L R

Bibliothéque nationale
du Canada

Direction des acquisitions el

Your e Volre iéldrorwe

Ouw Mg Nolre 1éldrenne

Acquisitions and 7
Bibliographic Services Branch des services bibliographiques
395 Wellington Street 395, rue Wellingion
Ottawa, Ontanio Onawa (Onlario)
K1A ON4 K1A ON4
NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

- Canada

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont éte
dactylographiées a l'aide d'un
ruban usé ou si 'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

UNIVERSITY OF ALBERTA

Integrated Distributed Intelligent System

for Differential Pressure Flowmeter Selection and Sizing

. @

Murray Glenn Richard Stevenson

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of

the requirements for the degree of Master of Science

Process Control

DEPARTMENT OF CHEMICAL ENGINEERING

EDMONTON, ALBERTA
SPRING 1994

Il e

Acquisitions and

Bibliothéqu nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontario :
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontario)

Youn e VOITe rsference

[RVE U T S

L'auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thése a la disposition des
personnes intéressées.

L'auteur conserve la propriété du
droit d’auteur qui protege sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation,

ISBN 0-612-11381-7

Canada

UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Murray Glenn Richard Stevenson

TITLE OF THESIS: Integrated Distributed Intelligent System for
Differential Pressure Flowmeter Selection and Sizing

DEGREE: Master of Science

YEAR THIS DEGREE GRANTED: 1994

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific

research purposes only.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as hereinbefore provided neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever

without the author's prior written permission.

Il L;L«f&;p; L TGy YEN
8704 - 147 Street
Edmonton, Alberta

o@ 193 Canada TSR 0Y2
e 11 1149
DATE !

UNIVERSITY OF ALBERTA
FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommended to the Faculty of Graduate
Studies and Research for acceptance, a thesis entitled Integrated Distributed Intelligent
System for Differential Pressure Flowmeter Selection and Sizing submitted by
Murray Glenn Richard Stevenson in partial fulfillment of the requirements for the

degree of Master of Science in Process Control.

.q AL Z *??g—rf{

Dr R 'EI’T‘{Q&D{’!

Dr Rggmald Wood

Dec. 3 1959
e

DATE 4

Abstract

The selection of an appropriate flowmeter for a specific application is a difficult task
because there is a large decision-making space, numerous considerations and an ill-
structured problem. This results in a problem that is not applicable to strictly numerical,
algorithmic type solutions. Therefore, artificial intelligence techniques have been

considered, which emphasize symbolic reasoning and non-algorithmix sbiilisms.

In order to assist non-experts in the selection of an appropnate "~ =er tor 2 specific
application, an integrated coordinated knowledge enviromssent : omg::ier pemgram) has
been developed. This environment is based on artificial ==*gencc - obisct-oriented
program techniques. In particular, the environment emyoys the concept of an integrated
distributed intelligent system (IDIS). An IDIS combines :adependent specwlized software

packages into an integrated coordinated environment usder the ~omtros of a meta-system.

In this thesis, an integrated distributed intelligent svstein fox differential pressure
flowmeter selection and sizing (IDISDPFSS) has been developed that assists non-expert
users select an appropriate flowmeter based on users' specified requirements. Four
more than one flowmeter type is applicable, the system will rank them accordingly. Once
the selection process is completed, the selected flowmeters can be sized with numerical
computational packages integrated into the system. In addition, the system integrates a

viscosity coupling system for fluid property prediction.

IDISDPFSS has a user-friendly interface and is constructed so that new knowledge and

flowmeter types can be easily added. In order to achieve the coordinated distributed

knowledge environment, different software packages, hardware platforms and operating

systems are integrated.

Acknowledgments

I would like to express my appreciation to the following groups of people who as a whole
assisted me in completing my degree. The first group is the academic staff here at the
University of Alberta. In particular, Dr. Ming Rao, my supervisor, who provided
direction, moral support and the opportunity to learn. Also, my chairman Dr. Karl
Chuang, and my committee members Dr. Roger Toogood and Dr. Reginald Wood who

graciously gave of their time.

[would like to express my gratitude to Professor Haiming Qiu, Dr. Qun Wang and the

other members of the Intelligence Engireering Laboratory for their valuable advice and

assistance.

The third group of people I would like to thank are those who assisted me with the
computing part of my thests. These people always found the time to steer me towards a
solution for a problem I encountered. They are Bob Barton, Dan Bright, Dave Couture,

Dr. Yigiang Shu and Henry Sit.

Another group of people to which I am indebted are those from industry. These people
gave freely of their expertise, time and software that formed the bases for this thesis. They

are Darrell Barnes, Dr. Pin Du, Ken Leiter, Ken Netzel, Vic Pawluk, Lloyd Takeyasu and

Jess Ybanez.

Financial support for this thesis research is from the Natural Sciences and Engineering

Research Council of Canada (NSERC).

Table of Contents

Abstract
Acknowledgments
Table of Contents
List of Figures
List of Symbols

Chapter 1 Introduction

1.1 Scope
1.2 Organization

Chapter2 Flow Measurement

2.1 Objectives and Applications
22 Techniques and Meter Types
2.2.1 Overview
222 Differential pressure flowmeters
23 Key Factors and Relationships
24 Problem Definitions

Chapter 3 Intelligent Systems

3.1 Expert Systems
3.2 Coupling Systems
33 Integrated Distributed Intelligent Systems

Chapter 4 Implementation of a meta-system, Meta-COOP
4.1 Meta-COOP Architecture
42 Object-Oriented Programming (OOP)

Page

43
Chapter 5
5.1
52
53
54

421 Objects and classes

422 Hierarchical inheritance

423 Encapsulation, message sending and data
abstraction

Knowledge Organization and Representation
Individual Software Packages
Variable Area Flowmeters
V-Cone Flowmeters
Flow Nozzle and Orifice Plate Flowmeters
A Coupling System for Selection of Viscosity Models and
Prediction
54.1 Numerical computations
54.1.1 Peng - Robinson Equation of State (1976)

54.1.2 Viscosity models

Chapter 6 System Implementation

6.1

6.2
6.3
6.4
Chapter 7

System Integration
6.1.1 Hardware, software and UNIX operating system
6.1.2 Hardware, software and DOS
6.13 Remote execution of programs

Building a Knowledge Base

Selection Methodology

Knowledge Base Organization

IDISDPFSS Interface and Demonstration

Chapter 8 Conclusions

References

Appendix A

IDISDPFSS Knowledge Bases

33
35

35
37
45
46
49
50

51
53
33
55
62
62
65
67
68
71
72
73
78
98
101
105

Appendix B MEM 1.0 Source Code

Appendix C Viscosity Coupling System Knowledge in PC Plus

List of Figures

Page
Figure 2.1 General classification scheme for flowmeters 8
Figure 2.2 Classification scheme for differential pressure flowmeters 12
Figure 2.3 Schematic diagram of Meter Equipment Manufacturing, Inc. variable
area flowmeter 13
Figure 2.4 Schematic diagram of V-Cone flowmeter 15
Figure 2.5 Schematic diagram of flow nozzle flowmeter 16
Figure 2.6 Schematic diagram of orifice plate 17
Figure 3.1 Components of an expert system 23

Figure 3.2 Non-numerical and numerical information to solve a complex problem 25

Figure 3.3 Illustration of a coupling system 26
Figure 3.4 IDIS architecture 28
Figure 4.1 Meta-COOP architecture 31
Figure 4.2 Example of class and instances 34
Figure 4.3 Example of superclass-subclass inheritance 36
Figure 4.4 Decomposition of a complex engineering problem 39
Figure 4.5 Structure of a unit's header 40
Figure 46 Example of an attribute 41
Figure 4.7 Example of a decomposition slot 41
Figure 4.8 Example of a method slot 43
Figure 49 Example of a rule slot 44
Figure 5.1 Decision frame knowledge organization 59
Figure 5.2 Schematic diagram of information flow in the coupling system 61
Figure 6.1 Overview of IDISDPFSS integration 64

Figure 6.2 [Illustration of meta-system knowledge organization for IDISDPFSS 75

Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8
Figure 7.9
Figure 7.10
Figure 7.11
Figure 7.12
Figure 7.13
Figure 7.14

IDISDPFSS main menu
User defined requirements
Choices pop-up menu
Selection process window
Example of explanation feature
Graphic presentation of selection process conclusions
Partial list of components available in the viscosity coupling system
Results from viscosity coupling system
llustration of concurrent usage of viscosity coupling system
Pop-up menu for flowmeter sizing buttons
MEM 1 0 display window
V-Cone 3.1 main screen
FLOWEL 2.0 input screen

Illustration of concurrent usage of flowmeter sizing programs

78
80
86
87
88
90
91
91

94

04

95

96

List of Symbols

m ®

hr.

area available for fluid flow

parameter in Peng - Robinson equation of state

diameter of pipe

density of liquid for MEM flowmeter at operatir,g conditions

density of float for MEM flowmeter

density of liquid for MEM flowmeter at 70°F and in standard atmosphere
foot

Fahrenheit

hour

parameter for differential pressure flowmeter

parameter for velocity flowmeters

pound mass

molar mass

pounds force per square inch absolute

differential pressure

pressure (absolute)

volumetric flow rate

volumetric flow rate for MEM liquid flowmeter at operating conditions
mass flow rate for MEM steam flowmeter at operating conditions
volumetric flow rate for MEM gas flowmeter at operating conditions
volumetric flow rate for MEM steam flowmeter

volumetric flow rate for MEM liquid flowmeter at MEM base
volumetric flow rate for MEM gas flowmeter at 70°F and 100 psig

universal gas constant

SG
Sv

Reynolds number

specific gravity

specific volume of steam for MEM flowmeter
temperature (absolute)

specific volume of fluid

Greek Symbols

LT T~ ~

<

rotational coupling coefficient in Pedersen and Fredenslund equation
absolute viscosity of fluid

shape factor in Ely and Hanley equation

density of fluid

average fluid velocity flow rate

parameter in Dean and Stiel equation

Superscripts and Subscripts

™

critical property
gas phase
mixture

reference state

. reduced property

registered trademark

trademark

Abbreviations

AGA - American Gas Association

Al - Antificial Intelligence

ASME - American Society of Mechanical Engineers
DOS - Disk Operating System

GPM - Gallons Per Minute

GUI - Graphic User Interface

IBM - International Business Machines

IDIS
IDISDPFSS - Integrated Distributed Intelligent System tor Differential Pressure

Integrated Distributed Intelligent System

Flowmeter Selection and Sizing
ISO - International Organization for Standardization
MEM - Meter Equipment Manufacturing, Inc.
MS - Microsoft
OOP - Object-Oriented Programming
PC - Personal Computer
P-R - Peng - Robinson equation of state
RAM - Random Access Memory
SCFM - Standard Cubic Feet per Minute

TCP/IP - Transmission Control Protocol/Internet Protocol

Chapter 1

Introduction

Today, in an increasingly competitive marketplace, as process companies strive to lower
operating costs and increase productivity, greater emphasis is being placed on process
measurements. These measurements are used to monitor and control factors effecting

quality and quantity of product. One key measurement is flow.

Flow measurements account for 60% of all measurements in industry (Opie, 1987) and
between 50% (Ginesi and Grebe, 1985) to 75% (O'Brien, 1989) of total dollar value spent
on instrumentation annually'. Yet, experts claim 60% (Opie, 1987) to over 75%
(Meinhold, 1984) of all installed flow measurement devices are inappropriate. The

primary cause is improper selection. (Meinhold, 1984, Opie, 1987).

Flowmeter selection is a difficult task (Sovik, 1985; Ginesi, 1991) because a single person
must work with a large domain (Rusnak, 1989), consider many related factors
(Cheremisinoff, 1979), and deal with an ill-structured problem. Currently, the task is
usually performed by a non-expert in the field who must evaluate each application

separately and choose from a wide variety of flowmeters (Lomas, 1977). The person's

* In 1992. the estimated expenditures on instrumentation in North America were 6 billion dollars Cdn.

final decision requires a balancing of factors (O'Brien, 1989) based on his/her personal

knowledge and experience.

In order to assist these non-experts, the techniques of expert systems have been
considered. Expert systems are a sub-section of Artificial Intelligence (AI) which has been
extensively applied to engineering. Expert systems use computer programming techniques
which emphasize symbolic information and non-algorithmic processing to capture and
accumulate human experts' knowledge in a specific domain (Buchanan, 1985). In
contrast, more traditional computer programming, using languages such as FORTRAN or

BASIC, stress numerical and algorithmic procedures.

In review of the literature, two articles have been located that discuss expert systems with
regard to flowmeter selection. Lycett and Maudsley (1986) outline considerations to be
addressed when developing an expert system for flowmeter selection and sizing, including
a plan for developing such a system. However, in subsequent years, no further reference
to this system was located. Baker-Counsell (1985) briefly describes a "prototype system"
with "much of the detailed work ... yet to be followed up." This system is rule-based and
developed using the Al programming language Prolog. Although these systems may not
have been implemented or become only partially functional, these articles state a number
for easy modification, and the need to interface symbolic techniques with algorithmic
programs. In particular, the system should be able to obtain "Process data such as
flowrate, temperature, pressure, and physical properties of the fluid." (Lycett and
Maudsley, 1986). Also, the system should not only be capable of selecting a flowmeter

but sizing it too.

In an effort to meet the above requirements, an integrated distributed intelligent system
Jor differential pressure flowmeter selection and sizing (IDISDPFSS) has been
developed. This system is based on the concept of integrated distributed intelligent
system (IDIS) (Rao, 1991). In the simplest of terms, IDIS is a knowledge integration
environment that applies the techniques of artificial intelligence to solve a complex
problem by combining independent specialized software packages. The key construct to
the individual software packages (Rao, 1991). The meta-system, Meta-COOP, has been
developed using object-oriented programming (OOP) techniques by the Intelligence
Engineering Laboratory in the Department of Chemical Engineering at the University of

Alberta. The system is coded in C.

1.1 Scope

IDISDPFSS can select a flowmeter for an application based on the user's supplied
requirements. Four types of flowmeters can be selected: variable area, V-Cone, ASME
flow nozzle and concentric square edged orifice plate. Applications may be for liquid
and/or gas fluids (some particulate matter is acceptable) in full closed circular pipes. The
transport and physical properties of complex fluid multi-component mixtures can be

provided by three autonomous numerical computing programs.

1.2 Organization

This thesis consists of eight chapters plus three appendices. Chapter 2 introduces

flowmetering applications, techniques and considerations as well as problem definitions.

Chapter 3 provides background information on the artificial intelligence techniques
applied. Chapter 4 begins by contrasting expert systems with Meta-COOP and then
presents basic OOP concepts as a lead into Meta-COOP's knowledge organizational and
representational format. Chapter 5 describes the autonomous software packages
employed in IDISDPFSS: the numerical flowmeter sizing programs and a coupling system
the IDISDPFSS knowledge organization are discussed. Chapter 7 illustrates the
IDISDPFSS interface and flowmeter sizing packages through a typical selection problem.
Chapter 8 contains conclusions. Appendix's A, B and C contain the knowledge bases for
IDISDPFSS, the source code for variable area sizing program and the knowledge for the

viscosity coupling system, respectively.

Chapter 2

Flow Measurement

In the past, flow measurement was easy, the applications were simple and there were few

the measurement technology gets more complicated; the processes are complex and there
are many techniques. Flow measurement is a large, highly specialized field. In order to
give the reader an appreciation of the complexity of flowmeter selection, a general
overview is first presented, including objectives and applications, techniques and meter
types, as well as factors to be considered. Then, problem definitions in flowmeter

selection and sizing will be discussed.

2.1 Objectives and Applications

Continuous flow measurements account for 83% of all industrial flow measurements
(Hasley, 1986) with such three primary functions as indicating (Rusnak, 1989), accounting
and controlling (Meinhold, 1984). Indicating measurements convey two types of
information: the approximate rate and usually the expected range of flow. As an example,
a flowmeter's display may show O to 1000 gallons per minute in increments of 100 with
possibly the expected normal operating rate between 300 to 700 gallons per minute. In
contrast, a meter that displays a single value such as 500 gallons per minute gives no

indication of what the expected flow rate should be. An application of indicating flow

measurement is in the monitoring of coolant flow rate in expensive machinery such as
compressors. If the flow is near the maximum or minimum rate, this can suggest a
problem which perhaps can be corrected before extensive, expensive repairs are required

or in the worst case, catastrophic failure.

Accounting measurements sum the quantity (mass or volume) of material over an
extended period of time and can be separated into two classes. The first class, namely
custody transfer, is concerned with assessing the amount of material received or delivered
for satisfying contractual agreements. This class will not be covered because of the
stringent requirements imposed by law and the fact that this class accounts for only 4%
(Hasley, 1986) of the all measurements. The other class is for internal use by companies
to analyze the efficiency or profitability of processes. For example, in the chemical
process industry, by measuring the amount of reactant(s) entering and product exiting a

reactor, the reactor efficiency can be calculated.

Accurate measurements assist operators in maintaining a plant at optimal operating
conditions. On the basis of the output from the flowmeter, a controller, in the case of
automatic control, or an operator, in the case of manual control, adjusts a final control
element to manipulate process variables. As an example, in combustion processes to
ensure efficiency, the flow rates of hydrocarbon fuel and oxygen must be measured in
order to maintain a pre-determined ratio. Should the hydrocarbon/oxygen ratio increase,
the fuel waste increases due to the incomplete combustion with increased hydrocarbon and
the carbon monoxide emission. Should the hydrocarbon/oxygen ratio decrease, the energy

waste for heating and pumping the excess oxygen will increase.

* This 4% is not included in the 83% stated previously.

Flow measurements are needed in a number of industries over a wide range of operating
conditions. Applications vary from the cryogenic production of liquid nitrogen to the high
temperature generation of superheated steam; and from the industrial refining of
petroleum to the commercial pasteurizing of milk. As a result, flowmeters are required in
critical applications for temperatures that vary from -200°C to 500°C, pressures from
atmospheric to 3000 psi, pipe diameters from 0.25 inch to 60 inch, and single phase to

multi-phase fluid (although no meter can be subjected to all in one service).

2.2 Techniques and Meter Types

Flowmeters have been classified using many different criteria, but the most convenient
classification for our purpose is given in Figure 2.1 (Meinhold, 1984). This diagram by no
means includes all flowmeter types, but gives an overview of some of the more common
measuring techniques and meter types. This section first presents a very brief description
of mass, velocity and positive displacement meters. Then a more comprehensive

description of the differential pressure flowmeters considered in this thesis is presented.

'SIIDWMO]J 1O} SWAYDS UCHIBDYISSE]D [RI2UN) [T J4nS1y

|
PIqELIE A,

Emﬁgﬁg

ead
u0Isig ey

wp ||

mos |
Funenyy | | enin |

XJUOA |

onx|g |

Jeussay

rawow
1 Suy

aInssald
[enuaRIq

/

wawdedsiq
ansog

Ao

S12)3WMO]

SSBJN

2.2.1 Overview

The mass and velocity meters are the latest techniques to become commercially viable
thanks to the increased reliability and the decreased cost of electronic components. Mass
meters differ from the other types of meters in that they do not require the density of fluid
to calculate the mass flow rate. Angular momentum mass meters are based on Newton's
second law of angular motion; they impart an angular momentum on the fluid and measure
the resulting torque and angular velocity. Thermal mass meters are based on the heat

transfer from a heated element positioned in the fluid (Liptak and Venczel, 1982)

Velocity meters measure flow by generating a signal that is linearly proportional to the

volumetric flow rate (Meinhold, 1984). This can be represented as follows:

QO =K x flowmeter dependent variable 21)

where Q is the volumetric flow rate and K is a parameter dependent on the velocity

flowmeter type and manufacturer.

Electromagnetic meters measure the voltage produced by a conductive fluid flowing
through a magnetic field (Sovik, 1985). Turbine meters count the number of rotations
made by a rotor whose axis is parallel to the direction of flow (Liptak and Venczel, 1982).
Vortex meters measure the frequency of vortices induced into the flow (Meinhold, 1984).
There are two types of ultrasonic meters: Doppler and transit-time. Doppler meters use
the frequency difference between the transmitted wave and the received wave. The

received wave is a part of the transmitted wave that reflects off entrained particles or a

second phase in the fluid. Transit-time meters determine the difference in time for a sonic
pulse to traverse the fluid at an acute angle with the flow as opposed to the flow (Liptak

and Venczel, 1982).

Positive displacement meters operate by splitting the flow into a number of discrete units
of identical volume and counting the number of units that pass through the meter (Miller,
1983). Differences in meters relate to the mechanism used to break the flow into the
individual units. These designs include nutating disk, oval gear, reciprocating piston and

rotating vane (Meinhold, 1984).

2.2.2 Differential pressure flowmeters

according to a survey of the process industry conducted by Hasley (1986), they accounted
for 78% of all flow metering devices. Three reasons for their extensive usage are

maturity, versatility and simplicity (Ginesi, 1991).

Bernoulli presented the hydraulic equation in 1738 from which today's equations for
differential pressure flowmeters have evolved (Miller, 1983). These equations are based
oh energy conservation with the key concept being that for a flowing fluid if the kinetic
energy (energy associated with the velocity of fluid) is altered; then the potential energy
(energy associated with the pressure of fluid) will change proportionally. In other words,
when the velocity increases, the pressure decreases, and vice versa. In its simplest form,

this can be expressed as
Q=kAJAP p (2.2)

10

or
v=kJAP p (2.3)

where k is a parameter dependent on the differential pressure flowmeter type, A is the area
available for flow; AP is the differential pressure generated; p is the density of fluid; and
v is the average velocity of the fluid. A point worth noting is that the fluid density is
required to calculate the velocity and volumetric flow rate (Liptak and Venczel, 1982).
This is in contrast to mass and velocity type flowmeters neither of which require this

parameter.

A differential pressure flowmeter is a general name that encompasses a wide variety of
meters that are all based on the above principle. However in this thesis, only four types
will be considered: variable area, V-Cone, flow nozzle and orifice plate. These types
were selected because of their capability to handle a wide range of applications and
operating conditions, and their current large usage in industry (the variable area and orifice
plate types account for 19% and 56% of all flow measurements, respectively (Hasley,
1986)). In addition, since V-Cone, flow nozzle and orifice plate all have similar operating
characteristics, there can be confusion as to which device is most appropriate for a given

application.

These four differential pressure flowmeters can be further divided into two groups:
constant differential pressure and variable differential pressure as shown in Figure 2.2.
This division is based on the method used to measure the flow rate. Constant differential
pressure flowmeters differ from variable differential pressure flowmeters in that they do
not vary AP to calculate the flow rate. Instead, they maintain 4 constant AP and vary the

area, 4.

Differential
Pressure

Constant
AP

Variable
area

Figure 2.2 Classification scheme for differential pressure flowmeters.

One method' to vary the area is to place a float in a vertically mounted tube with a
precisely cut slot down one side as displayed in Figure 2.3, When the meter is filled with
fluid and there is no flow, the float rests on top of the tube completely obstructing flow
through the slot. As the flow rate increases, the pressure drop across the float will
increase until the upward acting forces (hydraulic and buoyancy) just balance the

downward acting forces (weight of float). At this balancing flow rate and greater, the

* The most commonly known type of variable area flowmeter is the rotameter. However. this type was not
selected for this study because no mathematical equations or computer programs were available for sizing
them.

12

Dome

¢— Scale

Rate Indicator >—
.]

ﬁ— Tube

Flow outlet 44—

¢ Slot

Flow inlet

Figure 2.3 Schematic diagram of Meter Equipment Manufacturing, Inc. variable area

flowmeter.

13

pressure drop across the float will remain constant. However, at flow rates greater than
the balancing flow rate, the float will rise, increasing the area for fluid to flow, until an
equilibrium pcsition is reached. At this position, the height of the float is linearly
proportional to the flow rate of the fluid and can be used with a scale attached to the dome

to provide a direct reading.

Conversely to constant differential devices, variable differential devices fix the area
available for flow and allow the AP to vary. These types of meters consist of two
elements: a secondary and a primary. The secondary element measures the differential
pressure produced by the primary element. The primary element is an obstruction placed
in the flow stream to decrease the area available for flow and thereby, generate the AP
(Hayward, 1979). The V-Cone, flow nozzle and orifice plate differ in the shape of the

obstruction used to generate the AP

One of the new primary elements to become commercial available in the late 1980s is the
V-Cone. As the name suggests, the V-Cone is shaped similar to a cone and is placed
shown in Figure 2.4. The V-Cone produces a pressure drop by reducing the area of flow
to an annular space between the maximum diameter of the cone and the inner pipe wall.
The differential pressure is measured between a pressure tap in the pipe wall just upstream

of the tip and another in the centre of the downstream end of the cone.

