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Abstract 
Recently a class of multinetwork elastomers (MNEs) was developed by swelling a filler polymer 

network with monomers that are subsequently polymerized to form matrix networks. Such 

MNEs were reported to possess remarkable stiffness and fracture toughness while maintaining 

the ability to sustain large deformation as found in simple elastomers.  The enhancement in 

toughness is attained by prestretching the chains of the filler network through the introduction of 

one or more matrix network(s), thereby promoting energy dissipation through chain scission in 

the filler network.  In this work, a model to capture the mechanical response of MNEs is 

developed, and validated with experimental data.  Prestrech of the polymer chains is 

incorporated into the model by basing the strain energy density function on the combined effect 
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of swelling and subsequent deformation of the completed MNE.  The filler network is modeled 

as a polydisperse network of breakable polymer chains with nonlinear chain elasticity, while the 

matrix networks are modeled using the generalized neo-Hookean model.  Although the filler 

network occupies only a small fraction of the material volume, the model shows that it 

contributes to the majority of the stress.  Finally, the hysteresis during cyclic loading is shown to 

correlate with the accumulation of damage in the filler network during each cycle.   

 

1 Introduction 
 

Elastomers are widely utilized in many industrial and biomedical applications due to their ability 

to undergo large and reversible deformations.  In most of these applications, from traditional 

industrial applications (e.g. tires) to emerging technologies (e.g. soft robotics and stretchable 

electronics), elastomeric components are required to sustain certain levels of mechanical loading. 

Therefore, it is desirable to design elastomers with high fracture toughness to enhance their load 

carrying capabilities.  The first theory describing the intrinsic or threshold fracture of elastomers 

(in the absence of viscoelastic dissipation) was presented by Lake and Thomas [1], who stated 

that all bonds on a polymer strand between two crosslinks must be stretched to the breaking point 

before one bond ultimately fails.  Thus, the energy to rupture a single polymer strand should 

scale linearly with the length of the strand l. As a result, the intrinsic fracture energy, estimated 

by multiplying the energy to rupture a single chain with the areal density of polymer chains 

across the fracture plane (~ l−1/2), scales with the square root of the average chain length (i.e. ~ 

l1/2).   A consequence of this mechanism is that any attempt to increase the stiffness of an 

elastomer, by increasing the density of crosslinks and thereby decreasing the average chain 
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length, will also make the elastomer more brittle with a decreased intrinsic toughness. This trade-

off between stiffness and toughness has been observed in many experimental data [2, 3].   

Another route to improve the fracture resistance of materials is to introduce bulk energy 

dissipation mechanisms, which can lead to the formation of a dissipation zone surrounding a 

crack [4]. The dissipation zone can prevent the energetic driving force for crack growth, supplied 

by external loading, from being fully delivered to the crack tip, which enhances the apparent 

fracture toughness without changing the intrinsic toughness. This is the underlying mechanism 

for toughness enhancement in filled elastomers [5, 6] where chains can attach and detach from 

filler particles embedded in the elastomer to dissipate energy, in viscoelastic elastomers [7] 

where molecular friction provides dissipation, and in interpenetrating networks where dissipation 

is introduced through the damage of sacrificial networks [8, 9].  The last strategy, i.e. 

interpenetrating networks, has been implemented in numerous gel systems [8-12], but was only 

realized in elastomers very recently [13], where a variable fraction of prestretched chains can be 

built into the elastomer network to control the extent of chain rupture and energy dissipation.   

 Such interpenetrating multinetwork elastomers (MNEs), as described by Ducrot et al. 

[13], were created by first forming a crosslinked elastomer, i.e., the ‘filler’ network.  This 

elastomer was then swollen using a solution containing monomers, during which chains of the 

filler network were stretched.  These monomers were then polymerized in place to form a 

‘matrix’ network interpenetrated with the filler network.  This procedure was repeated to 

introduce additional matrix networks and further stretch the chains in the filler network.  The 

terminology of matrix and filler networks is used by drawing an analogy to classical composites, 

where the filler material is of smaller fraction and is held together by the matrix to form the bulk 

material [14].  To monitor the extent of damage, bond rupture in the filler network around a 
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crack tip was mapped by introducing light emitting photophores into the network. It was 

hypothesized that the prestretched filler network makes the dominant contribution to stress, 

while the matrix networks mainly serve to prevent large cracks from forming [13].  Validation of 

this hypothesis, however, is still difficult within the experimental instrumentation. Also, a 

systematic study of how physical parameters, such as degree of crosslinking and prestretch, 

impact macroscopic mechanical and fracture behaviors is necessary to optimize the stiffness and 

toughness of the MNEs, which is challenging with these types of time-consuming experiments.  

Hence, there is a need to develop quantitative models which can describe the mechanical 

response of this new class of materials.  Such models will allow for an investigation of the 

relative contributions of each network to the stress.  Implementation of such models in finite 

element analysis will allow for a systematic study of the impact of MNE parameters on the 

fracture toughness, e.g. how the size of the damage zone around crack tip depends on bulk 

material properties.   

 The objective of this work is to develop a nonlinear constitutive model capable of 

quantitatively predicting the mechanical behavior of MNEs, especially how the network pre-

stretch induced by swelling affects the strain stiffening and damage in the MNEs.  In particular, 

new experimental data are presented where three sets of double network and triple network 

elastomers are synthesized from a common parent single network elastomer.  The pre-stretch of 

the first network is changed by varying the fraction of volatile solvent versus monomers during 

swelling, which enables a systematic study on the effect of pre-stretches.  We will show that our 

model can capture all experimental data using a fixed set of model parameters not pertaining to 

swelling, thereby demonstrating predictive capability of our model.    
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Recently another model has been presented to capture the nonlinear mechanics of MNEs 

[15]. However, the model is phenomenological in nature and requires many fitting parameters to 

match the hysteresis measured in cyclic uniaxial tensile tests. Furthermore, in [15] the damage 

evolution was implemented by increasing the critical extension of the network which prevents 

the model from capturing the experimentally observed decrease in shear modulus due to chain 

rupture [13, 14]. The key difference between our model and the previous one is that here the 

fundamental physics of polymer chains in the filler network is directly incorporated in the 

continuum model. Specifically, since the filler network contains a much higher density of 

crosslinks and experiences larger prestretch than the matrix networks, the chains in the filler 

network are expected to be highly stretched and subjected to stretch. Therefore, we implement a 

chain elasticity model that combines configurational entropy and bond deformation on the 

backbone of the polymer chain. Progressive damage in the MNEs is captured using a kinetic 

model describing chain rupture in the filler network. In contrast, the matrix networks contain 

relatively long and loosely crosslinked chains and thus are modeled using a generalized neo-

Hookean model [16]. The prestretches experienced by the filler and matrix networks due to the 

swelling process are also taken into account. This physics based approach ensures that each 

parameter in our model has a physical interpretation, which can elucidate the connection between 

physical parameters (e.g., chain length) and continuum-level mechanical response.  

 The paper proceeds as follows. The experimental procedures to synthesize MNEs and the 

subsequent uniaxial tensile testing method are given in Section 2.  Formulation of the model is 

presented in Section 3 which is divided to present the combined kinematics of swelling and 

MNE deformation in Section 3.1, and the material models in Section 3.2.  In Section 4, the 
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model is applied to uniaxial extension and is compared with experimental data.  Conclusions are 

given in Section 5.   

2 Material and experimental methods 

2.1 Reactants 
 
The monomer ethyl acrylate (EA) and the crosslinker 1,4-butanediol diacrylate (BDA) were 

purified over a column of activated alumina to remove the inhibitor. The UV initiator, 2-

hydroxy-2-methylpropiophenone (HMP) was used as received. Ethyl acetate was used as the 

solvent. All reagents were purchased from Sigma Aldrich. 

2.2 Synthesis 
 

The synthesis of the MNEs was carried out in a glove box (Mbraun Unilab) under nitrogen 

atmosphere to avoid side reactions with oxygen in the air. Before introduction into the glove box, 

every reagent and solvent were bubbled with nitrogen for 45 minutes to remove the dissolved 

oxygen. The reaction was triggered by UV light (Vilbert Lourmat lamp, model VL-215.L, 

focused on 365 nm). The UV power was kept low (10 μW/cm²) to create slow polymerization.  

The preparation of MNEs is carried out in the following way starting from monomers, a 

first network (i.e. the filler network) is synthesised, and then multiple steps of swelling and 

polymerization are conducted to create a multiple network.  

2.2.1 Synthesis of the filler network 
 

The filler network was prepared from a solution in ethyl acetate consisting of: EA the 

monomer (50 wt %), BDA the crosslinker (1.45 mol % relative to monomer) and HMP the UV 
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initiator (1 mol % relative to monomer). The solution was cast in a 1 mm thick glass mold and 

the reaction was initiated by UV for 2 hours. After synthesis, the sample was washed and dried 

to remove unreacted species and free chains as described in [13, 17]. This single network (SN) is 

then fully dried under vacuum at 80 °C. 

