat([combinedframe,data]) 

     

    combinedframe.to_csv(path_or_buf='/media/james/ext4data/current/projects/pfizer/refined-

combined-study/Data/'+dirname+'.csv') 

         

A1.2 Missing Value Imputation 

 

#!/usr/bin/env python3 

 

import pandas as pd 

import os, scipy.stats 

import numpy as np 

from sklearn.impute import SimpleImputer 

from sklearn.preprocessing import MinMaxScaler 

 

def Impute(): 
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    a=input('Click and drag DATASET WITH MISSING VALUES file here: ') 

    a=a.strip('\' ') 

    data=pd.read_csv(a, encoding='utf-8').set_index('PATIENT')  

     

    b=input('Click and drag LABELS file here: ') 

    b=b.strip('\' ') 

    labels=pd.read_csv(b, encoding='utf-8').set_index('PATIENT')  

     

    data= data.dropna(axis='columns', how='all') 

     

     

 

    X= SimpleImputer().fit_transform(data) 

     

    mms= MinMaxScaler() 

    X2= mms.fit_transform(X) 

    X3=pd.DataFrame(data=X2, columns=data.columns, index=data.index) 

     

    X3.to_csv(path_or_buf='/media/james/ext4data/current/projects/pfizer/refined-combined-

study/data.csv', index_label='PATIENT') 

     

    return 

     

A1.3 Cross-Validation  

 

#!/usr/bin/env python3 

 

import pickle 

import numpy as np 

import pandas as pd 

from sklearn.model_selection import StratifiedKFold 

 

def OuterCv():    

    a=input('Click and drag ENTIRE DATASET file here: ') 

    a=a.strip('\' ') 

    data=pd.read_csv(a, encoding='utf-8').set_index('PATIENT')  

     

    b=input('Click and drag LABELS file here: ') 

    b=b.strip('\' ') 

    labels=pd.read_csv(b, encoding='utf-8').set_index('PATIENT')     

     

    X= data 

    y= np.array(labels[labels.columns[0]]) 

     

    train, test= [],[] 
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    outer_cv= {'train': [],  

               'test': []} 

 

    skf = StratifiedKFold(n_splits=5) 

    for train_index, test_index in skf.split(X,y): 

        train= X.index[train_index] 

        test= X.index[test_index] 

        outer_cv['train'].append(train) 

        outer_cv['test'].append(test) 

 

    with open('/media/james/ext4data/current/projects/pfizer/combined-study/outer_cv.pickle', 

'wb') as f: pickle.dump(outer_cv, f, pickle.HIGHEST_PROTOCOL)  

 

    return 

     

def InnerCv(): 

    a=input('Click and drag ENTIRE DATASET file here: ') 

    a=a.strip('\' ') 

    data=pd.read_csv(a, encoding='utf-8').set_index('PATIENT')  

     

    b=input('Click and drag LABELS file here: ') 

    b=b.strip('\' ') 

    labels=pd.read_csv(b, encoding='utf-8').set_index('PATIENT')   

     

    a=input('Click and drag OUTER CV file here: ') 

    a=a.strip('\' ') 

    with open(a, 'rb') as f: outer_cv= pickle.load(f) 

 

    foldcount= 0     

    for i in range(len(outer_cv['train'])):  

        foldcount= foldcount+1 

         

        subjects=pd.DataFrame(index=outer_cv['train'][i]) 

        X= subjects.join(data) 

        y= subjects.join(labels) 

     

        train, test, holdout= [],[],[] 

        inner_cv= {'train': [],  

                   'test': [], 

                   'holdout':[]} 

     

        skf = StratifiedKFold(n_splits=5)    

        for train_index, test_index in skf.split(X,y):       

            train= X.index[train_index] 

            test= X.index[test_index] 
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            inner_cv['train'].append(train) 

            inner_cv['test'].append(test) 

             

        with open('/media/james/ext4data/current/projects/pfizer/combined-

study/inner_cv_fold_'+str(foldcount)+'.pickle', 'wb') as f: pickle.dump(inner_cv, f, 

pickle.HIGHEST_PROTOCOL)  

     

    return 

 

A1.4 Feature Selection 

 

#!/usr/bin/env python3 

 

from sklearn.feature_selection import SelectKBest 

from sklearn.feature_selection import SelectFromModel 

from sklearn.feature_selection import RFECV 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.linear_model import LassoLarsIC, LassoCV, ElasticNet 