14

:

Pressure
port
\ Pressure
Flow e port

Figure 2.4 Schematic diagram of V-Cone flowmeter.

Flow nozzles produce a pressure drop by restricting the flow to a circular area concentric
to the pipe. There are two distinct designs of flow nozzles, but only the type of design
most commonly used in North America will be considered: the long radius or ASME flow
nozzle. While both designs converge to cylindrical tube, the ASME flow nozzle shown ir
Figure 2.5 is characterized by a converging inlet shaped as a quarter ellipse. Generally, the
the inlet face and another one-half pipe diameter downstream of the face (Liptak and

Venczel, 1982).

Of all the primary elements, the oldest is the orifice plate. This element is also the simplest
in design. Basically, an orifice plate is a thin circular plate with an opening to reduce the

area of flow to less than the cross-sectional area of the pipe. The plate is inserted in the

15

pipe perpendicular to the direction of flow and the differential pressure measured by a
pressure taps on either side of the plate. There are many types of orifice plates which vary
in the location and shape of opening(s) and pressure tap locations. However, only the
most commonly used type in North America will be considered namely the squared-edged
concentric orifice plates with flange taps. The key characteristics of these plates are the
concentric circular hole and the square edge on the upstream face as shown in Figure 2.6.
The pressure taps, located one inch upstream and downstream of the plate faces, are in the

flanges used to secure the plate in the pipe (Liptak and Venczel, 1982).

Figure 2.5 Schematic diagram of flow nozzle flowmeter.

16

Figure 2.6 Schematic diagram of orifice plate.

2.3 Key Factors and Relationships

When selecting differential pressure flowmeters, there are many factors and relationships
to be considered. It should be stated that the factors presented in this section are not all
the factors to be considered but only some of the key ones. The factors can be
categorized into three groups: system specifications, performance specifications, and cost
specifications (O'Brien, 1989). Each of these groups will be discussed individually with
regard to the factors that are included in that group and any relationships within the

particular group.

Of the three specifications, the system specifications are the most stringent because they
are determined by the type of process. In most cases, they cannot be altered. System
specifications include fluid properties such as viscosity and density, fluid states such as
liquid and/or gas, and process parameters such as temperature, pressure and composition.

The fluid's properties and states are governed by the process parameters. in order to

17

predict these properties and states, various correlations have been developed relating the

properties and states to process parameters.

The performance specifications employ terminology, which can be a source of problem
(O'Brien, 1989; Rusnak, 1989), specific to the field of flow measurement. The terms
include turndown, permanent pressure loss, repeatability and accuracy. Turndown is the
ratio of the maximum to the minimum flow rate (e.g., 3 to 1). Permanent pressure loss is
the decrease in static pressure as a result of friction as the fluid passes through the meter.
Repeatability is the maximum amount of discrepancy expected between measurements of

the same flow rate. Accuracy is the maximum amount of discrepancy expected when the

The cost specifications should consider not only the initial purchase price but also
installation, operation and maintenance expenses. The most obvious cost is the purchase
price. But the installation cost can be significant, and over the long term, cost of
operation and maintenance may dominate. For example, the cost of the labour and
equipment required to install an orifice plate in a small line (2 in.) or large line (60 in.) is
greater than the plate itself. In the case of operational cost, the amount of energy required
to compensate for the permanent pressure loss produced by the flowmeter can be
considerable in large diameter pipes. And, if the loss of production because of a process
having to be continually shutdown or shutdown for extended periods of time is included,

the cost of maintenance can be significant.

An important equation is the Reynolds number. Over the years a range of Reynolds
numbers has been determined for each type of variable differential pressure flowmeters

over which each flowmeter type has proven to provide accurate measurements. The

18

Reynolds number, a dimensionless quantity, is the ratio of the flowing liquid's inertial

forces to the drag forces. It is defined as

Dxuxp
H

R (2.4)

where % is the Reynolds number; D is the pipe diameter; v is the average fluid velocity; p

is the density of the fluid; and u is the absolute viscosity of the fluid.

2.4 Problem Definitions

Although there are many designs of flowmeters, Lomas (1986) summarizes the current
situation the best: "Each type of meter has its own specific advantages and limitations and
no one meter combines all benefits and all features." In other words, no one meter is best

suited for all applications. Therefore, each application must be evaluated individually

The difficulties encountered in flowmeter selection and sizing can be broadly characterized

as follows:

. large decision-making domain,

o numerous considerations, and

. ill-structured problem.

Furthermore, if a computer program is to be developed, other difficulties are
) inability to capture human expert knowledge, and

19

. inability to integrate different software packages.

As a result of the many diverse applications and large financial expenditures annually on
flow measurement, it is not surprising that there are over 100 commercially available
multitude of meters create a large problem-solving space for meter selection which can be

very time-consuming for a non-expert.

There are numerous considerations to be taken into account when selecting a flowmeter
(Cheremisinoff, 1979, Lomas, 1977, Rusnak, 1989), some of which were presented in
Section 2.3. The key to solving this problem is the determination of the pertinent set of
factors for the specific application. When determining this set, an engineer should
consider not only the expected normal operating conditions but also foreseeable changes
in conditions that may affect the performance of the flowmeter (Spitzer, 1985) Also,

there are overload conditions that may have to be accounted for at start-up and shutdown

(O'Brien, 1989).

Although algorithmic type approaches have been proposed by Lomas (1977) and
Meinhold (1984) to select flowmeter types for a specific application, neither approach has
been widely accepted. However, a very general two-stage methodology has emerged

(Liptak and Venczel, 1982):

1) select all the flowmeters that are suitable for the specific application, and

2) determine the optimal meter from those selected in stage 1.

This method is just a beginning, as the stages are too broad without a definite starting
point, defined procedure, as well as definitive solution: all of which are characteristics of

ill-structured problems (Corbin, 1992).

Flowmeter selection and sizing requires the handling of both numerical and symbolic
information. The numerical information is often analyzed with numerical algorithmic
programs. However, in order to process the symbolic information, an expert employs
knowledge and symbolic reasoning. Because human knowledge and reasoning techniques
are not well modelled by numerically based algorithmic programs (Rao and Qiu, 1993), it

is difficult to capture them with conventional programming techniques.

Computer software packages are valuable sources of information when selecting
- flowmeters and provide a time-saving approach to sizing them. Therefore, it would be
advantageous to combine these programs in a software environment Unfortunately, these
packages have been developed independently in different computer languages, run under
different operating systems and hardware platforms. As a result, it is difficult to integrate

these separate packages.

Chapter 3
Intelligent Systems

Artificial intelligence emphasizes processing non-numerical information and non-
algorithmic methods (Buchanan, 1985), and is applicable to ill-structured problems (Rao,
thesis is intelligent systems. These systems can be classified into four groups: symbolic
reasoning systems (expert systems), coupling systems, artificial neural networks and
integrated distributed intelligent systems (IDIS) (Rao et al., 1993). In order to introduce
the concepts used in this thesis, some background on expert systems, coupling systems

and IDIS will be presented.
3.1 Expert Systems

Expert systems provide a programming technique which captures the knowledge and
reasoning of human experts in a specialized field and applies them for non-experts. These
systems utilize symbolic knowledge representation and processing, and consist of four
separate but related parts: database, knowledge base, inference mechanism and
user/developer interface as shown in Figure 3.1. This segregation facilitates independent
design and modification of the components (Rao et al., 1989). In contrast, conventional
programming techniques mostly use numerical data with mathematical operators and

consist of two parts: data and algorithm. The control mechanism is an integral part of the

22

algorithm and cannot be altered independently. As an over simplified comparison between
conventional programs and expert systems, conventional programming requires both
information and the order in which this information is to be processed. Expert systems,
however, require only the information not the sequence in which to process the

information.

Database .

T

Inference Mechanism

(inference engine)

L

User/Developer
Interface

Figure 3.1 Components of an expert system.

Knowledge Base

The user/developer interface has one similar requirement for both user and developer: the
interface must be easily intelligible. From the user's viewpoint, this means the interface
must prompt for information and explain conclusions in a form the user can understand.
From the developer's viewpoint, the interface must allow for easy development and editing

of the knowledge base.

Symbolic knowledge representation refers to the mapping of a problem domain into a
computer using symbolic constructs. Two prerequisites of the constructs are that they
must be capable of capturing the domain knowledge and understandable by both the
experts and non-experts. There are different forms of constructs, but most require
selecting a symbol, a name or abbreviation that represents an object or variable, with
variations on the means of assigning or associating a value with the symbol. These
constructs are then formed into a knowledge base. The particular constructs utilized in

this investigation will be described in Chapter 4.

Symbolic processing, also known as symbolic reasoning, is the operation of searching
from an initial set of conditions through a knowledge base to obtain a solution. The
choice of when to initiate and terminate the search and the path searched are all controlled
by the inference engine. In order to determine a solution, the inference engine applies the
value of symbols in the database (working memory) to the knowledge base (Rao and Qiu,

1993),

artificial intelligence community such as Lisp and Prolog were used. However, while
these languages are efficient at symbolic reasoning, they lack the numerical capabilities of
more conventional languages such as C, BASIC and FORTRAN. This lack of numerical

computational power is a major drawback because solving complex engineering problems

* Currently, the trend is to use more conventional programming language such as Pascal and C which are

able to create records and structures, respectively.

24

requires both numerical and non-numerical information (Kitzmiller and Kowalik, 1987) as

depicted in Figure 3.2 (Rao et al., 1993). As a result, coupling systems were developed.

7Camplex
Engineering
Problem
- [-
[N S
Non-numerical Numerical
information information
— 1
| 7 L 1 |
Symbolic Graphic Empirical Data Numerical
processing processing data processing computing
| [N I [
Expert Geometric Neural Narahae Mathematical
system model network Databas% model

Figure 3.2 Non-numerical and numerical information to solve a complex problem.

3.2

Coupling Systems

Coupling systems can generally be defined as programs that combine symbolic processing

and numerical computing as illustrated in Figure 3.3 (Wong et al., 1988). Although this is

a very broad definition and not agreed on by all (Kitzmiller and Kowalik, 1987), it

provides insight into what coupling systems are. The key feature is that two different but

complementary techniques are brought to bear on a problem: the symbolic techniques of

expert systems and the numerical capabilities of conventional programs.

25

Coupling

System

Symbolic Numerical
Reasoning Computing

Figure 3.3 Illustration of a coupling system.

There are many applications for coupling systems. One application is to reduce the time
required to solve a problem (Wong et al., 1988). The most obvious approach is to let the
expert system perform only symbolic reasoning and use a conventional language to
perform numerical computations. An alternative approach is to allow the expert system to

reduce the search space (Rao et al., 1988) before performing numerical calculations.

Another application is to use symbolic techniques to integrate a number of independent
numerical programs in order to solve a problem. These types of systems have two
objectives. One objective is to utilize the symbolic system to manage the individual
numerical packages so as to solve a problem that none of the packages can solve alone.
Another objective is to utilize the symbolic system as an intelligent interface which assists
users in selecting the appropriate numerical package for the specific task (Kitzmiller and

Kowalik, 1987).

26

3.3

Integrated Distributed Intelligent Systems

The concept of an IDIS was proposed by Rao et al. (1987). Over the past several years, it

has been redefined until it can now be stated as follows (Rao et al., 1993):

Integrated Distributed Intelligent System is a large-scale knowledge
integration environment, which consists of several symbolic reasoning
systems, numerical computation packages, neural networks, database
management subsystem, computer graphics programs, an intelligent
multimedia interface and a meta-system. The integrated software
environment allows the running of programs written in different languages
and the communication among the programs as well as the exchange of
data between programs and database. These isolated intelligent systems,
numerical packages and models are under the control of a supervising
intelligent system, namely, the meta-system. The meta-system manages the
selection, coordination, operation and communication of these programs.

Figure 3.4 illustrates this architecture.

[DIS provides many desirable features:

communication between systems,

multi-media interface for displaying information,

relative ease of maintenance and additions to the system,
efficient knowledge representation and organization, and

integration of existing software packages (Rao et al., 1993).

27

(Multimedia interface to wsers)

Meta-system

Meta -
knowledge =
_ base

lnference] Database
engine

Interface ggsijbs;ysiéms B}

Cémputeri Numerical
graphics | | computing

cG1 || cGz|| ner || N2

ES: Expert System CG: Computer Graphics
NC: Numerical Computing NN: Neural Network

Figure 3.4 IDIS architecture.

The key component of an IDIS is the meta-system. It provides four functions that are
As a coordinator, the meta-system manages each of the subsystems by controlling the

selection and the initialization of each sub-system as required. As a communicator, the

system itself, another sub-system or a user) into a format required by a particular sub-
system. This may involve converting numerical data into symbolic information or passing
numerical data in a pre-determined format. As a distributor, the meta-system facilitates
maintenance by separating the sub-systems irto independent systems that can be
developed and debugged individually. Also, this distribution can reduce the solution time
as only knowledge pertinent to the current problem is applied. As an integrator, the meta-
system provides an approach whereby new knowledge and subsystems can be easily

28

added. Since the meta-system controls the ordering and interfacing between subsystems,

new subsystems can be added without altering existing sub-systems (Rao et al., 1993).

When one looks at Figure 3.4, the meta-system appears similar to an expert or coupling
system in that it has a database, knowledge base and an inference engine. However, in
order to provide all the features and functions, these three components are much more
complex than in an ordinary expert system or coupling system. This complexity will
become apparent in the following chapter where the implementation of the meta-system is

discussed.

29

Chapter 4
Implementation of a meta-system, Meta-COOP

In order to implement a meta-system, Meta-COOP has been developed (Rao et al., 1993).
Meta-COOP is coded in C and based on OOP techniques. Meta-COOP is a hybrid
environment that incorporates frames and production systems to capture human experts’

knowledge and perform symbolic reasoning.

This chapter begins with a brief overview of the Meta-COOP architecture in order to
illustrate the differences between Meta-COOP and a standard expert system shell or
coupling system. This is followed by an introduction to the basic concepts of OOP. The
chapter describes the different knowledge organization and representation schemes in

Meta-COOP.
4.1 Meta-COOP Architecture

Although Meta-COOP operates as an integrated unit, its architecture as displayed in
Figure 4.1 (Rao et al, 1993) can be categorized into four groups: knowledge
representations, databases, interfaces and inference engines. Meta-COOP has three types
of databases: database, local and global fact bases. The database in the Meta-knowledge
base is analogous to a database file in conventional programming where static data (e.g.

records) are stored permanently. The global and local fact bases are similar to a database

30

(working memory) in an expert system in which they both act as temporary storage for
intermediate information produced by dynamic processes. The global fact base posts
results, determined by the different subsystems, which are accessible by all inference
engines. The local databases store facts that are only accessible by the subsystems that
create them, thereby one of the concepts of OOP, i.e. encapsulation is implemented.

7 Hera-kna;v}eége bas;

Method base Units and Rules Database

"Method-based) [Unit-based) (Rule-based
inference engine) { inference engine | | inference engine

G“m} l_edgeJ (Care inference engine Global fact base
acquisition ' ;)=

=

Local fact base |

_ , ia?éal f‘aét bése 72
((__User/developer interface) -

- 7L;cg'c§li fa'crtrba:sei n

N —— ey
ple————
e
Extemal procedures J-IJ

Figure 4.1 Meta-COOP architecture.

In Meta-COOP, the different interfaces enable the transfer of information to and from the
external environment. The user/developer multimedia interface provides two functions:

(1) a means for a user to input information and for the system to output results during a

3

consultation and, (2) allows a developer to create and edit the meta-system knowledge
base. The external interface provides communication to independent systems. These

independent systems are external procedures coded in C or an executable file.

In contrast to an expert system shell or coupling systems, Meta-COOP consists of four
types of inference engines. The core inference engine is responsible for sending internal
messages, initiating the other inference engines and invoking external procedures through
the external interface. The other three inference engines, rule-based, method-based and
unit-based, operate only when the particular type of knowledge representation for which
each was developed is being processed. The rule-based engine, i.e., the inference engine
in most successful expert systems or coupling systems (Rao et al, 1988), performs
inferences on symbolic knowledge contained in rule slots. The method-based engine
operates on algorithmic type programs contained in method slots. The unit-based engine

provides inferences using knowledge contained in the hierarchy structure.

4.2 Object-Oriented Programming (OOP)

Over the past several years, OOP has become very popular due to the following reasons:
increased programmer productivity, and easier maintenance and extendibility of programs
(Rutz, 1991). The increased productivity can be attributed to the fact that programmers
can create their own data types (Wiener and Sincovec, 1984) and are not limited to only
data types such as strings, integers and real numbers provided in conventional
programming languages. The easier maintenance of programs comes from the fact that
programmers can make changes to a class of objects without affecting other classes,
thereby altering a number of objects at once without concern for communications. The

easier extendibility is achieved since the programmer can add new objects without

32

affecting existing objects. In addition, the programmer can create more specific objects by
making only minor modifications to an existing class (Rutz, 1991). In order to understand
how to accomplish the above functions, the features of OOP are presented in the following

material.
4.2.1 Objects and classes

Objects are defined as entities in the real world that have been mapped into computer
software. For example, objects can represent common geometric shapes such as circles
and squares or, more relevant to the present work, flowmeters. However, to classify as
objects, they must be capable of manipulating the data within an object. This
manipulation of data is performed by method(s), there can be more than one method per
object, which are also contained within the object (Rutz, 1991, Stefik and Bobrow, 1986).

Thus, objects combine data and methods.

The object's data can be string (alpha-numeric) or numerical (integer, real) and either
variable or constant. The methods are the algorithmic subroutines or functions that use
the data in the object. In OOP terminology, the method is defined to manipulate the
object. The methods contain instructions in the form of mathematical expressions,
assignment statements and control commands similar to those in conventional
programming languages such as FORTRAN and BASIC. As an example, a geometric
object can contain methods for displaying its shape on a screen, printing its outline on a
printer and storing its image in memory. As another example, more pertinent to this
thesis, as an object, a ﬂgwmetér can contain a method for calculating the Reynolds

number.

33

In OOP, the objects that are spawned from a class are called instances of the class. The
class groups objects (instances) that have similar attributes and methods (Rutz, 1991). As
Ten Dyke and Kunz (1989) so concisely stated: "A class is a template from which objects
[instances] are created." A class determines the data and methods that all instances of the
class will possess. However, objects can differ in the values assigned to the variables. As

an example, using Figure 4.2, the class, orifice-plate, has spawned two instances: orifice-

bore_size, and method, flow rate as defined in the class. However, in the instance orifice-

plate-1, the data pipe_diameter and bore_size have the values 6 and 3, respectively; while

Orifice-plate

Variables: pipe_diameter, bore_size
Method: flow rate

Instancel: Orifice-plate-1 Instance2: Orifice-plate-2

Data pipe_diameter = 6 in. Data: pipe_diameter = 2 in.
[| bore_size=3in. | bore_size=0.5 in.

Method: | Method: flow rate Method: | Method: flow rate

Figure 4.2 Example of a class and instances.

34

4.2.2 Hierarchical inheritance

Hierarchical inheritance is an important feature that allows a more specific class, known as
a subclass, to be derived from a more general class, known as a superclass (Rutz, 1991,
Ten Dyke and Kunz, 1989). In deriving a subclass, only new data or methods unique to
the subclass need to be defined since all data and methods of its superclass automatically
become associated with the subclass’. This process of a subclass inheriting data and
methods from its superclass can pass through many levels. Figure 4.3 illustrates this
process. The variable "pipe_diameter" is declared in the superclass "differential-pressure-
flowmeters"; the variable AP is declared in the class "variable-differential-pressure-
flowmeters"; and the variables bore_size and flow_area are declared in the subclass
“orifice-plate” and "v-cone", respectively. However, because of hierarchical inheritance,
the instances "orifice-plate-1" and "v-cone-1" both contain the variables pipe_diameter and
AP. In addition, these instances contain the variables unique to the class that spawned
them. Thus, "orifice-plate-1", an instance of "orifice-plate”, contains the variable

"bore_size" and v-cone-1, an instance of "v-cone", contains the variable "flow_area".

4.2.3 Encapsulation, message sending and data abstraction

Encapsulation or information hiding refers to the private nature of an object's data. In

OOP languages, the object's data can only be accessed or altered by the methods attached

to the object. In other words, the value of a variable cannot be modified without

t A subclass differs from an instance in that the subclass contains additional data and methods. and not

just different values assigned to the variables.

35

employing the methods associated with the object. Therefore, the only way to alter a

variable is to send a message to the object.

Superclass: Differential-pressure-flowmeters

Variable: pipe_diameter

Class: Variable_differential-pressure-flowmeters
Variable: & p
Subclass: Orifice-plate V-Cone
Variable: bore_size Variable: flow_area
Instances: Orifice-plate-1 V-Cone-1
pipe_diameter = 6 in. pipe_diameter = 3 in.
Ap =100in H,O Ap=5in H,0
bore_size =3 in. flow_area=2sq. in.

Figure 4.3 Example of superclass-subclass inheritance.

As Stefik and Bobrow (1986) stated, the key to "All of the action in object-oriented
programming comes from sending messages between objects." For an object-oriented
program to proceed one object must send a message and another object must receive the

message. Messages consist of at least two partst: the name of the receiving object and

t Some OOP allow the passing of arguments in the message.
36

the name of the method. The receiving object processes the message by performing the

instructions in the named method.

The use of message sending to communication between objects leads to another
fundamental concept of OOP: data abstraction. Data abstraction refers to the fact that an
object sending a message needs the name of an object and method, but it requires no
knowledge of the data structure of the receiving object. Thus, the receiving object is

viewed as a black box from the sending object's perspective.

In summary, the three concepts that have been discussed are advantageous to
programmers because they are unconcerned about an object's data being altered by
another part of the program or the data structure of the object, they only need to know

how the object responds to a particular message.

4.3 Knowledge Organization and Representation*

When solving complex engineering problems, problems are often too large and complex to
understand as a whole. For this reason, we tend to decompose (divide) such problems
into parts that can be easily understood and establish communications between the parts so
that the overall problem can be handled. In order to accomplish this, two organizational
schemes are utilized: decomposition (partition) and classification (Rao et al., 1993).

Decomposition refers to division of the problem into smaller subproblems that are easier

t This section is intended to illustrate the generic structure and form of knowledge organization and
representation in Meta-COOP. For the specific implementation, the reader is referred to Appendix A
which contains the knowledge base for IDISDPFSS.

37

to solve than the original problem. Each subproblem solution is an integral part of the
overall solution, but is only weakly related to other subproblems. Classification refers to
the grouping of components to solve a subproblem. These components are closely related
to each other. As an over simplified example, if one considers the design of an airplane
and support facilities as the problem, it can be decomposed to design of the airplane and
design of the runway. The design of the airplane is weakly related to the runway in that
the runway must be long enough for the airplane to takeoff and land. However, the
components that contribute to the design of the airplane are much more closely related and

would be grouped together.

In essence, decomposition provides a partitioning of the upper most levels and a
hierarchical knowledge representation. When moving horizontally in the hierarchy,
functional differences are evident. When moving vertically down the hierarchy, increasing

detail is exhibited.

As illustrated in Figure 4.4, Meta-COOP accommodates decomposition by allowing a
problem (project) to be divided into knowledge bases. Each knowledge base contains part
of the solution to a problem. A knowledge base is comprised of one or more units that
further decompose the problem. These units are the structures that Meta-COOP provides

for classification.

38

A unit' is the primary element used to organize and represent knowledge in Meta-COOP.
The unit is analogous to an object in OOP in that both support the combining of data and
methods, instances, encapsulation, inheritance and data abstraction. However, a unit
differs from a class in that data representations and processing are more advanced and
aimed at capturing knowledge and reasoning abilities of experts.

éarﬁplex T
Engineering
Problem

Knowledge-base-1 Knowledge-base-2

~ Unit-1 ~Unit-2. - Unit-3 Unit-4

Figure 4.4 Decomposition of a complex engineering problem.

