
If you can’t explain it simply, you don’t understand it well enough.

– Albert Einstein.

University of Alberta

DO INPUTS MATTER? USING DATA-DEPENDENCE PROFILING TO EVALUATE
THREAD LEVEL SPECULATION IN THE BLUEGENE/Q

by

Arnamoy Bhattacharyya

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c©Arnamoy Bhattacharyya
Fall 2013

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis, and
except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or

otherwise reproduced in any material form whatever without the author’s prior written permission.

To Late Mohan Lal Bandyopadhyay
Dadu, wish you were here.

Abstract

In the era of many-core architectures, it is necessary to fully exploit the maximum available par-

allelism in computer programs. Thread Level Speculation (TLS) is a hardware/software technique

that guarantees correct speculative parallel execution of the program even in the presence of may

dependences. This thesis investigates the variability of dependence behaviour of loops across pro-

gram inputs with the help of data-dependence profiling. This thesis also presents SpecEval, a new

automatic speculative parallelization framework that uses single-input data-dependence profiles to

evaluate the TLS hardware support in the IBM’s BlueGene/Q (BG/Q) supercomputer. A perfor-

mance evaluation of TLS applied along with the traditional automatic parallelization techniques

indicates that various factors such as: the number of loops speculatively parallelized and their cov-

erage, mispeculation overhead due to dependences introduced from function calls inside loop body,

increase in L1 cache misses due to long running (LR) mode in BG/Q and dynamic instruction path

length increase impact the performance of TLS.

Acknowledgements

First and foremost, I would like to thank my supervisor Dr. José Nelson Amaral for his constant

motivation and help during the course of my research. I would also like to thank Jeff Hammond

and Hal Finkel from the Argonne National Laboratory for giving access to the IBM’s BlueGene/Q

(BG/Q) machine and helping out whenever I had questions. I would like to thank Paul Berube for

helping out with the understanding of LLVM and Combined-Profiling, Matthew Gaudet for helping

with information about BG/Q.

On a personal note, I would like to thank all the lovely persons who helped me settle in a

foreign country and made me feel at home — Anupam da, Satarupa di, Sanjay da, Chandan, Dibyo,

Sudarshan, Lokesh, David, Zohaib, Jeeva, the CS graduate group — Amrit Pal, Kyrylo Shegada,

Alejandro Ramirez, Eric Tsala, Pierre Rosado and Ryan Kiros.

I would specially thank my uncle, Sumit kaku for encouraging me to pursue higher studies.

Lastly, I would like to thank my mom (maam), Mandira Bhattacharyya and dad (bai), Arun

Kumar Bhattacharyya for opening up the bigger world to me.

Table of Contents

1 Introduction 1

2 Background 4
2.1 Data-Dependence . 4

2.1.1 Polyhedral Compilation . 6
2.2 Feedback-Directed Optimization . 8

2.2.1 Dependence Profiling . 8
2.2.2 Cost of profiling . 9

2.3 Combined-Profiling . 10
2.4 Thread Level Speculation . 11

2.4.1 Overview . 11
2.4.2 TLS in IBM BG/Q . 13

2.5 LLVM . 15

3 Combined Data-Dependence Profiling 17
3.1 Introduction . 17
3.2 The Combined Data-dependence Profiling Framework 17
3.3 The Instrumentation Pass . 18

3.3.1 Choosing Loops for TLS . 18
3.3.2 The Algorithm Used for Instrumentation 19

3.4 The Profiling Library . 22
3.4.1 Helper Functions for Profiling . 22
3.4.2 Data Structures Used by Helper Functions of Profiling 25

3.5 The Profile file . 26
3.6 Variability of a loop’s dependence behaviour based on inputs 26
3.7 An Application with a Loop with Varied Dependence Behaviour for Different Inputs 27

3.7.1 Experimental Results . 28
3.8 Conclusion . 29

4 SpecEval: A framework for automatic speculative parallelization of loops 31
4.1 Introduction . 31
4.2 Speculative Parallelization using the polyhedral dependence analyzer of LLVM . . 31

4.2.1 Heuristic 1 . 31
4.2.2 Heuristic 2 . 32

4.3 Description of SpecEval . 32
4.4 Experimental Evaluation . 34
4.5 Results . 35

4.5.1 Heuristic 1 . 35
4.5.2 Effects of Applying TLS along with Auto-OpenMP Parallelizer 37
4.5.3 Heuristic 2 . 38
4.5.4 Scalability . 39

4.6 Conclusion . 40

5 Study of Speculative Parallelization at Higher Optimization Levels of the Compiler 41
5.1 Introduction . 41
5.2 Experimental Evaluation . 43
5.3 Effect of applying TLS with AutoSIMD and AutoOpenMP parallelizer in the bgxlc r 43
5.4 Impact of Different Factors on TLS Performance 45

5.4.1 Number of loops parallelized and their coverage 45
5.4.2 Mispeculation Overhead . 47
5.4.3 Filtering Loops with Function Calls that have Side Effects 48

5.4.4 L1 Cache Miss Rate . 49
5.4.5 Instruction Path length increase . 50

5.5 Scalability . 51
5.5.1 SPEC2006 Benchmarks . 52
5.5.2 PolyBench/C Benchmarks . 52
5.5.3 A Discussion on the Use of Clauses with the Basic TLS Pragma 52

5.6 Conclusion . 54

6 Related Work 56
6.1 Thread Level Speculation . 56
6.2 Profiling for Speculation . 58

7 Conclusion 62

Bibliography 65

A TLS Specific Compiler Pragmas in bgxlc r 69
A.1 #pragma speculative for . 69

A.1.1 Syntax . 69
A.1.2 Usage . 70

List of Tables

3.1 A sample combined-profile file. Detailed information about the dependence be-
haviour of a loop is kept to perform a cost analysis. 26

3.2 The benchmarks observed to find loops with varied dependence behaviour. 26
3.3 Effects of different input sets when computing the Convex Hull. 28

4.1 Hardware specifications of a BlueGene/Q chip. 35
4.2 Number of loops parallelized by auto-OpenMP parallelizer of Polly and speculative

parallelization using heuristic 1. Heuristic 1 allows loops with may-dependences
and no must-dependences to be executed in parallel. Coverage data is omitted where
there is no speculative loop discovered. 37

5.1 Number of loops parallelized by different parallel versions of the benchmarks and
the coverage of speculatively parallelized loops. Coverage data are omitted where
no speculation candidate loop is found. 46

5.2 The percentage of speculative threads successfully committed (not rolled back) for
the SPEC2006 and PolyBench/C benchmarks. The percentage gives the amount of
wastage computation. Data is omitted for benchmarks that have no speculative loop. 48

5.3 L1 Cache hit rate (percentage) for the sequential and three parallel versions of the
SPEC2006 and PolyBench/C benchmarks. 50

5.4 Percentages of dynamic instruction-path-length increase of the three parallel ver-
sions of the SPEC2006 and PolyBench/C benchmarks with respect to their sequen-
tial version. 51

List of Figures

2.1 Sample code that shows a loop where the alias relationship cannot be determined at
compile time. The second for loop in main can be either parallel or not based on the
user input choice. 6

2.2 Sample code that shows a loop where the alias relationship can not be determined
at compile time. The second for loop in main can be either parallel or not based
on the user input choice. Here the array subscript is a function call and dependence
analysis techniques report the dependence as a may dependence. 7

2.3 An example of a dependence profiler. 9
2.4 Combining histograms. H1 has a bin width of 10 and a total weight of 12; H2 has a

bin width of 8 and a total weight of 15. The combined histogram H3 has a bin width
of 13 and a total weight of 27 (figure taken from Paul Berube’s PhD thesis [3]). . . 11

3.1 Example of a non-countable loop from SPEC2006 hmmer benchmark. 18
3.2 The state machine used for detecting strided dependence. 23
3.3 Percentage change in speedup for applying TLS as compared to the auto-SIMDized

code for the Convex hull application. 29

4.1 The speculative parallelization framework-SpecEval. 33
4.2 Speedup of the TLS version of SPEC2006 benchmarks over the optimized sequential

version for 4 threads. gobmk suffers a slow down because of the presence of many
loops with small iteration count. sjeng experiences a slow down because the may
dependences materialize during run-time. 35

4.3 Speed up of the TLS version of PolyBench/C benchmarks over the optimized se-
quential version for 4 threads. 36

4.4 Percentage change in speedup after applying TLS over auto-OpenMP parallelizer of
Polly for SPEC2006 benchmarks using 4 threads. 38

4.5 Percentage change in speedup after applying TLS over auto-OpenMP parallelizer of
Polly for PolyBench/C benchmarks using 4 threads. 38

4.6 Percentage change in speedup after applying heuristic 1 and heuristic 2 to the bench-
marks that were experiencing slowdown. Heuristic 2 performs equal or better than
auto-OpenMP for all cases after filtering cold loops and loops with a run-time de-
pendence. 39

4.7 Scalability of speculatively parallelized versions of the SPEC2006 benchmarks with
Polly. 39

4.8 Scalability of speculatively parallelized versions of the PolyBench/C benchmarks
with Polly. 40

5.1 Percentage change in speedup obtained from different parallelization techniques for
the SPEC2006 benchmarks over auto-SIMDized code. The autoOpenMP and au-
toOpenMP+TLS versions use 4 threads. 44

5.2 Percentage change in speedup obtained from different parallelization techniques for
the SPEC2006 benchmarks over auto-SIMDized code. The autoOpenMP and au-
toOpenMP+TLS versions use 4 threads. 45

5.3 Percentage change in speedup of SPEC2006 benchmarks after filtering speculative
execution of loops with function calls. 49

5.4 Scalability of speculatively parallelized versions of the SPEC2006 benchmarks. . . 52
5.5 Scalability of speculatively parallelized versions of the PolyBench/C benchmarks. . 53
5.6 A loop from the SPEC2006 lbm benchmark that needs additional clauses added to

the basic TLS pragma for better performance. 55

Acronyms

TLS Thread Level Speculation

LLVM Low Level Virtual Machine

CFG Control Flow Graph

SPEC Standard Performance Evaluation Corporation

TM Transactional Memory

BG/Q BlueGene/Q

ARB Address Resolution Buffer

TLB Translation Lookaside Buffer

MMU Memory Management Unit

CMP Chip Multiprocessor

Chapter 1

Introduction

With the advent of multi-threaded and multi-core architectures, it is a challenge to effectively utilize

them to improve the performance of general-purpose or scientific applications. Automatic com-

piler parallelization techniques are being developed and are found to be useful for many of these

architectures. However, traditional auto-parallelization techniques can not be effectively applied to

general-purpose integer-intensive applications that have complex control flow and excessive pointer

accesses because there is no guarantee of the correct execution of the program. Therefore the exist-

ing auto-parallelizers follow a conservative approach and synchronize all the program parts (mainly

loops) with potential dependences.

These auto-parallelization frameworks can only parallelize a loop when the compiler can prove,

using compile-time and/or run-time techniques, that the parallel execution of the loop will not affect

the correctness of the program. This constraint often restricts the maximum parallelism that can be

extracted from the loops in a program. An auto-parallelization framework uses the result from a

compile-time/run-time dependence analysis to make a decision about parallelizing a loop so that all

executions of the program are correct. Dependence-analysis techniques work by checking whether

the same address may be accessed (loaded from or stored into) in different iterations of a loop. If

two different iterations of the loop access the same memory address, the loop is said to be dependent

and it is not parallelized.

Many static-dependence analysis techniques exist that can be used by a parallelizing framework

to determine which loops are parallelizable. If the compiler can not determine, at compile time,

whether there will be a dependence at run-time, dependence profiling is used to determine if any

dependence is occurring at run-time [24, 14, 25, 8, 52, 46]. In dependence profiling, the memory

accessed by the possibly dependent load/store instructions are observed for any dependences. The

result of this training run of the program is kept in a profile file. To make parallelizing decisions,

the profile file is consulted.

Based on a previous claim that a loop’s dependence behaviour does not change with respect to

program inputs [14, 25, 45], there is prior work on the collection of data-dependence profile statis-

tics for a single profiling run of a program [46]. But there has not been an extensive study to find

1

if the claim is really true. Berube et al. showed that a program’s behaviours change for different

inputs [4]. Therefore, if there is an application that has a loop with varied dependence behaviour

across inputs, profile collected from a single training run is often not sufficient to perform a cost

analysis and find beneficial loops for speculative execution. Berube et al. presented a method called

Combined-Profiling (CP) to statistically combine the profiles obtained from training runs with dif-

ferent inputs. CP uses histograms to store combined-profiles. By consulting these histograms, the

compiler can determine the probability of the desired behaviour (probability of a taken edge in the

Control Flow Graph (CFG), and the probability of a loop being dependent/ independent) of the pro-

gram or program part (loop or function). But to ensure correct execution, there should be a guarantee

that the parallel execution of the loop will not affect the correctness of the program even if the de-

pendence materializes during run-time.

Thread-level speculation (TLS) [43] is a technique that guarantees correctness even if there is a

dependence inside the loop. The hardware support for speculative threads eases the burden of creat-

ing parallel threads by the programmers and compilers. Thread-Level Speculation (TLS) has been

used to exploit parallelism in sequential applications that are difficult to parallelize using traditional

parallelization techniques. For example, a loop that contains an inter-thread data-dependence due to

loads and stores through pointers, cannot be parallelized using traditional compilers. But with the

help of TLS, the compiler can parallelize this loop speculatively with the support of the underlying

hardware to detect and enforce inter-thread data-dependences at run-time.

There has been a significant amount of research on how to automatically extract speculative par-

allelism from programs and on how to support TLS in hardware [9, 43, 47, 20, 36, 32, 13]. One way

to find profitable loops from the program to be executed in parallel is to look at the probability of

the loop being dependent and perform a cost analysis that takes into consideration the dependence

probability along with other factors (e.g. the execution time of the loop as compared to the whole

execution time of the program etc.) that effect the speculative execution of the loop.

IBM’s BlueGene/Q (BG/Q) is a supercomputer that has TM and TLS support [21]. BG/Q sup-

ports these two hardware features with the help of versioning cache. The hardware stores a consistent

program state in the L2 cache and, in case of mispeculation, the program is rolled back to a previous

consistent state.

With TLS hardware in hand, this research makes the following contribution:

• A detailed experimentation with 57 different benchmarks, used in previous TLS research, to

study the previous claim that for most applications, a loop’s dependence behaviour does not

change based on inputs.

• An implementation of CP is done to combine the data-dependence profiles obtained from dif-

ferent training runs of applications that have loops with varied dependence behaviour across

inputs. The combined-profile stores as much dependence information as is necessary to per-

form a profitability analysis to find loops that are speculation candidates. TLS performance of

2

an application (Convex 2D Hull), that has a loop with varied dependence behaviour, is studied.

• A study on the performance impact of applying TLS along with the existing auto-parallelization

techniques — automatic SIMD and OpenMP parallelizer for the SPEC2006 and PolyBench/C

benchmarks.

• A detailed study of different factors that impact the speculative execution of the loops of the

aforesaid benchmarks in BG/Q is performed. This work is the first evaluation of the TLS

implementation in BG/Q.

The rest of the thesis is organized as follows - Chapter 2 gives background information on TLS

and data-dependence profiling. Chapter 3 demonstrates the proposed CP methodology for data-

dependence profiling as implemented in the LLVM compiler. This chapter also includes a discussion

on the observed non-variability of the dependence behaviour of loops in 57 different benchmarks

from the SPEC2006, BioBenchmark, NAS and PolyBench/C benchmark suites. A study is also

included that demonstrates the impact of varied percentages of dependences in a loop of an appli-

cation on the TLS performance of that application (Convex 2D Hull). Chapter 4 presents SpecEval

that uses some simple heuristics to find profitable loops for speculative execution. This chapter

also gives a performance comparison of the speculative version of the benchmarks with the parallel

version generated by the automatic OpenMP parallelizer of Polly. The effect of data-dependence

profiling to reduce the mispeculation overhead and filtering cold loops to reduce the thread-creation

overhead on programs’ performance is also studied. In Chapter 5, SpecEval uses the dependence

analyzer of LLVM and SpecEval is used to evaluate the effect of applying TLS along with the ex-

isting parallelization techniques (SIMDized and OpenMP parallelization) of the bgxlc r compiler to

the SPEC2006 and PolyBench/C benchmarks. Chapters 7 and 6 present the conclusion and related

work of this research.

3

Chapter 2

Background

This chapter presents the necessary background information on data-dependence, feedback-directed

optimization (FDO), combined-profiling and TLS. In Section 2.1, various kinds of data-dependences

that may be present in the program, are explained. The section also includes motivating examples

where may dependences inside loops materialize or do not materialize based on program inputs.

Section 2.2 gives the background information on Feedback Directed Optimization (FDO), describing

different steps of FDO and dependence profiling. Section 2.3 gives background information on

Combined Profiling and Section 2.4 describes different concepts related to TLS, with a discussion on

special hardware features that are necessary to support TLS. The section also describes the features

of BG/Q that enables TLS and the TLS-specific compiler information in the BG/Q. Lastly, Section

2.5 gives information about the different useful passes and tools in LLVM that are used in the

research.

2.1 Data-Dependence

A data-dependence occurs in a computer program when two program statements access the same

memory location and at least one of the accesses is a write. If there are two statements S1 and S2,

S2 depends on S1 when

-

[R(S1)
⋂
W (S2)]

⋃
[W (S1)

⋂
R(S2)]

⋃
[W (S1)

⋂
W (S2)] 6= φ

Where R(S) is the set of memory locations read by a statement S, and W (S) is the set of

memory locations written by statement S. Dependences exist when there is a feasible run-time

execution path from S1 to S2. This is called the Bernstein Condition, named after A. J. Bernstein [2].

Dependences are categorized in the following manner -

• Flow (data) dependence W (S1)
⋂
R(S2) 6= φ: S1 writes something read by S2

• Anti-dependence R(S1)
⋂
W (S2) 6= φ: S1 reads something before S2 overwrites it.

4

• Output dependence W (S1)
⋂
W (S2) 6= φ: Both S1 and S2 write to the same memory

location.

Dependence in Loops

Data-dependence in loops occur when the same memory location is accessed (write/read) by differ-

ent statements within the same iteration or by different instances of the same statement or different

statements between different iterations of the loop. Based on the different kinds of dependences that

might occur inside loops, the dependences in loops can be classified as the following two types:

• Loop Independent: Dependence between statements executed within the same loop iteration.

• Loop Carried: When the same address is accessed by statements executed in different itera-

tions of the loop.

Using static dependence-analysis techniques, the compiler determines, at compile-time, whether

there is any dependence among the statements of a loop. Generally the determination of depen-

dences in a loop is based on alias analysis. Two pointers in the program are called aliases when

they refer to the same variable. The alias analysis performed by the compiler can return three types

of aliasing relationships: must, may and no alias. Using the must and no aliasing information, the

compiler can determine statically whether a loop can be parallelized or not. But for may aliases,

the parallelizability of the loop is not statically provable. Figure 2.1 gives an example of a program

where the alias relationship changes based on the input to the program. The dependence relation-

ship of the second for loop inside main cannot be determined by the compiler and is reported as may

dependence.

Some dependence analysis techniques use algebraic representations to find out the dependence

behaviour of a loop [26, 41, 39]. These dependence analysis techniques operate on array subscripts.

But they require the array subscripts to be an affine function of the loop induction variables. If the

subscript is a nested array access (i.e., the subscript is an element of another array) or is determined

by a function call, compilers can not prove the dependence at compile time and they report may de-

pendence. Figure 2.2 demonstrates a program where the dependence relation of the statement inside

the second for loop of the main function is not provable at compile time because the subscript of the

array is a function call makes the loop either dependent or parallel based on user input.

Due to compile-time constraints and the lack of proper algebraic representation of loops, tradi-

tional program transformations can not adapt the schedule of statement instances of a program. If

the data-dependences in the loops are non-uniform [33] or if the profitability of a transformation is

unpredictable, compilers typically cannot apply loop transformations.

5

Figure 2.1: Sample code that shows a loop where the alias relationship cannot be determined at
compile time. The second for loop in main can be either parallel or not based on the user input
choice.

2.1.1 Polyhedral Compilation

The Polyhedral model offers a flexible and expressive representation for loop nests with statically

predictable control flow. Such loop nests in the program are called static control parts (SCoP) [15,

18]. Within a function body, a static control part (SCoP) is a maximal set of consecutive statements

without while loops, where loop bounds and conditionals may only depend on invariants within

this set of statements. These invariants include symbolic constants, formal function parameters and

surrounding loop counters: they are called the global parameters of the SCoP, as well as any invariant

appearing in some array subscript within the SCoP. The control and data flow information of SCoPs

are represented as the following three components:

• Iteration domains - Iteration domains are used to consider each dynamic instance of a state-

ment through a set of affine inequalities. Each dynamic instance of a statement S is denoted

by a pair (S, i) where i is the iteration vector and it contains values of the surrounding loop

indices of the statement. If the loop bounds are affine expressions of outer-loop indices and

global parameters, then the set of all iteration vectors i for a given statement S can be rep-

resented by a polytope Ds = {i|Ds × (i, g, 1)T ≥ 0}. It is called the iteration domain of

the statement S, where g is the vector containing all the global parameters of the loop whose

6

Figure 2.2: Sample code that shows a loop where the alias relationship can not be determined at
compile time. The second for loop in main can be either parallel or not based on the user input
choice. Here the array subscript is a function call and dependence analysis techniques report the
dependence as a may dependence.

dimensionality is dg .

• Memory access functions - These functions are used to represent the locations of data the

statements are accessing. In SCoPs, memory accesses are normally performed on array refer-

ences. For each statement S two different sets are defined - Rs and Ws of (M,f) pairs. Each

pair represents a reference to a variable M being written or read by a statement S. f is the

access function that maps iteration vectors in Ds to the memory locations in M .

• Scheduling function - The set of statement instances that are to be executed dynamically

are defined by their iteration domains. But the execution order of each statement instance

with respect to other statement instances are not described by this algebraic structure [16].

A scheduling function S is defined for each statement S that maps instances of S to totally

ordered multidimensional timestamps (vectors).

Polyhedral dependence analysis uses the above three components to find dependences and apply

correct transformations to the SCoPs. Polyhedral Dependence analysis is used to find may depen-

dences in Chapter 4.

If there are may dependences inside a loop as reported by one of these dependence analysis

techniques, the loop can not be parallelized. Data-dependence profiling, one example of Feedback-

7

Directed Optimization (FDO), is necessary to find out if the may dependences materialize during

runtime. The following section describes FDO and data-dependence profiling.

2.2 Feedback-Directed Optimization

Feedback-directed optimization (FDO) is a compiler optimization technique where the behaviour of

the program is observed for some training run. The information gathered in the profiling (training)

run is kept in a profile file. The profile file is read by the compiler in a subsequent analysis pass where

different optimizations can be performed based on the profile information. A typical feedback-

directed optimization is done in the following steps:

• Instrumentation

Compiler optimizations work on some Internal Representation (IR) of the source code. The

compiler front end converts the high-level constructs of the source code to a language in-

dependent IR. An instrumentation pass in FDO instruments the IR by adding calls to some

profiling library functions so that the behaviour of interest can be captured.

