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Before earth and sea and heaven were created, all things wore one aspect, to
which we give the name of Xdo¢ — a confused and shapeless mass, nothing
but dead weight, in which, however, slumbered the seeds of things. Earth,
sea and air were all mixed up together; so the earth was not solid, the sea
was not fluid, and the air was not transparent.

Thomas Bulfinch, Mythology

Chaos umpire sits,

And by decision more embroils the fray
By which he reigns: next him high
Chance governs all.

John Milton, Paradise Lost
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Abstract

Description of multiphase flows, such as mixtures of gas and solid particles, requires
knowledge of the coupling between the momenta of the granular and fluid phases - the
interphase drag. The determination of this quantity is the main topic of this thesis.

- After an extensive review of previous approaches, the Navier-Stokes equation for the
flow between particles is solved by means of an “electric network analogy”. Since the
calculations are casy in the case of a flow of irregular assemblages of particles, the main
part of the analysis is devoted to the investigation of the impact of disorder. It is found
that irregular weighted hydraulic networks feature significant correlations, in contrast to
regular networks. Additionally, the disorder causes local flows to develop large spatial

fluctuations.
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Preface

If you live in Edmonton you can easily get to the real origins of this work. Pack
your car on early Saturday morning and drive it north sticking to Highway 63; after
couple of hours you will reach Athabasca Oil Sands Deposit. Athabasca Fields contain
more oil than all known reserves in the Middle East, trapped in greasy soils just beneath
Alberta’s plains, but as distinguished from light green-gold stocks of Southern Arabia,
that you could almost directly feed your motor with, oil extracted in Fort McMurray
resembles more black tar. This unpleasant substance is called bitumen or “energetic
future of Canada”. '

The long hydrocarbons it contains are useless, unless in the process of thermocracking
they are cut into smaller chains. The catalytic reaction is performed on the surface of fine
coke particles suspended in the stream of pressurized steam in huge chemical reactors.
Mixture of bitumen and steam is injected into the reactor using sonic nozzles and in
the perfect picture every fine droplet of oil meets coke particle, which it covers. Coke
particles decrepitated in external burner serves as a source of encrgy for the cracking
to occur and the light fractions of oil produced in this process are collected at the top
of the reactor. Unfortunately the reality does not match this idealized description: oil
and coke form large conglomerates, which are to heavy to be suspended by steam. They
fall down, slowly blocking the reactor; at some point the process need to be stopped
and the chamber cleared. The right design of the reactors is the key to achicve high
productivity and small losses. Efficient reactors mean minimization of the costs of energy
and what follows maximization of profit, but also the protection of natural environment.
Unfortunately it is almost impossible to experiment with the real reactors, so instead
models need to be created. They may be laboratory miniatures of real chemical plants,
but also numerical simulations of such systems. My group concentrates on the second
task.

Computer studies of multiphase flows, which essentially occur in our reactors, are
still in the phase of development. One of the most important phenotnenon they must
grasp is that the discrete solids phase (coke particles) can exchange momentum with the
conveying fluid. Understanding of this process became the major goal of this thesis.

Part I of the work opens with the exposition of hydrodynamical formalisim and its
generalizations leading to the description of multiphase flows (Chapter 1). In this chapter
the quantity of main interest, i.e. the momentum exchange or interphase drag, is formally
defined. Next, in Chapter 2, T review the existing experimental and theoretical work
devoted to this quantity and introduce several important coneepts, especially the notion
of momentum transfer coefficient, J, which is central in the subsequent considerations.
Chapter 3 deals with the especially promising hydraulic network method for describing
flows in complicated geometries. From now on, in Part [, the thesis concentrates solely
on this approach. Chapters 4 and 5 contain analytical studies. The first one deals
with flow in periodic media, which are the starting point for modeling realistic, i.e.
disordered, systems. In the latter several concepts developed for regular arrays of particles
are translated into language of irregular sets of points, especially the “uniform gradient
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hypothesis”. To verify it a series of direct numerical simulations of hydraulic. networks
is undertaken; the simulations are presented in Chapter 6 with the attention focused on
the impact of disorder. Chapter 7, summarizing the work, points also the directions of
further research. :
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Chapter 1

Formulation of the problem

The importance of fluid mechanics need not to be emphasized. The spectrum of applica-
tion ranging from the construction of airplanes to the design of chemical reactors clearly
reveals the great practical importance of our work. Fluid mechanies has deeply rooted
in the landscape of human scientific and technical activity. Flows intrigue us nowadays
in the same way as rain and wind used to absorb our wood-dwelling forefathers, forcing
them to become cave-dwellers, and like for Archimedes fluids are still a source of reve-
lations, making excited gupnxa’s sound in numerous graduate offices around the world.
Furthermore hydrodynamics repeatedly does not fail to be an inspiration and source of
decent living. Exactly like in the times of Vikings, who built their ships to travel to
distant and prosperous lands to share their cultural experience and European sense of
humor, it allows us to travel and earn money, however a bit faster. But apart from this
carthen mission hydrodynamics appears as one of the greatest scientific achievements of
physics though, like any decent scientific quest, it still avoids our full understanding.
The first formulation of the modern hydrodynainics is associated with the turn of eigh-
teen and nineteen century and the remarkable names like Claude Louis Navier, Siméon
Poisson, George Stokes, Leonhard Euler or Joseph Louis Lagrange, to mention just the
few. Their understanding of fluid mechanics did not differ from the modern one, at least
as far as laminar flows are concerned, nevertheless the mankind had to wait another
half of the century for the explanation of the flow phenomena, especially viscosity, in
terms of the first principles. [t was statistical mechanics, which facilitated that. Forming
the cornerstone of the heat theory, works of Ludwig Boltzmann and especially his H
theorem initiate the kinetic theory of gases and hence modern hydrodynamics, where
viscosity appears as a calculable paramecter of the system and does not need to be taken
solely from the experiment. The twenticth century fuid mechanics went beyond laminar
approximation and brought up its own heroes, whose names again sound familiar to al-
most everybody: Ernst Mach, Theodore von Karman and Ludwig Prandt] (the fathers of
modern acronautics) and of course Oshorne Reynolds, again to perform unjust selection.
In this chapter I present theoretical foundations of the hydrodynamics to celebrate the
joy once more. First a brief introduction to kinetic theory is given, which is then followed
by the sketch of a derivation of Navier-Stokes equation from the Boltzmann transport

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-CHAPTER 1. FORMULATION OF THE PROBLEM 3

equation. Subsequently I investigate the possibilities of solution of the Navier-Stokes
equation and some of its general properties, discussing several important examples. Next
a theory of two phase flow is exposed for the limited case of dilute suspension of spheres
and supplemented with a heuristic generalization. In this point I amn able to formulate
the main goal of the thesis which is a calculation of the interphase drag F. The chapter
ends with a few comments on the granular gases, which used to be (and still are) of our
great interest.

1.1 Hydrodynamics as the problem of kinetic theory

The contents of this section is based primarily on the classic texthook Statistical mechan-
ics by Kerson Huang ([47]).

We are interested in a collection of N molecules in a container of volume V. Let’s set
the right length scales first. We assume that the temperature T is high enough and the
density is sufficiently low so that the each molecule may be considered as a classical par-
ticle with well defined position and momentum; particles are in general distinguishable.
This requires the average de Broglie wavelength to be smaller then average interparticle
separation

, .
\/277,1—:@_7‘(]?\/,‘)1 <1,

where kg ~ 1.38 x 1078 JK~1 is a Boltzmann constant and /i ~ 1.055 x 10734 Js is a
Planck’s constant. This means that we do not need to worry about quantum effect such
as superfluidity and we will work with Boltzinann energy distribution, not differentiating
between fermions and bosons. Furthermore we will assume that masses of the fluids
under consideration are small enough so the “self-gravitation” effects do not matter and
we will not end up in a black hole (however we do not discard the effects of gravitational
interactions of the fluid with other bodies). Clearly Newtonian mechanics applies. This
statement of the ontological status still leaves us a lot of space.

The molecules are further assumed to be of the single kind, having equal masses m
and interacting via collisions with scattering cross section o(§2), where §2 stands for the
scattering angle.

1.1.1 Boltzmann transport equation

We are not interested in the history of the particular molecules, but rather in their
distribution function f(r,v,t), which is so defined that

fr, v, t)d*rd*o

denotes the number of molecules in the element d3rdv of position-velocity phase space
around (r,v) at time ¢, r is a position of the particle and v its velocity. The function is
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CHAPTER 1. FORMULATION OF THE PROBLEM 4

normalized as follows
/ fe,v ) dPrdbo = N,

The equation for the evolution of f(r,v,t) can be obtained from the particle number
conservation law and second Newton law

(gf +v- Vr+—Ii Vo) (e v,t) = (%%)w". (1.1.1)

F is an external force acting on a particle. If the particles did not interact they would
move in the phase space on the trajectories characterized by 0 on the RHS of the equation
(1.1.1). The term (8,.f)con describes therefore the rate of change of these trajectories due
to collisions and it can be calculated from the analysis of particles’ interaction. The
equation is useless without explicit determination of this term; the method to deal with
it is due to Boltzmann.

The following simplification are necessary

i. only the collisions between two particles (binary collisions) are important, since the
fluid is not too dense. Particles 1 and 2 with velocities {vy, vy} collide conserving
momentum and energy and enter the state {v}, vh}.

ii. the velocity of the molecule in uncorrelated with its position. This is the famous
Boltzmann’s assumption of molecular chaos. This is exactly the moment where the
irreversibility enters our formalism.,

Few more technical assumption have to made; they are listed in [47].
Under these assumptions we are able to calculate RHS in terms of f and parameters
of binary collision and write Boltzmann transport equation

d F
(at Vi Vet — - Vy, f1 = /dQ /dsvsz Q) [vi = vao|(fafi — fof1),  (1.1.2)
where ¢(Q) is differential cross-section for the collision

{vi,va} = {vi,v2}

and the following notation was used

fl = f(r V],f)

f2 = f(r,va,t)

fll = -/(lv Vi )

o= f(r,va,t).
' Note that only v; is an independent variable in this equation since an integration is
performed over vy and pair {v},v)} is single valued function of the velocities before

collision.
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CHAPTER 1. FORMULATION OF THE PROBLEM 5

This integro-differential equation was published together with the famous H-theorem
by Boltzmann in 1872. Function f(r,v,t) used as a weight enables us to calculate macro-
scopic propertics of our system.
~ Let us note, following Huang, that (1.1.2) is only an approximation based on the
validity of the assumption of molecular chaos; it cannot predict for example the emergence
of Brownian motion.

It is relatively easy to construct the solution of (1.1.2) for isotropic system in equilib-
rium (when f(r,v,t) depends explicitly neither on time nor on r) and when the external
forces may be neglected. This solution is called Mazwell-Boltzmann distribution and has

the following form
fo(v) = Cexp[-A(v — vo)?], (1.1.3)

where vg denotes average velocity of molecules. C and A are constants and we will come

back to them later.
~ There are two interesting facts about (1.1.3). Tt is independent of the details of
molecular interactions. As long as the latter exist the gas in equilibrium will be described
by (1.1.3). Second, it may be proved that this is the most probable distribution, i.e.
(overwhelming) majority of the systems composing an ensemble is characterized by fo.

1.1.2 Conservation theorem

Let us assume that we obtained a solution to Boltzmann transport equation. Now we
are able to build macroscopic quantities (averages) by using f as a weight

(A) (1) = % / Afddy,
where
n(r,t) = /f(13v.

For the quantities y, which are conserved in the binary collision, we can derive from
Boltzmann transport equation the following conservation theorem

d a dx n 125% n /OF; k
=) + — vy —nl vy = {2y - 2 i) =0, 1.1.4
ot (nx) Ox; (mvix) ”<”l ow; > m < 'O > m < Ov; X ‘ ( )

We are particularly interested in the following invariants

xX=m (mmass), (1.1.5a)
x=mv;, (i=1,2,3) (momentum), (1.1.5b)
X = ;;-m(v —(v))? | (thermal energy), (1.1.5¢)
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CHAPTER 1. FORMULATION OF THE PROBLEM 6

for which the following three conservation laws can be derived

7]
O—f +V-(pu)=0 (conservation of mass), (1.1.6a)
a .
/)(57 +u- V)“ = %F -v. P (conservation of momentum),  (1.1.6b)
9 2 26 ) ‘
/’(5 +u- V)() = “‘§V i P : A (conservation of energy), (1.1.6c)

using the following definitions

plr,t) = mn(r,t) (mass density), (1.1.7a)
u(r,t) = (v) (average local velocity), (1.1.7b)

1
O(r,t) = 3m ((v- u)2> = kT  (average particle energy — temperature), (1.1.7¢)

1
q(r,t) = 4 ((v —u)(v—u)?) (heat flux vector), (1.1.7d)
Pyj(r,t) = p((vi — ui)(vj — uy)) (pressure tensor), (1.1.7¢)
1 s0u; = Ouy :
Au(r, t) = 577'&((91‘]’ '87:) (117()

Word about notation. T denotes tensor quantity and the operation T1. T2 stands
for the product that saturates both pairs of indexes, Zi,j T,leé

These relations are exact, but do not bring anything interesting unless we are able
to calculate the above averages. It turns out however that they arve sufficient to give

meaning to constants A and C in (1.1.3)

fo(v) = 11(2—77%)3/2 exp [—ﬂ(v - VQ)Q]. (1.1.8)

1.1.3 Approximate solutions

Let us take a look on function fy given by (1.1.8). It describes spatially homogeneous
system in its steady state and therefore does not really interests us, because in such
system neither flow (different from trivial case v = vg # 0) nor even variations of the
temperature are possible - we want to go beyond equilibrium states. Nevertheless as
a first approach the following picture may be taken. Let us assume that the system is
in equilibrium everywhere and all the time, but only locally, i.e. that time and spatial
variations exist, but are small. More precisely n, 8 and u in (1.1.8) are slowly varying
functions of ¢t and r.

This approximation can be put on more quantitative footing. If we have initially
systemn out of equilibrium (say because different spatial parts of the system have different
temperatures) we expect that after some time it will reach the steady, homogeneous state.
The mechanism responsible for the energy transport are clearly molecular collisions. We
can estimate so called mean free path A, i.e. average distance traveled by a molecule
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CHAPTER 1. FORMULATION OF THE PROBLEM _ _ 7

between the collisions

1
1
Nayot,

A~ (1.1.9)

Ot Is the collision cross-section integrated over angles: We may now say that if the
spatial variations are on the scales much large than A\ our approximation should work
quite well. In the same manner we can treat time variations by an introduction of collision
time (average time between collisions)

~ =, ' 1.1.10
TS (1.1.10)

where 7 = \/2kpT/m. Exemplary values (nitrogen in normal conditions) are

A~10""m

T~ 10775

and clearly indicate that in the most cases our zeroth-order approximation should be
at least reasonable. Of course we can treat in the same manner quantities other than
temperature.

If we take f = fy to calculate averages our mass conservation law (1.1.6a) will not
‘change and the latter two ((1.1.6b) & (1.1.6¢)) will take the following form

a p o

/’(5; tu V)“ = ;;F - Vp (Euler’s equation), (1.1.11a)
9 1

(E*’“'V)(’:”E(V'“)"’ (1.1.11b)

where ¢y = % and p denotes local hydrostatic pressure. The first of the above equations
was givenn by Euler in 1755 and describes the flow of nonviscous fluid. The slow flow
patterns run forever and there is no energy dissipation; it is apparently in the contra-
diction with experiment (if we pass over superfluidity). Thermal energy flow is solely
due to mass flow (convection); such medium does not conduct heat. The model can be
nevertheless useful, since it reflects properly the propagation of adiabatic elastic sound

waves. Their velocity is:
5
c= \/;ﬁ (1.1.12)

It appears that equation of state for such a fluid are simply given by:

p= i (1.1.13)

’
m

what is nothing clse than the equation of an ideal gas. This system never converges
spontaneously to a global equilibrium state starting from the transient states.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1. FORMULATION OF THE PROBLEM : 8

Clearly to make any progress we must include non-equilibriuun effects. It has been
shown that a stunning progress can be made under assumption that the real function f
differs from fy only slightly and hence the following approximation can be put forward:

(%%szwf_;—fg' (1.1.14)

This facilitates the solution of equation (1.1.2), calculation of the averages and rewriting
of the conservation laws (continuity equation remains the same)

9 9. .
N (a +u- V) u=hb-V (p - (,uz, + %u) V. u) + 1V-u  (Navier-Stokes cquation)
(1.1.15a)

V20 (heat conduction equation).

(1.1.15b)

f=——(V-u)f+
cy pev

(gz-i—u'V) 1 K

Here I denoted b = pF/m; this is a body force, i.e. external force acting on the fluid per
unit volume.

Navier-Stokes equation (NS equation) is the foundation of hydrodynamics. [t was
first written down by Navier in 1821 and rediscovered by Stokes in 1842. The parammeters
i, pp and K are respectively the wviscosity (responsible for energy loss due to internal
shear), bulk viscosity and thermal conductivity coefficients. The first and the last are
equal in our approximation

. JmkgT

RSN (G o (1.1.16)

bl

where a is an effective molecule diameter.
The SI unit of viscosity is Pa-s = kg/(ms). The latter unit is sometimes called

poiseuille, PL
L g .
The pressure (stress) tensor P in Navier-Stokes equation written explicitly in Carte-
sian coordinates reads

R’J =P - (/L/ + %/,1,) 4;;V -u,, (1.1.17a)
Ju;  Ou, 2

R‘J:(Sl_)p—/l’(('(%-{_(_?%) _§6ijv.u> , (1]]7]))
i Li

where p' is so called second wviscosity coefficient and py, = 1’ + %/.1,. The force exerted by
the fluid along direction é equals —é;:~ P. For incompressible fluid z, drops out from our
equation.
We can now discuss briefly, what it means that something can flow. The difference
- between solids and fluids lies in the response to applied stress: solids can sustain stress
without yicelding, while fluids are materials that flows when the stress is applied.
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Figure 1.1: A bady under shear deformation. The Figure comes from [54].

To make the statement a bit more mathematical let us refer to Figure 1.1. The
discussion comes from |54]. We are observing the body under shear stress o

L
=

where A is the area on which the force F' acts. In the case of Hookean solids the applied
stress results in static deformation, so called shear strain

o (1.1.18)

dx '
e = % (1.1.19)

and these two quantities are connected by Hook law

o = Ge,  (1.1.20)

where proportionality constant G is called shear modulus. The picture is completely
different for Newtonian fluids. The shear stress applied to them causes flow with some
velocity gradient

o= /J,EIA—E = pé. _ (1.1.21)
dy
¢ is called strain rate and the proportionality constant in the above law is exactly viscosity.
Generalization of above equation leads exactly to the stress tensor given by equation
(1.1.17Db).

There exists however a whole family of materials that are neither simple liquids or
crystalline solids. They are classified as soft condensed matter and include material as
glues, paints, soaps, polymers, colloids, liquid crystals and almost all material of biological
provenience. If they can flow, they are sometimes referred to as non-Newtonian liquids.
For an introduction to the field please refer to [54].

When velocity u vanishes everywhere in the fluid equation (1.1.15D) takes a form of
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well known Fourier thermal diffusion equation

o0
pev s = KV%9 =0. (1.1.22)

Navier-Stokes equation can be derived starting from experimental definition of the
viscosity. This derivation works fine for a rarefied gases and for dense liquids, what
means that the Navier-Stokes equation validity may be extended beyond low density
regime under usual conditions.

There exists general hod allowing expansi ffi ers 2, where L is the

1ere exists general method allowing expansion of f in powers 7, where L is the
characteristic length of the spatial variations (e.g. a sound wavelength). This quantity is
called Knudsen number

fn = % (1.1.23)

The expansion is called Chapman-Enskog scheme. Euler's equation can be regarded as
zeroth-order approximation, while Navier-Stokes equation is O(fn).

[t appears that Navier-Stokes equation works perfectly well for fin < 0.01. In
this regime flow vanishes on external surfaces, this is so called no-slip condition. For
0.01 < &n < 0.1 NS equation is still valid, however we must account for slip velocity on
the walls. For larger Knudsen numbers molecular effects become important and contin-
uum approximation breaks down. Please refer to [44].

1.2 Some properties of Navier-Stokes equation

This section deals with some basics concepts of single phase hydrodynamics. T start
with three simple but profound examples of usage of Navier-Stokes equation. Next a
more general approach is presented. The section ends with the discussion of possible
simplifications of NS equation.

1.2.1 Important examples

Effective mass of a sphere

Let us start with the simplest possible situation and consider movement of a sphere of
radius @ in infinite, nonviscous, incompressible liquid of constant velocity. I follow [47].
There are no external forces. The sphere moves with velocity ug, the velocity field of the
fluid is u. (1.1.15a) reduces to Euler’s equation

17,

p(7—-+u-v>u=~—Vp. (1.2.1)
ol

Since there is no viscosity in the problem boundary condition on the surface of the sphere

‘requires only the normal component of the velocity to vanish. The fluid must be also
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motionless in the infinity

r-(u(r)-w)| =0, ' (1.2.2a)
u——0. '  (1.2.2b)
r—00

In addition the solution must obey continuity equation
V.-u=0. _ (1.2.3)

The basic approach for yi = 0 case is to prove circulation conservation law. Let us
take curl of the both sides of (1.2.1)

%(qu)—{—v Xx(u-Viu=0 (1.2.4)
-and recall the well known formula (e.g. [30])
Vxu-Viu=(u-V)(Vxu)-({(Vxu) VIu+(V-u)(V xu). (1.2.5)

If we recall property (1.2.3) we can rewrite (1.2.4) as

(E%wLu-V)c:(c-V)u, ©(1.2.6)

where ¢ = V x u is called vorticity. If at some moment the fluid has no vorticity the
RHS of (1.2.6) becomes zero and c is conserved along streamline. Therefore fluid with

zero vorticity will never acquire it and thus
Vxu=0 (1.2.7)
therefore u can be rewritten as a gradient of a certain function (called velocity potential)
u=Vao. ' (1.2.8)

Let us rewrite the problem in terms of ¢

V2® =0, ‘ (1.2.9a)
PaLil)
— = U COos .2.91
5., =0 cos 1), (1.2.9h)
O(r) —— 0, (1.2.9¢)
r—0o0

where 9 is an angle between ug and r. Problem is reduced to solving Laplace equation
(1.2.9a). The general solution is a combination of spherical harmonics, but it is an
established experimental fact, that flow around a sphere (both in viscous and nonviscous
regime) has characteristic dipole-like shape. Let us therefore take only the first term
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(obviously we do not have ¢ dependence)

cos U
(I’(l') — C’--___.','2 (1.2.10)
C is obtained immediately from boundary conditions and thus
1 4cos?d
O(r) = ——E'uon,"coz (r > a). (1.2.11)
- .

Let us contemplate the physical situation for a while. The motion of the sphere requires
that the fluid also moves and thus possesses some kinetic energy. Therefore, while accel-
erating the sphere, we must supply some energy both to the sphere and the surrounding
fluid. The sphere appears therefore to be heavier than in the empty space, it acquires
some effective mass. The latter can be obtained by calculating the kinetic energy of the
fluid

B .

P 3 p (a2 3 o costd  _cosV
LI @ru. =-( )/ R AvASLAN vl
2_/9( mn=sT) LV Ve

The last integrand may be written in the following form

v. (cosﬂvcosﬂ),

72 72

once we note that V2(cos/r?) = 0, because the function is harmonic. We apply now
Gauss theorem (minus sign comes from the fact we integrate over an exterior of the

sphere)
3\ 2 , 9 5 1)
P (uga ) A (cosz cos )
2 2 .[2(1 v r? v r

- B(“D"")'-"Lu ds - (CO_"‘)VC—‘;—ZE) ~

2\ 2 r2
2 ! 9 & cosd
—_ P[uoa 2 oy [Cos? D cos
= 2( 5 ) 27a /_]d(com))(——r2 o T )r=n’ (1.2.12)

where the form of the last integral comes from the fact that dS has only radial component.
Let us integrate to the end and obtain that kinetic energy of the fluid is

1 .
57771,”"1%, (1.2.13)
where myy = %(%Wa’"/)) is the effective mass of the surrounding fluid and equals exactly

half of the of the mass displaced. The quantity m + myr may be regarded as effective
mass of the sphere.
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Stokes formula

Now I will turn on the viscosity and we will try to calculate the drag exerted on the
sphere moving slowly in the unbound, viscous and incompressible fluid. The problem
is very well known; the treatment presented comes from [47]; another approach can be
found in famous Landau’s textbook |61].

The only case, when the NS equation can be solved analytically and exactly, is creeping
flow (Stokes) regime for which the nonlinear term u-Vu can be neglected. (1.1.15a) takes
then the following form

l' P
V<p - %v : u) = puV?u. (1.2.14)
When supplemented by mass conservation equation, the problem can be rewritten as
9 1
Viu = FV}), (1.2.15a)
Vou=0, (1.2.15b)

with the non-slip conditions on the surface of the sphere; in infinity fluid should have
constant velocity ug, therefore

u(r)|1‘=n= O’ (1-2.16&)
u(r) —— uo. (1.2.16b)
r—00

Divergence applied to both sides of (1.2.15a) gives

V2p = 0. (1.2.17)

Our coordination system has z axis along up; the sphere rests in the origin.
To solve (1.2.17) we should write p as general combination of spherical harmonics,
but once again experimental evidence suggests that the following should be a good guess

s U :
p= P+ 1P C?Z , (1.2.18)

leading us to inhomogeneous Laplace equation

V2u = P,VC(:ZU. | (1.2.19)

Let us show that one of the particular solutions to (1.2.19) is

208 1) ‘
up = —ﬁr“’v‘—‘-’%'—. (1.2.20)
6 r
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By writing this expression explicitly in Cartesian coordinates (r = /a2 + y? + 22)

P 3z
(1) = =G 53 - (1.2.21a)
Py 3yz
(w)y = "”61"?%, (1.2.21b)
P1 322 Pl 1 ‘
| (W) = —F—r + == - (1.221¢)
we obtain
Pz z
=B oz
Laplacian V2u; turns to be
P oo 6 cos ¥
;%(—3.7:,1/, —3yz, % — 332) =-—gw = PV o (1.2.23)

To obtain full solution a proper homogeneous solution uy, must be added to fulfill
our boundary conditions (1.2.16). Again, in principle, the solution should be a general
combination of “vector” spherical harmonics, but clearly we need to incorporate only
terms similar to those found in u;. We are lucky, because it appears that RHS of
equation (1.2.23) is a solution of homogeneous Laplace equation

cos?d

erz_a (1.2.24)

which can be verified by performing explicit calculations. We make therefore an educated
guess, by adding to this function a constant and Coulomb-like term, and obtain homo-
geneous solution, which turns out to be sufficiently rich to assure non-slip conditions on
the surface of the sphere

cos v

1m=A+B§+CVr2. (1.2.25)
The full solution
u=uj + uy
A Z Py 5\ cos? :
_A+B;+( 67)V73, (1.2.26)

where (1.2.22) was used to express u;. The unknown constants can be found from the

boundary conditions.
Let us start with the requirements given by (1.2.16a)

u(r)lmﬂ =A + B% + —a% (C — %0’2) (—;Z; ~ 3¢ 79), (1.2.27)

a3
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'CHAPTER 1. FORMULATION OF THE PROBLEM 15

where once again (1.2.22) and (1.2.23) were used. The latter results immediately gives

P ,‘2
C= 16” (1.2.28)
Bz = ~Aa. (1.2.28D)

(1.2.16b) allows to find A = ug. Armed with this knowledge, we can calculate the
divergence of u

5 (1.2.29)

V -u= (2P + 3aug)

which according to (1.2.15b) must be zero, yielding
3

P = —5a0. (1.2.30)

The full solution has therefore the following form

u= uo(l - g)-&-%uoa(l - g)l(z - 3fﬁ). (28

P P
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Figure 1.2: The Stokes flow field u given by (1.2.31). Unperturbed flow ug points upward.
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The force acting on the sphere is

F=[ dS(-i-P), (1.2.32)

o =

>
with P given by (1.1.17a), with pressure term given by (1.2.18). The explicit calculation
of F were one of my first exercises with Mathematica. It appears that after switching to
spherical parametrization Cartesian components of —f. P are

" . . . 3u
- P = (—Po cos¢psind, — FPysin ¢psindd, — Py cos ¥ + §Eu0>' (1.2.33)

Integration yields
F = 6mpaug. (1.2.34)

This is the Stokes law [82]; drag force is proportional to relative velocity of the bodies,
fluid viscosity and linear size of the sphere.

