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Abstract

The main focus of this thesis is on state inference and identification of non-linear dynamical

systems, which can be represented by discrete-time, stochastic state-space models (SSMs).

We consider the state inference and identification as related, but two distinct problems.

For identification of SSMs, we restrict ourselves only to the class of Bayesian methods.

In this thesis, we develop a novel sequential Monte Carlo (SMC) based Bayesian method

for simultaneous on-line state inference and identification of non-linear SSMs. Extension

of the method to handle missing measurements in real-time is also provided. Using

posterior Cramér-Rao lower bound (PCRLB), a minimum mean square error (MMSE)

simultaneous state inferencing and identification strategy is developed for general non-

linear systems. The PCRLB used here is derived for discrete-time, stochastic non-linear

SSMs with unknown model parameters. It is shown that under some conditions, performing

simultaneous state inferencing and identification according to the developed PCRLB based

strategy yields a minimum mean square error state and parameter estimates.

To allow assessment of the quality of the parameter estimates, a PCRLB based tool

is developed for error analysis. A distinct advantage of the developed tool is that it is

general, and can be used to perform error analysis for an entire class of on-line Bayesian

identification methods. In addition to the above developments, the problems of input design

and prior design are also considered in this thesis. The input design problem helps to design

optimal inputs for Bayesian identification of non-linear SSMs; whereas, the prior design

problem helps to effectively organize a priori information available on the process and



model parameters. In this thesis, the problem of prior design is only considered in the

context of designing optimal inputs for Bayesian identification of non-linear SSMs.

For state inferencing in non-linear SSMs, we develop a PCRLB based performance

assessment and diagnosis tool for different non-linear state filters. The proposed assessment

and diagnosis tool makes use of PCRLB, derived for discrete-time, stochastic non-linear

SSMs with known model parameters. The utility of the above developments in devising an

optimal state inferencing strategy for non-linear systems is also provided. To avoid using

the true states in the computation of the PCRLB, an SMC based method is also developed

to allow computation of the PCRLB in absence of true state information.

Finally, we show how the tools developed in this thesis can be put together into a unified

framework to allow for efficient state inferencing and Bayesian identification of non-linear

dynamical systems.
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Chapter 1

Introduction

Assume that for a given chemical process or a system, we have at our disposal a sensor,

or a measuring device, from which we can record the values yt for some important

process variable (output), corresponding to the input action ut implemented at some time

point, indexed by t ∈ N. Now based on the available input-output measurements, we

are interested in learning something or drawing some conclusions about the underlying

system, which generated the data. For example, let us assume that we have a sequence

of recorded measurements y1:t , {y1, y2, . . . , yt} corresponding to the input sequence

u1:t , {u1, u2, . . . , ut}, and we are interested in predicting the future value of yt+1 for some

known input action ut+1. To solve this problem, we can either assume that the future value

yt+1 will completely be independent of its past values y1:t; in which case, the prediction

of yt+1 will be impossible, or we can assume that the future value yt+1 will depend on the

trend recorded in its past values y1:t. For the latter assumption, using a model representation

of a system aids in predicting the future values of measurements; however, in most

practical systems, it is extremely difficult to find a process model that exactly describes

the measurements. This is primarily because of the instrument or sensor noise present in

measuring devices. To account for such random fluctuations in measurements, we can view

the measurement sequence y1:t as some random realization of a stochastic measurement

process {Yt}t∈N, such that {Y1:t = y1:t} represents one such random realization. Hence, a

1
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model for the underlying system can be represented by the model for the stochastic process.

In this thesis, we work with a specific class of time-series model, known as state-space

models (SSMs). SSMs are primarily stochastic difference equations, which can be used to

represent a wide class of dynamical systems. For instance, assuming {Xt}t∈N to be another

stochastic process, a dynamical system with a SSM representation can be written as

Xt+1 = f(Xt, θ, ut) + Vt, (1.1a)

Yt = g(Xt, θ, ut) +Wt. (1.1b)

Equation (1.1a) is the state equation, which describes the time evolution of the internal

states Xt of a system. Given state Xt and input ut at time t, and model parameter θ, the

state evolution at t+1 can be computed using the state transformation function f(Xt, ut, θ),

plus some process noise Vt. The process noise in (1.1a) accounts for all the unknown and

unmeasured variations in the states not captured by the model. Note that since the state

Xt+1 depends on its past state Xt, (1.1a) captures the process dynamics, and is sometimes

also called the dynamical state equation. Equation (1.1b) is a measurement equation;

wherein the transformation g(Xt, ut, θ) describes how the measurement or sensor reading

Yt relates to the internal state Xt and model parameter θ. In (1.1b), Wt accounts for the

sensor noise, which corrupts the measurement readings. If f and g in model (1.1) are linear

functions, the SSM is called linear, and for non-linear f and g, the SSM is non-linear.

In this thesis we will be concerned with the two key problems arising for non-linear

systems-state inference and identification. These problems are briefly described next.

1.1 State inference

The state process {Xt}t∈N in (1.1) is not measured directly and is sometimes referred

to as a hidden or latent state. Therefore, given a fully specified SSM, any inference we

wish to draw on the state process {Xt}t∈N must be based on the sampled input-output

data {ut, yt}t∈N available for a given dynamical system. This is called state inferencing.
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Based on the requirements, a state inferencing problem can be solved to estimate some past,

present or future states of a dynamical system. In this thesis, we only focus on estimation

of the present states.

For any generic sequence {kt}t∈N, let ki:j , {ki, ki+1, . . . , kj}. Given a sequence

of input-output data {u1:t, y1:t} generated from a process described by a SSM, the state

inferencing problem can be solved by computing the state posterior probability density

p(xt|y1:t, u1:t, θ). The state posterior density contains all the statistical information about

the state process Xt at time t ∈ N based on the process information available until t ∈ N.