 

import copy, pickle 

import numpy as np 

import pandas as pd 

import itertools 

 

#To flatten feature list and get frequencies:  

#[item for sublist in inner_cv['Feature Indices'] for item in sublist] 

#from collections import Counter 

#b=dict(Counter(a)) 

 

def OuterFeats(): 

    a=input('Click and drag ENTIRE DATASET file here: ') 

    a=a.strip('\' ') 

    data=pd.read_csv(a, encoding='utf-8').set_index('PATIENT')  

     

    b=input('Click and drag LABELS file here: ') 

    b=b.strip('\' ') 

    labels=pd.read_csv(b, encoding='utf-8').set_index('PATIENT')  

     

    c=input('Click and drag OUTER CV file here: ') 

    c=c.strip('\' ') 

    with open(c, 'rb') as f: outer_cv= pickle.load(f) 

     

    folds= len(outer_cv['train']) 

    feats=[[0]]*folds 
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    for i in range(folds): 

        subjects=pd.DataFrame(index=outer_cv['train'][i]) 

        X= subjects.join(data) 

        y= subjects.join(labels) 

 

        llic= SelectFromModel(LassoLarsIC()) 

        #llic= SelectFromModel(LassoLarsIC(criterion='bic')) 

         

        llic.fit(X,y) 

        feats[i]=llic.get_support(indices=True) 

     

    featlist= list(set.intersection(*map(set,feats))) 

    featlist.sort() 

    feature_csv= pd.DataFrame(index=featlist, data= list(data.columns[featlist])) 

    feature_csv.index.name='Feature #' 

    feature_csv.columns=['Feature Name'] 

 

    print(len(featlist)) 

     

    data_cut= data[data.columns[featlist]] 

      

    data_cut.to_csv(path_or_buf='/media/james/ext4data/current/projects/pfizer/combined-

study/data-cut-to-feature-set.csv', index_label='PATIENT') 

    feature_csv.to_csv(path_or_buf='/media/james/ext4data/current/projects/pfizer/combined-

study/intersecting-features-index.csv') 

        

    return 

 

def InnerFeats(): 

    a=input('Click and drag ENTIRE DATASET file here: ') 

    a=a.strip('\' ') 

    data=pd.read_csv(a, encoding='utf-8').set_index('PATIENT')  

     

    b=input('Click and drag LABELS file here: ') 

    b=b.strip('\' ') 

    labels=pd.read_csv(b, encoding='utf-8').set_index('PATIENT')  

     

    c=input('Click and drag SINGLE FOLD INNER CV file here: ') 

    c=c.strip('\' ') 

    with open(c, 'rb') as f: inner_cv= pickle.load(f) 

     

    folds= len(inner_cv['train']) 

    thisfold=input('Which # fold is this? ') 

    feats=[[0]]*folds 

     

    #This is correct because we are mimicking the entire L(.) procedure as if D-1 were D. 
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    for i in range(folds): 

        subjects=pd.DataFrame(index=inner_cv['train'][i]) 

        X= subjects.join(data) 

        y= subjects.join(labels) 

 

        #llic= SelectFromModel(LassoLarsIC(criterion='bic')) 

        llic= SelectFromModel(LassoLarsIC()) 

        llic.fit(X,y) 

        feats[i]=llic.get_support(indices=True) 

     

    featlist= list(set.intersection(*map(set,feats))) 

    featlist.sort() 

    feature_csv= pd.DataFrame(index=featlist, data= list(data.columns[featlist])) 

    feature_csv.index.name='Feature #' 

    feature_csv.columns=['Feature Name'] 

 

    print(len(featlist)) 

     

    data_cut= data[data.columns[featlist]] 

         

    data_cut.to_csv(path_or_buf='/media/james/ext4data/current/projects/pfizer/combined-

study/data-cut-to-feature-set-for-inner-fold-'+str(thisfold)+'.csv', index_label='PATIENT') 

    feature_csv.to_csv(path_or_buf='/media/james/ext4data/current/projects/pfizer/combined-

study/intersecting-features-index-for-inner-fold-'+str(thisfold)+'.csv') 

         

    return     

 

def HoldoutCut(): 

    a=input('Click and drag FEATURE SELECTED ENTIRE DATASET file here: ') 

    a=a.strip('\' ') 

    data=pd.read_csv(a, encoding='utf-8').set_index('PATIENT')  

 

    b=input('Click and drag HOLDOUT DATA file here: ') 

    b=b.strip('\' ') 

    hdata=pd.read_csv(b, encoding='utf-8').set_index('PATIENT')  

