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Abstract

A dual-fuel system is used to control HCCI combustion timing and load in a CFR en-

gine. The systems steady-state response to iso-octane and n-heptane injected energy

is investigated then a dynamic ARMAX model is found using system identification.

This model is used to design a norm-optimal Iterative Learning Controller (ILC). A

new design for an ILC is developed that requires minimal system information and is

called the model-less ILC. The stability and noise transference of this new design is

investigated. Both ILC designs are then optimized for experimental implementation.

To attenuate noise in the system two non-causal filters are developed to use with the

ILC: a Gaussian and a zero-phase Butterworth. The filters are optimized on the AR-

MAX model and then implemented on the CFR engine. The three best ILC designs

are are found to be the model-less with zero-phase Butterworth, norm-optimal with

zero-phase Butterworth and a norm optimal without a filter. These ILC designs are

compared to a Proportional-Integral (PI) controller and all three ILCs are found to

out perform the PI controller.

The three best ILC designs are then implemented on the engine with different op-

erating conditions to explore the controller robustness. The intake temperature and

compression ratio are varied and all ILC designs performed well with the ILC conver-

gence time being most affected by these disturbances. The disturbance rejection of

the controllers is then tested with the addition of biofuels: ethanol and biodiesel. The

controllers are able to converge with the new fuel and out-performed the PI controller

subject to the same biofuel disturbance.

For the CFR engine with HCCI combustion performing repetitive steps in com-

bustion timing and load, ILC outperforms PI control and is robust to changes in

intake temperature, compression ratio and the addition of biofuels with little changes

in the final iteration reference tracking error.
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Chapter 1

Introduction

This Chapter details the problem addressed in this thesis, why it should be addressed

and how it is investigated.

1.1 HCCI

Homogeneous Charge Compression Ignition (HCCI) is type of combustion that uses

the auto-ignition properties of the fuel to incite combustion. By igniting the fuel in

this manner, combustion occurs much quicker than traditional combustion strategies,

like Spark Ignition (SI) or Compression Ignition (CI), leading to higher thermal effi-

ciencies Stanglmaier and Roberts [1999]. As well low NOx and soot emissions have

been found with HCCI combustion due to the low temperature observed during and

after combustion Iida et al. [2003]. However, several drawbacks are known for HCCI

combustion. Due to the fast combustion, high pressure rise rates occur and can be

damaging to the engine Oakley et al. [2001], therefore less fuel must be used so as

not to damage the engine, which limits the load of the engine. Also, due the low

temperature high amounts of unburnt HydroCarbons (uHC) and CO are produced

compared to CI engines Stanglmaier and Roberts [1999]. Since the combustion is a

dictated by chemical kinetics Najt and Foster [1983], combustion timing is difficult

as there is no direct mechanism to control combustion like there is with SI and CI
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engines.

1.2 Problem Statement

The objective of this research is to design and test a control strategy that can control

combustion timing for an HCCI engine. The control method will involve using a

dual-fuel strategy to control both combustion timing and load. The method will be

tested for its robustness for changes in operating conditions and the use of biofuels.

The control strategy chosen is an Iterative Learning Controller (ILC).

1.3 Motivation

The US Environmental Protection Agency (EPA) and National Highway Traffic Safety

Administration (NHTSA) have begun setting new standards for emissions and fuel

economy for cars and light trucks with model years between 2017-2025 EPA [2012].

These regulations will enforce a combined CO2 emission of cars and trucks at 163

g/mi and a fuel economy of 54.5 mpg by the end of 2025. The 2014 regulation for

CO2 emissions is 293 g/mi with a fuel economy of 31.3 mpg. This enforcement is

estimated to cut 6 billion tonnes of GHG over the years 2012-2025 and save $1.7

trillion in fuel costs. This improvement is expected to come from advancements

in internal combustion engines EPA [2012]. HCCI engines can provide part of this

improvement by having a higher thermal efficiency.

With HCCI’s unique combustion strategy multiple fuels can be used Fiveland

et al. [2001]. This can utilized to for the use of biofuels Arrègle et al. [2009]. Biofuels

are useful in that they can be carbon neutral and are a renewable resource Schnei-

der [2010]. Work is currently happening of the development of advanced biofuels,

which are derived from non-food source feedstocks BFN [2013]. This allows fuel to be

produced without decreasing the worlds food supply while producing low net green-
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house gas emissions. Many of these biofuels have different properties compared to

traditional gasolines Schneider [2010]. This means they cannot be readily put into

traditional SI engines and must either go through further processing to become a

drop-in fuel or a new combustion strategy, like HCCI must be used.

ILC is chosen as the control method as it can optimize the input sequence for a

process that is repetitive. Any engine application that requires repetitive operation

is well suited for ILC implementation. This may include idle speed control for distur-

bance rejection, load changes for generator applications or even en route performance

optimization for mass transit systems Kapania and Gerdes [2015]. By using an ILC to

control HCCI combustion timing, the ILC can optimize the input so that the system

follows the reference trajectory without a loss of performance.

1.4 Thesis Organization

This thesis begins with operating a dual fuel engine using primary reference fuels.

This will be the base point that will be used to compare control structures. This base

point has a system identification as well as an operating domain variation. These are

used to generate a norm-optimal control and a model-less control. The stability and

optimization of these control strategies are investigated. Then the application of non-

casual filters is explored. Finally the ILC is tested against a traditional Proportional-

Integral (PI) controller.

Next the robustness of the control is tested by varying the operating conditions

and looking if the controllers can converge. To see how well the controller handles the

addition of biofuels, ethanol and biodiesel are added to the primary reference fuels

and the ILC performance is tested. The ILC biofuel performance is then compared

to the baseline proportional-integral controller again.
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Chapter 2

Background

An overview of the fundamental topics discussed in this study are given in this chapter.

A short summary of previous research pertinent to this study is also given.

2.1 HCCI

The HCCI cycle utilizes the compression of the engine to ignite the charge, similar

to the Diesel cycle, rather than using a electrical discharge which is used in the spark

ignition cycle. However, like the spark ignition cycle, in the HCCI cycle the fuel

mixes with air to make a homogeneous charge before ignition occurs. This allows for

a much faster combustion than either spark ignition or Diesel Oakley et al. [2001].

The fast combustion observed by HCCI has a near constant volume pressure rise

that allows the cycle to more closely mimic the Otto cycle Heywood [1988] which

has the maximum efficiency possible for an internal combustion engine. Because the

ignition is caused by the compression of the already mixed charge, the combustion

timing is a function of the chemical kinetics Najt and Foster [1983]. The chemical

kinetics determine the combustion so interesting mechanism can be seen in HCCI

like a low temperature heat release Kelly-Zion and Dec [2000] and an intermediate

temperature heat release Yang et al. [2010] that depend largely on the fuel. With

the fast combustion, high pressure rise rates occur which may cause damage to the



5

engine Oakley et al. [2001]. To reduce the pressure rise, HCCI is often run with either

large air to fuel ratios or by diluting the charge with recirculated exhaust gas (EGR).

This reduces the torque of the engine but also decreases the temperatures observed

in the cycle Warnatz et al. [2006]. This low temperature reduces the amount of NOx

produced Warnatz et al. [2006] but also causes lower temperatures to occur later in

the cycle which is known to increase uHC and CO emissions Stanglmaier and Roberts

[1999]. Since HCCI timing is dependent on the properties of the fuel, two methods

have been used to predict the combustion timing of fuel in HCCI. They are chemical

kinetic modeling and empirical combustion metrics.

2.2 Fuel Properties

2.2.1 Volatility

Volatility is the tendency for a fuel to evaporate. It is characterized by Taylor and

Taylor [1961]:

Fv =
mfvpf

ma(p− pf )
(2.1)

where

Fv = mass ratio of evaporated fuel to air [-]

mfv = average molecular weight of fuel vapor [g/mol]

pf = partial pressure of the fuel vapor [Bar]

ma = molecular weight of air [g/mol]

p = total pressure of mixture [Bar]

The vapor pressure of the fuel is dependent on the temperature and fuel type,
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Pvap = Pvap(T,Fuel).

The volatility has two affects on engine performance Taylor and Taylor [1961].

One is the minimum temperature the fuel can start at. This is the temperature that

the fuel cannot evaporate to the minimum air fuel ratio required for combustion. As

well if it is too volatile it may cause vapor lock.

Volatility is required to mix the fuel with the air. The fuel must be volatile enough

to reach a homogeneous mixture.

2.2.2 Heat of Combustion

Heating value is the energy released when the fuel is combusted Smith and Stinson

[1952]. It can be affected by many things, such as if it is combusted at constant

pressure or constant volume, if the water produced condenses or not, and what tem-

perature the reaction occurred at. When the water condenses this is known as the

Higher Heating Value (HHV) and when it does not it is known as the Lower Heating

Value (LHV).

While it would seem that having a higher specific heating value is ideal, one issue

can occur due to the need for oxygen. Some fuels require a higher air to fuel ratio,

this can decrease the heat value density in the combustion chamber therefore negating

affects the higher heating value had with respect to cycle analysis.

2.2.3 Heat of Evaporation

Heat of evaporation is the energy required to change the fuel from a liquid to a

gaseous phase. This can dramatically change the mixture temperature compared to

the intake temperature Taylor and Taylor [1961]. This change can be ideal it can cool

the charge allowing for a higher density.



7

Table 2.1: RON and MON operating conditions ASTM [1968].

Factor MON RON
Inlet Temperature 300 F◦ 125 F◦

Speed 900 rpm 600 rpm

2.2.4 Chemical Stability

This aspect of the fuel is for practical purposes. If a fuel degrades quickly it may

not be ideal as a fuel for internal combustion engines Taylor and Taylor [1961]. If

it corrodes metals or plastics it would require specialized delivery system. Its safety

precautions should also be considered when choosing a fuel for consumers.

2.3 Combustion Metrics

2.3.1 Octane Rating

Detonation is often characterized by the octane number (ON) Taylor and Taylor

[1961]. This is its tendency to knock compared to iso-octane and n-heptane mixture

which is called a Primary Reference Fuel (PRF). A fuel with 100 ON knocks like iso-

octane and a fuel with 0 ON knocks like n-heptane. There are two definitions of ON:

one being research octane number (RON) and the other being motor octane number

(MON). The difference are the operating conditions which are given in Table 2.1.

A fuel with a higher ON is more resistant to knocking. The sensitivity is the

difference between the MON and RON and characterizes how sensitive the fuel is to

operating condition changes.

To measure ON for a particular fuel, a Cooperative Fuels Research (CFR) engine

is operating at the desired conditions for either MON or RON ASTM [1968]. The

compression ratio is then altered until knocking is achieved. Then a PRF mixture is

prepared that matched the knocking intensity observed by the test fuel. The PRF

mixture by volume of iso-octane to n-heptane percentage is taken as the ON.
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Fuel Sensitivity is the difference between MON and RON; it is used to indicate

how sensitive the fuel is to operating conditions, particularly the inlet temperature.

Fuels that are more paraffinic tend to have less fuel sensitivity Lichty [1951].

ON is very dependent on fuel structure and the burn process. Since ON is a

measure of the tendency to knock, the knocking mechanism must first be under-

stood. Knocking occurs after the fuel is initially ignited. As the flame front expands

through the combustion chamber, the burnt charge expands and compresses the un-

burnt charge. If the unburnt charge detonates (autoignites) before the initial flame

front reaches it, the new combustion zone increases in pressure. This will then cause

a large pressure gradient since the old burnt charge has begun expanding and thereby

lowering its pressure. The pressure gradient then oscillates causing the characteristic

pinging sound of knock. These pressure waves can strip the thermal boundary layer

off the combustion chamber allowing excessive heat transfer to the cylinder walls and

piston that can damage the engine and reduces efficiency Lichty [1951].

With this knowledge of knocking, fuels can be characterized on their tendency

to knock by their detonation characteristics. Combustion is a summation of many

elementary reactions Smith and Stinson [1952]. These elementary reactions, when

in the context of combustion, are categorized as chain branchers and chain breakers.

Chain branchers cause an increase in the radicals used to begin the reaction thereby

cause a positive feedback effect. Chain breakers use up the radicals used in the

reaction therefore ending the chain. Detonation occurs when the number of chain

branchers out numbers the chain breakers causing a rapid reaction Smith and Stinson

[1952]. For molecules to begin reacting, they must collide with enough energy to break

their initial bonds. For a long chain hydrocarbon this is initially difficult. But after

the first hydrogen is stripped away, an alkyl radical is left. These oxidize easily and

the process of stripping the carbons and hydrogens off begins causing chain branching.

Due to this characteristic, longer and straighter (less branches) hydrocarbons react



9

more readily as less initial alkyl radical formation has to occur Lichty [1951].

This gives long straight chain molecules like n-heptane a low ON since it reacts

more readily, and iso-octane, a compact shorter chain molecule with lots of branches,

a high ON since it is more difficult ignite and has a longer ignition delay.

Kalghatgi proposed that the knock limiting spark advance, KLSA was linearly

dependent on the RON and MON of the fuel at a given operating point Kalghatgi

[2003].This can be written as:

KLSA = c+ aRON + bMON (2.2)

Rewriting eqn. 2.2 by substituting in Octane Index, OI, and K, gives the following:

KLSA = c+ (a+ b)OI (2.3)

OI = (1−K)RON +K ·MON (2.4)

The value K should only be dependent of operating conditions. These equations

characterized the experiment well in Kalghatgi [2003] with R2 value of 0.97. From

eqn. 2.4, it can be seen that if K=1 the OI will equal the MON of the fuel. This

corresponds to the engine parameters that will simulate knocking conditions similar

to the ones produced by the MON ASTM test seen in ASTM [1968]. Similarly if K=0,

it will be equivalent to RON. Kalghatgi also noted that the K maybe negative. If it

is then a fuel with a large difference sensitivity, S, can have a higher OI and therefore

be more resistant to knocking. These results show that RON and MON have enough

information to characterize a fuels auto-ignition quality in SI engines and the only

other parameters needed to predict knocking are the operating conditions.
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2.3.2 Octane Rating for HCCI

Kalghatgi then proceeded to apply this method to HCCI, with the following

change Kalghatgi [2003]:

CA50 = aRON + bMON + c (2.5)

Where CA50 is crank angle after top dead center where 50% of the fuel is burnt.

Eqn. 2.5 can be manipulated similarly to eqns. 2.3 and 2.4. Here Kalghatgi is stat-

ing that the RON and MON are also enough information to characterize the fuel’s

auto-ignition characteristics in HCCI and the only other information needed is the

operating conditions to predict the CA50 of the test. The results proved quite good

with R2 values of 0.89 and 0.96 with CA50 vs. OI Kalghatgi [2003]. However he did

later show that for one of the operating conditions, a quadratic fit worked better,

this indicates that the relationship is more complicated or other fuel factors must be

involved. Risberg et al. went on to compare the OI0 of different operating condi-

tions Risberg et al. [2003]. The value OI0 is the required OI that at a set of operating

conditions, would result in a CA50 of 0 crank angle degrees after top dead center. It

was found that OI0 could be described by the Tmaxcomp, Pmaxcomp, λ, and RPM. This

relationship is found using PRFs only. Then a new fuel is run at different operating

conditions and through the use of the equation derived from PFR’s, the OI and how

it changes with respect to operating conditions can be found. In Risberg et al. [2003]

they also predicted K with respect to Tcomp15 and λ. It is noted that the subscripts

comp15 relates to to the temperature of compression at 15 bars and maxcomp refers

to the maximum compression both which can be found through thermodynamic rela-

tions. In Kalghatgi and Head [2004] the relations of K and OI0 were similar to that

found in Risberg et al. [2003] showing that engine geometry may not play a signifi-

cant role. The results were also extended; Since OI0 and K both depend on Tcomp15,
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if a fuel had a particular RON and MON value, it is theorized that the fuel would

always ignite at top dead center if the λ and speed were kept constant, no matter

what Tcomp15 is used. Another extension is that sensitive fuels are better for HCCI

because if the load increases, the K value will decrease and if it is negative this will

increase the OI for highly sensitive fuel thereby making it resistant to knock.

2.3.3 Other Proposed Metrics

Shibata stated that OI was not sufficient for HCCI Shibata [2007]. His indexing

was based of the fuel’s components which is more useful with naphthas and the

auto-ignition of the High Temperature Heat Release (HTHR) based off of its low

temperature reactions is compared. Intake air heating is used to show these results.

The octane number at different operating points by scaling their HTHR CA20s with

that of iso-octane and n-heptane is described. For example, if at a certain operating

condition 20% of the high temperature heat release happens at -10 CAD for n-heptane

and 0 CAD for iso-octane, then if a fuel had its at -5 CAD its new ON would be 50.

By plotting the new ONs vs intake temperature it is seen that at high temperatures

the fuels tend to move towards 100 ON. This is attributed to iso-octane having neither

a LTHR or a LTHR inhibitor. Shibata stated that the fuels below 100 ON have a

LTHR with n-heptane having the largest LTHR. Any that were above 100 ON had low

temperature reactions that caused chain breaking radicals to occur thereby reducing

any low temperature heat release and delaying ignition. As intake heating increases,

these low temperature reactions become negligible as the heat from LTHR does not

contribute as much to combustion making the fuel tend to a neutral position best

described by iso-octane.

The combustion timing is correlated with the amount of low temperature heat

release (LTHR) Shibata et al. [2005]. An indexing based off of the required compres-

sion ratio for constant combustion phasing is developed Truedsson et al. [2014]. The
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method provided cannot go below a RON of 60 due to a quadratic regression.

While all these methods have their benefits, none can predict CA50 for all fu-

els Rapp et al. [2013]. It has also been found that a different mode of combustion,

called intermediate temperature heat release (ITHR), can also affect the combustion

timing Vuilleumier et al. [2014] Yang et al. [2010].

2.4 Predicting Properties Based of Chemical Structure

2.4.1 Enthalpy of Formation

The enthalpy of formation (∆h0
f ) is the energy required to create the compound

from its base elements, which are defined to have enthalpy of formations of 0. If the

enthalpy of formation of each compound in a chemical reaction are known then the

heat of the reaction can be found. One can find the heating value of a fuel if the

enthalpies of formation are known for that fuel, water and carbon dioxide. O2 is not

needed as it is defined as 0. This process is shown below using it on methane:

CH4 + 3O2 → CO2 + 2H2O (2.6)

∆hreaction = ∆h0
f(CO2)

+ 2∆h0
f(H2O) −∆h0

f(CH4)
− 3∆h0

f(O2)
(2.7)

In eqn. 2.7 the ∆hreaction is the molar heating value of methane due to it being a

combustion reaction.

To estimate the enthalpy of formation, a group contribution method can be applied

Poling and Prausnitz [2001]. Joback’s method is one such, where the groups are

defined by their central atom, how many hydrogens are attached and their bonds

to the other groups. For example propane, C3H8, has 2 -CH3 groups and 1 >CH2.

This method’s advantage is its simplicity and the only requirement is the compound’s
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structure. This method was applied by Lapuerta to estimate the enthalpy of formation

of methyl and ethyl esters Lapuerta et al. [2010]. This method was also applied to

ether biofuels created by the University of Manitoba. The structures of these fuels

are given in Fig. 2.1. The groups required for the estimation of these biofuels are

given in Table 2.2. The values are used in the following:

∆h0
f = 68.29 +

∑
i

NiJi (2.8)

where:

Ni = Number of groups

Ji = Groups contribution

The enthalpy of formation for the C8 and C10 fuels were found to be -519.45

kJ/mol and -560.73 kJ/mol respectively. These are then used to find the lower heating

value (as the water is assumed to be gaseous form) to give values of -6075.65 kJ/mol

and -7305.02 kJ/mol of C8 and C10 fuels, respectively.

Testing using a bomb calorimeter was done to experimentally find these values.