Although a state posterior density gives us complete information about the state process

{Xt}t∈N, in practice, we are often interested in computing a point estimate of {Xt}t∈N,

rather than its density. For example, in state-feedback control, we only require point

estimate of the states. A common choice for the point estimate in state inferencing, includes

the mean or mode of the posterior density. These point estimates can be computed, once the

state posterior density is made available. A recursive approach to compute a state posterior

density is given by the Bayes’ theorem, and the procedure involved is called state filtering.

For processes modelled by linear SSMs, the state posterior density can be exactly

computed by Kalman filter (KF) using a finite number of moments (e.g., mean, variance);

whereas, for non-linear SSMs, at least in theory, an infinite number of moments are required

for exact representation of the posterior density. Thus, with finite computing capabilities,

the state inferencing problem for non-linear SSMs cannot be optimally solved.

1.2 System identification

A key requirement in solving the state inferencing problem is that in addition to the input-

output data, the model parameters θ of a SSM should be exactly known. This requirement

is also evident from the posterior density p(xt|y1:t, u1:t, θ) we are interested in computing

for all t ∈ N. In practice, this assumption might be a little restrictive, since for most of
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the complex engineering systems, the model parameters are either not precisely known or

they change over time. In such situations, estimating or identifying the present value of the

model parameters is crucial to ensure acceptable filtering performance of the state filters.

This is called a system identification problem. More formally, a system identification

problem aims at finding the model parameters θ, which explain the measurement {Yt}t∈N
generated from the system based on the input {ut}t∈N. System identification is a mature

and broad area of research. Thus to keep the scope of this thesis focussed, we will only

consider the use of Bayesian methods in estimating the unknown parameters of an SSM.

In the Bayesian framework, the identification problem is formulated by assuming the

unknown and non-random parameters of the model as a set of random variables. This

is followed by setting up a prior density for the parameters, such that θ ∼ p(θ). The

prior density p(θ) is a probabilistic representation of the a priori information available

for the parameters, before observing the input-output data. For example, if absolutely

nothing is known about the value of the parameters, we can select a uniform density as

a prior density. After the input-output data is made available, lets say {u1:t, y1:t} is the

sampled data set, we can refine our prior understanding of the parameters by computing an

updated density, called parameter posterior density p(θ|y1:t, u1:t). As in state inferencing,

a parameter posterior density encapsulates all the statistical information available for the

unknown parameters, given a set of input-output data and prior density p(θ). Although

the Bayesian formulation of the identification problem is strikingly similar to the state

inferencing problem, computing p(θ|y1:t, u1:t) for all t ∈ N has proven to be much more

complex. This is because in SSMs, since the state process {Xt}t∈N is hidden, computing

the parameter posterior density p(θ|y1:t, u1:t) requires marginalization of a much more

complex, multi-dimensional joint state and parameter posterior density p(xt, θ|y1:t, u1:t).

The severity of the problem is highlighted from the fact that no closed form solution to

p(θ|y1:t, u1:t) exists even for linear SSMs. The main problems addressed in this thesis are
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discussed next.

1.3 Problems of interest

Although there are many real world applications in which the process dynamics naturally

manifest themselves in non-linear models; in engineering, the focus has traditionally been

on linear models. This is because, compared to the linear models, non-linear models

often require huge computational resources, and are, in general, much more difficult

to work with. Interestingly, in the last decade or so, with the advent of high-speed

computing technology, and the development of advanced and sophisticated computational

tools, working with non-linear systems is no longer as formidable as it once used to

be. Motivated by some of these developments, this thesis focuses on state inference and

Bayesian identification of non-linear systems. Problems addressed in this thesis are:

1. Identification methods: In the past few decades, extensive work has been done to

efficiently solve the state inferencing problem for non-linear SSMs; however, their

extension to address the identification problem has received attention only recently.

Despite the advances in numerical and simulation-based methods, identification

of SSMs is a long-standing problem. This is due to the non-trivial complexities

introduced with estimation of the model parameters. The first problem of interest is

to develop an approach to on-line state and parameter estimation in non-linear SSMs.

2. Prior design: A major point of contention between the Frequentist and Bayesian

statisticians is on the use of a prior density. Although a prior density plays a critical

role in Bayesian methods, its selection and design is often termed by Frequentists

as- ‘mysterious’ and ‘ad-hoc’. The second problem of interest is to explore ways to

organize available a priori information and systematically design the prior density.

3. Input design: The parameter posterior density p(θ|u1:t, y1:t) required in Bayesian
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identification of SSMs depends on the choice of the input sequence. By a judicious

choice of the input sequence {u1:t}t∈N, the density p(θ|u1:t, y1:t) can be ‘steered’ in

order to yield an accurate estimate of θ. This is called the Bayesian input design

problem. Bayesian input design for regression models is a well established area

of research; however, its extension to SSMs has been limited. Despite the success

with regression models, no known Bayesian input design methods are available for

identification of SSMs. This is due to the unobserved state process {Xt}t∈N, which

makes the design problem difficult to solve. The third problem of interest is to

develop input design methods for Bayesian identification of non-linear SSMs.

4. Assessment problem: Over the last few decades, several state filtering and

identification methods based on statistical and analytical approximations of the

posterior density have been developed to allow for inferencing and identification

of non-linear SSMs. Although these numerical and simulation-based approximate

methods can be used for general or specific type of non-linear SSMs, their

performance is often restricted by the underlying numerical and statistical

approximations used in their design. The forth problem aims at developing methods

to assess the performance of different state filters and identification methods.

5. Error analysis: For researchers designing improved filtering and identification

methods for non-linear SSMs, it is often in their interest to understand why

the performance of existing methods is low or in which ways can the overall

performance of a method be improved. This is particularly important for non-linear

SSMs; wherein, any tractable state inferencing or identification method is only an

approximation to the original problem. The fifth problem of interest is to develop a

systematic error analysis method for performance diagnosis and quality monitoring

of different state filters and Bayesian identification methods.
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Table 1.1: Classification of thesis chapters based on their main content

Content Chapters
System identification 2,3,4,5,6
State inference 7,8

6. Selection problem: A recent surge of interest in developing advanced numerical

and simulation-based methods for state inference and identification of non-linear

SSMs has left researchers and practitioners inundated with a large number of sub-

optimal methods to choose from. The problem of ‘selection’ is that there is no one

single filtering or identification method, which is guaranteed to perform well for all

non-linear systems, and at all operating conditions. The final problem of interest is

to develop a strategy, which would allow us to select the ‘best’ state inference and

Bayesian identification method for our system.

