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Before earth and sea and heaven were created, all things wore one aspect, to 
which we give the name of Xaoc; -  a confused and shapeless mass, nothing 
but dead weight, in  which, however, slumbered the seeds o f things. Earth, 
sea and air were all mixed up together; so the earth was not solid, the sea 
was not fluid, and the air was not transparent.

Thomas Bulfinch, Mythology

Chaos umpire sits,
And by decision more embroils the fray 
By which he reigns: next him high 
Chance governs all.

John M ilton , Paradise Lost,
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A b stract

Description o f multiphase flows, such as m ixtures of gas and solid particles, requires 

knowledge o f the coupling between the momenta o f the granular and flu id  phases - the 

interphase drag. The determ ination o f this quantity  is the main topic o f this thesis. 

A fte r an extensive review of previous approaches, the Navier-Stokes equation for the 

flow between particles is solved by means o f an “electric network analogy” . Since the 

calculations are easy in the case of a flow of irregular assemblages o f particles, the main 

part of the analysis is devoted to the investigation o f the im pact o f disorder. I t  is found 

tha t irregular weighted hydraulic networks feature significant correlations, in contrast to 

regular networks. Additiona lly, the disorder causes local flows to develop large spatial 

fluctuations.
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P reface

I f  you live in Edmonton you can easily get to the real origins o f th is work. Pack 
your car on early Saturday m orning and drive i t  north  sticking to Highway 63; after 
couple o f hours you w ill reach Athabasca O il Sands Deposit. Athabasca Fields contain 
more o il than all known reserves in the M iddle East, trapped in  greasy soils ju s t beneath 
A lbe rta ’s plains, but as distinguished from ligh t green-gold stocks o f Southern Arabia, 
th a t you could almost d irectly  feed your m otor w ith , o il extracted in Fort Mc.Murray 
resembles more black tar. Th is unpleasant substance is called bitum en or “energetic 
future o f Canada” .

The long hydrocarbons i t  contains are useless, unless in  the process o f thermocracking 
they are cut in to  smaller chains. The cata lytic  reaction is performed on the surface o f fine 
coke particles suspended in the stream of pressurized steam in huge chemical reactors. 
M ix tu re  of b itum en and steam is injected into the reactor using sonic nozzles and in 
the perfect picture every fine droplet o f oil meets coke particle, which i t  covers. Coke 
particles decrepitated in external burner serves as a source o f energy for the cracking 
to occur and the ligh t fractions of oil produced in this process are collected at the top 
of the reactor. Unfortunate ly the rea lity does not match this idealized description: oil 
and coke form large conglomerates, which are to heavy to be suspended by steam. They 
fall down, slowly blocking the reactor; at some point the process need to be stopped 
and the chamber cleared. The righ t design o f the reactors is the key to achieve high 
p roduc tiv ity  and small losses. Efficient reactors mean m in im ization  o f the costs o f energy 
and what follows m axim ization of profit, but also the protection o f natura l environment. 
Unfortunate ly it  is almost impossible to experiment w ith  the real reactors, so instead 
models need to be created. They may be laboratory m iniatures o f real chemical plants, 
but also numerical simulations o f such systems. M y group concentrates on the second 
task.

Computer studies o f multiphase flows, which essentially occur in our reactors, are 
s till in the phase o f development. One of the most im portan t phenomenon they must 
grasp is tha t the discrete solids phase (coke particles) can exchange momentum w ith  the 
conveying flu id. Understanding o f this process became the m ajor goal o f this thesis.

Part I o f the work opens w ith  the exposition o f hydrodynam ical formalism and its 
generalizations leading to the description o f multiphase flows (Chapter 1). In this chapter 
the quantity  of main interest, i.e. the momentum exchange or interphase drag, is form ally 
defined. Next, in Chapter 2, I review the existing experimental and theoretical work 
devoted to this quantity  and introduce several im portant concepts, especially the notion 
o f momentum transfer coefficient, (3, which is central in the subsequent considerations. 
Chapter 3 deals w ith  the especially promising hydraulic network method for describing 
flows in complicated geometries. From now on, in Part II, the thesis concentrates solely 
on this approach. Chapters 4 and 5 contain analytical studies. The first one deals 
w ith  flow in periodic media, which are the starting  po in t for modeling realistic, i.e. 
disordered, systems. In the la tte r several concepts developed for regular arrays of particles 
are translated in to  language o f irregular sets o f points, especially the “ uniform  gradient

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



hypothesis” . To verify i t  a series of direct numerical simulations o f hydraulic networks 
is undertaken; the simulations are presented in Chapter 6 w ith  the attention focused on 
the im pact o f disorder. Chapter 7, summarizing the work, points also the directions of 
fu rther research.
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Chapter 1

Formulation of the problem

The importance of flu id mechanics need not to be emphasized. The spectrum of applica­
tion ranging from the construction of airplanes to the design o f chemical reactors clearly 
reveals the great practical importance o f our work. F lu id mechanics has deeply rooted 
in the landscape of human scientific and technical activ ity. Flows in trigue us nowadays 
in the same way as rain and wind used to absorb our wood-dwelling forefathers, forcing 
them to become cave-dwellers, and like for Archimedes fluids are s till a source o f reve­
lations, making excited Eup7]xa’s sound in numerous graduate offices around the world. 
Furthermore hydrodynamics repeatedly does not fail to be an inspiration and source of 
decent living. Exactly like in the times of Vikings, who b u ilt the ir ships to travel to 
distant and prosperous lands to share their cultura l experience and European sense of 
humor, i t  allows us to travel and earn money, however a b it faster. B u t apart from this 
earthen mission hydrodynamics appears as one of the greatest scientific achievements of 
physics though, like any decent scientific quest, it  s till avoids our fu ll understanding.

The first form ulation o f the modern hydrodynamics is associated w ith  the tu rn  of eigh­
teen and nineteen century and the remarkable names like Claude Louis Navier, Simeon 
Poisson, George Stokes, Leonhard Euler or Joseph Louis Lagrange, to  mention jus t the 
few. Their understanding of flu id mechanics did not differ from the modern one, at least 
as far as lam inar flows are concerned, nevertheless the mankind had to wait another 
half of the century for the explanation of the flow phenomena, especially viscosity, in 
terms o f the first, principles. It was statistical mechanics, which facilita ted tha t. Forming 
the cornerstone o f the heat theory, works of Ludw ig Boltzm ann and especially his H  
theorem in itia te  the kinetic theory of gases and hence modern hydrodynamics, where 
viscosity appears as a calculable parameter of the system and does not need to be taken 
solely from the experiment. The twentieth century flu id mechanics went beyond lam inar 
approximation and brought up its own heroes, whose names again sound fam iliar to al­
most everybody: Ernst Mach, Theodore von Karman and Ludw ig P randtl (the fathers of 
modern aeronautics) and o f course Osborne Reynolds, again to perform  unjust selection.

In  this chapter I present theoretical foundations of the hydrodynamics to celebrate the 
joy once more. F irst a brief in troduction to kinetic theory is given, which is then followed 
by the sketch o f a derivation o f Navier-Stokes equation from the Boltzmann transport
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CHAPTER 1. FORMULATION OF THE PROBLEM 3

equation. Subsequently I investigate the possibilities o f solution o f the Navier-Stokes 
equation and some of its general properties, discussing several im portan t examples. Next 
a theory of two phase flow is exposed for the lim ited case o f d ilu te  suspension o f spheres 
and supplemented w ith  a heuristic generalization. In th is po in t I am able to formulate 
the main goal o f the thesis which is a calculation o f the interphase drag F. The chapter 
ends w ith  a few comments on the granular gases, which used to be (and s till are) o f our 
great interest.

1.1 H ydrodynam ics as the problem  of kinetic theory

The contents of this section is based p rim arily  on the classic textbook Statistical mechan­
ics by Kerson Huang (|47j).

We are interested in a collection o f N  molecules in a container o f volume V . L e t’s set 
the righ t length scales first. We assume that, the temperature T  is high enough and the 
density is sufficiently low so th a t the each molecule may be considered as a classical par­
ticle w ith  well defined position and momentum; particles are in general distinguishable. 
This requires the average de Broglie wavelength to be smaller then average in terpartic le  
separation

h ( N  \ ] / 2 
V2mkBT \ V )  ^  ’

where Icq ~  1.38 x 10~8 J K _1 is a Boltzmann constant and h «  1.055 x  10~34 Js is a 
P lanck’s constant. This means tha t we do not need to worry about quantum  effect such 
as superflu id ity and we w ill work w ith  Boltzmann energy d is tribu tion , not d ifferentia ting 
between fermions and bosons. Furthermore we w ill assume th a t masses o f the fluids 
under consideration are small enough so the “self-gravitation” effects do not m atte r and 
we w ill not end up in  a black hole (however we do not discard the effects o f gravita tiona l 
interactions o f the flu id w ith  other bodies). C learly Newtonian mechanics applies. This 
statement o f the ontological status s till leaves us a lo t o f space.

The molecules are fu rther assumed to be o f the single kind, having equal masses m  
and interacting via collisions w ith  scattering cross section <r(fi), where f i  stands for the 
scattering angle.

1.1.1 B o ltzm an n  ti*ansport equation

We are not interested in the history of the particu lar molecules, but rather in  the ir 
d is tribu tion  function / ( r ,  v , f ) ,  which is so defined tha t

/ ( r, v, t)d'Vd3e

denotes the number o f molecules in the element (P rdAv  o f position-velocity phase space 
around ( r , v )  at tim e f, r  is a position o f the particle and v  its velocity. The function is
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CHAPTER 1. FORMULATION OF THE PROBLEM 4

normalized as follows

J  / ( r , v , f ) d 'V i3u =  TV.

The equation for the evolution o f / ( r, v , t)  can be obtained from the particle number 
conservation law and second Newton law

( l +v-v' +s - v0« r-v- ' ) - ( i L -  (UJ)
F is an external force acting on a particle. I f  the particles did not in teract they would 
move in the phase space on the trajectories characterized by 0 on the RHS of the equation 
(1.1.1). The term (<9f/)coii describes therefore the rate of change of these trajectories due 
to collisions and it  can be calculated from the analysis of particles’ interaction. The 
equation is useless w ithou t exp lic it determ ination o f this term; the method to deal w ith  
it  is due to Boltzmann.

The following sim plification are necessary

i. only the collisions between two particles (binary collisions) are im portant, since the 
flu id is not too dense. Particles 1 and 2 w ith  velocities {v],v<2 } collide conserving 
momentum and energy and enter the state { v ) , v(>}.

ii. the velocity o f the molecule in uncorrelated w ith  its position. This is the famous 
Boltzm ann’s assumption o f molecular chaos. This is exactly the moment where the 
irreversib ility  enters our formalism.

Few more technical assumption have to made; they are listed in  [47].
Under these assumptions we are able to calculate RHS in terms o f /  and parameters 

of b inary collision and w rite  Boltzmann transport equation

im + Vl ' V r +  ^  ' V v i ) 71 =  [ dn [  cfv*aW “  V2 l( /2 /l  -  /2 /1 ). (1.1.2)

where a ( f l)  is d ifferential cross-section for the collision

{ v i , v 2} -» { v ' j . v ^ }  

and the following notation was used

f i = f ( r , v \ , t )

f ‘2 =  f ( r , y 2 , t )

f i  =  n r y u t)

f ' l  =  / ( r .  V2 , t).

Note tha t only Vj is an independent variable in this equation since an integration is 
performed over v 2 and pa ir { v ' j , v .j} is single valued function o f the velocities before 
collision.
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This integro-differential equation was published together w ith  the famous H-theorem 
by Boltzmann in 1872. Function / ( r, v , t) used as a weight enables us to calculate macro­
scopic properties o f our system.

Let us note, following Huang, tha t (1.1.2) is only an approximation based on the 
va lid ity  of the assumption of molecular chaos; i t  cannot predict for example the emergence 
o f Brownian motion.

I t  is re lative ly easy to  construct the solution o f (1.3.2) for isotropic system in equilib­
rium  (when / ( r ,  v , t )  depends exp lic itly  neither on tim e nor on r )  and when the external 
forces may be neglected. This solution is called Maxwell-Boltzmann distribution  and has 
the following form

/o(v) =  C exp[-A (v -  v0)'2], (1.1.3)

where Vo denotes average velocity o f molecules. C  and A  are constants and we w ill come 
back to them later.

There are two interesting facts about (1.1.3). I t  is independent o f the details of 
molecular interactions. As long as the la tte r exist the gas in equilibrium  w ill be described 
by (1.1.3). Second, it  may be proved tha t this is the most, probable d is tribu tion , i.e. 
(overwhelming) m a jo rity  of the systems composing an ensemble is characterized by /q.

1.1 .2  C onservation  th eorem

Let us assume that we obtained a solution to Boltzmann transport equation. Now we 
are able to build macroscopic quantities (averages) by using /  as a weight

where

(A) ( r , t )  =  \ J  4 /V i:V

n ( r ,  t )  ee I  f d 3v.

For the quantities y , which are conserved in the b inary collision, we can derive from 
Boltzmann transport equation the following conservation theorem

! < " * > + ■ ” ( ” ' § ■ )  ■ s K ^ f e )  -  -  °- (1X4)

We are pa rticu la rly  interested in the following invariants

X —rn (mass), (1.1.5a.)

y  — rnvi, (:i, — 1, 2, 3) (momentum), (1.1.5b)

X = i m ( v - ( v ) ) 2 (therm al energy), (1.1.5c)
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(mass density), (1.1.7a)

(average local velocity), (1.1.7b)

(average particle energy -  temperature), (1.1.7c)

(heat flux vector), (1.1.7d)

(pressure tensor), (1.1.7e)

(1.1.7f)

for which the following three conservation laws can be derived

4- V  • (pu) =  0 (conservation o f mass), (1.1.6a)

+  u ' =  “ F  — V  ■ P  (conservation o f momentum), (1.1.6b)

/ o  s 2  2 <—> < >
+  u • V J0  =  — • q — -  P  : A (conservation of energy), (1.1.6c)

using the following definitions

p{r, f)  =  m n (r, t) 

u (r , t) =  (v)

0(r . 0  =  <(v -  u )2) =  A:bT

q (r,0  =  ^ ? ? i p ( ( v - u ) ( v - u ) 2)

Pi j (r ,  0  =  /»((«/ -  “ i)(wj -  «j)>
. . 1 /<9«; Pa.x
A« (r-4 ) s 2ro( ^ + f l i ) -

Word about notation. T  denotes tensor quantity  and the operation T  : T  stands 
for the product tha t saturates both pairs of indexes, Y li

These relations are exact, but do not bring anything interesting unless we are able 
to calculate the above averages. I t  turns out however th a t they are sufficient to give 
meaning to constants A  and C  in (1.1.3)

/o (v)=” (S)1/2 exp [- S(v ■vo)2] ■ <1 ■1 '8)
1.1 .3  A p p rox im ate so lu tion s

Let us take a look on function /q given by (1.1.8). I t  describes spatia lly  homogeneous 
system in its steady state and therefore does not really interests us, because in such 
system neither flow (different, from triv ia l case v  =  Vo ^  0) nor even variations o f the 
temperature are possible -  we want to go beyond equilibrium  states. Nevertheless as 
a first approach the following picture may be taken. Let us assume tha t the system is 
in equilibrium  everywhere and all the time, but only locally, i.e. tha t time and spatial 
variations exist, but are small. More precisely «, 9 and u in (1.1.8) are slowly varying 
functions o f t and r.

This approximation can be put on more quantita tive footing. I f  we have in itia lly  
system out of equilibrium  (say because different spatial parts o f the system have different 
temperatures) we expect tha t after some time it  w ill reach the steady, homogeneous state. 
The mechanism responsible for the energy transport are clearly molecular collisions. We 
can estimate so called mean free path A, i.e. average distance traveled by a molecule
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between the collisions

A  — , (1.1.9)
rccjtot,

<7 tot is the collision cross-section integrated over angles. We may now say tha t i f  the 
spatial variations are on the scales much large tlum  A our approxim ation should work 
quite well. In the same manner we can treat, time variations by an in troduction  o f collision 
time (average time between collisions)

r ~ - .  ( 1 .1 .1 0 )
v '

where v — \/2 k n T /m .  Exem plary values (nitrogen in normal conditions) are

A ~  10- 'm  

T ~  10~ 9 S

and clearly indicate th a t in the most cases our zeroth-order approxim ation should be 
at least reasonable. O f course we can treat in  the same manner quantities other than 
temperature.

I f  we take /  =  /o to calculate averages our mass conservation law (1.1.6a) w ill not 
change and the la tte r two (( 1 .1 .6 b) Sz ( 1 .1 .6 c)) w ill take the following form

p ( t t  + u • v'ju =  — F -  V p  (Eu ler’s equation), (1.1.11a)
\ a t  J rn

( |  +  u . v ) 0  =  - i - ( V . u ) 0 , ( 1 .1 .1 1 b)

where cy — \  and p denotes local hydrostatic pressure. The firs t o f the above equations
was given by Euler in  1755 and describes the flow o f nonviscous flu id. The slow flow
patterns run forever and there is no energy dissipation; i t  is apparently in the contra­
diction w ith  experiment ( if  we pass over superflu id ity). Therm al energy flow is solely 
due to mass flow [convection)] such medium does not conduct heat. The model can be 
nevertheless useful, since it  reflects properly the propagation of adiabatic elastic sound 
waves. Their velocity is:

c = y j \ v .  ( 1.1.12)

I t  appears tha t equation o f state for such a flu id are sim ply given by:

p =  — , (1.1.13)
in

what is nothing else than the equation of an ideal gas. This system never converges 
spontaneously to a global equilibrium  state starting  from the transient states.
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Clearly to make any progress we must include non-cquilibriiun effects. I t  has been 
shown tha t a stunning progress can be made under assumption tha t the real function /  
differs from /o on ly s ligh tly  and hence the following approxim ation can be pu t forward:

m  ( u .14)
\ d t  /  coll r

This facilitates the solution o f equation (1.1.2), calculation of the averages and rew riting 
o f the conservation laws (continu ity equation remains the same)

p +  u ■ u =  b — V  — ^pb +  ^ p ^  V  • +  / iV 2u (Navicr-Stokcs equation)

(1.1.15a)

+  u ■ = -------- (V  • u )6 +  - ^ - V 2# (heat conduction equation).

(1.1.15b)

Here I denoted b  =  p F /m ; th is is a body force, i.e. external force acting on the flu id per 
u n it volume.

Navier-Stokes equation (NS equation) is the foundation o f hydrodynamics. I t  was 
firs t w ritten  down by Navier in  1821 and rediscovered by Stokes in 1842. The parameters 
p., pb and K  are respectively the viscosity (responsible for energy loss due to internal 
shear), bulk viscosity and thermal conductivity coefficients. The firs t and the last are 
equal in  our approxim ation

s /m kftT
p v K t z l — r,— , 1.1.16

a,

where a is an effective molecule diameter.
The SI un it o f viscosity is Pa-s =  kg/(m s). The la tte r un it is sometimes called 

poiseuille, PI.
The pressure (stress) tensor P  in Navier-Stokes equation w ritten  exp lic itly  in  Carte­

sian coordinates reads

Pk  =  Pi:j -  ( p ' +  - p  S ijV  • u , , (1.1.17a)
2 
V

^  =  i « " - " ( ( K ;  +  S ) - I i « v ' u) '  <LL,7b)

where p! is so called second viscosity coefficient and pi, =  p ' +  \p .  The force exerted by 

the flu id along direction £ equals — f  ■ P  . For incompressible fluid pb drops out from our 
equation.

We can now discuss briefly, what i t  means tha t something can flow. The difference 
between solids and fluids lies in  the response to applied stress: solids can sustain stress 
w ithou t yielding, while fluids are materials tha t flows when the stress is applied.
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dx

area A

Figure 1.1: A body under shear deformation. The Figure comes from  [54|.

To make the statement a b it more mathematical let us refer to Figure 1.1. The 
discussion comes from |54|. We are observing the body under shear stress a

(1.1.18)

where A  is the area on which the force F  acts. In  the case o f Hookean solids the applied 
stress results in sta tic deformation, so called shear strain

e =
dx
dfj

and these two quantities are connected by Hook law

a =  Go,

(1.1.19)

(1.1.20)

where proportiona lity  constant G is called shear modulus. The p icture is completely 
different for Newtonian fluids. The shear stress applied to them causes flow w ith  some 
velocity gradient

dv
a  =  / i—  =  ue. 

dy
(1.1.21)

e is called strain rate and the proportiona lity  constant in the above law is exactly viscosity. 
Generalization o f above equation leads exactly to the stress tensor given by equation 
(1.1.17b).

There exists however a whole fam ily o f materials tha t arc neither simple liquids or 
crystalline solids. They are classified as soft condensed m atter and include material as 
glues, paints, soaps, polymers, colloids, liqu id  crystals and almost all m aterial o f biological 
provenience. I f  they can flow, they are sometimes referred to as non-Newtonian liquids. 
For an in troduction to the field please refer to |54|.

When velocity u vanishes everywhere in the flu id equation (1.1.15b) takes a form of
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well known Fourier thermal diffusion equation

o/j
pcv — - K V 26 =  Q. ( 1 .1 .2 2 )

Navier-Stokes equation can be derived starting from  experimental defin ition o f the 
viscosity. This derivation works fine for a rarefied gases and for dense liquids, what
means tha t the Navier-Stokes equation va lid ity  may be extended beyond low density
regime under usual conditions.

There exists general method allowing expansion o f /  in powers £ , where L  is the 
characteristic length o f the spatial variations (e.g. a sound wavelength). This quantity  is 
called Kmulsen number

£ n = y .  (1.1.23)
Lj

The expansion is called Chapman-Enskoy scheme. Eu ler’s equation can be regarded as 
zeroth-order approxim ation, while Navier-Stokes equation is O(Jtn).

I t  appears tha t Navier-Stokes equation works perfectly well for .fin <  0.01. In 
this regime flow vanishes on external surfaces, this is so called no-slip condition. For
0.01 <  .fin < 0 .1  NS equation is s till valid, however we must account for slip velocity on 
the walls. For larger Knudsen numbers molecular effects become im portan t and contin­
uum approxim ation breaks down. Please refer to [44],

1.2 Some properties of Navier-Stokes equation

This section deals w ith  some basics concepts of single phase hydrodynamics. I start 
w ith  three simple but profound examples o f usage o f Navier-Stokes equation. Next a 
more general approach is presented. The section ends w ith  the discussion o f possible 
simplifications o f NS equation.

1 .2 . 1  I m p o r t a n t  e x a m p le s  

Effective mass of a sphere

Let us sta rt w ith  the simplest possible situation and consider movement o f a sphere of 
radius a in infin ite, nonviscous, incompressible liqu id  o f constant velocity. I follow [47]. 
There arc no external forces. The sphere moves w ith  velocity uo, the velocity field of the 
flu id  is u. (1.1.15a) reduces to Euler’s equation

/ , (£  + u .v)u = -V P. (1.2.1)

Since there is no viscosity in the problem boundary condition on the surface of the sphere 
requires only the normal component o f the velocity to vanish. The flu id  must be also
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motionless in  the in fin ity

r  • (u (r )  -  u0) =  0 , (1 .2 .2 a)
r —a

u — >0 . ( 1 .2 .2 b)
r—»oo

In addition the solution must obey continu ity equation

V  • u -  0 . (1.2.3)

The basic: approach for // — 0 case is to prove circulation conservation law. Let us 
take curl o f the both sides of ( 1 .2 .1 )

^ ( V x u )  +  V x ( u ' V ) u  =  0 (1.2.4)

and recall the well known formula (e.g. [30])

V  x  (u • V )u  =  (u  • V ) (V  x u) -  ((V  x u) • V )u  +  (V  • u ) (V  x u). (1.2.5)

I f  we recall property (1.2.3) we can rewrite (1.2.4) as

( m  +  U ' V ) c =  (c -  V )u ’ ( 1 .2 .6 )

where c =  V  x u  is called vorticity. I f  at some moment the flu id has no vo rtic ity  the 
RHS of (1.2.6) becomes zero and c is conserved along streamline. Therefore flu id w ith  
zero vo rtic ity  w ill never acquire it  and thus

V  x u =  0  (1.2.7)

therefore u can be rew ritten as a gradient o f a certain function (called velocity potential)

u =  V<I>. (1.2.8)

Let us rewrite the problem in terms of <I>

V 2 4> =  0 , (1.2.9a)

=  uocosi), (1.2.9b)

<I>(r)------- >0, (1.2.9c)

0 $
dr

where \) is an angle between Uo and r. Problem is reduced to solving Laplace equation 
(1.2.9a). The general solution is a combination o f spherical harmonics, but i t  is an 
established experimental fact, that, flow around a sphere (both in viscous and nonviscous 
regime) has characteristic dipole-like shape. Let us therefore take only the first term
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CHAPTER 1. FORMULATION OF THE PROBLEM 12

(obviously we do not have (j> dependence)

(1.2.10)

C  is obtained im m ediately from  boundary conditions and thus

(1.2.11)

Let us contemplate the physical situation for a. while. The m otion o f the sphere requires 
tha t the flu id also moves and thus possesses some kinetic energy. Therefore, while accel­
erating the sphere, we must supply some energy both to the sphere and the surrounding 
flu id. The sphere appears therefore to be heavier than in the empty space, i t  acquires 
some effective mass. The la tte r can be obtained by calculating the kinetic energy o f the

Gauss theorem (minus sign comes from the fact, we integrate over an exterior o f the 
sphere)

where the form of the last integral comes from the fact tha t dS has only radial component. 
Le t us integrate to the end and obtain tha t kinetic energy o f the flu id  is

where m ci\- =  ^ ( j j 7ra,!p) is the effective mass of the surrounding flu id  and equals exactly 
ha lf o f the o f the mass displaced. The quantity m  +  m t.ir may be regarded as effective 
mass o f the sphere.

flu id

The last integrand may be w ritten  in the following form

once we note th a t V 2 (cosi) / r '2) =  0, because the function is harmonic. We apply now

£ ( ! 5 | L ) 2 2TO2 ^ , (l <c„ s ,») ( cos d d  cost?
r 2 d r  r 2 )L (1.2.12)

(1.2.13)
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CHAPTER 1. FORMULATION OF THE PROBLEM 13

S tokes fo rm u la

Now I w ill tu rn  on the viscosity and we ■will try  to calculate the drag exerted on the 
sphere moving slowly in the unbound, viscous and incompressible flu id. The problem 
is very well known; the treatm ent presented comes from |47|; another approach can be 
found in famous Landau’s textbook 16 1 ].

The only case, when the NS equation can be solved ana lytica lly  and exactly, is creeping 
flow  (Stokes)  regime for which the nonlinear term  u - V u  can be neglected. (1.1.15a) takes 
then the following form

W hen supplemented by mass conservation equation, the problem can be rew ritten  as

w ith  the non-slip conditions on the surface of the sphere; in  in fin ity  flu id  should have 
constant velocity uq, therefore

Our coordination system has z axis along uo; the sphere rests in the origin.
To solve (1.2.17) we should w rite  p  as general com bination o f spherical harmonics, 

bu t once again experimental evidence suggests tha t the follow ing should be a good guess

(1.2.14)

V 2u =  - V p , (1.2.15a)

(1.2.15b)V  • u  =  0,

U(r )|r=« =  0 (1.2.16a)

(1.2.16b)u (r )  ------- > u0.

Divergence applied to both sides o f (1.2.15a) gives

V 2p =  0 . (1.2.17)

(1.2.18)

leading us to inhomogeneous Laplace equation

(1.2.19)

Let us show tha t one o f the particu lar solutions to (1.2.19) is

( 1.2.20)
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CHAPTER 1. FORMULATION OF THE PROBLEM 14

By w ritin g  tliis  expression exp lic itly  in  Cartesian coordinates ( r  =  \ / x 2 +  y2 +  z2)

To obtain fu ll solution a proper homogeneous solution U|, must be added to fu lfill 
our boundary conditions (1.2.16). Again, in principle, the solution should be a general 
combination o f “vector” spherical harmonics, but clearly we need to  incorporate only 
terms sim ilar to those found in u i.  VVe are lucky, because i t  appears tha t RHS of 
equation (1.2.23) is a solution of homogeneous Laplace equation

which can be verified by perform ing exp lic it calculations. We make therefore an educated 
guess, by adding to this function a constant and Coulomb-like term , and obtain homo­
geneous solution, which turns out to be sufficiently rich to  assure non-slip conditions on 
the surface of the sphere

where (1.2.22) was used to  express u j.  The unknown constants can be found from the 
boundary conditions.

Let us sta rt w ith  the requirements given by (1.2.16a.)

( 1 .2 .2 1 b)

( 1 .2 .2 1 a)

( 1 .2 .2 1 c)

we obtain

( 1.2 .22)

Laplacian V 2Uj turns to be

6 ■d
(1.2.23)

(1.2.24)

(1.2.25)

The fu ll solution

u =  Uj +  Uh

(1.2.26)

(1.2.27)
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where once again (1.2.22) and (1.2.23) were used. The la tte r results immediately gives

Pi a2
C  =

6
B z — —A  a.

(1.2.28a)

(1.2.28b)

(1.2.16b) allows to find A  =  uo- Armed w ith  this knowledge, we can calculate the 
divergence of u

V  • u  =  (2Pj +  3cm0) ~ , 

which according to (1.2.15b) must be zero, yie ld ing

P i =  -  2 °'7to- 

The fu ll solution has therefore the following form

a \  1 /_ o2\  1 / „
U =  U „ ( l  -  ; ) + j « o « ( l  -  y  ; ( *  - & ) ■

(1.2.29)

(1.2.30)

(1.2.31)

\ \ \  h
u i .  n

i i t i

i

{ ^' ‘ v  ̂ i
i r

: : / 
A l l : - , : i , \ .

Figure 1.2: The Stokes flow field u given by (1.2.31). Unperturbed flow uq points upward.
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The force acting 011 the sphere is

F =  [  d S { - t - * P ), (1.2.32)
Jr=a

• ^ ^
w ith  P  given by (1.1.17a), w ith  pressure term given by (1.2.18). The exp lic it calculation 
o f F  were one o f my firs t exercises w ith  Mat.hernati.ca. I t  ̂ appears tha t after switching to 
spherical param etrization Cartesian components o f —r  • P  are

- ?  • P  =  Po cos (j> sin tf, - P 0 sin </;siin9, - P 0 cos § +  (1.2.33)

Integration yields

F  =  Gn/iauo. (1.2.34)

This is the Stokes law |82j; drag force is proportional to relative velocity o f the bodies, 
flu id viscosity and linear size o f the sphere.

I t  is im portan t to examine the approximation made in  the beginning and compare 
quantities ||/tV 2 u|| and ||u -V u ||. I t  appears tha t approximation works well i f  the Reynolds 
number is a small quantity

91c =  « : 1. (1.2.35)

D  =  2a is the sphere diameter. When 91c becomes large (order o f 1 for a moving sphere) 
the description breaks (eddies appear).

2D flow past a cylinder

I t  is well established fact (see for example |44j), tha t in 2D Stokes approximation may not 
exist, like for the case o f the flow past a circular cylinder w ith  main axis perpendicular 
to the flow direction. Let us quote a simple dimensional argument from the same source. 
In  the creeping flow p is not a parameter and F , force per u n it length of, say, a cylinder 
should depend only 011 //., U  (flu id velocity) and a (cylinder radius). The only dimensional 
group, which can be formed out of these quantities is F /p U , and we must have F  ~  U, 
hence F /p U  =  const, what indicates, tha t force does not depend 011 the size of the 
body. Furthermore for a —> 0, the drag does not vanish. Th is is so called Stokes paradox. 
I t  corresponds to the fact tha t in two dimensional systems perturbation theory w ith  
Reynolds number as a small parameter becomes singular.

Lamb [60) obtained a firs t approximation for the drag per un it length of the cylinder 
o f radius a

F =  1 / 2  — 7  — log(I7ap/Ap) ’ (L 2 ’3G)

where 7  ss 0.677 is the Eu ler’s constant. Rigorous jus tifica tion  using techniques of singu-
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la r perturbation theory can be found in |73|. I .show in the one o f the subsequent chapters 
how to obtain, u tiliz ing  Fourier series techniques, sim ilar result for flow past arrays of 
cylinders.

1 .2 .2  G re e n ’s fu n c t io n  fo r  N S  e q u a t io n

There exists the following theorem for the solutions o f tim e independent, linearized NS 
equation. A  point like force F  applied to fluid in the po in t x ' in the absence o f any 
boundaries, w ill induce additional flow

v (x )  =  - ^ 7 ( x - x ' )  - F (x#)» (1.2.37)

where the Green’s function is

7« w  = m + p p  (1 -2 '38)

The theorem is proved in [44|; the presented form ulation conies from  [6 ].
The usual application concerns w ith  the perturbation of the flow due to in troduction 

o f a rig id  body, in  the simplest case a sphere. Let us suppose tha t before sphere was put 
in to  the flow a d is tribu tion  u (x ) o f velocity existed. Center o f the sphere is xo and the 
radius is a. The flow velocity in the flu id is

u (x )  +  - L  f  ( / ( x  -  x ')  • f ( x ') )  • dA(x'), (1.2.39)
JAa

where f ( x )  denotes a projection of a pressurc-stress tensor, and integration is performed 
over surface A q o f the sphere. I f  sphere moves w ith  a velocity U  i t  can be proved ([6 ]), 
tha t

U  =  — [  u (x )d A (x ) +  ——  [  f (x )d A (x ),
./An (iTTdfI J

(1.2.40)

which is sometimes referred to as the f irs t Fuxen law. For u  =  0 we im m ediately get Stokes 
law (1.2.34). Let us note tha t in the case, when the partic le is settling (or fluidized), 
i.e. has no acceleration, the last integral is sim ply equal to excess weight o f the sphere 
and last term represent according to (1.2.34) the term inal velocity o f the sphere in the 
unbound fluid.

In the subsequent chapters I w ill show how to construct sim ilar Green’s function for 
certain 2D problems.

