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Abstract

This thesis presents a comprehensive study of Gaussian Differential Privacy (GDP)

and Local Differential Privacy (LDP), exploring their properties, relationships, and

applications in developing novel algorithms and optimization methods for efficient and

accurate privacy-preserving data analysis. In the first paper, we examine asymptotic

properties of privacy profiles, develop a criterion for identifying GDP algorithms,

propose an efficient method for narrowing down optimal privacy measurement values,

and introduce a post-processing procedure for non-GDP algorithms. We also compare

single-parameter privacy notions and demonstrate the advantages of our measurement

process and the composition theorem of GDP. The second paper focuses on estimating

population quantiles under LDP using binary inquiries, developing a self-normalizing,

online algorithm with valid inference and optimality results for median estimation.

The third paper introduces a novel algorithm for estimating Cumulative Distribution

Function (CDF) curves under LDP by combining constrained isotonic estimation and

binary inquiries, uncovering an unexpected connection to the current status problem

in survival data analysis. We establish error bounds and computational efficiency

for our estimator. Collectively, these papers contribute to the understanding and

development of efficient, privacy-preserving mechanisms in GDP and LDP, providing

valuable insights and practical tools for data analysts and privacy researchers, and

advancing the state of the art in differential privacy research.
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Chapter 1

Introduction

In today’s digital age, modern AI systems and big models are becoming increasingly

ubiquitous, offering powerful tools for data analysis. However, the potential dangers

they pose to users’ privacy have emerged as a major concern. This thesis presents

a comprehensive study of Gaussian Differential Privacy (GDP) and Local Differ-

ential Privacy (LDP) by exploring their properties, relationships, and applications

in developing novel algorithms and optimization methods for efficient and accurate

privacy-preserving data analysis.

GDP is a single-parameter family of privacy notions that provides coherent guar-

antees to protect sensitive individual information. Although GDP offers greater

interpretability and tighter bounds under composition, many mechanisms (e.g., the

Laplace mechanism) inherently provide GDP guarantees but often fail to leverage

this new framework due to their privacy guarantees being derived under a different

context. In the first paper, we begin by examining the asymptotic properties of

privacy profiles to develop a simple criterion for identifying algorithms with GDP

properties. We propose an efficient method for narrowing down possible values of an

optimal privacy measurement, µ, with an arbitrarily small and quantifiable margin of

error. For non-GDP algorithms, we introduce a post-processing procedure that can

amplify existing privacy guarantees to meet the GDP condition. Furthermore, we

show that all pure-DP algorithms are intrinsically also GDP. We demonstrate that
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the combination of our measurement process and the composition theorem of GDP

is a powerful and convenient tool for handling compositions compared to traditional

standard and advanced composition theorems. Utilizing the procedures mentioned

above, most existing DP algorithms can be incorporated into the GDP framework

with minimal modifications.

In the usual DP setting, a trusted curator can acquire the actual sample quantiles and

other summary statistics, with the only limitation being that the release of the output

must conform to the DP condition, but the use of trusted curators undermines the spirit

of the solid cryptographic level of privacy protection that DP provides. The concept of

LDP was invented to address this issue as no such curator is needed under LDP. The

second paper focuses on developing an algorithm for estimating population quantiles

under LDP, based on binary inquiries. Our proposed method is self-normalizing

and provides asymptotically normal estimation with valid inference, resulting in

tight confidence intervals without the need for estimating nuisance parameters. The

algorithm can be conducted fully online, leading to high computational efficiency and

minimal storage requirements with O(1) space. Additionally, we prove an optimality

result for median estimation through an elegant application of one central limit theorem

of GDP.

Subsequently, in the third paper, we introduce a novel algorithm for estimating

Cumulative Distribution Function (CDF) curves under LDP by utilizing a combination

of constrained isotonic estimation and binary inquiries. These algorithms can be

employed to estimate the distribution of sensitive attributes of people, such as income

or drug use. We uncover an unexpected connection between LDP and the current status

problem, a classical survival data problem in statistics. Through mathematical proofs

and extensive numerical testing, we demonstrate that our method achieves a uniform

error bound of O(n−1/3 log n) and an L2 error bound of O(n−1/3) when estimating

the entire CDF curves. By concentrating on a finite grid, the error bound can be

improved to O(n−1/2), with an asymptotic normal distribution of error. Theoretically,

2



we have shown that the error bound smoothly changes from O(n−1/2) to O(n−1/3)

as the number of grids increases relative to the sample size n. Computationally,

we demonstrate that our constrained isotonic estimator can be efficiently computed

in a deterministic manner, without the need for any hyperparameters or random

optimization.

Overall, these papers contribute to the understanding and development of efficient,

privacy-preserving mechanisms in the fields of GDP and LDP. They provide valuable

insights and practical tools for data analysts and privacy researchers. By addressing

the challenges of privacy preservation and developing novel algorithms, this thesis

advances the state of the art in differential privacy research.
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Chapter 2

Paper 1: Identification,
Amplification and Measurement: A
bridge to Gaussian Differential
Privacy

2.1 Abstract

Gaussian differential privacy (GDP) is a single-parameter family of privacy notions that

provides coherent guarantees to avoid the exposure of sensitive individual information.

Despite the extra interpretability and tighter bounds under composition GDP provides,

many widely used mechanisms (e.g., the Laplace mechanism) inherently provide GDP

guarantees but often fail to take advantage of this new framework because their

privacy guarantees were derived under a different background. In this paper, we

study the asymptotic properties of privacy profiles and develop a simple criterion to

identify algorithms with GDP properties. We propose an efficient method for GDP

algorithms to narrow down possible values of an optimal privacy measurement, µ, with

an arbitrarily small and quantifiable margin of error. For non-GDP algorithms, we

provide a post-processing procedure that can amplify existing privacy guarantees to

meet the GDP condition. As applications, we compare two single-parameter families of

privacy notions, ϵ-DP, and µ-GDP, and show that all ϵ-DP algorithms are intrinsically

also GDP. Lastly, we show that the combination of our measurement process and the
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composition theorem of GDP is a powerful and convenient tool to handle compositions

compared to the traditional standard and advanced composition theorems.

2.2 Introduction

Recent years have seen explosive growth in the research and application of data-

driven machine learning. While data fuels advancement in this unprecedented age of

“big data”, concern for individual privacy has deepened with the continued mining,

transportation, and exchange of this new resource. While expressions of privacy

concerns can be traced back as early as 1969 [1], the concept of privacy is often

perceived as “vague and difficult to get into a right perspective” [2]. Through its

alluring convenience and promise of societal prosperity, the use of aggregated data

has long outstripped the capabilities of privacy protection measures. Indeed, early

privacy protection protocols relied on the ad hoc enforcement of anonymization and

offered little to no protection against the exposure of individual data, as evidenced by

the AOL search log and Netflix Challenge dataset controversies [3–5].

Differential privacy (DP) first gained traction as it met the urgent need for rigour

and quantifiability in privacy protection [6]. In short, DP bounds the change in the

distribution of outputs of a query made on a dataset under an alteration of one data

point. The following definition formalizes this notion.

Definition 2.1 [6] A randomized algorithm A, taking a dataset consisting of individ-

uals as its input, is (ϵ, δ)-differentially private if, for any pair of datasets S and S ′

that differ in the record of a single individual and any event E,

P [A(S) ∈ E] ≤ eϵP [A (S ′) ∈ E] + δ.

When δ = 0, A is called ϵ-differentially private (ϵ-DP).

While the notion of (ϵ, δ)-DP has wide applications [7–10], there are a few notable

drawbacks to this framework. One is the poor interpretability of (ϵ, δ)-DP: unlike
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other concepts in machine learning, DP should not remain a black box. Privacy

guarantees are intended for human interpretation and so must be understandable

by the users it affects and by regulatory entities. A second drawback is (ϵ, δ)-DP’s

inferior composition properties and lack of versatility. Here, “composition” refers to

the ability for DP properties to be inherited when DP algorithms are combined and

used as building blocks. As an example, the training of deep learning models involves

gradient evaluations and weight updates: each of these steps can be treated as a

building block. It is natural to expect that a DP learning algorithm can be built using

differentially-private versions of these components. However, the DP composition

properties cannot generally be well characterized within the framework of (ϵ, δ)-DP,

leading to very loose composition theorems.

To overcome the drawbacks of (ϵ, δ)-DP, numerous variants have been developed,

including the hypothesis-testing-based f -DP [11, 12], the moments-accountant-based

Rényi DP [13], as well as concentrated DP and its variants [14, 15]. Despite their

very different perspectives, all of these DP variants can be fully characterized by an

infinite union of (ϵ, δ)-DP guarantees. In particular, there is a two-way embedding

between f -DP and the infinite union of (ϵ, δ)-DP guarantees: any guarantee provided

by an infinite union of (ϵ, δ)-DP can be fully characterized by f -DP and vice visa [12].

Consequently, f -DP has the versatility to treat all of the above notions as special

cases.

In addition to its versatility, f -DP is more interpretable than other DP paradigms

because it considers privacy protection from an attacker’s perspective. Under f -DP,

an attacker is challenged with the hypothesis-testing problem

H0 : the underlying dataset is S versus H1 : the underlying dataset is S ′

and given output of an algorithm A, where S and S ′ are neighbouring datasets. The

harder this testing problem is, the less privacy leakage A has. To see this, consider

the dilemma that the attacker is facing. The attacker must reject either H0 or H1

6



based on the given output of A: this means the attacker must select a subset R0 of

Range(A) and reject H0 if the sampled output is in R0 (or must otherwise reject H1).

The attacker is more likely to incorrectly reject H0 (in a type I error) when R0 is

large. Conversely, if R0 is small, the attacker is more likely to incorrectly reject H1

(in a type II error). We say that an algorithm A is f -DP if, for any α ∈ [0, 1], no

attacker can simultaneously bound the probability of type I error below α and bound

the probability of type II error below f(α). Such f is called a trade-off function and

controls the strength of the privacy protection.

The versatility afforded by f can be unwieldy in practice. Although f -DP is

capable of handling composition and can embed other notions of differential privacy,

it is not convenient for representing safety levels as a curve amenable to human

interpretation. Gaussian differential privacy (GDP), as a parametric family of f -

DP guarantees, provides a balance between interpretability and versatility. GDP

guarantees are parameterized by a single value µ and use the trade-off function

f(α) = Φ (Φ−1(1− α)− µ), where Φ is the cumulative distribution function of the

standard normal distribution. With this choice of f , the hypothesis-testing problem

faced by the attacker is as hard as distinguishing between N(0, 1) and N(µ, 1) on

the basis of a single observation. Aside from its visual interpretation, GDP also

has unique composition theorems: the composition of a µ1- and µ2-GDP algorithm

is, as expected,
√︁

µ2
1 + µ2

2-GDP. This property can be easily generalized to n-fold

composition. GDP also has a special central limit theorem implying that all hypothesis-

testing-based definitions of privacy converge to GDP in terms of a limit in the number

of compositions. Readers are referred to [12] for more information.

2.2.1 Outline

The goal of this paper is to provide a bridge between GDP and algorithms developed

under other DP frameworks. We start by presenting an often-overlooked partial order

on (ϵ, δ)-DP conditions induced by logical implication. Ignoring this partial order will
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lead to problematic asymptotic analysis.

We then break down GDP into two parts: a head condition and a tail condition.

We show that the latter, through a single limit of a mechanism’s privacy profile, is

sufficient to distinguish between GDP and non-GDP algorithms. For GDP algorithms,

this criterion also provides a lower bound for the privacy protection parameter µ

and can help researchers widen the set of available GDP algorithms. This criterion

furthermore gives an interesting characterization of GDP without an explicit reference

to the Gaussian distribution.

The next logical step is to measure the exact privacy performance. Interestingly,

while the binary “GDP or not” question can be answered solely by the tail, the actual

performance of a DP algorithm is determined by the head. We define and apply the

Gaussian Differential Privacy Transformation (GDPT) to narrow the set of potential

optimal values of µ with an arbitrarily small and quantifiable margin of error. We

further provide procedure to adapt an algorithm to GDP or improve the privacy

parameter when results from the GDP identification and measurement procedures are

undesirable.

Lastly, we demonstrate additional applications of our newly developed tools. We

first make a comparison between DP and GDP and show that any ϵ-DP algorithm is

automatically GDP. We then show that the combination of our measurement process

and the GDP composition theorem is a more powerful and convenient tool for handling

compositions relative to traditional composition theorems.

2.3 Privacy profiles and an exact partial order on

(ϵ, δ)-DP conditions

The benefits of DP come with a price. As outlined in the definition of DP, any DP

algorithm must be randomized. This randomization is usually achieved by perturbing

the intermediate step or the final output via the injection of random noise. Because of

the noise, a DP algorithm cannot faithfully output the truth like its non-DP counterpart.

8



To provide a higher level of privacy protection, a stronger utility compromise should be

made. This leads to the paramount problem of the “privacy–utility trade-off”. Under

the (ϵ, δ)-DP framework, this trade-off is often characterized in the form of σ = f(ϵ, δ):

to achieve (ϵ, δ)-DP, the utility parameter (usually the scale of noise) needs to be

chosen as f(ϵ, δ). Therefore, an algorithm can be (ϵ, δ)-DP for multiple pairs of ϵ and

δ: the union of all such pairs provides a complete image of the algorithm under the

(ϵ, δ)-DP framework. In particular, an (ϵ, δ)-DP mechanism A is also (ϵ′, δ′)-DP for

any ϵ′ ≥ ϵ and any δ′ ≥ δ. The infinite union of (ϵ, δ) pairs can thus be represented as

the smallest δ associated with each ϵ. This intuition is formulated as a privacy profile

in [16]. The privacy profile corresponding to a collection of (ϵ, δ)-DP guarantees Ω

is defined as the curve in [0,∞)× [0, 1] separating the space of privacy parameters

into two regions, one of which contains exactly the pairs in Ω. The privacy profile

provides as much information as Ω itself. Many privacy guarantees and privacy notions,

including (ϵ, δ)-DP, Rényi DP, f -DP, GDP, and concentrated DP, can be embedded

into a family of privacy profile curves and fully characterized [17]. A privacy profile

can be provided or derived by an algorithm’s designer or users.

Before proceeding with detailed discussions, we first give three examples of DP

algorithms that are used throughout the paper. The first example we consider is

the Laplace mechanism, a classical DP mechanism whose prototype is discussed in

the paper that originally defined the concept of differential privacy [6]. The level of

privacy that the Laplace mechanism can provide is determined by the scale b of the

added Laplacian noise. Given a global sensitivity ∆, the value of b needs to be chosen

as f(ϵ, 0) = ∆/ϵ in order to provide an (ϵ, 0)-DP guarantee. Despite its long history,

the Laplace mechanism has remained in use and study in recent years [18–21]. Our

second example is a family of algorithms in which a noise parameter has the form

σ = Aϵ−1
√︁

log(B/δ). Examples include: the goodness of fit algorithm [22], noisy

stochastic gradient descent and its variants [23–25] and the one-shot spectral method

and the one-shot Laplace algorithm [26]. Our third example comes from the field of
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federated learning: given n users and the number of messages m, the invisibility cloak

encoder algorithm (ICEA) from [27] is (ϵ, δ)-DP if m > 10 log(n/(ϵδ)) [28]. See also

[29, 30] for other analysis of ICEA.

For figures and numerical demonstrations in this paper, we use b = 2/∆ for the

Laplace mechanism; A = 2, B = 1, and σ = 2 for the second example, which we refer

to as SGD; and m = 20 and n = 4 for the ICEA. We omit the internal details of these

methods and focus on their privacy guarantees: other than for the classical Laplace

mechanism, whose privacy profile is known [17], privacy guarantees are given in the

form of privacy–utility trade-off equation σ = g(ϵ, δ). Given σ, it is tempting to derive

the privacy profile by inverting g (i.e., as δA(ϵ) = min{δ | σ = g(ϵ, δ)}) because an

(ϵ0, δ0)-DP algorithm is trivially (ϵ, δ)-DP for any ϵ ≥ ϵ0 and δ ≥ δ0. However, in

most cases, a privacy profile naively derived in this way is not tight and will lead to a

problematic asymptotic analysis, especially near the origin, because of a frequently

overlooked partial order between (ϵ, δ)-DP conditions below.

Theorem 2.2 Assume that ϵ0 ≥ 0 and 0 ≤ δ0 < 1. The (ϵ0, δ0)-DP condition implies

(ϵ, δ)-DP if and only if δ ≥ δ0 + (1− δ0)(e
ϵ0 − eϵ)+/(1 + eϵ0).

Theorem 2.2 states the exact partial order of logical implication on (ϵ, δ)-DP
conditions. Though not explicitly discussed in this form in previous literature on DP,
this partial order can be implicitly derived from other results (e.g. proposition 2.11
of [12]). Taking this partial order into account, the privacy profile derived from the
naive inversion of the trade-off function can be refined into

δA(ϵ) = min

(︃{︃
δ | σ = g(ϵ0, δ0) and δ ≥ δ0 +

(1− δ0)(e
ϵ0 − eϵ)+

1 + eϵ0

}︃)︃
.

Intuitively, the refined privacy profile not only considers (ϵ, δ)-DP provided directly

by the trade-off function but also takes all pairs (ϵ, δ) inferred by corollary 2.2. See

figure 2.1 for comparison before and after this refinement.

2.4 The identification of GDP algorithms

We next show the connection between GDP and the privacy profile: briefly, Gaussian

differential privacy can be characterized as an infinite union of (ϵ, δ)-DP conditions.
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Theorem 2.3 ([Corollary 2.13 [12]) A mechanism is µ-GDP if and only if it is

(ϵ, δµ(ϵ))-DP for all ϵ ≥ 0, where

δµ(ϵ) = Φ

(︃
− ϵ

µ
+

µ

2

)︃
− eϵΦ

(︃
− ϵ

µ
− µ

2

)︃
. (2.1)

This result follows from properties of f -DP. Prior to this general form, an expression

for a special case appeared in [16]. From the definition of the privacy profile, it follows

immediately that an algorithm A with the privacy profile δA is µ-GDP if and only if

δµ(ϵ) ≥ δA(ϵ) for all non-negative ϵ. However, this observation does not automatically

lead to a meaningful way to identify GDP algorithms.

Before proceeding with an analysis of privacy profiles, we give a few visual examples

in Figure 2.1. The left side of2.1 illustrates the privacy profiles of our examples.

That of the Laplace mechanism is derived in [17] as Theorem 3: given a noise

parameter b and a global sensitivity ∆, the privacy profile of the Laplace mechanism

is δ(ϵ) = max(1− exp{ε/2−∆/(2b)}, 0). For the second and the third examples, we

compare the naive privacy profiles obtained by inverting the trade-off function with

the refined privacy profiles. The refined and naive privacy profiles take on notably

different values around ϵ = 0. The inverted trade-off functions suggest that (0, δ)

cannot be achieved by any choice of parameter σ. However, this is clearly not true,

considering Theorem 2.2.