1.4 Thesis outline

This thesis is a collection of papers published by the author of this thesis. Given below is a

short summary of each chapter. In Table 1.1, classification of thesis chapters based on their

main content is provided.

Chapter 2: On simultaneous on-line state and parameter estimation in
non-linear state-space models

Tulsyan, A., B. Huang, R.B. Gopaluni and J.F. Forbes (2013). On simultaneous on-line

state and parameter estimation in non-linear state-space models. Journal of Process Control

23(4), 516–526.

Summary: On-line estimation plays an important role in process control and monitoring.

Obtaining a theoretical solution to the simultaneous state-parameter estimation problem for

non-linear stochastic systems involves solving complex multi-dimensional integrals that are

not amenable to analytical solution. While basic sequential Monte Carlo (SMC) or particle
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filtering (PF) algorithms for simultaneous estimation exist, it is well recognized that there is

a need for making these on-line algorithms non-degenerate, fast and applicable to processes

with missing measurements. To overcome the deficiencies in traditional algorithms, this

chapter proposes a Bayesian approach to on-line state and parameter estimation. Its

extension to handle missing data in real-time is also provided. The simultaneous estimation

is performed by filtering an extended vector of states and parameters using an adaptive

sequential-importance-resampling (Ad-SIR) filter with a kernel density estimation method.

The approach uses an on-line optimization algorithm based on Kullback-Leibler (KL)

divergence to allow adaptation of the SIR filter for combined state-parameter estimation.

An optimal rule to tune the kernel width and the variance of the artificial noise added to the

parameters is also proposed. The approach is illustrated through numerical examples.

Chapter 3: Minimum mean square error non-linear target tracking
strategy in presence of unknown static parameters

Tulsyan, A., S.R. Khare, B. Huang, R.B. Gopaluni and J.F. Forbes (2013). Minimum mean

square error non-linear target tracking strategy in presence of unknown static parameters.

To be submitted for journal publication.

Summary: Non-linear filters of different approximations and capabilities allow for

real-time target tracking in non-linear systems. We propose a posterior Cramér-Rao

lower bound (PCRLB) inequality based measure to simultaneously assess the tracking

performance of different non-linear filters. Using the developed measure, average-optimal

and optimal minimum mean square error (MMSE) tracking strategies are proposed for

target tracking in non-linear state-space models (SSMs) with non-Gaussian noise and

unknown target parameters. A systematic procedure to monitor the quality of the target

estimates obtained with the proposed tracking strategies is also developed. The practical

utility and efficacy of the developed PCRLB based tools are illustrated on a ballistic target

tracking problem at re-entry phase with unknown ballistic coefficient.
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Chapter 4: Error analysis in Bayesian identification of non-linear state-
space models

Tulsyan, A., B. Huang, R.B. Gopaluni and J.F. Forbes (2013). Bayesian identification of

non-linear state-space models: Part II-Error analysis. In: Proceedings of the 10th IFAC

International Symposium on Dynamics and Control of Process Systems. Mumbai, India.

Accepted for publication.

Summary: In the last two decades, several methods based on sequential Monte Carlo

(SMC) and Markov chain Monte Carlo (MCMC) have been proposed for Bayesian

identification of stochastic non-linear state-space models (SSMs). It is well known that the

performance of these simulation-based identification methods depends on the numerical

approximations used in their design. We propose the use of posterior Cramér-Rao lower

bound (PCRLB) as a mean square error (MSE) bound. Using PCRLB, a systematic

procedure is developed to analyse the estimates delivered by Bayesian identification

methods in terms of bias, MSE, and efficiency. The efficacy and utility of the proposed

approach is illustrated through a numerical example.

Chapter 5: Input design for Bayesian identification of non-linear state-
space models

Tulsyan, A., S.R. Khare, B. Huang, R.B. Gopaluni and J.F. Forbes (2013). Bayesian

identification of non-linear state-space models: Part I-Input design. In: Proceedings of

the 10th IFAC International Symposium on Dynamics and Control of Process Systems.

Mumbai, India. Accepted for publication.

Summary: We propose an algorithm for designing optimal inputs for on-line Bayesian

identification of stochastic non-linear state-space models. The proposed method relies on

minimization of the posterior Cramér Rao lower bound derived for the model parameters,

with respect to the input sequence. To render the optimization problem computationally

tractable, the inputs are parametrized as a multi-dimensional Markov chain in the input
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space. The proposed approach is illustrated through a simulation example.

Chapter 6: Designing priors for robust Bayesian optimal input design

Tulsyan, A., J.F. Forbes and B. Huang (2012). Designing priors for robust Bayesian optimal

experimental design. Journal of Process Control 22(2), 450-462.

Summary: Building mathematical models is a common task in process systems

engineering; wherein, parameter estimation is often the final step of the modelling

exercise. Model-based input design has evolved as a potential statistical tool for reducing

uncertainties in the parameter estimates. Designing optimal experiments for parameter

estimation in non-linear dynamical systems is still an open research problem. Often

a huge volume of process information is generated as an end result of an experiment

design. This chapter deals with how information available a priori, can be organized

and systematically used under the Bayesian framework for designing optimal experiments.

Several novel techniques for organizing a priori process knowledge are also explored from a

theoretical view point. The influence of the proposed prior designs on parameter estimates

is demonstrated on a semi-continuous Baker’s yeast fermenter problem.

Chapter 7: A particle filter approach to approximate posterior Cramér-
Rao lower bound: The case of hidden states

Tulsyan, A., B. Huang, R.B. Gopaluni and J.F. Forbes (2013). A particle filter approach

to approximate posterior Cramér-Rao lower bound: The case of hidden states. IEEE

Transactions on Aerospace and Electronic Systems 49(4), In press.