2.2.2 Preparation of MNEs with a controlled swelling of the filler network  
 

The synthesis method previously described in [13, 17] has been adapted to obtain a larger 

range of swelling states of the filler network. The filler network was swollen to equilibrium in a 

bath composed of monomer and solvent. At equilibrium, a swollen piece of the network was 

removed from the bath, sealed between PET sheets, and tightened between glass plates. Then a 

second polymerization, in a similar manner to that of the filler network, was conducted.  Then 

the sample was dried under vacuum at 80°C overnight to remove the solvent. The resulting 

material is a double network (DN) elastomer, and its synthesis procedure is schematically 

depicted in Figure 1. This procedure can be then repeated multiple times leading to the creation 

of a triple network (TN), a quadruple network (QN) and so on, with different volume fractions of 

each network.  
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Figure 1: Schematics of the synthesis procedure of a double network elastomer 

 

2.3 Characterization of the synthesized materials 
 

To characterize the composition of synthesized MNEs, the mass and thickness of a sample 

are carefully measured after each step. Since in this work all the networks are comprised of the 

same monomer (ethyl acrylate), it is reasonable to assume that all networks have the same 

density (i.e., mass divided by the partial volume of the network). With the additional assumption 
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of isotropic swelling, the prestretch of the filler network 0 can be quantified using the measured 

masses as follows 

3
0

11 1


 

N
N m

m
,   (1) 

where 1
N  is the volume fraction of the filler network in an MNE consisting of N networks, 1m  is 

the mass of the SN sample, and Nm  is the mass of the MNE sample. It should be noted that the 

model to be demonstrated in Section 3 is not limited to the assumption of same density in all 

networks, and is applicable to networks polymerized from different monomers. Two different 

ways of calculating the prestretches of the filler networks will be presented later, one being a 

generalization of Eq. (1) and the other based on the measurement of sample thickness. 

2.4 Mechanical Tests 
 

Mechanical tests were performed on a standard tensile Instron machine (model 5565) using 

a 100 N load cell. A video extensometer gave a local measurement of the stretch λ = L/L0 where 

L0 is the initial length and L is the corresponding deformed length. The relative uncertainty of the 

measurements given by the load cell and the video extensometer are respectively 0.1 % in the 

range of 0 to 100 N and 0.11 % at the full scale of 120 mm. Specimens were cut into a dumbbell 

shape using a normalized cutter (central part: length 20 mm, cross-section 4 mm and thickness 

0.6 – 2.5 mm depending on the sample). Uniaxial tensile tests from small to large strain were 

performed at a constant 500 µm.s-1 crosshead velocity and the typical stretch rate on the central 

part of the sample was around 𝜆ሶ = 0.04 s-1.  
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2.5 Set of materials 
 

Mechanical properties of the MNE can be influenced by several factors [13]: (i) number of 

networks, (ii) type of monomers used in each network, (iii) type of crosslinker, (iv) concentration 

of crosslinker, and (v) degree of swelling which can be changed by adding a certain amount of 

solvent to the solution of monomers.  In this work, results from our theoretical modeling will be 

compared with experiments on MNEs in which all networks are comprised of Ethyl Acrylate 

(EA) but with different crosslinker concentrations and prestretches in the filler network. To be 

consistent with existing report [18], we use the following notation to denote different MNEs: 

EAeX(Y)EA 

EA: ethyl acrylate, monomer of the filler network 

e: ethyl acetate has been used for the synthesis 

X: mol % of crosslinker used for the synthesis of filler network  

(Y): Y=λ0, prestretch of the filler network  

EA: ethyl acetate, monomer of matrix networks.  

 

A summary of the experimental datasets used in this work is given in Table 1.  A tag is added to 

each elastomer for a simplified notation as well as to indicate the number of networks. We will 

be referring to these tags when comparing the modeling results with experiments later. From the 

base SN elastomer, three DN elastomers (DN1-3), with different pre-stretches, are created by 

controlling the ratio of monomer to solvent during swelling. Specifically, DN1, DN2 and DN3 

were prepared by swelling the SN elastomer using mixtures with monomer volume fraction of 

50%, 70% and 100%, respectively. Three TN elastomers, with different pre-stretches, are 

synthesised by swelling the DN elastomers with pure monomers; e.g. TN1 is synthesised from 
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DN1.  Measurements were also taken for the matrix network alone (M), where the crosslinker 

concentration (0.01 mol%) is 145 times less than that used in forming the filler network. Finally 

additional DN and TN data were extracted from Ducrot et al [13], DNP and TNP, where the 

synthesis procedure was similar to that of DN3 and TN3 with the exception that a photophore, 

chemiluminescent bis(adamantly)-1,2-dioxetane bisacrylate, was used as crosslinker in place of 

BDA.   

 

Table 1: Set of MNEs Investigated 

Sample name λ0 wt% 
of filler 
network
 1100 N  

Type of 
network Number of 

polymerization 
steps 

Tag 

EAe1.45(1) 1 100 SN 1 SN 
EAe1.45(1.32)EA 1.32 42.0 DN 2 DN1 
EAe1.45(1.51)EA 1.51 29.2 DN 2 DN2 
EAe1.45(1.68)EA 1.68 20.5 DN 2 DN3 
EAe1.45(2.18)EA 2.18 9.52 TN 3 TN1 
EAe1.45(2.41)EA 2.41 7.39 TN 3 TN2 
EAe1.45(2.55)EA 2.55 6.06 TN 3 TN3 
EAe0.01(1) 1 100 Matrix 1 M 
EAe1.45(1.48)EA [13] 1.48 30.8 DN 2 DNP 
EAe1.45(2.72)EA [13] 2.72 4.97 TN 3 TNP 

 

3 Model  
3.1 Kinematics 

3.1.1 Swelling 
We number the networks, in superscripts, by the order i ( Ni 1 ) in which they were 

added to the material, where N is the total number of networks which comprise the material: for a 

SN N = 1, for a DN N = 2, and for a TN N = 3.  Each swelling and drying operation is denoted 

using the index j, in subscripts, which runs from 1 to a maximum value of N−1. The swelling and 

drying of a matrix network contains the following steps: (1) the networks is swollen to 
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equilibrium by a solution containing monomers and solvent; (2) polymerization of the matrix 

network; and (3) the material is dried to evaporate the solvent. The relaxed configuration of each 

matrix network is the one after step (2) but before step (3) since drying introduces volume 

shrinkage of the material.  The deformation gradient of each matrix network is measured relative 

to its relaxed configuration.    

Figure 2a) shows the jth swelling and drying operation and the associated deformation 

gradients: max
jΦ  for the steps of swelling to equilibrium, dry

jΦ  for drying and  maxdry
j j jΦ Φ Φ  for 

the entire procedure. Assuming that the swelling and drying are isotropic, the isotropic stretches 

during these steps ( max
j , dry

j  and sj ) can be calculated from  

 1/3max max max
j j jJ  Φ I I ,  1/3dry dry dry

j j jJ  Φ I I ,   IIΦ sjsjj J 
3/1 ,   (2) 

where I  is the second order identity tensor, max
jJ , dry

jJ  and sjJ are respectively the volume ratios 

during the jth swelling only, during the jth drying only, and during combined swelling and 

drying in the jth step. Clearly, max dry
sj j jJ J J  and max dry

sj j j   . Denote the volume fraction of 

monomers in the jth swelling solution as mon
j  then it follows that (see Supporting Information 

Section S1) 

1

mon
j sjdry

j mon
sj j

J
J

J





 

.  (3) 

After the jth swelling and drying we obtain a MNE, and if the configuration at this point 

is set to be the reference configuration of the MNE, the deformation gradient that maps the ith 

network from its relaxed configuration to the reference configuration of the MNE is  

   1/3 1/3

1 1 1

j j j
i dry dry dry
j k i i sk i sk

k i k i k i

J J    
  

     
      
     
  Φ Φ Φ I I ,  (4) 
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where the notation  indicates multiplication.  For example, consider a TN elastomer just 

formed (N = 3, j = 2), the total swelling and drying deformation gradients are given by 

12
1
2 ΦΦΦ   for the filler network, 2

2 2 1
dryΦ Φ Φ  for the second network, and 3

2 2
dryΦ Φ  for the 

third network.  Note that the  notation returns 1 for an empty product. For example, for a SN 

elastomer 
0

1
0 0

1

dry
sk

k




 
  
 
Φ Φ I .  Note that since the filler network was synthesized without 

using additional solvent, it is in the relaxed configuration after polymerization and thus 0
dry Φ I . 

Using Eq. (4) we can define the ratio between the volume of the ith network after the jth swelling 

and drying and its volume when it is first introduced (before drying):  

     
3

3 3

1 1 1det
j j j

ii dry dry dry
jsj i sk i sk i sk

k i k i k i

J J J     
  

 
    

 
  Φ .  (5) 

In writing the constitutive relationship for the MNE, the contribution from each network 

will be considered; hence it is necessary to determine the volume fraction of each network that 

makes up the total MNE volume.  The volume fraction that the ith network occupies in the 

material when it is first introduced (j = i − 1) is given by  

  
1

1max
1 1

1

1 1i mon
i iJ i



 


 



  
 (6) 

The first equation (for the filler network) is straightforward, while the second equation ( 1i  ) for 

the matrix networks can be explained as follows. After introduction of the ith network with the (

1i  )th swelling, the volume of the MNE is increased by a factor of max
1iJ  . Assuming all the 

original material remains intact after swelling, the volume fraction of the original material after 

this swelling becomes   1max
1iJ



 .  Since the newly introduced matrix network and solvent occupy 
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the remaining volume   1max
11 iJ



 , the volume fraction of the matrix networks is given by 

  1max
1 11mon

i iJ


   as stated by Eq. (6).  Similarly, subsequent drying and introduction of 

additional matrix networks with the jth swelling causes the volume fraction of the existing 

networks to be divided by a factor of sjJ .  Therefore, if we extend this idea the volume fraction 

of the ith network when N networks are present (j = N − 1), denoted by i
N , is obtained by 

dividing the initial volume fraction i  by  
i

NsJ 1   

 
i

Ns

i
i
N J 1




 ,  (7) 

where  
i

NsJ 1  is given by Eq. (5). Note that Eq. (1) is a special case of Eq. (7).  