It is important to examine the approximation made in the beginning and compare
quantities |[1V>u|| and {Ju-Vul|. It appears that approximation works well if the Reynolds

number is a small quantity

_ pugD
==

Re < 1. (1.2.35)

D = 2a is the sphere diameter. When $Re becomes large (order of 1 for a moving sphere)
the description breaks (eddies appear).

2D flow past a cylinder

It is well established fact (see for example |44]), that in 2D Stokes approximation may not
exist, like for the case of the flow past a circular cylinder with main axis perpendicular
to the flow direction. Let us quote a simple dimensional argument from the same source.
In the creeping flow p is not a parameter and F, force per unit length of, say, a cylinder
should depend only on yi, U (fluid velocity) and a (cylinder radius). The only dimensional
group, which can be formed out of these quantities is F/uU, and we must have F' ~ U,
hence F/uU = const, what indicates, that force does not depend on the size of the
body. Furthermore for ¢ — 0, the drag does not vanish. This is so called Stokes paradoz.
It corresponds to the fact that in two dimensional systems perturbation theory with
Reynolds number as a small parameter becomes singular.

Lamb [60] obtained a first approximation for the drag per unit length of the cylinder
of radius a

dmplU
= 1.2.36
F 1/2 — v — log(Uap/4p)’ ( )

-where v = 0.677 is the Euler’s constant. Rigorous justification using techniques of singu-
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"CHAPTER 1. FORMULATION OF THE PROBLEM 17

lar perturbation theory can be found in [73]. T show in the one of the subsequent chapters
how to obtain, utilizing Fourier series techniques, similar result for low past arrays of
cylinders.

1.2.2 Green’s function for NS equation

There exists the following theorem for the solutions of timme independent, linearized NS
equation. A point like force F applied to fluid in the point x’ in the absence of any
boundaries, will induce additional flow

v(x) = —I(x — x) - F(x'), (1.2.37)

where the Green’s function is

0ij  my '
(x) = I_I_)_cJ_” m% (1.2.38)

The theorem is proved in [44]; the presented formulation comes from [G].

The usual application concerns with the perturbation of the flow due to introduction
of a rigid body, in the simplest case a sphere. Let us suppose that before sphere was put
into the flow a distribution u(x) of velocity existed. Center of the sphere is xg and the
radius is a. The flow velocity in the fluid is

1

s [, TG =) £(x)) - dA(X), (1.2.39)

Ag

u(x) +

where f(x) denotes a projection of a pressure-stress tensor, and integration is performed
over surface Ag of the sphere. If sphere moves with a velocity U it can be proved ([6]),
that

1
6rap

_ 1
" 4mwa?

/ u(x)dA(x) + / f(x)dA(x), (1.2.40)
JAg Ao

which is sometimes referred to as the first Fazen law. For u = 0 we immediately get Stokes
law (1.2.34). Let us note that in the case, when the particle is settling (or fluidized),
i.e. has no acceleration, the last integral is simply equal to excess weight of the sphere
and last term represent according to (1.2.34) the terminal velocity of the sphere in the

unbound fluid.
In the subsequent chapters I will show how to construct similar Green’s function for

certain 2D problems.

1.2.3 NS equation in various limiting cases

One of the possible simplification, creeping flow corresponding to small Re regime, has
been already discussed. As I mentioned there exists perturbation solution to movement
of the sphere in powers of Re; it can be found in [73] and correction to the force exerted
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CHAPTER 1. FORMULATION OF THE PROBLEM : 18

on a moving sphere are

F = 6mpaug (1 + —3—9% + —9——9&2 log Re + (‘)(9%2)). (1.2.41)
16 160
Please compare this expression to (1.2.34) and note presence of logarithmic terms.

In the limit of large Me numbers we can neglect the viscosity term £ V?u in comparison
to u . Vu. This is a uscful method, but unfortunately cannot give any estimates of the
drag exerted on the bodies. It is often possible, however, to overcome this difficulty
by subdividing the field of flow around a body into an external region, where the flow
is usually irrotational and a thin layer near the body together with a wake behind it,
where viscous effects are not negligible. This is the so called boundary layer method. The
technique was introduced by Prandtl and is extremely powerful for the description of
flows with well developed turbulence.

In the case of air compressibility may be neglected for Mach numbers smaller than
0.3.

“Limiting case” usually means that the problein can be approximately solved by some
kind of perturbation scheme. Exhaustive review of such methods is presented in reference

[90].

1.3 Two-phase flows

In this section I outline briefly a way of formal introduction of simultaneous flow of two
phases mixture of Newtonian incompressible fluid and a collection of identical spherical
particles of radius a. The procedure is due to Jackson and comes from [51] (with errata
in [52]) and [4]. The treatment is valid only for small concentrations of particles, but the
concepts may be easily extended to more concentrated systems. Other methods must be
utilized when flow of particulate phase consisting of fluid droplets is considered (rain),
see e.g. [49].

1.3.1 Spatial averages

Any treatment of the system under consideration which attempts to describe motion of
the spheres separately is analytically intractable and as far as I know it is still a challenge
for computational fluid dynamics (CFD). The only possibility is to assume that spheres
constitute a continuumn phase, granular gas, which under some conditions behaves like
Newtonian fluid. I leave the discussion of this approximation to Section 1.4.

Transition granular-continuous requires a method of spatial averaging, which washes
out the details of the dynamics of single spheres. Obviously we will not loose any impor-
tant information in averaging procedure, if our system exhibits proper scale separation,
i.e. characteristic dimension of the flow patterns L is much larger than particle radius a.

There exist many possibilitics of building averages: over time, over an ensemble or
local space averages. Jackson uses the latter one defined with a help of weighting function
g(r), which is a monotoneously decreasing function of the separation » between a pair of
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points of space. It is normalized to unity
[ o] . .
47r/ g(r)ridr = 1. (1.3.1)
0
The function has a characteristic radius /, which is defined as follows
1 o o0 1
471'/ g(r)r<dr = 47r/ g(r)ridr = 3 (1.3.2)
Jo ! _ :

- We require a < I < L.
Let us start from the definition of the local void volume fraction

) = | allx=yl (1.33)
sVf

“where V; denotes integration over the region taken by fluid. €(x) states what is the ratio
of the volume taken by a gas to the total volume of the system “around” point x.
Using g(r) several possible types of averages can be constructed. Fluid phase average
of point property (pressure, velocity, etc.) f is

1 ,
(B &) = [ 1@l =yl (1.3.4)
e(x) Jyv,
Solid phase average is defined in the equivalent way

) =55 2 [ 1@ = yidiy, (1.35)
P »

where sumination is over all particles, and V,, denotes volume of the particle p and solids
volume fraction ¢(x) is defined as

400 =3 | allx=yii'y (1.3.6)
P »
Finally it is useful to build particle-phase average. Number density of particles is
n(x) =Y g(llx — x"|I); (1.3.7)
P

here x? denotes position of the center of particle p. The following relations hold (v -
particles’ volume)

p=wvn=1-—c¢ (1.3.8)

If we consider some property f” of the particle as a whole, say velocity, mass, etc.,
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then the particle-phase average may be expressed as follow

S (i - X)), (1.3.9)

n(x) >

(N (x) =

Since particles are rigid bodies and “global” quantities for them are well defined, usage
of particle-phase averages becomes more convenient for us than solid phase averages.

[4] presents a way to calculate the averages of derivatives. We will make use of the
following ones

() ( L) = 5= (e) () () - ) [, Sl =ipasy, (110w

) (XN = 2 (e (1 ) + 3 A L)y (y)g(lx ~ y)dS,  (1.3.100)
p U0r

o(5g) = g 0 ) + 5 5 - <) (13,11

Few words about the notation. n denotes vector normal to the surface, while u(x) is a
point velocity in the fluid and solid phases. S,, is the surface of particle p. The Einstein
summation convention is used throughout the study:.

- 1.3.2 Averaged equations of motion

- Continuity equation reads dug/dz;, = 0. Let us take f = w4 in (1.3.10a) and f =1 in
(1.3.10b) and sum up the results

66 0 f .
— 4+ —(€ (uy, =0, 1.3.12
ot + oz, (6 (k) ) 0 (1.3.12)

Similarly having set f =1 in (1.3.11) we get

on Jd
— 4 —(n (u)?) = 0. 1.3.13
ot + auy (’ (1) ) ( )
Let us try something more complicated. (1.1.15a) written in Cartesian coordinates
becomes
Ou; 13} aPik
b —(uyug) ) = — i 1.3.14

where py represents density of the fluid, gi body forces (gravity) and Pj; is given by
(1.1.17a). First we average both sides using (-)/. With help of (1.3.10a) with f = wuy
and (1.3.10b) with f = w; on the LHS and (1.3.10a) with f = — P on the RHS we get
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the averaged momentum equation for fluid phase

o (5 el + 5l ) = =5 (e (Pa)) + pyea
+3 /S Pa(y)ne(y)g(lx - y[)dS,. (1.3.15)
p o

Momentum balance equation for particle p states

our
pvst = / Pi(y)mi(y)dS, + 3 [ + pavgi, (1.3.16)

q#p

where «! is velocity of particle p. The first term on the RHS is the force exerted on the
particle p by the fluid, f is the force of interactions with other particles. py is a density
of the material the particles are made of. The following averaged form may be obtained

Jd ad »
AD Y)Y = .l Ff S\p ”
pgu(a{( (wi)?y + D (n (uir) )) =n <f1 > +n (f2) + psvng;. (1.3.17)

The first term on the RHS represents interactions of particle phase with fluid, the next
two are internal stress in the solids phase and the influence of body forces. Please note,
what is the right meaning of this quantities: they are forces acting locally on the solids
phase per total volume of the system.

The term

—n < F >" =3 gllx - x[)) /b (Pi) (¥)na(y)dS, (1.3.18)
P vop '

in not equal to the third term, denote it J, on the RHS of (1.3.15), but the following
expansion with a/L as a small parameter is possible

0 no o1 0 P
<ff> - —8—1—; (“<SI> ) _2_0’17j8;1:7,1 (7'< ’fJ"’> ) e (1.3.19)
where |
f 14
n <sij> (x) = (IZ(/ Ix — x”||) / tin;ds, (1.3.20a)
P ‘
n< ”m> (x) = azz (Ix = x?]) / tin;mndS, etc., (1.3.20b)
Sp
and wé put t = —n- P,
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Using above expressions we arrive with averaged fluid-phase momentum balance

pi (55 ) + 5 lwsnd)) = = oo (e (P + e
=n ()4 5 (n(h)) = 33 (v ()) - 0320

Let me stop here for a while. We are trying to build a macroscopic formulation
of multiphase flow, resembling, as much as possible, single phase hydrodynamics. The
quantities like n, ¢, (u)f or (u)” may be easily identificd as observables; the latter two are
for example macroscopic velocities of fluid and solids phase respectively. Unlortunately
we are not done yet, since not all quantities appearing in (1.3.17) and (1.3.21) have
no straightforward macroscopic interpretation (e.g. (usuy)’) and our equations must be
supplemented with suitable closure relations.

1.3.3 Closure problem

First we need to know how to deal with terms like (u.,'uk)f . Jackson in [51] argues that
they factorize, i.e.

() = (u;)? (ug)? (1.3.22a)
(wing)? = (w;)? {(wg)?, (1.3.22Db)

providing the motion of particles is locally Stokesian, i.e. particles move not too fast
with respect to surrounding fluid. This assumption is probably very reasonable and as
a matter of fact I utilize it throughout the whole work. Please note that it does not
mean that the movement of the mixture with respect to the walls of the container must
be laminar phases may move in rapid and turbulent manner, but their relative motion is

usually slow.
There are other quantities we must be able to express

o (P,;J-)f — the average fluid stress tensor.

o n (ff)P — internal stress in the solids phase. Many researchers postulate it to have
just simple Newtonian form. We will discuss this approximation briefly in the end
of this chapter.

P ,
e fif , defined by (1.3.18) - the momentum transfer between solids and fluid

phase per unit time, per unit volume of the system.

e terms (1.3.20a) and (1.3.20b) may be adopted for example from [67].
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1.3.4 Governing equations

I am able now to give the governing equations (1.3.17) & (1.3.21) in the form that is
used in the modern theory of chemical reactors (for example [91] or [50])

8 .
-é—: +V.(eu)=0 (continuity eq. for fluid)  (1.3.23a)
3}
B (1-€e)+V-(1-€v)=0 (continuity eq. for solids) (1.3.23Db)
7]
pre (5; +u- V) u=¢V-F3—-F+eprg (momentum balance eq. for fluid)
(1.3.23¢)
7] .
ps(l —€) (5 +v. V) V= (momentum balance eq. for solids)
=V -8+ (1-€)V-F+F+ (1 -e)psg. (1.3.23d)

u and v are the average velocities of fluid and solids respectively, F denotes the force of
interaction between fluid and solids phase per unit volume of the system with excluded
buoyancy of the particles, (1 — €)V - F. F and § are effective internal stress tensors for
fluid and solids phases. They read

‘ Ou; Ou; 2
Fii=—pl 4+ 1l ()6, V -u+pd(e) | == + =L - 26,V . .3.24¢
5 P+ 1, (€)85;V - u+ 1 (e) (axj + TS 3(5_}V u) , (1.3.24a)
o . R Ov; Ov; 2 »
8ij = —pij + pp(€)di;V - v + p(e) ((‘)_LJ + o §J,JV ‘v) . (1.3.24D)

Effective viscosities may be obtained from kinetic theory and/or from experiment. The
first analytical prediction of this quantity is due to Albert Binstein, [26]

p! (e) = /1.<1 + g(l - ()> | (1.3.25)

The equations must be supplemented with energy balance equation if heat transport
or dissipation is involved in the problem. Energy transport phenomena do not affect my
future work.

I can formulate now the major goal of this thesis. I would like to concentrate
on the calculations of the value of force F. In the next chapter I will present experimental
investigations of F, which will give me a chance to discuss some of its basic properties.
This quantity is crucial for the simulations of any multiphase system and the particular
choice of its form affects the results much stronger than for example expressions for

effective viscosities ([91]).
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1.4 Some remarks upon granular gases

Although it is assumed that internal stress tensor for solids phase may have Newtonian
form (1.3.24b) with cffective parameters, we must keep in mind that the dynamics of
such systems is generally much richer (see for example [71]). The typical example of
granular material is sand: it can be regarded as a approximately Newtonian fluid only
under special circumstances, for example when it is carried by water or air (as in the
case of sand storm); this state is called fluidized state. The sand lying on the beach
is defluidized and we know that it expresses completely different behavior: it can resist
applied stress and form solid-like structures (cones, prisms, dunes, etc.), even when it is
not glued by water.

Many of these properties can be understood on the molecular level in the contrast
with the assumptions made upon derivation of Navier-Stokes equation in Section 1.1:

e Knudsen number £n is not small for usual granular gases: the “molecules” are much
larger (typically we work with grain sizes of order hundreds of microns) than atoms
and they move much slower. Chapman-Enskog method cannot be used.

o For the majority of the granular gases binary collision model is not valid — many
body corrections become important especially for large p. Moreover due to irreg-
ular shapes of the grains collision cannot be usually described by a single collision
parameter.

e Granular materials posses memory (|55]); especially the transitions packed-fluidized-

defluidized.

e Collisions between particles are usually connected with the dissipation of energy.
This is one the most important features: fluidization requires constant supply of
kinetic energy. If we stop it, granular gas will cool and reach defluidized state after
a time required for a few collisions per particle.
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Chapter 2

The drag — the state of art

In the previous chapter I defined the quantity of my main interest, namely the momentum
transfer between solids and fluid phase per unit time, per unit volume of the system,
(1.3.18). In this chapter I describe, what has been already found about this quantity
and as such the the goal of the chapter is two-fold. On one hand extensive literature
is presented, and on the other I build a framework in which the future work will be
rooted. Especially I introduce the notion of interphase drag coefficient, /3, and list its
major properties.

The real structure of drag is immensely complicated, even for a single particle in
the unbound fluid, which may be considered as a limiting case ¢ = 1; the force can be
decomposed into several parts, which have been discovered independently. Fortunately
the major contributions can be pointed out, even when their actual calculations are
(almost) impossible. The discussion of forces acting on a single sphere (Section 2.1)
is followed by the description of changes we observe when the concentration of bodies
beconmes significant (Section 2.2). Most of our knowledge comes from some kind of
experiments and serious part of this chapter pertains to them; they help us to gain some
qualitative insight into drag force but also provide us with numbers. Since 3 is never
measured directly I describe in details, how to obtain it from data available. At the
present moment we do not, have any other reliable closure relations except the empirical
laws mentioned. Their applicability is discussed. This is done in Section 2.3. Section
2.4 presents Batchelor treatment of the problem ~ the only existing analytic calculations
based on direct attack on Navier-Stokes equation for the problem.

[t should be noted that the phases may be coupled not only via momentum exchange,
but also due to mass and enecrgy transfer. These two latter mechanisins stay close to the
heart of every chemical engineer, since they encompass such phenomena as evaporation,
condensation and chemical reactions (examples of mass coupling) and radiation, convec-
tion and internal heating (energy coupling), but I do not deal with them in my thesis,
concentrating on the drag.

‘ Multiphase hydrodynamics is nowadays the separate branch of science with its own
journals and textbooks devoted exclusively to it: [38] concentrates on applications in
chemical engincering, [19] presents wider and a bit more formal view. Comprehensive
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review of theoretical foundations of computational fluid dynamics for multiphase flows is
given in [91], which was partially an inspiration for this chapter.

21 A body in the unbound fluid

A standard taxonomy of forces (as given for example in [19]) marks out the following
families: huoyancy, steady and unsteady motion forces and different kinds of lifts. Buoy-
ancy for a single body reduces usually to well known Archimedes lew. Steady state forces
act on a body when there are neither variations in static pressure field nor relative ac-
celeration between the particle and the conveying fluid: they are drag or Stokes force
and Faxen force. The following forces are counted into unsteady state interactions: wvir-
tual mass effect (discussed in Section 1.2.1) and Basset force. Finally lift occurs due to
rotation of the particles. In the end of the section I briefly discuss other effects.

2.1.1 Steady state forces
Drag force for the general flow

Drag occurs due to viscosity and is usually given in the following form
pu?
F[) =C[)—2-AU, (211)

where Cp is a dimensionless drag coefficient, A denotes an area of the cross section
perpendicular to the flow, p is the density of the fluid, and 1 is a velocity of the fluid in
infinity in the rest frame of the body. For spheres A = wD?/4, where D is the diameter.

We have already examined the low Reynolds number regime for this problem in
Section 1.2.1. For this case the drag coeflicient is given by

Co(mc)=-%3, Re < 1. (2.1.2)
Re

The things start to complicate when Re cannot be considered as a small quantity. The
first corrections to Cp can be calculated exactly and are given by (1.2.41), but the
approximation breaks down for Re = 1.0 and therefore researchers have to use expressions
extracted from experimental data. A stunning review of available expressions can be
found in [57]; the following taken from [20] seems to combine accuracy and simplicity
and it is called Dalla Valle formula

2
Cp (Re) = (0.63 + g?f) ,  Re < Re,, (2.1.3)

where Re, is the critical Reynolds number. In the so called inertial range 750 < Re <
3.5 x 10° = Re,

Dp =~ 0.44; (2.1.4)
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it is also known as Newton’s law. Beyond Re., Cp drops abruptly below 0.1. (2.1.2),
(1.2.41) and (2.1.3) were compared for small Re in the Figure 2.1a. 2.1b covers broader

Re regime.

Faxen force

Faxen force arises when the unperturbed flow (the flow existing before the body had been
introduced) posses inhomogeneities and for a sphere with a small diameter D reads (|44])

D= _.
Fr = /m?vzu. (2.1.5)
The Laplacian is evaluated at the center of the sphere.

2.1.2 Memory effects

Unsteady state forces may he regarded as memory effects, since they depend on the
history of the flow. In a local system moving with the fluid all small perturbations
are just sound waves, which we know to propagate with the finite velocity ¢ given by
(1.1.12). I have already presented the virtual mass effect, which accounts for the relative

acceleration.

Basset force

Basset force is connected with the viscous effects and addresses the temporal delay in the
boundary layer development as the relative velocity changes in time ([19])

P { 0 . .
Fp = gDQ,/n'pf//,/ l: :(lr. (2.1.6)
Jo b=

u is the fluid velocity, v is the particle velocity and @ should be understood as material

derivative, (9, + u- V)u.
[46] gives the conditions for which the memory effects may be discarded. They are

pr/ps ~ 1073 (2.1.7a)

Dy/i/psw > 6, (2.1.7b)
where w is the characteristic frequency of the stream oscillations.
2.1.3 Lift

The most important lift force is Magnus force, which appears when the particle (sphere)
with lincar velocity v and angular velocity w is immersed in the fluid with the velocity
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Figure 2.1: Drag coefficients as a function of Reynolds number fRe. Panel a) presents re-

spectively (2.1.3), (2.1.2) and (1.2.41) (rescaled). Panel b): (2.1.3), (2.1.2) and Newton’s
law (see page 26). ‘
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u (Re <1):
T3 1
FM=—8-D Pl lsVxu—w]x(u-v)). (2.1.8)

This force is present even in the nonviscous flows and can be understood as a simple
consequence if of Bernoulli law. Due to rotation different sides of the sphere have different
relative velocities with respect to the fluid and hence feel different dynamic pressures.

- Exactly the same mechanism is responsible for the lift force holding airplanes: their
characteristic profile makes the air flow faster above the wing,.

2.1.4 Other effects

First of all we have to have a method for dealing with nonsphericity of our bodies. We
introduce the shape factor ([19])

As
U= 1 (2.1.9)

where A is the surface area of the body and

A, = /3 (6V)*3 (2.1.10)

is the surface area of the sphere having the same volume V' as the investigated body.
Since ancient Greek times we know that ¥ < 1.

It is believed that we can use (2.1.1) to calculate the force acting on the non-spherical
body with Cp substituted by effective drag coefficient Cpe and with the use of effective
diameter Dy, defined as

1/3
Dy = <%> . (2.1.11)

This is a diameter of a sphere with the same volume V' as the body. Cpeyr is a function
of Re and ¥ only. This approximation is widely accepted although it does not work well
for oblate spheroids and cylinders.

Throughout the work it is assumed that bodies interact with the fluid by purely hy-
drodynamical means. We discard therefore the cffects like Broumian motion, polarization
of the fluid (which may lead to change in its viscosity) due to charges on the particles
surface, etc.

2.2 Collection of particles

We could be tempted to think that the total force acting on the particle phase might be
calculated as follows: ecach particle produces a flow disturbance (under special circum-
stances described given for example by (1.2.39)), which then are simply added; based
on this velocity field we calculate the forces acting and sum them up. This approach
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cannot give the right answer, moreover it leads to severe divergence. The first fact can be
understood if we realize that the additional flow field introduced by the body must fulfill
the non-slip boundary conditions on the surface of each other sphere: the bodies there-
fore “know” about themselves - they interact via the surrounding fluid. The divergence
may be understood if we recall that Stokes velocity field, given by (1.2.31), vanishes like
»~1: any direct summation method bears the saine pathologies as Coulomb field: to some
extent the bodies in the real flow screen each other. I will be able to put this observations
on a bit more quantitative footing at the end of this chapter; the next two sections deal
with the experimental picture.

Let it be noted that the we have already excluded the buoyaney (1 —€)V - F from the
general interaction in (1.3.23¢) & (1.3.23d).

2.2.1 Interphase momentum transfer coefficient 3

The experimental evidence makes chemical engineers believe that the force F appearing
in the equations (1.3.23¢) & (1.3.23d) can be written, following (2.1.1) as

F = —/u,, (2.2.1)

where u, = v — u is the velocity of solids phase in the (local) rest frame of fluid (we
are using notation of the Section 1.3.4). S is so called interphase momentum transfer
coefficient. This clearly indicates that the viscous forces (generalization of Stokes law)
are the most important contribution to the interactions between phases. In general 3
could be a tensor, i.e. the drag not need to be a parallel to the relative velocity and
we might ask why should not we include the generalizations of the other interactions
described in the previous section (like [50], which adds virtual mass effect). The answer
to this objections is two-fold. First, these phenomena are not observed experimentally
(however it must be kept in mind that the experiments do not measure 3 directly and
the effects mentioned would appear only as some kind of corrections). Second, it seems
that the model (2.2.1) works in most applications, therefore capturing the essence of the
underlying physics.
The average value of force acting on the particle in the cloud may be written as

2 wD?
o= Cl)ufl'/TTq (2.2.2)

where D is a effective average diameter, as defined by (2.1.11) and Cpey is the effective
drag coefficient — effective due to the shape, the presence of other bodies and the averaging
procedure.

The interaction force F has according to this definition a value

F =nF, (2.2.3)
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where n is defined by (1.3.7) and can be calculated from ( 1.3‘.8) as

1—e€
"= D (224)
yielding (we used (2.2.1))
3 (1 =€) pu,
8= 4CDelr———D . | (2.2.5)

We may reduce formally our problem to finding Cpeg. Let us list the factors that
influence it

¢ Reynolds nmunber Re, based on velocity wu,
e geometry of the system, which determines €

o particles’ shape and orientation, which to some extent may be described by the
parameter W

o roughness of the particles’ surfaces
o distribution of the above parameters (the bodies not necessarily need to be identical)
e presence of walls and macroscopic geometry of the flow.

Let me discuss some of them. In the experimental work that I am going to present,
the researchers were able to correlate data obtained, assuming some simplifications., It
appears that for disordered systems the impact of detailed geometry, particle shapes
and orientations may be included by simple dependence on e. This is clearly a crude
approximation, but seems to work. In general geometry is of a great importance and I
will show it. [ have not given any discussion of roughness factor, but there are empirical
methods to include it in Cpe. The presence of walls is usually neglected, which is
justified for large containers.

Wide distribution of particles parameters (especially sizes) present however an im-
portant issue, since it leads to the several phenomena observed experimentally, especially
segregation particles with different parameters tend to gather together, forming layers. It
has extremely important industrial applications. The only successful approach to model
this behavior was an introduction of more than one solids phase, each characterized by
different set of effective parameters, and treating them independently (please refer to
[86]).

2.3 Experimental methods for the estimation of

The basic geometry for any experimental sctup is quasi 1D column, as presented in the
Figure 2.2, and there are in general three possible types of experiments that may be
performed
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suspended/fluidized|
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L | particles A
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Figure 2.2: Basic geometry for a typical experiment involving interphase friction. The
column is filled with a fluid, which may be forced by the pump to flow with the rate @.
The pressure drop is measured using a pair of manometers B and T, placed at the inlet
and outlet of the column. When the orientation of the column is vertical it is possible to
either observe fluidization (Q # 0) or settling of the particles (Q = 0). Duct may have
horizontal direction, then the gravity is unimportant, and we may perform pressure drop
measurements for packed column. The area of an empty cross scction of the column is
A and the superficial velocity is U.
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1. fluidization: a cloud of particles is placed in the stream of fluid which suspends
it. Depending on the velocity of fluidization gas w,, the steady state in the columnn
is reached for different value of e. The process is in general very complicated and I
will have a chance to return to it. Such a system is sometimes called fluidized bed.

2. settling: a cloud of particles with the specified € is settling under the gravity force
with some average velocity.

3. pressure drop measurement: the coluinn may be packed with the material (i.c.
the particles are immobilized by some means). We force the fluid to flow through
such porous medium and the pressure drop is measured. To eliminate the influence
of gravity usually the column has horizontal direction (and we would rather call it
simply a pipe).

Please note first, that in all these cases the system is assumed to be macroscopically
uniform. Sccond, the fluidization and settling are exactly the same phenomena, but
observed from the different inertial reference frames. The distinction was made because
of the way how the experiment is actually performed: for the case of fluidization we
set the velocity and observe €, but for settling the cloud of particles with the given € is
prepared and its velocity is measured.

The area of an empty cross-section of the column is denoted by A (and we assume it is
constant). The volume of the fluid flowing through the column per unit time (volumetric
flow rate) is denoted by @ and

Q = AU, (2.3.1)

where U is so called superficial velocity, i.c. velocity of the fluid measured in the empty
part of the column. If the solids are motionless with respect to the column, the relative
velocity u, between phases reads approximately

Up = —g (2.3.2)

If during the sedimentation the phases reach the equilibrium state (given by €) with
the relative velocity w,, U is the velocity of sedimenting particles with respect to the
column walls; the downward flow of the particles must be accompanied by the upward
flux of fluid. It can be understood if we perform the following thought experiment.
Fluidization and settling are exactly the same phenomena, if they occur for the same void
volumne ¢, but simply seen from the two different reference frames; the relative velocity
1, between the phases is the same in both cases. Let us imagine that we observe settling
particles standing on the floor of our laboratory, this is the column's wall coordinate
system. The velocity of the fluid in the empty part of the column is obviously 0. Now let
us move to the reference frame, where solids are motionless (we are observing fluidization).
The gas in the region taken partially by solids has velocity w,, therefore the velocity of
the gas in the empty column region is U with respect to the particles. But by performing
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simple Galilean velocity transformation we see that this velocity must be equal to the
velocity of particles in the column stationary frame.