• Profiling

The instrumented bitcode is run with some training input and the output is stored in a profile

file.

• Optimization

After the profiling run, an optimization pass is executed that takes both the original interme-

diate representation (called ‘bitcode’ in terms of LLVM) and the profile file as inputs and

applies some code transformation based on the profiling data. As a result of this pass, an

optimized (may not be optimal) version of the bitcode is produced that in turn is translated to

an executable by the back end.

2.2.1 Dependence Profiling

Different behaviours of the program can be captured with the help of profiling. Some examples

are edge profiling that records the execution frequency of the edges in the Control Flow Graph

(CFG) of the program, path profiling that records the execution frequency of the different execution

paths in the Call graph of the program, execution profile that records the execution time, or other

resource consumption, of the program that contains the execution time, resource consumption etc.

by various routines in the program, value profile that records the frequency of occurrence of values

during the execution of the program, power profiling that records the power consumption by various

components of the program.

Dependence-profiling stores information about the different memory locations referenced by

program regions. A program region may be any single-entry/single-exit region, including a single

8

Figure 2.3: An example of a dependence profiler.

statement, an entire loop, or a whole procedure. For loops, the memory address accessed, the type

of access (read/write) and the iteration ID for a particular loop are recorded to find dependences.

The technique works by putting memory addresses accessed by loads and stores in loop iterations

in a table (typically a hash table for fast lookup). Whenever a new load or store is executed, the

table is searched to see whether the same address was accessed in a previous iteration. If the same

memory was accessed before, a new dependence is found. Figure 2.3 demonstrates dependence

profiling to find the RAW dependences in a loop. Calls to the profiling library functions are inserted

before every load and store instructions in the bitcode of the loop. For stores, the function logs a

tuple < iteration id,memory address > in memory. Whenever a load is executed, the function

checks in the log for a matching memory address to find a dependence.

2.2.2 Cost of profiling

Profiling comes with a cost. There are two types of overheads that may arise due to profiling:

1. Space Overhead

2. Time Overhead

For dependence profiling, the memory overhead is huge if the memory accesses for the may de-

pendent statements across the whole iteration space of the loop is stored. Therefore, to reduce this

overhead, the dependence analysis techniques normally work on loop samples (some considerable

portion of the iteration space) to get an approximation of the dependence behaviour. Moreover, some

compression techniques can also be applied to reduce the storage required for profiling.

The timing overhead is optimized by either a fast lookup algorithm (e.g. hash table) and/or by

creating smaller search space (with the use of access sets [25]). For Just-in-time (JIT) compilers

that use run-time profiling, time overhead is a major issue. While in the case of off-line profiling

(profiling done in a separate profiling run), the time is not a major issue. But still the profiling time

should be reasonable.

9

2.3 Combined-Profiling

A program’s behaviour may change based on the inputs to the program. For example, in the pro-

grams of Figures 2.1 and 2.2, for an input of ‘0’, the second for loop inside main cannot be executed

in parallel while for an input of ‘1’, the loop can be parallelized.

FDO has not achieved widespread use by compiler users because the selection of a data input to

use for profiling that is representative of the execution of the program throughout its lifetime is diffi-

cult. For large and complex programs dealing with many use cases and used by a multitude of users,

assembling an appropriately representative workload may be a difficult task. Picking one training

run to represent such a space is far more challenging, or potentially impossible, in the presence of

mutually-exclusive use cases. Moreover, user workloads are prone to change over time. Perfor-

mance gains today may not be worth the risk of potentially significant performance degradation in

the future.

Berube et al. [4] proposed a method called CP that eases the burden of training-workload selec-

tion while also mitigating the potential for performance degradation. Using their methodology, there

is no need to select a single input for training because data from any number of training runs can be

merged into a combined-profile. More importantly, CP captures variations in execution behaviour

between inputs. The distribution of behaviours can be queried and analyzed by the compiler when

making code transformation decisions.

The profile of a program records information about a set of program behaviours. A program

behaviour B is a (potentially) dynamic feature of the execution of a program. The observation of

a behaviour B at a location l of a representation of the program is denoted Bl A behaviour B is

quantified by some metric M(B) as a tuple of numeric values. A monitor R(B, l,M) is injected

into a program at every location l where the behaviour B is to be measured using metric M . At the

completion of a training run, each monitor records the tuple < l,M(Bl) > in a raw profile. In case

of dependence profiling, the behaviour to be observed is whether the loop is independent or not. A

monitor is inserted inside every loop of the program and the metric is the number of independent/

dependent executions.

CP stores the profile information with the help of histograms. Histograms are built in an incre-

mental fashion in CP, thus removing the cost of storing multiple profile files that might increase the

storage cost. In general, updating produces a new histogram in 2 steps:

1. Determine the range of the combined data. Create a new histogram with this range.

2. Proportionally weight the bins of the new histogram.

The combination of two histograms H1 and H2 into a new histogram H3 is illustrated in Fig-

ure 2.4. The range of H3 is simply the minimum encompassing range of the ranges of H1 and H2 :

[min(100, 85),max(150, 125)] = [85, 150].

This range is divided into the same number of bins as were present in the original histograms.

10

Figure 2.4: Combining histograms. H1 has a bin width of 10 and a total weight of 12; H2 has a bin
width of 8 and a total weight of 15. The combined histogram H3 has a bin width of 13 and a total
weight of 27 (figure taken from Paul Berube’s PhD thesis [3]).

The weight of a bin bi of H3 is given by the weights of the bins of H1 and H2 that overlap the

range of bi multiplied by the overlapping proportion. For example, let b3 be the third bin of H3

in Figure 2.4. In H1 the bin width is 10, and in H2 the bin width is 8. The weight of b3 in H3 is

calculated as follows-

Wb3(H1) = (((120− 111)÷ 10)× 3) + (((124− 120)÷ 10)× 2) = 3.5

Wb3(H2) = (((117− 111)÷ 8)× 1) + (((124− 17)÷ 8)× 2) = 2.5

Wb3(H3) = (3.5 + 2.5) = 6.0

The next section describes the different concepts related to TLS.

2.4 Thread Level Speculation

2.4.1 Overview

1. Predecessor and Successor Threads

Under the thread-level speculation (also called speculative parallelization) approach, sequen-

tial sections of code are speculatively executed in parallel hoping not to violate any sequential

semantics. The control flow of the sequential code imposes a total order on the threads. At

any time during execution, the earliest thread in the program order is non-speculative while

the later ones can be speculative. The terms predecessor and successor are used to relate

threads in this total order. In most schemes a violation rolls the execution back to the start of

the thread, but some proposals in the literature use periodic checkpointing of threads such that

upon a squash it is only necessary to roll the execution back to the closest safe checkpointed

state. When the execution of a nonspeculative thread completes it commits and the values it

11

generated can be moved to safe storage (usually main memory or some shared higher-level

cache). At this point its immediate successor acquires non-speculative status and is allowed

to commit. When a speculative thread completes it must wait for all predecessors to commit

before it can commit.

2. Inter Thread Data-Dependence

Data-dependences are typically captured by monitoring the data written and the data read by

individual threads. A data-dependence violation occurs when a thread writes to a location that

has already been read by a successor thread. Dependence violations lead to the abortion of

the thread that involves discarding the side effects produced by the thread being squashed.

3. Buffering of States

Stores performed by a speculative thread generate a speculative state that cannot be merged

with the safe state of the program because this may lead to incorrect results. Such a state

is stored separately, typically in the cache of the processor. They are not written back to

memory. In case of a violation is detected, the state is discarded from the cache. Also if a

speculative thread overflows its speculative buffer the thread must stall and wait to become

non-speculative. When the thread becomes non-speculative, the state is allowed to propagate

(commit) to memory. When a non-speculative thread finishes execution, it commits. Com-

mitting informs the rest of the system that the state generated by the task is now part of the

safe program state.

4. Data Versioning

A thread has at most a single version of any given variable. However, different speculative

threads running concurrently in the machine may write to the same variable and, as a result,

produce different versions of the variable. Such versions must be buffered separately. More-

over, readers must be provided the correct versions. Finally, as threads commit in order, data

versions need to be merged with the safe memory state also to ensure correctness.

5. Multi-Versioned Caches

A cache that can hold state from multiple tasks is called multi-versioned [9, 47, 43].

There are two performance reasons why multi-versioned caches are desirable: they avoid

processor stalls when there is imbalance between tasks.

Speculative threads are usually extracted from either loop iterations or function continuations, with-

out taking into consideration possible data-dependence violations. The compiler marks these struc-

tures with a fork-like spawn instruction, so that the execution of such an instruction leads to a

new speculative thread. The parent thread continues execution as normal, while the child thread is

mapped to an available core. For loops, spawn points are placed at the beginning of the loop body, so

that each iteration of the loop spawns the next iteration as a speculative thread. Threads formed from

12

iterations of the same loop (and that, thus, have the same spawn point) are called sibling threads.

For function calls, spawn points are placed just before the function call such that the non-speculative

thread proceeds to the body of the function, and a speculative thread is created from the functions

continuation [53].

Two different overheads should be considered when running loops speculatively in parallel. The

first overhead comes from buffering the state of the program before the start of speculative execu-

tion so that the program can be rolled back to a previous consistent thread. If the computation done

inside a thread is not large enough to overcome this cost, there is no benefit from speculation.

The overhead comes from the cost of mispeculation. If there is actual dependence occurring

between threads, the younger thread is squashed. After a number of retries, the loop becomes se-

quential. Thus if the probability is high that the loop is dependent, the loop should not be executed

in parallel.

2.4.2 TLS in IBM BG/Q

BG/Q is the latest IBM supercomputer in the BlueGene series (after BG/L and BG/P) that has hard-

ware support for TLS and Transactional Memory (TM). The initial objective of BG/Q was to include

TLS support but later TM support was also added to it. BG/Q requires hardware support for TLS,

working in collaboration with a speculative run-time. The point of coherence for TLS in BG/Q is

the L2 cache. Each different version of a memory address can be stored in a different way of the L2

cache. When a write occurs for a speculative thread, the L2 allocates a new way in the correspond-

ing set for the write. A value stored by a speculative write is private to the thread and is not made

visible to other threads. The value is made visible to other threads when a thread commits and is

discarded upon a thread squashing. In addition, the L2 directory records, for each memory access,

whether it is read or written, and whether it is speculative. For speculative accesses, the hardware

also tracks the thread that has read or written the line by recording the speculation ID used by the

thread to activate speculation. This enables the hardware to detect conflicts among threads and also

between speculative and non-speculative thread.

The buffering of speculative states in the L2 requires co-operation from components of the mem-

ory subsystem that are closer to the pipeline than the L2, namely, the L1 cache. BG/Q can support

two speculative execution modes for proper interaction between the L1, the L1 prefetcher (L1P)

and the L2, each with a different performance consideration. The main difference between the two

modes is in how the L1 cache keeps a speculative threads writes invisible to the other three hardware

threads sharing the same L1.

• Short-running (SR) mode (via L1-bypass): In this mode, when a TLS thread stores a spec-

ulative value, the core evicts the line from the L1. Subsequent loads from the same thread

have to retrieve the value from that point on from L2. If the L2 stores multiple values for the

same address, the L2 returns the thread-specific data along with a flag that instructs the core

13

to place the data into the register of the requesting thread, but to not store the line in the L1

cache. In addition, for any speculative load served from the L1, the L2 is notified of the load

via an L1 notification. The notification from L1 to L2 goes out through the store queue.

• Long-running (LR) mode (via TLB aliasing): In this mode, speculative states can be kept

in the L1 cache. The L1 cache can store up to 5 versions, 4 speculative ones for each of the

4 SMT threads, and one non-speculative. To achieve this, the software creates an illusion of

versioned address space via Translation Lookaside Buffer (TLB) aliasing. For each memory

reference by a speculative thread, some bits of the physical address in the TLB are used to

create an aliased physical address by the Memory Management Unit (MMU). Therefore, the

same virtual address may be translated to 4 different physical addresses for each of the 4 TLS

threads at the L1 level. However, as the load or store exits the core, the bits in the physical

address that are used to create the alias illusion are masked out because the L2 maintains the

multi-version through the bookkeeping of speculation ID. In this mode the L1 cache is invali-

dated upon entering the speculative thread because there is no L1 notification to the L2 on an

L1 hit. The invalidation of the L1 cache makes all first TLS accesses to a memory location

visible to the L2 as an L1 load miss.

These two modes are designed to exploit different locality patterns. By default, an application

runs under the long running (LR) mode [49]. The support for SR mode is given for Transac-

tional memory in BG/Q, but not for TLS yet. The main drawback of the short-running mode

is that it nullifies the benefit of the L1 cache for read-after-write access patterns within a spec-

ulative thread. But it is well suited for short-running speculative threads with few memory

accesses.

The long-running mode, on the other hand, preserves temporal and spatial locality within a

speculative thread, but, by invalidating L1 at the start of a thread, prevents reuse between code

that run before entering the thread and code that run within the thread or after the thread ends.

Thus, this mode is best suited for long-running threads with plenty of intra-thread locality.

The IBM xlc compiler has been modified to give speculation support in BG/Q and it is called bgxlc r.

The r extension at the end generates thread safe code. The following pragma is used to speculatively

execute a loop in parallel:

#pragma speculative for

By default, if this pragma is used, iterations of the loop are divided into chunks of size

ceiling(number of iterations/number of threads). Each thread is assigned a separate chunk.

14

2.5 LLVM

The profiling part of the speculative parallelizing framework, SpecEval, has been implemented in

the LLVM compiler infrastructure [27]. The modular structure of LLVM makes it very easy to

work with. This section describes the different tools and passes that are useful for loop dependence

analysis.

1. The opt tool

The opt tool of llvm is useful to run different optimization-related passes. There can be anal-

ysis passes that performs analysis on IR constructs such as: loops, CFG and Call Graphs but

that do not modify the IR. The transformation passes perform the transformations for opti-

mization.

2. Useful Passes

Following are some passes that are used in implementation of the SpecEval framework [27].

• The -scev (ScalarEvolution) is an analysis pass that can be used to analyze and catego-

rize scalar expressions in loops. This pass specializes in recognizing general induction

variables, representing them with the abstract and opaque SCEV class. Given this anal-

ysis, trip counts of loops and other important properties can be obtained.

• The -mem2reg (Promote Memory to Register) is a transformation pass that converts

non-SSA (static single assignment) form of LLVM IR into SSA form, raising loads and

stores to stack-allocated values to ‘registers’ (SSA values). Many of LLVM optimization

passes operate on the code in SSA form.

• The -loops (Natural Loop Information) is an analysis pass that is used to identify natural

loops and determine the loop depth of various nodes of the CFG.

• The -loop-simplify is a transformation pass that performs several transformations on

natural loops to change them into a simpler form that makes subsequent analyses and

transformations simpler and more effective. Loop pre-header insertion guarantees that

there is a single, non-critical entry edge from outside of the loop to the loop header.

Loop exit-block insertion guarantees that all exit blocks from the loop (blocks that are

outside of the loop and that have predecessors inside of the loop) only have predecessors

from inside of the loop (and are thus dominated by the loop header).

• The -memdep pass is an analysis pass that performs memory-dependence analysis. This

15

pass is based on the alias-analysis pass. The following types of alias analysis are avail-

able in LLVM.

• The -basicaa pass is an aggressive local analysis that knows many important facts such

as:

– Distinct globals, stack allocations, and heap allocations can never alias.

– Globals, stack allocations, and heap allocations never alias the null pointer.

– Different fields of a structure do not alias.

– Indexes into arrays with statically differing subscripts cannot alias.

– Many common standard C library functions never access memory or only read

memory.

– Function calls can not modify or reference stack allocations if those allocations

never escape from the function that allocates them (a common case for automatic

arrays).

• The -globalsmodref-aa pass implements a simple context-sensitive mod/ref and alias

analysis for internal global variables that do not have their address taken. If a global does

not have its address taken, the pass knows that no pointers alias the global. This pass

also keeps track of functions that it knows never access memory or never read memory.

The real power of this pass is that it provides context-sensitive mod/ref information for

call instructions. This information allows the optimizer to know that calls to a function

do not clobber or read the value of the global, allowing loads and stores to be eliminated.

• The -steens-aa pass implements a variation on the well-known ‘Steensgaards algorithm’

for interprocedural alias analysis [42]. The Steensgaards algorithm is a unification-

based, flow-insensitive, context-insensitive, and field-insensitive alias analysis that is

also very scalable (effectively linear time).

• The -scev-aa pass implements AliasAnalysis queries by translating them into ScalarEvo-

lution queries. This translation gives this pass a more complete understanding of pointer

instructions and loop induction variables than other alias analyses have.

The dependence analysis reports may, must and no dependence information. Instrumentation

is performed for the may dependent instructions reported by the dependence analysis. The

next chapter describes the details of a combined-profiling framework, implemented in LLVM,

which is used to find dependence behaviour variation of loops based on inputs in different

applications.

16

Chapter 3

Combined Data-Dependence
Profiling

3.1 Introduction

Though previous work mentions that there is little variability in a loop’s dependence behaviour based

on inputs [45, 14, 25], there has not been an extensive study to find out if the claim is true. Also

there have not been any proposals on how to combine data-dependence profiles obtained from mul-

tiple profiling runs of programs that will have loops with varied dependence behaviour. This chapter

describes how to use CP [4] in the case of data-dependence profiling. Combined data-dependence

profiles are built incrementally thus removing the necessity to store multiple profiles. The combined-

profile file stores as much dependence information as is necessary to perform a cost analysis to find

speculation candidates. This chapter describes a new combined data-dependence profiling frame-

work implemented in the LLVM compiler infrastructure. Results show that for the 57 benchmarks

that were widely used before in TLS literature, a loop’s dependence behaviour does not change for

different inputs.

A discussion on the effect of varied percentages of dependence on TLS performance of an applica-

tion (incremental algorithm to build a convex 2D hull) is also included. As more applications of this

kind are discovered, the proposed combined data-dependence profiling methodology will become

useful.

3.2 The Combined Data-dependence Profiling Framework

The combined data-dependence profiling framework is implemented in the LLVM compiler. Within

the framework, first a transformation pass, profile-dependence, is run on the source-code to instru-

ment the bitcode (IR) for profiling. Another analysis pass, printDbgInfo is run to store the loop

IDs and their corresponding file names and line numbers in a log file. Both of these passes need

the bitcode to be produced with the debug information (-g option of clang). The profile-dependence

pass uses three built-in LLVM passes: mem2reg, loops and loop-simplify (these passes have been

17

described in detail in Section 2.5 of Chapter 2). The instrumented bitcode is run with different in-

puts to produce a combined-profile file. This profile file can be consulted to find the dependence

behaviour of speculation-candidate loops.

The following sections give more details about the different components of the framework.

3.3 The Instrumentation Pass

The instrumentation pass (called profile-dependence) performs IR instrumentation by adding calls

to library-functions used for profiling. This section describes the implementation details of the pass.

3.3.1 Choosing Loops for TLS

The pass is written as a ModulePass in LLVM. For a given bitcode, the pass iterates through all the

modules. For a given module, the pass iterates over the functions of the module and for a given

function, the pass iterates over the basic blocks in the function.

In LLVM, the first basic block of a for loop is named as for.condX where X is any integer

(depends on the number of loops in the program). Thus, while iterating through the basic blocks

of the function, if the pass finds a basic block with for.cond in it’s name, a variable loop count is

incremented.

The loop count variable is used as a loop-identifier. The variable is of type unsigned integer and

is also used to insert a unique global variable - iteration count per loop that is used in identifying

the current iteration ID of the loop (because they will be needed later to calculate the dependence

distance). Iteration count is cleared at the exit block of the loop so that the counter can be reused

for another execution of the same loop.

For being a speculation candidate, the loop has to have the following properties -

• Branching in or out of structured block and parallel/work-sharing loop is not allowed. There-

fore, if the loop has multiple exit blocks, the loop is not a speculation candidate. Multiple exit

blocks exist when there are one or more jumps (e.g. goto-s) in the loop body.

• The loop should be countable. An example of non-countable loop is given in Figure 3.2.

Figure 3.1: Example of a non-countable loop from SPEC2006 hmmer benchmark.

• If the loop has non-intrinsic function calls (functions that can’t be analyzed and replaced by

an intrinsic function known to the compiler) inside it’s body, then the loop is not safe to paral-

lelize. But this constraint does not block a loop from executing speculatively in parallel. The

18

compiler can either relax the constraint or conservatively not parallelize loops with function

calls (see Section 5.4.3 of Chapter 5).

Different built-in functions of LLVM are used to check the special characteristics of the loop.

• Early exit condition of the Loop

LLVM has a function, getUniqueExitBlock, that returns either the unique exit block of a loop

or returns null if the loop has multiple exit blocks.

• Countable Loops

The getSmallConstantTripCount() function from the ScalarEvolution pass is used to identify

countable loops. The function returns 0 if the trip count is unknown or not constant.

• Function Calls

For checking if the loop body has function calls, the Call instructions inside the loop body are

identified. If the call is to a C-library function, the body of the function will not be included in

the bit code. If the call instruction is not a C-library call, the body will be there in the bitcode.

The empty() function of LLVM’s Function class is used to make this distinction. If empty()

returns true, the call is to a C-library function, otherwise not.

After filtering out calls to C-library functions, a check is necessary to find out whether the

function may access memory. If the function may access memory, the loop is not parallelized

because the side effects of the function call may alter the dependence behaviour of the loop

(see Section 5.4.2 of Chapter 5) and an inter-procedural dependence analysis is necessary in

that case.

3.3.2 The Algorithm Used for Instrumentation

The instrumentation pass is implemented as a ModulePass in LLVM. Algorithm 1 is used for the

instrumentation. Basically the algorithm iterates over all the modules in the program and next over

all the functions in the module and over all the basic blocks in the function.

When the first basic block of the function is found, a void pointer is allocated in the bitcode

that is used to store the different memory accesses by the load and store instructions that may be

dependent. This pointer is also used as an argument to the profiling functions [Lines 4-6].

If the basic block’s name contains ‘for.cond’, the pass detects a loop. The assumption is that no

previous optimization(s) have been applied to the bitcode and that all the loops’ basic blocks appear

in the same order in which the loops are found in the source code. If a basic block with ‘for.cond’

in its name is found, the loopCount variable is incremented and two new global variables are also

created in the IR [Lines 8-13].

• loop id is an unique loop ID for the for loop.

19

• iteration id is required to identify the iteration number of the memory access. This variable

is incremented at the entry point of the loop body every time during the loop execution. Also

iteration id is cleared at the exit from the loop so that the variable can be reused for the next

execution of the for loop.

Therefore, two global variables per loop are used. Only loops that have the properties mentioned

above are instrumented. The function candidateLoop() checks for these properties. The function

takes the help of LoopInfo and ScalarEvolution passes of LLVM.