The results of the testing gave values of -6611±307 kJ/mol and -7671±368 kJ/mol

for the C8 and the C10 fuels respectively. The C10 estimate is within error of the

experimentally found value while the C8 value is not. The C8 value has an 8% error

which is still considered to be good considering the testing apparatus was unable to

account for heat loss to the environment due to the large resolution of the temperature

measurement and the estimation was using the simplest group contribution possible.
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(a) 1,3-dimethyl ether decane (C10). (b) 1,3-dimethyl ether octane (C8)

Figure 2.1: Biofuels’ structures that are created at University of Manitoba

Table 2.2: Values of group contribution for enthalpy of formation Lapuerta et al.
[2010].

Group Contribution
-CH3 -76.45
-CH2- -20.64
-CH< 29.89
-O- -132.22

2.4.2 Enthalpy of Vaporization

To estimate the enthalpy of vaporization, Jia used a positional distributive contribu-

tion method Jia et al. [2010]. This method is similar to Joback’s method with the

addition of what each group is bonded to and the location of particular groups are

accounted for. An example of this is done with ethyl isobutanoate Jia et al. [2010],

shown in Fig. 2.2. The position groups are as follows:

1. 1 C-(CH2)(H)3

2. 2 C-(CH)(H)3

3. 1 C-(C)2(CO)(H)

4. 1 C-(C)(O)(H)2

5. 1 CO-(CH)(O)

6. 1 O-(CO)(CH2)

The groups indicate what the central atom is and what it is attached to and the

number in front is how many groups there are in the molecule, e.g. there are 2 group
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2’s which are a carbon atom attached to three hydrogens and a carbon atom which

only has 1 hydrogen attached to it. These groups are used in the following equation:

∆vapH = ∆vapHo +
∑
i

AiNi +
∑
j

tanh(Nj/N) +
∑
k

AkPk + a1 e
1/M + a2 e

1/N (2.9)

where:

N = Total number of groups.

i = Index corresponding to number of groups with saturated carbon as central atom.

j = Index corresponding to number of groups without saturated carbon as central atom.

k = Index corresponding to number of groups with position corrections.

A = Contribution value.

P = Position of group.

M = Molecular weight.

∆vapHo = Offset value.

a1&2 = Coefficients.

In the example = 7, i ∈ [1, 5], j ∈ [1, 2] and P z for the CO group would be 3.

∆vapHo, a1, and a2 have predetermined values of 2.359, 55.293 and -25.335 respec-

tively.

Jia compared this method to multiple other ones and found it did quite well for

estimating the enthalpy of vaporization for 311 molecules, especially when compared

to Joback method Jia et al. [2010]. This method was applied to the C8 and C10 fuels

and found to give values of 51.57 kJ/mol and 56.97 kJ/mol. The groups required to

do this calculation are given in Table 2.3.
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Table 2.3: Values of group contribution for enthalpy of vaporization Jia et al. [2010].

Group Contribution
C-(CH2)(H)3 -3.786
C-(C)2(H)2 1.965

C-(O)(C)2(H) 10.908
C-(C-O)(H)3 2.277
C-(O)(C)(H)2 7.350

O-(C)2 -51.222
>(CH) Position factor 0.247

Figure 2.2: ethyl isobutanoate.

2.4.3 Octane Number

A combination of Joback’s and positional distributive contribution method was ap-

plied to estimating the RON and MON of paraffins, olefins, cyclic and aromatics Al-

bahri [2003]. Albahri setup a Joback’s method and added functional groups that

accounted for distances between branches.

For ON estimation the following formula was created as it produced the best

results Albahri [2003]:

ON = a+ b

(∑
i

ONi

)
+ c

(∑
i

ONi

)2

+ d

(∑
i

ONi

)3

+ e

(∑
i

ONi

)4

+ f

(∑
i

ONi

)−1

(2.10)

The
∑

iONi terms are the summation of the functional groups values in the as-

sociated pure compound hydrocarbon. Some of the functional group values are given

in Table 2.4.

In Table 2.4 only paraffins are includes as these will be the only functional groups

that will be used in ON prediction later on. The coefficients to be used with eqn. 2.10
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Table 2.4: Group Contribution for Estimation of the Octane
Number Albahri [2003].

HC type serial no. group RON MON
paraffins 1 -CH3 0.459 0.491

2 C2H5 0.948 0.517
3 >CH2 0.680 0.722
4 αa >CH– -0.139 -0.430
5 β >CH– -0.362 -0.186
6 γ >CH– -0.358 -0.768
7 α >CH< -1.357 -1.983
8 β >CH< -1.828 -12.88

aα, β, and γ refer to the second, third, and fourth positions on the HC
chain, respectively.

Table 2.5: Coefficients for eqn. 2.10 Albahri [2003]

octane no. use with Table a b c d e f
RON 2.4 104.8 -5.395 6.532 -5.165 0.6189 -0.0037
MON 2.4 84.04 1.84 -1.452 -0.357 -0.0179 0

are given in Table 2.5. This method is found to have a correlation coefficient ranging

from 0.975 to 0.84 and a maximum deviation between predicted ON and experimen-

tally found ON of 48 with the average deviations ranging from 5 to 8 Albahri [2003].

This same method can be applied to the biofuels, shown in Fig. 2.1, created by the

University of Manitoba. The biofuels are diethers and since ether functional groups

are not included in the prediction method, their values must be ascertained. This

required the non-linear regression to be re-done so that the coefficients in Table 2.5

can fit the oxygenated fuels better.

The majority of fuels’ octane number are found from API [1968]. The oxygenated

fuels are found from Eglof, Gusftav And Arsdell [1941]. Some fuels could not be

used as they required a functional group used by no other fuel. This over defines the

system for the non-linear regression and gives an ill-defined Jacobian when solving.

With regards to the ethers only some are used as the values presented in Eglof,

Gusftav And Arsdell [1941] are of a blended compound. They are mixed at 25% vol.
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with a 74 ON aviation fuel. Since ON is not linear when blended F. H. Garner, E. B.

Evans, C. H. Sprake [1933], the only values that are taken are ones that are within

12 ON of 74 ON so that a linear extrapolation will give minimal error.

Eqn. 2.10 is used in Matlab’s non-linear regression formula to find the weights of

coefficients and functional group contribution. These values are shown in Tables 2.6

and 2.7. The resulting system is found to be very flat. In Fig. 2.3 the results of the

regression are shown by comparing the predicted and actual values. For validation,

39 and 40 fuels are taken from the RON and MON sets, respectively, and are not

used in the regression. This ensures that the regression does not “over-fit” the data

and accurately represents the system. An analysis of the results is given in Table 2.8.

This shows that the validation data is comparable to the data used for the regression.

When comparing the results to Albahri [2003], the fit obtained in this study is not

as good. This may be due to the addition of oxygenated fuels, or the fact that some

groups are neglected in this study. This is from not enough fuels contained these

groups. Further investigation needs to be done on the structure effects of the system

and if a more positional distributive group contribution should be used.

The values obtained are then applied to the biofuels. Alberta Innovates Technol-

ogy Futures (AITF) did a RON test following procedure in ASTM [1968] using 10:1

mixture of iso-octane to biofuel. The results are 88.7 for C8 and 87.7 for C10. This

is compared to results given from the regression, as shown in Fig. 2.4. The functional

group for -O- does not exist for RON prediction so the MON -O- functional group

value is used instead. The blend plots are assumed linear but since the mixture is

close to 0% this assumption can still give accurate results. The predicted RON values

are -11.9 and -28.7 which gives a predicted mixture strength of 89.8 and 88.3 for C8

and C10 fuels, both respectively, which strongly agrees with the values obtained from

AITF.
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Table 2.6: Functional group contribution values found from non-
linear regression.

HC type Functional group (RON)i (MON)i
Paraffins -CH3 -0.0327 0.8651

-C2H5 branch 0.2041 0.9659
>CH2 0.3539 -0.8298
αa >CH- 0.1419 -1.5369
β >CH- -0.1052 -0.7070
α >C< -0.3145 -2.7885
β >C< -0.6014 -0.9706

Olefins =CH- -2.6930 0.7081
>C= -2.6730 -1.0141
=CH2 2.3976 1.7461
=CH- cis -0.1973 0.0791
=CH- trans -0.2823 0.2070
≡CH -1.0985 NA
≡C- -0.0229 -1.669

Cyclic >CH2 0.0939 -0.2027
>CH- 0.1827 -0.5613
>CH- (o) -0.2057 -0.3570
>C< 4.4030 13.2212
=CH- -0.1371 0.0118
=C- -0.1543 -0.3699
C3 corr -0.7919 8.3049

Aromatics =CH- -2.5480 2.0614
-C= 11.7227 0.6863
-C= (o) -2.1602 1.3045
-C= (m) -2.9424 1.5313
-C= (p) -2.5744 1.2973
OH 4.6837 10.9525
O (non-ring) NA 0.0837
>C=O (keton) NA 1.5897

aα and β refer to the second and third positions on the HC chain, re-
spectively.

Table 2.7: Coefficients for eqn. 2.10 found from non-linear regression.

Octane Type a b c d e f
MON 76.9442 8.7299 -3.737 0.4847 -0.0183 0.0018
RON 93.1085 -31.6944 -11.8588 1.4722 0.5003 0.1399
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Figure 2.3: Predicted vs. actual ON values obtained from non-linear regression.
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Table 2.8: Results from non-linear regression.

Octane Type Correlation coefficient Average residual Max residual
MON 0.861 7.63 49
MON validation 0.874 7.86 19
RON 0.901 7.97 60
RON validation 0.863 11.5 59

2.4.4 Combustion Modeling

The combustion event can be modeled by solving the set of differential equations

describing the reactions that occur in the combustion Warnatz et al. [2006]. The

amount of reactions can vary from 100 reactions Kirchen [2004] for a skeletal model

to several thousand Slavinskaya and Haidn [2003] for a detailed model. Depending

on the goal of the model, the number of zones in the combustion chamber can also

be varied, with a single zone simulating combustion timing well Aceves et al. [1999]

while a multi zone is needed for combustion duration or emissions Flowers et al. [2002].

Combustion modeling and experiments have been used to show the effects EGR has

on HCCI in Zhao et al. [2001] and Atkins [2004] by four main aspects: charge heating,

thermal property change, dilution and chemical additions. Charge heating’s effect is

equivalent to heating the intake and advances the combustion timing. The change in

thermal properties, like the increase in heat capacity, by the addition of EGR delays

combustion by lowering the temperatures observed and therefore delays combustion.

The dilution effect lowers the reactants’ concentrations and delays the combustion

timing. The chemical species from exhaust gases that have not completely reacted

adds either active radicals or high energy compounds like CO or uHC which advance

reaction time. The predominant effects are found to be the charge heating and the

thermal property effects Zhao et al. [2001].

For combustion modeling the chemical kinetics are needed Warnatz et al. [2006].

This has been done for primary reference fuels Kirchen [2004], natural gas Aceves
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et al. [1999] and many others. These models are difficult to develop and many fuels

are not available. For gasoline, that can contain as many as 1000 compounds Smith

and Stinson [1952], the ability to accurately model and predict HCCI combustion

properties, like timing, is very difficult.

2.5 Control

2.5.1 Previous Control Strategies

Instead of trying to predict combustion timing, feedback controllers can be used to

control combustion timing in HCCI. Many control strategies have been implemented.

These include intake temperature control Chia-Jui Chiang et al. [2012], valve control

Yeom et al. [2007], and fuel control Bidarvatan and Shahbakhti [2013]. Intake tem-

perature is found to have long time delays and require large amounts of energy to

implement Aceves et al. [2001]. Valve control works by utilizing the internal EGR to

effect the timing of next cycles timing and has been found to be effective Ebrahimi

and Koch [2015]. Dual-fuel control uses two fuels with different combustion reactivity.

By changing the proportion of fuel injected, the combustion timing can be altered

while the total amount is used to dictate the load of the engine. A control strategy

must be implemented like MPC Ebrahimi and Koch [2015], or PI Strandh et al. [2004]

to so that the timing can be kept constant while the load is set to its required value.

2.5.2 Iterative Learning Control

Iterative learning controllers are designed to find the ideal input for a specific trajec-

tory. The ILC repeatedly attempts to follow a given reference trajectory. The error

from this trajectory is compared to the system output and is used to design a new

input. This new input is used on the system and the cycle repeats. By looking at

the entire iteration at once, the input it able to anticipate aspects of the reference
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trajectory before they occur. This allows the system to have ideally zero error when

the ILC converges. Furthermore, only minimal system information is need Ahn et al.

[2007a] and ILC has been known to work well on non-linear systems Jian-Xin and

Tan [2003].

ILC is useful for repetitive processes, like robotics Parzer et al. [2015], and machin-

ing Fiorentino et al. [2015]. Several surveys have been done to highlight the current

ILC knowledge and its strength and weaknesses Bristow et al. [2006] Moore et al.

[2006] and Wang et al. [2009]. A norm-optimal control has been developed by Barton

and Alleyne [2011] to provide control that has weightings on the system error, the

inputs and the change inputs. Several papers have investigated its convergence and

robustness using worst-case norm optimal Son et al. [2015], Linear Matrix Inequality

(LMI) Gauthier and Boulet [2005] and Galkowski et al. [2003], and interval values

Ahn et al. [2007b].

ILC have been analyzed in the frequency domain Wang et al. [2014] and using the

“super vector” approach Ahn et al. [2007a]. The super vector approach treats the

entire iteration’s output as a single output vector as well as the input. This converts it

into a Multi-Input Multi-Output (MIMO) system that operates through the iteration

domain rather than the time domain.

ILC is very applicable for some automotive control due to its repetitive nature.

These include electromagnetic valve control Tsai et al. [2012], and Diesel combustion

control Hinkelbein et al. [2010]. Dooren [2015] used an ILC to control multiple aspects

of an spark ignition engine. In Kapania and Gerdes [2015] a ILC was used for path

optimization for an autonomous vehicle.
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Chapter 3

Experimental Setup

This Chapter details the engine test cell, the system used to control certain aspects

of the engine and the system used for data acquisition. As well it details the testing

conditions and matrix functions used in the later chapters.

3.1 Engine Assembly

The test cell is a Waukesha CFR engine that is used for testing octane ratings of

fuels in the ASTM standard testing procedures ASTM [1968]. This engine is ideal for

testing biofuels as its primary use is for fuel testing. Since it is designed to withstand

large amounts of knock, it is ideal for advanced combustion research. Minor adjust-

ments have been made compared to the original including the replacement of the

head for one with optical ports. This allows for installment of a Kistler piezoelectric

pressure transducer for in-cylinder pressure and a thermocouple for jacket tempera-

ture. A schematic of the engine is given in Fig. 3.1 with a component list given in

Table 3.1. The engine specifications are given in Table 3.2. In this table for valve

timing the values are given in crank angle degrees with respect to either Top Dead

Center (TDC) which is when the piston is at top of its respective stroke, or Bottom

Dead Center (BDC) when the piston is at the bottom of its respective stroke. The

prefix before indicates whether the it happens before, denoted with a “b”, or after,
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Table 3.1: Engine Description

Label Description
1 Air Flow meter
2 Intake Plenum
3 Intake Heater
4 Throttle
5 Intake Manifold
6 Fuel Injectors
7 EGR valve
8 Combustion Chamber
9 Lambda Sensor

denoted with an “a” e.g. after top dead center becomes aTDC. The water cooling is

set up by having the engine jacket in a water bath. This water evaporates to cool the

engine then is condensed by coils supplied with tap water. This ensures the average

temperature of the water bath is at the atmospheric boiling point at all times, which

is found to be 97◦C.

The dyno power is supplied by the original Waukesha dyno controller but RPM

and load are controlled by a Digalog dynamometer controller.

Power for a the Tec-GT engine control unit, ignition, throttle and fuel pumps are

supplied by an auto battery. As injectors are sensitive to supply voltage, a 6034A

HP power supply set at 13.5 V is used to supply power to the injectors and other

measurement systems.

There are 3 separate fuel systems. One for iso-octane, one for n-heptane and one

for a test fuel. All 3 are designed the same but with the test fuel having a flow

meter attached. The fuels are pressurized by the Walboro 255 LPH inline pumps

with pressure regulated by a Aeromotive Universal Bypass Regulator with reference

to the intake manifold. The injectors are low flow high impedance Accel injectors.
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Figure 3.1: Engine Schematic

Table 3.2: Engine Specifications

Engine Parameter Value/Type
combustion chamber pancake with flat-top piston
engine type water cooled
number of cylinders 1
displacement 612 cm3

bore 82.6mm
stroke 114.3mm
compression ration variable from 4 to 18
IVO 10◦ aTDC
IVC 34◦ aBDC
EVO 40◦ bBDC
EVC 15◦ aTDC
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3.2 Engine Control System

To control spark and injection timing a Tec-GT engine control unit is used. This

system is ideal as many of the controls can be changed on-line and only required

the installation of a 60 tooth wheel on the engine crank and a CAM sensor. Even

though it can control pulse width to two separate injectors, the secondary pulse width

can only be set as a percentage of the first and therefore could not exceed the pulse

width of the first. To allow for more fuel injection freedom an Arduino Due is used to

control pulse widths of both injectors with use of a high power NPN transistor. The

Arduino gets the injection timing from the Tec-GT as shown in Fig. 3.3, and then

pulls each injector to ground for the time specified by the NI system, which will be

discussed in the next section. The pulse width is communicated from the NI system

to the Arduino using an 12-bit parallel signal for each injector. A schematic for this

system can be seen in Fig. 3.2.

3.3 Data Acquisition

The Data Acquisition System (DAQ) has 3 NI DAQ cards using Labwindows/CVI

software. This software allows for the DAQ system to be coded in C, with specialized

libraries for communicating with the cards. Each card is used for separate set of

analog inputs, depending on their type and acquisition rate. A list of how each

measurement is recorded is given in Table 3.3.

The crankshaft has a 3600 pulse/rev encoder attached. This allows for the 0.10◦

digital signal to be used as a sampling clock for PCIe-6431. The z signal from the

encoder, which occurs once every revolution, is sent through an AND gate with the

CAM signal as shown in Fig. 3.2. This allows all data recording to trigger at precisely

the same time every cycle, i.e. every two revolutions. This point is found to be 161.4◦

bTDC on the compression stroke. Each DAQ card uses this to begin recording data.



29

Tec-GT NI DAQ

CFR Engine

Arduino Due

AND

Digital Filter Digital Filter

Cam

60 toothwheel

Z

A

Ignition

Sensor

Data

Data Collection

Start Timing

0.1o Signal

12 bit PW1 Signal

12 bit PW2 Signal

Injector Timing

Injector 1 Pull-to-Ground 

Injector 2 Pull-to-Ground 

Throttle 

Position

Control

Figure 3.2: Engine Control Scheme

Tec GT

Voltage

Injector

Low Side

Voltage

30 ms

t

t

5V

13.5 V

PW specified by NI system

Voltage step down triggers Arduino 

to pull injector low side to ground

Figure 3.3: Tec-GT and injector voltages for injector timing control.



30

Table 3.3: DAQ cards with sampling rates and corresponding engine measurements.

Card Sampling rate Measurement
PCIe-6431 0.1◦ in-cylinder pressure, intake pressure, torque

fuel 1 pressure, fuel 2 pressure,
NI PCI-MIO-16E-1 100 Hz exhaust pressure, air flow, lambda,

throttle position, fuel flow
intake temperature, mixture temperature,

NI USB-6225 50 Hz coolant temperature, exhaust temperature,
EGR temperature, cylinder wall temperature

This ensures that if need be, the time-based data can be resampled to crank-based

for comparison using the speed of the engine. To allow the NI program enough time

to calculate needed values before the next cycle occurs, only 3800 out of the possible

7200 data points are taken, i.e. 380 crank angle degrees. This allows the intake and

in-cylinder pressure signals to capture everything from IVC and EVO which contains

the compression stroke, combustion, and expansion stroke.