2.3.1 Fluidization and settling

Now, I will investigate the problem more quantitatively. Let us rewrite (1.3.23d) for the
1D case of flow along z axis, which points opposite to the gravity acceleration g
-9 (Gevgt) =--apgti-1-9%F (@33

where v denotes velocity of solids, p is the hydrostatic pressure in the fluid phase and f
is the force acting on solids (due to internal stress in the solids phase and interactions
both with the fluid and external objects) per unit volumne of the whole system, excluding
fluid hydrostatic pressure gradient influence. Exactly the same equation is derived in [93]
from the first principles.

For steady and spatially uniform flow of solids the RHS of equation (2.3.3) is zero
and therefore

f=(1~¢ <psg + -gg) : (2.3.4)

When the particles are fluidized or they are settling, dynamic parts of the stress tensors
(1.3.24a) & (1.3.24b) vanish, morcover, since the particles are fully supported by the
fluid, their internal hydrostatic pressure may be neglected and the force f reads just

f=F=-pu,, (2.3.5)

according to (2.2.1).

Usually the experimental data is presented as a dependence of terminal velocity cor-
relation V; on the set of dimensionless parameters characterizing the system. V; is itself
dimensionless and defined by

'Ul
‘/l = (2'36)
(YY)
where v, is the terminal velocity of the group of particles and vy is the terminal velocity
of a single sphere in the unbound fluid. Both of these quantities are measured in the fluid
stationary frame.

For a single body, falling in the unbound fluid under terminal conditions, the drag

force Fpo equals
pvd wD?

Fpip = Cn(fﬂczo)—Q— = v(ps — p)g, (2.3.7)

where v denotes particle volume and Reyp is the Reynolds number based on vyp. For the
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particle in the cloud the terminal drag force Fpy can be written according to (2.3.4) as

0,
Fpi=v (/).qg + 0—{)) . (2.3.8)

We require the mixture to be in the equilibrium, which yields the following expression
for the pressure gradient

dp

5, = 9 (L =€) p+en). (2.3.9)

- Combining the three previous equations we obtain
Fpi = v(ps — p)ge = Fpoe. (2.3.10)

We can use this knowledge to compute Cpe and subsequently 3 using (2.2.5), but
first we must have closed expression for V;.

2.3.2 Terminal velocity correlations

The classical reference is [74], where Richardson and Zaki, having performed set of original
measurements and using available data, found that V; may be expressed as follows

Vi=¢", (2.3.11)

where n, called Richardson-Zaki exponent, is a function of Re and e. Unfortunately from
their work n may be found only nuinerically and therefore a convenient correlation of n
cried out to be created; the quest was fulfilled by Rowe in [76]

4.7 —n

—— = 0.175Re07, (2.3.12)

and Re; pertains to the sphere moving with velocity v.
Another empirical correlation was found by Garside and Al-Dibouni and given in [35)

g" :"2 = CQeyo, (2.3.13)
with
A=l
B {0.861'28 (€ < 0.85)
| €205 (e > 0.85)
C = 0.06. (2.3.14)
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2.3.3 Di Felice approach

Di Felice |22] found that satisfactory agreement with the experiment can be achieved by
assuming that the drag force Fp acting on the particle in suspension is equal to the force
acting on the sphere in the unbound fluid Fpo multiplied by a function g(e, Re)

Fp = Fpog(e, Re), (2.3.15)

providing that both of the forces in the above equation are evaluated at the same value
of Reynolds number.
We can now write Fp; twice, once using (2.3.10) and (2.1.1) and the second time
using (2.3.15)
puip 7D

2
FDI.=CD(mCtO)T T

v wD?
FDl=CD(m01,)p2—I' n g(e,Re),

which yields (using definition (2.3.6))

CD(mEt) 1 9
(D) V2 €. - (2.3.16)

g(e,Re) =

De Felice used Dalla Valle formula for Cp (2.1.3) and Richardson and Zaki V;. correla-
tions aided by Rowe formula (refer to (2.3.11) and (2.3.12)) and was able to successfully
correlate available experimental data, giving the following formula

g(e, Me) = e, (2.3.17)

where

5 lon 2
a(9e) = 3.7 — 0.65 exp (—(1‘° logw(mc)) ) . (2.3.18)

Note that limiting cases of large and small Reynolds numbers are characterized by almost
the same value of o =~ —3.7. Some authors take thercfore o to be independent of Re.

Now we can compute Cpefr

Cpeti(Re) = Cp(NRe)g(e, Re) (2.3.19)
and therefore 8 using (2.2.5).

2.3.4 Syamlal formula

Group of Madhava Syamlal created software package MFIX, open source code based on
FORTRAN for hydrodynamical simulations of multiphase flows. In the docunentation of
‘this project |87] a different expression for @ is given, although similarly based on terminal
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velocity correlations. I could not find any published derivation of this formula, but T am
able to give a plausible justification to it.
Average force acting on the particle in the suspension is given by

pv? wD?

5 (2.3.20)

Fp = Cpen(Re
Again we can express drag force under fluidization (terminal) condition twice using
(2.3.20) and (2.1.1) & (2.3.10) to get

c
Cpeti(Re) = —Qi?;'ﬁ. (2.3.21)
[2

Rew = Rey/Vi. Using Garside-Dibouni correlations (2.3.13) with (2.3.14) we can express
V, in terms of Re; and e .

Yiz A _ o6 Vi (2.3.220)
B N 1/’ T M - C{, Ly Y a
V. = (A — 0.06R¢,+ \/(0.069{65)2 + 0.12R¢,(2B — A) + AZ)/Z (2.3.22h)
Effective drag coefficient
| Cp(Re/V)e
Cper(Rey) = —D(—‘-/;—/-—t—)-, (2.3.23)
t

where Cp may be calculated using (2.1.3). Now we can say that our sphere always moves
with the terminal velocity, but for example in the fluid with different viscosity, since all
the quantities in the above equation are dimensionless, and drop subscript ¢ in $Re. Once
we know Cpeir we can calculate /3 by means of (2.2.5).

2.3.5 Other experiments and models

Schiller-Naumann drag

When we are only interested in qualitative results (especially for small concentrations) the
interactions between bodies may be neglected and we can assume that the effective drag
coefficient equals just free sphere coefficient, with empirical Re correction. T have already
listed one of the numerous possibilities (2.1.3). Here is another one, Schiller-Naumann

coefficient ([79])

l) .
57‘1 (1 + 0.15387) (2.3.24)

Above Re =~ 10% Newton’s 0.44 law, (2.1.4), is used. This is one of the models available
“in FLUENT package.
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Ergun equation
In 1952 Sabri Ergun |27] found an empirical correlation allowing calculation of pressure
“drop in the packed column, i.e. for small void volumes

rl-—E[)Uz

Ap
+ 1.75 3 T,

1—€)? puU
or 15()&__‘_)_“_,,
L 3 D2
where L denotes length of the column (duct), € is void volume in the system, U the
superficial velocity and D is the effective diameter of the particle in the column, defined

as

(2.3.25)

L (1-eV
D’ =, (2.3.26)

where V is the total volume of the coluinn, AL, and N is an estimation of the number
“of particles in the column. Let us note that that D is just a logic construction, since the
bed may be packed for example with a crushed glass and therefore has void volume lower
than eg},) ~ 0.36, associated with closed packing of spheres.

The expression has two terms: the first one pertains to viscous cnergy loss and is
important for small values of material fow; the second quadratic term represents the
dissipation due to kinetic effects.

In such a system particles are maintained in fixed position and therefore we have to

be rather concerned with the force that is exerted on the fluid, which is obviously ApA
and may be written as

ApA = N(vAp/L + Fp), (2.3.27)

where vAp/ L represents the average buoyancy force acting on the particle (v being aver-
age particle volume 7D%/6) and Fp, is an average force due to hydrodynamic interactions.
Total drag force reads

NFp = AAp — %(1 —e)V = AelAp. (2.3.28)

The force per total volume V, divided by the magnitude of relative velocity, gives 3
(using (2.3.2) and (2.3.25))
(1-e?p 7(1-¢)
3 = 150———— -5 + ~ . 2.3.29
For the sake of future comparison, we might compute fictitious effective drag coefficient
~from (2.2.5)

- 7
Cpur = 2002=6 L 4 7 (2.3.30)
e Re 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. THE DRAG - THE STATE OF ART | 39

Wen & Yu scheme

Wen and Yu in [95] were able to correlate data obtained and found that (this expression
is explicitly written in their paper, eg. (47))

Cpeir(Re,€) = "7 Dp(Re), (2.3.31)

but they clearly neglected the influence of pressure gradient, which would results in
additional factor € on the RHS of the above equation (please refere to (2.3.10)). This is
in obvious agreement with (2.3.17) & (2.3.18) and it should lead to results identical up
to (small) Re dependence in (2.3.18).

Nevertheless for the reasons completely unclear to me hydrodynamical packages (FLU-
ENT) use the following formula, crediting it to the article mentioned

_ 3 (I—e€)epu _yg5 .
g = 401) D¢ (2.3.32)
where
[ 24(1 + 0.15(eMRe)0687) / (Ree)  eNRe < 1000 0
Cp(Me) = { 0.44 eRe > 1000 (2.3.33)

The expression for the drag coefficient resembles Schiller-Naumann drag, but with the
Reynolds number based on superficial velocity. The idea comes from [75] and seems to
have no justification (I believe it is simply an error or misprint).

Gidaspow approach

Gidaspow wrote an acclaimed textbook on multiphase flow and fluidization, [38], where
he presents a drag model based on combination of Ergun equation (2.3.29) and (2.3.32).
There is a discontinuity in his expression in the matching point, which in general may
lead to numerical instabilities, as suggested in [91].

2.3.6 Comparison of the available models

According to |91} the right choice of # model is crucial in all numerical experiments,
strongly affecting the results. A comparison between described expression was presented
in the Figure 2.3. The plots present Di Felice modifiers defined as Cpegr(e, Re)/Cp(Re),
where Cp is given by (2.1.3).

The immediate conclusion is such that the models do not agree with each other too
well, which indicates that a theory better than just simple data matching must be devel-
oped. Di Felice work predicts much higher value of the drag than other models and, as
was mentioned earlier, is insensitive to particle Reynolds number e, An agreement with
other models exists only for large void volumes. Other correlations express clearer depen-
dence on HRe. In the intermediate regime expression (2.3.32) and that of Syamlal agrec,
but they differ seriously for large relative flow velocities. [t may be noted that matching of
expressions of Wen & Yu and Ergun always leads to mentioned earlier discontinuity and
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Figure 2.3: Comparison of different drag models as a function of ¢ for different Re. Panels
a), b), ¢), d) and e) correspond to Me = 0.1, 1, 10, 100 and 2000 respectively. Please
refer to the discussion in text.
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that the Syamlal model, developed for large €, matches Ergun law (suitable for packed
columns) much better. Finally the Wen & Yu prediction for Cper (based on (2.3.32) and
(2.2.5)) does not, converge to 1 while the suspension hecomes infinitely dilute. This is
an artifact of our comparison scheme -- Schiller-Naumann coeflicient (2.3.24) differs from
the one due to Dalla Valle (2.1.3).

The assessment of validity of presented model is a delicate question, since we can
apply different criteria to this problem. Should we choose the models that correlate
the experimental data in the best way or that one, which yield the results of numerical
simulations being closer to reality? [t may sound paradoxical, but these two criteria do

~ not need to he equivalent. The primary reason for that is of course the already mentioned
fact that we never measure g directly in any experiment. Furthermore, often the results
of the experiments must be extrapolated. For example, the procedure of extracting the
value of drag from terminal velocities implies that properties of the suspensions under
terminal conditions can be used also when the cloud moves with non-terminal velocity.
The argument, based on dimensional analysis, sounds plausible, but we cannot assess
how general it is. It is not too difficult to imagine that sand peacefully falling in the
water has different propertics than a cloud of dust suddenly dragged by a blast of wind.

We use the following rule of thumb in our group. Since all the reported correlations
(except maybe for (2.3.32)) have at lcast decent justification in experimental data, the
one is chosen, which yields the best agreement of numerical simulations with reality. It
follows from our experience that the form of drag affects the whole picture of fluidized
bed, beginning with the level of its free surface, through dynaics of eddies and ending
with shape, volume, number and internal density of bubbles. It scems that the Syamlal
model, (2.3.23), although still not completely free from discrepancies with experimental
picture of the reactor, gives the best results. This opinion was strengthened by the
interactions [ had with the circle of chemical enginecers working in Syncrude.

2.4 Analytical solution for small concentrations

Theoretical works devoted to flow of particulate systems concentrate around two major
topic calculations of terminal velocities and effective viscosities of fluid-solids systems; the
results originating from the first category, as it has already been noted, may be directly
utilized to compute drag, therefore I will present shortly the literature devoted to it.
These works are important from the theorctical point of view, but they cannot give the
drag in the most interesting regime of high concentrations.

There were several attempts to obtain a analytic solution to a problem of the cloud
of settling spheres, |81, 15, 33|, none of them however was able to construet quantities
that would be certain to converge. The first suceessful treatment is due to Batchelor, [6]
and will be reported shortly.

There are also several heuristic theoretical attacks on the problem. For example [43]
considers the following simplification of flow in the bed of spherical particles. Every
sphere moves separately surrounded by a “fluid sphere” with a special radius. On the
interface of the internal (solid) sphere no-slip boundaries conditions are imposed, on the
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external surface the gradient of radial component of fluid velocity is zero. In this model
the drop in the settling velocity is proportional to /1 — .

2.4.1 Batchelor’s treatment

A renormalization procedure introduced by Batchelor is now briefly summarized. Once
again we are observing sedimentation in the container’s walls reference frame. The total
velocity of the arbitrarily chosen particle is written in the form

U=Uy+V+W, (2.4.1)

where the termns have the following interpretation. Up is a velocity of the particle in the
unbound fluid (no other particles present). V is the additional velocity that the particle
acquires due to distortion of the velocity field caused by the other particles, but as if the
non-slip conditions on the surfaces of other particles were released,

1

= , 4.2
A" 7 udA, (24.2)

J Ao

with the integration performed over the surface of the particle, Ag. u is the local velocity
in the fluid, that would exist in the absence of the chosen particle, coming from the
summation of the influences of other particles; please confront the above expression with
equation (1.2.40). The quantities are averages over particles’ configurations’ space. The
configuration space should be understood here as 3N-dimensional space (N stands for the
number of particles); the points of this represent given configurations of particles. Not
all points in this space might be available, since there are forbidden configurations (for
example the configurations that violate hard-core distance). W is the already mentioned
change in the velocity required to fulfill the no-slip conditions on the surfaces of the
remaining solids. The danger of divergence comes in the contribution V, since it is a sum
over an infinite collection of Coulomb force centers; Batchelor avoids this catastrophe by
expressing V in terms of converging quantities and the average velocity both in solids and
fluid phase, which is known exactly to be zero. This is the renormalization procedure.
Later, upon small concentration assumption, the velocity W is found, assuming that only
pair interactions are important. Finally the result reads

U = Up(l - 6.55(1 — €)). (2.4.3)

The profound assumption made in the cited work is that the suspension is statistically
homogencous; the averages calculated are taken over all spheres’ configurations that
_obey the minimal interparticle distance D. First of all it means that the flow field
does not influence the particles’ configuration space. Sccond, the variation of particles’
conicentration takes place on the scale much larger than interparticle distance. Batchelor
suggested the following shape of the pair correlation function for his collection of particles

g(r) = H(r — D)+ (1 = €)ed(r — D), (2.4.4)
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where H(2) stands for Heaviside (unit) function. The delta at the edge of excluded
region represent the characteristic excess of nearly touching spheres. The matter will be
discussed more fully in the Section 5.2.2. The actual calculations are performed for the
constant ¢ equal to zero.

The solution presented does not avoid the divergences commpletely. It appears that the
variation of spheres’ velocities is growing without limit for the large collection of spheres,
|16]. Unfortunately this quantity is an observable, since it enters the expression for the
granular temperature of solids phase. It should probably be understood as a sign, that
renorimalization procedure applied here is not complete.

The Batchelor solution, even though it is based on serious assumptions and still leads
to unphysical results, is an important step. Partially, since it is the only analytic solution
we have, but primarily, because it introduces some concepts (simnplifications), that appear
to be surprisingly good. I mean here the statistical homogeneity assumption (discussed
above and in the introduction to Chapter 5) and the suggested shape of pair correlation
function, (2.4.4). They both will be reused in future.
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Chapter 3

‘The electric theory of friction

As I demonstrated in Chapter 2, the interphase drag force becomes significant for rel-
atively small values of void volume € (values close to the packing limit), exactly where
the direct attempts to solve Navier-Stokes equation become helpless. The interaction be-
tween spheres become important and we can hardly describe the velocity field as a sum
of “corrected” contributions due to particular spheres. Rather, the flow takes place in
the random constrained geometry, (dynamical) porous medium. [t is impossible, at the
present time, to construct any exact analytic solution of Navier-Stokes equation with such
boundary conditions. Traditional CFD simulations (taking advantage for example of fi-
nite volume method) appeared to be extremely expensive both by means of time required
for the computations and money spent for the massive (usually parallel) supercomputers.

The first serious numerical models of flow in porous media became feasible only af-
ter Frisch and coworkers translated Navier-Stokes equation into the language of cellular
automata (CA), creating famous LGA (Lattice Gas Automaton), [34]. Their main idea
was to create a (seriously) simplified microdynamics, which would be casy to simulate
and which in the macroscopic limit would reproduce equations describing motion of fluid,
exactly in the same manner in which NS equations emerges from microscopic description
given by Boltzmann transport equation. CA are fascinating for their own sake; they were
invented by Stanistaw Ulam and John von Neumann at Los Alamos Laboratory in the
1940’s and later popularized by Stephen Wolfram in 1980°s (see e.g. [96]). But even
with the use of these methods the task of simulating the motion of the set of bodies in
the fluid is non trivial.

Fortunately the problem of flow in the constrained geometries has already been deeply
studied in the theory of soils, see e.g. [78]), and it appears that the results obtained
(permeability of the materials) may be used for calculations of the friction. I became
especially interested in the theory of hydraulic networks utilized by Steven Bryant, Peter
King and David Mellor, [13], since their theoretical prediction for permeability as a
function of void volume agreed well with the experimental data, spanning seven orders
of magnitude. I decided to extended their theory and calculate the permeability (and
subsequently 3), for larger void volume fractions (or porosities, to use their terminology),
observed in the chemical reactors.
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The primary purpose of this chapter is to expose the hydraulic network method
and show its connection to our problem of finding 3. Since the work of Bryant and
coworkers originates from the theory of porous media I start with the description of
its fundamental equation, Darcy’s law (Section 3.1). Additionally in that section the
notions of hydraulic conductance and the permeability of porous mediwun are presented.
I show how to use them to calculate interphase drag. Section 3.2 shows the attempts
to model porous medium by means of spheres. After these introductory sections I am
able to present the original works on the network model (Section 3.3). The latter section
contains also the comparison of the network model and experimental data correlated by
Ergun (equation (2.3.25)) and shows the excellent agreement mentioned. In Section 3.4
I present the mathematical theory of linear resistor networks. The networks have several
important features that will be utilized in their analysis. The key points of the chapter
are recapitulated in Section 3.5.

3.1 Darcy’s law
3.1.1 Flow in the duct

From the theoretical point of view, an important geometry of flow is a duct. i.e. situation
when the flow occurs in straight parallel lines, Figure 3.1. Velocity u depends on 2 and
y and has only Z component, u. In the laminar regime NS equation takes the form

Viu = %G, (3.1.1)

where G = 9.p is the pressure gradient, a constant quantity.
The general solution to (3.1.1) reads

G . ‘
w=1+ 4—’“(.12 + %), (3.1.2)
where 4 is an harmonic function in 2D,

V3 =0, . (3.1.3)

satisfying the following boundary conditions on stationary surfaces

G 2, .2
h = ——(i . - (3.14
v=-1 (2% +9°) (3.1.4)
If the duct has length I and the pressure drop along it is Ap, then

ar, (3.1.5)

The volumetric low rate @ in a system is a measure of the volume of fluid passing a
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Figure 3.1: Laminar parallel flow in a duct; we are looking down the pipe, parallel to the
flow. We must solve Poisson equation (3.1.1) with Dirichlet non-slip boundary conditions
on external (S;) and internal (Se) surfaces. The picture was taken from [44].

stationary cross-section of the duct per unit time
Q= / u(z,y)dA, (3.1‘.6)
A )
where A in an area of the cross section of the duct. In general we have
Q = gAp, (3.1.7)

for fixed [. This is sometimes referred to as Poiscuille law. The proportionality constant
g is called hydraulic conductance and will be of our main interest. We can also define
superficial velocity as

_Q
U=2=. (3.1.8)

I will now analyze two important examples.

Hagen-Poiseuille flow

Hagen-Poiseuille flow pertains to motion of the fluid in the circular pipe of length [ and
radius . If we write Laplacian in the cylindrical coordinates and discard the dependence
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on ¢ we obtain

1d [ du Ap ‘
(7 E) -2, (3.1.9)

rdr
‘which after straightforward integration yields

o A[),,'z . . '
u = -—ml + alog(r) + b. (3.1.10)

~ Constant a must be taken to be zero to avoid singularity in the center of the tube and
b can be obtained from boundary condition on the surface 7 = R, corresponding to the
radius of the pipe.
The volumetric flow (cf. (3.1.6)) reads

Q=1 Ap. C (3111)

and hence conductance for such a system can be written as

TR 1

—_— 1,12
S (3.1.12)

Let us note the strong dependence on R. Exactly this is the reason for which coronary
artery disease is so dangerous: small blood vessels that supply blood (and oxygen) to the
heart increase their resistance significantly when their walls become covered with a layer

of fatty material and plaque.

Flow between two parallel walls
The geometry of the system was sketched in the Figure 3.2. Velocity u depends only on
x.

We immediately get from (3.1.1) that

Pu G
—_— = ' 1.1
what gives
w(a) = %%:1: (=~ M), . (3.1.14)

after the boundary conditions are included. Volumetric flow is obtained by integration

Q=H /u(.’v)d:u = ——f—A{‘ , | (3.1.15)
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Figure 3.2: Flow between parallel walls. Discussion in the text.
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yielding the following expression for the conductance of a section of height H

1 HM31

3.1.2 Permeability

Laminar flow in constrained geometries can be always proved to have linear flow pressure
dependence. This law was first discovered by Henry Darcy in 1856 [21] and it is usually
written in the following differential form for flow through fine materials (like sand)

k
U= —/—LVIJ., (3.1.17)

where U denotes local superficial velocity, cf. equation (2.3.2). The quantity k is an
intensive property of the medium called permeability. Such formulation again requires
separation of scales, which is however natural for the case of soils. In general & may be

a tensor.
Permeability describes the ability of the medium to transport fluids. In the SI system

its unit is defined as:

amount of permeability that permits 1 m® of fluid of viscosity 1Pa-s to flow

. . . . . 9 .
through a section of material 1 m thick with a cross-section of 1 m= in 1s at
a pressure difference of 1Pa.

In fact this unit appears to be equal to m2. SI unit it not quite handy, and in practice a
unit called darcy (D) is used. Material has permeability 1D if

in 15 1 em® of liquid with viscosity 1 ¢P (centipoise) will flow through a section
1 cm thick with cross-section 1cm® when the pressure difference is 1 physical
atmosphere.

Let us remind that 1 cP = 1 milipascal-second and the physical atmosphere is 101325 Pa.
1D = 9.869233-10~1% m?,

I will save the reader the questionable pleasure of defining units of permeability based on
pound per square inch as the pressure unit.

The quantity of our interest, /3, can be constructed from permeability & as follows.
The pressure gradient in the material due to friction is €Vp (please confront the presence
of € with (2.3.28) for example) and from the definition of 3 we get ‘

eVp = mﬁ}-j-, (3.1.18)
“hence
aft
== €~ — .1.]9
p=él (3.1.19)
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Permeability may be formally computed from the knowledge of Cper as follows

‘__24D2 €? 1 (3.1.20)
T Re 18 1 —€eCpefr’ -
—
-< >

Figure 3.3: Porous medium sample.

Let us now imagine that a material of the permeability & was used to produce a
cylindroidal sample, like on Figure 3.3, of the cross-section area A and length L. Such a
sample has conductance

kA
_ra 121
9 nL & )
Combining (3.1.19) and (3.1.21) we get
A1
— 2
f=e - (3.1.22)

3.2 Packing of spheres

The real soils are usually collection of irregular grains packed randomly and as such they

proved to be extremely complicated to model. There are however materials (for example
consolidated sandstone), which may be described roughly as a collection of (tiny) spheres.
This kind of approximation was introduced in [80] and has been successfully developed
up to these days. It may be therefore instructive to have a look at some work devoted to
packing of spheres. The review comes partially from [94].

In 1611 Johannes Kepler hypothesized that in 3D the densest possible packing of
spheres was periodic close packing (cp), yielding void volume eif,l,) =1-7/(3V2) =
0.25952. There are two regular Bravais lattices which form c¢p: face centered cubic (fec)
and hexagonal close packed (hep). It took alinost 400 years to prove this hypothesis.
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Johann Carl Friedrich Gauss showed that cp is indeed the densest periodic packing,
but the question whether there are no non-periodic packings of greater density remained
open. The final proof was presented in 1998 by Hales, after a series of papers initiated
by [41] - periodic cp of hard spheres is indeed the densest possible packing.

In any realistic model we must incorporate disorder and fortunately inuch of attention
was paid to random packings of spheres. This term is not precisely defined ([88]), but
there exist an experimental definition, namely collection of spheres vibrated upon action
of gravity in the container and left in the rest. The first investigation of such a system
was undertaken by Finney, who actually measured positions of 8000 spheres in random
close pack (|31. 32]). His research showed serious short range correlations in the positions
of spheres. The value of void volume obtained by him was e';?,’? = 0.362, what agrees with
contemporary results, [53].

It is worth noticing that the random packing of ellipsoids is denser than spheres, what
was proved by direct experiment with packing 125 pounds of almond M&M’s candies,
[23]. The reported void volume was about 0.32, beating by 4% the spheres. After the
experiment the sweets were eaten by undernourished graduate students.

3.3 Network model of permeability

The idea, that the flow in porous medium can be described as a flow in the duct (or
system of ducts) is not new and has been utilized c.g. by Fatt in 1956, [29], but I
am going to present here another work, [13, 10, 11]. As it was mentioned earlier, the
researchers were able to predict correctly the permeability, having started from almost
first principle model of porous medium.

To be more specific, they assumed that the soil may be described by a set of identical
spherical particles of diameter D, placed in the positions taken from already mentioned
Finney random packing. Further, they observed that the flow occurs along the well
defined ducts (or throats) defined by the triads if neighboring spheres; the throats connect
the tetrahedral cavities (nodes). The schematic picture of a node is presented in Figure
3.4.

If we recall now that the ducts have linear (Ohmic) flow-pressure dependence the
resultant system is an analogue of a network of resistors (volumetric flow corresponds
to the current and pressure is an analogue of potential). If we assign conductance g to
each node and calculate the total network conductance ¢, we will be able to obtain
(providing we know the macroscopic dimensions of the sample) permeability of such a
medium using (3.1.21).

There are several important issues now. First, we must reasonably identify the neigh-
bors. Sccond, a suitable model of the throat must be used. Finally we have to calculate
the net conductance; the latter task may be non-obvious once we deal with thousands of
resistors connected in random.