     

    data_cut=hdata[data.columns] 

     

    data_cut.to_csv(path_or_buf='/media/james/ext4data/current/projects/pfizer/combined-

study/holdout-data-cut-to-feature-set.csv', index_label='PATIENT') 

     

''' 

In case we need to re-integrate individual folds and run through them five at a time: 

 

    foldgroup=[] 

    for i in range(0, len(feats), 5): 
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        foldgroup.append(feats[i:i+5]) 

     

    for i in range(len(foldgroup)): 

        featlist= list(set.intersection(*map(set,foldgroup[i]))) 

        featlist.sort() 

         

        data_cut= data[data.columns[featlist]] 

''' 

 

A1.5 Model Training, Selection, and Testing 

 

#!/usr/bin/env python3 

 

import numpy as np 

import pandas as pd 

import copy, pickle 

from sklearn import svm, naive_bayes, neighbors, ensemble, linear_model, tree, neural_network 

 

def EntireDataset(): 

    a=input('Click and drag FEATURE SELECTED ENTIRE DATASET file here: ') 

    a=a.strip('\' ') 

    data=pd.read_csv(a, encoding='utf-8').set_index('PATIENT')  

     

    b=input('Click and drag LABELS file here: ') 

    b=b.strip('\' ') 

    labels_df=pd.read_csv(b, encoding='utf-8').set_index('PATIENT')  

    labels=np.array(labels_df[labels_df.columns[0]]) 

        

    nfeatsmax= len(data.columns) 

    nfeatsneural= round((nfeatsmax*2/3)) 

     

    rf= ensemble.RandomForestClassifier(max_features=nfeatsmax, 

max_depth=5,bootstrap=False) 

    et= ensemble.ExtraTreesClassifier(max_features=nfeatsmax, max_depth=5, bootstrap=False) 

    kn= neighbors.KNeighborsClassifier(n_neighbors=nfeatsmax, p=1) 

    nb= naive_bayes.GaussianNB() 

    dt= tree.DecisionTreeClassifier(max_features=nfeatsmax, max_depth=5, criterion='entropy') 

    ls= svm.LinearSVC(penalty='l1', dual=False) 

    gb= ensemble.GradientBoostingClassifier(loss='exponential', max_depth=2) 

    nn= 

neural_network.MLPClassifier(hidden_layer_sizes=(nfeatsneural,nfeatsneural,nfeatsneural,), 

learning_rate_init=0.0001, max_iter=500) 

    ab= ensemble.AdaBoostClassifier() 

    bc= ensemble.BaggingClassifier(base_estimator=rf) 

    vc= ensemble.VotingClassifier(estimators=[('gb', gb),('ab', ab),('bc', bc)], voting='soft') 
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    estimators= {#'randomforest': rf, 

                 #'extratrees': et, 

                 #'kneighbors': kn, 

                 #'naivebayes': nb, 

                 #'decisiontree': dt, 

                 'linearsvc': ls, 

                 #'gboost': gb, 

                 #'neuralnet': nn, 

                 #'adaboost': ab, 

                 #'bagging': bc, 

                 #'voting': vc, 

                 }    

     

    results= {'estimator':[],  

              'subjects':[],  

              'labels':[],  

              'predictions':[],  

              'scores':[],  

              'attempts':[]} 

 

    for j,k in zip(estimators.keys(), estimators.values()): 

        k.fit(data, labels)  

        predict_train= k.predict(data) 

        train_scores= [1 if x==y else 0 for x,y in zip(labels, predict_train)]             

        results['estimator'].extend([j]*len(data)) 

        results['subjects'].extend(data.index) 

        results['labels'].extend(labels) 

        results['predictions'].extend(predict_train) 

        results['scores'].extend(train_scores) 

        results['attempts'].extend([1]*len(data)) 

 

    results_df=pd.DataFrame.from_dict(results).set_index('subjects')     

    results_df.to_csv(path_or_buf='/media/james/ext4data/current/projects/pfizer/combined-

study/entire_dataset_results.csv') 

     

    with open('/media/james/ext4data/current/projects/pfizer/combined-

study/trainedclassifier.pickle', 'wb') as f: pickle.dump(k, f, pickle.HIGHEST_PROTOCOL) 

      

    print('ENTIRE DATASET ACCURACY') 

    trd= results_df.groupby('estimator').sum() 

    trsum= (trd['scores']/trd['attempts'])*100 

    print(trsum)     