3.4 Sensors

This section lists the sensors used for measuring engine operating conditions. The

uncertainty calculations for each measurement are calculated as in Moffat [1988] and

are given in Appendix B. The single sample uncertainty is given as the error as the

multi-sample uncertainty is dependent on the number of samples taken.

3.4.1 Pressure Sensors

The in-cylinder pressure sensor is a Kistler 6043A piezoelectric. The sensitivity is

found from Handford [2009] and is tested to ensure that the sensitivity has not

changed; the results are given in Appendix A. To convert the piezoelectric signal

to a voltage a Kistler 507 Charge Amplifier is used. The single sample uncertainty is

calculated as 321 kPa for in-cylinder pressure.
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The intake, exhaust and fuel pressures use Validyne DP-15 pressure transducers.

These are calibrated to find their sensitivity as given in Appendix A. They have

operating ranges of ±86 kPa gauge and are measured with respect to the atmosphere

therefore at the beginning of every test the atmospheric pressure is recorded using

a mercury vertical barometer for reference. The accuracy is ±0.25%. The intake

and exhaust pressure single sample uncertainty is calculated as 7.7 kPa and 0.59 kPa

respectively.

3.4.2 Air Flow

Airflow is measured using a TSI 4235 laminar flowmeter. This system outputs a

current rather than a voltage so a high precision resistor is used to convert it to a

voltage for the DAQ system to measure. The meter has a range of 20 to 1000 L/min

with an accuracy of ±2.5%

3.4.3 Lambda

Lambda ratio is measured using a LM-2 Innovate Motorsport Digital Air/Fuel Ratio

with a wide-band Bosch oxygen sensor and has an accuracy of ±0.05.

3.4.4 Fuel Flow

The fuel flow for iso-octane and n-heptane is calibrated with respect to pulse width

of the injector as discussed in detail later. Since flow rate is a function of both

viscosity and density, this method is not practical for every fuel. Therefore a flow

meter is attached to the test fuel tank to monitor flow rate. It is a Max Machinery

284-512 positive displacement piston flowmeter and transmitter and has an accuracy

of ±0.2%.
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Table 3.4: Thermocouple types used for temperature measurements.

Location Thermocouple Type Single Sample Uncertainty (◦C)
Intake J 5.9
Mixture K 3.4
Coolant T 1.9
Exhaust T 2.7
EGR J 7.2
Cylinder Wall T 4.8

3.4.5 Temperatures

Temperatures recorded are intake, jacket, mixture, coolant, exhaust and EGR as

shown in Fig. 3.1. The thermocouple type for each is given in Table 3.4 along with

each thermocouple measurement single sample uncertainty. The DAQ card NI USB-

6225 does not have an internal temperature measurement so a Texas Instrument

LM-19 thermistor is used to find for the cold junction temperature for temperature

conversion from voltage.

The intake temperature is controlled by an Omega CNi-852 temperature controller

that activates an intake heater located at point 3 in Fig.3.1. The heater is powered

by a 208 V 25 Amp custom power supply.

3.4.6 Torque

Torque is measured using a Durham Instruments load cell connected to the dyno.

Measuring the moment arm from the load cell to the center of the dyno and multi-

plying it by load cell measurement gives the torque. The load cell is connected to a

wheatstone bridge to measure the signal. The single sample uncertainty is found to

be 0.20 Nm
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Table 3.5: PXA-1100 Gas Analyzer specification.

Gas Range Resolution Accuracy
uHC 0-20000 ppm 1ppm 6ppm or 5% of reading
CO 0-10% 0.01% 0.06% or 5% of reading
CO2 0-20% 0.1% 0.5% or 5% of reading
O2 0-25% 0.01% 0.01% or 5% of reading
NOx 0-4000 ppm 1ppm 32 ppm at 0-1000ppm

60 ppm at 1001-2000ppm
120 ppm at 2001-4000ppm

3.4.7 Emissions

For emission testing, a PXA-1100 Gas Analyzer Vetronix is used to test for unburnt

HydroCarbons (uHC), NOx, CO, CO2 and any unused O2. The range and accuracy

of each gas are given in Table 3.5.

3.5 Injector Calibration

The injectors work off a low side driver that a pull-to-ground setup operates on one

side of the injector and the other side is attached to a 13.5 V power supply. The

injector is turned on by closing the low side to ground and allowing current to flow

through the injector. The pulse width is how long the low side is connected to ground.

The injectors are calibrated to relate injected mass to injector pulse width. This is

done by setting the pulse width, and injecting fuel into a container for 1000 injections

then measuring the mass of the fuel injected. The mass per injection is then found

by dividing the mass by the number of injections. Iso-octane and n-heptane are

calibrated in this manner with results given in Appendix A. For other fuels, the flow

rate is measured by the flow meter and correlated to the mass per injection by the

engine speed and fuel density with the following formula:
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V̇ =
minjRPM

2ρ
(3.1)

with V̇ being the volume flow rate measured by the flow meter, in mL/min, minj is

the mass per injection in g, ρ is the fuel density in g/mL and RPM is the revolutions

per minute of the engine. A 2 appears in the denominator since injection occurs every

other engine revolution. The correlation between pulse width and minj is again done

by measurement and a linear regression which gives the following relation:

minj = p1PW+ p2 (3.2)

where p1 and p2 are the regression coefficients and PW is the pulse width in ms.

The inputs into the engine for control are injected energy of the fuel. To do this the

Lower Heating Value, LHV, of the fuel is needed. The formula for relating the pulse

width, which is controlled by the Arduino Due, to the energy injected, Einj, is:

Einj = LHVfuel(p1PW+ p2) (3.3)

The calibration values of the injected mass and single sample uncertainties of

the injected energy are given in Table 3.6. The injector calibration is detailed in

Appendix A and the error calculation formulas are given in Appendix B.
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Table 3.6: Injector calibration values and injection error.

Fuel p1 (g/ms) p2 (g) Single sample uncertainty (J)
n-heptane 1.49×10−3 -8.71×10−4 6.3
iso-octane 1.57×10−3 -1.04×10−3 7.8
ethanol/iso-octane 1.42×10−3 -1.12×10−3 14.1
biodiesel/n-heptane 1.49×10−3 -1.47×10−3 47.3

3.6 Post Processing and Output Calculations

The in-cylinder pressure is used for measuring combustion properties. Since it uses a

peizoelectric pressure transducer, the signal drifts. Therefore pegging the in-cylinder

pressure is done every cycle using the intake pressure at IVC. This ensures that the

in-cylinder pressure is equal to the intake pressure at IVC. An ensemble of 100 cycles

of pressure traces is shown in Fig. 3.4. The confidence interval in Fig. 3.4 is a single

sample uncertainty of each point using only the pressure trace deviation to show the

range of cyclic variation.

The desired control system outputs are combustion timing and load of the engine.

Two common metrics for these are crank angle when 50% of the fuel mass fraction

is burned (CA50) and gross indicated mean effective pressure (IMEP). CA50 can be

calculated from the pressure trace Heywood [1988] as:

dQ =
γ

γ − 1
PdV +

1

γ − 1
V dP + ht(Tg − Tw)As (3.4)

with Q being the chemical energy released from the fuel, γ is ratio of specific heats

of the gas, P is the in-cylinder pressure, V is the in-cylinder volume, ht is the heat

transfer coefficient, Tg is the mean gas temperature, Tw is the wall temperature and

As is the surface area of the cylinder. The heat transfer coefficient can be calculated

using a modified Woschni correlation derived from Chang et al. [2004]. Eqn. 3.4
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Figure 3.4: Ensemble of the pressure traces with HCCI.
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assumes that crevice losses are negligible. Then CA50 is found by integrating dQ

from IVC to EVO and finding θ when Q(θ) = Qmax/2. Note: CA50 is given in crank

angle degrees after top dead center of the compression stroke and will be denoted

with “deg”. Examples of dQ and Q are given in Figs 3.5 and 3.6.

Calculation of the heat loss to the walls is computationally expensive and CA50 is

needed in real-time for control. To minimize calculation time, the last term in eqn 3.4

is ignored so CA50 can be calculated while the engine is running. The heat release

plot for neglected heat transfer to the walls using the same pressure trace is also

shown in Fig. 3.6. The comparison for 21 operating points with different CA50 mean

of 100 cycles is given in Fig. 3.7. The on-line values are calculated while the engine is

running and therefore do not include the modified Woschni heat transfer correlation

while the off-line values do include the modified Woschni heat transfer correlation.

The difference is a relatively constant increase of ≈0.5 deg when the modified Woschni

heat transfer correlation is neglected and which is acceptable for control. The single

sample uncertainty is found to be 0.25 deg and is detailed in Appendix B.

The IMEP of the cycle is a measure of how work is output from the cycle normal-

ized by the engine displacement. It is calculated from:

IMEP =
1

Vd

∫ EV O

IV C

PdV (3.5)

with Vd is the displacement volume. The single sample uncertainty is found to be

27 kPa and is calculated in Appendix B.

Combustion duration is defined as CA20-80 similar to Shahbakhti [2009]. It is

found from:
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CA20-80 = θ80 − θ20 (3.6)

where θ20 is θ when Q(θ) = 0.2Qmax and likewise for θ80. By measuring from 20% of

the total heat released it ensures that the LTHR is not included in the calculation.

The Coefficient Of Variation (COV) is found similar to Shahbakhti [2009] from:

COV =
std(IMEP)

IMEP
× 100% (3.7)

with std signifying the standard deviation. This gives a measure of the consistency

of combustion and if any misfires occur.



39

−50 0 50

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

θ

Q
(θ
)
(k
J
)

 

 
Without Heat Transfer
With Heat Transfer

Figure 3.6: Total heat release from integrating heat release rate with and without the
modified Woschni heat transfer correlation.

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

Data Set

C
A
5
0
a
T
D
C

(C
A
D
)

 

 
On-line
Off-line

Figure 3.7: Online vs offline CA50 calculation.



40

3.7 Test Conditions

For designing and testing the ILC, a base operating condition is chosen as the values

given in Table 3.7. To test the ILC robustness several other operating points are

used. These operating condition changes are given in Table 3.8. For each operating

point in Table 3.8, all other operating parameters are equivalent to their values in

Table 3.7 other than the one indicated in Table 3.8.

Table 3.7: Base operating condition.

Parameter Value
Intake Temperature 100◦C
Intake Pressure Atmospheric (92 to 94 kPa)
Speed 800 RPM
Compression Ratio 11:1
Fuel 1 n-heptane
Fuel 2 iso-octane

Table 3.8: Parameter changes from base operating condition for robustness testing
operating points.

Operating point Change from Base operating condition
1 Intake temperature decreased to 50◦C
2 Intake temperature increased to 150◦C
3 Compression ratio decreased to 10:1
4 Compression ratio increased to 12:1
5 Fuel 2 changed to 10% ethanol/90% iso-octane vol%
6 Fuel 1 changed to 10% biodiesel/90% n-heptane vol%

3.8 Reference Trajectory

The reference trajectories chosen for the ILC to follow is 60 combustion cycles with a

step in IMEP then in CA50. The IMEP reference trajectory starts at 330 kPa then

steps up to 370 kPa at cycle 20. For CA50, the reference trajectory starts at 3 deg

then steps to 6 deg at cycle 40. These trajectories are given in Fig. 3.8. A step is used
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Figure 3.8: Reference trajectory to test controllers.

in both to illustrate the advantages of using an ILC as many feedback controllers have

large initial errors when a step is implemented. The steps are separated so the effects

of the step on each reference can be seen and without the other step complicating the

response. This reference trajectory will be used for all tests so that the error norms

can be compared without the need to normalize.

3.9 Matrix Function Definitions for ILC

Several matrix functions are used in the analysis of ILC systems. This section details

the calculation of these functions. The spectral radius, ρ(·), of a matrix, A ∈ Cn×n,

with eigenvalues of λ1, ..., λn is Golub and Van Loan [1996]:

ρ(A) = max {|λ1|, ..., |λn|} (3.8)

Singular values of a matrix, A, are square roots of the eigenvalues of the matrix
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A∗A where A∗ denotes the adjoint of A Golub and Van Loan [1996]. The singular

values are non-negative real numbers with the maximum being denoted by σ(·) and

the minimum being denoted by σ(·). The maximum singular value of a matrix is

similar to spectral radius, however they are not equivalent and some analyses, like

matrix interval values, have only been proven with spectral radius and therefore both

are used.

Matrix norms are extensions of vector norms for a matrix. Generally a norm,

denoted with || · || is defined as:

||A||p = sup
||Ax||p
||x||p

(3.9)

where x ∈ Cn, ||x|| ≠ 0 and p is the chosen norm and is defined for vectors as:

||x||p =

(
n∑

i=1

|xi|p
)1/p

(3.10)

The p = 2 norm correlates to the vector length in Euclidean space Rn. For

matrices the 2-norm is the largest singular value Golub and Van Loan [1996], i.e.

||A||2 = σ(A). From here on || · || will denote the 2-norm of a matrix or vector to

simplify the notation.

These properties of matrix 2-norms are used throughout this study Golub and

Van Loan [1996]:

• ||A|| ≥ 0

• ||A|| = 0 iff ai,j = 0 ∀ i, j

• ||αA|| = |α| ||A|| ∀ α ∈ R
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• ||A+B|| ≤ ||A||+ ||B||

• ||AB|| ≤ ||A|| ||B||

with A, B ∈ Rn×n



44

Chapter 4

Iterative Learning Control Design and

Implementation

This Chapter begins by characterizing the engine output responses in steady-state

and dynamically. It then details iterative learning control designs and analyzes their

response using analytics, simulation and experiment. It then compares the iterative

learning control reference tracking to a traditional feedback controller

4.1 Domain Exploration

The operating domain of the engine is first explored to get a range of the inputs

for which HCCI combustion is possible and to determine how the inputs, Ehept and

Eiso , affect the outputs, CA50 and IMEP, in steady-state operation. With all other

engine parameters being constant at the values given in Table 3.7, the amount of

injected energy of each fuel, Eiso and Ehept , are swept through the operating domain

resulting in 20 points as shown in Figs. 4.1 and 4.2. In these figures, the relationships

between iso-octane, n-heptane, CA50 and IMEP can be inferred. Increasing n-heptane

decreases CA50, while iso-octane has very little effect. From Kalghatgi [2003] the

Octane Numbers, RON and MON, of a fuel can determine its combustion timing. This

initially differs with the results shown in Fig. 4.1 as increasing Eiso should increase
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ON and thereby decrease combustion timing. This effect is canceled out since the

decreasing of λ retards combustion timing as well Hosseini [2008]. For Ehept these two

affects add making CA50 very sensitive to Ehept . IMEP is increased when either of

the two inputs, Ehept or Eiso , are increased, since IMEP is a measure of work output

from the cycle.

There are 4 main limits to the operating domain. These are: (1) IMEP too high

causing knock; (2) IMEP too low and engine could not maintain operating speed;

(3) CA50 too early causing inefficient combustion; and (4) CA50 too late causing

inconsistent combustion Shahbakhti [2009]. The knock limit is defined by Dec et al.

[2011] as having a dP/dθ > 8 bar/CAD. The limit is seen in Fig. 4.2 when the surface

reaches 400 kPa as the dP/dθ is 7.5 bar/CAD. The system was not pushed past knock

to avoid possible damage to engine. The three points near the knock boundary are

{Ehept , Eiso}={0.37 kJ, 0.56 kJ}, {0.39 kJ, 0.53 kJ} and {0.41 kJ, 0.49 kJ} resulting

in an approximate domain limit of Eiso + Ehept < 0.92 kJ which is a diagonal line

through the operating domain. The IMEP low limit occurs when the total fuel is

too low and any decrease in either of the fuels will cause the CFR engine to slow

down. This gives another approximate limit of Eiso +Ehept > 0.70 kJ which is also a

diagonal line through the operating domain. The combustion timing limits on CA50

are set at 0 deg and 8 deg. They are set to these values as having a combustion

timing before top dead center tends to decrease engine efficiency and too late can

increase combustion inconsistency and decrease efficiency Shahbakhti [2009]. Steady-

state combustion timing is dominated by Ehept . This translates to limits of n-heptane

which are approximately 0.37 kJ < Ehept < 0.41 kJ.

Within the domain described, the steady-state responses of CA50 and IMEP for

the engine are approximately linear. A 2-D linear regression for these 20 points is
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performed giving:

⎡⎢⎣ CA50

IMEP

⎤⎥⎦ =

⎡⎢⎣ −110 0.0445

464 492

⎤⎥⎦
⎡⎢⎣ Ehept

Eiso

⎤⎥⎦+

⎡⎢⎣ 46.2

−46.9

⎤⎥⎦ (4.1)

The regression has an R2 equal to 0.965 for CA50 and 0.980 for IMEP. The param-

eters obtained by the regression in eqn. 4.1 are consistent with the above described

mechanisms. The CA50 has a large negative sensitivity to Ehept and almost no sen-

sitivity to Eiso . The IMEP has nearly equal sensitivity between Eiso and Ehept . The

total steady-state standard deviation of CA50 and IMEP is 0.47 deg and 3.9 kPa,

respectively. These values will be considered as the noise levels of their respectively

signal.

The combustion duration is shown in Fig. 4.3. This figure shows the decrease in

combustion duration as both Ehept and Eiso are increased. This is due to the increase

in fuel concentration increasing the reaction rates Warnatz et al. [2006]. The COV

for steady-state operation is shown in Fig. 4.4 and varies between 0.8 and 1.3 for

100 engine cycles. This figure shows that COV is relatively independent of Ehept or

Eiso within the domain indicating no misfire occurs. An additional data point is taken

with a CA50 of 15.1 deg and has a COV of 2.1. This point is outside of the operating

range prescribed before but is used to highlight why the operating range was chosen

as such. The increase in COV agrees with Shahbakhti [2009] in that later combustion

becomes less consistent and would increase the COV of the system which would also

increase the noise levels of the CA50 and IMEP.

4.2 System Identification

The transient response is modeled in this section. As discussed in Chapter 2 this can

be done using detailed physics of the system; which is an on going research area. Here
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Figure 4.1: Steady-state combustion timing responses in HCCI with each point having
a multi-sample uncertainty of 0.16 deg for varying iso-octane and n-heptane.
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Figure 4.2: Steady-state IMEP responses in HCCI with each point having a multi-
sample uncertainty of 14 kPa for varying iso-octane and n-heptane.
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Figure 4.3: Steady-state combustion duration responses in HCCI with varying iso-
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system identification procedure is used to identify a model that accurately simulates

the system Ljung [1999] using the input and output time series data of the system.

The model can then be used to design a controller.

4.2.1 Pseudo-Random Binary Signal

The first step in system identification is to create an input that has persistent exci-

tation. Persistent excitation to order n is defined in Soderstrom and Stoica [1989]

as:

1. The following limit exists:

ru(τ) = lim
N→∞

1

N

N∑
t=1

ut+τu
T
t (4.2)

Where ut is the input at time t, τ is the lag and ru(τ) is cross-correlation.

2. The matrix

Ru(n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ru(0) ru(1) ... ru(n− 1)

ru(−1) ru(0) ... ru(n− 2)

...
...

. . .
...

ru(1− n) ... ... ru(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4.3)

is positive definite.

