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Abstract

Parkinson’s Disease (PD) is the second major neuro-degenerative disorder

caused by dopaminergic loss in the brain region known as the Basal Ganglia

(BG) especially Substantia Nigra (SN). The major symptoms of this disease are

motor abnormalities. In addition, it also contains non-motor symptoms, such

as cognitive deficits, which may show at early stages of PD. Physical exam,

demographic characteristics, and neuroimaging analysis have been commonly

used to diagnose PD. However, such assessments by clinicians are subjective,

time-consuming, expensive, and prone to error. Furthermore, the underlying

causes are often not easily identified, especially in an early stage of the disease.

Thus, establishing fast and accurate diagnosis can be difficult, even by expe-

rienced specialists. In my research, I have studied smart, non-invasive, and

practical approaches to help clinicians assess PD, intending to diagnose and

monitor the disease progression.

The first section of this research is gait analysis for PD. We propose a

non-invasive approach using movement data captured by Kinect to monitor the

motor deficits of PD patients. The motion data of standard exercises, normally

performed in rehabilitation sessions by physiotherapists, are collected including

Step Length (SL), tremor, and Time Up & Go (TUG). The standard medical

Unified Parkinson’s Disease Rating Scale (UPDRS) is used by a physical

therapist to determine the level of severity as the ground truth. The general

framework after obtaining the motion data includes two steps; feature extraction

from the kinematic motion data, and classification using Random Forest (RF)
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(for SL and tremor data) and K-means (for TUG data). Freezing of Gait (FOG)

is one of the most incapacitating motor symptoms for PD, especially in the later

stages of the disease. FOG is a short absence or reduction in the ability to walk

for PD patients that may result in a fall, decrease in patients’ quality of life,

and even death. Existing FOG assessments by doctors are based on a patient’s

diaries and experts’ manual video analysis, which give subjective, inaccurate,

and unreliable results. In the present research, an automatic FOG assessment

system (Kin-FOG) is designed for PD patients to provide objective information

to neurologists about the FOG condition and the symptoms’ characteristics.

The proposed FOG assessment system utilizes Kinect for capturing data. The

analysis of foot joint trajectory of the motion captured by Kinect is used to

find the FOG episodes. The standing mode is similar to a FOG episode. Thus,

Kin-FOG uses the gradient displacement of the angle between the foot and the

ground for discriminating between FOG and standing modes.

Clinical characteristics of the patients have essential information for the

specialist in PD diagnosis. However, assessment of this information by doctors

can also be subjective, vulnerable to human errors and inefficient. Therefore,

the second section of my research targets automatic, early and non-invasive

assessment of PD using clinical properties with machine learning. Feature

selection is conducted by Mean Decrease Impurity (MDI) method. In the

classification step, RF is used as a classifier model for two goals; PD Diagnosis,

and PD progress monitoring with Hoehn & Yahr (H&Y) scale.

Neuroimaging has been successfully used for diagnosing the neurological

disease. Magnetic Resonance Imaging (MRI) is one of the most popular methods

due to its non-invasive nature and high resolution images. The most common

MRI sequences are T1-weighted and T2-weighted scans. In the third section of

this research, data analysis is conducted for PD diagnosis using MR images

with machine learning. The proposed method follows four steps; preprocessing,
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feature extraction, feature selection, and classification. Preprocessing pipeline

is performed using different medical libraries; Freesurfer, SPM/CAT12, and

FSL. Thereafter, subcortical and region-based features are extracted from

the preprocessed MR images. Feature selection or dimensionality reduction

is performed by Principal Component Analysis (PCA). In the classification,

two important machine learning algorithms are used, Support Vector Machine

(SVM) and RF. Furthermore, we assess four deep-learning based models that

classify patients based on the biomarkers in MRI data. In the last part of the

neuroimaging analysis, SN region in MRI T2 and T1 are evaluated using Local

Binary Pattern (LBP) and Histogram Oriented Gradient (HOG) features. For

each subject, few slices around the center of a MRI DICOM volume (midbrain

area) are selected as Slice of Interest (SOI). In each slice, the area around SN

becomes the Region of Interest (ROI) for further analysis. RF and SVM, with

or without PCA, are used for classification. The ability of the proposed system

is compared for these two popular MR imaging modules based on the different

number of scans.

To obtain more experimental data, our research group has started collabora-

tion with Arizona State University (ASU), which provided us with the motion

data for PD and HC subjects. The dataset consisted of motion properties for

a group of PD patients that may or may not have FOG. The objective is to

use machine learning methods for classifying the data into two groups; FOG

and Non-FOG.
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Preface

The contents of this thesis has been published or are under review in the

journals and conferences. The contents of Chapter 3 presents the work in

Parkinson’s Disease (PD) body movement monitoring using a smart sensor

based non-invasive technique and has been published in IEEE Healthcom 2018.

Chapter 4 details our method of automatic simulated Freezing of Gait (FOG)

assessment system for PD and has been published in Sensors journal. Chapter

5 is learning demographic and clinical features for automatic PD monitoring

and classification which has been published in IEEE EMBS 2019.

Chapters 6,7,8 and 9 provide our contributions using neuroimaging analysis

using MRI T1 and T2. Chapter 6 is presenting the results of PD identification

using T1 images that has been published in ICSM 2018 conference. Chapter 7

is the result of our study for PD classification using region-based analysis for

T1 MR images. This work is going to be submitted to the ICME conference.

Chapter 8 is on study of different deep learning models for PD classification and

has been published in ICSM 2019. In chapter 9, the mid-brain scan assessment

is done for PD patients using MR T1 and T2 images. This work is going to be

submit to the Medical & Biological Engineering & Computing journal. The

proposed method for T2 MRI data has been published in IEEE BIBE 2019

conference. I choose to use first person plural throughout this thesis to honor

the contributions of my advisors and collaborators on my various work.
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Chapter 1

Introduction

Movement disorders are a group of nervous system (neurological) abnormalities

that cause uncontrollable body movements, lack of coordination, muscle tight-

ness, or increased difficulty in walking or hand use which may be voluntary

or involuntary. Movement disorders are neurological and require an accurate

diagnosis, along with options for treatment, for patients to remain in control of

their bodies and lives. There are different movement disorder diseases among

which the most prevalent ones include: Essential Tremor (ET), Parkinson’s

Disease (PD), Multiple System Atrophy (MSA), Progressive Supranuclear

Palsy (PSP), and Dementia with Lewy bodies (diffuse Lewy Body Disease).

PD, the second most common movement disorder, is a progressive neuro-

degenerative disease that mostly affects seniors [106]. The incidence of PD, or

the rate of newly diagnosed cases, generally increases with age, although it can

stabilize in people who are older than 80. An estimated 4 percent of people with

PD are diagnosed before the age of 50. Men are 1.5 times more likely to have

the disease than women [73]. PD is caused by the loss of dopaminergic neurons

in the part of the brain known as the Substantia Nigra (SN). The substantia

nigra (SN) is located in Basal Ganglia (BG) structure in the midbrain that

plays an important role in reward and movement. Thus, the most important

symptoms, which people with PD manifest are motor symptoms including

tremor, bradykinesia, postural impairments, and rigidity [92]. In many patients,

subsequent non-motor problems may arise such as cognitive, mood, sleep,

olfactory, with dementia commonly occurring in the advanced stages of the
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disease [73].

PD can be difficult to diagnose accurately, particularly in the early stages of

the disease when symptoms resemble other medical conditions, and misdiagnoses

occur occasionally [138]. There are currently no blood or laboratory tests

that have been proven to help in diagnosing PD. The diagnosis is based

on the medical demographic characteristics, a physical assessment that is

conducted by interviewing and observing the patient, and neurological imaging

as complementary information.

There are three general research problems which will be addressed in this

thesis.

• Specialists use physical examination in their clinics to diagnose PD or

evaluate the patient’s situation if they already have PD. This process

relies on expertise, time consuming, prone to human error, and might

be subjective. Therefore, our goal is to design a computer aided system

using machine learning methods to make this evaluation process more

efficient, easier, faster, and more accurate.

• Another approach to evaluate PD is to use clinical and demographic

information. However, doctors need to spend a lot of time to assess this

large amount of data, which makes this process difficult, time consuming,

and can be inaccurate. Thus, the second objective of this research is

to make this assessment easier, accurate, and more automated using

machine learning techniques.

• Neuroimaging is another source of information for clinicians to assess PD

patients. However, the lack of visible sign of PD in Magnetic Resonance

Imaging (MRI) makes it not useful as a solo source for PD assessment.

Therefore, we are going to design a Computer Aided Diagnosis (CAD)

system using MRI as a first step to discover relevant biomarkers in the

brain to diagnose PD.

The present research has three sections. The first section is gait analysis for

automatic PD assessment using non-invasive kinematic motion data. The gait
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analysis section has two parts. In the first part, machine learning techniques are

used for PD diagnosis and progress monitoring using the collected motion data

with Kinect in different experiments done by PD patients. In the second part of

gait analysis section, an automatic Freezing Of Gait (FOG) assessment system

is designed to provide objective information to neurologists about the FOG

condition and the symptom’s characteristics of their PD patients. In the second

section of this thesis, the demographic and clinical characteristics are used to

facilitate diagnosis and disease level determination. Machine learning methods

are used for establishing these purposes. In the last part, the wide range of

analysis from traditional computer vision techniques to deep learning methods

has been used to diagnose PD with MRI, especially at an early stage of the

disease. Two popular types of MRI, T1 and T2, are used for PD classification.

In this part, a CAD system is proposed with just a few midbrain scans. The

SN is selected as Region Of Interest (ROI) for further analysis using machine

learning and computer vision techniques. The ability of this system is evaluated

with different number of slices for T1 and T2. The output of the system is

compared for these two imaging modalities.

There has been increasing interest in recent years on using smart sensor

technology, e.g., Kinect and Leap Motion, to capture and analyze human body

movements, to benefit not only games but also health care and rehabilitation

applications. The motivation of the first part of the motion analysis section is

proposing a non-invasive approach using movement data captured from Kinect

to diagnose and monitor motor deficits for PD patients. In the first part of gait

analysis section of our research, we captured and evaluated simple exercises,

normally performed in rehabilitation sessions by the physical therapist: Stride

Length (SL), Tremor, and Timed Up & Go (TUG). The standard medical

Unified Parkinson’s Disease Rating Scale (UPDRS) scale is used by a physical

therapist to determine the level of severity as the ground truth. Depending

on the type of experiment, different gait features are extracted. Random

Forest (RF) is used for classification for Tremor and SL, and K-means is used

for clustering the TUG data.

Although there are a lot of motor symptoms for PD, they can vary greatly
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from individual to individual—both in terms of intensity and how they progress.

However, some of them are common in most PD patients. FOG is one of the

most debilitating motor symptoms in patients with PD as it may lead to falls

and loss of independence. There are many characteristics related to FOG that

seem to differ from the cardinal features of PD and is still largely unexplored.

The current clinical FOG assessments are based on patient self-report diaries

and manual video analysis by neuroscientists. Both these practices are time-

consuming, imprecise, and subjective. Therefore, in the second part of the

gait analysis section, the goal is designing an automatic FOG detection system,

which provides the essential information of PD patients to the doctors and

care providers. This system could have remote application for the patients and

with more capabilities such as disease progress visualization and other useful

medical information.

Since the specialist must assess much demographic information and clinical

properties for the patients, the diagnosis process is very time consuming,

subjective and difficult. Thus, having an automated CAD system for evaluating

the demographic and clinical features in PD diagnosis and progress monitoring

is helpful for the medical community. On the other hand, there are some

widely used rating scales for PD diagnosis and progress monitoring, such as

UPDRS, Hoehn & Yahr (HAY) scale, Schwab and England, Activities of Daily

Living (ADL) scale, PD-Non-Motor Symptoms (NMS) questionnaire and NMS

survey. Since these scales may not give reliable results, a CAD technology

needs to be designed for accurate detection and progress monitoring of PD

[39].

Motor symptoms have been used for proposing high accuracy automatic

and semi-automatic PD diagnosis and disease stage determination. However,

most of the motor signs of PD will appear at a later stage of the disease where

most of the dopaminergic cells are lost. Moreover, any neuroprotective therapy

initiated at such a late stage may have fewer substantial effects on disease

progression. Thus, it is crucial to find out some valid and objective biomarkers

to distinguish early PD patients from the healthy population [90]. In recent

years, neuroimaging has been increasingly used as an objective method for
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the early diagnosis of PD and other neurological diseases [90]. There are

some published research for diagnosing, progress monitoring and assessment of

PD using different neuroimaging data such as MRI [130], Positron Emission

Tomography (PET) [89], Single Photon Emission Computed Tomography

(SPECT) [36], and Diffusion Tensor Imaging (DTI)[17]. MRI can provide

evidence of structural changes that occur as a result of dopamine neurons

loss in the SN, as well as the loss of non-dopaminergic neurons in other

brain regions. Therefore, MRI methods that are sensitive to detect these

tissue changes may prove useful as a biomarker for PD [158]. Because of its

high-resolution contrast, ready availability, non-invasive nature and no need

for any pharmaceutical injections, many have used structural MRI methods

in their pursuit of developing a biomarker for PD [39]. However, there are

still plenty of unexplored approaches in this domain. The analysis in this

study has been done for two popular types of MR Images: T1 and T2. In

this research, different medical packages were used for preprocessing MR T1

data including Freesurfre, FMRIB Software Library (FSL), and Statistical

Parametric Mapping (SPM)/Computational Anatomy Toolbox (CAT)12. The

preprocessed data are used for different analysis in order to classify patients

with and without PD.

The brain has three main parts: Gray Matter (GM), White Matter (WM)

and CerebroSpinal Fluid (CSF). In our research, the region-based analysis is

established for PD diagnosis using using GM and WM in the MRI T1 images.

These regions are extracted by preprocessing MRI T1 data with SPM/CAT12.

In addition, sub-cortical features are analyzed with machine learning techniques

to distinguish between PD and Healthy Control (HC) T1 samples. The sub-

cortical features are obtained by Freesurfer library used for MRI preprocessing

pipeline. After feature extraction, Support Vector Machine (SVM) and RF

methods are used as classifiers for neuroimaging analysis with or without

Principal Component Analysis (PCA) as feature selection for dimensionality

reduction. Furthermore, a group of 2D and 3D Deep Learning (DL) models are

evaluated for PD classification using T1 MR data. These models are applied on

preprocessed MR T1 samples generated by the FSL package. As deep learning
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methods require a lot of data for training that may not be practical to acquire,

a data analysis has been done by computer vision techniques and machine

learning methods for both T1 and T2 data. These analysis are done for SN

region by selecting just a few midbrain scans of the brain. The main goal

behind this part of our research was comparing the ability of the proposed

system for T1 and T2 MR image based on the different number of MR scans

instead of the whole 3D volume.

1.1 Contributions

The contributions of the present thesis can be categorized into three parts:

• Gait Analysis for PD:

– Designing a body movement monitoring system for PD patients using

a smart sensor based non-invasive technique. The proposed system

facilitates the diagnosis and progress monitoring of the disease using

a Kinect, and can be used by not only the patients but also the

specialists and care providers.

– Designing an automatic simulated FOG assessment system for PD

(Kin-FOG). Kin-FOG helps the doctors to obtain the required

information about FOG for their PD patients in a faster and easier

manner .

• Clinical Data Analysis for PD

– Designing an automatic classification and monitoring of Denovo PD

by learning demographic and clinical features. The proposed system

uses machine learning strategies for an early diagnosis and progress

monitoring using patient’s clinical information.

• Neuroimaging Data Analysis for PD:

– Toward the identification of PD using T1 MR images. The proposed

method uses sub-cortical features including volume, area, mean
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curvature, thickness, and their fusion with different machine learning

techniques for PD diagnosis just with T1 MR Images.

– PD Classification using GM/WM volume of T1 MR Images. We

propose a classification model that can classify subjects with and

without PD based on structural T1 MRI GM/WM volume features

and their fusion with machine learning methods.

– Assessing the Capability of Deep-Learning Models in PD Diagnosis.

We propose and assess four deep-learning based models that classify

patients based on biomarkers found in structural T1 MRI.

– PD midbrain assessment using MR T1 and T2 images. We contribute

a system for PD diagnosis using Local Binary Pattern (LBP) and

Histogram of Oriented Gradients (HOG) features and their fusion

with machine learning techniques using only a few midbrain scans

from MR T1 and T2 images. The capability of the system is

compared for the two types of images and also for number of scans.

1.2 Challenges

In this research, machine learning methods are used for PD diagnosis and

progress monitoring using different types of healthcare data. There are several

obstacles for integration of machine learning in healthcare today. The main

challenge is the ability to make a dataset which have the necessary size and

quality of samples for training the state-of-the-art machine learning models.

The data collection process is hard, time consuming and sometimes dangerous

for the patients. Furthermore, cleaning and preparation of the medical data

is one of the essential phase before machine learning analyses due to the

inconsistency in format and quality of data [57].

Another major challenge to effective healthcare data analytic is skewed

data class distribution, which is referred to as the imbalanced classification

problem [175]. An imbalanced classification problem occurs when there is a

big gap between the number of samples in different classes in a dataset. For

example, in our research, the imbalanced classification problem exists since
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the number of samples for HC group has significantly fewer observations than

the PD class. The former is usually called a minority class, and the latter, a

majority class. In this study, we develop our proposed methods for fixing the

imbalance problem before going to the data analysis part.

Once the dataset is built, there are still several other challenges that must

be overcome before proceeding with the data analysis. In motion analysis,

walking styles of PD patients differ across subjects (including diverse motor

anomalies) [99]. Conventional gait assessment for patients is mainly conducted

by a clinician via visual inspection and observation which produce results that

are subjective and rely on the observer’s experience [127]. Thus, it is crucial to

get the knowledge of the rehabilitation process by quantitative gait analysis,

and understand to what extent does a patient recover from the disease [127].

On the other hand, automatic prediction of FOG is essential for generating

the cueing only when a FOG event occurs for PD patients. FOG investigation

is challenging because of its unpredictable and unreliable nature [159]. The

current treatments and cueing techniques are just temporary solutions for

limiting a FOG event time. Moreover, there are many unknown aspects of the

pathophysiology of FOG and its relation to PD. In the neuroimaging part of

this research, MRI data is used for PD assessment. Lack of clear visual sign

for PD in MR images make this process extremely challenging. In addition,

there are a few key challenges such as the identification of features and how to

efficiently select the most important ones and combine them into our model.

1.3 Organization of the thesis

The rest of the thesis document is organized as follows: In Chapter 2, we

cover the background research and related works in the areas of gait analysis,

demographic and clinical analysis, and neuroimaging research. In Chapter 3

and 4, we detail our study for PD diagnosis and progress monitoring with gait

analysis, and the proposed Kin-FOG system for PD. Chapter 5 covers our

findings on automatic analysis of demographic and clinical information using

machine learning methods for PD diagnosis and PD severity determination. In
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Chapter 6, 7,8 and 9 we list our approaches in neuroimaging analysis for PD

assessment. In Chapter 6 we present the results of a study using sub-cortical

features from MRI T1 images for PD classification. Chapter 7 presents our

study for PD diagnosis using GM and WM volume. In Chapter 8, we report

our results of different deep learning models with preprocessed MR T1 images

for PD diagnosis. Chapter 9, presents our research for comparing the ability of

T1 and T2 MR images with just a few midbrain scans for PD classification.

Finally, in Chapter 10 we state our conclusions and indicate directions for

future work.
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Chapter 2

Background and Related Work

There have been considerable research in PD assessment for diagnosis and

progress monitoring by different types of data from human motion to neu-

roimaging. The publications are categorized based on the data type is used.

Three types of data has been assessed, including kinematic human motion,

clinical, and demographic data and neuroimaging data.

2.0.1 Assessment of Parkinson’s Disease using Gait Anal-
ysis

Current assessment of PD patients’ physical performance and their disease

progress is based on visual assessment of a trained physical therapist or oc-

cupational therapist which can be subjective and inaccurate due to human

error. In recent years, sensors and computer technology have gained popularity

for motion capturing (Mocap) which results in better clinical and behavioral

assessment, and more efficient therapeutic decision [105]. Motor analysis can

be performed with the help of wearable sensors [119], [124]. However, wearable

devices are vulnerable to an uncontrolled environment, affected by noises and

undesirable movements. We adopt an alternative approach in favor of using

non-invasive sensors such as Microsoft Kinect. Due to its affordable cost, users

can purchase their own and capture movements at their own convenience. There

is research taking advantage of the versatility of Kinect to provide remote assis-

tance to elderly individuals [21], [52], which provides a mean outside the clinic

or rehabilitation center to assess progress of patients. Remote assessment can
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reduce visits to clinics and transportation costs, leading to shorter wait-time

for those who have urgent needs.

It is non-invasive because only the joint trajectories, not the faces, are

used for analysis. Many researchers believe that Kinect offers a simple to

use and non-invasive assessment method for PD [21], [136], suitable for the

elderly population. Kinect has been tested as a reliable system for healthcare

applications. Mobini et al. [101] demonstrated its feasibility for home-based

rehabilitation of stroke patients. Hondori et al. [105] showed Kinect to be

far more accurate than RGB vision based systems, and less costly and more

accurate compared to optoelectronic systems. When it comes to wearable and

non-wearable systems, Muro-de-la-Herran et al. [107] indicated that while

wearable devices offer a convenient solution for a minimum number of specific

individualized tasks, non-wearable systems are better suited for more complex

in-depth analysis, which requires simultaneous correlation analysis of a higher

number of parameters.

The improvement of algorithms together with advancing sensor technology

has made progress in computer assisted techniques towards assessment of

motion data. For example, extensive studies have demonstrated that Machine

Learning techniques provide effective tools for diagnosis [58], [117], [120], [123].

However, machine learning techniques, especially deep learning, require a very

large training dataset, which is often unavailable from clinics and rehabilitation

centers. Our challenge is how to efficiently apply machine learning techniques

for movement analysis given the data constraint.

In the past decade, smart sensors, especially wearable ones have increasingly

become a tool for assessment of motor symptoms such as FOG in PD and other

movement disorders. This is because of improvements in computational power

of small devices [30]. The proposed methods for FOG detection using these

sensors are categorized into two groups depending on the type of the signal and

the analysis method used. The first group uses electrical signals and the second

group is based on gait information [169]. The first group assesses FOG by

monitoring the physiological changes of signals, such as Electroencephalography

(EEG) [66] and Electromyography (EMG) [11]. Despite a large number of
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studies that investigated the use of wearable sensors to detect gait disturbances,

such as FOG and falls, there is little agreement regarding the most effective

system design, e.g., types of sensors, number of sensors, location of the sensors

on the body, and signal processing algorithms [43]. In [66], it is shown that

during FOG episodes, the total amount of EMG activity is reduced in the lower

limb muscles. The detection and monitoring of FOG with gait information

including kinematic and kinetics is more convenient and easier [169]. The

proposed methods for FOG detection is based on shallow machine learning

algorithms which are applied to the signals acquired from the sensors. The

researchers aim to extract some features which can distinguish FOG episodes

from normal gait. As the first attempt in this field, Han et al. [64], explored

FOG episodes and movement abnormalities in PD patients and other movement

disorders by using an Unconstrained Activity Monitoring System (U-AMS).

The proposed method used wavelets to discriminate between FOG and normal

walking. Fast Fourier Transform (FFT) and amplitude analysis were used

as the features to classify between FOG and non-FOG regions. The dataset

consisted of 5 PD and 2 normal subjects. The authors reported that the

frequency response range for the 2 patients with accelerometers at the ankle

was between 6 and 8 Hz. Moore et al. [102], presented a device for ambulatory

monitoring of FOG using the frequency characteristics of vertical leg movement.