Figure 4.5 illustrates the header of a unit. Each unit's header must have a declaration
section, Globe - End, and title statement. The declaration creates members and variables
that are in existence for the entire duration of the program and makes them accessible by

all sections of the program. These items are stored in the global fact base. The members

¥ A unit in Meta-COOP is similiar in form to a frame in other systems. KEE™ (Fikes and Kehler. 1985).
However, since when declaring a frame in Meta-COOP. the word unit is stated. the term unit will be used
to describe this knowledge structure in this thesis.

39

are instances of the unit and analogous to instances in OOP. The variables are similar to
variables in FORTRAN and BASIC and must include the data type (integer, real or
string). The title (UNIT) states the unit-name and the knowledge base to which it
belongs. Optionally, the header may contain a component subclass that establishes an
inheritance relationship between units. This inheritance relationship forms a superclass-
subclass hierarchical structure analogous to inheritance in OOP. Thus, subclass

(descendent) units are able to inherit the slots from a superclass unit.

GLOBE

member-name: unit-name;
variable-name: integer, real or string;

END
UNIT: unit-name in_knowledge_base knowledge-base-name;
Subclass: descendent-unit-name;

Slots

End Unit,

Figure 4.5 Structure of a unit's header.
Units are composed of different types of slots. Each slot must have a title that identifies
the type of slot and contain data (attributes), knowledge (rules) and procedure (methods).
Figure 4.6 illustrates one type of slot: an attribute. An attribute describes a characteristic

of the unit. An attribute is similar to a constant or variable in OOP where it is assigned a

value. An attribute differs from a constant or variable since it has three facets: valueclass,

40

inheritance and value. The valueclass records the data type (integer, real or string). The

the data.
MEMBERSLOT: Max_press from user_input,
Inheritance: OVERRIDE . VALUES,
Valueclass: real;
Value: Unknown,
End Slot, o

Figure 4.6 Example of an attribute

As illustrated in Figure 4.7, a second type of slot, similar in structure to an attribute slot,
contains the name of an instance of a unit in the facet's valueclass. This type of slot is
employed to graphically display the decomposition structure of a problem to a user and

will be illustrated in Chapter 7.

MEMBERSLOT: Max_press from user_input,
Valueclass: initial_check;
Value: Unknown;

End Slot, - e

Figure 4.7 Example of a decomposition slot.

Figure 4.8 illustrates another type of slot: methods. More than one method can be
attached to a single slot. To specify the slot as a method slot, the facets inheritance and

valueclass are set to METHOD and METHODS, respectively. The methods themselves

) 41

consist of three parts: header, declaration and body. The header section contains the
method name, "choose_method", and a keyword, "choose", used in the message sending.
The declaration section is where the local variables (e.g. "x") and their types (integer, real
and string) are specified and stored in the local fact base. In contrast to global variables,
local variables only exist during execution of the method and expire on termination of the
method. The body is implemented in a language that is a subset of the computer language
Pascal and contains two additional statements for message sending and invoking symbolic
reasoning. The syntax of the message sending statement is as follows:

send ("check") to "initial_check";

follows:
reason(_FRAME,"check_rules"),
where _FRAME is a variable that is replaced by an instance of the unit; and check_rules is

the memberslot that contains the rules.

The methods in a unit perform the same function as the methods in OOP. They are
algorithmic type programs that contain mathematical expressions, control commands and
message sending. However, methods in a unit differ from those in OOP in that unit

methods can invoke rule slots to perform symbolic reasoning.

MEMBERSLOT: choose_method from flowmeter,
Inheritance: METHOD,
Valueclass: METHODS,
Value: choose_method,

End Slot;

METHOD choose_method (choose keyword)

VAR
x: integer;

BEGIN

send ("input flow_data") to "req",

_FRAME .initial_check:="initial_check",
send ("check") to "initial_check";

if initial_check.check<>"fail" then

begin

end,

END.

Figure 4.8 Example of a method slot.

Illustrated in Figure 4.9 is a rule slot. A rule slot presents expert knowledge and reasoning
in the form of a production system. A production system stores knowledge symbolically
in rules. Each rule has two elements: a premise (fact) and conclusion (then). The premise
is the conditional or test element and can contain logic operators ("and” and "or"),
inequalities (>, <, >=, <=, <>) and equality (=). If the premise is true, the rule is said to
fire and the conclusion is executed. The conclusion is one or more assignment statements
and can contain arithmetic operators (+, -, x, +). The symbolic reasoning proceeds by

inference through the rules.

43

MEMBERSLOT: check_rules from initial _meters check,

Inheritance: OVERRIDE VALUES,
Valueclass: RULES,
Value: {
rule |
then _FRAME.check="fail"
_FRAME.check_default="fail"
rule 2
fact req.Max_temp>=93.33
req.Max_press>=5830.0
then FRAME.check="fail"
_FRAME.check_default="fail"

End Sl(:tfzm

Figure 4.9 Example of a rule slot.

44

Chapter §

Individual Software Packages

The first four chapters in this thesis defined the problems in differential pressure flowmeter
selection and sizing, discussed expert systems types and the concept of integrated
distributed intelligent systems, as well as presented the Meta-COOP environment. In the
following three chapters, the implementation techniques for IDISDPFSS (integrated
distributed intelligent system for differential pressure flowmeter selection and sizing) will
be discussed. This chapter presents the individual software packages that have been
integrated. Chapter 6 describes the communication between heterogeneous computer
hardware platforms and operating systems. Chapter 7 discusses the IDISDPFSS interface

and provides an illustrated demonstration.

The concept of IDIS involves the integration of software packages that have already been
developed for specific purposes. Such an integrated environment is controlled by a meta-
system. This integrated environment can solve more complex problems that are difficult to
be solved by the individual packages separately. Before discussing IDISDPFSS, the
following terminology in this chapter is defined:

In-house developed software: This is software developed by the author for a specific

purpose using a high-level programming language e.g. C or FORTRAN.

45

Commercial software package: This software is developed by a commercial company for a
specific purpose and distributed to users. The users often obtain an executable file and
formulated input/output files.

Al tool: This is an expert system development environment for building an expert system
for specific purposes.

Coupling system: This is an independent expert system developed using an Al tool that

combines symbolic processing and numerical computations.

IDISDPFSS integrates in-house software, two commercial software packages, and a

coupling system. The in-house software, MEM 1.0, for sizing MEM (Meter Equipment
Manufacturing, Inc.) variable area flowmeters was developed by the author. Two

system can implement selection of viscosity models and prediction. In this chapter, the
capabilities and key features of these individual software packages that are integrated in

IDISDPFSS are presented.

5.1 Variable Area Flowmeters

In order to size the variable area flowmeters, an autonomous computer program (MEM
1.0) has been developed based on mathematical equations supplied by the Meter
Equipment Manufacturing, Inc. (MEM). These equations convert a flow rate at operating
conditions to a flow rate at MEM base conditions. Once the flow rate at MEM base

conditions is calculated, it is used to determine the proper size of flowmeter.

46

There are three equations, each for different types of applications, the choice of which
depends on the state and composition of the fluid. If the fluid is in a liquid state, equation
5.1 is applicable for all compositions. If the fluid is in the gas state and not steam,

equation 5.2 is selected. In the case of steam, equation 5.3 is applied.

_ da(df - dm)
Om = 08, n(dF — da) G-

where Om is the flow rate (U.S. GPM) at MEM base; (Ja is the flow rate (U S GPM) of
the liquid to be metered at operating conditions, da is the density (Ib /. 3) of the liquid
being metered at operating conditions; df is the density (Ib./ft 3) of the flowmeter float;

and drm is the density (Ib./.3) of the liquid at 70°F and in standard atmosphere

Omy =0, x0.465x |08 Te (5.2)
¢4 4 Pg

where Omy is flow rate at 70°F and 100 psig; Qp is the flow rate of gas to be metered at
operating conditions (SCFM), SGg is the specific gravity of gas (relative to air) to be
metered at 70°F and 14.696 psia, Ty is metering temperature (Rankine), and Pg is

metering pressure (psia).

Os =0mgx JSv x0.17 (5.3)

where Q; is the required MEM meter capacity (SCFM), Om, is the flow rate (Ib /hr) of

steam; and Sv is the specific volume (ft.3/1b.).

47

In order to query a user for information, calculate the MEM flow rate based on the above
equations, and display results, a computer program with a multi-window user interface has

been developed. The program utilizes C-WIN (1993) version 1.0, a public domain

®t While C-WIN provided routines to develop a windowing interface, it did not possess
the capability to identify the user's keyboard input and control cursor movement.
Therefore, it was necessary to add this functionality. A copy of the source code for the

main program is presented in Appendix B.

Although there are other packages for developing window applications, C-WIN is chosen
for five reasons. One reason is the cost since it is free. Another reason is that the package
does not make any calls to special graphic routines. This is important because of the
communication set up between Meta-COOP and the program, which will be discussed in
Section 6.1.1. The third reason is that the package could run on many different models of
personal computers and display screens without difficulty. The fourth reason is that since
the source code was available, it was possible to add the required keyboard functionality.
The fifth reason is that there is no copyright protection on the package. Reasons three
through five are important because the sizing program, complete with source code, is to
be supplied to MEM for possible further modification and distribution for a PC hardware

platform and DOS operating system.

* For the remainder of this thesis, the Disk Operating System (DOS) of either Personal Computer (PC) or

Microsoft (MS) will be simply referred to as DOS.
48

5.2 V-Cone Flowmeters

For sizing the V-Cone flowmeters, Ketema/McCrometer Division supplied a commercial
software package, V-Cone version 3.1. Since this software package contains proprietary
information, only the executable code is available and is to be used without modification.
This package was written in BASIC for IBM personal computers and compatibles running
DOS. V-Cone 3.1 queries the user for input and based on this information calculates one
of the following: inside diameter of the pipe, flow rate, size of cone or generated

differential pressure.

The user interface is a single display screen with multi-sections, each displaying specific
information. One section enables the user to specify requirements, to display them in the
other sections, and to initiate commands. This section has five components. The ID &
Order accepts the meter identification name, tag number, customer name and computer
and saving files, clearing data and initiating calculations. The "Rate & Diff " Pressure
allows values to be entered for these two parameters. The "Meter Specifications" enables
the style of meter, pipe and cone size, and flow turndown to be specified. The "Fluid
Specification” is where fluid properties such as temperature, pressure, density and

viscosity are entered.

In order to assist the user with the determination of the fluid's density and viscosity, the
program has the capability to estimate these values for some fluids. For water, steam and
air, the program can estimate both the density and viscosity at the specified temperature
and pressure. For liquids other than water, if its molar mass and critical temperature and

pressure are known, the density can be estimated but not the viscosity. For a gas, if it is

49

one of the 21 gases (e.g. CL,, He, NH; or CO,) in the database or if its molar mass,
critical temperature and pressure are known, both the density and viscosity can be

predicted.

53 Flow Nozzle and Orifice Plate Flowmeters

The ASME flow nozzles and concentric orifice plates with flange taps are sized using the
same package: FLOWEL 2.0 a commercial package donated by Kenonic Controls Ltd.
This package also has the capability to size concentric orifice plates with pipe, corner or
radius taps; quadrant edged, segmental, eccentric and restriction orifice plates; classical
venturi tubes with rough-cast, machined or rough welded sheet-iron convergent; ISA
1932 flow nozzles, ISO venturi nozzles (Wilcox. 1988). However, because the
IDISDPFSS only considers two types of flowmeters contained in FLOWEL 2.0 and the
extensive features of the program, only a very brief description* will be given including

features relevant to this thesis.

FLOWEL 2.0 has a multi-window user interface which prompts the user to supply
information. The information is contained in two main sections: "The Main Program
Screens” and "The Setting Screens”. The main program screens are a series of six
sequential screens that collect and display requirements, such as temperature, pressure and
viscosity and the calculated results. The results can be calculated using three different
methods: American Gas Association (AGA) 3, International Organization for
Standardization (ISO) 5167 and General Application. The choice of method is based on

the application and user preference. The setting screens, of which there are eight, differ

! For a more detailed description the reader is refered to Wilcox (1988).

50

from the main program screens in that the user need not enter these screens for some
applications, and information contained in these screens is not displayed to the user prior
to performing calculations. Four of the setting screens are used to input data for density

and compressibility calculations (Wilcox, 1988).

The density of a fluid can be entered manually or calculated using one of eight methods.
The selection of which method to employ is based on the state of the fluid, information
available and user preference. For liquids, only one method is applicable and requires the
specific gravity of the liquid. For gases, three methods (ideal specific gravity, molar mass
[molecular weight in the program] and real specific gravity), all based on the ideal yas law,
factor and either a specific gravity or molar mass. There are also four other more
sophisticated procedures to calculate density and compressibility factor. Besides
temperature and pressure, these methods require the fluid's composition. Two of the
methods, Wichert-Aziz and Redlich-Kwong, require the complete fluid composition while
two others, AGA 8 and NX-19, can use the complete composition or only key component

compositions with specific gravity and/or heating value (Wilcox, 1988).

5.4 A Coupling System for Selection of Viscosity Models and Prediction

The viscosity is an important fluid property used in many engineering applications that
involve fluid movement (Peng and Vermani, 1987). In flowmeter selection, it is required
to calculate the Reynolds number which is one of the key factors in determining the
applicability of variable differential pressure flowmeters such as V-Cones, flow nozzles
and orifice plates. However, accurate determination of a fluid's viscosity may not be an

easy task. Therefore, a coupling system has been developed that can not only select an

51

appropriate viscosity model for a specific fluid but also predict the viscosity of the fluid

based on the selected model.

Although a fluid's viscosity can be determined from literature sources or experimental
results, the primary source is model-based methods. Literature sources are limited in the
fact that the values for a complex fluid multi-component mixture at a specific operating
temperature and pressure may not be available. Experimental results suffer from the fact

that they are time-consuming and expensive to perform. Model-based methods are

programming languages and can predict values for simple and complex fluids over a wide

range of temperatures, pressures and compositions.

Over the years, based on different theories, many investigators have developed a number
of viscosity models. However, no one model is capable of reliably predicting the viscosity
of all the diverse fluids encountered in engineering applications (Peng and Vermani,
1987). The various models, in general, can be grouped into two major categories: (i)
empirical correlation and (i) corresponding state principle. Basically, the models, such as
Jossi et al. (1962), Dean and Stiel (1965), Tham and Gubblins (1970), etc., developed by
empirical correlation are limited to narrow ranges of temperature and pressure, and often
to a simple pure fluid. Thus, they cannot be applied to such practical cases as a petroleum
liquid, polymer solution, etc. The other models, such as Ely and Hanley (1981), Pedersen
and Fredenslund (1987), etc., are based on the corresponding state principle in which the
properties of the fluid of interest are evaluated with respect to a given simple reference
fluid. These models are reliable in estimating the viscosity of complex mixtures/fluids as
well as simple fluids. However, it is not worth using these methods to predict the viscosity

of a pure, simple fluid for the following reasons: (i) Usually, the performance is time-

52

consuming due to the complexities of these models. (ii) The models based on empirical
correlation can also produce reliable results for those simple fluids while repetitious
calculations are usually not encountered with these methods (P. Du, personal

communication, Mar. 1993).

Since the task of viscosity prediction is specialized, most engineers are not knowledgeable
in all the viscosity prediction methods, their limitations and the varying computational time
requirements. While these non-experts may choose a method based on familiarity or
availability, experts base their selection more on the specific application (Gani and

O'Connell, 1989).
S.4.1 Numerical computations

This‘5 coupling system can select one of three viscosity models, Dean and Stiel, Ely and
Hanliey, Pedersen and Fredenslund, and uses the Peng-Robinson (P-R) equation of state
(Peng and Robinson, 1976). These numerical routines, contributed by Dr Pin Du, an
associate of Dr. Rao, are written in FORTRAN and require the temperature, pressure and
composition of the fluid. The composition can be any combination of the 25 components
(Cy, Gy, Gy, iCy, nCy, iCs, nCs, nCg, nC, nCy, nCy, nC,y, N3, CO,, H;S, toluene,
benzene, cyclohexane, H;O, H;, CO, NH3;, CH;0H, He, Bitumen) available and the

corresponding mole fraction.
5.4.1.1 Peng - Robinson Equation of State (1976)

Before selecting a viscosity model, a fluid's thermodynamic state (i e. liquid and/or gas)

must be determined. For pure fluids this can be an easy task, but for more complex

53

mixtures it will be more difficult. Also, when calculating the viscosity using a model such
as Dean and Stiel, the fluid's specific volume is required. Therefore, an equation state,

such as the P-R, which is capable of reliably predicting this information is valuable.

The P-R is an equation of state capable of accurately calculating a fluid's thermodynamic
state and physical properties (e.g. specific volume) for a wide range of pressures,

two-constant equation of state of the form

RT al) (5.4)
v(v+b)+b(v-b) |

P=-
(v-b)

the absolute temperature, v is the specific volume (units of volume per mole), and a(7) and
b are values determined by the physical properties of individual components in the fluid.
To calculate the values of a(7) and b, the critical temperature and pressure, molar mass
and Pitzer's accentric factor for each component along with binary action parameters, all

contained in a database file within the program, are required.

In this thesis, this equation of state also provides the added value of being capable of
predicting the density and compressibility factors. These values can be used by the
flowmeter sizing programs that have no means to generate their own, such as MEM 1.0.
Also, these values can supplement the other sizing programs such as the V-Cone 3.1 and

fluid composition. In the case that both the flowmeter sizing program and the P-R can

54

calculate these values, the values predicted by the P-R can be used to validate the values

calculated by the sizing program.
5.4.1.2 Viscosity models

Three viscosity models are used in this coupling system with each model complementing
the other two. The models complement one another in that for a given fluid one model
can more reliably predict the viscosity and/or more rapidly arrive at a solution than the

other two.

Dean and Stiel (1965) presented a method to predict the viscosity of dense gases and high

temperature liquids. In their method, the viscosity of a fluid can be determined by residual

viscosity, y,‘,’, - i4,,. The residual viscosity of the fluid is defined in terms of the fluid's

reduced density, p,,,, as below:
(9 =)& = 1.08x107*[Exp(1.439,,,) - Exp(-1.1 1;;!,,5‘5")] (5'5)

where 4 is the viscosity (centipoise), & and p are variables dependent on the temperature,
pressure and composition of the fluid; o indicates a reference state, m indicates a mixture,
and 7 indicates a reduced property. In order to calculate ,u,‘,’,. E,n and p,,,, pseudo critical
constant mixing rules are employed using the critical temperature, pressure, volume and

compressibility for each component in the mixture.

This model has been compared primarily with experiment data for hydrocarbon gaseous

nonpolar binary and multicomponent mixtures. This model provides a fast convergent

55

scheme, but it is only valid for a fluid with p,,, < 2. Therefore, it cannot be used in a

multicomponent liquid mixture.

On the basis of an extended corresponding states theory, Ely and Hanley (1981)
developed a model to predict the viscosity of a non-polar fluid mixture. In their model,

viscosity is defined by the following corresponding states model:

3 =2 L
QT [Fem |’ [M |} | Anod TTeo
(A .T)=(J) (—“") ("') y[to- o (5.6)
e 7;9 , Lé‘u Mi:l u,, Am T;:mr‘, d

where u is the viscosity; o is the density; " is the absolute temperature; M is the molar
mass; ¥ is volume, 0 indicates a reference fluid at a very low pressure, ¢ indicates a
critical value, and m indicates a mixture value, The shape factors, £2 and 6, are functions
of reduced volume that must be calculated by the same corresponding states model,
equation (5.6). To predict the viscosity of a mixture, the mixture is first treated as a
hypothetical pure fluid with a given T, o, and M, Then, through the iterative

technique, the shape factors will be calculated to determine the viscosity.

This model was tested on pure hvdrocarbons from C, to C with an average deviation of
about 8% and on a number of binary mixtures with an average deviation of about 7%. If
the components differ substantially in their critical densities or if the temperature of a fluid

is near its freezing point, this model cannot yield very satisfactory results.

Pedersen and Fredenslund (1987) also developed an algorithm to predict the viscosity of a
complex mixture. Instead of using shape factors as in the model of Ely and Hanley, they

proposed a rotational coupling coefficient, a, in the corresponding states model:

56

=1 ! - .
/lm(P. T)__:(Tc‘:m)s(&M)J(Mm)zﬁxya[[ge:uaa Trfuaﬂ] (5.7)

i} F,Em ap ' E‘Iilaﬁi .
where the symbols are as defined previously.

This model has been compared with experimental data for pure and binary mixture
hydrocarbons, and crude oils. It is capable of predicting both liquid and gaseous fluids.
However, it is inferior to the model of Ely and Hanley in predicting viscosity of pure

components and of binary mixtures.
5.4.2 Symbolic reasoning

In order to develop the coupiing system, the commercial Al tool Personal Consultant™
Plus (Anon, 1987) from Texas Instrument Inc. was selected. The reason for selecting this
tool was that it allows for rapid development of an expert system due to its numerous
features. PC Plus, a LISP-based tool, offers features such as programming syntax error

detection; a tracing technique for debugging; an easy to develop user's interface, on-line

help and conclusion explanation; and a backward chaining reasoning mechanism. One key
feature was that it could invoke an external language program such as the P-R and

viscosity routines that are necessary for fast, efficient numerical computations.

57

The knowledge! is captured using frames'* , production rules and parameters. A frame
contains information in two primary groups: rule groups and a parameter group. A frame
may have one or more rule groups, but can only have one parameter group. Rules are the
basic structures used to encode the knowledge and in the form of IF <condition> THEN
<action> statements. In the premise and conclusion .. rules, relationships among
parameters are expressed in algebraic statements, and the symbolic logical of propositional

and predicate calculus. Parameters are assigned either numerical or symbolic values.
Following is an example of a rule used in the decision frame which is shown in Figure 5.1:

IF <visc correlation is not definite>
Then <visc correlation = Pedersen and Fredenslund

and visc correlation index = 3>

If the premise is true, no value assigned to the parameter "visc correlation”, then, in the
conclusion, the parameter "visc correlation” is assigned the symbol "Pedersen and

Fredenslund", and the parameter "visc correlation index" is assigned the numeral "3".
4

t Appendix C contains the knowledge as represented in PC Plus.

' The term frames were used in the PC Plus instruction manual to describe a collection of groups. This is
unfortunate choice of terminology since the frame structure in PC Plus differs significantly from the
frame-based knowledge representation in systems such as KEE and Meta-COOP which is usually
associated with the term frame¢. However, for the remai;ﬁder of this section, the term frame will be used to

describe the knowledge representation structure used in PC Plus.
58

In this coupling system, the knowledge base is organized into a three frame hierarchy
(input, decision and collection, in respective order from top to bottom) with multiple rule

groups. Although this sectioning is arbitrary, it facilitates programming since the smaller

sections are easier to understand than one large section. Also, in most cases, these sections

can be modified without affecting the other sections.

Decision fraing;

"\

Polar components Vapor
or liquid
Pedersen &
Fredenslund
Method 3 or more comp. 3 or less comp. and
undetermined or press. > 10 ATM. press. < 10 ATM
and (no C8. C9.Cl10...) \
/ | \
Pedersen & Ely & Hanley Dean & Stiel
Fredenslund -

Figure 5.1 Decision frame knowledge organization

The input-frame obtains information required for the selection of a viscosity model and
transfers this information to other areas of the program. The frame is divided into three
rule groups. The units-rule group prompts the user to select the system of units preferred,
and to enter the temperature and pressure in these units. The input-rule group prompts the

user to identify the fluid's components and the mole percentage of each component The

write ext-rule group transfers information collected to a data file and invokes the P-R

equation. The P-R equation predicts the fluid's thermodynamic state.

The decision-frame is divided into two rule groups. One rule group allows the user to
choose the desired model. This is implemented so that the different models can be
compared with each other or an external source. The other rule group selects the most
appropriate model based on the fluid's characteristics such as the individual components
present and whether the fluid is liquid and/or vapor. The knowledge used to determine the

most appropriate model for a given fluid was obtained through discussions with Dr. P. Du.
The collection-frame helps the decision-frame collect information determined throughout
simple, there is only one rule group.

For PC Plus to interface with the numerical routines, data files are used as shown in Figure
5.2. This required PC Plus to place information in the files in a form the numerical
routines could access and interpret. In order to accomplish this task, the methods used by
the numerical routines to colleét input has to be altered. Also, the method that the
numerical routines use to display results has to be changed to a form PC Plus could

understand.