3.1.2 Deformation 
If the MNE, after all swelling operations ( 1 Nj ), is then mechanically deformed, the 

deformation gradient which maps the relaxed configuration of the ith network to the current 

configuration when N networks are present is given by  

 
i
N

i
N 1 ΦFF , (8) 

where F  is the deformation gradient that maps the MNE configuration after all swelling and 

drying to its deformed configuration.  Eq. (8) can be understood by considering the example of a 

TN elastomer for which a schematic of the deformation gradients is shown in Figure 2b).  Six 

configurations are shown: A) when the filler network is formed, B’) when the filler network has 

been swollen to equilibrium by a matrix network B) after drying to remove excess solvent from 

B’ to form a DN, C’) after the DN material in configuration B has been swollen to equilibrium 

by an additional matrix network, C) after drying to remove excess solvent from C’ to form a TN, 
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and D) after the TN elastomer in configuration C has been mechanically deformed.  A is the 

relaxed configuration for the filler network, B’ is the relaxed configuration for the second 

network, and C’ is the relaxed configuration for the third network.  C represents the reference 

configuration for the completed TN elastomer relative to which subsequent mechanical 

deformations are measured.   
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1
11,ΦΦ

2Φ

1
2Φ

F

1
3F

2
3F

jΦ

max
jΦ

dry
jΦ

2
1 1

dryΦ Φ

max
1Φ 2

2Φ

3
2 2

dryΦ Φ

max
2Φ

3
3F

 

Figure 2: a) Swelling and drying in the jth step, and the corresponding deformation gradients.  b) Deformation map for a TN 
elastomer showing relaxed configurations for the 1st (A),  2nd (B’), 3rd (C’) networks and the deformed configuration (D).  The 
deformation gradients which relate these configuratiolns are shown schematically.  
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Spatial forms of constitutive relations are often written in terms of the invariants of the 

left Cauchy-Green deformation tensor defined as 
TT BFFB   [19].  Since the swelling pre-

deforms the material we introduce the left Cauchy-Green deformation tensor for each network i, 

denoted by 
i
NB , which captures both swelling and post-swelling deformation:  

         
21 2/3

1 1 1 1

NT Ti i i i i Tdry i
N N N N N i sk s N

k i

J 


   


 
    

 
B F F FΦ FΦ FF B . (9) 

The first, second and third invariants of 
i
NB are respectively given by 

        
2/3

1 1

i i i
N N s NI tr J tr B B B ,  (10) 

          
    

4/3

2 2 21 2
2

1

2 2

i
s Ni i i

N N N

J
I tr tr tr tr

           
B B B B B ,  (11) 

and 

     23 det i
N

i
N

i
N JI  BB .  (12) 

where 

          FFΦF detdetdetdet 11
i

Ns
i
N

i
N

i
N JJ   .  (13) 

In many cases the deformation of the completed MNE can be assumed to be incompressible so 

that   1det F .  In this case  
i

Ns
i
N JJ 1 . 

 

3.2 Constitutive Model 
The total strain energy per unit volume of the MNE is assumed to be the sum of the 

contributions from each network (  i
N

i
NU B ) weighted by its volume fraction ( i

N ), or 

   
1

N

N
ii i
NN N

i

U U


 B B .  (14) 

If we assume that the completed MNE is incompressible under further deformation, the Cauchy 

stress can be computed as follows (see Supporting Information Section S2) 
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 
1 1

2
N

ii
N N

Ni ii
NN N N i

i i N

U
p

 


  

 
B

σ σ B I
B

, (15) 

where p is a Lagrange multiplier used to satisfy incompressibility and i
Nσ  represents the 

contribution to the Cauchy stress from network i and is given by 

 
2

N

ii
Ni ii i

NN N i
N

U
p


 



B
σ B I

B
.  (16) 

Here 



N

i

ipp
1

 and ip  is the contribution to the Lagrange multiplier from network i. Note that 

the determination of p using boundary conditions must be based on Nσ  and not i
Nσ . For the case 

of uniaxial extension, it is possible to separate p into contributions ip  from each network.   

 To complete the constitutive relation for the MNE, it is necessary to specify the strain 

energy density function  i
N

i
NU B  for each network. Since the properties of the first (and filler) 

network usually differ significantly from the matrix networks, below we propose two different 

formulations of  i
N

i
NU B  for the filler and matrix networks.  

3.2.1 Filler Network 
The filler network contains a relatively high density of crosslinks. Also, based on 

experimental measurements with photophores [13] many chains in this network can be ruptured 

in the bulk material before crack propagation.  Therefore, a constitutive model is needed to 

capture the nonlinear response of polymer chains as they are stretched and ultimately break.  In 

addition, because damage was observed over a range of strains, the model must contain a feature 

which allows the chains to reach critical extensions and break at different times.  This has been 

accomplished in several ways in the literature: polydispersity or a distribution of chain lengths 

[20] results in shorter chains breaking before longer chains; a distribution of initial end-to-end 



19 
 

distance of the chains results in initially more stretched chains breaking before more coiled 

chains [21]; and different orientations of the chains relative to the principal deformation direction 

lead to chains aligned with the deformation breaking before unaligned chains [22, 23] .  

Although in real materials all the previously mentioned effects may be present, we will focus on 

polydispersity of chain lengths.  It should be noted that in this work the distribution of chain 

lengths is estimated based on experimental measurements of chain rupture in Section 4, which 

effectively captures all effects that contribute to chain breakage at different extensions.   Based 

on the above considerations, for the filler network we propose a strain energy potential in the 

following form 

      KchKKKN dNrENNrbNfU 



1

***
max

1 , ,  (17) 

where, Tk B  ,   is volumetric density of chains (before any swelling), Bk  is the Boltzmann 

constant, T is the absolute temperature, KN  is the number of Kuhn segments in a polymer chain 

between crosslinks (i.e. representing the chain length), and  KNf  is a probability density 

function which describes the distribution of chain lengths and satisfies   1
1




KK dNNf . 

oK ANrr /*   is the fractional chain extension, where r is the end-to-end distance of the 

polymer chain and oA  is the Kuhn length of the polymer chain.  KNrb ,*
max  are a set of damage 

functions that depend on the chain-length (NK) and will be described later. *
maxr  is the maximum 

fractional extension a chain has reached in its deformation history, and     TkrErE Bchch /***  is 

the nondimensional chain energy to be discussed next. The integration in Eq. (17) accounts for 
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the total contribution of all chain lengths to the strain energy.  More details on the derivation of 

this type of strain energy potential can be found in [20].   

Using the “8-chain” model by Arruda and Boyce [24], the following expression can be 

written to relate the chain extension *r  to  1
1 NBI  

 
K

N

oK N

I

AN

r
r

3

1
1* B

 .  (18) 

Introducing a dimensionless chain force as     TkrFArF Bo chch /***  , the dimensionless polymer 

chain energy needed in Eq. (17) is calculated from 

    *****

*

*

drrFrE
r

r

ch

o

ch ,  (19) 

where Ko Nr /1*   is the fractional extension of the chain under load-free condition.  We have 

chosen to start this integration at *
or  rather than zero to enforce the zero-strain energy condition 

at the relaxed state where   31
1 NI B ; this choice introduces a constant into the strain energy 

density and has no impact on the stress predicted by the model.  

The kinematic assumption (Eq. (18)) implies that the strain energy density depends only 

on  1
1 NI B .  One may argue that during swelling and drying there is a large volume change which 

implies the third invariant  1
3 NI B  changes, and for this reason the strain energy can also depend 

on  1
3 NI B .  In fact, such a term has often been included in the strain energy function when 

modeling swelling and drying. For example, Hong et al. include a term  




 1

3ln NI B  for the 

filler network [25] when modeling gels.  On the other hand, this term has been the subject of 

some controversy in the literature [26] and the discussion remains inconclusive [27]. 
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Nevertheless, the effect of such a term is shown to be rather small in most practical cases [27].  

Furthermore, in this work we focus on the deformation of a pre-swollen MNE that remains 

incompressible during post-swelling and drying deformation, in which case  1
3 NI B  will be 

constant, and whether the  1
3 NI B  dependency is included in the strain energy density function 

will not impact our results.   