As shown in the right side of Figure 2.1, the Laplace mechanism’s privacy profile is

below the 2-GDP and 4-GDP curves but crosses the 1-GDP curve, indicating that the

Laplace mechanism, in this case, is 2-GDP and 4-GDP but not 1-GDP. The ICEA

curve intersects all of the displayed GDP curves, so the algorithm is not µ-GDP for

µ ∈ {1, 2, 4}. It is hard to tell whether or not the SGD curve crosses the 1-GDP curve,

and we cannot say if it will cross the 2-GDP or even the 4-GDP curve at a large value

of ϵ. These examples illustrate that we cannot draw conclusions simply by looking

at a graph. A privacy profile is defined on [0,∞), so it is hard to tell if inequality is

maintained as ϵ increases. Previous failures of ad hoc attempts at privacy have taught
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that privacy must be protected via tractable and objective means [3–5].

Figure 2.1: Left: Examples of privacy profiles obtained by inverting the trade-off
function (naive) and by Theorem 2.2 (refined). Right: Comparison of 1-GDP and
2-GDP privacy profiles against those for our three examples.

Performing this check via numerical evaluation yields similar problems: we cannot

consider all values of ϵ on an infinite interval (or even a finite one, for that matter).

Turning to closed forms for privacy profiles and δµ is also difficult: even if a given

privacy profile is easy to handle, δµ presents some technical hurdles. The profile δµ

and Φ are transcendental with different asymptotic behaviors for different values of

µ and ϵ. This is clear from the Figure 2.1: near ϵ = 0, δµ is concave for µ = 4 but

convex for µ = 1. As a further complication, both the first and second terms in the

definition of δµ converge to 1 as ϵ → ∞, but the difference between them vanishes.

Subtracting good approximations of two nearby numbers may cause a phenomenon

called catastrophic cancellation and lead to very bad approximations [31, 32]. Due to

the risk of catastrophic cancellation, a good approximation of Φ does not guarantee a

good approximation of the GDP privacy profile. These problems make it difficult to

tightly bound δµ by a function with a simple form.

To address the problem of differing asymptotic behaviours, we define the following

two notions.

Definition 2.4 (Head condition) An algorithm A with the privacy profile δA is (ϵh, µ)-

head GDP if and only if δA(ϵ) ≤ δµ(ϵ) when ϵ ≤ ϵh.
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Definition 2.5 (Tail condition) An algorithm A with the privacy profile δA is (ϵt, µ)-

tail GDP if and only if δA(ϵ) ≤ δµ(ϵ) when ϵ > ϵt.

The head condition checks the µ-GDP condition for ϵ near zero and the tail condition

checks the µ-GDP condition for ϵ far away from zero. As such, the combination of

(ϵ, µ)-head GDP and (ϵ, µ)-tail GDP is equivalent to µ-GDP. For now, we put the

exact value of µ aside and consider only the qualitative question of how to identify a

GDP algorithm by its privacy profile. The following theorem answers this question.

Theorem 2.6 An algorithm A is GDP if and only if A is (ϵ, µ)-tail GDP for any

finite ϵ and µ.

Interestingly, only the tail condition figures into the identification problem. The

reason for this stems from theorem 2.2. Any nontrivial (ϵ, δ)-DP algorithm must

be (0, δ)-DP for some δ < 1 and therefore must satisfy a head condition for some

sufficiently large µ. The only problem left is the tail. However, it is not possible to

check whether δ(ϵ) < δµ(ϵ) for all values of ϵ. To circumvent this issue, we present

a key lemma that underlies much of the theoretical analysis in this section and may

continue to be useful in future developments.

Lemma 2.7 Define δ̃µ(ϵ) =
µe−a2/2
√
2πa2

, where a = − ϵ
µ
+ µ

2
. It follows that lim

ϵ→+∞
δµ(ϵ)

δ̃µ(ϵ)
= 1.

Using the key lemma above, a condition for identifying GDP algorithms is simple

to formulate:

Theorem 2.8 Let µt =
√︂

lim
ϵ→+∞

ϵ2

−2 log δA(ϵ)
. An algorithm A with the privacy profile

δA(ϵ) is µ-GDP if and only if µt <∞. Further, µ is no smaller than µt.

Theorems 2.6 and 2.8 give a useful criterion characterizing GDP and deepen our

understanding of GDP. Putting the exact value of µ aside, a GDP algorithm must

provide an infinite union of (ϵ, δ)-DP conditions, where δ must be O(e−cϵ2) as ϵ→∞.

Refer to Appendices 2.8.1 for proofs of Theorems.
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2.5 The Gaussian differential privacy transforma-

tion

While the binary “GDP or not” question can be answered solely by the tail condition,

the actual performance of a DP algorithm is determined by the value of its privacy

profile for small values of ϵ: intuitively, all (ϵt, µ)-tail conditions are weaker than the

corresponding ϵt-DP condition, and the latter provides almost no privacy when ϵt > 10.

A more detailed discussion will be presented in 2.5.2. To solve the measurement

problem, we first propose a new tool—the Gaussian differential privacy transformation

(GDPT).

Definition 2.9 (GDPT) Let f be a non-increasing, non-negative function defined on

[0,+∞) satisfying f(0) ≤ 1. The Gaussian differential privacy transformation (GDPT)

of f is the function Gf mapping [0,∞) to [0,∞) such that Gf (ϵ) = µ
GDP

(ϵ, f(ϵ)), where

µ
GDP

(x, y) is the implicit function defined by the equation δµ(x) = y.

We highlight two critical features of the GDPT.

• The GDPT is order preserving: if f(ϵ) ≥ g(ϵ), then Gf (ϵ) ≥ Gg(ϵ).

• The GDPT of δµ is Gδµ(ϵ) = µ, a constant function.

The first of these two features derive from the monotonicity of δµ(ϵ). Given a fixed

µ, δµ(ϵ) is a strictly decreasing continuous function of ϵ. Given a fixed ϵ, δµ(ϵ) is a

strictly increasing continuous function of µ. Therefore, µ
GDP

(x, y) is an increasing

function of y: this leads to the order-preserving property. The second property follows

immediately from the definition of µ
GDP

.

By taking advantage of the order-preserving property, direct comparisons between δµ

and δA are no longer necessary: instead, it is sufficient to compare their corresponding

GDPTs. Furthermore, appealing to the second property above, we need only compare

GA to the constant function µ. The following theorems formalize this insight.
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Corollary 2.10 An algorithm A with the privacy profile δA is µ-GDP if and only if

µ ≥ sup({GA(ϵ) | ϵ ∈ [0,∞)}).

Theorem 2.11 An algorithm A with the privacy profile δA is (ϵh, µ)-head GDP or

(ϵt, µ)-tail GDP if and only if µ ≥ sup({GA(ϵ) | ϵ ∈ [0, ϵh]) or µ ≥ sup({GA(ϵ) | ϵ ∈

(ϵt,∞)), respectively.

Without the above results, we would be forced to search through a large family of

functions for a single δµ that never crosses δA anywhere on [0,∞) and has µ as small as

possible. Now, with Theorem 2.10, we need only consider one function: the GDPT of

δA. The tightest value µ is supϵ{GA(ϵ)}. Now we revisit our previous three examples

for which the limit in Theorem 2.8 is 0,
√︁

1/2, and +∞, respectively. From these

evaluations, we can conclude that the Laplace mechanism and SGD are GDP and

that the privacy profile of the ICEA algorithm crosses every µ-GDP curve regardless

of how large µ is, indicating that the ICEA algorithm is not GDP.

Figure 2.2: Left: Examples of GDPTs. Right: Plot of G+
A and G−

A with different
values of d.

Left side of figure 2.2 shows the GDPTs of the three examples considered in this

paper. All three GDPTs converge to a finite value as ϵ→ 0+. This can be attributed to

the fact that any algorithm providing some non-trivial (ϵ, δ)-DP guarantee is (0, δ)-DP

for some δ ∈ [0, 1) (by theorem 2.2). For larger values of ϵ, the GDPT of the Laplace
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mechanism takes on a constant value of 0, the GDPT of SGD converges to a value

that is approximately 0.7, and the GDPT of the ICEA seems to be diverging. These

observations are consistent with the values of 0,
√︁

1/2, and∞ obtained from Theorem

2.8. Once an algorithm is confirmed to be GDP via Theorems 2.6 and 2.8, it is natural

to be interested in the exact level of privacy protection, quantified by µ. Nonetheless,

plots are only good for visualization and are not sufficient proof when verifying GDP.

We still need objective and tractable methods for obtaining bounds on GDPTs.

2.5.1 Measuring the head

Following the intuition outlined by definition 2.4 and 2.5, we decompose the GDP

condition into head and tail conditions and first focus on finding µ such that A is

(ϵ, µ)-head GDP. Without additional knowledge, finding sup{GA(ϵ) | ϵ ∈ [0, ϵh]}, even

for a finite ϵh, seems computationally infeasible. To solve this problem, we take

advantage of the fact that µ
GDP

has a uniformly bounded partial derivative.

Theorem 2.12 0 ≤ ∂µ
GDP

(ϵ,δ)

∂ϵ
≤

√
2π
2
.

The first half of the inequality above is no surprise to us: the GDP privacy measurement

µ is expected to be larger when ϵ is larger. However, the second half allow us to only

conduct the search on a finite list of ϵ without the concern of spikes in between. We

formulate this insight as the following theorem:

Theorem 2.13 Given ϵh ≥ 0, let d = ϵh/n and xi = id for i ∈ {0, . . . , n + 1}. For

ϵ ≤ ϵh, the GDPT of A, denoted by GA(ϵ), is bounded between the two staircase

functions

G−
A(ϵ) =

n+1∑︂
i=0

µ
GDP

(xi, δA(xi+1))×1ϵ∈[xi,xi+1) and G+
A(ϵ) =

n+1∑︂
i=0

µ
GDP

(xi+1, δA(xi))×1ϵ∈[xi,xi+1).

Specifically,

max
i∈{0,...,n}

G−
A(xi) ≤ max

ϵ∈[0,ϵh]
GA(ϵ) ≤ max

i∈{0,...,n+1}
G+

A(xi) ≤ max
i∈{0,...,n}

G−
A(xi) +

√
2πd. (2.2)
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Refer to Appendix 2.8.1 and 2.8.1 for proofs of Theorem 2.12 and 2.13, respectively.

For any ϵh < +∞, we can now bound any GDPT GA to any precision on [0, ϵh]

without full pointwise evaluation because GA is bounded between G+
A and G−

A and each

staircase function takes on only finitely many values. For any c > 0, the inequalities

in (2.2) provide a viable way to bound maxϵ∈[0,ϵh] GA(ϵ) in an interval with a length

no greater than 1/c.

First, a binary search algorithm (algorithm 2 in Appendix 2.8.3) can yield µ+ and

µ− such that µ− ≤ µ
GDP

(ϵ, δ) ≤ µ+ and µ+ − µ− < b. For future references, we use

µ+
GDP

(ϵ, δ, b) and µ−
GDP

(ϵ, δ, b) to represent such outputs of µ+ and µ−, respectively.

Therefore, we can naively go thorough all G−
A(xi) and G+

A(xi). By picking n =⌈︁√
8cπϵh

⌉︁
+ 1 and b = 1

2c
, the true gap between maxG−

A(ϵ) and maxG+
A(ϵ) is less

than 1
2c

and the error margin of the binary search estimate the µ
GDP

is also 1
2c
.

Therefore, the overall gap is bounded by 1
c
. As for complexity, each binary search has

a time complexity of O(log(c)) and the number of binary searches is 2n+ 2 = O(ϵhc).

The overall time complexity of this naive approach is O(ϵhc log(c)). For a complete

pseudocode of this naive approach, refer to algorithm 3 in Appendix 2.8.3.

By leveraging some properties of µ
GDP

and shuffling, the expected number of binary

searches needed can be reduced from linear (2n+2 ≈ cϵh) to logarithmic (O(log(cϵh))).

Such reduction will eliminate the logarithmic term in the time complexity from the

naive algorithm. The improved algorithm is given as Algorithm 1 below.
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Algorithm 1: Finding µ with privacy profiles (optimized).

Input: δA, ϵh, µt, c. (Privacy profile, searching range ϵh, reciprocal of error margin)
n←

⌈︁√
8cπϵh

⌉︁
+ 1

d← ϵh
n−1

µ− ← 0
µ+ ← 0
S = [0, 1, · · · , n+ 1]
Shuffle S
for i = 0 to n+ 1 do

x− ← S[i]d
x+ ← (S[i] + 1)d
if δµ+(x−) < δA(x

+) then
µ+ ← µ+

GDP
(x−, δA(x

+), 1
2c
))

end if
if δµ−(x+) < δA(x

−) then
µ− ← µ−

GDP
(x+, δA(x

−), 1
2c
))

end if
end for
Output:µ−, µ+ (lower and upper bound of µ).

We remark that this algorithm also has better accuracy than the naive algorithm

because the lower and upper bounds will be closer while maintaining coverage. Refer

to Appendix 2.8.3 for a detailed explanation of this algorithm.

2.5.2 Understanding the tail

With Theorem 2.13, one can verify (ϵh, µ)-head GDP conditions for arbitrarily large ϵh

and an arbitrarily precise approximation of µ. While the error in µ can be quantified

by D, one gap remains: ϵh can be arbitrarily large but can never truly be +∞. In

this subsection, we discuss the gap between (ϵh, µ)-head GDP and actual GDP (which

is equivalent to (+∞, µ)-head GDP). Before giving a solution, we intuitively illustrate

the gap between (ϵh, µ)-head GDP and actual GDP. Consider the following two cases:

• GDP with catastrophic failure, where with probability 1 − p, A1 functions

properly as µ-GDP, with probability p, A1 malfunctions and discloses the entire

dataset; and
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• head-GDP with ϵ-DP, where A2 is both (ϵh, µ)-head GDP and (ϵh, 0)-DP.

The head GDP privacy guarantee lies strictly between those of A1 and A2: specifically,

δA1(ϵ) < δ(ϵ) < δA2(ϵ). As an interpretation of this inequality, a head GDP privacy

guarantee is safer than the original GDP guarantee but with a minuscule probability

of failure, and when combined with a very weak ϵ-DP condition, the head GDP will be

stronger than the actual GDP. In practice, µ is rarely above six in GDP, and ϵ is rarely

above 10 in ϵ-DP because more extreme values provide almost no privacy protection

[12]. If we verify the head condition up to ϵh = 100 (which is not difficult because

the time required for verification grows linearly) and take µ = 6, then p = δµ(ϵh) will

be on the order of 10−43. Also, DP guarantee for ϵ this large is rarely considered to

provide real protection. Hence, we conclude that the gap will not make any notable

difference in practice with a proper choice of µ and ϵh.

2.5.3 Amplification

In some cases, one may wish to theoretically mend the gap discussed in the last

subsection. This can be achieved by adding extra steps to perturb the output of

the algorithm (i.e., via post-processing). We propose the following “clip and rectify”

procedure that can turn any (ϵh, µ)-head GDP algorithm into a µ-GDP algorithm at

some utility cost.

Theorem 2.14 Let A be an (ϵh, µ)-head GDP algorithm with a numeric output.

Assume that −∞ < y− < y+ < +∞. Define C(y) = max(min(y, y+), y−) and

R(z) = z + v, where v is sampled from Laplace(b) with b = (y+ − y−)/ϵh. Then

R ◦ C ◦ A is µ-GDP.

Refer to Appendix 2.8.1 for a proof of Theorem 2.14. We remark that, in order to

minimize the utility loss, the bounds y− and y+ should be properly or dynamically

chosen and the head condition should be verified to a value of ϵh that is as large as

possible.
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On the other hand, the performance (µ) of a GDP algorithm may be bottlenecked

by the value of its privacy profile near the origin. This problem can be remedied by

subsample pre-processing, the impact of which on privacy profiles has been thoroughly

examined in [17]. The resulting privacy profile is explicitly given in Theorems 8–10

of [17]. With the help of the GDPT, we can select different subsample ratios and

measure µ. For instance, the Laplace example in this paper was originally 1.80-GDP.

If we introduce a 50%- or 10%- Poisson subsampling before the Laplace mechanism, µ

will be reduced to 0.98 or 0.28, respectively. Refer to 2.8.6 for a complete graph of

the new GDPTs.

While one could turn to other algorithms or design a new GDP mechanism in

unfavourable cases where a candidate algorithm is incompatible with GDP from the

start, rectifying these incompatibilities via pre- and post-processing may be more

effective and efficient. This is especially true in cases where raw data is not easily

accessible. In other cases, the DP mechanism might be inaccessible. This is particularly

common for users of proprietary software. While they cannot identify and change the

algorithm distributed in binary code, users can still control sensitive information by

only approving a subset for release.

2.6 Applications

2.6.1 The Gaussian nature of ϵ-DP and the Laplace mecha-
nism

By our previous analysis of the GDPT, we know that being GDP means that a privacy

profile has a quickly vanishing tail (i.e., δ(ϵ) must be O(e−ϵ2)). It is remarkable that

another single parameter family of DP conditions, the ϵ-DP conditions, is also a

property that pertains to the tail of privacy profiles. For any ϵ0-DP algorithm, the

privacy profile must be exactly 0 after ϵ0. This suggests that ϵ-DP is stronger than

GDP. Next, we will quantify this intuition using the tools we developed above.

By Theorem 2.2, we know if A is ϵ0-DP, then in the worst case, δA(ϵ) = (eϵ0 −
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eϵ)+/(1 + eϵ0).

We consider the GDPT of δA, denoted by GA. It is easy to see that, for ϵ ≥ ϵ0,

GA(ϵ) = 0: we need only consider ϵ ∈ [0, ϵ0). Let GδA(ϵ) be denoted by µϵ. Using

the partial derivative of GA derived in Appendix 2.8.1, we know that ∂
∂ϵ
GδA(ϵ) =

√
2π exp

{︂
(µ2

ϵ + 2ϵ)
2
/(8µ2

ϵ)
}︂[︂

Φ(−µ2
ϵ+2ϵ
2µϵ

)− Φ(−µ0

2
)
]︂
. Then sign( ∂

∂ϵ
GδA(ϵ)) = sign(µϵ−

µ0 − 2ϵ/µ0). We can conclude that µϵ ≤ µ0 and, further, that GA(ϵ) is strictly

decreasing on [0, ϵ0). By Theorem 2.10, we know that A is µ0-GDP. This finding can

be more generally formulated as the following theorem.

Theorem 2.15 Any (ϵ, 0)-DP algorithm is also µ-GDP for µ = −2Φ−1(1/(1+ eϵ)) ≤√︁
π/2ϵ.

[12] pointed out that the DP guarantees of the Laplace mechanism are stronger than

those correspondingly provided by ϵ-DP. We reaffirm this difference by showing that

it still exists under the GDP framework. The Laplace mechanism satisfies µ-GDP for

µ smaller than the bound given in Theorem 2.15. The GDPTs presented in Appendix

2.8.5 illustrate this difference.

2.6.2 Handling composition with GDP

In practice, it is rare for a dataset to go through DP algorithms only once. Multiple

statistics may be of interest or one statistic may require multiple inquiries to acquire.

DP algorithms applied to the same dataset multiple times are usually still DP but with

worse privacy parameters. Composition theorems quantitatively trace privacy loss and

provide a privacy parameter for the ensemble. However, not only is exact composition

an intrinsically (#P-)hard problem [33], but the conclusions of composition theorems

are also often problematic. Take traditional (ϵ, δ)-DP as an example. [34] gives an

optimal composition theorem, but the composition of two (ϵ, δ)-DP algorithms cannot

be characterized under the (ϵ, δ)-DP framework. This result damages interpretability

because the representation of a composition will no longer be in two parameters. This
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type of flaw is the major motivation for a GDP characterization of algorithms derived

under other DP frameworks. The composition of GDP algorithms is easy, exact, and

closed: the composition of a µ1- and µ2-GDP algorithm is simply
√︁
µ2
1 + µ2

2-GDP.