They defined the freeze index (FI) as the power of the considered body segment

acceleration signal in the “freeze” band (3–8 Hz) divided by the power of

the signal in the “locomotor” band (0.5–3 Hz). A FOG event was detected

when FI exceeded a certain threshold [156]. The experimental results were

subject-dependent, and showed 78% correct detection of FOG (true positive

rate) and 20% false positive rate.

The proposed methods for FOG detection can be real-time or offline. The

first category is suitable for real-time applications. In 2009, Bachlin et al.

[19] presented the Moore-Bachlin FoG Algorithm (MBFA) method, which

is a real-time FOG detection method, to fix the latency limitation of the

method by Moore et al. [102]. They introduced a new term, Power Index

(PI), defined as the addition of the Walking Band (WB) and the Freezing
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Band (FB) to indicate the amount of movement. In their paper, there are

two thresholds which are Freezing Threshold (FTH) and Power Threshold

(PTH). FOG episodes are determined if FI > FTH and PI > PTH. This

FOG detection method has low computational cost and good performance.

Furthermore, once the FOG episodes are detected the person gets auditory

signals until resuming walking. The limitation of this work is the low number

of patients. They reported 73.1% and 81.6% for sensitivity and specificity,

respectively. During this time, the Daphnet dataset was created by the same

authors for the evaluation of FOG detection methods. However, the conditions

defining the data collection protocol, such as the limited set of activities and

the clinical settings, may overestimate the results of the approaches tested on

it compared to performances obtained using real data. In 2010, Maidan et al.

[121] tested the hypothesis that Heart Rate (HR) increases during FOG and

just before FOG is going to happen. To evaluate these hypotheses, HR and HR

variability were considered to be the features for the subjects who carried out

tasks that frequently provoke FOG. The dataset in their paper has 15 healthy

older adults, 10 patients with PD who experienced FOG, and 10 patients who

did not. Moreover, their results suggest that action observation has a positive

additional effect on recovery of walking ability in PD patients with FOG. Delval

et al. [44], proposed a FOG detection system based on gait analysis. The

data for this paper was gathered by walking a group of subjects (10 PD with

FOG, 10 PD without FOG and 10 Control) on a motorized treadmill while

avoiding unexpectedly appearing obstacles. Treadmill walking was videotaped,

and FOG episodes were identified by two independent experts. Gait was also

analyzed using detailed kinematics properties. Knee joint signals were processed

using time frequency analysis with combinations of sliding FFT and wavelet

transform. This approach using the time frequency features detected even very

brief FOG with acceptable sensitivity (75–83%) and specificity (≥ 95%).

Mazilu et al. [100] presented a novel FOG monitoring system based on the

work of Bachlin et al. [19]. They used a smartphone and a wrist acceleration

sensor for capturing the motion data. This paper was the first to use machine

learning for the detection of FOG. The features for doing this classification were
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mean, standard deviation, entropy, energy, FI, and power of the acceleration

signal. The ML algorithms used were RF, Naive Bayes (NB) and K-Nearest

Neighbor (KNN). The best result obtained was 66.25 and 95.83 for sensitivity

and specificity with RF. In the next year, they presented another automatic

FOG detection system using wearable sensors. The feature learning and

unsupervised methods were compared by time domain and statistical features

from the motion data. The latter one has better performance by up to 8.1%

in terms of F1-measure. The authors performed multi-class analysis since the

pre-FOG is considered to be the new class (FOG vs. pre-FOG vs. normal

locomotion). They also used auditory cueing at the end of their analysis for

warning the patient about FOG episodes. Another real-time FOG detection

method is presented by Zhao et al. [174]. An accelerometer integrated pant

(MiMed-Pant) is used for capturing the gait information which sends the

information to a wireless computer. The FOG detection algorithm is based on

the frequency and time analysis and Power Spectral Density (PSD) features.

The proposed method is executed every 0.5 s and the results are shown within

the same time period. This is one of the positive aspects of this method.

Evaluation is performed over 8 PD subjects in which the real FOG is determined

for them by a specialist using recorded video. The limitation of this work is

that the patient needs to wear the cumbersome MiMed-Pant for using the

technique.

EEG signals are used in the paper presented by Ardi [65] for FOG detection.

The EEG signals are obtained using a 4 channel wireless EEG system developed

for 26 PD patients at the Parkinson’s Disease Research Clinic at the Brain and

Mind Research Institute, in University of Sydney. Preprocessing is done for the

motion data by applying a high-pass and a low-pass filter for removing noise and

unnecessary information. In this research, a Discrete Wavelet Transform (DWT)

based on dyadic scales and positions is used for feature extraction. In the

classification phase, a three-layer Back Propagation Neural Network (BP-NN)

is used, with 56% of the data used for training, 25% for validation, and 19%

for testing. Experimental results show 0.75% accuracy for the proposed FOG

detection system. In 2013, Moore et al. [103], proposed assessing different
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numbers of sensors in different locations for gait analysis with the purpose

of FOG detection. The MBFA algorithm was used as the FOG detection

algorithm with different sensor configurations. The data is captured by 7

sensors for 25 PD patients. Their analysis shows that by using all the sensor

maximum accuracy is achieved for FOG detection which has high sensitivity

(86.2%) and specificity (82.4%) when considered to be a binary test for the

presence or absence of FOG.

In 2015, Zack et al. [171], presented a method for FOG detection using

a triaxial linear waist-mounted accelerometer. Experiments for their paper

include walking rapidly with short steps and rapid full turns in both directions,

conducted on 23 patients. Two independent experts identified FOG episodes

using offline video analysis (gold standard). In the proposed method FI is used

as the discriminator, but a general threshold instead of a numerical one is applied

to find the FOG episodes. Receiver Operating Characteristic (ROC) curves

were drawn to determine a global FI threshold to distinguish between FOG

and non-FOG episodes within the different tasks and for all tasks together.

In addition to the global FI threshold, they calculated the sensitivity and

specificity of the FI threshold for each subject. Combining all tasks together,

sensitivity of 75% and specificity of 76% were obtained.

Tay et al. [155] presented a real-time PD monitoring and biofeedback

system for FOG using low-cost wearable sensors (3 for each sensor on the neck,

right ankle, and left ankle). Their proposed method detected FOG based on

kinematic gait analysis using the gait cycle time and frequency features. The

dataset consisted of 8 PD subjects, 5 of whom have FOG episodes. Moreover,

this system benefits PD patients from the periodic cueing to pace their steps

after a FOG occurrence; hence, improving their gait performance. The system

includes local storage capability which is useful for FOG detection when patients

are outside their home or a clinic. However, no quantitative results were given.

In 2017, Rodŕıguez et al. [137] presented a novel approach for FOG detec-

tion using machine learning techniques based on daily activities of PD patients

in a real environment. Their paper has the advantage that the data is captured

in a real environment. They extracted 55 FOG-related features from 21 PD
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patients using just one waist-worn triaxial accelerometer. SVM with leave-

one-out cross validation was used for classification. Evaluation was done in

two cases, including general (user-independent) and specific (user-dependent).

Experimental results show significant improvement in accuracy of the personal-

ized model compared to the generic model; with enhancement in the geometric

mean by 7.2%. Following this work, Sama et al. [142] reduced the number

of extracted features to 28 for the same dataset. They also evaluated the

extracted features by using 8 types of classifiers with greedy subset selection

process, 10-fold cross validation, and different window sizes for signal analysis.

The results show that the proposed method detects FOGs at a patients’ home

with 91.7% sensitivity and 87.4% specificity, enhancing the results of former

methods by 5% to 11% and providing a more balanced rate of true positives

and true negatives.

Most of the papers presented use wearable sensors for the collection of

motion data because of their application in real life environments. However,

using wearable sensors in an out-of-lab environment requires users to put the

sensors in the correct positions. Such flexibility can cause variations in data

capture which impacts the gait assessment quality. This is one of the major

challenges for self-administration of wearable sensors by users in an out-of-lab

environment without any supervision [42]. In [42], a framework is proposed

for quantifying the variations resulting from using wearable sensors for data

capture in a free-living environment. Even though there are many factors that

affect data capture by wearable sensors, they consider the four more important

sources of variations including mounting location, mounting leg, sensors, and

speed. They statistically model this problem by using just one healthy non-

elderly subject with a full-factorial design of 48 factors combinations. In [42]

the influence of these four factors and their interaction on gait features derived

by wearable sensors are characterized. As a result of their analysis, mounting

location and gait speed were demonstrated as the most dominant sources of

variation. There are many studies that use non-wearable sensors, such as

Kinect as an assessment tool for gait analysis for PD patients. In [151], Kinect

was used for body movement monitoring for PD patients with machine learning
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techniques. The proposed method can monitor gait abnormalities for PD

patients with high accuracy not only for diagnosis but also for disease severity

detection. To the best of our knowledge, there is only one paper [10] that

used Microsoft Kinect for FOG detection. In their paper, a novel system is

designed based on gait analysis of human motion to detect FOG and falling

for PD patients. The novelty of their method is in monitoring and improving

the mobility using laser-based visual cues, which is called Kinect4FOG. An

algorithm was developed to monitor the behavior of a subjects’ gait cycle and

the number of footsteps within a given time interval to estimate the occurrence

of a FOG. A foot-off event is considered to have occurred when the knee angle of

one foot has decreased to less than a specific threshold. The authors evaluated

their method using over 15 PD subjects with FOGs who performed motion

experiments using Microsoft Kinect V2. There was positive feedback on the

proposed system in domestic usability, but it had limitations in outdoor use.

This paper reported that 86.6% were satisfied with the FOG detection system

whereas 13.3% neither agree nor disagreed. The reported results were based

on people’s feedback which are subjective. However, no objective results are

reported.

Feature learning methods have also been used for automatic FOG deter-

mination. Among these, the most popular one these days is DL. DL models

learn feature extractions that can easily handle multimodal data, missing infor-

mation, and high-dimensional feature spaces. Just a few papers are proposed

for FOG detection using DL including [30], [31]. Julia et al. [31] proposed a

DL model which uses a 6-layer Convolutional Neural Networks (CNN) network

for FOG detection. The input for this network is the stack of compressed

form of the current signal window at time t and time t− 1 which consists of

9 gyroscopes and acceleration features. The current method is better than

all the state-of-the-art methods for FOG detection, achieving performances

of about 90% for geometric mean criteria. However, DL-based methods need

more computational resources than others in real-time applications for FOG

detection. Also, DL needs a dataset that includes a large and representative

set of examples to successfully train the network and obtain meaningful results.
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Qiu et al. [127] presented a low-cost, intelligent, and light-weight platform

for providing quantitative gait assessment information of stroke patients. They

used multi-sensor fusion using accelerometer, gyroscope and magnetometer

for taking advantage of the individual sensors and avoiding their weaknesses.

They reported different gait parameters for stroke patients such as step length,

number of steps, and other gait cycle parameters. Moreover, they provided

qualitative results which have useful information for the specialists about the

situation of their patients. Another gait assessment system was proposed for

equestrian sport evaluation by Wange et al. [163]. This paper, similar to Qiu

[127], used fusion of sensors for the rider on 7 parts of their body but no sensor

was placed on the horse. They also used Northern Digital Camera for capturing

videos of the riders for evaluating their system. Pelvis joint was selected as the

reference for gait analysis to distinguish between professional and novice riders.

Until now, most of the proposed methods for FOG detection tries to warn

patients before FOG happens. However, neurologists for assessing PD patients

need to have an automatic, accurate, and fast system for getting the FOG

information of the patients. In addition, most of the proposed FOG detection

methods must tape a video while they are capturing the data and then do

manual video analysis for generating the ground truth labels to evaluate their

algorithm.

2.0.2 Assessment of Parkinson’s Disease using Demo-
graphic and Clinical Characteristics

There are different criteria and scales for rating PD severity, treatment eval-

uation and quality of life [157]. These clinical properties contain motor and

non-motor biomarkers for the patients. The most applicable scores for evaluat-

ing the situation of a PD patient are HAY and the UPDRS. HAY is a commonly

used by neuroscientists and researchers due to its simplicity in administration

and reliable data representation. This scale was originally described in 1967

including Stages 1 through 5. It has since been modified with the addition of

Stages 1.5 and 2.5 to account for the intermediate course of Parkinson disease

[70]. In essence, HAY stages are correlated with motor decline, deterioration
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in quality of life, and neuroimaging studies of dopaminergic loss. The UPDRS

was first proposed in 1980s [128] and is divided into 4 parts: Part I, Mentation,

Behavior, and Mood (4 items); Part II, Activities of Daily Living (13 items);

Part III, Motor Examination (27 items); and Part IV, Complications of Therapy

(11 items). In 2001 [133], the Movement Disorder Society (MDS) proposed

MDS-UPDRS for addressing the weaknesses of the first UPDRS, including

insensitivity to early motor impairment and inability to capture symptomatic

impacts on daily living. The revised version of MDS-UPDRS was published in

2008 [60], which retains the 4-subscale structures and 5-point severity scales

[71]. Although, much efforts have been expended on PD diagnosis using neu-

roimaging techniques [150], human motion analysis [151], and speech assessment

[172], there is insufficient study focusing on the analysis of demographic with

clinical features for PD assessment. In [126], SVM and Logistic Regression (LR)

were used to build a classification model. This model is based on the four

Parkinson’s Progression Markers Initiative (PPMI) clinical features including

Striatal Binding Ratio (SBR) for the left and right putamen, and SBR for the

left and right caudate, all of which are computed from the SPECT imaging

process. In [126], SVM classifier with Radial Basis Function (RBF) kernel is

used for differentiating the subjects between early PD and HC. They have

also estimated the risk of PD using LR which demonstrates high degree of

consistency with statistical significance. However, the dataset used in [126] is

imbalance (the number of PD samples is much more than the number of HC

samples) and the paper fails to explain how the technique can be extended to

the general population with this insufficient HC samples.

Kostas et al. [157] proposed a Decision Support System (DSS) for estimating

the HAY score from the UPDRS-III using machine learning techniques including

feature wrapper selection method and the Repeated Incremental Pruning to

Produce Error Reduction (RIPPER) algorithm [40]. The results of the DSS,

range from 84.1− 87.0%. In their paper, they claimed that for the first time,

a DSS based on data mining has been developed to facilitate HAY stage

estimation for PD patients in everyday practice. But, it is only based on the

motor evaluation scores of UPDRS-III.
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2.0.3 Assessment of Parkinson’s Disease using Neuroimag-
ings

There have been many studies on the assessment of PD using a variety of

neuroimaging methods. In this part, the papers for PD assessment using MRI

T1 and T2 are reviewed.

Focke et al. [53] proposed a method for PD classification by MR Images using

GM and WM individually with the SVM classifier. Voxel Based Morphometry

(VBM) has been used for preprocessing and feature extraction. The results

reported poor performance for classification based on GM and WM with

39.53% and 41.86% accuracy respectively. Babu et al. [18] proposed a CAD

system for diagnosing PD. Their method includes three general steps: feature

extraction, feature selection, and classification. In the first part, VBM is used

for GM to construct feature data. For the feature selection, Recursive Feature

Elimination (RFE) is used to select the most discriminative features. In the

last step, projection based learning and meta-cognitive radial basis function

was used for classification, which results in 87.21% accuracy. The potential

biomarker for PD is identified as the superior temporal gyrus. The limitation

in this work is that VBM is univariate and RFE is computationally expensive.

Salvatore et al. [141] proposed a method that used PCA for feature extraction.

The PCA was applied to normalized skull stripped MRI data and SVM was

used as the classifier, resulting in 85.8% accuracy. Rana et al. [131] extracted

features over the three main tissues of the brain consisting of WM, GM and

CSF. Then, they used t-test for feature selection and in the next step, SVM

for classification. This resulted in 86.67% accuracy for GM and WM and

83.33% accuracy for CSF. In their other work [129], a graph-theory based

spectral feature selection method was applied to select a set of discriminative

features from the whole brain volume. A decision model was built using

SVM as a classifier with leave-one-out cross-validation, giving 86.67% accuracy.

The method proposed in [130] was not focused on just individual tissues

(GM,WM and CSF); rather, it considered the relationship between these areas

because the morphometric changes in one tissue might affect other tissues.
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3D LBP was used as a feature extraction tool that could produce structural

and statistical information. After that, Minimum Redundancy and Maximum

Relevancy (MRMR) relevance with t-test are used as a feature selection method

to get the most discriminative and non-redundant features. At the end, SVM

is used for classification giving 89.67% accuracy. In [122], the low level features

(GM, cortical volume, etc.) and the high level features (ROI connectivity) are

combined to perform a multi-level ROI feature extraction. Then, filter and

wrapper feature selection method is followed up with multi kernel SVM to

achieve 85.78% accuracy for differentiation of PD and HC data. Adeli et al.

[1] proposed a method for early diagnosis of PD based on the Joint Feature-

Sample Selection (JFSS) procedure, which not only selects the best subset of

the most discriminative features, but it also chooses the best sample to build a

classification model. They utilized the robust regression method and further

develop a robust classification model for designing the CAD for PD diagnosis.

They have used MRI and SPECT images for evaluation on both synthetic

and publicly available PD datasets which provided very accurate classification

results. Haijun et al. [87], presented a multi-class classification (PD, Scan

Without Evidence of Dopaminergic Deficit (SWEDD) and HC) framework by

using multi-modal data including MRI and DTI for PD assessment. They

proposed a novel sparse feature selection technique which is the combination

of Fisher’s LDA and Locality Preserving Projections (LPP) that uses the local

and global information of the data. In preprocessing, SPM were used for bias

correction, denoising, normalization of MRI and DTI Images. After that, MRI

images are segmented to WM, GM and CSF parts producing 116 tissue volumes

as the feature matrix and DTI gives 16 Fractional Anisotropy (FA) intensity

values for each subject. In the feature selection part, a novel method was

utilized followed by SVM classification. Some demographic information have

been used beside the selected features to improve the classification accuracy. In

the experimental results, they used PPMI dataset showing remarkable effect of

their novel feature selection in distinguishing the data to PD, HC, and SWEDD

which in the best case is 78.37± 8.11. They have also presented the regions

in the brain most affected by PD and also their correlation together. Ozkan
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et al. [115] proposed an efficient covariates and contrast on classification of

PD using structural MRI. The general framework has three steps which are

preprocessing, feature selection and classification. The preprocessing is done

by using VBM for normalization, modulation, smoothing and parcellating the

MRI to GM and WM. In the next step, PCA is used for dimension reduction

of the combination of GM and WM. Then, the statistical model is built using

t-contrast and f-contrast. After that, the total intracranial volume (eTIV), age,

sex and the combination of them are used as features in the classification step

for GM, WM and GM+WM data using SVM with 10-fold cross validation.

The PPMI dataset has been used for evaluation of the proposed method

with 40 PD and 40 HC subjects. The classification results using f-contrast

show a superior performance for GM, WM, and the combination of them

compared to t-contrast. In [150], PD classification using MR T1 images is

conducted. In their paper [150], Freesurfer used for MRI preprocessing phase.

After that T1 volume voxels are used as features for the classification. Three

different classifiers including RF, SVM and LR are compared based on their

ability to distinguish between PD and HC for MR T1 Images. The PPMI

dataset is used for evaluation of the proposed method. The proposed CAD

system proved promising results for assisting in diagnosing PD. Lee et al.

[86] proposed a machine learning based method to identify disease-related

spatial covariance patterns of grey matter volume as an aid in the classification

of PD using T1-weighted structural MRI scans (70 PD, 70 Control). They

conducted a Structural Covariance Networks (SCN)-based classifier frame work

with Independent Component Analysis (ICA) as feature selection. They have

done Leave-One-Out-Cross-Validation for classification. In the validation, the

classifier had moderate generalization ability, with a mean sensitivity of 81%,

specificity of 69% and overall accuracy of 75%. Furthermore,certain individual

SCNs were also associated with disease severity.

In the case of deep-learning-based classification of PD, it is important to

consider several distinct elements of the problem. The first and arguably

the most important of these elements is the overall accuracy of the method.

Regardless of the elegance or apparent efficacy of a model, one which yields
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poor results is ultimately not useful in a practical setting. Along with accuracy

comes the simplicity of the method, as well as the availability of the data.

These two points are of particular importance in this task, as the domain of

PD classification is largely medical rather than computational. Data is often

not abundant, and any tool built to assist clinicians must be readily applicable.

It is important to remember that a clinician is not a data scientist. With

this in mind, we will assess new work in the field of deep-learning-based PD

classification.

Choi et al. propose a model to classify PD patients based on CNN and

SPECT imaging [36]. SPECT imaging is highly specialized, and requires an

injection of a radioactive isotope to monitor its uptake in different areas of the

body. This specialization is reflected in the fact that over a one year period of

England’s NHS imaging operations, there were approximately 100 times more

MRI scans performed than SPECT [45]. As well, because of the injection of

a tracer, the technique may be considered somewhat invasive. This suggests

that a model based on SPECT imaging may lack applicability in common

medical use. Despite this, the model achieves a 96.0% accuracy with 100%

sensitivity. This is coupled with a relatively large dataset (in medical terms)

of 624 preprocessed samples, which suggests a relatively robust model. It is

important to consider that there is a significant class imbalance, with 431

PD to 193 HC samples. Class imbalance in the training set is detrimental

to the performance of CNN s because they tend to over-classify the majority

class [27]. The authors do no upsampling or downsampling to correct this

class imbalance, but they perform data-augmentation in the form of left/right

flipping to increase the total training sample size. In summation, Choi et al.

put forward a promising but somewhat niche deep-learning based model to

classify PD.

Long et al. [123] propose a machine-learning based approach to classification

of PD from resting-state functional MRI (rsf-MRI). What makes rsf-MRI

different from sMRI is that it detects subtle changes in blood-flow between

areas of the brain, effectively allowing one to observe areas of activity due to

higher metabolism. Meanwhile, sMRI only detects general anatomical features
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in the brain, while ignoring activity. The researchers segment into separate

GM, WM and CSF, and then extract 116 features for classification. The

actual classification process is done with a hyperbolic tangent kernel, and the

researchers achieve 87% classification accuracy. These results are quite good,

although it is important to consider that the experiment was done with a very

small number of samples (17 PD and 27 HC). This is not as much of a problem

for rsf-MRI, because the data is rich and one can extract many features from

very few scans. They discover several ROI, some of which are supported from

previous clinical findings. and it would be of significant interest to explore

further research in rsf-MRI-based PD detection.