Since 1
NU  depends only on  1

1 NI B , we can write

     
 
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B

B

B

B

B
1

1

1
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
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Thus, to evaluate the stress in Eq. (15) the derivative of the strain energy potential is needed, 

which can be calculated by  

  
 

     
K

chKK

N

NN dN
r

rFNrbNf

dI

IdU




1

*

***
max

1
1

1
1

1 ,

6


B

B
.  (20) 

There are several models in the literature which can be used to obtain  ** rFch  or  ** rEch  

[24,28,29]; one of the most commonly used models is the Arruda-Boyce model [24].  However, 

the  ** rFch  relationship adopted in the Arruda-Boyce model is based on a freely jointed chain 

model with Langevin statistics, where the chain is inextensible and there is a singularity in chain 

force when 1* r . This singular behavior allows only a very small fraction of the chains to 

experience large forces at any time, which limits the maximum stress that is obtainable.  On the 

contrary, the novel microstructure of the MNE leverages prestretch via swelling to create many 

chains in the filler network that are subjected to large tensile forces and can rupture during the 

deformation.  These large tensile forces are sufficient to deform bonds and elongate chains, as 

discussed in a recent work [30].  Therefore, the Arruda-Boyce or any inextensible model based 
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purely on entropic elasticity may not be suitable for this type of material.  In a work to be 

reported separately, we incorporated bond deformation into the chains’ backbone, and obtained a 

force-extension relationship by minimizing the free energy of a polymer chain consisting of 

configurational entropy and bond deformation energy. Compared with entropic chain models, 

this new relationship has been shown to provide better agreement with single chain extension 

data in experiments, especially when * 0.9r  [31]. For the poly ethyl-acrylate (PEA) chain 

relevant to the present work, the force-extension relationship can be approximated in closed form 

by polynomial functions as follows   

 
      9.09.0684369.0262389.0501

20

513

9.02
2

1
1

2

1

*3*2***

**2**






rrrrF

rrrF

ch

ch

  (21) 

 Last, we comment on the damage functions b, which represent the fractions of chains that 

remain intact and are dependent on the number of Kuhn lengths KN  in the chain.  b equals 1 for 

undamaged material and decreases as chains are ruptured. The rupture of polymer chains can be 

modeled using rate dependent nonlinear ordinary differential equations [20, 28] where the rate of 

chain scission depends on the force acting on the bonds in the polymer chain.  On the other hand, 

it was found that [20] if the deformation speed was sufficiently high the damage was nearly rate 

independent. Extension rates used in the experiment of Ducrot et al fall into this regime and the 

material exhibited negligible rate dependence [13].  In this work, we focus on this regime and 

approximate the damage functions by rate-independent functions in the form of  KNrb ,*
max . 

These damage functions have been obtained in [31] by numerically solving the rate equations at 

a given stretch rate in the rate-independent regime, and they are summarized in Supporting 

Information Section S3.  Since the chain rupture is irreversible, during loading (as *
maxr  increases) 
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b decreases, whereas upon unloading when the chain end-to-end distance  becomes smaller 

than , the value of b cannot increase. 

3.2.2 Matrix Networks 
When the matrix networks (i > 1) are formed the concentration of the crosslinker used is 

approximately 145 times less than that in the filler network [13]. This results in much longer 

chain lengths between crosslinks in the matrix networks. Since the chains in these networks have 

less (or even no) prestretch compared with the chains in the filler network and hence do not 

experience large fractional extensions, it is reasonable to assume that they remain intact (i.e. no 

rupture) during deformation and their strain stiffening is insignificant.  With this consideration, a 

neo-Hookean material model, which is based on Gaussian freely jointed chains with a linear 

force extension relationship [27], would seem to be a good choice to represent the matrix 

networks.  However, because these networks are so lightly crosslinked, physical entanglements 

create a strain softening effect at small deformations [13] which cannot be captured by the neo-

Hookean model. This softening effect is well described by a molecular model by Rubinstein and 

Panyukov [32], but it is not straightforward to convert the molecular model into a continuum 

model for general 3D deformations. Instead, we will use the generalized neo-Hookean 

constitutive model [16] for the individual matrix networks to phenomenologically capture the 

softening effect: 

     1 11 3 1
2

Mn
i ii M
N NN

M

U I I
n

          
B B , i > 1 (22) 

where M  is the shear modulus and Mn  is an additional parameter which controls the shape of

  1
ii
NNU I B .  Note that a 3rd parameter from the generalized neo-Hookean model [16] was 

omitted to minimize the number of parameters that are introduced into the MNE model.  Like the 

*r

*
maxr
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filler network, the strain energy for each matrix network depends only on the first invariant, i.e.

 i
NI B1 , thus as before to evaluate the stress in Eq. (15) the derivative of the strain energy 

potential is obtained 

  
    

11

1

1

1 3
2

M

ii
nNN iM

Ni
N

dU I
I

dI

 
     

B
B

B
, i > 1.  (23) 

 

4 Application of the Model 
Below we will use the model established above to predict the mechanical response of 

MNEs under uniaxial loading conditions and compare the results with experimental data. 

Assuming that the networks contribute independently to the total stress, parameters pertaining to 

the matrix networks will be extracted from available data for these networks alone. Chain length 

distribution in the filler network will be estimated based on data for DN and TN elastomers with 

light emitting photophores embedded in the filler network. Finally, comparison will be made to 

uniaxial extension and cyclic loading experiments conducted [18] for a variety of MNEs (SN, 

DN and TN) where the prestretch caused by the first swelling and drying was varied.   

Before we proceed, it will be beneficial to specialize the general constitutive model for 

uniaxial extension.  The left Cauchy-Green deformation tensor in this case is given by 

33
1

22
1

11
2 eeeeeeB    ,  (24) 

where   is the stretch of the sample and  1 2 3, ,e e e  are orthogonal unit vectors forming the basis 

of the deformed configuration.  Using Eq. (9) and the fact that the strain energy potentials 

depend only on  i
NI B1 , Eq.(15) can be rewritten as follows  
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  (25) 

In uniaxial extension, Nσ  only has one nonzero component which we denote as N .  Requiring 

the other stress components to be zero gives the Lagrange multiplier p.  Substituting Eq. (24) into 

Eq. (25), we can obtain an expression for N   

     
   
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 (26) 

where the stress contribution from each network is given by 

     
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B
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.   (27) 

Note that a portion of the Lagrange multiplier is assigned to each network so that the stress in 

each network is zero in the MNE’s reference configuration which is equivalent to satisfying the 

traction-free boundary condition on the lateral surface of the tensile sample for each network.  As 

such the stress i
N  is the contribution of each network to the total uniaxial tensile stress, instead 

of the actual stress sustained in each network. 

We will extensively compare predictions from the model with experimental data, which 

without processing, will be the nominal (engineering) stress.  For uniaxial extension, the 

engineering stress can be related to the Cauchy stress (or true stress) as follows 


 N

NP  ,   (28) 

similarly,  /i
N

i
NP  . 
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4.1 Extracting Parameters for the Matrix Network 
Experiments were conducted on the matrix networks alone to determine the parameters 

M  and Mn  in Eq. (22).  The stress for a single matrix network alone, MP , can be evaluated 

from Eqs. (26) and (28) by setting 2N , 1
2 0  , and 2

2 1  . The experimental data and the 

best fit are shown in Figure 3.  Since these experiments were done for a dry matrix network, 

when applying Eq. (22) to the MNE, M  is replaced by 

1

1
M

i M
dry
i

i
J




  ,  (29) 

where 
M

i is the shear modulus for network i in its reference state.   

 

Figure 3: Engineering stress plotted against stretch for uniaxial extension of the matrix network.  The model with parameters  

0.8325Mn   and 0.2M MPa   was found to provide a good fit to the experimental data.   
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4.2 Distribution of Chain Lengths in Filler Network 
 

Several specialized experiments were conducted for MNEs where photophores were used 

to crosslink chains in the filler network [13].  These photophores emit light when they rupture, 

and the recorded light intensity provides a means to estimate the distribution of polymer chain 

lengths in the filler network.  Specifically, when photophores are added to the chains they create 

weaker links.  If we assume that the rate of chain rupture is proportional to the rate of photophore 

rupture, the chain length distribution can be correlated to the measured light emission data.   

To see this, note that the recorded light intensity was integrated over the sample [13].  

Assuming that the elastomer is transparent so light produced by scission throughout the volume 

can all be collected, the light emission intensity can be expressed as 

 
 

 



A

NK

K

Kl dSDdN
dt

Nrdb
NfLI

,*
max

1

 ,   (30) 

where l  is a proportionality constant which relates light intensity to photophore rupture,   is 

the volumetric density of chains which is proportional to the density of photophores, t is time, 

ND  is the thickness of the sample after the (N – 1)th swelling and drying, and S is the area of the 

sample perpendicular to the thickness direction.  Under homogeneous deformation during 

uniaxial extension, Eq. (30) can be rewritten as follows 

   *
max

1

, K

l K K

db r N
LI f N dN

dt




  ,   (31) 

where l l NV     and SDV NN   is the constant volume of the sample.  To evaluate 

  dtrdb /* , consider 
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respectively obtained from Eq. (18) and Eqs. (10) and (24), *
max/ drdb  is known based on the 

damage functions presented in Supporting Information Section S3, and   is the stretching rate 

prescribed in the experiment.  If *r  does not exceed its previous maximum value, no additional 

damage will occur and Eq. (32) should be taken to be zero.   