GDP also has a special central limit theorem which implies that, for all privacy

definitions that retain hypothesis testing with proper scaling, the privacy guarantee of

a composition converges to GDP in the limit. In this subsection, we demonstrate that

GDP is a powerful tool for composition by unifying other notions under the GDP

framework and then using the GDP composition theorem. As baselines, we select

basic composition [6], advanced composition [35] and Rényi-DP [13].

We consider the 50-fold composition of 0.2-DP algorithms. In this setting, the basic

composition is pessimistic and says that the composition will be 10-DP, which means

there is next to no privacy guarantee. According to corollary 1 of [13], the bound

given by RDP is even looser. Refer to Figure 3 for the results of other theorems.

We next consider composition using the proposed measurement method. According

to Theorem 2.15, a 0.2-DP algorithm is 0.2505-GDP. If the algorithm is the Laplace

mechanism, then the algorithm in Appendix 2.8.3 can tighten µ to 0.2391. To compute

µ for a 50-fold composition, we simply multiply the original µ by
√
50. The result

is 1.771-GDP (1.691 for the Laplace mechanism). In this case, distinguishing two

neighbouring datasets is as hard as distinguishing between N(0, 1) and N(1.771, 1) on

the basis of a single observation.

In this particular case, the ground truth can be derived from the optimal composition

theorem [34]. We present the results from the optimal composition theorem in Table 1

and Figure 3 for comparison, but we do not consider the optimal composition theorem

to be generally superior because the ground truth is not easy to compute and because

the former method is not as interpretable and only works for algorithms whose DP

guarantees are fixed at (ϵ, δ). However, by applying the GDPT, the privacy guarantee

of the optimal composition theorem can be summarised as 1.420-GDP . Compared to

the central limit theorem in [12], which yields µ =
√
2 (with an unknown asymptotic
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Figure 2.3: The plot of privacy guarantee under different methods.

Method

δ
10−1 10−2 10−3 10−4

Basic 9.89 9.99 10 10

Advanced 5.25 6.51 7.47 8.28

RDP 12.14 17.17 21.03 24.28

GDP 3.1 5.06 6.47 7.62

GDP (Lap) 2.87 4.74 6.09 7.19

Optimal 2.12 3.64 4.76 5.28

GDP summary 2.14 3.73 4.87 5.80

Table 2.1: Minimum values of ϵ to achieve corre-
sponding (ϵ, δ)-DP.
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approximation error) in the same setting, the tractable numerical procedure of GDPT

provides a satisfying result.

2.7 Conclusion and Future Work

In this paper, we provided both an analytic perspective of and engineering tools for the

GDP framework. By using the new notions we proposed, we devised solutions to three

aspects of GDP: identification, amplification, and measurement. The developments in

this paper suggest numerous interesting directions for future work. First, more refined

methods can be derived to expand the toolbox of rectification for more versatility.

Second, the measurement procedure can be combined with the rectification procedure.

Incrementally introducing more pre- and post-processing steps and dynamically check-

ing whether privacy guarantees are already satisfactory can also be explored. Lastly,

the idea underlying the GDPT can be generalized to other parameterized DP notions

like CDP or RDP to enrich tractability and visualizability in the DP literature.
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2.8 Appendix

2.8.1 Proofs

Proof.

Proof of Theorem 2.2:

Sufficiency:

When ϵ ≥ ϵ0, the sufficiency is trivial as δ = δ0.

When ϵ < ϵ0, given that A is (ϵ0, δ0)-DP, by the definition, for any pair of datasets

S and S ′ that differ in the record of a single individual and any event E,

P [A(S) ∈ E] ≤ eϵ0P [A (S ′) ∈ E] + δ0.

When P [A (S ′) ∈ E] ≤ 1−δ0
1+eϵ0

:= c0,

P [A(S) ∈ E] ≤ eϵ0P [A (S ′) ∈ E] + δ0

≤ (eϵ0 + eϵ − eϵ)P [A (S ′) ∈ E] + δ0 + δ − δ

≤ eϵ0P [A (S ′) ∈ E] + δ + (eϵ0 − eϵ)c0 + δ0 − δ

≤ eϵP [A (S ′) ∈ E] + δ + (eϵ0 − eϵ)c0 −
(1− δ0)(e

ϵ0 − eϵ)

1 + eϵ0

≤ eϵP [A (S ′) ∈ E] + δ.
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When c0 ≤ P [A (S ′) ∈ E] ≤ 1,

P [A(S) ∈ E] = 1− P [A(S) ∈ Ec]

≤ 1− e−ϵ0(P [A (S ′) ∈ Ec]− δ0)

= 1− e−ϵ0(1− P [A (S ′) ∈ E]− δ0)

= 1− e−ϵ0 + e−ϵ0P [A (S ′) ∈ E] + e−ϵ0δ0

= 1− e−ϵ0 + e−ϵ0δ0 + δ − δ + (e−ϵ0 + eϵ − eϵ)P [A (S ′) ∈ E]

= eϵP [A (S ′) ∈ E] + δ + 1− e−ϵ0 + e−ϵ0δ0 − δ + (e−ϵ0 − eϵ)P [A (S ′) ∈ E]

≤ eϵP [A (S ′) ∈ E] + δ + 1− e−ϵ0 + e−ϵ0δ0 − δ + (e−ϵ0 − eϵ)c0

= eϵP [A (S ′) ∈ E] + δ + (1− δ0)(
e−ϵ0 − eϵ

1 + eϵ0
− e−ϵ0) + 1− δ

≤ eϵP [A (S ′) ∈ E] + δ + (1− δ0)(
e−ϵ0 − eϵ

1 + eϵ0
− e−ϵ0 + 1 +

eϵ − eϵ0

1 + eϵ0
)

= eϵP [A (S ′) ∈ E] + δ.

Necessity:

We prove the necessity by giving a specific (ϵ0, δ0)-DP algorithm A such that δA(ϵ)

is exactly δ0 +
(1−δ0)(eϵ0−eϵ)+

1+eϵ0
.

Define Ωe = {1, 2, 3, 4} and ΩS = {0, 1}. Let ϵ ≥ 0, 0 ≤ δ0 ≤ 1 and denote eϵ0
1+eϵ0

as

α0. Let A be a randomized algorithm that take a single point from ΩS and generate

output as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

P (A(S) = 1 | S = 0) = δ0,

P (A(S) = 2 | S = 0) = 0,

P (A(S) = 3 | S = 0) = (1− δ0)α0,

P (A(S) = 4 | S = 0) = (1− δ0)(1− α0),

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

P (A(S) = 1 | S = 1) = 0,

P (A(S) = 2 | S = 1) = δ0,

P (A(S) = 3 | S = 1) = (1− δ0)(1− α0),

P (A(S) = 4 | S = 1) = (1− δ0)α0.
By definition, δ(ϵ) is the smallest δ such that P (A(S) ⊂ E | S = s) ≤ eϵP (A(S) ⊂

E | S = 1 − s) + δ holds true for all E ⊂ Ωe and s ∈ ΩS. By checking all 64

combinations, we can conclude that δA(ϵ) = δ0 +
(1−δ0)(eϵ0−eϵ)+

1+eϵ0
.

Proof. Proof of Lemma 2.4:
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It is well known that [36], for t < 0:

1

−t+
√
t2 + 4

<

√︃
π

2
exp

(︃
t2

2

)︃
Φ(t) <

1

−t+
√︂
t2 + 8

π

.

Let a =
(︂
− ε

µ
+ µ

2

)︂
and b =

(︂
− ε

µ
− µ

2

)︂
,

lim
ϵ→∞

δµ(ϵ) = lim
ϵ→∞

Φ (a)− eϵΦ (b)

≤
√︃

2

π
lim
ϵ→∞

exp
(︂

−a2

2

)︂
−a+

√︂
a2 + 8

π

−
exp

(︂
−b2

2
+ ϵ
)︂

−b+
√
b2 + 4

.

=

√︃
2

π
lim
ϵ→∞

exp

(︃
−a2

2

)︃⎛⎝ 1

−a+
√︂

a2 + 8
π

− 1

−b+
√
b2 + 4

⎞⎠ .

≤
√︃

2

π
lim
ϵ→∞

exp

(︃
−a2

2

)︃(︃
−1
a

)︃
.

= 0.

lim
ϵ→∞

δµ(ϵ) = lim
ϵ→∞

Φ (a)− eϵΦ (b)

≥
√︃

2

π
lim
ϵ→∞

exp
(︂

−a2

2

)︂
−a+

√
a2 + 4

−
exp

(︂
−b2

2
+ ϵ
)︂

−b+
√︂
b2 + 8

π

.

=

√︃
2

π
lim
ϵ→∞

exp

(︃
−a2

2

)︃⎛⎝ 1

−a+
√
a2 + 4

− 1

−b+
√︂

b2 + 8
π

⎞⎠ .

≥
√︃

2

π
lim
ϵ→∞

exp

(︃
−a2

2

)︃(︃
−1
b

)︃
.

= 0.

Therefore,

lim
ϵ→∞

δµ(ϵ) = 0. (2.3)

It is easy to see that,

lim
ϵ→∞

δ̃µ(ϵ) = lim
ϵ→∞

µe−a2/2

√
2πa2

= 0 (2.4)
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By L’Hospital’s rule:

lim
ϵ→∞

δ̃µ(ϵ)

δµ(ϵ)
= lim

ϵ→∞

δ̃
′
µ(ϵ)

δ′µ(ϵ)

= lim
ϵ→∞
−e−

a2

2 (a2 + 2)√
2πa3

/︃
eϵΦ(b)

= lim
ϵ→∞

e−
b2

2 Φ(b)√
2πb

= lim
b→−∞

e−
b2

2 Φ(b)√
2πb

= 1.

Proof. Proof of Theorem 2.6:

Sufficiency:

If A is µ-GDP. Then lim
ϵ→+∞

GA(ϵ) ≤ lim
ϵ→+∞

Gδµ(ϵ) = µ.

Necessity:

If lim
ϵ→+∞

GA(ϵ) = µ < +∞, there must be a ϵt > 0 such that A is (ϵt, µ0 + 1)-tail

GDP.

Notice that lim
µ→∞

δµ(ϵt) = 1, we can pick µ1 > µ0 large enough such that δµ1(ϵt) >

δA(0).

This is possible because by Theorem 2.2, δA(0) < 1. Then for ϵ ∈ [0, ϵt), δA(ϵ) ≤

δA(0) ≤ δµ1(ϵt) ≤ δµ1(ϵ). A is both (ϵt, µ)-head and tail GDP for µ = µ0 + µ1 + 1. A

is GDP as desired.

Proof. Proof of Theorem 2.8:

Let lim
ϵ→+∞

Gf (ϵ) = µt.

First we show that lim
ϵ→∞

ϵ2

−2 log δA(ϵ)
≤ µ2

t :

By the definition the limit, for any µ0 > µt, for sufficient large ϵ, Gf(ϵ) < µ0 and

further δA(ϵ) ≤ δµ0(ϵ). Hence, lim
ϵ→∞

δA(ϵ)
δµ0 (ϵ)

≤ 1. By Lemma 2.4, lim
ϵ→∞

δA(ϵ)

δ̃µ0 (ϵ)
≤ 1.

Then lim
ϵ→∞

ϵ2

−2 log δA(ϵ)
≤ lim

ϵ→∞
ϵ2

−2 log δ̃µ0 (ϵ)
= µ2

0.

lim
ϵ→∞

ϵ2

−2 log δA(ϵ)
≤ µt as desired as we take µ0 → µt.
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Next we show that lim
ϵ→∞

ϵ2

−2 log δA(ϵ)
≥ µ2

t :

If lim
ϵ→∞

ϵ2

−2 log δA(ϵ)
= µ2

0 < µ2
t , then by Lemma 2.4,

lim
ϵ→∞

ϵ2

−2 log δA(ϵ)
− ϵ2

−2 log δµt(ϵ)
= lim

ϵ→∞

ϵ2

−2 log δA(ϵ)
− lim

ϵ→∞

ϵ2

−2 log δ̃µt(ϵ)

< µ2
0 − µ2

t

Then for a sufficiently large ϵ0,

ϵ20
−2 log δA(ϵ0)

− ϵ20
−2 log δµ0(ϵ0)

< 0.

Since log is an increasing function, it follows that δA(ϵ0) < δµ0(ϵ0). Then lim
ϵ→+∞

Gf (ϵ) ≤

µ0 < µt, which is a contradiction.

Proof. Proof of Theorem 2.12:

Let Gµ(ϵ) = F (ϵ, δµ(ϵ)) and F (x, y) = µ
GDP

(x, y).

By definition of µ
GDP

, Gµ(ϵ) = µ.

On one hand,

⎧⎪⎪⎨⎪⎪⎩
∂Gµ(ϵ)

∂ϵ
=

∂µ

∂ϵ
= 0,

∂Gµ(ϵ)

∂µ
=

∂µ

∂µ
= 1.

On the other hand, by chain rule,

⎧⎪⎪⎨⎪⎪⎩
∂Gµ(ϵ)

∂ϵ
=

∂F

∂x
+

∂F

∂y

∂δµ(ϵ)

∂ϵ
,

∂Gµ(ϵ)

∂µ
=

∂F

∂y

∂δµ(ϵ)

∂µ
.

Therefore,

⎧⎪⎪⎨⎪⎪⎩
∂F

∂y
= (

∂δµ(ϵ)

∂µ
)−1,

∂F

∂x
= −(∂δµ(ϵ)

∂µ
)−1∂δµ(ϵ)

∂ϵ
.

Using the close forms, ∂δµ(ϵ)

∂ϵ
and ∂δµ(ϵ)

∂µ
can be directly computed:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂δµ(ϵ)

∂ϵ
= −eϵΦ(−µ2 + 2ϵ

2µ
),

∂δµ(ϵ)

∂µ
=

e
−
(µ2−2ϵ)

2

8µ2

√
2π

.

Hence,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂F

∂x
=
√
2πe

(µ2+2ϵ)
2

8µ2 Φ(−µ2 + 2ϵ

2µ
) ≤
√
2πe

µ2

8 Φ(−µ

2
) ≤
√
2π

2
,

∂F

∂y
=
√
2πe

(µ2−2ϵ)
2

8µ2 > 0.
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Notice that ∂F
∂x

=
√
2πe

(µ2+2ϵ)
2

8µ2 Φ(−µ2+2ϵ
2µ

) > 0, combined with the fact that ∂F
∂x
≤

√
2π
2
, we can conclude that 0 ≤ ∂µ

GDP
(ϵ,δ)

∂ϵ
≤

√
2π
2
. By ∂F

∂y
> 0, we can see GDPT is

order preserving.

Proof. Proof of Theorem 2.13:

We now consider the gap between maxi∈{0,··· ,n}{G−
A(xi)} and maxi∈{0,··· ,n+1}{G+

A(xi)}

bound the length of [µ−, µ+] in two cases.

Case 1: If maxi∈{0,··· ,n+1}{G+
A(xi)} = G+

A(x0), then maxi∈{0,··· ,n+1}{G+
A(xi)} =

G+
A(x0) = µ

GDP
(D, δA(0)) ≤ µ

GDP
(0, δA(0)) +

√
2πD
2

. Therefore,

max
ϵ∈[0,ϵh]

G(ϵ) ≤ G+
A(x0) ≤ {G−

A(x0)}+
√
2πD

2
.

Case 2: If maxi∈{0,··· ,n+1}{G+
A(xi)} ≠ G+

A(x0), then by the order preserving property,

the optimal µ lies in [µ−, µ+], where µ− = max(µh,maxi∈{0,··· ,n}{G−
A(xi)}) and µ+ =

max(µh,maxi∈{1,··· ,n+1}{G+
A(xi)}). Notice that

max
i∈{0,··· ,n}

{G−
A(xi)} = max

i∈{0,··· ,n}
{µ

GDP
(xi, δA(xi+1))} = max

i∈{1,··· ,n+1}
{µ

GDP
(xi−1, δA(xi))}

≥ max
i∈{1,··· ,n+1}

{µ
GDP

(xi+1, δA(xi))−
√
2πD}

≥ max
i∈{1,··· ,n+1}

{G+
A(xi)} −

√
2πD.

In both cases the gap is no greater than
√
2πD as desired.
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Proof. Proof of Theorem 2.14:

By the definition of C, C ◦A is bounded in [y−, y+]. Therefore the global sensitivity

of C ◦ A is no greater than y+ − y−. Then R ◦ C ◦ A is a special case of the Laplace

mechanism. By [17], R ◦ C ◦ A is ϵh-DP. Then δR◦C◦A(ϵ) = 0 < δµ(ϵ) for any ϵ ≥ ϵh.

In addition, because of the post-processing property, δR◦C◦A(ϵ) ≤ δA(ϵ) < δµ(ϵ) for

any ϵ < ϵh.

Therefore, R ◦ C ◦ A is µ-GDP.

2.8.2 Refining the privacy profile

Given a trade-off function σ = f(ϵ, δ) and a fixed parameter σ. From definition of

the trade-off function it is instant that the for any (ϵ, δ)∈ Ω = {(ϵ, δ) | σ = f(ϵ, δ)},

(ϵ, δ)-DP is guaranteed. Then, (ϵ, δ)-DP is also guaranteed if there is a (ϵ0, δ0) ∈ Ω

such that (ϵ0, δ0)-DP implies (ϵ, δ)-DP. Therefore,

δA(ϵ) = min

(︃
{δ | σ = f(ϵ0, δ0) and δ ≥ δ0 +

(1− δ0)(e
ϵ0 − eϵ)+

1 + eϵ0
}
)︃
.

Notice that by theorem 2.2, (ϵ0, δ0)-DP implies (ϵ, δ) with δ < δ0 only if ϵ < ϵ0, we

rewrite the δA(ϵ) as:

δA(ϵ) = inf
ϵ0∈[ϵ,∞)

g(ϵ, ϵ0),

where g(ϵ, ϵ0) := (1− δÂ(ϵ0))
eϵ0−eϵ

eϵ0+1
+ δÂ(ϵ0) and δÂ is the naive privacy profile defined

implicitly by σ = f(ϵ0, δ0). For continuously differentiable f , the minimum value of

the right-hand side can be found be take the derivative:

∂g(ϵ, ϵ0)

∂ϵ0
=

1 + eϵ

(1 + eϵ0)2

[︂
δÂ

′
(ϵ0) + eϵ0(1− δÂ(ϵ0) + δÂ

′
(ϵ0))

]︂
.