After creation of the global variables, the exit block of the loop is identified using the getUnique-

ExitBlock() function. This function always returns a unique basic block because a check is run to

verify that the loop has a single exit block. Next, two instructions are inserted in the basic block.

The first instruction clears the iteration id so that the variable can be reused in the next execution.

A call instruction to the analyseAndWrite() function is inserted. This function analyses the stored

accesses to find the dependence pattern and to gather the profile information [Lines 14-17].

Next the loads and stores are identified and calls to the helper functions for profiling are inserted

accordingly. There can be two types of basic blocks where the loads and stores can reside. Either

for.body that comes just after the loop-conditional checking and for.end that is the last basic block of

the loop.1 The loads and stores in these basic blocks are checked to see whether they are reported as

may dependent by the static analysis. If they are, their memory accesses are stored in the void pointer

created before and call instructions to the profiling functions are inserted. This function takes the

memory address accessed, loop ID, iteration ID, and the type of access (load/store) as parameters.

More on this function is described later [Lines 19 -29].

If the basic block is the loop body (for.body), instructions to increment the iteration id for the

specific loop are also inserted [Lines 30-33].

The collected profile is written to the profile file only once - during the exit from the program.

There are two ways for a program to exit -

• Return from main

• Calling the exit() function from any functions.

Therefore, the instructions are checked in the basic block to see whether there is a return in-

struction from main or whether there are call instructions to the exit() function. If such instructions

are found, then the function that accesses the profile file and writes the collected profile information

from memory to file is called [Lines 35 - 49].

1The second condition happens when there is loop nesting and there are instructions in the outer loop after the execution
of the inner loop.

20

Algorithm 1 The new instrumentation algorithm used for profiling.
1: for all mod in Modules do
2: for all func in mod do
3: for all basic block in func do
4: if basic block.isF irstBasicBlockOfFunction() then
5: allocateV oidPointer()
6: end if
7: if basic block.getName().contains(for.cond) then
8: loopCount++
9: loop = getLoopFor(basic block)

10: if loop then
11: if candidateLoop(loop) then
12: createGlobal(loop id)
13: createGlobal(iteration id)
14: endBB = getUniqueExitBlock(loop)
15: createInstruction(makeIterationCountZero)
16: createInstruction(callAnalyseAndWrite)
17: insertInstructions()
18:
19: if basic block.isLoopBody()||basic block.isLoopEnd() then
20: for all instruction in basic block do
21: if isMayLoad()||isMayStore() then
22: createInstruction(getAddress(voidp))
23: createInstruction(getLoopID())
24: createInstruction(getIterationID())
25: createInstruction(call common())
26: insertInstructions()
27: end if
28: end for
29: end if
30: if basic block.isLoopBody() then
31: createInstruction(incrementIterationCount)
32: insertInstructions()
33: end if
34: end if
35: if func == main then
36: for all inst in basic block do
37: if inst.isReturn()||inst.isCallToExit() then
38: createInstruction(callWriteToF ile())
39: insertInstructions()
40: end if
41: end for
42: else
43: for all inst in basic block do
44: if inst.isCallToExit() then
45: createInstruction(callWriteToF ile())
46: insertInstructions()
47: end if
48: end for
49: end if
50: end if
51: end if
52: end for
53: end for
54: end for

21

3.4 The Profiling Library

In this section, the functions and the data structures used in the newly written profiling library are

described. LLVM passes inserts calls to functions in this library to prepare the IR for profiling.

3.4.1 Helper Functions for Profiling

For each load-store instruction pair that is reported as may-dependent by the static dependence anal-

ysis, a function call is inserted that behaves differently for loads and stores. The following functions

are the most important functions in the library.

void common(void * x,int count,int loop, char type) is the main function that is used for dependence

detection. The working algorithm for this function is given in Algorithm 2.

The dependence behaviour is estimated from a portion of the loop’s iteration space, the loop sam-

ple. The number of iterations to be considered for estimation is tunable by the macro MAX ITERATIONS.

When this function is called for the first time, it performs a one-time initialization of the data struc-

tures, that remains fixed for the whole profiling run. These data structures are stored in static memory

because the use of dynamic memory for this data results in significant memory fragmentation.

Until the number of iterations as defined in the loop sample size is reached, whenever a store

in encountered, it is added to a set, by the function add store. Whenever a load is encountered,

it is checked against the already gathered store instructions because we only care about loads that

depend on previous stores (RAW dependences). Checking of write-after-read (WAR) and write-

after-write(WAW) dependences is not necessary because in BG/Q TLS, threads always commit in

order. If the access addresses are the same, a dependence pair is found. A dependence pair is defined

as a tuple (i1, i2) for a given loop where i1 is the iteration ID of the store and i2 is the iteration ID of

the load. Note, i1 is always less than i2. All the dependence calculated for an execution of a given

loop are temporarily stored to find the dependence patterns.

When the loop enters an iteration that just exceeds the loop sample size; the collection of depen-

dence pairs is analyzed to find the dependence behaviour for that execution of the loop. There can

be three types of dependences for a given loop.

• No Dependence If no dependence pairs are found for all the executions of the loop, the loop

can safely be executed in parallel.

• Irregular Dependence If the dependence does not follow any pattern (the dependence pairs

have varied dependence distances), the loop is difficult to parallelize.

• Strided Dependence If the loop has a dependence with a stride value of ‘n’ (dependence is

repeated for each ‘n’ iterations), every ‘n’ iterations of the loop can be executed in parallel,

given the loop is doing significant work in those ‘n’ iterations to overcome the overhead from

TLS.

22

The function check stride() checks if there was a strided dependence pattern. The function uses

the state machine described in Figure 3.3 to find strided dependence. First the function calculates

a dependence distance (distance between the iteration id of the write and that of read) for a given

dependence pair.

Next the function checks for dependence pairs with the same dependence distance in the higher

iteration numbers. For example, if a dependence pair < 1, 3 > is found (data written in iteration

1 is read by iteration 3), the function checks for dependence pairs < 2, 4 >, < 3, 5 > etc. It

is worth mentioning that if there are strided dependences with parallel executions in the middle

(strided dependence with uniform breaks), still the function reports an irregular dependence because

forming chunks for speculative execution of that loop is non-trivial. Every time a dependence pair is

encountered, a counter is incremented. If the counter value reaches a certain threshold (the threshold

ID set as 5), a strided dependence is reported and the dependence information is kept in memory until

the program exists (when it is written to disk). Whenever a matching dependence pair is not found,

the dependence becomes irregular. Also, to reduce the search space, already visited dependence

pairs are not searched again.

After analyzing and storing the dependence pattern in the memory, all the data structures used

Ini$al	

No	 Stride	 Strong	 Stride	

Weak	 Stride	

Figure 3.2: The state machine used for detecting strided dependence.

23

in that particular execution of the loop are cleared so that they can be reused in the next run. This is

achieved by just clearing some counters, but not resetting the whole data structures. Also the flag,

indicating that the dependence analysis is done, is set in the setAnalyzedFlag() function. The flag is

checked in the analyse and write() function to find out whether the dependence analysis of the loop

is already performed. For loops smaller that MAX ITERATIONS, this flag enables the dependence

analysis in the analyse and write() function.

int analyse and write(int loop) is used for the loops whose iteration count is smaller than

MAX ITERATIONS. This function is inserted at the exit block of the loop. If the flag indicating

the dependence analysis is not set, then the function calculates the dependence behaviour of the

loop. Otherwise, the function just resets the analyzed flag so that the function common() can work

in the next loop execution. This function is useful for calculating dependence information for loops

smaller than MAX ITERATIONS.

All the dependence information is kept in data structures temporarily until they are written to

a file before the program terminates. If there is already a profile file, the write to file() function

updates the file using the information from the current run. Otherwise, the function creates a new

profile file llvmprof.out. A call to this function is only inserted before the return instruction from

main and before the call instruction to the exit function.

Algorithm 2 The new algorithm for the common() function, the common() function finds depen-
dence pairs and also characterizes the dependence as one of: strided, irregular or no-dependence.

1: if iteration id <=MAX ITERATIONS then
2: if data structures uninitialized then
3: initializeDS()
4: setInitializedF lag()
5: end if
6: if load instruction then
7: check dependence()
8: else
9: add store()

10: end if
11: else
12: if iteration id <=MAX ITERATIONS + 1 then
13: if dep pair count == 0 then
14: loop parallel
15: else
16: check stride()
17: if stride found then
18: strided dependence
19: else
20: irregular dependence
21: end if
22: end if
23: set analyzed flag()
24: reset DS()
25: end if
26: end if

24

3.4.2 Data Structures Used by Helper Functions of Profiling

The various data structures that are used by the functions in the profiling library are static arrays of

structures. Linked list is not a good choice here for the following reasons:

• Memory fragmentation is created due to the use of malloc().

• Linked lists need an extra storage for storing the pointers to next and previous elements.

The different structures used by the profiling library functions are as follows:

• Memory Accesses

Only stores are needed to be gathered because the loads are checked on fly. A void pointer is

used to store memory addresses of any type. A static array of the structure is used to gather

information about stores. The MAX LOOPS parameter is tunable and it gives the upper

bound of the number of loops in a program. The value is set to 5000. MAX ACCESSES

gives the upper bound of the number of stores that can occur for an execution of the loop

sample. The value is set to 2000.

• Dependence Pair

The DependencePair structure has three members. write and read are used to store the

iteration id of the store and load, respectively. checked is a flag that is used during the stride

calculation to avoid redundant computation. A similar array of structures is used to store

the dependence pairs. The maximum number of dependence pairs stored is chosen as 2000

following the results from experimentation.

• Profile Information

In this structure, loop id stores the unique ID of the loop. parallel and irregular variables

are used to store the number of parallel executions and the number of executions with irregular

dependence. The bins of the histogram are used to store the stride values for dependence. A

static array of structures is used to store the profile information in the memory.

• Miscellaneous Data Structures

Apart from the main data structure mentioned above, the following arrays are also used -

1. To keep flags of already analyzed loops.

2. To keep track of the number of memory access count and dependence pair count. These

counters reduce the costly traversal of the arrays of data structures to prepare them for

the next execution of the loop.

3. To store the discovered stride value, if applicable.

The total size of the data structures remains fixed because they are initialized once and reused

throughout the execution of the program. For 5000 loops, 2000 accesses and 2000 dependence pairs,

the memory overhead comes to 200 MB.

25

3.5 The Profile file

The profile file produced by the framework stores the dependence information for a number of ex-

ecutions for each loop. The combined-profile file tries to capture as much dependence information

as is necessary to perform a cost analysis to find speculation candidates.

As there can be three types of dependence behaviour as discussed before, for each loop, the

combined-profile file stores the unique loop ID and the number of independent (parallel) and irreg-

ularly dependent executions. The file also stores the different stride values in a histogram with five

bins. Table 3.1 shows a sample profile-file. Normally it’s a sparse matrix because dependence be-

haviour does not vary much with the inputs. A consolidated representation is also possible to make

the file smaller. But for the applications considered, the file size never exceeds 20KB.

Table 3.1: A sample combined-profile file. Detailed information about the dependence behaviour of
a loop is kept to perform a cost analysis.

loop id parallel executions irregular executions first bin second bin third bin fourth bin fifth bin
120 250 0 0 0 0 0 0
121 2 2 0 0 0 0 0
240 12 5 0 2340 0 0 0
309 340 12 0 0 21 0 0
569 2 2 0 1 0 0 0

3.6 Variability of a loop’s dependence behaviour based on in-
puts

Using the combined dependence-profiling framework described above, 57 different benchmarks

from the SPEC2006 [1], PolyBench/C [38], BioBenchmark [35] and NAS benchmark [34] suite

are studied with different inputs (Table 3.2). Results show that there was not a single loop that has

the specific properties for being a TLS candidate as described in Section 3.3.1 and whose depen-

dence behaviour varies with different inputs. This finding allows the use of a simple heuristic for

selection of speculation candidates based on profiling. If the loop is dependent, the loop is not spec-

ulated. If the loop is found to be independent, it is speculatively parallelized. This invariability in the

dependence behaviour also allows to use a single input for profiling and finding out TLS candidate

loops in most applications.

Table 3.2: The benchmarks observed to find loops with varied dependence behaviour.

Benchmark Suite Benchmark Name

SPEC2006

lbm
h264ref
hmmer

mcf
sjeng

sphinx3
bzip2

Continued on next page

26

Table 3.2 – continued from previous page
Benchmark Suite Benchmark Name

gobmk
milc
namd

PolyBench/C

2mm
3mm
gemm

gramschmidt
jacobi

lu
seidel

cholesky
dynprog
fdtd 2d

Biobench

mummer
protdist
protpar
dnapars

dnamove
dnapenny
dnacomp
dnainvar
dynprog
dnaml
dnaml2
dnamlk

dnamlk2
dnadist
dollop

dolmove
dolpenny

restml
restml2
seqboot

fitch
kitsch

neighbor
gendist

tigr
clustalw
hmmer

NAS

BT
CG
DC
EP
FT
IS
LU
MG
SP
UA

3.7 An Application with a Loop with Varied Dependence Be-
haviour for Different Inputs

Though the loop’s dependence behaviour does not change with respect to inputs for most applica-

tions, a description of an application (2D-Hull) that has loops with varied dependence behaviour

across different executions is included in this section. The existence of any other application that

has the loops with similar behaviour, is not known yet.

27

Table 3.3: Effects of different input sets when computing the Convex Hull.
Input Percentage of Dependence Violations

Kuzmin 0.001
Square 0.005
Disc 0.035

Circle 10.400

2D-Hull: The randomized incremental algorithm that builds the Convex Hull of a two-dimensional

set of points is used as an application. This algorithm, called 2D-Hull (due to Clarkson et al. [10]),

computes the convex hull (smallest enclosing polygon) of a set of points in the plane. The input

to Clarkson’s algorithm is a set of (x, y) point coordinates. The algorithm starts with the triangle

composed by the first three points and adds points in an incremental way. If the point lies inside the

current solution, it is discarded. Otherwise, the new convex hull is computed. Any change to the

solution found so far generates a dependence violation, because other successor threads may have

used the old enclosing polygon to process the points assigned to them.

The probability of a dependence violation in the 2D-Hull algorithm depends on the shape of the

input set. For example, if N points are distributed uniformly on a disk, the i-th iteration will have a

dependence with probability in φ(
√
i/i). If the points lie uniformly on a square, the probability of a

dependence will be in φ(log(i)/i).

Four Different input sets are considered for the performance study of this application. Each of

the input contains 10-million points.

• Kuzmin: Kuzmin is an input set that follows a Gauss-Kuzmin distribution, where the density

of points is higher around the center of the distribution space. This input set leads to very few

dependence violations because points far from the center are very scarce.

• Square: It is an uniform distribution of points inside a square.

• Disc: This input is an uniform distributions of points inside a disc. The Square input set

leads to an enclosing polygon with fewer edges than the Disc input set, thus generating fewer

dependence violations.

• Circle: The circle input set distributes all the points around a circle, leading to a huge number

of dependence violations.

3.7.1 Experimental Results

This section describes the effect of different inputs on the dependence behaviour of the loop of the

Convex hull application and the effect of speculative execution of the loop on the execution time.

Table 3.3 gives the percentage of loop iterations that have a dependence on previous iterations for

28

Convex Hull. The percentage is highest for circle and lowest for kuzmin. This dependence viola-

tion percentage also affects the execution time of the application. Figure 3.3 shows the percentage

change in speedup for applying TLS along with the auto-SIMDizer and auto-OpenMP parallelizer

of the bgxlc r compiler.

Irrespective of the different probabilities of dependences for different inputs, the loop in the Con-

vex hull application is executed speculatively in parallel to find out how the different percentages of

dependence violation impacts the performance of the application. The loop is not parallelized by the

existing parallelization techniques of the bgxlc r compiler (IBM’s xlc compiler modified for BG/Q).

The high percentage of dependence violations for the circle input set makes the loop non-

beneficial for speculative execution. While for the kuzmin input, executing the loop speculatively

improves performance 21% fold over the auto-SIMDized code. None of the loops are automatically

parallelized by the SIMD or OpenMP parallelizer because the compiler can not prove the absence

of dependence at compile time.
Auto%OpenMP+TLS

Kuzmin 21
Square 16
Disc 12
Circle %8

l120 Loop%ID
1B2400 Parallel
3B22
l121 Loop%ID
1B230
l234 Loop%ID
4B34
l555 Loop%ID
2B2300
. .
. .
. .

%10B

%5B

0B

5B

10B

15B

20B

25B

KuzminB SquareB DiscB CircleB

Pe
rc
en

ta
ge
)c
ha

ng
e)
in
)S
pe

ed
up

)

Input)shape)

Auto%OpenMP+TLSB

Figure 3.3: Percentage change in speedup for applying TLS as compared to the auto-SIMDized code
for the Convex hull application.

3.8 Conclusion

In conclusion, this chapter shows the implementation of a combined data-dependence profiling

framework that is used to find out variability in a loop’s dependence behaviour in 57 different bench-

marks. Even though no variation in the dependence behavior based on input is found in the loops

of the wide range of benchmarks studied, the methodology described in this chapter for combined

dependence profiling is a new contribution and may become useful in the future if dependence be-

havior variation is identified in a given application domain. One such application is the incremental

algorithm that builds the Convex Hull, as described in Section 3.7. As more applications like these

are discovered, a cost analysis can be performed to select speculatively parallel loops based on the

probability of dependence at run-time.

29

In the next chapter, an automatic speculative parallelization framework, SpecEval, is described

that uses the dependence analyzer of Polly (the polyhedral optimizer in LLVM) to find may de-

pendences inside loops. Data-dependence profiling is shown to be important because allowing

speculative execution of loops with may dependences without checking whether the dependences

materialize during runtime, results in a slowdown. The impact of thread creation overhead is shown

to be important because allowing speculative execution of cold loops also results in a slowdown.

When these two kind of loops (cold loops and loops with may dependences that materialize dur-

ing run-time) are filtered out, the slowdown is tackled. From here on, data-dependence profiling

indicates a single-input profiling where the inputs to the profiling run and test run are different.

30

Chapter 4

SpecEval: A framework for
automatic speculative parallelization
of loops

4.1 Introduction

This chapter presents SpecEval, an automatic speculative parallelization framework that can paral-

lelize loops automatically using some heuristic for TLS. SpecEval uses the dependence analyzer of

Polly [19] to find may dependences. Two different heuristics are used to find speculation candidate

loops. The first heuristic allows loops with only may-dependences to run speculatively in paral-

lel, irrespective of whether the dependences materialize during run-time. This heuristic shows the

importance of data-dependence profiling to reduce the mispeculation overhead in TLS. In the first

heuristic, the coverage of loops is also not considered while selecting speculation candidates. This

relaxation gives an estimation of the high thread creation overhead in case of loops with low cov-

erage. The second heuristic filters out cold loops and, using dependence-profile information, loops

with actual run-time dependences. A performance evaluation of the speculative code generated by

SpecEval over the sequential version at the lowest optimization level (-O0) of the bgxlc r for the

SPEC2006 and PolyBench/C benchmarks is presented. A performance evaluation of TLS applied

with the automatic OpenMP parallelizer of Polly is also included.

4.2 Speculative Parallelization using the polyhedral dependence
analyzer of LLVM

The two heuristics used by the SpecEval to find speculation candidate loops are as follows:

4.2.1 Heuristic 1

In the first heuristic, for being a speculation candidate a SCoP (loop) should have only may depen-

dences (SCoPs are described in Section 2.1.1 of Chapter 2) . The goal of this heuristic is to relax the

31

constraint for OpenMP parallelization (OpenMP does not parallelize loops with may dependences)

and find more parallelization candidates. The hope is that the may dependences will not materialize

at run-time, thus resulting in speedup.

4.2.2 Heuristic 2

Heuristic 1 allows loops with may dependences to execute in parallel. But there can be two cases

where the overhead of speculation can degrade the performance. In heuristic 2, the two criteria

for filtering are based on these two different overheads. The first criteria considers the overhead

from mispeculation and recovery while the second criteria considers the overhead from storing the

program state during thread creation that is necessary for the system to roll back to a consistent state

in case of mispeculation.

1. In the loops where Polly reports only may dependences, the memory accesses are profiled

for a training run with one input. If the training run shows that the may dependences are

materializing into actual dependences at run-time, the loop is not parallelized.

2. If the execution time of the loop is less than some threshold coverage (percentage of whole

program execution time), the loop is not speculatively parallelized. Because in this case, the

overhead from thread creation can negate the performance of the program. This threshold

is set as 1.2% of the total execution time because results show that allowing the speculative

execution of smaller (colder) loops leads to slowdown.

4.3 Description of SpecEval

SpecEval is implemented using the LLVM [27] and bgxlc r (IBM’s xlc modified for BG/Q) com-

piler. SpecEval uses LLVM passes to find may dependences inside loops, for profiling and for

generating debug information so that source-code instrumentation can be performed. SpecEval uses

bgxlc r to produce executable code from the instrumented source code because TLS support is not

yet implemented in LLVM. SpecEval inserts a speculation pragma before a loop that is has decided

to speculatively execute in parallel. SpecEval uses two different dependence analysis passes to find

may dependences: 1) the polyhedral dependence analysis; and 2) the built in dependence analyzer of

LLVM. Polyhedral dependence analysis is part of the LLVM project and it is called Polly [19]. This

chapter includes results using Polly’s dependence analyzer while the next chapter presents results

using the built-in dependence analyzer of LLVM.

Figure 4.1 describes the SpecEval framework. There are three phases of SpecEval.

1. Collection of profile and debug information:

This phase contains several steps. In the first step, the source code is compiled to Intermediate

Representation (IR) with the -g option of the LLVM compiler so that debug information to

32

Source	 code	

IR	 with	 debug	
informa5on	

1.	 Compile	 with	 –g	 op5on	

may-‐dependences	

Instrumented	 IR	 for	
profiling	

dependence	 profile	

5.	 Profiling	 run	 using	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 an	 input	

Loop	 log	

Instrumenta5on	
Program	

Instrumented	 source	 code	

Op5mized	 executable	

7.	 Test	 run	 using	 different	 input	

3.	 Instrumenta5on	 	
	 	 	 	 	 pass	

4.	 Collect	 informa5on	
for	 source	 code	 	
instrumenta5on	 Profiling	 	

library	

Phase	 1	

Phase	 2	

Phase	 3	

6.	 Source	 code	 instrumenta5on	

2.	 Dependence	 analysis	 pass	

bgxlc_r	

Figure 4.1: The speculative parallelization framework-SpecEval.

map executable code to source code can be collected. This debug information is necessary

to determine the source-code file name and line number where each speculative loop appears

so that SpecEval can insert the speculation pragma. Step 2 involves running a dependence-

analysis pass to find may dependences. The dependence-analysis pass can be either from

Polly or from LLVM. In step 3, a newly written instrumentation pass inserts calls in the IR to

prepare itself for profiling. The functions reside in a newly written profiling library. Step 4

collects the debug information about the loops in the program. Polly reports loops as SCoPs

and the SCoPs are tracked in the source code using their basic-block information. For the

experiments with LLVM’s built-in dependence analyzer, a new pass is written that collects

source-code file name and line number for all the loops in the program. This debug informa-

tion is stored in a file indicated as Loop log in the figure. Lastly, in step 5, the instrumented

IR produced at step 3 is run using an input to collect the dependence profile.