1 .2 .3  N S  e q u a t io n  in  v a r io u s  l im i t in g  cases

One of the possible sim plification, creeping flow corresponding to small 91c regime, has 
been already discussed. As I mentioned there exists perturbation  solution to movement 
o f the sphere in powers of 91c; i t  can be found in [73] and correction to the force exerted
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on a moving sphere are

F  =  67r/iauo(l +  —  Wc -I- 1 °S ^ C +  0(£Hc2) ) .  (1.2.41)

Please compare this expression to (1.2.34) and note presence o f logarithm ic terms.
In  the lim it o f large 91c numbers we can neglect the viscosity term  //,V2u in comparison 

to  u • V u . This is a useful method, but unfortunately cannot give any estimates o f the 
drag exerted on the bodies. I t  is often possible, however, to overcome this d ifficu lty  
by subdivid ing the field o f flow around a body into an external region, where the flow 
is usually irro ta tiona l and a th in  layer near the body together w ith  a wake behind it, 
where viscous effects are not negligible. This is the so called boundary layer method. The 
technique was introduced by P randtl and is extremely powerful for the description of 
flows w ith  well developed turbulence.

In  the case of a ir com pressibility may be neglected for M acli numbers smaller than
0.3.

“L im itin g  case” usually means tha t the problem can be approximately solved by some 
kind o f perturbation scheme. Exhaustive review of such methods is presented in reference 
|90],

1.3 Two-phase flows

In  this section I outline brie fly a way o f formal in troduction  o f simultaneous flow o f two 
phases m ixture  o f Newtonian incompressible flu id  and a collection o f identical spherical 
particles o f radius a. The procedure is due to Jackson and comes from [51] (w ith  errata 
in [52]) and [4J. The treatm ent is valid only for small concentrations o f particles, but the 
concepts may be easily extended to more concentrated systems. O ther methods must be 
utilized when flow o f particu la te phase consisting o f flu id  droplets is considered (rain), 
see e.g. [49],

1.3.1 Spatia l averages

Any treatm ent o f the system under consideration which attem pts to describe m otion of 
the spheres separately is ana ly tica lly  intractable and as far as I know i t  is s till a challenge 
for computational flu id dynamics (CFD). The only possib ility  is to assume tha t spheres 
constitute a continuum phase, granular gas, which under some conditions behaves like 
Newtonian fluid. I leave the discussion of this approxim ation to Section 1.4.

Transition granular-continuous requires a method o f spatial averaging, which washes 
out the details of the dynamics of single spheres. Obviously we w ill not loose any im por­
tan t in form ation in averaging procedure, i f  our system exhibits proper scale separation,
i.e. characteristic dimension o f the flow patterns L  is much larger than partic le radius a.

There exist many possibilities o f build ing averages: over time, over an ensemble or 
local space averages. Jackson uses the la tte r one defined w ith  a help o f weighting function 
fif(j’), which is a monotoneously decreasing function o f the separation r  between a pair of
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points o f space. I t  is normalized to un ity

roo
47r /  g ( r ) r 2d r — 1 . ( 1 .3 .1 )

Jo

The function has a characteristic radius /, which is defined as follows

r l  r o o  i
47r /  g ( r ) r 2dr =  Air /  g ( r ) r 2d r =  (1.3.2)

Jo Ji ' 2

We require a <C I L.
Let us s ta rt from the defin ition o f the local void volume fraction

e(x) =  f  <7 (||x -y ||)r73?y, (1.3.3)
Jvf

where V j denotes integration over the region taken by flu id. e(x) states what is the ratio 
o f the volume taken by a gas to the to ta l volume of the system “around” po in t x.

Using g (r)  several possible types o f averages can be constructed. F lu id  phase average 
o f po in t property (pressure, velocity, etc.) /  is

( f ) f  (x) =  /(y ) ff( | |x  -  y ||)d :V  (1.3.4)

Solid phase average is defined in  the equivalent way

=  7 ^ 5 1  /  f ( y ) d ( \ \ x - y \ \ ) d : i y, (1.3.5)
p Jv„

where summation is over all particles, and Vp denotes volume of the particle p and solids 
volume frac tion  c/>(x) is defined as

^ ( x ) =  5 Z /  f l d l x - y l l A *  ( L 3 -6)
p

F ina lly  i t  is useful to build particle-phase average. Number density o f particles is

« (x ) =  5 3 < 7 ( | |x - x p ||); (1.3.7)

here x ,J denotes position o f the center o f partic le  p. The follow ing relations hold {u -  
particles’ volume)

cj) =  un =  1 — e. (1.3.8)

I f  we consider some property f v o f the partic le as a whole, say velocity, mass, etc.,
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then the particle-phase average may be expressed as follow

< /)" (x) =  ^ £ / ' ' " ( l | x _ x " l l ) ' (L 3 -9)
'  i>

Since particles are rig id  bodies and “global” quantities for them are well defined, usage 
o f particle-phase averages becomes more convenient for us than solid phase averages.

[4] presents a way to calculate the averages of derivatives. We w ill make use of the 
following ones

e(x K d £ ~ ) f  =  [ .  f ( y ) nk (y )9 { \ \ x - y \ \ ) d s u, ( 1 .3 .1 0 a)
k • jk •* &p

e^ ( % ) f  =  ^  +  ^  /  f ( y ) n k (y W (y )g ( \ \x  -  y ||)d s „ ( i.3 .io b )
i> '’ si'

and

« * ) ( % ) ’ ^  § i ( n (x ) ( f ) P (x ) ) +  - y ~ ^ 2 f Puk9 ( l | x - x p||). (1.3.11)
'  k  P

Few words about the notation, n  denotes vector normal to the surface, while u (x ) is a 
po in t velocity in  the flu id  and solid phases. Sv is the surface o f particle p. The Einstein 
summation convention is used throughout the study.

1.3 .2  Avex'aged eq u ation s o f m otion

C ontinu ity  equation reads du.p/Oxp — 0. Let us take /  =  ’tip in (1.3.10a) and /  =  1 in 
(1.3.10b) and sum up the results

§ + ̂ (e(Ufc)/)z=0, (L3‘12)
Sim ilarly having set f  — 1 in (1.3.11) we get

Let us try  something more complicated. (1.1.15a) w ritten  in Cartesian coordinates 
becomes

( d u < , d i <\ d p ik , / -I o i i\
" ( a r + w F ‘ lUk)) =  ~  w + m ' { ]

where p j  represents density o f the fluid, ;j, body forces (gravity) and Pq is given by 
(1.1.17a). F irs t we average both sides using (-)^. W ith  help o f (1.3.10a) w ith  /  =  
and (1.3.10b) w ith  /  =  Uj  on the LHS and (1.3.10a) w ith  /  =  —Pik on the RHS we get
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the averaged momentum equation for fluid phase

p f (§ t,(e +  d ^ S e =  (P ik)1) +  p/ w

+  '52  [  F ik (y )n k(y )9 ( \ \x - y \ \ ) d S v. (1.3.15)
„  J S U]) •' ° p

Momentum balance equation for particle p states 

du1/
=  -  I c P ik (y )n h{y )d S v +

'l^p
P*UlH  =  ~  / •  Pik^ n^ dSn +  5 2  -IT' +  P*l'9u  (1.3.16)J St>

where ur- is velocity o f particle p. The first term on the RHS is the force exerted on the 
particle p  by the flu id, fP 1 is the force of interactions w ith  other particles. ps is a density 
o f the material the particles are made of. The following averaged form may be obtained

Ps" ( d i . ( U {u iuk)p) j  =  n  ( / / y  +  n ( f? )p +  psim iji. (1.3.17)

The firs t term on the RHS represents interactions o f partic le phase w ith  fluid, the next 
two are internal stress in the solids phase and the influence o f body forces. Please note, 
what is the right meaning o f this quantities: they are forces acting locally on the solids 
phase per to ta l volume o f the system.

The term

- n ( / / y  = X ^ ( l l x - x P l l ) / .  {Pik) {y )n k{y)dS y (1.3.18)
p •

in  not equal to the th ird  term, denote i t  3, on the RHS of (1.3.15), but the following 
expansion w ith  a /L  as a small parameter is possible

3

where

. ( s{j Y  (x) =  a £f(||x -  * 1 )  f  t j i i jd S ,  (1.3.20a)
p  ' ' s v

si jm ) ’ (x ) = a2H ff(llx ~ x/ ,H) / .  tW h n d S ,  etc., (1.3.20b)
p  ■• 'Sp

4—V
and we pu t t  — - n  • P  .

n  ( s
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Using above expressions we arrive w ith  averaged fluid-pliase momentum balance

Let me stop here for a while. We are try ing  to build a macroscopic form ulation 
o f multiphase flow, resembling, as much as possible, single phase hydrodynamics. The 
quantities like n, e, (u)-^ or (u )/J may be easily identified as observables; the la tte r two are 
for example macroscopic velocities o f flu id  and solids jjlia.se respectively. Unfortunately 
we are not done yet, since not all quantities appearing in  (1.3.17) and (1.3.21) have 
no straightforward macroscopic in terpretation (e.g. (u fu *.)^) and our equations must be 
supplemented w ith  suitable closure relations.

1.3.3 C losure prob lem

F irs t we need to know how to deal w ith  terms like (-Ujttfc)A Jackson in [511 argues tha t 
they factorize, i.e.

providing the motion o f particles is locally Stokesian, i.e. particles move not too fast 
w ith  respect to surrounding flu id. This assumption is probably very reasonable and as 
a m atter of fact I utilize it  throughout the whole work. Please note tha t i t  does not 
mean tha t the movement of the m ixture w ith  respect to the walls o f the container must 
be lam inar phases may move in rapid and turbulent manner, but the ir relative motion is 
usually slow.

There are other quantities we must be able to express

•  (P ijY  -  the average flu id stress tensor.

•  n ( f i ) p ' internal stress in the solids phase. Many researchers postulate i t  to have 
jus t simple Newtonian form. We w ill discuss this approxim ation briefly in the end 
of this chapter.

•  n ( f { )  i defined by (1.3.18) -  the momentum transfer between solids and fluid 
phase per un it time, per un it volume of the system.

•  terms (1.3.20a) and (1.3.20b) may be adopted for example from [67],

p f ( § t^ € + ( w - V ) ) = (p*y)+ p s m

p d /  /  r \ p \  1 d~ ( I t  \ p
(1.3.21)

(ui'uk)f  =  {Ui)f  (itk)f
(UiUk)P =  («,')'’ (uk)p ,

(1.3.22a)

(1.3.22b)
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1.3 .4  G overn ing eq u ation s

I am able now to give the governing equations (1.3.17) &  (1.3.21) in the form tha t is 
used in the modern theory o f chemical reactors (for example |91] or [50])

u  and v  are the average velocities of flu id  and solids respectively, F  denotes the force of 
interaction between flu id  and solids phase per u n it volume o f the system w ith  excluded 
buoyancy of the particles, (1 — e)V • 3~. rJ  and S are effective internal stress tensors for 
flu id  and solids phases. They read

Effective viscosities may be obtained from kinetic theory and/or from experiment. The 
firs t analytical prediction of th is quantity  is due to A lb e rt Einstein, (26]

The equations must be supplemented w ith  energy balance equation i f  heat transport 
or dissipation is involved in the problem. Energy transport phenomena do not affect my 
future work.

I  can fo rm u la te  n o w  th e  m a jo r  goa l o f  th is  thes is . I would like to concentrate 
on the calculations o f the value o f force F . In  the next chapter I w ill present experimental 
investigations of F , which w ill give me a chance to discuss some of its basic properties. 
This quantity  is crucial for the simulations o f any multiphase system and the particu lar 
choice o f its form affects the results much stronger than for example expressions for 
effective viscosities ([91J).

s + v ' (fu) =  0

J f  ( ! - « )  + V - ( ( l - e ) v )  =  0 (continu ity  eq. for solids) (1.3.23b)

(continu ity  eq. for flu id ) (1.3.23a)

p/e - +  u • V j  u  =  eV • T  — F  +  ep/g  (momentum balance eq. for fluid)

(1.3.23c)

(momentum balance eq. for solids)

=  V  • S +  (1 — e)V  • T  +  F  +  (1 — e)psg. (1.3.23c!)

s<i =  ~ P ij +  Pb(£)si jV  ■ v  +  RS(e) • (1.3.24b)

(1.3.24a)

(1.3.25)
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1.4 Som e remarks upon granular gases

Although it  is assumed th a t internal stress tensor for solids phase may have Newtonian 
form  (1.3.24b) w ith  effective parameters, we must keep in m ind tha t the dynamics of 
such systems is generally much richer (see for example [71 ]). The typical example of 
granular materia l is sand: i t  can be regarded as a approxim ately Newtonian flu id only 
under special circumstances, for example when it  is carried by water or air (as in the 
case o f sand storm); th is state is called flu idized state. The sand ly ing on the beach 
is defluidized and we know th a t i t  expresses completely different behavior: i t  can resist 
applied stress and form solid-like structures (cones, prisms, dunes, etc.), even when it  is 
not glued by water.

Many o f these properties can be understood on the molecular level in the contrast 
w ith  the assumptions made upon derivation o f Navier-Stokes equation in Section 1.1:

•  Knudsen number An is not small for usual granular gases: the “molecules” are much 
larger (typ ica lly  we work w ith  grain sizes of order hundreds o f microns) than atoms 
and they move much slower. Chapman-Enskog method cannot be used.

•  For the m a jo rity  o f the granular gases binary collision model is not valid -  many 
body corrections become im portant especially for large p. Moreover due to irreg­
u lar shapes o f the grains collision cannot be usually described by a single collision 
parameter.

•  G ranular materials posses memory (|55|); especially the transitions packed-fluidized- 
defiuidized.

•  Collisions between particles are usually connected w ith  the dissipation, o f energy. 
This is one the most im portan t features: fiu id ization requires constant supply of 
k inetic energy. I f  we stop it, granular gas w ill cool and reach defluidized state after 
a time required for a. few collisions per particle.
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Chapter 2

The drag — the state of art

In the previous chapter I defined the quantity  of my main interest, namely the momentum 
transfer between solids and flu id  phase per un it time, per un it volume o f the system,
(1.3.18). In  th is chapter I  describe, what has been already found about th is quantity  
and as such the the goal o f the chapter is two-fold. On one hand extensive literature 
is presented, and on the other I build a framework in which the future work w ill be 
rooted. Especially I introduce the notion o f interphase drag coefficient, j3, and lis t its 
m ajor properties.

The real structure o f drag is immensely complicated, even for a single particle in 
the unbound flu id, which may be considered as a lim itin g  case e =  1; the force can be 
decomposed in to several parts, which have been discovered independently. Fortunately 
the m ajor contributions can be pointed out, even when the ir actual calculations are 
(almost) impossible. The discussion of forces acting on a single sphere (Section 2.1) 
is followed by the description of changes we observe when the concentration o f bodies 
becomes significant (Section 2.2). Most o f our knowledge comes from some kind of 
experiments and serious part o f this chapter pertains to them; they help us to gain some 
qualitative insight in to drag force bu t also provide us w ith  numbers. Since /? is never 
measured d irectly I describe in details, how to obtain it  from data available. A t the 
present moment we do not have any other reliable closure relations except the empirical 
laws mentioned. Their app licab ility  is discussed. This is done in Section 2.3. Section
2.4 presents Batchelor treatm ent o f the problem -  the only existing analytic calculations 
based on direct attack on Navier-Stokes equation for the problem.

It  should be noted tha t the phases may be coupled not only via momentum exchange, 
but also due to mass and energy transfer. These two la tte r mechanisms stay close to the 
heart of every chemical engineer, since they encompass such phenomena as evaporation, 
condensation and chemical reactions (examples o f mass coupling) and radiation, convec­
tion and internal heating (energy coupling), but I do not deal w ith  them in my thesis, 
concentrating on the drag.

Multiphase hydrodynamics is nowadays the separate branch o f science w ith  its own 
journals and textbooks devoted exclusively to it: [38] concentrates on applications in 
chemical engineering, [3 9| presents wider and a b it more formal view. Comprehensive
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review o f theoretical foundations of computational flu id dynamics for multiphase flows is 
given in [91], which was pa rtia lly  an inspiration for this chapter.

2.1 A  body in the unbound fluid

A standard taxonomy o f forces (as given for example in (19|) marks out the following 
families: buoyancy, steady and unsteady motion forces and different kinds o f lifts. Buoy­
ancy for a single body reduces usually to well known Archimedes law. Steady state forces 
act on a body when there are neither variations in static pressure field nor relative ac­
celeration between the partic le and the conveying fluid: they are dray or Stokes force 
and Faxen force. The follow ing forces are counted into unsteady state interactions: v ir­
tual mass effect (discussed in Section 1.2.1) and Basset force. F ina lly  l i f t  occurs due to 
ro tation o f the particles. In the end of the section I brief!}' discuss other effects.

2.1 .1  S tea d y  s ta te  forces  

Drag force for the general flow

Drag occurs due to viscosity and is usually given in the follow ing form

F d  =  C d ?j -A u , (2.1.1)

where C p  is a dimensionless drag coefficient.. A  denotes an area o f the cross section 
perpendicular to the flow, p is the density of the fluid, and u is a velocity o f the flu id in 
in fin ity  in  the rest frame o f the body. For spheres A =  ttD 2/A, where D  is the diameter.

We have already examined the low Reynolds number regime for th is problem in 
Section 1.2.1. For this case the drag coefficient is given by

24
Cp(91c) =  — , 91c «  1. (2.1.2)

The things sta rt to complicate when 91c cannot be considered as a small quantity. The
firs t corrections to C p  can be calculated exactly and are given by (1.2.41), but the
approximation breaks down for 91c «  1.0 and therefore researchers have to use expressions 
extracted from experimental data. A stunning review o f available expressions can be 
found in [57]; the following taken from [20| seems to combine accuracy and sim plic ity 
and i t  is called Dalla Valle formula

C p  (91c) =  (o.63 +  <  SHec> (2.1.3)

where 9 k c is the critica l Reynolds number. In the so called in e rtia l range 750 <  91c <
3.5 x 105 =  91cc

D o  w 0.44; (2.1.4)
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i t  is also known as Newton’s law. Beyond 5Hcc, C o  drops abrup tly  below 0.1. (2.1.2), 
(1.2.41) and (2.1.3) were compared for small 01c in the Figure 2 .1 a. 2.1b covers broader 
0 1 c regime.

Faxen  fo rce

Faxen force arises when the unperturbed flow (the flow existing before the body had been 
introduced) posses inhomogeneities and for a sphere w ith  a small diameter D  reads ([44])

The Laplacian is evaluated at the center of the sphere.

2 .1 .2  M em ory effects

Unsteady state forces may be regarded as memory effects, since they depend on the 
h istory o f the flow. In a local system moving w ith  the flu id  all small perturbations 
are jus t sound waves, which we know to propagate w ith  the fin ite  velocity c given by 
(1.1.12). I have already presented the v irtua l mass effect, which accounts for the relative 
acceleration.

B asset fo rce

Basset force is connected w ith  the viscous effects and addresses the temporal delay in the 
boundary layer development as the relative velocity changes in  time ([19))

u is the flu id velocity, v  is the particle velocity and u should be understood as material 
derivative, (dt +  u  • V )u .

[46] gives the conditions for which the memory effects may be discarded. They are

where u  is the characteristic frequency of the stream oscillations.

2.1 .3  Lift

The most, im portant l if t  force is Magnus force, which appears when the particle (sphere) 
w ith  linear velocity v  and angular velocity a> is immersed in the flu id  w ith  the velocity

(2.1.5)

(2.1.6)

ps I p* ~ 1 0  3 (2.1.7a)

(2.1.7b)
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Figure 2.1: Drag coefficients as a function o f Reynolds number 91c. Panel a) presents re­
spectively (2.1.3), (2.1.2) and (1.2.41) (rescaled). Panel b): (2.1.3), (2.1.2) and Newton’s 
law (see page 26).
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u ( 9 k < l ):

F». =  | D V ( ( i

This force is present even in the nonviscous flows and can Ire understood as a simple 
consequence if  of Bernou lli law. Due to ro tation different sides of the sphere have different 
relative velocities w ith  respect to the flu id and hence feel different dynamic pressures. 
Exactly the same mechanism is responsible for the l i f t  force holding airplanes: their 
characteristic profile makes the air flow faster above the wing.

2 .1 .4  O ther effects

F irs t o f all we have to have a method for dealing w ith  nonsphericity o f our bodies. We 
introduce the shape fac to r  ([19])

*  =  (2.1.9)

where A  is the surface area o f the body and

A s — 7r*/:i (GVr ) ' ^ 3 (2.1.10)

is the surface area o f the sphere having the same volume V  as the investigated body. 
Since ancient Greek times we know tha t VI' <  1 .

I t  is believed tha t we can use (2.1.1) to calculate the force acting on the non-spherical 
body w ith  C q substituted by effective dray coefficient, CocK and w ith  the use o f effective 
diameter D^tr, defined as

/ 6 F \ 1/:}
^ r = ( - j  • (2 -1 -1 1 )

This is a diameter o f a sphere w ith  the same volume V  as the body. C p cir is a function 
o f 91c and T  only. This approxim ation is w idely accepted although it  does not work well 
for oblate spheroids and cylinders.

Throughout the work it  is assumed that bodies interact w ith  the flu id by purely hy- 
drodynamical means. We discard therefore the effects like Brownian motion, polarization 
of the flu id  (which may lead to change in its viscosity) due to charges on the particles 
surface, etc.

2.2 C ollection o f particles

We could be tempted to th ink  that the to ta l force acting on the particle phase m ight be 
calculated as follows: each particle produces a flow disturbance (under special circum­
stances described given for example by (1.2.39)), which then are sim ply added; based
on this velocity field we calculate the forces acting and sum them up. This approach

V x  u - w  x ( u - v ) (2.1.8)
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cannot give the righ t answer, moreover it  leads to severe divergence. The firs t fact can be 
understood if  we realize tha t the additional flow field introduced by the body must fu lfill 
the 11011-slip boundary conditions 011 the surface of each other sphere: the bodies there­
fore “know” about themselves -- they interact via the surrounding flu id. The divergence 
may be understood i f  we recall tha t Stokes velocity field, given by (1.2.31), vanishes like 
r _1; anj'’ direct summation method bears the same pathologies as Coulomb field: to some 
extent the bodies in the real flow screen each other. I w ill be able to pu t th is observations 
011 a b it more quantita tive footing at the end of this chapter; the next two sections deal 
w ith  the experimental picture.

Let i t  be noted tha t the we have already excluded the buoyancy ( 1  — e)V • £F from the 
general interaction in (1.3.23c) &  (1.3.23d).

2 .2 . 1  In te rp h a s e  m o m e n tu m  t r a n s fe r  c o e f f ic ie n t  /3

The experimental evidence makes chemical engineers believe tha t the force F  appearing 
in the equations (1.3.23c) &  (1.3.23d) can be w ritten, following (2.1.1) as

where u r =  v  — u is the velocity o f solids phase in the (local) rest frame o f flu id (we 
are using notation o f the Section 1.3.4). (3 is so called interphase momentum transfer 
coefficient. This clearly indicates tha t the viscous forces (generalization o f Stokes law) 
are the most im portant contribution to the interactions between phases. In  general j3 
could be a tensor, i.e. the drag not need to be a parallel to the relative velocity and 
we m ight ask why should not we include the generalizations of the other interactions 
described in the previous section (like |50|, which adds v irtua l mass effect). The answer 
to this objections is two-fold. F irst, these phenomena are not observed experimentally 
(however it  must be kept in m ind tha t the experiments do not measure f3 d irectly  and 
the effects mentioned would appear only as some kind of corrections). Second, it  seems 
tha t the model (2 .2 .1 ) works in most applications, therefore capturing the essence of the 
underlying physics.

The average value of force acting 011 the particle in the cloud may be w ritten  as

where D  is a effective average diameter, as defined by (2 .1 .1 1 ) and Coeir F the effective 
drag coefficient -  effective due to the shape, the presence of other bodies and the averaging 
procedure.

The interaction force F  has according to this definition a value

F  = (2.2.1)

(2 .2 .2 )

F  =  11F 1 (2.2.3)
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where n  is defined by (1.3.7) and can be calculated from (1.3.8) as

1 — e
(2.2.4)n =

nD'^/G

yielding (we used (2 .2 .1 ))

(2.2.5)

We may reduce form ally our problem to finding CpdT• Let us lis t the factors tha t 
influence it

•  Reynolds number fKcr based on velocity ur

•  geometry o f the system, which determines e

•  particles’ shape and orientation, which to some extent may be described by the 
parameter 'f'

•  roughness of the particles’ surfaces

•  d is tribu tion  of the above parameters (the bodies not necessarily need to be identical)

•  presence o f walls and macroscopic geometry o f the flow.

Let me discuss some of them. In the experimental work th a t I am going to present, 
the researchers were able to correlate data obtained, assuming some simplifications. I t  
appears tha t for disordered systems the impact o f detailed geometry, particle shapes 
and orientations may be included by simple dependence on e. This is clearly a crude 
approximation, but seems to work. In general geometry is o f a great importance and I 
w ill show it. f have not given any discussion o f roughness factor, bu t there are empirical 
methods to include i t  in C pct\'. The presence of walls is usually neglected, which is 
justified for large containers.

W ide d istribu tion  o f particles parameters (especially sizes) present however an im ­
portant issue, since it  leads to the several phenomena observed experimentally, especially 
segregation particles w ith  different parameters tend to gather together, form ing layers. I t  
has extremely im portant industria l applications. The only successful approach to model 
this behavior was an in troduction o f more than one solids phase, each characterized by 
different set of effective parameters, and treating them independently (please refer to

2.3 Experim ental m ethods for the estim ation  of /?

The basic geometry for any experimental setup is quasi ID  column, as presented in the 
Figure 2.2, and there are in general three possible types o f experiments that may be 
performed

[86 ]).
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suspended/fluidized
or

packed
particles

O') pump

Q=AU
column

Figure 2.2: Basic geometry for a typical experiment involving interphase friction. The 
column is filled w ith  a flu id, which may be forced by the pump to flow w ith  the rate Q. 
The pressure drop is measured using a pair of manometers B and T , placed at the in let 
and ou tle t o f the column. When the orientation o f the column is vertical i t  is possible to 
either observe flu id ization (Q  ^  0) or settling of the particles (Q — 0 ). Duct may have 
horizontal direction, then the gravity is unim portant, and we may perform  pressure drop 
measurements for packed column. The area o f an empty cross section of the column is 
A  and the superficial velocity is U.
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1 . f lu id iz a t io n :  a cloud o f particles is placed in  the stream of flu id which suspends 
it. Depending on the velocity o f flu id ization gas it,., the steady state in the column 
is reached for different value of e. The process is in general very complicated and I 
w ill have a chance to return to it. Such a system is sometimes called flu idized bed.

2 . s e tt l in g : a cloud o f particles w ith  the specified e is se ttling  under the gravity force 
w ith  some average velocity.

3. p ressu re  d ro p  m easu rem en t: the column may be packed w ith  the material (i.e. 
the particles are immobilized by some means). We force the flu id  to flow through 
such porous medium and the pressure drop is measured. To elim inate the influence 
o f gravity  usually the column has horizontal d irection (and we would rather call it  
s im ply a pipe).

Please note first, tha t in  all these cases the system is assumed to be macroscopically 
uniform . Second, the flu id ization and settling are exactly the same phenomena, but 
observed from the different inertia l reference frames. The d istinction  was made because 
o f the way how the experiment is actually performed: for the case o f flu id ization we 
set the velocity and observe e, but for settling the cloud o f particles w ith  the given e is 
prepared and its velocity is measured.

The area of an empty cross-section of the column is denoted by A  (and we assume it  is 
constant). The volume o f the flu id  flowing through the column per un it tim e (volumetric 
flow  i-ate) is denoted by Q  and

Q =  AU, (2.3.1)

where U  is so called superficial velocity, i.e. velocity o f the flu id  measured in the empty 
part o f the column. I f  the solids are motionless w ith  respect to the column, the relative 
velocity ur between phases reads approximately

U r  =  (2.3.2)
6

I f  during the sedimentation the phases reach the equilibrium  state (given by e) w ith  
the relative velocity u r , U  is the velocity of sedimenting particles w ith  respect to the 
column walls; the downward flow of the particles must be accompanied by the upward 
flux o f fluid. I t  can be understood if  we perform the follow ing thought experiment. 
F lu id iza tion  and settling are exactly the same phenomena, i f  they occur for the same void 
volume e, but sim ply seen from the two different reference frames; the relative velocity 
u r between the phases is the same in both cases. Let us imagine tha t we observe settling 
particles standing on the floor of our laboratory, this is the column's wall coordinate 
system. The velocity o f the flu id in the empty part of the column is obviously 0. Now let 
us move to the reference frame, where solids are motionless (we are observing flu id ization). 
The gas in the region taken pa rtia lly  by solids has velocity it,., therefore the velocity of 
the gas in the empty column region is U  w ith  respect to the particles. B u t by performing
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simple Galilean velocity transformation we see tha t this velocity must be equal to the 
velocity of particles in the column stationary frame.

2.3 .1  F lu id iza tion  and se ttlin g

Now, I w ill investigate the problem more quantitatively. Let us rewrite (1.3.23c!) for the 
ID  case o f flow along 2  axis, which points opposite to the gravity acceleration g

Ps (1 -  e) =  — (1 — e) p„g +  f  -  (1 -  e) (2.3.3)

where v  denotes velocity o f solids, p is the hydrostatic pressure in the flu id phase and /
is the force acting on solids (due to internal stress in the solids phase and interactions
both w ith  the flu id  and external objects) per un it volume o f the whole system, excluding 
flu id  hydrostatic pressure gradient influence. Exactly the same equation is derived in [93) 
from the firs t principles.

For steady and spatia lly uniform  flow o f solids the RHS of equation (2.3.3) is zero 
and therefore

/  =  C1 - 6) ( ^  +  § )  • (2-3-4)

When the particles are fluidized or they are settling, dynamic parts o f the stress tensors 
(1.3.24a) &  (1.3.24b) vanish, moreover, since the particles are fu lly  supported by the 
flu id, the ir internal hydrostatic pressure may be neglected and the force /  reads jus t

f  — F  — -I3 u r , (2.3.5)

according to (2 .2 .1 ).
Usually the experimental data is presented as a dependence of term inal velocity cor­

relation Vt on the set o f dimensionless parameters characterizing the system. Vt is itse lf 
dimensionless and defined by

V, =  — , (2.3.6)
via

where vt is the term inal velocity o f the group of particles and vto is the term inal velocity 
o f a single sphere in the unbound fluid. Both of these quantities are measured in the fluid 
stationary frame.

For a, single body, fa lling in the unbound flu id under term inal conditions, the drag 
force Faio equals

Fpto =  C o i d l c i o ) ^ ^ :  =  u{ps _  p)g f (2.3.7)

where v denotes particle volume and fHcto is the Reynolds number based on v/u. For the
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particle in the cloud the term inal drag force F o i can be w ritten  according to (2.3.4) as

(2.3.8)

We require the m ixture  to  be in the equilibrium , which yields the following expression 
for the pressure gradient

We can use this knowledge to compute G’/ x r  and subsequently (3 using (2.2.5), but 
firs t we must have closed expression for Vt .

2.3 .2  Term inal v e lo c ity  correlations

The classical reference is [74], where Richardson and Zaki, having performed set o f original 
measurements and using available data, found th a t Vj. may be expressed as follows

where n, called Richardson-Zaki exponent, is a function o f Die and e. U nfortunate ly from 
the ir work n  may be found only numerically and therefore a convenient correlation o f n 
cried out to be created; the quest was fu lfilled by Rowe in [76]

■g; =  - < / ( ( !  - e ) p a +  ep). (2.3.9)

Combining the three previous equations we obtain

Fot =  v{ps ~  p)(je =  Foioe. (2.3.10)

(2.3.11)

0.17591c (2.3.12)

and 91c/ pertains to the sphere moving w ith  velocity Vi.
Another empirical correlation was found by Garside and A l-D iboun i and given in [35]

(2.3.13)

w ith

A =  e'1' 1'1

(2.3.14)
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2 .3 .3  D i  F e lic e  a p p ro a c h

D i Felice [22| found tha t satisfactory agreement w ith  the experiment can be achieved by 
assuming tha t the drag force F p  acting on the particle in suspension is equal to the force 
acting on the sphere in the unbound flu id F p o multiplied  by a. function g(e, fHc)

F d  =  F p 0g(e,d\c), (2.3.15)

providing th a t both of the forces in the above equation are evaluated at the same value 
o f Reynolds number.

We can now w rite  F p t twice, once using (2.3.10) and (2 .1 .1 ) and the second time 
using (2.3.15)

F d ,. =  CD (Xcto ) ^ ^ - e ,2 4

F D ^ C o i m c ^ ^ g i e ^ c ) ,  

which yields (using defin ition (2.3.6))

f A? \ t )  1 , n n  , r \

ll{e ' n c ) =  c g ^ ) - A  ( ]

De Felice used Dalla Valle formula for C p  (2.1.3) and Richardson and Zaki Vr correla­
tions aided by Rowe formula (refer to (2.3.11) and (2.3.12)) and was able to successfully 
correlate available experimental data, giving the following formula

<7 (e,fRc) =  e“ c,(9,c), (2.3.17)

where

a(Me) =  3 . 7  -0 .6 5  exp ( L 5  ~  loS 'io fflO ) j  (2.3.18)

Note tha t lim itin g  cases o f large and small Reynolds numbers are characterized by almost 
the same value o f cv ss —3.7. Some authors take therefore r.v to be independent o f Ole. 

Now we can compute C p v\\

C peir(V it) =  C D(9te)</(e, 0 1 c) (2.3.19)

and therefore f3 using (2.2.5).

2 .3 .4  S y a m la l fo r m u la

Group o f Madhava Syamlal created software package M F IX , open source code based on 
FORTRAN for hydrodynamical simulations of multiphase flows. In the documentation of 
this pro ject |87| a different expression for p  is given, although s im ila rly  based on term inal
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velocity correlations. I could not find any published derivation o f th is formula, but I am 
able to give a plausible jus tifica tion  to it.

Average force acting 011 the particle in the suspension is given by

, pv2 n D 2
F d  =  CDcu{V\t) ' - — — . (2.3.20)

Again we can express drag force under flu id ization (term inal) condition twice using
(2.3.20) and (2.1.1) &  (2.3.10) to get

C W * c t ) =  - D(^ 2C'0)C- (2-3.21)

£Rc/o — 0\ct/V(. Using Garside-Dibouni correlations (2.3.13) w ith  (2.3.14) we can express 
Vt in  terms o f Dltf and e

-  0.06ffie,/Vj, (2.3.22a)

Vt =  ( A -  0.06SHct+  \J  (0.0691c,)2 +  0.1291c, (2 5  -  A) +  A 2)  / 2 . (2.3.22b)

Effective drag coefficient

C W M c t )  =  (2.3.23)

where C p  may be calculated using (2.1.3). Now we can say tha t our sphere always moves 
w ith  the term inal velocity, bu t for example in the flu id w ith  different viscosity, since all 
the quantities in the above equation are dimensionless, and drop subscript t in 9fe. Once 
we know C qgir we can calculate /3 by means o f (2.2.5).