In general, the rupture of bonds follows certain kinetics and will not occur at the same 

extension even for chains of the same length. However, the damage will be concentrated near the 

vicinity of highest extension. This allows us to simplify Eq. (32) by approximating 

 **
max

*
max/ pkrrdrdb    where   is the Dirac delta distribution and *

pkr  is the extension at 

which the peak value of *
max/ drdb  occurs (see Supporting Information Section S3).  Introducing 

this approximation and Eq. (32) into Eq. (31) gives  
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which can be rearranged to solve for   *
pkK rNf  
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where     2*1
1

* 3/ pkNpkK rIrN B  using Eq. (18).  Based on Eq. (33), the experimentally measured 

light emission data was converted into a chain length distribution, as shown in Figure 4. A 
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probability distribution function in the form of Eq. (34) was found to provide a good fit for the 

chain length distribution measured from light emission data (see Figure 4) 

     
min

minminmin

0

)exp(

NN

NNNNbNNANf

K

KKf
a

KfK
f




, (34) 

where minN  is the minimum number of load bearing Kuhn segments present in the material, fa  

and fb  control the shape of the probability function, and Af is used to ensure the normalization 

requirement   1
1




KK dNNf  is satisfied.  fa , fb , and minN  are the three parameters extracted 

from the fitting.  In Figure 4, light emission data are not available for large chain lengths since 

the material already failed, so the fitting curve is a smooth extrapolation of the measured data.   

 
Figure 4: Chain length distribution estimated by fitting light emission data.  Light emission experimental data from Ducrot et al 

[13] are converted to chain length probability using Eq.(33) where 92.7 10l   was found to provide a good fit.  * 1.03pkr  , 

and for a 1 mm.s-1 crosshead velocity the stretch rate for the central part of the sample was estimated to be 𝜆ሶ = 0.08 s-1. The 

chain length distribution can be approximated by Eq. (34) with 6min N , 1.1fa , 105.0fb .   
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4.3 Uniaxial Extension of MNE 
Model prediction will be compared with two groups of experiments: MNEs with and without 

photophore.  The chain length distribution from Figure 4 was applied directly to the MNE with 

photophore. Whereas for the MNE without photophore, the same form of distribution (Eq. (34)) 

was used but the parameters minN , fa  and fb  were slightly different from those in Figure 4. The 

same tuned distribution was used for all the experiments without photophore, which involved 

several data sets with different pre-stretches.   

4.3.1 With Photophore 
For the experiments on MNEs with photophores [13], i.e., DNP and TNP from Table 1, the 

prestretches of the networks are 48.11 s  and 72.221 ss  , respectively.   in Eq. (17) is 

related to the volumetric density of chains in the filler network before any swelling, and is a 

fitting parameter since no SN data was available for MNE with photophores.  When used with 

the chain length distribution in Figure 4, it was found that MPa264.0  and a slightly adjusted 

value of 54.11 s  provided the best fit to the experimental data for both DN and TN elastomers 

For TN 72.221 ss   was held fixed so that 77.12 s . The comparisons are shown in Figure 5, 

where the model reproduces all the key features observed in the DN and TN data.  For example, 

the model correctly predicts the small initial slope observed in the stress-stretch curve for both 

DN and TN; the slope is small in this region because no chains are sufficiently stretched to create 

large forces.  With further stretching the shortest chains become highly stretched to cause an 

upturn in the stress, which is observed in both the model and the experimental data.  Finally, for 

the TN with further stretching, damage accumulates and causes a second inflection point after 

which the stress-stretch curve levels off.  This phenomenon is not observed in the DN because 

the material fails before sufficient damage accumulation.   
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It is of interest to calculate the extension of individual chains under the bulk deformation. 

Because there is a distribution of different chain lengths in the filler network, these chains are 

subjected to different extensions at the same bulk deformation. The chain extension as a function 

of the number of Kuhn segments (i.e. chain length) are shown in Figure 6, for the chains in the 

filler network of the SN, DN and TN elastomers. Results are shown for two different bulk 

stretches: 1 , corresponding to undeformed elastomers, and 2 . Both swelling and drying 

(from SN to DN and then to TN) and additional bulk deformation (from 1  to 2 ) increase 

the fractional extension, and their impacts are more significant for chains with shorter length. For 

the TN with 2 , large fractional extensions for small NK have caused material damage. To 

quantify the damage, we define the following quantity  

    KKKN dNNrbNfb 



1

*
max , , (35) 

which represents the fraction of surviving load bearing chains in the filler network of an MNE 

with a total of N networks.  The evolution of damage for the TN elastomer is presented in Figure 

7a).  No damage is observed until a sufficient stretch (above 1.5) is reached that causes the 

shortest chains to break.  Afterwards 3b  steadily decreases with additional stretching as more 

chains are ruptured. 
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Figure 5  Engineering stress plotted against stretch for uniaxial extension of (a) DNP, (b) TNP.  The following prestretches 

54.11 s , 77.12 s  and parameter MPa264.0  were found to give good agreement with the experimental data.  

Experimental data from Ducrot et al [13].   
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Figure 6 Fractional extension plotted against number of Kuhn segments for individual chains in the filler network of SN, DN and 
TN elastomers.   

 
Using the two prestretches and Eqs. (5) to (7), the volume fractions of each network can be 

calculated to be: for the DN elastomer 274.01
2  , 726.02

2  ; for the TN elastomer 05.01
3  , 

13.02
3  , and 82.03

3  . The prevailing hypothesis with these materials is that the chains in the 

filler network (i = 1) control the stress whereas the subsequent matrix networks prevent large 

cracks from forming [13].  Separating the total stress into components from individual 

constituent networks of the MNE allows us to understand how each network is contributing to 

the overall property of the MNE. For this purpose, the partial stress in each network, as defined 

by  /i
N

i
NP   with i

N  given by Eq. (27), is plotted in Figure 7b) for the TN elastomer. Here 1
3P , 

2
3P  and 3

3P  represent the equivalent uniaxial tensile stress contributed by the first (and filler), 
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second and third (both matrix) networks, respectively.   In agreement with the hypothesis, the 

filler network provides most of the stress ( 1
3P ), while the contributions of the matrix networks (

2
3P , 3

3P ) are almost negligible although they occupy an estimated 94% of the material volume.   
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Figure 7: (a) The evolution of damage in the filler network of the TN elastomer is shown by plotting the surviving chain fraction 
(b3) against stretch.  (b) Contribution from each network to the engineering stress of a TN elastomer under uniaxial extension, 
plotted against stretch.     

  



36 
 

4.3.2 Without Photophore 
 

For the MNEs without photophores, we consider three datasets formed from the same 

original SN but with different prestretches.  The stress-stretch curve for the SN is shown in 

Figure 8, and matching the initial slope provides MPa215.0  which will be used for the filler 

network in all the MNEs.  In each case experimental measurements of thickness, percentage of 

filler network (based on weight), stretch and stress are available.  Measurements of sample 

thickness and weight (Table 2) can be used to estimate the prestretch of the networks.  Here 

%FN is the percentage of weight of the filler network obtained by weighing the sample before 

and after swelling and drying. Since the filler and matrix networks are comprised of the same 

monomers, it is reasonable to assume that all the networks have the same density.  This allows 

the measurement to be directly converted to volume fractions, i.e., % FN = 1100 N , which can 

then be used to determine sjJ  using Eqs. (5) and (7).  sjJ can also be calculated using 

   3 3

1 /sj j j sjJ D D   , and the values of sj  obtained from the two different approaches can 

be slightly different, see comparison in Table 3.  For this reason, and due to variations observed 

in samples with the same crosslink density and net swelling (see Supporting Information Section 

S5), we allow a small amount of tunability in the chosen values of sj , tabulated in Table 3, to 

ensure that key features in the mechanical response are properly captured.  Finally, other 
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intermediate swelling variables calculated from 1sJ  , 2sJ  and mon
j  are tabulated in Table 4.  

 

Figure 8: Engineering stress plotted against stretch for uniaxial extension of SN elastomer.  Experimental data and model fit 
(with MPa215.0 ) are shown.   

 
Table 2: Swelling data for the 3 datasets.   

Before Swelling After 1st Swelling and drying After 2nd Swelling and drying 
Sample % FN D0 

(mm) 
Sample %FN 

 
D1 (mm) Sample %FN 

 
D2 
(mm) 

SN 100 0.74 DN1 42 0.97 TN1 9.52 1.6 
SN 100 0.74 DN2 29.17 1.13 TN2 7.39 1.79 
SN 100 0.74 DN3 20.55 1.27 TN3 6.07 1.84 

 
Table 3: Swelling ratios estimated by two approaches and the final chosen values.  DN and TN in each dataset share the same 

1sJ values while 2sJ values are only applicable to TN samples.  

Sample 

Estimate using Dj Estimate Using %FN Value Used 

1s  2s  1s  2s  1s  2s  

DN1/TN1 1.32 1.65 1.34 1.64 1.34 1.60 

DN2/TN2 1.51 1.58 1.51 1.58 1.54 1.49 

DN3/TN3 1.68 1.45 1.70 1.50 1.75 1.40 
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Table 4: Calculated swelling parameters. DN and TN in each dataset share the same 1
1sJ  and 2

1sJ  values while 1
2sJ  and 2

2sJ  

values are only applicable to TN samples.  Note that 3
2 1sJ   for all networks. 1

2  and 2
2 are volume fractions in DN 

samples, whereas 1
3 , 2

3  and 3
3  are for TN samples.  