33

2. Source-code instrumentation:

A newly written C program takes the Loop log and the dependence-profile file as inputs and

inserts speculative pragmas in the source code before for loops that are found to be as specu-

lation candidates following different heuristics.

3. Test run:

The instrumented source code produced in the previous phase is compiled with the bgxlc r

compiler to produce an executable that can be run in the BG/Q.1 bgxlc is the IBM xlc compiler

specific for the BG/Q machine. A different input is used in the profiling run than the input

used for the test run.

4.4 Experimental Evaluation

Experimentation is performed with two different sets of benchmarks - SPEC2006 benchmarks [1]

and the PolyBench/C benchmarks [38]. SPEC2006 is chosen because it is used widely in TLS

research. All the SPEC2006 benchmarks are not included in the report because they do not run suc-

cessfully on BG/Q. PolyBench/C benchmarks are chosen because (1) they are suitable benchmarks

for polyhedral analysis and (2) they are used in TLS literature before. Table 4.1 shows the hardware

specifications of a BG/Q chip.

The SPEC2006 benchmarks are run with the ref, train and test input and the PolyBench/C bench-

marks are run using varied problem size. For calculating the speedups, each benchmark is run a total

60 times for a given input and the average running time from the 60 runs were taken. For runs with

profiling, the input for the profiling run is different from the input for the test run. The 95% confi-

dence interval is not shown in the bar chart because it is too small to be significant. A one sample

student’s t-test performed on the 60 execution times for different benchmarks showed that they have

p-values in the range 0.12-0.34 (a p-value less than or equal to 0.05 means the variation in statisti-

cally significant).

Instrumentation in the source code is done automatically following the information file gener-

ated by SpecEval. The loop must be countable at compile time to be a speculation candidate.

The baseline for comparison is the sequential version of the benchmarks compiled with the -O0

optimization level of the bgxlc r compiler. The lowest optimization level ensures that the optimiza-

tion of hot loops (-qhot) and automatic SIMDization of the sequential code (-qsimd=auto) is turned

off. To see the performance impact of TLS when applied with an auto-OpenMP parallelizer, the au-

tomatic OpenMP code generated by Polly is used. Polly inserts calls to OpenMP run-time functions

to parallelize independent SCoPs.

1The r option generates thread-safe code.

34

Table 4.1: Hardware specifications of a BlueGene/Q chip.
#Processors 17(16 User and 1 service PowerPC)

Multithreading 4-way Multithreaded
Clock 1.6GHz

L1 I/D Cache 16KB/16KB
Peak Performance 204.8 GFLOPS 55W

RAM 16 GB DDR3
Multiversioned Cache Support for Transactional Memory and Speculative Execution

L2 Cache Centrally shared, 32 MB
Chip-to-chip networking 5D Torus topology + external link

lbm$ 4
namd 2.6
mcf$$ 2.3
milc$ 2
sphinx3$ 1.9
h264ref$ 1.7
hmmer$ 1.6
bzip2$$ 1.2
sjeng 0.9
gobmk$$ 0.89

BenchmarkSpeedup
gemm 8.3
3mm 8.2
2mm 8
fdtdC2d 1
jacobi 0.9
gramschmidt 0.85
lu 0.8
cholesky 0.8
dynprog 0.8
seidel 0.7

Benchmark Total Discovered
2mm 20 14
3mm 27 20
correlation 13 8
covariance 11 7
doitgen 18 14
gemm 13 8
gramschmidt 10 5
jacobiC2dCimper 9 6
lu 8 5
ludcmp 12 4
seidel 7 2

0$

0.5$

1$

1.5$

2$

2.5$

3$

3.5$

4$

4.5$

lbm$$ namd$ mcf$$$ milc$$ sphinx3$$ h264ref$$ hmmer$$ bzip2$$$ sjeng$ gobmk$$$

Sp
ee
du

p6
ov
er
6S
eq

ue
n8

al
6V
er
si
on

6

SPEC20066Benchmarks6

0$

1$

2$

3$

4$

5$

6$

7$

8$

9$

gemm$ 3mm$ 2mm$ fdtdC2d$ jacobi$ gramschmidt$ lu$ cholesky$ dynprog$ seidel$

Sp
ee
du

p6
ov
er
6se

qu
en

8a
l6v
er
si
on

6

PolyBench/C6Benchmarks6

Figure 4.2: Speedup of the TLS version of SPEC2006 benchmarks over the optimized sequential
version for 4 threads. gobmk suffers a slow down because of the presence of many loops with small
iteration count. sjeng experiences a slow down because the may dependences materialize during
run-time.

4.5 Results

This section describes the results for the experimentation with Polly. First the effect of heuristic 1

on the SPEC2006 and the PolyBench/C benchmarks is described. Then a performance evaluation of

TLS when applied with Polly’s auto-OpenMP parallelizer is presented. The effect of heuristic 2 on

the two sets of benchmarks is also shown. Results show that data-dependence profiling is necessary

because in benchmarks such as sjeng, may dependences materialize during run-time that causes a

slowdown. The results also show that speculatively parallelizing loops with poor coverage results in

slowdown for benchmarks such as: fdtd-2d, jacobi, lu, seidel, cholesky, dynprog, gramschmidt and

gobmk. Applying heuristic 2 to filter out loops with actual dependences and cold loops (less than

1.2% coverage) tackles the slowdown.

4.5.1 Heuristic 1
Spec2006 Benchmarks

In Figure 4.2, most of the SPEC2006 benchmarks achieve a speedup over the optimized sequential

version. lbm contains loops with no inter-thread data-dependences, but these dependences are not

35

statically provable by the compiler and that’s why they are not parallelized by OpenMP. This bench-

mark can be greatly benefited by the speculative execution and obtains the highest speedup because

may dependences do not materialize at run-time.

gobmk has many loops with small iteration counts. Small loops are not good candidates for

speculative execution because the thread creation overhead negates the impact of parallel execution

and we get a slowdown. These loops are later filtered out by heuristic 2.

sjeng contains loops that are reported as speculation candidates by heuristic 1 due to the occur-

rence of may dependences. But these dependences materialize during run-time and the overhead

from mispeculation prevents sjeng from achieving speedup. These loops are not suited for specula-

tive execution and they are eliminated by data-dependence profiling.

lbm$ 4
namd 2.6
mcf$$ 2.3
milc$ 2
sphinx3$ 1.9
h264ref$ 1.7
hmmer$ 1.6
bzip2$$ 1.2
sjeng 0.9
gobmk$$ 0.89

BenchmarkSpeedup
gemm 8.3
3mm 8.2
2mm 8
fdtdC2d 1
jacobi 0.9
gramschmidt 0.85
lu 0.8
cholesky 0.8
dynprog 0.8
seidel 0.7

Benchmark Total Discovered
2mm 20 14
3mm 27 20
correlation 13 8
covariance 11 7
doitgen 18 14
gemm 13 8
gramschmidt 10 5
jacobiC2dCimper 9 6
lu 8 5
ludcmp 12 4
seidel 7 2

0$

0.5$

1$

1.5$

2$

2.5$

3$

3.5$

4$

4.5$

lbm$$ namd$ mcf$$$ milc$$ sphinx3$$ h264ref$$ hmmer$$ bzip2$$$ sjeng$ gobmk$$$

Sp
ee
du

p6
ov
er
6S
eq

ue
n8

al
6V
er
si
on

6

SPEC20066Benchmarks6

0$

1$

2$

3$

4$

5$

6$

7$

8$

9$

gemm$ 3mm$ 2mm$ fdtdC2d$ jacobi$ gramschmidt$ lu$ cholesky$ dynprog$ seidel$

Sp
ee
du

p6
ov
er
6se

qu
en

8a
l6v
er
si
on

6

PolyBench/C6Benchmarks6

Figure 4.3: Speed up of the TLS version of PolyBench/C benchmarks over the optimized sequential
version for 4 threads.

PolyBench/C Benchmarks

Polybenchmarks were run with different sizes of input for calculating the speedup. The speedups

reported in Figure 4.3 indicate that the PolyBench/C programs can be divided into two classes ac-

cording to the effectiveness of thread-level speculation. Class 1 contains programs such as: 2mm,

3mm and gemm that achieve speed up due to TLS and Class 2, containing gramschmidt, jacobi,

lu, cholesky, dynprog and seidel experience a slow down. In the Class 2 PolyBench/C programs

the loops parallelized have small iteration count as well as coverage (the loops mainly initialize

arrays).2 Therefore the overhead for thread creation in the speculative execution negates the per-

formance achieved from the parallel execution of these loops. Table 4.2 shows the coverage of the

speculatively parallelized loops from the SPEC2006 and PolyBench/C benchmarks. For seidel the

coverage is only 0.04% and therefore the loops are not good speculation candidates. The cold loops

are eliminated by heuristic 2.

2These results confirm the finding of Kim et al. [25]

36

Table 4.2: Number of loops parallelized by auto-OpenMP parallelizer of Polly and speculative
parallelization using heuristic 1. Heuristic 1 allows loops with may-dependences and no must-
dependences to be executed in parallel. Coverage data is omitted where there is no speculative
loop discovered.

Suite Benchmark Total OpenMP Speculative Coverage
of Spec-
ulative
Loops

SPEC2006

lbm 23 4 4 97
namd 619 9 20 92
mcf 52 9 4 60
milc 421 7 20 68

sphinx3 609 11 2 91
h264ref 1870 179 45 79
hmmer 851 105 30 80
bzip2 232 4 2 35
sjeng 254 9 3 12

gobmk 1265 0 1 .7

PolyBench/C

gemm 13 3 4 98
3mm 27 10 - -
2mm 20 7 - -

fdtd 2d 14 2 0 -
jacobi 9 3 3 2

gramschmidt 10 3 2 .9
lu 8 3 2 2

cholesky 9 0 1 .9
dynprog 9 7 2 1

seidel 7 4 1 0.04

4.5.2 Effects of Applying TLS along with Auto-OpenMP Parallelizer

Heuristic 1 relaxes the constraint of OpenMP parallelization and allows loops with may dependences

and no must dependences to speculatively run in parallel. Figures 4.4 and 4.5 show the percentage

change in speedup when TLS is applied with the automatic OpenMP parallelizer of Polly for the

SPEC2006 and PolyBench/C benchmarks respectively. As seen in Figure 4.4, lbm, namd, milc,

h264ref and bzip2 have a small performance improvement due to TLS but sjeng and gobmk perform

worse due to TLS for the reasons mentioned before. From Figure 4.5, for 2mm and 3mm, TLS does

not give any performance improvement because no new speculation candidate loops are discovered

by SpecEval. In the slowdown benchmarks, the loops parallelized by heuristic 1 have a small iter-

ation count and they take very small portion of the benchmark execution time. Therefore executing

them speculatively causes the overhead from TLS to negate the gain from parallel execution. The

slowdown in these benchmarks is the motivation for applying heuristic 2.

37

OpenMP Speculative

milc0 1.8 2

h264ref0 1.6 1.7

lbm0 3.5 4

sphinx30 1.9 1.9

bzip200 1.1 1.2

mcf00 2.3 2.3

namd 2.4 2.6

gobmk00 1 0.93

hmmer0 1.54 1.6

sjeng 1.2 0.97

BenchmarkOpenMP Speculative

2mm 8 8

3mm 8.2 8.2

gemm 7.9 8.3

fdtdH2d 1 1

jacobi 1 0.9

lu 1 0.8

seidel 1.2 0.7

cholesky 1 0.8

dynprog 1 0.8

gramschmidt 1 0.85

SIMD OpenMP SpeculativeOracle

milc0 1.1 1.3 1.5 1.7

lbm0 1 1.5 2.1 2.1

bzip200 1.1 1.1 1.2 1.3

mcf00 1 1.8 2 2.4

namd 2.1 2.3 2.4 2.4

hmmer0 1 1.12 1.2 1.2

sphinx30 1 1.2 1.2 1.3

gobmk00 1 1 1 1

sjeng 1 1.1 0.5 1.1

h264ref0 1 1.4 0.3 1.4

BenchmarkSIMD OpenMP SpeculativeOracle

gemm 2.8 3.2 3.3 3.3

lu 1.1 1.12 1.2 1.5

2mm 3.2 4 4 4

3mm 3.1 4 4 4

fdtdH2d 1 1 1 1

gramschmidt 1 1 1 1

seidel 1.2 1.2 0.98 1.2

cholesky 1 1 0.9 1

dynprog 1 1 0.8 1.01

jacobi 1 1 0.8 1

AutoHOpenMPAutoHOpenMP+TLSOracle

milc0 18 36 55

lbm0 40 110 110

bzip200 0 10 18

mcf00 80 100 140

namd 10 14 14

hmmer0 12 20 40

sphinx30 20 20 30

gobmk00 0 0 0

sjeng 10 H50 10

h264ref0 40 H70 40

BenchmarkAutoHOpenMPAutoHOpenMP+TLSOracle

gemm 14 18 18

lu 2 9 11

2mm 25 25 25

3mm 29 29 29

fdtdH2d 0 0 0

gramschmidt 0 0 0

seidel 0 H18 0

cholesky 0 H10 0

dynprog 0 H20 1

jacobi 0 H20 0

TLS+AutoHOpenMP

milc0 10

h264ref0 6

lbm0 14

sphinx30 0

bzip200 9

mcf00 0

namd 8

gobmk00 H7

hmmer0 H4

sjeng H4

TLS+AutoHOpenMP

2mm 0

3mm 0

gemm 5

fdtdH2d 0

jacobi H10

lu H20

seidel H42

cholesky H20

dynprog H20

gramschmidt H15

00

0.50

10

1.50

20

2.50

30

3.50

40

4.50

milc00 h264ref00 lbm00 sphinx300 bzip2000 mcf000 namd0 gobmk000 hmmer00 sjeng0

Sp
ee
du

p.

SPEC2006.Benchamrks.

OpenMP0 SpeculaPve0

00

10

20

30

40

50

60

70

80

90

2mm0 3mm0 gemm0 fdtdH2d0 jacobi0 lu0 seidel0 cholesky0 dynprog0 gramschmidt0

Sp
ee
du

p.

PolyBench/C.Benchmarks.

OpenMP0 SpeculaPve0

00

0.50

10

1.50

20

2.50

30

milc00 lbm00 bzip2000 mcf000 namd0 hmmer00 sphinx300 gobmk000 sjeng0 h264ref00

Sp
ee
du

p.

SPEC2006.Benchmarks.

SIMD0 OpenMP0 SpeculaPve0

00

0.50

10

1.50

20

2.50

30

3.50

40

4.50

gemm0 lu0 2mm0 3mm0 fdtdH2d0 gramschmidt0 seidel0 cholesky0 dynprog0 jacobi0

Sp
ee
du

p.

PolyBench/C.Benchmarks.

SIMD0 OpenMP0 SpeculaPve0

H1000

H500

00

500

1000

1500

2000

milc00 lbm00 bzip2000 mcf000 namd0 hmmer00 sphinx300 gobmk000 sjeng0 h264ref00

Pe
rc
en

ta
ge
.c
ha

ng
e.
in
..

sp
ee
du

p.

SPEC2006.Benchmarks.

AutoHOpenMP0 AutoHOpenMP+TLS0 Oracle0

H300

H200

H100

00

100

200

300

400

gemm0 lu0 2mm0 3mm0 fdtdH2d0 gramschmidt0 seidel0 cholesky0 dynprog0 jacobi0

Pe
rc
en

ta
ge
.c
ha

ng
e.
in
.

Sp
ee
du

p.

PolyBench/C.Benchmarks.

AutoHOpenMP0 AutoHOpenMP+TLS0 Oracle0

H100

H50

00

50

100

150

200

milc00 h264ref00 lbm00 sphinx300 bzip2000 mcf000 namd0 gobmk000 hmmer00 sjeng0

Pe
rc
en

ta
ge
.c
ha

ng
e.
in
.

sp
ee
du

p.
ov
er
.A
ut
o?
O
pe

nM
P.

SPEC2006.Benchmarks.

TLS+AutoHOpenMP0

H500

H400

H300

H200

H100

00

100

2mm0 3mm0 gemm0 fdtdH2d0 jacobi0 lu0 seidel0 cholesky0 dynprog0 gramschmidt0

Pe
rc
en

ta
ge
.c
ha

ng
e.
in
.

sp
ee
du

p.
ov
er
.A
ut
o_

O
pe

nM
P.

SPEC2006.Benchmarks.

TLS+AutoHOpenMP0

Figure 4.4: Percentage change in speedup after applying TLS over auto-OpenMP parallelizer of
Polly for SPEC2006 benchmarks using 4 threads.

OpenMP Speculative

milc0 1.8 2

h264ref0 1.6 1.7

lbm0 3.5 4

sphinx30 1.9 1.9

bzip200 1.1 1.2

mcf00 2.3 2.3

namd 2.4 2.6

gobmk00 1 0.93

hmmer0 1.54 1.6

sjeng 1.2 0.97

BenchmarkOpenMP Speculative

2mm 8 8

3mm 8.2 8.2

gemm 7.9 8.3

fdtdH2d 1 1

jacobi 1 0.9

lu 1 0.8

seidel 1.2 0.7

cholesky 1 0.8

dynprog 1 0.8

gramschmidt 1 0.85

SIMD OpenMP SpeculativeOracle

milc0 1.1 1.3 1.5 1.7

lbm0 1 1.5 2.1 2.1

bzip200 1.1 1.1 1.2 1.3

mcf00 1 1.8 2 2.4

namd 2.1 2.3 2.4 2.4

hmmer0 1 1.12 1.2 1.2

sphinx30 1 1.2 1.2 1.3

gobmk00 1 1 1 1

sjeng 1 1.1 0.5 1.1

h264ref0 1 1.4 0.3 1.4

BenchmarkSIMD OpenMP SpeculativeOracle

gemm 2.8 3.2 3.3 3.3

lu 1.1 1.12 1.2 1.5

2mm 3.2 4 4 4

3mm 3.1 4 4 4

fdtdH2d 1 1 1 1

gramschmidt 1 1 1 1

seidel 1.2 1.2 0.98 1.2

cholesky 1 1 0.9 1

dynprog 1 1 0.8 1.01

jacobi 1 1 0.8 1

AutoHOpenMPAutoHOpenMP+TLSOracle

milc0 18 36 55

lbm0 40 110 110

bzip200 0 10 18

mcf00 80 100 140

namd 10 14 14

hmmer0 12 20 40

sphinx30 20 20 30

gobmk00 0 0 0

sjeng 10 H50 10

h264ref0 40 H70 40

BenchmarkAutoHOpenMPAutoHOpenMP+TLSOracle

gemm 14 18 18

lu 2 9 11

2mm 25 25 25

3mm 29 29 29

fdtdH2d 0 0 0

gramschmidt 0 0 0

seidel 0 H18 0

cholesky 0 H10 0

dynprog 0 H20 1

jacobi 0 H20 0

TLS+AutoHOpenMP

milc0 10

h264ref0 6

lbm0 14

sphinx30 0

bzip200 9

mcf00 0

namd 8

gobmk00 H7

hmmer0 H4

sjeng H4

TLS+AutoHOpenMP

2mm 0

3mm 0

gemm 5

fdtdH2d 0

jacobi H10

lu H20

seidel H42

cholesky H20

dynprog H20

gramschmidt H15

00

0.50

10

1.50

20

2.50

30

3.50

40

4.50

milc00 h264ref00 lbm00 sphinx300 bzip2000 mcf000 namd0 gobmk000 hmmer00 sjeng0

Sp
ee
du

p.

SPEC2006.Benchamrks.

OpenMP0 SpeculaPve0

00

10

20

30

40

50

60

70

80

90

2mm0 3mm0 gemm0 fdtdH2d0 jacobi0 lu0 seidel0 cholesky0 dynprog0 gramschmidt0

Sp
ee
du

p.

PolyBench/C.Benchmarks.

OpenMP0 SpeculaPve0

00

0.50

10

1.50

20

2.50

30

milc00 lbm00 bzip2000 mcf000 namd0 hmmer00 sphinx300 gobmk000 sjeng0 h264ref00

Sp
ee
du

p.

SPEC2006.Benchmarks.

SIMD0 OpenMP0 SpeculaPve0

00

0.50

10

1.50

20

2.50

30

3.50

40

4.50

gemm0 lu0 2mm0 3mm0 fdtdH2d0 gramschmidt0 seidel0 cholesky0 dynprog0 jacobi0

Sp
ee
du

p.

PolyBench/C.Benchmarks.

SIMD0 OpenMP0 SpeculaPve0

H1000

H500

00

500

1000

1500

2000

milc00 lbm00 bzip2000 mcf000 namd0 hmmer00 sphinx300 gobmk000 sjeng0 h264ref00

Pe
rc
en

ta
ge
.c
ha

ng
e.
in
..

sp
ee
du

p.

SPEC2006.Benchmarks.

AutoHOpenMP0 AutoHOpenMP+TLS0 Oracle0

H300

H200

H100

00

100

200

300

400

gemm0 lu0 2mm0 3mm0 fdtdH2d0 gramschmidt0 seidel0 cholesky0 dynprog0 jacobi0

Pe
rc
en

ta
ge
.c
ha

ng
e.
in
.

Sp
ee
du

p.

PolyBench/C.Benchmarks.

AutoHOpenMP0 AutoHOpenMP+TLS0 Oracle0

H100

H50

00

50

100

150

200

milc00 h264ref00 lbm00 sphinx300 bzip2000 mcf000 namd0 gobmk000 hmmer00 sjeng0

Pe
rc
en

ta
ge
.c
ha

ng
e.
in
.

sp
ee
du

p.
ov
er
.A
ut
o?
O
pe

nM
P.

SPEC2006.Benchmarks.

TLS+AutoHOpenMP0

H500

H400

H300

H200

H100

00

100

2mm0 3mm0 gemm0 fdtdH2d0 jacobi0 lu0 seidel0 cholesky0 dynprog0 gramschmidt0

Pe
rc
en

ta
ge
.c
ha

ng
e.
in
.

sp
ee
du

p.
ov
er
.A
ut
o_

O
pe

nM
P.

SPEC2006.Benchmarks.

TLS+AutoHOpenMP0

Figure 4.5: Percentage change in speedup after applying TLS over auto-OpenMP parallelizer of
Polly for PolyBench/C benchmarks using 4 threads.