Iron deposits would create local inhomogeneities in the magnetic field which

in turn, would result in loss of the T2 signal. Iron distribution is clearly

mapped as signal hypointensity (darkness) on T2-weighted image due to local-

field heterogeneities produced by ferritin [15], [48]. The increase in tissue iron is

significant in magnitude, it is observable in postmortem parkinsonian brain [15],

[20] and can be evaluated with imaging techniques in living subjects. Polonen

[125] proposed a shape analysis system using T2 MRI images. The SN region

and the area around that are selected as ROI in the slice. Then for each ROI,

the segmentation is done using three different methods including thresholding,

region growing and k-means. After that, they used different shape features

such as area, width, height, and etc to compare the SN area between the PD

and HC subjects. The used p-value as a criteria for the shape analysis for

different types of segmentation. Their analysis is done for the left and right

hemisphere of the brain. The size of the group was small and most of the

patients and controls were female. This is a problem because the prevalence of

PD is significantly higher in men and the progression of the disease appears

to be slower in women. However, they have mentioned that 3D dimensional

shape analysis and morphometry have provided more comprehensive results

from several different brain structures including SN. Recent developments in

MRI techniques have offered new research opportunities to visualize substantia

nigra pathology in PD. Neuromelanin-based techniques such as neuromelanin-

sensitive imaging and visualization of nigrosome-1 have emerged as important
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Research Works Year Dataset (HC/PD) Classifier Data Type Utilize Region Best Performance (Accuracy)
Fock et al. [53] 2011 22,21 SVM MRI T1 WM,GM 41.86

Salvator et al. [141] 2014 28,28 SVM MRI T1 WM 85.8
Babu et al. [18] 2014 112,127 PBL-McRBFN MRI T1 GM 87.21
Rana et al. [131] 2015 30,30 SVM MRI T1 GM,WM,CSF 86.67
Rana et al. [129] 2016 30,30 SVM MRI T1 GM,WM,CSF 88.89

Adeli et al. [1] 2016
169,374
(PPMI)

JFSS MRI T1 GM,WM,CSF 81.9

Peng et al. [122] 2017
103,69

(PPMI)
SVM MRI T1

Whole
Brain

85.87

Rana et al. [130] 2017 30,30 SVM MRI T1 GM,WM,CSF 95

Ozkan et al. [115] 2018
40,40

(PPMI)
SVM MRI T1 WM,GM 75

Shinde et al. [147] 2019 39,40 CNN-DL NMS-MRI SN 80
Cheng et al. [35] 2019 77,87 SVM QSM SN 88

Table 2.1: Comparison of the proposed studies for PD classification using MRI.

candidate neuroimaging biomarkers in PD which have particularly been of

interest in the past two decades [35], [95], [154]. Cheng et al. [35] explored

the ability of radiomic features of nigrosome-1 in SN, based on Quantitative

Susceptibility Mapping (QSM) to differentiate IPD patients from HC. First,

ROIs of the SN were manually drawn, and subsequently, volumes of interest

were segmented. Then, 105 radiomic features of bilateral selected volumes

were extracted. The proposed feature selection method combined analysis of

variance, random forest, and recursive feature elimination, which results in 40

features. The selected features were further utilized to classify IPD patients

from HC using the SVM classifier with 10 rounds of 3-fold cross-validation.

The classification results from SVM were: accuracy: 0.88, sensitivity: 0.89,

and specificity: 0.87. Deep learning is a branch of machine learning which is

successful in many applications in computer vision problems. In the case of

deep-learning-based classification of PD, Shinde et al. [147] proposed a method

for SN assessment in order to PD classification. Convolutional neural nets

with discriminative localization (CNN-DL) is used to create prognostic and

diagnostic biomarkers of PD from Neuromelanin Sensitive Magnetic Resonance

Imaging (NMS-MRI). The reported classification accuracy is 80%. Moreover,

it has the capability to locate the most discriminative regions on the NMS-MRI

which is mentioned as the left SN. Brief review and comparison of methods

employed by recent studies that have used machine learning and statistical

learning techniques to classify PD from MRI modalities are presented in Table

2.1.
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Based on the literature review papers, the SN analysis using different

imaging sequence are done based on the 3D volume of the image. Although,

using 3D analysis on MR images considered all the required information in

a different dimension, but makes the computational complexity much more

higher compared to 2D analysis. Whereas, 3D analysis does not always result

in higher accuracy at the end. On the other hand, not all the slices in the

3D volume of the imaging data have the useful knowledge for PD assessment.

Therefore, having high performance classification system with fewer number of

slices which are related to PD is our general goal in this research.
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Chapter 3

Body Movement Monitoring for
Parkinson’s Disease Patients
Using A Smart Sensor Based
Non-Invasive Technique

3.1 Introduction

PD is a progressive neuro-degenerative disorder caused mainly by lack of

dopamine in the brain. Dopamine is a neurotransmitter involved in movement,

motivation, memory, and other functions. Dopamine loss in PD brain is a cause

of motor deficiency in PD patients. These motor deficiency can be categorized

to tremor, slowness of movement (bradykinesia), rigidity and gait problems

which are cardinal features of this disease [76]. These conditions constitute

a major source of concern in elderly population as it impacts the quality of

life on not only the patients, but also their families and care providers. To

date, the gold standard of diagnosis for PD is still based on clinical features

and the UK brain bank criteria [59]. Response to dopaminergic medication,

such as levodopa [76] is helpful in diagnosing the condition. It is important to

mention that currently there is no definitive test for diagnosis of PD, and thus

obtaining absolute conclusion can be challenging, especially in the early course

of the disease[76].
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Figure 3.1: The proposed body movement monitoring system for PD based on
kinematic data analysis.

3.2 Motivation

There are some medical evaluation with a thorough physical examination for

diagnosing and prognosis of PD. However, the evaluation results might be

subjective based on the different doctor’s opinions. In addition, the physical

assessment is a time consuming process not only for specialists but also for the

patients. Therefore, in this part of my thesis, a CAD system is proposed for

diagnosing and monitoring PD using kinematic motion data obtained from the

PD standard exercises supervised by physical therapists. The proposed system

uses machine learning techniques to make the assessment process easier and

faster for the specialists and the PD patients.

3.3 Methodology

In this section, we first describe the data acquisition process and then explain

the proposed method on PD analysis using kinematic motion data. The

proposed PD monitoring system is shown in Figure 3.1.

3.3.1 Data Acquisition

In our implementation, Microsoft Kinect 2.0 is used to capture the motion

data generated from the body joints. Microsoft Kinect 2.0 is the latest version

released by Microsoft when we performed our experiments. It delivers significant
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improvements over its predecessor in term of accuracy and resolution. Kinect

2.0 employs a RGB camera with a resolution of 1920× 1080 at 30 fps and a

depth sensor with an output resolution of 512× 424 based on time of flight to

perform depth calculation. The depth range is 0.5 to 4.5 meters. Kinect 2.0 is

able to detect up to 6 people, with each represented by 25 joints [153].

3.3.2 Exercises Protocol

A set of experiments was conducted in the Neuroscience Unit at the University

of Alberta Hospital. The goal was to capture individual motion data using

Kinect V2, while the subject was performing a sequence of gait tasks. These

standard tasks: Tremor, SL and TUG, are used in rehabilitation sessions

as assessment methods to determine the severity of motor symptoms in PD

patients.

• Tremor: Tremor is the most common and easily recognized symptom of

PD [76]. Tremors are unilateral at onset and progress to contralateral

side over time. Tremor can be categorized into rest, postural and kinetic.

Rest tremor occurs when the body part is at complete rest against gravity.

Postural tremor takes place while maintaining a position against gravity.

Kinetic tremor can occur during normal movement. In this exercise,

the subjects were asked to sit and keep their hand straight in-front of

themselves.

• SL: PD patients tend to demonstrate a reduced and variable SL, as well

as overall low velocity [88]. This characteristics is considered of great

use for analysis because it is a very common symptom of PD. In this

exercise, the patients were asked to walk perpendicularly to the optical

axis of the Kinect sensor from one point to another point.

• TUG: In the TUG exercise, the patients were asked to rise up from a

chair, walk 3 meters, turn, walk back and sit down [109]. The TUG test

is a common measure of gait and balance in PD patients, as it is highly

correlated with functional mobility, gait speed and other lower extremity

functions. [109][69].
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3.3.3 Gait Analysis

In order to analyze Kinect-based motion data, the subject’s body skeleton is

represented by a graph which contains a set of nodes (joints) J and vectors

(bones connecting dominant joints) V . The graph model G is defined in Eq.3.1

G = {J, V } where J = {j1, ..., jn}, V = {v1, ..., ve} (3.1)

where n is the number of joints in the body model and e is the number of

connected edges.

In the TUG and SL evaluations, the whole body skeleton is captured but

in the Tremor evaluation, only hand movements are monitored. A graph

model composed of 25 skeleton joints is used for analysis. Figure 3.2(a) shows

the graph model for Tremor with three joints recorded per hand: 1,4-Elbow.

2,5-Wrist. 3,6-Hand Tip. Figure 3.2(b) shows the graph model for the SL

and TUG experiments, involving 25 joints: 1- Spine Base, 2- Spine Mid, 3-

Neck, 4- Head, 5- Left Shoulder, 6- Left Elbow, 7- Left Writs, 8- Left Hand, 9-

Right Shoulder, 10- Right Elbow, 11- Right Writs, 12- Right Hand, 13- Left

Hip,14- Left Knee, 15- Left Ankle, 16- Left Foot, 17- Right Hip,18- Right Knee,

19- Right Ankle, 20- Right Foot, 21- Spine Shoulder, 22- Hand Tip Left, 23-

Thumb Left, 24- Hand Tip Right, 25- Thumb Right.

Our goal is to monitor the level of severity for PD patients using the

kinematic motion data obtained from the tremor and TUG exercises. The

SL motion data is used for classification of the subjects to PD and HC. Gait

data analysis is carried out for each exercise by following two steps: Feature

Extraction and Classification, as explained below.

Feature Extraction from Tremor Data

The tremor motion magnitude relative to the frame rate is an effective cue for

classifying the subjects based on their severity in PD.

We compute the rates of joint displacement in three spatial axes. This

is achieved by obtaining a displacement vector d based on frame-to-frame

Euclidean distance (Eq.3.2). The displacement for each subject is defined in
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(a) (b)

Figure 3.2: Kinematic motion data graph models. (a) SL and TUG graph
model. (b) Tremor graph model for the two hands.

Eq.3.3.

d =
p

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (3.2)

Dispi =

d1,1 . . . d1,n−1

... . . .
...

dm,1 . . . dm,n−1

 (3.3)

Dispi is a displacement matrix for the ith subject, d1,1 shows the euclidean

distance between the position (x, y, z) of frame 2 and frame 1 for the first joint.

m is the number of joints and n is the number of frames. In our analysis, the

L1 norm distance is also used to compute hand displacement between two time

frames. Eq.3.4 shows how L1 distance is obtained from two vectors with n

time instances (frames). Thus, the same displacement matrix can be obtained

for the L1 method.

dL1(v1, v2) = ||v1 − v2|| =
nX

i=1

|v1(i)− v2(i)| (3.4)

At the end, the euclidean displacement mean and standard deviation (STD),

together with the L1 displacement mean and STD, are used as features for

tremor motion data assessment.
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Feature Extraction for SL

PD patients often have shorter step length compared to healthy subjects (HC).

This experiment helps to distinguish PD subjects from healthy individuals.

Perumal et al. [124] measure the SL by analyzing the stance phase and swing

phase. The stance phase starts at the point of heel strike, and ends at toe-off,

while the swing phase takes place between the toe-off instance and the next heel

strike. However, Perumal’s method requires wearable force sensor to determine

the points of heel strike and toe-off. Our technique is more convenient because

only the acquired Kinect data is used for analysis and no wearable device is

needed. Given a subject’s walking distance, there is a sequence of Step Length

Vectors (SLV ) defined by Eq.3.5.

SLV = [SL1, . . . , SLw] → STLi =
wX

k=1

SLVk/w (3.5)

An average is computed for each patient based on the stride sequence (SLV )

as shown in Eq.3.5. The output is STLi, where w is the total number of steps

completed by a subject. The same process is performed by healthy subjects.

PD subjects can be identified by comparing their average SL with those of

healthy subjects.

The number of frames, which reflects the time taken by each subject (Time

To Complete the Task (TTC)) is also recorded as an important feature from

the stride-length motion data.

Feature Extraction for TUG

In this exercise, the subject is initially sitting down and is asked to stand up,

walk, return and sit down on the chair. Movement disorder neurologists find

that, in general, there is a correlation between the time required to complete

the TUG action cycle and the stage of Parkinson’s disease [109],[104]. In this

paper, the time between the start (standing up) and end positions (sitting

down) is used as a TUG feature for analysis. In this evaluation, we focus

on three specific joints, i.e., Spine-Mid, Spine-Base and Knee-Right joints,

which form two vectors and cast an angle as shown in Figure 3.3. The angle
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computation is given in Eq.3.6, which is used to distinguish sitting down from

standing up and walking. For each subject, this angle αTUG is computed per

frame as shown in Eq.3.7.

α = arccos
v1.v2

kv1kkv2k
(3.6)

Angi = [αf1, . . . , αfmn] → TACi = αstop − αstart (3.7)

where Angi shows the set of n angles for subject i during the action cycle. αf1

is the angle in frame 1. We use the angle to turn on a timer when the subject

is standing up, and stop the timer when the subject is at the end position

for sitting down. As you can see in the Figure 3.4, when the angle starts

Figure 3.3: The angle between two vectors : spine-base to spine-mid, and
spine-base to knee which is used to determine the standing up and sitting down
positions (αTUG ).

to increase, the subject is standing up and the timer can be started (αstart).

When the angle is decreasing, the subject is back to sitting down and the timer

can be stopped (αstop). The time elapsed is taken as the TAC time in Eq.3.7.

The total number of frames showing the TTC the task is also used as a feature

for the TUG motion analysis.
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(a) (b)

Figure 3.4: Time computation in TUG exercise: (a) αTUG is increasing when
the patient is standing up (αstart). (b) αTUG is decreasing when the patient is
sitting down.(αstop).

Classification

The classification process is done using the features extracted from the kinect

based motion data collected in the three exercises. The classification for

tremor and SL are supervised because we have labeled samples as ground

truth. However, there is no class label for the TUG experiment and thus it

is an unsupervised classification. We use the RF classifier to assess gait data

for tremor and SL. RF is an ensemble learning method, which can be used

in classification, regression and other tasks. This method was presented by

Breiman [24], who created a set of decision trees from a randomly selected

subset of training data. The algorithm then aggregates the votes from different

decision trees to assign a final class to the test object. Each tree in a random

forest is a weak classifier. A large set of trees trained with randomly chosen

data makes a single decision on a majority basis. In this work, we tested the

accuracy of the random forests decision when the random trees are trained

with the kinect-based motion data from PD patients.

Since there is no ground truth label for TUG data, we need to use an

unsupervised clustering method. The k-means clustering algorithm is a widely

used unsupervised learning method proposed by MacQueen in 1967 [63] and
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later enhanced by Hartigan and Wong [132]. In this algorithm, a set of k points

in the feature space are selected as the cluster centers. Then, the algorithm

performs two steps: (1) Iteratively assign the feature samples to the cluster

having the closest center in the feature space, based on the squared Euclidean

distance. (2) Recompute the cluster centers in order to minimize the mean

distance between data samples and the nearest cluster center. The goal of

K-means goal is to keep a strong degree of association between data samples

within the same cluster and a weaker degree of association between samples of

different clusters [3].

3.4 Experimental Results and Discussion

The experiments were conducted at the University of Alberta Hospital Division

of Neurology. The Tremor, TUG and SL exercises were performed by different

groups of patients. In the SL exercise, there were 15 subjects in the control

group and 15 in the PD group. The number of participants in the Tremor and

TUG exercises were 43 and 20 respectively that all are PD subjects. There were

8 common subjects who did all the experiments. For the SL group, the ground

truth was available for each subject with label (PD/HC) in our data. Also, the

clinicians provided ground truth labels for the tremor group categorized under

Mild, Moderate and Severe. However, there was no ground truth label for the

patients who performed the TUG exercise.

The data distribution plots for different exercises based on the extracted

features are presented in Figure 3.5. The tremor features can classify data into

three separate groups based on the L1 and Euclidean distance displacement

features (Figure 3.5(a)). The PD motion data are distinguishable based on the

TAC and TTC features in TUG exercise (Figure 3.5(b)). Furthermore, the step

length data distribution in terms of average step length and TTC, illustrate

two groups of data representing PD and HC (Figure 3.5(c)). In addition to

the RF classification, we also applied leave one out cross validation on the

classification of SL and tremor data. The statistical analysis includes accuracy,
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(a) (b)

(c) (d)

Figure 3.5: The data distribution based on the extracted features for: (a)
Tremor, (b) TUG, (c) SL, (d) The prediction labels for data based on TUG
features with K-means clustering method.

precision, recall, and F1-score which can be computed by Eq. 3.8.

Accuracy = (TP + TN)/(TP + TN + FP + FN)

Precision = TP/(TP + FP )

Recall = TP/(TP + FN)

F1Score = 2 ∗ (Recall ∗ Precision)/(Recall + Precision)

(3.8)

Where True Positive (TP) is the number of cases correctly classified as PD,

False Positive (FP) is the number of cases incorrectly classified as PD, True

Negative (TN) is the number of cases correctly classified as healthy and False

Negative (FN) is the number of cases incorrectly classified as healthy. The

results are presented in Table 3.1.
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Accuracy Precision Recal l F1-Score
SL 93.3333 0.9411 0.9333 0.9330

Tremor 81.0697 0.8355 0.7376 0.7121

Table 3.1: Statistic analysis of RF classification results for tremor and SL
exercises.

For the clustering of TUG data, K-means method is applied. The predicted

labels are shown in the feature data distribution plot in (Figure 3.5(d)). Note

that the TUG samples are distributed into three groups: Mild, Moderate, and

Severe, as illustrated in green, blue, and red respectively.

There were 8 subjects who performed all the exercises including tremor,

TUG and SL. It will be interesting to find out which exercise features are more

influential in terms of classifying the patients based on their disease severity.

As mentioned before, for the SL, we have two groups of subjects (PD and

HC), but we only need to consider the PD subjects in this analysis. When

classifying these subjects in the three exercises, feature importance is computed

to evaluate the significance of the extracted features. Each feature is identified

by its index, name and the corresponding exercise: (0) Euclidean Distance

Mean (Tremor); (1) Euclidean Distance STD (Tremor); (2) L1 Distance Mean

(Tremor); (3) L1 Distance STD (Tremor); (4) TUG Time (TUG); (5) TTC

(TUG); (6) Average Step Length (SL); (7) TTC (SL). Figure 3.6 shows the

feature importance for all features extracted from the three exercises. Observe

that the tremor features have higher importance comparing to other features.

Figure 3.6: Comparing the extracted features importance for all the exercises.
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Figure 3.7: Ground truth labels for 8 common subjects.

We also plot the prediction labels for each of the 8 common subjects in different

exercises (Figure 3.8 (a) to (h)). The red bar shows the prediction by SL, the

green bar shows the tremor (Trem) prediction and the blue bar refers to the

TUG exercise. The ground truth labels for these 8 patients are presented in

Figure 3.7. The numbers (0, 1, 2) on the y axis represent the three classes (Mild,

Moderate and Severe). By comparing the predicted labels in different exercises

with the ground truth labels, it is obvious that the tremor predication is the

most accurate metric in the multi-motion analysis because it could classify 7

subjects correctly equivalent to 87.5% accuracy.

3.5 Conclusion and Future Work

In this study, Microsoft Kinect V2 is used to analyze three important char-

acteristics of PD, namely TUG, SL and Tremor. The ground truth labels

are provided by a clinician using the UPDRS for SL and tremor. Our assess-

ment technique includes three major components: data acquisition, feature

extraction, and classification. Representative features are extracted from the

kinematic data collected in these exercises. RF is used to classify tremor and

SL, and the K-means algorithm is used to cluster TUG data. The proposed

method is able to achieve an accuracy of 93.33% for SL and around 80%

for the analysis of tremor data. The prediction labels of K-means clustering

illustrate the robustness of this method in categorizing the TUG motion data.

In addition, multi-motion analysis is applied on the data obtained from the 8
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(c) (d)

(e) (f)

(g) (h)

Figure 3.8: Prediction labels for the common subjects: (a) Patient 1, (b)
Patient 2, (c) Patient 3, (d) Patient 4, (e) Patient 5, (f) Patient 6, (g) Patient
7, (h) Patient 8.
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subjects who completed all three exercises. The results show the promising

performance of our approach. The low cost, ease of use, accuracy and versatil-

ity of our system demonstrates its suitability in analyzing movement disorder

patterns. In future work, we will further validate the benefits of using our

Kinect or equivalent sensor system as a remote assessment tool to monitor

the development of Parkinson’s disease and other movement disorder, so that

patients can be assessed remotely, e.g., at home, which will release the resources

at rehabilitation clinics to individuals with urgent needs.
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Chapter 4

Kin-FOG: Automatic Simulated
Freezing of Gait (FOG)
Assessment System for
Parkinson’s Disease

4.1 Introduction

PD is one of the most common progressive neuro-degenerative diseases with a

worldwide prevalence of 22 per 100,000 person-years for all age groups, and up

to 529 per 100, 000 person-years in older populations [81], [165]. The major

cause for PD is loss of dopaminergic neurons in the part of the brain that

is called the substantia nigra (SN) which is responsible for controlling the

movement of different parts of the body. Therefore, the main symptoms of

PD are related to motor disabilities including rigidity, bradykinesia, slowness,

tremor, and FOG. However, it has other non-motor symptoms such as sleep

disorder, cognitive changes, mood disorders, and fatigue. Estimates show

that 60.5% of PD patients experience at least one fall and 39% of them have

recurrent falls which can cause fractures [8]. Falls and fractures can cause

disabilities, significant impairment in the quality of life, and death with a 10.6%

rate [81]. Fall can be because of different PD symptoms of which the major

one is FOG.

FOG is a brief episode of absence of forward progression of the feet despite

the intention to walk. Patients have the impression that their feet are glued to
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the ground [110] and they lose control over their gait. FOG is transient and

lasts from a few seconds to up to 1–2 min [50], [110]. This phenomenon happens

mainly during gait initiation, turning, performing dual tasks or approaching

narrow spaces [43], [113].

Even though current medical drugs can successfully relieve most of the

motor symptoms, FOG is one of the least responsive to medical treatments [50].

However, external cueing to induce an external auditory or visual stimulus

are promising for tackling FOG and helps resume natural gait for patients.

Currently, FOG assessment is done based on movement experiments in a lab

environment, self-reported diaries from patients, manual video analysis by

specialists and specific symptom questionnaires, namely FOG-questionnaire

(FOG-Q) [137]. However, these strategies can provide biased information on a

patient’s daily experiences because of limitations, such as the ones listed below:

• The set up for experiments is different from a real environment at home

resulting in different FOG patterns compared to a real one.

• Even though FOG-Q can provide relevant indicators for the identification

and characterization of FOG, it is based on the patients’ opinions which

are subjective.

• Assessments are only done a few times a year. This is not suitable for

FOG detection since we need continuous observations on patients.

• Self-assessment of FOG by PD patients is unreliable since most patients

often experience memory loss and dementia [137].

On demand cueing is more efficient than continuous cueing in decreasing the

duration of FOG episodes. Hence, automatic prediction of FOG is essential for

generating the cueing only when a FOG event occurs [159]. FOG investigation

is challenging because of its unpredictable and unreliable nature. The current

treatments and cueing techniques are just temporary solutions for limiting a

FOG event time. Moreover, there are many unknown aspects of the patho-

physiology of FOG and its relation to PD. Furthermore, walking styles of PD
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patients differ across subjects (including diverse motor anomalies) [99]. How-

ever, in this part of this thesis an automatic and accurate system is proposed

which is necessary for neurologists to assess the FOG status of PD patients.

The continuous assessment of FOG status for PD patients by neurologists

using the proposed Kin-FOG system can control the FOG situation which can

eventually prevent unexpected falls for patients.

4.2 Motivation

Conventional FOG assessment for patients is mainly conducted by a clinician

visual inspection and observation which produce results that are subjective and

rely on the observer’s experiences [127]. Thus, it is crucial to get the knowledge

of the rehabilitation process by quantitative gait analysis, and understand to

what extent does a patient recover from the disease [127]. Therefore, accurate

and automatic FOG assessment for PD patients is not only crucial for providing

neurologists the disease status and progress, but it is also essential for earlier

and more efficient use of cueing techniques for tackling FOG. The proposed

research in this field is mostly for FOG detection for PD patients. Furthermore,

the proposed system can be used remotely to send a patient’s information

to neurologists which can save significant resources for both patients and

doctors. Therefore, this part of our research propose an automatic, accurate

and fast FOG assessment system (Kin-FOG) which addresses these limitations

by introducing the improvements listed below:

• The proposed Kin-FOG system uses an RGB sensor based on Microsoft

Kinect which is more convenient than wearable sensors for elderly people.