We remark that the sign of ∂g(ϵ,ϵ0)
∂ϵ0

does not depend on ϵ when ϵ > ϵ0. For both

of our example 2 and 3, we both find a particular value ϵi such that Sign(∂g(ϵ,ϵ0)
∂ϵ0

) =

−Sign(ϵ− ϵi). This means for ϵ ≥ ϵi, δA(ϵ) = δÂ(ϵ) and otherwise δA(ϵ) equals to the

δ value derived from (ϵi, δÂ(ϵ
i)).
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There is an interesting byproduct or the privacy profile refinement. Theoretically,

the privacy profile refinement can also be used to improve an algorithm’s utility. For

example, the projected noisy SGD algorithm in [25] is (ϵ, δ)-DP and the trade-off

function is σ = −C log(δ0)/ϵ0. To achieve (0.2, e−2)-DP, it appears that σ needs to

be chosen as −C log(e−2)/0.2 = 10C. (ϵ, δ)-DP implies (0.2, e−2)-DP when δ + (1−

δ)(eϵ − e0.2)+/(1 + eϵ) = e−2. Numerical methods suggest that, by choosing ϵ ≈ 0.334

and δ ≈ 0.067, (ϵ, δ)-DP implies (0.2, e−2)-DP but σ = −C log(δ)/ϵ ≈ 8.086C < 10C.

Therefore, the desired level of DP can be achieved with a lower noise parameter.

However, this type of refinement majorly affects privacy profile around the origin and

therefore minor in practice.

2.8.3 Behind efficient head measurement algorithm

First we formalize the binary search algorithm to find µ
GDP

:

Algorithm 2: Binary search

Input: ϵ, δ, b. (The (ϵ, δ)-pair, searching range, error margin)
µ− ← 0
µ+ ← µmax

repeat
µ = µ++µ−

2

if δµ(ϵ) > δ then
µ+ ← µ

else
µ− ← µ

end if
until µ+ − µ− < b
Output: µ−, µ+ (lower and upper bound of µ).

It is possible to drop the need for the searching range µmax for this algorithm (e.g.,

exponentially search for an upper bound first or conduct a binary search on arctanµ

instead). We keep this input for clarity and simplicity. µmax can be set to a large

constant for convenience, for example, 10. If the outputted µ+ equals the preset value

(10), the privacy profile fails to imply 10-GDP. In practice, GDP with µ ≥ 6 already
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provides almost no privacy protection [12].

With the formal definition of binary search, an exhaustive iteration method to

bound the staircase functions outlined in Theorem 2.13 can be formally written as

follows:

Algorithm 3: Finding µ with privacy profiles (naive).

Input: δA, ϵh, c. (Privacy profile, searching range, reciprocal of error margin)
n←

⌈︁√
8cπϵh

⌉︁
+ 1

d← ϵh
n−1

µ− ← 0
µ+ ← 0
for i = 0 to n+ 1 do

x− ← id
x+ ← (i+ 1)d
µ+ ← max(µ+, µ

+
GDP

(x−, δA(x
+), 1

2c
))

µ− ← max(µ−, µ
−
GDP

(x+, δA(x
−), 1

2c
))

i← i+ 1
end for
Output: µ+, µ−.

To transform this naive algorithm into the optimized one. The first key observation

is that the reassignment of µ+ and µ− can be optimized.

We take µ+ ← max(µ+, µ
+
GDP

(x−, δA(x
+), 1

2c
)) for example, same optimization can

be applied to µ− ← max(µ−, µ
−
GDP

(x+, δA(x
−, 1

2c
))) as well. The naive operation,

µ+ ← max(µ+, µ
+
GDP

(x−, δA(x
+), 1

2c
)) can be optimized into “If δµ+(x−) < δA(x

+),

then µ+ ← µ+
GDP

(x−, δA(x
+), 1

2c
))” without lost of accuracy. To see this, we list all

three possibilities as follows:

• Case 1: µ+ < µ
GDP

(x−, δA(x
+)) ≤ µ+

GDP
(x−, δA(x

+), 1
2c
)).

• Case 2: µ
GDP

(x−, δA(x
+)) ≤ µ+ ≤ µ+

GDP
(x−, δA(x

+), 1
2c
)).

• Case 3: µ
GDP

(x−, δA(x
+)) ≤ µ+

GDP
(x−, δA(x

+), 1
2c
)) < µ+.

In case 1, both of the naive operation and the optimized operation will update µ+ to

µ+
GDP

(x−, δA(x
+), 1

2c
)).
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In case 2, the optimized operation will do nothing, because the test δµ+(x−) < δA(x
+)

will fail. The naive operation will update µ+ due to the error of binary search, which

should be avoided.

In case 3, the optimized operation will do nothing, because the test δµ+(x−) < δA(x
+)

will fail. The naive operation will also do nothing because the max operator will

choose µ+.

To sum up, the optimized operation always give a more accurate update.

The second insight is that we want to avoid case 1 because only in case 1 a binary

search is needed. Notice that case 1 happens only if δµ+(x−) < δA(x
+), which is

equivalent to µ+ < µ
GDP

(x−, δA(x
+)). In the k + 1 round of loop, the condition

µ+ < µ
GDP

(x−, δA(x
+)) holds true only if for all j ∈ {0, · · · , k}, µ

GDP
(x−

j , δA(x
+
j )) <

µ
GDP

(x−, δA(x
+)), where x−

j and x+
j are the values of x− and x+ in the round j.

This inspire us to shuffle xi before iteration because after shuffling, the probability

of “µ
GDP

(x−
j , δA(x

+
j )) < µ

GDP
(x−, δA(x

+)) for all j ∈ {0, · · · , k}” will be 1
k+1

. The

expected occurrence of case 1 will be
∑︁n+1

k=0
1

k+1
= O(log(n)).

The time complexity of shuffling S is O(n) = O(ϵhc). Each binary search has

a time complexity of O(log(c)) and the expected number of binary searches is

O(log(ϵhc)). The overall time complexity of the optimized algorithm is therefore

O(ϵhc+ log(c) log(cϵh))=O(ϵhc).
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2.8.4 Additional plots

2.8.5 The Laplace mechanism under GDP

Figure 2.4: The plot of GDPT of ϵ-DP privacy profiles and the Laplace mechanisms
with the same ϵ-DP guarantee.

From the figure we can see the privacy protection provided by the Laplace mecha-

nisms is slightly better than ϵ-DP.
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2.8.6 The effect of subsampling

Figure 2.5: Left: A plot of the GDPT of the Laplace mechanism for various of γ.
Right: A plot of the GDPT of the SGD for various of γ.

The Poisson subsampling procedure can significantly decrease the value of µ around
ϵ = 0 but has little effect on the GDPT’s tail.

Figure 2.6: Left: A plot of the GDPT of the ICEA for various of γ. Right: A plot of
the GDPT of the δµ for various of γ.
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Chapter 3

Paper 2: Online Local Differential
Private Quantile Inference via
Self-normalization

3.1 Abstract

Based on binary inquiries, we developed an algorithm to estimate population quantiles

under Local Differential Privacy (LDP). By self-normalizing, our algorithm provides

asymptotically normal estimation with valid inference, resulting in tight confidence

intervals without the need for nuisance parameters to be estimated. Our proposed

method can be conducted fully online, leading to high computational efficiency and

minimal storage requirements with O(1) space. We also proved an optimality result

by an elegant application of one central limit theorem of Gaussian Differential Privacy

(GDP) when targeting the frequently encountered median estimation problem. With

mathematical proof and extensive numerical testing, we demonstrate the validity of

our algorithm both theoretically and experimentally.

3.2 Introduction

Personal data is currently widely used for various purposes, such as facial recognition,

personalized advertising, medical trials, and recommendation systems to name a few.

While there are potential benefits, it is important also to consider the risks associated
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with handling sensitive personal information. For instance, research on diabetes

can provide valuable insights that may benefit society as a whole in the long term.

However, it is crucial to keep in mind that participants may suffer direct consequences

if their data is not properly protected through controlled disclosure, such as a rise in

health insurance premiums.

The concept of Differential Privacy (DP; [6]) has been successful in providing a

rigorous condition for controlled disclosure by bounding the change in the distribution

of outputs of a query made on a dataset under the alteration of one data point. This

has led to a vast amount of literature under the umbrella of DP, resulting in various

generalizations, tools, and applications. However, while enjoying the mathematically

solid guarantee of DP and its variants, concerns about a weak link in the process, the

trusted curator, are beginning to arise.

The use of trusted curators undermines the spirit of the solid cryptographic level of

privacy protection that DP provides. This risk is not limited to information security

breaches and rogue researchers but also includes legal proceedings where researchers

may be compelled to hand over the raw data, breaking the initial promise made to

DP at the time of data collection. Two concepts, Local Differential Privacy (LDP)

and pan-DPs, are proposed as solutions. The pan-DP directly counters this issue

by solidifying the algorithm to withstand multiple announced intrusions (subpoenas)

or one unannounced intrusion (hackers). The concept of LDP was first introduced

formally by [37], but its early form can be traced back to [38] and [39], in the name of

”amplification” and ”randomized response survey,” respectively.

In LDP settings, the sensitive information never leaves the control of the users

unprotected. The users encode and alter their data locally before sending them to an

untrusted central data server for further analysis and computation. Recently, in [40]

unveiled a connection between pan-DP and LDP by considering variants of pan-DP

framework that can defend against multiple unannounced intrusions. Surprisingly, this

requirement can only be fulfilled if the data is scrambled before it leaves the owner’s
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control, which goes back to the definition of LDP. For better privacy protection, many

big tech companies have already implemented LDP into their products, such as Google

[8] and Microsoft [41].

This discovery rekindled the research interest in LDP. Researchers have begun to

consider fundamental statistical problems, such as estimating parameters, modeling,

and hypothesis testing under this constraint. The quantiles, including the median,

are basic summary statistics that have been widely studied within the framework of

differential privacy. Early research in this area includes the estimation of quantiles

under the central DP setting, as presented in [42] and [43]. More recent advancements,

such as [44], have proposed a rate-optimal sample quantile estimator that does not

rely on the evaluation of histograms. [45] further extended this research by estimating

multiple quantiles simultaneously. Despite these advances, the quantile estimation

under the central DP setting remains an active area of research, with new work in

various applications such as [46] and [47].

In the central DP setting, a trusted curator can acquire the actual sample quantiles

and other summary statistics, with the only limitation being that the release of the

output must conform to the DP condition. However, under the local DP setting, the

curator does not have access to the true data and can only see proxies generated

by the users. This makes it more challenging to design local DP algorithms that

can provide valid results leading to greater problems in developing corresponding

theoretical properties and providing further statistical inference.

Researchers often propose consistent estimators for the parameters of interest and

derive the asymptotic normality. However, these estimators often involve nuisance

parameters that are not trivial to obtain or estimate, making them difficult to deploy

in real-world scenarios. To address this issue, [48] developed the methodology of self-

normalization for constructing confidence intervals. This method involves designing a

statistic called the self-normalizer, which is proportional to the nuisance parameters,

and making the original estimate a pivotal quantity by placing it and the self-normalizer
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in the numerator and the denominator, thereby canceling out the nuisance parameters

and leading to an asymptotically pivotal distribution. This methodology provides a

powerful tool for statistical inference under complex data, particularly in the context

of LDP frameworks where obtaining accurate original data or consistently estimating

nuisance parameters without an additional privacy budget is challenging.

Efficient computation is essential for the practicality of LDP algorithms, as large

sample sizes are necessary to counteract the effects of local perturbations and achieve

optimal performance. Meanwhile, online computation is another valuable attribute of

LDP algorithms, as it reduces storage requirements and diminishes risks associated

with information storage. Early attempts of introduce online computation to DP

algorithms can be traced back to [49], where additive Gaussian noise was injected into

the gradient to provide DP protection. Later, [50] gives an online linear optimization

DP algorithm that with optimal regret bounds. The concept of online computation

has also been incorporated into federated learning, as discussed by [51]. More recently,

[52] has facilitated online computation for a random scaling quantity using only the

trajectory of stochastic optimization, effectively eliminating the need for past state

storage and enhancing computational efficiency. In contrast to traditional studies

on DP online algorithms, our emphasis is on harnessing online computation for

convenience. Our theoretical analysis concentrates on the statistical properties of the

proposed estimators, encompassing aspects such as consistency, asymptotic normality,

and more.

In this paper, our contributions are listed as follows.

• We propose a new LDP algorithm for population quantile estimation that does

not require a trusted curator. Under some mild conditions, we derive the

consistency and asymptotic normality of the proposed quantile estimator.

• We construct the confidence interval of the population quantiles via self-normalization,

which eliminates the need for estimating the asymptotic variance in the limiting
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distribution. Furthermore, this procedure can be implemented online without

storing all past statuses.

• We also discuss the optimality of the proposed algorithm. By combining it with

the central limit theorem of GDP, we demonstrate that our algorithm for median

estimation achieves the lower bound of asymptotic variance among all median

estimators constructed by a binary random response-based sequential interactive

mechanism under LDP.

The structure of this paper is as follows. We begin by providing an overview

of the concepts of central DP and LDP. Then present our proposed methodology,

detailing the algorithms and their corresponding theoretical results. Finally, we provide

experimental results to demonstrate the effectiveness of our approach.

3.3 Preliminaries

3.3.1 Central Differential Privacy

Definition 3.1 [6] A randomized algorithm A, taking a dataset consisting of indi-

viduals as its input, is (ϵ, δ)-differentially private if, for any pair of datasets S and

S ′ that differ in the record of a single individual and any event E, satisfies the below

condition:

P[A(S) ∈ E] ≤ eϵP [A (S ′) ∈ E] + δ.

When δ = 0, A is called ϵ-Differentially Private (ϵ-DP).

The concept of DP only imposes constraints on the output distribution of an

algorithm A, rather than placing restrictions on the credibility of the entity running

the algorithm or protecting the internal states of A. The existence of the curator who

has access to the raw data set is why this approach is known as ”Central” DP. The

curator simplifies the algorithm design and often leads to an asymptotically negligible

loss of accuracy from privacy protection [53].
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3.3.2 Local Differential Privacy

Despite the varying definitions of LDP due to the level of interactions, all of them

depend on the following concept called (ϵ, δ)-randomizer.

Definition 3.2 [54] An (ϵ, δ)-randomizer R : X → Y is an (ϵ, δ)-differentially private

function taking a single data point as input.

The definition of randomizer is mathematically a special case of the central DP. The

main difference between the central and local DP is the role of the curator, which is

further determined by the level of interactions allowed. In LDP, the curator coordinates

interactions between n users, each of whom holds their own private information Xi.

In each round of interaction, the curator selects a user and assigns them a randomizer

Rt. If the (ϵ, δ) parameters are allowed by the experiment setting, the user will run

the randomizer on their private information and release the output to the curator.

The level of interactions can vary from full-interactive, where the curator can choose

the randomizer and the next user based on all previous interactions, to sequential

(also called one-shot) interactive, where the curator is not allowed to pick one user

twice but is still able to adaptively picking the next the user-randomizer pairs based

on all previous interactions, to non-interactive, where adaptivity is forbidden, and all

user-randomizer pairs must be determined before any information is collected. If the

curator is further forbidden from varying the randomizer R and tracking back outputs

to a specific user, it will lead to another interesting setting called shuffle-DP [55].

3.3.3 Notations

In this paper, we employ the following notations. 1{·} is the indicator function and [a]

denotes the largest integer that does not exceed a. O (or O) denotes a sequence of real

numbers of a certain order. For instance, O(n−1/2) means a smaller order than n−1/2,

and by Oa.s. (or Oa.s.) almost surely O (or O). For sequences an and bn, denote an ≍ bn

if there exist positive contants c and C such that cbn ≤ an ≤ Cbn. The symbol
d−→
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means weak convergence or converge in distribution.

3.4 Algorithm and Main Results

3.4.1 Algorithm

Let x1, . . . , xn, . . . be independently and identically distributed(i.i.d.) random variables

defined on R representing private information of each user, with target quantile τ

and corresponding true value Q, i.e., P(xi ≤ Q) = τ . To ensure the uniqueness of

quantiles, we assume the xi’s are continuous random variables, with positive density

on the target quantile. In practice, we can perturb the data by a small amount of

additive data-independent noise to remove atoms in the distribution as is in [45].

The design of the local randomizer is crucial for LDP mechanisms as it must properly

choose the inquiry to the user in order to maximize the gathering of information

related to the estimation of the target quantile without violating privacy conditions.

The population quantiles can be considered as a minimizer of the check loss function:

lτ (x, θ) =

{︄
τ(x− θ) if x ≥ θ

(τ − 1)(x− θ), if x < θ
.

In the non-DP case, a known solution is the use of stochastic gradient descent, as

outlined in [56]. It is important to note that for each point, the gradient it contributes

is purely determined by the binary variable representing whether the value is greater

than θ or not. This motivates us to modify the stochastic gradient descent process

by adding a local randomization process, resulting in the Algorithm 4 and 5 outlined

below:

In Algorithm 4, generating randomness of v before the if-condition fork may seem

wasteful, but it prevents side-channel attacks such as inferring the true value based

on the timing of response [57, 58]. Algorithm 5 collects random responses and

generates the next inquiry accordingly. Therefore, Algorithm 5 satisfies the definition

of sequential interactive local DP.
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Algorithm 4: Locally Randomized Compare (LRC)

Input: Inquiry q, response rate r, private data x
u ∼ Bernoulli(r)
v ∼ Bernoulli(0.5)
if u = 1 then

return 1x>q

else
return v

end if

Algorithm 5: Main Algorithm

Input: Step sizes dn, target quantile τ ∈ (0, 1), truthful response rate r
Initialize: n← 0, q0 ← 0, va0 ← 0, vb0 ← 0, Q0 ← 0
repeat

n← n+ 1
Inquire: s← LRC(qn−1, r, xn)
if s is 1 then

qn ← qn−1 +
1− r + 2τr

2
dn

else

qn ← qn−1 −
1 + r − 2τr

2
dn

end if
Qn = ((n− 1)Qn + qn)/n
van ← van−1 + n2Q2

n

vbn ← vbn−1 + n2Qn

Destroy van−1, v
b
n−1, Qn−1, qn−1

until forever
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The following algorithm can be used when estimations and confidence intervals are

required. These values are not calculated at every step to minimize computational

expenses.

Algorithm 6: Generate Confidence Interval

Input: Internal states of Algorithm 5: n, Qn, v
a
n, v

b
n

Nn ← n−1
(︁
van − 2Qnv

b
n +Q2

nn(n+ 1)(2n+ 1)/6
)︁

W ← n−1U1−α/2

√
Nn

Return: Confidence interval (Qn −W,Qn +W )

The use of dichotomous inquiry in data privacy brings multiple advantages. One

benefit is the reduced communication cost, as it only takes one bit to respond.

Additionally, the binary response can make full use of the DP budget, as opposed

to methods such as the Laplace mechanism, which may provide unnecessary privacy

guarantees beyond ϵ-DP, as outlined in Theorem 3 in [59] and Theorem 2.1 in [60].

Furthermore, people tend to be more comfortable answering dichotomous questions

compared to open-ended ones [61] as they present a choice between two options

and may be perceived as less threatening than open-ended questions, which require

more detailed and nuanced responses. In addition, the binary approach is easy to

understand for users. With the proper choice of truthful response rate r, the algorithm

known as the random response can be easily simulated through coin flips or dice

rolls, allowing users to understand it fully and are able to ”run” it without the help

of electronic devices. This is in contrast to a DP mechanism involving the usage of

random distribution on real numbers. Due to the finite nature of the computer, the

imperfection of floating-point arithmetic leads to serious risks with effective exploits.