The natural method of finding nearest neighbors is construction of Voronoi diegram.
I will focus on this issue more precisely in the subsequent chapters, here I present only
a brief discussion. Consider discrete set of points, so called gencrators, scattered in arbi-
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\?‘
k
a ¥ \b B

Figure 3.4: The schematic presentation of the node in the network model. A, B, C & D
denote positions of the spheres. a, b, ¢ & d represent throats’ axii. All the nodes have
four nearest neighbours. The center of the (irregular) tetrahedron ABCD is marked with
S; S is understood as the center of the sphere circumscribed about the tetrahedron. The
schema comes from [11].
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trary manner in the Euclidean space Q (of arbitrary dimensionality). For each generator
G we define now Voronoi region as a subset of §2, containing points which which are
closer to G than to any other generator. It can be proved (see e.g. [69]) that Voronoi
regions are always convex. In 3D two generators sharing the face of Voronoi region are
naturally identified as nearest neighbors. In our problem the spheres’ centers form the
mentioned set of generators. If we connect each pair of nearest neighbors with a line
we obtain so called Delaunay diagram, a set of simplexes (tetrahedra); their walls form
the narrownesses of the throats, according to authors of the work mentioned. Centers of
Delaunay cells are nodes of our resistor network. Each node has degree (i.e. the number
of attached throats) exactly four. Schematic presentation of the node and four throats
are presented in Figure 3.4.

le-10 ! ! ! ? ; ;

= le-1l

<

E

;._ le-12 . :

= A

8 le-13 .,..,.'... Brvant & Blunt _.+__ B -

g : rgun (Re=0) ==~ -

g : k for Flnney packing @
16_14_ ;. ............ .......,.........,.........:...........;: .......... ~
16—-15 L 1 1 [ ] 1

005 0.1 015 02 025 03 035 04
void volume

Figure 3.5: The results of Bryant and coworkers. The length scale for Finney packing
was set with sphere diameter Dy = 0.21mm, being the only experimental input. It can
be seen that the theoretical prediction matches Ergun empirical formula very closely.

The following model of throat was adopted in the investigation. The duct formed
by the three spheres was cut into “slices” perpendicular to the direction of the flow and
each slice was regarded as conical frustum: a pipe with a radius changing linearly with
distance. The resultant resistors were later connected in series. The inlet and outlet radii
were calculated using carefully chosen linear dimensions of throat’s slice; in general the
procedure is involved and suitable only for numerical study; it was described in Appendix
of |13]. The geometry of macroscopic How was spherical: the inlet and outlet pressure
was applied to two concentric spheres.

Ref. [13] reperts two kinds of numerical experiments performed. First, the original
topology of Finney packing was left unchanged and the whole structure was scaled: both
positions of the grains and (proportionally) diameters D. This do not change the void

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. THE ELECTRIC THEORY OF FRICTION 54

voluine, € &~ 0.362. The permeability of the medium was found to be
k=TD? -~ (331)
where |
I'=6.8-10""m? (3.3.2)

The second type of experiment performed relied on the “squeezing” of the packing
along one direction. The spheres started to overlap and it was assumed that the material
corresponding to intersecting grains was removed from the system (in reality e.g. washed
out by water). This changes the void volume and, in general, is supposed to mimic actual
geological processes like cementation or grain overgrowth (in both additional material
is deposited in the system by some means). It was found that some throats became
completely blocked at € = 0.1. The percolation threshold was reached for € = 0.03, where
50% of the connections were closed and the permeability fell to zero.

The result of the calculations of permeability as the function of € is presented in
Figure 3.5. The only experimental input was an original grain diameter Dy = 0.2 mm,
understood as the grain size before deformation occwrred (and as the original spheres’
diameter used in simulation). There is an error in [10], fortunately resolved [12]: the
diameter was falsely reported to be 0.4mm. Bryant compared their results to experimen-
tal data for Fontainebleau sandstone and noted perfect agreement; their model perfectly
matched the effect of decreasing €. For comparison a permeability obtained from Ergun
formula was plotted

g = — 6—302 (3.3.3)

PTI0(1 - <
The expression was obtained from (3.1.20) and (2.3.30), in the limit Re — 0. Both results
are very close. Let it be noted that Ergun formula reaches permeability I'Dj exactly for
the void volume found for Finney packing. Moreover we can see that the predictions
casily span several orders of magnitude.

3.4 Networks of resistors

In this section [ present the matrix formalism for dealing with the networks of conduc-
tances. As we have already noted, there is full analogy between electrical and hydraulic
circuits in the limit of low Reynolds numbers. In this section I use clectric terminology. It
is assumed that all the elements express the linear (Ohmic) pressure-flow characteristic
and that all the clements are passive (real), i.e. that they not not introduce current-
voltage lags, or that we deal only with stationary flows. Tt would be straightforward
to include the nonstationary effects into the formalism; non-linearity on the other hand
poses a certain challenge.

There is a close connection between resistor’s networks and random walks (especially
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Markov chains), as suggested in Doyle and Snell monograph, |25], which contains all the
result from this paragraph (and many more), although usually without proof. Abundant
mathematical literature devoted to electrical networks exists, since they can be easily
studied, as we shall soon sce, using techniques of matrix theory (see e.g. [17] and ref-
erences therein), but the formulation from this section is mine. Markov chains (and in
general randoms walks) are deeply studied (for example [48, 56]). I believed that the
theory of random graphs might be of some help for the investigation undertaken (see
[3, 24] for a review), but I was not able to build any useful connection to the problem at
hand, partially because the structures being studied are mainly trees (since they resemble
“real world” networks like Internet), while our networks have systematic loops. Regular
(square) network of random uncorrelated resistors was studied in |7, 39]; our nets are
irregular and the values of resistors are correlated. Apart from that, we must be able
not only investigate topological, but also spatial properties of arrangements of spheres
(discs). At present, this requires numerical simulations.

The formalism presented is so called nodal-voltage approach. In electronics sometimes
dual description, based on the loops of the circuit, is used (loop-current method). We do
not use it since it is more difficult to implement.

3.4.1 Basic notions

Figure 3.6 presents the basic building block, conductance g. If there are voltages s and
ue applied to endings s and e respectively, then there will be current I flowing from s to

e given by
I=g(us—u). (3.4.1)

This is Olun law. The power P dissipated at this element is

P =1 (us—u,) = g(us — ue). (3.4.2)
We assume that ¢’s are non-negative, therefore the power dissipated is also always non-
negative.
Ug Ue
S | g e

Figure 3.6: Single conductance.

By electric network we understand a set of nodes N connected with conductances.
The set of conductances will be denoted by G. Conductance connecting nodes k,l € N
will be denoted by gry € G. Schematic diagram of the network is presented in Figure 3.7.

We divide the nodes into two categories: border nodes, in which the voltage (by means
of generator or battery) is maintained constant all the time and core nodes, for which we
require a conservation of current. The set of border nodes is denoted by B and the set
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Figure 3.7: Circuit. G denotes generators. Border nodes do not need to lie necessarily on
the edge of the circuit (like B). All nodes are connected to at least one other node, but
the degree of the core node may be 1 (A). Node cannot be connected to itself. Border
nodes are denoted with letters, the rest of the nodes are core nodes. Thick lines denotes
conductances, thin and dashed lines are just wires with vanishing resistivity.
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of core nodes by €; clearly N = B U €. The number of core nodes is denoted by & and
number of border nodes by 3. We assume that there are at least one border and one core
node. The total number of nodes is N and

k+3=N. (3.4.3)

Our term “network” is usually reserved for the type directed graphs, but we do not
use it in this context. The graphs underlying our networks are assumed to be simple,
- weighted graphs and therefore posses the following properties (k,l € N, k # 1)

e the underlying graph is connected, i.e. all nodes are connected to at least one other
node. Further we require network of core nodes to be connected, without any loss
of generality.

e the underlying graph is non-degenerate, what means that two nodes may be con-
nected by only one conductance (or none, which corresponds to conductance 0).

e the graph has no “self-loops”™; nodes are not connected to themselves

gk = 0. (3.4.4)

e the graph is non-directed

9kl = Gik. (3.4.5)

3.4.2 Matrix formulation

Let us denote by v, I € N, the potential in the node ! and by the [; current leaving
(through a generator) this node. The law of current conservation reads

I = Z gri(vg — vg) =y — Z Gkl Uk (3.4.6)
keN keN

where we denoted by 4; the sum of conductances attached to node !

"= it (3.4.7)
keN :

From (3.4.6) we immediately get the global current conservation law

d L =o. (3.4.8)
leN

We will now order potentials and currents in the nodes into vectors v and I respec-
tively. This requires the introduction of numeration of the nodes: from now on k, say, will
denote both the node (element of N) and the number of the node. We will understand
that (v), = v (in all expressions of this kind).
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We introduce now matrix notation. According to (3.4.6) we may write
I =Ky, (3.4.9)
~where K is a Laplacian of the network
K=D-A. B (3.4.10)
D is diagonal matrix, which entries are
Drr = Sramy (3.4.11)
Ot being Kronecker symbol. A is called adjacency matriz
Akt = Git- o (3.4.12)

- All entries of A are positive and the matrix has zeros on the diagonal.
It is now desirable to reorder indexing of nodes such that v and I could be written

in the form

v = (v}, Ve) (3.4.13a)
I=(1,1), (3.4.13b)

where subscripts b and ¢ pertain to border and core nodes respectively. vy, I, € R? and
ve, I. € R*. Notation (vp,ve) € RY, should be understood as a vector, which first 8
components comes from v and the latter £ from v,.

The problem of solution of the electric network inay be now stated as follows. There
are given network defined by N, B and € and fixed potentials in the border nodes vy,
Additionally we require

I, =0. (3.4.14)

What are the potentials v, at the core nodes?
This problemn resembles strongly problem of finding electrostatic potential with Dirich-

let boundary conditions
V3¢ =0. (3.4.15)

Matrix K is nothing more than discretized Laplacian, up to the fact that neighbors are
taken with weights given by gx; and our network occupies rather some kind of topological
than physical space. Let us note that the solution v, is a harmnonic function, i.e. that its
value in the node k is given by the weighted average of values in the neighboring nodes

(kee)

1
Vg = — Z!/kzvt, (3.4.16)
Y v
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according to (3.4.6) and (3.4.14). This is an echo of the well known fact that the average
of continuous harmonic function (i.e. the function obeying Laplace equation (3.4.15))
over the surface of the sphere is equal to the value of the function in the center of the
sphere.

We could write the Laplacian K in the following form, simply imposing on it its

natural block structure
B R
(5 8 )

where all the internal matrices are parts of K: B denotes connections between border
nodes, R is a scheme of connections between border and core nodes (T stands for trans-
position) and K. are connections within the set of core nodes. Let us note that K, is not
a proper Laplacian for core network (network of core nodes and core-core links), since
its diagonal elements were built using conductances of core-border type together with
core-core connections, This kind of pathology will be consequently denoted with a tilde.

3.4.3 Existence and the uniqueness of solution

Sticking to our block-like form we can write (3.4.9) as
B R Vo) Il,
@ D)6

o~

Kove = —RTvy,. (3.4.19)

We look for v, such that

This is simply a set of linear equations. We will investigate now the existence and the
uniqueness of solution v.

Theorem 3.4.1 (Network fundamental theorem). All eigenvelues o; of the network
Laplacian K are real, non-negative and its set of eigenvectors X = {a;} forms orthog-
onal basis. Zero is an eigenvalue, its multiplicity is exvactly one and corresponds to a
eigenvector @ /N, where © is a vector consisting of all 1's.

Proof. The fact that all the cigenvalues are real and the eigenvectors form orthogonal
basis follow immediately from the fact that the matrix K is real and symmetric (the proof
can be found in any quantum mechanic textbook since K is exactly hermitian operator).
The rest of the theorem may be proved as follows.

The power P dissipated in the system, when potentials and leaving currents in the
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nodes are u and I, is

| P= %Z > gue (g — ug)?

leNkeN
1 . 1 .
=3 Z Z gt — Z Z iy + 5 Z Z guks
IEN kEN IEN keN len ken
= Z wui — z Z g, = uKu =u - I, (3.4.20)
leN leNkeN

where in the last step (3.4.9) was used.
We may expand arbitrary potential distribution u in the basis X

N o
u=>) aa (3.4.21)
i=1
We assume that a; are normalized hence
a; = u-aj. (3422)
- It is easy to check that the power
N
i=1

Since for arbitrary distribution of potentials (and thus arbitrary numbers a;) power dis-
sipated is non-negative, it follows that all the cigenvalues are non-negative. The zero
eigenvalue is associated with constant vector ¢®, where ¢ € R. It is easy to check, that
once we realize that w; = const is the only vector which does not casc any current flow
in the system and hence power dissipation. Multiplicity of this eigenvalue is exactly one
following the same argumentation — any other distribution causes heating. a

Lemma 3.4.2. [If potentials vy, are set in the border nodes all the time, v, obeys (3.4.19),
6ve € R¥ is an arbitrary vector and

R* 3 v, = v, + dv,, (3.4.24)
then if we apply v/, to core nodes, the power dissipated in the systems is
Py + 6v K ove, (3.4.25)

where Py denotes the power dissipated when v, is applied to core nodes.
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Proof. The power dissipated in the system is according to (3.4.20)

B R vy
(Vb, Ve + (ch) <RT Rc) (V(.' + LSVC)

= Py + 6vKodve, © (3.4.26)

where (3.4.19) was used to cancel cross-terms. g

The following min-max principle exists. Let us recall that power is always bounded
from below by 0.

Theorem 3.4.3 (Thomson principle). Among all distributions of core potentials v, those
obeying equation (3.4.19) minimize the power dissipated in the system, providing we keep

vy fized.

Proof. Let us apply the voltage v/, to core nodes (potentials on border nodes are vy all
the time) and again vi, = v, + dv,, exactly like before. Using Lemma 3.4.2 it is enough
now to prove that dv.K.dv, is always positive, unless dv, = 0.

As we have stated K. is not a proper Laplacian for the core network

Ke = Kc + oK.,  (3.4.27)

where JK, is diagonal matrix with non-negative entries
(0Ke)py = Okt <“/1 - Z .(1m1> . (3.4.28)
meg
We have
6VeKeBve = VKBV, + 0V 0K BVe, (3.4.29)

K. being (proper) Laplacian for core network. The first term on the RHS is always
positive unless

ove =v0, veER, (3.4.30)

when it is zero (Theorem 3.4.1). Considering the spectrum of dK,, given by (3.4.28) we
see that the second term of RHS is always positive except the case when it is zero for dv,

such that
(6ve)r =0, (3.4.31)

k corresponding to core nodes. linked to at least one border node and therefore for all
core nodes, according to (3.4.30). So always P — Py > 0 and P = P iff v, = 0. a

Corollary. All eigenvalues of K. belong to Ry and therefore Rg L enists.
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Proof. Taking Lemma 3.4.2 and Theorem 3.4.3 into consideration we see that expressions
like dv.K.0v. are always positive, except when dv. is zero. Using the same type of
argumentation as in Theorem 3.4.1 we see that all the eigenvalues of K, are positive, so

the inverse exists. Symmetric matrix with this property is often called positive definite

quadratic form. O

Theorem 3.4.4 (Existence/Uniqueness theorem). If potentials vy, in border nodes are
fized there is one and only one distribution of core potentials obeying current conservation

law (3.4.19).
Proof. We explicitly give the solution

ve = —K-1R v, (3.4.32)
It exists because K exists.

3.4.4 Iterative method for finding v,

In the previous paragraph we learned how to find solution to our boundary value problem.
Here I am going to present another method, more suitable for computer simulations.

Let us consider the linear transformation T, that substitutes all potentials in the core
nodes by the averages defined by (3.4.1G). Border potentials are left unchanged.

! 0
T= (ST{jRT ﬁ‘fAc) , (3.4.33)

where A, is an adjacency matrix for core network, D, is diagonal matrix of diagonal

elements of K,

6() = Rc + A(" (3-4.34)

I3 and Og are 8 x 8 unit and zero matrices respectively. D! exists, because the network

is connected.
Let v, be solution of (3.4.19) with boundary conditions v; and define

U, = Vo + vy, (3.4.35)
ul, = v+ dv, » (3.4.36)

and
ul, = Tu,. (3.4.37)
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We have
u, = D7 'R vy + DA, (Ve + 6ve)
=D;1+ 57! (5c - Rc) (Ve + 6ve)

= v, + D;'Abve, | (3.4.38)
SO
5v! = Wave, C (3439)
where
W = D !A.. (3.4.40)

We can easily conclude that the exact solution (vy,v,) is invariant under the transfor-

mation T.
' Let us consider iterative process

u— Tu. (3.4.41)

We will now prove, that in the limit of infinite operations we reach exact solution in core
nodes v, having started from an arbitrary initial guess.
We investigate properties of W

Wi =0 (3.4.42a)

0<W;; <1, i#j o (3.4.42b)
N

> oWy <, (3.4.42c)

j=1

and for the core nodes which are linked to at least one border node the last inequality is

strong.
There is very useful theorem which allows for the estimation of eigenvalues of a square
- matrix due to Semyon Aronovich Gerschgorin [36].

Theorem 3.4.5 (Gerschgorin disc theorem). Let A be square complex matriz. Every
eigenvalue of A lies in one of the following discs

di =< z: |z—=Ai| < Z |Aijl 2, - (3.4.43)
i |
called Gerschgorin discs,

Proof. Proof comes from [1]. Let A be an ecigenvalue of A and v its corresponding eigen-
vector. Let @ be chosen such that |v;| = max; |vj|. v can’t be 0 so |v;| > 0. Now, since
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Av = Av

A =Ai)vi=)Y_ Aiju;. (3.4.44)
J#i '

Taking norm of both sides we arrive at

V;
A= Ayl = ZA,J 2L <3 IAl. (3.4.45)
J#i J#Ei _

We need somewhat different and weaker version.

Theorem 3.4.6 (Markov-Gerschgorin theorem). Let W be matriz with properties (3.4.42).
All its eigenvalues A; obey

IAi] < 1. (3.4.46)

Proof. The proof proceeds as in Theorem 3.4.5. We may note that the equality in (3.4.45)
may hold only for row ¢ corresponding to core node with no link to border node and to
eigenvector of the type ¢®. But for such an eigenvector we may chose any of the rows,
so as well the one corresponding to core node with border connection(s) and make the
inequality strong. a

It is well known [89] that any square matrix can be decomposed as follows:
W =5-1Js, (3.4.47)
where S is a non-singular matrix and J is Jordan canonical form of W
Ji
J= _  (3.4.48)
Im
and
AN 1 0 ... 0
0 N 1 0
Co . . (3.4.49)

&
1
o

o ... 0 X 1
0 ... ... 0 XN

is called Jordan block. It has corresponding eigenvalue repeated on the diagonal and
1’s on the superdiagonal. Each Jordan block corresponds to different eigenvalue Ay
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the number of Jordan blocks m is determined by the number of linearly independent
eigenvectors of W and their dimensionality by the multiplicities s; of the cigenvalues \;.
The powers of Jordan matrix and Jordan block read respectively

Jk M
© 0
= > , (3.4.50)
0 . |
L

ARMNTURINTE L keI
0 A RN RN

)= ‘ , , (3.4.51)
P 0 A kA1
0o ... O AF
 where s = s; and providing k& > s — 1. Since for |A| < 1
lim k*AF =0, (3.4.52)
k—oo
we see the suggested iterative procedure is convergent,
S LI — ) | . (3.4.53)

n—od

Let us now introduce a notion of total conductivity of the network. It makes sense only
providing that we divide our set of border nodes in two groups: inflowing and outflowing
nodes. All the nodes of the first group have the same potential U # 0, the nodes in
the latter one are kept grounded. The net (total) conductivity of the system is from the
definition

I
Jiot = —, 3.4.54

ftot U ( )
where I is the current flowing through the system. Easy calculations show that

Lot | (3.4.55)

where P, is the power dissipated in the system.

3.5 Summary

In this chapter I presented the major features of the hydraulic network model for the de-
scription of flows in constrained geometries. Its usefulness was proved by direct compar-
ison with experiment. [ also showed how to use this formalism to compute permeability
of the medium and interphase momentum transfer coefficient £.
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The mathematical theory of linear resistor networks, presented in the last part of the
chapter, gives some of their fundamental properties. It appears that the resistor networks
with Dirichlet boundary conditions can be regarded as well defined variational problem
- the solution for nodes potentials which satisfies the current conservation law minimizes
also the total power dissipated in the system. It was shown that there was only one
such solution. Additional output of the analysis was an iterative procedure for finding
potentials in the nodes; its convergence was formally proved. The advantage of the latter
method over the direct attempt to solve the set of linear equations, (3.4.19), will be seen
in the Chapter 6, where the numerical studies will be presented.

This chapter ends the introductory part of the thesis. From now on we will try to
adapt and extend the network model for the purpose of calculating 3.
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The analytic calculation of the interphase drag force exploiting the electrical network
analogy became the major goal of my work. I decided to investigate flow in 2D systems
past the (possibly disordered) arrays of cylinders, with the main axii perpendicular to
the fluid velocity. There were two major reasons for the migration to Flatland. First, it
made the problem of flow in disordered systems at least tractable in the sense of analytic
solution. Second, such studies have not been undertaken yet; there exists a rich literature
(both theorctical and experimental) devoted to flow past systems of spheres, but I am not
aware of the similar work concerning flow in the assemblages of cylinders. The resultant
porous medium is quite specific, its fragment was presented in the Figure 4.0. Except
from this, the rest of the procedure follows ideas presented in the Chapter 3.

flow

) —

—

Figure 4.0: Fragment of two dimensional porous medium.
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Chapter 4
Flow in periodic media

Study of periodic media has several important advantages. First of all we may construct
exact description of flow in the media by solving directly Navier-Stokes equation and
utilizing electric analogy matching these two solutions can on the one hand validate the
hydraulic network approach and on the other will allow us to gauge one of the models of
throat (Sections 4.2 & 4.3). Creating reliable throat functions is another important task
accomplished in this chapter (Section 4.1). Finally the chapter reports the first analytic
attack on the flows in disordered systems (Section 4.4). The latter issue is especially
interesting, since (even exact) calculation of drag for regular systems are feasible. If
there were a way to deduce the properties of realistic (disordered) networks from the
regular ones our main goal would be fulfilled. The key points of this part of work are
summarized in Section 4.5.

The chapter makes use of Voronoi methods for finding nearest neighbors, but in the
case of regular sets of generators such identification is easy. The maturer discussion of
this issue is therefore postponed to Chapter 5, where in the presence of disorder the
problem fails to be trivial.

4.1 Models of throat

Model of the slit between two parallel cylinders makes a cornerstone of the project.
During the course of my work I considered many possibilities and here I discuss the three
most important of them. The most obvious choice is to assume that the flow between
cylinders takes place between two parallel walls of length L = D at a distance M = s—D
from each other, where s is a distance between the cylinders centers and D denotes the
diameter of the cylinders. The conductance may be then calculated from (3.1.16). This
surely overestimates the friction. Below I provide two other models. The first one takes
into consideration varying size of the throat (“integrated throat”), the second one is based
on the theoretical prediction of the drag experienced by a single row of throats connected
in parallel (“Miyagi throat”).
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4.1.1 Integrated model

Reference [5] points out that the duct with varying geometry may be cut into slices.
To each slice a resistance is assigned and the net resistance may be obtained by the
integrating of particular slices.

Figure 4.1: The idea of the throat with varying geometry. The conductance of each “slice”
is computed using formula (3.1.16).

Resistance of the slice is obtained from equation (3.1.16)

9 .
%%dw, (4.1.1)

(l=s——2\/-D-4—--—m2, ze[-D/2,D/2]. (4.1.2)

Please refer to Figure 4.1 for details. The net resistance

dR =

where

D2
R= %’i / (4.1.3)
-D/2 (8 _g
with oo = s/D > 1. After the integration the conductance yields
HD?
gr{e) = Tfl(ﬂ'), | (4.1.4)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. FLOW IN PERIODIC MEDIA - B 71

where
) 5/2
ala® -1 :
fi(e) = . ( : ) (4.1.5)
3 (37ra'2 +2va? — 1(1 + 2a?) + 6a?acot ( a? — 1))
We have, for s =& D (narrow throat limit)
filae) =cla—1)"2 40 ((a— 1)7/2), (4.1.6)
and |
2V2 ‘
c= '37-; ~ 0.10. | | (4.17)

The importance of the above limit will become clear in Section 6.

4.1.2 Miyagi model

Figure 4.2: The array of Miyagi cylinders.

In [66] Miyagi investigated flow past 1D array of cylinders (Figure 4.2). Using Fourier
transform, he gave an expression for a drag in the form of power series in D/s and
subsequently extrapolated the result to the regime of narrow throats and got that the

force F acting on the cylinder is

£ comst (4.1.8)
nU  (s/D—1)*

where U denotes the velocity of the fluid far from the array. We can note characteristic
quadratic blow-up, which suggest that the conductance of the single throat in the parallel
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network may be written in the following form

DQ .
i (@ =1)2, (4.1.9)

0

gm(e) =

where y\ is an dimensionless constant. We will evaluate the optimal value of vy soon.
In general such extrapolation procedures are risky, but in this case author gave plau-
sible justification to it.

4.2 Regular array of small cylinders

The exact solution of Navier-Stokes equation for the case of flow in periodic environments
is due to Hasimoto, [45], and I utilize his work throughout the section. Hasimoto gave
the result in a form of expansion up to terms O(log (1 — €)) and only for square lattice.
I extended his work to include corrections O(1 — €) both for square and hexagonal lat-
tices. Another works, which deal with solutions for special periodic setups, are already
mentioned [66] and [59].

4.2.1 Green function

We investigate slow steady motion of an incompressible, viscus fluid past a 2D periodic
array of small obstacles, placed in the periodic lattice sites

L>3r,=ma+noay, ni2€Z (4.2.1)

a; and aq forming the basis of the lattice and L forming a set of the lattice sites. Our
problem may be formulated as follows

uViv =Vp+F Z 3(r —ry), (4.2.2a)
rn€L
V.v=0, (4.2.2h)

where /¢ denotes the viscosity, v the velocity field and p stands for the pressure. F is the
force exerted on the fluid by each of the obstacles; we assumne that the lattice is “simple”,
i.e. every obstacle is surrounded by the same configuration of other identical obstacles
and indeed exerts the same force. In 2D F is understood as a force acting on the unit
length of the system,

Since the problem is periodic we are going to work in the Fourier basis, expanding
velocity and pressure gradient respectively (i stands for imaginary unit)

V= Z vk exp(—27ik - r), (4.2.3a)
keR

-Vp= Z Py exp(—2wik - r). (4.2.3b)
keR
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R stands for the lattice reciprocal to L, i.e. lattice spanned on the basis vectors A; and
Ay, such that (i,7 =1,2)

A,‘ ca; = 6ij- (4.2.4)

Substituting (4.2.3) into (4.2.2a) and recalling the linear independence of basis func-
tions exp(—27ik - r) we obtain the relations hetween the amplitudes of expansions

) F
—An?uk?vy = —Py + =, (4.2.5a)
k-vk=0, (4.2.5b)

where we used that fact that Fourier transform of Dirac’s delta is simply a constant,
inverse of unit cell volume

Q = [lay x ag]| = A1 x Ag|"!.  (4.2.6)
Additionally, since P is a gradient of a function
k x Py =0. (4.2.7)
F can be computed from the mean pressure gradient (eq. (4.2.5a), for k = 0)
F = Pofl. (4.2.8)

For k # 0, taking the scalar product of both sides of (4.2.5a) with k and recalling relation
(4.2.5b) yields ‘

k-Pk=%k-F=k-Po (4.2.9)
or, after use of (4.2.7),
(k- F)k |
Py =g (4.2.10)

Relying on (4.2.5a), the amplitudes of velocity are

1 ((k-F)k F

), k # 0. O (4.211)

Vk = 4m28) kT k2

Performing inverse Fourier transforin and writing the results in the Cartesian coordinates
we get

vV =vg+ %GF (4.2.12a)
1’

_Up= .g +G'F, (4.2.12h)
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where the operators G and G’ are given by

1 928, SN
G = e <Sl5ij - —_B:L',-awj> (4.2.13a)
1 9%,
, T e — ——
Gij = 4 Oz;0z;° (42.13b)

The lattice sums §; and S, are

2 ik -
Si( - exp(z2mik 1) (4.2.14a)
FQ kefR’
exp( 27rnk -r
Sy(r) = 47r3§2 > ) (4.2.14b)
ke )

and the summation goes over all non-zero k’s

=R\ {0}. (4.2.15)
By explicit calculations we can get that
V325, =8y, (4.2.16a)
o 1
V23S = —dr | Y S(r—ry) - gl (4.2.16b)
rn€L

We see that the problem reduces essentially to determination of electrostatic potential
coming from a set of point-like positive charges placed on the lattice and neutralized by a
surrounding cloud of negative charge density, filling uniformly the unit cell (this is simply
description of potential of ionic lattice). It is known that the separate calculations of both
contributions lead to divergences. Presence of uniform charge density (being equivalent
to the presence of uniform gradient Pg) makes the problem convergent.