     

    return 
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def HoldoutDataset(): 

    a=input('Click and drag HOLDOUT FEATURE SELECTED DATA file here: ') 

    a=a.strip('\' ') 

    data=pd.read_csv(a, encoding='utf-8').set_index('PATIENT')  

     

    b=input('Click and drag HOLDOUT LABELS file here: ') 

    b=b.strip('\' ') 

    labels_df=pd.read_csv(b, encoding='utf-8').set_index('PATIENT')  

    labels=np.array(labels_df[labels_df.columns[0]]) 

     

    a=input('Click and drag TRAINED CLASSIFIER file here: ') 

    a=a.strip('\' ') 

    with open(a, 'rb') as f: k= pickle.load(f) 

         

    results= {'estimator':[],  

              'subjects':[],  

              'labels':[],  

              'predictions':[],  

              'scores':[],  

              'attempts':[]} 

 

    j=input('Type NAME of classifier: ') 

    predict_train= k.predict(data) 

    train_scores= [1 if x==y else 0 for x,y in zip(labels, predict_train)]             

    results['estimator'].extend([j]*len(data)) 

    results['subjects'].extend(data.index) 

    results['labels'].extend(labels) 

    results['predictions'].extend(predict_train) 

    results['scores'].extend(train_scores) 

    results['attempts'].extend([1]*len(data)) 

 

    results_df=pd.DataFrame.from_dict(results).set_index('subjects')     

    results_df.to_csv(path_or_buf='/media/james/ext4data/current/projects/pfizer/combined-

study/holdout_dataset_results.csv') 

         

    print('HOLDOUT DATASET ACCURACY') 

    trd= results_df.groupby('estimator').sum() 

    trsum= (trd['scores']/trd['attempts'])*100 

    print(trsum)     

     

    return 

 

def OuterFolds(): 

    a=input('Click and drag FEATURE SELECTED ENTIRE DATASET file here: ') 

    a=a.strip('\' ') 

    data=pd.read_csv(a, encoding='utf-8').set_index('PATIENT')  
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    b=input('Click and drag LABELS file here: ') 

    b=b.strip('\' ') 

    labels=pd.read_csv(b, encoding='utf-8').set_index('PATIENT')  

     

    c=input('Click and drag OUTER CV file here: ') 

    c=c.strip('\' ') 

    with open(c, 'rb') as f: outer_cv= pickle.load(f) 

    

    folds= len(outer_cv['train'])     

    nfeatsmax= len(data.columns) 

    nfeatsneural= round((nfeatsmax*2/3)) 

     

    rf= ensemble.RandomForestClassifier(max_features=nfeatsmax, 

max_depth=5,bootstrap=False) 

    et= ensemble.ExtraTreesClassifier(max_features=nfeatsmax, max_depth=5, bootstrap=False) 

    kn= neighbors.KNeighborsClassifier(n_neighbors=nfeatsmax, p=1) 

    nb= naive_bayes.GaussianNB() 

    dt= tree.DecisionTreeClassifier(max_features=nfeatsmax, max_depth=5, criterion='entropy') 

    ls= svm.LinearSVC(penalty='l1', dual=False) 

    gb= ensemble.GradientBoostingClassifier(loss='exponential', max_depth=2) 

    nn= 

neural_network.MLPClassifier(hidden_layer_sizes=(nfeatsneural,nfeatsneural,nfeatsneural), 

learning_rate_init=0.0001, max_iter=500) 

    ab= ensemble.AdaBoostClassifier() 

    bc= ensemble.BaggingClassifier(base_estimator=rf) 

    vc= ensemble.VotingClassifier(estimators=[('gb', gb),('ab', ab),('bc', bc)], voting='soft') 

     

         

    estimators= {'randomforest': rf, 

                 'extratrees': et, 

                 'kneighbors': kn, 

                 'naivebayes': nb, 

                 'decisiontree': dt, 

                 'linearsvc': ls, 

                 'gboost': gb, 

                 'neuralnet': nn, 

                 'adaboost': ab, 

                 'bagging': bc, 

                 'voting': vc 

                 }   

    

    train_results= {'fold':[], 'estimator':[], 'subjects':[],  

                    'labels':[], 'predictions':[], 'scores':[],  

                    'attempts':[]} 
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    test_results= {'fold':[], 'estimator':[], 'subjects':[],  

                   'labels':[], 'predictions':[], 'scores':[],  

                   'attempts':[]} 

     

    for i in range(folds): 

        train_ids=pd.DataFrame(index=outer_cv['train'][i]) 