Summary: The posterior Cramér-Rao lower bound (PCRLB) derived in (Tichavský et

al., 1998) provides a bound on the mean square error (MSE) obtained with any non-

linear state filter. Computing the PCRLB involves solving complex, multi-dimensional

expectations, which do not lend themselves to an easy analytical solution. Furthermore, any

attempt to approximate it using numerical or simulation based approaches requires a priori
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access to the true states, which may not be available, except in simulations or in carefully

designed experiments. To allow recursive approximation of the PCRLB when the states are

hidden or unmeasured, a new approach based on sequential Monte Carlo (SMC) or particle

filters (PF) is proposed. The approach uses SMC methods to estimate the hidden states

using a sequence of the available sensor measurements. The developed method is general

and can be used to approximate the PCRLB in non-linear state-space models (SSMs) with

non-Gaussian state and sensor noise. The efficacy of the developed method is illustrated on

two simulation examples, including a ballistic target tracking problem at re-entry phase.

Chapter 8: Assessment, diagnosis, and optimal selection of non-linear
state filters

Tulsyan, A., B. Huang, R.B. Gopaluni and J.F. Forbes (2013). Assessment, diagnosis, and

optimal selection of non-linear state filters. Journal of Process Control, In review.

Tulsyan, A., B. Huang, R.B. Gopaluni and J.F. Forbes (2012). Performance assessment

of non-linear state filters. In: Proceedings of the 8th IFAC International Symposium on

Advanced Control of Chemical Processes. Keynote paper. Singapore. pp. 371–376.

Summary: Non-linear state filters of different approximations and capabilities allow for

real-time estimation of unmeasured states in non-linear stochastic processes. It is well

known that the performance of these non-linear filters depends on the numerical and

statistical approximations used in their design. Despite the practical interest in evaluating

the performance of different non-linear filtering methods, it remains one of the most

complex problems in the area of non-linear state estimation. We propose the use of the

posterior Cramér-Rao lower bound (PCRLB) or mean square error (MSE) inequality as

a filtering performance benchmark. Using the PCRLB inequality, an assessment and

diagnosis tool is developed for monitoring and evaluating the performance of different non-

linear filters. Based on the developed tool, a minimum MSE non-linear filter switching

strategy is proposed to maintain high filtering performance under various operating
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conditions. The complex, high dimensional integrals involved in the computation of the

PCRLB inequality are approximated using sequential Monte Carlo (SMC) methods. The

approach is illustrated through a numerical example.

1.5 Contributions

The main contributions in this thesis are briefly summarized below. The contributions are

classified into two groups (see Table 1.1)- system identification and state inference.

System identification

• An adaptive sequential-importance-resampling filter (Ad-SIR) for simultaneous on-

line state inference and Bayesian identification in general non-linear state-space

models (SSMs) is developed. This method is presented in Chapter 2 together with its

extension to handle on-line state and parameter estimation under missing data.

• A minimum mean square error strategy for simultaneous on-line state inference

and identification strategy in general non-linear SSMs is presented in Chapter

3. Performance assessment for a class of on-line state inference and Bayesian

identification methods is also discussed in Chapter 3.

• A new approach to systematically perform error analysis for a class of on-line

Bayesian system identification methods is presented in Chapter 4.

• Input design for improving the performance of on-line Bayesian system identification

methods in terms of mean square error is discussed in Chapter 5.

• A novel approach to design and organize a priori information in the context of input

design for off-line Bayesian system identification is discussed in Chapter 6.
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State inference

• A sequential Monte Carlo based posterior Cramér-Rao lower bound approximation

for on-line state inferencing problem is presented in Chapter 7.

• A novel approach to performance assessment, diagnosis and optimal selection of on-

line state inferencing methods is developed and discussed in Chapter 8.



Chapter 2

On simultaneous on-line state and
parameter estimation in non-linear
state-space models

On-line estimation plays an important role in process control and monitoring. Obtaining

a theoretical solution to the simultaneous state-parameter estimation problem for non-

linear stochastic systems involves solving complex multi-dimensional integrals that are

not amenable to analytical solution. While basic sequential Monte Carlo (SMC) or particle

filtering (PF) algorithms for simultaneous estimation exist, it is well recognized that there is

a need for making these on-line algorithms non-degenerate, fast and applicable to processes

with missing measurements. To overcome the deficiencies in traditional algorithms, this

chapter proposes a Bayesian approach to on-line state and parameter estimation. Its

extension to handle missing data in real-time is also provided. The simultaneous estimation

is performed by filtering an extended vector of states and parameters using an adaptive

sequential-importance-resampling (Ad-SIR) filter with a kernel density estimation method.

The approach uses an on-line optimization algorithm based on Kullback-Leibler (KL)

divergence to allow adaptation of the SIR filter for combined state-parameter estimation.

An optimal rule to tune the kernel width and the variance of the artificial noise added to the

A condensed version of this chapter has been published in Tulsyan, A., B. Huang, R.B. Gopaluni and
J.F. Forbes (2013). On simultaneous on-line state and parameter estimation in non-linear state-space models.
Journal of Process Control 23(4), 516–526.

14



Sec. 2.1 Introduction 15

parameters is also proposed. The approach is illustrated through numerical examples.

2.1 Introduction

Recent advances in high speed computation have allowed the process industries to

use complex high-fidelity non-linear dynamic models, such as in: a fermentation

bioreactor (Chitralekha et al., 2010); polymerization (Achilias and Kiparissides, 1992);

and petroleum reservoirs (Evensen, 2007). Implementing advanced control strategies or

monitoring process behaviour require real-time data processing for on-line estimation

of the key process states and model parameters, which are either unmeasured or

unknown. An extensive literature is available on on-line state estimation using sub-

optimal Bayesian filters, such as extended Kalman filters (EKFs), unscented Kalman filters

(UKFs), approximate grid-based filters (GBFs), and particle filters (PFs) (Soroush, 1998;

Arulampalam et al., 2002; Rawlings and Bakshi, 2006); however, their extension to on-line

state-parameter estimation has received attention only recently.