4.5.3 Heuristic 2
Profiling and Filtering hot loops

To tackle the slowdowns, the reported may dependences are profiled to see whether the dependences

materialize during run-time. As it is previously shown (see Section 3.6 of previous chapter) that

loop’s dependence behaviour does not change according to inputs, a single input data-dependence

profile is used where the input for profiling run is different from the input for the test run. Loops

that do not take significant amount of the program execution time (cold loops) are not speculatively

parallelized because they have huge thread creation overhead.

The results shown in Figure 4.6 indicate that the benchmarks that were experiencing slowdown

performs equal or better when heuristic 2 is used. TLS versions of gramschmidt and sjeng perform

better than the OpenMP parallelized versions because the overhead from parallelizing cold loops

goes away.

38

Benchmark OpenMP Speculative
gramschmidt 1.3 1.4
jacobi 1.1 1.1
lu 1 1
cholesky 1 1
dynprog 1 1
seidel 1.1 1.1
fdtd?2d 1 1
gobmk 1 1
sjeng 1.2 1.3

TLS TLS+Filters
gramschmidt ?15 7
jacobi ?10 0
lu ?20 0
cholesky ?20 0
dynprog ?20 0
seidel ?42 0
gobmk ?7 0
sjeng ?4 8

0I

0.2I

0.4I

0.6I

0.8I

1I

1.2I

1.4I

1.6I

gramschmidtI jacobiI luI choleskyI dynprogI seidelI fdtd?2dI gobmkI sjengI

Sp
ee
du

p.

Slowdown.Benchmarks.

OpenMPI SpeculaKveI

?50I

?40I

?30I

?20I

?10I

0I

10I

20I

gramschmidtI jacobiI luI choleskyI dynprogI seidelI gobmkI sjengI

Pe
rc
en

ta
ge
.c
ha

ng
e.
.

in
.sp

ee
du

p.

Benchmarks.

TLSI TLS+FiltersI

Figure 4.6: Percentage change in speedup after applying heuristic 1 and heuristic 2 to the bench-
marks that were experiencing slowdown. Heuristic 2 performs equal or better than auto-OpenMP
for all cases after filtering cold loops and loops with a run-time dependence.

4.5.4 Scalability

For measuring the scalability of the speculatively parallelized benchmarks, the speculative code is

run with increasing number of threads. Figure 4.7 shows the scalability of the TLS version of the

SPEC2006 benchmarks. lbm and milc scale upto 16 threads. mcf is a benchmarks that is benefited

from L1 prefetching effect. As seen from Figure 4.8, there is very little performance variation with

increasing number of threads for the PolyBench/C benchmarks.

lbm 23 6 4
h264ref 1789 340 179
hmmer 738 19 105 2 4 8 16 32 64
mcf 33 2 9 milc4 1.9 2 2 2.3 2.34 2.3
sjeng 216 19 9 h264ref4 1.5 1.68 1.7 1.84 1.9 1.9

lbm4 3.5 3.6 4 4.8 4.8 4.7
mummer 46 2 6 sphinx34 1.8 1.8 1.9 1.9 1.9 1.9
protdist 55 3 1 bzip244 1 1.1 1.2 1.2 1.2 1.2

mcf44 2 2.2 2.3 2.3 2.4 2.4
cholesky 9 7 1 namd 2.5 2.6 2.6 3 3 3
dynprog 9 7 2 hmmer4 1.4 1.4 1.6 1.7 1.7 1.7
fdtd_2d 14 10 2 sjeng 1.2 1.2 1.3 1.4 1.4 1.4
gemm 12 2 4
gramschmidt 17 7 3
jacobi 10 2 1
lu 9 0 3
seidel 8 0 4

2 4 8 16 32 64
gemm 8.3 8.4 8.4 8.4 8.4 8.4
gramschmidt 1.4 1.4 1.4 1.4 1.4 1.4
jacobi 1.1 1.12 1.12 1.11 1.1 1.1
lu 1 1 1 1 1 1
cholesky 1 1 1 1 1 1
dynprog 1 1 1 1 1 1
seidel 1.1 1.1 1.1 1.1 1.1 1.1
fdtdE2d 1 1 1 1 1 1

04

14

24

34

44

54

64

24 44 84 164 324 644

Sp
ee
du

p&

Number&of&Threads&

SPEC2006&

milc44

h264ref44

lbm44

sphinx344

bzip2444

mcf444

namd4

hmmer44

sjeng4

04

14

24

34

44

54

64

74

84

94

24 44 84 164 324 644

Sp
ee
du

p&

Number&of&Threads&&

PolyBench/C&

gemm4

gramschmidt4

jacobi4

lu4

cholesky4

dynprog4

seidel4

fdtdE2d4

Figure 4.7: Scalability of speculatively parallelized versions of the SPEC2006 benchmarks with
Polly.

39

lbm 23 6 4
h264ref 1789 340 179
hmmer 738 19 105 2 4 8 16 32 64
mcf 33 2 9 milc4 1.9 2 2 2.3 2.34 2.3
sjeng 216 19 9 h264ref4 1.5 1.68 1.7 1.84 1.9 1.9

lbm4 3.5 3.6 4 4.8 4.8 4.7
mummer 46 2 6 sphinx34 1.8 1.8 1.9 1.9 1.9 1.9
protdist 55 3 1 bzip244 1 1.1 1.2 1.2 1.2 1.2

mcf44 2 2.2 2.3 2.3 2.4 2.4
cholesky 9 7 1 namd 2.5 2.6 2.6 3 3 3
dynprog 9 7 2 hmmer4 1.4 1.4 1.6 1.7 1.7 1.7
fdtd_2d 14 10 2 sjeng 1.2 1.2 1.3 1.4 1.4 1.4
gemm 12 2 4
gramschmidt 17 7 3
jacobi 10 2 1
lu 9 0 3
seidel 8 0 4

2 4 8 16 32 64
gemm 8.3 8.4 8.4 8.4 8.4 8.4
gramschmidt 1.4 1.4 1.4 1.4 1.4 1.4
jacobi 1.1 1.12 1.12 1.11 1.1 1.1
lu 1 1 1 1 1 1
cholesky 1 1 1 1 1 1
dynprog 1 1 1 1 1 1
seidel 1.1 1.1 1.1 1.1 1.1 1.1
fdtdE2d 1 1 1 1 1 1

04

14

24

34

44

54

64

24 44 84 164 324 644

Sp
ee
du

p&
Number&of&Threads&

SPEC2006&

milc44

h264ref44

lbm44

sphinx344

bzip2444

mcf444

namd4

hmmer44

sjeng4

04

14

24

34

44

54

64

74

84

94

24 44 84 164 324 644

Sp
ee
du

p&

Number&of&Threads&&

PolyBench/C&

gemm4

gramschmidt4

jacobi4

lu4

cholesky4

dynprog4

seidel4

fdtdE2d4

Figure 4.8: Scalability of speculatively parallelized versions of the PolyBench/C benchmarks with
Polly.

4.6 Conclusion

In this chapter, an automatic speculative parallelization framework SpecEval is described that paral-

lelizes loops that are reported to have may dependences by the static dependence analyzer of Polly.

Profiling is shown to be important in selecting TLS candidate loops because allowing speculative ex-

ecution of loops with may dependences that materialize during run-time causes slowdown in sjeng.

It is also shown that speculative execution of cold loops causes slowdown due to thread creation

overhead.. When the cold loops and loops with may dependences that materialize during run-time

are filtered out, the slowdown is tackled.

In the next chapter, SpecEval takes the dependence analysis results from the new and sophisticated

built-in static dependence analyzer of LLVM instead of the dependence analyzer from Polly . The

next chapter also presents a performance evaluation when TLS is applied along with the traditional

parallelization techniques such as: (1) SIMDization and (2) OpenMP parallelization by the bgxlc r

compiler. The performance evaluation in the next chapter uses the sequential code compiled with

the highest optimization level (-O5) as the baseline. A study on the various factors that impact TLS

performance are included.

40

Chapter 5

Study of Speculative Parallelization
at Higher Optimization Levels of the
Compiler

5.1 Introduction

The higher optimization levels of the compiler are used by programmers to improve the performance

of sequential code. To obtain maximum performance improvement, programmers typically use the

highest possible optimization level of a compiler (e.g. -O5 for IBM’s xlc compiler, -O3 for gcc).

To extract parallelism from programs, different automatic parallelization techniques, such as

SIMDization and OpenMP parallelization, are used. This chapter explores the effect of applying

speculative parallelism to the SPEC2006 and PolyBench/C benchmarks, with the sequential code

optimized at the highest level (-O5) of the bgxlc r compiler taken as baseline. This chapter stud-

ies the performance of the benchmarks when TLS is applied along with the existing parallelization

techniques (auto-SIMDization and auto-OpenMP parallelization in the bgxlc r compiler). Data-

dependence profiling has already been found to be useful for TLS (see Section 4.5.3 of previous

chapter). A single input data-dependence profile is used to identify loops that are candidate for

speculation because dependence behaviour of loops does not change with inputs for the SPEC2006

and PolyBench/C benchmarks (see Section 3.6 of Chapter 3). The dependence analysis pass of

LLVM is used to find may dependences inside loops (instead of Polly’s dependence analysis pass as

described in the previous chapter). Loops with may dependences are profiled to discover whether

the may dependences materialize at run-time.

The performance evaluation of the SPEC2006 and PolyBench/C benchmarks uses three parallel

versions of the code: (1) code generated by the existing automatic SIMD parallelizer of bgxlc r;

(2) OpenMP parallelized along with SIMDized code generated by the bgxlc r; and (3) OpenMP +

SIMDized code by bgxlc r along with the speculatively parallelized code generated by SpecEval

(described in Section 4.3 of the previous chapter).

The speedups obtained from an oracle version of the benchmarks are also shown for compari-

41

son. The oracle version is obtained by applying TLS incrementally to candidate loops. If applying

TLS to a candidate loop degrades the performance improvement that was obtained so far, that loop

is rejected from TLS by the Oracle. In this way, the oracle version offers the best possible TLS

candidate loop set.

Following the results described in Section 4.2.2 of previous chapter, the threshold of coverage

(percentage of whole program execution time) for selecting speculation candidate loops is kept as

1.2%.

Results show that for benchmarks such as namd, mcf and lbm, TLS moderately improves the

execution time while, for some benchmarks, TLS results in a performance degradation. Factors

that impact the TLS performance include: (1) number of loops speculatively parallelized and their

coverage; (2) increase in L1 cache misses due to Long-running (LR) mode (see Section 2.4.2 in

Chapter 2) in BG/Q (sjeng, cholesky, dynprog), (3) mispeculation due to dependences resulted from

function calls (sjeng, h264ref) and (4) increase in dynamic instruction path length (jacobi, seidel).

There is mispeculation overhead if a function call inside the loop body introduces new depen-

dences at run-time. This situation did not arise for the experiments with Polly because Polly does not

consider a loop as SCoP if there is a function call inside the loop body. But those loops are included

for consideration by the new dependence analyzer of LLVM. If there is a function call inside the

loop body, the memory accesses inside the called function are not profiled to find a dependence. If

all the memory accesses other than the ones inside the callee are found to be independent, the loop is

considered to be a speculation candidate. Even if the function call introduces dependences inside the

loop during run-time, those dependences are not discovered through off-line profiling. The reason

for this relaxation is the complexity of performing an inter-procedural dependence analysis with the

help of off-line profiling. For performing such analysis, the calling context of the function has to be

considered. If there is a loop within the callee, an inter-loop dependence analysis is necessary to find

out cross-iteration dependences. Due to this complexity of profiling, a more conservative compiler

does not consider a loop as a candidate for speculation if there is a function call inside the loop body

and the function is not side-effect free. To minimize the overhead due to dependences introduced

at run-time from function calls, a filter is applied to prevent the speculative execution of loops with

function calls. There is one caveat of the filtering criteria: it prevents parallel execution of loops

where the function calls do not introduce dependence. But results show that loops where a function

call does not introduce dependences either do not occur or are too cold to change the performance

significantly in the benchmarks studied.

A scalability study of the speculatively parallelized versions of SPEC2006 and PolyBench/C

benchmarks is also included.

42

5.2 Experimental Evaluation

This section evaluates the impact of applying profile-driven TLS to the SPEC2006 and PolyBench/C

benchmarks, with the BG/Q machine as the hardware platform. The inputs used for the profiling

(training) run and the test run are different. To calculate the speedup, an average execution time of

60 runs is considered. 95% confidence intervals for the measurement of speedups are not shown in

the graphs because they are too small to be significant. A one sample student’s t-test performed on

the execution times show that the p-values are in the range between 0.15-0.33 (a p-value less than or

equal to 0.05 means a significant variation).

5.3 Effect of applying TLS with AutoSIMD and AutoOpenMP
parallelizer in the bgxlc r

This set of experiments studies the effect of applying TLS, along with existing parallelization tech-

niques in the SPEC2006 and PolyBench/C benchmarks, with the sequential code optimized at the

highest optimization level of the bgxlc r compiler as the baseline. Speedup is measured for three

parallel versions of the code as mentioned before. By default the -O5 level turns on the automatic

vectorization (SIMDization) and the various optimizations of hot loops (e.g. loop unrolling etc.).

The result from the dependence analysis pass of LLVM is used for profiling by SpecEval because

LLVM’s dependence analysis pass was improved by the time these experiments are performed. The

SPEC2006 and PolyBench/C benchmarks are used for the experimental evaluation.

The following compiler options are used to generate the sequential and the three parallel ver-

sions of the code.

• Optimized Sequential version (baseline): bgxlc -O5 -qsimd=noauto -qnohot -qstrict -qprefetch

• Automatic SIMDized version: bgxlc -O5 -qsimd=auto -qhot -qstrict -qprefetch

• Automatic OpenMP parallelized + SIMDized version: bgxlc r -O5 -qsimd=auto -qhot

-qsmp=auto -qstrict -qprefetch

• Speculative parallelized + OpenMP + SIMDized version: bgxlc r -O5 -qsimd=auto -qhot

-qsmp=auto:speculative -qstrict -qprefetch

The qstrict compiler option is used to maintain the correct semantics of the program after higher-

level optimizations because the higher-level optimizations may alter the semantics of the program.

The -qprefetch option enables prefetching.

Figure 5.1 and figure 5.2 show the percentage change in speedup of the OpenMP and TLS par-

allel versions of the SPEC2006 and PolyBench/C benchmarks respectively over the auto-SIMDized

code. The highest percentage change that can be obtained from an oracle version is also shown.

43

OpenMP Speculative

milc0 1.8 2

h264ref0 1.6 1.7

lbm0 3.5 4

sphinx30 1.9 1.9

bzip200 1.1 1.2

mcf00 2.3 2.3

namd 2.4 2.6

gobmk00 1 0.93

hmmer0 1.54 1.6

sjeng 1.2 0.97

BenchmarkOpenMP Speculative

2mm 8 8

3mm 8.2 8.2

gemm 7.9 8.3

fdtdH2d 1 1

jacobi 1 0.9

lu 1 0.8

seidel 1.2 0.7

cholesky 1 0.8

dynprog 1 0.8

gramschmidt 1 0.85

SIMD OpenMP SpeculativeOracle

milc0 1.1 1.3 1.5 1.7

lbm0 1 1.5 2.1 2.1

bzip200 1.1 1.1 1.2 1.3

mcf00 1 1.8 2 2.4

namd 2.1 2.3 2.4 2.4

hmmer0 1 1.12 1.2 1.2

sphinx30 1 1.2 1.2 1.3

gobmk00 1 1 1 1

sjeng 1 1.1 0.5 1.1

h264ref0 1 1.4 0.3 1.4

BenchmarkSIMD OpenMP SpeculativeOracle

gemm 2.8 3.2 3.3 3.3

lu 1.1 1.12 1.2 1.5

2mm 3.2 4 4 4

3mm 3.1 4 4 4

fdtdH2d 1 1 1 1

gramschmidt 1 1 1 1

seidel 1.2 1.2 0.98 1.2

cholesky 1 1 0.9 1

dynprog 1 1 0.8 1.01

jacobi 1 1 0.8 1

AutoHOpenMPAutoHOpenMP+TLSOracle

milc0 18 36 55

lbm0 40 110 110

bzip200 0 10 18

mcf00 80 100 140

namd 10 14 14

hmmer0 12 20 40

sphinx30 20 20 30

gobmk00 0 0 0

sjeng 10 H50 10

h264ref0 40 H70 40

BenchmarkAutoHOpenMPAutoHOpenMP+TLSOracle

gemm 14 18 18

lu 2 9 11

2mm 25 25 25

3mm 29 29 29

fdtdH2d 0 0 0

gramschmidt 0 0 0

seidel 0 H18 0

cholesky 0 H10 0

dynprog 0 H20 1

jacobi 0 H20 0

TLS+AutoHOpenMP

milc0 10

h264ref0 6

lbm0 14

sphinx30 0

bzip200 9

mcf00 0

namd 8

gobmk00 H7

hmmer0 H4

sjeng H4

TLS+AutoHOpenMP

2mm 0

3mm 0

gemm 5

fdtdH2d 0

jacobi H10

lu H20

seidel H42

cholesky H20

dynprog H20

gramschmidt H15

00

0.50

10

1.50

20

2.50

30

3.50

40

4.50

milc00 h264ref00 lbm00 sphinx300 bzip2000 mcf000 namd0 gobmk000 hmmer00 sjeng0

Sp
ee
du

p.

SPEC2006.Benchamrks.

OpenMP0 SpeculaPve0

00

10

20

30

40

50

60

70

80

90

2mm0 3mm0 gemm0 fdtdH2d0 jacobi0 lu0 seidel0 cholesky0 dynprog0 gramschmidt0

Sp
ee
du

p.

PolyBench/C.Benchmarks.

OpenMP0 SpeculaPve0

00

0.50

10

1.50

20

2.50

30

milc00 lbm00 bzip2000 mcf000 namd0 hmmer00 sphinx300 gobmk000 sjeng0 h264ref00

Sp
ee
du

p.

SPEC2006.Benchmarks.

SIMD0 OpenMP0 SpeculaPve0

00

0.50

10

1.50

20

2.50

30

3.50

40

4.50

gemm0 lu0 2mm0 3mm0 fdtdH2d0 gramschmidt0 seidel0 cholesky0 dynprog0 jacobi0

Sp
ee
du

p.

PolyBench/C.Benchmarks.

SIMD0 OpenMP0 SpeculaPve0

H1000

H500

00

500

1000

1500

2000

milc00 lbm00 bzip2000 mcf000 namd0 hmmer00 sphinx300 gobmk000 sjeng0 h264ref00

Pe
rc
en

ta
ge
.c
ha

ng
e.
in
..

sp
ee
du

p.

SPEC2006.Benchmarks.

AutoHOpenMP0 AutoHOpenMP+TLS0 Oracle0

H300

H200

H100

00

100

200

300

400

gemm0 lu0 2mm0 3mm0 fdtdH2d0 gramschmidt0 seidel0 cholesky0 dynprog0 jacobi0

Pe
rc
en

ta
ge
.c
ha

ng
e.
in
.

Sp
ee
du

p.

PolyBench/C.Benchmarks.

AutoHOpenMP0 AutoHOpenMP+TLS0 Oracle0

H100

H50

00

50

100

150

200

milc00 h264ref00 lbm00 sphinx300 bzip2000 mcf000 namd0 gobmk000 hmmer00 sjeng0

Pe
rc
en

ta
ge
.c
ha

ng
e.
in
.

sp
ee
du

p.
ov
er
.A
ut
o?
O
pe

nM
P.

SPEC2006.Benchmarks.

TLS+AutoHOpenMP0

H500

H400

H300

H200

H100

00

100

2mm0 3mm0 gemm0 fdtdH2d0 jacobi0 lu0 seidel0 cholesky0 dynprog0 gramschmidt0

Pe
rc
en

ta
ge
.c
ha

ng
e.
in
.

sp
ee
du

p.
ov
er
.A
ut
o_

O
pe

nM
P.

SPEC2006.Benchmarks.

TLS+AutoHOpenMP0

Figure 5.1: Percentage change in speedup obtained from different parallelization techniques for
the SPEC2006 benchmarks over auto-SIMDized code. The autoOpenMP and autoOpenMP+TLS
versions use 4 threads.

There are three classes of benchmarks - benchmarks that achieve some speedup with TLS (milc,

lbm, bzip2, mcf, namd, hmmer), benchmarks where performance neither improves nor degrades

(sphinx3, gobmk) and benchmarks that get a performance degradation with TLS (h264ref, sjeng).

For the mcf benchmark, the oracle version is seen to have a significant performance improvement

over the TLS version by SpecEval. Closer inspection revealed that there are loops that have poor

coverage and mispeculation due to function calls. These non-beneficial loops are eliminated by the

oracle version as they impact the TLS performance. These loops can be eliminated by SpecEval by

increasing the coverage threshold and eliminating TLS execution of loops that have function calls.

As seen in Figure 5.2, PolyBench/C benchmarks also fall under these three classes. The TLS

version of gemm gets a 3.3x speedup and of lu gives slightly better performance than the SIMDized

and OpenMP parallelized versions while in jacobi, cholesky and dynprog TLS experiences a slow-

down. Performance does not improve after applying TLS to 2mm, 3mm, fdtd-2d, gramschmidt and

seidel benchmarks.

One of the factors that impacts TLS performance is the number of parallelized loops and their

coverage. Coverage is defined as the percentage of the loop’s execution time with respect to the

whole program execution time. There is limited performance improvement after applying TLS to

loops that are not ‘hot’ enough due to the speculative thread creation overhead. bzip2, sjeng are

benchmarks that contain speculative loops with poor coverage (Table 5.1).

Increase in L1 cache misses due to LR mode in TLS is another factor that limits the TLS perfor-

mance. In BG/Q, for LR mode, the L1 cache is flushed before entering any speculative region thus

affecting regions with data locality [21]. Benchmarks such as cholesky and dynprog suffer from the

flush-effect of TLS (Table 5.3). The Short-running (SR) mode is more suitable for the speculative

execution of these benchmarks but the SR mode for TLS is not yet available in BG/Q.

Events, such as saving of register context before entering a speculative region and obtaining

a speculative ID, account for the TLS overhead that is reflected in the increase in instruction path

44

length. jacobi and seidel are two benchmarks that experience a huge path-length increase (Table 5.4)

thus limiting/degrading their performance. The rest of the section explains in details the different

sources of BG/Q TLS overhead.