User input

_q Input-frame

——

Output to user]‘ﬁ‘

Decision-frame

Data file

P-R program

v

Data file

- ;i,

¥

Data file

Viscosity program

Data file

Figure 5.2 Schematic diagram of information flow in the coupling system

6l

Chapter 6
System Implementation

In developing an IDIS for differential pressure flowmeter selection and sizing, there are
two major obstacles: one is to integrate the individual software packages into an
integrated system, and the other is to organize the meta-system knowledge base for
selecting and coordinating these individual activities. In this chapter, the technique of
integrating the individual programs, building and organizing the content of the meta-

system knowledge base is presented.

6.1 System Integration

Since Meta-COOP version 2.0 is written in C and the source code is available, the
program could be used on any computer system with a C compiler. However, this version
is primarily developed to be run on a computer with a UNIX® operating system and the X
Window System™. With Meta-COOP running on a UNIX operating system and the
flowmeter sizing software as well as viscosity coupling system compiled for DOS, the
challenge is to combine both the heterogenous operating systems and the application

software into a single integrated system.

Before finally choosing a means to integrate these heterogenous software packages, a

number of alternatives are considered. One alternative is to re-write all the sizing

62

programs and coupling viscosity system so that the source code is available. Then,
compile the source code on a UNIX operating system. This alternative is not viable,
however, because the coupling viscosity system would have to be reconstructed using a
different development tool since PC Plus is not known to be available for UNIX; the V-
Cone sizing equations are unavailable; there is already good commercial software for
sizing differential flowmeters available; and finally, this would invalidate a primary concept

of IDIS which is to use existing software in an unaltered form.

Two other alternatives are also considered. One involves writing a number of routines
and using a serial connection between the UNIX-based computer and the DOS-based
computer. The other requires installing the OS/2™ operating system on a PC and using a
network connection between the UNIX machine and PC. Although it may have been
possible to accomplish the objective of system integration using either one of these
alternatives, it would not have satisfied another objective. This objective is to have input

and output from all programs displayed on the same monitor.

In order to achieve this last objective, two other alternatives are considered. One
alternative is to insiall DOS emulation hardware and software on the UNIX machine.
Although this option would satisfy all objectives and eliminate the need for the PC, the
cost is prohibitive. As a result, another alternative is chosen. This alternative involves
installing a commercial software package DESQview/X™ on a PC running DOS and

utilized a network connection between the UNIX machine and PC.

Figure 6.1 presents an overview of IDISDPFSS including the computer programs involved

and which hardware platform and operating system they run on.

63

Workstation/UNIX

o o n m . m — — —— o > e e = - - e o e e e e e e e = e = = =y

Meta-COOP

1
[l
; !
t
t

X-Window f
System :

Flowmeter
Selection

Network
Communication

DESQview/X

+
- - -

Viscosity FLOWEL V-Cone
Coupling

System

Viscosity

Viscosity

Selection Prediction

Personal Computer/DOS

Figure 6.1 Overview of IDISDPFSS integration.

64

In the following three sub-sections, the equipment used, software/operating systems
involved and introductory concepts in network communications and the X Window
System will be presented. The first sub-section will deal with the UNIX machine while the
second sub-section will describe the DOS PC. A third sub-section will present detailed

information on the communication implementation.

6.1.1 Hardware, software and UNIX operating system

Meta-COOP is run on a Sun® SPARC™ I+ workstation (computer) within the

Intelligence Engineering Laboratory in the Department ot Chemical Engineering at the

and a one gigabyte hard drive. The monitor is a 16 inch color graphic display. The
operating system is SunOS™ 4.1.3. This operating system uses the transmission control
protocol/internet protocol (TCP/IP) network protocol. It is a UNIX type and contains
User Interface (GUI) based on the X Window System. The "look" of the interface is
designed to the OPEN LOOK™ specification.

SunOS 4.1.3, like all UNIX type operating systems, is designed to be multi-tasking. A
multi-tasking operating system allows different programs/processes to run concurrently.
As an example, a user may run any numerical computation program, while editing a text
file. Incontrast, a single task operating system such as DOS allows only one program at a
time to run. In other words, a program must be run until it is finished before another
program can be initiated. Using the above example, the numerical computation program

would have to be terminated before the user could start editing the text file.

65

"The X Window System is hardware-independent and operating system-independent
graphics standard designed to operate over a network..." (Radcliffe, 1992) in a multi-
tasking operating system. As an example, the X Window System is capable of running on
hardware architectures such as HP 9000, IBM R6000 and, in the present study, Sun
SPARC 1+ station and IBM compatible PC. Also, the X Window System operates with
the corresponding multi-tasking operating systems: HPUX, IBM AIX and, in this
implementation, SunOS 4.1.3 and DOS with DESQview/X.

The X Window System provides the capability to develop a GUI through which
information can be passed between the user and program. GUIs usually provide nicer
looking interfaces and are easier to work with when supported by a mouse than the

traditional text or character-based interfaces.

In order for the X Window System to display the user interface of any software package,

the system must be able to interpret all commands the package uses to display information

System. This is why the windowing package chosen to develop MEM 1.0 could not use

special graphic routines.?

A network is a configuration of computers that are connected for the purpose of passing

! For a more complete presentation of the X Window System employed on the PC in this work. the reader
is referred to Radcliffe (1992).
66

they must communicate in a way that is understandable by many different types of
hardware architectures and operating systems. As a result, network protocols such as

TCP/IP have been developed, which are independent of hardware architectures and

Network protocols differ from communication packages such as Kermit in that they allow
multi-tasking machines to pass information among the various tasks running concurrently.
In contrast, a computer running Kermit without a network protocol® is limited to passing
information only through Kermit. The advantage of passing information amony various

tasks running simultaneously will be illustrated in Chapter 7
6.1.2 Hardware, software and DOS

The flowmeter sizing programs and viscosity coupling system are run on an IBM
compatible PC. The central processing unit (CPU) is a 486 operating at 33 megahertz.
The computer has 8 megabytes of RAM, a 210 megabyte hard drive and is connected to
the network by an Ethernet card plus elite 16 Series and TCP/IP The operating system,

as previously mentioned, is DOS.

Since DOS is only a single tasking operating system and a multi-tasking environment is
required in order to utilize a network protocol and the X Window System, DESQview/X,

a commercially available software package, was installed on the PC. DESQview/X runs

' On a multi-tasking machine with a network protocol, one of the tasks that may be running 1§ a

communication package such as Kermit.

67

on top of the DOS and converts the PC from a single tasking operating system into multi-

tasking environment with the added advantage of providing the X Window System.

DESQview/X is analogous to the more familiar Microsof® Windows™ except that the
GUI in DESQview/X is the X Window System rather than the GUI developed by
Microsoft. DESQview/X consists of three components: the Quarterdeck expanded
memory manager-386 (QEMM-386™) which controls the expanded RAM, the DESQview
package which works with QEMM-386 to provide the multi-tasking environment; and
/X" which provides the X Window System capability. In addition to this software, other
software required is the DESQview/X network manager to other X Systems TCP/IP

option and Novell® TCP/IP Transport for DOS.

While the above software combination provides many advanced features', the key
applicable feature to this thesis is that the IDISDPFSS is able to initiate the flowmeter
sizing programs and the viscosity coupling system on the PC, yet display these programs'
interfaces on the Sun monitor which is connected to where the IDISDPFSS is running.
Also, once the PC programs are running, they can receive information entered from the

Sun workstation.
6.1.3 Remote execution of programs
In order to make the execution of the PC programs transparent to the user, the process of

remotely executing and locally displaying these programs has been automated. This has

been accomplished by configuring database files on both the Sun SPARC station and PC.

t The interested reader is referred to Radcliffe (1992) for a complete description of all available features.

68

In this section, the database files that must be configured and the commands to execute the

PC programs are described.

In network communications, when two computers wish to exchange information, the
computer address of each computer must be specified. An address is of the form
XXX.XXX.XxX.xxx where each group of xxx is a number from 0 to 255. Since this address
may be difficult to remember, the computer address can be associated to a name. This is
accomplished by an entry placed in the database file "hosts". An example of an entry in a

host file, on the Sun computer, is given as follows:

129.128.56.30 raos

Thus, a user can specify rao5 as the computer to communicate with rather than

129.128.56.30.

In order for a program run on a remote computer to use the initiating (local) computer's
monitor, permission must be granted by the local computer. This permission is given by
executing the command "xhost". In the current case-study, the command "xhost +rao5" is

automatically issued prior to entering the [IDISDPFSS on the Sun computer

One UNIX command (there are others) to initiate a program on a remote machine and
display on the issuing machine's monitor is "rsh”. This command is chosen because it
requires only one line of input and a minimum number of parameters. The form of the

command is

rsh HOST -l USER Program_name

69

where HOST is the name of the remote computer, -l specifies that the following argument
is the name of a "USER"; and "Program_name" is the name of the program to initiate. In
this case-study, the HOST name is raoS and the USER's name is "murray”. The USER's
name has been specified in a database file on the remote machine and not necessarily the

name of the person running IDISDPFSS. The Program_name is the name of the program

sizing program on the PC from the Sun computer the following command has to be

entered:

For this command to be successfully received on a machine running DESQview/X the rsh

option must be enabled.

executed on the PC but one assigned by DESQview/X's DVP (DESQview program)
manager. The DVP is used to create an information file that contains system requirements

for each DOS-based program required. This information file enables DESQview/X to run

to execute the program directly from another machine rather than issue an extra

command.

70

6.2 Building a Knowledge Base

When building a knowledge base, no matter whether it is for a meta-system or expert
system, there are two types of knowledge that can be employed. One type is public
knowledge (Rao and Qiu, 1993). This knowledge is contained in books and articles, and
readily accessible to the public. As an example of this in flowmeter selection, it is
generally stated that flow nozzles can only be used with two inch or larger nominal

diameter pipe (Ginesi, 1991, Danen, 1985).

The other type of knowledge that can be employed is private knowledge (Rao and Qiu,
1993). This knowledge is possessed by experts in a field. This type is applicable to
solution of a real-world problem. Using the above flow nozzle example, although flow
nozzles can be manufactured for two inch nominal diameter pipes, in most cases, they are
only practical for pipes six inches and larger because of the difficulty in locating the

pressure taps.

When building a knowledge base, personal experience can be applied to simplify the
solution of a problem. While the simplified solution is less accurate than that obtained by
more rigorous methods, the time required to reach it is reduced. An example, in
flowmeter selection, the amount of straight pipe length upstream and downstream of the
flowmeter required to obtain an accurate measurement depends on the pipe fittings and
their configuration upstream and downstream of the variable differential pressure
flowmeter (Miller, 1983). However, it is generally accepted that straight pipe lengths of
10 pipe diameters upstream (Hasley, 1986) and S pipe diameters downstream are

sufficient.

71

Another point to consider when building a knowledge base is the amount of time required
to search the problem space before reaching a solution. In order to reduce this time,
heuristics are employed. Heuristics are the shortcuts, rules of thumb or strategies that
experts use to reduce the time to reach a solution. Heuristics can be employed in two
ways. One way is not to include irrelevant knowledge. For example, if designing an
IDISSDPFSS for use in North America, ASME flow nozzles need only to be included as
they are the mostly commonly used in North America. However, if the IDISDPFSS is
intended for use in Europe, ISA flow nozzles should be included and ASME flow nozzles
excluded. The other approach is to use heuristics to reduce the problem space as quickly
as possible based on the available information. In IDISDPFSS, this is accomplished by
performing an initial check based on the user's requirements to determine if any of the

flowmeters are applicable.

From this presentation, the reader might gain the impression that public and private
knowledge, experience and heuristics and their utilization in IDISDPFSS may not always
provide the appropriate solution. And the reader would be correct. However, for the
majority of applications, the IDISDPFSS will select the most appropriate flowmeter based

on a limited number of specifications.

6.3 Selection Methodology

The methodology employed by the IDISDPFSS is based on the general two stage
procedure presented in Section 2.4. Using this methodology, all the flowmeters are
initially considered appropriate for each application. Then, on the basis of the user's
requirements, inappropriate flowmeters are eliminated. This is opposed to initially

considering no flowmeters as applicable and then selecting flowmeters that are

72

appropriate. The former method is preferred because one factor can eliminate a particular
type of flowmeter but many factors must be considered to determine if a flowmeter is
applicable. As an example, if a fluid contains particulate matter, the orifice plate is an
unsuitable candidate and can be disqualified. However, based only on the information that
fluid contains particulate matter, the V-Cone, which can tolerate particulate matter, cannot

be considered applicable until other factors are investigated.

6.4 Knowledge Base Organization

The meta-system knowledge base for IDISDPFSS contains over 50 memberslots and 50
rules, as given in Appendix A. These memberslots and rules are distributed into eight
knowledge bases to facilitate maintenance and modifiability by providing smaller sections
that are easier to understand than one large knowledge base. Also, each knowledge base
contains only one unit and one method, thus minimizing any confusion about where a

message is being sent.

Of the eight knowledge bases, only the flow_req.kbs is not directly associated with the
other knowledge bases. The flow_req kbs contains all the user's requirements used in the

selection process. The user's requirements are contained as memberslots and therefore are

The other knowledge bases are arranged using decomposition. This organization takes
advantage of the graphical display capabilities of Meta-COOP as will be illustrated in
Chapter 7 and is used to facilitate maintenance and modifiability. Ease of maintenance and
modifiability is achieved by distributing specific functionality into different knowledge

bases. As an example, the knowledge for determining which of the four flowmeter types

73

are applicable is contained in four separate knowledge bases, one for each type of
flowmeter. Therefore, if one wishes to change the selection criteria for a specific

flowmeter type, only one knowledge base need be altered.

The top or root knowledge base, flow.kbs, is decomposed into six knowledge bases as
shown in Figure 6.2. The method slot in flow.kbs is where the first message is sent when
the process of meter selection is invoked by the user. Flow.kbs is the controlling
After each of these knowledge bases has finished its processing, control is returned to
flow.kbs. Using Figure 6.2 in order to illustrate this control scheme, a message is sent
from flow.kbs to flow_check kbs which upon completion returns control to flow. kbs.
Flow.kbs then in-turn sends a message to flow_var_area kbs and so on. By passing

control in this manner, if a new flowmeter type is to be added to the selection process,

only one message statement has to be added to flow kbs.

The first knowledge base that flow.kbs sends a message to is flow_check.kbs. The
function of this knowledge base is to determine whether any of the flowmeter types are
applicable. This knowledge base differs from the knowledge bases containing selection
criteria for the individual flowmeters in that if the user's requirements are greater than the
specifications in this knowledge base, the selection process terminates without proceeding
to the other knowledge bases!. As an example, if the nominal diameter pipe size is less

than 1/2 inch, the selection process is terminated because none of the meters are generally

t It is possible for the selection process to proceed to the individual flowmeter knowledge bases but

determine that no flowmeter is applicable.

74

manufactured in a size smaller than this. This knowledge base saves the user's time by not

searching the other knowledge bases if no flowmeter will meet the requirements.

flow_check.kbs

flow_var_area.kbs

flow_vcone kbs

flow kbs —
— — flow_nozzle kbs

IDISDPFSS

flow_req.kbs

flow_orifice kbs

flow_eval kbs

Figure 6.2 [llustration of meta-system knowledge organization for IDISDPFSS

The flow_var_area kbs, flow_vcone kbs, flow_nozzle kbs and flow_orifice kbs knowledge
bases each contains criteria to determine whether the particular flowmeter type will meet
the user's requirements. Each knowledge base contains four memberslots. Two of the
memberslots store the result of the selection process with one slot used to display the
result graphically for the user as presented in Chapter 7. One other memberslot contains
the method to which the message is sent from flow kbs. This slot invokes the processing
of the symbolic knowledge contained in the rule slot to determine whether the specific
flowmeter type is applicable based on user's requirements. The number of rules contained

in the slot varies with the type of flowmeter. The knowledge bases for the flowmeter

75

types that have a narrower scope of applicability such as the variable area and orifice plate
contain more rules than the knowledge bases for the more generally applicable flow nozzle
and V-Cone. The number of rules contained in the variable area, orifice plate, flow nozzle

and V-Cone knowledge bases are 17, 9, 8 and 6, respectively.

The knowledge base flow_eval kbs determines the ranking of the flowmeters deemed
applicable during the selection process. When developing this knowledge base, many
factors related to the cost of employing a particular flowmeter in a specific application are
considered. For example, it may be asked if the flow nozzle and V-Cone have a broader
range of applicability and can generally be used in place of the‘ variable area and orifice
plate flowmeter, then why should one consider these latter two devices. One reason is
that the initial cost of a variable area or orifice plate is less than that for flow nozzle or V-
Cone for the same application. In general, for the four flowmeter types, with respect to
initial cost, the order from lowest to highest is the MEM variable area meter, orifice plate,
flow nozzle and V-Cone. It might be argued that an orifice plate is less expensive than a
variable area flowmeter but when the cost of ancillary equipment such as valves, flanges
and a differential pressure indicator are included, the cost of the orifice plate is more
expensive. Another reason is that operating costs such as maintainability, reliability and
permanent pressure loss must be considered. However, when comparing the MEM
variable area, orifice plate, flow nozzle and V-Cone, these can be considered negligible.
As for maintainability, because of the MEM flowmeter construction, it requires little
maintenance. Also, while the orifice plate generally requires more maintenance, due to
wear on its sharp edge, than the flow nozzle and V-Cone, the cost of this maintenance has
been minimized by not selecting the orifice plate for harsh (particulate matter, erosive or
corrosive fluids) applications. With regards to reliability, all four flowmeters are similar -

all of them are not subject to sudden failure. As for permanent pressure loss, the variable

76

area meter is generally the lowest of the four meter types with the orifice plate, flow
nozzle and V-Cone generating about the same permanent pressure loss for the same

generated differential pressuret.

On the basis of the above information and with the objective of lowest overall cost, the
flowmeters in flow_eval kbs are ranked in order of preference as follows: MEM variable

area, orifice plate, flow nozzle and V-Cone.

t Although intuition would suggest that the flow nozzle. because of its contoured shape. should cause
much less permanent pressure loss than the orifice plate, this is not correct. The reason is that for the
flow nozzle to generate the same differential pressure at the same flowrate as the orifice plate. the flow
nozzle passes the fluid through a smaller aperture than the orifice plate. Conscquently. the flow nozzle

and orifice create about the same permanent pressure loss (Mitler, 1983).

7

Chapter 7
IDISDPFSS Interface and Demonstration

The IDISDPFSS user/developer interface is menu driven and customized from a more
general Meta-COOP interface. The customization involves the deletion of some
inappropriate buttons and the addition of some new buttons specific to the process of
flowmeter selection and sizing. The buttons that are added must be connected to the
desired functionality which requires modifications to Meta-COOP's source code. The
resulting main menu is illustrated! in Figure 7.1.

(5 101S for Differential Pressure Flowmeter Selection and Sizing

Manager =, Require..; Selection.. : Fluidprop... ; Size T

T All figures in this chapter are hard copies from the Sun SPARC station monitor.
78

which contains additional buttons. When pressing the left mouse button, the buttons
"Require ...", "Selection ..." and "Fluid prop. ..." display a window which will require a
user's response. When pressing the left mouse button, the "Exit" button performs an

action without further user input.

The "Manager" button is intended to be used by the meta-system knowledge base
developer and is standard function of Meta-COOP. This button displays a pop-up menu
containing two other buttons: "File Manager" and "KBS Manager". The "File Manager"
button displays a window that allows the developer to load and edit the knowledge bases
(ASCII files). The KBS Manager button displays a window that allows the developer to

load different knowledge bases and compile them.

The "Require" button displays the requirements which the user enters before proceeding
to the flowmeter "Selection" process. Figure 7.2 shows the nineteen requirements which
are displayed using a scrolling v ndow. The requirements can be entered manually or
loaded from a file. A file, which has the extension req, can be chosen from the "Require
File Name List" by positioning the pointer on the name and clicking the left mouse button.
Alternatively, a file name, not required to have the extension req, can be typed into the
"File Name" area. In either case, the file is loaded by positioning the pointer on the
"Load" button and pressing the left mouse button. Once a file has been loaded, the
requirements can then be edited by positioning the pointer on a requirement's "Value "
area and typing the appropriate data. To assist the user, each requirement states the
"Datatype" expected: string, integer or real. In the case of string data types, a list of
expected values is given next to the area marked "Choices". If beside the "Choices" area a

V exists, an appropriate value can be selected by placing the pointer on the V and

79

Figure 7.2 User defined requirements.

80

ager

="
=
g
)
£
aw .
8- &
@:::
R.

inued

2a Conti

7

igure

F

Figure 7.2b Continued.

82

Figure 7.2¢ Continued.

83

Requirement Manage

Figure 7.2d Continued.

84

from which to select as shown in Figure 7.3, In the case of "yes" or "no" values beside the
"Choices" area, the value is entered by typing either “yes" or "no" next to the "Value"
area. To assist the user with integer and real data type requirements, each requirement
states the "Units" in which the value is to be entered and in many cases a range of
acceptable values is shown. For integer data types no decimal point is included and for
real data types a decimal point must be included. No matter how the requirements are
loaded, the information must be transferred to the "flow_req.kbs" knowledge base by
positioning the pointer on the save button and pressing the left mouse button. The "Quit"

button removes the requirement display.

After completing the requirements, the process of selecting an appropriate flowmeter is

initiated by placing the pointer on the "Selection" button on the main menu and pressing

displayed. The area in the top right displays the results of the intermediate steps in the
selection process. Interpreting Figure 7.4, the memberslot “req Reynolds_no" has been
assigned a value of 119463.722812" as displayed in the statement “(1) req Reynolds_no =
119463.722812". The statement "Rule 42 has done"** indicates that this assignment is
performed by rule 42 in the knowledge base. At this point, the user may display the
statement that determines this value, alter the value itself or proceed with the selection
process. To display the statement, the number to the left of the assignment statement, in
this example "1", is typed into the area right of the "Explain/Modify Item:", located at the

bottom right of Figure 7.4, and the "Why" button activated by positioning the pointer on

t The author has no control over the number of significant digits displaved.
** The author has no control over the wording of these statements.

85

menu,

pop-up

ices"

3 "Cho

igure 7

F

‘mopuim ssasoud uonoape

S "L 3andy

: afessaw

T osanfes man

ISSR|IIN|EN Wwayy

saray AJypopw,mre)dxy

o

Thppow. { Aum renunuod’

ane BUOD SEY) ENDIITINGUL POYIH csw

wee BUOD SEY Zb B|NY wee

ZIOZZL EIPELL ~ OUTSPlOUARy-bAs (1)
——mmmeeee SYIRY 306 BARY B ~wemmamm—-

ensennns oS [NITAIY DALy onesons

2apRule)|Y § ees) uBiseg

x
R e R A RO R .

[

this button and pressing the left mouse button. This results in the statement that
determines the value of the memberslot to be displayed, as shown in Figure 7 5 for rule
42. To alter the value, the user types the number to the left of the assignment statcment in
the "Explain/Modify Item:" area and activates the "Modify" button. This results in the
value class of the item being displayed in the area to the right of "Item Valueclass " The
user is then required to enter a new value into the area right of the "New Values :* and
activate the "Done" button. The user proceeds with the selection process by activating the
"Continue" button. The statement "Method input_require has done" below the "Rule 42
has done" statement indicates that a message is sent to this method and the method has

been completed.

--> req.Reynalds_no = 119463.722812 is justified by

req.Max_flowrate = 130.000000
req.Pipe_id = 2.900000
req.viscosity = 0.486000
reg.Density = 841,299988
reg.Turndown = 3,000000

rule 42
rule 42

fact reg.Hax_flourate)O.o
req.Pipe_1d>0.0

and req.Viscosity>0.0
and req.Density>0.0
and req.Turndovn>0.0
then _FRAME.Reynolds_no:=req.Max_flovrate®*req.Density*3. 1EDIraq p
| pa_id/req.Viscosity/req. Turndown;

] &

Figure 7.5 Example of explanation feature.

88

Although the user can determine the conclusion of the selection process by interpreting the
displayed statements as described above, the knowledge bases of IDISDPFSS are
developed so as to take advantage of Meta-COOP's graphic display capability. Thus, the
final results are displayed in a graphic form. While the graphic form does not indicate why
a specific flowmeter is selected or disqualified, as the statements can, the graphic
representation does provide the conclusions in an easy to understand form. Figure 7.6

illustrates the conclusions as obtained using the requirements shown in Figure 7.2.