In the past 15 years, several algorithms have been proposed to solve the simultaneous

state-parameter estimation problem in real-time using likelihood and Bayesian derived

methods. Despite the advances in SMC methods, which provide a good approximation

to the optimal non-linear filter under weak assumption, simultaneous state-parameter

estimation is a long-standing problem (Andrieu et al., 2005). This is due to the non-trivial

complexities introduced with on-line estimation of the unknown model parameters (Chen

et al., 2005). This chapter considers simultaneous on-line state-parameter estimation in

non-linear stochastic systems under the Bayesian framework. The existing and current

developments in both Bayesian and likelihood based methods for on-line state and

parameter estimation are first briefly reviewed. An exposition of parameter estimation

using Bayesian and likelihood based methods can be found in (Kantas et al., 2009).

The central idea of simultaneous on-line Bayesian estimators is certainly not new.
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A customary approach involves selecting a prior distribution for the model parameters

followed by augmenting it with the states to form an extended state vector (Kitagawa,

1998). Theoretically, it casts the simultaneous state and parameter estimation problem into

a unified filtering framework; however, due to lack of ergodicity and exponential forgetting

of the joint state-parameter filter, coupled with successive resampling steps, employing this

approach with any standard SMC algorithm often results in parameter sample degeneracy

(Andrieu et al., 2005; Doucet and Tadic, 2003). In other words, SMC approximation of

the marginalized parameter posterior distribution is represented by a single Dirac delta

function. It also causes error accumulation in successive Monte Carlo (MC) steps, which

in terms of Lp norm, grows exponentially or polynomially in time (Kantas et al., 2009).

A pragmatic approach to reduce parameter sample degeneracy and error accumulation

in successive MC approximations is to introduce diversity to the parameter samples. This

is done by adding artificial dynamics to the parameters (e.g., random walk) in the extended

state vector (Kitagawa, 1998; Higuchi, 2001). In practice, artificial dynamics approach

(ADA) has been implemented with several on-line Bayesian estimators (auxiliary SIR

filter (ASIR) (Liu and West, 2001), Rao-Blackwellised particle filter (RBPF) (Gustafsson

and Schön, 2003)). While this approach reduces parameter sample degeneracy and error

accumulation in successive MC steps, adding artificial dynamics to the parameters, often

results in over-dispersed posteriors, which is also commonly referred to as the variance

inflation problem (Liu and West, 2001). To overcome the posterior variance inflation

problem, a kernel density estimation method is proposed in (Liu and West, 2001; West,

1993), in which the degenerated approximation of the marginalized parameter posterior

distribution is substituted by a kernel approximation (e.g., Gaussian or Epanechnikov).

The artificial dynamics approach together with kernel density estimation method efficiently

introduces parameter sample diversity and can be used for state-parameter estimation in

general non-linear state-space models (SSMs) with non-Gaussian noise; however, there are
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several limitations of this approach as summarized in (Kantas et al., 2009): (a) transforming

the problem by adding artificial noise modifies the original problem, so that, it becomes

hard to quantify the bias introduced in the resulting parameter estimates; and (b) the

dynamics of the parameters are related to the width of the kernel and the variance of

the artificial noise, which are often difficult to fine tune. For the first issue, (Tulsyan et

al., 2013b) proposed the use of posterior Cramér-Rao lower bound (PCRLB) (Tichavský et

al., 1998) as a benchmark for error analysis of the parameter estimates obtained using the

artificial approach; whereas, for the second issue, no practical solution exists.

The authors in (Chen et al., 2005) used an ASIR filter for on-line state-parameter

estimation with a priori knowledge based kernel width tuning rule. Compared to the

SIR filter, an ASIR filter is a one-step look-ahead filter which offers an advantage by

allowing importance sampling from the high likelihood region (Pitt and Shephard, 1999);

however, the superiority of ASIR to SIR is case dependent (Johansen and Doucet, 2008).

Most importantly, poor performance of ASIR filter for systems with large process noise

(Ristic et al., 2004) coupled with higher computational cost (compared to the SIR filter)

(Chen, 2003), often renders it impractical for on-line applications.

The Resample-Move is an alternate on-line Bayesian estimation approach which

introduces parameter sample diversity through a Markov chain Monte Carlo (MCMC) step

(Gamerman, 1998; Gilks and Berzuini, 2001; Lee and Chia, 2002; Chopin, 2002). To avoid

increase in the memory requirements with the MCMC step, use of a fixed dimensional

sufficient statistics has also been proposed in the on-line Bayesian parameter estimation

context (Andrieu et al., 1999). As opposed to the methods based on kernel or artificial

dynamics, Resampling-Move algorithm has the advantage of introducing diversity without

perturbing the joint state-parameter target distribution. Unfortunately, MCMC/sufficient

statistics based algorithms are known to result in approximation errors, which accumulate

at least quadratically in time (Kantas et al., 2009; Andrieu et al., 1999). This problem has
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also been illustrated in (Andrieu et al., 2004) using a sufficient statistics method. Finally,

unlike the ADA, applicability of the Resample-Move approach is restricted to a certain

class of low dimensional non-linear models, for some of which, tractable solution to the

estimation problem is also available (Djuric and Miguez, 2002; Storvic, 2002).

Apart from the developments in Bayesian estimation, maximum likelihood (ML) based

algorithms for on-line parameter estimation is also an active area of research. Unlike the

Bayesian estimators, where the focus is on the simultaneous state-parameter estimation,

ML based methods are primarily focussed on solving the parameter estimation problem.

A standard approach to on-line ML parameter estimation is the gradient method. The

gradient method requires recursive computation of the likelihood of the measurements and

its gradient with respect to the parameters, which is also referred to as the score function.