Sample 
1
1sJ  1

2sJ  2
1sJ  2

2sJ  1
2  2

2  1
3  2

3  3
3  

DN1/TN1 2.41 9.94 0.64 2.66 0.42 0.58 0.10 0.14 0.76 

DN2/TN2 3.65 12.17 0.76 2.55 0.27 0.73 0.08 0.23 0.70 

DN3/TN3 5.36 14.71 1.00 2.74 0.19 0.81 0.07 0.29 0.64 
 
 When no photophores are incorporated into the polymer network there is no light 

emission data from which the chain length distribution can be extracted.  However, since these 

MNEs use the same density of crosslinker in the filler network (EAe1.45) the expected 

distribution will be similar to that of the network with photophores.  Using the same form of the 

distribution (Eq. (34)), the values of 2.6min N , 6.0fa , and 18.0fb  are determined based 

on generating the best fit to the stress-stretch data for all DN and TN elastomers (6 independent 

samples), which only differ slightly from the values extracted from Figure 4.    

The results of the fitting are shown for the three datasets in Figure 9, Figure 10, and 

Figure 11 respectively.  Each figure shows a comparison between predicted and measured stress-

stretch relations for DN and TN elastomers.  The model is in reasonable agreement with the 

experimental data in all cases.  A direct comparison between the stresses and damage predicted 

by our model for the three datasets is presented in Figure 12, which illustrates the effect of 

prestretch on the mechanical response.  In Figure 12a) the stresses are presented for three DN 

elastomers. DN3, which has the largest prestrech (Table 2), exhibits an upturn in stress at the 

smallest stretch. As the prestretch is decreased, the stress upturn occurs at larger stretches.  

Similar conclusions can be drawn from the TN data in Figure 12b).  A comparison between the 

damage evolutions for the three TNs is shown in Figure 12c), where damage begins to occur at 

lower stretches for MNE with larger prestretches.   



39 
 

 
Figure 9 Engineering stress plotted against stretch for uniaxial extension of (a) DN elastomer (b) TN elastomer.  Experimental 
data (from dataset DN1/TN1) and model fit are shown.   
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Figure 10 Engineering stress plotted against stretch for uniaxial extension of (a) DN elastomer (b) TN elastomer.  Experimental 
data (from the dataset DN2/TN2) and model fit are shown.   
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Figure 11 Engineering stress plotted against stretch for uniaxial extension of (a) DN elastomer (b) TN elastomer.  Experimental 
data (from dataset dataset DN3/TN3) and model fit are shown.   
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Figure 12: Model predictions for (a) engineering stress vs. stretch for DN elastomers; (b) engineering stress vs. stretch for TN 
elastomers; and (c) the evolution of damage (surviving chain fraction b3 vs. stretch) for TN elastomers; all under uniaxial 
extension.  Each subfigure contains three curves corresponding to the three different datasets. 
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4.4 Cyclic Loading of MNE 
The experimental data presented in Ducrot et al [13] for the MNE with photophores was 

for cyclic loading.  It is interesting to apply the model under cyclic uniaxial extension to see how 

the unloading curves compare with the experimental data; studying cyclic loading can also 

further elucidate how the evolution of damage impacts the mechanical response of the MNE.   

Consider the constant rate cyclic loading history shown in Figure 13a) where the amplitude 

of loading is increased after each cycle.  In the experiments, three identical cycles were first 

performed before the amplitude was increased [13]; however, no noticeable change occurred in 

the 2nd and 3rd cycles so they have been omitted here to simplify the presentation of the 

numerical results.  Engineering stress is plotted against stretch in Figure 13b), where loading and 

unloading curves are shown for both model prediction and experimental data of TNP.  Similarly, 

the evolution of the damage variable is shown in Figure 13c).  It is important to note that the 

loading envelope in the experiment (blue symbols) correspond to those in Figure 5b) and all the 

fitting parameters in the model remain unchanged from those used to obtain the fit in Figure 5b). 

No additional fitting was performed for the unloading branches.  

To understand these results, consider the path A-O1-A-B-O2 in Figure 13c).  Suppose the 

material has been loaded to reach the stretch at A for the first time.  In reaching point A some 

damage has occurred as can be seen in Figure 13c) where b3 = 0.72 < 1 at point A.  When the 

material is then unloaded from A to O1 it follows the lower “damaged” unloading path (red, A-

O) in Figure 13b) rather than the higher “undamaged” loading path (blue).  From A to O1 in 

Figure 13c) we follow a horizontal curve because the damage variable depends on the maximum 

stretch in the history of the deformation (in this case the stretch at point A) instead of the current 

stretch.  During the subsequent reloading O1-A-B, from O1-A we retrace the same path as during 

unloading since the stretch has not exceeded its previous maximum value (at point A) so no 
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additional damage occurs.  From A-B stretching the sample further establishes a new maximum 

stretch, and thus the damage evolves as seen in Figure 13c) where the damage variable decreases 

from 0.72 at point A to 0.49 at point B.  This damage results in a decrease in the slope of the 

stress-stretch curve in Figure 13b) at the transition (point A) from reload to additional stretch.  

Similarly, when we unload after reaching point B we follow the lower unloading path (red, B-O) 

and again the damage variable remains constant during unload.   
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Figure 13: (a) Stretch plotted against deformation progress for constant rate cyclic loading where the amplitude is increased 
after each cycle.  (b) Engineering stress plotted against stretch for cyclic uniaxial extension of TN elastomer.  All parameters in 
the model are identical to those presented in section 4.3.1. Experimental data from Ducrot et al [13].  (c) The evolution of 
damage is shown by plotting the surviving chain fraction (b3) against stretch. 
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The cycle O-A-B-O in Figure 13b), included in the path we previously described, forms a 

hysteresis loop, and the area enclosed in this loop, int 3
cyc

cycle

D P d  , has the physical 

interpretation of energy dissipation. The hysteresis during cyclic uniaxial extension was found to 

correlate, to some extent, with the size of damage zone in fracture experiments [13], and hence is 

an important quantity to examine in attempt to increase the fracture toughness of the material.  In 

Ducrot et al. [13] this hysteresis was compared with the cumulative light emitted, whereas in our 

work, an analogous quantity would be the change in damage variable during a cycle  

    dtdNNrbNfb
cycle

KKK
cyc  




1

*
max3 , . (36) 

An expression for the rate of energy dissipation in our model was obtained in the Supporting 

Information Section S2,      1 * * *
int max

1

,N K K K ch KD f N b r N N E r dN 


    , so cycDint  can be 

determined by either integrating intD  over a cycle or by using  

     1 * * *
int max

1

,N
cyc

K K K ch K

cycle cycle

D f N b r N N E r dN dt Pd  


      . (37) 

The numerical results for cycb3  and cycDint  are presented in Figure 14, for cycles 2-5 from Figure 

13.  In Ducrot et al [13] the cumulative light was found to vary with the mechanical hysteresis by 

a power of 0.75, while in Figure 14 a power of 0.63 provides a good fit which is in reasonable 

agreement with experiments.   
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Figure 14: Decrease in damage variable per cycle plotted against energy dissipated per cycle. Symbols are from integration of 
numerical results obtained from the model. Dashed line is a linear fit to the model prediction, on the log-log scale.    

 

4.5 Further Discussion 
 
While our model predictions have shown good agreement with experiments, there are some 

discrepancies that warrant further discussion. First, in the uniaxial extension results in Figure 9, 

Figure 10, and Figure 11 for the TN elastomer, the model seems to overestimate the stress when 

the sample is about to break.  A possible explanation for this is the potential material 

inhomogeneity not considered in the model.  When we apply the model to an idealized uniaxial 

extension, the deformation is assumed to be perfectly homogenous, which is certainly not valid 

when the sample fails.  Localized damage which grows near a pre-existing defect may also 

impact the overall stress of the specimen at the stretches leading up to failure. There is evidence 

to support this hypothesis in the TN light emission data [13]. Specifically, there is a peak in the 
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light emission after which the intensity decreases with further stretching.  In obtaining the chain 

length distribution from the light emission data (Figure 4), a distribution with a single peak was 

used, because it was assumed that a single damage mechanism occurs within the material. 

However, the experimental data also showed increased light emission intensity near failure 

which may indicate the possibility of additional damage mechanisms such as inhomogeneous 

deformation and localized damage around defects. This over-estimation does not exist in the DN 

data because the DN elastomers are expected to have lower fracture toughness, evidenced by the 

experiments of Ducrot et al. [13] where the damage zone in the area surrounding a crack tip [13] 

is much smaller in the DN elastomers than the TN elastomers.  The lower fracture toughness 

could result in a more brittle failure once damage localizes at a defect; in this case, we do not 

anticipate a reduction in stress growth near the failure point.   

Another discrepancy between the model and the experimental results lies in the unloading 

curves in Figure 13b), where the stress predicted by the model can be noticeably lower than 

measured stress.  To elucidate this point, we compute the unstretched Young’s modulus (see 

Supporting Information Section S2 for definition), i.e., the Young’s modulus evaluated at  = 1. 