2 .3 .5  O ther exp erim en ts and m odels  

S c h ille r-N a u m a n n  d ra g

When we are only interested in qualitative results (especially for small concentrations) the 
interactions between bodies may be neglected and we can assume tha t the effective drag 
coefficient equals jus t free sphere coefficient, w ith  empirical ffie correction. I have already 
listed one of the numerous possibilities (2.1.3). Here is another one, Schiller-Naumann 
coefficient. ([T9])

^  ( 1 +  0.15ffieO G87) . (2.3.24)

Above {Re «  1 0 3 Newton’s 0.44 law, (2.1.4), is used. This is one o f the models available 
in F LU E N T package.
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E rg u n  e q u a tio n

In  1952 Sabri Ergun |27) found an empirical correlation allowing calculation o f pressure 
drop in  the packed column, i.e. for small void volumes

^  =  1 5 0 ^ ^  + 1 . 7 5 ^ ^ ,  (2,3.25)

where L  denotes length o f the column (duct), e is void volume in  the system, U  the 
superficial velocity and D  is the effective diameter o f the partic le in  the column, defined 
as

= (2.3.26)

where V  is the to ta l volume o f the column, A L , and N  is an estim ation o f the number 
o f particles in the column. Let us note that that D  is ju s t a logic construction, since the 
bed may be packed for example w ith  a crushed glass and therefore has void volume lower 
than ej^p ~  0.36, associated w ith  closed packing o f spheres.

The expression has two terms: the first one pertains to viscous energy loss and is 
im portan t for small values o f material flow; the second quadratic term  represents the 
dissipation due to kinetic, effects.

In  such a system particles are maintained in fixed position and therefore we have to 
be rather concerned w ith  the force tha t is exerted on the fluid, which is obviously A pA  
and may be w ritten  as

A pA  =  N (u A p /L  +  F d ), (2.3.27)

where u A p /L  represents the average buoyancy force acting on the partic le  (v  being aver­
age partic le volume n D b/6 )  and F p  is an average force due to hydrodynam ic interactions. 

Tota l drag force reads

N F p  =  A A p  -  ^ ( 1  -  e)V  =  AeAp. (2.3.28)
L/

The force per to ta l volume V, divided by the magnitude o f relative velocity, gives f3 
(using (2.3.2) and (2.3.25))

+  (2.3.29)

For the sake o f future comparison, we m ight compute fic titious effective drag coefficient 
from  (2.2.5)

CDo,r = 200— -L  + I .  (2.3.30)
e 9tc 3
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W en &  Y u  schem e

Wen and Yu in [95] were able to correlate data obtained and found tha t (th is expression 
is exp lic itly  w ritten  in the ir paper, eg. (47))

but they clearly neglected the influence of pressure gradient, which would results in 
additional factor e on the RHS o f the above equation (please refere to (2.3.10)). This is 
in obvious agreement w ith  (2.3,17) &  (2.3.18) and it  should lead to results identical up 
to (small) Die dependence in (2.3.18).

Nevertheless for the reasons completely unclear to me hydrodynam ical packages (FLU­
ENT) use the following formula, crediting i t  to the article mentioned

The expression for the drag coefficient resembles Schiller-Naumann drag, bu t w ith  the 
Reynolds number based on superficial velocity. The idea comes from  [75] and seems to 
have no justifica tion  (I believe i t  is sim ply an error or m isprin t).

G id a sp o w  app ro a ch

Gidaspow wrote an acclaimed textbook on multiphase flow and flu id ization , [38), where 
he presents a drag model based on combination o f Ergun equation (2.3.29) and (2.3.32). 
There is a d iscontinuity in  his expression in the matching point, which in general may 
lead to numerical instabilities, as suggested in [91).

2 .3 .6  C o m p a r is o n  o f  th e  a v a ila b le  m o d e ls

According to [911 the righ t choice o f (3 model is crucial in all numerical experiments, 
strongly affecting the results. A  comparison between described expression was presented 
in the Figure 2.3. The plots present D i Felice modifiers defined as C p0t\(e, Dtc)/C/}(Dtc), 
where C o  is given by (2.1.3).

The immediate conclusion is such tha t the models do not agree w ith  each other too 
well, which indicates tha t a theory better than jus t simple data matching must be devel­
oped. D i Felice work predicts much higher value o f the drag than other models and, as 
was mentioned earlier, is insensitive to particle Reynolds number Die. An agreement w ith  
other models exists only for large void volumes. Other correlations express clearer depen­
dence on Die. In the intermediate regime expression (2,3.32) and tha t of Syamlal agree, 
but they differ seriously for large relative flow velocities. I t  may be noted tha t matching of 
expressions o f Wen &  Yu and Ergun always leads to mentioned earlier discontinuity and

CDcn(mc,e) =  e-A-7D D(Mc), (2.3.31)

=  3 (1 ~ e )v u c_ ,m
4 D

(2.3.32)

where

24(1 +  0.15(eDle)O C87) /  (Dice) 
0.44Cp(Dlc)

eDfc <  1000 
eD3c >  1000

(2.3.33)
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Figure 2.3: Comparison o f different drag models as a function o f e for different SHc. Panels 
a), b), c), d) and e) correspond to fHc =  0.1, 1, 10, 100 and 2000 respectively. Please 
refer to the discussion in text.
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tha t the Syamlal model, developed for large r, matches Ergun law (suitable for packed 
columns) much better. F ina lly  the Wen &  Yu prediction for C peir (based on (2.3.32) and 
(2.2.5)) does not converge to 1 while the suspension becomes in fin ite ly  dilute. This is 
an artifact of our comparison scheme -  Schiller-Naumann coefficient (2.3.24) differs from 
the one due to Dalla Valle (2.1.3).

The assessment o f va lid ity  of presented model is a delicate question, since we can 
apply different criteria  to th is problem. Should we choose the models tha t correlate 
the experimental data in the best way or tha t one, which yield the results of numerical 
simulations being closer to reality? I t  may sound paradoxical, but these two crite ria  do 
not need to be equivalent. The prim ary reason for that is o f course the already mentioned 
fact tha t we never measure (3 d irectly in any experiment. Furthermore, often the results 
o f the experiments must be extrapolated. For example, the procedure of extracting the 
value o f drag from term inal velocities implies that properties o f the suspensions under 
term inal conditions can be used also when the cloud moves w ith  non-term inal velocity. 
The argument, based on dimensional analysis, sounds plausible, but we cannot assess 
how general it  is. I t  is not too d ifficu lt to imagine that sand peacefully fa lling in the 
water has different properties than a cloud o f dust suddenly dragged by a blast of wind.

We use the following rule of thumb in our group. Since all the reported correlations 
(except maybe for (2.3.32)) have at least decent jus tifica tion  in experimental data, the 
one is chosen, which yields the best agreement of numerical simulations w ith  reality. It 
follows from our experience tha t the form of drag affects the whole picture of fluidized 
bed, beginning w ith  the level of its free surface, through dynamics o f eddies and ending 
w ith  shape, volume, number and internal density o f bubbles. I t  seems tha t the Syamlal 
model, (2.3.23), although s till not completely free from discrepancies w ith  experimental 
picture of the reactor, gives the best results. This opinion was strengthened by the 
interactions I had w ith  the circle of chemical engineers working in Syncrude.

2.4 A nalytical solution for small concentrations

Theoretical works devoted to flow o f particulate systems concentrate around two major 
topic calculations o f term inal velocities and effective viscosities of finid-solids systems; the 
results orig inating from the firs t category, as it  has already been noted, may be d irectly 
utilized to compute drag, therefore I w ill present shortly the lite ra ture  devoted to it. 
These works are im portant from the theoretical point o f view, but they cannot give the 
drag in the most interesting regime o f high concentrations.

There were several attem pts to obtain a analytic solution to a problem of the cloud 
o f settling spheres, |81, 15, 331, none of them however was able to construct quantities 
that, would be certain to converge. The first successful treatm ent is due to Batchelor, |6 | 
and w ill be reported shortly.

There are also several heuristic theoretical attacks on the problem. For example |43| 
considers the following sim plification of flow in the bed o f spherical particles. Every 
sphere moves separately surrounded by a “ fluid sphere” w ith  a special ratlins. On the 
interface of the internal (solid) sphere no-slip boundaries conditions are imposed, on the
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external surface the gradient o f radial component of flu id velocity is zero. In this model 
the drop in the settling velocity is proportional to ( / I  -  e.

2 .4 .1  B a tc h e lo r ’s t r e a tm e n t

A  renormalization procedure introduced by Batchelor is now briefly summarized. Once 
again we are observing sedimentation in the container’s walls reference frame. The tota l 
velocity o f the a rb itra rily  chosen particle is w ritten  in the form

where the terms have the following interpretation. Uo is a velocity of the particle in the 
unbound flu id (no other particles present). V  is the additional velocity tha t the particle 
acquires due to d is tortion  of the velocity field caused by the other particles, but as i f  the 
non-slip conditions on the surfaces o f other particles were released,

w ith  the integration performed over the surface of the particle, Ao. u  is the local velocity 
in  the flu id, tha t would exist in the absence o f the chosen particle, coming from the 
summation o f the influences o f other particles; please confront the above expression w ith  
equation (1.2.40). The quantities are averages over particles’ configurations’ space. The 
configuration space should be understood here as .SAT-dimcnsional space (N  stands for the 
number o f particles); the points of th is represent given configurations o f particles. Not 
all points in this space m ight be available, since there are forbidden configurations (for 
example the configurations tha t violate hard-core distance). W  is the already mentioned 
change in  the velocity required to fu lfill the no-slip conditions on the surfaces of the 
remaining solids. The danger o f divergence comes in the contribu tion  V , since it  is a sum 
over an in fin ite  collection of Coulomb force centers; Batchelor avoids this catastrophe by 
expressing V  in terms o f converging quantities and the average velocity both in solids and 
flu id  phase, which is known exactly to be zero. This is the renormalization procedure. 
Later, upon small concentration assumption, the velocity W  is found, assuming tha t only 
pa ir  interactions are im portant. F ina lly the result reads

The profound assumption made in the cited work is that, the suspension is s ta tis tica lly  
homogeneous; the averages calculated are taken over all spheres’ configurations that 
obey the m inim al in terpartic le distance D. F irs t o f all i t  means tha t the flow field 
does not influence the particles’ configuration space. Second, the variation of particles’ 
concentration takes place on the scale much larger than in terpartic le  distance. Batchelor 
suggested the following shape o f the pair correlation function for his collection o f particles

U  =  U q +  V  +  W , (2.4.1)

(2.4.2)

U  =  U 0( l  -  6.55(1 - e ) ) . (2.4.3)

<j(r) =  EI(r -£ > )  +  ( 1 -  e)cS(r -  D ) (2.4.4)
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where H (.t) stands for Heaviside (un it) function. The delta a t the edge o f excluded 
region represent the characteristic excess o f nearly touching spheres. The m atte r w ill be 
discussed more fu lly  in the Section 5.2.2. The actual calculations are performed for the 
constant c equal to zero.

The solution presented does not avoid the divergences completely. I t  appears tha t the 
variation o f spheres’ velocities is growing w ithou t lim it for the large collection o f spheres, 
[16]. Unfortunate ly this quantity  is an observable, since i t  enters the expression for the 
granular temperature o f solids phase. I t  should probably be understood as a sign, tha t 
renormalization procedure applied here is not complete.

The Batchelor solution, even though it  is based on serious assumptions and s till leads 
to unphysical results, is an im portan t step. Partia lly, since i t  is the only analytic solution 
we have, but prim arily, because it  introduces some concepts (sim plifications), th a t appear 
to be surprisingly good. I mean here the sta tistica l homogeneity assumption (discussed 
above and in the in troduction  to Chapter 5) and the suggested shape o f pair correlation 
function, (2.4.4). They both w ill be reused in future.
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Chapter 3

The electric theory of friction

As I demonstrated in Chapter 2, the interphase drag force becomes significant for rel­
ative ly small values o f void volume e (values close to  the packing lim it) , exactly where 
the direct attempts to solve Navier-Stokes equation become helpless. The interaction be­
tween spheres become im portant and we can hardly describe the velocity field as a sum 
of “corrected” contributions due to particu lar spheres. Rather, the flow takes place in 
the random constrained geometry, (dynamical) porous medium. I t  is impossible, at the 
present time, to construct any exact analytic solution of Navier-Stokes equation w ith  such 
boundary conditions. T rad itiona l CFD simulations (taking advantage for example o f fi­
nite volume method) appeared to be extremely expensive both by means o f time required 
for the computations and money spent for the massive (usually parallel) supercomputers.

The firs t serious numerical models of flow in porous media became feasible only af­
ter Frisch and coworkers translated Navier-Stokes equation in to  the language o f cellular 
automata (CA), creating famous LG A  (Lattice Gas Autom aton), [34]. Their main idea 
was to create a (seriously) simplified microdynamics, which would be easy to simulate 
and which in the macroscopic lim it would reproduce equations describing m otion o f fluid, 
exactly in the same manner in which NS equations emerges from microscopic description 
given by Boltzmann transport equation. CA are fascinating for the ir own sake; they were 
invented by Stanislaw Ulam and John von Neumann at Los Alamos Laboratory in the 
]940!s and later popularized by Stephen W olfram in 1980’s (see e.g. [96]). B u t even 
w ith  the use of these methods the task o f simulating the m otion o f the set of bodies in 
the flu id is non triv ia l.

Fortunately the problem of flow in the constrained geometries has already been deeply 
studied in the theory of soils, see e.g. [78|), and i t  appears tha t the results obtained 
(perm eability o f the materials) may be used for calculations o f the fric tion. I became 
especially interested in the theory o f hydraulic networks utilized by Steven Bryant, Peter 
K ing  and David Mellor, |13], since their theoretical prediction for perm eability as a 
function o f void volume agreed well w ith  the experimental data, spanning seven orders 
of magnitude. I decided to extended their theory and calculate the perm eability (and 
subsequently /if), for larger void volume fractions (or porosities, to use the ir term inology), 
observed in the chemical reactors.
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The prim ary purpose o f th is chapter is to expose the hydraulic network method 
and show its connection to our problem of finding j'5. Since the work of B ryant and 
coworkers originates from  the theory o f porous media f s ta rt w ith  the description of 
its fundamental equation, D arcy’s law (Section 3.1). A dd itiona lly  in  tha t section the 
notions of hydraulic conductance and the perm eability o f porous medium are presented. 
I show how to use them to calculate interphase drag. Section 3.2 shows the attempts 
to model porous medium by means of spheres. A fte r these in troductory  sections I am 
able to present the original works on the network model (Section 3.3). The la tte r section 
contains also the comparison of the network model and experimental data correlated by 
Ergun (equation (2.3.25)) and shows the excellent agreement mentioned. In Section 3.4 
I present the mathematical theory of linear resistor networks. The networks have several 
im portant features tha t w ill be utilized in the ir analysis. The key points o f the chapter 
are recapitulated in  Section 3.5.

3.1 D arcy’s law

3.1 .1  F low  in th e  d u ct

From the theoretical po in t o f view, an im portant geometry o f flow is a duct. i.e. situation 
when the flow occurs in s tra ight parallel lines, Figure 3.1. Velocity u  depends on x  and
y and has only z component, u. In  the lam inar regime NS equation takes the form

V - ir  =  —G, (3.1.1)

where G =  dzp is the pressure gradient, a constant quantity.
The general solution to  (3.1.1) reads

u =  4’ + +  V2), (3.1.2)

where V’ is an harmonic function in 2D,

V 2 0  =  O, (3.1.3)

satisfying the following boundary conditions on stationary surfaces

•0 =  +  y2)- (3.1.4)

I f  the duct has length I and the pressure drop along i t  is A p, then

C  =  (3.1.5)

The volumetric flow rate Q in  a system is a measure o f the volume o f flu id passing a
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Figure 3.1: Lam inar parallel flow in a duct; we are looking down the pipe, parallel to the 
flow. We must solve Poisson equation (3.1.1) w ith  D irich le t non-slip boundary conditions 
on external (S i) and internal (S2 ) surfaces. The picture was taken from [44].

stationary cross-section o f the duct per un it time

Q — [  u (x ,y )d A , (3.1.6)
JA

where A  in  an area o f the cross section of the duct. In general we have

Q =  cjAp, (3.1.7)

for fixed I. This is sometimes referred to as Poiseuille law. The proportiona lity  constant 
g is called hydraulic conductance and w ill be of our main interest. We can also define 
superficial velocity as

U =  -7 . (3.1.8)
A

I w ill now analyze two im portant examples.

Hagen-Poiseuille flow

Hagen-Poiseuille flow pertains to motion o f the flu id in the circular pipe o f length / and
radius R. I f  we w rite Laplacian in the cylindrical coordinates and discard the dependence
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on ip we obtain

1 d f  d u \  A p  .

which after straightforward integration yields

u — +  a l°g (r ) +  b. (3.1.10)

Constant a must be taken to  be zero to avoid s ingularity in  the center o f the tube and 
b can be obtained from boundary condition on the surface r  =  R, corresponding to the 
radius o f the pipe.

The volum etric flow (cf. (3.1.6)) reads

0 = ^ A „  (3.1.11)

and hence conductance for such a system can be w ritten  as

° =  (3'I'I2)
Let us note the strong dependence on R. E xactly th is is the reason for which coronary 
artery disease is so dangerous: small blood vessels tha t supply blood (and oxygen) to  the 
heart increase the ir resistance significantly when the ir walls become covered w ith  a, layer 
o f fa tty  material and plaque.

Flow between two parallel walls

The geometry o f the system was sketched in the Figure 3.2. Velocity u  depends only on 
x.

We im m ediately get from  (3.1.1) tha t

£ - ! ■  <3 - i i 3 >

what gives

after the boundary conditions are included. Volum etric flow is obtained by integration

1 G H/ l  OH
u (x )dx  =  -  — — A /3, (3.1.15)
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0 M
x

Figure 3.2: Flow between parallel walls. Discussion in the text.
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yie ld ing the following expression for the conductance o f a section o f height H

3 .1 .2  P erm eab ility

Lam inar flow in constrained geometries can be always proved to have linear flow pressure 
dependence. This law was firs t discovered by Henry Darcy in 1856 [21] and i t  is usually 
w ritten  in the following differentia l form for flow through fine materials (like sand)

where U  denotes local superficial velocity, cf. equation (2.3.2). The quantity  k  is an 
intensive property o f the medium called permeability. Such form ulation again requires 
separation o f scales, which is however natural for the case o f soils. In general k  may be 
a tensor.

Permeability describes the ab ility  o f the medium to transport, fluids. In  the SI system 
its un it is defined as:

amount o f perm eability tha t perm its 1 n r! o f flu id o f viscosity 1 Pa-s to flow 
through a section o f m ateria l 1 m th ick w ith  a cross-section o f 1 m 2 in 1 s at 
a pressure difference of 1 Pa.

In  fact th is un it appears to be equal to m 2. SI un it i t  not quite handy, and in practice a 
un it called darcy (D) is used. M ateria l has perm eability ID  i f

in  1 s 1 cm '5 of liqu id  w ith  viscosity 1 cP (ccntipoise) w ill flow through a section 
1 cm th ick w ith  cross-section 1 cm2 when the pressure difference is 1 physical 
atmosphere.

Let us remind tha t lc P  =  1 milipascal-second and the physical atmosphere is 101325 Pa.

I w ill save the reader the questionable pleasure o f defining units o f perm eability based on 
pound per square inch as the pressure unit.

The quantity  o f our interest, ft, can be constructed from  perm eability k as follows. 
The pressure gradient in the m ateria l due to fric tion  is eVp (please confront the presence 
of e w ith  (2.3.28) for example) and from the defin ition o f f t  we get

U  =  - - V p , (3.1.17)

1 D =  9.869233-10-1 '5 m 2.

eVp =  - f t

U
(3.1.18)

e

hence

(3.1.19)
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Permeability may be form ally computed from the knowledge o f Cqcir as follows

24 D 2 e‘
k =

1

fHc 18 1 - e C M '
(3.1.20)

Figure 3.3: Porous medium sample.

Let us now imagine that a material o f the perm eability k  was used to produce a 
cylindroidal sample, like on Figure 3.3, o f the cross-section area A  and length L. Such a 
sample has conductance

9 =
k A  
! i L '

Combining (3.1.19) and (3.1.21) we get

L g

(3.1.21)

(3.1.22)

3.2 Packing o f spheres

The real soils are usually collection of irregular grains packed random ly and as such they 
proved to be extremely complicated to model. There are however materials (for example 
consolidated sandstone), which may be described roughly as a collection o f (tiny) spheres. 
Th is kind o f approxim ation was introduced in [80| and has been successfully developed 
up to these days. I t  may be therefore instructive to have a look at some work devoted to 
packing o f spheres. The review comes pa rtia lly  from |94].

In 1611 Johannes Kepler hypothesized tha t in 3D the densest possible packing of 
spheres was periodic close packing (cp), yie ld ing void volume ef.j? — I — 7t / ( 3 \ / 2 ) ~  
0.25952. There are two regular Bravais lattices which form cp: face centered cubic (fee) 
and hexagonal close packed (hep). I t  took almost 400 years to prove this hypothesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. THE ELECTRIC THEORY OF FRICTION 51

Johann Carl Friedrich Gauss showed tha t cp is indeed the densest periodic packing, 
but the question whether there are 110 non-periodic packings o f greater density remained 
open. The final proof was presented in 1998 by Hales, after a series o f papers in itia ted 
by [41] -  periodic cp o f hard spheres is indeed the densest possible packing.

In any realistic model we must incorporate disorder and fortunate ly much o f attention 
was paid to random packings of spheres. This term is not precisely defined ((8 8 ]), but 
there exist an experimental defin ition, namely collection o f spheres vibrated upon action 
o f gravity in the container and left in the rest. The first investigation o f such a system 
was undertaken by Finney, who actually measured positions o f 8000 spheres in random 
close pack ([31, 32]). His research showed serious short range correlations in  the positions 
of spheres. The value o f void volume obtained by him was ef.fi* ss 0.362, what agrees w ith  
contemporary results, |53].

I t  is worth noticing tha t the random packing of ellipsoids is denser than spheres, what 
was proved by d irect experiment w ith  packing 125 pounds o f almond M & M ’s candies, 
[23]. The reported void volume was about 0.32, beating by 4% the spheres. A fte r the 
experiment the sweets were eaten by undernourished graduate students.

3.3 Network m odel of perm eability

The idea, tha t the flow in porous medium can be described as a flow in the duct (or 
system of ducts) is not new and has been utilized e.g. by Fatt in  1956, [29], but I 
am going to present here another work, [ 13, 1 0 , 1 1 ]. As i t  was mentioned earlier, the 
researchers were able to predict correctly the permeability, having started from almost 
firs t principle model o f porous medium.

To be more specific, they assumed tha t the soil may be described by a set o f identical 
spherical particles of diameter D, placed in the positions taken from already mentioned 
Finney random packing. Further, they observed that, the flow occurs along the well 
defined ducts (or throats) defined by the triads if  neighboring spheres; the throats connect 
the tetrahedral cavities (nodes). The schematic picture of a node is presented in Figure 
3.4.

I f  we recall now tha t the ducts have linear (Ohmic) flow-pressure dependence the 
resultant system is an analogue o f a network o f resistors (volum etric flow corresponds 
to the current and pressure is an analogue of potentia l). I f  we assign conductance gi- to 
each node and calculate the to ta l network conductance we w ill be able to obtain 
(providing we know the macroscopic dimensions o f the sample) perm eability o f such a 
medium using (3.1.21).

There are several im portan t issues now. F irs t, we must reasonably identify the neigh­
bors. Second, a suitable model of the th roa t must be used. F ina lly  we have to calculate 
the net conductance; the la tte r task may be non-obvious once we deal w ith  thousands of 
resistors connected in random.

The natural method o f finding nearest neighbors is construction o f Voronoi diagram.
I w ill focus on this issue more precisely in the subsequent chapters, here I present only 
a brief discussion. Consider discrete set o f points, so called generators, scattered in arbi-
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Figure 3.4: The schematic presentation o f the node in the network model. A , B, C &  D 
denote positions o f the spheres, a, b, c &z d represent th roats ’ axii. A ll the nodes have 
four nearest neighbours. The center of the (irregular) tetrahedron ABC D  is marked w ith  
S; S is understood as the center of the sphere circumscribed about the tetrahedron. The 
schema comes from [1 1 ).
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tra ry  manner in the Euclidean space 0  (of a rb itra ry  dimensionality). For each generator 
G  we define now Voronoi region as a subset o f i l ,  containing points which which are 
closer to G than to any other generator. I t  can be proved (see e.g. (69)) tha t Voronoi 
regions are always convex. In 3D two generators sharing the face o f Voronoi region are 
natu ra lly  identified jus nearest neighbors. In  our problem the spheres’ centers form the 
mentioned set o f generators. I f  we connect each pair o f nejirest neighbors w ith  a line 
we obtain so called Delaunay diagram, a set o f simplexes (tetrahedra); the ir walls form 
the narrownesses o f the throats, according to authors o f the work mentioned. Centers of 
Delaunay cells are nodes o f our resistor network. Each node has degree (i.e. the number 
o f attached throats) exactly four. Schematic presentation o f the node and four throats 
are presented in Figure 3.4.

le-10

^  le-11(N
<
B

le-12

le-13 Bryant &  Blunt — I—  •
Ergun (R e= 0 )--------- ;

k for Finney packing . •<u
a  le-14

le-15
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

void volume

Figure 3.5: The results o f B ryant and coworkers. The length scale for Finney packing 
was set w ith  sphere diameter Dq =  0.2 mm, being the only experimental inpu t. I t  c j u i 

be seen tha t the theoretical prediction matches Ergun empirical form ula very closely.

The following model o f th roa t was adopted in the investigation. The duct formed 
by the three spheres was cut in to “slices” perpendicular to  the d irection of the flow and 
each slice was regarded as conical frustum: a pipe w ith  a radius changing linearly w ith  
distance. The resultant resistors were later connected in scries. The in le t and outle t radii 
were calculated using carefully chosen linear dimensions o f th ro a t’s slice; in general the 
procedure is involved and suitable only for numerical study; it  was described in Appendix 
o f |13|. The geometry o f macroscopic flow was spherical: the in le t and outle t pressure 
was applied to two concentric spheres.

Ref. (13) reports two kinds o f numerical experiments performed. F irst, the original 
topology o f Finney packing was left unchanged and the whole structure was scaled: both 
positions o f the grains and (proportiona lly) diameters D. Th is do not change the void
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volume, e 0.362. The perm eability  o f the medium was found to be

k =  T D 2, (3.3.1)

where

T =  6 . 8  • 10- '1 m 2. (3.3.2)

The second type o f experiment performed relied on the “squeezing" o f the packing 
along one direction. The spheres started to overlap and i t  was assumed th a t the material 
corresponding to intersecting grains was removed from the system (in rea lity  e.g. washed 
out by water). Th is changes the void volume and, in general, is supposed to m im ic actual 
geological processes like cementation or grain overgrowth (in both additional material 
is deposited in  the system by some means). I t  was found tha t some throats became 
completely blocked at e =  0.1. The percolation threshold was reached for e =  0.03, where 
50% o f the connections were closed and the perm eability fell to zero.

The result of the calculations o f perm eability as the function o f c is presented in 
Figure 3.5. The only experimental input was an original grain diameter D q =  0.2 mm, 
understood as the grain size before deformation occurred (and as the original spheres’ 
diameter used in  sim ulation). There is an error in [30], fo rtunate ly resolved [12]: the 
diameter was falsely reported to  be 0.4mm. Bryant compared the ir results to experimen­
ta l data, for Fontainebleau sandstone and noted perfect agreement; the ir model perfectly 
matched the effect o f decreasing e. For comparison a perm eability obtained from Ergun 
form ula was plo tted

*■ = (3-3'3)

The expression was obtained from  (3.1.20) and (2.3.30), in  the lim it  9tc —> 0. Both results 
are very close. Let i t  be noted tha t Ergun formula reaches perm eability T D q exactly for 
the void volume found for F inney packing. Moreover we can see tha t the predictions 
easily span several orders o f magnitude.

3.4 N etw orks o f resistors

In this section 1 present the m a trix  formalism for dealing w ith  the networks of conduc­
tances. As we have already noted, there is fu ll analogy between electrical and hydraulic 
circuits in the lim it of low Reynolds numbers. In  this section I use electric terminology. I t  
is assumed tha t all the elements express the linear (O lunic) pressure-flow characteristic 
and tha t all the elements are passive (real), i.e. tha t they not not introduce current- 
voltage lags, or tha t we deal on ly  w ith  stationary flows. I t  would be straightforward 
to include the nonstationary effects in to  the formalism; non-linearity on the other hand 
poses a certain challenge.

There is a close connection between resistor’s networks and random walks (especially
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Markov chains), as suggested in Doyle and Snell monograph, [25], which contains all the 
result from this paragraph (and many more), although usually w ithou t proof. Abundant 
mathematical literature devoted to electrical networks exists, since they can be easily 
studied, as we shall soon see, using techniques o f m a trix  theory (see e.g. [17] and ref­
erences therein), but the form ulation from this section is mine. Markov chains (and in 
general randoms walks) are deeply studied (for example [48, 56]). I believed tha t the 
theory o f random graphs m ight be o f some help for the investigation undertaken (see 
[3, 24] for a review), bu t I was not able to build any useful connection to the problem at 
hand, pa rtia lly  because the structures being studied are m ainly trees (since they resemble 
“ real world” networks like Internet), while our networks have systematic loops. Regular 
(square) network o f random uncorrelated resistors was studied in [7, 39]; our nets are 
irregular and the values o f resistors are correlated. A part from tha t, we must be able 
not only investigate topological, but also spatial properties o f arrangements o f spheres 
(discs). A t present, this requires numerical simulations.

The formalism presented is so called nodal-voltage approach. In electronics sometimes 
dual description, based on the loops o f the circu it, is used (loop-current method). We do 
not use i t  since it  is more d ifficu lt to implement.

3.4 .1  B asic  n otion s

Figure 3.6 presents the basic build ing block, conductance g. I f  there are voltages us and 
ue applied to endings s and e respectively, then there w ill be current I  flowing from s to 
e given by

I  =  g { u a - u c).  (3.4.1)

This is Ohm law. The power P  dissipated at this element is

P  =  I  (iif, — ue) =  g (ua — a e ) 2 . (3.4.2)

We assume tha t g 's are non-negative, therefore the power dissipated is also always 11011- 
negative.

Figure 3.6: Single conductance.

By electric network we understand a set of nodes N  connected w ith  conductances. 
The set o f conductances w ill be denoted by S. Conductance connecting nodes k. l £ N  
w ill be denoted by gu £ S. Schematic diagram of the network is presented in Figure 3.7.

We divide the nodes into two categories: border nodes, in  which the voltage (by means 
o f generator or battery) is maintained constant all the time and core nodes, for which we 
require a conservation o f current. The set o f border nodes is denoted by 23 and the set
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Figure 3.7: C ircu it. G denotes generators. Border nodes do not need to lie necessarily on 
the edge o f the c ircu it (like B). A ll nodes are connected to  at least one other node, but 
the degree of the core node may be 1 (A ). Node cannot be connected to itself. Border 
nodes are denoted w ith  letters, the rest o f the nodes are core nodes. Th ick lines denotes 
conductances, th in  and dashed lines are ju s t wires w ith  vanishing resistivity.
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o f core nodes by C; clearly N  =  2  U 6 . The number o f core nodes is denoted by k and 
number o f border nodes by j3. We assume that there are at least one border and one core 
node. The to ta l number o f nodes is N  and

k +  /3 =  N . (3.4.3)

Our term  “network” is usually reserved for the type directed graphs, but we do not 
use i t  in  this context. The graphs underlying our networks are assumed to be simple, 
weighted graphs and therefore posses the following properties (k , I € N , k  ^  I)

•  the underlying graph is connected, i.e. all nodes are connected to at. least one other 
node. Further we require network of core nodes to be connected, w ithou t any loss 
o f generality.

•  the underlying graph is non-degenerate, what means tha t two nodes may be con­
nected by only one conductance (or none, which corresponds to conductance 0 ).

•  the graph has no “self-loops” ; nodes are not connected to themselves

9kk =  0. (3.4.4)

•  the graph is non-directed

9kl =  (Ilk- (3.4.5)

3 .4 .2  M atrix  form ulation

Let us denote by u/, I £ N, the potential in the node I and by the / /  current leaving 
(through a generator) th is node. The law of current conservation reads

=  =  7/W' ~  ] C  (Jkl'Uk’ (3.4.6)
A'SN kex

where we denoted by 7 / the sum of conductances attached to node I

l i ^ ^ t l k i -  (3.4.7)
kex

From (3.4.6) we immediately get the global current conservation law

£ 4  =  0. (3.4.8)
le x

We w ill now order potentials and currents in the nodes into vectors v  and I  respec­
tively. This requires the in troduction o f numeration o f the nodes: from now 011 k, say, w ill
denote both the node (element of N)  and the number o f the node. We w ill understand 
tha t (v ) fc =  v/,, (in all expressions o f this kind).
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We introduce now m a trix  notation. According to  (3.4.G) we may w rite

I  =  Kv,

where K is a Laplacian o f the network

(3.4.9)

K =  D -  A. (3.4.10)

D is diagonal m atrix , which entries are 7 1

D kl =  h m ,
Su being Kronecker symbol. A is called adjacency m atrix

Aki =  9ki- (3.4.12)

(3.4.11)

A ll entries o f A are positive and the m a trix  has zeros on the diagonal.
I t  is now desirable to reorder indexing o f nodes such tha t v  and I  could be w ritten  

in the form

where subscripts b and c perta in to border and core nodes respectively, v*,, I& £  R^ and 
v c, I c £  R K. Notation ( v t , v c) € R ^ , should be understood as a vector, which first (3 
components comes from v;, and the la tte r k from v c.