Moreover, it can capture video and motion data in parallel.

• The proposed system can present a patient’s FOG conditions to spe-

cialists for disease stage determination and treatment. The FOG status

includes number of FOGs, length of each FOG, and the time when a

FOG happened. The continuous assessment of patients by doctors with

proper treatment can control FOG and eventually prevent patients from
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unexpected falls.

• The novel FOG algorithm can be used remotely by PD patients, at their

home or other places such as senior homes, to send their FOG status to

their doctors instead of going to a clinic. This will save significant time,

money, and energy for patients and specialists.

• The proposed FOG detection technique can be applied on video captured

by devices other than Kinect after extracting a subject’s pose from a

video.

Gait assessment tools in clinics may have limited applications because of

three main reasons including cost, complexity and specific space requirements

[127]. Our proposed Kin-FOG system is non-invasive, cheap, user friendly with

easy and fast set up. However, our FOG assessment system can only be used

in a lab, clinic, or home environment, but not outdoor.

4.3 Proposed Method

In this part of the research, an automatic FOG assessment system is proposed

for helping specialists with automatic assessment of FOG for PD patients and

provide efficient and on time treatment. The general framework of the proposed

system is shown in Figure 4.1. It has three phases, including data captured by

Kinect, data preprocessing, and FOG assessment. All the steps of the Kin-FOG

system are explained in the next subsections.

4.3.1 Data Acquisition

The Microsoft Kinect V2 is a non-wearable sensor for capturing the 3D motion

of a person. It was invented for Xbox console game devices which allow

interactions with body movements, voice, and images. It has three main parts

consisting of a 3D depth sensor, an RGB camera and multi-array microphones

which are shown in Figure 4.2. Kinect V2 is cheap compared to other video

capture devices and other motion capture sensors. It employs an RGB camera

with a resolution of 1920× 1080 at 25 fps and a depth sensor with an output
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Figure 4.1: Kin-FOG framework for FOG assessment for PD patients.

resolution of 512× 424 based on time of flight. The depth range is 0.5 to 4.5

m. Kinect V2 can detect up to 6 people, with each person represented by 25

joints. Figure 4.3 illustrates these joints of the body.

In our study, Kinect is used to capture data from 5 subjects. The subjects

are healthy without any movement disability. The dataset consists of 1 female

and 4 males. The average age of the subjects is 30.8. The subjects have

different height and speed which is useful for having different types of data.

Although the subjects are healthy, they are trained with real video on how

FOG occurs for PD patients. The general information about the subjects is

presented in Table 4.1. Two categories of experiments are done. The first

experiment is in the Without Standing (WOST) mode and the second one is

With Standing (WST). In both categories two types of tasks are used which

are described as below:

• Simple Walking (SW):

The subjects are asked to walk from a point (A) to another point (B).

They do this experiment with two different number of FOGs (1 and 2)

between the start and stop points. Figure 4.4(a) shows the SW experiment
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scenario.

• Walking With Turning (WWT):

The subjects are asked to walk from a point (A) to another point (B) and

then turn and return to the starting point (A). They do this experiment

with three different numbers of FOGs (3, 4, and 5). Figure 4.4(b) shows

the WWT experiment. One of the FOG happens close to turning, and

the rest occurs randomly between A to B.

Figure 4.2: The components of Microsoft Kinect V2.

The Kinect sensor is set on a table with height 47 inches. The distance

between points A and B is 104 inches and the subject walks in front of Kinect

at a distance of 97 inches. Please note that Kinect can cover a longer range but

because of the space limitation in our lab we only consider this set up. The

video with motion data is captured for each subject with SW and WWT tasks

for WOST and WST modes.

Subject Characteristics Range Standard Deviation

Age 26–33 1.87

Height (cm) 170–186 5.04

Weight (Kg) 55–85 9.09

BMI 17.8–24.8 2.44

Table 4.1: Subject demographics.

The number of FOGs in these experiments are presented in Table 4.2. To

design a general and reliable system different numbers of FOGs are conducted
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Figure 4.3: Kinect skeleton body joints with their indices. Kinect V2 can
record motion data up to 25 joints.

(a) (b)

Figure 4.4: Different motion capture tasks in our experiments: (a) SW, (b)
WWT.
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in these experiments. Each subject is asked to repeat the experiments 3 times

and the best experiment with the highest similarity to a real FOG phenomenon

is selected to make sure the data is captured correctly.

Experiments/Modes SW WWT

WOST 1,2 3,4,5

WST 1 3

Table 4.2: The number of FOGs in each experiment and different modes.

4.3.2 Preprocessing

In this phase, the data captured by Kinect is processed to get the body joint’s

gait information and the proper motion signal for FOG assessment. In addition,

the ground truth labels are extracted by checking the recorded video frames for

final evaluation of the proposed method. The ground truth labels have three

values including FOG, non-FOG, and non-related. The non-related labels are

for the frames which are not related to the actual experiments.

Body Skeleton Tracking

The body skeleton and all the joints are extracted from the video data that

are recorded by Kinect. Since Kinect records depth data, for each joint we

have a list of 3D positions (X, Y, Z) and the length of the list is equal to the

number of frames for the video. Figure 4.5 shows the coordinate system of

Kinect when it is tracking the body joints. The Z axis data is the distance

between the subject and the Kinect, which is almost stable in our experiments

and thus provides no useful information. On the other hand, since the subject

is walking along the X axis of the Kinect, the X trajectory data is selected for

our FOG gait analysis.

Joint Trajectory Selection

As mentioned before, FOG happens when a person’s foot is frozen and not able

to move forward. Ahmadi et al. [4] proposed a low-cost system for human gait

assessment which performs the following tasks: lower limb position estimation,
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Figure 4.5: The coordinate system of the Microsoft Kinect V2 sensor.

orientation estimation, and 3D reconstruction of the estimated positions and

orientations. They also propose a method for kinematic model adjustment

at the end to cover the error from the wearable sensor’s position uncertainty.

The position estimation is done just by using the captured motion of Inertial

Measurement Units (IMU) sensors on the feet. For orientation estimation and

3D reconstruction they used ankle and knee joints trajectories as well. FOG

is mostly related to the leg joints which are hip, knee, ankle, and foot. Since,

most of the papers in this field use sensors which are attached to these joints,

we decided to select the foot and ankle as our FOG-related joints. The foot

joints (left and right) are joint numbers 15 and 19 and the ankle joints (left and

right) are joint numbers 14 and 18 as shown in Figure 4.3. The X trajectory

of the right and left foot for all the subjects are collected for FOG assessment

in the proposed system.

The SW experiment FOG assessment just needs the left foot X trajectory.

However, the WWT experiment needs both left and right feet X trajectories

to detect all the FOGs. In the WWT experiment the trajectory signal has two

parts consisting of before turning and after turning. The left foot trajectory is

used before turning and the right foot trajectory follows the same procedure

for after turning. At the end, the analysis results of the left and right feet are

fused to get the final FOG assessment for the WWT experiment. Figure 4.6

illustrates the process for the WWT experiment.
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Figure 4.6: FOG assessment for the WWT experiment by our proposed Kin-
FOG system using right and left feet. The left foot is used for ’before turning’
and the right foot is used for ’after turning’.

4.3.3 FOG Assessment

After getting the X trajectory of the right and left feet, the goal is detecting the

FOG episodes based on these signals. The Kin-FOG system follows three steps

for FOG detection and monitoring which are described in the next sections.

FOG-ROI Extraction

As explained before, FOG episodes are the times when subjects are not able

to move forward. Hence, FOG episodes are likely to be flat regions in the X

trajectory of the foot joint. Figure 4.7 shows two samples of the X trajectory

for the left foot of a subject for SW and WWT experiment tasks, in which the

FOG regions are marked. Please note that the x-axis of the plots are frame

IDs and the y-axis shows the X displacements. In Figure 4.7(a) the trajectory

signal is related to the SW experiment with 1 FOG. The Figure 4.7(b) shows

the X trajectory of the same subject in the WWT experiment with 3 FOGs

which happen one before turning, and two after turning. The Turning Phase is

marked with the orange array in this figure. Please note that the turning point

is computed by finding the maximum point in the X trajectory plot. The X

trajectory is defined as f(x) for simplicity in clarifying the mathematics behind

the proposed Kin-FOG assessment system.

For extracting the flat regions in the signal, we must compute the derivative

and then find the regions equal or close to zero. Qiu et al. [127] used similar
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(a) (b)

(c) (d)

Figure 4.7: The X trajectory signals for: (a) SW with 1 FOG, (b) WWT with
3 FOGs. The turning point is marked with an arrow, and the derivative signals
are: (c) SW with 1 FOG, (d) WWT with 3 FOGs.

techniques on foot joint trajectory for stance phase detection in the gait cycle.

Figure 4.7 (c) and (d) illustrate the derivation of the previous X trajectory

signals. The first plot, Figure 4.7(c), is related to the SW experiment and the

second plot, Figure 4.7(d), shows the derivation signal of the WWT experiment.

As shown, FOG episodes have derivatives close to zero. All these regions are

going to be extracted as FOG (ROIs) and called FOG-ROIs. The derivative of

the trajectory signal f(x) is computed based on Equation (4.1).

g(x) = f
0
(xi) =

f(xi)− f(xi−1)

fi − fi−1

i = (1 : n) (4.1)

where g(x) shows the derivative of the trajectory signal. The gradient computed

by finding the distance between the displacement value of frame i, f(xi) and

the displacement value of the previous frame f(xi−1). Also, n is the total

number of frames. We find all the areas with derivative close to zero based on

Equation 4.2. These regions are the candidates of FOG.

h(x) =

(
1, if |g(x)| ≤
0, otherwise

(4.2)
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(a) (b)

Figure 4.8: The derivative plot in blue with the h(x) plot in red. Some samples
of non-FOG regions with zero derivative are shown with an arrow. R1, R2,
R3, and R4 are the real FOG regions. (a) SW with 1 FOG, (b) WWT with 4
FOGs.

FOG-ROI Selection

In the previous step, all the FOG-ROIs are extracted from the trajectory

signal as candidates for FOG episodes. However, not all of them are real FOG

episodes. For example, sometimes the derivative in just one frame is zero and

the adjacent frames are not. This cannot be FOG since it is very short.

Figure 4.8 plots the h(x) regions which is 1 for the area with derivative close

to zero and is 0 for other areas. It can be seen that most of these regions are

not related to FOG. Some samples of these non-FOG regions are shown with

an arrow in Figure 4.8 for SW and WWT signals from the previous sections.

Therefore, we must check h(x) and find the places where there is a group of

continuous 1 s which has “uniform” FOG patterns. The non-zero areas are

found, and their lengths are computed. Then, in our Kin-FOG system the

areas with length higher than a threshold (FOGLenThr) are selected as real

FOG regions. By following this process, we ignore all the short zero derivative

areas. The regions R1, R2, R3, and R4 are the real FOG regions which are

selected after this process as shown in Figure 4.8.

FOG False Positive Reduction

After detecting the real FOG-ROIs, we must remove false positives areas. False

positives (FP) can happen because of two reasons listed below:
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• When a subject is in resting position or standing mode for a while during

the experiment causing the foot to have a constant position. This FP

reduction is called Standing Position Removal step.

• When we have a small movement in the middle of the FOG episode for

which the system detects 2 FOGs instead of one FOG. This FP reduction

is called FOG merging step.

The proposed Kin-FOG follows these two FP removal steps as explained in

the next subsections.

Standing Position Removal The Kin-FOG system distinguishes the FOG

episodes and the episodes in which a subject is just standing or resting in

this phase. The similarity between both is that the foot has almost constant

X position.

The leg joints, and hip, knee, ankle, and foot positions, are presented in

Figure 4.9 in FOG and standing mode. Once subjects have FOG the angle

between the ankle and foot joints and the ground will be changing; but when

they are in the standing mode this angle is stable. Furthermore, the corre-

sponding angle between the foot and ground is shown in Figure 4.9 with the

red triangle. Observe that the angle is almost zero for the standing mode, but

it changes in the FOG state. This angle is called αAG for simplicity.

The αAG is between two vectors in which the first one (v1) is between the

ankle and foot joint and the second one (v2) is between the foot joint and the

point that is the projection of the ankle joint on the ground line (AG point).

The angle and the vectors are shown in Figure 4.10. αAG can be computed

by these two vectors based on Equation (4.3) for each frame which results in

an angle list at the end (AFG − list). AFG stands for ’Ankle’, ’Foot’ and

’Ground.’ The length of the AFG − list is n which is the total number of

frames.

αAG = arccos
v1.v2

kv1kkv2k
−→ AFG− list = {αAG1, αAG2, ..., αAGn} (4.3)

After computing αAG for all the frames, the detected FOG episodes from

the previous step are assessed in this angle data to remove the standing mode
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areas. The displacement of the angle list (AFG− list) is taken to find out the

amount of angle change over time for the current subject. The displacement

can be computed by Equation (4.4).

DispAFGi = αAGi − αAG(i−1) i ∈ [1 : n] (4.4)

where n is the total number of frames. αAGi is the angle in frame i and

αAGi−1 is the angle in frame i − 1. Figure 4.11(a) shows the current angle

displacement in the SW experiment. The FOG episodes show higher changes

compared to the standing episodes. The process of finding the resting mode

regions is based on the peak values in that area. For finding the amount

of change in this signal we get the gradient of the angle displacement data

(Disp − AFG) using Equation (4.1). The gradient displacement signal is

called (GDisp−AFG). Figure 4.11(b) shows the gradient of the current angle

displacement. After detecting the FOG episodes (FOGCandidates), they are

evaluated in the (GDispAFG) signal. It can be seen that in Figure 4.11(b) the

FOG regions have peaks with higher values compared to the resting area peak

values. Therefore, the process of resting mode removal is based on finding

the number of high-value peaks in the FOG candidate regions. The area with

some high-value peaks is related to FOG and the area without the high-value

peaks shows the resting mode. If the list of peaks in the current episode are

[p1, p2, ..., pk] where k is the total number of peaks, the value for these peaks will

be [GDispAFG(p1), GDispAFG(p2), ..., GDispAFG(pk)]. After this the number

of peaks with value higher than a simple threshold (PksV alThr) are computed,

which is called curFOGPksNum. The low number of high-value peaks results

in a standing mode which needs to be removed from the FOG candidates list.

The removal of resting area is done by making them zero since the FOG area

will remain one in the FOG candidate list. The threshold for comparing the

number of high-value peaks is PksNumThr.
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Algorithm 1 Rest Removal Algorithm

1: procedure Rest Removal
2: AFG-list← List of angles αAG.
3: DispAFG ← Displacement of angle list αAG.
4: GDispAFG ← Gradient of the DispAFG.
5: FOGIndxs ← FOGCandidates start and stop points.
6: for ii,jj in FOGIndxs do
7: curFOGPksV al ← FindPeaks(GDispAFG(ii to jj)).
8: curFOGPksNum ← Length of the curFOGPksV al> PksV alThr.
9: if curFOGPksNum< PksNumThr then
10: FOGCandidates(ii to jj)← 0
11: end if
12: end for
13: end procedure

The pseudo-code for rest removal is shown in Algorithm 1.

(a) (b)

Figure 4.9: The leg’s joints position: (a) standing mode, (b) FOG mode.

In the SW experiment, only the left foot analysis would be enough to

find the standing position and remove FP. However, in the WWT experiment

as explained before (Figure 4.6) the left foot is going to be used for the
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Figure 4.10: The angle between the ankle-foot joints and the foot-AG point is
αAG.

(a) (b)

Figure 4.11: The standing position removal plots for the SW experiment with
1 FOG and 1 ST mode: (a) angle displacement plot (DispAFG), (b) gradient
angle displacement plot (GDispAFG). ST shows the standing mode.

analysis before turning and the right foot will be used for the analysis after

turning. The angle displacement plot (DispAFG) for the left and right feet

are shown in Figure 4.12(a) and (c), respectively. Furthermore, the gradient

angle displacement plot (GDispAFG) for the left and right feet are presented

in Figure 4.12(b) and (d), respectively. The FOG area and the standing mode

area are determined in all the plots.

FOG Merging The proposed system finds adjacent FOGs with a small

non-FOG area between them and combines these regions into one FOG to

decrease the false positive rate of the proposed Kin-FOG system. Figure 4.13
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(a) (b)

(c) (d)

Figure 4.12: The standing position removal plots for the WWT experiment
with 3 FOGs and 2 ST modes: (a) angle displacement plot for the left foot
(DispAFG), (b) gradient angle displacement plot for the left foot (GDispAFG),
(c) angle displacement plot for the right foot (DispAFG), (d) gradient angle
displacement plot for the right foot (GDispAFG). ST shows the standing mode.

shows an example of this. The plot is for the SW experiment with 2 FOGs

which are marked with labels. Observe that for the first FOG we have a

small displacement (marked with the orange array) which causes the system to

consider this as two FOGs and eventually report 3 FOGs instead of 2. This part

of the system is for getting the right number of FOGs and their corresponding

lengths which helps doctors have accurate information about their patients.

After finding the real FOG-ROIs, the time slot for each of them must be

computed. Figure 4.14 presents the resulting FOG plots for the SW and WWT

experiments of the previous signals (Figure 4.7). The number of FOGs and their

lengths will be computed as well. The number of FOGs is the number of peaks

in the FOG plot and the length of FOGs is computed based on Equation (4.5)

for the final detected FOG-ROIs. FOGLenfr is the length of that particular
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Figure 4.13: The X trajectory plot of a subject with 2 FOGs in the SW
experiment. The arrow shows the part which may cause a false positive.

(a) (b)

Figure 4.14: The FOG plots for the subject with the trajectory in Figure 4.7
for: (a) the SW experiment with 1 FOG, (b) the WWT experiment with 3
FOGs.

FOG with the start frame ID (strFID) and stop frame ID (stoFID).

FOGLenfr = stoFID − strFID (4.5)

The computed length is based on the frame number but we can convert it

back to the time space. Since Kinect captures data at 25 fps, the computed

FOG length (FOGLenfr) can be converted to a real-time space (FOGLentr)

by Equation (4.6). The computed time unit is in milliseconds (ms).

FOGLentr =
FOGLenfr

25
(4.6)

In summary, the Kin-FOG system uses the foot and ankle joints motion

data for FOG assessment for PD patients and outputs the detected FOGs,

their lengths, and the time interval when they occurred.
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4.4 Experimental Results and Discussions

The Kinect sensor is set up and subjects are asked to do two groups of

experiments WOST mode and WST mode. In each of these experiments they

perform two types of tasks including SW and WWT. The proposed Kin-FOG

system uses the gradient displacement of the foot joint trajectory for finding

the list of FOG candidates. It also uses the gradient displacement of the angle

between the ankle and foot joints and the ground for false positive reduction

from resting mode which has properties similar to FOG modes. Moreover,

the merging algorithm at the end ensures that the system reports the correct

number of FOGs to the users (doctors, specialists). The proposed system has

three initial thresholds, which are FOGlenThr, PKsV alThr and PKsNumThr.

The values for these thresholds are FOGlenThr = 10, PKsV alThr = 5 and

PKsNumThr = 3 which are constant for all the subjects in the SW and WWT

experiments. Experimental results for each group are illustrated below.

The ground truth label for each subject is obtained based on the video data

captured by Kinect. The video data is assessed and the label for each frame

is determined. The ground truth label has three types of values consisting of

non-related, FOG and non-FOG. The non-related frames are the ones that are

not related to the experiments which are before point A and after point B

(Figure 4.4). These frames are ignored for the evaluation part. The FOG frames

are the ones for which a subject has FOG during the time interval. The rest of

the frames are labeled as non-FOG. The evaluation of the proposed Kin-FOG

frame is based on the FOG detection part for which quantitative results will be

provided. After that, the number and length of the prediction will be evaluated

by comparing to the real number and length of the FOG episodes. Other than

quantitative results, qualitative assessment is also reported by the proposed

FOG assessment system; such as the plots of FOG episodes for the subjects.

4.4.1 WOST Experiment

Video data is collected for each subject in WOST for different numbers of

FOGs. As mentioned before for SW, the subjects perform 1 and 2 FOGs
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and for WWT, 3, 4, and 5 FOGs. The FOG episodes happen randomly for

each subject. The reason behind performing different numbers of FOGs in

each experiment is having a more reliable and general system which works in

different situations. The graphical user interface (GUI) is designed for our

proposed Kin-FOG system, as shown in Figure 4.15. The proposed system has

two modes including: (1) Offline FOG assessment, (2) Online FOG assessment,

which both give useful FOG information on PD patients to the neurologists

and care providers. The offline part gives all the required FOG information for

the entire data captured by Kinect for the subjects. However, the online part

is for visualization of the FOG status for each frame separately. The main GUI

has two sections which are ’FOG Inputs’ (the inputs of the system) and ’FOG

Output’ (the outputs of the system). The ’FOG Inputs’ part has options for

choosing the patient, the task type (SW,WWT), the system’s mode (offline,

online) and the number of FOGs (for SW:[1, 2] and for WWT: [3, 4, 5]). The

Num of FOG parameter is for evaluation purpose since we need to get the right

ground truth labels based on the selected criteria.

Figure 4.15: The main GUI of the proposed Kin-FOG system for FOG assess-
ment of PD patients.

The offline FOG assessment uses the proposed FOG detection method and

reports the total number of FOGs, the FOG lengths, and FOG episodes plot.

The proposed system not only reports quantitative results but also provides
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qualitative information, such as plots of FOG episodes. This information

is useful for specialists to see in what situations patients have more FOGs.

A patient might have a problem just when they turn but not when they

walk straight. Therefore, they need to have treatment just for that special

situation which cause FOG for them. This way doctors can provide the most

efficient treatment, such as cueing to their patients. The FOG episodes plot

illustrates the FOG time slots including the start frame IDs and the stop frame

IDs. Furthermore, the Evaluation Results section presents different criteria to

evaluate the Kin-FOG system to assess the current subject. These criteria are

correct rate, error rate, sensitivity and specificity.

The online mode of the system has a separate GUI which is presented in

Figure 4.16. The main GUI gets all the required information from the FOG

Inputs part and shows the corresponding video frames for the particular subject

in the online GUI. The online Kin-FOG presents the FOG status for each

frame to the users (specialists or care providers) as shown in Figure 4.16. In

Figure 4.16: The online Kin-FOG GUI.

addition, the ’Online Evaluation Result’ button in the main GUI can show the

evaluation results for the online mode of the system. Figure 4.17 shows the

results of the online mode of the Kin-FOG for one of the subjects in the WWT

experiment with 3 FOGs. The results show 3 FOGs with their lengths and

the plot for showing the time slots. Also, the status of the Kin-FOG system

is shown on top of the main GUI which presents exactly what the system is
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doing. For instance, in this case it shows running for the subject with name

’Suba’ and the Kin-FOG system mode is online.

Figure 4.17: The Kin-FOG output for one of the subjects in the online mode,
which consists of number of FOGs, their time slots, and their lengths. In
addition, the performance of the Kin-FOG is also presented in the ’Evaluation
Results’ section.

Quantitative results are shown for the proposed Kin-FOG system in two

forms including: (1) local (subject-dependent), and, (2) general (subject-

independent) similar to the evaluation in [137]. Table 4.3 shows the numerical

evaluation results for different subjects using the above-mentioned criteria.