The linear operators G and G’ may be regarded as Green’s functions; they represent
the perturbation introduced into the system due to spatially periodic point-like driving
F. In the spirit of Green's technique the solutions may be superposed to satisfy non-slip
boundary conditions on the obstacles. The zeroth Fourier mode of v, vq, is the average
fluid velocity in the system and may be regarded as the velocity present in the system
before the perturbation F was introduced.

4.2.2 B tensor

The caleulations presented above are strict, but there is no casy way (in fact no way that
I would be aware of) to fulfill exactly the boundary conditions on the surface of each
cylinder. In general we would need to write down the integral equation for F with G as a
kernel. The integration is performed on the surface of the cylinder €, so that the net flow
on the cylinder surface would vanish (F stands for the force per unit area of the cylinder
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and L is its length)
L ! ! ! »
vuﬂ =vo+ 2 [ Gr - \F(')dr' =0 (4.2.17)
ree I Je
Solution of the above equation would give us F and subsequently F

F= /e F(ra(r)d', - (4.218)

“where 0(r') stands for the vector normal to the cylinder surface.

The above exact procedure is too complicated. Instead, we follow Hasimoto and use
Burgers approximation [14]. We require that the average velocity on the surface of the
cylinder must vanish (« = D/2 stands for the radius of cylinder)

(v) L vdS = 0. (4.2.19)

2ma J—q

This condition yields according to (4.2.12a)
1
Vo = —;(G)F (4.220)

or
F = —1(G) " vy. (4.2.21)
In other words, instead of a cylinder and a distribution of force, we have point like
force applied to the fluid in the center of the cylinder together with the condition that the
velocity vanishes in the distance D/2. Burgers average (4.2.19) depends on the cylinder
diameter and this is exactly the moment where the latter quantity enters our calculations.

The force acting on the cylinder array per unit volume after subtracting the uniform
pressure gradient (buoyancy) influence is

F Fra’H F
_ (5 _ 561?) - 26 (4.2.22)

where H is the length of the cylinders. Therefore the drag force Fy per unit volume for
the periodic system reads

Fp = Bvy, (4.2.23)

where

~ E/L -1
= _ 4.2.24
B=5(G) ( )

B may be regarded as tensor version of 8 coefficient. If D stands for cylinders’ diameter
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we get
1 4(1 —€) ’ » .
and hence
5 _de(l—¢ p 1 1
B= — (G)™' = FoTht (4.2.26)

B is dimensionless and depends purely on geometry of the system; we call it geometrical
modifier. In case of homogeneous and isotropic media it is simply a scalar.

4.2.3 Discussion of the symmetries of tensor G

Definition (4.2.13a) of tensor G;; indicates that the drag tensor defined for periodic media
is certainly symmetric

Gij = Gji. (4.2.27)

The above property may be proved for general permeability tensor, see vef. |77|. The
latter source states additionally that G is positive definite matrix.

In the case when the tensor is defined on a certain regular lattice we know that it
must feature the same symmetry group as the underlying lattice. If we define A as the
rotation operator (rotation of angle ¢)

A(¢) = (COS ¢ —sin ‘/’> | (4.2.28)

sing cos¢
we can write the following consistency equation
G = A~(¢)GA(¢) (4.2.29)

if the lattice is invariant with respect to rotations of angle ¢ (e.g. ¢ = 120° for triangular
lattice and ¢ = 90° for square).

Easy calculations show that symmetric tensor on square and triangular lattice must
be isotropic, i.e. of the form

G,’j = scalar x 6.L-j. ) (4230)

4.2.4 Calculation of 5, & S,

Solid state physics worked out extremely powerful method for calculating expressions
like Sy or Ss, given by (4.2.14a) and (4.2.14b), called Fwald theta transformation. The
basic exposition of this technique can be found in [9]. Tt was born in connection with
calculation of Madelung energy of ionic crystals,
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We start with the following integral identity

/ e—nszgm-ldg’ : (4.2.31)
0

1 ,n."l

kzm = I'(m)

where I'(m) is the Euler’s gamma function and define

e—-?‘lrﬁk«r
Om = f2m (4.2‘328')
keR!
/i Z / _Trl.zf 2k r€1n ldE
ke:R'
- " oo£1n—l Z @—Trk"’{—-?ﬂ'ﬁk‘l‘ -1 d&_ (4.2.32]))
L(m) Jo keR

In the already mentioned Ewald’s methods we split the integrals as the one above into
two parts, one from zero to «, and the second from a to oo, where a is an arbitrary
constant. Let us note that the parameter ¢ bears the unit of m? and so does a. The
following identity is called theta transformation

Z —mk2e—2mikr _ E Z (B—ﬂ'(l‘ rn)? /5 (4.2.33)

keR rn€L

This transformation was introduced by Ewald (see e.g. [28]) and proved formally by Born
and Huang in [8]. It allows us to write

7‘.mam r—r 1 I
Om = 7n Z ¢—m ( n) ) -t ® 2mik r(f)111—1 (7rak2) ]
ra€L
(4.2.34)

In the first integral we put £ — a/€ and in the second § — a§. ¢,,(x) is defined using
incomplete I'-function '

1
Pm (:L') = Wr1n+l (:L‘),

- (4.2.35)
T(z) = / erleéde.
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We obtain

+2 57 em2mikrgy (rak?) (4.2.368)

2
_ Z o-2miker (7mrk2) (4.2.36b)

4.2.5 Singular expansion in powers of 1 — ¢

We assume 1 — € to be a small parameter, which corresponds to small ratio D/h, h being
distance between centers of neighboring cylinders. To calculate the Burgers average
(4.2.19) of G we must be able to express S)(r) and Sa(r) for r close to one of ry’s, let us
denote the choice by . Considering that Sy (r) and Sa(r) are periodic with the periodicity
of the lattice, we take F = 0 without any loss of generality. We must now proceed with
some care, since the expansion is singular for the terms which correspond tor,, =T in
our sums.

Here we go. v; denotes ith Cartesian component of vector v. Expansion of ¢_;(z),
far from x =0, T = 71> /a

" <7r (r ; rn)‘z) Ty (T) + 20T (a1 cos(@) + rna Sill(({)))r

2
r'll

1 . . . . .
b (ned 4 (mr2 + @) (1) = 12,) cos(2) + 2t sin(20))) 12 + O (7).

riQ)
(4.2.37)
The expansion around 0 (y & 0.577216 stands for Euler’s gamma)
mr? wr mr? 4
d o [T2) =y~ 2log (_) + I p o). (4.2.38)
(8} (83 w

The above results were quoted to give a taste of the problem. In similar manner we
expand the rest of the functions: derivatives of 9,9, and exp(—2mik - r).
Next we calculate the averages (4.2.19) for » = a. Again only first few results are
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quoted

2 .
<¢_1_<f(r—;r—’i>>=ro(r)+ -TT“ +0(a!), ra#0. (4.2.392)

<¢_1 (”j»——v——ﬂog( )+—+o( 1y (4.2.39b)

In the expansions, most of the terms which vanish during the averaging process. Fur-
thermore even if the term survives, the symmetry of the lattice (especially the inverse
point, which all of the lattices under considerations posses) may cause the resultant sum
to be zero. Property (4.2.30) and equation (4.2.16a) allow us to calculate all relevant
quantities only with the knowledge of (S))

. - Q
($1)=-7—5+A+C - log(wg>+%<w—+B+D> (4.2.40)
since

925, 828y \ _
<37‘16r2> B <(‘)r287'1> =0 (4.2.41a)

8. 828 1
<—a7—f> = <353> 5(51). (4.2.41b)

1 2

The constants A, B, C and D are lattice suns and read (L' = £\ {0})

A=3T, ( ”") (4.2.42a)

rpel’
B="" e /e (4.2.42b)
[0 %
rpeLl!
Q Z o (mak?) (4.2.42¢)
keR! .
D= -7 ) k¢ (rak?). (4.2.42d)
ke

We still have a freedom in taking a value o and the most convenient choice is

a=Q. (4.243)

The above sums are rapidly convergent and may be easily calculated numerically; some
details and the results of calculation are presented in the next section.

4.2,6 Lattice sums

First we discuss briefly the properties of 2D lattice: square and hexagonal (triangular).
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Figure 4.3: Physical square lattice. The shaded region is Voronoi (Wigner-Seitz) cell; it
repeats periodically in both directions and its edges are called Voronoi edges. Dashed

lines are Delone edges, conuecting nearest neighbors.

Figure 4.4: Hexagonal lattice. The Voronoi region is an hexagon.
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Figure 4.5: The lattice reciprocal to that presented in the Figure 4.4. The Voronoi region
for reciprocal lattice is called first Brillouin zone.

Square lattice is spanned on the following two basis vectors (h stands for nearest
neighbors distace)

h(1,0), k(0,1) (4.2.44)

and its reciprocal lattice is also a square lattice with the basis:
1. 1
=(1,0), = (0,1). (4.2.45)
h h
The volume of the physical unit cell is
Q,q = h2. (4.2.46)

The lattice is presented in Figure 4.3.
The hexagonal (triangular lattice) was depicted in the Figure 4.4. The basis vectors

a) = g (v3.1) | (4.2.47a)
a, = ’2-’ (\/37 —1) . (4.2.47b)
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The reciprocal lattice basis vectors are (Figure 4.5)

A= % (%, 1> | | ' (4.2.48a)

1 1

The volumie of the unit cell in the physical space

5 .
Qy = ‘/?—h?-. (4.2.49)
For all simple lattices we have
R
a= 0 (4.2.50)

The numerical calculations of the constants mentioned were carried out using Mathe-
matica. The summation was performed over natural shells surrounding arbitrarily chosen
origin. Larger shells have more lattice points, but due to monotonic and exponential de-
cay of the functions under sum symbol, their contributions become less important. The
number of shells to be included was determined by the adopted accuracy (10~%). The
results are presented in the Table 4.2.6.

Lattice type

Sum square hexagonal

A 0.044668 0.035737
B 0.566557 0.501383
C 0.056212 0.043973
D -0.566509 —0.501020

Table 4.1: Lattice sums.

Hasimoto gave the form of second order corrections using elliptic functions. According
to this result we have for the square lattice

D= —B, (4.2.51)

which agrees with our calculations within numerical error.
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4.2.7 Results

With the knowledge of matrix elements (4.2.41) we are able to compute (G) and subse-
quently B. The results of the calculations are
32¢(1 —¢)
B = B: D =
nle) =Bal) = —— e d+(1-e(B+D+m/n
Bia(e) = Bai(e) = 0 (4.2.52b)

(4.2.52a)

and they were depicted in the Figure 4.6. The force (both friction and buoyancy) expe-
rienced by a single cylinder in the square lattice is

4
- ~ -1 : 2.
Rt = o og (ali) 5 (e 2y ¢~ ~1:8106329 (4.2.53)

b Y

7

6 ——— square
0 .
~5 --~- triangular
&

4
1]
g 3
o2
M

1

0

0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
€

Figure 4.6: Comparison of component By; for square and triangular lattice. For small
concentration both lattices have very similar properties. The tensors are isotropic; the

oft diagonal terms (Bia(e) & Boj(€)) vanish.
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4.3 Regular lattices of resistors

We will now try to calculate the drag experienced by regular lattices by means of electric

- formalism. We consider three configurations: square lattice of cylinders, and triangular
lattice in two configurations, each configuration rotated by /2 with respect to each
other. They were presented in the Figure 4.7. Let us assume that the flow takes place
in the samples of length L and width M and that L and M are large cnough so the
boundary effects are negligible.

Let us start with triangular lattice. All the throats have equal conductance and we
denote it by gg. In the orientation as in the Figure 4.7a, from the symmetry of the system
we see that the current in the horizontal throats is twice the current flowing in the inclined
nodes. With every generator (cylinder) the are associated two inclined throats and one
horizontal. The power dissipated in the system is therefore

1/.. I3 312
Pt = MLA—( I} + 2—0) =MLA=2 4.3.1
to! go ( 0 4 2 90 ( )

where I is a current flowing in the horizontal node and A is a number of cylinders per
unit area (1)

2v3 1
A= =73 (4.3.2)

The total current flowing through the system is los = (AM/h)Iy and h is the length of
the Delone edge and the total conductance of the network

M1

Gtot = I/ Prot = yorﬁ- (4.3.3)

Similar calculations for the case presented in the Figure 4.7b, give exactly the same
result. Hexagonal lattice of resistors is isotropic; we have already discussed the symmetry
properties in Section 4.2.3. For the case of square lattice (Figure 4.7¢) simple calculation

yields immediately

M

Gtot = Yo (4.3.4)
In general we can write
M
Grot =190 (4.3.5)

where 7 is a function of the topology of the network.
There is one more interesting fact about the lattices we have discussed. They are

not only isotropic but also highly homogencous. If z denotes the position of the node
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c) flow
Figure 4.7: Three examined geometries of flow in regular lattices. See the discussion in

text. Solid lines represent conductances (flow paths), dashed lines are Delone edges -
their length determines the value of conductances.
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(Voronoi vertex) projected onto direction of the flow, the pressure in this point reads
m — Gz, (4.3.6)

“where G is a pressure gradient, po/L, where pp is the pressure of inflow nodes, providing
the outflow nodes pressure is zero and the inflow nodes are in position zero. This exactly
means that the resistors are decoupled or, in other words, they do not feel the topology
of connections: the potentials in the nodes are entirely determined by their positions in
simple homogeneous manner described by (4.3.6).

Since, as we soon see, disordered arrays have many common features with hexagonal
lattice, we could expect that the above property is to some extent universal. [ called
this hypothesis uniform gradient assumption. Such law, which couples spatial and
electrical properties of throats, is essential for every attempts to solve the problem ana-
lytically in the disordered case, since all the information we really have about any kind
of lattice are strictly local. If the resistors “talk to each other” on the large scales we are
helpless.

As suggested in the Section 4.1 we write conductance go of a single throat in the form
(o = 5/D, s - inter cylinder distance)

HD?
() = = =(a). (4.3.7)

If the geometry of the system is well defined function a(e) is single value and we have

1/2
a(e) = (g) / 11_ = (square lattice) -(4.3.8a)
1/2

ale) = (Wz)/i> 11 (hexagonal lattice). (4.3.8b)

—€

Making use of (3.1.22) we obtain

L
Ble) = fn(e) 3, (4.3.9)
where the geometrical modifier reads |
fole) = —= (4.3.10)
ple) = ————. 3.
1y(a(e))

We will try to match now the solutions obtained from Hasimoto treatment and the
electrical method. This will allow us to gauge constant yy in (4.1.9). We compare fp(e)
and Bj; = Bay for hexagonal lattice. Sinee we can control the quality of approximation I
chose as a matching point such value €y, where the second order correction is relatively
small. The choice of ¢ = 0.9 yields the relative value of second correction 10%; still it is
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arbitrary. The value of vy that makes the two solutions match is
1
™ = 6= 0.0625. (4.3.11)

The results were presented in the Figure 4.8. It is instructive to compare now the inte-
grated (eq. (4.1.4)) and Miyagi (eq. (4.1.9)) model (Figure 4.9). In the region which we
are really interested in (cylinders close to each other) they match pretty well, due to the
asymptotic behavior of integrated throat given by (4.1.6).

8
10
-  electric ——  electric
6 8
---- Hasimoto B;; --—- Hasimoto By
- T 6
W i
4
N
~ ~
2 ~ ~
~ ~
\‘s 2 s~~ R
0 ~~-~. 0 ""'-..-_
0.8 0.85 0.9 0.95 1 0.8 0.85 0.9 0.95 1
€ €
a) b)

Figure 4.8: Matching of solution obtained from electric formulation and exact predictions
based on Fourier series: a) triangular lattice, b) sqaure lattice. The optimal value of )
was found to be 1/16 = 0.0625.

Figure 4.10 presents geometrical modifier of the hexagonal lattice for different models
of throat.

4.4 Phonons

What we arc really interested in is disorder. Having considered regular lattices the next
natural step is to investigate what happens if we introduce phonon-like disorder. We
must be aware from the very beginning that such oscillatory movements of particles can
by no means mimic real interactions with flowing fluid. Rather we assume a presence
of interatomic (binding) forces that are much stronger than interactions of the cylinders
with the flow field. We work utilizing the uniform gradient assumption, introduced in
the previous section.

The phonon model of disorder has no physical significance (the hydrodynamic forces
acting between particles are not binding) nevertheless I decided to elaborate it primarily
to develop somne intuition how the geometrical properties of the mediwun translate into
properties of J.
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‘Figure 4.10: Geometrical modifier of hexagonal lattice for different models of throat.
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4.4.1 Statement of the problem

We investigate disordered version of the lattice presented in Figure 4.7a. The basis of the
physical and reciprocal space were investigated in the Section 4.2.6. The three Delone
‘edges (please refer to the discussion in Section 4.3) adherent to each generator, have the

following orientations f;
. 31
f1 = (-‘/—_,-), (4.4.1a)

22
fa = (0,1), (4.4.1)
A V3 1
ry = (-5-,—'5 . (4.4](})

Each one of them have equilibrium length %, where & is interatomic spacing. Undisturbed
"Voronoi edge has length lg; please refer to Figure 4.11.

Figure 4,.11: Three adjacent gerators that form three throats associated with each cylin-
der. The equilibrium interatomic distance (Delone edge) and Voronoi edge length are h

and [l respectively.
According to (3.1.22) and (4.3.9) we have

oHM D? 1
€) = €F——— — B
fp(e) A

(4.4.2)

For several technical reasons it is casier to calculate the inverse of the above quantity:

-1 _ 1 4 L M L Ijlot I 1 1)10[.

G stands for uniform gradient present in the system. Py /(M HL) is the power dissipated
in the system per unit volume. In the spirit of constant gradient assumption we write

Ijlol = GQ Z(](al)l?a (444)

i€g
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where g(c;) and [; are conductance and length projected onto direction of the flow re-
spectively of the ith throat. We adopt Miyagi model (4.1.9) and obtain

fole)™ = 2 ATi Z’m(B - 1) 12, (4.4.5)

We assuine that vibrational motion does not change the topology of connections and that
length of the throat (I;) may be in the first approximation taken to be equal to that one
of the undistorted lattice. The above sum may be written over set of cylinders (lattice
sites) L (note the presence of }1, which comes from the uniform gradient scheme - the
length of the inclined throats projected on the direction of the flow is % of the throat

physical length)
o
o= (B ) (- G- e

and
s;1 = h+ Auy - 1, (447)

where Auy is the relative displacement of two neighboring atoms from their equilibriumn
positions, We assumed that s; is determined by the projection of the new relative
distance onto the original direction of the edge; approximation is surely justified when
small distortions are considered.

We have
12 2 1
vy 4.4.
LM~ 3/3N (4.4.8)
and further manipulations lead to
fo(e)™" = foole)™ + &, (4.4.9)

with the following notation

- 52 3\/-N7M > Zﬂ (241(— - 1) + C?z), (4.4.10)

leC i=1

where 1y = 14 = 11, T =1, § = Auyy - t;/D and fpo(e) stands for geometrical modifier
for undisturbed lattice. Obviously

fpo(e)
T 1+ Jpo(Ok N

Cylinders are considered as vibrating 2D atoms and the above expressions depends
~on time - we would like to calculate its time average. In the next section the model of

fole)
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phonon-like vibrations will be introduced.

4.4.2 Phonon formalism

Theoretical introduction comes from [63], which follows [8]. Our model of vibrating
lattice consists simply of a set of atoms connected by means of springs. For simplicity
we discuss only mono-atomic lattices, mass of each atom being m. Lattice sites are

R; = lia; +lbag, le L. : (4.4.12)

Vibrations cause atoms to lcave these cquilibrium positions and the displacement of
the [th atom is u;. They are functions of time.
Total kinetic energy of the lattice is

L 1 .
K= EmZu?. (4.4.13)
lel

The potential @ energy is assumed to depend only on the instantaneous positions of
atoms. We expand it around the equilibrium positions of atoms

O=Do+ Y > FoyPuia+ D D OauOpr Do + it (4.4.14)
leL « el af

where 1y, stands for a Cartesian component of u; and the following shorthand notation
was used

Oof = 2L (4.4.15)

Omission of higher terms in the expansion is called harmonic approzimation.
The presence of equilibrium requires that

Doy ® =0 © (4.4.16)
and since lattice is periodic
00;[(9/3;[/(1) = 0(-,;00/3;[/_1(1) (4.4.17)

where the notation dg,r_; should be understood as differentiation with respect to wuxa,
where A corresponds to lattice site Ry = Ry — R;. Only the relative cell index matters.

Hamiltonian of the system reads

H=0+K (4.4.18)
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and aided by Hamilton’s equations

OH

o = , 4.4.19
e apla ( a)
O0H
Mo = — 4.4.191
pl(l 8“[0 ? ( ]9 ))
where pjo = my,, we immediately get equation of the motion for the lattice
. o
Miljq = — = — E E Fot O, Duyp . (4.4.20)

ou
lev Vel g

The problem is linear and we will try to build our solution by means of plane waves

U (t) = Mg (K, w)e w2k Ry (4.4.21)

Here we assume that A, (k,w) does not depend on the site index [. Substitution of the
above expression into (4.4.20) yields

mw?Aq =Y Daghg, (4.4.22)
3

where the dynamical matriz reads

Dap(k) = ) Baydp @™ Bu=R) = 3" g, 495, DR, (4.4.23)
l'ek lel

We can see that D is Hermitian
D%5(k) = Dpa(K) (4.4.24)
and therefore is has 2 real eigenvalues mw?(k). D has the following symmetry
Dup(—k) = D} (k) - (44.25)
and since it is Hermitian we see that
wi(-k) = wi(k). (4.4.26)

Eigenvectors of D, &;(k) form orthonormal basis and may be constructed in such a way
that

éi(—k) = & (k). (4.4.27)

It is well known, that upon imposing periodic boundary conditions allowed values

of k will occupy first Brillouin zone () of reciprocal lattice; we have already discussed
the construction of reciprocal space R in Section 4.2.6 (for triangular lattice example see
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Figure 4.5). We will often calculate sums over all possible vectors k € Z. When the size
of the system reaches the limit of infinity these vectors start to fill Z semi-continuously

and uniformly, hence

» / d’k, (4.4.28)

1
N Z_ N—-oo
ke=

where, let it be recalled, Q denotes the volume of a Wigner-Seitz cell in physical lattice.
_ There exists the important relation between physical and reciprocal lattice. In the
thermodynamical limit N — oo (N stands for number of atoms)

> etk S Z 5(k — K). (4.4.29)

Riel KE R

We sum up solutions (4.4.21) and obtain

u(t) = Z (@Qr(k,t)e; (k) + QQ(k,t)éQ(k))mznak.R,

k€“‘

= VNQ / (Q1 (k, )81 (k) + Qalk, Hea(k))e2 kB (4.4.30)

Since w(t) is real the amplitudes Q;(k,t) must satisfy the condition
Qi(—k) = Q; (k). (4.4.31)

As a warm up let us calculate the kinetic encrgy (4.4.13) in terms of @

K=23 - uz—«mZNQ“ [J d*xd?a (@i ()81 (k) + Qa(k)e2(k))

lel EXE
- (Q1<q)él (@) + Qu(q)éa(q) )e2milktal R, (4.4.32)
Now, we interchange the order of summation and integration and using relation (4.4.29)
arrive at
N Q2 : A
= 2= [ d*kd’a (@1 ()81 (k) + Qa(k)es(k) )
=XE
(qu) 51(a) + Qu(a)éa(a) )2 KH IR S 5((k + q) - K). (4.4.33)

Ke®R

Since k and q lie in the first Brillouin zone the only vector of reciprocal space that
they can add up to is 0 and the last sum reduces to d(k + q). One integration may be
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performed immediately. Using symmetry (4.4.31) and orthogonality of &’s we get finally
g g g

) " . 2 ) 2
K= ”’gm / dlk(!Q,(k)l + ‘Qg(k)‘ ) (4.4.34)
In the similar manner we are able to calculate potential energy
mN§Q . . .
0= 22 [ ER(W01@i00F +3W0IQP).  (4439)
Using Lagrange formulation we can build the Lagrangian for the lattice
L=d-K (4.4.36)
and using Euler-Lagrange equations
oL d [/ OL
—n. v~ — 414.'
8‘1140' dt (a’dm> ‘ ( 37)
find the equation of motion for Q’s
Qi(k) + wf(K)Qi(k) = 0. (4.4.38)

We can see that our lattice can be regarded as a sumn of independent harmonic oscillators.
The solution to above equation is

Qilk, 1) = A;(Kk) (e—iw‘-(k)t+i¢§:(k) _{_(Eiwl-(k)l.ﬂéf(k))' (4.4.39)
‘We assume that amplitudes A;(k) are real. Due to requirement (4.4.31) the otherwise
arbitrary phases must yield
67 (k) = —6F (k) (4.4.40a)
6 (-k) = =47 (k). (4.4.40D)
We switch to another coding of phases

_ 87 (k) — 67 (k)

ifle) = S0 | (4.4.41a)
Bi(k) = w (4.4.41D)

«;(k) is an even function of k while (k) is odd. The transformation allows us to write
Qi(k,t) = A; (k)P K cos (wi(k)t + ai(k)). (4.4.42)

We adopt now simply Boltzman statistic to estimate A’s. According to equipartition
I \
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theorem we get that each quadratic degree of freedom in Hamiltonian accumulates energy
1
>kgT. (4.4.43)
Free harmonic oscillator has two such degrees of freedom while having energy

2 42
mw2A , (4.4.44)

so we see that the amplitude of the mode is

2kpT 172 '
(k) = . 1.4.45
At = (221) 7 (@)
' Let us substitute now the solution (4.4.42) into our expression for kinetic energy
(4.4.34)
K= %‘—2— / d*k (w? A2 cos®(wyt + 1) + w3 A3 cos® (wat + ag)). (4.4.46)

K is a function of time. The time average is defined as

(f), = lnn = / f(t) (4.4.47)
Recalling that (cos? (wt + ©), = 3 and utilizing eq. (4.4.45) we get
(H), = 1”1;—9 /_ (lzk%(waf +wiA?2) = NkgT, (4.4.48)

what is exactly what we would expect from equipartition theorem.

Furthermore, we would expect, that some kind of ergodic theorem should hold indeed,
under some assumptions made upon phases «;(k). Since k is in fact discrete variable we
can enumerate «’s, let say that their munber is §. Now we can arrange these phases info
vector and let us denote the set of these vectors as R

x e [0,27]° =R (4.4.49)

and the probability of the given realization of phases as w(a). Ensemble average may be
constructed as follows

(fe = /N d®af(a)w(a). ' (4.4.50)

When we calculate ensemble average of kinetic energy (I),, it appears that we can recover
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result (4.4.48) only when the phases are independent, i.e. uniformly distributed over ®

1
w(e) = s

(4.4.51)

The same conclusion can be drawn for any other observable. We can regard this result
as analogue to molecular chaos assumption introduced in Chapter 1.

4.4.3 Triangular lattice case

As a specific example we consider now triangular lattice with nearest neighbors harmonic
interactions, specified simply by a spring with the constant x, Figure 4.12.

Figure 4.12: For hexagonal lattice with nearest neighbors interactions there are only
six terms which contribute to the dynamical matrix, i.e. there are only six terms in the
expression for total potential cnergy that depend explicitly on the position of zeroth
atom. They were marked symbolically with springs ~~~~.

Let us try to calculate dynainical matrix (4.4.23) for such a case. The part of potential

energy that depends on the position of the arbitrarily chosen zeroth atom is

&=t 5 3 (B (s w0))?, (4.4.52)

y=1

where the summation goes over nearest neighbors of zeroth atom and directions of nearest
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neighbours #; are given by

by = (0,— | (4.4.53)
by =( \/§,1)/2, - (4.4.53b)
= ( V3, 1) (4.4.53¢)
ps = (0,1), (4.4.53d)
(\/?7, —1) /2, | (4.4.53¢)

be = ( —1) /2. (4.4.53f)

The components of dynamical matrix (4.4.23) read (k = (ky, k2))

Dy = —3;{,(—1 +- (\/5\/._3—71‘}61) cos (7rk2)), (4.4.54a)
Djo =Do; = \/gli(\/g\ﬂ\/gﬂkl) sin (mka), (4.4.54b)
Dog = —n(—B + cos (\/§7rk:1) + 2cos (27ri.:2)). (4.4.54c)

What will happen now is sometimes referred to as Debye or long wave approzimation.
We will assume that only relatively long wave lengths are important for the problem: our
aim is to calculate the distortion of the lattice. w(k) is in general increasing function of
k and hence, according to (4.4.45), amplitudes of waves with large & are suppressed. I do
not quote results of calculations of the eigensystem of D in full, instead I give first order
approximation, suitable for small k; and ky. Eigenvalues are

wi(k) = %ﬁ%kQ = s2k?, (4.4.55a)
wy (k) = 3()72r—2%k2 = s3k* (4.4.55b)
and corresponding eigenvectors
é(k) = ik (longitudinal waves), '(4.4.5611)
éy(k) =1iq (transverse waves) (4.4.56b)

where q is a unit vector perpendicular to the direction k of the wave vector. The imagi-

nary unit was added to fulfill the symmetry requirement (4.4.27).