The problem of solution  o f the electric network may be now stated as follows. There 
are given network defined by N, 33 and C and fixed potentia ls in  the border nodes v/,. 
A dd itiona lly  we require

W hat are the potentia ls v c at the core nodes?
This problem resembles strongly problem of finding electrostatic potentia l w ith  D irich- 

let boundary conditions

M a trix  K is nothing more than discretized Laplacian, up to  the fact th a t neighbors are 
taken w ith  weights given by g^i and our network occupies rather some kind of topological 
than physical space. Let us note tha t the solution v c is a harm onic function, i.e. tha t its 
value in the node k is given by the weighted average of values in the neighboring nodes

v  =  (v fc, v c) 

I  =  ( l 6 , I c ) ,

(3.4.13a)

(3.4.13b)

I c  =  0 . (3.4.14)

V 2<p =  0. (3.4.15)

(k £ e)
1

(3.4.16)
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according to (3.4.6) and (3.4.14). This is an echo o f the well known fact tha t the average 
o f continuous harmonic function (i.e. the function obeying Laplace equation (3.4.15))

We could w rite  the Laplacian K in the following form, sim ply imposing on i t  its 
natural block structure

where all the internal matrices are parts of K: B denotes connections between border

position) and K„ are connections w ith in  the set of core nodes. Let us note tha t K(. is not 
a proper Laplacian for core network (network of core nodes and core-core links), since 
its diagonal elements were b u ilt using conductances o f core-border type together w ith  
core-core connections. This kind o f pathology w ill be consequently denoted w ith  a tilde.

3.4.3 Existence and the uniqueness of solution

Sticking to our block-like form we can w rite  (3.4.9) as

This is sim ply a set o f linear equations. We w ill investigate now the existence and the 
uniqueness of solution v c.

T h e o re m  3.4.1 (Network fundamental theorem). All, eigenvalues cv; o f the network 
Laplacian  K are real, non-negative and its set o f eigenvectors OC =  {a ;}  forms orthog­
onal basis. Zero is an eigenvalue, its m u ltip lic ity  is exactly one and corresponds to a 
eigenvector 0 /  \ /N ,  where 0  is a vector consisting o f a ll 1 ’s.

Proof. The fact tha t all the eigenvalues are real and the eigenvectors form orthogonal 
basis follow immediately from the fact tha t the m atrix  K is real and symmetric (the proof 
can be found in any quantum mechanic textbook since K is exactly herm itian operator). 
The rest o f the theorem may be proved as follows.

The power P  dissipated in the system, when potentials and leaving currents in the

over the surface o f the sphere is equal to the value o f the function in the center o f the 
sphere.

(3.4.17)

nodes, R is a scheme of connections between border and core nodes (T stands for trans-

(3.4.18)

We look for v c such that

K cv r =  - R T Vf,. (3.4.19)
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nodes are u and I, is

/eXA-eX

= lYl H 3ikui - Y1H + 5 X) 2Z gikui
/eXA-eX' /eXA-eX /eXA-eX

= X ] 7,M/2 _ X I X I 0/A-«'/Ufc = uKu = u  • I, (3.4.20)
te x  /eXA-ex

where in the last step (3.4.9) was used.
We m ay expand a rb itra ry  po ten tia l d is tr ib u tio n  u in  the  basis X

N

u  =  ^ a ia,. (3.4.21)
1 = 1

We assume th a t a, are norm alized hence

a, — u - a j .  (3.4.22)

I t  is easy to  check th a t the power

N

P  =  Y ^ a <al  (3.4.23)
i= i

Since for a rb itra ry  d is tr ib u tio n  o f po tentia ls  (and thus a rb itra ry  num bers a,) power dis­
sipated is non-negative, i t  fo llows th a t a ll the eigenvalues are non-negative. The zero 
eigenvalue is associated w ith  constant vector c 0 ,  where c E R. I t  is easy to  check, th a t 
once we realize th a t ui — const is the on ly  vector w hich does no t case any cu rren t flow 
in  the system and hence power d issipation. M u lt ip lic ity  o f th is  eigenvalue is exactly  one 
fo llow ing  the same argum enta tion  -  any o ther d is tr ib u tio n  causes heating. □

L e m m a  3 .4 .2 . I f  potentials vj, a,re set in  the border nodes a ll the time, v c obeys (3.4.19), 
5vc E RK is an arbitrary vector and

r 3 v (  =  v c +  d v c, (3.4.24)

then i f  we apply v(, to core nodes, the power dissipated in  the systems is

P0 +  S v X S v c ,  (3.4.25)

where Pq denotes the power dissipated when v c is applied to core nodes.
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Proof. The power dissipated in the system is according to  (3.4.20)

( v i , v c +  5ve) ( rBt  RRJ ( V c^ Vc)

=  PQ +  6vcKc5vc, 

where (3.4.19) was used to cancel cross-terms.

The following m in-max principle exists. Let us recall tha t power is always bounded 
from below by 0 .

T h e o re m  3.4.3 (Thomson principle). Among a ll distributions o f core potentials v c those 
obeying equation (3.4.19) minim ize the power dissipated in  the system, providing we keep 
Vh fixed.

Proof. Let us apply the voltage v(, to core nodes (potentials on border nodes are all 
the time) and again v (^=  v c +  5vc, exactly like before. Using Lemma 3.4.2 i t  is enough 
now to prove tha t <SvcK(,5v(, is always positive, unless 6vc — 0 .

As we have stated Kc is not a proper Laplacian for the core network

K(, =  Kc +  <5KCI (3.4.27)

where JKC is diagonal m a trix  w ith  non-negative entries

(3.4.28)
mee /

We have

5vcKc(Svc =  <5vcKc5v,; +  Jvc<5K,;5vc, (3.4.29)

Kc being (proper) Laplacian for core network. The firs t term  on the RHS is always 
positive unless

Svc =  v@, v g K, (3.4.30)

when i t  is zero (Theorem 3.4.1). Considering the spectrum of <$KC, given by (3.4.28) we 
see that the second term of RHS is always positive except the case when i t  is zero for 8vc 
such that

{6vc)k =  0, (3.4.31)

k  corresponding to core nodes linked to at least one border node and therefore for all
core nodes, according to (3.4,30). So always P  -  Pq >  0 and P  =  Po if f  <5vc =  0. □

C o ro lla ry . A ll eigenvalues o f Kc belong to R + and therefore K ” 1 exists.

(*K c)fc/ =  8kl

(3.4.26)

□
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Proof. Taking Lemma. 3.4.2 and Theorem 3.4.3 in to  consideration we see tha t expressions 
like <JvcKc(Jvc are always positive, except when Svc is zero. Using the same type of

the inverse exists. Symmetric m atrix  w ith  this property is often called positive definite

T h e o re m  3.4 .4  (Existence/Uniqueness theorem). I f  potentials v/, in  border nodes are 
fixed there is one and only one distribution o f core potentials obeying current conservation 
law  (3.4.19).

Proof. We exp lic itly  give the solution

3 .4 .4  Itera tive  m eth o d  for finding v t.

In  the previous paragraph we learned how to find solution to  our boundary value problem. 
Here I am going to present another method, more suitable for computer simulations.

Let us consider the linear transformation T, tha t substitutes all potentia ls in the core 
nodes by the averages defined by (3.4.16). Border potentia ls are le ft unchanged.

where Ac is an adjacency m a trix  for core network, Dc is diagonal m a trix  of diagonal

argumentation as in Theorem 3.4.1 we see tha t all the eigenvalues of Kc are positive, so

quadratic form. □

(3.4.32)

I t  exists because Kc 1 exists. □

(3.4.33)

elements o f Kc

Dt. — Kc +  Ac. (3.4.34)

1/3 and 0/3  are (3 x  f3 un it and zero matrices respectively. D “ ' exists, because the network 
is connected.

Let v „  be solution o f (3.4.19) w ith  boundary conditions v;, and define

uc =  v c +  8vc, 

u' =  Vc +  tfv'

(3.4.35)

(3.4.36)

and

u'c =  T u c. (3.4.37)
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We have

u'c =  Dc 1 RTV() +  Dc 1 A(, (v c +  Svc)

=  D " 1 +  D - 1 (D c -  Kc)  (v c +  <5vc)

=  V c +  D j ^ c ^ V c , (3.4.38)

so

<yv ' -  w svc , (3.4.39)

where

W  -  D ~l Ac. (3.4.40)

We can easily conclude tha t the exact solution (v ;,,v c) is invariant under the transfor­
mation T.

Let us consider iterative process

We w ill now prove, tha t in  the lim it o f in fin ite  operations we reach exact solution in  core 
nodes v c, having started from an a rb itra ry  in itia l guess.

We investigate properties o f W

and for the core nodes which are linked to at least one border node the last inequality is 
strong.

There is very useful theorem which allows for the estim ation o f eigenvalues o f a square 
m a trix  due to Semyon Aronovich Gerschgorin |36|.

T h e o re m  3.4.5 (Gerschgorin disc theorem). Let A be square complex m atrix. Every 
eigenvalue o f A lies in. one o f the follow ing discs

called Gerschgorin discs.

Proof. P roof comes from (l j .  Let A be an eigenvalue o f A and v  its  corresponding eigen­
vector. Let i  be chosen such tha t |a,| — m axj |wj|. v  can’t  be 0 so |u,| >  0. Now, since

u Tu. (3.4.41)

W if =  0

0  <  < 1 , i  £  j

(3.4.42a)

(3.4.42b)

(3.4.42c)

(3.4.43)
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Av =  Av

(A An) V{ — 'y  ̂A jjV j. (3.4.44)

Taking norm of both sides we arrive at

|A -  A i . E Au -
U’

< E l A v l - (3.4.45)

□
We need somewhat different and weaker version.

T h e o re m  3 .4 .6  (Markov-Gerschgorin theorem). Let\N  be m atrix  w ith properties (3.4.42). 
A ll its  eigenvalues Aj obey

M  <  i . (3.4.46)

Proof. The proof proceeds as in  Theorem 3.4.5. We may note tha t the equality in (3.4.45) 
may hold only for row i  corresponding to core node w ith  no link  to border node and to 
eigenvector o f the type c 0 . B u t for such an eigenvector we may chose any of the rows, 
so a.s well the one corresponding to core node w ith  border connection(s) and make the 
inequality strong. □

I t  is well known [89] tha t any square m a trix  can be decomposed as follows:

w  =  s - 1j s ,

where S is a non-singular m a trix  and J is Jordan canonical fo rm  o f W

(3.4.47)

/  J.
J =

Jo 0 

0

\

Jj?)

(3.4.48)

and

/ A  i 1 0  . . .

0 A, 1 0

0  \

0

0 . . .  0 A i 1
\  0  ..............  0  A i J

(3.4.49)

is called Jordan block. I t  has corresponding eigenvalue repeated on the diagonal and 
l ’s on the superdiagonal. Each Jordan block corresponds to different eigenvalue A;;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. THE ELECTRIC THEORY OF FRICTION 65

the number of Jordan blocks m is determined by the number o f linearly independent 
eigenvectors o f W  and the ir dimensionality by the m u ltip lic ities  si o f the eigenvalues A/. 
The powers o f Jordan m a trix  and .Jordan block read respectively

\

\ Jk

(3.4.50)

|fc _
Jl ~

(  X f h:Xk~ l k-X k~2

0 A f kXk~ l k2A f “ 2

0

V  0 0

kXk~ l
Af

(3.4.51)

where s =  s; and providing k >  s — 1. Since for | A j <  1

lim  ks Xk =  0,
k—*oo

we see the suggested iterative procedure is convergent

W" = -> 0 .

(3.4.52)

(3.4.53)

Let us now introduce a notion o f t.ot,al conductivity o f the network. I t  makes sense only 
provid ing tha t we divide our set of border nodes in  two groups: in flow ing and outflow ing 
nodes. A ll the nodes of the firs t group have the same potentia l U  ^  0 , the nodes in 
the la tte r one are kept grounded. The net (to ta l) conductiv ity  o f the system is from the 
defin ition

! H o t U '
(3.4.54)

where /  is the current flowing through the system. Easy calculations show tha t

, o t  =  ^ ,  (3.4.55)

where Plot is the power dissipated in the system.

3.5 Sum mary

In this chapter I presented the m ajor features o f the hydraulic network model for the de­
scription o f flows in constrained geometries. Its usefulness was proved by d irect compar­
ison w ith  experiment. I also showed how to use this formalism  to compute perm eability 
o f the medium and interphase momentum transfer coefficient (3.
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The mathematical theory of linear resistor networks, presented in the last part of the 
chapter, gives some of the ir fundamental properties. I t  appears tha t the resistor networks 
w ith  D irich le t boundary conditions can be regarded as well defined variational problem 
-  the solution for nodes potentials which satisfies the current conservation law minimizes 
also the to ta l power dissipated in the system. I t  was shown tha t there was only one 
such solution. Additiona l outpu t o f the analysis was an iterative procedure for finding 
potentials in  the nodes; its convergence was form ally proved. The advantage of the la tte r 
method over the direct a ttem pt to solve the set of linear equations, (3.4.19), w ill be seen 
in the Chapter 6 , where the numerical studies w ill be presented.

This chapter ends the in troductory part of the thesis. From now on we w ill try  to 
adapt and extend the network model for the purpose o f calculating (3.
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The analytic calculation o f the interphase drag force explo iting the electrical network 
analogy became the m ajor goal o f my work. I decided to investigate flow in  2D systems 
past the (possibly disordered) arrays o f cylinders, w ith  the main axii perpendicular to 
the flu id  velocity. There were two m ajor reasons for the m igration to  F latland. F irs t, i t  
made the problem of flow in disordered systems at least tractable in the sense o f analytic 
solution. Second, such studies have not been undertaken yet; there exists a rich literature 
(both theoretical and experimental) devoted to flow past systems o f spheres, but I am not 
aware o f the s im ilar work concerning flow in the assemblages o f cylinders. The resultant 
porous medium is quite specific, its fragment was presented in the Figure 4.0. Except 
from this, the rest o f the procedure follows ideas presented in the Chapter 3.

flow

Figure 4.0: Fragment of two dimensional porous medium.
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Chapter 4

Flow in periodic media

Study o f periodic media has several im portan t advantages. F irs t o f all we may construct 
exact description o f flow in the media by solving d irectly  Navier-Stokes equation and 
u tiliz ing  electric analogy matching these two solutions can 011 the one hand validate the 
hydraulic network approach and on the other w ill allow us to  gauge one o f the models of 
th roa t (Sections 4.2 &; 4.3). Creating reliable th roa t functions is another im portant task 
accomplished in th is chapter (Section 4.1). F ina lly  the chapter reports the firs t analytic 
attack 011 the flows in disordered systems (Section 4.4). The la tte r issue is especially 
interesting, since (even exact) calculation o f drag for regular systems are feasible. I f  
there were a way to deduce the properties o f realistic (disordered) networks from the 
regular ones our main goal would be fu lfilled. The key points of this part o f work are 
summarized in Section 4.5.

The chapter makes use of Voronoi methods for finding nearest neighbors, but in the 
case o f regular sets of generators such identification is easy. The m aturer discussion of 
this issue is therefore postponed to Chapter 5, where in  the presence o f disorder the 
problem fails to be tr iv ia l.

4.1 M odels of throat

Model of the s lit between two parallel cylinders makes a cornerstone o f the project. 
During the course o f my work I considered many possibilities and here I discuss the three 
most im portant o f them. The most obvious choice is to assume tha t the flow between 
cylinders takes place between two parallel walls of length L  =  D  at a distance M  =  s — D  
from each other, where s is a distance between the cylinders centers and D  denotes the 
diameter of the cylinders. The conductance may be then calculated from (3.1.16). This 
surely overestimates the fric tion . Below I provide two other models. The first one takes 
into consideration varying size of the throat (“ integrated th roa t” ), the second one is based 
011 the theoretical prediction o f the drag experienced by a single row o f throats connected 
in parallel (“M iyagi th roa t” ).
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4 .1 .1  In tegrated  m od el

Reference [5] points out. tha t the duct w ith  varying geometry may be cut in to slices. 
To each slice a resistance is assigned and the net resistance may be obtained by the 
integrating o f particu lar slices.

D/2

Figure 4.1: The idea of the throat, w ith  varying geometry. The conductance o f each “slice” 
is computed using formula (3.1.16).

Resistance o f the slice is obtained from equation (3.1.16)

m -  l2>1 1 ,
H  d* '

where

(4.1.1)

d — s — 2 \ l  — x 2, x e [ - D / 2 , D / 2 } .

Please refer to Figure 4.1 for details. The net resistance 

12/r f D/2 1
i ? . =

H

pur*

J —D / 2
i f - * *

/ _ 12>l f1 
:1 //£'- J o ( a  -  y/1

(4.1.2)

3 # ,  (4.1.3)

w ith  a  =  s /D  >  1. A fte r the integration the conductance yields

g ,(a )  = (4.1.4)
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where

//(« ) =
cv (a 2 -  1 )5/2

3 ^37ra 2 +  2 \ /a 2 — 1 (1 +  2a2) +  6 a 2acot ^ \ /a 2 — l j  j  

We have, for s &  D  (narrow throa t lim it)

/ ; ( a )  =  c ( a - l ) 5 / 2 +  0 ( ( a - l ) 7/ 2) ,

and

2v/2
c =  - f -  «  0 .1 0 .

9?r

The importance of the above lim it w ill become clear in Section 6 . 

4 .1 .2  M iyagi m odel

(4.1.5)

(4.1.6)

(4.1.7)

(?)
flow

Figure 4.2: The array of M iyagi cylinders.

In  [6 6 ] M iyagi investigated flow past ID  array o f cylinders (Figure 4.2). Using Fourier 
transform, he gave an expression for a drag in the form of power series in  D /s  and 
subsequently extrapolated the result to the regime o f narrow throats and got tha t the 
force F  acting on the cylinder is

const

pU  (,, /D  -  l ) 2
(4.1.8)

where U  denotes the velocity o f the flu id far from the array. We can note characteristic 
quadratic blow-up, which suggest tha t the conductance o f the single th roa t in the parallel
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network may be w ritten  in the following form

, x H D 2 , <x2
<7m(«) =  —— 7M (a “  1) , (4.1.9)

where 7 m is an dimensionless constant. We w ill evaluate the optim al value o f 7 m soon.
In  general such extrapolation procedures are risky, bu t in  th is case author gave plau­

sible jus tifica tion  to it.

4.2 Regular array o f sm all cylinders

The exact solution of Navier-Stokes equation for the case o f flow in periodic environments 
is due to Hasimoto, |45|, and I utilize his work throughout the section. Hasimoto gave 
the result in a form of expansion up to terms O (lo g ( l -  e)) and only for square lattice. 
I  extended his work to include corrections 0(1 — e) both for square and hexagonal la t­
tices. Another works, which deal w ith  solutions for special periodic setups, are already 
mentioned [GG| and [59].

4 .2 .1  G reen  fu n ction

We investigate slow steady m otion o f an incompressible, viscus flu id past a 2D periodic 
array of small obstacles, placed in the periodic la ttice sites

£  9 r n =  Ti\a j +  U2a-2 , n \$ € Z (4.2.1)

a i and ao form ing the basis o f the lattice and £  form ing a set o f the la ttice sites. Our 
problem may be formulated as follows

/ iV 2v  =  V p  - f F  ^  <J(r -  r „ ) , (4.2.2a)
r„6il

V  • v  =  0, (4.2.2b)

where //. denotes the viscosity, v  the velocity field and p stands for the pressure. F  is the 
force exerted on the flu id  by each o f the obstacles; we assume tha t the lattice is “simple” , 
i.e. every obstacle is surrounded by the same configuration of other identical obstacles 
and indeed exerts the same force. In 2D F  is understood as a force acting on the un it 
length o f the system.

Since the problem is periodic we are going to work in the Fourier basis, expanding 
velocity and pressure gradient respectively (n stands for imaginary un it)

v =  Vk exp (-27rik  • r ) , 
keK

-  V/> =  ^  P k  exp(—27rik • r ). 
keK

(4.2.3a)

(4.2.3b)
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3? stands for the lattice reciprocal to £ , i.e. la ttice spanned on the basis vectors A i  and 
A 2 , such tha t ( i , j  =  1 , 2 )

A i -a j  =  Si j . (4.2.4)

Substitu ting (4.2.3) in to  (4.2.2a) and recalling the linear independence o f basis func­
tions exp(—27rik • r )  we obta in  the relations between the amplitudes o f expansions

-4 iT -fi,k2v k =  - P k +  (4.2.5a)

k  • v k =  0, (4.2.5b)

where we used tha t fact tha t Fourier transform of D irac ’s delta is sim ply a constant, 
inverse o f un it cell volume

f i  =  ||* i x a 2|| =  ||A i x A o i r 1 . (4.2.6)

Additiona lly, since P  is a gradient o f a function

k x P k =  0. (4.2.7)

F can be computed from  the meaai pressure gradient (eq. (4.2.5a), for k =  0)

F  =  P 0a  (4.2.8)

For k ^  0, taking the scalar product of both sides o f (4.2.5a.) w ith  k and recalling relation 
(4.2.5b) yields

k • P k =  ^k • F  =  k • P 0  (4.2.9)

or, after use o f (4.2.7),

Relying on (4.2.5a), the amplitudes of velocity are

(t  - p) ■ M0- (4'2'n )

Perform ing inverse Fourier transform and w riting  the results in the Cartesian coordinates
we get

v  =  v 0  +  - G F  (4.2.12a)
/i

- V p = ^  +  G/F , (4.2.12b)
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where the operators G and G' are given by

4n V d x id x j

47T d x id x j '

The lattice sums Si and S2 are

=  « * W >

± U O]
GiJ =  -7Z7L77ET- (4-2.13b)

0  . , 1 exp (-2 7 rik  • r )  , ,  „  _ , .

l(r)=̂ £  *» (42-14a)

,?r “  k6K' h

and the summation goes over all 11011-zero k ’s

K ' =  3 ? \ { 0 } .  (4.2.15)

By explic it calculations we can get tha t

V 2 S2 =  S\ , (4.2.16a)

V 2Si ~47r ( ] C  (̂ r  “  r " )  _  ^  I • (4.2.16b)

We see that the problem reduces essentially to determ ination o f electrostatic potentia l 
coming from a set of point-like positive charges placed on the la ttice  and neutralized by a 
surrounding cloud o f negative charge density, filling  un ifo rm ly  the u n it cell (th is is simply 
description o f potentia l of ionic lattice). I t  is known tha t the separate calculations of both 
contributions lead to divergences. Presence o f uniform  charge density (being equivalent 
to the presence of uniform  gradient Po) makes the problem convergent.

The linear operators G and G' may be regarded as Green’s functions; they represent 
the perturbation introduced into the system due to spatia lly  periodic poin t-like driv ing 
F . I 11 the sp irit of Green’s technique the solutions may be superposed to satisfy non-slip 
boundary conditions 011 the obstacles. The zeroth Fourier mode o f v , vo, is the average 
flu id velocity in the system and may be regarded as the velocity present in  the system 
before the perturbation F  was introduced.

4 .2 .2  B te n s o r

The calculations presented above are stric t, bu t there is 110 easy way (in  fact 110 way that 
I would be aware of) to fu lfill exactly the boundary conditions 011 the surface o f each 
cylinder. In general we would need to w rite  down the integral equation for F  w ith  G as a 
kernel. The integration is performed 011 the surface of the cylinder G, so tha t the net flow 
on the cylinder surface would vanish (T  stands for the force per un it area o f the cylinder
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and L  is its length)

v ( r )  =  v 0 4- — f  G (r -  r ' ^ f r 'W r '  =  0 (4.2.17)
fee fj, ,/e

Solution o f the above equation would give us S’ and subsequently F

F  =  [  T ( r ') h ( r ') d r ',  (4.2.18)
Je

where n ( r ')  stands for the vector normal to the cylinder surface.
The above exact procedure is too complicated. Instead, we follow Hasimoto and use

Burgers approxim ation (14]. We require tha t the average velocity on the surface of the
cylinder must vanish (a =  D /2  stands for the radius o f cylinder)

(v) =  - L  [  ydS  =  0. (4.2.19)
2na Jr= „

This condition yields according to (4.2.12a)

v0 = - i ( G )F  (4.2.20)

or

F  =  - / i ( G ) _ 1v 0. (4.2.21)

In  other words, instead o f a cylinder and a d is tribu tion  o f force, we have point like 
force applied to the flu id in  the center of the cylinder together w ith  the condition tha t the 
velocity vanishes in the distance D /2 . Burgers average (4.2.19) depends on the cylinder 
diameter and this is exactly the moment where the la tte r quan tity  enters our calculations.

The force acting on the cylinder array per un it volume after subtracting the uniform  
pressure gradient (buoyancy) influence is

M S?)-5-
where H  is the length o f the cylinders. Therefore the drag force F p  per un it volume for 
the periodic system reads

F q  = Bv0, (4.2.23)

where

B ^ G ) " 1. (4.2.24)

B may be regarded as tensor version of f i  coefficient. I f  D  stands for cylinders’ diameter
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we get

1 : : 4 ( i - 0  

n nD2
(4.2.25)

and hence

(4.2.26)

B is dimensionless and depends purely on geometry o f the system; we call i t  geometrical 
modifier. In case o f homogeneous and isotropic media it  is simply a scalar.

4 .2 .3  D iscu ssion  o f  th e  sym m etries o f ten sor G

Defin ition (4.2.13a) of tensor GtJ indicates tha t the drag tensor defined for periodic media 
is certainly symmetric

The above property may be proved for general perm eability tensor, see ref. [77|. The 
la tte r source states additionally tha t G is positive definite m atrix.

In  the case when the tensor is defined on a certain regular la ttice we know tha t it  
must feature the same symmetry group as the underlying lattice. I f  we define A as the 
ro ta tion  operator (ro ta tion o f angle r/>)

i f  the lattice is invariant w ith  respect to rotations of angle </> (e.g. =  1 2 0 ° for triangular
lattice and (j> — 90° for square).

Easy calculations show that symmetric tensor on square and triangu lar la ttice must 
be isotropic, i.e. o f the form

4 .2 .4  C alcu lation  o f S\ & So

Solid state physics worked out. extremely powerful method for calculating expressions 
like S i or S^, given by (4.2.14a) and (4.2.14b), called Ewald theta transformation. The 
basic exposition o f this technique can be found in [9|. I t  was born in connection w ith  
calculation of Madelung energy of ionic crystals.

(4.2.27)

(4.2.28)

we can w rite  the following consistency equation

G =  A_ 1 (f/;)GA(0) (4.2.29)

Gi j  =  scalar x Sij. (4.2.30)
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We sta rt w ith  the following integral identity

I  —HI fOO

^  =  • ' «4 -2-31>

where r(??z) is the E u le r’s gamma function  and define

!p—2 7 r i k r

am =  ,,2m (4.2.32a)
keft'

poo

00
—n k 2( —27TDk*r^7n—1

r  (m) / ° °  r _1 ( Y '  < E - ^ - ^ ik  r -  1W .  (4.2.32b)
Jo V k e K  J

In  the already mentioned Ewald’s methods we sp lit the integrals as the one above into 
two parts, one from  zero to a, and the second from a  to  oo, where a  is an a rb itra ry  
constant. Let us note tha t the parameter £ bears the u n it o f m 2 and so does a. The 
following iden tity  is called theta tmnsform atinon

V ' e - ^ - 2 ’rik-r =  ^  Y '  e - * ( r - r n)2/S' (4.2.33)

keK ^ rnec

This transform ation was introduced by Ewald (see e.g. [28]) and proved form ally by Born 
and Huang in [8 ]. I t  allows us to write

-  -  S  ( £  £  - f + T .  ( ^ )  ■T(m ) \ a  t —1 m I a  j  m  v ’ '  r„eo  \  /  keK'
(4.2.34)

In  the firs t integral we pu t £ —» a / f  and in the second £ —■> a£. <fm(x)  is defined using 
incomplete T -function

—  , „ + l r „ i + i  ( x ) ,

(4.2.35)roc
r„(.r) = /

Jx

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. FLOW IN PERIODIC MEDIA 78

We obtain

n
a

(4.2.36a)

0

(4.2.3Gb)

4 .2 .5  S ingu lar ex p a n sio n  in pow ers o f  1 — e

We assume 1 — e to be a small parameter, which corresponds to small ra tio  D /h ,  h being 
distance between centers o f neighboring cylinders. To calculate the Burgers average 
(4.2.19) o f G we must be able to express S 'i(r) and ^ ( r )  for r  close to one o f r „ ’s, let us 
denote the choice by r. Considering that 5 i ( r )  and S ^ r )  are periodic w ith  the period ic ity 
o f the lattice, we take f  =  0 w ithou t any loss o f generality. We must now proceed w ith  
some care, since the expansion is singular for the terms which correspond to  r „  =  r  in 
our sums.

Here we go. denotes ith  Cartesian component o f vector v . Expansion o f <f>-i( .r) , 
far from  x  =  0 , Y  =  n r ^ /a

The above results were quoted to give a taste of the problem. In s im ila r manner we 
expand the rest o f the functions: derivatives o f dn dVj 5h and exp(-27rnk • r).

Next we calculate the averages (4.2.19) for r  =  a. Again on ly firs t few results are

r n2 ) cos(2 y>) +  2 ?',,]?’ji2 s in (2 y?))) r 2 +  0  ( r ,!) .

(4.2.37)

_ T ( r „  i c o s  ( i p )  +  r no sin(v?)) 
2 ®   x

The expansion around 0 ( 7  «  0.577216 stands for Eu ler’s gamma)

(4.2.38)
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quoted

</>—l ( ■ ( r  q  r?,) j  )  =  To (T ) +  e~r ^  +  0  (a4) , r n ^ 0 .  (4.2.39a)

</;“ 1 ( i r )  )  =  ~ 7  “  2  log ( ? )  +  I T  +  °  ’ (4.2.39b)

In  the expansions, most o f the terms which vanish during the averaging process. Fur­
thermore even i f  the term  survives, the symmetry of the la ttice  (especially the inverse 
point, which all o f the lattices under considerations posses) may cause the resultant sum 
to be zero. Property (4.2.30) and equation (4.2.16a) allow us to calculate all relevant 
quantities only w ith  the knowledge o f (S i)

(S.) =  _ 7 _ “  + „  + c  -  log )  + £  ( f  + B  +  d )  , (4.2.40)

since

m  ■(&)■>'

The constants A, B , C  and D  are lattice sums and read (£ / =  E \  {0})

A  =  E  r ° ( ^ )  (4.2.42a)
r„e.C Q

B  =  —  Y  e~Kr«/a , (4.2.42b)
“  r„€jC'

(4.2.42c)
k6 K'

D  =  -7 r2Q Y  k2(h  ( ^ k 2) • (4.2.42d)
ke:k'

We s till have a freedom in taking a value a  and the most convenient choice is

a  =  n . (4.2.43)

The above sums are rap id ly  convergent and may be easily calculated numerically; some 
details and the results o f calculation are presented in  the next section.

4.2.6 Lattice sums

F irs t we discuss briefly the properties o f 2D lattice: square and hexagonal (triangular).
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(h,0)

(0,h)

Figure 4.3: Physical square lattice. The shaded region is Voronoi (W igner-Seitz) cell; i t  
repeats periodically in both directions and its edges are called Voronoi edges. Dashed 
lines are Delone edges, connecting nearest neighbors.

•  # •
Figure 4.4: Hexagonal lattice. The Voronoi region is an hexagon.
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Figure 4.5: The lattice reciprocal to tha t presented in the Figure 4.4. The Voronoi region 
for reciprocal la ttice is called firs t B rillou in  zone.

Square la ttice is spanned on the following two basis vectors (h  stands for nearest 
neighbors distace)

/ i (1,0) ,  h ( 0 ,1) (4.2.44)

and its reciprocal la ttice is also a square lattice w ith  the basis:

^  (1,0) ,  i  (0,1) .  (4.2.45)

The volume of the physical u n it cell is

QS(, =  h2. (4.2.46)

The lattice is presented in  Figure 4.3.
The hexagonal (triangular lattice) was depicted in the Figure 4.4. The basis vectors

a , . =  ^ ( v / 3 , l )  (4.2.47a)

a2 =  ^ ( v / 3 , - l ) ,  (4.2.47b)

CHAPTER 4. FLOW IN  PERIODIC MEDIA
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The reciprocal la ttice basis vectors are (Figure 4.5)

(4.2.48b)

(4.2.48a)

The volume of the u n it cell in  the physical space

(4.2.49)

For all simple lattices we have

The numerical calculations o f the constants mentioned were carried out using Mathe- 
rnatica. The summation was performed over natural shells surrounding a rb itra rily  chosen 
origin. Larger shells have more la ttice points, bu t due to monotonic and exponential de­
cay o f the functions under sum symbol, the ir contributions become less im portant. The 
number o f shells to be included was determined by the adopted accuracy (lO -4 ). The 
results are presented in the Table 4.2.6.

Hasimoto gave the form  o f second order corrections using e llip tic  functions. According 
to this result we have for the square lattice

Lattice type

Sum square hexagonal

A  0.044668 0.035737
B  0.566557 0.501383
C  0.056212 0.043973
D  -0.566509 -0.501020

Table 4.1: La ttice  sums.

D  =  - B , (4.2.51)

which agrees w ith  our calculations w ith in  numerical error.
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4 .2 .7  R esu lts

W ith  the knowledge o f m a trix  elements (4.2.41) we are able to compute (G) and subse­
quently B. The results o f the calculations are

B n (e ) =  B22(e)
32e(l -  e)

(4.2.52a)
- 7  -  1 +  A +  C  -  log ( 1  -  e) +  (1 -  e)(B  +  D  +  n ) /n  ’

B i2 (e) =  B2 i(e ) =  0  (4.2.52b)

and the}' were depicted in  the Figure 4.6. The force (both fr ic tion  and buoyancy) expe­
rienced by a single cylinder in  the square la ttice  is

47T/i
^ 'sq c -  log (a /h ) +  (7t/2)(a2//;.2)

TT-Vo, c w -1.3105329. (4.2.53)

square
triangular

0 . 8 6  0 . 8 8  0 . 9  0 . 9 2  0 . 9 4  0 . 9 6  0 . 9 8  1

Figure 4.6: Comparison o f component B n  for square and triangu lar lattice. For small 
concentration both lattices have very s im ilar properties. The tensors are isotropic; the 
o ff diagonal terms (B i2 (e) &  B2 i(e )) vanish.
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4.3 Regular lattices o f resistors

We w ill now try  to calculate the drag experienced by regular lattices by means o f electric 
formalism. We consider three configurations: square la ttice  o f cylinders, and triangular 
la ttice in two configurations, each configuration rotated by n /2  w ith  respect to each 
other. They were presented in the Figure 4.7. Let us assume th a t the flow takes place 
in the samples o f length L  and w id th  M  and tha t L  and M  are large enough so the 
boundary effects are negligible.