For more information, please refer to [62–64].

Before discussing the specific characteristics of our estimator, we will first demon-

strate its performance through a sample trajectory. The experiment is conducted

with a truthful response rate with r = 0.5, which means half of the responses are

purely random. The objective is to estimate the median from i.i.d. samples. The true
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underlying distribution is a standard normal distribution.

It can be seen that from Figure 3.1, the proposed estimator converges to the true

value, and both infeasible and proposed confidence intervals, defined later, contain

the true value at a slightly larger sample size. Also, the proposed confidence intervals

are highly competitive with the infeasible one in width. Refer to Figure 3.5 and 3.6

for convergence trajectories under different initialization or target quantiles.

Figure 3.1: A sample trajectory of estimator Qn, infeasible confidence interval (3.2)
and proposed confidence interval (3.3). The horizon dotted line is the true value
Q = 0.

Next, we show the LDP property of our algorithm:

Theorem 3.3 Algorithm 4 is an (ϵ, 0)-randomizer with ϵ = log((1 + r)/(1− r)).

Proof. see Appendix 3.7.3

The algorithm presented in Algorithm 5 adaptively selects the next randomizer,

determined by the parameter q in Algorithm 4, based on its internal state qn. However,

it never revisits previous users. As a result, Algorithm 5 satisfies sequential interactive

(ϵ, 0)-LDP, where ϵ = log ((1 + r)/(1− r)) (equivalently, r = (eϵ − 1)/(eϵ + 1) =

tanh (ϵ/2)).

Throughout the remainder of this paper, we will use the truthful response rate r to

represent the privacy budget, as opposed to the more standard ϵ. This choice is made
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for the following reasons:

In the context of LDP, it is crucial to ensure understanding and acceptance by

end-users who may not possess expertise in the field. The truthful response rate,

denoted by r, has a more intuitive interpretation. Additionally, r appears in multiple

results presented in this paper, and maintaining this form allows for a more direct

presentation. If necessary, the results can be easily converted by replacing all instances

of r with tanh
(︁
ϵ
2

)︁
. For a conversion table, please refer to Table 3.5.

3.4.2 Consistency

To discuss the asymptotic properties of estimator Qn, we rewrite it as a recursive

equation. Let {Un} and {Vn} be the i.i.d. Bernoulli sequences with

P(Un = 1) = r, P(Un = 0) = 1− r,

P(Vn = 1) = P(Vn = 0) = 1/2.

For q0 ∈ R,

qn+1 = qn +
1− r + 2rτ

2dn

(︁
1xn+1>qnUn + (1− Un)Vn

)︁
− 1 + r − 2rτ

2dn

(︁
1xn+1<qnUn + (1− Un)(1− Vn)

)︁
,

(3.1)

where the step size {dn}∞n=1 , satisfies

∞∑︂
n=1

dn =∞,

∞∑︂
n=1

d2n <∞.

The step size dn is vital for the convergence of qn, but it has a relatively minor effect

on Qn. The following theorem guarantees consistency:

Theorem 3.4 For increasing positive number γn, satisfied

γn
γn−1

= 1 + O(dn),
∞∑︂
n=1

d2nγ
2
n <∞,

the n-step output qn enjoys that

γn |qn −Q| = Oa.s.(1).
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Proof. see Appendix 3.7.4.

In particular, if dn ≍ a/nβ, for some constant a > 0 and β ∈ (1/2, 1), then γn ≍ nγ

for some γ < β − 1/2, and for the sake of simplicity, we will set the step sizes as

dn ≍ a/nβ.

3.4.3 Asymptotic Normality

Next, the asymptotic normality will be discussed.

Theorem 3.5 If β ∈ (0, 1), then

√
n (Qn −Q)

d−→ N

(︃
0,

1− r2(1− 2(1− τ))2

4r2f 2
X(Q)

)︃
,

where f 2
X(Q) is the value on Q for density function of X.

Proof. see Appendix 3.7.4.

Noticed that the conditions on β in Theorem 3.4 and Theorem 3.5 are different. It

is possible that qn fails to converge to Q, but Qn still enjoys asymptotic normality.

Following Theorem 3.5, one constructs the confidence interval of Q, if fX(Q) can be

obtained or estimated by ˆ︂fX(Q). Denote z1−α as the upper α−quantile of standard

normal distribution. The infeasible confidence interval with significance level α is:(︂
Qn − z1−α

√︁
n(1− r2(1− 2(1− τ))2)/(2rˆ︂fX(Q)),

Qn + z1−α

√︁
n(1− r2(1− 2(1− τ))2)/(2rˆ︂fX(Q))

)︂
.

(3.2)

However, obtaining a consistent estimator ˆ︂fX(Q), such as using non-parametric

methods under our differential privacy framework, is not straightforward, since we

can only obtain the binary sequence 1xn>qn−1 for protecting privacy, and the original

data set x1, . . . , xn cannot be accessed directly.

An alternative approach to estimate the nuisance parameter fX(Q) is through

the use of bootstrap methods to simulate the asymptotic distribution. Traditional

bootstrap methods that rely on re-sampling are not suitable for the stochastic gradient
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descent method because of failing to recover the special dependence structure defined

in (3.1).

Recently, [65] proposed online bootstrap confidence intervals for stochastic gradient

descent, which involve recursively updating randomly perturbed stochastic estimates.

Although this approach performs well when there are no constraints on DP, it requires

multiple interactions with the users and will therefore blow up the privacy budget.

3.4.4 Inference via Self-normalization

To overcome the difficulties above, we propose a novel inference procedure of quantiles

under the LDP framework via self-normalization, which will avoid estimating the

nuisance parameter fX(Q). We hope to construct an estimator that is proportional to

the nuisance parameters. To approach that, we will first establish further theoretical

properties of the proposed estimator Qn. Define the process S[nt] =
∑︁[nt]

i=1 qi, t ∈ [0, 1].

Theorem 3.6 If β ∈ (0, 1), then

n−1/2(S[nt] − nQ)
d−→
√︁
(1− r2(1− 2(1− τ))2)

2rfX(Q)
W (t),

where W (t) is the Brownian motion in (C[0, 1],R).

Proof. see Appendix 3.7.4.

Noticed that Theorem 3.5 is the special case in Theorem 3.6 when t = 1. Then,

following Theorem 3.6, we define the self-normalizer:

Nn =

∫︂ 1

0

(︁
S[nt] − [nt]Qn

)︁2
dt,

By the continuous mapping theorem, we can derive:

n−1/2(Sn − nQ)√
n−1Nn

d−→ S :=
W (1)√︂∫︁ 1

0
(W (t)− tW (1))2 dt

,

where the asymptotical distribution S is not associated with any unknown parameters,

and its quantile can be computed by Monte Carlo simulation. Therefore, we have
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constructed an asymptotical pivotal quantity. Denote U1−α the 1− α quantile of S,

the 1− α self-normalized confidence interval of Q is constructed by:(︂
Qn − n−1U1−α/2

√︁
Nn, Qn + n−1U1−α/2

√︁
Nn

)︂
. (3.3)

As noted by [66], the distribution of S has a heavier tail than that of the standard

normal distribution, which is analogous to the heavier tail of t−distribution compared

to the standard normal distribution, resulting in a wider but not conservative corre-

sponding confidence interval. However, the average width of the confidence interval

constructed through self-normalization is not excessively large when compared to the

infeasible confidence interval, as demonstrated by numerical experiments in Figure

3.1. Furthermore, the construction of an asymptotic pivotal quantity is not unique.

See Appendix 3.7.2 for examples of other possibilities.

Whether there are theoretical advantages between the different constructions of self-

normalizer is still open to discussion, but according to [52], the proposed self-normalizer

can be computed in a fully online fashion and is computationally efficient, as outlined

in Algorithm 5 and 6. The algorithm only needs to store a single integer n and four

float numbers: van, v
b
n, qn, Qn and conduct only a dozen of arithmetic operations.

3.4.5 Discussion of Optimality

In this subsection, we will discuss the optimality of the proposed algorithm. To

generalize the setting, we consider all binary random response-based sequential inter-

active mechanisms. The random response mechanism can be written as the following

K : {0, 1} → {0, 1}:

K(x) =

⎧⎪⎨⎪⎩
0, w.p. (1− r)/2,

1, w.p. (1− r)/2,

x, w.p. r.

Let {T1, · · · , Tn} be a collection of binary query functions, which means Ti(x) =

1x∈Ci
, for some subset C ⊂ R. In the sequential interactive LDP setting, the
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curator will generate its output based on the transcript {{K ◦ T1(x1), · · · , K ◦

Tn(xn)}, {C1, · · · , Cn}} and the choice of Ci may depend on the transcript up to

this point:{{K ◦ T1(x1), · · · , K ◦ Ti−1(xi−1)}, {C1, · · · , Ci−1}}. Notice that the Algo-

rithm 4 is a special case where Ci = {z : z ≥ qi−1}, and qi−1 is given by

i−1∑︂
j=1

Tj(xj)
1− r + 2τr

2
dj − (1− Tj(xj))

1 + r − 2τr

2
dj.

We aim to determine a lower bound for the estimation variance. Therefore, any

lower bounds derived under specific conditions also serve as a general lower bound for

the estimation variance. To demonstrate this, we will present a pair of distributions

with distinct medians that are, to the best of our knowledge, the most indistinguishable

given randomized binary queries.

Define:

H0 : xi ∼ Laplace(1) vs. H1 : xi ∼ Laplace(1) + ϵn (3.4)

Let ϵ = log
[︂
(e

1√
n (r + 1) + r − 1)/(e

1√
n (r − 1) + r + 1)

]︂
. Simple computation yields

that for any (a, b) ∈ {0, 1}2

P(K ◦ Ti(xi) = a|Hb)

P(K ◦ Ti(xi) = a|H1−b)
≤ eϵn(r + 1)− r + 1

−eϵn(r − 1) + r + 1
= e
√

1
n . (3.5)

Interestingly, if we consider the truth H ∈ {H0, H1} as a data set containing only

one data point, (3.5) shows that K ◦ Ti is 1/
√
n-DP. Notice that the transcript is a

n-fold adaptive composition [34] of 1/
√
n-DP mechanisms. By Theorem 8 [12], the

transcript and all post-processing of it (Proposition 4; [12]) asymptotically satisfies

the Gaussian Differential Privacy condition with µ = 1 (or briefly 1-GDP).

We will now examine the limit on the best possible variance imposed by the 1-GDP

condition. Denote the estimator of median as θ̂n. First, we will consider asymptoti-

cally normal, unbiased, shift-invariant estimators of the median. By restricting our

discussion to unbiased, shift-invariant estimators, we ensure that no estimator has
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an unfair advantage by favoring specific values. Under the null hypothesis, for the

standard deviation σn of θ̂n, one has that

θ̂n
σn

d−→ N(0, 1),

and under the alternative hypothesis,

θ̂n − ϵn
σn

d−→ N(0, 1).

The 1-GDP condition implies that for sufficiently large n, ϵn/σn ≤ 1 ( see Appendix

3.7.5). By plugging in the values ϵn = (r
√
n)−1 +O(n−3/2) and 1/2 = f(F−1(1/2)),

we deduce that:

σn ≥
1

2r
√
nf(F−1(1/2))

+O
(︁
n−1
)︁
,

which gives us an asymptotic lower bound of the variance: (4r2nf 2(F−1(1/2)))−1.

This lower bound matches the asymptotic variance obtained in Theorem 3.5, showing

the optimality of our approach. Although most estimators we are interested in have

an asymptotically normal distribution, we wish to generalize the minimal variance

result to other families as the theorem below.

Theorem 3.7 If θ̂n is a median estimator based on the random response of binary-

based sequential interactive inquiries such that:

θ̂n − F−1(1/2)

σn

d−→ G

where G has a log-concave density fG(x) ∝ e−φ(x) on R such that φ(x) = φ(−x),

E
[︁
(φ′(G))2

]︁
< +∞, and E [G2] = 1.

Then,

σn ≥
1

2r
√
nf(F−1(1/2))

+O
(︁
n−1
)︁
.

The minimal variance result can be attributed to two factors. In Appendix 3.7.5, we

demonstrate that asymptotic GDP imposes a condition on the variance of estimators
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that follow a normal distribution. This condition serves as a lower bound for 1-GDP

estimators, without relying on any specific mechanism assumption. Secondly, the

relaxation from the assumption of normality to milder conditions on the function G is

a consequence of Theorem 1.2 in [67]. This theorem establishes that among all µ-GDP

estimators satisfying the aforementioned conditions, the variance is lower bounded by

1/µ2. This lower bound is attainable when the underlying distribution is normal.

3.5 Experiments

We evaluate the performance of our algorithms using a variety of distributions. The

data come from four cases: standard Normal N(0, 1), Uniform U(−1, 1), standard

Cauchy C(0, 1), and PERT distribution [68] with probability density function:

f(x) = 0.625(1− x)(1 + x)3, x ∈ (−1, 1).

These cases represent situations with heavy tails, compact or non-compact support,

and asymmetric distributions commonly found in practice, as shown in Figure 3.2.

Figure 3.2: Plot of the density function, where the types of lines represent different
distribution, solid: Normal, dashed: Cauchy, dotted: Uniform, dot-dash: PERT.

The target quantiles are τ = 0.3, 0.5, 0.8, and the truthful response rate r =

0.25, 0.5, 0.9, which the privacy budget is ϵ = log(1 + 2r/(1 − r)) corresponding

to 0.51, 1.09, 2.94 respectively. We use the step sizes dn = 2/(n0.51 + 100) for all

experiments, which satisfies the assumptions of Theorem 3.5 and 3.6. The range of
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sample size n is (10000, 400000), the initial value q0 = 0, and the number of replication

is 10000. The results from different sample sizes are independently conducted from

scratch to eliminate the correlation among experiments.

To show the consistency of the proposed estimator Qn, Figure 3.3 displays the box

plots of estimator Qn under Normal distribution with sample size n = 10000, . . . , 50000.

As the sample size increases, the estimation becomes closer to the true values Q, the

corresponding standard errors decay across all settings, and the truthful response

rate leads to significantly better performance in small finite sample sizes but has

diminishing effects afterward. Meanwhile, we can also see that the proximity between

the true target value and the initialization 0 is beneficial to early performances. But in

an asymptotic view, the proposed algorithm is insensitive to the initial value selection.

We also demonstrate the empirical coverage rate and mean absolute error of the

developed method in Table 3.1. The empirical coverage rate of the proposed method

becomes closer to the nominal confidence level as the sample size increases in most

cases and the mean absolute error decreases to zero. The corresponding figures and

tables of other distributions can be found in Appendix 3.7.1, which describes a similar

phenomenon.

Figure 3.4 investigates the performance of the proposed confidence interval in other

nominal levels. One can discover that the curves of the empirical coverage rate are

getting closer to y = x uniformly, as sample size increases in all privacy budget

settings, which reveals the performance of the proposed method is irrelevant to the

pre-determined significance level. It is worth noting that when r = 0.25, the effective

sample size is 1/16 of the original one, yet the performance of the proposed method

remains excellent, which strongly supports the asymptotic theory.

3.6 Conclusion and Future Works

In this paper, we proposed a novel algorithm for estimating population quantiles

under the settings of LDP. The core design idea of the algorithm is based on using
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Figure 3.3: Box-plot of estimator Qn for different target quantiles of Cauchy distribu-
tion. In each sample size divided by a vertical dotted line, the three boxes establish
results with different privacy budgets by left: r = 0.25, middle r = 0.5, and right:
r = 0.9. The horizontal dashed lines represent the true value Q in τ = 0.3, 0.5, 0.8
from the bottom to the top.

dichotomous inquiry. The proposed estimator enjoys excellent theoretical properties,

including consistency, asymptotic normality, and optimality in some special cases.

Importantly, by applying the technique of self-normalization to cancel out the nuisance

parameters, we can construct confidence intervals of population quantiles for statistical

inference. Finally, our algorithm is designed in an online setting, making it suitable for

handling large streaming data without the need for data storage. Extensive simulation

studies reveal a positive confirmation of the asymptotic theory.

Despite the contributions above, this article still leaves many exciting questions

unanswered, which opens many avenues for future research. A general tight lower

bound for other quantiles under our setting is still undetermined, and we have yet

to consider other variants of LDP (e.g. full-interactive). Other directions include

exploring data that is not independently and identically distributed, such as time

series or spatial series data. Additionally, the quantile of interest may be influenced by
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(a) Left: n = 10000. Right: n = 50000

(b) Left: n = 100000. Right: n = 200000

Figure 3.4: The curve of the empirical coverage rate of proposed confidence interval
(3.3) with nominal significance level, when the data are Normal and target quantile
τ = 0.3 under different privacy budget (dotted r = 0.25, dot-dash r = 0.5 and dashed
r = 0.9).

other covariates, leading to the study of LDP quantile regression. This paper focuses

on estimating quantiles for a specific sample size n, with the potential for developing

consistent bounds, resulting in the transition from quantile confidence intervals to

confidence sequences.
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n τ r = 0.25 r = 0.5 r = 0.9

10000

0.3 0.926(0.069) 0.965(0.034) 0.982(0.018)

0.5 0.834(0.037) 0.897(0.019) 0.911(0.011)

0.8 0.962(0.121) 0.992(0.058) 0.999(0.031)

20000

0.3 0.936(0.041) 0.958(0.020) 0.971(0.011)

0.5 0.888(0.027) 0.915(0.014) 0.936(0.008)

0.8 0.965(0.063) 0.984(0.030) 0.994(0.016)

40000

0.3 0.943(0.025) 0.958(0.013) 0.967(0.007)

0.5 0.910(0.020) 0.931(0.010) 0.937(0.006)

0.8 0.966(0.035) 0.978(0.017) 0.984(0.009)

100000

0.3 0.946(0.015) 0.954(0.007) 0.958(0.004)

0.5 0.929(0.013) 0.944(0.006) 0.941(0.004)

0.8 0.954(0.019) 0.965(0.009) 0.973(0.005)

200000

0.3 0.947(0.010) 0.951(0.005) 0.956(0.003)

0.5 0.942(0.009) 0.949(0.004) 0.947(0.002)

0.8 0.956(0.013) 0.960(0.006) 0.964(0.003)

400000

0.3 0.945(0.007) 0.953(0.004) 0.948(0.002)

0.5 0.942(0.006) 0.949(0.003) 0.944(0.002)

0.8 0.952(0.009) 0.957(0.004) 0.958(0.002)

Table 3.1: Empirical results of coverage rate(mean absolute error) of proposed confi-
dence interval (3.3) (estimator Qn) with data collected from Normal.
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3.7 Appendix

3.7.1 Additional figures and tables

Figure 3.5: An alternative sample trajectory of estimator Qn using a different initial-
ization q0 = 1.

Figure 3.6: An alternative sample trajectory of estimator Qn using a different target
quantile τ = 0.3.
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Figure 3.7: Box-plot of estimator Qn for different target quantile of Cauchy distribution.
In each sample size divided by a vertical dotted line, the three boxes establish results
with different privacy budgets by left: r = 0.25, middle r = 0.5, and right: r = 0.9.
The horizontal dashed lines represent the true value Q in τ = 0.3, 0.5, 0.8 from the
bottom to the top.