[t can be noted that the lattice is anisotropic — the velocity of sound s; depends on
the polarization of eclastic wave. Since we are going to obtain only qualitative results we
discard this property and assume that it is legitimate to use some kind of average, or
global, velocity of sound s

wi(k) = wa(k) = sk. (4.4.57)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



'CHAPTER 4. FLOW IN PERIODIC MEDIA 08

Our first Brillouin zone is hexagon, but we will approximate it simply with circle of
the same area and radius given by

ko = (w2) 172, (4.4.58)

Let it be noted that for small values of k, i.e. for long wavelengths, directions of
polarizations are parallel or perpendicular to direction of propagation. Similarly, the dis-
persion relation is linear. This is not the case when we do not make any approximations.
The presented equations describe properly long waves. Our formalisin resembles classical
electromagnetic field in vacuwn, except for the fact that that our k’s are constrained to
E (we could call it EM theory with cutoff &p).

4.4.4 Calculations of «k

We must first calculate the average of the following two sums

(71{ = -]lv Z Auu . f‘i . (4.4.59&)
lel '
no__ 1 A N2 =
o; = N g; (Auy - 1), ‘ (4.4.59b)

where, according to (4.4.30),

Aug = VNQ / d2k(Q1 (k, £)81(K) + Qa(k, £)és(k)) x
x @2mik R (eQ”"’k'f" - 1). (4.4.60)

Using eq. (4.4.29) we get immediately
ol = 0. (4.4.61)

The latter sum is a bit more complicated

of = % > NQ? f f d’kd®q(Q1 (k, t)é;1 (k) + Q2(k, t)éa(k)) - i y
lel ZXE
x(Q1(q,t)é1(q) + Q2(q,t)é2(q)) - i x
x@'lwi(k+q)'Rl x

% (®21rizk~f~i _ 1) (®2rriqvi"' _ 1),  (4.4.62)
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but it reduces (again (4.4.29)) to

@ [ KI(@(a 06 (@) #i+ Qala,eala) - £ x
x2(1 — cos (2mk - £;1)). (4.4.63)

Now we utilize (4.4.42), (4.4.45) and our simplification of first Brillouin zone (¢ stands
for the angle netween k and ;)

i _ 2kTQ

i

27 ko 27
/ dp kdkﬁ(l — cos (2mka cos @)), (4.4.64)
0 0

ms?
where T is

T =cos? (skt + o1 (k)) cos® ¢

+ cos? (skt + aa(k)) sin® @ _
+2cos (skt + «y(k)) cos (skt + aa(k)) cos psin g cos(AB) (4.4.65)
and
AR = Bi(k) — Ba(k). (4.4.66)
(o), = (oty, = 22T 7 0 1™ 4k (1~ cos 2mbhcos )
tle P ms? P 0 k - 14
= Mw:’kgh'—’k, (4.4.67)
ms?
where
R = [*(~7*k3h?) ~ 7.406467 | (4.4.68)

and f*(z) is one of the generalized hypergeometric functions
F@) = F3(1L,1),(2,2,2), 2). (4.4.69)

Please note the lack of the dependence on 7, i.e. on the direction of the throat. The
change in the inverse of geometrical modifier k, given by (4.4.10), reads

271"2 I~<’)’M /\’TBT
= . 4.4,
® 3V3€2(1 —€) ms? (4.4.70)

Now we can calculate geometrical modifier for the disordered lattice (4.4.11). Within
assumptions made, the thermal disorder always leads to the decrease of the drag.

The above expression is particularly simple in the case of Miyagi model, since it has
characteristic quadratic dependence on the separation of the two cylinders constituting
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the throat. In any other case the calculations would be much more difficult.

We can notice in the equation (4.4.70) the competition of two energy like-expressions:
ms?, the elastic energy associated with deformation of crystal and kT, the energy of
thermal fluctuations. Neither temperature here, not the elastic constant, determining
s, have any direct physical meaning, they just allow us to control the presented model
of disorder. Non-zero temperature means that the atoms are vibrating, and as it has
already been mentioned it always leads to decrease of the drag. Large stiffness of material
(yielding large s) causes the displacements due to thermal motions to be small.

4.5 Summary

Investigation of Hows in constrained geometries brought us several advantages. First of
all, by introduction of geometrical modifier function, (4.3.9), we could finally justify the
claim, that for small Reynolds numbers the drag can be regarded as a function of the
topology of the system and the single dimensionless parameter . We could see where
the topology enters the game and how to deal with it.

Another outcome of studying regular media was more reliable model of throat. To
gauge a constant in Miyagi model (4.1.9) we matched electric and exact solutions. The
outcome of these studies was an observation that flows in regular lattices appeared to
have series of non-trivial symmetries. 2D periodic media are not only isotropic (providing
the underlying lattice has sufficient symietry), but also highly homogeneous. The latter
observation was called uniform gradient hypothesis (equation (4.3.6)); we will try to use
it also for irregular networks.

As pointed in [37], Voronoi diagram for a set of discs interacting via hard-core poten-
tials may be regarded as “disordered” honeycomb lattice - it seemed to be instructive to
investigate the influence of disorder on the drag force. As the first toy model of disorder
we shook the triangular lattice by means of artificially introduced phonons. This exercise
was primarily meant to understand how the impact of disorder should be (in general)
incorporated into the geoemtrical modifier.

In the next two chapters we will try to learn how to incorporate the more realistic
model of disorder into the formalism of hydraulic networks.
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Chapter 5

Stochastic geometry

Previous chapter brought us some insight into the flow in regular porous media; our main
concern is nevertheless simultaneous flow of particles and fluid. This requires in general
the solution of Navier-Stokes equation with dynamic boundary conditions on the surface
of the bodies. The formalisin was presented in the Section 1.3; there is no method
(neither analytical nor numerical) that would be able to exactly solve the presented
problem. For example Batchelor’s solution, discussed in Section 2.4.1, utilizes model of
spatial correlations between flowing spheres, which is completely unaffected by the flow
field - simply it is assumed that the spheres cannot overlap. In the first approximation it
seems to be justified to retain this assumption and calculate the drag averaged over some
artificially constructed ensemble of spheres’ (discs’) configurations. It might be regarded
as infinite granular density assumption — motion of grains coes not depend on the motion
of fluid and it is driven solely by the collisions between grains. We can recall that the
the same assumnption of spatial homogeneity was made by Batchelor in reference [6]. We
reuse it here in the context of hydraulic networks. In Chapter 7 a possible way of putting
the fluid dynamics back into the system will be presented.

5.1 Uniform gradient hypothesis

The major problem with the application of hydraulic network method lies in the fact that
we are not able to deduce the net conductance of the network solely from the knowledge
of the values of resistors. The way in which they are connected, i.e. the topology of the
network, is crucial when determining the total conductance. We were able to overcome
this issue in case of regular lattice taking advantage of the periodicity and high symmetry
of the regular lattices. The uniform gradient assumption is a plausible, but still heuristic,
way of doing the same in the disordered case. At the present moment, without such a
simplification, we are helpless.

The idea of uniform gradient was introduced in the previous chapter, where we noted
that for (at least some) regular lattices so called uniform gradient property held. Re-
sistors in such a lattice arc independent. It means that if we disconnect them and set
the potentials in their endings according to mean field rule, (4.3.6), neither the power
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produced nor the total resistance will change with comparison to original lattice and the
current, will be automatically conserved.

Let us first apply the idea for a single resistor. What we need is a joint probability,
p(g,v), that the resistor has a conductance g and the pressure drop across it is v. Let
us denote the number of throats per unit area as A. The total power dissipated in the
system is

o0
Py = LMA J gvp(g, v)dgdv, (5.1.1)
0

where L is the length of the system and M is its width. The net conductance of the
system can be calculated as

I¢ _———
JtOl. (GL)2 3
where G is the macroscopic pressure gradient in the system. With aid of equation (3.1.22)

we can calculate g as

o HM (GL)? » G2 1
B=¢€ o e : (5.1.3)
L LMX [[y* gvp(g,v)dgdv A 17 9'v3p(y, v)dg'dv

where ¢’ stands for conductance per unit height of the throat. All the quantities on the
right hand side are intensive. The above expression is exact, but useless, unless we can
give p(g’,v) explicitly. Now comes the simplification and we write

(g, v) = (g, )Glcos ¢, (5.1.4)

where [ is the length of the resistor (the length of the corresponding Voronoi edge)
and ¢ the angle that the resistor makes with the macroscopic direction of flow. The
simplification encompasses two steps. First, we related the topological property (pressure
drop v) to spatial properties of the throat and second, we postulated simple form for this
dependence (in the spirit of uniforin gradient). Plugging this expression into equation
(5.1.3) yields

2
(g'1%)

Once again we have convinced ourselves that 3 is purely geometrical quantity; the state-
ment is true even without any approximations.

In general we could include the impact of the correlations trying to investigate not a
single resistors, but larger structures immersed in the pressure field of constant gradient,
Figure 5.1. The pressure in the peripheral nodes is set using uniform gradient assiunption,
the pressure in the internal nodes results from the flow of current. I could be expected that
having taken the average over sufficiently large cluster, the permeability of the network
could be reproduced with an arbitrary accuracy. In the case of any shape and size of the

3= (5.1.5)

>’| Mo
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a) b) c)

Figure 5.1: Structures that might be considered in the uniform gradient approach. The
lines represent resistors; the empty circles o are the nodes in which the pressure is set
according to mean field. The pressure in the rest of the nodes is such that the flow in
them is conserved.

cluster the calculations proceed in the similar way.

The current chapter has the following structure. First, I discuss possible models of
random points arrangements (with substantial focus on the models preserving hard core
distance between points) and subsequently several methods of their statistical descrip-
tion. Next, a more formal introduction of Voronoi/Delaunay tessellations is provided
and supplemented with the methods of their stochastic analysis. The methods presented
should, in principle, allow us calculation of the probability p(¢’,!).

5.2 Random point fields

The definitions come form [83, 84]. The notion of point field or point process may be
introduced very formally in the language of measure theory; this is not necessary on
this stage of the work. We consider only 2D patterns. Random point field is a subset
@ = {xn} C R?, with the following two properties

i. @ is locally finite, i.c. each bounded subset of R? contains only a finite number of
the elements of ¢,
ii. ¢ is simple what mean that x; # x; if i # j.

The family of all ¢'s with the above properties is denoted by N.

One remark. The fascinating use of random point fields is that they may be regarded
as patterns (point sets) or as measures. We denote ¢(B), where B is a Borel set, as the
number of points of ¢ in B and define integral as follows

/B F@)pdn) = 3 1p(xa)f(x0), (5.2.1)

X €Y
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where the indicator function is

1p(x) = {(1) g ; i;. (5.2.2)

Probability that B contains n points of ¢ is denoted by P(¢(B) = n). (p(B)) stands
for mean number of points of ¢ in B and it is called intensity measure, A(B). We treat
@ as a random variable.

A point field ¢ is called homogencous (or stationary) if ¢ and the translated process
wa = {X, + A} yields the same probabilities, i.e. P(¢(B) = n) = P(pa(B) = n). Simi-
larly the process is isotropic if the rotation of the rotations of the field keep the probability
invariant. Random point field we consider will always have these two properties.

If K ¢ R? is a compact set (closed and bounded) then the emptiness probability is

defined as
void(K) = P(p(K) = 0). (5.2.3)
Second order moment measure ;11?) denotes the following average
3 (By x By) = (p(B1)¢(Ba)) <Z > 1, (x 11132()')> (5.2.4)
XEPyEP
while the factorial moment measure o stands for

a®(By x By) = (o(B1)(¢(B2) — 1)) = <ZZBBI ), ( )> (5.2.5)

XEP YEP
x#y

Often a(®) has density function (second order product density):
a® (B, x B) = /B /1 x1 d?xp ) (%1, %3). (5.2.6)
14 B2

The last quantity has an infinitesimal interpretation: of By, Bs are two infinitesimally
small disjoint Borel sets of volumes dVi, dVy and if x; € By and x3 € By then

PP (x1, x0)dVidVy = N2dVydVa (5.2.7)

stands for the number of processes that place points both in By and Bs. Or, when infinite
and ergodic processes are considered, number of pairs of points in ¢ from which one lies

in By and the second in Bs.
Quantity ga(x1,x2) = p@(xy,x0)/A? is called pair correlation function. The higher
order correlation functions ¢, are defined in such a way that

Ngn(X1,X2, ... X )2 d?%y ... d?%, (6.2.8)
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stands for the number of processes that put points in elements d?x,, centered at X,
(m=1,2,...n).

5.2.1 Poisson point field

The prototype of all point processes is Poisson point field defined by its two fundamental
properties:
i. if By... B, are disjoint Borel sets, ¢(By)...@(B,) are stochastically independent,

ii. for any bounded Borel set ¢(B) has Poisson distribution

ML(B))*¥
Plo(B) = k) = 2 o arBy), (529
where A is called point density, i.e. number of points per unit volune, and L is the
Lebesgue measure of B.

In the case of Poisson point process points are scattered completely randomly, they do
not interact with each other. We have

A(B) = (p(B)) = AL(B). (5.2.10)
We immediately see that
void(B) = exp (—AL(B)). (5.2.11)

All correlation functions, gy, like in the case of an ideal gas, are identically equal to 1.

5.2.2 Hard-core point processes

The interactions of grains in the fluidized system may be very well described by means
of hard-core pairwise potential with range D equal to the diameter of the disc/sphere.
Therefore we should primarily investigate properties of the point processes preserving
this minimal distance. Let us note that the problem immediately starts to complicate.
D introduces the second (1/v/X being the first one) length scale; these too scales are
usually not separated, especially for dense systeins,

Matérn processes & SSI

There arc three types of hard-core point fields, which are constructed by specially con-
structed inhibition rule: Matérn process type I & IT ([64]) and simple sequential inhibi-
tion (SSI). In all of these processes points are scattered randomly (Poisson field) without
preserving HC distance. At the time of scattering each point receives a birthmark ¢, rep-
resenting time of birth. The differences in spheres’ inhibition algorithins are presented in
the Figure 5.2.

Let us suppose that only the four points were scattered. Point D will be retained (in
all types of processes) regardless of its birthiark, since it does not overlap with anything.
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Figure 5.2: Idea of inhibition algorithins in Matérn and SSI processes. Small black dots
represent centers of the discs, the circles are excluded regions. Shaded circle is a “ghost
area” in type II process. Please refer to the description in the text.

In the Matérn type I process all intersecting discs are removed (A, B and C). In the type
IT process if two discs overlap only the one with the lower birthmark is retained, hence
we need to remove both A (because of B) and B (because of C): only C and D survive.
We see that the latter schema introduces “ghost arcas” (B). Recognizing it leads to SSI:
if we removed point B right after its birth (because of the presence of C) it would not
interfere with A and A would be retained. This is the most natural method of creating
hard-core point ficlds. Immediately after the new point is added we check if it overlaps
with the points already present and if this is the case we remove it instantly. In the other
case we let it be.

The densest possible packing of discs in 2D is the traingular lattice mentioned in
Chapter 4. Combining (4.2.49) and (4.2.50) we see that that minimal void volume is as

low as

2D T .
€p =1~ m =~ 0.0931. (5.2.12)

Random packings are usually ill defined in 2D, since they can bear similarities to tri-
angular lattice; we will come back to this problem in the next section, but they may
yield € lower than 0.3. The three mentioned processes bring much larger void volumes.
According to [83], the intensity for the Matérn type II is

1— (P-—/\WDQ
D% ’

where A is the intensity of the underlying Poisson point process. If we let A approach
infinity we see that the minimal void volume for tis process is -} The type I process leads
to even lower concentrations. The lowest void volume for SSI was found numerically

(5.2.13)
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to be 0.587, [92]. Although we are in general interested in much denser discs systems
I believed that the models presented here were important since there is a possibility of
their analytical study. There exists analytical form for the pair correlation function for
‘Matérn type II process. In the limiting case of A — oo

y_J0  (r<D) .
9(r) {QIL(D; (> D). (5.2.14)

where

—’—) -3 L /AD? —¢2 (5.2.15)

I(r) = 2nD? — 2D% arccos | —
() ™ 2D ll'C(OS<2D

The pair correlation functions for some interesting cases are presented in the Figure 5.3.

3 L ] 'I ] | ] | L} |
"
25 F :: 4
boundary 113
2 lofexicudedii -
—_ region\:'._
= ]
% L5r :‘I (2)! l'“‘\ -
] \ roN
y oy i
os| '
O 1 : 3 g ) 2 2
0 05 1 15 2 25 3 35 4

Figure 5.3: Pair correlation functions g(r) for several points patterns discussed. (1) Pois-
son process (ideal gas); (2) Matérn type II given by (5.2.14); (3) dense random packing,.
The last shape is very characteristic for processes with repulsive hardcore interactions.
Figure was adapted from [83].

Gibbs hard-core process

Gibbs processes are simply configurations of gas atoms interacting with the given pair
potential. Liquids of hard discs were studied thoroughly, both numerically and analyti-
cally. Despite the apparent simplicity of interactions they express rich behavior; see [62]
for references. The systems is believed to undergo phase transition. Around € = 0.29
fluid (gascous) phase changes into “hexatic-phase” possessing quasi-long-range bond ori-
entation but no long-range translational order. For even lower void volumes system has
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to exists in the solid phase, with distinct peaks in the Fourier spectrum.

The pair correlation function for dense systems of spheres features not only “excluded
region” for < D, but also high peak at the edge of it (Figure 5.3); presence of such
peaks is always a sign of the emergence of order in the system; we could notice it even for
the very dilute Matérn process. After a minimum the second peak occurs at the distance
2D, the next is a bit closer than 3D. Gradually the function reaches its asymptotic value
1, indicating the lack of long-range correlations. The characteristic nearest neighbor peak
was substituted by Batchelor with a delta function.

There are several analytic results, which try to approximate g(r) for the HC case, like
BGY approximation or Percus-Yevick theory, please refer to [42].

Since the HC model can yield much higher densities I decided to use this model in
the numerical simulations.

5.2.3 Kirkwood approximation

Unfortunately there is no easy way to calculate higher order correlation-functions. It was
suggested [58] that they might be obtained by means of pair correlation functions; this
is so called Kirkwood approzimation:

123 = 12913923, (5.2.16)

with the notation gy = ¢g(x;,xx). The above relation is exact for the case where there
would be no 3-body correlation; this is not true even if the potential is pairwise. Higher
functions may be, in general, approximated in the same manner,

5.3 Introduction to Voronoi diagrams

The comprehensive review of properties and applications of Delaunay and Voronoi dia-
grams can be found in [69] and the following definitions and theorems originate there.
Let G = {g1,&1,...,8:} C R?, 3 < n < 00, be a finite simple point field, i.e. g; # g; for
i# J, 1,7 <n. gi's are called generators. The Voronoi polygon (region) associated with
generator g; € G is denoted by V(g;) and equals

Vigi) = {x: lIx— &l < [lx—g;ll,j #i,7 <n}. (5.3.1)
The set of Voronoi polygons
V() ={V(ei): & €S} (5.3.2)

is called Voronoi diagram induced by the set of generators G.
The boundary OV (g;) may consist of line segments, half lines or lines. If e(gi, g;) =
V(gi) N V(g;) # ¥ and it is not an empty set, then e(gi, g;) is called Voronoi edge. 1f
e(gi, g;) is a Voronoi edge, generators g; and g; are adjucent. &€ stands for the set of
edges. The end point of Voronoi edge is called Voronoi vertex; their set is denoted by Q.
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Let us denote by G} set of generators, whose polygons share the Voronoi vertex q; € Q.
Delaunay region is defined as

Ti=<{x:x= Z lig;j, where le =1,1;>0 (5.3.3)
g;€9; J

and
D= {(T}) (5.3.4)

is called Delaunay pretriangulation. In the same manner as before we define Delaunay
edges and vertices. Delaunay edges connect adjacent generators.

The example of Voronoi/Delaunay diagram for ten points was presented in the Figure
5.4. The physical significance of the Voronoi diagram had been already explained in
Section 3.3.

Figure 5.4: Example of Voronoi and Delaunay diagram for 10 points. Vertex G is called
degenerated since it has rank larger than 3.

If the number of edges originating in every Voronoi vertex is exactly 3, the diagram
is called non-degencrated. In this case every Delaunay region is a triangle and the pre-
triangulation is simply a triangulation. In the other case some Delaunay regions are
polygons with more than three edges and they may be divided into triangles to produce
triangulation, but this operation is not unique. Such situation happened in the presented
example: vertex G is degenerated and the quadrangle ABCD may be divided into trian-
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gles by adding Delaunay edge AC or BD. The extracted Voronoi and Delaunay diagrams
were presented in the Figures 5.5ab respectively.
Every Voronoi and associated Delaunay diagram posses the following properties:

~ (P1) A Voronoi edge is part of perpendicular bisector of the two adjacent generators
constituting this edge.

(P2) A Voronoi vertex is the center of the circle circumscribing the generators, whose
regions are adjacent to that vertex.

(P3) The circle from property (P2) contains no generators in its interior. From this it
follows that all Delaunay regions can be circumscribed by a circle and this circle is
empty. This property is called empty circle law.

(P4) Voronoi region always contains the corresponding generator in its interior. If the
the region is finite it is a convex polygon.

(P5) Voronoi diagram partitions the plane into as many region as the generators.

(P6) Two Voronoi regions do not share two or more edges as a common part of their
houndaries.

Furthermore if we assume that the diagram is non-degenerated, n > 3 and that not all
generators lie on a single straight line we have

(P'7) All Voronoi vertexes have rank exactly 3.

(P’8) All Delaunay regions are triangles.

5.4 Local configurations for Poisson fields

The presented methods were developed by Collins [18] to investigate properties of fluids.

5.4.1 Distribution of Delaunay edges

Let us consider triangle as presented in the Figure 5.6. It is known that the probability
that the Delaunay region is not a triangle is 0 for Poisson field. The number of triangles
in the 2D field with N points occupying volume V is from the definition (5.2.8)

/\3.(/3(}(] y X9, X;;)(FX] (12)(2(12)(3. (5.4.1)

According to the empty circle law, (P3), page 110, such triangle (x1,X2,x3) is Delaunay
triangle if the circle v is devoid of further points. Let us denote this probability by
- E(x1,x2,x4). Since the fluid is homogencous and isotropic we can expect that both gs
and E should be solely functions of (0,7, s), sce Figure 5.6. Let us denote by 3(r) the
density of probability that randomly chosen Delaunay edge has length ». If the average
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a

Figure 5.5: Extracted Voronoi and Delaunay diagrams from the presented example. Cir-
cle @ circumscribed on every three generators forming Delaunay region contains no gen-
erators in its interior.
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(3) e

(2

Figure 5.6: Delaunay triangle. The Figure is reproduced from [18].

number of nearest neighbors is ¢, the number of Delaunay edges with the length in the
range (r,r + dr) is

gN(r) = \* /(l2x1d2x2(12x;3g3(x1,x2,x;;)E'(x1,x2,X3) (5.4.2)

and the integration is performed over the subset of configuration space for which ||x; — xa|| =
7. If we switch the paramneterizations

(xl, X2, X:}.) - (X] s ¢v 7 07 S) (543)
we obtain the following
, . 2T m o0
qNp(r) = rA3 / d*x; / dep / dH/ sdsgs(6,r,s)E(0,7,s). (6.4.4)
Jv 0 Jo 0
As we have seen for the Poisson field the emptiness probability is (cf. (5.2.11))
E(6,r,s) = exp(—=ArR?), (5.4.5)
where
2 < 2 2 s
R=R(0,rs) =5 —218c08 (5.4.6)

2sind
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is the radius of the circle 4. As shown in [65] ¢ for Poisson field is equal exactly G.
Integration over x; and ¢ can be performed immediately and we obtain

() _ [T /oo, 2
v _/0 (10' A sds exp (—prRR?). (5.4.7)

The evaluation of the latter integral will become feasible if we switch the parameterization
one more time

0,7,s) — (0,7,1).  (5.4.8)

We must proceed with care, since for acute angles 8 the mapping is not 1-1, as shown in
the Figure 5.7 and we have (0@ < 7):

s+ =rcosf £ V12 — r2sin? 0. (5.4.9)

7 € (r,rsinf) corresponds to s_ while € (rsinf,o0) to sy. The range (rsinf, 00) is
swept two times for acute 6. In the case of § > 7 only s is possible and ¢ € (r,00)

Figure 5.7: Transformation (5.4.8) is not 1-1; for acute angles 8 single value of t = |AB| =
|AD] corresponds to two values of s: s— = [EB| and s; = |ED)|.

Jacobian of the transformation is

Jem et | (5.4.10)
t2 — r2sin% @
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Thus we have

il /2 r \ ) ‘
3‘”(2’) = / d()( / dts_Je > 4 / (lts+.]e_)‘”Rz>
TA% rsinf rsinf

/ (19/ dt s Je R
/2

/2 ™
- / do(Iy + I + I) +-/ oIy + Is), (5.4.11)
JO w/2 .
where
r t@—alQ/(Tz sin? 0) ) T
L = 27'/ dt cos 0——— = 1“ cos 0 sin fe ™ \/ierf(\/alcot 8)), (5.4.12a)
» rsin0 t2 —r2sin% 6 @
—nl /(2 sin? 0) 9
I, = / dt cosH = 2 cos §5in °— \ﬁelfc(\/—lcot 6), (5.4.12b)
: 2 — 12Z5in 0 2
Iy = / dt te—at'/(r"’ sin?0) _ r? sin® 003-(1/si1120. (5.4.12¢)
' r 2a
Amrr?
a=Z (5.4.13)

and the error and complementary error functions read respectively

erf(z) = 2 / e "dt, . - (5.4.14a)
™ .Jo
erfc(z) =1 — erf(z). (5.4.14Db)
Now we obtain
3Y(r) _ : |
T = Ii+ I : (5.4.15)
where _
T [7/? s
Iy = cn‘.“\/;/ df cos fsinf erf(v/acot ) = 3 erfc(v/a), (5.4.16a)
0
/2 . Y/
Iy = l/ df sin? G~/ 0 = }-(ﬂe"" - -71(2(1 - l)erfc(\/ﬁ)) (5.4.16b)
a Jo a\ 2 4
Finally we arrive at
A2 [ —am2/4 1 AT :
bilr) = _ 14 ey . . 5.4.1
(r) 3 (\/Xe +5 erfc [ 1 (5.4.17)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. STOCHASTIC GEOMETRY 115

Collins quotes this result without explicit calculations.
Since Poison field has only one parameter it is possible to introduce normalized length

scale
1
L= Srvam (5.4.18)

After changing variables as above we obtain the universal distribution of the normalized
lengths of Delaunay edges:

1/7(1) = g/(%m_ﬂ + erfe />. (5.4.19)

Quantity of interest might be integrated probability

~ Lo 1
(1) =/0- dé (&) = §l<l - 36\3/% ) + (1 - g—lQ> erf (1). | (6.4.20)

The distributions are plotted in the Figure 5.8,

l Y T T _._r- ™

L d o

0.8 .’ ]
0.6
0.4
0.2

0

integrated density ==-=

Figure 5.8: 1/~)(l) and \i(l) for Poisson field. Lengths are in the universal units.

5.4.2 Joint probability

Even if we want to utilize uniform gradient approach for a single resistor we must at least
know the joint probability s¢(r,!) for lengths of corresponding Delaunay (1) and Voronoi
(1) edges. This requires the investigation of properties of two neighboring Delaunay
triangles, spanned on four points, see Figure 5.9. Two neighboring triangles form two
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valid Delaunay triangles if both of the two circles spanned on them are empty.
As before we can write

gN (1, 1) = X /(l2x| v d?xg ga (X1, X2, X3, %4) E (X1, X2, X3, X4) (5.4.21)

and the integration is taken over such configurations for which the two triangles are
indeed two neighboring Delaunay triangles and for which » = |AB| = const and | =
|0102| = const. The emptiness probability for the two overlapping circles is

E(x1,%2,X3,%1) = B(r,l,z) = exp(~v), (5.4.22)
where the area of the overlaping circles is

V=

o=

T, . . 1,. [ -2z
Ir +=(1% + 1% + 42%) — = (2 + (I - 22)?) arccos =
3 ) = 307+ (1= 20)7) awecos VT4 (1= 22)?