Let us s ta rt w ith  triangu lar lattice. A ll the throats lmve equal conductance and we 
denote i t  by go- h i the orientation as in  the Figure 4.7a, from  the sym m etry o f the system 
we see th a t the current in  the horizontal throats is twice the current flowing in  the inclined 
nodes. W ith  every generator (cylinder) the are associated two inclined throats and one 
horizontal. The power dissipated in the system is therefore

Plot =  M L X - ( l ' i  +  =  M L X ^  —  , (4.3.1)
go \  4 /  1 g0

where Io is a current flowing in the horizontal node and A is a number o f cylinders per 
u n it area ( f i~ 1)

The to ta l current flowing through the system is / (ot =  (M / h ) p  and h is the length of 
the Delone edge and the to ta l conductance o f the network

glo l= I? ol/P lol =  cJ0^ - - j= .  (4.3.3)

S im ilar calculations for the case presented in the Figure 4.7b, give exactly the same 
result. Hexagonal la ttice o f resistors is isotropic; we have already discussed the symmetry 
properties in Section 4.2.3. For the case of square la ttice (Figure 4.7c) simple calculation 
yields immediately

g to i — g o - ? - -  (4.3.4)

In  general we can w rite

gtot =  W Joj^, (4.3.5)

where ?/ is a function o f the topology o f the network.
There is one more interesting fact about the lattices we have discussed. They are 

not only isotropic but also highly'- homogeneous. I f  x  denotes the position of the node
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Figure 4.7: Three examined geometries of How in regular lattices. See the discussion in 
text. Solid lines represent conductances (flow paths), dashed lines are Delone edges -  
the ir length determines the value o f conductances.
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(Voronoi vertex) projected onto direction of the flow, the pressure in th is po in t reads

Pa -  Gx, (4.3.6)

where G  is a pressure gradient, pa /L , where po is the pressure o f inflow nodes, providing 
the outflow nodes pressure is zero and the inflow nodes are in position zero. This exactly 
means tha t the resistors are decoupled or, in other words, they do not feel the topology 
o f connections: the potentials in the nodes are entirely determined by the ir positions in 
simple homogeneous maimer described by (4.3.6).

Since, as we soon see, disordered arrays have many common features w ith  hexagonal 
lattice, we could expect tha t the above property is to some extent universal. 1 called 
this hypothesis u n ifo rm  g ra d ie n t assu m p tio n . Such law, which couples spatial and 
electrical properties of throats, is essential for every attem pts to solve the problem ana­
ly tica lly  in the disordered case, since all the inform ation we really have about any kind 
o f la ttice are s tric tly  local. I f  the resistors “ ta lk to each other” on the large scales we are 
helpless.

As suggested in the Section 4.1 we w rite conductance cjq o f a single th roa t in the form 
(cv =  s /D , s -  in ter cylinder distance)

H D 2
9o{a ) = --------7 (“ )- (4.3.7)

I f  the geometry o f the system is well defined function cv(e) is single value and we have

/7T \ 1 /2  1
Q'(e) =  ( — ) . (square la ttice) (4.3.8a)

\ 4 /  y/ 1 — e
1/2

---- -  j  ^  (hexagonal la ttice). (4.3.8b)

M aking use o f (3.1.22) we obtain

m  =  f D( e ) ^ ,  (4.3.9)

where the geometrical m odifier reads

/p (e ) =  ~ r n y  (4.3.10)
?/7 (cr(e))

We w ill try  to match now the solutions obtained from Hasimoto treatm ent and the 
electrical method. This w ill allow us to gauge constant 7 m in (4.1.9). We compare /o (e ) 
and B n =  B22 for hexagonal lattice. Since we can control the qua lity  o f approximation I 
chose as a matching point such value cq, where the second order correction is relatively
small. The choice o f e0 =  0.9 yields the relative value o f second correction 10%; s till i t  is
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arbitrary. The value o f 7 m tha t makes the two solutions match is

7M =  ^  =  0.0625. (4.3.11)

The results were presented in  the Figure 4.8. I t  is instructive to compare now the inte­
grated (eq. (4.1.4)) and M iyagi (eq. (4.1.9)) model (Figure 4.9). In the region which we 
are really interested in (cylinders close to each other) they match p re tty  well, due to the 
asymptotic behavior o f integrated throat given by (4.1.6).

10

electric
Hasimoto Bn

10
Q

0 . 8 0 . 85 0 . 9 0 . 95 1

electric
Hasimoto Bn

l0 . 8 0 . 85 0 . 950 . 9
6 6

a) b)

Figure 4.8: M atching o f solution obtained from electric form ulation and exact predictions 
based on Fourier series: a) triangu lar lattice, b) sqaure lattice. The optim al value o f 7 m 
was found to be 1/16 =  0.0625.

Figure 4.10 presents geometrical modifier of the hexagonal la ttice for different models 
o f throat.

4.4 Phonons

W hat we are really interested in is disorder. Having considered regular lattices the next 
natural step is to  investigate what happens i f  we introduce phonon-like disorder. We 
must be aware from the very beginning th a t such oscillatory movements of particles can 
by no means m im ic real interactions w ith  flowing fluid. Rather we assume a presence 
o f interatom ic (binding) forces that are much stronger than interactions o f the cylinders 
w ith  the flow field. We work u tiliz ing  the uniform  gradient assumption, introduced in 
the previous section.

The phonon model o f disorder has no physical significance (the hydrodynam ic forces 
acting between particles are not binding) nevertheless I decided to elaborate i t  p rim arily  
to develop some in tu itio n  how the geometrical properties o f the medium translate into 
properties o f 0.
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Figure 4.9: Comparison of M iyagi and integrated model o f throat.
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Figure 4.10: Geometrical modifier o f hexagonal la ttice for different models o f throat.
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4.4 .1  S ta tem en t o f  th e  problem

We investigate disordered version of the lattice presented in Figure 4.7a. The basis of the 
physical and reciprocal space were investigated in the Section 4.2.6. The three Delone 
edges (please refer to the discussion in Section 4.3) adherent to  each generator, have the 
following orientations r,

(4.4.1a)

f 2 =  (0,1), (4.4.1b)

(4A lc )

Each one o f them have equ ilibrium  length h, where h is in teratom ic spacing. Undisturbed 
Voronoi edge has length /q; please refer to Figure 4.11.

]T
A 0

/  h'®' '
Figure 4.11: Three adjacent gerators tha t form three throats associated w ith  each cy lin ­
der. The equilibrium  interatom ic distance (Delone edge) and Voronoi edge length are h 
and Iq respectively.

According to (3.1.22) and (4.3.9) we have

. , , 0H M  D 2 1
/ A?(c) =  e- _ _ _ .  (4.4.2)

L  I 1 S lo t

For several technical reasons i t  is easier to calculate the inverse o f the above quantity:

f  —  —  J t  —  —  _  I 1 ^  P l ° t  / A  A ON

JD{ ’ ~  &  D'2 M H  ~  D 2 M H  (G L )2 ~  D 2 G2 M H L  ’ 1 ;

G  stands for uniform  gradient present in the system. Ptai / ( M H L )  is the power dissipated
in the system per un it volume. In the sp irit of constant gradient assumption we w rite

Ptot =  G 2 Y u < l(w Y l (4.4.4)
teS
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where g ( t \ i )  and U  are conductance and length projected onto d irection o f the flow re­
spectively of the /th  throat. We adopt M iyagi model (4.1.9) and obtain

=  (4'4'5) *€S

We assume tha t v ibrational m otion does not change the topology o f connections and that 
length o f the throat (/;) may be in the first approxim ation taken to be equal to tha t one 
of the undistorted lattice. The above sum may be w ritten  over set of cylinders (lattice 
sites) L  (note the presence o f which comes from the uniform  gradient scheme -  the 
length of the inclined throats projected on the direction o f the flow is ^ o f the throat 
physical length)

-  ? z s r «  £  ( l &  ~ O ’ ■+ ' » &  -  O 2 ■*I ( §  -  O ’ )  <4-4'6>tec  x '

and

sit =  h +  A u f/ • r ,, (4.4.7)

where A u ,; is the relative displacement of two neighboring atoms from the ir equilibrium  
positions. We assumed tha t sg is determined by the projection o f the new relative 
distance onto the original direction o f the edge; approxim ation is surely justified  when 
small distortions are considered.

We have

I q 2 1
(4.4.8)

L M  3 \/3  N  

and further manipulations lead to

fD (z )~ l =  f D o « r ] +  K, (4.4.9)

w ith  the following notation

K =  n  ( 2C" ( I  “  0  + cS)  ’ (4'4' I0)

where t \  — ry — T2 =  1, Ql =  A u ,/ • r i / D  and foo(e) stands for geometrical modifier 
for undisturbed lattice. Obviously

f o { e )  = l  +  f o o l y  (4.4.11)

Cylinders are considered as v ib ra ting  2D atoms and the above expressions depends
on tim e -  we would like to calculate its time average. In the next section the model of
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phonon-like vibrations w ill be introduced.

4.4 .2  P h on on  form alism

Theoretical in troduction  comes from |G3], which follows [8 |. Our model o f v ib ra ting  
la ttice consists simply o f a set o f atoms connected by means o f springs. For sim plic ity 
we discuss only mono-atomic lattices, mass o f each atom being m. La ttice  sites are

R,/ =  I ja ] -f- /2 a2 j 1 6  t .  (4.4.12)

V ibrations cause atoms to leave these equilibrium  positions and the displacement of 
the 1th atom is u /. They are functions o f time.

Total kinetic energy o f the lattice is

(4.4.13)
2

The potentia l <I> energy is assumed to depend only on the instantaneous positions of 
atoms. We expand i t  around the equilibrium  positions o f atoms

® =  <Do +  EE la "I" E E  d<x-,lOfci>(b u iaui'(} +  h .t. (4.4.14)
fe e  « i, i'ec a,f)

where u;Q stands for o: Cartesian component o f u/ and the following shorthand notation 
was used

9a ;lf  =  (4.4.15)
du ia

Omission o f higher terms in  the expansion is called harmonic approximation.
The presence o f equilibrium  requires tha t

da-i<b =  0 (4.4.16)

and since lattice is periodic

9a-.i9fj.,i>0 =  da]o (4.4.17)

where the notation dp-v-i should be understood as d ifferentiation w ith  respect to u \ a ,
where A corresponds to la ttice site R,\ =  R;» -  R;. Only the relative cell index matters. 

Ham iltonian o f the system reads

H  =  Q> +  K- (4.4.18)
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and aided by H am ilton ’s equations

B H
uia =  -z— , (4.4.19a)

dpin
B H

(4 '4' 19b)

where piQ =  m ii ia , we immediately get equation o f the m otion for the lattice

m « /„ =  - - —  =  -  2 2  z 2 0a-,ldfrl '®urfi’ (4.4.20)
u,n I'ec p

The problem is linear and we w ill try  to build our solution by means o f plane waves

uia(t) =  A o (k ,a ,)® -iwt+2 jrik-Ri. (4.4.21)

Here we assume tha t Aa (k, lo) does not depend on the site index I. Substitu tion  of the 
above expression into (4.4.20) yields

m J 2h a =  ^ 2  (4.4.22)
P

where the dynamical matrix  reads

D ^ ( k )  =  ^ a o;, ^ . r d)eM k (R' ' - R') =  ^ a Q;0 % O e 2irik'R'. (4.4.23)
t’ec icl

We can see tha t D is Herm itian

D ^ J(k) =  D/Jo(k) (4.4.24)

and therefore is has 2 real eigenvalues m u f(k ) .  D  has the follow ing symmetry

Dtt/?( - k )  =  D*0 (k ) (4.4.25)

and since it  is Herm itian we sec that

u j f ( - k )  = u j f ( k ) .  (4.4.26)

Eigenvectors o f D, e ,(k ) form  orthonormal basis and may be constructed in such a way 
tha t

e i ( - k )  =  e *(k ). (4.4.27)

I t  is well known, tha t upon imposing periodic boundary conditions allowed values 
o f k  w ill occupy first B rillou in  zone (E) of reciprocal la ttice; we have already discussed 
the construction of reciprocal space 3? in Section 4.2.6 (for triangu lar la ttice  example see
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Figure 4.5). We w ill often calculate sums over all possible vectors k  <E E. When the size 
o f the system reaches the lim it  of in fin ity  these vectors s ta rt to f il l E semi-continuously 
and uniform ly, hence

keE

where, let i t  be recalled, f i  denotes the volume o f a W igner-Seitz cell in physical lattice.
There exists the im portan t relation between physical and reciprocal lattice. In  the 

thermodynamical lim it TV —> oo (N stands for number o f atoms)

5 2  ®2,rikR' =  JT 5 2  5(k  -  K )- (4.4.29)
Rf€C KeIR

We sum up solutions (4.4.21) and obtain

£  (<2 i ( M ) e i ( k ) +  Q 2 (k , t)e ,(k ) )® M k -R'
^  keE

=  \ / ] v n ^ d 2 k ( g 1 ( k , t ) e 1 (k ) +  Q 2 ( k , t )e 2 (k))® 27rik'R'. (4.4.30)

Since u i ( t )  is real the amplitudes Q ,(k , t)  must satisfy the condition

Q i( - k )  =  Q *(k )- (4.4.31)

As a warm up let us calculate the kinetic energy (4.4.13) in  terms o f Qi

=-̂T 52 ̂   ̂= "T XI If fi2krf2q(<̂1 (k>fei(k> +
/G-C /G-C- s X s

• (Qi(q)ei(q) + Q‘_>(q)e2 (q))®27ri(k+q)'R'. (4.4.32)

Now, we interchange the order of summation and integration and using re lation (4.4.29) 
arrive at

r . in NO
K =  — II f/2 krf“ q ( 0 i ( k )e i(k )  +  Q a(k)e2 ( k ) )

(c ? i(q )e .(q ) +  Q 2 (q )e 2 (q))<D27ri(k+c» R' 5 2  <K(k  +  q ) - K ) .  (4.4.33)

Since k  and q lie in the firs t B rillou in  zone the only vector o f reciprocal space that 
they can add up to is 0  and the last, sum reduces to ri(k  +  q). One integration may be
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performed immediately. Using symmetry (4.4.31) and orthogonality o f e ’s we get fina lly

K =  ^ ^ f/2k ^ | g i ( k ) |2 + |g2(k)|2̂  (4434)

In  the sim ilar manner we are able to calculate potentia l energy

0 = m ^ ^ 2 k ( ^ ( k ) | g , (k ) |2 + u ;2( k ) |g 2 (k ) |2)_ (4 4 3 5 )

Using Lagrange form ulation we can build the Lagrangian for the la ttice

L  =  0 -  K  (4.4.36)

and using Euler-Lagrange equations

find the equation of m otion for Q ’s

g i( k )  +  w ? (k )g t (k) =  0. (4.4.38)

We can see tha t our la ttice  can be regarded as a sum of independent harmonic oscillators. 
The solution to above equation is

Qi(k ,t.)  =  A ; ( k ) ( e - iwi(k) '+i<5-“ (k) +  (Eiu»j (k)t+wj+(lc)^ (4.4.39)

We assume tha t amplitudes / l , ( k )  are real. Due to requirement (4.4.31) the otherwise
a rb itra ry  phases must yield

<57 (—k) =  — «5?+ (k ) (4.4.40a)

J + ( - k )  =  - a r ( k ) .  (4.4.40b)

We switch to another coding o f phases

cq(k) =  ~  Si (k ) (4.4.41a)

(3,(k) =  +  ( k ) , (4.4.41b)

a ;(k )  is an even function o f k  while |3(k) is odd. The transform ation allows us to w rite 

Q /(k ,* )  =  A-(k)<nip<(k)cos(fa;i (k)* +  a / (k )). (4.4.42)

We adopt now sim ply Boltzman statistic to estimate A ’s. According to equipartition
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theorem we get tha t eacli quadratic degree o f freedom in  Ham ilton ian accumulates energy

\ k BT. (4.4.43)

Free harmonic oscillator lias two such degrees o f freedom while having energy

m u'2 A 2 
2 ’

so we see that the amplitude o f the mode is

(4.4.44)

A ( k ) =  (4.4.45)V rn J uii(k)
Let us substitute now the solution (4.4.42) in to  our expression for k inetic energy 

(4.4.34)

j ^ _ m N O  J  ̂ ^ ^ 2 ^ 2 C0S2̂ Wj£ _|_ ai) _j_ A2 A 2  c0s2(oj2 t + cto)). (4.4.46)

K  is a function o f time. The time average is defined as

( / ) ,  =  lim  I  I '  f ( t ) d t .  (4.4.47)
r - *  00 1 J 0

Recalling tha t (cos2 (ojt +  <^))t =  ^ and u tiliz ing  eq. (4.4.45) we get

(H ), =  T- ^  ^  d2ki (u'lA'f +  lo'$AV) =  N k BT, (4.4.48)

what is exactly what we would expect from equipartition theorem.
Furthermore, we would expect, tha t some kind o f ergodic theorem should hold indeed, 

under some assumptions made upon phases cq(k). Since k is in  fact discrete variable we
can enumerate a ’s, let say tha t the ir number is S. Now we can arrange these phases into
vector and let us denote the set o f these vectors as K

a  € [0,27t]s =  N (4.4.49)

and the probab ility  of the given realization of phases as zd(ol). Ensemble average may be 
constructed as follows

( / ) „ =  ^ d sa f ( a ) w ( a ) .  (4.4.50)

When we calculate ensemble average of kinetic energy { K ) c i t  appears tha t we can recover
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result (4.4.48) only when the phases are independent, i.e. un ifo rm ly d istributed over K

1
w(et)

(2t t )S' (4.4.51)

The same conclusion can be drawn for any other observable. We can regard this result 
as analogue to molecular chaos assumption introduced in Chapter 1 .

4.4.3 Triangular lattice case

As a specific example we consider now triangular lattice w ith  nearest neighbors harmonic 
interactions, specified sim ply by a spring w ith  the constant k , Figure 4.12.

©

Figure 4.12: For hexagonal la ttice w ith  nearest neighbors interactions there are only 
six terms which contribute to the dynamical m atrix, i.e. there are only six terms in the 
expression for to ta l potentia l energy that depend exp lic itly  on the position of zeroth 
atom. They were marked symbolically w ith  springs

Let us try  to calculate dynamical m a trix  (4.4.23) for such a case. The part o f potential 
energy that depends on the position of the a rb itra rily  chosen zeroth atom is

cl) =  <f)0 + £ ^  (P; • (u, -  u0))2, (4.4.52)
s=l

where the summation goes over nearest neighbors of zeroth atom and directions o f nearest
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neighbours r,- are given by

(4.4.53a)

(4.4.53b)

(4.4.53c)

(4.4.53d)

(4.4.53e)

(4.4.53f)

p2 =  (-v /3 ,l)/2 , 

p 3 = ( ^ . l ) / 2 ,  

P 4  =  (0, 1),

p5 =  ( v / 3 , - l ) / 2 ,  

p6 =  ( - \ / 3 , - l ) / 2

The components o f dynamical m a trix  (4.4.23) read (k  — ( k \ , by))

D n =  —3k, ^ — 1 +  cos ^ \ / 37rA.-i^  cos ( ^ 2 ) ) ,  

D 12 =  D21 =  \/3«:sin7tA;i^ sin {nko),

D22 =  — k  I — 3 +  cos •ki 1 + 2  cos

(4.4.54a)

(4.4.54b)

(4.4.54c)

W hat w ill happen now is sometimes referred to as Debye or long wave approximation. 
We w ill assume tha t only relatively long wave lengths are im portan t for the problem: our 
aim is to calculate the d is tortion  o f the lattice. w (k) is in general increasing function o f 
k  and hence, according to (4.4.45), amplitudes o f waves w ith  large k  are suppressed. I do 
not quote results o f calculations of the eigensystem o f D in fu ll, instead I give firs t order 
approximation, suitable for small k\ and fc2. Eigenvalues are

where q is a un it vector perpendicular to the direction k  o f the wave vector. The imagi­
nary un it was added to fu lfill the symmetry requirement (4.4.27).

I t  can be noted that the lattice is anisotropic -  the velocity o f sound s,- depends 011 

the polarization of elastic wave. Since we are going to obta in  only qua lita tive  results we 
discard this property and assume that it  is legitim ate to use some kind o f average, or 
global, velocity of sound s

(4.4.55b)

(4.4.55a)

and corresponding eigenvectors

e j (k) — ik  

e2 (k) =  iq

(longitud ina l waves), 

(transverse waves)

(4.4.56a)

(4.4.56b)

uq(k) =  wo(k) =  sk. (4.4.57)
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Our first, B rillou in  zone is hexagon, bu t we w ill approximate i t  s im ply w ith  circle of 
the same area and radius given by

polarizations are parallel or perpendicular to d irection o f propagation. S im ilarly, the dis­
persion relation is linear. Th is is not the case when we do not make any approximations. 
The presented equations describe properly long waves. O ur form alism  resembles classical 
electromagnetic field in vacuum, except for the fact tha t tha t our k ’s are constrained to 
E (we could call i t  EM  theory w ith  cu to ff ko).

4 .4 .4  C a lc u la t io n s  o f  k

We must firs t calculate the average o f the follow ing two sums

k0 =  (7rn)“1/2. (4.4.58)

Let i t  be noted tha t for small values o f k, i.e. for long wavelengths, directions o f

1
(4.4.59a)

1
(4.4.59b)

where, according to (4.4.30)

(4.4.60)

Using eq. (4.4.29) we get im mediately

(4.4.61)

The la tte r sum is a b it more complicated

of = J jY lNn2 j j  d2kd2q(<3i(M)ei(k) + <?2 (M)e2 (k)) ■ ?# x
i e £  3 x 3

x (Q j (q, t )e i (q) +  Q 2(q, t )e2(q )) • r f X 
x c 2 i r i ( k + q ) . R i  x

(4.4.62)
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but i t  reduces (again (4.4.29)) to

n ^ d 2k |(Q i(q ,* )e i(q )  . f ,• + Q2 ( q , t ) e2(q) ■ r*)|2 x

x 2 ( l  -  cos (27rk • f t7 i)). (4.4.63)

Now we utilize (4.4.42), (4.4.45) and our sim plification o f firs t B rillou in  zone (p  stands 
for the angle netween k  and r ,)

„  2kBTD  f '2*  , f k° , „  2T
Oi — -----

JPZTT rh\) 2T
' dp  /  kAk-r-oi^ ~  cos (2nka  cos p)) ,  (4.4.64)
o Jo k

where Y  is

T  =  cos2 (skt +  a j (k )) cos2 <p 

+  cos2 (skt +  a 2 (k )) sin2 p

+ 2 cos (sk t .+  a i( k ) )  cos (skt +  ct2 (k )) cos</Jsin</Jcos(A|3) (4.4.65)

and

A(3 = (31(k)-|32(k). (4.4.66)

( ° f ) e ~  ( a i ) t  =  - — Tp  [  dp f  d k j ( l  — cos (2 irkhcosp))  
ms j  o Jo

2kftTD ‘1,0,0-
= -------— 7r A^/ric, (4.4.67)

ms-

where

k =  / * ( - t t 2 A^/i2) »  7.406467 (4.4.68)

and /*(:/:) is one o f the generalized hypergeometric functions

f * ( x ) =  / § ((!) 1)> (2 ,2 ,2 ) ,x ) .  (4.4.69)

Please note the lack o f the dependence on i, i.e. on the direction o f the throat. The 
change in the inverse o f geometrical modifier k , given by (4.4.10), reads

K = * £ * 2 1 ^  (4.4.70)
3 \/3  e (1 -  e) ms-

Now we can calculate geometrical modifier for the disordered la ttice  (4.4.11). W ith in  
assumptions made, the thermal disorder always leads to the decrease o f the drag.

The above expression is particu larly simple in the case o f M iyagi model, since it  has 
characteristic quadratic dependence on the separation o f the two cylinders constituting
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the throat. In any other case the calculations would be much more d ifficu lt.
We can notice in the equation (4.4.70) the com petition o f two energy like-expressions: 

m s2, the elastic energy associated w ith  deformation o f crystal and k ^T ,  the energy of 
thermal fluctuations. Neither temperature here, not the elastic constant,, determ ining 
s, have any direct physical meaning, they ju s t allow us to  control the presented model 
o f disorder. Non-zero temperature means tha t the atoms are v ibra ting , and as i t  has 
already been mentioned i t  always leads to decrease o f the drag. Large stiffness of material 
(yielding large s) causes the displacements due to thermal motions to be small.

4.5 Sum m ary

Investigation o f flows in  constrained geometries brought us several advantages. F irs t of 
all, by in troduction  o f geometrical modifier function, (4.3.9), we could fina lly  ju s tify  the 
claim, tha t for small Reynolds numbers the drag can be regarded as a function o f the 
topology o f the system and the single dimensionless parameter e. We could see where 
the topology enters the game and how to deal w ith  it.

Another outcome of studying regular media was more reliable model o f throat. To 
gauge a constant in M iyagi model (4.1.9) we matched electric and exact solutions. The 
outcome o f these studies was an observation tha t flows in regular lattices appeared to 
have series of no il-tr iv ia l symmetries. 2D periodic media arc not only isotropic (providing 
the underlying lattice has sufficient symmetry), but also h igh ly homogeneous. The la tte r 
observation was called uniform  gradient hypothesis (equation (4.3.G)); we w ill try  to use 
i t  also for irregular networks.

As pointed in  |37|, Voronoi diagram for a set o f discs in teracting via hard-core poten­
tia ls may be regarded as “disordered” honeycomb la ttice -  i t  seemed to be instructive to 
investigate the influence o f disorder on the drag force. As the firs t toy model of disorder 
we shook the triangular la ttice  by means o f a rtific ia lly  introduced phonons. This exercise 
was p rim arily  meant to understand how the impact o f disorder should be (in general) 
incorporated in to the geoemtrical modifier.

In  the next two chapters we w ill try  to learn how to  incorporate the more realistic 
model o f disorder in to the formalism of hydraulic networks.
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Chapter 5

Stochastic geometry

Previous chapter brought us some insight in to the flow in regular porous media; our main 
concern is nevertheless simultaneous flow o f particles and flu id. This requires in general 
the solution o f Navier-Stokes equation w ith  dynamic boundary conditions on the surface 
o f the bodies. The formalism was presented in  the Section 1.3; there is no method 
(neither analytical nor numerical) tha t would be able to exactly solve the presented 
problem. For example Batchelor’s solution, discussed in Section 2.4.1, utilizes model of 
spatial correlations between flowing spheres, which is completely unaffected by the flow 
field -  sim ply i t  is assumed tha t the spheres cannot overlap. In the first approxim ation it  
seems to be justified to retain this assumption and calculate the drag averaged over some 
a rtific ia lly  constructed ensemble of spheres’ (discs’) configurations. I t  m ight be regarded 
as in fin ite  granular density assumption -  motion o f grains does not depend on the motion 
of flu id  and i t  is driven solely by the collisions between grains. We can recall tha t the 
the same assumption o f spatial homogeneity was made by Batchelor in  reference [6 ]. We 
reuse i t  here in the context of hydraulic networks. In Chapter 7 a possible way o f pu tting  
the flu id dynamics back into the system w ill be presented.

5.1 Uniform gradient hypothesis

The m ajor problem w ith  the application of hydraulic network method lies in  the fact tha t 
we are not able to deduce the net conductance o f the network solely from the knowledge 
o f the values o f resistors. The way in which they are connected, i.e. the topology of the 
network, is crucial when determ ining the total conductance. We were able to overcome 
this issue in case o f regular la ttice taking advantage o f the period ic ity  and high symmetry 
o f the regular lattices. The uniform  gradient assumption is a plausible, but s till heuristic, 
way o f doing the same in the disordered case. A t the present moment, w ithou t such a 
sim plification, we are helpless.

The idea o f uniform  gradient was introduced in the previous chapter, where we noted 
tha t for (at least some) regular lattices so called uniform  gradient property held. Re­
sistors in such a lattice arc independent. I t  means that i f  we disconnect them mid set 
the potentials in their endings according to mean field rule, (4.3.6), neither the power
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produced nor the to ta l resistance w ill change w ith  comparison to orig inal la ttice  and the 
current w ill be autom atically conserved.

Let us firs t apply the idea for a single resistor. W hat we need is a jo in t probability, 
p(g,v),  tha t the resistor has a conductance g and the pressure drop across i t  is v. Let
us denote the number o f throats per un it area as A. The to ta l power dissipated in  the
system is

OO
P lo t =  L M A JJ gv2p(g , v)dgd,v, (5.1.1)

o

where L  is the length o f the system and M  is its  w id th . The net conductance o f the 
system can be calculated as

I ^ t o t  /  r  1 \

gtot ( G h ) 1 ’ (0.1.2)

where G is the macroscopic pressure gradient in the system. W ith  aid o f equation (3.1.22) 
we can calculate (3 as

oH M ________ (CL)'2_________  ,2G ? _________ 1_________
L  L M  A Jf0°° gv‘2p(g, v)dgdv 6 A jJ^°cj,v2p ( ( / ,v )d g ld.v' ° ‘L

where g' stands for conductance per un it height o f the throat. A ll the quantities on the 
righ t hand side are intensive. The above expression is exact, bu t useless, unless we can 
give p (g \  v) explicitly. Now comes the sim plification and we w rite

p(g', v) =  p(g', l )G l  cos ip, (5.1.4)

where I is the length of the resistor (the length o f the corresponding Voronoi edge)
and ip the angle tha t the resistor makes w ith  the macroscopic direction o f flow. The
sim plification encompasses two steps. F irst, we related the topological property (pressure
drop v ) to spatial properties o f the throat and second, we postulated simple form for this
dependence (in  the sp irit o f uniform  gradient). P lugging this expression in to  equation 
(5.1.3) yields

l 3 = J W ) -  (5' L5)

Once again we have convinced ourselves tha t )3 is purely geometrical quantity; the state­
ment is true even w ithou t any approximations.

In general we could include the impact o f the correlations try ing  to investigate not a 
single resistors, but larger structures immersed in the pressure field of constant gradient, 
Figure 5.1. The pressure in  the peripheral nodes is set using uniform  gradient assumption, 
the pressure in the internal nodes results from the How of current. 1 could be expected that 
having taken the average over sufficiently large cluster, the perm eability o f the network 
could be reproduced w ith  an a rb itra ry  accuracy. In the case o f any shape and size o f the
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a) b) c)

Figure 5.1: Structures th a t m ight he considered in the uniform  gradient approach. The 
lines represent resistors; the empty circles o are the nodes in which the pressure is set 
according to mean field. The pressure in the rest of the nodes is such tha t the flow in 
them is conserved.

cluster the calculations proceed in the sim ilar way.
The current chapter has the following structure. F irs t, I discuss possible models of 

random points arrangements (w ith  substantial focus on the models preserving hard core 
distance between points) and subsequently several methods o f the ir statistica l descrip­
tion. Next, a more formal in troduction  o f Voronoi/Delaunay tessellations is provided 
and supplemented w ith  the methods o f their stochastic analysis. The methods presented 
should, in principle, allow us calculation o f the probab ility  p(g ', l) .

5.2 R andom  point fields

The definitions come form [83, 84], The notion of po in t field or po in t process may be 
introduced very form ally in the language o f measure theory; this is not necessary on 
this stage o f the work. We consider only 2D patterns. Random po in t field is a subset 
ip =  { x „  } C R2, w ith  the following two properties

i. ip is locally finite, i.e. each bounded subset o f R 2 contains only a fin ite  number of 
the elements o f ip,

ii. p  is simple what mean tha t x; Xj i f  i  7  ̂ j .

The fam ily  o f all <p's w ith  the above properties is denoted by N.
One remark. The fascinating use o f random point fields is tha t they may be regarded 

as patterns (po in t sets) or as measures. We denote p (B ) ,  where B  is a Borel set, as the 
number o f points o f <p in  B  and define integral as follows

(5.2.1)
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where the indicator function is

‘"W = {o t i l l  ^
Probability  tha t B  contains n  points of p  is denoted by P (p (B )  =  n). (<p(B)) stands 

for mean number of points o f p  in  B  and it  is called intensity measure, A (B ).  We treat 
p  as a random variable.

A  po int field p  is called homogeneous (or stationary) i f  p  and the translated process 
pA  =  { x n +  A }  yields the same probabilities, i.e. P {p ( B )  =  n) =  P {p & {B )  =  n). Sim i­
la rly  the process is isotropic i f  the ro ta tion  o f the rotations o f the field keep the probab ility  
invariant. Random point field we consider w ill always have these two properties.

I f  I \  c  R 2 is a compact set (closed and bounded) then the emptiness probability is 
defined as

v o id ( / \ ) -  P ( p ( I \ )  =  0). (5.2.3)

Second order moment measure jd'A denotes the following average

/^ (Z ? ,  x B 2) =  (p ( B } )p (B 2)) =  / £ £ l B l( x ) l fla( y ) y  (5.2.4)
\xev5y e<p /

while the factoria l moment measure a f2  ̂ stands for

a ^ \ B ,  x B 2) =  { p ( B 1) (p (B 2) - l ) )  =  (  £  £  1 B, ( x ) l B2 ( y ) \ .  (5.2.5)

x#y

Often q(2) has density function (second order product density):

ofi2\ B \  x  B 2) — [  [  d2x \d 2x 2p W ( x i , x 2). (5.2.6)
J b i J b 2

The last quantity has an infin itesim al in terpretation: o f B \ , B 2 are two infin itesim ally 
small d isjo int Borel sets o f volumes dV j,  r/V2 and i f  X] G B \  and X2 G B 2 then

p V \ x \ , x 2) d V M  =  )?dVxdV‘l  (5.2.7)

stands for the number o f processes tha t place points both in B\  and B 2. Or, when in fin ite
and ergodic processes are considered, number o f pairs o f points in p  from which one lies
in B i and the second in B 2.

Q uantity  g2( x \ , x 2) =  p^2\ x \ , x 2) /X 2 is called pair correlation function. The higher 
order correlation functions g„ are defined in such a way tha t

A"<y,l ( x i,X 2 , .. .x „ ) r / 2x 1f/2 x 2 . . . d 2x n (5.2.8)
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stands for the number o f processes tha t put points in elements d2x m centered at x,„ 
(m — 1 , 2 , . . .  n).

5.2 .1  P o isson  p o in t field

The prototype o f all po in t processes is Poisson point field  defined by its two fundamental 
properties:

i. i f  B\ . . .  B n are d is jo in t Borel sets, ip (B j ) . . .  ip(Bn) are stochastically independent,

ii. for any bounded Borel set ip{B) has Poisson d is tribu tion

P(<p(B) =  k) =  - {L [ ! P )K exp(—AL (B ) ) ,  (5.2.9)

where A is called point, density, i.e. number of points per un it volume, and L  is the 
Lebesgue measure o f B.