Other than in simple models, such as in linear SSMs with Gaussian noise (Koopman

and Shepard, 1992) or in finite state-space hidden Markov models (HMMs) (Lystig and

Hughes, 2002), it is impossible to exactly solve the likelihood and the score functions

(Poyiadjis et al., 2011), and one has to resort to the use of some suitable approximations.

In (Poyiadjis et al., 2011; Poyiadjis et al., 2005), use of SMC methods to approximate the

likelihood and score functions for estimation using on-line gradient method is proposed.

As pointed in (Kantas et al., 2009; Andrieu et al., 2004), for large dimensional problems,

gradient approach scales poorly in terms of its components.

An alternate ML approach is the on-line expectation maximization (EM) algorithm,

which unlike on-line gradient method, is known to be numerically more stable (Andrieu

et al., 2004). Unfortunately, like the gradient method, on-line EM algorithm can be

implemented exactly only in linear SSMs with Gaussian noise (Elliott et al., 2002) and

in finite state-space HMMs (Cappé, 2011). Recently, SMC based on-line EM algorithm

for parameter estimation in changepoint models (Yildirim et al., 2012), and in certain

classes of the non-linear SSMs (Moral et al., 2009; Cappé, 2009), for which the likelihood



Sec. 2.1 Introduction 19

Table 2.1: Summary of the Bayesian and likelihood based methods for on-line state-
parameter estimation (adapted from (Kantas et al., 2009)). In this table, N is the number
of particles used in SMC approximation, T is the final sampling time, and L is the number
of measurements in each block of data (see (Andrieu et al., 2005) for further details).

Method Pros Cons Comp. cost
Artificial Dynamics Standard SMC applicable Distribution altered O(NT )

(Bayesian) No optimization involved Difficult to tune dynamics
Resample-Move Distribution unaltered Restricted model class O(NT )

(Bayesian) No optimization involved Degeneracy problem
Scalability issues

On-line Gradient Asymptotically efficient Locally optimal O(N2)
(ML) Generally applicable Scalability issues per update

Expensive
On-line EM Asymptotically efficient Locally optimal O(N2)

(ML) Restricted model class per update
Expensive

On-line EM pseudo Minimal tuning Needs stationary distribution O(NL)
(ML) No degeneracy for small L Loss of efficiency per update

function belongs to the exponential family of distributions have appeared. Both on-line

gradient and EM algorithms have computational complexity, which is quadratic in the

number of particles used in the SMC approximation of the densities of interest. To develop

computationally cheaper versions of the algorithm, pseudo on-line EM method for finite

state-space HMMs (Rydén, 1997) and for non-linear SSMs (Andrieu et al., 2005) have been

proposed. Compared to the on-line gradient and EM algorithm, the pseudo on-line EM

algorithm is computationally lighter, but fails to yield asymptotically efficient (unbiased

and minimum variance) estimates. Finally, the pseudo on-line EM algorithm requires the

stationary distribution of the states, which may not be always known in practice.

The key advantage of using ML estimators, such as on-line gradient (Poyiadjis et al.,

2011; Poyiadjis et al., 2005) and EM algorithm (Moral et al., 2009; Yildirim et al., 2012) is

that these methods yield asymptotically efficient estimates, at least in theory; however, in

many situations, where the likelihood function is non-convex in model parameters (for e.g.,

in non-linear SSMs with non-Gaussian noise), numerical optimization routines either yield

locally optimal (or biased) estimates (Andrieu et al., 2004; Cappé, 2009) or require careful
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tuning of the algorithm parameters (Kantas et al., 2009). Finally, high computational cost

of ML based algorithms (compared to Bayesian estimators) coupled with applicability to

a restricted non-linear model class, renders ML based methods unsuitable for processes,

that require fast on-line estimators. Bayesian methods, on the contrary are ‘optimization-

free’ estimators, which allow these methods, to be fast, and free from issues related to

optimization. Comparisons between the ML and Bayesian based methods for parameter

estimation are further drawn in Section 2.9. A summary of different Bayesian and ML

based algorithms, including their advantages and disadvantages is presented in Table 2.1.

In the next section, the motivation and the contributions of this chapter are provided.

2.2 Motivation and contributions

The existing literature on Bayesian and likelihood based methods for on-line state-

parameter estimation assumes that measurement will be available at all sampling time;

however, in practice, missing measurements are common in the process industries,

where measurements may not arrive or be available at all sampling time instants. The

importance of developing algorithms under missing measurements is well recognized

(Gilks et al., 1995). Existing literature addresses the issues related to missing data in linear

(Shumway and Stoffer, 2000) and non-linear (Gopaluni, 2008) systems only under an off-

line setting. Unfortunately, these methods cannot handle missing data in real-time.

In this chapter, a complete approach to on-line Bayesian state and parameter estimation

in non-linear SSMs with non-Gaussian noise is developed, using an extended state vector

representation with artificial dynamics for the parameters. Since this approach treats

the simultaneous state and parameter estimation problems as the same, it will simply be

referred to as an estimation problem unless otherwise warranted. Due to the inherent

limitations of the EKF and UKF based simultaneous state-parameter estimators, a particle

based SIR filtering approach is used. The choice of the SIR filter is motivated by the fact
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that it is relatively (compared to ASIR filter) less sensitive to large process noise and is

computationally less expensive. Furthermore, the importance weights are easily evaluated

and the importance functions can be easily sampled (Ristic et al., 2004).

It is emphasized that the PFs can be made arbitrarily accurate by simply increasing

the number of particles; however, this comes at a computational cost. Several authors

have focussed on this issue and developed methods, which either allows adaptation of

the particle sample size (Straka and Šimandl, 2006; Fearnhead and Liu, 2007) or the

adaptation of the proposal distribution from which the particles are sampled (Doucet et

al., 2000; Fearnhead, 2008). Performance of PFs is closely related to the ability to sample

particles in state-space regions, where the posterior is significant (Pitt and Shephard, 1999).

Perfect adaptation of the particle size or choice of an efficient proposal density for PFs is a

long-standing topic (see (Cornebise et al., 2008) for recent developments in this area).