The ratio between the value at the beginning of cycle i (i>1),  N
o k

E , and that before the first 

cycle  1N
oE  is evaluated and plotted in Figure 15 against the maximum stretch max reached in 

that cycle.  Here the loss of chains (Figure 13c)) translates to a reduction in Young’s modulus.  A 

plot similar to Figure 15 was presented in the Supporting Material of Ducrot et al [13], for a 

similar TN elastomer without photophores. In that work, after a maximum stretch of max = 2.4 

was reached in the cycle the unstretched Young’s modulus decreased by approximately 20%; 

from Figure 15 at max = 2.4 the modulus decreases by approximately 50%.  This suggests the 

possibility that the model over predicts the rupture of chains.  There are several potential 
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explanations for the discrepancy. Firstly, one of the assumptions made in the model is that the 

contribution of each network to the stress is independent.  While this may be a reasonable first-

order approximation in modeling these materials, due to chain entanglements and a small degree 

of transfer reactions (e.g., the (n+1)th network reacting chemically with the n networks 

previously formed), it is likely that damage in the filler network will result in dissipation in the 

matrix networks and these additional dissipation mechanisms may have some impact on the 

Young’s modulus.  An evidence of this is the small amount of residual strain observed in the 

experimental data [13], where after damage the material did not completely recover its initial 

configuration.  A second possibility could be the existence of critical pathways in the filler 

network along which the rupture of bonds can result in the relaxation of many chains in the filler 

network. In this case the damage would not be isotropic and homogenous as assumed in this 

model.  In fact, stretching pre-deformed samples perpendicular to the direction of initial 

deformation has yielded some light emissions [33] indicating that damage is not entirely 

isotropic.  A third and related possibility is the coupling between chains in the filler network. 

There is no direct experimental evidence for this, but in an existing model [34] the rupture of 

chains was considered to effectively remove crosslinks and increase the length of existing chains 

in the material.  Finally, the specific chain force relationship (Eq. (21)) is used for both loading 

and unloading.  During loading the stress is dominated by chains with forces in the bond 

stretching regime.  However, during unloading this is no longer true, and the force on the 

polymer chain can depend on its bending flexibility [29] which was not considered in Eq. (21).   
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Figure 15: Evolution of unstretched Young’s modulus at the beginning of cycle k, (k>1) normalized by the unstretched modulus 
of a fresh sample, as a function of maximum elongation previously achieved by the sample.   

 
Finally, we estimate the force and energy required to cause the rupture of a chain from the 

cyclic loading data in Figure 13. When a bond breaks we define the average force [35], 

  ochBch AdbrFTkF /
1

0

** , and the average chain energy  
1

0

** dbrENTkE chKBch . For the data 

in Figure 13b) the following values are obtained: nNFch 95.1~  and 

molkJEch /20001000   depending on the chain length. The force value is comparable to 

single chain pulling experiments for polymer chains [36], while the energy requires more 

discussion.  The dissociation energy of the photophore bond was reported to be 150kJ/mol [13], 

which seems to be one order of magnitude smaller than the chE  value obtained here. However, 

it is incorrect to make such a direct comparison, for several reasons explained below.  Firstly, the 
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bonds break via a transition state which is altered by the external force [33]. As a result, the 

energy that the bond will be excited to when it breaks can be significantly less than the 

dissociation energy.  Secondly, when a bond on a polymer chain is ruptured the energy of the 

entire chain is dissipated [1] which includes the deformation of all the bonds.  The shortest 

chains in the model had 6.5 Kuhn segments for PEA which corresponds to ~78 bonds [31]. 

Using 1000 /chE kJ mol  and if all the bonds in a shortest chain are excited to approximately 

the same energy this implies ~13 kJ/mol for each bond, which is approximately 8.5% of the 

dissociation energy. Clough et al. [33] have found that typical C-C bonds store 15-18% of the 

dissociation energy before rupture, which is on the same order of magnitude as was estimated for 

the dioxetane bond in the photophore.   

The model developed in this work provides a method to systematically study how 

prestretch impacts the mechanical response and damage evolution of a MNE.  It is also 

instrumental to the design of MNE with optimized fracture toughness. Implementing the model 

into finite element simulations will allow us to explore a wide range of problems involving stress 

concentration and crack propagation, since this class of material can generate large damage 

zones [13] locally.  It is therefore of interest to systematically investigate how the different 

prestretches will impact the size of the damage zone around cracks and the overall fracture 

toughness.  In recent experiments it was observed that when a third swelling operation was 

performed to generate quadruple network elastomers, necking occurred in the samples during 

uniaxial extension [14]. The mechanism of this phenomenon is believed to be transfer of load 

from the filler network to the matrix network, which has only been observed to by stable when 

the matrix network volume fraction exceeds 25 times the filler network volume fraction [14].  To 

model this phenomena it will be necessary to extend the present model to consider stiffening and 
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failure of the matrix networks.  Furthermore, mechanoluminescence has been used to 

demonstrate that the rupture of chains does not occur homogenously within a sample during 

necking [14]; this behavior will be captured by finite element implementation of an extended 

version of this model in a future publication.   

 

5 Conclusion 
A continuum model is developed to capture the mechanical response of multinetwork 

elastomers synthesized by introducing matrix network(s) into an existing filler network. The 

swelling process prestretches the chains of the network formed in the previous step; such 

prestretch is incorporated into the model by basing the strain energy of each network on the 

combined deformation caused by swelling, drying and post-swelling deformation of the 

completed MNE.  Because the chains in the heavily crosslinked filler network undergo the 

greatest amount of prestretch and often break during the deformation, separate material models 

are used for the filler and matrix networks.  The filler network is modeled as a polydisperse 

network of breakable polymer chains with nonlinear chain elasticity, while the matrix networks 

are modeled using the generalized neo-Hookean model.  With a few fitting parameters, this 

model provides a good match to the uniaxial extension, including cyclic loading, experimental 

data.  Although the filler network only occupies a small volume fraction of the MNE, it 

contributes to the majority of the stress as confirmed by our model and recent experimental data 

[14].  It was found that a larger prestretch of the filler network causes the MNE to exhibit strain 

stiffening effect at a smaller stretch, and the damage due to chain rupture initiates at lower 

stretches.  Finally, the hysteresis of the stress-stretch curve during cyclic loading is found to 

correlate to the accumulation of damage during the cycle.   
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6 Nomenclature 
 
S Area of sample in plane of view Dimension 

oA  Initial Kuhn length of polymer chain [L] 

l  Proportionality constant to relate light intensity to bond rupture [M][L][T]-2 

fA  Parameter in chain length probability density function - 

fa  Parameter in chain length probability density function - 

fb  Parameter in chain length probability density function - 

b Damage evolution function - 

Nb  Surviving chain fraction - 

l  Proportionality constant to relate light emission to damage 
evolution 

[M][L][T]-2 

B  Left Cauchy-Green deformation tensor for mechanical 
deformation of MNE 

- 

i
NB  Left Cauchy-Green Deformation tensor of multinetwork 

elastomer with N networks, with respect to the relaxed 
configuration of network i. Takes into account deformation by 
swelling, drying and mechanically deformation by deformation 
gradient F .   

- 

ke  Unit vector in k direction - 
*
chE  Nondimensional Helmholtz free Energy of stretched polymer 

chain 
- 

mon
j  Volume fraction of monomers in swelling solution - 

chF  Tensile force acting on polymer chain [M][L][T]-2 
*

chF  Nondimensional Tensile force acting on polymer chain - 

jΦ  Deformation gradient for jth swelling and dying operation - 

max
jΦ  Deformation gradient for jth swelling to equilibrium operation  
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dry
jΦ  Deformation gradient for jth drying operation - 

i
jΦ  Deformation gradient after j swelling and drying operations with 

respect to the relaxed configuration of network i.   
- 

F  Deformation gradient applied to completed MNE by mechanical 
loading.   

- 

i
NF  Deformation gradient of MNE with N networks, with respect to 

the relaxed configuration of network i. Takes into account 
deformation by swelling, drying and mechanically deformation 
by deformation gradient F .   

- 

f  Probability density function for chain length - 

mF  Contribution of chain length PDF for bin m.   - 

g Arbitrary function - 
I  2nd order Identity tensor - 

 i
NI B1  First invariant of i

NB  - 

 i
NI B2  Second invariant of  - 

 i
NI B3  Third invariant of  - 

i Identifies network - 
j Identifies swelling operation - 

sjJ  Ratio of volume after to volume before jth swelling and drying 
operation 

- 

dry
jJ  Ratio of volume after to volume before jth drying operation - 
max
jJ  Ratio of volume after to volume before jth swelling to 

equilibrium operation 
- 

i
sjJ  ratio of the volume of the material after j swelling operations to 

the volume of the material when the ith network was introduced 
- 

i
NJ  ratio of the volume of the material when network i was 

introduced to its current volume (with N networks) 
- 

Bk  Boltzmann constant [M][L]2[T]-2[]-1 

  Stretch associated with uniaxial extension - 

sj  Isotropic stretch associated with jth swelling and drying 
operation (ratio of thickness after to before jth swelling and 
drying operation) 

- 

dry
j  Isotropic stretch associated with jth drying operation (ratio of 

thickness after to before jth drying operation) 
- 

max
j  Isotropic stretch associated with jth swelling operation (ratio of 

thickness after to before jth swelling operation) 
- 

o  Isotropic stretch of 1st network due to swelling - 

LI Light emission intensity [M][L][T]-3 
M Number of chain length bins - 
m Identifies chain length bin - 

im  Mass of ith network [M] 

i
NB

i
NB
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Nm  Mass of multinetwork elastomer with N networks [M] 

Mn  Parameter in constitutive model for matrix networks. - 

N Number of networks - 

KN  Number of Kuhn length is a polymer chain - 

minN  Minimum number of Kuhn segments in chain length probability 
density function 

- 

mKN ,  Average number of Kuhn lengths per chain or bin m - 

mKN ,  number of Kuhn lengths per chain at start of bin m - 

1, mKN  number of Kuhn lengths per chain at end of bin m - 

p  Lagrange multiplier [M][L]-1[T]-2 
ip  Lagrange multiplier for network i [M][L]-1[T]-2 

r End to end distance of polymer chain [L] 
*r  Fractional extension of polymer chain - 
*
maxr  Maximum achieved fractional extension of a polymer chain 

during deformation history 
- 

*
pkr  Fractional extension where peak rate of bond rupture occurs - 

NP  Nonzero engineering stress component for MNE with N 
networks, under uniaxial extension 

[M][L]-1[T]-2 

i
NP  Nonzero engineering stress component for network i for MNE 

with N networks, under uniaxial extension 
[M][L]-1[T]-2 

i  Volume fraction that network i occupied in the material when it 
was first introduced 

- 

i
N  Volume fraction of network i in a multinetwork elastomer with N 

networks 
- 

Nσ  Cauchy stress tensor for MNE with N networks [M][L]-1[T]-2 
i
Nσ  Cauchy stress tensor for network i in MNE with N networks [M][L]-1[T]-2 

N  Nonzero true stress component for MNE with N networks, under 
uniaxial extension 

[M][L]-1[T]-2 

i
N  Nonzero true stress component for network i for MNE with N 

networks, under uniaxial extension 
[M][L]-1[T]-2 

jD  Thickness of sample after j - 1 swelling and drying operations [L] 

t time [T] 
  Tk B  , parameter in constitutive model for 1st network.  