OpenMP Speculative

milc0 1.8 2

h264ref0 1.6 1.7

lbm0 3.5 4

sphinx30 1.9 1.9

bzip200 1.1 1.2

mcf00 2.3 2.3

namd 2.4 2.6

gobmk00 1 0.93

hmmer0 1.54 1.6

sjeng 1.2 0.97

BenchmarkOpenMP Speculative

2mm 8 8

3mm 8.2 8.2

gemm 7.9 8.3

fdtdH2d 1 1

jacobi 1 0.9

lu 1 0.8

seidel 1.2 0.7

cholesky 1 0.8

dynprog 1 0.8

gramschmidt 1 0.85

SIMD OpenMP SpeculativeOracle

milc0 1.1 1.3 1.5 1.7

lbm0 1 1.5 2.1 2.1

bzip200 1.1 1.1 1.2 1.3

mcf00 1 1.8 2 2.4

namd 2.1 2.3 2.4 2.4

hmmer0 1 1.12 1.2 1.2

sphinx30 1 1.2 1.2 1.3

gobmk00 1 1 1 1

sjeng 1 1.1 0.5 1.1

h264ref0 1 1.4 0.3 1.4

BenchmarkSIMD OpenMP SpeculativeOracle

gemm 2.8 3.2 3.3 3.3

lu 1.1 1.12 1.2 1.5

2mm 3.2 4 4 4

3mm 3.1 4 4 4

fdtdH2d 1 1 1 1

gramschmidt 1 1 1 1

seidel 1.2 1.2 0.98 1.2

cholesky 1 1 0.9 1

dynprog 1 1 0.8 1.01

jacobi 1 1 0.8 1

AutoHOpenMPAutoHOpenMP+TLSOracle

milc0 18 36 55

lbm0 40 110 110

bzip200 0 10 18

mcf00 80 100 140

namd 10 14 14

hmmer0 12 20 40

sphinx30 20 20 30

gobmk00 0 0 0

sjeng 10 H50 10

h264ref0 40 H70 40

BenchmarkAutoHOpenMPAutoHOpenMP+TLSOracle

gemm 14 18 18

lu 2 9 11

2mm 25 25 25

3mm 29 29 29

fdtdH2d 0 0 0

gramschmidt 0 0 0

seidel 0 H18 0

cholesky 0 H10 0

dynprog 0 H20 1

jacobi 0 H20 0

TLS+AutoHOpenMP

milc0 10

h264ref0 6

lbm0 14

sphinx30 0

bzip200 9

mcf00 0

namd 8

gobmk00 H7

hmmer0 H4

sjeng H4

TLS+AutoHOpenMP

2mm 0

3mm 0

gemm 5

fdtdH2d 0

jacobi H10

lu H20

seidel H42

cholesky H20

dynprog H20

gramschmidt H15

00

0.50

10

1.50

20

2.50

30

3.50

40

4.50

milc00 h264ref00 lbm00 sphinx300 bzip2000 mcf000 namd0 gobmk000 hmmer00 sjeng0

Sp
ee
du

p.

SPEC2006.Benchamrks.

OpenMP0 SpeculaPve0

00

10

20

30

40

50

60

70

80

90

2mm0 3mm0 gemm0 fdtdH2d0 jacobi0 lu0 seidel0 cholesky0 dynprog0 gramschmidt0

Sp
ee
du

p.

PolyBench/C.Benchmarks.

OpenMP0 SpeculaPve0

00

0.50

10

1.50

20

2.50

30

milc00 lbm00 bzip2000 mcf000 namd0 hmmer00 sphinx300 gobmk000 sjeng0 h264ref00

Sp
ee
du

p.

SPEC2006.Benchmarks.

SIMD0 OpenMP0 SpeculaPve0

00

0.50

10

1.50

20

2.50

30

3.50

40

4.50

gemm0 lu0 2mm0 3mm0 fdtdH2d0 gramschmidt0 seidel0 cholesky0 dynprog0 jacobi0

Sp
ee
du

p.

PolyBench/C.Benchmarks.

SIMD0 OpenMP0 SpeculaPve0

H1000

H500

00

500

1000

1500

2000

milc00 lbm00 bzip2000 mcf000 namd0 hmmer00 sphinx300 gobmk000 sjeng0 h264ref00

Pe
rc
en

ta
ge
.c
ha

ng
e.
in
..

sp
ee
du

p.

SPEC2006.Benchmarks.

AutoHOpenMP0 AutoHOpenMP+TLS0 Oracle0

H300

H200

H100

00

100

200

300

400

gemm0 lu0 2mm0 3mm0 fdtdH2d0 gramschmidt0 seidel0 cholesky0 dynprog0 jacobi0

Pe
rc
en

ta
ge
.c
ha

ng
e.
in
.

Sp
ee
du

p.

PolyBench/C.Benchmarks.

AutoHOpenMP0 AutoHOpenMP+TLS0 Oracle0

H100

H50

00

50

100

150

200

milc00 h264ref00 lbm00 sphinx300 bzip2000 mcf000 namd0 gobmk000 hmmer00 sjeng0

Pe
rc
en

ta
ge
.c
ha

ng
e.
in
.

sp
ee
du

p.
ov
er
.A
ut
o?
O
pe

nM
P.

SPEC2006.Benchmarks.

TLS+AutoHOpenMP0

H500

H400

H300

H200

H100

00

100

2mm0 3mm0 gemm0 fdtdH2d0 jacobi0 lu0 seidel0 cholesky0 dynprog0 gramschmidt0

Pe
rc
en

ta
ge
.c
ha

ng
e.
in
.

sp
ee
du

p.
ov
er
.A
ut
o_

O
pe

nM
P.

SPEC2006.Benchmarks.

TLS+AutoHOpenMP0

Figure 5.2: Percentage change in speedup obtained from different parallelization techniques for
the SPEC2006 benchmarks over auto-SIMDized code. The autoOpenMP and autoOpenMP+TLS
versions use 4 threads.

5.4 Impact of Different Factors on TLS Performance

To investigate the factors that impact the TLS performance in BG/Q, the following set of experiments

is performed. The factors found to have impact on TLS performance are:

• The number and coverage (percentage of whole program execution time) of speculatively

parallelized loops . If the loops have poor coverage, the thread creation overhead limits TLS

performance.

• The mispeculation overhead due to introduction of run-time dependence by function calls.

These dependences are not easily detectable using dependence profiling because the function

call may be recursive and may contain other loops. The mispeculation overhead is measured

in terms of the number of threads squashed during speculative execution.

• The L1 cache miss rate increase due to the LR mode.

• Increase in the length of dynamic path due to speculative execution of loops with low cover-

age.

5.4.1 Number of loops parallelized and their coverage

Table 5.1 shows the total number of loops in each benchmark, the number of parallelized loops by

the three different parallelization techniques- automatic OpenMP parallelized, automatic SIMDized

and speculatively parallelized, and the coverage of speculatively parallelized loops in the SPEC2006

45

and PolyBench/C benchmarks. Polly’s dependence analyzer only considers loops that are SCoPs. To

be a SCoP, the loop has to have the properties described in Section 2.1.1 of Chapter 2. On the other

hand, when the dependence-analysis result from the loop-dependence analyzer of LLVM is used

to find may-dependent memory accesses, non-SCoPs are also profiled. As a result more loops are

reported to be candidates for TLS based on the speculative candidate loop selection criteria as seen

in a comparison of Table 4.2 and Table 5.1. The number of loops parallelized by the auto-OpenMP

parallelizer is also greater than the number of loops parallelized by Polly for the same reason.

The interesting benchmark in Table 5.1 is h264ref because it has the highest number of spec-

Table 5.1: Number of loops parallelized by different parallel versions of the benchmarks and the
coverage of speculatively parallelized loops. Coverage data are omitted where no speculation can-
didate loop is found.

Suite Benchmarks # Total loops Speculative OpenMP SIMDized Coverage
of Spec-
ulative
Loops

SPEC2006

lbm 23 5 4 0 98
h264ref 1870 47 179 3 82
hmmer 851 30 105 17 80

mcf 52 12 9 0 65
sjeng 254 16 9 0 32

sphinx3 609 2 11 0 91
bzip2 232 2 4 0 35

gobmk 1265 0 0 0 -
milc 421 22 7 2 33
namd 619 25 9 7 92

PolyBench/C

2mm 20 - 7 3 -
3mm 27 - 10 3 -
gemm 13 4 3 4 40

gramschmidt 10 0 3 0 -
jacobi 9 2 3 0 3

lu 8 5 3 1 45
seidel 7 2 4 0 3

cholesky 9 4 0 0 10
dynprog 9 3 7 0 18
fdtd 2d 14 3 2 0 20

ulatively parallelized loops with good coverage among all other benchmarks but still it experiences

a slowdown due to speculative execution, as seen in Figure 5.1. Experiments reveal that function

calls introduce dependences during run-time and those dependences are not detected with profiling

as explained in Section 5.1. Therefore the mispeculation overhead limits the TLS performance of

h264ref. sjeng experiences a slowdown for the same reason.

The performance improvement from TLS for milc is limited because it has a large number of

speculative loops with low coverage. The poor coverage of loops introduces TLS thread creation

overhead that causes a limited performance improvement. An ideal TLS candidate loop will have

high coverage (hot loop) with no (low probability of) dependence violation. The number of loops

46

speculatively parallelized for lbm is small but they take a significant portion of the whole program

execution time (98%). These hot loops of lbm are good speculation candidates and are examples of

cases where TLS can be beneficial.

For PolyBench/C benchmarks 2mm and 3mm, no new speculation candidate loops are discovered

because these benchmarks are matrix multiplication benchmarks that contain large parallelizable

loops. These loops are parallelized by the automatic OpenMP parallelizer of bgxlc r. For gemm, the

speculatively parallel loops have good coverage that accounts for the 3.3x speedup from TLS. But

for cholesky, dynprog and fdtd-2d, the poor coverage of loops results in slow-down.

gramschmidt does not have any speculative loops discovered because the cold loops (less than

1.2% coverage) that are parallelized by the Polly dependence analyzer (see Results in Chapter 4) are

filtered out as those loops are already found to be non-beneficial for TLS.

5.4.2 Mispeculation Overhead

Squashing threads with dependence and re-executing the parallel section sequentially imposes over-

head that results in performance degradation. For speculatively parallelizing loops with function

calls, new dependences may be introduced that lead to dependence violation and thread squashing.

The measurement of mispeculation overhead identifies loops inside benchmarks where function calls

introduce actual dependences during run-time.

To measure the mispeculation overhead, the percentage of successfully committed threads are

computed. The se print stats function from the speculation.h header file in BG/Q is used to col-

lect various statistics for a speculative region including the number of successfully committed/non-

committed threads. The percentage of speculative threads committed is computed using the follow-

ing equation:

Percentagesucc =
#speculative

(#speculative+#non speculative)
∗ 100 (5.1)

The percentage of successfully committed threads gives an idea about the amount of wasted

computation for the speculative loops. Ideally a benchmark that can benefit from TLS should have

a high percentage of successful completion of speculative threads. Table 5.2 gives the percentage

of speculative threads committed for the SPEC2006 and PolyBench/C benchmarks. The best TLS

performance, in terms of successful thread completion, is in lbm. For sjeng and h264ref the per-

centage is much lower, giving an indication of a huge amount of wasted computation that causes

their slowdown. Closer investigation of these benchmarks reveals that most of the loops specula-

tively parallelized contain function calls that introduces new dependences during run-time. Though

h264ref has a high number of loops speculatively parallelized (Table 5.1), the presence of depen-

dence resulted from the function calls inside the loops accounts for the slowdown. mcf, hmmer, milc,

namd and bzip2 also suffer from this phenomenon.

Among the PolyBench/C benchmarks, gemm and lu have a high percentage of speculative thread

47

completion that accounts for their speedup. For four of the benchmarks - jacobi, seidel, cholesky

and dynprog there is a high percentage of thread completion but still these benchmarks experience

slowdown. Experiments show that cholesky and dynprog suffer from L1 cache miss rate due to LR

mode while jacobi and seidel suffer from huge increase in dynamic instruction path length due to

the presence of loops that constitute most portion of the code but have poor coverage.

The following techniques can be used to overcome the mispeculation overhead due to function

calls:

• The compiler can be conservative and may not allow loops with function calls inside them

to be executed in parallel regardless of whether the function call changes the dependence

behaviour of the loop. In this heuristic, we might still miss some opportunities where the

function call is harmless.

• A more sophisticated inter-procedural dependence analysis technique is necessary that is able

to tell whether the function call introduces new dependences during run-time.

Table 5.2: The percentage of speculative threads successfully committed (not rolled back) for the
SPEC2006 and PolyBench/C benchmarks. The percentage gives the amount of wastage computa-
tion. Data is omitted for benchmarks that have no speculative loop.

Suite Benchmark Percentage of Speculative Committed

SPEC2006

lbm 94
h264ref 12
hmmer 79

mcf 68
sjeng 8

sphinx3 29
bzip2 78
milc 79
namd 80

PolyBench/C

gemm 89
jacobi 78

lu 89
seidel 70

cholesky 79
dynprog 82
fdtd 2d 68

The effect of using heuristic 1 on the SPEC2006 benchmarks is evaluated in the following section.

5.4.3 Filtering Loops with Function Calls that have Side Effects

As seen in Section 5.4.2, for the two benchmarks h264ref and sjeng, allowing speculative execu-

tion of loops with function calls introduces mispeculation overhead that results in slowdown. The

function calls inside the loop bodies introduce dependences across iterations of the loop during

48

run-time. Static dependence analysis of the compiler is not able to detect these dependences. An

inter-procedural dependence analysis with the help of profiling is difficult to perform.

In this section, the performance impact after preventing speculative execution of loops with func-

tion calls that may have side effects is explored.

As seen in Figure 5.3, preventing speculative execution of loops with function calls have a

Speculative Speculative+no.function.call
h264ref. 0.3 1.6
sjeng 0.5 1.1
hmmer. 1.2 1.5
sphinx3. 1.2 1.3
bzip2.. 1.2 1.2
mcf.. 2 2
namd 2.4 2.4
gobmk.. 1 1
milc. 1.5 1.5
lbm. 2.1 2.1

BenchmarkSpeculative Speculative+no.function.call
2mm 4 4
3mm 4 4
gemm 3.3 3.3
fdtdC2d 1 1
jacobi 0.8 0.8
lu 1.2 1.2
seidel 0.98 0.98
cholesky 0.9 0.9
dynprog 0.8 0.8
gramschmidt 1 1

TLS TLS+no.function.callOracle
h264ref. C70 30 40
sjeng C50 8 10
hmmer. 20 30 40
sphinx3. 20 30 30
mcf 100 130 140

0.
0.5.
1.

1.5.
2.

2.5.
3.

h264ref.. sjeng. hmmer.. sphinx3.. bzip2... mcf... namd. gobmk... milc.. lbm..

SPEC20061
SpeculaKve. SpeculaKve+no.funcKon.call.

0.

1.

2.

3.

4.

5.

2mm. 3mm. gemm. fdtdC2d. jacobi. lu. seidel. cholesky. dynprog. gramschmidt.

PolyBench/C1
SpeculaKve. SpeculaKve+no.funcKon.call.

C100.

C50.

0.

50.

100.

150.

200.

h264ref.. sjeng. hmmer.. sphinx3.. mcf.

Pe
rc
en

ta
ge
1c
ha

ng
e1
in
1

sp
ee
du

p1

Benchmarks1

TLS. TLS+no.funcKon.call. Oracle.

Figure 5.3: Percentage change in speedup of SPEC2006 benchmarks after filtering speculative exe-
cution of loops with function calls.

performance impact on the mcf, h264ref and sjeng benchmarks. The percentage of successfully

committed threads jumps up from 12% to 96% for h264ref and from 8% to 97% for sjeng. The per-

formance of mcf also goes very close to the performance of oracle. Performance does not degrade

for any of these benchmarks indicating that there is not any loop in these benchmarks that is hot and

has side-effect-free function calls.

The performance of the PolyBench/C benchmarks does not change when this heuristic is used

(p-value of 0.54 in student’s t-test). Mostly PolyBench/C benchmarks are kernel benchmarks and

the loops inside them do not contain function calls.

5.4.4 L1 Cache Miss Rate

One of the most dominant BG/Q TLS run-time overhead is caused by the loss of L1 cache support

due to the L1 flush and bypass needed for the bookkeeping of speculative state in L2. Though the

L2 and L1P buffer load latencies are 13x and 5x higher than the L1 load latency, the L1 miss rate

both for the sequential and parallel versions of the code gives an idea about the performance gain or

loss for the benchmarks.

The Hardware Performance Monitor (HPM) library of BG/Q is used to collect the L1 miss

statistics. Table 5.3 gives the L1 cache hit rate for the sequential version and the three parallel

versions of the SPEC2006 and PolyBench/C benchmarks. The speculative execution of sjeng results

in a high L1 miss rate. This high miss rate is the effect of flushing the L1 cache before entering

49

Table 5.3: L1 Cache hit rate (percentage) for the sequential and three parallel versions of the
SPEC2006 and PolyBench/C benchmarks.

Suite Benchmark Sequential SIMD AutoOMP Speculative

SPEC2006

lbm 95 94 94 93
h264ref 96 95 95 94
hmmer 98 97 97 95

mcf 92 92 95 95
sjeng 96 96 95 90

sphinx3 96 96 95 95
bzip2 95 95 95 97

gobmk 97 97 97 97
milc 95 97 97 98
namd 96 98 97 98

PolyBench/C

2mm 98 98 99 99
3mm 98 98 99 99
gemm 98 96 98 98

gramschmidt 97 97 97 97
jacobi 97 97 97 97

lu 96 96 95 96
seidel 98 97 98 98

cholesky 98 98 96 88
dynprog 97 96 97 90
fdtd 2d 98 98 98 98

the TLS region in the LR mode. Apart from the function calls that introduce data-dependences

(Table 5.2), the high L1 miss rate affects the performance for sjeng.

Similar effect can be seen for the two PolyBench/C benchmarks - cholesky and dynprog. Though

these two benchmarks have a high percentage of successful completion of speculative threads as seen

in Table 5.2, the speculative execution of the selected loops affects the cache performance due to

locality of data between threads. The cost of bringing the data again after flushing the cache accounts

for the slowdown in these benchmarks.

For jacobi and seidel benchmarks, though the speculative execution of the loops result in better

cache utilization, the benchmarks experience a slowdown. The reason for this slowdown is the

increase in instruction path length. The two benchmarks fdtd-2d and gobmk do not experience any

change in cache utilization for the three parallelization techniques (automatic OpenMP, SIMDization

and speculative parallelization), because there are no parallelizable loops.

5.4.5 Instruction Path length increase

Automatic OpenMP and speculative parallelization inserts call to OpenMP and TLS run-time func-

tions respectively in the parallelized loops. Code is also inserted for saving the consistent system

state so that the system can be rolled back to a previous state in case of a dependence violation and

thread squashing. The effect of TLS on code growth is shown in the results in Table 5.4.

The code growth for PolyBench/C benchmarks is higher than for SPEC2006 benchmarks. The

code growth is due to loops constituting a major portion of the PolyBench/C benchmarks. Applying

50

Table 5.4: Percentages of dynamic instruction-path-length increase of the three parallel versions of
the SPEC2006 and PolyBench/C benchmarks with respect to their sequential version.

Suite Benchmark SIMD AutoOMP Speculative

SPEC2006

lbm .03 % .25 % 26 %
h264ref .6 % 15 % 56 %
hmmer 10 % 35 % 37 %

mcf 0 % 12 % 23 %
sjeng 0 % 0 % 45 %

sphinx3 0 % 18 % 19 %
bzip2 0 % 2 % 3 %

gobmk 0 % 0 % 0 %
milc 0.9 % 12 % 23 %
namd 1 % 12 % 25 %

PolyBench/C

2mm 13 % 45 % 45 %
3mm 13 % 46 % 46 %
gemm 11% 45 45 %

gramschmidt 0 % 46 % 46%
jacobi 0 % 95 112 %

lu 1 % 12 % 13 %
seidel 0.02 % 98 % 123 %

cholesky 0 % 0 % 99 %
dynprog 0 % 0 % 75 %
fdtd 2d 0 % 0 % 79 %

parallelization to the loops affects the code size more significantly. For SPEC2006 benchmarks the

code growth is relatively smaller, the highest being for the speculative parallelization of the h264ref

benchmark because a large number of loops are speculatively parallelized for this benchmark (Ta-

ble 5.1).

As seen in Table 5.4, the two benchmarks jacobi and seidel, from the PolyBench/C benchmarks,

experience a huge code growth that explains their slowdown. Benchmarks such as cholesky, dynprog

and fdtd 2d also suffer code growth due to the presence of loops with poor coverage (see Table 5.1).

Therefore these kind of loops (that suffer code growth) are not good candidate for speculative exe-

cution.

5.5 Scalability

As technology scales, the number of cores that can be integrated onto a processor increases. Thus, it

is important to understand whether TLS can efficiently utilize all the available cores. In this section,

the scalability of TLS performance is studied for the SPEC2006 and PolyBench/C benchmarks by

comparing the speedup achieved using 2 to 64 threads. The results of this study are shown in

Figure 5.4 and 5.5.

51

2 4 8 16 32 64
milc+ 1.5 1.5 1.7 1.7 1.7 1.7
h264ref+ 1.6 1.6 1.7 1.8 1.7 1.7
lbm+ 2.1 2.1 2.5 2.5 2.6 2.6
sphinx3+ 1.3 1.3 1.4 1.3 1.3 1.3
bzip2++ 1.2 1.2 1.2 1.2 1.22 1.2
mcf++ 2 2 2.1 2.2 2.3 2.3
namd 2.4 2.4 2.5 2.6 2.6 2.6
hmmer+ 1.5 1.5 1.52 1.52 1.5 1.5
sjeng 1.1 1.1 1.2 1.2 1.2 1.2

2 4 8 16 32 64
gemm 3.3 3.4 3.5 3.5 3.5 3.5
fdtd>2d 1 1 1 1 1 1
jacobi 0.8 0.7 0.7 0.8 0.7 0.7
lu 1.2 1.3 1.3 1.2 1.2 1.1
seidel 0.98 0.98 0.98 0.98 0.98 0.98
cholesky 0.9 1 0.9 0.9 0.9 0.9
dynprog 0.8 0.8 0.9 0.8 0.8 0.8

0+

0.5+

1+

1.5+

2+

2.5+

3+

2+ 4+ 8+ 16+ 32+ 64+

Sp
ee
du

p&

Number&of&Threads&

SPEC2006&

milc++

h264ref++

lbm++

sphinx3++

bzip2+++

mcf+++

namd+

hmmer++

sjeng+

0+

0.5+

1+

1.5+

2+

2.5+

3+

3.5+

4+

2+ 4+ 8+ 16+ 32+ 64+

Sp
ee
du

p&

Number&of&Threads&&

PolyBench/C&

gemm+

fdtd>2d+

jacobi+

lu+

seidel+

cholesky+

dynprog+

Figure 5.4: Scalability of speculatively parallelized versions of the SPEC2006 benchmarks.

5.5.1 SPEC2006 Benchmarks

As seen in Figure 5.4, lbm, sphinx3, namd and h264ref contain a number of loops with good cover-

age. Therefore, these benchmarks show some scalability with the increasing number of threads.

mcf is a benchmark that scales up to 32 threads due to cache prefetching [37]. The performance

of milc scales up to 8 threads. For hmmer and sjeng the performance improvement for TLS is neg-

ligible in all configurations. While the reasons for the lack of scalability differ from benchmark to

benchmark, it is obvious that the amount of parallelism is limited.