A necessary condition for consistent estimation (i.e. as N → ∞, the estimated

parameters of the system, θ̂, approaches the actual system parameters, θ) of a linear

model of order n is the input should have persistent excitation to order 2n except for

ARX model Huang et al. [2013]. A random binary signal has persistent excitation

to any order Huang et al. [2013]. However it also excites all frequencies which may

not be ideal as some unnecessary dynamics may be captured Huang et al. [2013].
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Instead some frequencies can be eliminated by using a Pseudo-Random Binary Signal

(PRBS) as an input. This is implemented using Matlabs “idinput” function Ljung

[1999]. This signal randomly jumps between two levels. The length of the input

is set to 1000 cycles as this is the maximum the software can store as described in

Chapter 3. The PRBS levels are constrained by the operating domain limits described

in Section 4.1. To cover the operating range and maintain the highest signal to noise

ratio, the PRBS levels are set to the maximum operating range. This results in:

0.370 ≤ Ehept ≤ 0.409 kJ and 0.332 ≤ Eiso ≤ 0.448 kJ. The normalized frequency

band of the input is [0, 0.2] and the sample rate is every other engine revolution (at

800 RPM this is ≈ 6.7 Hz) This ensures sufficient number of level changes occur in

the input but still enough low frequency excitation to capture any slow dynamics

like RPM response and wall temperature changes. The results of the PRBS input,

with operating conditions given in Table 3.7 and the mean removed from both the

input and output signals, is given in Fig. 4.5. Here the ∆ signifies that the mean was

removed from the signal as

∆CA50 = CA50− CA50m (4.4)

where CA50m is mean CA50 for all 1000 cycles. Likewise is done for the other

signals.

The data is then separated into the identification and validation data, with 700

cycles being used for identification of the system and 300 being used for validation of

the model. The validation data is used to evaluate how well the model predicts the

output. By keeping the identification data separate from the validation data helps

ensure the model does not “over-fit” the data Huang et al. [2013].
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Figure 4.5: PRBS inputs and engine responses for operating conditions given in
Table 3.7 with mean removed.
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4.2.2 ARMAX Model

For system identification an Auto Regressive Moving Average with eXogenous input

(ARMAX) model structure is used Ljung [1999]. This model structure is chosen as

it is a simple model with dynamics and includes a noise model. This makes system

identification easier and gives reasonable results as found in Audet [2008] which found

no improvement for using the Box-Jenkins model over the ARMAX. The ARMAX

model takes the form of:

a(z)y(k) = b(z)u(k) + c(z)d(k) (4.5)

where y(k) ∈ Rp and u(k) ∈ Rm are the p outputs and the m inputs of the system

respectively, d(k) is the noise, z−1 is the back-shift operator and k is the “time step” of

the system, which is equivalent to a combustion event, or two crankshaft revolutions,

for this system. The terms a(z), b(z) and c(z) are matrices of polynomial defined as:

a(z) =

⎡⎢⎣ a11(z) a12(z)

a21(z) a22(z)

⎤⎥⎦ (4.6)

b(z) =

⎡⎢⎣ b11(z) b12(z)

b21(z) b22(z)

⎤⎥⎦ (4.7)

c(z) =

⎡⎢⎣ c1(z) 0

0 c2(z)

⎤⎥⎦ (4.8)

and the polynomials take the form of:
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a(z) = 1 + a1z
−1 + a2z

−2 + a3z
−3 + ...+ anaz

−na (4.9)

b(z) = z−nk(b0 + b1z
−1 + b2z

−2 + b3z
−3 + ...+ bnb

z−nb) (4.10)

c(z) = 1 + c1z
−1 + c2z

−2 + c3z
−3 + ...+ cncz

−nc (4.11)

where a, b, c are the coefficients to be identified, na, nb, nc are the number of

poles, zeros plus 1 and coefficients of C(z), respectively. These are refered to as the

order of the polynomials Ljung [1999]. The term nk is the “delay” of the system

and corresponds to how many time steps it takes before the system responds to the

input. For the CFR engine setup nk is taken as 1 as the injected fuel is first burned

and then both IMEP and CA50 are calculated for the next cycle. With the model

structure defined and nk given, the orders of the polynomials can be obtained using

a parametric system identification process Ljung [1999].

Three properties of the validation data simulation are chosen to evaluated how

well the model simulates the system Huang et al. [2013]. They are the residual

correlation, the input-residual correlation Ljung [1999] and the % fit of the

infinite step-ahead prediction. The residuals are found from the error of the

one step-ahead predictor of the model on the validation data. The one step-ahead

predictor uses input and output data from before the current time step to predict the

next value. In contrast, the infinite step-ahead predictor does not use the output data

and only the input data to predict what the output values will be. By evaluating

the cross-correlation of the residuals, a measure of how close the residuals are to

white-noise is obtained. Since white noise is defined to be entirely uncorrelated, if

the residuals are white noise this indicates that the model captures the deterministic

part of the data Huang et al. [2013]. The cross-correlation of white noise, vk, with

itself should have a correlation of:
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E(vkvk−j) =

⎧⎪⎪⎨⎪⎪⎩
λ2 if j = 0

0 if j ̸= 0

(4.12)

with λ being the standard deviation of the noise at time step k, and E(·) in-

dicating the expected value Huang et al. [2013]. The input-residual correlation

tests correlation of the residuals to the input. If the correlation is zero for all lags

then the residuals are uncorrelated to the input and that indicates no information

for predicting the residuals is contained in the inputs and the model plant perfectly

matches the plant for the given data set Huang et al. [2013].

The % fit is found using the following formula Mathworks [2015]:

% fit = 100

(
1− ||y − ŷ||

||y − ȳ||

)
(4.13)

where y is the recorded output data, ŷ is the infinite step-ahead prediction, and

ȳ is the mean of the output data.

The orders, na, nb, and nc, are found from starting at 1 and increasing until none of

the three criteria significantly changed. The noise order nc is increased first, then the

zeros, nb, and finally the poles, na. With the parsimony principle, model complexity is

considered as well Huang et al. [2013]. This is the reasoning for increasing the orders

in this fashion as noise order has no effect on “plant complexity” and the poles have

more effect on “system complexity” than the zeros do. To keep minimal complexity, if

increasing the order only has a minimal affect on one of the evaluations, e.g. increase

a % fit by ≈ 0.01, then the lower order is kept. The final model cross-correlations

are given in Figs. 4.6 and 4.7. The dashed lines signify 99% confidence interval. Any
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Table 4.1: ARMAX polynomial orders.

Order Polynomial
0 a12, a21
2 a11, a22, b11, b12, b21, b22, c1, c2
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Figure 4.6: Cross-correlations of CA50 and IMEP ARMAX residuals from PRBS
validation data with themselves.

point that lies within the confidence interval is deemed acceptable Huang et al. [2013].

The infinite step-ahead prediction is compared to the validation data in Fig. 4.8 with

a % fit of 69.3 and 84.4 for CA50 and IMEP respectively. The model orders are given

in Table 4.1 with coefficients given in Appendix C.

4.2.3 Markov Parameters

Another useful plant model are the Markov parameters, also known as the impulse

response Ahn et al. [2007a]. From a system plant, P , with a state-state space model

of the form:



56

−20 −10 0 10 20

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

∆CA50 and ∆Ehept

lags

−20 −10 0 10 20

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

∆IMEP and ∆Ehept

lags

−20 −10 0 10 20

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

∆CA50 and ∆Eiso

lags

−20 −10 0 10 20

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

∆IMEP and ∆Eiso

lags

Figure 4.7: Cross-correlations of CA50 and IMEP ARMAX residuals from PRBS
validation data with system inputs.
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P ≡

⎧⎪⎨⎪⎩
x(k + 1) = A(k)x(k) +B(k)u(k)

y(k) = C(k)x(k) +D(k)u(k)

(4.14)

and assuming linear time invariant (LTI) system, the Markov parameters can be

calculated as Ahn et al. [2007a]:

h(i) =

⎧⎪⎪⎨⎪⎪⎩
D i = 0

CAi−1B i > 0

(4.15)

where h(i) ∈ Rp×m is the ith Markov parameter and x ∈ Rn being the system

states, u ∈ Rm contains the inputs, and y ∈ Rp contains the outputs. For a plant

transfer function:

y(k) = Gp(z)u(k) (4.16)

with,

GP (z) =
b(z)

a(z)
(4.17)

the Markov parameters, or impulse response, are found from the coefficients of

the long division of a(z) into b(z) Ljung [1999]. The Markov parameters can be used

to determine the system response, y(k) from any input, u(k) as:
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y(k) = (h ∗ u)(k) (4.18)

where ∗ is the convolution operator.

To find the Markov parameters, two linear regressions, one for each output, are

performed on the PRBS data with the regression coefficients βj ∈ R2n being the

Markov parameters, the inputs being the regressors,X ∈ RN×2n and the outputs being

the regressands, yj ∈ RN with j signifying which output, i.e. j = 1 corresponding to

CA50 and j = 2 corresponding to IMEP. The regression is formulated as:

yj = Xβj + ϵj (4.19)

with ϵj ∈ RN being the noise term and the other terms are:
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yj =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

yj(1)

yj(2)

...

yj(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, βj =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Hj1(1)

Hj2(1)

...

Hj1(n)

Hj2(n)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.20)

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1(0) u2(0) 0 ... 0

u1(1) u2(1) u1(0) u2(0) 0

...
. . . . . .

...

u1(n) u2(n) ... u1(0) u2(0)

...
. . .

...

u1(N − 1) u2(N − 1) ... u1(N − n) u2(N − n)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.21)

with n being the number of Markov terms to be determined and N + 1 being the

number of data points. The Markov parameters are H(i)jk for the ith parameter that

corresponds the kth input to the jth output. The subscripts for the inputs are: k = 1

is Ehept and k = 2 is Eiso . Since the system has a single step time delay, this means

that the i = 0 Markov parameters are 0 and therefore do not need to be included in

the regression. The least-squares solution to βj is:

β̂j = (XTX)−1XTyj (4.22)

With a variance of:
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Figure 4.9: Markov parameters for operating conditions given in Table 3.7 with 95%
confidence intervals found from linear regression of PRBS data.

Cov(β̂j) = (XTX)−1λ2
j (4.23)

with λ2
j is the noise variance of ϵj.

The results of the linear regression with a 95% confidence interval on each param-

eter in eqn. 4.20 for 25 of the parameters are given in Fig. 4.9.

4.3 Control Design

Defining the system P for a repetitive process by following eqn. 4.14 results in:
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P ≡

⎧⎪⎨⎪⎩
xj(k + 1) = A(k)xj(k) +B(k)uj(k)

δyj(k) = C(k)xj(k) +D(k)uj(k)

(4.24)

yj(k) = δyj(k) + yo(k) + dj(k) (4.25)

where k ∈ [0, N − 1] is the time step, N is the number of data points per “pass”,

and j is the iteration. This is a representation of the plant for a repetitive process.

The system disturbance is dj ∈ Rp for iteration j. Then P can be written as a lower

triangular block matrix containing the Markov parameters as:

P =

⎡⎢⎢⎢⎢⎣
H0,0 0

...
. . .

HN−1,0 · · · HN−1,N−1

⎤⎥⎥⎥⎥⎦ (4.26)

With Hk,j being the jth Markov parameter for the kth time step. Since D = 0 ∈

Rp×m, assuming Linear Time Invariance (LTI) and referring to eqn. 4.15, P becomes:

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0

H(1) 0
...

H(2) H(1) 0

...
. . .

H(N − 1) · · · H(1) 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.27)

Where H(i) ∈ Rp×m. For the single cylinder engine, with p = m = 2, it is:
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H(i) =

⎡⎢⎣ h11(i) h12(i)

h21(i) h22(i)

⎤⎥⎦ (4.28)

where h(i)jk is the ith Markov parameter corresponding the kth input to the jth

output. This makes P ∈ RpN×mN . The system can be written in a lifted form as

Barton and Alleyne [2011]:

yj = Puj + dj (4.29)

with

uj =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

uj(0)

uj(1)

...

uj(N − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, uj(k) =

⎡⎢⎢⎢⎢⎣
u
(1)
j (k)

...

u
(m)
j (k)

⎤⎥⎥⎥⎥⎦ (4.30)

yj =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

yj(0)

yj(1)

...

yj(N − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, yj(k) =

⎡⎢⎢⎢⎢⎣
y
(1)
j (k)

...

y
(p)
j (k)

⎤⎥⎥⎥⎥⎦ (4.31)

Here uj is the input over all time samples at iteration j, and uj(k) is the m inputs

(here 2) at time step k. Similarly, yj is the output over all time samples at iteration

j, and yj(k) is the p outputs (here 2) at time step k. This is also known as a “super-

vector” rearrangement as uj ∈ RmN and yj ∈ RpN becomes a vector containing each

time step’s input and output for the jth iteration. For the CFR engine uj(k) and
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Figure 4.10: ILC block diagram schematic with memory blocks signifying when an
iteration of data is saved.

yj(k) are:

uj(k) =

⎡⎢⎣ Ehept, j(k)

Eiso, j(k)

⎤⎥⎦ , yj(k) =

⎡⎢⎣ CA50j(k)

IMEPj(k)

⎤⎥⎦ (4.32)

The iteration error, ej, given a reference trajectory yr, is defined as:

ej = yr − yj (4.33)

A generalized ILC can then be implemented as, Barton and Alleyne [2011]:

uj+1 = Luuj + Leej (4.34)

Le and Lu are termed the learning and forgetting filters, respectively. A block

diagram showing this control strategy is given in Fig. 4.10. The memory blocks are

used to save the entire iteration’s data of its respective input. The purpose of the ILC

control design is to reduce each time step’s error using the previous iteration’s error

and input. Using eqs. 4.29, 4.33 and 4.34, the next iterations input can be written
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as:

uj+1 = (Lu − LeP )uj + Le(yr − dj)) (4.35)

The system will be asymptotically stable if Bristow et al. [2006]:

ρ(Lu − LeP ) < 1 (4.36)

with ρ(·) being the spectral radius defined in Section 3.9 and yr is bounded, i.e.

||yr|| < ∞. Choosing Lu = I and assuming no noise or disturbance in the system,

i.e. dj(k) = 0 ∀j, k, eqn. 4.34 can be combined with eqns. 4.29 and 4.33 as:

uj+1 = uj + Leej (4.37)

Puj+1 = Puj + PLeej (4.38)

yj+1 = yj + PLeej (4.39)

yr − yj+1 = yr − yj − PLeej (4.40)

ej+1 = ej − PLeej (4.41)

ej+1 = (I − PLe)ej (4.42)

From eqn. 4.42, convergence to zero error is guaranteed if ρ(I − PLe) < 1 Meng

et al. [2011]. However ILC are known to have large transients Bristow et al. [2006],

and it is desirable to also guarantee monotonic convergence. By taking the norm of

eqn. 4.42 as defined in Section 3.9, the following is obtained Meng et al. [2011]:
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||ej+1|| = ||(I − PLe)ej|| ≤ ||(I − PLe)|| ||ej|| (4.43)

If ||(I −PLe)|| < 1 then the system will have monotonic convergence in the sense

of the chosen norm, here being the 2-norm. Note: the norm will be larger than or

equal to the spectral radius for any matrix, i.e. ||A|| ≥ ρ(A), making the monotonic

convergence a more stringent criteria.

4.3.1 Norm-Optimal

There are many ways to design Le and Lu Bristow et al. [2006]. One example is a norm

optimal approach proposed by Barton and Alleyne [2011]. This involves minimizing

a cost parameter J, defined as:

J = eTj+1Qej+1 + uT
j+1Suj+1 + (uj+1 − uj)

TR(uj+1 − uj) (4.44)

where Q ∈ RpN×pN , S ∈ RmN×mN , and R ∈ RmN×mN are weight matrices for the

error, input and change in input between iterations respectively. The learning and

forgetting matrices can then be determined as:

Lu = (P TQP + S +R)−1(P TQP +R)

Le = (P TQP + S +R)−1P TQ (4.45)

For the norm-optimal, combining eqs. 4.42 and 4.45 gives Barton and Alleyne

[2011]:
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Lu − LeP = (P TQP + S +R)−1R (4.46)

Convergence is then guaranteed for any symmetric positive definite Q, R and S

with P TQP + S + R being positive definite Barton and Alleyne [2011]. For LTI,

it is common to set Q = qI, R = rI, and S = sI to make the design easier and

have minimal effects on control performance Barton and Alleyne [2011]. Since the

weighting matrices weight the system variables in comparison to each other, q is set

to 1 without a loss of generality. For the system to converge to zero steady-state error

||S||2 = 0 Barton and Alleyne [2011], therefore the s is set to 0. Thus with Q = I,

R = rI and S = 0, eqn. 4.45 becomes:

Lu = (P TP + rI)−1(P TP + rI) = I

Le = (P TP + rI)−1P T (4.47)

and eqn. 4.46 becomes:

Lu − LeP = r(P TP + rI)−1 (4.48)

To find the optimal value of r, the norm-optimal control is simulated using the

ARMAX model found in Section 4.2.2 and using the ARMAX impulse response to

create the P matrix. Increasing r has two major effects, it slows down convergence but

also limits the effects that stochastic disturbances have on the subsequent iterations

Barton and Alleyne [2011]. By testing the norm-optimal control, it was found that
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noticeable convergence changes are only observed with changes in r magnitude. The r

value was increased in magnitude until it noticeably affected the system convergence.

To show this results for three of the simulated r values, r = 1, r = 1000, and

r = 100000, are given.

The error norm iteration plot, i.e. ||ej|| vs. j, for each r value using the ARMAX

model simulation is shown in Fig. 4.11. For each r value, the convergence of the engine

IMEP error norm is consistent with convergence achieved by the 4th iteration. The

CA50 error norm Figs. 4.11a and 4.11b are similar but for r = 100000 convergence

is not reached within the 20 iterations as shown in Fig. 4.11c. This indicates that

an r value this large slowed convergence. The difference in convergence time between

IMEP and CA50 error norm for Fig. 4.11c is thought to be a result of the relative

magnitudes of the two outputs and having equal weightings in the Q matrix.

The three r values are then experimentally implemented on the CFR engine and

the norm-error convergences are shown in Fig. 4.11. The similarities between the

experimental and simulated error norms, shown in Fig. 4.11, are noticeable giving

indication that the ARMAX model does well in describing the engine’s response to

the ILC controller. To evaluate the ILC performance on the engine as a function

of r, the mean error norm and standard deviation of the last 10 cycles’ error norm

are given in Tables 4.2 and 4.3 for CA50 and IMEP, respectively. The converged

iteration, jconv, is also given. This is defined as the first iteration that is within

the standard deviation of the error mean. Due to the stochastic nature of error

norm at convergence, jconv will have a statistical property and is not reliable within

2 iterations. To get an accurate jconv value multiple convergences must be done to

find the distribution and mean. This would be time consuming and is not done in

this study; instead when two control schemes are being compared, the jconv value is

confirmed with visual inspection of the error norm plots.

From the engine response, the r = 1000 case performed as expected with little
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effect on the convergence time compared to r = 1 but with a 21% decrease in standard

deviation for CA50. For the case of r = 100000 IMEP converged well with having a

lower mean error norm and standard deviation compared to r = 1 and r = 1000 cases,

but has poor convergence response in CA50 and long convergence time for IMEP so

r = 1000 is chosen as best compromise. The final iteration, j = 15, control signals

for r = 1000 are given in Fig. 4.12. The ability for an ILC controller to anticipate the

reference steps despite a time delay in the system is due to the repetitive nature of the

input learning and is shown in Fig. 4.12. By using the error of the previous iteration,

the controller learns how to improve the input for better tracking control. This is

shown in Figs. 4.13 and 4.14. These figures show the evolution of the IMEP error

through each iteration. The r = 1000 case converges quickly so little can be discerned

between the 2nd and 3rd iteration traces but the 1st to 2nd has a major decrease in

error. For the r = 100000 case the evolution of error through the iterations is more

noticeable.

Table 4.2: Experimental norm-optimal ILC performance results for CA50 error norm
convergence.