[+ 2x
r? 4 (1 +22)°

- %(7'2 + (I + 22)?) arccos ( > (5.4.23)

The circles always overlap and one circle cannot encompass the other one in full (this

would violate the empty circle rule).
We switch to the parameterization presented in in the Figure 5.9:

(x1,X2,X3,Xq) — (Xx1,0, 7,0, 2,61,02). (5.4.24)

The mapping is 1-1. r,l € (0,00), 22 € (—00,00) and 8; € (—by4,0,:), where

041 = ™ — arccos - L+ 20 = |, (5.4.25a)
V1t (L4 22)2
[ =2
842 = ™ — arccos 2 : = |. (5.4.25b)
V2 + (I —2x)?

Jacobian of the transformation reads

£<l + 22 4 /12 + (I + 22)% cos 01> (1 — 224 \/r? + (I — 22)* cos ()2>; (5.4.26)

the above expression is always positive. We can immediately perform integration over
x; and ¢; due to symmetry of the integrands (primarily due to factorization of the
dependences on 6 2 and the fact that v does not depend on 6y ») integration over 6y o is
relatively casy (although messy). [n the end we are left with integration over z alone.
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Figure 5.9: Geometry considered during calculations of joint probability s¢(r,[). Delaunay
edge is » = |AB| and the Voronoi edge | = |0,0a|, where Oy and Oy are centers of the
circles circumscribed on the triangles 123 and 124 respectively. C' is the center of the
segment 0109 and C’ stands for the point of the intersection of the directions of Voronoi
and Delaunay edges. 6, and #» measure the directions of points x; and xy respectively
from as scen from O; and Oy with respect to the direction of Voronoi edge. |CC| = |z
and the sign of z is positive if C lies on the same side of the AB as Oy. Radius of the
circles centered on O; and Oy are Ry and Ra respectively.
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After switching to normalized units (5.4.18) we obtain (»,/ are normalized):

64rl o0 v

#(rl) = — dwjpj_e” (5.4.27)
) 3 Jo
where
. I(1+w)
ja(w,r, ) =r 4+ (1 £ w) [ 7 — arccos 5.4.28
Jelw,r ) =1+ 1 )( r.m?(liw)g) (5.4.28)
‘and
/ 2 9 9 9 1
V(w, 1) = —?F'rl +2(+F(1+w?)) - ;(f, +£4) (5.4.29)
with
l
(1+w) (5.4.30)

= (r? + I*(1 + w)?) arccos .
G = (P EA 20 PPl w)?

I found no way to calculate the last integral. It seems however that it may not
be necessary. Any quantity of interest (any moment of [ and r) will probably have to
be calculated numerically anyway; all we need to do is to add one more integral. [
checked the obtained formula using Monte Carlo integrator. It is normalized and and
after integration over ! and w I arrived at the known expression for 1/7(1) Note that in
general it allows calculation of the distribution of I. I am not aware of any such result in
the literature.

- The above calculation have unfortunately only pedagogical meaning. In order to
calculate any relevant quantities for set of discs we must abandon ¢ = 1 assumption.
We know in general how to build correlation functions for hard-core fields and the next
section I present the Collins summation formula, which allows a calculation of the void

probability, E(y).

5.5 General expression for void probability

The calculations presented come from [18], however argumentation is slightly altered and
generalized.

We state the problem as follows. Let us suppose we have a field of N points interacting
via potential ¢, which depends on their instantancous positions x,, o« = 1,... N. We fix
positions f; of n points (¢ = 1,...n), “spanning” a subsct of R?, 4; we assume that v is
an open set, i.e. a point lying on its boundary does not belong to it. In our previous
examples it was an interior of the circle circumscribed on the three points or the interior
of the two overlapping discs spanned by four points. We want to know the probability
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E, (v) that v contains no points. The condition for that reads

N

I a-1yxa)) =1, (65D

a=n+1

where 1 is the indicator function defined by (5.2.2). By means of canonical ensem-
ble average with integrated kinetic energy part we can write the general expression for
emptiness probability

N

1 /T \
E,(y)=E = T fow d(N)é(n)e~*/" =H+] (1 = 1 (Xa))- (5.5.2)
We use the following notation
§(n) = [ 6@ (xi - £), | . (5.5.3a)
i=1
N ‘ ‘
d(N) = [] d**a. . ~ (5.5.3b)
a=1 i
The reduced configurational integral reads
Qultsy ) = [ d(V)s(m)eT". (5.5.4)
JVN

-(5.5.1) may be expanded to obtain

1= 1o+ > Lalg—..., | (5.5.5)

n<o n<a<

where 1 is a shorthand notation of 1,(x4). E reads

oo
E=1+Y E™, (5:5.6)
m=1 '
where
E(m) — ﬂ d(N)d — /T 11, 1
=T o AP 2 oly..- 1o
nJv nca < <. <6
N———e ———’
1" /N —n ~/T
= ( Q) ( m > /’N ([(]\05(71)1[,”_1]1,,4.2 o Dpgane d/l) (5'5'7)

where we exchanged the order of integration and summation and noticed that for all
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arrangements of «, 3, etc. the integrals are the same. The last integral can be written as

/ (l2y"+1 i '(ZZYn+m /\/N d(N)5(77»)(5(x,,+1 - .YII+1) - .5(Xn+m - yn-l-m)@—q)/’]'.
71" N
(5.5.8)

From the definition of correlation functions we have (here & is arbitrary)

MG (Y1, - yr) = %(1: ) k) /VN d(N)S(k)e="/T = Q_A(Y_‘Q_y’:l <]AV> K, (5.5.9)

where the configurational integral reacs

Q= [ dN)e ", (5.5.10)

Jvn
The justification of the above is the following. We are asking how many configurations in
the fluid places atoms around (y1,...yx). We pick up & atoms (it can be done in (?f )k!
ways including their permutations on the fixed positions). The rest of the atoms may be

arranged arbitrarily. We obtain
N-R)!
Qu(yr, .. y&) = (—N—,—)—Q/\’”gk(yl, . Yk) (6.5.11)
and we can write
-1)" /N —-n .
E(m) = (——)‘ ( m ) / d2yn+1 . (12}'n+an+m(f1) s fm Ya41y.. -Yn+1n)
n g Am

B (__1)111/\711

gn+m(f1» o, Yntls: - yn+m) (5 5 12)
m! ‘ -

Py ... d?
Yo+l A" Ynitm _(jn,(fl, . fn)

. .r"l

We have been able to express F,(7y) in the form of power series in density A. The
expression can be easily evaluated in the case of Poisson field

E(v) = exp(=AL{(%)). (5.5.13)

I devoted a lot of time and effort to approximate E at least for the simplest possible
form of hard-core correlation functions, but without any significant progress.

5.6 Delaunay tessellations of hard discs

Due to tremendous difficulties in handling the large integrals presented in the previous
section a little analytic work has been done in that field for hard-core fields. On the
other hand the Poisson case has heen studied thoroughly, please refer to [69]. [37] deals
mainly with topological properties of Voronoi diagrams of hard-core discs. As mentioned
carlier the rescarchers found that probability of generated Voronoi vertex is indeed zero
and that the average number of the generator adjacent to typical generator is around
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Figure 5.10: Integrated distributions from [92] compared to Poisson case. I can be seen
that form smaller void volumes variance of the distribution becomes smaller; the system
becomes more ordered.

6 (the results is exact for Poisson case). It is therefore reasonable to think about the
tessellations of hard discs as of disordered triangular lattices.

The only attempt to calculate the Delaunay edge distribution known to me is |68],
but it seems to disagree with the numerical experiments presented in [92], which are
reported in the Figure 5.10. The last work clearly indicates that the systems becomes
more regular with the decreasing void volume - for the case of very high concentrations
the (unintegrated) distribution should approach delta function, like for the case of the

triangular lattice.

5.7 Summary

The studies on local properties of point ficlds were developed in parallel to the computer
studies. After I had obtained the first numerical results, presented in Chapter 6, it
became clear, that mean gradient hypothesis needs to be refuted. The size of the cluster
that would reproduce the permeability of the network appeared to be much too large to
be handled analytically. Small clusters/single resistors will not do.

Nevertheless I believe that the work presented in this chapter is important for any an-
alytic attack on the random hydraulic networks. Any description I can imagine will have
to, at some point, calculate some average properties of single throats. Let me therefore
recall what has been done here. I showed how to investigate the statistical properties of of
Voronoi/Delaunay diagrams: the knowledge of many body correlation functions is needed
(which under some assumptions may be expressed using pair correlation function g(r))
and void probability for our point field. T investigated the latter quantity using Collins
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approach in Section 5.5. Different hard-core point precesses were suggested; among them
the one that was used in the computer simulations, so called gas of hard discs. Pair

correlation functions for these processes were also studied.
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Chapter 6

Numerical studies

6.1 Introduction

The main object of munerical study is the calculation of geometrical modifier for the flow
through disordered quasi two dimensional systems of cylinders, as discussed in Chapter
4. The gas of hard discs constitutes the source of configurations. Effective resistivity
of the network is computed using relaxation methods. In the following section details
of implementation are presented. The numerical project is called Drag; its structure is
presented in Figure 6.1,

DragVoronoi2
DragVoronoi2Interface

) ¥

— DragSimulator \

Lib Math Text
Std vVviews

DragCircuits

DragPointFields

standard library

Figure G.1: Drag module systen,
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6.2 Implementation

The programing language chosen was Component Pascal (CP) under programming envi-
ronment BlackBox Component Builder 1.4. The language seems to be very convenient
for middle size projects: it is object oriented, has garbage collector and comes with user
friendly development environment. The language design is such that the code is easy to
develop and to debug. The operating system used was Windows XP (Version 2002) in-
stalled on Dell INSPIRON 9100 portable computer. System resources are: CPU 2.80GHz
Intel®, Pentium® IV, RAM 1.00 GB. All the development, testing and calculations were
performed on this machine.
Drag consists of four main modules:

e DragVoronoi2 (with the interface DragVoronoi2Interface) with the library Voronoi2.d11
compiled from FORTRANT77 sources. The module constructs Voronoi diagrams for

the set of generators

e DragCircuits: constructs the circunit equivalent to obtained Voronoi diagram. It
calculates net conductances of general resistors networks.

e DragPointFields: Monte Carlo configuration generator. Also set of tools to create
and manipulate 2D point fields.

e DragSimulator: main module, where the actual sitmulations are perfermed.

Additionally graphical output was realized using MUtilSVG module. Several other mod-
ules from standard CP library was used, mainly to facilitate output. The whole code
developed has about 7000 lines.

In the subsequent section some details of implementation are given.

6.2.1 Configurations generator

As already suggested, we will use the configuration of points that appear in the gas with
hard-core potential. In the beginning simulation starts with triangular lattice, Figure
6.2. We sample the configuration after every m steps of Monte Carlo procedure. The
number of points is n and we assume the periodic boundary conditions.

Lattice generation

Generation of lattice require some caution, because the discrete translational symme-
try may lead to frustration. The size of the computational domain (Az x Ay) cannot
be arbitrary - after adding copies of the system around (periodic boundary conditions)
we must obtain infinite lattice without any defects. The task is performed by proce-
dure TriangularLattice in module DragPointFields. User supplies the requested void
volume of the system € and diameter of the cylinders D. These two parameters are un-
changed in the procedure. Additionally user specifies the approximate ratio n = Ay/Ax
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and number of generators n. Procedure calculates approximate length Az from the
expression

mn 172

and subsequently the interparticle distance as

23\ "* m 1/2 23 1
“’=< 3) (4(1—e)> b= 3/ | (6:2.2)

Az has to be the multiplicity of a:

ny = ENTIER(Az/a), (6.2.3a)
Az = nga. (6.2.3b)

If the result is zero, than it is set to a. ENTIER denotes the standard CP function, which
returns integer part of the number (floor).
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Figure 6.2: Triangular lattice generation. ng = 3, n, = 4,
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The actual number of generators in the computational domain is calculated as the
closest even multiplicity of n.,

n —— ENTIER(n/2n,)2n,. (6.2.4)
ng stands for the number of particles in the row, while
Ny = n/Ny (6.2.5)
is the number of rows, which must be even. Ay is now calculated as

Ay = nyh, ' (6.2.6)

where

V3 - (6.2.7)

h=a

Finally
n — Ay/Az. ‘ (6.2.8)

Building of actual point field is now easy, example was presented in the Figure 6.2.

Monte Carlo configuration sampling

Strictly speaking we are simulating melting of 2D crystal of atoms interacting via HC po-
tential under constant volume (density) condition. Such system has only one parameter,
e. Temperature is absent in the classical simulations of hard sphere gas.

One Monte Carlo step is the following. We try to displace every atom by vector Ar,

where
rel-A/2,A/27° (6.2.9)

and all possible realizations of r are equally probable. Uniform random number generator
from the standard library module LibRandom was used. [f the disc in the new position
overlap with any of the other discs the step is rejected, otherwise is accepted.

The rule of the thumb in this kind of simulations is to keep the acceptance ratio o
(the number of accepted displacements to the total number of attempted displacements)
close to m = 0.5. This is achieved by adjusting the value of A. After each few MC steps

« is calculated and

ifao<m—46/2, then A - AR, or
if @ >m+44/2, then A — A/k.

In general we may expect that the larger displacement, the smaller probability of accept-
ing the step. :
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Algorithm requires certain number of steps to remove correlations, I call this process
thermalization.

6.2.2 Computing the tessellations

The exhaustive discussion of the numerical aspects of construction Voronoi/Delaunay
diagrams can be found in [69]. The construction of the accurate Voronoi tessellation
of point fields generated by the Monte Carlo section is crucial, since we need both the
correct numerical values of distances, determining the resistances of particular throats,
and exactly reproduced topological ordering. Especially this second property is prone to
numnerical instabilities.

First of all we should decide whether to concentrate on creation of Delaunay or Voronoi
diagram. There are several reasons to choose the second option: the data structures
for this case are easier to construct and manipulate; at the same numerical cost they
carry more information. Furthermore, it is generally much easier to obtain Delaunay
tessellation having constructed Voronoi diagram than build topologically correct Voronoi
tessellation from Delaunay diagram,

Reference [69] discusses several algorithms for computing Voronoi graphs: plane sweep
method, divide and conguer algorithm and finally incremental method, which we will
concentrate on later. All these algorithms, by utilizing quite sophisticated algorithmic
techniques, can approach time complexity O(n) on average and O(nlogn) in the worst
case, what has been shown to be a theoretical limit for these kind of computations.
Nevertheless only the incremental method was refined enough to give a robust algorithm
insensitive to unavoidable numerical errors.

The algorithin was developed by Kokichi Sugihara and Masao Iri in the late 80’s and
was called VORONOI2. The code was written in FORTRAN77 language and makes fairly
large library, having almost 2000 lines (with additional 1000 line of code designed to
facilitate graphical output) and about 20 COMMON blocks (64 global variables). This code,
compiled to dynamic link library, constitutes the core of iy subprogram for determining
the structure of the electric networks. The sources, as well as the user guide, [85], are
distributed solely by authors.

I had to modify slightly the original code. Also the internal FORTRAN77 data struc-
tures had to be ported to CP language, since the direct access was impossible. The CP
interface contains also the algorithms for constructing Voronoi diagrams with periodic
(or semi-periodic) boundary conditions and several other subroutines to extract necessary
data. Subsequent sections serve as report and short user guide to this part of my CP
code. They also reveal some basics concepts that guided anthors of VORONOIZ2.

Incremental method

The idea of incremental method is simple. We start with Voronoi diagram for limited
number of generators, e.g. 3. This can be done easily and exactly. Successively we add
subsequent generators, each time modifying the diagram. Let us say we add generator
g = g and want to modify Voronoi diagram V;_; to obtain V;. Modification encompasses
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removing part of edges and vertices of the old diagram and adding new ones, as presented
in the Figure 6.3. First we find the perpendicular bisector between g and the nearcst
generator, say g’ among those already added (line 1-2 in the figure). Bisector crosses
edges bounding region of g’ and enters regions of two others, let us call one of them g”.
We can now find bisector between g; and g”, which enters the next region in point 3. We
can continue this boundary growing procedure until we close the region ascribed to g.

Figure 6.3: An idea of the incremental method. Thick lines represent diagram V;_;.
After an addition of generator g old Voronoi vertices a, b and ¢ have to be removed; the
old Voronoi edges must be split in points 1, 2, 3, 4 and 5 and new edges 1-2, 2-3, 3-4,
4-5, 5-1 are added (dashed lines). Similar figure can be found in [69].

The algorithm works under assumption that the new Voronoi region is finite. This is
not always true, but the infinite regions may be eliminated by a simple trick, which is
discussed later.

If there would be no errors we could judge which vertices of V;—; should be removed
by the following procedure. Let assume that three generators g;, g; and gi span the
circle € and are ordered in such a way that going on the circle in the counterclockwise
direction we visit generators in the order ijki. We are interested in the position of fourth
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generator g with respect to the circle €. Let us define

1 o2 oy a?+y?
1 a; y; a?+y?
H(gi 8,8k 8) = AR AR (6.2.10)

1 @y ye 2 +uE
1 =z y z?249¢°

where notation @y = g - (1,0), etc. It can be proved that that

if H(gi,8j,8k 8) <0 g is inside €,
if H(gi,g;j,8k,g) =0 g lies on the boundary of € and
if H(gi,g;j,8k,8) > 0 g is outside €.

If we want to judge if the vertex ¢(gi, g, gx) adjacent to generators g;, g; and g, is to be
removed, we need to check sign of H(g;,g;, 8, ). If it is non-positive the vertex should
be removed.

Let it be noted that in the case of H(g;, g;, 8k, &) = 0 we deal with degeneracy. The
degeneracy can be removed using simple symbolic perturbation technique: we remove the
vertex only if H < 0. This procedure should be understood as delicate deformation of old
Voronoi diagram. The idea underlying this procedure is such that the degeneracy might
be judged correctly only if there would be no numerical errors. Since real data always
bear this stigma, we can say that in the real world the degeneracy never occurs.

The time complexity of the progran depends greatly on the ability of the algorithm
to find fast the nearest generator for g;. This is achieved by bucketing technique, where
the generators are distributed over the specially constructed quaternary three.

Numerical accuracy depends on the uniformity of generators, i.e. the more uniformly
the generators taken in order fill the region the better. This is achieved by renumeration
based on the bucket tree.

Data structure

The most popular data structure to store information about Voronoi diagram is so called
winged-edge data structure. Such data structure had been used before in connection with
Voronoi diagrams in [40]. We start with adding one additional generator, g, which lies
in the (complex) infinity. In this way we achiceve that all Voronoi regions associated with
ordinary generators are finite. In the case when no degeneracy takes place all vertices
are rank three, what means that the number of vertices and respectively edges is

Ny = 2n — 2, (6.2.11a)
ne = 3n — 3, (6.2.11b)

where n stands for the number of generators. The graph we obtained is called augmented

geometric graph. Tts all edges are finite, please confront Figure 6.4 (all the figures in this
section comes from [69]).
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Figure 6.4: Augmented geometric graph. Ordinary diagram is generated by four points
denoted with filled circles (1...4); it has five edges (5...9) and two vertices 1 and 2.
By adding oo-generator we obtain augmented graph with additional vertices 3...6 and
edges marked with dashed lines.

end.vertex[k] ccw.successor[k]

ight tor[k
cw.successor[k] right generator[k]

edge k

cw.predecessor[k]

ccw.predecessor[k]

left generator(k]

Figure 6.5: Winged edge data strucure for edges. To get the order (cw vs. ccw) we must
stand on the vertex and look in the direction of the second vertex (regardless the direction

of the edge).
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Every edge, vertex and generator is marked with a unique number. The next step
is to impose a direction of every edge. Every edge has now starting and ending vertex.
Additionally we can define successors and predecessors of every edge, clockwise (cw) or
counterclockwise (ccw) in order. To every edge we can ascribe right and left generator.
Please refer to Figure 6.5. Additionally we record number of one of the edges on the
boundary of each Voronoi region and number of one of the edges on incident to every
vertex. Every vertex is given a mark “Euclidean” or “infinity” depending if the vertex
belongs to the ordinary diagram (Euclidean, like 1 and 2 in the Figure 6.4) or is in the
infinity (like 3...6). Every vertex has two coordinates. In case of Euclidean points they
are ordinary Cartesian components of it: when the point lies in the infinity they code
the direction of the infinite Voronoi edge. The last convention is somnetimes referred as
homogeneous coordinates.

To avoid building infinite Voronoi region in the incremental method, the following
trick is used. In the beginning algorithm adds three extra generators placed on the
triangle and construct (augmented) diagram for them. If the triangle is large enough
(comparing to the region containing all regular generators), the sequential adding of
regular generators will not disturb the outermost structure of the three infinite vertices
and edges.

Topological consistency

VORONOI2 does not attempt to build exact Voronoi diagram, rather it constructs (always)
the (augmented) graph 'V that is topologically consistent in the sense that it possesses the
following properties:

(T1) The degree of any vertex in V is exactly three.

(T2) V posses n + 1 primary cycles (i.e. closed paths built of adjacent edges, which
contain no other cycles inside)

(T3) Every region, except the one associated with go is simply connected (does not have
any holes).

(T4) Two regions share at most one common edge.

(T5) The region associated with goo has exactly three edges and three vertices (this
property is imposed by adding the three additional generators mentioned in the
previous paragraph).

Every augmented Voronoi graph posses these properties, but the inversion of this state-

ment is not true.

Initial graph for three (4-oco-generator) fake generators is topologically consistent. The
process of modification, as described in Section 6.2.2, will always produce topologically
consistent graph if the set of vertices and edges T which is removed in every step express

the following features
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(T’6) T is non-empty (what follows from the fact that each generator must have its own
region).

(T°7) T does not contain vertex in infinity.

(T'8) T is a tree, i.e. connected acyclic graph.

(T°9) Deletion of T" cannot lead to the situation when two (or more) Voronoi regions have
more than one edge in common.

Figure 6.6 presents some examples, please refer to the caption for short comment. The
point that fulfills H-criterion is included into T if resulting T fulfills T'6+T"9. This makes
the algorithm robust against numerical errors. Furthermore, as pointed by authors when
the errors become negligible, the diagram converges to exact Voronoi diagram.

Figure 6.6: Example of allowed and forbidden shapes of set T'. (a) presents legal deletion
of a tree; (b) violates T'8, one generator would loose its region; (c) forbidden, since T
must be connected; (d) example of violation of T’9.
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VORONOI2 under CP

VORONOIZ2 takes as an input number and positions of generators and builds (stored inside
the COMMON blocks) winged-edge data structure. CP first initializes the right blocks of
memory, calls the functions responsible for diagramn computation and in the end reads
the blocks containing the desired output.

Several modification of the original code had to be done on the level of FORTRAN
code. For some reason (that are still unclear) CP can call efficiently only those functions
from the dll libraries compiled from FORTRAN code, which have single argument (possibly
pointer to an array). Therefore, instead of single initialization procedure, a chain of themn
must be called. The same applies to reading out the results. This forced me to create a
set of “setters” and “getters” (the library resembles now static Java class).

I added to each subprogram in FORTRAN code explicit declaration of common blocks
and variables, getting rid of the extensive use of IMPLICIT statement. I also parametrized
the code, so now almost no “magic numbers” appear. These decorations were not crucial,
nevertheless facilitate future development of the code. Also, without them I would never
be able to understand it on the implementation level. Finally, the subroutines and glol)al
variables used to plotting the output were commented out.

To compile the library g77 compiler under MinGW32 system was used. MinGW32 is a
minimalistic emulator of Unix systein under Windows. Below the version of g77 is given

and the listing of Makefile used.

$ g77 --version
GNU Fortran (GCC 3.2.3 (mingw special 20030504-1)) 3.2.3 20030425 (release)

Copyright (C) 2002 Free Software Foundation, Inc.

$ cat Makefile
../../Voronoi2.d1ll: Voronoi2.o
dllwrap \
--export-all \
--output-def Voronoi2.def \
--implib Voronoi2.a \
--driver-name g77 \
-o Voronoi2.dll Voronoi2.o

Voronoi2.o: Voronoi2.f Parametrization.f
g77 -c -g -fno-underscoring \
-fexpensive-optimizations -ffast-math \
-malign-double -fforce-addr \
-fstrength-reduce -fcaller-saves \
-funroll-loops \
-0 Voronoi2.o Voronoi2.f

Prior to use, we have to define interface for dll library in CP. It is also a good idea to
“wrap” every subroutine called from the library into CP procedure, Frequent direct calls
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of procedures from the library within single CP procedure may cause (and caused) stack
overflow.

The CP builds its own version of winged-edge data structure, since the direct access
of FORTRAN COMMON blocks is impossible.

Original VORONOI2 builds, as mentioned, the diagram with fixed boundary conditions.
[t is however desirable to build diagram with periodic boundary conditions: it saves
the problem of nodes on the boundary and weaken the finite size effects. The idea
is simple: 8 copies of the system (Figure 6.7) are added around the original one and
for such expanded system the Voronoi diagram is computed. Next, the edges, which
cross the borders between images, are “wrapped around”. However trivial it might sound
the actual task appeared to be pretty involving combinatorial challenge. The periodic
boundary condition may be imposed in two directions or only in one. We can of course
still work with fixed boundaries.

w | 1] 213

outside —1
X

Figure 6.7: 8 copies of the original system (0) used to construct boundary conditions.
Schema of quadrants enumeration is presented. Edges originating in 0 and ending outside

-are “wrapped”.

DragVoronoi2 module — short user manual

DragVoronoi2Interface is the interface module between the dll library and the CP code.
No procedures from this module should be ever directly called by user, nevertheless there
are several important constants defined in it. Types of vertices:

e VT_inf_point — vertex in infinity,
e VT_Euclidean — Euclidean vertex.

If the type of vertex, t is negative, then —t denotes the number of quadrant in which the
vertex lie. Minimum and maximum number of generators

e max_gen_no = 50000 - maximum number of generators,
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e min_gen_no = 2 — minimum number of generators.

NOTE: when periodic boundary conditions are imposed (even in one direction), the
maximum number of generators defined by user must be max_gen_no DIV 9.

DragVoronoi2 is the fundamental module for computing and manipulating Voronoi
diagrams. Four basic data structures and types:

CONST
all_periodic*
x_periodic*
y_periodic*

‘no_periodic*

0; (*periodic boundary conditions in 2D*)
-1; (*periodic boundary conditions in x-dirx)
1; (*periodic boundary conditions in y-dirx)
2; (*fixed boundary conditions*)

TYPE
Generator* = POINTER TO RECORD
no-: INTEGER;
x-, y-: REAL;
be-: VEdge; (*bounding edgex*)
END;

Vertex* = POINTER TO RECORD (SVG.Shape) (*Voronoi vertex)
no-: INTEGER; (*number of the vertex*)
x-, y-: REAL;
type-: INTEGER; (*type of vertex*)
ie-: VEdge; (*incident edgex)
marker: BOOLEAN; (*internal flagk)

END;
VEdge* = POINTER TO RECORD (*Voronoi edge*)
no-: INTEGER;

start-, end-: Vertex;
rg-: Generator; (*right hand side generator)
lg-: Generator; (*left hand side generator*)

sce-: VEdge; (*start clockwise edge*)

scce-: VEdge; (*start counter-clockwise edge*)

ece-: VEdge; (*end clockwise edgex*)

ecce-: VEdge; (*end counter-clockwise edge*)
END;

VDiagram* = POINTER TO RECORD (*Voronoi diagram*)
periodicity-: INTEGER; (*type of boundary conditions*)
genDone-: BOOLEAN; (*Generators has been initializedx)
VoronoiDone-: BOOLEAN; (*Voronoi Diagram has been calculatedx)
genNo-: INTEGER; (*no of generators*)
VEdgeNo-: INTEGER; (*number of Voronoi edgesx)
VVertexNo-: INTEGER; (*number of Voronoi verticesx)
generators-: POINTER TO ARRAY OF Generator; (*generatorsx*)
VVertices-: POINTER TO ARRAY OF Vertex; (*verticesx)
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VEdges-: POINTER TO ARRAY OF VEdge; (*Voronoi edges*)
END;
The basic procedures available:

PROCEDURE BuildVoronoiDiagramFBC* (
gx, gy: ARRAY OF REAL;
gno: INTEGER

): VDiagram;

returns Voronoi Diagram for gno generators with positions specified in gx (x-components),
gy (y-components) with fixed boundary conditions.