The local evaluation for each subject is reported and the general evaluation

is presented in the last row of the table. As the results show, the proposed

Kin-FOG system has high accuracy in both experiments (SW and WWT).

The predicted number of FOGs and their lengths for each subject are

presented in Table 4.4. ’PN’ means predicted FOG number and ’PL’ means

predicted FOG lengths for each subject. The predicted number of FOGs are

correct in all cases except 3 which are encircled in Table 4.4. The general

evaluation is done for FOG number prediction in this part. Since we have 5

subjects and the number of evaluation tasks for each of them is 5 (2 FOGs types

for the SW and 3 FOGs types for the WWT), the total number of experimental

cases is 25. The general accuracy of the proposed Kin-FOG system in FOG

62



number prediction can be computed based on Equation (4.7).

PNaccuracy = ((25− 3)/25) ∗ 100 = 88 (4.7)

The local accuracy for predicting the number of FOGs for each individual

subject is listed in Table 4.4, last column. Each subject has 5 experimental

cases (SW-FOG 1 and 2, WWT-FOG 3, 4, and 5). Thus, based on the number

of correct predictions for FOG numbers in different cases the local accuracy

for each subject is computed. In addition, FOG detection and FOG number

prediction gives the corresponding FOG lengths. The predicted lengths are

also presented in Table 4.4. The predicted lengths for the FOGs for all the

subjects are compared with the real FOG lengths in each task for different

experiments. The difference between the predicted FOG lengths and the real

FOG lengths in most cases is less than 5 frames.

SW WWT

Subjects\Evaluation Correction Rate Error Rate Sensitivity Specificity Correct Rate Error Rate Sensitivity Specificity

Subject 1 0.9525 0.0475 0.9268 0.9912 0.9387 0.06130 0.9112 0.9931

Subject 2 0.7979 0.2021 0.4726 1 0.9608 0.0392 0.9545 0.9611

Subject 3 0.9503 0.0497 0.9342 1 0.7896 0.2104 0.8499 0.6128

Subject 4 0.9360 0.064 0.9651 0.8919 0.8850 0.1150 0.8580 0.9644

Subject 5 0.9618 0.0382 0.9725 0.9306 0.9132 0.0868 0.8946 0.9755

General Evaluation 0.9197 0.08030 0.8542 0.9627 0.8960 0.1040 0.8910 0.9014

Table 4.3: Quantitative results of the proposed Kin-FOG system in the WOST
experiment for PD patients. The local (subject-dependent) and the general
(subject-independent) results are reported.

Task Type SW WWT Evaluation

Task FOG Number FOG 1 FOG2 FOG3 FOG4 FOG5 Accuracy

Prediction Number and Length ofFOGs PN PL PN PL PN PL PN PL PN PL PN

Subject 1 1 “60” 2 “54,35” 4○ “35,17,46,37” 4 “41,46,42,35” 5 “58,35,10,34,45” 80

Subject 2 1 “44” 2 “40,50” 3 “46,52,28” 4 “42,33,40,46” 5 “39,37,38,43,38” 100

Subject 3 1 “24” 2 “28,42” 3 “25,21,20” 4 “31,25,21,20” 6○ “23,14,10,18,13,16” 80

Subject 4 1 “22” 2 “39,35” 3 “21,37,22” 4 “35,19,28,29” 5 “13,24,39,26,31” 100

Subject 5 1 “18” 2 “29,19” 3 “15,41,25” 5○ “16,18,19,19,15” 5 “22,20,41,19,16” 80

Table 4.4: The predicted FOG numbers and lengths by the proposed Kin-FOG
system in different tasks with different number of FOGs. PN is the predicted
number of FOGs and PL is the predicted lengths of FOGs.

4.4.2 WST Experiment

Video data is collected for each subject in WST for SW and WWT tasks. In

SW, the subjects perform 1 FOG and 1 standing mode and for WWT, they
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perform 3 FOGs and 2 standing modes. The FOG and standing time slots are

random for different subjects.

In this part of our research, we evaluate our system’s ability to distinguish

between the FOG and standing modes. The same GUIs are used for the FOG

assessment in WST experiment for showing the detected FOGs, their lengths,

and their plots. Table 4.5 presents the ability of Kin-FOG for detecting the

real FOG episodes when we have the standing mode besides the FOG modes

in our captured data with Kinect. The local evaluation for each subject is

reported beside the general evaluation in the last row of Table 4.5 .

Our FOG assessment system is simpler than the proposed gait assessment

system for stroke patients [127] and the one proposed for equestrian sport [163];

since it works based only on one individual sensor which provides the motion

and video data together while others use fusion of data from different sensors.

Furthermore, since the sensor is non-wearable, it is more comfortable for PD

patients who are mostly elderly. Kinect provides video data besides the motion

data; but, in the proposed gait analysis system by [127], [163], the authors

use other optical sensors or cameras for collecting the video data in order

to evaluate their proposed method at the end. Self-administration of Kinect

compared to wearable sensors is simpler making it easier to set up. However,

the proposed gait assessment system in [127] claimed that they solved the sensor

drift problem by zero velocity update algorithm to address the challenge of

using wearable sensors in an out-of-lab environment. It needs to be mentioned

that the proposed system in [127], [163] is applicable in outdoor environments

but our FOG assessment system only works inside a lab, a clinic or a patient’s

home. The proposed Kin- system is a useful tool for the neurologists and others

who need to get the FOG information about patients.

Our proposed FOG assessment system is evaluated for healthy subjects

performing simulations; however, in future work, it will be evaluated for real

PD patients. The proposed foot-off detection algorithm by Amini et al. [10]

was first evaluated for healthy subjects in [9] and later on PD patients in [10].

We have the same plan for our research. Even though the number of subjects in

our experiments is limited, it needs to be noted that research with few subjects
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can be faster for enlisting subjects, looking into their records, or performing

biochemical investigations [62].

SW WWT

Subjects\Evaluation Correction Rate Error Rate Sensitivity Specificity Correction Rate Error Rate Sensitivity Specificity

Subject 1 0.7640 0.2360 0.5581 1 0.8693 0.1307 0.8037 0.9913

Subject 2 0.9063 0.0938 0.8981 0.9254 0.8584 0.1416 0.9672 0.6973

Subject 3 0.9713 0.0287 0.9597 1 0.8610 0.1390 0.9174 0.6964

Subject 4 0.9792 0.0208 0.9664 1 0.9462 0.0538 0.9072 1

Subject 5 0.9628 0.0372 0.9479 1 0.9767 0.0233 0.9680 0.9946

General Evaluation 0.9167 0.0833 0.8661 0.9851 0.9023 0.0977 0.9127 0.8759

Table 4.5: The WST experiment’s quantitative results for the proposed Kin-
FOG system in FOG assessment of PD patients. The local (subject-dependent)
and the general (subject-independent) results are reported.

4.5 Conclusions

FOG is one of the major motor symptoms of PD patients which can cause falls.

Since, PD patients are mostly elderly, falling results in fractures and even death.

Thus, it is critical to find a way to detect FOG and stop patients from falling.

Neurologists require accurate information about the FOG status of patients

for giving proper and effective treatments. In this research, an automatic,

accurate and fast FOG assessment application (Kin-FOG) is designed, which

works based on the video and motion data captured by a Microsoft Kinect

sensor. The gradient of the displacement for foot joint trajectory is used for

gait analysis and distinguishing between the FOG episodes. On the other

hand, the angle between the foot and the ground is used for false positive

reduction resulting from having resting modes in our gait analysis. Evaluation

of the proposed method is done based on two types of experiments with and

without resting modes (WST and WOST) and different modes (SW, WWT).

Moreover, different number of FOGs are performed by the subjects to have a

more reliable and general result of our assessment system. The outputs of the

Kin-FOG system are the numbers and lengths of FOGs and the time interval

for each of them. Kin-FOG is evaluated using data captured for 5 healthy

subjects who are trained to imitate FOG. The experimental results show the

local (user-dependent) and general (user-independent) evaluation for all the

experiments. The overall accuracy rate for FOG prediction is around 90% for
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both experiments which demonstrates the ability of the proposed system in

FOG assessment. The proposed Kin-FOG system is low-cost, accurate, and easy

to use for FOG assessment of PD patients. In addition, the proposed system

can be used remotely at patients’ homes for sending the FOG status to doctors.

Even though the Kin-FOG is evaluated for a small dataset of healthy subjects

performing simulations, the ability of the novel FOG assessment system will

be evaluated for a larger number of real PD patients in our future work.
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Chapter 5

Automatic Classification and
Monitoring of Denovo
Parkinson’s Disease by Learning
Demographic and Clinical
Features

5.1 Introduction

PD is one of the main age-related neuro-degenerative disorders. This disease

occurs because of a distortion of dopaminergic neurons in the brain, particularly

in the region known as the SN. This disease affects around 10 million people

around the world globally, with the prevalence rate increasing annually [98]. PD

has a significant impact on the patients’ quality of life and their care providers.

Since the SN area is mostly responsible for controlling body movements, the

major symptoms of PD are related to movement disability including rigidity,

tremors, bradykinesia and postural instability [49]. However, it has non-motor

symptoms as well, which are cognitive and behavioral abnormalities that can

cause dementia in the later stages of the disease [2]. Although neuroimaging

methods can provide complementary information in PD prognosis [140], in

practice, the diagnosis mostly relies on the clinical judgment of an experienced

neurologist. This is based on personal judgment, can be subjective and time

consuming because of the high number of patients with a large amount of

clinical information (demographic, imaging, laboratory, etc.) that the assessors
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have to take into consideration [85].

5.2 Motivation

Earlier discovery of the disease increases the chances of more effective treatment.

Therefore, it is beneficial to automatic assess the clinical information in order

to help the neurologists and physiotherapists, who work with PD patients, so

that they can deliver more accurate, easier and faster diagnosis and monitor

progress.

In this research, we use machine learning techniques for automatic early

PD classification and progress monitoring by making use of the clinical and

demographic information. The demographic characteristics are available for

every patient, and thus are useful to monitor PD patients at the early stages

of the disease who are called denovo PD.

5.3 Dataset

The clinical data is downloaded from the Parkinson’s Progression Markers

Initiative, PPMI (www.ppmi-info.org/data) for research, which is a compre-

hensive set of clinical, imaging and bio-sample data defining PD progression

and diagnosing biomarkers. The baseline summary in PPMI is obtained from

the denovo PD and healthy subjects which include a set of clinical properties

listed in Table 5.1. These clinical features are obtained using different methods

such as questionnaire and imaging tools.
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textbfFeatuers PD range PD Mean HC range HC Mean
Gender 0-1 - 0-1 -

Age (Years) 33-85 61.5 31-84 60.8
Number Of Relatives with PD 0-5 - 0-2 -

Years Of Education 5-26 15.5 8-24 16.0
MDS-UPDRS Total 6-72 31.9 0-20 4.5

MDS-UPDRS Part I 0-13 1.2 0-8 0.5
MDS-UPDRS Part I - Patient Questionnaire 0-20 4.3 0-11 2.4
MDS-UPDRS Part II - Patient Questionnaire 0-22 5.9 0-5 0.5
MDS-UPDRS Part III - Patient Questionnaire 4-49 20.4 0-13 1.2

UPSIT - Total Score 1-40 22.4 11-40 34
MoCA Score 17-30 27.1 26-30 28.2
GDS Score 0-14 2.3 0-15 1.3

SCOPA-AUT 0-39 9.5 0-20 5.9
SBR - Left Caudate 0.3-3.7 2.0 1.3-5.3 3.0

SBR - Right Caudate 0.4-4.0 2.0 1.3-5.1 3.0
SBR - Left Putamen 0.1-2.6 0.8 0.7-4.3 2.1

SBR - Right Putamen 0.1-2.5 0.8 0.5-3.8 2.2

Table 5.1: PPMI clinical and demographic data, the range and the mean value
for PD and HC group are listed.

The feature range, mean value and their indices for the group of PD and the

group of HC are shown in Table 5.1. The number of samples in the download

PPMI clinical dataset is 564.

5.4 Proposed Method

The general framework of our proposed system is shown in Figure 5.1. The

preprocessing step identifies the missing information and prepares the dataset

for further analysis. The second step conducts features selection for the

classification tasks based on the Mean Decrease Impurity (MDI) technique.

In the last step, we use the RF classifier for two purposes, which include

distinction PD from HC subjects and disease progress monitoring by predicting

H&Y scores on identified PD subjects with values 0, 1 and 2. The proposed

method handles both RF-based PD classification and stage prediction.

5.4.1 Preprocessing

In the preprocessing phase the subjects with missing values for the features

listed in Table 5.1 will be excluded. After this step, the dataset has 17 features

and 553 subjects composed of 402 PD subjects and 151 HC subjects.

69



Figure 5.1: The proposed classification and progress monitoring RF-based
model for PD.

5.4.2 Feature Selection

Using the preprocessed data, we evaluate the features ability in distinguishing

between the PD and HC samples, and in monitoring PD severity by determina-

tion of the H&Y scores. RF is a popular machine learning technique because

of its good accuracy, robustness and ease of use [23]. This method builds a

set of decision trees for performing classification. Each node is a condition on

a single feature, which decides how to divide the data into two similar sets.

Impurity measures how well this condition is optimized to make a decision. In

our method, a RF based feature selection method known as Gini importance

or MDI is used. The MDI method calculates each feature’s importance [72] by

averaging over the impurity reductions in all the trees as shown in Eq. 5.1.

Imp(Xm) = (1/NT )(1−
NTX
k=1

Gini(Xm)k) (5.1)

where Imp(Xm) is the MDI importance for variable Xm (mth feature) and NT

is the total number of trees. It adds up the decrease of Gini index (Gini(Xm))

which measures the amount of impurity for variable Xm (current feature) in

the kth tree and gets the average over all of them. MDI has the advantage of

easy and fast computation [72].

The features with their ranks and importance values are passed to the

classification step for the two goals of PD diagnosis and PD progress monitoring.

In accordance to the literature [157][144] for having a fair disease stage analysis,
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only the scores from MDS-UPDRS Part III in H&Y determination are used

and the other UPDRS score features are excluded. On the other hand, in the

PD diagnosis process all the UPDRS related features are excluded in order to

have a reliable and fair analysis.

5.4.3 Classification

This section has two parts: 1) PD diagnosis, and 2) PD progress monitoring

using H&Y score determination. For these goals data normalization is per-

formed for reducing data redundancy, increasing data integrity and making

the classification more reliable. Min-Max normalization is the most popular

method where the range values for the features are normalized to [0, 1] using

Eq. 5.2.

xnorm = (x−min(x))/(max(x)−min(x)) (5.2)

After normalization, data division and classification are conducted. In

this paper, 80% of the data is used for training and the rest 20% is the test

set. The training process is done using a 10-fold cross validation technique.

The classification algorithm used in this research is RF, which is also used

for feature selection in the previous step. As explained earlier, RF is one of

the strong ensemble learning classifiers and it uses a set of decisions trees [23].

It has many applications in classification and regression problems because of

its important characteristics, such as handling high dimensional features, as

well as noisy or imbalanced data and missing values [82]. Since the PPMI

clinical data is imbalanced (the number of PD is more than the number of

HC), RF is the appropriate classifier to apply on the most important features

for PD diagnosis in the first part and for PD progress monitoring using the

H&Y rating score in the second part of the proposed model.

5.5 Experimental Results and Discussion

In this part, the experimental results of the proposed model are presented

for the two goals of this paper. For the first goal, we want to divide the

subjects into two general classes: PD and HC, by using clinical features. After
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preprocessing, which makes the data more consistent and reliable, the total

number of features for PD/HC classification is 12. These features are listed

with their indices in Table 5.2.

Task Features

PD Diagnosis

0) Gender
1) Age (Years)
2) Relative Numbers with PD
3) Years Of Education
4) UPSIT - Total Score
5) MoCA Score
6) GDS Score
7) SCOPA-AUT
8) SBR - Left Caudate
9) SBR - Right Caudate
10) SBR - Left Putamen
11) SBR - Right Putamen

PD Progress Monitoring

0) Gender
1) Age (Years)
2) Relative Numbers with PD
3) Years Of Education
4) MDS-UPDRS Part III - Patient Questionnaire
5) UPSIT - Total Score
6) MoCA Score
7) GDS Score
8) SCOPA-AUT
9) SBR - Left Caudate
10) SBR - Right Caudate
11) SBR - Left Putamen
12) SBR - Right Putamen

Table 5.2: The list of the features for PD diagnosis and progress monitoring
(H&Y score determination).

Figure 5.2 (a) shows the MDI feature importance plot for the PD/HC

classification. The x-axis shows the feature indices based on Table 5.2 and the

y-axis is the feature importance. The second goal of this paper is PD progress

monitoring. As mentioned before, the H&Y rating scale is a popular method

for monitoring PD progress. In our analysis, H&Y scale can have three values

0, 1 and 2, which are equivalent to mild, moderate and severe levels for PD.

Thus, we have 3 classes. The list of features for H&Y score determination

is the same as the features for PD diagnosis plus MDS-UPDRS Part III -

Patient Questionnaire which results in 13 features. The list of these features
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are presented in Table 5.2. The feature importance is computed based on the

MDI algorithm. Figure 5.2 (b) presents the feature importance plot for the

H&Y score determination. Based on the feature importance plots in Figure 5.2

demographic features such as ’Age’, Gender and Number of Relative with PD

have lower feature importance in PD diagnosis and PD progress determination.

(a) (b)

Figure 5.2: The feature importance plots based on the RF method for: (a) PD
diagnosis (PD/HC classification), (b) PD progress monitoring (H&Y rating
score determination).

Once the feature importance values are computed for PD diagnosis and

progress monitoring, we need to select the best features for each task. The

threshold for selecting the most important features is considered as the hyper

parameter in our proposed method. The value list for this hyper-parameter is

[0.06, 0.08, 0.10, 0.12]. After feature selection, RF is applied for classification

using the 10-fold cross validation method. The number of elements in the

training part of classification is 442 and in the testing part is 111.

The grid search method for tuning and finding the best parameter’s value

for the hyper-parameters is used for RF based classification. The average

classification results are then reported.

In this work, the criteria for evaluating the proposed method are accuracy,
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specificity and sensitivity, which are computed using Eq. 5.3 [149].

Accuracy = (TP + TN)/(TP + TN + FP + FN)

Specificity = TN/(TN + FP )

Sensitivity = TP/(TP + FN)

(5.3)

where, TP is the number of cases correctly classified as PD patients, FP is

the number of cases incorrectly classified as patients, TN is the number of

cases correctly classified as healthy and FN is the number of cases incorrectly

classified as healthy.

In the second part of our research (H&Y score determination), we use

precision, recall and f1 score to validate our results. These metrics are computed

using Eq. 5.4 .

Precision = TP/(TP + FP )

Recall = TP/(TP + FN)

F1Score = 2 ∗ (Recall ∗ Precision)/(Recall + Precision)

(5.4)

Method Accuracy Specificity Sensitivity
Proposed method in [126] 96.14 95.03 96.55

Proposed RF-based method 98.19 98.38 97.18

Table 5.3: Comparison of the PD/HC classification for the method in [126]
versus our proposed RF-based method.

Class Accuracy Specificity Sensitivity
0 0.97 0.96 1
1 0.85 0.91 0.70
2 0.85 0.86 0.86

Avg/Total 0.89 0.91 0.85

Table 5.4: The classification results of the proposed PD progress monitoring
using H&Y rating score based on accuracy, specificity and sensitivity.
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Class Precision Recall F1-score Number of Samples
0 0.91 1 0.95 30
1 0.75 0.70 0.72 30
2 0.84 0.84 0.84 50

Avg/Total 0.83 0.84 0.83 110

Table 5.5: The classification results of the the proposed PD progress monitoring
using H&Y rating score based on the precision, recall and F1-score.

The quantitative results for PD diagnosis is presented in Table 5.3. The

results are compared with the method in [126]. The proposed RF based classi-

fication model outperforms the method in [126]. The comparison demonstrates

that the selected features in our method are more powerful than the features

used in [126]. Additionally, the method in [126] does not account for the

imbalance problem of their dataset. In contrast, the problem is addressed by

our RF approach.

In PD progress monitoring using H&Y score determination, our proposed

model evaluated results are presented in Table 5.4 and Table 5.5. Since there

are multiple classes, the accuracy, specificity and sensitivity are computed

individually per class and the average is presented in Table 5.4. The precision,

recall and f1-score of the individual classes and the total are computed as

reported in Table 5.5. The accuracy of our proposed progress monitoring model

is 89.78% which is higher than the accuracy of the decision system in [157].

We should mention that the analysis in [157] is for 5 classes of H&Y score but

in our proposed model, we have only 3 classes. Therefore, evaluation of the

proposed system for the same number of classes will be conducted in future.

In order to demonstrate the ability of the selected features in distinguishing

PD and HC, the data distribution is analyzed in Figure 5.3. In this plot, the

ability of two pairs of selected features are illustrated in data classification,

where the first pair is SBR - Left Putamen vs SBR - Right Putamen (Figure

5.3 (a)) and the second pair is UPSIT - Total Score vs SBR - Right Caudate

(Figure 5.3 (b)). As the plots illustrate, the data are clustered in two groups

perfectly by these two pairs of features. Similarly, for showing the ability of

these selected features in determining the disease stage based on H&Y rating
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scale, the data distribution is plotted in Figure 5.4. In this plot, the first pair of

features is SBR - Right Putamen vs MDS-UPDRS III (Figure reffig:featdisthy

(a)) and the second one is UPSIT - Total Score vs SBR - Left Putamen (Figure

5.4 (b)). As the plots show, the data are clustered well into three groups by

these two pairs of features.

(a) (b)

Figure 5.3: The data distribution plots based on the two pairs of top features
for PD/HC classification. (a) SBR-Left Putamen vs SBR-Right Putamen, (b)
UPSIT-Total Score vs SBR-Right Caudate.

(a) (b)

Figure 5.4: The data distribution plots base on the two pairs of top features
for H&Y score determination. (a) SBR-Right Putamen vs MDS-UPDRS III,
(b) UPSIT-Total Score vs SBR-Left Putamen.

As has been noted, the SBR related features, the UPSIT - Total Score

and the MDS-UPDRS III are the most important clinical information for
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PD diagnosis and progress monitoring. Even though, it is commonly known

that PD is an age-related disease, our analysis shows that age cannot be a

good discriminator feature for the PD by itself. Because of the various aging

scenarios that even a younger subject might have PD. Another key contribution

of our work is that the proposed method for H&Y score determination can be

used to supplement a clinical dataset that has missing H& Y values.

5.6 Conclusion

Early automatic detection and monitoring of PD is critical for on-time and

more effective treatment of patients. The current diagnosis process is based on

the demographic and clinical features evaluated by a specialist which can be

subjective and time consuming. In this paper, an early automated detection

and disease stage determination model based on the RF algorithm and machine

learning techniques is proposed. The proposed system has three general

phases consisting of preprocessing, features selection and classification. Feature

selection is performed using the MDI method. Classification is composed of two

parts: PD diagnosis and PD monitoring by H&Y rating score determination.

The PPMI dataset is used as the PD demographic information for evaluation

in the proposed method. Our experimental results show high accuracy in

classifying PD and HC, and H&Y score determination, which outperforms

state-of-the-art methods. Moreover, the proposed method can also be applied in

clinical dataset, which has missing values for H& Y rating scales. In future work,

we will further assess the ability of the proposed method as a supplementary

tool for determination the H&Y rating scales in the dataset with missing values.

Furthermore, we will evaluate the proposed model for determining the PD

progress by determination of the UPDRS rating score.
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Chapter 6

Comparing Subcortical Features
Ability in Parkinson’s Disease
Assessment using only MRI T1
Images

6.1 Introduction

PD is the second most significant neurodegenerative disease after Alzheimer’s

Disease (AD). Middle-aged and elderly people are most vulnerable to PD.