Related to shear modulus.   

[M][L]-1[T]-2 

M  Parameter in constitutive model for matrix networks.  Related to 
shear modulus 

[M][L]-1[T]-2 

NU  Strain energy density of mutinetwork elastomer with N networks [M][L]-1[T]-2 

 i
N

iU B  Strain energy density for network i in a multinetwork elastomer 
with N networks, if the network were to occupy the entire 
material when introduced.   

[M][L]-1[T]-2 
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T Absolute temperature [] 
  Volumetric density of load bearing chains in reference 

configuration of material.   
[L]-3 

m  Volumetric density of load bearing chains in reference 
configuration of material in bin m.   

[L]-3 

jV  Volume of sample after j - 1 swelling and drying operations [L]3 
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Supporting Information  
 

S1. Swelling and Drying Volume Change 
 
Consider a swelling and drying process during the synthesis of the MNE. For the simplicity of 

notation, the subscript j used in the main text for the jth swelling and drying step is omitted here. 

Denote the volume before swelling as oV . After swelling with a monomer solution, with 

monomer volume fraction mon , the volume becomes  

max
max o o solutionV J V V V   ,  (S1) 

where maxJ  is the ratio of the swollen volume to initial volume.  The volume of the monomer 

solution which was added is given by 

 max 1solution mon solvent oV V V V J    ,   (S2) 

where mon
mon solutionV V  and solventV  are respectively the volume of monomers and volume of 

solvent in the swelling solution.  After drying 0solventV   so the volume is given by 

 m max 1on
dry o o s oV V V J J V    ,  (S3) 

where sJ  is the volume ratio of the dry MNE to the original sample (before swelling and 

drying). It follows that  

max dry
sJ J J .  (S4) 

From Eqs. (S3)-(S4) it follows that 

 

max1

mon
dry s s

mon
s

J J
J

J J




 
 

.  (S5) 
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S2. Stress and Dissipation 
The stress and dissipation associated with Eq. (14) can be derived by using the second law of 

thermodynamics.  If we introduce a Lagrange multiplier into the strain energy function, we can 

rewrite Eq. (14) as follows 

  )1(
1




JpUU i
N

i
N

N

i

i
N B ,  (S6) 

where 0)1( Jp  since this formulation will be restricted to an incompressible MNE ( 1J ).   

Consider the balance of power per unit volume  

D:σL:σFF:σFFσF:P JJJJDUW T
N   1

int : 
 (S7) 

where W , NU , intD , F ,  FdetJ , L ,   2/TLLD  , σ , TJ  FσP  are respectively the 

work, strain energy, dissipation, deformation gradient tensor, its determinant, velocity gradient 

tensor, symmetric part of velocity gradient tensor, Cauchy stress, and 1st Piola-Kirchhoff stress. 

Here the overhead dot indicates differentiation with respect to time, and in component form 


 


3

1

3

1i j
ijijBAB:A .  Because σ  is symmetric D:σL:σ  .  U can be evaluated by taking the 

appropriate derivatives of Eq. (S6) as follows  
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Using   2/// 1
3

 BBBB JIJ , TLBBLB  , Eq. (9) in the main text, and denoting 
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Further manipulations of Eq. (S9) gives  
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(S10) 

where I  is the 2nd order identity tensor.  Note that the last two expressions in Eq. (S10) are 

equivalent (owing to the symmetry of B).  Comparing Eq. (S10) with Eq. (S7) two equivalent 

expressions for the stress can be extracted 
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Similarly, from comparing Eq. (S10) with Eq. (S7) the dissipation can be identified as 
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Note that the second law of thermodynamics is satisfied since   0,*
max KNrb  and all the other 

quantities in the equation are non-negative.   

Many hyperelastic models only depend on the 1st invariant of B, 1I , in which case 
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For this case we can also define the initial Young’s and shear modulus for the material.  Introducing 

Eq. (S13) into Eq. (S11), and setting J = 1 gives 
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Where Eq. Eq. (9) from the main text,    BB
3/2

1
i

Ns
i
N J  , has been used.  The initial shear 

modulus, N
oG , is defined for consistency with linear elasticity when   31 BI , therefore 

     3/2
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where the initial Young’s modulus is N
o

N
o GE 3  due to incompressibility.   
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S3. Chain Model and Damage Evolution Functions 
 

The derivation of the chain model and damage evolution functions is to be reported in a separate 

publication [31]. The fundamental idea of the model is that chain force-extension relationships 

based solely on entropic elasticity (for example Arruda-Boyce) perform poorly near the critical 

extension because they do not allow the contour length of the chain to increase [30].  For a MNE 

the behavior in this regime is fundamentally important to the mechanical response, hence we 

incorporated bond deformation into the chains’ backbone by minimizing energies of 

configuration entropy, bond stretch, and bond angle deformation to obtain a force extension 

relationship which is not singular at the critical extension (See Figure S1).   

 

Figure S1 Comparison of the force-extension relationship from the entropic elasticity model [31] for PEA chain.   
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 In the limit of large deformation rates, the results from the rate dependent damage model 

presented in [31], can be reasonably approximated with Weibull distributions.  The functions 

given are as follows 
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Note that Eq. (S16) represents the Weibull probability distribution function while Eq. (S17) 

represents the Weibull cumulative distribution function.  The constants crF , 1c , and 2c  depend 

on the material, the chain length and the chain extension rate.  For the MNE with photophore in 

the rate-independent regime  nNFcr 99.1  and 

2436.10138.0000174.0 2
1  KK NNc ,  (S18) 

314.229816.203019.0 2
2  KK NNc .  (S19) 

For the MNE without photophore in the rate independent regime nNFcr 47.3  and 

6822.0053178.000034.0 2
1  KK NNc ,  (S20) 

8072.401.3329114.0 2
2  KK NNc .  (S21) 

S4. Numerical Methods 
The following method is used to evaluate the integration with respect to KN  in Eqs. (17), 

(20), and (31) in the main text.  The integration of the product of the probability density function, 

 KNf , and an arbitrary function  KNrg ,*  is evaluated by dividing the range of chain lengths 

into M bins and evaluating the following summation 
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where  

     mKmKmKmKm NNNfNfF ,1,,1,5.0   , (S23) 

and mKN ,  is the average Kuhn length for chains in bin m defined as 

 mKmKmK NNN ,1,, 5.0   . (S24) 

Here 1, mKN , and mKN ,  are the chain lengths at the endpoints of bin m.  

S5. Repeatability 
 

In determining fitting parameters to provide the best fit of the model to the experimental data, 

results were used from numerous experiments.  To examine how much the parameters may vary 

between different samples with a similar MNE structure, we did a comparison of 3 data sets of 

DN elastomers and 3 datasets of TN elastomers.  In each case the crosslink density is the same 

and the network is swollen with approximately the same monomer/solvent ratio.  The results are 

shown in Figure S2.  Here the yellow curves correspond to the data presented in Figure 9 

(DN3/TN3).  The red curves correspond to data from Fig 2. C of Ducrot et al [13] 

(DND2C/TND2C).  The red curves correspond to the MNE with photophore from Figure 5 

(DNP/TNP).  Due to the presence of photophores it is expected that the blue curves would 

behave slightly differently. However, the variability between the red and yellow curves suggests 

possible variation in the prestretch and/or the chain length distribution between samples.  

Nevertheless, in each measurement the initial shear modulus is relatively constant.   
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Figure S2 Engineering Stress plotted against stretch for 3 MNEs.  a) DN elastomers b) TN elastomers.  The yellow curves 
correspond to the data presented in Figure 9 (DN3: EAe1.45(1.68)EA/TN3: EAe1.45(2.55)EA).  The red curves correspond to 
data from Fig 2. C of Ducrot et al [13] (DND2C: EAe1.45(1.71)EA/TND2C: EAe1.45(2.71)EA ).  The blue curves correspond to 
the MNE with photophore from Figure 5 (DNP: EAe1.45(1.48)EA/TNP: EAe1.45(2.72)EA ).   