PROCEDURE BuildVoronoiDiagramPBC* (

direction: INTEGER; (*periodicity directionx)
eta: REAL; (*ratio of y_len to x_len*)
gx, gy: ARRAY OF REAL; (*generators coordinatesx)
gno: INTEGER (*number of generatorsx*)

): VDiagram;

direction can have one of the values: all_periodic, x_periodic, y_periodic or
no_periodic. eta stands for the ratio Ay/Ax, where the latter are the length of the
edges (respectively in y and 2 direction) of the rectangle bounding all generators. The
larger among Az and Ay must be equal to 1. The subroutine does not check carefully
the accuracy of the diagram when the number of points is small. It will surely fail for
the number of generators less than 3. The generators are assumed to fill the rectangle
uniformly. This drawback requires future development, but it does not affect the numer-
ical studies of this chapter, since the systems we deal with are much larger (it has been
carefully tested).

6.2.3 Conductivity calculations

Example of the hydraulic network obtained for small thermalized system of generators is
presented in the Figure 6.8. The Voronoi diagram is periodic in one direction, the dashed
edges are “wrapped around”.

Conductances associates with every edge is calculated, each node is given flag “bound-
ary” or “core”. Inflowing nodes (1...5) have their pressures set to p, outflowing nodes
6...10 to zero. Module designed to deal with electrical (hydraulic) properties is DragCircuits.
As we have seen, it is possible to calculate the pressure in each node and subsequently
power and geometrical modifier.

As discussed in Section 3.4, there are two ways to calculate the potentials in the
core nodes. We can try the direct attack and construct matrices K, and R” and solve
the system of equations (3.4.19). The standard method is to LU-decompose matrix K,
and obtain solution v, via back substitution (c.g. [72]). There are standard libraries
(LibMatrices and LibVectors) written in CP to achieve that. The method is exact.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6. NUMERICAL STUDIES =~ - : - 137

MO[j

Figure 6.8: Calculations of conductivity. Filled circles denotes generators (with reduced
radius) and the open ones contacts, to which the pressure is applied. Nodes 6...10 have
pressure 0, while nodes 1...5 have pressure p. Voronoi edges marked with dashed lines
are “wrapped”. For example edge x connects points a and b. The solid rectangle marks
the borders of basic computational domain.
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The only problem with the above method is that its time complexity is O(N®), where
N stands for the number of Voronoi vertices. It appears that for 1000 gencrators (about
2000 vertices) this method needs about 7h to find potential for one configuration of points.
Since we must perform hundreds of such operations (and for even larger systems) this
approach cannot be used.

Fortunately we have the second method, based on relaxation scheme. It appeared
to be much faster (order of seconds for the mentioned example) and brought no loss in
accuracy. The important step is the initial guess of pressure in the vertices ans it was
simply computed as if the pressure gradient in the system was uniform. The relaxation
scheme is simple. The potential in each node [ is substituted by the potential averaged
(with weights) over the nodes connected to [, as given by the formula (3.4.16). The
iteration procedure is terminated when the absolute value of change in every node is
smaller the given value.

Geometrical modifier, f, is computed from the eq. (4.4.2):

ZHMD? 1

2
€) =€ —_—
fD( ) L L Gtot

(6.2.12)

with g, coming from (3.4.55). H cancels in our calculation, as well as D? and p, so the
code always operated on the non-dimensional quantities. Because of periodic boundary
conditions M is known exactly. L is calculated as the difference between the average
positions of inflow and outflow nodes respectively.

6.2.4 Graphical output

I decided to adopt the scalable vector graphics SVG format as the graphical output from
my code. SVG is modularized language for describing two-dimensional vector and mixed
vector/raster graphics in XML. SVG specification can be found in [2].

6.3 Statistical analysis

Any Monte Carlo simulation requires building suitable statistics. Lets assume we per-
formed n measurements of quantity x, {x1,22,...2,}. The estimator for the population

mean, (“sample mean”) reads

1
x) = — 2. 3.1
(@) =~ (6.3.1)

(6.3.2)
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Note, that this estimator is biased. Mean standard deviation (quality of (z) estimation)
is

a [.’l?] = 75_—1 (6.3.3)

and it is not biased.

6.4 Validation tests and code tuning

Several checks were made to confirm that the Voronoi diagrams produced by the code are
accurate (for example by comparison with output produced by Mathematica). Example
for n = 300 generators for € = 0.6 can be found in Figure 6.9.

As described in the Section 6.2.1, Monte Carlo generator has internal tuning mech-
anism. Its performance was presented in Figure 6.10. Please refer to the caption for
details.

We discuss now the tests performed to confirm the numerical adequacy of the code.
The first obvious check is the comparison of theoretical prediction of geometrical modifier
for the regular triangular lattice, eq. (4.3.10), with the program output. It was done in
Figure 6.4, full agreement exists.

Since we have to relay on the iterative procedure, which was written from scratch, we
must make sure it is correct. The first test was presented in the Figure 6.12 and verifies
relation (6.2.12):

lL _ 2 A‘[ ].

Gt oz = € T 7o(0) (6.4.1)

Void volume ¢ = 0.3, nuinber of cylinders 500. In the case when the lattice underwent
thermalization initial number of MC steps was 50. After that 10 samples were collected,
each separated by 2 Monte Carlo steps (2 attempts to displace every discs). The imme-
diate conclusion is that the above equation works. Also the example serves as additional
proof that both iterative and exact method lead to the same solution (also in the case of
disordered systems).

It is also quite important to see how the systems reaches the thermodynamical equi-
librium. Figure present the “time” evolution of the system slowly melting from the initial
triangular ordering for three different systemn sizes. It seems that smaller systems pro-
duces much more noise. The time of reaching equilibrium state may be safely taken to
be 50 MC steps and weakly depends on the size of the system. e was kept 0.3 and the
system was approximately square.

Next we may investigate finite size cffects in our simulations. Mean standard deviation
(6.3.3) obeys power law

o ~n, (6.4.2)
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Figure 6.9: Example of Voronoi diagram for 400 generators, € = 0.4. Wrapped edges

were removed and computational domain is approximately a square. Flow points upward.

Figures 6.19 to 6.23 pertain to the same configuration of cylinders.
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Figure 6.10: Example of the performance of internal tuning mechanism in the Monte
Carlo generator. System features: m = 300, € = 0.5 and 1 = 1.0. Panel a) presents
evolution of acceptance ratio, b) displacement amplitude d. If the acceptance ratio leaves
the interval [m — 6/2, m + §/2], the code increases or decreases the amplitude as described
in Section 6.2.1. With MC steps the value seems to approach asymptotic value. m = 0.5
and § = 0.1 were used throughout the simulations.
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Figure 6.11: Comparison of geometrical modifier computed by the code with the theoret-
ical prediction (4.3.10) for triangular lattice. Full agreement exists. The system consists
of about 200 cylinders and Az ~ Ay.

0.008 ' ' y Y ?
}f.
N=500, exact, reg. latt. <+ ,
0.007 N=3000, lterlzlltlve. reg. }atl X val ]
theory reg. latt. ««ww R4
> 0.006 } N=3000, iterative, ti?elnn%hzed K ,x .
3~ fit to iter. data -----)('"
§ 0.005F . 3 -
'g 0.004 } ,X . -
e
® 0.003} o R -
}‘.—-
0.002} T e .
0.001 } x’:: e _
*’

'.'% 1 Il 1 L

0 2 4 6 8 10 12
M/L

Figure 6.12: System conductivity (in units i /D ) as a function of sample shape.
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Figure 6.13: Thermalization of three systems with different sizes.

where & was found to be equal to

a = —0.456 = 0.050. (6.4.3)

The above result suggests that geometrical modifier is well defined thermodynamical
observable.

There is a finite size effect present in the system, sce Figure 6.14; it seems that
for smaller systems the geometrical modifier is slightly smaller and approaches certain
asymptotic value for large number of particles. The source of the effect is probably
connected with the way how the actual size of the system is computed (Section 6.2.3). It
was found that the system of size n = 3000 is large enough to safely work with.

6.5 Results

6.5.1 Calculations of the drag

Figures presents the results of numerical calculations of the geometrical modifier for
disordered assemblage of cylinders. Nwmnber of cylinders used in the simulation was
3000. Thermalization of the system took 50 MC steps. The averages for each € were
calculated using 25 samples, taken after cach 2 MC steps.

The geometrical modifier was calculated for all three models of throat: Miyagi model,
flow between parallel walls and the integrated throat. In all cases the disorder lead to
increase of the drag force. Results were presented in the Figure 6.15abe. It appears that
for € < 0.5 the drag is simply

fo(€) = ¢fpnex(€), (6.5.1)
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Figure 6.14: There is a finite size effect present in the simulation: geometrical modifier
seems to depend on the size of the system (slightly increasing with n). For the presented
example € = 0.3. Fits to data for n = 3000 and n = 5000 do not differ within the
numerical error, but are different from the fit to data for n = 500. The effect is an
artifact caused by the algorithm for system size estimation.

where fphex(€) denotes the geometrical modifier for triangular lattice. Below € ~ 0.5 the
shape of the function changes. Constant ¢ depends on the model of the throat and more
precisely on the leading order in the powers of 4 — 1 expansion of conductance function,
where s denotes separation of cylinders and D their diameter. The following artificial
conductance function was used

gla) = (a - 1)1, (6.5.2)

where ¢ > 0 and a = 3. Next function ¢(q) was computed. It is presented in the Figure
6.16. c¢(q) appeared to be ruled by simple empirical exponential law:;

c(q) = exp(ag).  (653)
Optimal fit was found for
a = 0.3488 £+ 0.0014. (6.5.4)

Figure 6.17 presents the calculations of geometrical modifier for the network, where
each throat has equal conductance, set to 1 in units HD?/p. For small void volumes the
geometrical modifier for both regular and irregular networks are equal, what supports
the observation that at high densities the topology is primarily that of triangular lattice.
For larger void voluines, i.e. for increasing topological disorder, drag for regular lattices
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Figure 6.15: Effect of disorder for the systems with different model of throat: a) Miyagi
model, b) parallel walls throat, c¢) integrated model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6. NUMERICAL STUDIES 146

7 ! J J | J J
4l FSSTPPUOUR SRR fereeeeen e frveeneennd e RUUPU |
- Ly %}'i‘-
Fhoenee S e .......... ,Iz, ..........
: ¥
— : >
KX ; : : ,-}'f :
S 2f R SO IS Al SRR S o]
- S
: : 4-"? :
: . Sadi :
: »
JR o :
A
1 s ] i 1 1 ] i
0 0.5 1 1.5 2 2.5 3 3.5 4

q

Figure 6.16: Function ¢(q) seems to follows exponential law given by (6.5.3).

is slightly smaller. The change however is not significant comparing to impact of changes
in the values of conductances.

We have a chance to verify uniform gradient hypothesis. We focus on the Miyagi
model. For the system from the previous section geometrical modifier was calculated as
if the endings of resistors (Voronoi vertices) were placed in the field with constant pressure
gradient. The same was done for “3-stars”, please refer to Figure 5.1 and comments in
the beginning of Chapter 5. Additionally the total resistance of network was computed
as if the network of resistors had hexagonal topology with values of all resistors equal
to average resistance of the throats in the system. The results are plotted in the Figure
6.18.

None of the quantities serve as good approximation to total conductance of the lattice,
also in the case of other models of throat. The uniform gradient hypothesis needs to be
refuted, at least when we insist on using small clusters. Surprisingly both of the uniform
gradient approximations lead to similar results and recover the geometrical modifier for
undisturbed triangular lattice. It secms to be one more piece of evidence that locally the
lattice is hexagonal and that non-locality plays important role in the problem.

6.5.2 Correlations

To understand, at least qualitatively, the results presented in the previous subsection,
we must investigate the correlations emerging in our models with the introduction of
disorder.

We could be tempted to explain the change in the drag using some kind of form factor,
saying that conductance of disordered lattice is hasically that of the hexagonal (shape of
the function does not change after all), but the internal topology somehow changes. This
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Figure 6.17: Geometrical modifier for the networks where each existing link has constant
conductivity.

statement cannot grasp the actual phenomena in the system. Let us have a look on the
flow fields presented in the Figures 6.19, 6.20 & 6.21. Lines thickness in the Figures is
proportional to volumetric flow through the throats. Void volumes for all examples was
€ = 0.4, the computational domain was approximately square and “wrapped” edges were
removed. Macroscopic flows point upward and all pictures pertain to the sane cylinders’
configuration, presented in the Figure 6.9. If the conductances of all links are equal,
the flow in the network is naturally uniform and resembles strongly the flow in regular
lattice (as shown in the previous section): flow field is homogeneous and very often links
perpendicular to macroscopic flow are dead (Figure 6.19). But once the throats are given
natural weights (i.c. smaller openings have smaller conductances) the picture changes
dramatically. We can clearly see the emergence of well defined mesoscopic patterns of
flow. Most of the system does not conduct and I call this regions clusters. When the
conductance function becomes steeper, the patterns become more distinet, but generally
do not change (6.21). The phenomenon may be casily understood qualitatively. The
system is uniform, but for the stronger dependence of conductances on openings local
inhomogeneities can more effectively block the whole clusters of network, which then
become unaccessible for flow and hence lead to jump in the conductivity.

It seems that the blockades are localized not on the boundaries of the clusters, but
rather in their centers and corresponds to throats with much larger than average pressure
drop, Figure 6.22. These drops in turn are clearly correlated with tight throats. The
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Figure 6.18: Possible observables in case of Miyagi model of throat. a) pertains to
exact calculations, b) and c¢) utilize mean gradient hypothesis (for single resistor and for
3-stars), d) was calculated as if the lattice were triangular (all throats identical) with
the value of conductance gy equal to average throat conductance in the system. e) is
theoretical prediction for regular triangular lattice. Error bars are smaller then the size
of the data points.
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complexity of the picture is amplified by the fact that the clusters have in fact internal,
hierarchical structure. The flow field may posses fractal-like structure, flow resembles a
bit river deltas.

We can now understand the failure of mean field (uniform gradient) hypothesis: the
system is strongly correlated. The key to analytical description is not only understanding
properties of local configuration but tracing the mentioned mesoscopic structures. We
see that the solution should concentrate on percolations in the system.

To estimate the size of inhomogeneities we investigate the distribution of powers
dissipated in the diagram, Figure 6.23. The “hot throats” (those producing the most of
the power) do not form agglomerates but are rather dispersed and it seems that their
separation should be good estimate of the sizes of clusters. As the throat function become
steeper, positions of hot throats do not change, but as in the case of currents their pattern
become clearer (the hottest throats become even hotter and the cold and warm cool down)
and their mutual distances should increase. By the “distance” we understand the distance
from the given hot throat to the nearest hot neighbor. The throat is regarded as “hot” if

the power dissipated on it is lareer than
min + T(Lmar — min)s

Prnin + T(Ponar — Prnin), (6.5.5)

where P, and P4 are respectively the smallest and the largest powers dissipated on
any of the resistors and 7 € [0, 1] is a certain threshold. Indeed, when the conductance
function become steep we can see that average distance between the nearest neighbors
approach an asymptotic value, which could serve as an estimate of correlation length in
the system. The calculations were presented in the Figure 6.24. These kind of computa-
tions demands a lot of computational time if we want to keep the errors reasonable: the
number of hot throats is rather small fraction of total links and we need to sample much
more configurations than in the case of fp.

6.5.3 Emergence of large deviations

In this section we study the distributions of flow parameters assigned to single throats,
namely powers dissipated and flows. To allow comparison of distributions for different

models we consider normalized quantities.
Normalized power is defined as

~ . /1, i/ =
P = o &P (6.5.6)

‘where H is the height of the cylinders, D their diameter, o viscosity of fluid, G macro-
scopic pressure gradient in the system, P; the power dissipated in the given throat and
A stands for the number of throats per unit area of the system:

N =3\ (6.5.7)
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Figure 6.24: Average distance between nearest hot neighbors as a function of exponent
q, as defined for function (6.5.2). Length scales in the system are: D = 1 and 1/VX ~
1.05924, where A is number of cylinders per unit area. € = 0.3. Number of cylinders was
around 3000 and the computational domain was approximately square. Threshold T was
set to 0.75. The saturation of the distance can be clearly visible. The asymptotic value

appears to be around 16.
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Easy calculation show that

~\ -1 :
fole) = 62<Pk> . - (6.5.8)
Normalized current reads similarly |
Foo 0 |
where
0 VA .
il (6.5.10)

is the average number of links per unit area crossing given cross section plane perpendic-
ular to macroscopic flow. Ii denotes volumetric flow in the throat k. We have

fp(e) = 62<Tk>—1- (6.5.11)

Let us first take a look on the probability density of currents presented in the Figure
6.25ab. For the unweighted networks (a) two clear peaks can be pointed. For the regular
lattice the correspond to the throat perpendicular to the direction of the flow (peak
around zero) and to throats with current. We see that if we disorder topology leaving the
conductances of the throats unchanged, positions of peaks do not change, but they are
somewhat broaden. When the throats become weighted the pictures changes completely.
The densities become strongly peaked around zero and feature long fat tails. We can
note that for the steeper the conductance function becomes the more its tail approaches
the exponential distribution.

We could expect that the “rivers” clearly present in the system should form peak
for large values of current. This is however not the case. Large currents in the system
are rare events and most of the system is dead. Similar emergence of current rivers for
exponentially weighted square lattice of resistors was recently reported in [97]. According
to authors of this paper large currents are associated with so called “optimal paths”, ie.
sequences of links that minimize the total resistivity between source and sink.

Densities of normalized powers can be described in similar terms, however the tails
of the distributions are not as fat as in the case of currents. They were presented in the
Figure 6.26. Underlying networks are random and weighted.
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Figure 6.25: Distribution of normalized currents. Panel a) pertains to unweighted net-
works constructed with Miyagi model. Panel b) presents the distributions for the weighted
networks. € = 0.3, compuational domain was approximately a square. The number of
cylinders used was 3000. Please refer to the discussion in the text.
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Figure 6.26: Distribution of normalized powers for the examples discussed.
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Chapter 7

Summary

7.1 Retrospection

The oil refineries processing heavy bituminous hydrocarbons utilize fluidized beds, i.e.
columns filled with fluidized coke suspended in the stream of steam. The coke parti-
cles serve both as a source of heat and as a surface for the process of thermocracking.
Numerical simulations of multiphase flows in such systems are an essential tool for de-
signing modern chemical reactors. The standard method used is to treat both phases as
continuous interpenetrating media and to solve the pair of Navier-Stokes equations for
them. An indispensable closure relation for this problem is the term which couples the
two equations, interphase drag,

The drag is defined as a force acting between the phases per unit voluine of the system.
The natural way to calculate this quantity analytically is to abandon the continuous
approximation and investigate the flow of fluid between particles. Since we do not need
to track the history of each grain, usually the momenturn transfer is constructed as a
statistical quantity; in this work we utilized the method of spatial averages. This requires
the introduction of an additional length scale, defining the size of the region over which
the forces are averaged. The most general and straightforward method for dealing with
our problem is to solve simultaneously the equations of motion for each particle (they
possess both translational and rotational degrees of freedom) and for the fluid surrounding
them (Navier-Stokes equation), fulfilling the proper boundary conditions on the surface
of particles. The force and momentum acting on the grains are calculated by integration
of fluid stress tensor over their area. We do not have tools to solve this problem exactly
at the present time.

The only existing exact analytic solutions are constrained to void volumes (void vol-
ume € is a fraction of the system not occupied by the solids) close to 1, where only pairwise
hydrodynamical interaction can be taken into account. Furthermore, it is often assumed
that the system is quasi steady, i.e. that for each configurations of grains we need to solve
steady state Navier-Stokes equation with non-slip boundary conditions on the particles’
surface. Another standard assumption adopted is that the relative Reynolds number
for particle and fluid phase is small and thercfore the inertial terms may be discarded.
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Finally we have to assume that the microdynamics of grains is not affected by the flow
field, i.e. the probability that the given configuration of particles occurs is solely a func-
tion of the mutual interaction between solids. This may be regarded as infinite solids
density assumption. The drag may be then computed as an average over an ensemble of
particles’ configurations.

Let us briefly discuss these assumptions. We must surely abandon the first one: the
drag strongly increases when the void volume decrease and becomes important exactly
where particles are close to each other and many-body interaction cannot be discarded.
The other assumptions are surprisingly good. Reactor is in general a turbulent system,
but the turbulence occurs on the scales which are very large compared to interparticle
distance; relative motion of the phases in the most interesting regime of large concen-
tration is rather smooth. Nonetheless the last assumption that the granular dynamics
is flow-independent is at least questionable. It may serve as a good starting point, but
ultimately we must also investigate the impact of the low on the phase space of grains.
Surprisingly, there exists an evidence |70], that the rotational movement of particles may
be more important in this case than translational; rotation is usually a good way to
release the hydrodynamical stresses in the fluid-particle system.

There exists a method of dealing with creeping flows in the constrained geometries,
used for the first time in the studies of flow through porous media [13|. It is based on
the observation that in such systems flow occurs in the well defined paths defined by
contractions between particles (in throats). For small Reynolds numbers such throats
behave like Ohmic resistors, the pressure drop along them is proportional to the mass
flow. From this point of view the interface drag may be computed as the net resistivity
of a random resistor network. The model has two important advantages. First of all it
appeared to be useful; it allowed to predict the permeability of porous medium spanning
5 orders of magnitude and agreeing perfectly with experimental data. Second, the electric
analogy seems to be much more tractable than the direct attack on the Navier-Stokes
equation. Finally we can obtain some analytical insight into the low € regime. The
drawbacks are obvious. The method is purely heuristic, we cannot control the quality of
our approximation and it hardly gives us any chance to release the infinite solids density
assumption.

The electric method requires three key elements. First of all we need a solid formal-
ism to deal with a linear clectric network, which this work provides. Second we must
elaborate the accurate model of the throat, based on the properties of local configurations
of particles. Finally, having calculated the conductance of every throat, we must find the
net conductance of the whole network.

We build model of the throat by investigation of flows in regular network of resistors.
There exists an exact periodic solution of Navier-Stokes equation based on Fourier tech-
niques and constructed as (singular) perturbation series in powers of 1 — €. We match
it with the clectric solution suitable for small € and in this way get the throat conduc-
tance function. Regular lattice has a very pleasant property, namely we can deduce the
macroscopic propertics of the medium just by investigating the local configurations of
particles. This observation was called the uniform gradient hypothesis. We suspected
that the same law might be applied to disordered systems. Briefly, uniform gradient
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hypothesis is a mean filed theory which assumes that the throats are independent and
the pressure drop on their ends may be calculated as if they lied in the pressure field
with a constant gradient. The refinement of this method might include consideration of
larger groups of connected resistors.

Every reasonable analysis of the electric model must be based on the statistical stud-
ies of local structures formed by the particles. The identification of nearest neighbors
is performed by means of Voronoi diagrams. To obtain the solution, at least under in-
dependent resistor assumption, we need joint probability density for Voronoi edge and
corresponding interparticle distance (Delaunay edge). Analytic solution of this problem
was obtained, but in general calculations are possible only for Poisson point field (i.e.
for the case of non-interacting points). Also building the relevant distributions for larger
structures (clusters) is hopeless.

We undertook series of numerical simulations of the lattices emerging in our problem,
primarily to understand the role of correlations in the system and to verify the uniform
gradient assumption. As the source of configurations the gas of hard discs was taken.
We were working with the constant density ensemble. The configurations were sampled
using self adjusting Monte Carlo generator. Voronoi diagrams were built utilizing slightly
modified VORONOI2 library written in FORTRAN77 and ported to Component Pascal,
which was chosen as the primary programming language for this project. Finding the net
conductance of the network requires basically the solution of a set of linear equations.
The exact methods to achieve that appeared to be extremely expensive as far as the
computational time is concerned, so an iterative method was developed, together with
the proof of its convergence. The engine for the project was carefully tested.

Numerical studies demonstrated that even the severely simplified electric model posses
number of interesting properties. It appeared that the drag is well defined thermody-
namical observable. Standard deviation of its mean vanishes in the thermodynamical
limit of infinite grains number, obeying 1/y/n power law. It was generally found that the
drag for the lattice is generally smaller than for disordered network. Studies showed also
that mean gradient hypothesis had to be refuted, the system appeared to be strongly
correlated.

The disordered network arising when assemblages of hard discs are concerned resem-
bles topologically hexagonal lattice. When the throats are given equal conductances the
topological disorder leaves the interpliase drag almost unaltered. The factors responsible
for the increase of drag are natural weight attached to the throats (smaller openings have

“higher resistivity). This leads to formation of clusters (regions devoid of flow) and rivers,
carrying most of the current. Disordered networks are strongly non local as opposed to
flow in regular lattices, where the flow patterns are repeated with the periodicity of the
lattice, necessarily much smaller that averaging region. We pointed the way to estimate
the correlations length scale, but at this stage we cannot explain quantitatively its value.

The difference between weighted and unweighted nets can be also visible in the distri-
butions of current flowing through particular throats and powers dissipated. Unweighted
networks feature distinet peaks in their distribution of currents (and powers), while the
distributions for weighted networks are gathered around zero and have very long fat
tails, which in case of current distributions are clearly exponential. It is interesting to
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note that the rivers, so apparent when inspecting the flow field, cannot be seen in these
distributions. Significant currents are merely large deviations in weighted systeins.

The emergence of large currents has significant implications. We started with a
picture of two continuous fluids that move smoothly though each other - the already
discussed scale separation is the necessary assumption if we want to simulate reactors by
means of partial differential equations, which necessarily deal with the quantities that are
defined strictly locally. We end up with the correlation scale that is of order of 10 particle
diameters. Usual coke particles used in Syncrude cokers are around 0.1mm, which means
that our correlation are of order of millimeters, ie. macroscopic. It signifies in turn that
our procedures of spatial averaging should be carefully reexamined. It seems that the
assumption of scales separation (“granular details wash out”) may be not appropriate in
the real life problems.

Every source I used is acknowledged, nevertheless it is desirable to state explicitly
which part of the work is my original contribution. The literature review from Chapter
2 was prepared by me. Also the translation of interphase drag into language of resistors
networks is original (Chapter 3) together with the presented models of throats (Section
4.1). The matrix formulation of linear resistors network given in Section 3.4 is mine. |
Chapter 4 [ extended the work of Hasimoto, used it to gauge Miyagi model of throat
and calculated the flow in the presence of phonon disorder. In Chapter 5 I repeated
calculations of Collins (they were not given explicitly) for the probability density for
Delone edge of Poisson point field and extended the method to give integral representation
for joint probability for Delone and Voronoi edges for the case mentioned. The whole
material from Chapter 6 is original (as well as the code in CP with exception of Voronoi2

library).

7.2 Vision

We can think of the future of this project in two categories. First we could refine the
network model and second take completely different approach to analytical calculations
of drag.

Network model has to take into account movement of particles driven by the flow.
The easiest scheme could be the following. We solve NS equation (by means of electric
method) for given configuration of particles and then calculate the forces and momenta
acting on them. In the next step the particles are moved and the scheme continues.
In this approach we would need to modify our throat model to take into account the
movement of the contractions’ walls.

Also it seem that emergence of rivers makes the problem closer to percolation the-
ory, which gives us another chance of an analytical study. Percolation theory is a well
developed discipline, but existing solution have been found almost only for regular, un-
weighted graphs, without correlations between bonds [48]. Our graphs hardly follow this
assumptions.

We should move toward 3D systems. Although most of ready-to-use algorithms for
computing Voronoi diagram are concerned with 2D sets of generators, there are in general
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no obstacles to repeat our simulations in 3D.

On the other hand it becomes possible to simulate the flow in porous media by direct
~ numerical solution of Navier-Stokes equation. It seems also that we are approaching
“slowly the moment when taking into account not only the dynamics of fluid but also that

of the grains will be feasible. With the growing power of computers the problem can be
solved by brute force.

Nevertheless we should remember that it is analytical solution of the problem that
we are really aiming for. It is unclear at the present moment if the theory of stochastic
differential equations (taking into account non regularity of boundary conditions), will
be any help, but clearly the key to understanding of the drag is hidden in statistical
physics.
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“See how he lies at random, carelessly diffused.”
John Milton, Samson Agonistes
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