The "Fluid prop." button startz the viscosity coupling system running on the PC, while
displaying the user interface on the Sun monitor and accepting input from the Sun
keyboard. The coupling system has multiple screen displays of which only two are
illustrated. Figure 7.7 shows a partial list of the components that can make-up the fluid

mixture. Figure 7 8 shows the results predicted for a mixture containing methane, ethane

state, density, viscosity and compressibility factor of the fluid for both phases at the

specified pressure and temperature.

When developing the IDISDPFSS interface, it was decided that the user would be allowed
the option of invoking the coupling system rather than have IDISDPFSS display it
automatically. There are three reasons for this. The first two reasons arc because in many
cases the user would already have the required fluid properties such as fluid state, density
and viscosity, or would not have the complete composition of the fluid, as required by the
coupling system. The third reason is that by providing a button to activate the coupling
system and using the X Window System capabilities and network communications, the
user can have more than one viscosity coupling system running concurrently as shown in

Figure 7.9. This allows the user to run the coupling system with one set of data in one

*e(qeojid

SUOISNIU0d $32301d UO11I3(3s Jo uoneiuasasd owydesn) 97 dandiy

- gheARN

qe 0

90

[

RO
FriF AE

I f T ALE
PeF LT AN

[orinlag
PRELTATE
TRTILS
HOREET A
HoGa T AR
Ve AL
ML AL
TIREREFAT

V1o rethiocd

ety peeshicton ot

Lot Carpemtion,

Fenoed
ety Clene g
b CUInenlo
froy : LT

[R
b

Ty

- Persroon

CTONO00D F
Nﬂn' 1

Uit

S et
R AUAIEEIN ¥
hnhTe

CAE U

Lol
Palyre-n)

S O

Qe edoct the Coegenent fo) 0 yourr mLsture,

’rri(jr r‘I
LA

T4l
G0
PRNEeE

IR AT
[
AR DY RFTEE B
+40

1+
¥

e

]

S0l

Figure 7.8 Results from viscosity coupling system.

91

Vizcosity rethad
city prediction ot

S

recr s ongd
S0 i

21tien, mole froction

Licoaid

Mothare Mo Ul

Ethne A MR

Frcpare

Tty ba/m)
tale frooction .
.8001D0-01

JI00

IRy
RERT I
Frepoe 70000400 007 0+00
SRS
cotion RIS

7 arr
e

ility

l]' iy
REITIE
Sl
10400

LHEG2
LUl
Hodo-01
17120400

NIRRT
RIS T
30300

000+00
At oy

Figure 7.9 Illustration of concurrent usage of viscosity coupling system.

window and then start coupling system with another set of data in another window. Thus,

the user can compare results displayed in the two windows.

The "Size" button, when activated by placing the pointer on the button and pressing the
left mouse button, displays the pop-up menu shown in Figure 7.10 that contains four other
buttons: "variable area", "V-Cone", "flow nozzle" and "orifice plate”. These four buttons
start the individual sizing scﬁw;re packages. Although these packages run on the PC,
their interfaces are displayed on the Sun monitor and they receive data from the Sun
keyboard. Figure 7.11" illustrates the screen in MEM 1.0 where the user selects equation
5.1, 5.2 or 53 to employ based on the fluid state and composition Figure 7 12 presents
the five display areas of V-Cone 3.1. Figure 7.13 shows one of the displays in the "Main

Program Screens" in FLOWEL 2 0 where the user must enter specifications

The decision to have the user activate the various flowmeter sizing packages is to take full
advantage of the X Window System and network communications, and to provide
maximum flexibility to the user. If after completing the selection process the IDISDPFSS
automatically invokes the sizing package associated with the most appropriate flowmeter,
this would limit the user to just one flowmeter type. However, by allowing the user to
invoke the sizing packages independent from the selection process, the user may
investigate the other flowmeter alternatives at his/her discretion. Also, the user can
perform multiple sizings concurrently by using the same software package. To illustrate
this feature, Figure 7.14 shows two FLOWEL 2.0 flowmeter sizings as displayed on the

Sun monitor. Although this figure is difficult to read due to the resolution quality of the

' Unfortunately, the author has no control over the color scheme used in individual packages and only
access o a monochrome printer. Thus. some figure may be difficult to read.

93

©1DI5 for Differential Pressure Flowmeter Selection and slzin;

,“?F,“i’,%‘»- i Selection .,

Manager v °

tlow nozzle ..
orifice plate ..

Fluidprop . - Size 5 et

Figure 7.10 Pop-up menu tor flowmeter sizing buttons

Figure 7.11 MEM 1 0 display window

94

- —an o .

Coh
TR
EEREREN A

ber e T

A i o o2,

[ETT S B & ¢
oo
KRR IR VIS

M

s
|

E

|

|

[eminy

Figure 7.13 FLOWEL 2.0 input screen.

Ire-HO
Lt /H

95

2. Irgut Dutu 0 ACT e by 190 H167

;‘l- Frowesy foto
| |
sl
|

Fluid
Frlumiog Tergns ctur s

et celoaly foges (oo
Maarwic Pl @
Dittecontial
Pl FLow B
(v ,f\J (2o)
lerinby (e)

b toe (vpnhoy

[ALtT[F b rorgornd

2. rgut Cota EAACT BOFD by
ST e [t

Fluid

Floonreg Troget oty e

Vo ity

bloenray £ vy

o bigee et

beyciman flon bate : [T

Catfeovntiol boreye : b
tiermeil f Lo f { : L
' , N

Figure 7.14 Illustration of concurrent usage of flowmeter sizing programs.

printer and size limitation of the printed page, the capability of concurrent sizing programs

is demonstrated.

The reader might well wonder why not automatically display the sizing packages for all
appropriate flowmeters selected. There are two reasons that this is not done. The first
reason is that the monitor can become cluttered and difficult to read if all four types of
flowmeters are appropriate. Figure 7.14 emphasizes this problem, although the monitor is
much clearer than shown in the figure. The second reason is that by allowing the user to
activate the sizing packages manually, the intelligent selection can be bypassed. Thus, a

environment,

Chapter 8

Conclusions

For this thesis, three software packages have been developed: MEM 1.0, viscosity

flowmeter selection and sizing (IDISDPFSS).

MEM 1.0 is developed to size the variable area flowmeters manufactured by Meter
Equipment Manufacturing, Inc. This software package can size flowmeters for three fluid
types: liquid, gas and steam. The software is written in the language C and compiled to

run on a personal computer with DOS.

The viscosity coupling system is a software package to assist non-expert users in selecting
an appropriate viscosity model to predict the viscosity for the users' defined fluids. The
package contains three viscosity models: Dean and Stiel, Ely and Hanley, as well as
Pedersen and Fredenslund. The knowledge concerning the models is captured with the
LISP based commercial Al expert system tool PC Plus. In order to predict the viscosity,
the knowledge in PC Plus is coupled to a FORTRAN program. This FORTRAN program
not only predicts the viscosity but also the fluid state, density and compressibility factor.
These fluid properties are determined using the Peng-Robinson equation of state. The

coupling system runs on a personal computer with DOS.

98

IDISDPFSS is an integrated coordinated knowledge environment to assist non-expert
users select and size differential pressure flowmeters for users' specific applications. There
are four differential flowmeter types: MEM variable area, V-Cone, flow nozzle and
orifice plate. These flowmeters are sized with the corresponding in-house software MEM
1.0 and the commercial software packages V-Cone 3.1 and FLOWEL 2.0, used for sizing
both flow nozzles and orifice plates. The viscosity coupling system provides information

required in the selection and sizing process.

The knowledge environment is based on the concept of an integrated distributed intelligent
system of which the key construct is the meta-system. In order to implement the meta-
system, Meta-COOP 2.0 is employed. Meta-COOP 2.0 utilizes units to capture expert
knowledge and reasoning in the form of production rules and object-oriented

programming.

IDISDPFSS has been developed in such a way that knowledge can be easily added in the
future. This is accomplished by having one controlling unit that sends messages to other
units. These other units provide a specific function such as determining whether a
particular flowmeter type is applicable based on nineteen user's specified requirements. By
decomposing this functionality into separate units, the knowledge relevant to a specific
flowmeter type is contained in a single unit. Thus, if additional knowledge needs to be
added, only one unit must be altered. In addition, if a new flowmeter type is to be added,
only the unit containing the pertinent knowledge needs to be assembled. The other units

do not require alteration.

IDISDPFSS provides a user-friendly graphic interface. The graphics allow information to

be presented both alpha-numerically and graphically. The interface is a mouse-driven

99

window menu. The mouse allows the user to simply click a button to perform activities.
The window environment permits several windows to be run concurrently. Since in most
cases the different parts of the menu are independent of the other parts, the user has the

flexibility to activate the different functions at his or her discretion.

IDISDPFSS is distributed such that the in-house and commercial software packages are
autonomous and capable of functioning independently. The in-house software included
MEM 1.0, Meta-COOP 2.0 and a viscosity coupling sysiem. The commercial packages
included FLOWEL 2.0, PC Plus and V-Cone 3.1.

IDISDPFSS is so integrated that it combines several individual software packages into a
coordinated knowledge environment. The integration involves symbolic reasoning and
numerical computations, numerous computer languages such as C, FORTRAN and LISP,
in-house developed and commercial software packages (Meta-COOP vs PC Plus, MEM
1.0 vs. FLOWEL 2.0 and V-Cone 3.1); heterogenous platforms (workstation and personal

computer);, and heterogenous operating systems (UNIX and DOS). The key to the
DOS personal computer, and the use of the X Window System on both computers. This

setup enables all programs whether running on the workstation or personal computer to be

displayed and receive input from the workstation.

100

References

Anon. (1993). DESQview/X User Guide. Quarterdeck Office Systems. SO00US-
DX0100. Ventura Professional.

Anon. (1990). System and Network Adminstration. Sun Microsystems. Part number:
800-3805-10. (rev. A)

Anon. (1987). Personal Consultant Plus Getting Started. Part number: 2232456-0001.
Austin: Publishing Center, Texas Instruments Inc., Data System Group.

Baker-Counsell, J. (1985). Flowmeter selection: Expert help is on its way. Process
Engineering, 66(10), 71,73.

Buchanan, B.G. (1985). Expert systems. Journal of Automatic Reasoning, 1(1), 28-34.

Cheremisinoff, N.P. (1979). Applied fluid measurement: Fundamentals and technology.
New York: Marcel Dekker.

Corbin, J. (1992). Intelligent operation support system for a batch sulphite pulping
process. M.Sc. thesis. University of Alberta. Edmonton, Canada.

C-WIN (1993). C-WIN Version 1.0 public domain software, B. Withers, 649
Meadowbrook Street, Allen, Texas.

Danen, G.W.A. (Ed.). (1985). Shell Flowmeter Engineering Handbook (2nd ed). New
York: McGraw-Hill Book Company.

Dean, D.E., and Stiel, L.I. (1965). The viscosity of nonpolar gas mixtures at moderate
and high pressures. AIChE Journal, 11, 526-32.

Ely, J.F., and Hanley, HJ M. (1981). Prediction of transport properties. 1. Viscosity of
fluids and mixtures. /nd & Engng Chem Fundam, 20(4), 323-31.

Fikes, R., and Kehler, T. (1985). The role of frame-based representation in reasoning.

Communications of the ACM, 28(9), 904-20.

101

Gani, R., and O'Connell, J.P. (1989). A knowledge based system for the selection of
thermodynamic models. Computers & Chem Engng, 13(4/5), 397-404.

Ginesi, D. (1991). Choosing the best flowmeter. Chemical Engineering, 98(4), 88-100.

Ginesi, D., and Grebe, G. (1985). Flowmeter selection: A comparison of performance
features vs. economic costs. Advances in Instrumentation and Control: Proceedings
of the 1985 ISA International Conference and Exhibit, 40, pt. 2, 1173-90.

Hasley, D.M. (1986). Survey of industrial usage of flowmeters. Measurement and
Control, 19(5), 52-55.

Hayward, A.T. (1979). Flowmeters: A Basic Guide and Source-Book for Users. New
York: John Wiley & Sons.

Jossi, J.A., Stiel, L.I., and Thodos, G. (1962). The viscosity of pure substances in the
dense gaseous and liquid phases. 4/ChE Journal, 8(1), 59-62.

Kitzmiller, C.T., and Kowalik, J.S. (1987). Coupling symbolic and numeric computing in
knowledge-based systems. 4/ Magazine, 8(2), 85-90.

Liptak, B.G., and Venczel, K. (Eds.). (1982). [Instrument Engineers’ Handbook (rev
ed.). Pennsylvania: Chilton Book Company.

Lomas, D.J. (1986). Selecting flowmeters for industrial applications. Brown Boveri
Review, 73(2), 69-79.

Lomas, DJ. (1977). Selecting the right flowmeter part 1: The six favorites.
Instrumentation Technology, 24(5), 55-62

Lycett, J., and Maudsley, D. (1986). Development of an expert system for flowmeter
selection. Measurement and Control, 19(9), 251-52.

Meinhold, T.F. (1984). Liquid flowmeters. Plant Engineering, 38(28), 46-60.

Miller, R W. (1983). Flow Measurement Engineering Handbook. New York: McGraw-

Hill Book Company.

102

O'Brien, C. (1989). Flowmeter terms, types & successful selection. /n7ech, 36(12), 30-
33.

Opie, R. (1987). Getting the most out of flowmetering. Control and Instrumenation,
19(2), 31-32.

Pedersen, K.S., and Fredenslund, A. (1987). An improved corresponding states model for
the prediction of oil and gas viscosity and thermal. Chem Eng Sci, 40(1), 182-87.

Peng, D, and Vermani, R. (1987). An empirical method for calculating the viscosity of
hydrocarbon liquid and liquid mixtures. A/ChE Spring National Meeting, Mar. 29 -
Apr. 2, Houston, Texas.

Peng, D.-Y., and Robinson, D.B. (1976). A new two-constant equation of state. /nd.

Eng. Chem. Fundam., 15, 59-64.

30.

Rao, M., Wang, Q., and Cha, J. (1993). [megrated Distributed Intelligent Systems in
Manufacturing. London: Chapman & Hall.

Rao, M., and Qiu, H. (1993). Process Control Engineering. Langhorne: Gordon and
Breach Science Publishers, Inc.

Rao, M. (1991). Integrated System for Intelligent Control. Berlin: Springer-Verlag.

Rao, M. (1992). Frontiers and challenges of intelligent process control. FEngineering
Applications of Artificial Intelligence, 5(6), 475-81.

Rao, M, Jiang, T, and Tsai, J. (1989). Combining symbolic and numerical processing for
real-time intelligent control. Engineering Applications of Artificial Intelligence, 2(3),
19-27.

Rao, M, Tsai, J,, and Jiang, T. (1988). An intelligent decisionmaker for optimal control.

Applied Artificial Intelligence, 2, 285-305.

103

Rao, M, Tsai, J,, and Jiang, T.S. (1987). A framework of integrated intelligent systems.
Proc. IEEE Intern. Conf. on System, Man and Cybernetics, Alexandria, Virginia, 1133-
37.

Rusnak, J. (1989). Fundamentals of flowmeter selection. /nTech, 36(4), 49-51.

Rutz, P. (1991). An introduction to object-oriented programming. CACHE News, Fall, 3-
7.

Sovik, R.E. (1985). Flow measurement - Some new considerations. Mechanical
Engineering, 107(5), 48-52.

Spitzer, D.W. (1985). The effects of fluid properties on flowmeter performance A user's
perspective. Advances in Instrumentation and Control: Proceedings of the 1985 ISA
International Conference and Exhibit, 40, pt. 2, 1167-71.

Stefik, M., and Bobrow, D. (1986). Object-oriented programming: Themes and
variations. A/ Maga:ine, 6(4), 40-62.

Ten Dyke, R.P., and Kunz, J.C. (1989). Object-oriented programming. [BM Systems
Journal, 28(3), 465-78.

Tham, M.J., and Gubblins, K.E. (1970). Correspondence principle for transport
properties of dense fluids. /nd & Engng Chem Fundam, 9, 63-70

Wiener, R., and Sincovec, R. (1984). Software Lngineering with Modula-2 and Ada
New York: Wiley & Sons.

Wilcox, J. (1988). FLOWEL 2.0 Flow Element Sizing and Documentation. Version 2.0,
88-11-21. Xerox Ventura Publishing.

Wong, F.S., Dong, W, and Blanks, M. (1988). Coupling of symbolic and numerical

computations on a microcomputer. Artificial Intelligence in Engineering, 3(1), 32-38,

104

Appendix A
IDISDPFSS Knowledge Bases
This appendix contains the source code for the eight knowledge bases in IDISDPFSS:

flow kbs, flow reqkbs, flow_check kbs, flow_var_area.kbs, flow_vcone kbs,

flow_nozzle kbs, flow_orifice kbs and flow_eval kbs.

105

/* Module - flow.kbs
/* Function
/‘

* Created by
/.

: Murray Stevenson

GLOBE
meters ; flowmeter;
END

Unit: flowmeter in_knowledge_base flow.kbs;

Memberslot: initial_check from flowmeter:
Inheritance: OVERRIDE . VALUES,
Valueclass: initial_check.

Values: Unknown:

End Slot:

Memberslot: variable_area from flowmeter;
Inheritance: OVERRIDE. VALUES;
Valueclass: variable_area;

Values: Unknown:

End Slot;

Memberslot: veone from flowmeter;
Inheritance: OVERRIDE. VALUES;
Valueclass: v_cone;

Values: Unknown;

End Slot;

Memberslot: ASME_nozzle from flowmeter:;

Valueclass: ASME_nozzle,
Values: Unknown;
End Slot;

Memberslot: orifice_plate from flowmeter:
Inheritance: OVERRIDE.VALUES;
Valueclass: con_orifice;

Values: Unknown;

End Slot;

Memberslot: evaluation from flowmeter;
Inheritance: OVERRIDE.VALUES;
Valueclass: evaluation;

Values: Unknown;

End Slot;

Memberslot: choose_method from flowmeter,
Inheritance: METHOD,
Valueclass; METHODS;

*/

*/

*/

: Root frame of flowmeter selection

*/

*/

106

Values: choose_method,
End Slot;

End Unit;

METHOD choose_method(choose:keyword)
VAR

x.integer,;
BEGIN

send ("input flow_daia") to "req";
_FRAME .initial_check:="initial_check";
send ("check") to "initial_check";
if initial_check.check<>"fail" then
begin
_FRAME .variable_area:="variable_area",
send ("check”) to "variable _area”,
_FRAME vcone:="v_cone”;
send(check”) to "v_cone”,

_FRAME ASME_nozzle:="ASME_nozzle";

send("check") to "ASI\E _nozzle";
_FRAME .orifice_plate: ="con_ orifice™;
send (" check”) to "con_orifice";
_FRAME .evaluation;="ranking”,
send (“eval”) 10 “ranking";

/ti‘iijiiiiiii!!!!iii‘iiﬁitiiii!i!iti!!iiiiiiiti‘itit!iili!i!iliiiiii!iiiii/
" Module : flow_req.kbs */

/" Function : Root frame of flowmeter selection */

* */

* Created by : Murray Stevenson */

" */
/!i!!ii!!it!iiiti!iiiii!iii!it!iiitiﬁ!iii!iii!ii!i!i!!!t!i!i!!ii!!!l!ti!i!iil
GLOBE

req : user_input;

END

Unit: user_input in_knowledge_base flow_require kbs:

Memberslot: Application from user_input;
Inheritance: OVERRIDE. VALUES;
Valueclass: string;

Values: Unknown;

End Slot;

Memberslot: Primary_purpose from user_input;
Inheritance: OVERRIDE. VALUES;
Valueclass: string;

Values: Unknown;

End Slot;

Memberslot: Max_press from user_input.
Inheritance: OVERRIDE.VALUES.
Valueclass: real,

Values: Unknown;

End Slot;

Memberslot: Max_temp from user_input:
Inheritance: OVERRIDE. VALUES:
Valueclass: real;

Values: Unknown;

End Slot;

Memberslot: Particulate_matier from user_input;
Inheritance: OVERRIDE. VALUES,
Valueclass: string,

Values: Unknown;

End Slot;

Memberslot: Pipe_size from user_input;
Inheritance: OVERRIDE.VALUES,;
Valueclass: real;

Values: Unknown;

End Slet;

Memberslot: Vertical_mount from user_input;
Inheritance: OVERRIDE VALUES;
Valueclass: string;

108

Values: Unknown;
End Slot;

Memberslot: Remote_readout from user_input;
Inheritance: OVERRIDE. VALUES,
Valueclass: string;

Values: Unknown;

End Slot;

Memberslot: Max_flowrate from user_input,
Inheritance: OVERRIDE. VALUES,
Valueclass: real,

Values: Unknown,

End Slot;

Memberslot: Pipe_id from user_input;
Inheritance: OVERRIDE. VALUES;
Valueclass: real;

Values: Unknown,;

End Slot,;

Memberslot: Viscosity from user_input;
Inheritance: OVERRIDE. VALUES.
Valueclass: real,

Values: Unknown;,

End Slot;

Memberslot; Density from user_input;
Inheritance: OVERRIDE.VALUES;
Valueclass: real,

Values: Unknown,

End Slot;

Memberslot: Reynolds_no from user_input,
Inheritance: OVERRIDE. VALUES,
Valueclass: real;

Values: Unknown,

End Slot;

Memberslot: Accuracy from user_input,
Inheritance: OVERRIDE.VALUES,;
Valueclass: real;

Values: Unknown;

End Slot;

Memberslot: Reverse_flow from user_input,
Inheritance: OVERRIDE. VALUES;
Valueclass: string;

Values: Unknown;

End Slot;

Memberslot: Upstream_pipe_run from user_input.
Inheritance: OVERRIDE . VALUES,;

109

Valueclass: integer;
Values: Unknown;
End Slot;

Memberslot: Downstream_pipe_run from user_input,
Inheritance: OVERRIDE. VALUES;
Valueclass: integer;
Values: Unknown;

End Slot;

Memberslot: Turndown from user_input;
Inheritance;: OVERRIDE. VALUES.
Valueclass: real;

Values: Unknown;

End Slot;

Memberslot: Ero_corrosive_fluid from user_input;
Inheritance: OVERRIDE. VALUES;
Valueclass: string;
Values: Unknown;

End Slot;

Memberslot: Max_diff_press from user_input:
Inheritance: OVERRIDE VALUES;
Valueclass: real;

Values: Unknown;

End Slot:

Memberslot: Rey_rules from user_input,
Inheritance: Override. Values;
Valueclass: RULES ;

Values: {
rule 42

fact req.Max_flowrate>0.0
and req.Pipe_id>0.0
and req. Viscosity>0.0
and req.Density>0.0
and req. Turndown>0.0

then

_FRAME.Reynolds_no:=req.Max_flowrate*req.Density*3.160/req.Pipe_id/req. Viscosity/req Turndown;,

}

End Slot;

Memberslot: input_require from user_input;
Inheritance: METHOD,
Valueclass: METHODS,
Values:input_require;

End Slot;

End UNIT;

METHOD input_require(input:keyword filename:string)

110

VAR
x.real,

BEGIN
/% call extern function inputrequire() input design
requircment data
¢/
inputrequire(filename),
reason(_FRAME,"Rey_rules"),
END.