Figure 3.8: Box-plot of estimator Qn for different target quantile of Uniform distribu-
tion. In each sample size divided by a vertical dotted line, the three boxes establish
results with different privacy budgets by left: r = 0.25, middle r = 0.5, and right:
r = 0.9. The horizontal dashed lines represent the true value Q in τ = 0.3, 0.5, 0.8
from the bottom to the top.
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Figure 3.9: Box-plot of estimator Qn for different target quantile of PERT distribution.
In each sample size divided by a vertical dotted line, the three boxes establish results
with different privacy budgets by left: r = 0.25, middle r = 0.5, and right: r = 0.9.
The horizontal dashed lines represent the true value Q in τ = 0.3, 0.5, 0.8 from the
bottom to the top.
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n τ r = 0.25 r = 0.5 r = 0.9

10000

0.3 0.894(0.140) 0.972(0.068) 0.987(0.037)

0.5 0.807(0.045) 0.876(0.024) 0.906(0.014)

0.8 0.853(0.399) 0.989(0.207) 1.000(0.112)

20000

0.3 0.928(0.076) 0.966(0.037) 0.982(0.020)

0.5 0.872(0.034) 0.908(0.018) 0.927(0.010)

0.8 0.950(0.219) 0.991(0.105) 0.998(0.055)

40000

0.3 0.944(0.044) 0.964(0.022) 0.974(0.012)

0.5 0.900(0.025) 0.926(0.012) 0.939(0.007)

0.8 0.965(0.114) 0.984(0.053) 0.993(0.028)

100000

0.3 0.944(0.025) 0.956(0.012) 0.963(0.007)

0.5 0.927(0.016) 0.935(0.008) 0.945(0.004)

0.8 0.956(0.054) 0.970(0.026) 0.980(0.013)

200000

0.3 0.948(0.017) 0.954(0.008) 0.958(0.004)

0.5 0.936(0.011) 0.944(0.006) 0.945(0.003)

0.8 0.952(0.034) 0.966(0.017) 0.971(0.008)

400000

0.3 0.942(0.012) 0.954(0.006) 0.952(0.003)

0.5 0.944(0.008) 0.949(0.004) 0.946(0.002)

0.8 0.948(0.023) 0.960(0.011) 0.961(0.005)

Table 3.2: Empirical results of coverage rate(mean absolute error) of proposed confi-
dence interval (3.3) (estimator Qn) with data collected from Cauchy.
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n τ r = 0.25 r = 0.5 r = 0.9

10000

0.3 0.900(0.021) 0.927(0.011) 0.938(0.006)

0.5 0.951(0.022) 0.970(0.011) 0.971(0.006)

0.8 0.990(0.029) 0.997(0.014) 0.998(0.008)

20000

0.3 0.920(0.015) 0.932(0.007) 0.941(0.004)

0.5 0.950(0.014) 0.957(0.007) 0.962(0.004)

0.8 0.983(0.016) 0.990(0.008) 0.992(0.004)

40000

0.3 0.927(0.011) 0.937(0.005) 0.936(0.003)

0.5 0.947(0.009) 0.951(0.004) 0.955(0.002)

0.8 0.974(0.009) 0.978(0.005) 0.982(0.002)

100000

0.3 0.934(0.007) 0.936(0.003) 0.942(0.002)

0.5 0.948(0.005) 0.948(0.003) 0.956(0.001)

0.8 0.967(0.005) 0.969(0.003) 0.972(0.001)

200000

0.3 0.936(0.005) 0.935(0.002) 0.939(0.001)

0.5 0.943(0.004) 0.952(0.002) 0.949(0.001)

0.8 0.960(0.004) 0.963(0.002) 0.964(0.001)

400000

0.3 0.936(0.003) 0.935(0.002) 0.936(0.001)

0.5 0.946(0.003) 0.946(0.001) 0.946(0.001)

0.8 0.955(0.003) 0.956(0.001) 0.956(0.001)

Table 3.3: Empirical results of coverage rate(mean absolute error) of proposed confi-
dence interval (3.3) (estimator Qn) with data collected from PERT.
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n τ r = 0.25 r = 0.5 r = 0.9

10000

0.3 0.922(0.043) 0.956(0.021) 0.972(0.011)

0.5 0.853(0.030) 0.898(0.016) 0.928(0.009)

0.8 0.965(0.057) 0.984(0.028) 0.994(0.015)

20000

0.3 0.930(0.027) 0.950(0.013) 0.963(0.007)

0.5 0.896(0.022) 0.928(0.011) 0.934(0.006)

0.8 0.960(0.032) 0.977(0.016) 0.984(0.008)

40000

0.3 0.939(0.017) 0.953(0.009) 0.959(0.004)

0.5 0.921(0.016) 0.934(0.008) 0.943(0.004)

0.8 0.959(0.019) 0.969(0.009) 0.974(0.005)

100000

0.3 0.942(0.010) 0.953(0.005) 0.955(0.003)

0.5 0.939(0.010) 0.942(0.005) 0.943(0.003)

0.8 0.954(0.011) 0.959(0.005) 0.960(0.003)

200000

0.3 0.944(0.007) 0.950(0.003) 0.950(0.002)

0.5 0.938(0.007) 0.947(0.004) 0.946(0.002)

0.8 0.950(0.007) 0.956(0.004) 0.957(0.002)

400000

0.3 0.945(0.005) 0.947(0.002) 0.950(0.001)

0.5 0.944(0.005) 0.951(0.002) 0.950(0.001)

0.8 0.946(0.005) 0.955(0.002) 0.948(0.001)

Table 3.4: Empirical results of coverage rate(mean absolute error) of proposed confi-
dence interval (3.3) (estimator Qn) with data collected from Uniform.

r ϵ r ϵ

0 0 0.5 1.10

0.05 0.10 0.55 1.24

0.1 0.20 0.6 1.39

0.15 0.30 0.65 1.55

0.2 0.40 0.7 1.73

0.25 0.51 0.75 1.95

0.3 0.62 0.8 2.20

0.35 0.73 0.85 2.51

0.4 0.85 0.9 2.94

0.45 0.97 0.95 3.66

Table 3.5: Conversion table between r and ϵ
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3.7.2 Alternative self-normalizes

The following self-normalizer can also be used to construct the asymptotically pivotal

quantity,

N ′
n = sup

t∈[0,1]

⃓⃓
S[nt] − [nt]Qn

⃓⃓
,

N ′′
n =

∫︂ 1

0

⃓⃓
S[nt] − [nt]Qn

⃓⃓
dt,

and based on the continuous mapping theorem again, one has that,

n−1/2(Sn − nQ)

n−1/2N ′
n

d−→ W (1)

supt∈[0,1] |W (t)− tW (1)|
,

n−1/2(Sn − nQ)

n−1/2N ′′
n

d−→ W (1)∫︁ 1

0
|W (t)− tW (1)| dt

.

3.7.3 Proof of Theorem 3.3

Exhaustive computation yields that for any (a, b) ∈ {0, 1}2

P(LRC(q, r, x) = a|1x>q = b)

P(LRC(q, r, x) = a|1x>q = 1− b)
∈ {1 + r

1− r
,
1− r

1 + r
} (3.6)

3.7.4 Proof of Theorem 3.4, 3.5 and 3.6

One can verify that the recursive equation (3.1) is asymptotically equivalent to

qn+1 = qn +
1

dn

(︃
1− 2

1− r + 2r(1− τ)
1x∗

n>qn

)︃
,

where P(x∗
n = xn) = r, P(x∗

n = −∞) = P(x∗
n =∞) = (1− r)/2. Let

H(z,X) = 1− 2

1− r + 2r(1− τ)
1X>z

h(z,X) = EH(z,X) = 1− 2(1− F (z))

1− r + 2r(1− τ)
.

Hence F (Q) = τ is equivalent to h(Q,X∗) = 0. Then, one will find that the estimation

of Q with sample x1, . . . , xn under LDP is equivalent to the estimation of Q∗ with

sample x1, . . . , xn without LDP constraints. The standard framework of the SGD
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method, such as Theorem 2 and 3 in [70], can be applied. Moreover, the statements

in Theorems 3.4, 3.5, and 3.6 hold true.

3.7.5 Minimal variance under GDP

We prove this by contradiction. Assuming that for any n0 > 1 there is a n > n0 such

that :

ϵn/σn > k > 1.

Let

w = Φ

(︃
−1

2

)︃
− Φ

(︃
1

2
− k

)︃
> 0.

We choose a sufficiently large n0 such that for any n > n0

P(θ̂n/σn < 1/2|H0) ≥ Φ(1/2)− w/3

and

P(θ̂n/σn < 1/2|H1) ≤ Φ(1/2− ϵn/σn) + w/3 ≤ Φ(1/2− k) + w/3.

Then,

P(θ̂n/σn < 1/2|H0)− P(θ̂n/σn < 1/2|H1) ≥ Φ(1/2)− Φ(1/2− k)− 2w/3

= 2Φ

(︃
1

2

)︃
− 1 + Φ

(︃
−1

2

)︃
− Φ

(︃
1

2
− k

)︃
− 2w/3

= 2Φ

(︃
1

2

)︃
− 1 + w/3

> 2Φ

(︃
1

2

)︃
− 1 + w/6

Then θ̂n is not (0, 2Φ
(︁
1
2

)︁
− 1 + w/6)-DP and therefore is not asymptotically 1-GDP

leading to a contradiction.
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Chapter 4

Paper 3: Efficient CDF Estimation
under Local Differential Privacy: A
Constrained Isotonic Approach

4.1 Abstract

We introduce a novel algorithm for estimating Cumulative Distribution Function

(CDF) curves under Local Differential Privacy (LDP) by utilizing a combination of

constrained isotonic estimation and binary inquiries. We uncover an unexpected

connection between LDP and the current status problem, a classical survival data

problem in statistics. Through mathematical proofs and extensive numerical testing,

we demonstrate that our method achieves a uniform error bound of Op(n
−1/3 log n)

and an L2 error bound of Op(n
−1/3) when estimating the entire CDF curves. By

concentrating on a finite grid, the error bound can be improved to Op(n
−1/2), with

an asymptotic normal distribution of error. Theoretically, we have shown that the

error bound smoothly changes from Op(n
−1/2) to Op(n

−1/3) as the number of grids

increases relative to the sample size n. Computationally, we demonstrate that our

constrained isotonic estimator can be efficiently computed in a deterministic manner,

without the need for any hyperparameters or random optimization.
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4.2 Introduction

The cumulative distribution function (CDF) contains complete information about a

random quantity, and claims about probability distributions are often made without

sufficient evidence. Estimating CDFs has a long history, and for data from known

parameter family distributions, such as the normal or exponential distributions, one

can estimate the parameters using the method of moments or maximum likelihood

estimation (MLE), and then obtain an estimation of the CDF. The empirical cumulative

distribution function (ECDF) is the most commonly used CDF estimator and has

good theoretical properties, including uniform consistency, weak convergence, see

[71], and the invariance principle, see [72], leading to a series of statistical inference

problems, such as constructing simultaneous confidence bands, goodness-of-fit tests

and change point detection.

Advances in computational power and statistical methodologies have led to more

sophisticated techniques for CDF estimation. Examples include kernel smoothing,

which was proposed by [73] to overcome the discontinuity of ECDF, and constrained

polynomial spline regression, proposed by [74] to ensure smoothness and monotone

non-decreasing functions while reducing the computational burden. As data types

become more complex, such as multivariate, time series, and spatial data, various

CDF estimation methods have emerged, as seen in [75], [76], and [77].

On the other hand, as the power and utility of statistical methodologies continue

to expand, concerns regarding the privacy of individuals behind the data become

increasingly relevant, especially in a world where online services are omnipresent

and sensor-rich devices such as smartphones consistently collect information. The

advancement of data science has demonstrated that seemingly harmless data can often

be exploited. Classic examples of such exploitation include the Netflix challenge [3, 4]

and the AOL search log database [5], where users are re-identified from anonymized

datasets. More recently, studies on mobile device sensor data have shown that driving
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patterns, location [78], identity, and even spoken words [79, 80] can be reconstructed

from accelerometer data. Surprisingly, even a user’s Internet activity can be detected

from a wireless charger [81].

This need to protect users from current and future attacks has led to the development

of privacy-preserving statistical techniques. Differential privacy (DP) [6] has garnered

significant attention due to its capability to provide robust privacy guarantees while

still enabling meaningful data analysis. However, despite the solid mathematical

foundation of DP in safeguarding user information, concerns remain regarding the

potential for data collectors to violate privacy guarantees. In the first few months of

2023, there have already been several notable data breach events, either intentional or

accidental. In March 2023, an error in ChatGPT allowed users to view another active

user’s personal information before the service was taken offline. Earlier that month, a

breach involving a Washington DC-based healthcare provider that handles sensitive

data belonging to federal legislators and their families highlighted a long-existing issue

in the data safety of the US healthcare industry [82]. For more information about

faulty data curators, refer to [83, 84].

4.2.1 Related work

Incorporating LDP into CDF estimation poses a unique set of challenges, as traditional

estimation techniques such as ECDF, kernel smoothing, or constrained polynomial

spline regression may not inherently provide the required privacy guarantees. There

have been several attempts to address these issues, which can be traced back to

the development of the Frequency Oracle (FO) [8, 85, 86]. These mechanisms were

primarily designed for discrete domains. By applying discretization to continuous

domains, these methods can be used for estimating continuous distributions, but

at the cost of losing some information about the continuous structure. Later, Li et

al. [87] improved the FO algorithm by computing an MLE using the Expectation-

Maximization (EM) algorithm through a square wave mechanism. However, such
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approach still relies on discretization (bucketing), and the quality of the output

is highly sensitive to the stopping criteria hyperparameter. The finite number of

bucketing not only prevents the estimator from being asymptotically consistent but

also introduces additional challenges due to the extra parameter.

4.2.2 Outline

We begin by presenting a brief review of the relevant definitions and background

related to CDF estimation and LDP followed by our data collection procedure, which

employs a series of random-response randomizers to transform sensitive individual

information into a private view of binary variables. We highlight that this data

collection process results in a private view that resembles the structure of the current

status problem, a well-studied issue in survival analysis. Subsequently, we construct an

estimator based on the private view obtained in the previous step. Interestingly, the

LDP treatment and statistical analysis technique can be disentangled by considering

an alternative view of the collected data, where the randomized response can be

treated as a truthful response originating from an alternative variable. We then

refine the naive MLE method by imposing monotonic and bound constraints on

the estimator and demonstrate that such an estimator can be computed in a fast,

deterministic, and hyperparameter-free manner. Following this, we investigate the

asymptotic properties of the proposed estimator, providing a comprehensive analysis

of its performance under various conditions. Under different sampling strategies,

introduced below, we first establish L2 and uniform consistency up to order Op(n
−1/3)

and Op(n
−1/3 log n) respectively. Then, we derive the point-wise weak convergence

results of the proposed estimator. In addition, the theoretical justifications show that

the convergence rate varies continuously between these two samplings from Op(n
−1/3)

to Op(n
−1/2). Especially, for the estimation on finite grids, we obtain the asymptotic

normality for whole design points with a diagonal asymptotic covariance matrix,

which can be applied for constructing confidence intervals and hypothesis testing.
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Lastly, we demonstrate the effectiveness of our proposed protocol through numerical

experiments, showcasing its practical utility and accuracy in CDF estimation under

the LDP framework.

4.2.3 Notations

In this paper, we employ the following notations. 1{·} is the indicator function and

[a] denotes the largest integer that does not exceed a. Op (or Op) denotes a sequence

of random variables of a certain order in probability. For instance, Op(n
−1/2) means

a smaller order than n−1/2. For sequences an and bn, denote an ≍ bn if there exist

positive contants c and C such that cbn ≤ an ≤ Cbn. The symbol
d−→ means weak

convergence or converge in distribution.

4.3 Preliminaries

4.3.1 Central Differential Privacy

Definition 4.1 [6] A randomized algorithm A, taking a dataset consisting of indi-

viduals as its input, is (ϵ, δ)-differentially private if, for any pair of datasets S and

S ′ that differ in the record of a single individual and any event E, satisfies the below

condition:

P[A(S) ∈ E] ≤ eϵP [A (S ′) ∈ E] + δ.

When δ = 0, A is called ϵ-differentially private (ϵ-DP).

The concept of DP only imposes constraints on the output distribution of an

algorithm A, rather than placing restrictions on the credibility of the entity running

the algorithm or protecting the internal states of A. The existence of the curator who

has access to the raw data set is why this approach is known as Central DP (CDP).

The curator simplifies the algorithm design and often leads to an asymptotically

negligible loss of accuracy from privacy protection [53].
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4.3.2 Local Differential Privacy

The idea of LDP roots in the following concept is called (ϵ, δ)-randomizer.

Definition 4.2 [54] An (ϵ, δ)-randomizer R : X → Y is an (ϵ, δ)-differentially private

function taking a single data point as input.

The randomizer definition is mathematically a special case of the CDP framework.

While CDP focuses on protecting privacy by adding noise to the aggregated output

of a query over a dataset, LDP emphasizes adding noise to each individual data

point before any computation or aggregation is performed. Therefore, a mechanism is

(ϵ, δ)-LDP if and only if it takes outputs of (ϵ, δ)-randomizer as its input [54]. This

local approach to privacy ensures that the privacy of each data point is preserved,

even if an adversary has access to the noisy data.

4.3.3 The current status problem

Current status data emerges in studies where the primary measurement is the occur-

rence time of a specific event, but observations are confined to indicators that reveal if

the event has transpired at the time of data collection. This type of data is particularly

relevant in survival analysis, such as in research investigating the survival of patients

with cancer during an observation period, which is highly related to isotonic regression,

see [88]. In these cases, researchers may passively acquire the patient’s status through

hospital visits (alive) or loss of contact (presumably dead). However, the exact time

of death is unobtainable, especially if it lies in the future. Refer to [89–93] for more

information about the research of this type.

4.4 Problem formulation and solution

Let X = {X1, . . . , Xn} be independently and identically distributed (i.i.d.) random

variables defined on [0, 1] representing private information of each user. The goal is to
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estimate the underlying CDF of Xi (F ) with inquiries to each user while conforming

to the ϵ-LDP condition.

4.4.1 The LDP data collection

In contrast to the CDP setting, where user data is openly gathered for analysis, the

development of an LDP protocol commences with the data collection process. This

is due to the ϵ-LDP constraint, which presents a significant challenge for estimation

problems. Initially, without the DP constraint, the CDF can be intuitively approxi-

mated by the ECDF, yielding a convergence rate of Op(n
−1/2). Nevertheless, in the

LDP context, each data point’s contribution is considerably restricted.

To illustrate this point, consider the canonical Laplace mechanism, which serves as

the standard DP mechanism for bounded continuous variables. The noise variance

(2.0) needed to achieve LDP with ϵ = 1 is eight times larger than the highest possible

variance (0.25) of the [0, 1] bounded variable. In addition, reconstructing the original

distribution from the Laplace noise perturbed data will lead to a notoriously hard

deconvolution problem [94] with terrible sample efficiency [95]. This stringent condition

compels us to constrain the inquiries directed toward end users, thereby reducing the

scale of DP noise. To this end, we generate Ti from another distribution G and collect

binary responses from users of the question below:

Is the Ti you see here greater or equal to than the private number you have (Xn)?