This disease is provoked by progressive loss of dopamine generating neurons

in the brain which manifests as two types of symptoms: motor and non-

motor. The motor symptoms are bradykinesia, muscle rigidity, tremor and

abnormal gait [146], whereas non-motor symptoms are mental disorders, sleep

problems and sensory disturbance [33]. Even though, there are some medical

methods for PD diagnosing and progress determination, the results from these

experiments are subjective and is highly dependent on the expertise of clinicians.

On the other hand, most of these diagnosis techniques are expensive and

time consuming for patients [130]. Neuroimaging techniques have remarkably

improved the diagnosis of neurodegenerative disease. There are different types

of neuroimaging techniques; MRI is among the most popular one because it is

a cheap and non-invasive method and has the ability to produce high resolution

images.
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6.2 Motivation

PD patients show motor symptoms when they lose almost 80% of their brain’s

dopaminergic cells [1]. However, the non-motor symptoms might reveal at

the earlier stages of the disease. The non-motor symptoms are associated

with structural changes in the brain. MRI has the potential to detect the

sub-cortical volume and shape variation in the brain [168]. These facts prove

the urgency of having a CAD system for early and automatic detection of PD

using MR images. In this research, the volume and surface-based features from

the brain’s subcortical regions are assessed and compared for PD diagnosis

with machine learning techniques. T1 MR images have been used since they

have the potential for showing brain structural changes, which are essential for

early diagnosis of PD.

6.3 Proposed Method

Figure 6.1 shows the general framework of this research. In the first step,

T1 images are preprocessed by neuroimaging analysis package, Freesurfer, to

prepare the data for further analysis. After that, feature extraction is conducted

to extract the volume and surface-based features of the subcortical regions of

the brain. The extracted features are forwarded to the classification using: RF

and SVM. Feature selection is done with PCA for choosing the most useful

features and dimensionality reduction before classification.

6.3.1 Preprocessing

Preprocessing is an essential step in designing CAD systems. In this research,

for extracting the brain subcortical characteristics using MR images, several

preprocessing steps are performed. Freesurfer is used for preprocessing as a

surface-based analysis package for the 3D MRI data. FreeSurfer is a package

for the analysis and visualization of structural and functional neuroimaging

data from cross-sectional or longitudinal studies [168]. The FreeSurfer library

conducts cortical reconstruction, subcortical volumetric segmentation, and
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Figure 6.1: PD classification framework using machine learning and just with
T1 MR images.

preprocessing [54].

Preprocessing process begins by converting DICOM, or other native scanner

format, to the mgz format. In the next step, multiple scans from each subject

are registered using the first scan as the template, and a single averaged, motion

corrected volume for each subject is generated as output. The next few steps of

volume processing for each subject begin with the output of motion correction.

Several intensity normalization steps are next, along with a transformation to

Talairach space. The intensity corrected T1 volume is fed into an watershed

which strips out the skull and any remaining background noise. After creation

of the skull scripted volume, the subcortical processing and segmentation

occurs, yielding an automatic labeling of subcortical structures in the brain

volume. It has to be noted that this is the most time-consuming phase in the

processing. In this last portion of the volume processing pipeline, the input

volume is normalized and segmented to generate volume containing only white

matter. Subsequent automatic topology correction will be done for generating

the WM volume. Finally the hemispheres will be separated from each other

and from the brain stem, and creates a binary mask that distinguishes the two

hemispheres for use in the surface processing pipeline. Figure 6.2 shows the

MRI for a sample MR T1 image and the resulting image after preprocessing.

The T1 image is presented in three different planes: axial, sagital, and coronal.
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(a) (b) (c)

(d) (e) (f)

Figure 6.2: A MR T1 image in different planes: (a) Axial, (b) Coronal, (c)
Sagital. The preproceesing results using Freesurfer for the T1 sample in different
planes: (d) Axial, (e) Coronal, (f) Sagital.

6.3.2 Cortical Features Extraction

After preprocessing the MRI scans, volume and surface-based characteristics

of the brain are extracted from the segmented subcortical regions. The output

from the volume processing stream is used in surface creation; the entire surface

processing stream is run twice, once for each hemisphere. In this stream, the

research volume is first tessellated to create the orig surface. The orig surface is

smoothed and inflated. Next, the topology correction is automatically run once.

In the automatic topology correction steps, the inflated surface is transformed

into spherical coordinates, corrected, and then smoothed and inflated again.

Afterwards, the final surfaces are created. Visual checking of the final surfaces

is necessary to check for geometric defects that may be present in the white

and pial surfaces. Two versions of the surface parcellation are run, each using

a different atlas. An output file is generated for each parcellation containing

measurements of average thickness, surface area, mean curvature and more

for each labeled area. In this research four features are considered for PD

diagnosis: Volume, surface Area, Mean curvature and thickness. In the next

part, the assessment over these four subcortical features beside their fusion are
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explained. The number of volume, area, thickness and mean curvature features

are 138, 74, 74 and 72 respectively.

6.3.3 Dimension Reduction and Classification

After the extraction of subcortical features from the different 3D MRI T1 images,

the next step is classification. The goal is to use the extracted features for

distinguishing between PD and HC subjects. The extracted features can contain

redundant information, which may affect the classification result. Therefore,

we perform feature reduction before classification. PCA is a popular feature

reduction method in many applications such as neuroimaging.[129]. It makes a

smaller number of uncorrelated variables (features) by linearly transforming

correlated variables [131]. The resulting uncorrelated features are principal

components which are capturing most of the variance in the data [129].

Classification is then performed using machine learning classifiers: RF and

SVM. SVM [122] is a well-known supervised machine learning algorithm for

classification and regression. It performs classification tasks by making optimal

hyperplanes in a multidimensional space that distinguish different classes of

data. This classification method is more popular because it’s easier to use, has

higher generalization performance and little tuning compared to other classifier.

In our case, the kernel SVM is used. RF is an ensemble learning method for

classification, regression and other tasks. This method is presented by Breiman

[1] [91], which creates a set of decision trees (weak classifier) from randomly

selected subset of training data. It then aggregates the votes from different

decision trees to decide the final class of the test object. In the current stage

of this research, we tested how accurate decisions can be made by RF with the

data coming from PD’s MRI volumes.

We apply four classification models on our four subcortical features, volume,

area, mean curvature, and thickness. Moreover, the discriminating power of

the fused features is also considered in this research. The four classification

models are: 1) SVM, 2) PCA+SVM, 3) RF, and 4) PCA+RF. The general

goal is classifying the T1 images using the mentioned features and classification

models to two groups: PD and HC.
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6.4 Experimental Results and Discussion

In this section, the dataset used in this research is explained and the results

of different classification models are presented. We compare the effectiveness

of the RF and SVM classifiers with and without using PCA. Our objective

is to classify subjects T1 images to PD and HC using four important brain’s

subcortical features.

6.4.1 Dataset

The data used in the preparation of this article is the T1-weighted brain MR

images which is obtained from the PPMI database www.ppmi-info.org/data.

PPMI is a public and large-scale dataset to identify PD progression biomarkers

[91]. The data that is used in our study contain the original T1 MR image of

598 samples with 411 PD and 187 Control. The summary of the data base

demographic data are presented in Table 6.1.

Data Type
Class Sex Age

PD HC F M (25-50) (50-76) (75-100)

Number of Subjects 411 187 217 381 81 472 45

Table 6.1: Demographics information of PPMI dataset.

6.4.2 Results

Out of 598 subjects MRIs, 543 images were successfully preprocessed. Other

images were excluded from the dataset due to poor quality of the original images

or unknown parameters values during preprocessing pipeline. The number of

PD and HC in the preprocessed MRI data are 369 and 174 respectively. The

size of the MR images after preprocessing by Freesurfer package is 256∗256∗256

because of using Talairach atlas. Since the number of PD is much more than the

number of HC samples (more than 2 time), the dataset needs to be balanced.

The method for balancing the dataset is over-sampling, which increases the

number of samples in the minority group (HC) to make them equal or close to

the number of samples in the majority class (PD). PCA used as dimensionality

reduction beside RF and SVM as classifiers for classification of the MRI T1.
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80% of the data is used for training and the rest (20%) for testing the classifier

models. In this classification process, 10-fold cross validation and grid search

with hyper parameters are used to get the most statistically accurate and

reliable results. The data balancing process is done over the training data,

which makes both the number of PD equal to the number of HC. There are two

sets of experiments for RF and SVM, in which the first is without using PCA

and the second one is with PCA. The evaluation metrics used in this research

for comparing the results of the classification algorithms include specificity,

sensitivity and accuracy, which are defined in Eq.6.1.

Accuracy = (TP + TN)/(TP + TN + FP + FN)

Specificity = TN/(TN + FP )

Sensitivity = TP/(TP + FN)

(6.1)

TP is the number of cases correctly classified as PD, FP is the number of cases

incorrectly classified as PD, TN is the number of cases correctly classified as

healthy and FN is the number of cases incorrectly classified as healthy. The

four classification models are used to evaluate the discriminating abilities of

the four brain subcortical features. In addition, fusion of these features are also

evaluated for PD diagnosis using the classification models. For the fusion part,

the subcortical features are concatenated for each subject in order to create

the fused feature data as the input for the classification models.

Table.6.2 shows the general comparison between the calcification models.

The experimental results are achieved by averaging the results of on 5 runs

of 10-fold cross-validation for MR T1 data. Different criteria are reported in

Table.6.2 by the mean and standard deviation values.

The quantitative results show that PCA+RF model with fusion of subcorti-

cal gives the best accuracy compared to other classification methods. However,

the specificity values for RF is slightly lower than SVM whether with PCA or

without PCA, which provides the capability of SVM in classification of Healthy

subjects.

Most of the proposed studies use SPM and VBM toolbox for neuroimaging

analysis. In this research, one of the important goals was to evaluate FreeSurfer
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Class Methods SVM RF PCA+SVM PCA+RF
Features acc,spes,sens acc,spes,sens acc,spes,sens acc,spes,sens

vol 0.53± 0.04,0.31± 0.09,0.64± 0.03 0.63± 0.02,0.22± 0.03,0.82± 0.02 0.53± 0.03,0.27± 0.06,0.66± 0.08 0.65± 0.03,0.16± 0.06,0.85± 0.02
Area 0.60± 0.04,0.44± 0.11,0.68± 0.05 0.60± 0.03,0.21± 0.04,0.83± 0.03 0.55± 0.02,0.39± 0.05,0.65± 0.05 0.59± 0.04,0.17± 0.05,0.83± 0.05

Thickness 0.57± 0.02,0.41± 0.09,0.64± 0.06 0.55± 0.04,0.43± 0.06,0.62± 0.05 0.60± 0.04,0.41± 0.10,0.68± 0.07 0.58± 0.06,0.36± 0.07,0.70± 0.06
MC 0.60± 0.03,0.49± 0.04,0.65± 0.06 0.53± 0.06,0.31± 0.08,0.66± 0.04 0.58± 0.02,0.51± 0.10,0.61± 0.04 0.56± 0.02,0.45± 0.03,0.62± 0.03

GenFeature 0.57± 0.05,0.33± 0.07,0.67± 0.03 0.64± 0.02,0.21± 0.03,0.84± 0.021 0.52± 0.04,0.31± 0.07,0.65± 0.05 0.66± 0.04,0.11± 0.04,0.88± 0.04

Table 6.2: PD classification results using subcortical features.

package in terms of preprocessing and feature extraction for T1 MR images in

order to PD classification using machine learning techniques. Generally, the

experimental results show that the classification models need more information

from the MR T1 data. In future work, the combination of high-level features

and the low-level ones (subcortical features) will be assessed for PD diagnosis.

Also, other classification models and dimensionality reduction techniques will

be evaluated for PD classification.

6.5 Conclusion

We presented an automatic MRI based CAD system for diagnosing PD, the

second most common neurological degenerative disease affecting elderly people.

This disease is exposed by the loss of neurotransmitters that control body

movements. Currently, there is no cure other than earlier diagnosis with better

and more efficient treatment for patients. In this research, MR T1 images are

used for assessment the ability of volume and surface-based features of the

brain subcortical regions. The FreeSurfer package used for preprocessing of

MRI data and also for extracting the subcortical features including volume,

area, mean curvature and thickness. RF and SVM methods are used as decision

models for conducting classification for T1 MR images with subcortical features

and their fusion. In the experimental results, the ability of these classifiers for

PD diagnosis are compared using different criteria: accuracy, specificity, and

sensitivity.

In future work, the efficiency of the proposed method could be improved

by adding high level features to the current ones. Moreover, other machine

learning classifiers and dimension reduction techniques will be evaluated for

PD classification using subcortical features.
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Chapter 7

Parkinson’s Disease
Region-based Assessment with
Gray/White Matter Volume of
MR Images

7.1 Introduction

One of the main neurodegenerative diseases is PD caused by loss of dopaminergic

neurons in the brain, especially in the BG region. PD primarily affects senior

people (age >50 years) and incidence rates increase with age [116]. Two main

symptoms of PD are motor and non-motor. The main motor symptoms are

bradykinesia, tremor, rigidity, and slowness. Among the non-motor symptoms,

cognitive impairment is one of the major one, which happens in 20%− 50% of

PD patients [46]. The cognitive deficits may cause dementia at the later stages

of the disease. Researchers illustrate cognitive impairment might develop at

early stages of the disease [46]. Although there is currently no cure for PD,

appropriate and on time treatment has been shown to have a beneficial effect

on the disease progression [68], [116], [170].

7.2 Motivation

The cognitive impairments in PD have been related to GM, WM alterations,

brain Functional Connectivity (FC), and brain activation alterations [46]. Thus,

brain GM and WM assessment help to find the biomarker for cognitive deficits,
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which will be useful for early PD diagnosis. Our proposed approach is based on

medical image processing and machine learning techniques. Using SPM/CAT12

package, we pre processed MR images for meaningful analysis. The volume

of GM and WM are selected as features for our further analysis. The selected

features are then forwarded to machine learning algorithms, which classify MR

images into PD and HC categories. Most of the proposed method for volume

analysis for GM and WM of T1 MR images are done with SVM. However,

in this research we compare the ability of two other classifiers beside SVM

including RF and Gradient Boosting (GB). In addition, most of the research

applied the proposed method on small datasets but in this research we evaluate

our method with a big public dataset.

7.3 Proposed Method

In this part, the proposed idea for diagnosing PD using T1 MR images is

explained. There are four general steps including preprocessing, feature ex-

traction, feature selection and classification. Figure 7.1 shows the general

framework of the proposed system.

Figure 7.1: The pipeline of the proposed method for PD classification.
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7.3.1 Dataset

The present study uses PPMI dataset which is the first substantial study

for identifying the PD progression biomarkers [118]. The MR images are

downloaded from their website beside the demographic information including

age and sex for each subject. There exists a large class imbalance among

the data, with 355 PD to 163 HC subjects. This class imbalance is resolved

with the supplementation of 149 HC T1-weighted MRI scans from the publicly

available IXI dataset [75], with a resulting total of 667 class-balanced patients.

Demographic data is shown in Table 7.1. The number of PD samples in the

balanced dataset is 355 and the number of HC samples is 312.

PD HC Average/Total
Age 61.63± 9.6 49.88± 16.84 55.76± 17.99

Sex (F/M) 126/229 131/181 257/410

Table 7.1: Demographic information of the combination of IXI and PPMI
dataset.

7.3.2 Preprocessing

Preprocessing is an essential part of any computer aided diagnosing system

especially for neuroimaging data analysis. Since the neuroimaging data is com-

ming from different scanners, they might have different intensity range. Thus,

the data need to normalized in to the same space for having a comprehensive

and reliable brain study. In addition, image processing such as increasing

the image contrast and denoising are also need to be done. In this research,

SPM12 [12], [152] and CAT12 [32] are used for preprocessing step. CAT12 is

an extension to SPM12 to provide computational anatomy which is covering

diverse morphometry methods such as VBM [13], Surface-Based Morphome-

try (SBM), Deformation-Based Morphometry (DBM) [14], and Region-Based

Morphometry (RBM) [56]. Most of the presented papers in neuroimaging

analysis use VBM8 for preprocessing. However, CAT12 is more robust and

accurate than VBM8 [83] especially for detecting the small abnormalities in

the brain images [38]. There are different steps in preprocessing including:
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• Special Normalization:

In this step, the goal is to alignment the images to a standard space

which is called Montreal Neurological Institute (MNI). This work is

done by registration that is adjusting the brain shape and positions with

respect to the MNI standard. There are two registration methods for

VBM analysis. The first one is affine registration which is aiming to get

the global geometric transformation of the brain image. The second one

is non-linear registration, where the goal is resolution matching between

the MR images and the templates [96].

• Inhomogeneity Correction

The intensity values in structural brain scans are not exclusively at-

tributable to different tissue types, as an intensity-based tissue classifica-

tion would assume [13]. Moreover, the magnetic field in image acquisition

process will lead to some inhomogeneities which is called bias field in im-

age as well especially with high-field scanners. Thus, bias field correction

is a critical step in preprocessing.

• Brain Extraction

In this step, the skull, fat, and background regions from the MRI scans

are removed because they don’t have any information for neuroimaging

analysis.

• Tissue Segmentation

The final goal of preprocessing is classifying the MR images to different

tissues. In this phase, the brain MR images are segmented to three main

parts including WM, GM and CSF.

• Modulation:

This step causes correction of changes in the volume of the segmented

images (to GM, WM) by applying a deformation method.

• Smoothing:

Isotropic Gaussian kernel is used for smoothing in order to increase the
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signal-to-noise ratio, reducing the impact of mis-registration between

images and benefits on statistics normality. The size of the kernel is

8mm.

All the steps of preprocessing has been done by SPM/CAT12 package [47], [51].

A sample MRI scan in different planes including axial, coronal, and sagital

(a) (b) (c)

Figure 7.2: Selected original MRI T1 before preprocessing in three different
planes: (a) Axial, (b) Coronal, (c) Sagital.

is presented in Figure 7.2. Figure 7.3 shows two samples of GM and WM in

(a) (b) (c)

(d) (e) (f)

Figure 7.3: A sample GM image in different planes: (a) Axial, (b) Coronal, (c)
Sagital. A sample WM image in different planes: (d) Axial, (e) Coronal, (f)
Sagital.

different planes: axial, coronal, and sagital.
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7.3.3 Feature Extraction

The output of the preprocessing step is the smoothed 3D GM and WM for each

subject. The goal of this research is an assessment of brain volume changes

for PD patients. In our research, the GM Volume (GMV) and WM Volume

(WMV) are used as discriminative features for our further analysis.

7.3.4 Dimensional Reduction and Classification

The GMV and WMV features might have irrelevant and redundant data which

might affect the classification results at the end. PCA is one of the most

popular feature reduction in neuroimaging analysis [108]. It finds relevant

features by linearly transforming correlated variables into a smaller number

of uncorrelated variables known as principal components [80]. The selected

components are essentially linear combinations of the original data capturing

most variance in the data [108]. In this research, 3 types of classifiers are used

with and without PCA which are RF, SVM, and GB. SVM is proposed by

Vapnic [41] in which find the optimum hyper planes for classifying the data.

RF [24] is one of the major ensemble learning methods which consist of a group

of weak decision trees. RF classify the data based on the majority vote of the

weak classifiers. GB [55] is another popular machine learning classifier which

is working based on combining many weak learning models together to create

a strong predictive model.

For all the models, 80% of the data is used for training, and 20% for the

testing. 10-fold cross validation is conducted. Furthermore, grid search with

hyper parameters is performed for for training the models. For the classifi-

cation part, six models are used and compared: SVM, RF, GB, PCA+SVM,

PCA+RF, and PCA+GB.

7.4 Experimental Results

In this part, the classification results of using different models with GMV and

WMV are reported. Our proposed system uses volume features to classify the

T1 MR images into two groups: PD and HC. The extracted features were input
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to the SVM, RF, and GB classifiers (with and without PCA). The criteria for

evaluating the proposed system are accuracy, specificity, sensitivity which are

computed based on Eq. 7.1.

Accuracy = (TP + TN)/(TP + TN + FP + FN)

Specificity = TN/(TN + FP )

Sensitivity = TP/(TP + FN)

(7.1)

TP as True Positive, is the number of samples correctly classified as PD, FP

as False Positive is the number of HC samples incorrectly classified as PD, TN

as True Negative is the number of samples correctly classified as healthy and

FN as False Negative is the number of PD samples incorrectly classified as

healthy. The six classification models described above are used to evaluate the

descriptive abilities of the two volume feature descriptors GMV and WMV.

The quantitative results from the GMV features are presented in Table.7.2,

and for the WMV feature are shown in Table.7.3. The fusion of GMV and

WMV classification results are shown in Table.7.4.

Criteria Accuracy Specificity Sensitivity
RF 0.79 0.60 0.93

PCA+RF 0.81 0.65 0.91
SVM 0.81 0.80 0.82

PCA+SVM 0.79 0.62 0.93
GB 0.76 0.53 0.98

PCA+GB 0.79 0.53 0.97

Table 7.2: The classification results using different models for GMV.
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Criteria Accuracy Specificity Sensitivity
RF 0.80 0.56 0.98

PCA+RF 0.79 0.61 0.94
SVM 0.79 0.52 1.00

PCA+SVM 0.79 0.76 0.83
GB 0.79 0.60 0.98

PCA+GB 0.80 0.53 1.00

Table 7.3: The classification results using different models for WMV.

The experimental results illustrate that the maximum accuracy for PD

classification is 0.81 which is achieved with GMV using two models: PCA+RF,

and SVM. With considering other criteria (specificity and sensitivity), SVM

is more reliable model compared to PCA+RF. The classification results of

WMV in Table 7.3 show 0.80 accuracy which is very close to the maximum

obtained accuracy for GMV. However, WMV highest accuracy is gained by

RF and PCA+GB models.

Contrary to what we expected, the fusion of GMV and WMV did not

represent higher performance in PD classification compared to each of these

features. However, the results are close to what we achieved for GMV and

WMV classification.

Comparing to the other proposed methods for PD classification using GMV

and WMV [18], [53], [86], [141], our research used bigger dataset for evaluation

which makes our results statistically significant. The highest reported accuracy

in our method (0.81) is higher than the performance of the presented research

in [86] which is 0.75. On the other hand, in our proposed method, we compared

the ability of different machine learning classifiers. Since deep learning methods

have high performance in many applications using MRI data [5]. For future

work, the ability of some 3D and 2D networks will be assessed using GM and

WM data.
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Criteria Accuracy Specificity Sensitivity
RF 0.78 0.52 1.00

PCA+RF 0.79 0.56 0.98
SVM 0.79 0.53 1.00

PCA+SVM 0.79 0.77 0.80
GB 0.76 0.53 0.97

PCA+GB 0.77 0.54 0.98

Table 7.4: The classification results using different models for the fusion of
GMV and WMV.

7.5 Conclusion

Early diagnosis of PD is essential for having more effective treatment for the

patients. The non-motor symptoms of PD especially cognitive impairment

appears in the earlier stages of the disease. Brain structures including GM

and WM are related to the cognitive functionality. In this research, the ability

of GMV and WMV are evaluated for PD classification using MR T1 images.

SPM/CAT12 is used for preprocessing and getting the GM and WM of T1

MR samples. These volume features are used with three important classifiers

including SVM, RF, and GB. These classification models are used with and

without PCA as dimension reduction technique which result to have six different

models. The T1 MR data from IXI and PPMI dataset is used for evaluation

purpose. IXI dataset is used to solve the imbalance problem of PPMI data. The

experimental results show the highest accuracy for PD classification achieved

by SVM model for GMV feature.