11

IAd Module : flow_check.kbs */

" Function : Initial check of all flowmeter types */
/* ¥/

/* Created by : Murray Stevenson v

/* */

/".“““‘.“.“‘.““‘.‘iiiiiiiiiiﬁi!iiii!iilii!iiiiii!iiiiiiiiiii!iiiiiii,

GLOBE
initial_check : initial_meters_check;
END

Unit: initial_meters_check in_knowledge_base flow_check kbs,

Memberslot: check from initial_meters_check;
Inheritance: OVERRIDE.VALUES;
Valueclass: check;

Values: Unknown;

End Slot;

Memberslot: check_default from initial_meters_check:
Inheritance: OVERRIDE. VALUES;
Valueclass: string;
Values: "okay";

End Slot;

Memberslot: check_rules from initial_meters_check:
Inheritance: Override. Values,
Valueclass: RULES ;
Values: {
rule 1
fact req.Max_press>=6000.0
then _FRAME check="fail";
_FRAME check_default="fail"

rule 2
fact req.Max_temp>=93.33
and req.Max_press>=3830.0
then _FRAME check="fail",
_FRAME .check_default="fail"

rule 3
fact req.Max_temp>=148.89
and req.Max_press>=5690.0
then _FRAME .check="fail";
_FRAME check_default="fail"

rule 4
fact req.Max_temp>=204.44
and req. Max_press>=5550.0
then _FRAME .check="fail",
_FRAME check_default="fail"

rule §
fact req. Max_temp>=260.00
and req.Max_press>=5210.0
then _FRAME check="fail";
FRAME check_default="fail"

rule 6
fact req.Max_temp>=315.56
and req.Max_press>=4620.0
then _FRAME check="fail",
_FRAME .check_default="fail"

rule 7.
fact req. Max_temp>=371.11
and req.Max_press>=3920.0
then FRAME check="fail";
_FRAME check_default="fail"

rule 8
fact req. Max_temp>=426.67
and req.Max_press>=3050.0
then _FRAME.check="fail",
_FRAME check_default="fail"

rule 9
fact req. Max_temp>=454.44
and req.Max_press>=2500.0
then _FRAME.check="fail";

rule 10
fact req.Pipe_size<0.5
then _FRAME check="fail";
_FRAME check_default="fail"

rule 11
fact req. Accuracy<0.75
then _FRAME check="fail",
_FRAME .check_default="fail"

rule 12
fact req.Reverse_flow="yes"
then _FRAME check="fail",
_FRAME check_default="fail"

rule 13
fact req. Turndown=10.0
then _FRAME check="fail",
_FRAME .check_default="fail"

rule 14
fact req. Max_diff_press<5.0
then _FRAME check="fail";

113

_FRAME .check_default="fail"

rule 15
fact _FRAME check_default="okay"
then _FRAME.check="pass"
}
End Slot;

Membersiot: check_method from initial_meters_check;
Inheritance: METHOD;
Valueclass: METHODS;
Values: check_method;
End Slot;
End Unit;
METHOD check_method(check keyword)
VAR
X : string;
RUIGIN

reason(_FRAME,"check_rules"),
END.

114

/!!!iilili!iiiii!!i!!iiiili!!ii!!!ti!!Ii!!li!ii-l!lij!jliiiiiiii!!!i!iiiii![
” Module : flow_var_area kbs */

/" Function : Check variable area flowmeter for application */

j® ¥/

/" Created by : Murray Stevenson */

" Y
/!ii!i!iiiilili!liitiiiii!i!iti!iiii!iiiiiili!i!iiii!iii!iiiiii!!iiiiii!!!ﬁ]
GLOBE

variable_area : var_area_check,

END

Unit: var_area_check in_knowledge_base flow_var_area.kbs;

Memberslot: check from var_area_check;
Inheritance: OVERRIDE. VALUES;
Valueclass: check;

Values: Unknown;

End Slot;

Memberslot: check_default from var_area_check:
Inheritance: OVERRIDE. VALUES:
Valueclass: string;

Values: "okay",

End Slot;

Memberslot: Centistokes from var_area_check:
Inheritance;: OVERRIDE. VALUES;
Valueclass: real;

Values: Unknown,

End Slot;

Memberslot: check_rules from var_area_check,
Inheritance: Override. Values;
Valueclass: RULES .
Values: {
rule 21
fact req.Max_press>=1000.0
then _FRAME check="not_applicable".
_FRAME check_default="fail"

rule 22
fact req.Max_temp>=315.56
then _FRAME .check="not_applicable",
_FRAME check_default="fail"

rule 23
fact req.Pipe_size=4.0
then _FRAME check="not_applicable".
_FRAME check_default="fail"

rule 24
fact req.Max_temp=>=204.44

115

and req.Pipe_size>1.5
then _FRAME check="not_applicable”,
_FRAME .check_default="fail"

rule 25
fact req.Pipe_size>1.5
and req.Max_press>=440.0
then _FRAME.check="not_applicable”;
_FRAME check_default="fail"
rule 26
fact req. Max_temp>=60.0
and req.Pipe_size<=4.0
then _FRAME .check="not_applicable”,
_FRAME .check_default="fail"

rule 27
fact req.Pipe_size<=40
and req.Max_press>=300.0
then _FRAME check="no1_applicable”:
_FRAME check_default="fail"

rule 28
fact req.Particulate_matter="yes"
then _FRAME check="not_applicabie";
_FRAME .check_default="fail"

rule 29
fact req. Vertical_mount="no"
then _FRAME check="not_applicable":
_FRAME .check_default="fail"

rule 30
fact req.Remote_readout="yes"
then _FRAME check="not_applicable".
_FRAME check_default="fail"
rule 31
fact req.Pipe_size<=0.75
then _FRAME check="not_applicable";
_FRAME check_default="fail"

rule 32
fact req.Primary_purpose="control”
then _FRAME .check="not_applicable".
_FRAME check_default="fail"

rule 33
fact req.Primary_purpose="accounting”
then _FRAME .check="not_applicabie”;
_FRAME check_default="fail"
rule 34

116

fact req. Accuracy<2.0
then _FRAME .check="not_applicable”;
_FRAME check_default="fail"

rule 35
fact _FRAME.Centistokes>5.0
then _FRAME check="not_applicable”;
_FRAME check_default="fail"

rule 36
fact _FRAME.check_default="okay"
then _FRAME .check="applicable"

}
End Slot;

Memberslot: check_method 1 from var_area_check;
Inheritance: METHOD;
Valueclass: METHODS;
Values: check_method|;

End Slot;

End Unit;
METHOD check_method I (check:keyword)
VAR

X : string;

BEGIN

_FRAME .Centistokes:=req. Viscosity* 1000.0/req. Density;

reason(_FRAME,"check_rules");
END.

117

/...‘.‘““‘.“‘.“‘#‘..“‘“.O.l“““.““..‘0"...“.““.“‘...“‘O.“‘/

/* Module : flow_vcone.kbs

/* Function : Check v-cone flowmeter for
/‘

/" Created by : Murray Stevenson

/‘

*/
application ¢/
¢/

*/
*/

/“"..‘.“.“..““.‘“..““.‘.“"..““"..‘.“...““‘t‘.‘.‘...““O.t/

GLOBE
v_cone : vcone_check;
END

Unit: vcone_check in_knowledge_base flow_vcone kbs.

Memberslot: check from vcone_check;
Inheritance: OVERRIDE. VALUES;
Valueclass: check;

Values: Unknown;

End Slot;

Memberslot: check_default from vcone_check:
Inheritance: OVERRIDE . VALUES;
Valueclass: string;

Values: "okay";

End Slot;

Memberslot: velocity from vcone_check,
Inheritance: OVERRIDE.VALUES,
Valueclass: real;

Values: Unknown,;

End Slot,;

Memberslot: check_rules from vcone_check;
Inheritance: Override. Values,
Valueclass: RULES ;
Values: {
rule 50
fact req. Application="liquid"
and _FRAME .velocity>=30.0
then _FRAME check="not_applicable",
_FRAME check_default="fail"

rule 51
fact req. Application="gas"
and _FRAME .velocity>=800.0
then _FRAME check="not_applicable",
_FRAME check_default="fail"

rule 52
fact req.Reynolds_no<=8000.0
then _FRAME check="not_applicable”;
_FRAME check_default="fail"

rule 53
fact req.Upstream_pipe_run<2
then _FRAME check="not_applicable".
_FRAME check_default="fail"

rule 54
fact req.Downstream_pipe_run<5
then FRAME check="not_applicable®;
_FRAME check_default="fail"

rule 55
fact _FRAME check_defauli="okay"
then _FRAME check="applicable”

}

End Slot;

Memberslot: check_method2 from vcone_check:,
Inheritance: METHOD,
Valueclass: METHODS;
Values: check_method2;

End Slot;

End Unit;

METHOD check_method2(check:kevword)
VAR
X : String;

BEGIN
_FRAME .velocity;=req.Max_flowrate*0.40874/req.Pipe_id/req.Pipe_id.
reason(_FRAME,"check_rules"),

END.

119

/“‘."..“."ﬁi!iiiii!lli!i!!i!i-!iiiii!iiiii!!!!ilil!li!i!ii!iiii!)!ilii!]

A Module : flow_nozzle kbs

*/

" Function : Check flow nozzle flowmeter for application */

/*
IAd Created by : Murray Stevenson
/t

*/
*/
*/

/.....O‘“‘.‘.!!!!!ii!i!ﬁ!!ﬁiii!iii!ii!!!iilli!i!lii‘.-ii!!lli!!-i!i!iiiiii[

GLOBE
ASME_nozzle : nozzle_check;
END

Unit: nozzle_check in_knowledge_base flow_nozzle. kbs;

Memberslot: check from nozzle_check;
Inheritance: OVERRIDE. VALUES;
Valueclass: check.

Values: Unknown;

End Slot;

Memberslot: check_default from nozzle_check;
Inheritance: OVERRIDE. . VALUES;
Valueclass: string;

Values: "okay";

End Slot;

Memberslot: check_rules from nozzle_check:
Inheritance: Override. Values;
Valueclass: RULES ;
Values: {
rule 60
fact req.Pipe_size<6.0

then _FRPLNTEGGhEl:kE"ﬂﬁ[égpp]iéableii.‘

_FRAME check_default="fail"

rule 61
fact req.Reynolds_no<=200000.0

then _FRAME check="not_applicable".

_FRAME check_default="fail"

rule 62
fact req. Accuracy<2.0

then _FRAME check="not_applicable",

_FRAME check_default="fail"

rule 63
fact req. Turndown=3.0

then _FRAME check="not_applicable”;

_FRAME check_default="fail"

rule 64
fact req.Upstream_pipe_run<10

then _FRAME check="not_applicable",

120

_FRAME check_default="fail"

rule 65
fact req. Downstream_pipe_nin<5
then _[FRAME check="not_applicable”,
_FRAME check_default="fail"

rule 66
fact req.Max_diff_press<50.0
then _FRAME check="not_applicable”;
_FRAME check_default="fail"

rule 67
fact _FRAME check_default="okay"
then _FRAME .check="applicable"

}

End Slot;

Memberslot: check_method3 from nozzle_check.

Inheritance: METHOD,
Valueclass: METHODS;
Values: check_method3,
End Slot;
End Unit,
METHOD check_method3(check keyword)
VAR
X : string;
BEGIN

reason(_FRAME,"check_rules");
END.

/liiiiiliiiiiiii‘!!!!l!i!l-!l!i!ii!iill!ll!i!!liliiili!!iliit!!!l!ili!iliii/
* Module : flow_orifice.kbs */

/* Function : Check concentric orifice flowmeter for appl. */

/” Y

" Created by : Murray Stevenson */

T */
/iiiii-i-!i!!!!!!iiiii§ﬁii!lii!iiiﬁii!!i!iiiitiiiii!i!tliiliiiiii!ii(!ilii!’
GLOBE

con_orifice ; orifice_check;

END

Unit: orifice_check in_knowledge base flow_orifice.kbs;

Memberslot: check from orifice_check;
Inheritance: OVERRIDE VALUES,
Valueclass: check;

Values: Unknown:

End Slot;

Memberslot: check_default from orifice_check.
Inheritance: OVERRIDE . VALUES;
Valueclass: string;

Values: "okay™;

End Slot;

Memberslot: check_rules from orifice_check.
Inheritance: Override. Values;
Values: {
rule 70
fact req.Pipe_size<2.0
then _FRAME check="not_applicable".
_FRAME check_default=""fail"

rule 71
fact req.Reynolds_no<=10000.0
then _FRAME .check="not_applicable",
_FRAME check_default="fail"

rule 72
fact req.Particulate_matter="yes"
then FRAME check="not_applicable";
_FRAME check_default="fail"

rule 73
fact req. Turndown=>3.0
then _FRAME .check="not_applicable”,
_FRAME check_default="fail"

rule 74
fact req.Upstream_pipe_run<10
then _FRAME .check="not_applicable";

e
o

_FRAME check_default="fail"

rule 78
fact req. Downstream_pipe_run<3
then _FRAME check="not_applicable”,
_FRAME check_default="fail"

rule 76
fact req.Ero_corrosive_fluid="yes"
then _FRAME check="not_applicable",
_FRAME check_default="fail"

rule 77
fact req. Max_diff_press<50.0
then _FRAME .check="not_applicable";
_FRAME check_default="fail"

rule 78
fact _FRAME.check_default="okay"
then _FRAME check="applicable"

}

End Slot;

Memberslot: check_method$ from orifice_check:

Inheritance: METHOD;

Valueclass: METHODS,

Values: check_method4.
End Slot;

End Unit,

METHOD check_method4(check keyword)
VAR
X : string;

BEGIN
reason(_FRAME , "check_rules"):
END.

/“‘ilﬁ‘!?lililii!llilﬁ!!!!!!!!!!!!!!i!!ii!!!!!!l!!!!l!ﬁlliliiiiiii!iﬁii!i!,

L4 Module : flow_eval kbs

*

/" Function : Check concentric orifice flowmeter for appl. */

/‘
* Created by : Murray Stevenson
/®

v/
*/
*/

/“i!!i!l!ii‘!l--iii!iiii!i!i!!i!!!ii!ii!iii!!ii!!t!!lliiliiii!iiiiiiiiiiii[

GLOBE
ranking : evaluation;
END

Unit: evaluation in_knowledge_base flow_eval kbs;

Memberslot: rank] from evaluation;
Inheritance: OVERRIDE. VALUES,;
Valueclass: rankl;

Values: "NULL";

End Slot;

Memberslot: rank2 from evaluation:
Inheritance: OVERRIDE. VALUES:;
Valueclass: rank2;

Values: "NULL";

End Slot;

Memberslot: rank3 from evaluation;
Inheritance: OVERRIDE. VALUES,;
Valueclass: rank3;

Values: "NULL"™;

End Slet;

Memberslot: rank4 from evaluation;
Inheritance: OVERRIDE. VALUES.
Valueclass: rankd;

Values: "NULL";

End Slot;

Memberslot: eval_method from evaluation;
Inheritance: METHOD;,
Valueclass: METHODS;
Values; eval_method,

End Slot;

End Unit;
METHOD eval_method(eval:keyword)
VAR

X . string;

BEGIN

124

begin

_FRAME .rankl:="variable_area",
end,
if (_FRAME.rank1="NULL") and (con_orifice.check="applicable") then
begin

_FRAME rank1:="con_orifice”;

_FRAME rank4:="not_applicable";
end,
if (_ FRAME.rank1="NULL") and (ASME_nozzle.check="applicable") then
begin

_FRAME rankl:="ASME_nozzle",

_FRAME .rank3:="not_applicable",

_FRAME .rank4:="not_applicable”,
end,
if (_FRAME.rank1="NULL") and (v_cone.check="applicable") then
begin

_FRAME rank1:="v_cone",

_FRAME rank2:="not_applicable",

_FRAME .rank3:="not_applicable”,

_FRAME .rank4:="not_applicable",
end;
if (_FRAME.rank2="NULL") and (con_orifice.check="applicable”) then
begin

_FRAME rank2:="con_orifice",
end,;
if (_ FRAME .rank2="NULL") and (ASME _nozzle.check="applicable") then
begin

_FRAME rank2:="ASME_nozzle":

_FRAME .rank+:="not_applicable";
end,
if (_FRAME .rank2="NULL") and (v_cone.check="applicable") then
begin

_FRAME .rank1:="v_cone";

_FRAME rank3:="not_applicable";

_FRAME rank4:="not_applicable".

end;
if (_FRAME.rank3="NULL") and (ASME_nozzie.check="applicable") then
begin
_FRAME rank3:="ASME_nozzle",
end,
if (_FRAME.rank3="NULL") and (v_cone.check="applicable") then
begin

_FRAME.rank3:="v_cone";
_FRAME rank4:="not_applicable”;
end,
if (_ FRAME.rank4="NULL") and (v_cone.check="applicable") then
begin
_FRAME .rank4:="v_cone";
end;
END.

Appendix B
MEM 1.0 Source Code
This appendix contains the source code for the main program of MEM 1.0 for sizing

Meter Equipment Manufacturing, Inc. variable area flowmeters. The program has multi-

window user interface that is controlled using the keyboard. The program is written in C.

#include <stdlib.h>
#include <stddef h>
Ninclude <time.h>
#include <conio.h>
#include <bios.h>
#include <ctype h>
#include <string.h>
#include <math.h>
#include "win.h"
#include "keys.h"

int phase,
float f110);

static void Delay(nSeconds)
short nSeconds;
{

auto time_t [QuitTime;

time(&IQuitTime),
1QuitTime += (time_t) nSeconds;
while (time(NULL) < [QuitTime)

return;

static void IntroV/indow()

{
register HWND hWnd;
auto short nTxtClr = WHITE | REV_BLUE | HI_INTENSITY:
auto short nBriteClr = YELLOW | REV_BLUE | HI_INTENSITY:

hWnd = WinCreateWindow(7, 15, 60, 10, nTxtClr,

SNGL_LINE_ALL_SIDES, nTxtCIr. TRUE).
WinCenterText(hWnd, 1, "Welcome to *. nTxtClr);
WinCenterText(hWnd, 3, "Meter Equipment Manufacturing (MEM)", nTxtClr);
WinCenterText(hWnd, 5, "Variable Area Sizing Program”, nTxtClr);
WinCenterTextthWad, 7, “by*, nBriteClr),
WinCenterTexithWnd, 8, "Murray Stevenson”, nBriteClr),
Delay(5),
WinDestroyWindow(hWnd),
return;

static void PhaseWindow()
{
register HWND hWnd,
auto short nTxtClr=REV_WHITE | BLUE,

127

int ¢, end_flag;
extern int phase;

hWnd = WinCreateWindow(7, 15, 60, 10, nTxtClr,
DBL_LINE_ALL_SIDES, nTxtClr, FALSE),
WinCenterTextthWnd, 1, "MEM Sizing Program Version 1.00", nTxtClr);
WinSetCursorPos(thWhnd, 3, 5);
WinTextOutthWnd,
"Please type letter of fluid phase;, ",
nTxtClr);
WinSetCursorPos(hWnd, 4, 5),
WinTextOut(hWnd,
"y for vapor, | for liquid and s for steam: ",
nTxtClr),
ScrCursorOn();
WinSetCursorPos(hWhnd, 4, 48);
end_flag = FALSE;
while (lend_flag) {
¢ = getch();
switch (¢) {
case vapor: case Vapor:
phase = vapor,
end_flag = TRUE;
break;
case liquid: case Liquid:
phase = liquid;
end_flag = TRUE,
break;
case steam: case Steam:
phase = steam:;
end_flag = TRUE:
break;
H
}
WinDestroyWindow(hWnd);
return;
}
void WinCursorCon(HWND hWnd,char xint, char yint, char xmax, char ymax)
{

auto short nTxtClr=REV_WHITE | BLUE;

int key, i,n; 7

char end_flag, keychar, txtf2], x. y;
char value[10][6];

extern float f{10];

x=0,

y=0,

end_flag = FALSE,;
txt[1] ="0",

128

for (i=0, i<10; ++i) {
for (n=0, n<$, ++n)
valuefi)[n] = '0";,
valueli}[n] = "0";
}

while (bioskey(1) == 0 && end_flag == FALSE) {

key = bioskey(0);

if (isdigit(key & OXFF) || key == DECIMAL) {

if (y<=ymax) {

keychar = key;
txt[0] = keychar;
value[x}{y] = txt[0];
WinTextOutthWnd, txt,nTxtClr);
WinSetCursorPos(hWnd,xint + x.vint + ++y);

else {
switch(key) {
case ARROW_UP:
if (x!=0)
WinSetCursorPos(thWnd.xint + -=x.vint + v).
else {
X = Nxmax;
WinSetCursorPos(hWnd,xint + x.vint + v).
}
break;
case ARROW_RIGHT:
if (y<=ymax-1)
WinSetCursorPos(hWnd.xint + x.yint + ++y);
break;
case ARROW_LEFT: case BK_SPACE:
if (y>=1)
WinSetCursorPos(hWnd,xint + x.vint + -yv);
break;
case ENTER: case ARROW_DN:
if (x!=xmax) {
y=0;

}
else {
x=0,
y=0;
WinSetCursorPos(hWnd,xint + x,yint + y),
}
break;
case PGDN:
end_flag = TRUE,
break;

129

}

WinSetCursorPos(hWnd,9,3);
for (i=0; i<=xmax; ++i)
fli} = atof(&value[i}[0]);
return,
L ,
void ftoa(float number, char *string)
{

char fracstr[25] = "";
double frac = 0.0, ip = 0.C;

frac = modf((double)number, &ip);
itoa((int)ip, string, 10);
strcat(string,".");
itoa((int)(frac*100.0),fracstr, 10);
strncat(string, fracstr, 1),
return;

} -

static void VapWinlnp()

register HWND hWnd,
auto short nTxtClr = REV_WHITE | BLUE.

char xint, yint, xmax, ymax;

hWnd = WinCreateWindow(4, 10, 70, 16, nTxtClr,
DBL_LINE_ALL_SIDES. nTxtClr, FALSE).
WinCenterText(hWnd, 1, "MEM Gas Sizing Program”. nTxtClr).
WinSetCursorPosthWnd, 3. 5).
WinTextOutthWnd,
*SCFM of gas to be metered at operating conditions =
nTxtClIr);
WinSetCursorPos(thWnd, 4, 5),
WinTextOut(hWnd,
"Specific gravity of gas at 14.696 psiaand 70F =____ "
nTxtClr);
WinTextOut(hWnd,
"Metering temperature in degrees Rankine = "
nTxiCln),
WinSetCursorPos(hWnd, 6, 5);
WinTextOut(hWnd,
"Metering pressure in psia (absolute) = "
nTxtClr),
WinSetCursorPos(hWnd, 8, 4),
WinTextOut(hWnd,
"NOTE: All data entries must contain a decimal point.",
nTxtClr),

130

}

WinSetCursorPos(hWnd, 10, 4);
WinTextQui(hWnd,
"Right arrow to move right; Left arrow to move left.”,
nTxtClr);
WinSetCursorPos(hWnd, 11, 4);
WinTextOut(hWnd,
"Return or Down arrow to move to beginning of next line."”,
nTxiClr);
WinSetCursorPos(hWnd, 12, 4);
WinTextOut(hWnd,
*Page Down to end data entry.”,
nTxtClr),
WinSetCursorPosthWnd, 3, 58);
xint = 3;
yint = 58;
Xxmax = 3;
ymax = 4,
WinCursorCon(hWnd, xint, yint, xmax, ymax),
WinDestroyWindow(hWnd);
return;

static void VapWinOut()

{

}

register HWND hWnd;

auto short nTxtClr = REV_WHITE | BLUE:
float QM,

char QMstring[25] = ",

ScrCursorOff(),

QM = f]0]*0.465*(sqri(f] 1]*f12)/613)));

hWnd = WinCreateWindow(7, 15, 60. 10, nTxtClr,
DBL_LINE_ALL_SIDES. nTxtClr. FALSE):

WmC:nterTE\.l(hWnd 1. "MEM Gas Slzmg Program”. nTxtClr);

WinSetCursorPos(hWnd, 3, 5);

WinTextOut(hWnd,

"SCFM DRY AIR ‘@ 100 psig, 70 F (MEM BASE) QM =",

aTxtClr);
floa(QM,QMstring);
WinSetCursorPos(hWnd, 3, 51);
WinTextOut(hWnd, QMstring,nTxtClr);
WinSetCursorPos(hWnd, 5, 5);
WinTextOut(hWnd, "Press any key to continue®.nTxtClr),
getch();
WinDestroyWindow(hWnd);
retumn,

static void LiqWinInp()

{

register HWND hWnd,
auto short nTxtCir=REV_WHITE | BLUE;

131

char xint, yint, xmax, ymax;

hWnd = WinCreateWindow(4, 10, 70, 16, nTxtClr,
DBL_LINE_ALL_SIDES, nTxtClr, FALSE):
WinCenterText(hWnd, 1, "MEM Liquid Sizing Program®, nTxtClr),
WinSetCursorPos(hWnd, 3, 5);
WinTextOut(hWnd,
"GPM of application liquid to be metered = "
nTxtClIr);
WinSetCursorPos(hWnd, 4, 5);
WinTextOut(hWnd,
"Den. of liq. in stand. atm. /@ 70 deg. F, #/cubicR =____ ",
nTxtClIr),
WinSetCursorPos(hWnd, 5, 5);
WinTextOut(hWnd,

"Density of liquid ‘@ operating conditons, #/cubic i =

nTxtClr);
WinSetCursorPos(hWnd. 6, 5);
WinTextOut(thWnd,
"Density of float material, #/cubic ft = "
aTxtClr);
WinSetCursorPos(hWnd, 7. 3):
WinTextOut(thWnd.