If the users are asked to answer this question truthfully, the users still faces a serious

privacy concern. However, we can ask the user to perturb the answer locally leading

to the following randomizer:

Definition 4.3 Random response randomizer:

Ei(Xi) =

{︄
1Xi≤Ti

, w.p. r,

Bernoulli(0.5) w.p. 1-r.
(4.1)
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As a special case of randomized response, Ei is a (ϵ, 0) randomizer for ϵ = log((1 +

r)/(1− r)) [96]. For certain values of r, the mechanism can be executed physically

using a coin or dice. It is worth noting that in the definition provided, the value of

Ti is generated by the curator and distributed to users. This is due to concerns that

end-users may lack the knowledge or equipment to accurately produce the necessary

randomness. However, if the entire process is automated on digital devices, the

generation of Ti can be shifted to the user side. This approach reduces communication

costs and offers additional privacy advantages since the datapoint be no longer trace

by the assigned Ti. For the remainder of this paper, we will represent the privacy

budget using r = tanh(ϵ/2), as it affords a more intuitive interpretation and a simpler

form in our results (refer to Table 4.2 for a conversion table).

Following the definitions above, the curator can collect a private data view of X

namely (∆1, T1), . . . , (∆i, Ti), where ∆i = Ei(Xi). By the post-processing property,

any function of the private view or even the view itself can be safely released without

any concern of privacy violation.

Compared to the current status problem, where control over Ti is limited, the Ti

employed in our LDP mechanism can be fully tailored. Initially, by either sending

i.i.d. Ti to users or requesting users to generate T independently, it is clear that Ti is

independent of all Xi and all other Tj for j ̸= i. This scenario is atypical in medical

studies concerning current status. In practice, patients’ visits often correlate with their

own status and even the status of others (for instance, the weather may affect hospital

visits, leading to correlated Ti. In another example, when observing patients’ lifespans,

since future deaths cannot be observed, the censoring is related to the current time

and patients’ birth data).

The ability to freely design G provides a significant advantage. Firstly, the inde-

pendence between Ti and Xi simplifies the analysis of estimation. The known G also

eliminates the need for estimation and the potential errors that may arise from it.

However, the most crucial aspect we can design is the control of G to generate better
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estimations in areas of interest. Intuitively, the estimation of F will be more accurate

when G samples more. Here, we introduce two types of sampling methods:

Density-based sampling: In this type of sampling, we let G correspond to a density

g that is uniformly bounded away from 0, ensuring that every open set within the

domain can be sampled with a non-zero probability. This approach provides a more

comprehensive representation of the underlying distribution. The simplest G in this

form is the CDF of the uniform distribution, given by G(x) = x. Such a choice will

lead to uniform sampling. Other reasonable choices include weighted sampling, where

G is selected to be denser in regions of particular interest, or if we possess prior

knowledge about F , we can choose G ≈ F to achieve improved estimation outcomes.

Preselected sampling: In this sampling method, we let G be a discrete distribution

on the interval [0, 1]. This means we pre-select a subset of values {x1, . . . , xκ} ⊂ [0, 1]

and define G(x) =
∑︁κ

i=1 pi1x>xi
. Preselected sampling focuses the estimation on the

chosen nodes, making it particularly useful when there are specific exact x values of

interest. For instance, when estimating income distribution, we might be especially

interested in the proportion of people below the poverty line or above a certain income

threshold. Alternatively, we might be interested in an evenly distributed grid of Xi to

provide a plausible plot of the CDF curve.

4.4.2 The constrained isotonic estimator

The protocol in the last chapter provided an LDP view of the data. In this chapter
we construct an estimator from the LDP view. Define:

X⋆
i =

{︄
Xi, w.p. r,

Bernoulli(0.5) w.p. 1-r.
(4.2)

The CDF of X⋆
i can be derived from F as below:

F ⋆(x) =

(︃
rF (x) +

1− r

2

)︃
10<x<1 + 1x=1. (4.3)

It’s easy to see the distribution of (∆i, Ti) is identical to (∆⋆
i , Ti) where ∆⋆

i = 1X⋆
i ≤Ti

.
Using the new notations of F ⋆, we can consider the random response of Ti as a truthful
response originating from an alternative variable, x⋆. This approach mitigates the
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interplay between LDP treatment and statistical analysis techniques. Employing the
revised notations of F ⋆, the log-likelihood can be expressed as

L(F,∆, T ) : =

n∑︂
i=1

∆⋆
i logF

⋆(Ti) + (1−∆⋆
i ) log(1− F ⋆(Ti)) (4.4)

=

n∑︂
i=1

∆i log

(︃
rF (Ti) +

1− r

2

)︃
+ (1−∆i) log

(︃
1 + r

2
− rF (Ti)

)︃
. (4.5)

It may seem appealing to determine F ⋆ and F through the naive maximization of

the log-likelihood function. Nonetheless, several issues arise from this approach. For

instance, the maximizing function F ⋆ may not necessarily represent a CDF as there is

no assurance that the estimation will exhibit monotonic behavior. Additionally, the

error associated with F ⋆ is likely to be significantly high around the values of 0 and 1

due to the lack of relevant samples. To address this issue, we define D as the function

family of all non-decreasing functions mapping from [0, 1] to [0, 1], and propose our

constrained isotonic estimator as follows:

F̂ ∈ argmax
F̂∈D

L(F,∆, T ).

We remark that the F̂ satisfying the definition is not unique. The right-hand side

represents an equivalence class, wherein two distribution functions are considered

equivalent if and only if they agree on all Ti. Consequently, the maximization process

can be performed solely on the nodes Ti. The remaining part of the function can

be arbitrarily monotonically interpolated. For instance, the function values can be

determined by the nearest Ti to the left or right, or they can be linearly interpolated.

Regardless of the interpolation technique, the properties presented in the following

chapter remain applicable. In the numerical experiments, the function values are filled

using the nearest Ti to the left, resulting in a left-continuous staircase function to

avoid unfair advantages.

4.4.3 Algorithm

The disentanglement between the LDP treatment and the data analysis allows our to

make use of the nonparametric likelihood estimation algorithm in the survival analysis
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[97] with minor tweaking. A detailed description of the full algorithm is presented

in Algorithm 7. The initial four steps adhere to the standard procedure of isotonic

regression as delineated by Hill [98]. In the intermediate stage, the estimation ˆ︁F ⋆(x)

optimizes the log-likelihood function, disregarding the constraint that F̂ (x) ∈ [0, 1] (or

equivalently ˆ︁F ⋆(x) ∈ [(1− r)/2, (1 + r)/2]). Notably, although the range constraint

is not taken into account during the evaluation of ˆ︁F ⋆(x), it is effectively satisfied in

step 6 through a clipping procedure. This process not only ensures compliance with

the range constraint but also maintains optimality under this constraint (refer to

Appendix 4.8.3 for a detailed proof). The GCM can be deterministically computed,

eliminating the requirement for iterative optimization, as demonstrated by Robertson

et al. [99] and referenced in [100]. This results in an overall deterministic algorithm

free of hyperparameters for the analysis. In addition, the Algorithm 7 demonstrates

excellent performance. For n ≤ 107, it took less than 1s to execute on a single core

of an AMD Threadripper PRO 3995WX CPU. For comprehensive details regarding

computation times, refer to Table 4.6.

Algorithm 7: Constrained isotonic estimation

1: Compute the function H1(x) =
1
n

∑︁n
i=1 1{Ti≤x}, H2(x) =

1
n

∑︁n
i=1∆i1{Ti≤x}.

2: Plot M = (H1(x), H2(x)), for x ∈ [0, 1].
3: Compute Greatest Convex Minorant (GCM) of M as Z.

4: Compute ˆ︁F ⋆ (x) = left-derivative of Z at H1(x) for x ∈ [0, 1].

5: Invert the linear relationship by ˜︁F = r−1
(︂ ˆ︁F ⋆(x)− 1−r

2

)︂
.

6: Give F̂ (x) = 0
⋁︁
(1
⋀︁ ˜︁F (x)).

4.5 Asymtotic properties

In the following section, we will explore the mathematical underpinnings of the data

processing algorithm proposed in the previous section. To facilitate our analysis, we

will start by introducing consistency results under density-based sampling:

Theorem 4.4 Consistency under density-based sampling:
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(i) L2 consistency: If there exists g(x) > 0 that are the corresponding density

function of G(x), one has that⃦⃦⃦ ˆ︁F − F
⃦⃦⃦
2
= Op(r

−1n−1/3),

where ∥h∥22 =
∫︁ 1

0
h2(x)dx.

(ii) Uniform consistency: With further assumptions that there exists f(x) > 0 that

are the corresponding density function of F (x), one has that

sup
x∈[0,1]

⃓⃓⃓ ˆ︁F (x)− F (x)
⃓⃓⃓
= Op(r

−1n−1/3 log n).

From Theorem 4.4, one finds that L2 consistency requires the existence of the density

function of G(x) only, and the convergence rate will be slightly faster than uniform

consistency. The asymptotic results are affected by the truthful response rate r, with

smaller r requiring a larger sample size to obtain the same finite sample performance.

Next, we will discuss the pointwise asymptotic distribution of the proposed estimator.

Theorem 4.5 Under the assumption in Theorem 4.4, for any x0 ∈ (0, 1),one obtains

that

4g(x0)n
1/3( ˆ︁F (x0)− F (x0))(︁

rF (x0) +
1−r
2

)︁ (︁
1+r
2
− rF (x0)

)︁
f(x0)

⇒ Z := argmax
t∈R

{︁
W (t)− t2

}︁
, (4.6)

where W (t) is standard two-sided Brownian motion, and Z is referred as Chernoff

distribution.

The proposed CDF estimator exhibits significantly different asymptotic behaviour

compared to non-DP cases. While the convergence rate of ECDF is up to order

Op(n
−1/2), the convergence rate of the proposed estimator is much slower. Furthermore,

we note that the sequence of stochastic processes {n1/3( ˆ︁F (x) − F (x)), x ∈ [0, 1]} is

not tight in D[0, 1] leading to a problematic topological structure caused by infinite

dimensionality (see [97]). Such underlying difficulty limits us to point-wise asymptotic

distribution, as opposed to the weak convergence results of ˆ︁F and related goodness-

of-fit statistics, such as KS statistics. However, in most practical scenarios, we are
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interested in estimating pre-design points on the CDF, rather than the entire curve,

due to computational accuracy constraints.

To achieve this, we assume that the observation times Ti are i.i.d. random variables

sampled from a discrete probability measure Gn supported on [0, 1]. We denote

the support of Gn by {xi,n}κn

i=1, where the ith grid point is given by xi,n = in−γ,

i = 1, . . . κn = [nγ], and γ ∈ (0, 1]. We view the distribution Gn as a discretization of

an absolutely continuous distribution G′, with Gn {xi,n} = G′ (xi,n)−G′ (xi−1,n) for

i = 2, 3, . . . , κn−1, Gn {x1,n} = G′ (x1,n), and Gn {xκn,n} = 1−G′ (xκn−1,n), which will

allow us to unify the theoretical framework of density-based sampling and preselected

sampling mentioned above while obtaining the relationship between their convergence

rates. Our focus is on estimating F at a grid point. To this end, we choose a grid

point with respect to a fixed time x0 ∈ (0, 1) that does not depend on n and can be

viewed as an anchor point. We define xl as the largest grid point less than or equal to

x0, and xr as the first grid point to the right of xl.

Theorem 4.6 Consistency and asymptotic distribution under preselected sampling:

Under the assumptions in Theorem 4.4, and f(x) ∈ C[0, 1], for any x0 ∈ (0, 1), if

γ ∈ (0, 1/3), as n→∞, one has that

n1/2−γ/2
(︂ ˆ︁F (xl)− F (xl), ˆ︁F (xr)− F (xr)

)︂
⇒

√︄(︁
rF (x0) +

1−r
2

)︁ (︁
1+r
2
− rF (x0)

)︁
r2g′(x0)

N (0, I2) ,

where g′(x0) is the density of G′ on x0.

Specially, if κn = κ <∞, then for increasing sequence {xj}κj=1, on has that

√
n
(︂ ˆ︁F (xj)− F (xj)

)︂
j=1,...,κ

⇒ N

⎛⎝0, diag

⎛⎝{︄(︁rF (xl) +
1−r
2

)︁ (︁
1+r
2
− rF (xl)

)︁
r2(G′(xj)−G′(xj−1))

}︄
j=1,...,κ

⎞⎠⎞⎠ ,

(4.7)

It is noteworthy that the asymptotic results in Theorem 4.6 get rid of all nuisance

parameters and can be evaluated directly. Theorem 4.6 establishes the connection

between density-based sampling and preselected sampling. The convergence rate
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of the estimator ˆ︁F (x) is determined by the density of grids (relative to sample

size n), and the first statement in the theorem describes how the convergence rate

varies continuously from Op(n
−1/3) to Op(n

−1/2) when γ varies from 1/3 to 0. When

γ ≥ 1/3, the convergence rate is still no slower than Op(n
−1/3), but the asymptotic

distribution will be more complex, which is neither normal distribution in Theorem

4.6 or Chernoff distribution defined in Theorem 4.5. The second statement mainly

focuses on estimating F (x) on finite grids. The convergence rate approaches the order

of Op(n
−1/2), as same as the convergence rate of ECDF in non-DP cases, and the

asymptotic normality holds for the whole sequence {xj}κj=1. In the finite grids case,

the observation grids are not necessarily uniform like infinite ones, which will be more

fixable in practice. Also, the number of grids will not be increasing as the sample size

in many scenarios, which will fall into the discussion of the second assertion. The

covariance matrix in (4.7) is a diagonal matrix, which implies that the estimators

{ ˆ︁F (xj)}κj=1 are asymptotically independent. This may seem counter-intuitive, but

[101] studied the local dependence structure of this type of process in a closely related

problem, and one can construct i.i.d. random variables with the distribution of the

estimators { ˆ︁F (xj)}κj=1 (see the Appendix), which simplifies the results. Therefore, we

can conduct statistical inference on {F (xj)}κj=1 based on (4.7), such as constructing

confidence intervals and hypothesis testing for F (x) on the grids {xj}κj=1.

4.6 Experiments

In this chapter, we assess the performance of our proposed algorithms by employ-

ing various probability distributions. The datasets are derived from four distinct

cases: Uniform distribution U(0, 1), Truncated normal distribution Nc(0, 1, µ, σ
2), and

Continuous Bernoulli distribution CB(λ).

For the Truncated normal distribution, the parameters are set as µ = 1/2 and

σ2 = 1/4. This results in a distribution equivalent to x/2 + 1/2, conditioned on the

absolute value of x being less than 1, where x follows a standard normal distribution.
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In the case of the Continuous Bernoulli distribution, the parameter λ is selected to

be 1/4, which yields a non-symmetric density function. The density functions for the

specified distributions are illustrated in Figure 4.2.

We consider the truthful response rate r = 0.25, 0.5, 0.9, which means the privacy

budget is ϵ = log(1 + 2r/(1− r)) corresponding to 0.51, 1.09, 2.94 respectively. These

values indicate varying levels of privacy protection, ranging from strong to moderate.

For comparison, Apple’s implementation of differential privacy employs privacy budgets

of 8 for QuickType and auto-play intent, 4 for emoji usage and crash reports in Safari,

and 2 for highly sensitive health data [102, 103].

The sample size ranges n spans from 103 to 107, with a total of 10, 000 replications

(and reported means). To eliminate any correlation between experiments, the results

from different sample sizes are independently conducted from scratch. Before delving

into a more detailed presentation of the results, we first showcase a plot of our proposed

estimator for the uniform distribution under density-based sampling. As depicted in

Figure 4.3, our estimator, represented by the staircase functions, converges to the true

CDF as n increases, resulting in diminishing absolute errors in the form of spikes.

4.6.1 Density based sampling performance

Next, we discuss the performance of our proposed estimator under density-based

sampling. As for the sampling density, we consider two types of G. The first type

is G(x) = x, which corresponds to uniform sampling. This is the preferred choice

in situations where we do not have explicit preferences or knowledge about the

distribution and domain. The second type of G is chosen as G = F . Although

it is unlikely to occur in real practice, this represents the best possible case when

we already have some prior knowledge about the distribution (as an extreme case

of G ≈ F ). Results under the second type of G are marked with an additional ∗.

We do not consider the uniform distribution in the second type of G as it overlaps

with the uniform setting. The table below presents the empirical results for both
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uniform consistency (represented by the maximum absolute error) and L2 consistency

(represented by the L2 error) of the estimator.

n r U(0, 1) Nc(0, 1, µ, σ
2) CB(λ) Nc(0, 1, µ, σ

2)⋆ CB(λ)⋆

103

0.25 0.262(0.118) 0.289(0.116) 0.270(0.120) 0.261(0.111) 0.265(0.116)

0.5 0.183(0.076) 0.199(0.074) 0.185(0.075) 0.182(0.073) 0.183(0.076)

0.9 0.127(0.050) 0.137(0.047) 0.129(0.049) 0.126(0.045) 0.127(0.049)

104

0.25 0.143(0.057) 0.156(0.057) 0.147(0.057) 0.142(0.055) 0.143(0.057)

0.5 0.096(0.036) 0.104(0.035) 0.100(0.036) 0.096(0.035) 0.096(0.036)

0.9 0.065(0.023) 0.073(0.022) 0.067(0.022) 0.065(0.021) 0.065(0.023)

105

0.25 0.074(0.027) 0.081(0.027) 0.077(0.027) 0.074(0.026) 0.074(0.027)

0.5 0.048(0.017) 0.054(0.017) 0.050(0.017) 0.049(0.017) 0.049(0.017)

0.9 0.033(0.011) 0.037(0.010) 0.034(0.010) 0.033(0.010) 0.033(0.010)

106

0.25 0.038(0.013) 0.041(0.013) 0.039(0.013) 0.038(0.013) 0.038(0.013)

0.5 0.024(0.008) 0.027(0.008) 0.025(0.008) 0.024(0.008) 0.024(0.008)

0.9 0.016(0.005) 0.019(0.005) 0.017(0.005) 0.016(0.005) 0.016(0.005)

107

0.25 0.019(0.006) 0.021(0.006) 0.020(0.006) 0.019(0.006) 0.019(0.006)

0.5 0.012(0.004) 0.013(0.004) 0.013(0.004) 0.012(0.004) 0.012(0.004)

0.9 0.008(0.002) 0.009(0.002) 0.008(0.002) 0.008(0.002) 0.008(0.002)

Table 4.1: Empirical results of uniform consistency (L2 consistency) of the proposed
estimator with G is uniform distribution or G = F .

As observed in the table, both the maximum absolute error and the L2 error decrease

as n increases and the privacy budget increase (larger r) as expected. The results

for second type of G show a slight advantage over the first one, but the difference is

negligible. This observation suggests that a uniform sample would be sufficient, and

while sampling closer to the true distribution can be helpful, the improvement is only

marginal. Therefore, we recommend using uniform sampling with the density-based

approach, as it avoids the issues associated with acquiring prior knowledge. We remark

that the maximum errors for the type 2 groups are nearly identical for larger samples;
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this is because the effects of f and g cancel each other out in Theorem 4.5. To verify

our claimed convergence rate we give a graphical illustration comparison between

results from different sample sizes and the convergence rate and we showcase a term

what we call standardized maximum absolute error (SMAE), which is defined as MAE

multiplied by rn1/3/ log n. Under Theorem 4.4, the SMAE should remain bounded as

n→∞ and varying r. We show this in the plot of standardized and unstandardized

maximum absolute error (Figure 4.4 in Appendix). The three bundles in the curve of

SMAE representing the results from the same F tend to be similar (not r), suggesting

that the effect of privacy budget r is also properly modelled the standardization factor

rn1/3/ log n. This supports our claim in Theorem 4.4.