In  the case o f Poisson point process points are scattered completely randomly, they do 
not interact w ith  each other. We have

A (B ) =  M B ) )  =  A L {B ) .  (5.2.10)

We immediately see tha t

vo id (B ) =  exp ( -X L ( B ) ) .  (5.2.11)

A ll correlation functions, gn, like in the case of an ideal gas, are identically equal to 1 .

5 .2 .2  H ard-core p o in t p rocesses

The interactions o f grains in the fluidized system may be very well described by means 
of hard-core pairwise potentia l w ith  range D  equal to the diameter of the disc/sphere. 
Therefore we should p rim a rily  investigate properties o f the po int processes preserving' 
this m inim al distance. Let us note tha t the problem im m ediately starts to complicate. 
D  introduces the second (1/a/A  being the first one) length scale; these too scales are 
usually not separated, especially for dense systems.

Matern processes &: SSI

There arc three types of hard-core point fields, which are constructed by specially con­
structed inh ib ition  rule: M atern process type I &  I I  ([64]) and simple sequential inh ib i­
tion (SSI). In all o f these processes points are scattered random ly (Poisson field) w ithout 
preserving HC distance. A t the tim e of scattering each po in t receives a b irthm ark t, rep­
resenting time of b irth . The differences in spheres’ inh ib ition  algorithms are presented in 
the Figure 5.2.

Let us suppose tha t only the four points were scattered. Point D  w ill be retained (in 
all types o f processes) regardless of its b irthm ark, since it  does not overlap w ith  anything.
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t=0.8
t=0.9

t=0.7

Figure 5.2: Idea of inh ib ition  algorithms in M atern and SSI processes. Small black dots 
represent centers of the discs, the circles are excluded regions. Shaded circle is a “ghost 
area” in  type I I  process, Please refer to the description in the text.

In  the Matern type I process all intersecting discs are removed (A, B  and C). In  the type 
I I  process i f  two discs overlap only the one w ith  the lower b irthm ark is retained, hence 
we need to remove both A  (because o f B )  and B  (because o f C): only C  and D  survive. 
We see tha t the la tte r schema introduces “ghost areas” (B ).  Recognizing i t  leads to SSI: 
i f  we removed point B  righ t after its b irth  (because o f the presence o f C)  i t  would not 
interfere w ith  A  and A  would be retained. This is the most natural method of creating 
hard-core point fields. Immediately after the new point is added we check i f  i t  overlaps 
w ith  the points already present and if  this is the case we remove i t  instantly. In the other 
case we let i t  be.

The densest possible packing of discs in 2D is the tra ingu lar la ttice mentioned in 
Chapter 4. Combining (4.2.49) and (4.2.50) we see tha t th a t m inim al void volume is as 
low as

e%P =  1 -  - ^ =  «  0.0931. (5.2.12)
1 2s/3

Random packings are usually il l defined in 2D, since they can bear s im ilarities to t r i­
angular lattice; we w ill come back to this problem in the next section, bu t they may 
yield e lower than 0.3. The three mentioned processes bring much larger void volumes. 
According to [83], the intensity for the M atern type I I  is

l  _
V iy * ’ (5 2 -,3 )

where A is the intensity o f the underlying Poisson point process. I f  we let A approach 
in fin ity  we see that the m inim al void volume for tis process is The type I process leads 
to even lower concentrations. The lowest void volume for SSI was found numerically
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to be 0.587, |92j. A lthough we are in general interested in  much denser discs systems 
I believed tha t the models presented here were im portan t since there is a possibility of 
the ir analytical study. There exists analytical form  for the pair correlation function for 
M atern type I I  process. In  the lim iting  case o f A —► oo

. . f  0 ( r  <  D )

I m  (>- >  -d>. ( 5 ' 2 , 1 4 )

where

T (r)  =  2txD 2 -  2D 2 arccos s/AD*  -  r 2. (5.2.15)

The pair correlation functions for some interesting cases are presented in  the Figure 5.3.

2.5
boundary , 

•of exlcudedi ! 
r e g i o n ^ !  i

u ,
0 0

0.5

0 0.5 1 1.5 2 2.5 3 3.5 4
r/D

Figure 5.3: Pair correlation functions ry(r) for several points patterns discussed. (1) Pois­
son process (ideal gas); (2) M atern type I I  given by (5.2.14); (3) dense random packing. 
The last shape is very characteristic for processes w ith  repulsive hardcore interactions. 
Figure was adapted from [83].

Gibbs hard-core process

Gibbs processes are sim ply configurations o f gas atoms in teracting w ith  the given pair 
potentia l. Liquids o f hard discs were studied thoroughly, both num erically and ana lyti­
cally. Despite the apparent s im plic ity o f interactions they express rich behavior; see |G2] 
for references. The systems is believed to undergo phase transition. Around e =  0.29 
flu id  (gaseous) phase changes in to  “ hcxatic-phase” possessing quasi-long-range bond ori­
entation but no long-range translational order. For even lower void volumes system has
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to  exists in  the solid phase, w ith  d is tinct peaks in  the Fourier spectrum.
The pair correlation function for dense systems o f spheres features not only “excluded 

region” for r  <  D ,  but also high peak at the edge of i t  (Figure 5.3); presence o f such 
peaks is always a sign of the emergence of order in the system; we could notice i t  even for 
the very d ilu te  M atern process. A fte r a m inim um  the second peak occurs at the distance 
2D, the next is a b it closer than 3D. G radually the function reaches its asym ptotic value 
1 , indicating the lack o f long-range correlations. The characteristic nearest neighbor peak 
was substituted by Batchelor w ith  a delta function.

There are several analytic results, which try  to approximate g(r)  for the HC case, like 
B G Y approximation or Percus-Yevick theory, please refer to |42|.

Since the HC model can yield much higher densities I decided to use this model in 
the numerical simulations.

5 .2 .3  K irkw ood  approxim ation

U nfortunate ly there is no easy way to calculate higher order correlation-functions. I t  was 
suggested [58) tha t they m ight be obtained by means o f pa ir correlation functions; this 
is so called Kirkwood approximation:

0123 =  012013023, (5.2.16)

w ith  the notation gu- =  <y(x;,Xfc). The above relation is exact for the case where there 
would be no 3-body correlation; this is not true even i f  the potentia l is pairwise. Higher 
functions may be, in general, approximated in the same manner,

5.3 Introduction to Voronoi diagrams

The comprehensive review of properties and applications of Delaunay and Voronoi dia­
grams can be found in [69| and the following definitions and theorems originate there. 
Let S =  { g i , g i ,  • • • ,g n } C K 2, 3 <  n <  oo, be a fin ite  simple po in t field, i.e. g, ^  g j  for 
i  /  j ,  i , j  <  n. g j ’s are called generators. The Voronoi polygon (region.) associated w ith
generator g, € S is denoted by V  (g,) and equals

V (g i)  =  { x  : ||x -  g,-|| <  ||x -  g j ,  j  ̂  i , j  <  n } . (5.3.1)

The set o f Voronoi polygons

V(S) -  {V (g i)  : gi € 9 } (5.3.2)

is called Voronoi diagram induced by the set of generators S-
The boundary d V (g i)  may consist of line segments, ha lf lines or lines. I f  e (g ;,g j)  =  

V (gt) H V ( g j )  0 and i t  is not an empty set, then c(gn g j )  is called Voronoi edge. I f  
e (g i,g j)  is a Voronoi edge, generators g, and gj  are adjacent.. £ stands for the set of 
edges. The end point of Voronoi edge is called Voronoi vertex; the ir set is denoted by Q.
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Let us denote by S( set of generators, whose polygons share the Voronoi vertex q< € Q. 
Delaunay region is defined as

Tj =  < x  : x  =  ^  h&j-. where l j  =  1, l j  >  0 > (5.3.3)
I *>69; j  J

and

V  =  {T i }  (5.3.4)

is called Delaunay pretriangulation. In  the same manner as before we define Delaunay 
edges and vertices. Delaunay edges connect adjacent generators.

The example o f Voronoi/Delaunay diagram for ten points was presented in  the Figure 
5.4. The physical significance of the Voronoi diagram had been already explained in  
Section 3.3.

Figure 5.4: Example of Voronoi and Delaunay diagram for 10 points. Vertex G  is called 
degenerated since i t  has rank larger than 3.

I f  the number of edges orig inating in every Voronoi vertex is exactly 3, the diagram 
is called non-degenerated. In this case every Delaunay region is a triangle and the pre­
triangulation is simply a tnangula.t.ion. In the other case some Delaunay regions are 
polygons w ith  more tlum  three edges and they may be divided in to  triangles to produce 
triangulation, but this operation is not unique. Such situation happened in the presented 
example: vertex G  is degenerated and the quadrangle A D C D  may be divided into tr ian ­
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gles by adding Delaunay edge A C  or B D .  The extracted Voronoi and Delaunay diagrams 
were presented in the Figures 5.5ab respectively.

Every Voronoi and associated Delaunay diagram posses the follow ing properties:

(P I) A  Voronoi edge is part of perpendicular bisector o f the two adjacent generators 
constitu ting th is edge.

(P2) A  Voronoi vertex is the center of the circle circumscribing the generators, whose 
regions are adjacent to tha t vertex.

(P3) The circle from property (P2) contains no generators in its in terior. From this it
follows that all Delaunay regions can be circumscribed by a circle and this circle is
empty. This property is called empty circle law.

(P4) Voronoi region always contains the corresponding generator in its interior. I f  the 
the region is fin ite  i t  is a convex polygon.

(P5) Voronoi diagram partitions the plane into as many region as the generators.

(P6 ) Two Voronoi regions do not share two or more edges as a common part o f their 
boundaries.

Furthermore if  we assume tha t the diagram is non-degenerated, n  >  3 and tha t not all 
generators lie on a single stra ight line we have

(P ’7) A ll Voronoi vertexes have rank exactly 3.

(P ’8 ) A ll Delaunay regions are triangles.

5.4 Local configurations for Poisson fields

The presented methods were developed by Collins [18) to investigate properties o f fluids.

5 .4 .1  D is t r ib u t io n  o f  D e la u n a y  edges

Let us consider triangle as presented in the Figure 5.6. I t  is known tha t the probability  
tha t the Delaunay region is not a triangle is 0 for Poisson field. The number o f triangles 
in the 2D field w ith  N  points occupying volume V  is from the defin ition (5.2.8)

A'Vy:i(xi, X 'j, x;s) r/ 2 x i <1~X‘> d2x;i . (5.4.1)

According to the empty circle law, (P3), page 110, such triangle ( x i , x o ,  X ; j )  is Delaunay 
triangle i f  the circle 7  is devoid of further points. Let us denote this probab ility  by 
E ( x \ , x 2 ,Xs). Since the flu id  is homogeneous and isotropic we can expect tha t both (js 
and E  should be solely functions of {(), r, s), see Figure 5.6. Let us denote by the 
density of p robab ility  tha t randomly chosen Delaunay edge has length r .  I f  the average
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•  B

a)

b)

Figure 5.5: Extracted Voronoi and Delaunay diagrams from the presented example. C ir­
cle Q circumscribed on every three generators form ing Delaunay region contains no gen­
erators in its interior.
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Figure 5.6: Delaunay triangle. The Figure is reproduced from  [18].

number o f nearest neighbors is q, the number o f Delaunay edges w ith  the length in the 
range (r , r  +  dr)  is

qNil>{r) =  A3 j  r/2 x id 2x 2 d2x 3 <y3 ( x i , x-2, x 3 ) £ ( x i , x 2, x 3) (5.4.2)

and the integration is performed over the subset o f configuration space for which ||x i — x 2|| 
r. I f  we switch the parameterizations

( x i , x 2 , x 3) — > ( x i ,<j>,r,9,s) (5.4.3)

we obta in the following

p p ‘2 n  p n  p o o

qN ij j( r )  — rA a /  d2x i /  d(j> d.9 sdsgu(9 ,r, s )E (9 ,r ,  s). (5.4.4)
J v  J o ./o Jo

As we have seen for the Poisson field the emptiness p robab ility  is (cf. (5.2.11))

E(9, r, s) =  exp(—A7r/?2), (5.4.5)

where

r 2 +  s2 — 2?'s cos 9
R  =  R(9, r, s) =

2 sin 9
(5.4.6)
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is the radius o f the circle 7 . As shown in |65| q for Poisson field is equal exactly 6 . 
In tegration over Xi and <j> can be performed immediately and we obtain

3 H r )
7tA2

\  /*7T roo

-  =  /  dO sds exp ( - p n R 2). 
Jo Jo

(5.4.7)

The evaluation o f the la tte r integral w ill become feasible i f  we switch the parameterization 
one more tim e

(5.4.8)

We must proceed w ith  care, since for acute angles 6 the mapping is not 1-1, as shown in 
the Figure 5.7 and we have (0 <  £):

s± — r  cos 9 ±  \Jt? — r 2 sin2 0. (5.4.9)

r  € (/', rs in  0) corresponds to s_ while r  £ (rs inO ,oo) to .s+ . The range ( r  s in 0 ,0 0 ) is 
swept two times for acute 0. In  the case o f 0 >  |  only s+ is possible and t £ (r, 0 0 )

Figure 5.7: Transform ation (5.4.8) is not 1-1; for acute angles 6 single value o f t, — \AB\ =  
\AD\  corresponds to two values o f s: s_ — \EB \  and .s+ =  \ED\.

Jacobian o f the transform ation is

J  =
sjt,2 — vl  sin2 9

(5.4.10)
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Thus we have

=  r ^ d e f f  dts-J<s~XnR? +  [ ° °  d t s + J e - x* R2
JO \ J r s \ n O  J r s i n O

p n  poo

+  de dt s+ j <£~XitR'
J  7 r / 2  J  r

r n / 2r tx/z  rTT

=  /  dO(h +  h  +  h )  +  /  d.0(I2 +  h ) ,
JO J i r/ 2/  7r/2

where

r r  f e - a l 2/ ( r 2 a\n3 0)f V f a - a l * / ( r - a l n ‘ 0) f T
I i  =  2r  /  dt cos 0  •,.........  =  r~ cos 0 sin flc  ° • — e r f( \/a |co t 0 1 ),

JrsinO V t 2 -  r 2 sin2 0 V a. 1 u '
t,<R - a l '2/ ( r 2 s i n ‘2 0 )

y/t~ — r 2 sin2 9

t e - a t ' 2/ ( r 2 sin'2 0) ^  e ~ aI 2 — I dt cos9 '  =  r~ cosflsin 9—- - < /  — erfcf-y/alcot 0 1 ) ,Jr \ / t * - r *  sin2 9 2  V a  vv 1

poo 2 * 2/1

h  =  [  d t t e - n,2/{r'2s'm2o) =  T Sm <B-,l/s'm2°. 
J r  2 a

Xttv1
a =

4

and the e iro r  and complementary error functions read respectively

erf (a:) =  — [  e~,2dt, 
it  J  0

erfc(.'r) =  1 — erf (a;).

Now we obtain

3ip(r)
7rA2 7

where

r i r /2

I a — e '

h  +  h

a J  d6 cos 6 sin 9 e r f( \ f a cot 0) =  ^ -e rfc (\/a ),

/5 = I  r /211 6  sin2 0 <D-“ / sin2" =  - ( - I ( 2 a - 1 )  erfc (y /a ))  . 
a J Q a \  2  4 J

F ina lly  we arrive at

7tA2/’ /  /• 1 (  y/Xn

# ' ' ) =  ^ _ b s ' 0 a *31 ( 1 ~

(5.4.11)

(5.4.12a)

(5.4.12b)

(5.4.12c)

(5.4.13)

(5.4.14a)

(5.4.14b)

(5.4.15)

(5.4.16a)

(5.4.1Gb)

(5.4.17)
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Collins quotes this result, w ithou t exp lic it calculations.
Since Poison field has only one parameter it  is possible to introduce normalized length 

scale

A fte r changing variables as above we obtain the universal d is tribu tion  o f the normalized 
lengths o f Delaunay edges:

5 .4 .2  Jo in t probab ility

Even i f  we want to utilize uniform  gradient approach for a single resistor we must at least 
know the jo in t p robab ility  x ( r ,  I) for lengths of corresponding Delaunay ( r)  and Voronoi 
(/) edges. This requires the investigation o f properties o f two neighboring Delaunay 
triangles, spanned on four points, see Figure 5.9. Two neighboring triangles form two

I =  ^ r V A7r. (5.4.18)

(5.4.19)

Q uantity  o f interest m ight be integrated probability

The distributions are p lo tted in the Figure 5.8,

1

Delaunay edge length prob. dens, 
w integrated density

0.8

0.6

0.4

0.2

0
0.5 1 1.5 2 2.5 3

1

Figure 5.8: >p(l) and '! '(/) for Poisson field. Lengths are in the universal units.
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valid Delaunay triangles i f  both o f the two circles spanned on them are empty.
As before we can w rite

q N x ( r , l )  =  A'1 j  r/2 X| . . .  d2x,\ ry^(xi, x 2, x :i, x , i)£ ’( x i , x 2, x ;i, x^) (5.4.21)

and the integration is taken over such configurations for which the two triangles are
indeed two neighboring Delaunay triangles and for which r  — \A B \  — const and I, =
|O iO 2 1 =  const. The emptiness probability  for the two overlapping circles is

£ ’( x i , x 2,X 3 ,x , i)  =  E ( r , l , x )  =  e x p (-A u ) , (5.4.22)

where the area of the overlaping circles is

v  =  h , r  +  r r ( l 2 +  r 2 +  4.r2) -  i  ( r 2 +  (I -  2 x ) 2) arccos 1 2‘K2 2 K ’ 4 V v' ' v ’ ^  ^.2  +  (/ _  2®)2 j

— - ( r 2 +  (/ +  2m)2) arccos f — 2' , .^:.= ] (5.4.23)
4 V U  \  y / r 2 +  (/ +  2 .7; ) - )  K 1

T lie  circles always overlap and one circle cannot encompass the other one in  fu ll (this 
would violate the empty circle rule).

We switch to the parameterization presented in in the Figure 5.9:

( x i ,X 2 , x :j,x.1) — > (x ] , ( t> , r , l ,x ,0 i ,e 2)- (5.4.24)

The mapping is 1 - 1 . r , l  £ (0 , 0 0 ), x £ (—0 0 , 0 0 ) and 0; £ ( -9 ,^ ,9 ^ ) ,  where

(  I +  2x \
9„i =  7r — arccos —.   , (5.4.25a)
'  \ ^  +  (i +  2 x r - J

0 2 — vr — arccos ( — 1- 2.1 j  (5.4.25b)
° \ s / r 2 +  ( l ~  2 x Y )

Jacobian o f the transform ation reads

' - ( l  +  2x  +  \ J r 2 +  (/ +  2 ./:)2 cos 0\^  -  2x +  s j r 2 +  (I -  2x)2 cos 02 )̂ ; (5.4.26)

the above expression is always positive. We can immediately perform integration over
x i  and (j)\ due to symmetry o f the integrands (p rim arily  due to factorization of the 
dependences 011 6*i,2 and the fact tha t v does not depend on 6*1,2 ) integration over 6*1,2 is 
relatively easy (although messy). In the end we are left w ith  integration over x  alone.
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Figure 5.9: Geometry considered during calculations of jo in t p robab ility  x ( r ,  I). Delaunay 
edge is r  =  \AB\ and the Voronoi edge I =  |0 | where 0 \  and O2 are centers o f the 
circles circumscribed 011 the triangles 123 and 124 respectively. C  is the center o f the 
segment O 1O 2 and C '  stands for the po int o f the intersection o f the directions of Voronoi 
and Delaunay edges, 6\ and 0o measure the directions of points x j  and X2 respectively 
from as seen from 0 \  and Q> w ith  respect to the direction o f Voronoi edge. \CC'\ =  |x| 
and the sign of x  is positive i f  C  lies 011 the same side o f the A D  as 0 \ .  Radius o f the 
circles centered 011 0 \  and O2 are R j  and /?■_> respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER. 5. STOCHASTIC GEOMETRY 118

A fte r switching to normalized units (5.4.18) vve obtain (?•, I are normalized):

(5.4.27)

(5.4.28)

(5.4.29)

(5.4.30)

I found no way to calculate the last integral. I t  seems however tha t it  may not 
be necessary. Any quan tity  o f interest (any moment o f I and r )  w ill probably have to 
be calculated numerically anyway; all we need to do is to add one more integral. I 
checked the obtained form ula using Monte Carlo integrator. I t  is normalized and and 
after integration over I and u  I arrived at the known expression for V’(7')- Note tha t in 
general i t  allows calculation o f the d is tribu tion  of I. I am not aware o f any such result in 
the literature.

The above calculation have unfortunately only pedagogical meaning. In  order to 
calculate any relevant quantities for set o f discs we must abandon y =  1 assumption. 
We know in general how to build correlation functions for hard-core fields and the next 
section I present the Collins summation formula, which allows a calculation o f the void 
probability, E { 7 ).

5.5 General expression for void probability

The calculations presented come from | I 8 |, however argumentation is s ligh tly  altered and 
generalized.

We state the problem as follows. Let us suppose we have a field of N  points interacting 
via potentia l <I>, which depends on their instantaneous positions x a , a  — 1 , . . .  N . We fix 
positions f, o f n  points (/' =  1 , . . .  n ), ‘‘spanning” a subset o f R2, 7 ; we assume that 7  is 
an open set, i.e. a po int ly ing  on its boundary does not belong to it. In our previous 
examples it  was an in terio r o f the circle circumscribed on the three points or the interior 
o f the two overlapping discs spanned by four points. We want to know the probability

.. 64?-/ [ ° °  . .
'  =  ~Tk /o

where

j± (w ,  r, / )=?■  +  1(1 arccos.... f ? 1 * \ ^ = = = )
\  \ / r 2 +  l 2( 1 ±  u))2 J

and

v ' (u , r ,  I) — ~ r l  +  2 ( ? >2 +  /2( l  +  u>2))  — i ( £ _  +  £+)

w ith

..2 1 1 , , ,\2 \    / ( l ± a » )=  (r ~ +  I " ( l  ±  tu) ) arccos
y/7’“ -f- / " ( l  ±  ui)2
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E n(7 ) tha t 7  contains 110 points. The condition for tha t reads

N

n  ( 1 - M x « ) )  =  h  (5.5.1)Cl —711
where 17  is the ind icator function defined by (5.2.2). By means o f canonical ensem­
ble average w ith  integrated kinetic energy part we can w rite  the general expression for
emptiness p robab ility

1 r  N
E n(7 ) =  E  =  —  d (N )6 (n )e - * 'r  TT (1 -  l 7(x „)) . (5.5.2)

Q " JvN a i r + i

We use the follow ing notation

<5(77.) =  j ( 2J(x# — F<), (5.5.3a)
7 =  1

N

d (N ) =  J ]  d2x a . (5.5.3b)
a=l

The reduced configurational integral reads

Q „ ( f i , . . . f „ ) =  [  d{N)5(n)e-*'T. (5.5.4)
JVN

(5.5.1) may be expanded to obtain

1 -  Y ,  l o +  E  ^ 1 ,3  -  • • •, (5.5.5)
n<a n<*</3

where 1 *  is a shorthand notation of l 7(xQ). E  reads

00

E = l + Y , E {m\  (5.5.6)
in—1

where

= d(N)S(n)e-'l'/r  T  1*1,3.. .1S
Qn JVN “  -

n<a <  p <  . . . <  0
rn

= ( N  "  [  d(N)6(n) ln+1! H+2 ... l n+tne - V r , (5.5.7)
Qn V m J JVN

where we exchanged the order of integration and summation and noticed tha t for all
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arrangements o f tv, (3, etc. the integrals are the same. The last integral can be w ritten  as 

/  d2y „ +] . . .  d2y n+m /  d (N )6 (n )6 (x „+ i -  y n+i ) . . .  6 {x „+m -  y „ +ni)©“ '1>/7’.
J  7"' J V N

(5.5.8)

From the defin ition o f correlation functions we have (here k is a rb itra ry )

a W  • . . * )  = !  ( " )  e  Jyt w w kX r+r -  ( " ) * ! ,  (m .S)

where the configurational integral reads

Q =  [  d (N )e ~ ‘]’/ r . (5.5.10)
J\/N

The justifica tion  of the above is the following. We are asking how many configurations in 
the flu id  places atoms around ( y i , .. . y^-). We pick up A: atoms ( it  can be done in (^)A:! 
ways including their permutations on the fixed positions). The rest o f the atoms may be 
arranged arb itrarily . We obtain

Q k(yu  • • -yfc) =  y i ,  • • .y * )  (5 .5 .1 1 )

and we can w rite

£(>") =  ( N  nN) f  d2y n+i . , .  d2y n+mQlt+m({u . . .  fn , y n+ l, • • • Yn+m)
V ji \  m  J

=  ( z T x ’n r  d2y  , , , d2y n+m !h'+ ’" ( f i ’ • • • f: - ) , (5 .5 .1 2 )
m l ,/7m < / „ ( f l , . . . f „ )

We have been able to express E n(-y) in the form of power series in density A. The 
expression can be easily evaluated in the case o f Poisson field

=  e x p (-A L ( 7 )). (5.5.13)

I devoted a lot of time and effort to approximate E  at least for the simplest possible 
form of hard-core correlation functions, but w ithou t any significant progress.

5.6 Delaunay tessellations of hard discs

Due to tremendous difficulties in handling the large integrals presented in the previous 
section a lit t le  analytic work has been done in that field for hard-core fields. On the 
other hand the Poisson case has been studied thoroughly, please refer to [69]. [37] deals 
m ain ly w ith  topological properties o f Voronoi diagrams o f hard-core discs. As mentioned 
earlier the researchers found tha t p robab ility  of generated Voronoi vertex is indeed zero 
and tha t the average number o f the generator adjacent to typical generator is around
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1. .1/5-3
■8" 0.4I
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Poisson theory ™  
e = le =0.69 — 
e =0.59 —e

0.2

0 0.5 1.5 2 2.5 3
normalized length

Figure 5.10: Integrated d istribu tions from [92] compared to Poisson case. I can be seen 
tha t form smaller void volumes variance of the d is tribu tion  becomes smaller; the system 
becomes more ordered.

6 (the results is exact for Poisson case). I t  is therefore reasonable to th ink  about the 
tessellations o f hard discs as o f disordered triangular lattices.

The only attem pt to calculate the Delaunay edge d is tribu tion  known to me is [68], 
bu t i t  seems to disagree w ith  the numerical experiments presented in (92], which are 
reported in the Figure 5.10. The last work clearly indicates tha t the systems becomes 
more regular w ith  the decreasing void volume -  for the case o f very high concentrations 
the (unintegrated) d is tribu tion  should approach delta function, like for the case of the 
triangular lattice.

5.7 Summary

The studies on local properties o f point fields were developed in parallel to the computer 
studies. A fte r I had obtained the first numerical results, presented in  Chapter 6, i t  
became clear, tha t mean gradient hypothesis needs to be refuted. The size of the cluster 
tha t would reproduce the perm eability of the network appeared to be much too large to 
be handled analytically. Small clusters/single resistors w ill not do.

Nevertheless I believe th a t the work presented in this chapter is im portant for any an­
a ly tic  attack on the random hydraulic networks. Any description I can imagine w ill have 
to, at some point, calculate some average properties o f single throats. Let me therefore 
recall what has been done here. I showed how to investigate the sta tistica l properties of of 
Voronoi/Delaunay diagrams: the knowledge of many body correlation functions is needed 
(which under some assumptions may be expressed using pa ir correlation function g (r))  
and void probability  for our po in t field. I investigated the la tte r quantity  using Collins
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approach in Section 5.5. Different hard-core poin t precesses were suggested; among them 
the one tha t was used in the computer simulations, so called gas o f hard discs. Pair 
correlation functions for these processes were also studied.
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Chapter 6

Numerical studies

6.1 Introduction

The main object o f numerical study is the calculation o f geometrical modifier for the flow 
through disordered quasi two dimensional systems o f cylinders, as discussed in Chapter 
4. The gas of hard discs constitutes the source of configurations. Effective resistivity 
o f the network is computed using relaxation methods. In  the follow ing section details 
o f implementation are presented. The numerical pro ject is called Drag; its structure is 
presented in  Figure 6.1.

DragVoronoi2 > 
DragVoronoi2Interface, DragCircuits

DragSimulatorDragPointFields

output

MUtilSVG Lib Hath Text 
Std views

standard library

Figure 6.1: Drag module system.
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6.2 Im plem entation

The programing language chosen was Component Pascal (CP) under programming envi­
ronment BlackBox Component Builder 1.4. The language seems to be very convenient 
for m iddle size projects: i t  is object oriented, has garbage collector and comes w ith  user 
friendly development environment. The language design is such th a t the code is easy to 
develop and to debug. The operating system used was W indows X P  (Version 2002) in ­
stalled on Dell INSPIRO N 9100 portable computer. System resources are: CPU 2.80GHz 
In te l® , Pentium ® IV , R AM  1.00 GB. A ll the development, testing and calculations were 
performed on this machine.

Drag consists of four main modules:

•  DragVoronoi2 (w ith  the interface D ra g V o ro n o i2 In te rfa ce ) w ith  the lib ra ry  V o ro n o i2 .d ll 
compiled from FORTRAN77 sources. The module constructs Voronoi diagrams for
the set o f generators

•  D ra g C irc u its : constructs the c ircu it equivalent to  obtained Voronoi diagram. I t  
calculates net conductances of general resistors networks.

• DragPointFields: Monte Carlo configuration generator. Also set o f tools to create 
and manipulate 2D point fields.

•  D ragS im u la to r: main module, where the actual simulations are performed.

A dd itiona lly  graphical ou tpu t was realized using MUtilSVG module. Several other mod­
ules from standard CP lib ra ry  was used, m ainly to fac ilita te  ou tpu t. The whole code 
developed has about 7000 lines.

In the subsequent section some details o f im plementation are given.

6 .2 .1  C onfigurations generator

As already suggested, we w ill use the configuration of points th a t appear in  the gas w ith  
hard-core potentia l. In the beginning simulation starts w ith  triangu lar lattice, Figure 
6.2. We sample the configuration after every m  steps o f Monte Carlo procedure. The 
number of points is n  and we assume the periodic boundary conditions.

Lattice generation

Generation of la ttice require some caution, because the discrete translational symme­
try  may lead to frustration. The size o f the com putational domain (A x  x A y )  cannot 
be a rb itra ry  -  after adding copies of the system around (periodic boundary conditions) 
we must obtain in fin ite  la ttice w ithou t any defects. The task is performed by proce­
dure TriangularLattice in module DragPointFields. User supplies the requested void 
volume o f the system e and diameter of the cylinders D. These two parameters are un­
changed in the procedure. A dd itiona lly  user specifies the approximate ra tio  // — A y /A x
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and number o f generators n. Procedure calculates approximate length A x  from the 
expression

A x  =  D
 ̂4/7(1 — e)

and subsequently the interpartic le distance as

1 /2

' 2 ^ 3 V ; 7  ’  V ' \ ,  f T A  1

3 j  ( 4 ( 1  - e ) j  V  3 v /T

A .t has to be the m u ltip lic ity  o f a:

nx =  ENTIER(A:L-/a), 
A x  — nxa.

(6 .2.1)

(6.2.2)

(6.2.3a)

(6.2.3b)

I f  the result is zero, than i t  is set to a. ENTIER denotes the standard CP function, which 
returns integer part of the number (floor).

1 1 l I 1 I 1 > 1 1 1 » 1 1 1 1 1 1 ( 1 1 1 1 1 i| row

I < 1 1 1 1 1 1 1 1 1 1 1 l 1 » l ( 1 1 1

a
1 1 1 < 1 1 I • 1 1 1 1 1 1 1 1 1 1 1 1 • 1 • (■

A
h

Figure 6.2: Triangular la ttice generation. nx =  3, n y =  4.
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The actual number o f generators in the computational domain is calculated as the 
closest even m u ltip lic ity  o f nx

n  — > ENTIER(7?./27?,x )2ni . (6.2.4)

nx stands for the number o f particles in the row, while

ny =  n /n x (6.2.5)

is the number o f rows, which must be even. A y  is now calculated as

A y  =  n uh, (6.2.6)

where

h =  a ^ .  (6.2.7)

F ina lly

T) — > A y /A x .  (6.2.8)

Bu ild ing  o f actual point field is now easy, example was presented in the Figure 6.2.

M onte Carlo configuration sampling

S tric tly  speaking we are sim ulating m elting of 2D crystal o f atoms interacting v ia  HC po­
tentia l under constant volume (density) condition. Such system has only one parameter, 
e. Temperature is absent in the classical simulations of hard sphere gas.

One Monte Carlo step is the following. We try  to displace every atom by vector A r ,  
where

r  e [ - A /2 ,  A /2 ]2 (6.2.9)

and all possible realizations o f r  are equally probable. Uniform  random number generator 
from  the standard lib ra ry  module LibRandom was used. I f  the disc in the new position 
overlap w ith  any o f the other discs the step is rejected, otherwise is accepted.

The rule of the thum b in th is kind o f simulations is to keep the acceptance ratio a  
(the number of accepted displacements to the tota l number o f attem pted displacements) 
close to m =  0.5. This is achieved by adjusting the value o f A . A fte r each few M C steps 
a  is calculated and

i f  a  <  m — 6/2, then A  —» A  • k , or 

i f  a >  m +  6/2, then A  —> A / k .

In  general we may expect tha t the larger displacement, the smaller p robab ility  o f accept­
ing the step.
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A lgorithm  requires certain number o f steps to remove correlations, I call th is process 
therm.alizat.ion.

6.2.2 Computing the tessellations

The exhaustive discussion o f the numerical aspects o f construction Voronoi/Delaunay 
diagrams can be found in [69]. The construction of the accurate Voronoi tessellation 
o f po int fields generated by the Monte Carlo section is crucial, since we need both the 
correct numerical values of distances, determ ining the resistances o f particu la r throats, 
and exactly reproduced topological ordering. Especially th is second property is prone to 
numerical instabilities.

F irs t of all we should decide whether to concentrate on creation o f Delaunay or Voronoi 
diagram. There are several reasons to choose the second option: the data structures 
for this case are easier to construct and manipulate; at the same numerical cost they 
carry more information. Furthermore, i t  is generally much easier to obtain Delaunay 
tessellation having constructed Voronoi diagram than build topologically correct Voronoi 
tessellation from Delaunay diagram.