The following are the main contributions of this chapter: (a) an adaptive SIR (Ad-SIR)

filter for on-line state-parameter estimation in general non-linear SSMs with non-Gaussian

noise is proposed and derived; (b) an optimal tuning rule to control the width of the kernel,

and the variance of the artificial noise is proposed; (c) an on-line optimization algorithm

based on KL divergence is used to project importance samples around the region of high

likelihood, which allows adaptation of the SIR filter for on-line state-parameter estimation;

(d) an extension of the algorithm to handle missing measurements in real-time is also

presented; and (e) the efficacy of the algorithm is illustrated through numerical examples.

The proposed algorithm can estimate states and parameters of both time-invariant and

slowly time-variant stochastic non-linear systems. It exhibits good performance even for

systems with large process or measurement noise. A distinct advantage of the proposed

algorithm is that it can also estimate parameters of the noise models. This particular feature

is crucial, since filtering performance for any linear or non-linear filter depends on accurate

characterization of the state and measurement noise models (Bavdekar et al., 2011).
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2.3 Problem formulation

Consider the following class of discrete-time, stochastic non-linear SSMs:

Xt+1 = ft(Xt, ut, θt, Vt), (2.1a)

Yt = gt(Xt, ut, θt,Wt), (2.1b)

where Xt ∈ X ⊆ Rn and Yt ∈ Y ⊆ Rm for t ∈ N are the state and measurement

processes, respectively. Here R := (−∞,∞) and N := {1, 2, . . . , }. Xt ∈ X is a

Markov process, which is either partially or fully hidden, and Yt ∈ Y may include missed

measurements; ut ∈ U ⊆ Rp and θt ∈ Θ ⊆ Rr are the time-varying or time-invariant

control variables and model parameters, respectively. The process and measurement noise

are represented as Vt ∈ Rn and Wt ∈ Rm, respectively. ft(·) is a n-dimensional state

mapping function and gt(·) is a m-dimensional output mapping function, each being non-

linear in its arguments, and possibly time-varying, such that ft := X × U ×Θ× Rn → X

and gt := X × U ×Θ× Rm → Y . The assumption on (2.1) is discussed next.

Assumption 2.3.1. Vt ∈ Rn and Wt ∈ Rm are the mutually independent sequences of

independent random variables described by the probability density functions (pdfs) p(vt|·)

and p(wt|·), respectively. The pdfs are known a priori in their classes (e.g., Gaussian;

Binomial) and are parametrized by a finite number of moments (e.g., mean; variance). If

the moments are unknown, it can be augmented with the model parameter set θt ∈ Θ.

Since θt ∈ Θ does not have an explicit transition function like ft(·) forXt ∈ X , artificial

dynamics are introduced, such that θt ∈ Θ evolves according to

θt+1 = θt + ξt, (2.2)

where ξt ∈ Rr is a sequence of independent Gaussian random variables realized from

N (ξt|0,Σθt), independent of the noise sequences Vt ∈ Rn and Wt ∈ Rm. The dynamics

of θt in (2.2) is governed by the artificial noise variance Σθt ∈ Sr+, where Sr+ is a cone
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of positive semi-definite matrix. Often Σθt is unknown, and requires careful tuning. The

formulation in (2.2) is the ADA, which avoids the parameter degeneracy problem discussed

in Section 2.1, and further allows for estimation of time-varying parameters.

Equations (2.1) and (2.2) together represent an extended SSM. For notational simplicity,

the extended state vector is defined as Zt , {Xt, θt}, such that Zt ∈ Z ⊆ Rs=n+r.

Throughout this chapter Zt ∈ Z will be considered; however, distinction between the states

and parameters will be made, as required. Equations (2.1) and (2.2) can be represented as:

X0 ∼p(x0); Xt+1|Zt ∼ p(xt+1|zt); (2.3a)

θ0 ∼p(θ0); θt+1|θt ∼ p(θt+1|θt); (2.3b)

Yt|Zt ∼ p(yt|zt), (2.3c)

where: the Markov process Xt ∈ X is characterized by its initial density p(x0) and a

transition density p(xt+1|zt), while the Markov process θt ∈ Θ is characterized by its initial

density p(θ0) and a transition density p(θt+1|θt). The measurement Yt ∈ Y is assumed to be

conditionally independent given Zt ∈ Z , and is characterized by the conditional marginal

density p(yt|zt). The representation in (2.3) includes a wide class of non-linear time-series

models, including (2.1). For the sake of clarity, the input signal ut ∈ U is omitted in (2.3);

however, all the derivations that appear in this chapter hold with ut ∈ U included.

The main problems addressed in this chapter are stated next.

Problem 2.3.2. The first problem aims at computing the state-parameter estimate of

Zt ∈ Z in real-time using {u1:t; y1:t}; wherein, y1:t , {y1, . . . , yt} is a vector of measured

outputs corresponding to the input sequence u1:t , {u1, . . . , ut}.

Problem 2.3.3. The second problem aims at computing the state-parameter estimate of

Zt ∈ Z in real-time using {u1:t; yt1:tγ}; wherein, the measurements arrive at random

sampling time instants, such that only {yt1 , . . . , ytγ} out of y1:t is available.
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2.4 Bayesian filtering

The Bayesian idea for solving Problems 2.3.2 and 2.3.3 is to construct a posterior pdf

Zt|(Y1:t = y1:t) ∼ p(zt|y1:t) for all t ∈ N. Here p(zt|y1:t) is a probabilistic representation of

available statistical information on Zt ∈ Z conditioned on {Y1:t = y1:t}. Using the Markov

property of (2.3) and from the Bayes’ theorem, p(zt|y1:t) can be computed as

p(zt|y1:t) =
p(yt|zt)p(zt|y1:t−1)

p(yt|y1:t−1)
, (2.4)

where: p(yt|y1:t−1) =
∫
Z p(yt|zt)p(dzt|y1:t−1) is a constant; p(dzt|y1:t−1) , p(zt|y1:t−1)dzt

is a prior distribution; and p(zt|y1:t−1) is a prior density, which can be computed as

p(zt|y1:t−1) =

∫

Z
p(zt|zt−1)p(dzt−1|y1:t−1), (2.5)

where p(dzt−1|y1:t−1) , p(zt−1|y1:t−1)dzt−1 is the posterior distribution at t− 1. Ignoring

the constant term, (2.4) in compact form can be written as follows

p(zt|y1:t) ∝ p(yt|zt)p(zt|y1:t−1). (2.6)

In principle, the recurrence relation between the prediction and update equations in (2.5)

and (2.6), respectively, provides a complete Bayesian solution to Problems 2.3.2 and 2.3.3.