ILC mean(||eCA50||2) std(||eCA50||2) jconv,CA50

r = 1 5.51 0.624 2
r = 1000 5.36 0.494 3
r = 100000 20.4 4.09 1

Table 4.3: Experimental norm-optimal ILC performance results for IMEP error norm
convergence.

ILC mean(||eIMEP||2) std(||eIMEP||2) jconv, IMEP

r = 1 40.0 6.08 2
r = 1000 37.7 6.64 2
r = 100000 31.3 4.26 4
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(c) r = 100000.

Figure 4.11: Simulation and experimental error norm using a norm-optimal ILC for
varying r values using operating conditions given in Table 3.7.
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4.3.2 Model-less

A common ILC update law is Ahn et al. [2007a]:

uj+1(k) = uj(k) + γej(k + 1) (4.49)

for a Single-Input Single-Output (SISO) system with a time delay of 1 step and

with γ being the being Arimoto-like learning gain. In super-vector form:

uj+1 = Luuj + Leej (4.50)

Eqn. 4.49 has learning and forgetting filters of:

Le =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 γ 0 ... 0

0 0 γ 0 ... 0

...
. . .

...

0 ... γ

0 ... 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.51)

Lu = I (4.52)

Ensuring stability requires only that γ must be chosen so that |1 − γh(1)| < 1

Ahn et al. [2007a]. However, with a Multi-Input Multi-Output (MIMO) system, γ is a

matrix, γ ∈ Rm×p, which makes selecting γ more difficult as each output has different

magnitudes and are affected by each input in different proportions. To compensate

for this, a method to design γ such that even in MIMO operation only a single value

needs to be adjusted for control robustness is developed. This method will be called
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the “model-less” control as it does not require dynamic modeling for its design. This

method assumes the number of inputs equals the number of outputs, m = p, and the

steady-state Jacobian, J ∈ Rp×m, of the system as found in Section 4.1 is needed.

The Jacobian is Kaplan [1984]:

J(u1, u2...um) =

⎡⎢⎢⎢⎢⎣
∂f1
∂u1

|(u1, u2...um) ... ∂f1
∂um

|(u1, u2...um)

...
. . .

...

∂fp
∂u1

|(u1, u2...um) ... ∂fp
∂um

|(u1, u2...um)

⎤⎥⎥⎥⎥⎦ (4.53)

where y
(i)
ss = fi(u1, u2...um) and all uj are in steady-state. If the system is linear

than the Jacobian is constant at all points. Thus, the Jacobian from eqn. 4.1 is:

J =

⎡⎢⎣ −110 0.0445

464 492

⎤⎥⎦ (4.54)

Note: The Jacobian used here is a steady-state and not a dynamic Jacobian often

used for linearizing state-space models. The steady-state Jacobian is the sensitivity

between inputs and outputs of the system. The Jacobian is useful in that it provides a

weighting between the inputs and the outputs. By taking the inverse of the Jacobian,

the amount of each input needed for a desired output can be calculated. For the

MIMO ILC update law, this looks like:

uj+1(k) = uj(k) +K · J−1ej(k + 1) (4.55)

with K being a parameter that can be increased for faster response control like a
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feedback control gain Franklin et al. [2015]. In super-vector form, Le becomes a block

matrix:

Le =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 K · J−1 0 ... 0

0 0 K · J−1 0 ... 0

...
. . .

...

0 ... K · J−1

0 ... 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.56)

4.3.3 Stability

To find an optimalK value a stability analysis is performed. Here optimal is defined as

the value of K that gives the quickest convergence time, therefore smallest ρ(I−LP ).

This stability analysis uses interval matrices Ahn et al. [2007b]. Interval matrices are

matrices whose elements are between two values given as Ahn et al. [2007b]:

AI = [aIij], aIij ∈ [aij, aij], i, j = 1, ..., n (4.57)

where aij indicates the maximum extreme value and aij indicates the minimum

extreme value of the ith row and jth column element of the interval matrix AI ∈ Rn×n.

The vertex matrices, AV , of an interval matrix is defined as:

AV = [aVij ], aVij ∈ {aij, aij}, i, j = 1, ..., n (4.58)

Therefore, there are 2n
2
vertex matrices for single interval matrix. The interval

matrix’s spectral radius is bounded by the maximum spectral radius of the vertex
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matrices Ahn et al. [2007b]. This allows the stability of the system to be guaranteed

even if the exact Markov parameters are not known.

Using eqs. 4.56 and 4.27 the following block matrix is:

PLe =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 ... 0

0 KH(1)J−1 0 ... 0

... KH(2)J−1 KH(1)J−1 . . .
...

KH(3)J−1 KH(2)J−1 KH(1)J−1

...
. . .

0 KH(N − 1)J−1 ... KH(1)J−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.59)

which can then be used in eqn. 4.42. Note that a block triangular matrix’s deter-

minant is the multiplication of the determinants of the matrices down the diagonal

Powell [2011]. Using this, the eigenvalues, without multiplicity, of I − PLe are 1

and eig(Im×m − KH(1)J−1). The eigenvalue of 1 is a result of the column of zeros

in PLe of eqn. 4.59 which is the from the time delay in the system. This means

that the very first cycle’s error cannot be manipulated, and is only a result of the

systems initial condition. Ignoring the first cycles error allows the stability condition

for ρ(I − PLe) < 1 to be reduced to:

ρ(Im×m −KH(1)J−1) < 1 (4.60)

An estimate forK can be found from the following logic of applying a steady-state,

denoted with a subscript of ss, input into the system:
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∆y(k) = (H ∗∆u)(k) (4.61)

∆yss = (H ∗∆uss) (4.62)

∆yss =

[
∞∑
i=1

H(i)

]
∆uss (4.63)

where

∆u = u− u0 (4.64)

∆y = y− y0 (4.65)

with u0 and y0 chosen such that if ∆uss = 0 then ∆yss = 0 and ∗ denoting the

convolution operation. Comparing eqn. 4.63 to

∆yss = J∆uss (4.66)

gives

J =
∞∑
i=1

H(i) (4.67)

and substituting the matrix argument of the spectral radius, ρ, in eqn. 4.60
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I −KH(1)J−1 = I −KH(1)

(
∞∑
i=1

H(i)

)−1

(4.68)

= I −K

(
∞∑
i=1

H(i)H−1(1)

)−1

(4.69)

= I −K

(
I +

∞∑
i=2

H(i)H−1(1)

)−1

(4.70)

this is done assuming that H−1(1) is non-singular. If σ(H(1)) >> σ(
∑∞

i=2 H(i))

then

I +
∞∑
i=2

H(i)H−1(1) ≈ I (4.71)

with proof given in Appendix D. The interpretation of this assumption is the

majority of the response is in the first cycle after the input. For the CFR engine this

is found to be the case experimentally as shown in Fig. 4.9, the first Markov parameter

dominates the subsequent ones. Substituting eqn. 4.71 into eqn. 4.70 gives:

I −K

(
I +

∞∑
i=2

H(i)H−1(1)

)−1

≈ I −K(I)−1 (4.72)

= I −KI (4.73)

for a spectral radius of 0, K = 1. This will give a single iteration convergence to

0 error. This signifies that systems with large initial responses are to have an ideal

K value near 1. By similar logic, if σ(H(1)) << σ(
∑∞

i=2H(i)) then
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I +
∞∑
i=2

H(i)H−1(1) ≈
∞∑
i=2

H(i)H−1(1) (4.74)

combining this with eqn. 4.70 gives

I −K

(
I +

∞∑
i=2

H(i)H−1(1)

)−1

≈ I −K

(
∞∑
i=2

H(i)H−1(1)

)−1

(4.75)

= I −KH(1)

(
∞∑
i=2

H(i)

)−1

(4.76)

as stated before ρ(A) ≤ σ(A). Therefore minimizing the 2-norm of a matrix also

minimizes the upper bound on the spectral radius. By taking the norm of eqn. 4.76

and applying the backwards triangle inequality Cassell [1854] with the assumption

K > 0 gives

||I −KH(1)

(
∞∑
i=2

H(i)

)−1

|| ≥
⏐⏐⏐⏐||I|| − ||KH(1)

(
∞∑
i=2

H(i)

)−1

||
⏐⏐⏐⏐ (4.77)

=

⏐⏐⏐⏐1−K||H(1)

(
∞∑
i=2

H(i)

)−1

||
⏐⏐⏐⏐ (4.78)

which can be combined with

||H(1)

(
∞∑
i=2

H(i)

)−1

|| << 1 (4.79)

from eqn. 4.74. This means that for the lowest bound for the norm of eqn. 4.76

to be 0, K >> 1. This does not imply that the optimal K value is much larger
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than 1, only that larger values minimize the lower bound of the matrix norm. One

interpretation of this is that as majority of the response moves later in time, the

optimal K values are likely to be larger. For the CFR engine response given in

Section 4.2.3, the optimal value of K is expected to be slightly larger than 1. The

first Markov parameter is:

H(1) =

⎡⎢⎣ -86.0 8.47

398 463

⎤⎥⎦ (4.80)

from Fig. 4.9. This matrix has an inverse of:

H(1)−1 =

⎡⎢⎣ -0.0107 0.0002

0.0092 0.002

⎤⎥⎦ (4.81)

showing that the assumption for H(1) being invertible is valid for this system.

In eqn. 4.60, H(1) is an interval matrix found in Section 4.2.3 where the inter-

vals are the 95% confidence bounds given in Fig. 4.9 for the first cycle. Using the

knowledge that the spectral radius is bounded by the vertices, the maximum spec-

tral radius of the 16 vertex matrices is plotted with the nominal spectral radius as

a function of K in Fig. 4.15. The minimum value of the maximal spectral radius is

preferred as convergence will occur faster Barton and Alleyne [2011]. From Fig. 4.15

the minimum value occurs at K = 1.12 - slightly above one as expected. The system

goes unstable for K < 0 or K > 2. Another property observed is the convergence

of the expected and maximum spectral radius as K approaches 0. This shows that

the control becomes more robust as K approaches 0. A plot of all 16 vertex matrices

spectral radii as a function of K is given in Appendix D.
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4.3.4 Noise Transference

Similar to how eqn. 4.42 is formulated from eqns. 4.29, 4.33 and 4.34, but assuming

dj is stochastic gives:

ej+1 = (I − PL)ej + (dj − dj+1) (4.82)

which can then be used to solve for ej as a function of the iteration, j, first

iteration error, e0, and iteration stochastic disturbance, dj:

ej = (I − PL)je0 + (I − PL)j−1d0 +

j−1∑
i=1

(I − PL)j−i−1PLdi − dj (4.83)

Taking the norm of eqn. 4.83 gives
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||ej|| ≤ ||(I − PL)||j||e0||+ ||(I − PL)||j−1||d0||+ ||PL||
j−1∑
i=1

||(I − PL)||j−i−1||di||+ ||dj||

(4.84)

As discussed before if ||(I − PL)|| < 1 then the system will converge as the e0

and d0 terms will approach 0 as j → ∞ and the summation term will converge

assuming the ||dj|| < ∞. The summation is multiplied by ||PL||, therefore it can

affect the upper bound of the error norm of each iteration. Looking at eqn. 4.59,

||PL|| = |K| ||PJ||, where J is the learning matrix, Le, divided by K. From this

it can be deduced that larger magnitudes of K can increase the maximum iteration

error norm for model-less control with stochastic disturbance.

Assuming the disturbance, dj is Gaussian noise with zero mean and variance of

λ2, and taking the expected value of eqn. 4.84 gives:

E(||ej||) ≤ ||(I − PL)||jE(||e0||) +

(
||(I − PL)||j−1 + ||PL||

j−1∑
i=1

||(I − PL)||j−i−1 + 1

)
Nλ2

(4.85)

as

E(||dj||) = E(dj(1)
2 + ...+ dj(N)2) (4.86)

= E(dj(1)
2) + ...+ E(dj(N)2) (4.87)

= Nλ2 (4.88)

Taking eqn. 4.85 to convergence, so j → ∞, gives:
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E(||e∞||) ≤

(
||PL||

∞∑
i=0

||(I − PL)||i + 1

)
Nλ2 (4.89)

The summation term is a geometric series that converges to

∞∑
i=0

||(I − PL)||i = 1

1− ||(I − PL)||
(4.90)

which gives

E(||e∞||) ≤
(

||PL||
1− ||(I − PL)||

+ 1

)
Nλ2 (4.91)

or using ||PL|| = |K| ||PJ||:

E(||e∞||) ≤
(

||PJ||
1− ||(I − PL)||

+ 1

)
|K|Nλ2 (4.92)

which gives the mean error norm upper bound to be a function of the noise

variance, the iteration length, the system learning filter and the gain. If ||(I−PL)|| is

decreased it may decrease the mean error norm upper bound, as 0 < ||(I−PL)|| < 1.

However, it may be counteracted by an increase in ||PL|| as there is no bounding on

it. This can increase the mean error norm upper bound.

4.3.5 Implementation

The model-less control is first simulated on the ARMAX model found in Section 4.2.2

then is implemented on the single cylinder engine. Four values of K are used to
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compare to the results predicted in Fig. 4.15. The four values are K = 0.9, 1.12, 1.3

and 1.8. From Fig. 4.15 the optimal convergence time should occur with K = 1.12

and K = 0.9 and K = 1.3 should have similar convergence time. The K = 1.8 case

should be close to instability. Then these cases are experimentally implemented on

the CFR engine. Fig. 4.16 shows the iteration error norm for the four cases for both

experimental and simulated results. In Fig. 4.16d the number of iterations plotted

was increased to 30 for the simulation to show that the system was stable as this

is not clear when only viewing 20 iterations. The other K values behaved similarly,

as expected. From inspection the convergence time of Figs. 4.16a and 4.16b are the

same. Fig. 4.16c, however, has longer convergence time and has a unique aspect of

an increase in CA50 error norm from the first to second iteration for the simulation

results. This is thought to be a result of the noise feeding through the control as

given in eqn. 4.85. The close similarity of experiment and simulation indicates two

things. One, the ARMAX model used in the simulation seems to captures the system

response well. Two, since this system model (here ARMAX) capture the dynamics,

an ILC control can be tuned in simulation and directly implemented on the engine

without further tuning.

The controller performance evaluations for the experimental results are given in

Tables 4.4 and 4.5. The results of the actual engine performance mimic the ARMAX

model well as shown in Fig. 4.16. The major discrepancies are the lack of second

iteration increase in CA50 error norm observed in Fig. 4.16c, and the CA50 conver-

gence in K = 1.8 is more prominent for experimental results as shown in Fig. 4.16c

compared to the simulation. These are likely a result of the system’s noise variance

being not as large as predicted by the ARMAX modeling therefore the noise that

is fed into the input is less. Comparing the results in Tables 4.4 and 4.5, the best

K value was 0.9 with 1.12 being slightly less optimal due to the noise feedback as

shown in eqn. 4.91. Fig. 4.17 gives the control inputs and outputs for the K = 1.12
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case. From this figure the large input variance can be seen which is the most probable

reason for the K = 0.9 outperforming the K = 1.12. An experimental test is done

with K = 2 but the system is unstable, as expected, and all inputs hit saturation

after 2 iterations so the results will not be shown.

Table 4.4: Experimental model-less ILC performance results for CA50 error norm
convergence.

ILC mean(||eCA50||2) std(||eCA50||2) jconv,CA50

K = 0.9 5.13 0.794 2
K = 1.12 5.21 0.406 3
K = 1.3 6.31 0.573 5
K = 1.8 18.9 3.18 N/A

Table 4.5: Experimental model-less ILC performance results for IMEP error norm
convergence.

ILC mean(||eIMEP||2) std(||eIMEP||2) jconv, IMEP

K = 0.9 40.4 5.00 2
K = 1.12 43.8 6.67 3
K = 1.3 43.4 4.70 4
K = 1.8 98.9 21.0 N/A
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(b) K = 1.12.
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(c) K = 1.3.
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(d) K = 1.8.

Figure 4.16: Simulation and experimental error norm using model-less control for
varying values of K for operating conditions given in Table 3.7.
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Figure 4.17: Experimental final iteration control responses with K = 1.12 for oper-
ating conditions given in Table 3.7.
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4.4 Filter Design

For both the norm optimal and model-less control, noise has a prominent effect on

convergence time and mean converged iteration error norm. To mitigate this the use

of filters coupled with the ILC is investigated. A common implementation for ILC

filters is in the form a Q filter Bristow et al. [2006], denoted Qf here so as not to be

confused with the Q weighting matrix in Section 4.3.1. The implementation is:

uj+1 = Qf (uj + Lej) (4.93)

with L being a learning matrix. This has the effect of turning the ILC off for

frequencies chosen by the Qf and have perfect tracking for frequencies not affected

by the Qf Bristow et al. [2006]. The learning and forgetting matrices, Le and Lu

respectively, in eqn. 4.34 are:

Lu = Qf (4.94)

Le = Qf L (4.95)

where L is designed for optimal stability or monotonic convergence as in Sec-

tions 4.3.1 and 4.3.2. Since Lu ̸= I, the system is no longer guaranteed to converge to

zero error Ahn et al. [2007a]. The effects on stability are found by re-writing eqn. 4.35

as

uj+1 = Qf (I − LP )uj +Qf L(yr − dj)) (4.96)
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Similarly, if ρ(Qf (I−LP )) ≤ 1 the system is stable. If the filter and learning gain

are causal, i.e. lower triangular and Toeplitz, P , L and Qf commute Bristow et al.

[2006]. Then applying Gelfand’s formula Lax [2002] the following result is obtained

ρ(Qf (I − LP )) ≤ ρ(Qf ) ρ((I − LP )) (4.97)

The eigenvalues of a causal Qf are the first coefficients of the filter. Therefore

ρ(Qf ) is likely to be less than 1 if the filter has unity gain, which is the sum of all the

coefficients, and is stable. Using these two, if L is designed to be stable and causal,

the system with a causal filter is guaranteed to be stable. This can be extended to

non-causal learning matrices as long as LP is lower triangular and Toeplitz, thereby

keeping the commutativity property between Qf and I − LP .

The application of a causal filter introduces a phase-lag and thereby nullifies one

of the major advantages of an ILC, the ability to react to future inputs without a

delay. With an ILC system, each iteration is considered as a whole thus allowing

the use of non-causal filters that have no phase lag. The disadvantage is the lower

triangular property is lost thus breaking the commutativity property making the con-

vergence criteria more complicated Bristow et al. [2006]. This is done by comparing

the asymptotic error, e∞, assuming the disturbance is constant between iterations,

as Bristow et al. [2006]

e∞ = [I − P [I −Qf (I − LP )]−1QfL](yd − d) (4.98)

with the iteration error, giving
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e∞ − ej+1 = PQf (I − LP )P−1(e∞ − ej+1) (4.99)

Then taking the 2-norm of the system the following is obtained

||e∞ − ej+1|| = ||PQf (I − LP )P−1(e∞ − ej+1)|| (4.100)

||e∞ − ej+1|| = ||PQf (I − LP )P−1|| ||(e∞ − ej+1)|| (4.101)

From eqn. 4.101, the error will monotonically converge to e∞ if ||PQf (I −

LP )P−1|| < 1 Bristow et al. [2006]. This assumes that the P matrix is invertible,

which is not the case for a system with input delay like the one for the CFR engine.

The alternative is to check stability and optimal design by testing the filters on the

ARMAX model since, in Sections 4.3.1 and 4.3.2, the ARMAX model predicted the

engine performance well.

4.4.1 Gaussian

A Gaussian filter is the first non-causal filter to be tested. This is a common filter

used in image processing Haddad and Akansu [1991]. It involves weighting the future

and past inputs with a Gaussian function as:

w(x) = a e
−x2

β (4.102)

where a is the scaling value, which is set to ensure the filter gain is unity, and

β is used to determine how quickly the system responds. The Gaussian function is
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Figure 4.18: Gaussian filter step response with O = 9 and β = 9.

approximated with an Oth order filter as:

y(k) =w(n)x(k − n) + w(n− 1)x(k − (n− 1)) + ...