94



Chapter 8

Assessing the Capability of
Deep-Learning Models in
Parkinson’s Disease Diagnosis

8.1 Introduction

PD is a progressive neurodegenerative disease that primarily affects the ability

of an individual to perform basic motor movements. Common symptoms

include bradykinesia (slow movement), difficulty in speaking and an unsteady

gait. PD ranks as the second most common neurological disease after AD, with

a prevalence of 6.2 million affected globally [161]. The disease is particularly

prevalent in the aging community, affecting 1% of those above age 60 [134].

Despite this, the underlying pathology of the disease is not well understood

[84].

In general, PD is diagnosed when motor symptoms begin to manifest.

However, a patient may have lost 50 − 70% of their dopaminergic neurons

before these symptoms appear [34]. With this in mind, diagnostic methods such

as MRI are of particular interest. When discussing diagnosis, it is important to

consider the severity of the disease. A treatment that is helpful in early stage

PD may become ineffective if applied only at a later stage. To classify severity,

clinicians commonly use two metrics: HAY score [70] or the UPDRS [133].

These metrics provide a useful method for doctors to quantify and evaluate

patient outcomes. Primarily, our work focuses on binary classification between

PD and HC patients, but could be extended to fit these metrics.
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8.2 Motivation

A pre-symptomatic diagnosis may prove crucial in stopping or slowing the

disease before it progresses to a debilitating stage. Although PD is ostensibly

incurable, promising new treatments such as Exenatide [16] may be effective if

used at an early stage.

For the most part, structural sMRI is not currently used in PD diagnosis.

This is due to a traditionally poor ability for sMRI to detect subtle physiological

changes in areas associated with PD (i.e. BG) [176]. However, our approach

seeks to circumvent this through the computational sensitivity of deep-learning

based methods. As well, unlike CT or x-ray imaging, sMRI does not subject

the patient to high levels of ionizing radiation [26].

Our work presents a non-invasive approach to diagnosis of PD based on

deep-learning frameworks. Specifically, we construct multiple models to classify

patients strictly from sMRI data. Similar approaches with computer-aided

diagnosis have been taken in the past for conditions such as AD [162] and

Attention Deficit Hyperactivity disorder [177].

8.3 Data and Preprocessing

8.3.1 Dataset

In our work, subject data is obtained from the PPMI public dataset. The

dataset consists of T1-weighted sMRI scans for 568 PD and HC subjects.

From this, 445 subjects are selected, with the rest omitted due to structural

abnormalities during preprocessing. There exists a large class imbalance among

the remaining data, with 299 PD to 146 HC subjects. This class imbalance is

resolved with the supplementation of 153 HC T1-weighted sMRI scans from

the publicly available IXI dataset, with a resulting total of 598 class-balanced

patients. Demographic data is also collected and shown in Table 8.1.
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PD HC Average/Total
Age 62.0± 9.54 49.2± 16.09 55.6± 15.1

Sex (F/M) 189/110 172/127 361/237

Table 8.1: PPMI dataset demographic data.

8.3.2 Preprocessing

Due to morphological and dimensional differences between scans, the samples

must be standardized to a common format so that they are comparable. We

initially resize all scans to the same dimensions so that they will fit in our

model. Then, we must perform an intensity normalization. MRI intensity

is measured in arbitrary units, and as such, there is a large discrepancy in

inter-subject intensity values. We correct this by standardizing intensity on a

per-patient basis, fixing all values to the range [0, 1]. After this, more complex

preprocessing operations are performed with the use of the FSL toolkit [167],

as explained below.

A pipeline is constructed to preprocess the dataset using the Anatomical

Processing Script (fsl anat). Firstly, the data is reoriented to MNI orientation

(fslreorient2std) such that all scans face the same direction. Then we perform a

bias-field correction (FAST) [173] to remove general intensity non-uniformities.

Following this, the brain is extracted from the scan (FNIRT / BET) [78] and

linearly registered to the standard MNI152 format (FLIRT) [79][77]. Non-linear

registration (FNIRT) was omitted because of a tendency to have unpredictable

deformation corrections with regard to a standard template [7]. At this point,

artifacts created in the preprocessing step, namely erroneous voxel intensity

values higher than the global max of 1, are corrected to be within the normal

range of [0, 1]. Note that scans are zero-padded from a size of 91× 109× 91

to a size of 96× 112× 96 when they are inputted into the model, since these

dimensions are repeatedly divisible by 2 and thus lead to cleaner convolution.
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Figure 8.1: Preprocessing pipeline

8.4 Proposed Method

We take two distinct approaches to classification for deep-learning based models.

The first approach is based on three-dimensional analysis, while the second is

two-dimensional. All models are built using TensorFlow.

8.4.1 Three-Dimensional Models

(M1: 3D-CNN) In the three-dimensional approach, we test two models.

The first of these is a generic 3D Convolutional Neural Network, with 3 sets

of 3D Convolution + Max Pooling Layers. Kernel Size is [3, 3, 3] and stride is

[2, 2, 2]. Leaky ReLU units are used at each layer to introduce non-linearity

to the data. We flatten the output of the final pooling layer, and use it as

the input of a small 4 layer neural network. The flat layer is passed into the

first dense layer of 512 neurons. Dropout with 30% loss is introduced after

the first dense layer to minimize overfitting. Following this, we enter a 128

neuron layer, and then the final 2 class-logit layer. The output is the computed

softmax of the two class probabilities. We train using cross-entropy loss and

ADAM optimizer with a learning rate of 0.00001. Model architecture is shown

in Figure 8.2 (a).
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(M2: 3D-DAE) The second model is a 3D Denoising Convolutional Au-

toencoder followed by a classifying neural network. The autoencoder is under-

complete, and the input is purposely corrupted. The corruption is done by

masking between 20−30% of the input pixels to zeros before passing into the au-

toencoder. Both the corruption and under-completeness force the autoencoder

to obtain an efficient latent-space-representation of the voxel data. We allow

the autoencoder to train unsupervised for some time, using mean-squared-error

and ADAM optimizer. Once it can recreate input scans with high accuracy,

we take the compressed latent space representation of our “encoder” and pass

it to the neural network. This is a form of feature reduction for our data.

The classifying neural network has the same structure as the one used in the

3D-CNN, starting with a flat layer and ending in a softmax between the PD

and HC logit. See Figure 8.2 (b) for the detailed structure. Note that we tried

stacking autoencoders, but the results were generally poor and are not included

in this research.

8.4.2 Two-Dimensional Models

sMRI data is represented as a 3D matrix of voxel intensities, in which case

it may be parsed into a series of 2D frames. In this sense, we can consider

3D-sMRI scans as a series of 96 2D-slices. This allows us to classify on a

per-slice basis rather than from an entire 3D scan. This presents some unique

facets to our task.

Classification on a per-slice basis means that for any given scan, some

slices may be identified as Parkinsonian, while others are marked as healthy.

Ultimately, a decision must be made for the entire 3D scan. In general, we

simply take the mode of the class “votes” as the final decision, as seen in Figure

8.3. However, not all 96 slices are relevant to a diagnosis. If PD mostly affects

the inner brain (BG), then it may be best to ignore slices on the boundary of

the brain in our diagnosis.

(M3: 2D-CNN) The first 2D model we test is a basic two-dimensional

CNN, which follows the same general structure as the 3D-CNN. We stack
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(a) 3D-CNN

(b) 3D-DAE

Figure 8.2: 3D model architecture

Figure 8.3: 2D voting system

three units one after another, in which one unit consists of a 2D convolutional

layer followed by a max-pooling layer. Convolutional kernel size is [5, 5] and

stride is [2, 2]. ReLU is used at each step, and the final output is flattened

and passed as the input to the neural network. This network follows the
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same structure as the 3D neural network, and the resulting output is the

softmax of the class logits. Note that we use a batch-size of 96 both because it

allows our 2D model to train more efficiently, and also it is useful to calculate

statistics with the same dimensions as our 3D models. We calculate loss with

cross-entropy, and use ADAM optimizer on a per-slice basis with a learning

rate of 0.0003. Final classification is done by taking the mode of the class votes

for each slice. Detailed architecture is shown in Figure 8.4 (a).

(M4: 2D-DAE) The next model is a 2D Denoising Autoencoder and neural

network classifier. This model follows the same basic structure as the 3D

equivalent. Kernel and stride are the same as the 2D-CNN. The autoencoder

is trained with mean-squared error and ADAM optimizer with a learning rate

of 0.00003. All other aspects are the same. See Figure 8.4 (b) for clarification.

8.5 Results

The results of the 4 models are shown in Table 8.2. Although no model performs

exceptionally well, all models perform better than the baseline class-distribution

(50%). Interestingly, the 2D models generally have very high sensitivity but less

than satisfactory specificity. This would suggest that they mainly accumulate

error from false-positive diagnoses. In this sense, the 2D models over-diagnose

PD. It’s likely that this stems from the small filter-space of our 2D models,

which must learn to detect very small features in only a few frames. Many

of the frames we pass into the model would not seem to contain meaningful

information in detecting PD.

Criteria Sensitivity Specificity Precision Accuracy
M1: 3DCNN 0.76 0.74 0.74 0.75
M2: 3DDAE 0.72 0.57 0.62 0.64
M3: 2DCNN 1 0.54 0.58 0.69
M4: 2DDAE 0.92 0.53 0.65 0.70

Table 8.2: Deep learning model results.

The best performing 3D model was the 3D-CNN, with 75% accuracy and
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(a) 2D-CNN

(b) 2D-DAE

Figure 8.4: 2D model architecture

balanced metrics in sensitivity, specificity and precision. It almost equally

misdiagnoses with false-positives and false-negatives. This is promising because

it suggests that the model learns meaningful features rather than preferentially

guessing one class repeatedly. With this in mind, we consider the 3D-CNN

useful for generalization. We perform an occlusion sensitivity analysis using

our best model, the 3D-CNN. In the analysis, we allow the model to fully train,

and then obtain the test sample which maximally activates the PD-positive

logit. We occlude a small 4×4×4 section of the sMRI sample by masking with

zeros, and then obtain the new PD-positive logit value. This occlusion process

is done for each block in the sample. We introduce a minimum threshold

so that we can find the blocks which maximally activate the logit, which is
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necessary because all blocks activate it to some degree. Those blocks which

when occluded, lowered the logit value the most, are overlaid a sample brain

as seen in Figure 8.5. The sample brain has the mean intensity values of the

entire preprocessed dataset. In general terms, the red boxes shown in Figure

8.5 are the areas our model finds most important in making its diagnosis.

It follows from the occlusion sensitivity analysis that PD diagnosis is strongly

correlated with voxel intensity in both the cerebellum and occipital lobe regions.

As shown in the symmetry between the right and left sagittal (side) views

in Figure 8.5, this relationship is bilateral. These findings are supported in

literature, with significant atrophy in the cerebellum [22] and the occipital lobe

[28] associated with Parkinson’s disease.

Figure 8.5: Occlusion sensitivity analysis
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8.6 Discussion and Future Work

In general, no model tested is yet applicable in a clinical setting. Symptomatic

diagnosis and medical history analysis are still the gold-standard in PD di-

agnosis for the time being. Despite this, our deep-learning model assessment

demonstrates competency in the task of PD diagnosis, as well as highlighting

potential biomarkers in PD progression. With improved accuracy, the proposed

method could certainly be applied in a practical situation.

There is significant potential for future research in the task at hand. An area

of consideration is deep-learning based classification with segmented subcortical

structures. In the case of our research, classification models could be built based

only on voxel intensities in the segmented cerebellum and occipital lobe regions.

Furthermore, our models could be expanded to a categorical classification

metric, such as UPDRS, rather than the current binary classification for more

precise diagnosis.

8.7 Conclusion

We have demonstrated a deep-learning based approach to diagnose Parkinson’s

Disease from T1-weighted structural MRI images. The proposed method (3D-

CNN) shows promising results in autonomous detection, which is an important

field in modern medical applications. The work also highlights potential

biomarkers of the disease in the cerebellum and occipital lobe. To summarize,

the work suggests that structural MRI can provide useful and complementary

information in the diagnosis of Parkinson’s disease.

104



Chapter 9

Parkinson’s Disease Mid-brain
Assessment using MR T1 and
T2 Images

9.1 Introduction

PD is the second most common movement disorder, which is a progressive

neuro-degenerative disease. The incidence of PD, or the rate of newly diagnosed

cases, generally increases with age, although it can stabilize in people who

are older than 80. An estimated 4 percent of people with PD are diagnosed

before the age of 50. Men are 1.5 times more likely to have PD than women

[164]. This disease is caused by loss of dopaminergic neurons in the part of

the brain known as the BG. The most affected part of BG is SN where the

loss is typically at least 50% of the dopaminergic cells [25]. The cause of cell

death is unknown. There are some other abnormal changes in SN such as

excess iron accumulation, depletion of tyrosine hydroxylase and the presence

of lewy bodies in the remaining nerve cells [125], [166]. SN is a dark region

(the darkness is because of high content of neuromelanin which is a precursor

of dopamine) presented in Figure. 9.1 with other regions of the BG which are

located in midbrain [125]. The main components contain striatum; caudate

nucleus, putamen, globus pallidus, SN, and subthalamic nucleus. The overall

appearance of the normal SN on iron-sensitive MR sequences has been termed

the ’swallow-tail-sign’ or ’nigrosome-1’, and it has been shown to be lost in

almost all patients with PD studied so far [135], [145]. Histopathological studies
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have reported that approximately 98% of dopaminergic neurons in nigrosome-1

are lost in patients with symptomatic PD [35]. Since, the BG is associated

with movement related function, the most important symptoms, which people

with PD manifest are motor symptoms including resting tremor, bradykinesia,

postural impairments and rigidity [94]. In many patients, subsequent non-motor

problems may arise such as cognitive, mood, sleep, and olfactory, with dementia

commonly occurring in the advanced stages of the disease [61]. PD can be

Figure 9.1: The structures of the basal ganglia.

difficult to diagnose accurately, particularly in the early stages of the disease

when symptoms resemble other medical conditions, and misdiagnoses occurs

occasionally [139]. There are currently no blood or laboratory tests that have

been proven to help in diagnosing PD. The diagnosis is based on the medical

demographic characteristics and neurological examination that is conducted by

interviewing and observing the patient. In recent years, neuroimaging has been

increasingly used as an objective method for the early diagnosis of PD and other

neuro diseases [90]. There are some published research for diagnosing, progress

monitoring and assessment of PD using different neuroimaging data such as

MRI [130], PET [89], SPECT [36], and DTI [17]. Most of these neuroimaging

techniques are helpful when 80% of the dopaminergic neurons are already

lost [148]. MRI is one of the most commonly used tests in neurology and

neurosurgery. Recently, promising results in providing better characterization
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of early diagnosis of PD using MR images are reported and are expected to

have better sensitivity than standard clinical measures [97], [148].

MRI is based on the magnetization properties of atomic nuclei. An external

Radio Frequency (RFR) is perturbing the alignment of protons which are

normally oriented within the water nuclei of the tissue. The emitted signals

are measured after a certain period following the initial RFR. The frequency

information contained in the signal from each location in the image plane will

be converted by Fourier transform to corresponding intensity levels, which

are then displayed as shades of gray in a matrix arrangement of pixels [93].

Different type of MRI image can be created using varying the sequence of RFR

pulses applied and collected. Therefore, there are two parameters involved:

Repetition Time (RT) that is the amount of time between successive pulse

sequences applied to the same slice, and Time to Echo (TE) which is the

time between the delivery of the RFR pulse and the receipt of the echo signal.

Based on the mentioned parameters, two types of MRI exist. The first one

is T1-weighted images which are produced by using short TE and RT times.

The contrast and brightness of the image are predominantly determined by T1

properties of tissue. The second one is T2-weighted images which are produced

by using longer TE and RT times. In these images, the contrast and brightness

are predominantly determined by T2 properties of tissue [93].

9.2 Motivation

MRI methods are sensitive to detect and visualize tissue changes in three

different planes: axial, sagittal and coronal. MRI can provide evidence of

structural changes that occur as a result of the loss of dopamine neurons in

the SN, as well as the loss of non-dopaminergic neurons in other brain regions.

Because of its high resolution contrast, ready availability, non-invasive nature

and no need for any pharmaceutical injections, many have used structural

MRI methods in their pursuit of developing a biomarker for PD [39]. In this

research, we analysis the SN and its neighborhood regions in the T1 and T2

MRI sequences just by focusing on the midbrain slices which SN is visually
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existent. Two important computer vision techniques LBP and HOG are used

for feature extraction to get textural, spatial, and shape information from the

selected region in the MR images. Following that, extracted features used for

the classification part with 4 models including: SVM, RF, PCA + SVM, PCA

+RF. PCA has been used as feature selection or dimension reduction. The

experimental results are conveyed with different number of slices from 3 to 8

to evaluate the relation between the classification accuracy and the required

number of slices. This research is according to the listed objectives as below:

• Designing CAD system for PD classification using T1 and T2 MR images

with computer vision techniques and using machine learning methods.

• Compare the ability of these two popular MR imaging techniques T1 and

T2 MR for PD assessment.

• Evaluating the proposed CAD system based on different number of

midbrain slices for T1 and T2 instead of using the whole 3D brain volume

with a lot of useless information.

9.3 Proposed Method

In this research, we design and compare two CAD systems to distinguish PD

and HC subjects using T1 and T2 MRI images. The proposed systems follow

the same framework which have 4 main steps as shown in Figure. 9.2. We

explain these steps, i.e., prep-processing, feature extraction, feature reduction,

and classification, below.

9.3.1 Preprocessing

Preprocessing is one of the critical steps in most of the neuroimaging analysis.

Not all the MRI slices are related to PD and have useful information for the

classification task. For example the slices near the outer edge of the brain have

no essential knowledge for our system. Hence, we need to find the Slice Of

Interest (SOI) in the 3D MR MRI volume image for each subject which has

information for PD classification. Since SN is more visible in axial view we
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Figure 9.2: The proposed CAD system framework using T1 and T2 MRI scans
for PD classification.

consider this plane for our 2D analysis. For each subject we selected between 3

to 8 slices around the center of the 3D MRI volume which have all sub-cortical

regions including SN area. The SOI selection is conducted manually because

the MR images are not preprocessed. For illustration purpose, we choose the

same PD and HC subjects from T1 and T2 MR images. The SOI scans are

shown in Figure. 9.4 and the selected ROI from these scans are presented in

Figure. 9.5. Figure. 9.4(a) and (b) show two T1 SOI samples for PD and HC,

respectively. Figure. 9.4(c) and (d) show two T2 SOI samples for PD and HC,

respectively. For analysis the SN area which is the main affected region by PD,

we choose the area inside those SOIs contains the SN region as ROI. These

ROIs consist of SN and the neighbors sub-cortical regions such as Cerebral

Palsy (CP) and Red Nucleus (RN) which are shown in Figure.9.3. The ROIs

are automatically selected by choosing a square around the center of the MR

image with the side length of 80. This part is usually done manually in other

related works but our system is able to perform automatically. Figure. 9.5(a)

and (b) show corresponding T1 ROI samples for PD and HC SOI, respectively.

Figure. 9.5(c) and (d) show corresponding T2 ROI samples for PD and HC
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SOI, respectively. The image quality of the selected SOI-ROIs needs to be

Figure 9.3: ROI in a random selected SOI, which contains the SN, CP and RN
regions.

(a) (b) (c) (d)

Figure 9.4: The selected T1 SOIs for a HC subject in (a), and for PD subject
in (b). The selected T2 SOIs for the same HC subject in (c), and for the same
PD subject in (d).

(a) (b) (c) (d)

Figure 9.5: The ROI in the selected SOI for T1 image corresponding to Figure.
9.4: (a) PD subject, (b) HC subject. The ROI in the selected SOI for T2
image: (c) PD subject, (d) HC subject.

improved. Thus the preprocessing steps performs including noise reduction, and

intensity non-uniformity correction. The denoising is done using the median
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filter [6]. The intensity correction is done by adjusting the image intensity.

Figure. 9.6 show two ROIs for PD sample in the first row and for HC sample

in the second row for a T1 MR image. Figure. 9.7 show two ROIs for PD

sample in the first row and for HC sample in the second row for a T2 MR

image. Figure. 9.6 (a) and (d) are the original, Figure. 9.6 (b) and (e) are the

denoised versions, and Figure. 9.6 (c) and (f) are the corrected non-uniformity

of the T1 MR image. Figure. 9.7 (a) and (d) are the original, Figure. 9.7

(b) and (e) are the denoised, and Figure. 9.7 (c) and (f) are the corrected

non-uniformity of the T2 MR image.

(a) (b) (c)

(d) (e) (f)

Figure 9.6: The selected T1 ROIs for a HC subject in (a), the denoised version
in (b) and the enhanced version in (c), The selected ROI for a PD subject in
(d), the denoised version in (e), and the enhanced version in (f).

9.3.2 Feature Extraction

Texture analysis in detection of neurological disorders with neuroimaging

modalities are reviewed in [67] by Harrison. In their paper they claim that

lesions and physiological changes either the visible or non-visible ones could
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(a) (b) (c)

(d) (e) (f)

Figure 9.7: The selected T2 ROIs for a HC subject in (a), the denoised version
in (b) and the enhanced version in (c), The selected ROI for a PD subject in
(d), the denoised version in (e), and the enhanced version in (f).

be detected and characterized by texture analysis of routine clinical 1.5 Tesla

scans [130][114]. LBP is one of the main texture feature descriptors in different

applications of computer vision which is proposed by Ojala [111], [112]. After

dividing the input images to a group of cells, it gets a histogram of the binary

codes which are found by thresholding the neighborhood of each central pixel.

The LBP operator is defined in Eq.9.1.

LBPP,R(xc, yc) =
i=P−1X
i=0

s(gi − gc)2
i

s(x) =

(
1, if x ≥ 0

0, otherwise

(9.1)

where gc is the central pixel with the coordinate (xc, yc), and the gi are the

neighborhood pixels as shown in Eq. 9.2. The sampling is done in a circular

fashion around the central pixel [160]. The LBP operator uses either uniform

patterns or non-uniform patterns [160] which the first is used in this research.
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For a uniform pattern, the number of bit-wise transitions is no more than two.

The LBP features are extracted for all the MRI SOI-ROIs images in this step.g3 g2 g1
g4 gc g8
g5 g6 g7

 (9.2)

The other feature descriptor that is used in this research is HOG. This method

is used for object detection in different applications. The algorithm first divides

the image to a group of cells and then for each cell the direction and the

magnitude of gradient are computed. Based on the gradient direction and

magnitude the HOG histogram is derived. The concatenation of different

normalized histograms create the HOG feature for each of the SOI-ROI of

the MRI images. The direction and magnitude of the gradient in each cell is

computed based on Eq.9.3.

Gx(x, y) = I(x + 1, y)− I(x− 1, y)

Gy(x, y) = I(x, y + 1)− I(x, y − 1)

GMag =
q

G2
x + G2

y

GDir =
Gy

Gx

(9.3)

I(x, y) is the central pixel in the cell of the input image and the others are

the neighborhood pixels which are shown in Eq. 9.4. GMag is the gradient

magnitude and GDir it the gradient direction. I(x, y − 1)
I(x− 1, y) I(x, y) I(x + 1, y)

I(x, y + 1)

 (9.4)

Two SOI-ROIs HOG images are shown in Figure. 9.8 for T1 and T2 subjects.