5.5.2 PolyBench/C Benchmarks

Figure 5.5 shows the scalability of the speculative versions of the PolyBench/C benchmarks. There

is a little improvement for gemm but most of the other benchmarks experience no performance

change when number of threads is increased.

5.5.3 A Discussion on the Use of Clauses with the Basic TLS Pragma

All the experiments discussed so far uses the basic TLS pragma available for TLS in BG/Q (see

Section 2.4.2 of Chapter 2). But the bgxlc r compiler offers many OpenMP-like clauses that can be

used to optimize the performance of the speculative loop (see Appendix A to find the set of clauses

available in BG/Q). These clauses offer more flexibility in the following two aspects:

• Scoping of variables: The clauses default, shared, private, firstprivate and lastprivate give

the option to specify the scope of the variables used inside the loop.

• Work Distribution: The clauses num threads and schedule give the option to change number

52

2 4 8 16 32 64
milc+ 1.5 1.5 1.7 1.7 1.7 1.7
h264ref+ 1.6 1.6 1.7 1.8 1.7 1.7
lbm+ 2.1 2.1 2.5 2.5 2.6 2.6
sphinx3+ 1.3 1.3 1.4 1.3 1.3 1.3
bzip2++ 1.2 1.2 1.2 1.2 1.22 1.2
mcf++ 2 2 2.1 2.2 2.3 2.3
namd 2.4 2.4 2.5 2.6 2.6 2.6
hmmer+ 1.5 1.5 1.52 1.52 1.5 1.5
sjeng 1.1 1.1 1.2 1.2 1.2 1.2

2 4 8 16 32 64
gemm 3.3 3.4 3.5 3.5 3.5 3.5
fdtd>2d 1 1 1 1 1 1
jacobi 0.8 0.7 0.7 0.8 0.7 0.7
lu 1.2 1.3 1.3 1.2 1.2 1.1
seidel 0.98 0.98 0.98 0.98 0.98 0.98
cholesky 0.9 1 0.9 0.9 0.9 0.9
dynprog 0.8 0.8 0.9 0.8 0.8 0.8

0+

0.5+

1+

1.5+

2+

2.5+

3+

2+ 4+ 8+ 16+ 32+ 64+

Sp
ee
du

p&

Number&of&Threads&

SPEC2006&

milc++

h264ref++

lbm++

sphinx3++

bzip2+++

mcf+++

namd+

hmmer++

sjeng+

0+

0.5+

1+

1.5+

2+

2.5+

3+

3.5+

4+

2+ 4+ 8+ 16+ 32+ 64+

Sp
ee
du

p&

Number&of&Threads&&

PolyBench/C&

gemm+

fdtd>2d+

jacobi+

lu+

seidel+

cholesky+

dynprog+

Figure 5.5: Scalability of speculatively parallelized versions of the PolyBench/C benchmarks.

of threads and distribution of work among threads.

This case study illustrates the use of specific clauses to the lbm and h264ref benchmarks. This

choice of benchmarks is based on the fact that lbm has loops that are suitable for TLS execution and

h264ref has the highest number of speculatively parallelized loops. Clauses are manually added to

pragmas to study the performance impact of these clauses. This manual instrumentation opened the

opportunity to speculatively parallelize more loops. For example, the loop in Figure 5.6 from the

SPEC2006 lbm benchmark, is reported as dependent by the dependence analysis. Privatization of

the variables ux, uy, uz, u2 and rho allows the execution of this loop in parallel because the compiler

ensures that each thread has it’s own local copy of the value specified as private and the values are

duly forwarded among threads. The basic pragma is modified for the loop shown in Figure 5.6 as

follows:

#pragma speculative for private (ux, uy, uz, u2, rho)

This study also investigates the impact of different work distribution strategies on the TLS perfor-

mance for the speculatively parallelized loops for the two benchmarks. The performance evaluation

indicates that while the scoping of variables gives a very small improvement in performance of these

two benchmarks (.05 % and .01 % respectively for lbm and h264ref), the different work distribution

strategies do not change the performance at all.

But still the question remains whether there will be any significant performance change for other

benchmarks due to the modification of the basic pragma. Previous work mentions that finding the

best suited (OpenMP) pragma automatically in loops is non-trivial and needs programmer’s sup-

port [45, 51, 24]. One approach for automatic modification of the pragmas for work sharing is to use

machine-learning techniques [45, 51]. Auto-scoping of variables is still not supported in bgxlc r.

53

Techniques used by the Oracle’s Solaris compiler can be explored for auto-scoping [30].

5.6 Conclusion

In conclusion, this chapter shows that TLS is able to extract more parallelization from programs

than traditional parallelization techniques such as OpenMP and SIMDization. Using single input

dependence profiles, TLS candidate loops can be selected. However, there are different factors (e.g.

number and coverage of loops, mispeculation overhead, L1 cache misses, dynamic instruction path

length increase) that should be taken into consideration while selecting candidate loops for specula-

tion. Benchmarks such as lbm, that have loops with good coverage and without dependence viola-

tion, are well suited for TLS. SPEC2006 and PolyBench/C benchmark poorly scale with increasing

number of threads in BG/Q. This is expected because BG/Q was designed to run huge scientific

applications that run for hours and even days, not for benchmarks with maximum running time of

30 minutes. While TLS can be applied to applications similar to the SPEC2006 and PolyBench/C

benchmarks, the search remains open for an application that will have a much longer execution time

and will have loops that are better suited for TLS execution in BG/Q than short-running benchmarks.

54

double ux, uy, uz, u2, rho;

#pragma speculative for private(ux, uy, uz, u2, rho)

SWEEP_START(0, 0, 0, 0, 0, SIZE_Z)
if(TEST_FLAG_SWEEP(srcGrid, OBSTACLE)) {

DST_C (dstGrid) = SRC_C (srcGrid);
DST_S (dstGrid) = SRC_N (srcGrid);
DST_N (dstGrid) = SRC_S (srcGrid);
DST_W (dstGrid) = SRC_E (srcGrid);
DST_E (dstGrid) = SRC_W (srcGrid);
DST_B (dstGrid) = SRC_T (srcGrid);
DST_T (dstGrid) = SRC_B (srcGrid);
DST_SW(dstGrid) = SRC_NE(srcGrid);
DST_SE(dstGrid) = SRC_NW(srcGrid);
DST_NW(dstGrid) = SRC_SE(srcGrid);
DST_NE(dstGrid) = SRC_SW(srcGrid);
DST_SB(dstGrid) = SRC_NT(srcGrid);
DST_ST(dstGrid) = SRC_NB(srcGrid);
DST_NB(dstGrid) = SRC_ST(srcGrid);
DST_NT(dstGrid) = SRC_SB(srcGrid);
DST_WB(dstGrid) = SRC_ET(srcGrid);
DST_WT(dstGrid) = SRC_EB(srcGrid);
DST_EB(dstGrid) = SRC_WT(srcGrid);
DST_ET(dstGrid) = SRC_WB(srcGrid);
continue;

}

rho = + SRC_C (srcGrid) + SRC_N (srcGrid)
 + SRC_S (srcGrid) + SRC_E (srcGrid)
 + SRC_W (srcGrid) + SRC_T (srcGrid)
 + SRC_B (srcGrid) + SRC_NE(srcGrid)
 + SRC_NW(srcGrid) + SRC_SE(srcGrid)
 + SRC_SW(srcGrid) + SRC_NT(srcGrid)
 + SRC_NB(srcGrid) + SRC_ST(srcGrid)
 + SRC_SB(srcGrid) + SRC_ET(srcGrid)
 + SRC_EB(srcGrid) + SRC_WT(srcGrid)
 + SRC_WB(srcGrid);

ux = + SRC_E (srcGrid) - SRC_W (srcGrid)
 + SRC_NE(srcGrid) - SRC_NW(srcGrid)
 + SRC_SE(srcGrid) - SRC_SW(srcGrid)
 + SRC_ET(srcGrid) + SRC_EB(srcGrid)
 - SRC_WT(srcGrid) - SRC_WB(srcGrid);
uy = + SRC_N (srcGrid) - SRC_S (srcGrid)
 + SRC_NE(srcGrid) + SRC_NW(srcGrid)
 - SRC_SE(srcGrid) - SRC_SW(srcGrid)
 + SRC_NT(srcGrid) + SRC_NB(srcGrid)
 - SRC_ST(srcGrid) - SRC_SB(srcGrid);
uz = + SRC_T (srcGrid) - SRC_B (srcGrid)
 + SRC_NT(srcGrid) - SRC_NB(srcGrid)
 + SRC_ST(srcGrid) - SRC_SB(srcGrid)
 + SRC_ET(srcGrid) - SRC_EB(srcGrid)
 + SRC_WT(srcGrid) - SRC_WB(srcGrid);

ux /= rho;
uy /= rho;
uz /= rho;

if(TEST_FLAG_SWEEP(srcGrid, ACCEL)) {
ux = 0.005;
uy = 0.002;
uz = 0.000;

}

u2 = 1.5 * (ux*ux + uy*uy + uz*uz);
DST_C (dstGrid) = (1.0-OMEGA)*SRC_C (srcGrid) + DFL1*OMEGA*rho*(1.0 - u2);

DST_N (dstGrid) = (1.0-OMEGA)*SRC_N (srcGrid) + DFL2*OMEGA*rho*(1.0 + uy*(4.5*uy + 3.0) - u2);
DST_S (dstGrid) = (1.0-OMEGA)*SRC_S (srcGrid) + DFL2*OMEGA*rho*(1.0 + uy*(4.5*uy - 3.0) - u2);
DST_E (dstGrid) = (1.0-OMEGA)*SRC_E (srcGrid) + DFL2*OMEGA*rho*(1.0 + ux*(4.5*ux + 3.0) - u2);
DST_W (dstGrid) = (1.0-OMEGA)*SRC_W (srcGrid) + DFL2*OMEGA*rho*(1.0 + ux*(4.5*ux - 3.0) - u2);
DST_T (dstGrid) = (1.0-OMEGA)*SRC_T (srcGrid) + DFL2*OMEGA*rho*(1.0 + uz*(4.5*uz + 3.0) - u2);
DST_B (dstGrid) = (1.0-OMEGA)*SRC_B (srcGrid) + DFL2*OMEGA*rho*(1.0 + uz*(4.5*uz - 3.0) - u2);

DST_NE(dstGrid) = (1.0-OMEGA)*SRC_NE(srcGrid) + DFL3*OMEGA*rho*(1.0 + (+ux+uy)*(4.5*(+ux+uy) + 3.0) - u2);
DST_NW(dstGrid) = (1.0-OMEGA)*SRC_NW(srcGrid) + DFL3*OMEGA*rho*(1.0 + (-ux+uy)*(4.5*(-ux+uy) + 3.0) - u2);
DST_SE(dstGrid) = (1.0-OMEGA)*SRC_SE(srcGrid) + DFL3*OMEGA*rho*(1.0 + (+ux-uy)*(4.5*(+ux-uy) + 3.0) - u2);
DST_SW(dstGrid) = (1.0-OMEGA)*SRC_SW(srcGrid) + DFL3*OMEGA*rho*(1.0 + (-ux-uy)*(4.5*(-ux-uy) + 3.0) - u2);
DST_NT(dstGrid) = (1.0-OMEGA)*SRC_NT(srcGrid) + DFL3*OMEGA*rho*(1.0 + (+uy+uz)*(4.5*(+uy+uz) + 3.0) - u2);
DST_NB(dstGrid) = (1.0-OMEGA)*SRC_NB(srcGrid) + DFL3*OMEGA*rho*(1.0 + (+uy-uz)*(4.5*(+uy-uz) + 3.0) - u2);
DST_ST(dstGrid) = (1.0-OMEGA)*SRC_ST(srcGrid) + DFL3*OMEGA*rho*(1.0 + (-uy+uz)*(4.5*(-uy+uz) + 3.0) - u2);
DST_SB(dstGrid) = (1.0-OMEGA)*SRC_SB(srcGrid) + DFL3*OMEGA*rho*(1.0 + (-uy-uz)*(4.5*(-uy-uz) + 3.0) - u2);
DST_ET(dstGrid) = (1.0-OMEGA)*SRC_ET(srcGrid) + DFL3*OMEGA*rho*(1.0 + (+ux+uz)*(4.5*(+ux+uz) + 3.0) - u2);
DST_EB(dstGrid) = (1.0-OMEGA)*SRC_EB(srcGrid) + DFL3*OMEGA*rho*(1.0 + (+ux-uz)*(4.5*(+ux-uz) + 3.0) - u2);
DST_WT(dstGrid) = (1.0-OMEGA)*SRC_WT(srcGrid) + DFL3*OMEGA*rho*(1.0 + (-ux+uz)*(4.5*(-ux+uz) + 3.0) - u2);
DST_WB(dstGrid) = (1.0-OMEGA)*SRC_WB(srcGrid) + DFL3*OMEGA*rho*(1.0 + (-ux-uz)*(4.5*(-ux-uz) + 3.0) - u2);

SWEEP_END
}

Figure 5.6: A loop from the SPEC2006 lbm benchmark that needs additional clauses added to the
basic TLS pragma for better performance.

55

Chapter 6

Related Work

This chapter summarizes the related work on TLS and the use of profiling for speculation.

6.1 Thread Level Speculation

In one of the earlier works on TLS Franklin and Sohi propose Address Resolution Buffer (ARB),

a hardware mechanism, ARB, to perform dynamic reordering of memory references [17]. ARB

supports the following features: 1) dynamic disambiguation of memory references; 2) multiple

memory references per cycle; 3) out-of-order execution of memory references; 4) unresolved loads

and stores; 5) speculative loads and stores; and 6) memory renaming. ARB is a shared table that

is used to track speculative loads and stores. The scheme allows speculative loads and speculative

stores by keeping the uncommitted store values in the hardware structure and forwarding them to

subsequent loads that require the value.

Following the work by Franklin and Sohi, multiple proposals have been made to move specu-

lative data into each core’s private cache or write buffer and to use cache-coherence protocols for

memory disambiguation. In contrast to the ARB’s centralized support for speculative versions, Vi-

jaykumar et al. propose the Speculative Versioning Cache (SVC), that uses distributed caches to

eliminate the latency and bandwidth problems of ARB [47]. The SVC approach is based on unifi-

cation of cache coherence and speculative versioning and uses an organization similar to snooping

bus-based coherent caches. Memory references that get a hit in the private cache do not use the bus.

The committed tasks do not write back the speculative versions of data all at one time. Instead, ver-

sions are marked, together, as ‘committed’ at commit time, without performing any data movement.

Each cache line is individually handled when it is accessed the next time.

Hammond et al. describe the implementation of speculative execution in Hydra, a chip multi-

processor (CMP) [20]. Their approach is a hardware + software hybrid mechanism (introduction of

a number of software-speculation control handlers and modifications to the shared secondary cache

memory system of the CMP) to achieve TLS. They show that TLS is profitable for applications with

substantial amount of medium-grained loops. When the granularity of parallelism is too small, or

56

the available inherent parallelism in the application is low, the overhead of the software speculation

handlers overwhelms the potential performance benefits from TLS.

Steffan et al. propose and evaluate a TLS system that scales to a wide range of machine

sizes [43]. Their strategy is an extension of writeback invalidation-based cache coherence [28].

The scheme has: 1) a notion of whether a cache line has been speculatively loaded and/or specu-

latively modified and 2) a guarantee that a speculative cache line will not be propagated to regular

memory, and (3) that speculation will fail if a speculative cache line is replaced. They add three new

speculative coherence messages and speculative cache states to the cache coherence protocol. They

show that, using their model, applications scale from single-chip multiprocessors or simultaneously

multi-threaded processors up to large-scale machines that might use single-chip multiprocessors.

Ceze et al. describe an approach to disambiguate memory references so that the dependences

in the code can be checked during program execution and threads can be committed or rolled back

accordingly [6]. They hash-encode a thread’s access information in a signature, and then add opera-

tions that efficiently process sets of addresses from the signature. They employ a Bloom-filter-based

compact representation of a thread’s access information. Their mechanism is called Bulk operation

because they operate on a set of addresses. They show that, despite its simplicity, Bulk has compet-

itive performance with more complex schemes.

Steffan et al. show that the performance of a TLS system is dependent on the way threads com-

municate values among them [44]. They apply three different actions - value prediction, dynamic

synchronization and hardware instruction prioritization to improve value communication among

threads. Their technique first explores how silent stores (value of the memory location before the

store is the same as the value of the location after the store) can be exploited within TLS. The TLS

system avoids data-dependence violations and makes dependent store-load pair independent if the

store is silent. In this way the TLS system reduces the coherence traffic as well as future update

traffic. They also use some compiler heuristics to select loops for TLS (based on the execution time,

number of iterations of the loop) and apply compiler optimizations (e.g. loop unrolling and reduc-

tion of critical forwarding path of values between loop iterations) that significantly improve TLS

performance.

Loop Selection for Speculative Execution

Because loops are mostly targeted for speculative execution, different methodologies are proposed

to select candidate loops for speculative execution.

Colohan empirically studies the impact of thread size on the performance of loops [11]. He

employs different techniques to unroll loops to determine the best thread size per loop. He also

proposes a run-time system to measure the run-time performance of loops and select each loop dy-

namically. Due to the run-time overhead, the system can only select loops without considering loop

57

nesting.

Olukotun et al. propose and evaluate a static loop selection algorithm that selects the best loops

in each level of dynamic loop nest as possible candidates to be parallelized [36]. The algorithm

computes the frequency with which each loop is selected as best loop and select the parallelized

loops based on the computed frequencies. However, this technique is only used to guide the heuris-

tic in context-insensitive loop selection. The performance estimation of loops is obtained directly

from simulation, and does not consider the effect of different compiler optimizations on the loop’s

performance.

Chen and Olukotun propose a dynamic loop selection framework for Java program [7]. They

use hardware to extract useful information, such as dependence timing and speculative state require-

ments; and then estimate the speedup for a loop. Their technique is similar to the run-time system

proposed by Colohan and can only select loops within a simple loop nested program. Considering

the global loop nesting relations and selecting the loops globally introduces significant overhead for

the run-time system.

Marcuello et al. propose a thread spawning scheme that supports spawning threads from any

point in the program [32]. They use profile information to identify appropriate thread spawning

points with more emphasis on thread predictability.

Wang et al. propose different techniques to select loops for TLS [50]. They use a construct

called loop-graph that describes the different nesting relations among loops. Only one loop from a

loop nest is parallelized based on some heuristics. They use run-time profile information to measure

the performance improvement of parallelizing a loop. They also apply graph-pruning to reduce the

selection problem size (which is otherwise NP complete). Most importantly, they show that the dy-

namic behaviour of a loop is sensitive to its calling context (for some invocation, the loop may gain

performance improvement while for some invocations, it may not). They attach this calling context

information in the loop graph.

6.2 Profiling for Speculation

Ju et al. propose a unified framework to exploit both data- and control-speculation targeting specif-

ically for memory latency hiding [23]. The speculation is exploited by hoisting load instructions

across potentially aliasing store instructions or conditional branches. The framework also contains

recovery model that relies on compiler-generated explicit recovery blocks. Their framework shows

modest performance improvement in SPECInt95 benchmarks by shortening critical paths despite

some side effects, such as recovery code penalty during mispeculation and higher register pressures.

They use edge and path profiles to support control speculation.

Chen et al. propose a data-dependence profiler targeted at speculative optimizations [8]. They

perform speculative Partial Redundancy Elimination (PRE) and code scheduling, using a naive pro-

filer and speculative support provided through the ALAT (Advanced Load Address Table) in the

58

Itanium processors. Their non-sampling profiler has a slowdown of up to 100x, and they propose

sampling techniques to overcome this problem. They use a shadow space with a simple hashing

scheme to facilitate fast address comparison for detecting data-dependences.

Lin et al. propose a compiler framework that is based on a speculative SSA (Static Single As-

signment) form to incorporate speculative information for both data and control speculation [29].

Speculative SSA integrates the alias information directly into the intermediate representation (IR)

using explicit may modify operator and may reference operator. Their speculative analysis is as-

sisted by both alias profiles and heuristic rules.

The Multiscalar compiler selects tasks by walking the Control Flow Graph (CFG) and accumu-

lating basic blocks into tasks using a variety of heuristics [48]. The task selection methodology for

the Multiscalar compiler is revisited by Johnson et al. [22]. Instead of using a heuristic to collect

basic blocks into tasks, the CFG is annotated with weights and broken into tasks using a min-cut

algorithm. These compilers assume special hardware for dispatching threads; they do not specify

when a thread should be launched.

In SPSM, loop iterations are selected by the compiler as speculative threads [13]. SPSM uses a

special instruction fork that allows the compiler to specify when tasks begin executing. In addition,

SPSM recognizes the potential benefits from prefetching but proposes no techniques to exploit it.

Bhowmik and Franklin build a framework for speculative multithreading on the SUIF-MachSUIF

platform [5]. Within this framework, they consider dependence-based task selection algorithms.

Like Multiscalar, they focus on compiling the whole program for speculation, but allow the com-

piler to specify a spawn location as in SPSM.

Du et al. propose a cost-driven compilation framework to perform speculative paralleliza-

tion [12]. The compiler uses dependence-profile for task selection and for partitioning speculative

loops into serial and parallel portions. The profiler tracks both intra- and loop-carried- true depen-

dences for speculative loops. Loop-carried-dependences are used to guide the partitioning of loop

bodies into a serial and a parallel portion. Since dependences originated from the serial portion do

not trigger roll-back in the parallel portion, the key part of their framework is to move source compu-

tation of frequent dependences (called violating candidate) to the serial portion through instruction

reordering. A cost model is used to select the optimal loop partition, that is based on the size of serial

portion and the mispeculation cost of the parallel portion. The mispeculation cost is computed by

combining re-execution cost of individual nodes weighted by probabilities of carried-dependences

(for violating candidates) and intra-iteration dependences (for others). The framework delivers a 8%

speedup for the SPECInt2000 benchmarks.

Quinones et al. evaluate the Mitosis compiler for exploiting speculative thread-level paral-

lelism [40]. Mitosis compiler uses both dependence- and edge-profiles for: 1) generating speculative

precomputation slices (P-slice); and 2) selecting spawning pairs. P-slice predicts live-in values for

speculative tasks and contributes to the serial portion of the speculative execution. To minimize

59

P-slice overhead while maximizing the accuracy, the compiler uses dependence- and edge-profiles

to prune instructions in P-slices. To select spawning pairs, another profile analyzes the sequential

execution trace to model the speculative execution time of each candidate spawning pair without

considering inter-task memory conflicts. They show a 2.2x speedup for the OLDEN benchmarks on

their simulator.