...+ w(1)x(k − 1) + w(0)x(k) + w(1)x(k + 1) + ...

...+ w(n− 1)x(k + (n− 1)) + w(n)x(k − n) (4.103)

with y being the filter output, x being the filter input and n being a function of

the filter’s order, O, as n = (O−1)/2. The filter’s step response is shown in Fig. 4.18.

The filter response is shown to react to the step before it occurs, thereby minimizing

the total error; this is a non-casual filter property.

The filter is then tested in simulation with the model-less control using the optimal

gain ofK = 1.12 on the ARMAX model. The filter is compared to the system without

a filter and to filters where the parameters are O and β. Choosing a base point of

β = 9 and O = 9, β is increased then decreased with respect to the base point and

the same procedure is done with the filter order. The results are shown in Fig. 4.19.

Note: the order, O, must always be odd for the Gaussian filter so that n is always a
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whole number. The controller performance evaluations are given Tables 4.6 and 4.7.

The addition of the filter has minimal effects on the converged performance shown

in Tables 4.6 ans 4.7. Varying the filter parameters also does not significantly affect

ILC convergence time as shown in Fig 4.19. The base point is chosen to test on the

engine as varying filter parameters did not effect performance.

Table 4.6: Simulation model-less ILC performance results for CA50 error norm con-
vergence with Gaussian filter.

ILC mean(||eCA50||) std(||eCA50||) jconv,CA50

Filter less 5.15 1.02 4
β = 9, O=9 4.86 1.06 2
β = 6, O=9 4.86 0.96 4
β = 12, O=9 4.97 1.07 3
β = 9, O=7 4.89 1.01 3
β = 9, O=15 5.05 1.16 4

Table 4.7: Simulation model-less ILC performance results for IMEP error norm con-
vergence with Gaussian filter.

ILC mean(||eIMEP||) std(||eIMEP||) jconv, IMEP

Filter less 39.4 3.95 3
β = 9, O=9 42.0 3.26 3
β = 6, O=9 40.4 3.32 3
β = 12, O=9 43.2 3.24 3
β = 9, O=7 41.1 3.42 3
β = 9, O=15 42.5 3.34 5

4.4.2 Zero-Phase

A zero-phase filter is a filter, for example an infinite impulse response filter, where

after the first pass the output is reversed and put through the filter again. Then the

output of the second pass is reversed and considered the output of the zero-phase

filter. The benefit of this is the phase lag cancels itself through the second pass. As a

result of two passes being performed, the magnitude response is squared Mitra [2006].

A plot of the step response of a zero-phase 8th order Butterworth filter run forward and
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Figure 4.19: ARMAX simulation iteration error norm for model-less ILC with Gaus-
sian filter with varying β and order.
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Figure 4.20: Zero-phase 8th order Butterworth filter step response.

backwards is shown in Fig. 4.20. Comparing this figure to Fig. 4.18, the overshoot and

subsequent ripples are the disadvantage of using a zero-phase Butterworth compared

to a Gaussian filter. The benefit of a zero-phase Butterworth filter is the ability to

directly choose the cut-off frequency for the Qf . To select the cut-off frequency, a

periodogram of the CA50 error is calculated as it has the highest noise levels. The

first iteration error is compared to the final iteration error periodograms of the model-

less ILC CFR engine response in Fig. 4.21. The final iterations error is caused by the

noise disturbance only, as the system error has converged to zero as seen in eqn. 4.84.

Therefore the periodogram of the final iteration error contains only frequencies of

the noise. This is in contrast to the first iteration error where the system has not

converged and the frequencies for the learning filter to update the input are present.

The filter should not cut out any frequencies that are present in the first iteration

periodogram but not in the final, as these are the frequencies that are being utilized in

the control while all others are from the noise of the system. By comparing Figs. 4.21a

and 4.21b the control seems to be dominant in the 0 to 0.2 ∼ 0.4 normalized frequency

range.
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(b) Final iteration.

Figure 4.21: Periodogram of experimental CA50 iteration error using model-less ILC
with K = 1.12 for first and final iteration with sampling per cycle.
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Figure 4.22: ARMAX simulation iteration error norm for model-less ILC with zero-
phase Butterworth filter with varying cut-off frequency and order.

Similar to Section 4.4.1, the zero-phase Butterworth filter was tested in simulation

using the model-less ILC with the optimal gain on the ARMAX model. The zero-

phase Butterworth filter is created from a low-pass Butterworth filter of order O.

It is tested using a base point with a cut-off normalized frequency, fcut, of 0.2 with

an order, O of 8. The filter’s parameters, cut-off frequency and order, are varied to

find optimal values. The controller without the filter is also given for comparison.

The results are shown in Fig. 4.22 with controller performance evaluation given in

Tables 4.8 and 4.9. For CA50, the application of the filter is not significant. For

IMEP, however, the filter with cut-off frequency of 0.4 seems to out-perform the

others. By inspecting Fig. 4.22 the convergence time for all is relatively similar. The

optimal filter parameters are taken as cut-off frequency of 0.4 and order of 8.
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Table 4.8: Simulation model-less ILC performance results for CA50 error norm con-
vergence with zero-phase Butterworth filter.

ILC mean(||eCA50||) std(||eCA50||) jconv,CA50

Filter less 5.25 1.12 2
fcut = 0.2, O=8 5.11 1.13 4
fcut = 0.1, O=8 5.51 0.98 4
fcut = 0.4, O=8 4.89 1.12 3
fcut = 0.2, O=4 4.90 0.9 5
fcut = 0.2, O=16 5.08 1.08 4

Table 4.9: Simulation model-less ILC performance results for IMEP error norm con-
vergence with zero-phase Butterworth filter.

ILC mean(||eIMEP||) std(||eIMEP||) jconv, IMEP

Filter less 39.4 3.54 3
fcut = 0.2, O=8 43.2 3.22 3
fcut = 0.1, O=8 55.0 3.23 3
fcut = 0.4, O=8 38.0 3.46 3
fcut = 0.2, O=4 42.6 3.31 4
fcut = 0.2, O=16 44.1 3.29 3

4.4.3 Implementation

The optimal filters are then implemented on the CFR engine. Each optimal filter,

Gaussian and zero-phase Butterworth, is tested with each control style, model-less

and norm optimal. Previously, the r was increased for the norm optimal to minimize

the noise effects. Here the smallest r value, which is 1, is used with the filter. The

optimal gain, K = 1.12, for the model-less control is used with filter. This is chosen

over K = 0.9, even though it had similar performance, since the better performance

of the lower gain is due to the increased noise transfer occurring at the higher gain

as given in eqn. 4.84, which should be reduced by the filter. This gives a total of

four experiments. The results of these experiments’ error norms are given in Fig. 4.23

with the ILC performance evaluations in Tables 4.10 and 4.11. The convergence

time for all are similar. The standard deviations of the error norm for the zero-phase

Butterworth filter results are lower than the Gaussian filters’ indicating that the noise
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is not affecting the error as much with the zero-phase Butterworth filter and the final

iteration is more consistent. For CA50 mean error norm, all values are within the

standard deviation of each other and are therefore considered relatively equal. The

IMEP error norm is considerably lower for the zero-phase Butterworth filter results

with the norm-optimal with zero-phase Butterworth filter out-performing the rest.

Table 4.10: Experimental ILC performance results for CA50 error norm convergence
with filter.

ILC mean(||eCA50||) std(||eCA50||) jconv,CA50

model-less Gaussian 4.43 0.578 3
model-less zero-phase Butterworth 4.38 0.460 3
norm-optimal Gaussian 4.41 0.533 2
norm-optimal zero-phase Butterworth 4.28 0.336 3

Table 4.11: Experimental ILC performance results for IMEP error norm convergence
with filter.

ILC mean(||eIMEP||) std(||eIMEP||) jconv, IMEP

model-less Gaussian 44.3 3.33 2
model-less zero-phase Butterworth 38.3 4.92 3
norm-optimal Gaussian 43.3 3.80 2
norm-optimal zero-phase Butterworth 34.7 3.22 2

The final iteration’s control signals are given in Fig. 4.24 and the difference be-

tween the filters can be noticed. The difference of the control strategies, i.e. model-less

and norm-optimal, are not seen as they primarily affect the convergence and not the

final iteration. The filters’ effects can be seen in the system inputs, Eiso and Ehept in

Fig. 4.24. With the Gaussian filter the inputs are smooth and relatively constant

while the zero-phase Butterworth has ripples throughout the signal. With both types

of filters, the output reacts to the step before it happens more prominently compared

to the case without a filter. This is one of the benefits of ILC as it allows the error

caused by the step to be distributed before and after when the step occurs thereby

minimizing the maximum error observed.
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(b) K = 1.12 and zero-phase Butterworth fil-
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(c) r = 1 and Gaussian filter.
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(d) r = 1 and zero-phase Butterworth filter.

Figure 4.23: Model-less and norm optimal ILC experimental iteration error norms
with Gaussian and zero-phase Butterworth filter.
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In comparison to the rest, including results from ILCs without filters, the best

three ILC setups are the model-less with zero-phase Butterworth, norm-optimal with

r = 1 with zero-phase Butterworth filter, and norm-optimal with r = 1000 shown in

Fig. 4.25. The performance of each is given in Tables 4.12 and 4.13. These ILCs’

performances will be tested for robustness with changes in operating conditions and

fuel selection in the next chapter.

Table 4.12: Experimental ILC base point performance results for CA50 error norm
convergence.

ILC mean(||eCA50||) std(||eCA50||) jconv,CA50

r = 1000 5.36 0.494 3
model-less zero-phase Butterworth 4.38 0.460 3
norm-optimal zero-phase Butterworth 4.28 0.336 3

Table 4.13: Experimental ILC base point performance results for IMEP error norm
convergence.

ILC mean(||eIMEP||) std(||eIMEP||) jconv, IMEP

r = 1000 37.7 6.64 2
model-less zero-phase Butterworth 38.3 4.92 3
norm-optimal zero-phase Butterworth 34.7 3.22 2

4.5 PI Comparison

For reference purposes the ILC results are compared to a PI controller which is

implemented as:

e(k) = yd(k)− y(k) (4.104)

u(k) = Kp e(k) +Ki

k∑
i=0

e(i) (4.105)

where u(k) and y(k) are defined in eqn. 4.32 and Kp and Ki are 2 × 2 matrices.
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(d) r = 1 and zero-phase Butterworth filter.

Figure 4.24: Model-less and norm optimal ILC experimental final iteration control
responses with Gaussian and zero-phase Butterworth filter.
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(c) r = 1 and zero-phase Butterworth filter.

Figure 4.25: Model-less and norm optimal ILC experimental iteration error norms
base case.
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Figure 4.26: Simulink model of PI control with ARMAX model.

Simulation is used to tuneKp andKi using a Simulink model with the ARMAX model

as shown in Fig. 4.26. The gains are tuned manually for near deadbeat response for

each step (without noise), then noise is added and the tuning is repeated. The

simulation response is shown in Fig. 4.27 with the tuned gains of:

Kp =

⎡⎢⎣ −0.012 0.0006

0.012 0.0012

⎤⎥⎦ , Ki =

⎡⎢⎣ −0.010 0.0008

0.008 0.0010

⎤⎥⎦ (4.106)
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Note: The gains corresponding to Ehept with CA50 are negative due to this re-

sponse having a negative sensitivity. When the PI controller is implemented on the

CFR engine using the gains in eqn. 4.106, the system is unstable. The gains have to

be manually tuned to the following values

Kp =

⎡⎢⎣ −0.0050 0.0001

0.010 0.0003

⎤⎥⎦ , Ki =

⎡⎢⎣ −0.006 0.0003

0.003 0.0010

⎤⎥⎦ (4.107)

which gives the response found in Fig. 4.28. This indicates that the ARMAX

model is not sufficient for feedback control design. The ILC is The error norms for

CA50 and IMEP are 5.38 and 62.6, respectively. These are significantly higher than

any of the converged mean error norms for an ILC with filter, which had maximum

error norms of 4.43 and 44.3 for CA50 and IMEP respectively, and marginally higher

than the optimal ILCs without filters, e.g. K = 1.12 for model-less and r = 1000

for norm-optimal, which had maximum error norms of 5.36 and 43.8 for CA50 and

IMEP respectively. With convergence occurring in less than 4 iterations, this shows

the utility of the application of an ILC for repetitive control of an HCCI engine.
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Figure 4.27: Simulated PI control for operating conditions given in Table 3.7.
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4.6 Summary

A steady-state domain exploration and system identification is performed using en-

ergy of iso-octane and n-heptane as inputs and CA50 and IMEP of HCCI combustion

as outputs for a CFR engine. A repeated step response is input and iterative learning

control is used on the sequence of these iterations.

The domain exploration found that CA50 and IMEP are approximately linear

within a prescribed operating region. The system identification found a dynamic

model that is able to predict system response with good accuracy. Also the Markov

parameters are found from the system identification.

With the dynamic model, a norm-optimal ILC is designed. The norm-optimal

ILC requires a selection for weighting matrices. This ILC is then simulated on the

dynamic model for selecting the best ILC then tested on the engine. The experi-

mental results agreed well with the simulation. Then a new method for designing

an ILC was developed, which reduces the multi-input multi-output control problem

to one requiring a single gain selection. The stability of the system to this gain was

investigated as well as its effects on noise transfer. The method was then simulated

on the dynamic model and experimentally tested for varying values of the gain. The

simulation, once again, agrees well with the experimental results.

To attenuate the noise in the system, two non-causal filter are implemented on

the ILCs. Since the dynamic model agrees with the experimental results, the filters

are optimized in simulation. The best of each filter type are chosen then tested

experimentally on the engine. The three best ILCs are then chosen to be tested

further.

Finally a PI controller is designed and simulated using the dynamic model. The

simulation is used to tune the PI gains. The gains have to be re-tuned for actual

engine implementation. The ILC’s converged responses outperformed the PI results.
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Chapter 5

Control Robustness

This Chapter tests the robustness of the iterative learning controllers designed in the

previous chapter to changes in intake temperature and compression ratio. Then biofu-

els are added to the primary reference fuels and the robustness of the iterative learning

controllers to these changes are compared to a traditional feedback controller.

5.1 Operating Parameters

The ILC is now tested on changes in operating conditions to check how robust it is. To

have a robust controller is ideal for engine operation as they are subject to varying

conditions Hrovat and Sun [1997]. The changes in operating conditions affect the

Markov parameters of the system. This will affect how quickly the system converges

or if it converges at all. If the noise variance is affected by the operating conditions

then the final iteration error will be affected. This can be seen in eqn. 4.91 where

an increase in λ will increase the maximum bound of E(||e∞||). From this equation,

the system plant, P can also affect the maximum bound for E(||e∞||) if ||PL|| or

||I − PL|| is larger as a result of the operating change.

The operating conditions that are varied are intake temperature, Tint, and com-

pression ratio, CR. The ILC is designed at a base point with Tint = 100 ◦C and

CR=11 as in Table 3.7. The operating conditions are then varied around this point,
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with testing done at Tint = 50 ◦C, Tint = 150 ◦C, CR=10, and CR=12. For each op-

erating change steady-state and a PRBS test is performed, similar to Section 4.1, so

that the system changes can be observed. Complete results are given in Appendix C,

with only selected results in this chapter.

5.1.1 ILC Intake Temperature Variation

The first operating condition investigated is the intake temperature variation. Intake

temperature has been known to strongly effect HCCI combustion timing Shahbakhti

[2009] and has even been investigated to be used as an input for an HCCI control

strategy Martinez-Frias et al. [2000]. Combustion is affected by intake temperature

because the combustion reactions are sensitive to temperature Warnatz et al. [2006].

Setting Tint = 50 ◦C, the Markov parameters of the engine from the PRBS testing

are shown in Fig. 5.1. Comparing this to Fig. 4.9 the only noticeable difference is

the decrease in response between CA50 and Eiso . This implies that the effect λ has

on combustion timing is enhanced as Tint is decreased or the effect that ON has on

combustion timing is reduced. The IMEP’s responses to the inputs is not affected

since the thermal efficiency of the cycle has not been greatly affected therefore the

energy inputs should have the same correlations with the energy output.

The results of the three best ILC cases from Chapter 4 are now applied to the the

CFR engine with an intake temperature of 50 ◦C and are shown in Fig. 5.2 with the

base cases also shown. One characteristic of the ILC’s control under these conditions

is the variation of the converged error norm. The standard deviation of ||eCA50||,

given in Table 5.1, is over 3 times larger than the standard deviation observed at

Tint = 100 ◦C as given in Table 4.12. This maybe due to an anomaly with the engine

knocking every few thousand cycles that is observed when the engine has not warmed

up and could be attributed to the fuel not completely evaporating therefore having

inconsistent combustion. By lower the intake temperature, the fuel has a lower vapor
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Figure 5.1: Tint = 50 ◦C Markov parameters for operating point 1 given in Table 3.8
with 95% confidence intervals found from linear regression of PRBS data.

pressure therefore less fuel would evaporate and increase combustion inconsistencies

(which is consistent with what is observed). The steady-state standard deviations of

the noise for CA50 and IMEP are 0.66 deg and 4.7 kPa respectively at Tint = 50 ◦C

compared to 0.47 deg and 3.9 kPa at Tint = 100 ◦C which is consistent with the

increased deviation of error norm. The IMEP is also affected by the combustion

inconsistency. This inconsistency increases the mean of error norms when compared

to the base point which is consistent with eqn. 4.91.

Table 5.1: Experimental ILC performance results for CA50 error norm convergence
with Tint = 50◦C.

ILC mean(||eCA50||) std(||eCA50||) jconv,CA50

r = 1000 8.27 3.44 2
model-less zero-phase Butterworth 7.18 1.43 2
norm-optimal zero-phase Butterworth 6.72 1.33 3

When the intake temperature is increased to 150 ◦C, the Markov parameters
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Figure 5.2: ILC iteration error norm at Tint = 50 ◦C compared to base case operating
point (Tint = 100 ◦C).
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Table 5.2: Experimental ILC performance results for IMEP error norm convergence
with Tint = 50◦C.

ILC mean(||eIMEP||) std(||eIMEP||) jconv, IMEP

r = 1000 69.4 22.6 2
model-less zero-phase Butterworth 58.7 8.50 2
norm-optimal zero-phase Butterworth 51.5 7.06 2

corresponding Eiso to CA50 increase as seen in Fig. 5.3. This is consistent with what is

observed with the decrease in intake temperature. When the temperature is increased,

Eiso has a stronger effect on delaying ignition timing. IMEP was not affected by the

increase in intake temperature which is consistent with the explanation that efficiency

has not been changed by changing the intake temperature. Inspecting the ILC results

in Fig. 5.4, IMEP seems to be similar to the base point but CA50 takes longer to

converge especially for the model-less with zero phase filter. The converged mean

error norm and standard deviation are similar to the base point with the exception of

CA50 norm-optimal without a filter which had a larger standard deviation but this

is considered insignificant and is attributed to a statistical fluctuation. When looking

at the standard deviation of the steady-state operating conditions, which are 0.45

deg and 3.4 kPa for CA50 and IMEP respectively, they are similar to the base point

steady-state noise standard deviations.

Table 5.3: Experimental ILC performance results for CA50 error norm convergence
with Tint = 150◦C.

ILC mean(||eCA50||) std(||eCA50||) jconv,CA50

r = 1000 5.22 1.03 3
model-less zero-phase Butterworth 4.43 0.811 7
norm-optimal zero-phase Butterworth 4.99 0.501 2
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Figure 5.3: Tint = 150 ◦C Markov parameters for operating point 2 given in Table 3.8
with 95% confidence intervals found from linear regression of PRBS data.