Reference [69] discusses several algorithms for computing Voronoi graphs: plane, sweep 
method, divide and conquer algorithm  and fina lly incremental method, which we w ill 
concentrate on later. A ll these algorithms, by u tiliz ing  quite sophisticated algorithm ic 
techniques, can approach tim e complexity 0 {n )  on average and O(ralogn) in the worst 
case, what has been shown to be a theoretical lim it for these kind o f computations. 
Nevertheless only the incremental method was refined enough to give a robust a lgorithm  
insensitive to unavoidable numerical errors.

The algorithm  was developed by Kokichi Sugihara and Masao Ir i in the late 80’s and 
was called V0R0N0I2. The code was w ritten  in FORTRAN77 language and makes fa irly  
large library, having almost 2000 linos (w ith  additional 1000 line o f code designed to 
facilita te  graphical ou tpu t) and about 20 COMMON blocks (64 global variables). This code, 
compiled to dynamic link library, constitutes the core o f my subprogram for determ ining 
the structure o f the electric networks. The sources, as well as the user guide, [85], are 
d istributed solely by authors.

I had to m odify s lightly the original code. Also the internal FORTRAN77 data struc­
tures had to be ported to CP language, since the direct access was impossible. The CP 
interface contains also the algorithms for constructing Voronoi diagrams w ith  periodic 
(or semi-periodic) boundary conditions and several other subroutines to extract necessary 
data. Subsequent sections serve as report and short user guide to th is part of my CP 
code. They also reveal some basics concepts tha t guided authors o f V0R0N0I2.

In c re m e n ta l m e th o d

The idea of incremental method is simple. We start w ith  Voronoi diagram for lim ited 
number of generators, e.g. 3. This can be done easily and exactly. Successively we add 
subsequent generators, each time modifying the diagram. Let us say we add generator 
g  =  gi and want, to m odify Voronoi diagram V/_i to obtain V). M odification encompasses
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removing part o f edges and vertices o f the old diagram and adding new ones, as presented 
in  the Figure 6.3. F irs t we find the perpendicular bisector between g and the nearest 
generator, say g ' among those already added (line 1-2 in the figure). Bisector crosses 
edges bounding region o f g ' and enters regions o f two others, let us call one o f them g". 
We can now find bisector between g/ and g ", which enters the next region in po in t 3. We 
can continue this boundary growing procedure u n til we close the region ascribed to g.

Figure 6.3: A n  idea o f the incremental method. Th ick lines represent diagram V ;_ i. 
A fte r an addition of generator g old Voronoi vertices a, h and c have to be removed; the 
old Voronoi edges must be sp lit in points 1, 2, 3, 4 and 5 and new edges 1-2, 2-3, 3-4, 
4-5, 5-1 are added (dashed lines). S im ilar figure can be found in  |69j.

The algorithm  works under assumption tha t the new Voronoi region is fin ite. Th is is 
not always true, but the in fin ite  regions may be elim inated by a simple trick , which is 
discussed later.

I f  there would be no errors we could judge which vertices o f V/_i  should be removed 
by the follow ing procedure. Let assume tha t three generators g,, g j  and g* span the 
circle G and are ordered in such a way that going on the circle in the counterclockwise 
d irection we v is it generators in the order i j k i .  We are interested in the position of fourth
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generator g w ith  respect to the circle C. Let us define

1 2 ,1 x y x. +  y~ 

where notation x (/) =  g ^  ■ (1 ,0), etc. I t  can be proved tha t tha t

(6.2.10)

i f  H ( g i , g j , g k , g )  <  0 g is inside e, 
i f  / f (g i,g j,g fc ,g )  =  0 g lies on the boundary o f C and 

i f  H ( g i ,  g j ,  g k , g) >  0 g is outside e.

I f  we want to judge i f  the vertex q(gi ,gj ,gh) adjacent to generators g,, g j  and gr- is to be 
removed, we need to check sign of H ( g i , g j , g f . , g i ) .  I f  i t  is non-positive the vertex should 
be removed.

Let i t  be noted tha t in the case o f H ( g j , g j ,  gk-gi) =  0 we deal w ith  degeneracy. The 
degeneracy can be removed using simple symbolic perturbation  technique: we remove the 
vertex only i f  H  <  0. Th is procedure should be understood as delicate deformation of old 
Voronoi diagram. The idea underlying this procedure is such tha t the degeneracy m ight 
be judged correctly only i f  there would be no numerical errors. Since real data always 
bear this stigma, we can say tha t in  the real world the degeneracy never occurs.

The tim e complexity o f the program depends greatly on the a b ility  o f the algorithm  
to find fast the nearest generator for g/. This is achieved by bucketing technique, where 
the generators are d istributed over the specially constructed quaternary three.

Numerical accuracy depends on the un ifo rm ity  o f generators, i.e. the more uniform ly 
the generators taken in order f il l the region the better. Th is is achieved by renumeration 
based on the bucket tree.

D a ta  s tru c tu re

The most popular data structure to store inform ation about Voronoi diagram is so called 
winged-edge data structure. Such data structure had been used before in connection w ith  
Voronoi diagrams in [40], We sta rt w ith  adding one additional generator, goo, which lies 
in the (complex) in fin ity . In th is way we achieve tha t all Voronoi regions associated w ith  
ord inary generators are fin ite. In the case when no degeneracy takes place all vertices 
are rank three, what means tha t the number o f vertices and respectively edges is

where n  stands for the number of generators. The graph we obtained is called augmented 
geometric, graph. Its  all edges are finite, please confront Figure 6.4 (all the figures in this 
section comes from |69j).

n „ =  2n  -  2, 

nc =  3n — 3,

(6.2.11a)

(6.2.11b)
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.00

Figure 6.4: Augmented geometric graph. O rdinary diagram is generated by four points 
denoted w ith  filled circles (1 . . . 4 ) ;  i t  has five edges ( 5 . . . 9 )  and two vertices 1 and 2. 
By adding oo-generator we obtain augmented graph w ith  additional vertices 3 . . .  6 and 
edges marked w ith  dashed lines.

end.vertex[k]

cw.successor[k]

ccw.successor[k]

right generator[k] 

.edge k

left generator[k]
cw.predecessor[k]

start, vertex [k] 

ccw.predecessor[k]

Figure 6.5: Winged edge data strucure for edges. To get the order (cw vs. ccw) we must 
stand on the vertex and look in the direction o f the second vertex (regardless the direction 
o f the edge).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6. NUMERICAL STUDIES 131

Every edge, vertex and generator is marked w ith  a unique number. The next step 
is to impose a direction o f every edge. Every edge has now starting  and ending vertex. 
A dd itiona lly  we can define successors and predecessors o f every edge, clockwise (cw) or 
counterclockwise (ccw) in order. To every edge we can ascribe right and le ft generator. 
Please refer to Figure G.5. A dd itiona lly  we record number o f one o f the edges on the 
boundary of each Voronoi region and number o f one of the edges on incident to  every 
vertex. Every vertex is given a mark “Euclidean” or “ in fin ity ” depending i f  the vertex 
belongs to the ordinary diagram (Euclidean, like 1 and 2 in the Figure 6.4) or is in the 
in fin ity  (like 3 . . .  6). Every vertex has two coordinates. In case o f Euclidean points they 
are ordinary Cartesian components o f it: when the point lies in the in fin ity  they code 
the direction o f the in fin ite  Voronoi edge. The last convention is sometimes referred as 
homogeneous coordinates.

To avoid build ing in fin ite  Voronoi region in the incremental method, the following 
trick  is used. In the beginning algorithm  adds three extra generators placed on the
triangle and construct (augmented) diagram for them. I f  the triangle is large enough
(comparing to the region containing all regular generators), the sequential adding of 
regular generators w ill not d isturb the outermost structure o f the three in fin ite  vertices 
and edges.

Topological consistency

V0R0N0I2 does not attem pt to build exact Voronoi diagram, rather it  constructs (always) 
the (augmented) graph V that is topologically consistent in the sense tha t i t  possesses the 
following properties:

( T l)  The degree o f any vertex in V is exactly three.

(T2) V posses n +  1 prim ary cycles (i.e. closed paths b u ilt o f adjacent edges, which
contain no other cycles inside)

(T3) Every region, except the one associated w ith  goo is sim ply connected (does not have 
any holes).

(T4) Two regions share a t most one common edge.

(T5) The region associated w ith  goo has exactly three edges and three vertices (this 
property is imposed by adding the three additional generators mentioned in the 
previous paragraph).

Every augmented Voronoi graph posses these properties, bu t the inversion o f this state­
ment is not true.

In itia l graph for three (+oo-generator) fake generators is topologically consistent. The 
process o f modification, as described in Section 6.2.2, w ill always produce topologically 
consistent graph i f  the set of vertices and edges T  which is removed in every step express 
the following features
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( T ’6) T  is non-empty (what follows from the fact tha t each generator must have its own 
region).

(T ’7) T  does not contain vertex in in fin ity.

(T ’8) T  is a tree, i.e. connected acyclic graph.

(T ’9) Deletion o f T  cannot lead to the situation when two (or more) Voronoi regions have 
more than one edge in common.

Figure 6.6 presents some examples, please refer to the caption for short comment. The 
po in t tha t fu lfills  //-c r ite r io n  is included into T  i f  resulting T  fu lfills  T '6 - rT ’9. This makes 
the a lgorithm  robust against numerical errors. Furthermore, as pointed by authors when 
the errors become negligible, the diagram converges to exact Voronoi diagram.

Figure 6.6: Example o f allowed and forbidden shapes o f set T. (a) presents legal deletion 
o f a tree; (b) violates T ’8, one generator would loose its region; (c) forbidden, since T  
must be connected; (d) example o f vio la tion o f T ’9.
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V0R0N0I2 u n d e r  CP

V0R0N0I2 takes as an in p u t num ber and positions o f generators and bu ilds  (stored inside 
the COMMON blocks) winged-edge da ta  s truc tu re . CP f irs t in itia lize s  the r ig h t blocks o f 
memory, calls the functions responsible fo r d iagram  co m p u ta tio n  and in  the  end reads 
the blocks con ta in ing  the  desired ou tp u t.

Several m odification of the original code had to be done 011 the level o f FORTRAN 
code. For some reason (tha t are s till unclear) CP can call efficiently only those functions 
from  the d ll libraries compiled from FORTRAN code, which have single argument (possibly 
pointer to an array). Therefore, instead o f single in itia liza tion  procedure, a chain o f them 
must be called. The same applies to reading out the results. Th is forced me to create a 
set o f “setters” and “getters” (the lib ra ry  resembles now sta tic  Java class).

I  added to  each subprogram in FORTRAN code exp lic it declaration o f common blocks 
and variables, ge tting  rid  o f the extensive use o f IMPLICIT statement. I also parametrized 
the code, so now almost 110 “magic numbers” appear. These decorations were not crucial, 
nevertheless fac ilita te  future development o f the code. Also, w ithou t them I would never 
be able to understand it  011 the implementation level. F inally, the subroutines and global 
variables used to p lo tting  the outpu t were commented out.

To compile the lib ra ry  g77 compiler under MinGW32 system was used. MinGW32 is a 
m in im alistic emulator o f Unix system under Windows. Below the version o f g77 is given 
and the lis ting  o f Makefile used.

$ g77 --version
GNU Fortran (GCC 3.2.3 (mingw special 20030504-1)) 3.2.3 20030425 (release) 
Copyright (C) 2002 Free Software Foundation, Inc.

$ cat Makefile
../../Voronoi2.dll: Voronoi2.o 
dllwrap \

— export-all \
--output-def Voronoi2.def \
— implib Voronoi2.a \
--driver-name g77 \
-o Voronoi2.dll Voronoi2.o

Voronoi2.o: Voronoi2.f Parametrization.f 
g77 -c -g -fno-underscoring \

-fexpensive-optimizations -ffast-math \
-malign-double -fforce-addr \
-fstrength-reduce -fcaller-saves \
-funroll-loops \
-o Voronoi2.o Voronoi2.f

P rior to use, we have to define interface for d ll lib ra ry  in  CP. I t  is also a good idea to 
“wrap” every subroutine called from the lib ra ry  in to  CP procedure. Frequent direct calls
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of procedures from the lib ra ry  w ith in  single CP procedure may cause (and caused) stack 
overflow.

The CP builds its own version of winged-edgc data structure, since the d irect access 
o f FORTRAN COMMON blocks is impossible.

Original V0R0N0I2 builds, as mentioned, the diagram w ith  fixed boundary conditions. 
I t  is however desirable to  build diagram w ith  periodic boundary conditions: i t  saves 
the problem of nodes on the boundary and weaken the fin ite  size effects. The idea 
is simple: 8 copies o f the system (Figure 6.7) are added around the orig inal one and 
for such expanded system the Voronoi diagram is computed. Next, the edges, which 
cross the borders between images, are “wrapped around” . However tr iv ia l i t  m ight sound 
the actual task appeared to be p re tty  involving combinatorial challenge. The periodic 
boundary condition may be imposed in  two directions or only in  one. We can o f course 
s till work w ith  fixed boundaries.

7 6 5

8 0 4

1 2 3

outside -1
X

Figure 6.7: 8 copies o f the original system (0) used to construct boundary conditions. 
Schema o f quadrants enumeration is presented. Edges orig inating in 0 and ending outside 
are “wrapped” .

DragVoronoi2 m o d u le  — s h o r t user m a n u a l

D ra g V o ro n o i2 In te rf ace is the interface module between the d ll lib ra ry  and the CP code. 
No procedures from this module should be ever d irectly called by user, nevertheless there 
are several im portant constants defined in it. Types of vertices:

•  V T _ in f_ p o in t -  vertex in infin ity,

•  VT_Euclidean -  Euclidean vertex.

I f  the type o f vertex, t  is negative, then —t  denotes the number o f quadrant in which the 
vertex lie. M in im um  and maximum number o f generators

•  max_gen_no = 50000 -  maximum number of generators,
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•  min_gen_no = 2 -  m inimum number o f generators.

NOTE: when periodic boundary conditions are imposed (even in one direction), the 
maximum number of generators defined by user must be max_gen_no DIV 9.

DragVoronoi2 is the fundamental module for com puting and m anipulating Voronoi 
diagrams. Four basic data structures and types:

CONST
all_periodic* = 0; (*periodic boundary conditions in 2D*)
x_periodic* = -1; (*periodic boundary conditions in x-dir*)
y_periodic* = 1; (*periodic boundary conditions in y-dir*)
no_periodic* = 2; (*fixed boundary conditions*)

TYPE
Generator* = POINTER TO RECORD 

no-: INTEGER; 
x-, y-: REAL;
be-: VEdge; (*bounding edge*)

END;
Vertex* = POINTER TO RECORD (SVG.Shape) (*Voronoi vertex*) 

no-: INTEGER; (*number of the vertex*) 
x-, y-: REAL;
type-: INTEGER; (*type of vertex*) 
ie-: VEdge; (*incident edge*) 
marker: BOOLEAN; (*internal flag*)

END;
VEdge* = POINTER TO RECORD (*Voronoi edge*) 

no-: INTEGER; 
start-, end-: Vertex;
rg-: Generator; (*right hand side generator*) 
lg-: Generator; (*left hand side generator*) 
see-: VEdge; (*start clockwise edge*)
scce-: VEdge; (*start counter-clockwise edge*)
ece-: VEdge; (*end clockwise edge*)
ecce-: VEdge; (*end counter-clockwise edge*)

END;
VDiagram* = POINTER TO RECORD (*Voronoi diagram*)

periodicity-: INTEGER; (*type of boundary conditions*) 
genDone-: BOOLEAN; (*Generators has been initialized*)
VoronoiDone-: BOOLEAN; (*Voronoi Diagram has been calculated*) 
genNo-: INTEGER; (*no of generators*)
VEdgeNo-: INTEGER; (*number of Voronoi edges*)
VVertexNo-: INTEGER; (*number of Voronoi vertices*) 
generators-: POINTER TO ARRAY OF Generator; (*generators*)
VVertices-: POINTER TO ARRAY OF Vertex; (*vertices*)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6. NUMERICAL STUDIES 136

VEdges-: POINTER TO ARRAY OF VEdge; (*Voronoi edges*)
END;

The basic procedures available:

PROCEDURE BuildVoronoiDiagramFBC* ( 
gx, gy: ARRAY OF REAL; 
gno: INTEGER 

): VDiagrara;

returns Voronoi Diagram for gno generators w ith  positions specified in  gx (x-components), 
gy (y-components) w ith  fixed boundary conditions.

PROCEDURE BuildVoronoiDiagramPBC* (
direction: INTEGER; (*periodicity direction*)
eta: REAL; (*ratio of y_len to x_len*)
gx, gy: ARRAY OF REAL; (*generators coordinates*)
gno: INTEGER (*number of generators*)

): VDiagram;

d ir e c t io n  can have one of the values: a l l_ p e r io d ic ,  x _ p e r io d ic , y _ p e r io d ic  or 
no _ p e rio d ic . e ta  stands for the ratio  A y /A x ,  where the la tte r are the length o f the 
edges (respectively in y and x  direction) o f the rectangle bounding all generators. The 
larger among A x  and A y  must be equal to 1. The subroutine does not check carefully 
the accuracy o f the diagram when the number o f points is small. I t  w ill surely fail for 
the number o f generators less than 3. The generators are assumed to fill the rectangle 
uniform ly. This drawback requires future development, but it  does not affect the numer­
ical studies o f this chapter, since the systems we deal w ith  are much larger ( it has been 
carefully tested).

6 .2 .3  C o n d u c t iv i t y  c a lc u la t io n s

Example of the hydraulic network obtained for small thermalized system of generators is 
presented in the Figure 6.8. The Voronoi diagram is periodic in one direction, the dashed 
edges are “wrapped around” .

Conductances associates w ith  every edge is calculated, each node is given flag “bound­
ary” or “core” . Inflowing nodes (1 . . . 5 )  have the ir pressures set to p, outflow ing nodes 
6 . . .  10 to zero. Module designed to deal w ith  electrical (hydraulic) properties is D ra g C irc u its . 
As we have seen, i t  is possible to calculate the pressure in each node and subsequently 
power and geometrical modifier.

As discussed in Section 3.4, there arc two ways to calculate the potentials in the 
core nodes. We can try  the direct attack and construct matrices Kc and R7 and solve 
the system of equations (3.4.19). The standard method is to LU-decompose m atrix  K„ 
and obtain solution v „  via back substitution (e.g. [72]). There are standard libraries 
(L ib M a trice s  and L ib V e c to rs ) w ritten  in CP to achieve tha t. The method is exact.
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Figure 6.8: Calculations o f conductivity. Filled circles denotes generators (w ith  reduced 
radius) and the open ones contacts, to which the pressure is applied. Nodes 6 . . .  10 have 
pressure 0, while nodes 1 . . .  5 have pressure p. Voronoi edges marked w ith  dashed lines 
are “wrapped” . For example edge x  connects points a and b. The solid rectangle marks 
the borders o f basic computational domain.
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The only problem w ith  the above method is tha t its tim e com plexity is 0 (IVs), where 
N  stands for the number o f Voronoi vertices. I t  appears th a t for 1000 generators (about 
2000 vertices) this method needs about 7h to find potentia l for one configuration o f points. 
Since we must perform hundreds of such operations (and for even larger systems) this 
approach cannot be used.

Fortunately we have the second method, based on re laxation scheme. I t  appeared 
to be much faster (order of seconds for the mentioned example) and brought no loss in 
accuracy. The im portant step is the in itia l guess o f pressure in the vertices ans it  was 
sim ply computed as i f  the pressure gradient in the system was uniform . The relaxation 
scheme is simple. The potentia l in each node I is substituted by the potentia l averaged 
(w ith  weights) over the nodes connected to /, as given by the form ula (3.4.1G). The 
ite ra tion  procedure is term inated when the absolute value o f change in every node is 
smaller the given value.

Geometrical modifier, f c, is computed from the eq. (4.4.2):

w ith  cji0i coming from (3.4.55). H  cancels in our calculation, as well as D 2 and //., so the 
code always operated on the non-dimensional quantities. Because o f periodic boundary 
conditions M  is known exactly. L  is calculated as the difference between the average 
positions o f inflow and outflow  nodes respectively.

6 .2 .4  G raphical ou tp u t

I decided to adopt the scalable vector graphics SVG form at as the graphical ou tpu t from 
my code. SVG is modularized language for describing two-dimensional vector and mixed 
vector/raster graphics in XML. SVG specification can be found in [2|.

6.3 Statistical analysis

Any Monte Carlo simulation requires build ing suitable statistics. Lets assume we per­
formed n  measurements o f quantity  x, i , :/>2 , . .  .a',,}. The estim ator for the population 
mean, (“sample mean” ) reads

(6.3.1)

The central moment (measure of noise in the system) of the sample is

(6.3.2)
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Note, tha t this estimator is biased. Mean standard deviation (qua lity  o f (x) estimation)
is

(6.3.3)

and i t  is not biased.

6.4 V alidation tests and code tuning

Several checks were made to confirm tha t the Voronoi diagrams produced by the code are 
accurate (for example by comparison w ith  outpu t produced by Mathematica) . Example 
for n  =  300 generators for e =  0.6 can be found in Figure 6.9.

As described in  the Section 6.2.1, Monte Carlo generator has internal tuning mech­
anism. Its  performance was presented in Figure 6.10. Please refer to the caption for 
details.

We discuss now the tests performed to confirm the numerical adequacy o f the code. 
The firs t obvious check is the comparison o f theoretical prediction o f geometrical modifier 
for the regular triangu lar lattice, eq. (4.3.10), w ith  the program output. I t  was done in 
F igure 6.4, fu ll agreement exists.

Since we have to relay on the iterative procedure, which was w ritten  from scratch, we 
must make sure i t  is correct. The firs t test was presented in the Figure 6.12 and verifies 
relation (6.2.12):

Void volume e =  0.3, number of cylinders 500. In the case when the la ttice underwent 
therm alization in itia l number of MC steps was 50. A fte r tha t 10 samples were collected, 
each .separated by 2 Monte Carlo steps (2 attempts to displace every discs). The imme­
diate conclusion is tha t the above equation works. Also the example serves as additional 
proof tha t both iterative and exact, method lead to the same solution (also in the case of 
disordered systems).

I t  is also quite im portan t to see how the systems reaches the thermodynamical equi­
lib rium . Figure present the “ tim e” evolution of the system slowly m elting from the in itia l 
triangu lar ordering for three different system sizes. I t  seems tha t smaller systems pro­
duces much more noise. The time o f reaching equilibrium  state may be safely taken to 
be 50 M C  steps and weakly depends on the size of the system, e was kept 0.3 and the 
system was approxim ately square.

Next we may investigate fin ite size effects in our simulations. Moan standard deviation
(6.3.3) obeys power law

a  ~  n (6.4.2)
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Figure 6.9: Example of Voronoi diagram for 400 generators, e =  0.4. Wrapped edges 
were removed and computational domain is approximately a square. Flow points upward. 
Figures 6.19 to 6.23 perta in to the same configuration o f cylinders.
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Figure 6.10: Example o f the performance of internal tun ing mechanism in the Monte 
Carlo generator. System features: n  =  300, e =  0.5 and tj «  1.0. Panel a) presents 
evolution o f acceptance ratio, b) displacement am plitude d. I f  the acceptance ra tio  leaves 
the interval [m — 6 /2, m +  <5/2], the code increases or decreases the amplitude as described 
in Section 6.2.1. W ith  M C  steps the value seems to approach asym ptotic value, m =  0.5 
and 5 — 0.1 were used throughout the simulations.
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Figure 6.11: Comparison o f geometrical modifier computed by the code w ith  the theoret­
ical prediction (4.3.10) for triangu la r lattice. Full agreement exists. The system consists 
o f about 200 cylinders and A x  «  A y.
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Figure 6.13: Therm alization o f three systems w ith  different sizes, 

where a  was found to be equal to

a  =  -0 .456  ±  0.050. (6.4.3)

The above result suggests tha t geometrical modifier is well defined thermodynamical 
observable.

There is a fin ite  size effect present in the system, see Figure 6.14; i t  seems that 
for smaller systems the geometrical modifier is s lightly smaller and approaches certain 
asymptotic value for large number of particles. The source o f the effect is probably 
connected w ith  the way how the actual size o f the system is computed (Section 6.2.3). I t  
was found tha t the system o f size n  =  3000 is large enough to safely work w ith .

6.5 R esults

6.5.1 C a lcu la tion s o f  th e  drag

Figures presents the results o f numerical calculations o f the geometrical modifier for 
disordered assemblage o f cylinders. Number of cylinders used in the sim ulation was 
3000. Therm alization o f the system took 50 MC steps. The averages for each e were 
calculated using 25 samples, taken after each 2 M C steps.

The geometrical m odifier was calculated for all three models of th roa t: M iyagi model, 
flow between parallel walls and the integrated throat. In all cases the disorder lead to 
increase o f the drag force. Results were presented in the Figure 6.15abc. I t  appears tha t 
for e <  0.5 the drag is sim ply

/t>(e) =  c fDhvx(e), (6.5.1)
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Figure 6.14: There is a fin ite  size effect present in the sim ulation: geometrical modifier 
seems to depend on the size o f the system (slightly increasing w ith  n). For the presented 
example e =  0.3. F its  to  data for n =  3000 and n — 5000 do not d iffer w ith in  the 
numerical error, bu t are different from the f it  to data, for n  =  500. The effect is an 
a rtifac t caused by the a lgorithm  for system size estimation.

where fo h cx it)  denotes the geometrical modifier for triangu la r la ttice. Below e ss 0.5 the 
shape o f the function changes. Constant c depends on the model o f the th roa t and more 
precisely on the leading order in the powers o f — 1 expansion o f conductance function, 
where s denotes separation o f cylinders and D  their diameter. The follow ing a rtific ia l 
conductance function was used

fif(a) =  ( a - l ) ’ , (6.5.2)

where q >  0 and a  — -g. Next function c{q) was computed, f t  is presented in the Figure 
6.16. c(q) appeared to be ruled by simple empirical exponential law:

c(q) =  cxp(aq). (6.5.3)

O ptim al f it  was found for

a =  0.3488 ±  0.0014. (6.5.4)

Figure 6.17 presents the calculations of geometrical m odifier for the network, where 
each th roa t lias equal conductance, set to 1 in units H D 2/ f i .  For small void volumes the 
geometrical m odifier for both regular and irregular networks arc equal, what supports 
the observation tha t a t high densities the topology is p rim a rily  tha t o f triangu lar lattice. 
For larger void volumes, i.e. for increasing topological disorder, drag for regular lattices

n=500 +
fit  to n=500 d a ta ...........

n=3000 X
fit  to n=3000 d a ta ---------

n=5000 *

x *
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Figure 6.15: Effect of disorder for the systems w ith  different model of throat: a) M iyagi 
model, b) parallel walls throat, c) integrated model.

\ disordered network (inetgrated throat) 1— 1— 1regular lattice---
- \ +

\  +
'  +  4.

+  +  J.

_l_____I_____I_____I_____I_____I_____I___

disordered network (parallel walls) l— <— 1 regular lattice---

V

disordered network (Miyagi) 1—  regular lattice--

-I_____I_____I_____I_____I_____I_____I___

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6. NUMERICAL STUDIES 146

4

3

O'w '
°  2

1
0 0.5 1 1.5 2 2.5 3 3.5 4

q

Figure 6.16: Function c(q) seems to follows exponential law given by (6.5.3).

is s ligh tly  smaller. The change however is not significant comparing to im pact of changes 
in  the values o f conductances.

We have a chance to verify uniform  gradient hypothesis. We focus on the Miyagi 
model. For the system from the previous section geometrical modifier was calculated as 
i f  the endings of resistors (Voronoi vertices) were placed in the field w ith  constant pressure 
gradient. The same was done for “3-stars” , please refer to Figure 5.1 and comments in 
the beginning of Chapter 5. Add itiona lly  the to ta l resistance of network was computed 
as i f  the network o f resistors had hexagonal topology w ith  values of all resistors equal 
to average resistance o f the throats in the system. The results are p lotted in the Figure 
6.18.

None o f the quantities servo as good approximation to to ta l conductance o f the lattice, 
also in the case of other models of throat. The uniform  gradient hypothesis needs to be 
refuted, at least when we insist on using small clusters. Surprisingly both of the uniform 
gradient approximations lead to sim ilar results and recover the geometrical modifier for 
undisturbed triangular lattice. I t  seems to be one more piece o f evidence that; locally the 
la ttice is hexagonal and that non-locality plays im portan t role in the problem.

6 .5 .2  C oi'relations

To understand, at least qualitative ly, the results presented in the previous subsection, 
we must investigate the correlations emerging in our models w ith  the introduction of 
disorder.

We could be tempted to explain the change in the drag using some kind o f form factor, 
saying that; conductance o f disordered lattice is basically tha t o f the hexagonal (shape of 
the function does not change after all), but the internal topology somehow changes. This
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Figure 6.17: Geometrical modifier for the networks where each existing link  has constant 
conductivity.

statement cannot grasp the actual phenomena in the system. Let us have a look on the 
flow fields presented in the Figures 6.19, 6.20 &  6.21. Lines thickness in the Figures is 
proportional to volumetric flow through the throats. Void volumes for all examples was 
e =  0.4, the computational domain was approximately square and “wrapped” edges were 
removed. Macroscopic flows point upward and all pictures pertain to the same cylinders’ 
configuration, presented in  the Figure 6.9. I f  the conductances o f all links are equal, 
the flow in the network is natura lly  uniform  and resembles strongly the flow in regular 
la ttice (as shown in the previous section): flow field is homogeneous and very often links 
perpendicular to macroscopic flow are dead (Figure 6.19). B u t once the throats are given 
natural weights (i.e. smaller openings have smaller conductances) the picture changes 
dramatically. We can clearly see the emergence of well defined mesoscopic patterns of 
flow. Most of the system does not conduct and I call this regions clusters. When the 
conductance function becomes steeper, the patterns become more d istinct, but generally 
do not change (6.21). The phenomenon may be easily understood qualitatively. The 
system is uniform, but for the stronger dependence o f conductances on openings local 
inhomogeneities can more effectively block the whole clusters o f network, which then 
become unaccessible for flow and hence lead to jum p in the conductivity.

I t  seems that the blockades are localized not on the boundaries of the clusters, but 
rather in  their centers and corresponds to throats w ith  much larger than average pressure 
drop, Figure 6.22. These drops in tu rn  are clearly correlated w ith  tigh t throats. The

■ fD(e)/(3“  e2)

void volume, e 1 1 1 » ‘ 1 — »
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void volume

Figure 6.18: Possible observables in case of M iyagi model o f throat, a) pertains to 
exact calculations, b) and e) u tilize mean gradient hypothesis (for single resistor and for 
3-stars), d) was calculated as if  the la ttice were triangu lar (all throats identical) w ith  
the value o f conductance go equal to average throat conductance in the system, e) is 
theoretical prediction for regular triangular lattice. E rro r bars are smaller then the size 
o f the data points.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6. NUMERICAL STUDIES 149

Figure 6.19: Flow in the disordered topology: all throats have the same conductance.
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Figure 6.20: Flow in the disordered topology for the throat model g ~  (-^ — l ) .  The 
dashed lines denote links tha t carry current smaller than 1 % of maximal current found 
in the system.
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Figure 6.21: Flow in the disordered topology for the th roa t model g ~  (7 5  — 1)3. The 
dashed lines denote links tha t carry current smaller than 1 % of maximal current found 
in the system.
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Figure 6.22: Pressure drop on the throats. The setup is identical to tha t presented in 
the Figure 6.21.
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complexity o f the picture is amplified by the fact tha t the clusters have in  fact internal, 
hierarchical structure. The flow field may posses fractal-like structure, flow resembles a 
b it river deltas.

We can now understand the failure o f mean field (uniform  gradient) hypothesis: the 
system is strongly correlated. The key to analytical description is not only understanding 
properties o f local configuration but tracing the mentioned mesoscopic structures. We 
see tha t the solution should concentrate 011 percolations in  the system.

To estimate the size of inhomogeneities we investigate the d is tribu tion  o f powers 
dissipated in the diagram, Figure 6.23. The “hot throats”  (those producing the most of 
the power) do not form agglomerates but are rather dispersed and i t  seems tha t their 
separation should be good estimate o f the sizes of clusters. As the th roa t function become 
steeper, positions o f hot throats do not change, but as in the case o f currents the ir pattern 
become clearer (the hottest throats become even hotter and the cold and warm cool down) 
and the ir m utual distances should increase. By the “distance" we understand the distance 
from the given hot th roat to the nearest hot neighbor. The throat is regarded as “hot” if  
the power dissipated 011 i t  is larger than

where Pmt« and Pmax are respectively the smallest and the largest powers dissipated 011 

any of the resistors and r  £ [0,1] is a certain threshold. Indeed, when the conductance 
function become steep we can see that average distance between the nearest neighbors 
approach an asymptotic value, which could serve as an estimate o f correlation length in 
the system. The calculations were presented in the Figure 6.24. These kind o f computa­
tions demands a lo t o f computational time i f  we want to keep the errors reasonable: the 
number of hot throats is rather small fraction of to ta l links and we need to sample much 
more configurations than in the case o f fp .

6 .5 .3  E m ergence o f  large d ev ia tions

I 11 th is section we study the d istributions of flow parameters assigned to  single throats, 
namely powers dissipated and Hows. To allow comparison o f d is tribu tions for different 
models we consider normalized quantities.

Normalized power is defined as

where H  is the height of the cylinders, D  the ir diameter, //, viscosity of flu id , G macro­
scopic pressure gradient in the system, P, the power dissipated in the given th roa t and 
A' stands for the number o f throats per un it area of the system:

P t n i n  +  T ( P max - P w i n )  i (6.5.5)

p., =  —L— — P,. 
K D 2H  G 2 L

(6.5.6)

A' =  3A. (6.5.7)
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Figure G.23: D is tribu tion  of powers produced in the throats. The setup is identical to 
tha t presented in the Figure 6.21.
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Figure 6.24: Average distance between nearest hot neighbors as a, function o f exponent 
q, as defined for function (6.5.2). Length scales in the system are: D  — 1 and l / ' / X  «  
1.05924, where A is number o f cylinders per un it area, e =  0.3. Number o f cylinders was 
around 3000 and the computational domain was approximately square. Threshold r  was 
set to 0.75. The saturation o f the distance can be clearly visible. The asymptotic value 
appears to be around 16.
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Easy calculation show tha t

M c )  =  62( a ) _1. (6.5.8)

Normalized current reads sim ilarly

T =  J L J L t
h D 2 H G  k

(6.5.9)

where

(6.5.10)

is the average number of links per un it area crossing given cross section plane perpendic­
u lar to macroscopic flow. H  denotes volumetric flow in the throa t k. We have

Let us firs t take a look on the probability  density o f currents presented in the Figure

lattice the correspond to  the throat perpendicular to the direction o f the flow (peak 
around zero) and to throats w ith  current. We see tha t i f  we disorder topology leaving the 
conductances o f the throats unchanged, positions o f peaks do not change, but they are 
somewhat broaden. When the throats become weighted the pictures changes completely.

note tha t for the steeper the conductance function becomes the more its ta il approaches 
the exponential d is tribu tion .