"516.6 for brass. 501.1 for $.$. or 217 .8 (avg) for PVC/CPVC",

aTxtClr),
WinSetCursorPos(hWnd, 9, 4):
WinTextOut(hWnd,
"NOTE: All data entries must contain a decimal point.”,
nTxtClr);
WinSetCursorPos(thWnd, 11, 4);
WinTextOut(hWnd,
"Right arrow to move right. Left arrow to move left.”,
nTxCln);
WinSetCursorPos(thWnd, 12, 4);
WinTextOut(hWnd,
"Return or Down arrow to move 1o beginning of next line.",
nTxtClr);
WinSetCursorPos(hWnd, 13, 4);
WinTextOut(thWnd,
"Page Down to end data entry.”,
nTxtClr);
WinSetCursorPos(hWnd, 3, 61);
xint = 3;
yint = 61,
xmax = 3,
ymax =4,
WinCursorCon(hWnd, xint, yint, xmax, ymax);
WinDestroyWindow(hWnd),
return,

132

static void LiqWinOut()
{
register HWND hWnd,
auto short nTxiClr=REV_WHITE | BLUE:
float QM;
char QMstring[25] = "";

ScrCursorOfi();
QM = f10])*(sqre(f12)*(M3}-A 1 /A1) *(f13]-f12))))):
hWnd = WinCreateWindow(7, 15, 60, 10, nTxtClr,
DBL_LINE_ALL_SIDES, nTxtClr, FALSE);
WinCenterText(hWnd, 1, "MEM Liquid Sizing Program”, nTxtClr);
WinSetCursorPos(hWnd, 3, 5);
WinTextOutthWnd,
"GPM liquid, Spec. Grav. = 1.00 (MEM BASE) Qm =",
nTxtCin);
floa(QM,QMstring);
WinSetCursorPos(hWhnd, 3, 52);
WinTextOut(thWnd, QMstring,nTxtClIr);
WinSetCursorPos(hWhnd, 5. 5):
WinTextOut(hWnd, "Press any key to continue”.nTxiClr),
getch();
WinDestroyWindow(hWnd);
return;
}
static void SteWinlnp()
{
register HWND hWnd;
aute shon nTxtClr=REV_WHITE | BLUE;

char xint, yint, xmax, ymax;

hWnd = WinCreateWindow(4, 10, 70, 16, nTxtClr,
DBL_LINE_ALL_SIDES. nTxtClir. FALSE).
WinCenterTextthWnd, 1, "MEM Steam Sizing Program”, nTxiClr):
WinSetCursorPos(hWnd, 3, 5);
WinTextOut(hWnd,
"Maximum flow of steam, #/hr =__ "
aTxtClr);
WinSetCursorPos(thWnd, 4, 5);
WinTextOut(hWnd,
"Spec. vol. of steam @ operating cond., cubic ft./# =__ ",
nTxtClr),
WinSetCursorPos(hWnd, 9, 4);
WinTextOut(hWnd,
"NOTE: All data entries must contain a decimal point.”,
nTxtClr),
WinSetCursorPos(hWnd, 11, 4);
WinTextOut(hWnd,
"Right arrow to move right; L¢ft arrow lo move left.”.

nTxtClr),

133

WinSetCursorPos(hWnd, 12, 4);
WinTextOut(hWnd,
“Return or Down arrow 10 move (o beginning of next line.”,
nTxiClr);
WinSetCursorPos(hWnd, 13, 4);
WinTextOut(hWnd,
"Page Down to end data entry.”,
nTxtCln);
WinSetCursotPos(hWnd, 3, 61);
xint = 3;
yint =61,
xmax = |;
ymax = 4;
WinCursorCon(hWnd, xint, yint, xmax, ymax),
WinDestroyWindow(hWnd),
return;
} i
static void SteWinOut()
{
register HWND hWnd;
auto short nTxtClr=REV_WHITE | BLUE;
float QM,
char QMstring[25] = "".

ScrCursorOff();
QM = fl0}*sqri(f[1])*0.17;
hWnd = WinCreateWindow(7, 15, 60. 10, nTx1Clr.
DBL_LINE_ALL_SIDES, nTxtClr. FALSE).
WinCenterText(thWnd, 1, "MEM Steam Sizing Program”, nTxtClr).
WinSetCursorPos(hWhnd, 3. 5).
WinTextOutthWnd,
“Required MEM meter capacity. SCFM
nTxtClr);
floa(QM,QMstring),
WinSetCursorPosthWnd, 3, 52);
WinTextOut(hWnd, QMstring,nTxtClr).
WinSetCursorPos(hWnd, 5, 5);
WinTextOut(hWnd, "Press any key to continue”.nTxtClr),
getch();
WinDestroy Window(hWnd),
returm;

main()

{ - ,
auto HWND hintroWnd;
extern int phase;
Winlnitialize();
ScrCursorOff();
IntroWindow();
PhaseWindow();

134

if (phase == vapor) {
YapWinlInp();
YapWinOul(),

}

clse if (phase == liquid) {
LigWinInp();
LigWinOut();

}

else {
SteWinlnp(),
SteWinOut();

}

WinTerminate();

ScrCursorOn();

return(0);

Appendix C

Viscosity Coupling System Knowledge in PC Plus

This appendix contains the knowledge base for the viscosity coupling system in PC Plus.

136

DOMAIN :: "VISCOSITY COUPLING SYSTEM"
ROOT FRAME :: INPUT

FRAME STRUCTURE ::
INPUT
DECISION
COLLECTION

KB Files :: (COLLECTION VISCOSIT k1 DECISION VISCOSIT k2)

Parameter groups :: (COLLECTION-PARMS DECISION-PARMS INPUT-PARMS)

Rule groups :: (COLLECTION-RULES USER_SELECTED-RULES DECISION-RULES
WRITE_EXT-RULES UNITS-RULES INPUT-RULES META-RULES)

Number of rules :: 72

Number of meta-rules :: 0

Variables . (DOMAIN)

TEXTAGS :: ()

Functions :: ()

VARIABLES

DOMAIN
VALUE :: "VISCOSITY COUPLING SYSTEM"

Frame :: INPUT

IDENTIFIER :: "INPUT-"
TRANSLATION :: (a coupling system to help you predict the viscosity of
your mixture.)
GOALS :: (UNITS1 COMPOSITION LEAVE_FRAME)
INITIALDATA :: (UNITS)
PROMPTEVER :: ("This is a coupling system to select a correlation which
most accurately” :LINE “predicts the viscosity of the vapor
and/or liquid of a multi or single” :LINE "component system
and then calculates the viscosity(s) based on this" :LINE "
correlation. In addition, this system will determine the
fluid's state, density and compressibility factor.”)
PARMGROUP :: INPUT-PARMS
RULEGROUPS :: (INPUT-RULES UNITS-RULES WRITE_EXT-RULES)
OFFSPRING :: (DECISION)
INPUT-PARMS :: (AMMONIA% BENZENE% BITUMEN% CARBON_DIOXIDE%
CARBON_MONOXIDE% COMPONENTS COMPONENT_INDICES

COMPOSITION CYCLO-C6% ETHANE% HELIUM% HYDROGEN%
HYDROGEN_SULFIDE% ISO-BUTANE% ISO-PENTANE% LEAVE_FRAME
METHANE% METHANOL% N-BUTANE% N-DECANE% N-HEPTANE%
N-HEXANE% N-NONANE% N-OCTANE% N-PENTANE% NITROGEN%
PRESSATM PRESSPSIA PROPANE% TEMPF TEMPK TOLUENE% UNITS
UNITS1 WATER%)

INPUT-RULES :: (RULE003 RULE0O4 RULE00S RULE006 RULE007 RULE0O8 RULE009
RULE010 RULE026 RULE027 RULE028 RULE029 RULE030 RULEO31
RULE032 RULE033 RULE034 RULE035 RULE036 RULE037 RULE038
RULEO039 RULE040 RULEO41 RULE042 RULE0O43 RULEO44 RULE045
RULE046 RULE047 RULE048 RULE049 RULE050 RULEOS1 RULE052
RULEO053 RULE054 RULE0S5 RULE0S6 RULE057 RULE0S8 RULE059
RULE060 RULE061 RULE062 RULE063 RULE0O64 RULE065 RULEU66
RULE067)

UNITS-RULES :: (RULEO11 RULEOI12)

WRITE_EXT-RULES :: (RULEO13 RULEOI4 RULEULS RULEOL6)

AMMONIA%

PROMPT :: (Please enter the mole percent of AMMONIA in your mixture.)
TYPE :: SINGLEVALUED

EXPECT :: POSITIVE-NUMBER

USED-BY :: (RULE064)

RANGE :: (1.e-7 100.0000001)

BENZENE%
TRANSLATION :: (the mole percent of BENZENE in your mixture)
PROMPT :: (Please enter the mole percent of BENZENE in your minture.)
TYPE :: SINGLEVALUED
EXPECT :: POSITIVE-NUMBER
USED-BY :: (RULE059)
RANGE :: (1.e-7 100.0000001)

BITUMEN%

TRANSLATION :: (the mole percent of BITUMEN in your mixture)
PROMPT :: (Please enter the mole percent of BITUMEN in our mixture.)
TYPE :: SINGLEVALUED

EXPECT :: POSITIVE-NUMBER

USED-BY :: (RULE067)

RANGE :: (1.e-7 100.0000001)

CARBON_DIOXIDE%

TRANSLATION :: (the mole percent of CARBON DIOXIDE in your mixture)

138

PROMPT :: ("Please enter the mole percent CARBON DIOXIDE in your
mixture.”)

TYPE :: SINGLEVALUED

EXPECT :: POSITIVE-NUMBER

RANGE :: (1.e-7 100.0000001)
CARBON_MONOXIDE%

TRANSLATION :: (the mole percent of CARBON MONOXIDE in your mixture)

PROMPT :: ("Please enter the mole percent of CARBON MONOXIDE in your
mixture.”)

TYPE :;: SINGLEVALUED

EXPECT :: POSITIVE-NUMBER

USED-BY :: (RULE063)

COMPONENTS

TRANSLATION :: (the component (5) in your mixture)

PROMPT :: (Please select the component(s) in your mixture.)

TYPE :: ASK-ALL

EXPECT :: (METHANE ETHANE PROPANE [SO-BUTANE N-BUTANE ISO-PENTANE
N-PENTANE N-HEXANE N-HEPTANE N-OCTANE N-NONANE N-DECANE
NITROGEN CARBON_DIOXIDE HYDROGEN_SULFIDE TOLUENE BENZENE
CYCLO-C6 WATER HYDROGEN CARBON_MONOXIDE AMMONIA METHANOL
HELIUM BITUMEN)

ANTECEDENT-IN :: (RULE007 RULE00OS RULE009 RULEO10 RULEO26 RULEV27

RULE028 RULE029 RULE030 RULE0O31 RULEO032 RULE033
RULEO034 RULE035 RULE036 RULE037 RULE038 RULE03Y
RULE040 RULEO41 RULE0O42 RULEO43 RULEO44 RULEO45
RULEO046)

USED-BY :: (RULE0O3 RULE0O4 RULEOOS RULE0O6 RULEC47 RULE048 RULEO49
RULEO50 RULEO51 RULE052 RULE053 RULE054 RULE(U55 RULEV56
RULE057 RULE058 RULE059 RULEOGO RULE061 RULEV62 RULEV63
RULEO064 RULEO65 RULE0O66 RULE(67 RULE020)

COMPONENT _INDICES

TRANSLATION :: (COMPONENT NUMBER)

TYPE :: MULTIVALUED

UPDATED-IN :: (RULE0O7 RULE0OOS RULEO0? RULEO10 RULEV26 RULE0O27 RULEU28
RULE029 RULEO30 RULEO31 RULE032 RULE033 RULEO34 RULEQ35
RULE036 RULE037 RULEO38 RULE0O39 RULE040 RULEO41 RULEO42
RULE043 RULE(O44 RULE0O45 RULEO46)

ANTECEDENT-IN :: (RULE013)

DICTIONARY :: INTERNAL

COMPOSITION
TRANSLATION :: (the component (s) in your mixture)
TYPE :: MULTIVALUED
UPDATED-BY :: (RULE003 RULE004 RULE005 RULE006 RULEU47 RULEV48 RULE049

139

RULE0SO RULEOS1 RULEOS2 RULEOS3 RULEOS4 RULEOSS RULEOS6
RULE057 RULE058 RULE059 RULE060 RULEO61 RULE062 RULE063
RULE064 RULE065 RULE066 RULE067)

DICTIONARY :: INTERNAL

CYCLO-C6%

TRANSLATION :: (the mole percent of CYCLO-C6 in your mixture)
PROMPT :: (Please enter the mole percent of CYCLO-C6 in your mixture.)
TYPE :: SINGLEVALUED

EXPECT :: POSITIVE-NUMBER

USED-BY :: (RULE060)

RANGE :: (1.e-7 100.0000001)

ETHANE%
TRANSLATION :: (the mole percent of ETHANE in your mixture)
PROMPT :: (Please enter the mole percent of ETHANE in your mixture.)
TYPE :: SINGLEVALUED
EXPECT :: POSITIVE-NUMBER
USED-BY :: (RULEOO4)
RANGE :: (1.e-7 100.0000001)

TRANSLATION :: (the mole percent of HELIUM in your mixture)
PROMPT :: (Please enter the mole percent of HELIUM in your mixture.)
TYPE :: SINGLEVALUED

EXPECT :: POSITIVE-NUMBER

USED-BY :: (RULE066)

RANGE :: (1.e-7 100.0000001)

HYDROGEN%

TRANSLATION :: (the mole percent of HYDROGEN in your mixture)
PROMPT :: (Please enter the mole percent of HYDROGEN in your mixture.)
TYPE :: SINGLEVALUED

EXPECT :: POSITIVE-NUMBER

USED-BY :: (RULE062)

RANGE :: (1.e-7 100.0000001)

HYDROGEN_SULFIDE%

TRANSLATION :: (the mole percent of HYDROGEN SULFIDE in your mixture)

PROMPT :: ("Please enter the mole percent of HYDROGEN SULFIDE in your
mixture.”)

TYPE :: SINGLEVALUED

EXPECT :: POSITIVE-NUMBER

USED-BY :: (RULEO057)

RANGE :: (1.e-7 100.0000001)

[SO-BUTANE%

140

TRANSLATION :: (the mole percent of ISO-BUTANE in your mixture)

PROMPT :: ("Please enter the mole percent of [ISO-BUTANE in your mixture.”

)
TYPE :: SINGLEVALUED
EXPECT :: POSITIVE-NUMBER
USED-BY :: (RULE006)
RANGE :: (1.e-7 100.0000001)

ISO-PENTANE%

TRANSLATION :: (the mole percent of ISO-PENTANE in your mixture)

PROMPT :: ("Please enter the mole percent of ISO-PENTANE in your
mixture.")

TYPE ;. SINGLEVALUED

EXPECT ;. POSITIVE-NUMBER

USED-BY :: (RULE048)

RANGE :: (1.e-7 100.0000001)

TRANSLATION :: (goal required to leave input frame)
TYPE :: SINGLEVALUED

UPDATED-BY :: (RULEO16 RULEO15)
DICTIONARY :: INTERNAL

METHANE%
TRANSLATION :: (the mole percent of METHANE in your mixture)
PROMPT :: (Please enter the mole percent of METHANE in your mixture.)
TYPE :: SINGLEVALUED
EXPECT :. POSITIVE-NUMBER
USED-BY :: (RULE003)
RANGE :: (1.e-7 100.0000001)

METHANOL%
TRANSLATION :: (the mole percent of METHANOL in your mixture)
PROMPT :: (Please enter the mole percent of METHANOL in your mixture.)
TYPE :: SINGLEVALUED
EXPECT :: POSITIVE-NUMBER
USED-BY :: (RULEO06S)
RANGE :: (1.e~-7 100.000000})

N-BUTANE%
TRANSLATION :: (the mole percent of N-BUTANE in your mixture)
PROMPT :: (Please enter the mole percent of N-BUTANE in your mixture.)
TYPE :: SINGLEVALUED
EXPECT :: POSITIVE-NUMBER
USED-BY :: (RULE047)
RANGE :: (1.e-7 100.0000001)

N-DECANE%

141

TRANSLATION :: (the mole percent of N-DECANE in your mixture)
PROMPT :: (Please enter the mole percent of N-DECANE in your mixture.)
TYPE :: SINGLEVALUED

EXPECT :: POSITIVE-NUMBER

USED-BY :: (RULE0O54)

N-HEPTANE%
TRANSLATION :: (the mole percent of N-HEPTANE in your mixture)
PROMPT :: (Please enter the mole percent of N-HEPTANE in your mixture.)
TYPE ;. SINGLEVALUED
EXPECT :: POSITIVE-NUMBER
USED-BY :: (RULEO51)

=—===m==s=

TRANSLATION :: (the mole percent of N-HEXANE in your mixture)
PROMPT :: (Please enter the mole percent of N-HEXANE in your mixiure.)
TYPE :: SINGLEVALUED

EXPECT :: POSITIVE-NUMBER

USED-BY :: (RULE050)

RANGE :: (1.e-7 100.0000001)

N-NONANE%
TRANSLATION :: (the mole percent of N-.NONANE in vour mixture)
PROMPT :: (Please enter the mole percent of N-NONANE in your mixture)
TYPE :: SINGLEVALUED
EXPECT :: POSITIVE-NUMBER
USED-BY :: (RULEO53)
RANGE :: (1.e-7 100.0000001)

N-OCTANE%

e e et e e
=—==ksam=

TRANSLATION :: (the mole percent of N-OCTANE in your mixture)
PROMPT :: (Please enter the mole percent of N-OCTANE in your mixture.)
TYPE :: SINGLEVALUED

EXPECT :: POSITIVE-NUMBER

USED-BY :: (RULEO052)

RANGE :: (1.e-7 100.0000001)

N-PENTANE%
TRANSLATION :: (the mole percent of N-PENTANE in your mixture)
PROMPT :: (Please enter the mole percent of N-PENTANE in your mixture)
TYPE :: SINGLEVALUED
EXPECT :: POSITIVE-NUMBER
USED-BY :: (RULE049)
RANGE :: (1.e-7 100.0000001)

TRANSLATION :: (the mole percent of NITROGEN in your mixture)
PROMPT :: (Please enter the mole percent of NITROGEN in your mixture.)
TYPE :: SINGLEVALUED

EXPECT :: POSITIVE-NUMBER

USED-BY :: (RULEO3S)

RANGE :: (1.e-7 100.0000001)

PRESSATM

TRANSLATION :: (the pressure of your mixture in atmospheres)
PROMPT :: (Please enter the pressure of your mixture in atmospheres.)
TYPE :: SINGLEVALUED

EXPECT :: POSITIVE-NUMBER

USED-BY :: (RULEO12 RULE023)

RANGE :: (1.e-7 68166.32)

PRESSPSIA
TRANSLATION ;. (the pressure of your mixture in psia)
PROMPT :: (Please enter the pressure of your mixture in psia.)
TYPE :: SINGLEVALUED
EXPECT :: POSITIVE-NUMBER
USED-BY :: (RULEO11 RULE022)
RANGE :: (1.e-7 1000000)

PROPANE%
TRANSLATION :: (the mole percent of PROPANE in your mixture)
PROMPT :: (Please enter the mole percent of PROPANE in your mixture.)
TYPE :: SINGLEVALUED
EXPECT :: POSITIVE-NUMBER
USED-BY :: (RULE00S)
RANGE :: (1.e-7 100.0000001)

TEMPF
TRANSLATION :: (the temperature of your mixture in degrees F)
PROMPT :: (Please enter the temperature of your mixture in degrees F)
TYPE :: SINGLEVALUED
EXPECT :: NUMBER
USED-BY :: (RULEOLI)
RANGE :: (<459.67 1000000)

TEMPK

TYPE :: SINGLEVALUED
EXPECT :: POSITIVE-NUMBER
USED-BY :: (RULEO12)

RANGE :: (1.e-7 555810.92)

143

TOLUENE%

TRANSLATION :: (the mole percent of TOLUENE in your mixture)
PROMPT :: (Please enter the mole percent of TOLUENE in your mixture.)
TYPE :: SINGLEVALUED

EXPECT :: POSITIVE-NUMBER

USED-BY :: (RULEO58)

RANGE :: (1.e-7 100.0000001)

UNITS
TRANSLATION :: (the system of units you would like to use)
PROMPT :: (Please Select the Desired Systems of Units)
TYPE :: SINGLEVALUED
EXPECT :: (DEGREES_F_AND_PSIA DEGREES_K_AND_ATMOSPHERES)
USED-BY :: (RULEO11 RULEO12 RULEO16 RULEO1S)
DICTIONARY :: INTERNAL

UNITS!
TRANSLATION :: (the units you have chosen to use)
TYPE :: MULTIVALUED
UPDATED-BY :: (RULEO11 RULEOI2)
ANTECEDENT-IN :: (RULEO14)
USED-BY :: (RULE022 RULE023)

WATER%
TRANSLATION :: (the mole percent of WATER in your mixture)
PROMPT :: (Please enter the mole percent of WATER in your mixture.)
TYPE :: SINGLEVALUED
EXPECT :: POSITIVE-NUMBER
USED-BY :: (RULEO61)
RANGE :: (1.e-7 100.0000001)

INPUT-RULES

RULE003
SUBJECT :: INPUT-RULES
DOBEFORE :: (RULEO13)
If 1) the component s in your mixture is METHANE. and
2) the mole percent of METHANE in your mixture is less than 100.0000001
but greater than or equal to 1.e-7,
Then 1) it is definite (100%) that the component s in your mixture is METHANE.
and
2) send data to an external location.

144

RULE0O4
SUBJECT :: INPUT-RULES
DOBEFORE :: (RULE003) ,
If 1) the component s in your mixture is ETHANE, and
2) the mole percent of ETHANE in your mixture is less than 100.0000001
but greater than or equal to 1.e-7,
Then 1) it is definite (100%) that the component s in your mixture is ETHANE,
and
2) send data to an external location.

RULEO0S
SUBJECT :: INPUT-RULES
DOBEFORE :: (RULE004)
If 1) the component s in your mixture is PROPANE, and
2) the mole percent of PROPANE in your mixture is less than 100.0000001
but greater than or equal to 1.e-7,
Then 1) it is definite (100%) that the component s in your mixture is PROPANE,
and
2) send data to an external location.

RULEOO6
SUBJECT :: INPUT-RULES
DOBEFORE :: (RULE0OS)
If 1) the component s in your mixture is ISO-BUTANE, and
2) the mole percent of ISO-BUTANE in your mixture is less than
100.0000001 but greater than or equal to 1.e-7,
1SO-BUTANE, and
2) send data to an external location.

RULE007
SUBJECT :: INPUT-RULES
ANTECEDENT :: YES
If the component s in your mixture is METHANE,
Then it is definite (100%) that COMPONENT NUMBER is 1.

RULE008
SR
SUBJECT :: INPUT-RULES
ANTECEDENT :: YES
DOBEFORE :: (RULE007)
If the component s in your mixture is ETHANE,
Then it is definite (100%) that COMPONENT NUMBER s 2.

145

RULE009

SUBJECT :: INPUT-RULES
ANTECEDENT :: YES
DOBEFORE :: (RULE008)
If the component s in your mixture is PROPANE,

Then it is definite (100%) that COMPONENT NUMBER is 3.

RULEO10
SUBJECT :: INPUT-RULES
ANTECEDENT :: YES
DOBEFORE :: (RULE009)
If the component s in your mixture is ISO-BUTANE,

Then it is definite (100%) that COMPONENT NUMBER is 4.

RULEO26
SUBJECT :: INPUT-RULES
ANTECEDENT :: YES
DOBEFORE :: (RULE010)
If the component s in your mixture is N-BUTANE.

Then it is definite (100%) that COMPONENT NUMBER is §.

SUBIJECT :: INPUT-RULES
ANTECEDENT :: YES
DOBEFORE :: (RULE026)
If the component s in your mixture is ISO-PENTANE,

Then it is definite (100%) that COMPONENT NUMBER 1s 6.

RULEO028

Porr e ST

SUBJECT :: INPUT-RULES
ANTECEDENT :: YES
DOBEFORE :: (RULE027)
If the component s in your mixture is N-PENTANE,

Then it is definite (100%) that COMPONENT NUMBER is 7.

RULEO029
SUBJECT :: INPUT-RULES
ANTECEDENT :: YES
DOBEFORE :: (RULE028)
If the component s in your mixture is N-HEXANE,

Then it is definite (100%) that COMPONENT NUMBER is 8.