Table 5.4: Experimental ILC performance results for IMEP error norm convergence
with Tint = 150◦C.

ILC mean(||eIMEP||) std(||eIMEP||) jconv, IMEP

r = 1000 37.1 4.14 2
model-less zero-phase Butterworth 36.7 4.25 3
norm-optimal zero-phase Butterworth 33.4 3.06 3

5.1.2 ILC Compression Ratio Variation

A CFR engine is designed so the compression ratio can easily be changed. By testing

different compression ratios, the performance of the ILC can be investigated since

compression ratio is usually fixed on an engine. The compression ratio, CR, is reduced

from the base case of 11:1 to 10:1. From the ideal gas law and assuming an isentropic

process, the following relationships can be found:
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Figure 5.4: ILC iteration error norm at Tint = 150 ◦C compared to base case operating
point (Tint = 100 ◦C).
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p2
p1

= (CR)γ ,
T2

T1

= (CR)γ−1 (5.1)

where γ is the ratio of specific heats, p and T are the in-cylinder pressure and

temperature, and subscript 1 indicates start of compression, BDC, and subscript

2 is any other point in the process. This indicates that decreasing CR decreases

both pressure and temperature of the in-cylinder charge, thereby slowing the HCCI

reaction. This not equivalent to a decrease only in intake temperature as many

reaction rates are affected by the constituents partial pressures Warnatz et al. [2006].

The Markov parameters for the CR=10 system are shown if Fig. 5.5. From this

the sensitivity between Eiso and CA50 is relatively unchanged, which is not the case

when intake temperature was decreased. Another point to notice from this figure

is the decrease in both IMEP plots. The thermal efficiency, η, of the Otto cycle

Heywood [1988] is:

η = 1−
(

1

CR(γ−1)

)
(5.2)

The thermal efficiency decreases when CR is decreased, which thereby decreases

the IMEP for a given amount of energy input into the system. This explains the

decrease in IMEP sensitivity between Ehept and Eiso compared to the base case in

Fig. 4.25.

The results of applying the ILC to the engine with CR=10 are shown in Fig. 5.6.

The system takes longer to converge, as expected with changing the plant. The mean

and standard deviations, listed in Tables 5.5 and 5.6, for the converged error norm

are lower than compared to the base point for both CA50 and IMEP. By looking at
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Figure 5.5: CR=10 Markov parameters for operating point 3 given in Table 3.8 with
95% confidence intervals found from linear regression of PRBS data.

the standard deviation of the steady-state operation, 0.37 deg and 3.0 kPa for CA50

and IMEP respectively, the noise is less than the base point values which is consistent

with the results seen in the error norm standard deviations.

Table 5.5: Experimental ILC performance results for CA50 error norm convergence
with CR=10.

ILC mean(||eCA50||) std(||eCA50||) jconv,CA50

r = 1000 3.98 0.925 3
model-less zero-phase Butterworth 3.86 0.579 6
norm-optimal zero-phase Butterworth 3.82 0.579 3

The compression ratio is then increased to 12. The Markov parameters are shown

in Fig. 5.7. From the changes between Figs. 4.9 and 5.5, the CA50 sensitivities are

expected to remain unchanged and the IMEP sensitives are expected to increase

however both CA50 and IMEP Markov parameters are similar to the ones found for

the base point. This maybe from the idealized thermal efficiency increasing more from
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Figure 5.6: ILC iteration error norm at CR=10 compared to base case operating
point (CR=11).
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Table 5.6: Experimental ILC performance results for IMEP error norm convergence
with CR=10.

ILC mean(||eIMEP||) std(||eIMEP||) jconv, IMEP

r = 1000 30.1 3.9 3
model-less zero-phase Butterworth 33.3 6.35 3
norm-optimal zero-phase Butterworth 33.7 3.76 3
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Figure 5.7: CR=12 Markov parameters for operating point 4 given in Table 3.8 with
95% confidence intervals found from linear regression of PRBS data.

CR=10 to CR=11 than from CR=11 to CR=12 due to the non-linearity of eqn. 5.2.

Since the plant, P , at CR=12 is similar to the base point plant CR=11 given in

Fig. 4.9, the system is expected to behave similarly for convergence. Fig. 5.8 shows

the results of the ILC system. Tables 5.7 and 5.8 are the converged properties. All

properties of the converged system are similar to the base point. Looking at the

steady-state noise standard deviations, which are 0.44 deg and 3.6 kPa for CA50 and

IMEP respectively, the noise level are similar to the base point given in Section 4.1.

The convergence is slower compared to the base point but this is attributed to the
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Figure 5.8: ILC iteration error norm at CR=12 compared to base case operating
point (CR=11).

small differences in the system plant.

For operating condition variation of intake temperature and compression ratio,

the ILC converges and reaches a trajectory that has a small error norm- mostly a

function of the system noise. The change in plant, P , mostly affects the time to

convergence, which has not increased by more than 4 iterations for all cases listed in

Tables 5.1 to 5.8.
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Table 5.7: Experimental ILC performance results for CA50 error norm convergence
with CR=12.

ILC mean(||eCA50||) std(||eCA50||) jconv,CA50

r = 1000 4.65 0.542 4
model-less zero-phase Butterworth 4.71 0.794 4
norm-optimal zero-phase Butterworth 4.34 0.675 2

Table 5.8: Experimental ILC performance results for IMEP error norm convergence
with CR=12.

ILC mean(||eIMEP||) std(||eIMEP||) jconv, IMEP

r = 1000 39.6 6.97 2
model-less zero-phase Butterworth 36.3 2.54 3
norm-optimal zero-phase Butterworth 37.3 3.79 3

5.2 Biofuels

To simulate HCCI combustion timing and combustion, detailed chemical kinetic struc-

ture must be found Warnatz et al. [2006]. This is needed for each fuel and can be

difficult and time consuming to obtain. An alternative is to implement control, such

as ILC, that treats the change in fuel as a disturbance so that the engine can run

on different fuels without loss in performance. This allows new fuels, like biofuels

created in a carbon neutral manner, to be run on an HCCI engine.

5.2.1 ILC Ethanol/Iso-Octane Blend Variation

The first biofuel to be tested is ethanol. From Kalghatgi and Head [2004] the CA50

can be predicted from the RON and MON of the fuel, for select fuels. Ethanol has a

RON of 107 and MON of 89 Stradling et al. [2009] which has a delayed combustion

timing compared to iso-octane Kalghatgi and Head [2004] assuming the operating

condition is closer to or beyond the RON operating conditions. A 10% ethanol/90%

iso-octane, by volume, mixture is created and denoted by Eeth/iso . This mixture is

used as one of the inputs into the system, replacing Eiso , while Ehept remains the
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other input. A PRBS is implemented and the Markov parameters are found as shown

in Fig. 5.9. One of the most predominate changes is the large increase in the first

Markov parameter for Eeth/iso to CA50 compared to Eiso, as expected from Kalghatgi

and Head [2004].

The ILC are then tested using the new fuel, Eeth/iso , as an input. The error norm

results are shown in Fig. 5.10 with the evaluations given in Tables 5.9 and 5.10. For

each of the ILC control structures, the CA50 error norm increases from the first to the

second iteration. Since the noise steady-state standard deviation for this system are

0.46 deg and 3.1 kPa for CA50 and IMEP respectively, compared to the base point

of 0.47 deg and 3.9 kPa for CA50 and IMEP respectively, this error norm increase is

not thought to be a product of the noise; instead the system changes from monotonic

convergence to only asymptotically convergent when the input fuel is changed. From

Tables 5.9 and 5.10, the ILCs have decreased in performance. The most notable

change is the jconv values which has increased significantly from the base point. This

is not unexpected as discussed above, changing the plant is expected to change the

convergence performance. The mean and standard deviation of the error norms for

both CA50 and IMEP increased from the base point except for the standard deviations

of IMEP error norm which decreased for the norm-optimal control without a filter

. The increase in mean error norm is explained through eqn. 4.91 where the drastic

change in P has increased both ||PL|| and ||I − PL||. The final iteration control

responses for the norm optimal with zero-phase Butterworth filtering are shown in

Fig. 5.11. Comparing this to Fig. 4.24d, a difference in input signals can be noted

while the output signals are similar between the two figures. This is a benefit of

having an ILC, that even if the plant changes, the input can be relearned without a

significant decrease in performance so long as the ILC remains stable.

The PI controller designed in Section 4.5 is then tested on the single cylinder

engine. The response is shown in Fig. 5.12. The error norms are 6.29 and 76.7 for
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Figure 5.9: Markov parameters for operating conditions with ethanol/iso-octane blend
and given in Table 3.7 with 95% confidence intervals found from linear regression of
PRBS data.

CA50 and IMEP respectively. This is a 17% and 22.5% increase from the base point

PI error norm, for CA50 and IMEP respectively. In contrast norm-optimal control

has a 13% and 7% increase in error norm from the base point, for CA50 and IMEP

respectively. The PI only has a lower CA50 error norm than the r = 1000 case.

Table 5.9: Experimental ethanol/iso-octane blend ILC performance results for CA50
error norm convergence.

ILC mean(||eCA50||) std(||eCA50||) jconv,CA50

r = 1000 6.61 1.14 4
model-less zero-phase Butterworth 5.62 1.27 9
norm-optimal zero-phase Butterworth 4.85 0.483 8
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Figure 5.10: ILC iteration error norm with ethanol/iso-octane blend and operating
conditions given in Table 3.7.
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Figure 5.11: Experimental ILC final iteration control responses for r = 1 with zero-
phase Butterworth filter with ethanol/iso-octane blend.
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Figure 5.12: Experimental PI control engine response with ethanol/iso-octane blend.
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Table 5.10: Experimental ethanol/iso-octane blend ILC performance results for IMEP
error norm convergence.

ILC mean(||eIMEP||) std(||eIMEP||) jconv, IMEP

r = 1000 42.6 4.15 4
model-less zero-phase Butterworth 37.9 4.57 11
norm-optimal zero-phase Butterworth 37.1 5.13 5

5.2.2 ILC Biodiesel/n-Heptane Blend Variation

A biodiesel fuel is now tested. As in Section 5.2.1, the biodiesel is mixed with the

PFR n-heptane with 10% biodiesel and 90% n-heptane blend, denoted Ebio/hept . The

biodiesel is the Milligan Biofuels Inc. Diesel Fuel Conditioner which is a canola oil

derivative. From the technical data sheet, the cetane number of this fuel is 60.7.

Cetane number is similar to octane number but is used to determine fuel quality

for diesel engines therefore higher cetane number fuels are more reactive and have

shorter combustion delays Lichty [1951]. This correlates with Szybist and Bunting

[2005] that found lower cetane number required a higher intake temperature for HCCI

operation. From these, the expectation is that the addition of the biofuel should raise

the sensitivity of CA50 to Ebio/hept compared to Ehept. A PRBS is implemented on the

single cylinder engine with the Markov parameters from the test shown in Fig. 5.13.

Comparing this to Fig. 4.9, CA50 has a higher sensitivity to Ehept . This maybe from

the n-heptane having a similar cetane number, 56, to the biodiesel, the relatively

low concentration of biodiesel, the reduced evaporation rate of the diesel or some

combustion property of the biodiesel that cannot be identified without the chemical

kinetics.

The ILCs are then used with the new fuel mixture. The error norms are shown

in Fig. 5.14 and the convergence performance evaluations are given in Tables 5.11

and 5.12. With the Markov parameters in Fig. 5.13 being similar to the base point

Markov parameters shown in Fig. 4.9, and the steady-state noise standard deviations
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being 0.46 deg and 3.55 kPa for CA50 and IMEP respectively, which are similar to

the base point values, the performance should be similar. This is found to be the

case. The mean error norms and IMEP error norms standard deviations are very

similar to the base point values. The standard deviations are slightly larger for CA50

compared to the base point. The convergence times are also similar to the base point.

This indicates that the addition biodiesel has little effect on the system plant. This

is confirmed by comparing the control signals for r = 1 with zero-phase Butterworth

filter and Ebio/hept as an input shown in Fig. 5.15 to the control signals for r = 1

with zero-phase Butterworth filter and Ehept as an input shown in Fig. 4.24d. The

converged inputs are similar between the two, which is in contrast to when ethanol

was added to the system.

The PI controller developed in Section 4.5 was also implemented with the new

fuel. The responses for the PI control are shown in Fig. 5.16. The error norms for

this system are 6.73 and 67.4 for CA50 and IMEP respectively. These are much

higher than any of the ILC results in Tables 5.11 and 5.12. This may be due to the

large error caused by the initial conditions of the system, which highlights another

benefit of ILC in that initial conditions are easily corrected for and do not affect the

converged response as greatly as a feedback controller.

Table 5.11: Experimental biodiesel/n-heptane blend ILC performance results for
CA50 error norm convergence.

ILC mean(||eCA50||) std(||eCA50||) jconv,CA50

r = 1000 4.26 0.763 4
model-less zero-phase Butterworth 4.17 0.58 2
norm-optimal zero-phase Butterworth 4.26 1.12 3
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Figure 5.13: Markov parameters for operating conditions with biodiesel/n-heptane
blend and given in Table 3.7 with 95% confidence intervals found from linear regression
of PRBS data.
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Figure 5.14: ILC iteration error norm with biodiesel/n-heptane blend and operating
conditions given in Table 3.7.



131

0 10 20 30 40 50 60
2

4

6

8

C
A
5
0
(d
eg
)

 

 
CFR Engine Response
Reference

0 10 20 30 40 50 60
0.32

0.34

0.36

0.38

E
bi
o/
h
ep
t
(k
J
)

0 10 20 30 40 50 60
320

340

360

380

400

IM
E
P

(k
P
a
)

0 10 20 30 40 50 60

0.35

0.4

0.45

0.5

E
is
o
(k
J
)

Cycle

Figure 5.15: Experimental final iteration ILC control responses for r = 1 with zero-
phase Butterworth filter with biodiesel/n-heptane blend.
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Table 5.12: Experimental biodiesel/n-heptane blend ILC performance results for
IMEP error norm convergence.

ILC mean(||eIMEP||) std(||eIMEP||) jconv, IMEP

r = 1000 37.7 2.81 2
model-less zero-phase Butterworth 34.9 4.12 3
norm-optimal zero-phase Butterworth 35.9 3.83 2
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Figure 5.16: Experimental PI control engine response with biodiesel/n-heptane blend.
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5.3 Summary

Three ILC control strategies are tested for robustness to changes in engine opera-

tion. The ILC’s are developed at a base point engine operating point described in

Chapter 4 and are not modified for the changing conditions. First the intake tem-

perature and compression ratio are varied and a system identification is performed to

find the Markov parameters to find how the different operating conditions affect the

system response. It is found that intake temperature affects the CA50 response while

compression ratio affects IMEP. The ILCs are then implemented on the engine with

each operating change. All ILCs are able to converge and converged performance

is mostly affected by any changes in noise variance from operating conditions. The

convergence times are longer for different operating conditions but this was expected

as the learning filter is not optimized for the new operating conditions.

Then the input fuels are changed. Ethanol is added to the iso-octane input fuel

then biodiesel is added to the n-heptane fuel. A system identification for each fuel is

done to find the Markov parameters for each biofuel addition. The ethanol is found

to change the CA50 response while the biodiesel had relatively no effect. The ILCs

are then tested with each new fuel addition. They all converged and have similar

converged performance to the base point. The convergence times are longer with the

addition of ethanol while the addition of biodiesel has little affect on the convergence

time. This is explained by the large change in system plant observed by the addition

of ethanol compared to the base point while the addition of biodiesel has little change

in system plant. The PI controller designed in Chapter 4 is also implemented with

the biofuel additions. It is found that the systems were stable but the ILCs still

outperformed the PI controllers.

ILC has been found to be robust to variations on intake temperature, compression

ratio and the addition of biofuel. ILC is able to control CA50 and IMEP during
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repetitive operation of an HCCI and the converged iteration trajectory outperforms

a PI controller.
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Chapter 6

Conclusions

Conclusions and future work are described in this chapter.

6.1 Conclusions

The goal of this study is to design an ILC that can control the combustion timing

and load of a single cylinder engine using a dual-fuel system operating in HCCI. A

system identification is done to find the dynamics of the system and a model that

can be used to design the ILC and simulate the ILC response. The model found

from the system identification is used to design an ILC norm-optimal control scheme.

The ILC norm-optimal is simulated using the model to find the optimal weightings

of the ILC norm-optimal and is then implemented on the engine. The ILC norm-

optimal performs well but the noise of the system is found to affect the final results.

The simulation also agreed well with experimental results. Next an ILC model-less

control strategy is designed for MIMO ILC, that only requires the selection of a

single gain for controller performance. This method involves using the steady-state

sensitivities of the system. The stability of the system as a function of the gain is

investigated. The ILC model-less control is tested on the model and the engine, and

once again the model and the experimental results match well.

With both ILC designs (norm-optimal ILC and model-less ILC), the noise affected
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the end results. To account for this two filters for noise attenuation are investigated.

Since ILC considers one iteration of the repetitive process at a time the use of non-

causal filters is possible. Since the model simulation matches the experimental results,

the simulated model is used to find the optimal filter parameters for both filters. A

Gaussian and zero-phase Butterworth filter are used to attenuate noise. Once the

filter parameters are chosen, they are tested with both model-less and a norm-optimal

ILC on the engine. The three best ILC designs are found to be: the model-less with

zero-phase filtering; low weighting ILC norm-optimal with zero-phase filtering; and a

medium weighting ILC norm-optimal without filtering.

A PI controller is also designed and tuned for the system. The ILC, compared to

the PI control, is found to have better final iteration reference trajectory tracking.

The three chosen ILC designs are then tested by varying the operating conditions

from the base case. The control is developed for the base case then tested for varying

operating conditions to test the robustness of control. Four operating points are

chosen with respect to the base point that the ILC is designed and initially tested on:

increase intake temperature, decrease intake temperature, increase compression ratio

and decrease compression ratio. Each ILC is found to converge for each operating

condition. The final iteration error is found to be function of changes in noise variance

from the change in operating condition.

Then the three chosen ILC designs are also tested with changes in fuel (input

variation). Two different tests are performed, one with and ethanol mixture and the

other with a biofuel mixture. All three ILC designs converged, with biofuel performing

similar to the base point. The PI controller designed on the base point is also tested

with the new fuel tests. The PI controller is stable for both fuels but the ILC final

iteration are found to provide better reference trajectory tracking.

In summary, this study found that ILC outperforms PI control and is robust to

changes in intake temperature, compression ratio and the addition of biofuels with
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little changes in the final iteration reference tracking error.

6.2 Future Work

• A Kalman filter has been designed for ILC by Ahn et al. [2007a] and could have

large improvements for final iteration error without the need for non-causal

filters.

• Investigate the use of higher order ILC application for improved learning and

decreased noise effects.

• Explore the ILC stability to operating conditions and fuel mixtures.

• Test additional operating condition parameters robustness, such as engine

speed, intake pressure and EGR.

• Implement a feedback controller in tandem with an ILC to improve first iteration

error and single iteration disturbances as described in Bristow et al. [2006].
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Appendix A

Calibrations

A.1 Injector Pulse Width Calibrations

A.1.1 Iso-Octane and n-Heptane

The injector are calibrated for iso-octane and n-heptane by injecting 1000 times into

a bottle and measuring the total mass injected for each pulse width with fuel pressure

of 287 kPa. The calibrations data is given in Figs. A.1 and A.2. The values from the

linear regression are given in Table A.1.