        X_train= train_ids.join(data) 

        y_train_df= train_ids.join(labels) 

        y_train= np.array(y_train_df[y_train_df.columns[0]]) 

         

        test_ids=pd.DataFrame(index=outer_cv['test'][i]) 

        X_test= test_ids.join(data) 

        y_test_df= test_ids.join(labels) 

        y_test= np.array(y_test_df[y_test_df.columns[0]]) 

 

        for j,k in zip(estimators.keys(), estimators.values()): 

            k.fit(X_train, y_train)  

                       

            predict_train= k.predict(X_train) 

            train_scores= [1 if x==y else 0 for x,y in zip(y_train, predict_train)]             

            train_results['fold'].extend([i+1]*len(X_train)) 

            train_results['estimator'].extend([j]*len(X_train)) 

            train_results['subjects'].extend(train_ids.index) 

            train_results['labels'].extend(y_train) 

            train_results['predictions'].extend(predict_train) 

            train_results['scores'].extend(train_scores) 

            train_results['attempts'].extend([1]*len(X_train)) 

 

            predict_test= k.predict(X_test) 

            test_scores= [1 if x==y else 0 for x,y in zip(y_test, predict_test)]          

            test_results['fold'].extend([i+1]*len(X_test)) 

            test_results['estimator'].extend([j]*len(X_test)) 

            test_results['subjects'].extend(test_ids.index) 

            test_results['labels'].extend(y_test) 

            test_results['predictions'].extend(predict_test) 

            test_results['scores'].extend(test_scores) 

            test_results['attempts'].extend([1]*len(X_test)) 

 

    train_df=pd.DataFrame.from_dict(train_results).set_index('subjects') 

    test_df=pd.DataFrame.from_dict(test_results).set_index('subjects') 

     

    train_df.to_csv(path_or_buf='/media/james/ext4data/current/projects/pfizer/combined-

study/outer_train_results.csv') 

    test_df.to_csv(path_or_buf='/media/james/ext4data/current/projects/pfizer/combined-

study/outer_test_results.csv') 
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    print('TRAIN RESULT') 

    trd= train_df.groupby('estimator').sum() 

    trsum= (trd['scores']/trd['attempts'])*100 

    print(trsum) 

    trmax= trsum.idxmax(axis=1) 

    print('\nBest train: {}\n'.format(trmax)) 

 

    print('TEST RESULT') 

    ted= test_df.groupby('estimator').sum() 

    tesum= (ted['scores']/ted['attempts'])*100 

    print(tesum) 

    temax= tesum.idxmax(axis=1) 

    print('\nBest test: {}\n'.format(temax)) 

     

    return 

 

 

def InnerFolds(): 

    a=input('Click and drag FEATURE SELECTED SINGLE FOLD DATA file here: ') 

    a=a.strip('\' ') 

    data=pd.read_csv(a, encoding='utf-8').set_index('PATIENT')  

     

    b=input('Click and drag LABELS file here: ') 

    b=b.strip('\' ') 

    labels=pd.read_csv(b, encoding='utf-8').set_index('PATIENT')  

     

    c=input('Click and drag SINGLE FOLD INNER CV file here: ') 

    c=c.strip('\' ') 

    with open(c, 'rb') as f: inner_cv= pickle.load(f) 

    

    thisfold= input('Which fold is this? ') 

    folds= len(inner_cv['train'])     

    nfeatsmax= len(data.columns) 

    nfeatsneural= round((nfeatsmax*2/3)) 

     

    rf= ensemble.RandomForestClassifier(max_features=nfeatsmax, 

max_depth=5,bootstrap=False) 

    et= ensemble.ExtraTreesClassifier(max_features=nfeatsmax, max_depth=5, bootstrap=False) 

    kn= neighbors.KNeighborsClassifier(n_neighbors=nfeatsmax, p=1) 

    nb= naive_bayes.GaussianNB() 

    dt= tree.DecisionTreeClassifier(max_features=nfeatsmax, max_depth=5, criterion='entropy') 

    ls= svm.LinearSVC(penalty='l1', dual=False) 

    gb= ensemble.GradientBoostingClassifier(loss='exponential', max_depth=2) 

    nn= 

neural_network.MLPClassifier(hidden_layer_sizes=(nfeatsneural,nfeatsneural,nfeatsneural), 

learning_rate_init=0.0001, max_iter=500) 
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    ab= ensemble.AdaBoostClassifier() 

    bc= ensemble.BaggingClassifier(base_estimator=rf) 

    vc= ensemble.VotingClassifier(estimators=[('ab', ab),('gb', gb),('bc', bc)], voting='soft') 