146

RULEO030
SUBJECT :: INPUT-RULES
ANTECEDENT :: YES
DOBEFORE :: (RULE029)
If the component s in your mixture is N-HEPTANE,
Then it is definite (100%) that COMPONENT NUMBER is 9.

RULEO31

SUBJECT :: INPUT-RULES
ANTECEDENT :: YES
DOBEFORE :: (RULE030)
If the component s in your mixture is N-OCTANE,

Then it is definite (100%) that COMPONENT NUMBER is 10.

RULEO32

ANTECEDENT :: YES
DOBEFORE :: (RULEO31)
If the component s in your mixture is N-NONANE.

Then it is definite (100%) that COMPONENT NUMBER is 11.

RULEO33
SUBJECT :: INPUT-RULES
ANTECEDENT :: YES
DOBEFORE :: (RULE032)
If the component s in your mixture is N-DECANE,

Then it is definite (100%) that COMPONENT NUMBER is 12.

RULE034
SUBJECT :: INPUT-RULES
ANTECEDENT :: YES
DOBEFORE :: (RULE033)
If the component s in your mixture is NITROGEN,

Then it is definite (100%) that COMPONENT NUMBER is 13.

RULEOQ35
SUBJECT :: INPUT-RULES
ANTECEDENT :: YES
DOBEFORE :: (RULE034)
If the component s in your mixture is CARBON_DIOXIDE.

Then it is definite (100%) that COMPONENT NUMBER is 14.

147

RULEO036
SUBJECT :: INPUT-RULES
ANTECEDENT :: YES
DOBEFORE :: (RULE035)
If the component s in your mixture is HYDROGEN_SULFIDE,
Then it is definite (100%) that COMPONENT NUMBER is 15.

RULEO037
SUBJECT :: INPUT-RULES
ANTECEDENT :: YES
DOBEFORE :: (RULE036)
If the component s in your mixture is TOLUENE.
Then it is definite (100%) that COMPONENT NUMBER is 16.

RULEO038
SUBJECT :: INPUT-RULES
ANTECEDENT :: YES
DOBEFORE :: (RULE037)
If the component s in your mixture is BENZENE.
Then it is definite (100%) that COMPONENT NUMBER is 17.

RULEO039
SUBJECT :: INPUT-RULES
ANTECEDENT :: YES
DOBEFORE :: (RULE038)
If the component s in your mixture is CYCLO-C6,
Then it is definite (100%) that COMPONENT NUMBER is 18.

RULE040
SUBJECT :: INPUT-RULES
ANTECEDENT :: YES
DOBEFORE :: (RULE039)
If the component s in your mixture is WATER,
Then it is definite (100%) that COMPONENT NUMBER is 19.

RULEO41
SUBJECT :: INPUT-RULES
ANTECEDENT :: YES
DOBEFORE :: (RULE040)
If the component s in your mixture is HYDROGEN.

148

Then it is definite (100%) that COMPONENT NUMBER is 20.

RULEO042
SUBJECT :: INPUT-RULES
ANTECEDENT :: YES
DOBEFORE :: (RULEO41)
If the component s in your mixture is CARBON_MONOXIDE,
Then it is definite (100%) that COMPONENT NUMBER is 21.

RULED43

SUBJECT :: INPUT-RULES
ANTECEDENT :: YES
DOBEFORE :: (RULE042)
If the component s in your mixture is AMMONIA,
Then it is definite (100%) that COMPONENT NUMBER is 22.

RULEO44

ANTECEDENT :: YES
DOBEFORE :: (RULE043)
If the component s in your mixture is METHANOL,
Then it is definite (100%) that COMPONENT NUMBER is 23.

RULEO45
SUBJECT :: INPUT-RULES
ANTECEDENT :: YES
DOBEFORE :: (RULE044)
If the component s in your mixture is HELIUM,
Then it is definite (100%) that COMPONENT NUMBER is 24.

RULEO46
SUBJECT :: INPUT-RULES
ANTECEDENT :: YES
DOBEFORE :: (RULE045)
If the component 5 in your mixture is BITUMEN,
Then it is definite (100%) that COMPONENT NUMBER is 25.

RULE0O47
SUBJECT :: INPUT-RULES
DOBEFORE :: (RULE006)
If 1) the component s in your mixture is N-BUTANE, and

149

2) the mole percent of N-BUTANE in your mixture is less than 100 0000001
but greater than or equal to 1.¢-7,
Then 1) it is definite (100%) that the component s in your mixture is N-BUTANE,
and
2) send data to an external location.

RULEO48
SUBJECT :: INPUT-RULES
DOBEFORE :: (RULE0047)
If 1) the component s in your mixture is ISO-PENTANE, and
2) the mole percent of ISO-PENTANE in your mixture is less than
100.0000001 but greater than or equal to 1.e-7,
Then 1) it is definite (100%) that the component s in your mixture is
ISO-PENTANE, and
2) send data to an external location.

RULEO49

===m=s=

SUBJECT :: INPUT-RULES
DOBEFORE :: (RULE048)
If 1) the component s in vour mixture is N-PENTANE. and
2) the mole percent of N-PENTANE in vour mixture 1s less than 100 000000
but greater than or equal to 1.e-7,
Then 1) it is definite (100%) that the component s in your mixture is
N-PENTANE, and
2) send data to an external location.

RULEO50

o o e i

SUBJECT :: INPUT-RULES
DOBEFORE :: (RULE049)
If 1) the component s in your mixture is N-HEXANE. and
2) the mole percent of N-HEXANE in your mixture is less than 100 000000
but greater than or equal to 1.e-7,
Then 1) it is definite (100%) that the component s in your mixture is N-HEXANE.
and
2) send data to an external location.

RULEOS1
SUBJECT :: INPUT-RULES
DOBEFORE :: (RULE050)
If 1) the component s in your mixture is N-HEPTANE., and
2) the mole percent of N-HEPTANE in your mixture is less than 100.0000001
but greater than or equal to 1.e-7,
Then 1) it is definite (100%) that the component s in your mixture is
N-HEPTANE, and
2) send data to an external location.

150

RULE052

SUBJECT :: INPUT-RULES
DOBEFORE :: (RULEOSI)
If 1) the component s in your mixture is N-OCTANE, and
2) the mole percent of N-OCTANE in your mixture is less than 100.0000001
but greater than or equal to 1 .e-7,
Then 1) it is definite (100%) that the component s in your mixture is N-OCTANE,
and ;
2) send data to an external location, and
3) set the UTILITY of RULE024 to be -100.

RULEOS3

JRWMETIJPRI
SUBJECT :: INPUT-RULES
DOBEFORE :: (RULEOS2)
If 1) the component s in your mixture is N-NONANE. and
2) the mole percent of N-NONANE in your mixture is less than 100.0000001
but greater than or equal to 1.e-7,

Then 1) it is definite (100%) that the component s in your mixture is N-NONANE,

and
2) send data to an external location, and
3) set the UTILITY of RULE024 to be -100.

RULEOS4

SUBJECT :: INPUT-RULES
DOBEFORE :: (RULE0S3)
If 1) the component s in your mixture is N-DECANE. and
2) the mole percent of N-DECANE in your mixture is less than 100.0000001
but greater than or equal to 1.e-7,

Then 1) it is definite (100%) that the component s in your mixture is N-DECANE,

and
2) send data to an external location, and
3) set the UTILITY of RULE024 to be -100.

RULEO0SS

SUBJECT :: INPUT-RULES
DOBEFORE :: (RULE054)
If 1) the component s in your mixture is NITROGEN, and
2) the mole percent of NITROGEN in your mixture is less than 100.0000001
but greater than or equal to 1.e-7,

Then 1) it is definite (100%) that the component s in your mixture is NITROGEN,

and
2) send data 10 an external location.

151

RULEO0S6

SUBJECT :: INPUT-RULES
DOBEFORE :: (RULE05S)
If 1) the component s in your mixture is CARBON_DIOXIDE, and
2) the mole percent of CARBON DIOXIDE in your mixture is less than
Then 1) it is definite (100%) that the component s in your mixture is
CARBON_DIOXIDE, and
2) send data to an external location.

RULEO0S?

SUBJECT :: mFU'[‘-gULES
If 1) the component s in your mixture is HYDROGEN_SULFIDE. and
2) the mole percent of HYDROGEN SULFIDE in your mixture is less than
Then 1) it is definite (100%) that the component s in your mixture is
HYDROGEN_SULFIDE. and
2) send data to an external location,

SUBJECT :: INPUT-RULES
DOBEFORE :: (RULE057)
If 1) the component s in your mixture is TOLUENE. and

but greater than or equal to 1.e-7,

Then 1) it is definite (100%) that the component s in your mixture is TOLUENE.

and
2) send data to an external location.

RULE059

SUBJECT :: INPUT-RULES

DOBEFORE :: (RULE058) o

2) the mole percent of BENZENE in your mixture is less than 100.0000001
but greater than or equal to 1.e-7,

Then 1) it is definite (100%) that the component s in your mixture is BENZENE.

and
2) send data to an external location.

SUBJECT :: INPUT-RULES
DOBEFORE :: (RULE059)
If 1) the component s in your mixture is CYCLO-C6. and

152

2) the mole percent of CYCLO-C6 in your mixture is less than 100.0000001
but greater than or equal to 1.e-7,
Then 1) it is definite (100%) that the component s in your mixture is CYCLO-C6,
and
2) send data to an external location.

RULEO61
SUBJECT :: INPUT-RULES
DOBEFORE :: (RULE060)
If 1) the component s in your mixture is WATER, and

greater than or equal to 1.e-7,
Then 1) it is definite (100%) that the component s in your mixture is WATER,
and
2) send data to an external location. and
3) set the UTILITY of RULEO20 to be 1.

RULE062
SUBJECT .. INPJT-RULES
DOBEFORE :: (RULE06!)
If 1) the component s in your mixture is HYDROGEN. and
2) the mole percent of HYDROGEN in your mixture is less than 100.0000001
but greater than or equal to 1.e-7,
Then 1) it is definite (100%) that the component s in your mixture is HYDROGEN.
and
2) send data to an external location.

RULE063
SUBJECT :: INPUT-RULES
DOBEFORE :: (RULE062)
If 1) the component s in your mixture is CARBON_MONOXIDE, and
2) the mole percent of CARBON MONOXIDE in your mixture is less than
100.0000001 but greater than or equal to 1.e-7.
Then 1) it is definite (100%) that the component s in your mixture is
CARBON_MONOXIDE. and
2) send data to an external location.

RULEO64

SUBJECT :: INPUT-RULES
DOBEFORE :: (RULE063)
If 1) the component s in your mixture is AMMONIA, and
2) the mole percent of AMMONIA in your mixture is less than 100.0000001
but greater than or equal to 1.e-7,
Then 1) it is definite (100%) that the component s in your mixture is AMMONIA,
and

153

2) send data to an external location.

RULEO065

SUBJECT :: INPUT-RULES
DOBEFORE :: (RULE064)
If 1) the component s in your mixture is METHANOL, and
2) the mole percent of METHANOL in your mixture is less than 100.0000001
but greater than or equal to 1.e-7,
Then 1) it is definite (100%) that the component s in your mixture is METHANOL,
and
2) send data to an external location, and
3) set the UTILITY of RULEO20 to be 1.

RULE066

SUBJECT :: INPUT-RULES
DOBEFORE :: (RULE06S)
If 1) the component s in your mixture is HELIUM. and
2) the mole percent of HELIUM in your mixture is less than 100 0000001
but greater than or equal to 1.e-7,
Then 1) it is definite (100%) that the component s in your mixture 1s HELIUM.,
and
2) send data to an external location.

RULE067
SUBJECT :: INPUT-RULES
DOBEFORE :: (RULE066)
If 1) the component s in your mixture is BITUMEN. and
2) the mole percent of BITUMEN in your mixture is less than 100.0000001
but greater than or equal to 1.e-7,
Then 1) it is definite (100%) that the component s in your mixture is BITUMEN,
and
2) send data to an external location.

UNITS-RULES

RULEO11
SUBJECT :: UNITS-RULES
If 1) the system of units you would like to use is DEGREES_F_AND_PSIA. and
2) the temperature of your mixture in degrees F is less than 1000001 but
greater than or equal to -459 66, and
3) the pressure of your mixturc .n psia is less than 1000001 but greater
than or equal to 0,

154

Then 1) it is definite (100%) that the units you have chosen to use is 1, and
2) set the UTILITY of RULEO22 to be -1.

RULEO012

SUBJECT :: UNITS-RULES
If 1) the system of units you would like to use is DEGREES_K_AND_ATMOSPHERES,
and
2) the temperature of your mixture in degrees K is less than 555811.48
but greater than or equal to 0, and
3) the pressure of your mixture in atmospheres is less than 68166.39 but
greater than or equal to 0,
Then 1) it is definite (100%) that the units you have chosen lo use is 2, and
2) set the UTILITY of RULE023 to be -1.

RULEO13
SUEIECT :: WRITE_EXT-RULES
ANTECEDENT :: YES
If COMPONENT NUMBER is known,
Then send data to an external location,

RULEO14

ANTECEDENT :: YES
If the units you have chosen to use is known,
Then send data to an external location.

RULEO15

SUBJECT :: WRITE_EXT-RULES
If the system of units you would like to use is DEGREES_F_AND_PSIA,
Then 1) it is definite (100%) that goal required to leave input frame is OKAY,

and

2) inform the user of this decision, and

3) send data to an external location, and

4) (DOS-CALL-RETURN "flagh.exe” "*), and

$5) instantiate the frame the frame where the viscosity correlation is

RULEO16

155

SUBJECT :: WRITE_EXT-RULES
If the system of units you would like to use is DEGREES_K_AND_ATMOSPHERES,
Then 1) it is definite (100%) that goal required to leave input frame is OKAY,
and
2) inform the user of this decision, and
3) send data to an external location, and
4) (DOS-CALL-RETURN "flash.exe" **), and
5) instantiate the frame the frame where the viscosity correlation is
selected if appropriate.

IDENTIFIER :: "DECISION-"

TRANSLATION :: (the frame where the viscosity correlation is selected)

PARENTS :: (INPUT)

GOALS :; (VISC_CORRELATION RESULTS_DISPLAY)

PROMPTIST :: (PREMISE)

PROMPT2ND :: (Would you like to select a viscosity correlation?)

PREMISE :: ($AND

(KNOWN FRAME COMPOSITION))

PARMGROUP :: DECISION-PARMS

RULEGROUPS :: (DECISION-RULES USER_SELECTED-RULES)

OFFSPRING :: (COLLECTION)

DECISION-PARMS :;» (BLANK CORRELATION_SELECTION LEAVE_FRAMEI

LEAVE_FRAME2

LINE MOLE%_LIQUID MOLE%_VAPOR NUMBER_OF _COMPONENTS
RESULTS RESULTS_DISPLAY VISC_CORRELATION
VISC_CORRELATION_INDICE)

DECISION-RULES :: (RULE020 RULEO21 RULE022 RULE023 RULE0O24 RULEU25
RULEO68 RULE069)

USER_SELECTED-RULES :: (RULE0!17 RULE018 RULEO1Y RULE072)

BLANK
TRANSLATION :: (a parameter used to set the import statement to the
begin of visc.prn)
TYPE :: SINGLEVALUED
UPDATED-IN :: (RULE068 RULE072)
DICTIONARY :: INTERNAL
CORRELATION_SELECTION

156

PROMPT :: ("Please select the viscosity correlation you would like to
use.” :LINE "Please select only ONE method.")
TYPE :: ASK-ALL
EXPECT :: (DEAN_AND_STIEL ELY_AND_HANLEY PEDERSEN_AND_FREDENSLUND)
USED-BY :: (RULEO17 RULEO!8 RULEOQ19)
DICTIONARY :: INTERNAL

LEAVE_FRAMEI

TRANSLATION :: (parameter required to leave decision frame)
TYPE :: SINGLEVALUED
UPDATED-BY :: (RULE022 RULE023 RULE024 RULE020 RULEO21 SREFMARK RULE025

)
ANTECEDENT-IN :: (RULE068)
DICTIONARY :: INTERNAL

LEAVE_FRAME2

DI IRTICTIICETER
TRANSLATION :: (parameter required to leave decision frame if user
selected corr.)
TYPE :: SINGLEVALUED
UPDATED-BY :: (RULEO17 RULEO18 RULEO19Y)
ANTECEDENT-IN :: (RULE072)
DICTIONARY :: INTERNAL

LINE
TRANSLATION :: (a parameter used to display results)
TYPE :: MULTIVALUED
USED-BY :: (RULE070)
CONTAINED-IN :: (RULE069)
DICTIONARY :: INTERNAL

MOLE%_LIQUID

TRANSLATION :: (the mole percent of liquid in the mixture)
TYPE :: SINGLEVALUED
USED-BY :: (RULEO21)

MOLE%_VAPOR

TRANSLATION :: (the mole percent of vapor in the mixture)
TYPE :: SINGLEVALUED
USED-BY :: (RULEO21)

NUMBER_OF_COMPONENTS

TRANSLATION :: (the number of components in the mixture)
TYPE :: SINGLEVALUED
USED-BY :: (RULE022 RULE023 RULE024 RULEU21)

RESULTS

157

TRANSLATION :: (a parameter used to help collect resuits)
TYPE :: MULTIVALUED

UPDATED-BY :: (RULE069 RULE070)
ANTECEDENT-IN :: (RULE071)

USED-BY :: (RULE069)

RANGE :: (02)

DICTIONARY :: INTERNAL

RESULTS_DISPLAY

TRANSLATION :: (a goal required to obtain and display results)
TYPE :: SINGLEVALUED

UPDATED-BY :: (RULE069)

DICTIONARY :: INTERNAL

VISC_CORRELATION

TRANSLATION :: (the viscosity correlation selected)

TYPE :: SINGLEVALUED

EXPECT :: (DEAN_AND_STIEL ELY_AND_HANLEY PEDERSEN_AND_FREDENSLUND)

UPDATED-BY :: (RULE022 RULE023 RULE024 RULEO17 RULEO18 RULEVU1Y RULEV20
RULEO21 SREFMARK RULE025)

USED-BY :: (SREFMARK RULE025)

VISC_CORRELATION_INDICE

TRANSLATION :: (an integer passed to the external program)

TYPE :: SINGLEVALUED

UPDATED-BY :: (RULE022 RULE023 RULE024 RULEO17 RULEC18 RULEO1Y RULE020
RULEO21 SREFMARK RULE025)

DICTIONARY :: INTERNAL

DECISION-RULES
RULE020

SUBJECT :: DECISION-RULES
If 1) the component s in your mixture is WATER. or
2) the component s in your mixture is METHANOL,
Then 1) it is definite (100%) that the viscosity correlation selected is
PEDERSEN_AND_FREDENSLUND, and
2) it is definite (100%) that an integer passed to the external program
is 3, and
3) send data to an external location, and
4) it is definite (100%) that parameter required 1o leave decision frame
is OKAY.

RULEO21

158

JECT :: DECISION-RULES
If 1) retrieve data from an external source, and
2) the mole percent of liquid in the mixture is greater than | -5,
Then 1) it is definite (100%) that the viscosity correlation selected is
PEDERSEN_AND_FREDENSLUND, and
2) it is definite (100%) that an integer passed to the external program
is 3, and
3) send data to an external location, and
4) it is definite (100%) that parameter required to leave decision frame
is OKAY.

RULE022

SUBJECT :: DECISION-RULES
If 1) the number of components in the mixture is less than or equal to 3. and

2) the units you have chosen to use is 1, and
3) the pressure of your mixture in psia is less than or equal to 146.95.
Then 1) it is definite (100%) that the viscosity correlation selected is

DEAN_AND_STIEL, and

2) it is definite (100%) that an integer passed to the external program
is 1, and

3) send data to an external location, and

4) it is definite (100%) that parameter required to leave decision frame
is OKAY.,

RULE023

SUBJECT :: DECISION-RULES
If 1) the number of components in the mixture is less than or equal to 3, and

2) the units you have chosen to use is 2, and

3) the pressure of your mixture in atmospheres is less than or equal to
10.,

Then 1) it is definite (100%) that the viscosity correlation selected is

DEAN_AND _STIEL, and

2) it is definite (100%) that an integer passed to the exiernal picg: .m
is 1, and

3) send daia to an external location, and

4) it is definite (100%) that parameter required to leave decision frame
is OKAY.

RULEO24
SUBJECT :: DECISION-RULES
UTILTIY :: -2
If 1) the number of components in the mixture is greater than 0. and
2) the component s in your mixture is not N-OCTANE. and
3) the component s in your mixture is not N-NONANE, and

159

4) the component s in your mixture is not N-DECANE,
Then 1) it is definite (100%) that the viscosity correlation selected is

ELY_AND_HANLEY. and

2) it is definite (100%) that an integer passed to the external program
is 2, and

J) send data to an external location, and

4) it is definite (100%) that parameter required to leave decision frame
is OKAY.

RULE02S

SUBJECT :: DECISION-RULES
UTILITY :: -3
If the viscosity correlation selected is not known with certainty,
Then 1) it is definite (100%) that the viscosity correlation selected is
PEDERSEN_AND_FREDENSLUND, and
2) it is definite (100%) that an integer passed to the external program
is 3, and
3) send data to an external location. and
4) it is definite (100%) that parameter required to leave decision frame

is OKAY.

RULE068

o e et o o
==

SUBJECT :: DECISION-RULES

ANTECEDENT :: YES
If parameter required to leave decision frame is known,
Then 1) (DOS-CALL-RETURN "visc.exe" ""). and

2) retrieve data from an external source.

RULE069

SUBJECT :: DECISION-RULES
If a parameter used to help collect results is OKAY,
Then 1) it is definite (100%) that a goal required to obtain and display
results is OKAY, and
2) inform the user of this decision, and
3) display a parameter used to display results.

USER_SELECTED-RULES

RULEO17
SUBJECT :: USER_SELECTED-RULES
UTILITY :: -100

If user selected viscosity correlation is DEAN_AND_STIEL.
160

DEAN_AND_STIEL, and 7

2) it is definite (100%) that an integer passed to the external program
is 1, and

3) send data to an external location, and

4) it is definite (100%) that parameter required to leave decision frame
if user selected corr. is OKAY.

RULEOI8

SUBJECT :: USER_SELECTED-RULES
UTILITY :: -100
If user selected viscosity correlation is ELY_AND_HANLEY,
Then 1) it is definite (100%) that the viscosity correlation selected is
ELY_AND_HANLEY, and
2) it is definite (100%) that an integer passed to the external program
is 2, and
3) send data to an external location, and
4) it is definite (100%) that parameter required to leave decision frame
if user selected corr. is OKAY.

RULEO19
SUBJECT :: USER_SELECTED-RULES

UTILITY :: -100
If user selected viscosity correlation is PEDERSEN_AND_FREDENSLUND.

PEDERSEN_AND_FREDENSLUND. and

2) it is definite (100%) that an integer passed to the external program
is 3, and

3) send data to an external location, and

4) it is definite (100%) that parameter required to leave decision frame
if user selected corr. is OKAY.

RULE072

SUBJECT :: USER_SELECTED-RULES

ANTECEDENT :: YES
If parameter required to leave decision frame if user selected corr. is
known,
Then 1) inform the user of this decision. and

2) (DOS-CALL-RETURN "visc.exe" ""), and

3) retrieve data from an external source.

Frame :: CQLLEQ‘I; ION

161

IDENTIFIER :: "COLLECTION-"
TRANSLATION :: (the frame used collect the results)
PARENTS :: (DECISION INPUT)
PROMPTIST :: (PREMISE)
PROMPT2ND :: (PREMISE)
PREMISE :: (§AND
(IMPORT
(l
(DOS-FILE-IN "visc.pm" LINE))))
PARMGROUP :: COLLECTION-PARMS
RULEGROUPS :: (COLLECTION-RULES)
COLLECTION-PARMS :: ()
COLLECTION-RULES :: (RULE070 RULEO71)

SUBJECT :: COLLECTION-RULES
If a parameter used to display results is known,
Then it is definite (100%) that a parameter used to help collect resulis is

OKAY.

RULEO71

SUBJECT :: COLLECTION-RULES
ANTECEDENT :: YES
If aparameter used to help collect results is OKAY,
Then set the UTILITY of (RULEQ17 RULEOI8 RULEO1Y) to be 2.

162