A.1.2 Biofuel Mixtures

The injector are calibrated for the biofuels by measuring the fuel flow for a given

pulse width and correcting using the fuel density and RPMs. Them mean RPMs for

each test are 797. The calibrations data is given in Figs. A.1 and A.2. The values

from the linear regression are given in Table A.2.

Table A.1: Linear regression results of injector calibrations.

Fuel p1 p2 R2

iso-octane 1.572±0.12× 10−3 -1.044±0.127× 10−3 0.9996
n-heptane 1.493±0.11× 10−3 -8.712±0.9× 10−4 0.9999
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Figure A.1: Iso-Octane injector calibration.
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Figure A.2: n-Heptane injector calibration.

Table A.2: Linear regression results of biofuel injector calibrations.

Fuel p1 p2 R2

ethanol/iso-octane 1.419±0.32× 10−3 -1.117±0.126× 10−3 0.9996
biodiesel/n-heptane 1.486±0.091× 10−3 -1.467±0.616× 10−3 0.9963
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Figure A.5: Dynamic sensitivity testing of Kistler 6043A pressure transducer with
250 lbs step.

A.2 In-cylinder Pressure Calibration

The Kistler 6043A pressure transducer is the same used in Handford [2009]. The

Handford did a in depth calibration for the pressure. Since the transducer drifts

this makes calibration difficult as a dynamic calibration must be done. The value

found from Handford [2009] is used for sensitivity. Two dynamic testings are done,

similar to the procedure given in Handford [2009], to confirm the sensitivity has not

changed. One with a 500 lbs step and the other with 250 lbs. The results are shown

in Figs. A.5 and A.6 at 1000 Hz. The sensitivity are within the standard deviation

given in Handford [2009], which gives the sensitivity as 205.5 psi/V with standard

deviation of 8.01 psi/V.
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Figure A.6: Dynamic sensitivity testing of Kistler 6043A pressure transducer with
500 lbs step.

A.3 Validyne Calibrations

The Validyne intake and exhaust pressure transducer calibration plots are shown in

Figs. A.7 and A.8, respectively with 95% confidence bounds. The calibration is done

using a Omega Pressure Calibrator PCL-601. It has an accuracy of 0.04 kPa. Each

point is the mean of 50000 data points with the maximum point standard deviation

given in Table A.3. The calibration is assumed to take the form of:

P = mV + b (A.1)

with P being the pressure, V is the voltage and m and b are found from the linear

regression given in Table A.3 with 95% confidence bounds and R2 of the regression.
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Figure A.7: Intake pressure calibration plot relating voltage to intake pressure.
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Figure A.8: Exhaust pressure calibration plot relating voltage to exhaust pressure.

Table A.3: Calibration of pressure transducers.

Pressure m b R2 standard deviation
Intake 65.78±1.4 76.56±1.96 0.9996 0.0036
Exhaust 4.518±0.026 17.54±0.15 1 0.0029
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Appendix B

Error Analysis

The uncertainties are calculated using formulas given in Moffat [1988]. The sources of

error are either “fixed” or “random” with errors being called bias and precision errors

Moffat [1988]. For this study, calibrations were done for most measurements therefore

the bias errors are considered negligible. The thermocouples were not calibrated

but are tested with both an ice bath and boiling water and no bias error is found.

For a measurement Xi ± δXi, δXi is the uncertainty in the measurement Xi. This

uncertainty is taken as the 95% confidence interval for this study. This number

indicates that the true value has 20:1 odds of being within this interval. Here the true

value is taken as the measurement system value, i.e. for a thermocouple measurement

the true value is the temperature at the thermocouple junction. There are two types

of uncertainty: Single sample and multi-sample Moffat [1988]. For single sample the

uncertainty is given as:

δXi = 2σ (B.1)

where σ is the population standard deviation. Since calculation for standard devi-

ations use more than 1000 observations, the sample standard deviation approximates
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the population standard deviation well according to the central limit theorem.

For multi-sample uncertainty, the uncertainty is calculated as:

δXi =
tSN√
N

(B.2)

where N is the number of samples, t is the Student’s t statistic appropriate for the

number of samples and confidence level, and SN is the sample standard deviation.

For values calculated from measurements as R = R(X1, X2, ..., Xn) the uncer-

tainty is given as:

δR =

√ N∑
i=1

(
∂R

∂Xi

δXi

)2

(B.3)

Most calculations are from a linear calibration such as Y = mX + b. For these,

eqn. B.3 becomes:

δY =
√
(Xδm)2 + (mδX)2 + (δb)2 (B.4)

where δm and δb are from the linear regression of the calibration and X is taken

as the maximum value observed. This equation is used to calculate the single sample

uncertainties for intake pressure, in-cylinder pressure, exhaust pressure, injectors and

torque. For thermocouples, eqn. B.1 is used for single sample uncertainty. For these

measurements the accuracy of the measurement systems are much lower than the

calculated values from the system standard deviation and therefore are not included.

For in-cylinder pressure measurement δb is taken as the uncertainty in the intake
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measurement as it is used to peg the in-cylinder pressure trace.

B.1 IMEP and CA50 Error

IMEP and CA50 are not easily calculated, therefore eqn. B.3 is difficult to apply.

Instead, as suggested in Moffat [1988], the uncertainty is calculated using computer

simulation of the noise. This done by taking an ensemble of 100 cycles in-cylinder

and intake voltage measurements and calculating the CA50 and IMEP from the mean

combustion trace. Then this is repeated 1000 times with the addition of Gaussian

white noise in the signals as well as the calibration values with their respective stan-

dard deviations. This gives a normal distribution, shown in Figs. B.1 and B.2, of

the resulting CA50 and IMEP values caused by errors in the calibration and system

noise. Then two times the standard deviations of these distributions are used as the

single sample errors of their respective values. A normal probability density function

is plotted with the histograms in Figs. B.1 and B.2 to show how close to a normal

distributions the results are.
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Appendix C

System Identification

C.1 ARMAX Coefficients

The ARMAX model coefficients found from the system identification in Section 4.2.2

is given below

A11 = 1− 1.13 (±0.026) z−1 + 0.1533 (±0.025) z−2 (C.1)

A22 = 1− 0.876 (±0.068) z−1 + 0.04965 (±0.014) z−2 (C.2)

B11 = −87.27 (±2.4) z−1 + 85 (±2.4 )z−2 (C.3)

B12 = 5.726 (±0.47) z−1 − 5.159 (±0.48) z−2 (C.4)

B21 = 419.3 (±11 )z−1 − 336.2 (±30) z−2 (C.5)

B22 = 462.2 (±5.5) z−1 − 372.9 (±30) z−2 (C.6)

C1 = 1− 1.011 (±0.046 )z−1 + 0.1757 (±0.043) z−2 (C.7)

C2 = 1− 0.963 (±0.075 )z−1 + 0.1956 (±0.039) z−2 (C.8)
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Figure C.1: PRBS inputs and engine responses with Tint = 50◦C.

C.2 PRBS Operating Conditions

Shown in this section are the PRBS results used for finding the Markov Parameters

in Section 5.1
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Figure C.2: PRBS inputs and engine responses with Tint = 150◦C.
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Figure C.3: PRBS inputs and engine responses with CR=10.
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Figure C.4: PRBS inputs and engine responses with CR=12.
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Figure C.5: PRBS inputs and engine responses with Eeth/iso .

C.3 PRBS Biofuels

Shown in this section are the PRBS results used for finding the Markov Parameters

in Section 5.2
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Figure C.6: PRBS inputs and engine responses with Ebio/hept .
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C.4 ARMAX Coefficients for Operating Condition Changes

The ARMAX coefficients for Tint = 50◦C:

A11 = 1− 0.8092 (±0.07043) z−1 (C.9)

A12 = 0.001934 (±0.002853) z−1 (C.10)

A22 = 1− 1.227 (±0.1202) z−1 + 0.2429 (±0.1164) z−2 (C.11)

B11 = −57.18 (±2.255) z−1 + 32.01 (±5.702 )z−2 + 15.36 (±4.002 )z−3 (C.12)

− 4.522 (±2.273 )z−4

B12 = −1.881 (±0.6946) z−1 + 4.812 (±1.825) z−2 − 3.975 (±1.214) z−3 (C.13)

+ 2.21 (±0.694) z−4

B21 = 416.4 (±21.88 )z−1 − 464 (±72.1) z−2 + 53.95 (±59.41) z−3 (C.14)

B22 = 475.9 (±6.817) z−1 − 542.4 (±64.87) z−2 + 75.1 (±60.63) z−3 (C.15)

C1 = 1− 0.630 (±0.079 )z−1 − 0.0641 (±0.047) z−2 − 0.00879 (±0.045 )z−3 (C.16)

− 0.01487 (±0.04563 )z−4 + 0.08209 (±0.04128 )z−5

C2 == 1− 1.057 (±0.13 )z−1 + 0.0988 (±0.11) z−2 + 0.00587 (±0.057 )z−3 (C.17)

+ 0.004928 (±0.039 )z−4

The ARMAX coefficients for Tint = 150◦C:
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A11 = 1− 0.904 (±0.02604) z−1 (C.18)

A12 = 0.002037 (±0.003622) z−1 (C.19)

A22 = 1− 1.04 (±0.01626) z−1 + 0.06185 (±0.007241) z−2 (C.20)

B11 = −84.35 (±1.974) z−1 + 63.83 (±5.394 )z−2 + 5.394 (±3.671 )z−3 (C.21)

+ 3.814 (±3.504 )z−4 + 2.55 (±1.97 )z−5

B12 = 15.63 (±0.5035) z−1 − 16.6 (±1.96) z−2 + 1.012 (±0.9564) z−3 (C.22)

+ 1.926 (±0.9083) z−4 + 0.7584 (±0.5212) z−5

B21 = 352.1 (±8.203 )z−1 − 347.1 (±8.967) z−2 (C.23)

B22 = 458.9 (±3.424) z−1 − 447.5 (±7.334) z−2 (C.24)

C1 = 1− 0.67 (±0.046 )z−1 − 0.01076 (±0.047) z−2 − 0.03862 (±0.047 )z−3 (C.25)

+ 0.06395 (±0.04074 )z−4

C2 == 1− 1.161 (±0.0425 )z−1 + 0.2201 (±0.06) z−2 + 0.09169 (±0.06 )z−3 (C.26)

− 0.09132 (±0.03958 )z−4
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The ARMAX coefficients for CR=10:

A11 = 1− 0.275 (±0.06854) z−1 + 0.0187 (±0.05328) z−2 (C.27)

A12 = 0.006339 (±0.001107) z−1 (C.28)

A22 = 1− 0.9627 (±0.01708) z−1 (C.29)

B11 = −35.01 (±2.443) z−1 (C.30)

B12 = 6.122 (±0.5089) z−1 (C.31)

B21 = 328 (±20.63) z−1 − 315.9 (±21.39) z−2 (C.32)

B22 = 448 (±4.194) z−1 − 428.8 (±9.1)) z−2 (C.33)

C1 = 1− 0.116 (±0.078) z−1 + 0.178 (±0.059) z−2 + 0.00935 (±0.039) z−3 (C.34)

+ 0.1241 (±0.03844) z−4

C2 = 1− 0.935 (±0.042) z−1 + 0.0733 (±0.053)) z−2 + 0.0452 (±0.053) z−3 (C.35)

− 0.03257 (±0.04006) z−4
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The ARMAX coefficients for CR=12:

A11 = 1− 0.1679 (±0.01316) z−1 (C.36)

A22 = 1− 0.1145 (±0.012) z−1 (C.37)

B11 = −70.53 (±1.061) z−1 (C.38)

B12 = 6.775 (±0.5342) z−1 (C.39)

B21 = 284.9 (±6.731) z−1 (C.40)

B22 = 440 (±6.063) z−1 (C.41)

C1 = 1− 0.0526 (±0.040) z−1 + 0.08776 (±0.038) z−2 + 0.107 (±0.039) z−3 (C.42)

+ 0.1358 (±0.039) z−4

C2 = 1− 0.1481 (±0.04) z−1 + 0.06088 (±0.038) z−2 + 0.00417 (±0.039) z−3 (C.43)

+ 0.04379 (±0.03854) z−4
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The ARMAX coefficients for Eeth/iso :

A11 = 1− 0.9245 (±0.03002) z−1 (C.44)

A12 = −0.005901 (±0.004404) z−1 (C.45)

A22 = 1− 1.01 (±0.1037) z−1 + 0.02863 (±0.1008) z−2 (C.46)

B11 = −62.73 (±2.21) z−1 + 39.03 (±5.019) z−2 + 11.58 (±3.925) z−3 (C.47)

+ 3.727 (±2.199) z−4 z−4

B12 = 45.42 (±0.9444) z−1 − 46.92 (±2.808) z−2 + 1.97 (±1.722) z−3 (C.48)

− 0.3021 (±0.9698) z−4

B21 = 359.3 (±12.84) z−1 − 304.7 (±48.52) z−2 − 45.6 (±42.17) z−3 (C.49)

B22 = 610.2 (±5.597)z z−1 − 566.4 (±69.74) z−2 − 30 (±66.18) z−3 (C.50)

C1 = 1− 0.66 (±0.05) z−1 + 6.67× 10−5 (±0.05) z−2 − 0.053 (±0.05) z−3 (C.51)

− 0.01542 (±0.04071) z−4

C2 = 1− 1.073 (±0.11) z−1 + 0.1282 (±0.12) z−2 + 0.001143 (±0.057) z−3 (C.52)

+ 0.0105 (±0.0388) z−4

The ARMAX coefficients for Ebio/hept :



170

A11 = 1− 0.5885 (±0.2766) z−1 (C.53)

A22 = 1− 0.6209 (±0.1313) z−1 (C.54)

B11 = −48.63 (±1.253) z−1 + 12.94 (±13.6) z−2 + 3.834 (±4.434) z−3 (C.55)

+ 2.05 (±2.673) z−4

B12 = 3.325 (±0.6018) z−1 − 1.101 (±1.355) z−2 − 1.675 (±1.012) z−3 (C.56)

+ 1.034 (±0.6038) z−4

B21 = 344.5 (±12.75) z−1 − 130.5 (±47.56) z−2 − 35.39 (±21.95) z−3 (C.57)

B22 = 450.4 (±6.073) z−1 − 218.1 (±58.05) z−2 − 28.57 (±13.55) z−3 (C.58)

C1 = 1− 0.5308 (±0.279) z−1 + 0.02244 (±0.0463) z−2 + 0.065 (±0.046) z−3 (C.59)

− 0.05669 (±0.04708) z−4

C2 = 1− 0.6147 (±0.14) z−1 + 0.01531 (±0.046) z−2 − 0.01402 (±0.045) z−3 (C.60)

+ 0.03048 (±− 0.03878) z−4
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Appendix D

Matrix Approximation Proof and Interval

Matrix Results

D.1 Vertex Matrix

Shown is the spectral radius as a function of K for each vertex matrix, 16 in total,

discussed in Section 4.3.3. Fig. 4.15 is created from Fig. D.1 in that at every K,

the maximum value of the spectral radius is the maximum of the 16 traces shown in

Fig. D.1.
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Figure D.1: All spectral radius of vertex matrices from Markov Parameters shown in
Fig 4.9 for varying K.
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D.2 Matrix Approximation Proof

Theorem: If σ(A) << σ(B) then I + AB−1 ≈ I.

Proof : If the matrix is real, it can be decomposed into two orthogonal rotation

matrices and a scaling matrix in Singular Value Decomposition Golub and Van Loan

[1996] such as:

A = UAΣAV
T
A (D.1)

Where UA and VB are orthogonal rotation matrices, meaning ||x|| = ||Ux|| ∀x,

and ΣA is a diagonal matrix containing the singular values of A. Assuming B is

invertible B−1 = VBΣ
−1
B UT

A . Then AB−1 can be written as:

AB−1 = UAΣAV
T
A VBΣ

−1
B UT

B (D.2)

Lemma Product of two orthogonal matrices is orthogonal as well.

Proof Unitary matrices are defined that their transpose is their inverse if square,

i.e. UUT = I Golub and Van Loan [1996]. This implies that the inverse is also

orthogonal. Given two orthogonal matrices U and V :

UV (UV )T = UV V TUT (D.3)

= UIUT (D.4)

= UUT (D.5)

= I (D.6)

Rewriting eqn. D.2 with the following substitutions:
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R = V T
A VB (D.7)

C = ΣARΣ−1
B (D.8)

Gives:

AB−1 = UACUT
B (D.9)

C is the application of a rotation matrix, R, on a scaling matrix, Σ−1
B , then

multiplied by another scaling matrix, ΣA. This means the column vector norm’s

maximums and minimums of C are only manipulated by the scaling matrices. R

determines in what direction the second scaling affects the first; Intuitively if the

maximum singular value of ΣA lines up with the maximum singular value of Σ−1
B will

give the maximum column norm of C. With ci, and σA,i are the column vectors of C

and ΣA respectively with σB,i being the row vectors of Σ−1
B .

⟨ci, ci⟩ =
n∑

k=1

(σA,i · σB,k)
2 (D.10)

⟨ci, ci⟩ =
n∑

k=1

(||σA,i|| · ||σB,k|| cos θk)2 (D.11)

With θk being the angles between the angles between the σB,i and σA,i caused by

the rotation matrix R. The domain of θk, 1 ≤ k ≤ n, k ∈ N for is defined by:

1 =
n∑

k=1

cos2 θk (D.12)

Since ΣA and Σ−1
B are the diagonal matrices with positive values, ||σA,i|| and ||σB,i||
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are just the ith diagonal value of ΣA and Σ−1
B . With the σA and σA being the max

singular value of ΣA and Σ−1
B respectively.

⟨ci, ci⟩ =
n∑

k=1

(||σA,i|| · ||σB,k|| cos θk)2 (D.13)

=
n∑

k=1

(σA · σB cos θk)
2 ≤ (σAσB)

2 ∀i (D.14)

This means the column norms of C are bounded by the product of the max singular

values of ΣA and Σ−1
B , (minimum singular value of ΣB). C can be written as:

C = UCΣCV
T
C (D.15)

Since UC and V T
C are orthogonal matrices, the largest singular value of C must

also be bounded by product of the max singular values of ΣA and Σ−1
B . Combining

Eqs. D.2 and D.15 gives:

AB−1 = UAUCΣCV
T
C UT

B (D.16)

= UΣCV
T (D.17)

With UAUC = U and V T
C UT

B = V T being new rotation matrices. Using the same logic

that orthogonal matrices do not change the column norms of a matrix, the column

norms of AB−1 are bounded by the product of the max singular values of ΣA and

Σ−1
B as well.

If σ(A) << σ(B) then σ(A)σ(B)−1 << 1 which is the upper bound of the column

norms of AB−1. Since the column norms of I are 1, and ||v + u|| ≤ ||u|| + ||v|| for

vector norms, the column norms of I + AB−1 are ≈ 1 meaning I + AB−1 ≈ I.
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Appendix E

Program List

Table E.1: File name and brief description of its purpose.

File Name Description
EngineDAQSystem wControl ILC v07.c Runs NI DAQ and engine control

program for ILC and steady-state
data collection

EngineDAQSystem wControl PID v07.c Runs NI DAQ and engine control
program for PID control

DataProcess v02.m Initialize workspace for CFR
engine parameters and calculates
and filters in-cylinder pressure

pressanalysis 08.m Calculates relevant engine
operation values, e.g. CA50, IMEP,
from in-cylinder pressure

difference.m Differencing scheme function
domainPlot.m Plots steady-state responses of

engine parameters vs. injected
energies

SysID.m Finds and tests ARMAX
coefficients and Markov parameters

PIDanalysis.m Analyze PI engine responses
IntervalStability.m Calculate spectral radius of

vertex matrix from interval matrix
ILCcompare.m Analyze all ILC engine response data
ILCsim.m Simulate ILC on ARMAX model
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