     

    estimators= {'randomforest': rf, 

                 'extratrees': et, 

                 'kneighbors': kn, 

                 'naivebayes': nb, 

                 'decisiontree': dt, 

                 'linearsvc': ls, 

                 'gboost': gb, 

                 'neuralnet': nn, 

                 'adaboost': ab, 

                 'bagging': bc, 

                 'voting': vc 

                 }   

    

    train_results= {'fold':[], 'estimator':[], 'subjects':[],  

                    'labels':[], 'predictions':[], 'scores':[],  

                    'attempts':[]} 

                     

    test_results= {'fold':[], 'estimator':[], 'subjects':[],  

                   'labels':[], 'predictions':[], 'scores':[],  

                   'attempts':[]} 

     

    for i in range(folds): 

        train_ids=pd.DataFrame(index=inner_cv['train'][i]) 

        X_train= train_ids.join(data) 

        y_train_df= train_ids.join(labels) 

        y_train= np.array(y_train_df[y_train_df.columns[0]]) 

         

        test_ids=pd.DataFrame(index=inner_cv['test'][i]) 

        X_test= test_ids.join(data) 

        y_test_df= test_ids.join(labels) 

        y_test= np.array(y_test_df[y_test_df.columns[0]]) 

 

        for j,k in zip(estimators.keys(), estimators.values()): 

            k.fit(X_train, y_train) 

                                   

            predict_train= k.predict(X_train) 

            train_scores= [1 if x==y else 0 for x,y in zip(y_train, predict_train)]             

            train_results['fold'].extend([i+1]*len(X_train)) 

            train_results['estimator'].extend([j]*len(X_train)) 

            train_results['subjects'].extend(train_ids.index) 

            train_results['labels'].extend(y_train) 

            train_results['predictions'].extend(predict_train) 
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            train_results['scores'].extend(train_scores) 

            train_results['attempts'].extend([1]*len(X_train)) 

 

            predict_test= k.predict(X_test) 

            test_scores= [1 if x==y else 0 for x,y in zip(y_test, predict_test)]          

            test_results['fold'].extend([i+1]*len(X_test)) 

            test_results['estimator'].extend([j]*len(X_test)) 

            test_results['subjects'].extend(test_ids.index) 

            test_results['labels'].extend(y_test) 

            test_results['predictions'].extend(predict_test) 

            test_results['scores'].extend(test_scores) 

            test_results['attempts'].extend([1]*len(X_test))         

             

    train_df=pd.DataFrame.from_dict(train_results).set_index('subjects') 

    test_df=pd.DataFrame.from_dict(test_results).set_index('subjects') 

     

    train_df.to_csv(path_or_buf='/media/james/ext4data/current/projects/pfizer/combined-

study/inner_train_results_fold_'+str(thisfold)+'.csv') 

    test_df.to_csv(path_or_buf='/media/james/ext4data/current/projects/pfizer/combined-

study/inner_test_results_fold_'+str(thisfold)+'.csv') 

     

     

    print('TRAIN RESULT') 

    trd= train_df.groupby('estimator').sum() 

    trsum= (trd['scores']/trd['attempts'])*100 

    print(trsum) 

    trmax= trsum.idxmax(axis=1) 

    print('\nBest train: {}\n'.format(trmax)) 

 

    print('TEST RESULT') 

    ted= test_df.groupby('estimator').sum() 

    tesum= (ted['scores']/ted['attempts'])*100 

    print(tesum) 

    temax= tesum.idxmax(axis=1) 

    print('\nBest test: {}\n'.format(temax)) 

     

    return 

 

def InnerHoldout():      

    a=input('Click and drag FEATURE SELECTED SINGLE FOLD DATA file here: ') 

    a=a.strip('\' ') 

    data=pd.read_csv(a, encoding='utf-8').set_index('PATIENT')  

     

    b=input('Click and drag LABELS file here: ') 

    b=b.strip('\' ') 

    labels=pd.read_csv(b, encoding='utf-8').set_index('PATIENT')  
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    c=input('Click and drag OUTER CV file here: ') 

    c=c.strip('\' ') 

    with open(c, 'rb') as f: inner_cv= pickle.load(f) 

    

    thisfold= int(input('Which fold is this? ')) 