Figure. 9.8(a) and (c) are visualized HOG images for T1 and T2 PD samples,

respectively. Figure. 9.8(b) and (d) are HOG images for T1 and T2 HC

subjects, respectively. Two SOI-ROIs LBP images are shown in Figure. 9.9 for

T1 and T2. Figure. 9.9(a) and (c) are visualized LBP images for PD samples

of T1 and T2. In addition, Figure. 9.9(b) and (d) are LBP images for T1 and

T2 HC subjects, respectively.
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(a) (b)

(c) (d)

Figure 9.8: The HOG images of two SOI-ROIs for: (a) PD, (b) HC T1 subject,
and (c) PD, (d) HC T2 subject.

9.3.3 Feature Reduction and Classification

After extraction of LBP and HOG features from SOI-ROIs of different subject’s

MRI T2 and T1 images, the next part is classification. In this part the goal

is using the extracted features for distinguishing between the PD and HC

subjects. The extracted features can have redundant information which may

affect the classification results. Therefore, we perform feature reduction before

doing the classification to eliminate redundant information. One of the popular

feature reduction in neuroimaging analysis reviewed in Benson et al.[108] is

PCA. PCA finds relevant features by linearly transforming correlated variables

into a smaller number of uncorrelated variables which are known as principal
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(a) (b)

(c) (d)

Figure 9.9: The LBP images of two SOI-ROIs for: (a) PD, (b) HC T1 subject,
and (c) PD, (d) HC T2 subject.

components [80]. The resulting principal components are essentially linear

combinations of the original data capturing most of the variance in the data

[108].

The classification is done by two types of machine learning classifiers

including RF and SVM. SVM is one of the main classification algorithms in

different application proposed by Vapnik in 1995 [41]. This algorithm finds

the optimal hyperplane that has the maximum margin and minimum distance

to the data points of different classes. RF is one of the important ensemble

learning method (Breiman et al.[24], 1984) trained on data sets of the same size

as training sets parallel [143]. The final decision is going to be taken based on

the majority votes of all the classification trees in the forest. We use four types
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PD HC Average/Total
Age 62.04± 9.71 61.95± 10.41 61.99± 10.06

Sex (F/M) 58/41 26/15 84/56

Table 9.1: Demographic information of T2 and T1 MRI data obtained from
PPMI data set.

of classification models for the evaluation of LBP, HOG and the combination

of these two feature descriptors. The classification models are: 1) RF, 2) PCA

+RF, 3) SVM, and 4) PCA +SVM. The abilities of these four models will be

compared for our PD classification goal.

9.4 Experimental Results and Discussion

In this section, the data set used in this research is explained and the results of

different classification models are presented. The effectiveness of the RF and

SVM classifiers with and without using PCA for the two texture features (LBP,

HOG, and the fusion of those) are evaluated. Furthermore, the performance of

these models is compared using different number of midbrain MR scans. As

mentioned in the previous sections, our objective is to classify PD and HC

based on T1 and T2 MR data.

9.4.1 Data Set

In our work, we used MRI T2 and T1 images, which are obtained from the

PPMI database (www.ppmi-info.org/data). PPMI is the biggest international

study for determining PD progression biomarkers. It consists of different types

of data including neuroimaging, demographic and clinical information. We

downloaded MR images from PPMI. We use 99 PD and 41 HC subjects who

have both MR T1 and T2 images. The demographic information of this data

is presented in Table 9.1.

9.4.2 Results

The proposed system in this research uses LBP and HOG features with 4 types

of classification models including: SVM, RF, PCA +SVM and PCA +RF for
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PD classification with a group of subjects having both T1 and T2 data. In

addition, combinations of the texture feature descriptors are also evaluated for

PD classification. LBP and HOG features are concatenated for each subject in

order to create the fused features for the classification models.

80% of the data were used for training and the rest (20%) were used for

testing. Cross validation is used with different numbers including k = [3, 5, 10]

in the classification process. The best classification result is defined based on

grid search with the hyper parameter values for different models (SVM, PCA

+SVM, RF̧, PCA +RF).

As you can see in Table 9.1, the number of PD is a lot more than the

number of HC samples. Many problems in data mining and machine learning

involve the analysis of rare patterns of occurrence. This imbalance between

the rare category and the common category can cause significant bias toward

the common category in resulting models. Balancing data sets is necessary

to correct the bias in the learning process [74]. There are several options for

learning unbalanced data which can be ccarried out using down-sampling or

up-sampling. We used down-sampling for handling imbalance problem. In

our proposed method, the same number of the minority class (HC group) are

randomly selected from the majority class (PD group). As shown in Table 9.1,

the number of HC samples is 41. Thus, 41 samples are randomly selected from

the PD group to make a balanced data set for the classification process. There

are practical benefits and constraints for using randomness. Randomness may

impact the model’s convergence rate, the stability of the results, and the final

quality of the neural network. In order to tackle these issues, a solution is to

have full visibility into the data, parameters, and details in the environment

that led to a specific result [37]. Therefore, in our system we defined a single

variable that contains a static random seed and use it for down-sampling, where

we want to randomly select samples from the majority (PD) class. Seed values

are used to make sure that the data are selected from the data distribution.

We use 5 randomly seed values for this purpose.

The criteria for evaluating the proposed system are accuracy, specificity,

and sensitivity, which are defined below (Eq. 9.5). Different criteria are used
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Criteria Accuracy Specificity Sensivisity
Slice # 3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8

RF 0.65 0.65 0.88 0.82 0.82 0.71 0.70 0.50 0.90 1.00 0.90 0.80 0.57 0.86 0.86 0.70 0.71 0.57
PCA+RF 0.94 0.82 0.71 0.82 0.82 0.82 0.85 0.70 0.70 0.90 0.70 0.90 1 1.00 0.71 0.71 1.00 0.71

SVM 0.76 0.82 0.82 0.94 0.82 0.88 0.90 0.90 0.80 1.00 0.90 0.80 0.57 0.71 0.86 0.86 0.71 1.00
PCA+SVM 0.71 0.82 0.71 0.76 0.88 0.94 0.90 0.90 0.70 0.80 0.71 0.90 0.43 0.71 0.71 0.71 1.00 1.00

Table 9.2: Classification results using LBP feature for T1 MR images.

Criteria Accuracy Specificity Sensivisity
Slice # 3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8

RF 0.71 0.76 0.71 0.71 0.76 0.82 0.70 0.57 0.50 0.71 0.70 0.90 0.71 0.90 1.00 0.70 0.86 0.71
PCA+RF 0.76 0.76 0.65 0.71 0.65 0.71 1.00 1.00 0.80 0.90 0.86 0.80 0.60 0.60 0.43 0.43 0.50 0.57

SVM 0.71 0.76 0.71 0.65 0.71 0.71 0.71 0.60 1.00 0.70 0.70 0.90 0.70 1.00 0.50 0.57 0.71 0.43
PCA+SVM 0.76 0.88 0.59 0.76 0.65 0.82 0.90 0.90 0.50 0.90 0.80 0.71 0.57 0.86 0.71 0.57 0.43 0.90

Table 9.3: Classification results using HOG feature for T1 MR images.

to confirm the reliability and correctness of our results.

Accuracy = (TP + TN)/(TP + TN + FP + FN)

Specificity = TN/(TN + FP )

Sensitivity = TP/(TP + FN)

(9.5)

TP is the number of cases correctly classified as PD, FP is the number of cases

incorrectly classified as PD, TN is the number of cases correctly classified as

healthy and FN is the number of cases incorrectly classified as healthy. The

four classification models described above are used to evaluate the descriptive

abilities of the two feature descriptors LBP and HOG.

In our method, we only use the mid-brain slices from T1 and T2 MR

data instead of the whole 3D volume. We compared the performance by

using different numbers of mid-brain slices, i.e., from 3 to 8, and select the

optimal number. This is one of the many contributions of this research. The

classification results for T1 MR images are presented in Table 9.2, Table 9.3,

and Table 9.4 for LBP, HOG and fusion of LBP and HOG, respectively. The

results for different number of slices, features and the four classifier models are

reported.

The experimental results for T2 MR images using LBP, HOG, and their

fusion are presented in Table 9.5, Table 9.6, and Table 9.7, respectively.
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Criteria Accuracy Specificity Sensivisity
Slice # 3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8

RF 0.59 0.71 0.76 0.82 0.65 0.71 0.8 0.7 0.7 0.8 0.5 0.7 0.29 0.71 0.86 0.86 0.86 0.71
PCA+RF 0.71 0.59 0.76 0.82 0.65 0.65 0.90 0.86 0.80 0.80 0.60 0.60 0.43 0.40 0.71 0.86 0.71 0.71

SVM 0.76 0.59 0.71 0.76 0.59 0.76 0.6 0.4 0.6 0.86 0.6 0.9 1 0.86 0.86 0.7 0.57 0.57
PCA+SVM 0.76 0.65 0.71 0.82 0.76 0.71 0.7 0.7 1 0.8 0.8 0.5 0.86 0.57 0.5 0.86 0.71 1

Table 9.4: Classification results using fusion of LBP and HOG features for T1
MR images.

Criteria Accuracy Specificity Sensivisity
Slice # 3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8

RF 0.82 0.88 0.82 0.82 0.76 0.76 0.9 0.9 0.86 0.8 0.86 0.7 0.71 0.86 0.8 0.86 0.7 0.86
PCA+RF 0.64 0.64 0.70 0.70 0.82 0.82 0.90 0.50 0.50 0.70 0.90 0.70 0.28 0.85 1 0.71 0.71 1

SVM 0.76 0.82 0.76 0.88 0.94 0.76 0.86 0.57 0.8 0.9 0.9 0.6 0.7 1 0.71 0.86 1 1
PCA+SVM 0.82 0.76 0.76 0.82 0.88 0.88 0.90 0.70 0.71 0.80 0.90 0.80 0.71 0.86 0.80 0.86 0.86 1.00

Table 9.5: Classification results using LBP feature for T2 MR images.

9.5 Discussion and Future Works

Our proposed CAD system only needs a few SOI-ROI for each subject for PD

classification using either T1 or T2 MR images. Thus, it has low computational

complexity and fast processing. The analysis in this research proves that not

all slices in the DICOM volume have useful information for PD classification.

Furthermore, in each slice (2D) not all the regions are essential for analysis.

Compared to other proposed papers in this field, we did not consider just the

SN part, but we consider SN and the area around it as our ROI. By taking

consideration of neighborhood information, better validation can be performed

on extracted features.

The results of classification T1 illustrate that the LBP feature descriptor is

more powerful in discriminating PD and HC. The highest accuracy for T1 is

achieved for LBP feature. It is worth noting that each model achieves its high

accuracy with a different number of slices. For example, the number of slices

for getting maximum accuracy for SVM is 6. Whereas, for getting the same

accuracy with PCA +RF model, we need just 3 SOIs and with PCA +SVM

model, 8 SOIs are needed. Figure. 9.10 shows the relation between accuracy

and number of SOI for T1 MR image classification using LBP and the three

models with higher accuracy. As the first plot in Figure. 9.10(a) shows, the

accuracy is increasing the highest when the number of SOI = 3. The PCA

+RF model in Figure. 9.10(b), has the highest accuracy at SOI = 6.The
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Criteria Accuracy Specificity Sensivisity
Slice # 3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8

RF 0.76 0.71 0.82 0.65 0.88 0.82 0.7 0.8 0.8 0.6 1 0.9 0.86 0.57 0.86 0.71 0.71 0.71
PCA+RF 0.82 0.76 0.82 0.71 0.71 0.71 0.90 0.80 0.70 0.80 0.60 0.50 0.71 0.71 1.00 0.57 0.86 1.00

SVM 0.65 0.88 0.88 0.88 0.76 0.88 0.8 0.8 0.9 0.9 0.7 0.8 0.43 1 0.86 0.86 0.86 1
PCA+SVM 0.88 0.76 0.82 0.76 0.71 0.88 0.86 0.60 0.70 0.43 0.60 0.90 0.90 1.00 1.00 1.00 0.86 0.86

Table 9.6: Classification results using HOG feature for T2 MR images.

Criteria Accuracy Specificity Sensivisity
Slice # 3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8

RF 0.71 0.65 0.71 0.94 0.65 0.76 0.70 0.60 0.70 1.00 0.60 0.70 0.71 0.71 0.71 0.90 0.71 0.86
PCA+RF 0.64 0.64 0.70 0.70 0.82 0.82 0.85 0.5 0.5 0.7 0.9 0.7 0.5 0.85 1 0.71 0.71 1

SVM 0.76 0.76 0.88 0.71 0.65 0.71 0.71 0.70 0.80 0.60 0.40 0.71 0.80 0.86 1.00 0.86 1.00 0.70
PCA+SVM 0.71 0.65 0.82 0.76 0.65 0.71 0.80 0.50 0.86 0.60 0.40 0.71 0.57 0.86 0.80 1.00 1.00 0.70

Table 9.7: Classification results using fusion of LBP and HOG features for T2
MR images.

results of PCA +SVM model (Figure. 9.10(c)) shows maximum accuracy at 8

SOIs.For specificity and sensitivity values, PCA +RF model has higher values

comparing to the two other winner models.

(a)

(b) (c)

Figure 9.10: The plots of the relation between the accuracy and number of
slices for the best models in T1 classification.

Based on the classification results for T1 with HOG feature, the maximum
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accuracy is given by PCA +SVM model with 4 SOIs which is 0.88. The other

models report similar accuracies between 0.65 to 0.76. Contrary to what was

expected, the fusion of LBP and HOG features does not report any higher

accuracy. In most cases, the accuracies are similar to either LBP or HOG

results.

For the T2 MR images, the results illustrate the highest accuracy is obtained

using SVM model with LBP feature descriptor. The maximum accuracy for

T2 classification is 0.94 which is same as the highest classification accuracy

for T1 data. The number of slices used for getting this amount of accuracy is

7. Plots in Figure. 9.11 show the relation between accuracy and number of

SOI for T2 MR image classification using LBP and the models with highest

accuracy. As the first plot shows (Figure. 9.11(a)), the accuracy is almost

stable or increasing with higher number of SOI till SOI = 7 and after that it’s

decreasing. In the fusion case (Figure. 9.11(b)) with RF model has fluctuation

with a big peak at SOI = 6 with the maximum accuracy value. The highest

(a) (b)

Figure 9.11: The plots of the relation between the accuracy and number of
slices for the best models in T2 classification.

accuracy given by other classification models is 0.88 which is reported with

different number of SOI. The results for HOG feature with different models

represent similar outcomes. The highest accuracy with HOG feature for T2

MR image calcification is 0.88 which can be gained with different models and

various number of SOIs. Same as the reported results for T1, the feature fusion

for T2 has not higher accuracy than each of these features. However, the
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maximum accuracy still can be obtained with fused features using RF model

for T2.

Note that using PCA for feature dimension reduction is not always effective

on our results. In the T1 classification using LBP feature descriptor, the

results with PCA are smaller than the results without PCA using SVM model.

However, RF with PCA gives higher accuracy than the same model without

PCA. On the contrary, RF with PCA giving lower results compared to the

same model without PCA when HOG feature is used. However, PCA does

have positive impacts on SVM classifier with HOG feature.

Our research proves the classification results of T1 and T2 MR images have

similar outcomes for PD. However, the highest accuracy for each data type

are obtained with different models and different number of SOIs.

For future work, more MR images for T1 and T2 will be considered. In

this research, the preprocessing was not done on the MR images. In the future

work, the preprocessed MR T1 and T2 will be passed to our CAD system which

cause to make the SOI selection automatically and even the ROI extraction

will be faster and more accurate. However, the preprocessed data might not

guarantee the higher accuracy for PD classification using T1 and T2 MR images.

Moreover, localization the most discriminative pats of the ROI in either T1 or

T2 images should be added to our proposed CAD system.

9.6 Conclusion

The reduction of dopaminergic neurons in the SN region of the brain is the main

reason behind PD. In this research, we propose a method using MR T1 and

T2 midbrain scans for PD classification. The system’s main components are

preprocessing, feature extraction, feature reduction and classification. When

preprocessing each subject, 3 to 8 midbrain slices are selected as SOI. In

each SOI, SN and its neighbor are chosen as ROI. We use the LBP and HOG

techniques in the feature extraction. PCA is used for feature reduction to

remove the redundant information irrelevant to PD. Finally, four classification

models using RF and SVM, with or without PCA, are evaluated. The PPMI
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data set is used for the evaluation of the proposed CAD system. MRI T1 and

T2 images of 91 PD and 41 Health Control subjects are used for analysis. Seed-

based random under sampling is conducted for making the data set balanced.

The classification models using LBP feature, HOG feature and the fusion of

these features are evaluated and compared. Experimental findings present

and compare the ability of the proposed system for T1 and T2 MR images.

Furthermore, the classification ability of the CAD system is evaluated using

different number of midbrain MR images from T1 and T2. The experimental

results illustrate the maximum accuracy for T1 and T2 MR image classification

are similar (0.94). The highest accuracy is obtained with different classification

models using LBP features for both MR imaging samples (T1 and T2). Depends

on the classification model, different number of scans are used for discriminating

between PD and HC subjects. In the nutshell, PD classification can be done

with either T1 or T2 and with just a few numbers of midbrain slices with high

performance.
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Chapter 10

Conclusions and Future
Directions

The current thesis is proposing automatic CAD systems with non-invasive

techniques for diagnosing and monitoring of PD, the second-most prevalent

neurodegenerative age-related disease. This disease is characterized by the

loss of dopamine neurotransmitters in the brain region known as SN. There is

no established treatment and diagnostic method for PD but earlier diagnosis

results in more successful and efficient treatment for patients. The main signs

of PD are motor symptoms such as bradykinesia, rigidity, slowness, tremor

and FOG, which results in falls that are particularly dangerous for elderly

people. In addition, PD has non-motor symptoms such as cognitive impairment,

excessive sleeping, and olfactory problems. The motor-symptoms usually reveal

themselves at later stages of the disease when most of the dopaminergic cells

are lost. However, the non-motor signs might appear at earlier stages of the

disease, which makes them more useful for possible early diagnosis of PD.

In this research, a list of contributions have been made using three types

of data: kinematic motion data, demographic and clinical information, and

neuroimaging (MR T1 and T2 image) data.

The gait analysis section consists of two parts. The data in the first part

is captured using a non-invasive and low-cost mocap device known as Kinect,

with the collaboration of a specialist at the University of Alberta neuroscience

department. The gait data is collected using three experiments, which are

normally performed by specialists to assess PD patients (SL, Tremor, TUG).
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In this part, gait-related features are extracted from the motion data for PD

and HC subjects. Thereafter, RF and K-means are used for PD diagnosis

and progress monitoring. The experimental results demonstrate the high

accuracy of our proposed approach to assess PD using kinematic motion

data. The limitation of the current study arises from the small group of

subjects for evaluation purpose. However, gait analysis will be done for PD

patients as future work using bigger dataset which is provided by Arizona State

University. In the second part of the motion analysis section, an automatic FOG

assessment system (“Kin-FOG”) is designed for PD patients to provide objective

information to neurologists about the FOG condition and the symptoms’

characteristics. The proposed FOG assessment system uses Kinect for capturing

data of healthy subjects who are trained to imitate the FOG phenomenon.

The gradient of displacement for foot joint trajectory is used for distinguishing

the FOG episodes. Furthermore, the angle between the foot and the ground is

used for false positive reduction, resulting from having resting modes in our

gait analysis. The proposed Kin-FOG system is low-cost, accurate, and easy to

use in FOG assessment for PD patients. In addition, the proposed system can

be used remotely at patients’ homes for sending the FOG status to doctors

and other healthcare providers. The Kin-FOG system evaluation part is done

using healthy subjects, which is a shortcoming. However, In future work, we

will reevaluate using PD subjects.

Clinical properties are one of the primary sources in PD diagnosis and

monitoring. Assessing the large amount of clinical data by specialists is time

consuming, difficult, and also subjective. Therefore, in the second section of our

research, an automatic system is designed using clinical characteristics, with

machine learning methods (MDI for feature selection and RF for classification).

The clinical data used is taken from PPMI. The experimental results show

high accuracy in classifying PD and HC, and progress monitoring using HAY

score, which outperforms current state-of-the-art methods. In this part, 13

clinical features for PD patients are used. However, there are more clinical

properties for PD which need to be assessed and ranked based on their relative

impacts on classification and progress monitoring.
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In the neuroimaging analysis section, non-invasive MRI imaging is used for

PD classification. The neuroimaging analysis is conducted using two popular

types of MR images: T1 and T2. Three contributions are presented for T1

MR images. The first contribution uses FreeSurfer for preprocessing the MRI

T1 data. Sub-cortical features, including volume, area, mean-curvature, and

thickness are extracted and used for PD classification. The decision models for

classification are based on RF and SVM methods. In the second contribution,

SPM/CAT12 is used for preprocessing and parcellation of T1 MR images

to GM and WM regions. SVM, RF, and GB are used with GM and WM

volumes for PD diagnosis. Moreover, in both contributions PCA has been used

for feature selection and dimensionality reduction. In the third contribution

for T1, different DL models (2D and 3D) are evaluated and compared based

on the ability to distinguish PD and HC. The dataset for T1 analysis is

downloaded from PPMI and IXI datasets. IXI dataset has been used for fixing

the imbalance issue in the PPMI dataset. Furthermore, there is a contribution

which is performed for T1 and T2 MR images. The proposed method designs

a PD assessment system solely based on the midbrain scans. Moreover, the

analysis is based on the SN region as ROI. In the proposed system, LBP and

HOG are used as feature descriptors, which are two powerful computer vision

techniques. The classification models are SVM and RF with or without PCA

as the dimensionality reduction method. The proposed classification system’s

results are compared for T1 and T2. The relation between the performance of

the proposed CAD system and the number of midbrain scans are evaluated. The

goal was PD classification using just MRI. Also, finding the MRI biomarkers

for PD was another goal. Since, the dataset is not specifically for early stage of

PD, the proposed CAD systems using MRI might not be applicable for early

PD classification. However, the proposed method can be evaluated on the

dataset of MRI for a group of PD subjects whose data is collected at different

time starting from when they just got sick till the later stages of their disease.

The dataset for evaluation of FOG detection system were simulated by

healthy subjects. Therefore, more gait analyses need to be done in order to

use FOG detection for real PD patients. In this regard, we have started a
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collaboration with Arizona State University, who have provided motion data

for a group of PD patients who may have FOG or not. The first goal in

this project is utilizing machine learning techniques for FOG classification

using provided motion data. Additionally, The proposed CAD systems in

neuroimaging analysis can be applied for other neuroimaging such as PET,

DTI, and fMRI data. Since there is no single biomarker can accurately detect

PD, we can see researchers analyzing different features in the literature including

MRI and gait. In this thesis by analyzing gait and probably the correlation

between gait and neural features, future research can focus on the detected

significant feature(s) and monitor how a feature evolves over time in a time

series. My thesis will eventually lead to a longer term goal on detecting PD at

an early stage.

Physicians intuitively apply pattern recognition when evaluating a patient.

However, there are different data characteristics which need to be considered,

which makes the evaluation process complex, leading to high rates of deadly and

costly diagnostic errors. Therefore, computerized diagnosis support systems are

necessary to make the diagnosis process easier, faster, and much more accurate.

The reason why these systems are still not widely accepted by clinicians is

because of their current limitations. First is the lacking of having a simple

and user-friendly graphic user interface such as the one this thesis proposes

for Kin-FOG system. Secondly, clinicians require time to learn how to use the

CAD system, which they often avoid due to their busy schedules and lack of

trust in the system. Note that, crowd-sourcing can cause inaccurate or biased

training data when machine learning is adopted [29]. In addition, utilizing

CAD systems require real-time data sharing between different hospitals and

clinics which sometimes is not possible. Addressing these limitations will be a

good direction for future research.
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