4.6.2 Preselected sampling performance

Theorem 4.6 predicts a multivariate asymptotically normal distribution for the residual.

To condense the results into interpretable numerical outcomes, we define the following

standardized weighted L2 error, which takes the sum of each square error divided by

their corresponding predicted variance.

WMSE( ˆ︁F ) :=
√
n

κ∑︂
j=1

r2 (G′(xj)−G′(xj−1))
(︂ ˆ︁F (xj)− F (xj)

)︂2
(rF (xl) + (1− r)/2) ((1 + r)/2− rF (xl))

(4.8)

According to Theorem 4.6, the WMSE( ˆ︁F ) asymptotically follows a χ2 distribution

with a degree of freedom κ. We proceed to compare the empirical WMSE( ˆ︁F ) with

the theoretical χ2(κ) distribution from two perspectives. First, we examine the relative

χ2 error (RCE), which we define as WMSE( ˆ︁F )/κ. An RCE value greater than 1

indicates that the actual weighted error is larger than expected, and vice versa. Second,

we consider the coverage rate, defined as P(WMSE( ˆ︁F ) < χ2
0.95,κ). If the distribution

of the residuals aligns with expectations, the coverage rate should converge to 0.95.

In the following, we present a plot illustrating the relative χ2 error and coverage rate

for the uniform distribution and sampling when κ = 10:
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Figure 4.1: Left: The plot of relative χ2 error compared to the true value Right: the
plot of coverage rate

The results for large samples (n ≥ 105) align with our claim in Theorem 4.6. Further,

the small sample performance is actually better than our prediction. Consequently,

our error bound proves to be numerically valid in this experiment, and for large

samples, our asymptotic distribution permits statistical inference. For larger values of

κ, the error bounds and asymptotic distribution remain valid, but a greater number of

samples will be required to converge to the asymptotic results. We provide the RCE

and coverage rates in tables located in the Appendix.

4.7 Conclusions and Future works

In this paper, we developed a data collection procedure and estimator for CDF estima-

tion under the LDP framework, analyzed its asymptotic properties, and demonstrated

its practical utility and accuracy through numerical experiments. Our work provides a

comprehensive approach to CDF estimation while preserving privacy, offering valuable

insights and applications for the field of privacy-preserving data analysis. Although

this article makes significant contributions, there remain several intriguing unanswered

questions, which pave the way for future research. Firstly, since the proposed estimatorˆ︁F is non-differentiable, obtaining the density estimator directly becomes a challenge.

Additionally, extending the estimation of the multivariate CDF to multivariate data
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poses further difficulties. Lastly, exploring the generation of bootstrap samples based

on the proposed estimator for conducting further inference is an intriguing direction

worth investigating.
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4.8 Appendix

4.8.1 Figures and tables

Figure 4.2: Left: Plot of CDF of the distributions Right: Plot of PDF of the
distributions

Figure 4.3: Left: The plot of the estimation and true value Right: The plot of absolute
error
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Figure 4.4: Plot of the maximum absolute error: standardized (left) and unstandard-
ized(right)

r ϵ r ϵ

0 0 0.5 1.10

0.05 0.10 0.55 1.24

0.1 0.20 0.6 1.39

0.15 0.30 0.65 1.55

0.2 0.40 0.7 1.73

0.25 0.51 0.75 1.95

0.3 0.62 0.8 2.20

0.35 0.73 0.85 2.51

0.4 0.85 0.9 2.94

0.45 0.97 0.95 3.66

Table 4.2: Conversion table between r and ϵ
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n r U(0, 1) Nc(0, 1, µ, σ
2) CB(λ)

103

0.25 1.000(0.365) 1.000(0.355) 1.000(0.360)

0.5 0.999(0.598) 0.999(0.578) 0.999(0.586)

0.9 0.986(0.859) 0.985(0.865) 0.988(0.839)

104

0.25 0.995(0.757) 0.997(0.718) 0.996(0.731)

0.5 0.964(0.974) 0.974(0.916) 0.973(0.941)

0.9 0.948(0.996) 0.949(0.998) 0.949(0.999)

105

0.25 0.950(1.004) 0.959(0.968) 0.955(0.988)

0.5 0.951(1.002) 0.950(0.991) 0.946(1.003)

0.9 0.952(1.001) 0.951(0.992) 0.947(1.010)

106

0.25 0.947(1.005) 0.949(0.999) 0.948(1.005)

0.5 0.951(1.005) 0.948(1.005) 0.951(1.000)

0.9 0.954(0.995) 0.949(1.005) 0.953(1.005)

107

0.25 0.950(1.003) 0.956(1.001) 0.951(1.009)

0.5 0.953(0.996) 0.950(1.000) 0.952(1.002)

0.9 0.947(1.002) 0.948(1.004) 0.949(1.002)

Table 4.3: Empirical coverage rate(RCE) of the proposed estimator with G is uniform
distribution when κ = 10.
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n r U(0, 1) Nc(0, 1, µ, σ
2) CB(λ)

103

0.25 1.000(0.184) 1.000(0.182) 1.000(0.183)

0.5 1.000(0.314) 1.000(0.311) 1.000(0.313)

0.9 1.000(0.522) 1.000(0.525) 1.000(0.510)

104

0.25 1.000(0.420) 1.000(0.403) 1.000(0.411)

0.5 1.000(0.662) 1.000(0.631) 1.000(0.644)

0.9 0.987(0.896) 0.984(0.900) 0.986(0.891)

105

0.25 0.996(0.814) 0.997(0.764) 0.996(0.792)

0.5 0.963(0.985) 0.976(0.933) 0.966(0.975)

0.9 0.949(0.997) 0.953(0.997) 0.952(0.996)

106

0.25 0.950(1.000) 0.962(0.974) 0.949(0.998)

0.5 0.947(1.002) 0.951(1.005) 0.953(0.998)

0.9 0.951(1.000) 0.949(1.002) 0.949(0.995)

107

0.25 0.949(0.997) 0.950(1.002) 0.951(1.000)

0.5 0.950(1.003) 0.948(1.001) 0.950(1.000)

0.9 0.947(1.004) 0.952(0.999) 0.954(0.996)

Table 4.4: Empirical coverage rate(RCE) of the proposed estimator with G is uniform
distribution when κ = 20.
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n r U(0, 1) Nc(0, 1, µ, σ
2) CB(λ)

103

0.25 1.000(0.124) 1.000(0.122) 1.000(0.123)

0.5 1.000(0.213) 1.000(0.210) 1.000(0.210)

0.9 1.000(0.361) 1.000(0.359) 1.000(0.356)

104

0.25 1.000(0.284) 1.000(0.274) 1.000(0.278)

0.5 1.000(0.461) 1.000(0.447) 1.000(0.454)

0.9 1.000(0.713) 0.999(0.713) 1.000(0.695)

105

0.25 1.000(0.601) 1.000(0.571) 1.000(0.587)

0.5 0.994(0.866) 0.997(0.808) 0.996(0.836)

0.9 0.956(0.995) 0.963(0.980) 0.958(0.987)

106

0.25 0.971(0.968) 0.986(0.894) 0.978(0.938)

0.5 0.950(1.003) 0.956(0.985) 0.952(0.997)

0.9 0.953(0.996) 0.950(1.002) 0.950(0.999)

107

0.25 0.949(1.001) 0.952(0.996) 0.948(1.001)

0.5 0.955(0.996) 0.953(0.998) 0.950(0.997)

0.9 0.953(0.999) 0.953(0.999) 0.948(1.005)

Table 4.5: Empirical coverage rate(RCE) of the proposed estimator with G is uniform
distribution when κ = 30.
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n 103 104 105 106 107 108

average time (ms) 0.081 0.345 4.011 42.28 527.5 5894

standard derivation 0.001 0.005 0.021 0.171 1.5899 40.12

Table 4.6: Computation times and standard derivation under different sample sizes

4.8.2 Proof of Theorem 4.4

For the L2 consistency, applying the Lemma 4.1 in [104], one derives that∫︂ 1

0

(
√︁ˆ︁F ⋆(x)−

√
F (x))2dG(x) = Op(n

−2/3).

By the assumption of G, one has that∫︂ 1

0

(
√︁ˆ︁F ⋆(x)−

√
F (x))2dx = Op(n

−2/3).

Note that∫︂ 1

0

( ˆ︁F ⋆(x)− F (x))2dx =

∫︂ 1

0

(
√︁ˆ︁F ⋆(x)−

√
F (x))2(

√︁ˆ︁F ⋆(x) +
√
F (x))2dx

< 4

∫︂ 1

0

(
√︁ˆ︁F ⋆(x)−

√
F (x))2dx = Op(n

−2/3).

By the linear transformation between ( ˆ︁F (x), F (x)) and ( ˆ︁F ⋆(x), F ⋆(x)), the frist

assertion of Theorem 4.5 holds

For the uniform consistency, we divided it into three parts, i.e.,

sup
x∈[0,1]

⃓⃓⃓ ˆ︁F (x)− F (x)
⃓⃓⃓
≤ sup

x∈[0,2n−1/3 logn]

⃓⃓⃓ ˆ︁F (x)− F (x)
⃓⃓⃓

+ sup
x∈[2n−1/3 logn,1−2n−1/3 logn]

⃓⃓⃓ ˆ︁F (x)− F (x)
⃓⃓⃓
+ sup

x∈[1−2n−1/3 logn,1]

⃓⃓⃓ ˆ︁F (x)− F
⃓⃓⃓
.

For any x ∈ [2n−1/3 log n, 1 − 2n−1/3 log n], we first consider the estimator ˆ︁F ∗(x) ∈

[(1 − r)/2, (1 + r)/2]. Since the CDF F ⋆(x) has a strictly positive density on [x −

n−1/3 log n, x+ n−1/3 log n], one obtains that, for some positive constants c1, c2,

P
(︂⃓⃓⃓ ˆ︁F ⋆(x)− F ⋆(x)

⃓⃓⃓
≥ n−1/3 log n

)︂
≤ c1 exp{−c2(log n)2}
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based on the Lemma 5.9 in [105]. If there exists a sub-interval I ⊂ [2n−1/3 log n, 1−

2n−1/3 log n] such that ˆ︁F ∗(x) /∈ [(1− r)/2, (1 + r)/2], the refinement of ˆ︁F (x) does not

lead to a worse convergence rate obviously. Hence, for any r ∈ (0, 1]

P
(︂⃓⃓⃓ ˆ︁F (x)− F (x)

⃓⃓⃓
≥ r−1n−1/3 log n

)︂
≤ c1 exp{−c2(log n)2}

Now, for xi = in−1/3 log n, i = 2, . . . , [n1/3 log n]− 1, one has that

P
(︂⃓⃓⃓ ˆ︁F (xi)− F (xi)

⃓⃓⃓
≥ r−1n−1/3 log n

)︂
≤ c1 exp{−c2(log n)2},

and

P
(︃

max
2≤i≤[n1/3 logn]−1

⃓⃓⃓ ˆ︁F (xi)− F (xi)
⃓⃓⃓
≥ r−1n−1/3 log n

)︃
≤ c1 exp{−c2(log n)2/2}.

Due to the monotonic incrementality of ˆ︁F (x) and F (x), one obtains that

P

(︄
sup

x∈[2n−1/3 logn,1−2n−1/3 logn]

⃓⃓⃓ ˆ︁F (x)− F (x)
⃓⃓⃓
≥ r−1n−1/3 log n

)︄
≤ c1 exp{−c2(log n)2/2}.

For x ∈ [0, 2n−1/3 log n], for the same arguments, one has that

sup
x∈[0,2n−1/3 logn]

⃓⃓⃓ ˆ︁F (x)− F (x)
⃓⃓⃓
≤
⃓⃓⃓ ˆ︁F (2n−1/3 log n)− F (0)

⃓⃓⃓
≤
⃓⃓⃓ ˆ︁F (2n−1/3 log n)− F (2n−1/3 log n)

⃓⃓⃓
+
⃓⃓
F (2n−1/3 log n)− F (0)

⃓⃓
= Op(r

−1n−1/3 log n),

for the reason that F (x) has a strictly positive density on [0, 1]. The left part holds

for the same derivation and the proof is complete.

Proof of Theorem 4.5

Under the assumption of Theorem 4.4, for any x0 ∈ [0, 1], such that 0 < F (x0), G(x0) <

1, the CDF F ⋆(x) has positive density f ⋆(x0). Then, following Theorem 5.1 in [105],

one obtains that

4g(x0)n
1/3( ˆ︁F ⋆(x0)− F ⋆(x0))

F ⋆(x0) (1− F ⋆(x)) f ⋆(x0)
⇒ Z := argmax

t∈R

{︁
W (t)− t2

}︁
.

Therefore, by the linear transformation between ( ˆ︁F (x), F (x)) and ( ˆ︁F ⋆(x), F ⋆(x)), the

assertion of Theorem 4.5 holds and the proof is complete.
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4.8.3 Proof of Theorem 4.6

The first assertion will be confirmed by the careful check of the proof Theorem 3.1 in

[106], and F ⋆(x0) has positive density on (x0, x0+n−γ), which satisfies the assumptions

of Theorem 3.1 in [106]. Then, one obtains

n1/2−γ/2
(︂ ˆ︁F ⋆(xl)− F ⋆(xl), ˆ︁F ⋆(xr)− F ⋆(xr)

)︂
⇒

√︄
F ⋆(x0) (1− F ⋆(x0))

g(x0)
N (0, I2) .

Therefore, by the linear transformation between ( ˆ︁F (x), F (x)) and ( ˆ︁F ⋆(x), F ⋆(x)), the

first assertion of Theorem holds.

If κn = κ < ∞, let Zl =
∑︁n

i=1∆
⋆
i1Ti=tl , Nl =

∑︁n
i=1 and Z̄ l = Zl/Nl, l = 1, . . . , κ.

Following proposition 3.4 in [106], one has that, as n→∞,

P
(︁
Z̄1 ≤ · · · ≤ Z̄κ

)︁
= 1. (4.9)

Given {Nl}Kl=1, for each i draw an i.i.d. sample {Ylj}Nl

j=1 from Bernoulli (1, F ⋆(tl)).

Denote Ȳ l = N−1
l

∑︁Nl

j=1 Ylj, for each l. The second model is as follows. Suppose

{tl}κi=1 , {X⋆
i }

n
i=1 and {Nl}κi=1 are defined as before. Let {Y ′

li : 1 ≤ l ≤ κ, 1 ≤ i ≤ n} be

a family of mutually independent random variables, distributed independently of the

variables in the previous sentence, such that for each i, Y ′
ij follows Bernoulli (1, F

⋆(tl))

for 1 ≤ j ≤ n. Denote Ȳ
′
l = N−1

l

∑︁n
j=1 Y

′
lj

{︁
X⋆

j = tl
}︁
for each l. Following Lemma 1.2

in [107], one has that

(︁
{Nl} ,

{︁
Z̄ l

}︁)︁ d
=
(︁
{Nl} ,

{︁
Ȳ l

}︁)︁ d
=
(︂
{Nl} ,

{︂
Ȳ

′
l

}︂)︂
.

Hence, combined with (4.9), we only need to prove the asymptotic properties of(︂
{Nl} ,

{︂
Ȳ

′
l

}︂)︂
. Then, by a triangular array version of the multivariate central limit

theorem, it is sufficient to check the Lindeberg condition, and following the argument

about Proof of Proposition S.1 in [107], we will obtain the second assearations, after

the linear transformation between ( ˆ︁F (x), F (x)) and ( ˆ︁F ⋆(x), F ⋆(x)).
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Proof of the Algorithm 7

Firstly, ˜︁F is the unconstrained maximizer of the log-likelihood function. If ˜︁F (x) ∈ [0, 1],

then ˆ︁F = ˜︁F is trivially the constrained maximizer, as it is the unconstrained maximizer

that also satisfies the range constraint. If not, define x− as inf x : ˜︁F (x) > 0 and x+ as

supx : ˜︁F (x) < 1. Then x− > 0 or x+ < 1.

Suppose there is another function, ˆ︁F2, such that L( ˆ︁F2,∆, T ) > L( ˆ︁F ,∆, T ) andˆ︁F2(x) ∈ [0, 1]. We then define a new function ˆ︁F3(x) as:

ˆ︁F3(x) = (1x<x− + 1x≥x+) ˜︁F (x) + 1x−≤x<x+ ˆ︁F2(x).

For simplicity, denote

L(F,∆, T, i) := ∆i log

(︃
rF (Ti) +

1− r

2

)︃
+ (1−∆i) log

(︃
1 + r

2
− rF (Ti)

)︃
.0

Now we compare L( ˆ︁F3,∆, T ) and L( ˜︁F ,∆, T ):

L( ˆ︁F3,∆, T )− L( ˜︁F ,∆, T ) =
n∑︂

i=1

[︂
L( ˆ︁F3,∆, T, i)− L( ˜︁F ,∆, T, i)

]︂
=

n∑︂
i=1

1x−≤Ti<x+

[︂
L( ˆ︁F3,∆, T, i)− L( ˜︁F ,∆, T, i)

]︂
=

n∑︂
i=1

1x−≤Ti<x+

[︂
L( ˆ︁F2,∆, T, i)− L( ˆ︁F ,∆, T, i)

]︂
≥ L( ˆ︁F2,∆, T )− L( ˆ︁F ,∆, T )

> 0,

This implies that ˆ︁F3 has a higher log-likelihood than ˜︁F , contradicting the assumption

that ˜︁F is the unconstrained maximizer. Therefore, the original claim holds.
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Chapter 5

Conclusions and Future Work

In conclusion, this thesis has made significant strides in the fields of GDP and LDP

by investigating their properties, relationships, and applications for efficient and ac-

curate privacy-preserving data analysis. Through the development of identification,

measurement, and amplification tools, legacy datasets and mechanisms can be easily

integrated into the new GDP framework with little or no modification. By employing

self-normalization techniques and binary inquiries, a method for LDP quantile estima-

tion is established, complete with valid confidence intervals. Lastly, by discovering a

link between LDP CDF estimation and the current status problem, a framework is

introduced that guarantees convergence and derives the asymptotic distribution of

error. Collectively, this research advances the state of the art in differential privacy,

addressing pressing challenges in privacy preservation and paving the way for more

secure and privacy-aware data analysis in today’s digital age.

This thesis also opens up avenues for future research. The idea behind the GDP

framework can be generalized to other parameterized DP notions like CDP or RDP

to enhance tractability and visualizability in the DP literature. One-dimensional

quantile and CDF estimation can be extended to multi-dimensional variables, leading

to interesting discussions about balancing privacy budgets among distributions. The

iterative and self-normalization techniques can also be extended to regression problems,

building upon the established quantile estimation to develop corresponding quantile
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regression. Furthermore, the statistical inference methods presented have the potential

to be generalized for multi-sample inference in relevant change detection problems.
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