We could expect tha t the “ rivers” clearly present in the system should form  peak 
for large values o f current. This is however not the case. Large currents in the system 
are rare events and most o f the system is dead. S im ilar emergence o f current rivers for 
exponentially weighted square la ttice o f resistors was recently reported in  [97]. According 
to authors o f th is paper large currents are associated w ith  so called “optim al paths” , ie. 
sequences o f links tha t m inim ize the to ta l resistiv ity between source and sink.

Densities of normalized powers can be described in  s im ila r terms, however the tails 
of the d istributions are not as fat as in the case o f currents. They were presented in  the 
Figure 6.26. Underlying networks are random and weighted.

(6.5.11)

6.25ab. For the unweighted networks (a) two clear peaks can be pointed. For the regular

The densities become strongly peaked around zero and feature long fa t tails. We can
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Figure 6.25: D is tribu tion  o f normalized currents. Panel a) pertains to unweighted net­
works constructed w ith  M iyagi model. Panel b) presents the d istributions for the weighted 
networks, e =  0.3, compuational domain was approxim ately a square. The number of 
cylinders used was 3000. Please refer to the discussion in the text.
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Figure 6.26: D is tribu tion  o f normalized powers for the examples discussed.
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Chapter 7

Summary

7.1 R etrospection

The oil refineries processing heavy bitum inous hydrocarbons u tilize  fluidized beds, i.e. 
columns filled w ith  fluidized coke suspended in the stream of steam. The coke p a rti­
cles serve both as a source o f heat and as a surface for the process o f thermocracking. 
Numerical simulations o f multiphase flows in such systems are an essential tool for de­
signing modern chemical reactors. The standard method used is to  treat both phases as 
continuous interpenetrating media and to  solve the pair o f Navier-Stokes equations for 
them. An indispensable closure relation for this problem is the term  which couples the 
two equations, interphase drag.

The drag is defined as a force acting between the phases per un it volume of the system. 
The natural way to calculate this quantity  analytica lly is to abandon the continuous 
approximation and investigate the flow o f flu id between particles. Since we do not need 
to track the h istory o f each grain, usually the momentum transfer is constructed as a 
statistica l quantity; in th is work we utilized the method o f spatial averages. This requires 
the in troduction  o f an additional length scale, defining the size o f the region over which 
the forces are averaged. The most general and straightforward method for dealing w ith  
our problem is to solve simultaneously the equations o f m otion lo r each particle (they 
possess both translational and rotational degrees of freedom) and for the flu id  surrounding 
them (Navier-Stokes equation), fu lfilling  the proper boundary conditions on the surface 
of particles. The force and momentum acting on the grains are calculated by integration 
o f flu id  stress tensor over the ir area. We do not have tools to solve th is problem exactly 
at the present time.

The only existing exact analytic solutions are constrained to void volumes (void vol­
ume e is a fraction o f the system not occupied by the solids) close to 1, where only pairwise 
hydrodynamical interaction can be taken into account. Furthermore, i t  is often assumed 
tha t the system is quasi steady, i.e. tha t for each configurations o f grains we need to solve 
steady state Navier-Stokes equation w ith  non-slip boundary conditions on the particles’ 
surface. Another standard assumption adopted is tha t the relative Reynolds number 
for particle and flu id phase is small and therefore the inertia l terms may be discarded.
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Fina lly  we have to assume tha t the microdynainics o f grains is not affected by the flow 
field, i.e. the probab ility  tha t the given configuration of particles occurs is solely a func­
tion o f the m utual interaction between solids. This may be regarded as in fin ite  solids 
density assumption. The drag may be then computed as an average over an ensemble of 
particles’ configurations.

Let us briefly discuss these assumptions. We must surely abandon the firs t one: the 
drag strongly increases when the void volume decrease and becomes im portant exactly 
where particles are close to each other and many-body interaction cannot be discarded. 
The other assumptions are surprisingly good. Reactor is in general a tu rbu lent system, 
but the turbulence occurs on the scales which are very large compared to interparticle 
distance; relative motion o f the phases in the most interesting regime o f large concen­
tra tion  is rather smooth. Nonetheless the last assumption tha t the granular dynamics 
is flow-independent is at least questionable. I t  may serve as a good starting  point, but 
u ltim ate ly  we must also investigate the impact of the flow on the phase space of grains. 
Surprisingly, there exists an evidence [70], tha t the rotational movement o f particles may 
be more important, in th is case than translational; ro ta tion  is usually a good way to 
release the hydrodynamics] stresses in the flu id-partic le system.

There exists a method o f dealing w ith  creeping flows in the constrained geometries, 
used for the first time in  the studies o f flow through porous media [13j. I t  is based on 
the observation tha t in such systems flow occurs in the well defined paths defined by 
contractions between particles (in  throats). For small Reynolds numbers such throats 
behave like Ohmic resistors, the pressure drop along them is proportional to the mass 
flow. From this po in t of view the interface drag may be computed as the net resistivity 
o f a random resistor network. The model has two im portant advantages. F irs t of all it  
appeared to be useful; i t  allowed to predict the perm eability o f porous medium spanning 
5 orders o f magnitude and agreeing perfectly w ith  experimental data. Second, the electric 
analogy seems to be much more tractable than the direct attack on the Navier-Stokes 
equation. F ina lly  we can obtain some analytical insight in to  the low c regime. The 
drawbacks are obvious. The method is purely heuristic, we cannot control the quality of 
our approximation and it  hardly gives us any chance to release the in fin ite  solids density 
assumption.

The electric method requires three key elements. First, of all we need a solid formal­
ism to deal w ith  a linear electric network, which this work provides. Second we must 
elaborate the accurate model o f the throat, based on the properties o f local configurations 
o f particles. Finally, having calculated the conductance o f every throat, we must find the 
net conductance o f the whole network.

We build model o f the throat by investigation o f flows in regular network of resistors. 
There exists an exact periodic solution of Navier-Stokes equation based on Fourier tech­
niques and constructed as (singular) perturbation series in powers o f 1 — c. We match 
i t  w ith  the electric solution suitable for small e and in th is way get the throat conduc­
tance function. Regular la ttice  has a very pleasant property, namely we can deduce the 
macroscopic properties o f the medium jus t by investigating the local configurations of 
particles. This observation was called the uniform  gradient hypothesis. We suspected 
tha t the same law m ight be applied to disordered systems. Briefly, uniform  gradient
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hypothesis is a mean filed theory which assumes tha t the throats are independent and 
the pressure drop on their ends may be calculated as i f  they lied in the pressure field 
w ith  a constant gradient. The refinement of this method m ight include consideration of 
larger groups o f connected resistors.

Every reasonable analysis o f the electric model must be based 011 the statistical stud­
ies o f local structures formed by the particles. The identification o f nearest neighbors 
is performed by means o f Voronoi diagrams. To obta in the solution, at least under in­
dependent resistor assumption, we need jo in t p robab ility  density for Voronoi edge and 
corresponding interparticle distance (Delaunay edge). A na ly tic  solution of this problem 
was obtained, but in general calculations are possible only for Poisson point field (i.e. 
for the case o f non-interacting points). Also build ing the relevant d is tribu tions for larger 
structures (clusters) is hopeless.

We undertook series o f numerical simulations of the lattices emerging in our problem, 
p rim arily  to understand the role of correlations in the system and to verify the uniform  
gradient assumption. As the source o f configurations the gas o f hard discs was taken. 
We were working w ith  the constant density ensemble. The configurations were sampled 
using self adjusting Monte Carlo generator. Voronoi diagrams were b u ilt u tiliz ing  slightly 
modified V0R0N0I2 lib ra ry  w ritten  in FORTRAN77 and ported to Component Pascal, 
which was chosen as the prim ary programming language for th is project. F inding the net 
conductance o f the network requires basically the solution o f a set o f linear equations. 
The exact methods to achieve tha t appeared to be extremely expensive as far as the 
computational time is concerned, so an iterative method was developed, together w ith  
the proof o f its  convergence. The engine for the project was carefully tested.

Numerical studies demonstrated that even the severely sim plified electric model posses 
number o f interesting properties. I t  appeared tha t the drag is well defined thermody­
namical observable. Standard deviation of its mean vanishes in the thermodynamical 
lim it o f in fin ite  grains number, obeying 1 / %/ri. power law. I t  was generally found tha t the 
drag for the lattice is generally smaller than for disordered network. Studies showed also 
th a t mean gradient hypothesis had to be refuted, the system appeared to be strongly 
correlated.

The disordered network arising when assemblages of hard discs are concerned resem­
bles topologically hexagonal lattice. When the throats are given equal conductances the 
topological disorder leaves the interphase drag almost unaltered. The factors responsible 
for the increase o f drag are natural weight attached to the throats (smaller openings have 
higher resistiv ity). This leads to form ation of clusters (regions devoid o f flow) and rivers, 
carrying most of the current. Disordered networks are strongly non local as opposed to 
flow in regular lattices, where the flow patterns are repeated w ith  the period ic ity o f the 
lattice, necessarily much smaller tha t averaging region. We pointed the way to estimate 
the correlations length scale, but at this stage we cannot explain quantita tive ly  its value.

The difference between weighted and unweighted nets can be also visible in the d is tri­
butions of current flowing through particu lar throats and powers dissipated. Unweighted 
networks feature distinct peaks in their d is tribu tion  o f currents (and powers), while the 
d istributions for weighted networks are gathered around zero and have very long fat 
tails, which in case o f current distributions are clearly exponential. I t  is interesting to
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note tha t the rivers, so apparent when inspecting the flow field, cannot be seen in these 
d istributions. Significant currents are merely large deviations in weighted systems.

The emergence o f large currents has significant im plications. We started w ith  a 
picture o f two continuous fluids tha t move smoothly though each other -  the already 
discussed scale separation is the necessary assumption i f  we want to  simulate reactors by 
means o f partia l differential equations, which necessarily deal w ith  the quantities tha t are 
defined s tr ic tly  locally. We end up w ith  the correlation scale tha t is o f order of 10 particle 
diameters. Usual coke particles used in Syncrude cokers are around 0.1mm, which means 
tha t our correlation are o f order o f m illimeters, ie. macroscopic. I t  signifies in tu rn  that 
our procedures o f spatial averaging should be carefully reexamined. I t  seems tha t the 
assumption of scales separation (“granular details wash ou t” ) may be not appropriate in 
the real life problems.

Every source I used is acknowledged, nevertheless i t  is desirable to state exp lic itly  
which part of the work is my original contribution. The lite ra tu re  review from Chapter 
2 was prepared by me. Also the translation of interphase drag in to  language of resistors 
networks is original (Chapter 3) together w ith  the presented models o f throats (Section 
4.1). The m a trix  form ulation of linear resistors network given in Section 3.4 is mine. I 
Chapter 4 I extended the work o f Hasimoto, used i t  to gauge M iyagi model o f th roat 
and calculated the flow in  the presence o f phonon disorder. In Chapter 5 I repeated 
calculations of Collins (they were not given exp lic itly ) for the p robab ility  density for 
Delone edge o f Poisson point field and extended the method to give integral representation 
for jo in t p robab ility  for Delone and Voronoi edges for the case mentioned. The whole 
material from Chapter 6 is original (as well as the code in CP w ith  exception of Voronoi2 
library).

7.2 V ision

We can th ink  o f the future o f this pro ject in two categories. F irs t we could refine the 
network model and second take completely different approach to analytical calculations 
o f drag.

Network model has to  take into account movement o f particles driven by the flow. 
The easiest scheme could be the following. We solve NS equation (by means o f electric 
method) for given configuration of particles and then calculate the forces and momenta 
acting on them. In the next step the particles are moved and the scheme continues. 
In this approach we would need to m odify our th roa t model to take in to  account the 
movement o f the contractions’ walls.

Also i t  seem tha t emergence o f rivers makes the problem closer to  percolation the­
ory, which gives us another chance of an analytical study. Percolation theory is a well 
developed discipline, but existing solution have been found almost only for regular, un­
weighted graphs, w ithou t correlations between bonds |48]. O ur graphs hardly follow this 
assumptions.

We should move toward 3D systems. A lthough most o f ready-to-use algorithms for 
computing Voronoi diagram are concerned w ith  2D sets o f generators, there are in general
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no obstacles to repeat our simulations in 3D.
On the other hand it  becomes possible to simulate the flow in  porous media by direct 

numerical solution o f Navier-Stokes equation. I t  seems also tha t we are approaching 
slowly the moment when taking in to  account not only the dynamics o f flu id  but also that 
o f the grains w ill be feasible. W ith  the growing power o f computers the problem can be 
solved by brute force.

Nevertheless we should remember that i t  is analytical solution o f the problem tha t 
we are really aim ing for. I t  is unclear at the present moment i f  the theory o f stochastic 
differential equations (taking into account non regularity o f boundary conditions), w ill 
be any help, but clearly the key to understanding o f the drag is hidden in statistical 
physics.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



164

Bibliography

|1| http://planetm ath.org/encyclopedia/GerschgorinDisc.htm l.

[2] Scalable Vector Graphics (SVG) 1.1 Specification, h ttp ://w w w .w 3 .o rg , 2003. NET.

[3] A l b e r t ,  R ., a n d  B a r a b a s i,  A . L . S ta tis tica l mechanics o f com plex networks. 
Rev. Mod. Phys. 74, 47 (2002). arX iv:cond-m at/0106096.

[4] ANDERSON, T . B ., a n d  J a c k s o n , R . A  flu id mechanical description o f fluidized 
beds. Ind. Eng. Chem. Fund. 6, 4 (1967), 527-539. SCI/TECH TP 1 II.

[5] B A T C H E LO R , G. I \ .  An introduction to flu id  dynamics. Cambrigde University Press, 
New York, 1967. SCI/TECH QA 911 B32 1967.

[6] B a t c h e l o r , G. K . Sedimentation in a d ilu te  dispersion o f spheres. ,/. Fluid. Meek. 
52 (1972), 245-268. SCI/TECH QA 901 J86.

[7] B e l l is s a r d , J ., C o m b e , P., E s s o h , C., a n d  S ir u g u e - C o l l in , M . Therm ody­
namic lim its  for Euclidean random resistors network, h i Stochastic Processes, Physics 
and Geometry I I  (1995), S. Albcverio, Ed., vol. II, W orld Scientific, pp. 107-116. 
ILL.

|8] B o r n , M ., a n d  H u a n g , K. Dynamical, theory o f crystal lattices. The In- 
terantional Series o f Monographs on Physics. Claredon Press, Oxford, 1956. 
SCI/TECH QD 931 B73 1956.

[9] B o r n , M ., a n d  M is r a , R. D . Proc. Camb. P liil. Soc. 36 (1940), 466. 
UABARD P 11 C17.

(10) BRYANT, S., AND B l u n t , M . Prediction o f relative perm eability  in simple porous 
media. Phys. Rev. A 46 (August 1992), 2004-2011. UAINTERNET.

(11 j B R Y A N T , S., AN D  C ade , C. Permeability prediction from geological models. 
In Proceedings o f the 3rd European Conference on the Mathematics o f O il Re­
covery (Delft, 1992), M. A. C. et al., Ed., Delft University Press, pp. 209-224. 
ARC TN 871 E88 3rd 1992.

(12) B r y a n t , S. L . Private communication, September 2004.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://planetmath.org/encyclopedia/GerschgorinDisc.html
http://www.w3.org


BIBLIOGRAPHY 165

|13] B r y a n t , S. L ., K in g , P. R., a n d  M e l l o r , D. W . Network model evaluation of 
perm eability and spatial correlation in a real random sphere packing. Transport in  
Porous Media 11 (1993), 53-70. SCI/TECH TA 357 T77.

114] B u r g e r s , J. M . 2nd Report on Viscosity and Plasticity. Koninklyke Nederlandsc 
Akademie van Wetenschappen, Amsterdam, 1938.

[15] B u r g e r s , J. M . On the influence o f concentration o f a suspension upon the sedi­
mentation velocity. Proc. Kon. Ned. Akad. Wet.en.sch. 44 &  4$ (1942), 1045—, 1177- 
(in  vol. 44), 9-, 126- (in  vol. 45). ILL.

[16] C a f l is c m , R. E ., AND L u k e , H. C. Variance iri the sedimentation speed of a 
suspension. Phys. Fluids 28, 3 (March 1985), 759-760. PHYSCI QC 145 P57.

[17] C h a n d r a , A . K ., R a g h a v a n , P., Ruzzo, W . L ., Sm o l e n s k y , R., a n d  T iw a r i, 
P. The electrical resistance of a graph captures its commute and cover times. In 
Proceedings o f 21st. Annual Symposium on Theory o f Computation  (Seattle. 1989), 
pp. 574-586. NET/PRIV.

[18] COLLINS, R. A geometrical sum rule for two-dimensional flu id  correlation functions. 
,/. Phys. C 1 (1968), 1461-1471. UABARD QC 1 P57 C.

[19] C r o w e , C. T . ,  So m m e r f e l d , M ., a n d  T s u .i i , Y . Multiphase flows with dropletis 
and. particles. CRC Press, Boca Raton, 1998. PRIV.

[20] DALLA VALLE, J. M . Microm eritics, the technology o f fine  particles. P itman, 
London, 1948. SCI/TECH TA 407 D14 1948.

[21] D a r c y , H. Fontaines publiques de la ville dc D ijon. V ic to r Dalmont, Paris, 1856.

[22] D l FELICE, R. The voidage function for flu id-partic le  systems. In t. J. M ult. Flow  
20, 1 (1993), 153-159. SCI/TECH QA 922 162.

[23] D o n e v , A ., C is s e , L, Sa c h s , D., V a r ia n o , E. A ., C o n n e l l y , F. H. S. R., 
T o r q u a t o , S., a n d  C h a ik in , P. M . Im proving the density o f jammed disordered 
packings using ellipsoids. Science 303 (2004), 990-993. UAINTERNET.

[24] D o r o g o v t s e v , S. N ., AND M e n d e s , J. F. F. The shortest path to complex 
networks. arXiv:cond-mat/0404593, to be published, 2004.

[25] DOYLE, P. G ., AND Sn e l l , J. L. Random Walks and Electric Networks, vol. 22 of 
The Cams Mathematical Monographs. The Mathem atical Association o f America, 
1984. MATH QA 274.73 D75 1984.

[26] E in s t e in , A. Eine none Bestimmung der Molekiildiinensionen. Ann. Phys. 19 
(1906), 289-. UABARD QC 1 A61 4.F.

[27] E r c u n , S. F lu id  flow through packed columns. Chern. Eng. Prog. 48 (1952), 89. 
SCI/TECH TP 1 C515.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



BIBLIOGRAPHY 166

[28] E w a ld , P. P. Ann. Phys. 54 (1917), 519- UABARD QC 1 A61.

[29] F a t t ,  I. The  ne tw ork model o f porous media (in  three parts). Pet.. Tmns. A IM E  
207 (1956), 144-181. ILL.

[30] F e y n m a n , R. P., L e ig h t o n , R. B., a n d  Sa n d s , M . Feynmana wyk.lad.yz fizyki, 
second ed., vol. II. Pahstwowe Wydawnictwo Naukowe, Warszawa, 1974. PRIV.

[31 j FlNNEY, J. Random, packings and the stnLcturc o f the liquid state. PhD thesis, 
University o f London, 1968. ILL.

[32[ F in n e y , J. Random  packings and the s truc tu re  o f sim ple liqu ids. I. the geom etry 
o f random  close packing. Proc. Roy. Soc. 319A (1970), 479-494. N E T  JSTO R.

[33] F ixm an , C. W ., AND F ixm an , M. Frictional coefficient of polymer molecules in 
solution. ,7. Chem. Phys. 4L  4 (August 1964), 937-944. UABARD Q D  1 J86 v.41: 
no.1-4 1964.

[34] F r is c h , U., H a s s la c iie r , B., an d  Pom eau, Y. Lattice-gas automata for the 
Navier-Stokes equation. Phys. Rev. Lett. 56 (1986), 1505- 1508. PHYSCI QC 1 P43.

[35] G a rs id e , J., a n d  A l  D ib o u n i, M . R. The voidage function for fluid-part.icle 
systems. Int.. J. Mult. Flow 20, 1 (1977), 153-159. S C I/T E C H  QA 922 162.

[36] G e rs c h g o r in , S. Uber die Abgrenzung der Eigemverte einer M atrix . Izv. Akad. 
Nauk. USSR Otd. Fiz.-Mat. Nauk 7 (1931), 749-754. ILL.

[37[ G e rv o is , A ., T r o a d e c , J. P., a n d  L e m a it re , J. Universal properties of 
Voronoi tesselations o f hard discs. J. Phys. Math. Gen. 25 (1992), 6169-6177. 
PHYSCI QC 1 J861.

[38] G id asp o w , D. Multiphase Flow and fl.uidizat.ion. Academic Press, San Diego, 1994. 
ILL.

[39| GUERRA, F ., AND TALEVI, M . On the therm odynam ic lim it  in  random  resistors 
networks. ,7. Phys. A-Muth. Gen. 29 (1996), 7287-7299. U A IN T E R N E T .

[40] GuiBAS, L ., AND S t o l f i ,  .1. Prim itives for the manipulation o f general subdivisions 
and the computation of Voronoi diagrams. A C M  Transactions on Graphics 4 , 2 
(A p ril 1985), 74-123. PRIV.

[41] H a le s , T . C. The sphere packing problem. ,7. Comput. Appl. M ath 44 (1992), 
41-76. M A TH  QA 1 J856.

[42| H ansen , J. P., a n d  M a c D o n a ld , I. R . Theory o f simple liquids. Academic Press, 
San Francisco, 1976. S C I/T E C H  QC 175.3 H24 1976.

[43] H a p p e l,  J. Viscous How in m ultipartic le  systems: slow motion o f fluids relative to 
beds o f spherical particles. AIC hE  Journal 4, 2 (1958), 197-201. S C I/T E C H  T P  1 
A l l .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



BIBLIOGRAPHY 167

[44] H a p p e l, J., AND B r e n n e r ,  H. Low Reynolds number hydrodynamics with special 
applications to particulate media. Noordhoff International Publishing, Leyden, 1973. 
SCI/TECH QC 151 H25 1973.

[45] H a s im o t o , H. O n the period ic fundam enta l so lu tions and th e ir app lica tion
to  viscous flow past a cubic array o f spheres. J. F lu id  Mech. 5 (1959), 317.
SCI/TECH QA 901 J86.

[46] H j e l m f e l t , A . T . ,  AND M o c k r o s , L . F. M o tio n  o f discrete partic les in  a tu rb u ­
lent flu id . Appl. Sc.i. Res. 16 (1966), 149-. BARD QC 1 A66.

[47] H u a n g , K. Statistical Mechanics. John W iley &  Sons, Inc., New York, 1963. 
PHYSCI QC 175 H87 1963.

[48] H u g h e s , B . D . Random Walks and Random Environments, vol. 1: Ran­
dom Walks, 2: Random Environments. Clarendon Press, Oxford, 1995.
MATH QA 274.73 H84 1995 v .l.

[49] Ism 11, M . Therm o-fluid dynamic, theory o f two phase flow. D irection des Etudes et 
Recherches de E lectric ite de France, Eyrolles, Paris, 1975.

[50] JACKSON, R. Flui.dizat.ion, second ed. Academic Press, Toronto, 
1985, ch. Hydrodynamic s tab ility  o f flu id -partic lc  systems, pp. 47-72. 
SCI/TECH TP 156 F65 D25 1985.

[511 J a c k s o n , R. Locally averaged equations o f m otion for a m ix tu re  of indentical 
spherical particles and a Newtonian fluid. Chern. Eng. Sci. 52 (1997), 2457-. 
PHYSCI TP 1 C516.

[52] JACKSON, R. Erratum . Chan. Eng. Sci.. 53 (1998), 1955-. PHYSCI TP 1 C516.

[53] Ja g e r , H. M ., AND N a g e l , S. R. Physics of granular states. Science 255 (1992), 
1524-. PHYSCI Q 1 S41.

[54] J o n e s , R. A . L. Soft Condensed. Matter, firs t ed. Oxford University Press, Inc., 
New York, 2002. PRIV.

[55] K a d a n o f e , L. P. Private communication, September 2004.

[56] K e m e n y , J. G., AND Sn e l l , J. L. F in ite  Markov Chains. D. van Nostrancl 
Company, Inc., Princeton, New Jersey, 1960. MATH QA 273 K31.

[57] K h a n , A. R.., a n d  R ic h a r d s o n , J. F. The resistance to m otion o f a solid sphere 
in a fluid. Chem. Eng. Commun. 62 (1987), 135-150. SCI/TECH TP 155 C57.

[58] K ir k w o o d , J. G. J. Chem. Phys. 3 (1935), 300-. UABARD QD 1 J86 v.3 1935.

[59] K u w a b a r a , S. The forces experienced by a la ttice o f equal fla t plates in the uniform  
flow at small Reynolds numbers. ,/. Phys. Soc. Jpn. 13, 12 (December 1958), 1516— 
1523. UABARD QC 1 P578.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



BIBLIOGRAPHY 168

[60] Lam b, H. Hydrodynamics. Cambridge University Press, Cambridge, 1932. PHYSCI 
QA 911 L22 1932.

[61] LANDAU, L. D ., AND L ifs h it z ,  E. M . Flu id  mechanics. Pergamon Press, London, 
1959. S C I/T E C H  QA 901 L25 1959.

[62] M a k , C. H. Large-scale simulations of the two-dimensional m elting  o f hard disks. 
2005.

[63] M a r a d u d in , A. A ., M o n t r o l ,  E. W ., a n d  W e is s , G. H. Theory o f la t­
tice dynamics in  the harmonic approximation, vol. 3 o f Solid State Physics, Ad­
vances in  Research and Applications. Academic Press, New York and London, 1963. 
PHYSCI QC 176 S68 suppl. no. 3 1953.

[64] M a te r n ,  B . S patia l va ria tion . Meddelanden fran  Statens Skogsforskningsintdtut 43, 
5 (1960), 1-144. ILL.

[65] M e i je r in g ,  J. L . Interface area, edge length  and num ber o f vertices in  crys­
ta l aggregates w ith  random  nucleation. Philips Res. Rep. 8 (1953), 270-290. 
S C I/T E C H  Q 1 P55 v.8 1953.

[66] M iy a g i, T . Viscous flow at low Reynolds numbers past an in fin ite  row o f equal c ir­
cular cylinders. ./. Phys. Soc. Jpn. 13, 5 (M ay 1958), 493-496. U A B A R D  QC 1 P578.

[67] N ad im , A ., AND S to n e ,  H. A. The m o tio n  o f sm all pa rtic les  and drop le ts  in  
q ua d ra tic  flows. Stud. Appl. Mech. 85 (1991), 53-73. ILL.

[68] OGAWA, T ., a n d  T a n e m u ra , M . Geometrical consideratations on hard core 
problems. Progress o f Theoretical Physics 51. 2 (February 1974), 399-417. 
PHYSCI QC 1 P96.

[69] O k a b e , A ., Boo'I'S, B., AND S u g im ara , K . Spatial Tessellations, Concepts and 
Applications o f Voronoi Diagrams. W iley Series in P robab ility  and Mathematical 
Statistics. .John W iley &  Sons, Toronto, 1992. S C I/T E C H  Q A  278.2 0 4 1 2  1992.

[70] P a n c h e n k o , A . Private communication, March 2005.

[71] P o e s c h e l, T ., AND B r iu l ia n to v ,  N., Eds. G ranular Gas Dynamics, vol. 624 of 
Lecture notes in  physics. Springer Verlag, Berlin, 2003. S C I/T E C H  QC 168 G68 2003.

[72] P res s , W . H . Numerical recipes in  Pascal: the a rt o f scientific computing. Cam­
bridge University Press, New York, 1989. S C I/T E C H  Q A  76.73  P2 N972 1989.

[73] PROUDMAN, I., AND PEARSON, J. R. A . Expansion at small Reynolds numbers 
for the flow past a sphere and a circular cylinder. J. F lu id . Mech. 2 (1957), 237-262. 
S C I/T E C H  QA 901 J86.

|74] R ic h a rd s o n ,  J. F ., AND ZAKI, W . N . S ed im enta tion  and flu id isa tio n : P a rt f. 
Trans. Inst.. Chem. Eng. 32 (1954), 35-53. S C I/T E C H  T P  1 C493.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



BIBLIOGRAPHY 169

[75] R o w e , P. N. Drag forces in a hydraulic model o f a fhiidised bed -  Part II. Trans. 
Inst. Chem, Eng. 39 (1961), 175-180. SCI/TECH TP 1 C493.

[76] R o w e , P. N. A  convenient empirical equation for estim ation o f the Richardson-Zaki 
exponent. Chem Engng Sci, 42 (1987), 2795-2796. SCI/TECH TP 1 C516.

[77] Sa n c iie z -P a l e n c ia , E. Non-Homogeneous Media and V ibratian Theory, vol. 127 
o f Lecture Notes in  Physics. Springer-Verlag, Berlin, Heidelberg, New York, 1980. 
UABARD QC 20.7 P47 S19 1980.

[78] SCTIEIDEGGER, A . E. The physics o f flow  through porous media, 3rd ed. University 
of Toronto Press, Toronto, 1974. SCI/TECH QC 151 S31 1974.

[79] Sc h il l e r , L., a n d  N a u m a n n , A . Z. Ver Dent, Ing. 77 (1933), 318-.

[80] SLIGHTER, C. S. Theoretical investigation of the m otion o f ground waters. U.S. 
Geological Survey, 19th Ann. Rep. (1899), 301-384. SCI/TECH QE 75 B93.

[81] Sm o l u c h o w s k i, M . On the practical app licab ility  o f Stokes’ law. Proc. 5th Intern, 
Cong. Math, 2 (1912), 192- ILL.

[82] St o k e s , G. G. Mathematical and physical papers. University Press, Cambridge, 
1901.

[83] St o y a n , D ., K e n d a l l , W . S., AND M e c k e , J. Stochastic geometry and its 
applications. W iley Series in P robability  and M athem atical Statistics. John W iley 
&  Sons, Toronto, 1987. MATH QA 273.5 S893 E5 1987.

|84| STOYAN, D ., a n d  St o y a n , H. Fractals, random shapes and point fields. W iley 
Series in P robab ility  and Mathematical Statistics. John W iley &  Sons, Toronto, 
1995. MATH QA 614.86 S7613 1995 c .l.

[85] SUGIHARA, K ., a n d  I r i , M . V0R0N0I2 reference manual, second ed., December 
1993. Manual is sent by authors upon request, su g ih a ra Q m is t. i  . u -to k y o  . a c . jp .

[86] Sy a m l a l , M ., a n d  O ’B r ie n , T . J. Simulation of granular layer inversion in liqu id  
fluidized beds. Int. J. Mult, Flow 1J„ 4 (1988), 473-481. SCI/TECH QA 922 162.

[87] S y a m la l,  M ., R o g d e rs ,  W ., a n d  O ’ B r ie n ,  T . J. M F IX  documentation theory 
guide. Technical Note, U.S. Department of Energy, Office o f Fossil Energy, 1993. 
N E T  http://www.netl.doe.gov/osta/gaseous/simulate/m fix/theory.pdf.

[88] T o r q u a t o ,  S., T r u s k e t t ,  T . M ., a n d  D e b e n e d e t t i ,  P. G. Is random 
close packing of spheres well defined? Phys. Lev. Lett. 84 (2000), 2064-2067. 
U A IN T E R N E T .

[89] T u r n b u l l , H. W ., a n d  A it k e n , A . C. An. introduction to the theory o f canonical 
matrices. Blackio &  Son L td ., London, 1932. MATH QA 263 T94.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.netl.doe.gov/osta/gaseous/simulate/mfix/theory.pdf


BIBLIOGRAPHY 170

[90] V a n  D y k e , M . Perturbation methods in  F lu id  Mechanics, vol. 8 o f Applied M ath­
ematics and Mechanics. Academic Press, New York and London, 19G4. SCI/TECH 
TA 350 V24 1964.

[91] V a n  W a c h e m , B. G. M ., Sc h o u t e n , J. C ., v an  d e n  B l e e k , C. M ., K r is h n a , 
R., AND SINCLAIR, J. L . Comparative analysis o f CFD models o f dense gas-solid 
systems. A IC hE  Journal Jf 7, 5 (May 2001), 1035-1051. SCI/TECH TP 1 A5118.

[92] V in c e n t , P. J., a n d  H a w o r t h , J. A  theoretical note on spatial pattern 
of discs and properties o f simplicial graph. Forest Sci. 28, 1 (1982), 181-186. 
SCI/TECH SD 1 F655 v.28 1982.

[93] W a l l is , G. B. One dimesional two-phase flow. M cG raw-H ill, New York, 1969.

[94] W e is s te in , E. W . Sphere packing. From M athW orld -  A  W olfram  Web Resource. 
http://m athw orld.wolfram .com /SpherePacking.htm l.

[95] W e n , C. Y ., a n d  Y u , Y . H. Mechanics of flu id ization. Chem. Eng. Prog. Symp. 
Ser. 62 (1966), 100. ILL.

[96] WOLFRAM, S. Com putation theory of cellular automata,. Commun. Math. Phys. 96 
(1984), 15-57. PHYSCI QC 20 C73.

[97] W u , Z., L o p e z , E., B u l d y r e v , S. V ., B r a u n s t e in , L. A ., H a v l in , S., a n d  
St a n l e y , H . E. Current flow in random resistors networks: The role o f percolation 
in weak and strong disorder, 2005.

jtaft biiflti on Ihctmcftnji 22116 June, 2005 (it 15:45 . Formatted with UAthesis package version 2.2, modified 
to handle ancient Greek and proper double page layout margins. Typeset using LMEX 2s■

“See how he lies at random, carelessly diffused.”
John Milton, Samson Agonist.es
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