     

    nfeatsmax= len(data.columns) 

    nfeatsneural= round((nfeatsmax*2/3)) 

     

    rf= ensemble.RandomForestClassifier(max_features=nfeatsmax, 

max_depth=5,bootstrap=False) 

    et= ensemble.ExtraTreesClassifier(max_features=nfeatsmax, max_depth=5, bootstrap=False) 

    kn= neighbors.KNeighborsClassifier(n_neighbors=nfeatsmax, p=1) 

    nb= naive_bayes.GaussianNB() 

    dt= tree.DecisionTreeClassifier(max_features=nfeatsmax, max_depth=5, criterion='entropy') 

    ls= svm.LinearSVC(penalty='l1', dual=False) 

    gb= ensemble.GradientBoostingClassifier(loss='exponential', max_depth=2) 

    nn= 

neural_network.MLPClassifier(hidden_layer_sizes=(nfeatsneural,nfeatsneural,nfeatsneural), 

learning_rate_init=0.0001, max_iter=500) 

    ab= ensemble.AdaBoostClassifier() 

    bc= ensemble.BaggingClassifier(base_estimator=rf) 

    vc= ensemble.VotingClassifier(estimators=[('ab', ab),('gb', gb),('bc', bc)], voting='soft') 

     

    estimators= {#'randomforest': rf, 

                 #'extratrees': et, 

                 #'kneighbors': kn, 

                 #'naivebayes': nb, 

                 #'decisiontree': dt, 

                 'linearsvc': ls, 

                 #'gboost': gb, 

                 #'neuralnet': nn, 

                 #'adaboost': ab, 

                 #'bagging': bc, 

                 #'voting': vc 

                 }   

    

    train_results= {'fold':[], 'estimator':[], 'subjects':[],  

                    'labels':[], 'predictions':[], 'scores':[],  

                    'attempts':[]} 

                     

    test_results= {'fold':[], 'estimator':[], 'subjects':[],  

                   'labels':[], 'predictions':[], 'scores':[],  

                   'attempts':[]} 
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    train_ids=pd.DataFrame(index=inner_cv['train'][thisfold-1]) 

    X_train= train_ids.join(data) 

    y_train_df= train_ids.join(labels) 

    y_train= np.array(y_train_df[y_train_df.columns[0]]) 

         

    test_ids=pd.DataFrame(index=inner_cv['test'][thisfold-1]) 

    X_test= test_ids.join(data) 

    y_test_df= test_ids.join(labels) 

    y_test= np.array(y_test_df[y_test_df.columns[0]]) 

 

    for j,k in zip(estimators.keys(), estimators.values()): 

        k.fit(X_train, y_train)  

                       

        predict_train= k.predict(X_train) 

        train_scores= [1 if x==y else 0 for x,y in zip(y_train, predict_train)]             

        train_results['fold'].extend([thisfold]*len(X_train)) 

        train_results['estimator'].extend([j]*len(X_train)) 

        train_results['subjects'].extend(train_ids.index) 

        train_results['labels'].extend(y_train) 

        train_results['predictions'].extend(predict_train) 

        train_results['scores'].extend(train_scores) 

        train_results['attempts'].extend([1]*len(X_train)) 

 

        predict_test= k.predict(X_test) 

        test_scores= [1 if x==y else 0 for x,y in zip(y_test, predict_test)]          

        test_results['fold'].extend([thisfold]*len(X_test)) 

        test_results['estimator'].extend([j]*len(X_test)) 

        test_results['subjects'].extend(test_ids.index) 

        test_results['labels'].extend(y_test) 

        test_results['predictions'].extend(predict_test) 

        test_results['scores'].extend(test_scores) 

        test_results['attempts'].extend([1]*len(X_test)) 

 

    train_df=pd.DataFrame.from_dict(train_results).set_index('subjects') 

    test_df=pd.DataFrame.from_dict(test_results).set_index('subjects') 

     

    train_df.to_csv(path_or_buf='/media/james/ext4data/current/projects/pfizer/combined-

study/inner_holdout_train_results_fold_'+str(thisfold)+'.csv') 

    test_df.to_csv(path_or_buf='/media/james/ext4data/current/projects/pfizer/combined-

study/inner_holdout_test_results_fold_'+str(thisfold)+'.csv') 

     

    with open('/media/james/ext4data/current/projects/pfizer/combined-

study/trainedclassifier_innerfold_'+str(thisfold)+'.pickle', 'wb') as f: pickle.dump(k, f, 

pickle.HIGHEST_PROTOCOL) 