Wu et al. propose a cost model for compiler-driven task selection for TLS [52]. The model

employs profile-based analysis of may-dependences to estimate the probability of successful spec-

ulation. Their profiling tool, DProf, is able to measure dependence probability and independence

window of loops. They provide two techniques: (1) dependence windows (the number of iterations

that can be executed in parallel without affecting the output) and (2) dependence clustering (regions

of the loop’s iteration space with large independence windows that makes that portion profitable to

execute in parallel). One important finding in their work is that there is little variability in indepen-

dence window width in the hot loops for the SPEC2000 benchmarks. Loops are either parallel or

serial with an independence window width of 1.

Kim et al. propose a scalable approach to data-dependence profiling that addresses both run-time

and memory overhead in a single framework [25]. Their technique, called SD3, reduces the run-time

overhead by parallelizing the dependence profiling step itself. To reduce the memory overhead, they

compress memory accesses that exhibit stride patterns and compute data-dependences directly in a

compressed format. For stride detection, they use a finite state machine (FSM). SD3 reduces the

run-time overhead by a factor of 9.7 on 32 cores and reduces memory consumption by 20x with a

16x speedup in profiling time. They also show that the dependence behaviour for different inputs

does not change for OmpSCR benchmarks and changes very less (correlation 0.98 among the de-

pendence pairs discovered in the loops) for SPEC2006 benchmarks.

POSH is a TLS compiler built on top of gcc [31]. POSH performs a partitioning of the code

into TLS tasks and considers both subroutines and loops. POSH also uses a simple profiling pass

to discard ineffective tasks. While choosing tasks beneficial for speculation, POSH considers the

task size and the squash frequency that is obtained by simulation of the parallel execution. L2 cache

misses are also considered by the profiler to perform prefetching analysis.

Vanka and Tuck use a set-based approach for data-dependence profiling [46]. Rather than track-

ing pair-wise dependences, they identify important dependence relationships at compile time, group

the relationships into sets, and then construct and operate directly on the sets at run-time. They use

Signatures, an efficient set representation based on Bloom filters, to to trade-off performance and

accuracy.

Though previous work [25, 14, 45] mention that there is little change in the variability of de-

pendence behaviour of loops with respect to different inputs, there has not been an extensive study

to support the claim. Therefore, there is no prior work to provide a solution to combine data-

dependence profiles for loops that have varied dependence behaviour with different inputs (for ex-

60

ample, the loop in the Convex Hull algorithm as described in Section 3.7 of Chapter 3). Also there

is no previous work on a detailed performance evaluation of TLS on real hardware and the different

factors that affect TLS. From the above two prospects, this research makes new contributions.

61

Chapter 7

Conclusion

Thread Level Speculation (TLS) is a promising technique to extract parallelism from a program by

providing the guarantee of correct execution even in the presence of dependences. Data-dependence

profiling is necessary for TLS because the mispeculation overhead may degrade the performance of

a program. But profile obtained from a single training run of the program is often not sufficient be-

cause Berube et al. [4] have shown that a program’s behaviour may change depending on the input.

Therefore the question remained open whether the dependence behaviour of loops changes based on

the input to the program.

To find an answer to the question, this research presented an implementation of a combined

dependence-profiling framework in the LLVM compiler infrastructure. A decision was made to

keep as much dependence information as is necessary to perform a profitability analysis to find

loops that are speculation candidate.

Previous work [25, 45] found some evidence that the dependence behaviour of loops does not

change based on inputs. In this research, a wide range of benchmarks was studied to investigate that

the previous claim that for most applications, a loop’s dependence behaviour does not change with

respect to inputs. This additional evidence will allow the future research in TLS to consider single

input data-dependence profiles to predict the dependence behaviour of a loop.

Despite the finding that a single-input profile is sufficient to predict the dependence behaviour

of a loop for most real-world applications, our investigation discovered a particular application (in-

cremental algorithm to build Convex Hull of a two-dimensional set of points [10]) that has a loop

with varied dependence behaviour across inputs. Executing the loop in the Convex Hull application

speculatively with different inputs in IBM’s BG/Q machine showed how the varied percentages of

dependences occurring during runtime have an impact on speculative execution. As more applica-

tions with similar behaviour are discovered, the proposed combined dependence-profiling method-

ology will become useful to perform a cost analysis to find speculation candidate loops based on

their probability of dependence.

Based on the finding that the loop’s dependence behaviour does not change based on input, a

performance evaluation of TLS applied to the SPEC2006 and PolyBench/C benchmarks was pre-

62

sented. Some simple heuristics that use single-input data-dependence profiles, were applied for the

performance evaluation. This research is the first performance evaluation of the TLS implementa-

tion in the BG/Q.

The automatic speculative parallelization framework, SpecEval, described in Chapter 4, per-

forms a single-input data-dependence profiling and uses the profile file to parallelize loops through

source-code annotation (TLS-specific pragma insertion). To find the may dependences inside the

loops of these benchmarks, two different static dependence analyzers were used: (1) Polly — the

polyhedral dependence analyzer [19]; and (2) the loop dependence analyzer in LLVM.

The experiments with Polly indicated that the coverage of the loops and the materialization of

may-dependences during run-time have impact on the TLS performance of the SPEC2006 and Poly-

Bench/C benchmarks. To study the impact of mispeculation, loops were speculatively executed in

parallel regardless of their coverage. To study the impact of profiling, loops were executed specu-

latively in parallel even if the may dependences inside them materialize during run-time. The main

finding was that thread creation overhead and the mispeculation overhead slows down the TLS per-

formance of some benchmarks.

However, filtering cold loops and loops with run-time dependence gave some performance im-

provement when applied with the automatic OpenMP parallelizer of Polly. Using SpecEval, 4x and

8.1x speedup were achieved for lbm and gemm respectively for 8 threads over the sequential version

compiled at the lowest optimization level (-O0) of the bgxlc r compiler. Results also showed that

only a few SPEC2006 benchmarks (lbm, milc, povray and bzip2) scaled with increasing number of

threads, indicating that there is limited speculative parallelism available for SPEC2006 benchmarks.

In the experiments with LLVM’s built-in dependence analyzer, it was evaluated how the SPEC2006

and PolyBench/C benchmarks perform when TLS is applied along with the existing auto-parallelizers

of the bgxlc r compiler, with the sequential code optimized at the highest optimization level (-O5) as

baseline . A study of performances of three parallel versions of the code such as: (1) automatically

SIMDized and (2) OpenMP + SIMD parallelized code by the bgxlc r compiler and (3) automatic

SIMDized + OpenMP parallelized + speculatively parallelized code; was done.

As expected, the speedups achieved from the three parallel versions were significantly lower

when the baseline was sequential code optimized at the highest optimization level, indicating the

high impact of sophisticated optimization techniques (e.g. loop unrolling, constant propagation,

inter-procedural optimizations etc.) that are turned on at the -O5 level. However, some benchmarks

(h264ref, sjeng, jacobi, cholesky and dynprog) experienced a slowdown due to TLS. The different

factors found to impact the TLS performance are as follows.

First, the number of loops and their coverage were found to have impact on TLS performance.

For instance, lbm’s performance improves under TLS due to the high coverage of speculative loops

but the TLS performance of sjeng, bzip2, mcf were negatively affected by the speculative execution

of cold loops.

63

Second, the mispeculation overhead due to speculative execution of loops with function calls

that introduce dependences during run-time had an impact on TLS performance. The newly intro-

duced dependences are not easily detected with off-line profiling due to the complexity of storing

the calling context for each callee and performing an inter-loop dependence analysis when the callee

has loops within.

Third, the flushing of the L1 cache before entering a speculative region for the Long-running

(LR) mode in BG/Q had an impact on the execution of benchmarks (cholesky and dynprog). There

is a need of support for Short-running (SR) TLS in BG/Q because it is necessary for these types of

applications. The SR implementation is the future plan of this research.

Lastly, the dynamic-path-length increased significantly due to speculative execution of loops

with a small iteration count that construct most portion of the code. These loops are not good can-

didates for TLS because the thread creation overhead limits the performance of these benchmarks.

In future TLS research, these factors should be considered while selecting TLS candidate loops.

Currently we are working on the implementation of TLS in the LLVM compiler. LLVM has already

been ported to BG/Q by Hal Finkel from Argonne National Laboratory. The plan is to implement

short-running (SR) mode along with the existing long-running (LR) mode for TLS and then use

heuristics that consider the aforesaid factors that impact TLS performance to select speculation can-

didate loops.

64

Bibliography

[1] SPEC2006 Benchmark suite. http://www.spec.org/cpu2006/.

[2] A.J. Bernstein. Analysis of programs for parallel processing. IEEE Transactions on Electronic
Computers, EC-15(5):757–763, 1966.

[3] Paul Berube. Methodologies for May-Input Feedback-Directed Optimization. PhD thesis,
University of Alberta, Fall 2012.

[4] Paul Berube, Adam Preuss, and José Nelson Amaral. Combined profiling: practical col-
lection of feedback information for code optimization. In Proceedings of the second joint
WOSP/SIPEW International Conference on Performance engineering, pages 493–498, Karl-
shure, Germany, 2011.

[5] Anasua Bhowmik and Manoj Franklin. A general compiler framework for speculative multi-
threading. In Proceedings of the fourteenth annual ACM symposium on Parallel algorithms
and architectures(SPAA), pages 99–108, Winnipeg, Manitoba, Canada, 2002.

[6] Luis Ceze, James Tuck, Josep Torrellas, and Calin Cascaval. Bulk Disambiguation of Spec-
ulative Threads in Multiprocessors. In International Symposium on Computer Architecture
(ISCA), pages 227–238, Boston, MA, USA, 2006.

[7] Michael K. Chen and Kunle Olukotun. The JRPM system for dynamically parallelizing Java
programs. In International Symposium on Computer Architecture (ISCA), pages 434–446, San
Diego, California, 2003.

[8] Tong Chen, Jin Lin, Xiaoru Dai, Wei-Chung Hsu, and Pen-Chung Yew. Data dependence pro-
filing for speculative optimizations. In Compiler Construction (CC), pages 57–72, Barcelona,
Spain, Mar-Apr 2004.

[9] Marcelo Cintra, Jose Martinez, and Josep Torrellas. Architectural Support for Scalable Spec-
ulative Parallelization in Shared-Memory Multiprocessors. In International Symposium on
Computer Architecture (ISCA), pages 13–24, Jun 2000.

[10] Kenneth L. Clarkson, Kurt Mehlhorn, and Raimund Seidel. Four results on randomized incre-
mental constructions. Comput. Geom. Theory Appl., 3(4):185–212, September 1993.

[11] Christopher Colohan. The Impact of Thread Size and Selection on the Performance of Thread-
Level Speculation. In Systems Design and Implementation seminar, CMU, Feb 2003.

[12] Zhao-Hui Du, Chu-Cheow Lim, Xiao-Feng Li, Chen Yang, Qingyu Zhao, and Tin-Fook Ngai.
A cost-driven compilation framework for speculative parallelization of sequential programs. In
Programming Language Design and Implementation (PLDI), pages 71–81, Washington DC,
USA, 2004.

[13] Pradeep K. Dubey, Kevin O’Brien, Kathryn M. O’Brien, and Charles Barton. Single-
program speculative multithreading (SPSM) architecture: compiler-assisted fine-grained mul-
tithreading. In International Conference on Parallel Architectures and Compilation Tech-
niques(PACT), pages 109–121, Limassol, Cyprus, 1995.

[14] K.-F. Faxen, K. Popov, L. Albertsson, and S. Janson. Embla - Data Dependence Profiling for
Parallel Programming,” Complex, Intelligent and Software Intensive Systems. In International
Conference on Complex, Intelligent and Software Intensive Systems, pages 780–785, Mar 2008.

[15] P. Feautrier. Array expansion. In International Conference on Supercomputing (ICS), July
1988.

65

[16] P Feautrier. Some efficient solutions to the affine scheduling problem. part 2. multidimensional
time. International Journal of Parallel Programming (IJPP), 21(6):389–420, 1992.

[17] Manoj Franklin and Gurindar S. Sohi. ARB: A Hardware Mechanism for Dynamic Reordering
of Memory References. IEEE Transaction on Computers, 45(5):552–571, May 1996.

[18] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler, and O. Temam. Semi-
automatic composition of loop transformations for deep parallelism and memory hierarchies.
International Journal of Parallel Programming (IJPP), 34(3):261–317, July 1988.

[19] Tobias Grosser, Hongbin Zheng, Raghesh A, Andreas Simbürger, Armin Grosslinger, and
Louis-Noël Pouchet. Polly - Polyhedral optimization in LLVM. In International Workshop
on Polyhedral Compilation Techniques (IMPACT), Chamonix, France, Apr 2011.

[20] Lance Hammond, Mark Willey, and Kunle Olukotun. Data speculation support for a chip mul-
tiprocessor. In International Conference on Architectural support for programming languages
and operating systems (ASPLOS), pages 58–69, San Jose, California, USA, 1998.

[21] R.A. Haring, M. Ohmacht, T.W. Fox, M.K. Gschwind, D.L. Satterfield, K. Sugavanam, P.W.
Coteus, P. Heidelberger, M.A. Blumrich, R.W. Wisniewski, A. Gara, G.L.-T. Chiu, P.A. Boyle,
N.H. Chist, and Changhoan Kim. The IBM Blue Gene/Q compute chip. Micro, IEEE, 32(2):48
–60, March-April 2012.

[22] Troy A. Johnson, Rudolf Eigenmann, and T. N. Vijaykumar. Min-cut program decomposition
for thread-level speculation. In Programming Language Design and Implementation (PLDI),
pages 59–70, Washington DC, USA, 2004.

[23] Roy Dz-ching Ju, Kevin Nomura, Uma Mahadevan, and Le-Chun Wu. A Unified Compiler
Framework for Control and Data Speculation. In International Conference on Parallel Ar-
chitectures and Compilation Techniques(PACT), pages 157–168, Philadelphia, Pennsylvania,
USA, 2000.

[24] M. Kim, H. Kim, and C. Luk. Prospector: A dynamic data-dependence profiler to help parallel
programming. In Proceedings of the USENIX workshop on Hot Topics in parallelism (HotPar),
2010.

[25] Minjang Kim, Hyesoon Kim, and Chi-Keung Luk. SD3: A Scalable Approach to Dynamic
Data-Dependence Profiling. In International Symposium on Microarchitecture(MICRO), pages
535–546, 2010.

[26] Xiangyun Kong, David Klappholz, and Kleanthis Psarris. The I Test: A New Test for Subscript
Data Dependence. In International Conference on Parallel Processing (ICPP), pages 204–211,
1990.

[27] Chris Lattner. The LLVM Compiler Infrastructure. http://llvm.org.

[28] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Anoop Gupta, and John Hennessy.
The directory-based cache coherence protocol for the DASH multiprocessor. ACM, 18(3a),
1990.

[29] Jin Lin, Tong Chen, Wei-Chung Hsu, Pen-Chung Yew, Roy Dz-Ching Ju, Tin-Fook Ngai, and
Sun Chan. A compiler framework for speculative analysis and optimizations. In Programming
Language Design and Implementation (PLDI), pages 289–299, San Diego, California, USA,
Jun 2003.

[30] Y. Lin, C. Terboven, D. Mey, and N. Copty. Automatic scoping of variables in parallel regions
of an openmp program. WOMPAT, 3349:83–97, 2004.

[31] Wei Liu, James Tuck, Luis Ceze, Wonsun Ahn, Karin Strauss, Jose Renau, and Josep Torrellas.
POSH: a TLS compiler that exploits program structure. In Proceedings of the eleventh ACM
SIGPLAN symposium on Principles and practice of parallel programming(PPoPP), pages
158–167, New York, New York, USA, 2006.

[32] Pedro Marcuello, Antonio González, and Jordi Tubella. Speculative multithreaded processors.
In International Conference on Supercomputing (ICS), pages 77–84, Melbourne, Australia,
1998.

[33] M.Wolfe. High performance compilers for parallel computing. Addison Wesley, 1996.

66

[34] NASA. NAS parallel benchmarks. http://www.nas.nasa.gov/publications/npb.html.

[35] University of Maryland and Intel. Biobench/bioparallel: A benchmark suite for bioinformatics
applications. http://www.ece.umd.edu/biobench/.

[36] K. Olukotun, L Hammond, and M Willey. Improving the Performance of Speculatively Parallel
Applications on the Hydra CMP. In International Conference on Supercomputing (ICS), pages
21–30, Rhodes, Greece, June 1999.

[37] Venkatesan Packirisamy, Antonia Zhai, Wei-Chung Hsu, Pen-Chung Yew, and Tin-Fook Ngai.
Exploring speculative parallelism in SPEC2006. In International Symposium on Performance
Analysis of Systems and Software(ISPASS), pages 77–88, 2009.

[38] Louis-Noël Pouchet. PolyBench/C Benchmarks. http://www.cse.ohio-
state.edu/ pouchet/software/polybench/.

[39] W Pugh. The omega test: a fast and practical integer programming algorithm for dependence
analysis. In International Conference on Supercomputing (ICS), pages 4–13, Aug 1991.

[40] Carlos Garcia Quinones, Carlos Madriles, Jesús Sánchez, Pedro Marcuello, Antonio González,
and Dean M. Tullsen. Mitosis compiler: an infrastructure for speculative threading based on
pre-computation slices. In Programming Language Design and Implementation (PLDI), pages
269–279, Chicago, IL, USA, 2005.

[41] Lawrence Rauchwerger and David Padua. The LRPD Test: Speculative Run-Time Paralleliza-
tion of Loops with Privatization and Reduction Parallelization. In Programming Language
Design and Implementation (PLDI), pages 218–232, 1995.

[42] B. Steensgaard. Points-to analysis in almost linear time. In Principles of Programming lan-
guages (POPL), pages 21–24, Jan 1996.

[43] J. Greggory Steffan, Christopher Colohan, Antonia Zhai, and Mowry Todd. A scalable ap-
proach to thread-level speculation. In International Symposium on Computer Architecture
(ISCA), pages 1–12, 2000.

[44] J. Gregory Steffan, Christopher B. Colohan, Antonia Zhai, and Todd C. Mowry. Improv-
ing Value Communication for Thread-Level Speculation. In Proceedings of the 8th Inter-
national Symposium on High-Performance Computer Architecture, pages 65–76, Cambridge,
Mass,USA, 2002.

[45] Georgios Tournavitis, Zheng Wang, Björn Franke, and Michael F.P. O’Boyle. Towards a
holistic approach to auto-parallelization: integrating profile-driven parallelism detection and
machine-learning based mapping. In Programming Language Design and Implementation
(PLDI), pages 177–187, Dublin, Ireland, 2009.

[46] Rajeshwar Vanka and James Tuck. Efficient and accurate data dependence profiling using
software signatures. In Code Generation and Optimization (CGO), pages 186–195, San Jose,
California, 2012.

[47] Gopal Vijaykumar, Smith, and Sohi. Speculative versioning cache. In International Symposium
on High-Performance Computer Architecture, pages 195–205, Feb 1998.

[48] T. N. Vijaykumar and Gurindar S. Sohi. Task selection for a multiscalar processor. In Interna-
tional Symposium on Microarchitecture(MICRO), pages 81–92, Dallas, Texas, USA, 1998.

[49] Amy Wang, Matthew Gaudet, Peng Wu, José Nelson Amaral, Martin Ohmacht, Christopher
Barton, Raul Silvera, and Maged Michael. Evaluation of blue Gene/Q hardware support for
transactional memories. In PACT, pages 127–136, 2012.

[50] Shengyue Wang, Xiaoru Dai, KiranS. Yellajyosula, Antonia Zhai, and Pen-Chung Yew. Loop
Selection for Thread-Level Speculation. Languages and Compilers for Parallel Computing,
4339:289–303, 2006.

[51] Zheng Wang and Michael F.P. O’Boyle. Mapping parallelism to multi-cores: a machine learn-
ing based approach. In Principles and practice of parallel programming(PPoPP), pages 75–84,
2009.

[52] Peng Wu, Arun Kejariwal, and Călin Caşcaval. Compiler-Driven Dependence Profiling to
Guide Program Parallelization. Languages and Compilers for Parallel Computing, pages 232–
248, 2008.

67

[53] Polychronis Xekalakis, Nikolas Ioannou, and Marcelo Cintra. Combining thread level specu-
lation helper threads and runahead execution. In International Conference on Supercomputing
(ICS), pages 410–420, 2009.

68

Appendix A

TLS Specific Compiler Pragmas in
bgxlc r

The following clauses can be used along with the ‘#pragma speculative for’ of the bgxlc r compiler1.

A.1 #pragma speculative for

The speculative for directive instructs the compiler to speculatively parallelize a for loop.

A.1.1 Syntax

The pragma can be used as #pragma speculative for clause where clause can be one of the following:

• default (shared/none): Defines the default data scope of variables in each thread. Specifying

default (shared) is equivalent to stating each variable in a shared (list) clause. Specifying

default (none) requires that each data variable visible to the parallelized statement block must

be explicitly listed in a data scope clause, with the following exceptions:

1. The variables are const-qualified.

2. The variables are specified in an enclosed data scope attribute clause.

3. The variables are used as a loop control variable referenced only by a corresponding

speculative for directive.

• shared (list): Declares the scope of the comma-separated data variables in list to be shared

across all threads.

• private (list): Declares the scope of the data variables in list to be private to each thread. Data

variables in list are separated by commas.

• firstprivate (list): Declares the scope of the data variables in list to be private to each thread.

Each new private object is initialized with the value of the original variable as if there was

1Available at http://www-01.ibm.com/support/docview.wss?uid=swg27027065&aid=1

69

an implied declaration within the statement block. Data variables in list are separated by

commas.

• lastprivate (list): Declares the scope of the data variables in list to be private to each thread.

The final value of each variable in list, if assigned, is the value assigned to that variable in the

last iteration. Variables not assigned a value have an indeterminate value. Data variables in

list are separated by commas.

• num threads (int exp): The value of int exp is an integer expression that specifies the num-

ber of threads to use for the parallel region. If dynamic adjustment of the number of threads

is also enabled, then int exp specifies the maximum number of threads to be used.

• reduction (operator: list): Performs a reduction on all scalar variables in list using the spec-

ified operator. Reduction variables in list are separated by commas. operator can be one of:

+, -, |, ˆ, ||, *, & and &&.

• schedule (type): Specifies how iterations of the for loop are divided among available threads.

Thread-level speculative execution supports static scheduling. Acceptable values for type are

as follows:

1. static: Iterations of a loop are divided into chunks of size:

ceiling(number of iterations/number of threads).

Each thread is assigned a separate chunk. This scheduling policy is also known as block

scheduling.

2. static,n: Iterations of a loop are divided into chunks of size n. Each chunk is assigned

to a thread in round-robin fashion. n must be an integral assignment expression of value

1 or greater. This scheduling policy is also known as block cyclic scheduling. If n=1,

iterations of a loop are divided into chunks of size 1 and each chunk is assigned to a

thread in round-robin fashion.

A.1.2 Usage

The directives for thread-level speculative execution only take effect if the user specifies the -

qsmp=speculative compiler option. The speculative for directive must immediately precede a for

loop. The user cannot create a local object of variable length array within a thread-level speculative

execution region.

70