     

    print('D_-j RESULT') 
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    trd= train_df.groupby('estimator').sum() 

    trsum= (trd['scores']/trd['attempts'])*100 

    print(trsum) 

    trmax= trsum.idxmax(axis=1) 

    print('\nBest train: {}\n'.format(trmax)) 

 

    print('D_j (holdout for estimating model quality) RESULT') 

    ted= test_df.groupby('estimator').sum() 

    tesum= (ted['scores']/ted['attempts'])*100 

    print(tesum) 

    temax= tesum.idxmax(axis=1) 

    print('\nBest test: {}\n'.format(temax)) 

     

    return 

 

 

A1.6 Bootstrapping for Significance Testing 

 

#!/usr/bin/env python3  

 

import numpy as np 

import pandas as pd 

from collections import defaultdict 

import matplotlib.pyplot as plt 

import pprint, itertools, pickle, random, statistics 

 

#Because we are sampling with replacement, we don't need to worry about the program picking 

all subjects each time. Some may be picked more than once, and the total number of samples will 

be equal to the number of subjects. 

 

def Bill(): 

    a=input('Click and drag desired TEST RESULTS file (usually outer_test_results or 

holdout_test_results: ') 

    a=a.strip('\' ') 

    otr=pd.read_csv(a).set_index('subjects') 

     

    #Per subject accuracy   

    acc= otr['scores']*100 

    n= len(otr.index) 

    runs= 10000 

    chance=float(input('What % is chance? ')) 

     

    distribution= [] 

    for i in range(runs):         

        sample= np.random.choice(acc, n,replace=True)  
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        sample_mean= sum(sample)/len(sample) 

        distribution.append(sample_mean) 

     

    dist_mean= sum(distribution)/len(distribution) 

    p_value= sum(i<=chance for i in distribution)/runs 

     

    print('{} runs, {} samples per run'.format(len(distribution), n)) 

    print('distribution mean: {}%'.format(dist_mean)) 

    print('p-value: {}'.format(p_value)) 

     

    bootstrap_results= {'samples per run': n,  

                        'runs': 10000,  

                        'distribution mean': dist_mean,  

                        'p-value': p_value 

                        } 

     

    bdf= pd.DataFrame.from_dict(bootstrap_results, orient='index') 

     

    binner=np.digitize(distribution, np.array(range(0,101))) 

    plt.plot([chance,chance],[0,list(binner).count(statistics.mode(binner))],'-r',lw=2) 

    plt.hist(distribution, bins=list(range(0,101))) 

    plt.xlabel('% Accuracy') 

    plt.ylabel('Number of runs') 

    plt.title('Bootstrap sample distribution') 

    plt.show() 

     

    bdf.to_csv(path_or_buf='/media/james/ext4data1/current/projects/pfizer/refined-combined-

study/bootstrap_results.csv') 

     

    return 

     

A1.7 ROC Curve Creation 

 

#!/usr/bin/env python3  

 

import numpy as np 

import pandas as pd 

from collections import defaultdict 

import matplotlib.pyplot as plt 

import pprint, itertools, pickle, random, statistics 

from sklearn import metrics 

 

def Roc(): 

    a=input('Click and drag desired TEST RESULTS file (usually entire_dataset_results or 

holdout_test_results: ') 
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    a=a.strip('\' ') 

    results=pd.read_csv(a).set_index('subjects') 

     

    labels= results['labels'] 

    predictions=results['predictions'] 

     

    fpr, tpr, thresholds= metrics.roc_curve(labels, predictions, pos_label=1) 

     

    print('fpr: {} \ntpr: {}\n'.format(fpr[1]*100, tpr[1]*100)) 

     

    auc = "%.2f" % metrics.auc(fpr, tpr) 

    title = 'ROC Curve, AUC = '+str(auc) 

    with plt.style.context(('ggplot')): 

        fig, ax = plt.subplots() 

        ax.plot(fpr, tpr, 'darkorange', label='ROC curve') 

        ax.plot([0, 1], [0, 1], 'k--', label='Baseline') 

        plt.xlim([0.0, 1.01]) 

        plt.ylim([0.0, 1.01]) 

        plt.xlabel('False Positive Rate') 

        plt.ylabel('True Positive Rate') 

        plt.legend(loc='lower right') 

        plt.title(title) 

        plt.show() 

         

    return 

     

def HardPlace(): 

 

    return 