To compute a point estimate from p(zt|y1:t), a common approach is to minimize the

mean-square error (MSE) risk RZ , Ep(Zt,Y1:t)[‖Zt − Ẑt|t‖2
2], where Ẑt|t ∈ Rs is the point

estimate of the states and parameters at time t ∈ N; ‖ · ‖2 is a 2−norm operator; and

Ep(·) is the expectation with respect to the pdf p(·). Minimizing RZ over Ẑt|t yields

conditional mean of Zt|(Y1:t = y1:t) ∼ p(zt|y1:t) as an optimal point estimate (Trees, 1968).

For instance, ifRθ is the MSE Bayes’ risk then the MMSE parameter estimate is given by

θ̂t|t , Ep(θt|Y1:t)[θt] =

∫

Θ

θtp(dθt|y1:t), (2.7)

where p(dθt|y1:t) is the marginalized posterior distribution for the parameters, such that

p(dθt|y1:t) =

∫

X
p(dzt|y1:t). (2.8)
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Remark 2.4.1. Except for linear systems with Gaussian state and measurement noise or

when Z is a finite set, with finite computing capabilities, Bayesian on-line state-parameter

estimation solution given in (2.6) cannot be solved exactly.

This chapter proposes an SMC based adaptive SIR filter to numerically approximate the

Bayesian on-line state-parameter estimation solution given in (2.6).

2.5 Adaptive SIR filter

It is not our aim to review SMC methods in details, but simply to point out their intrinsic

limitations, which have fundamental practical consequences on the ADA introduced in

Section 2.3. The essential idea behind SMC methods is to generate a set of random particles

and their associated weights from the target pdf. The target pdf of interest here is the

posterior pdf p(zt|y1:t) in (2.6). Unfortunately, due to the non-Gaussian nature of p(zt|y1:t),

generating set of random particles from the target pdf is non-trivial (Ristic et al., 2004).

An alternate idea is to employ an importance sampling function (ISF) q(zt|y1:t, zt−1),

such that q(zt|y1:t, zt−1) is a non-negative function on Z and supp q(zt|y1:t, zt−1) ⊇

supp p(zt|y1:t). A standard SIR filter selects q(zt|y1:t, zt−1) = p(zt|y1:t−1) (Arulampalam et

al., 2002), since it enables easy sampling from the ISF and easy evaluation of p(zt|y1:t−1)

for any {Zt, Y1:t−1} ∈ Z × Y t−1. Now to generate a set of random particles from the

ISF p(zt|y1:t−1), the multi-dimensional integral in (2.5) needs to be evaluated first. Using

samples from p(zt−1|y1:t−1) (available from the recursive relation in (2.5) and (2.6)), an

SMC approximation of Zt−1|(Y1:t−1 = y1:t−1) ∼ p(dzt−1|y1:t−1) is given by

p̃(dzt−1|y1:t−1) =
N∑

i=1

W i
t−1|t−1δZit−1|t−1

(dzt−1), (2.9)

where: p̃(dzt−1|y1:t−1) is an SMC approximation of the joint state-parameter posterior

distribution p(dzt−1|y1:t−1); {Zi
t−1|t−1; W i

t−1|t−1}Ni=1 ∼ p̃(zt−1|y1:t−1) is a set ofN particles

and their weights, distributed according to p̃(zt−1|y1:t−1), such that
∑N

i=1 W
i
t−1|t−1 = 1 and
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δZi
t−1|t−1

(dzt−1) is the Dirac delta mass located at the random sample Zi
t−1|t−1.

Using (2.9), an SMC approximation of the marginalized posterior distribution of the

states and parameters at t− 1 can also be computed as given in the next lemma.

Lemma 2.5.1. Let the SMC approximation of the distribution of Zt−1|(Y1:t−1 = y1:t−1)

be given by (2.9) then marginalizing (2.9) over Xt ∈ X and θt ∈ Θ yields approximate

distributions for θt−1|(Y1:t−1 = y1:t−1) and Xt−1|(Y1:t−1 = y1:t−1), respectively, such that

p̃(dθt−1|y1:t−1) =
N∑

i=1

W i
t−1|t−1δθit−1|t−1

(dθt−1), (2.10a)

p̃(dxt−1|y1:t−1) =
N∑

i=1

W i
t−1|t−1δXi

t−1|t−1
(dxt−1), (2.10b)

where p̃(dθt−1|y1:t−1) and p̃(dxt−1|y1:t−1) are the SMC approximations of the distributions

p(dθt−1|y1:t−1) and p(dxt−1|y1:t−1), respectively.

Proof. Using the Law of Total Probability on posterior distribution p(dzt−1|y1:t−1) yields

p(dθt−1|y1:t−1) =

∫

X
p(dzt−1|y1:t−1). (2.11)

Substituting (2.9) into (2.11) and taking independent terms outside the integral yields

p̃(dθt−1|y1:t−1) =
N∑

i=1

W i
t−1|t−1

∫

X
δZi

t−1|t−1
(dzt−1), (2.12a)

=
N∑

i=1

W i
t−1|t−1δθit−1|t−1

(dθt−1). (2.12b)

The equality in (2.12b) is a result from marginalization of the joint state-parameter Dirac

delta function over X , which completes the proof.

Lemma 2.5.1 computes the marginal distributions of θt−1|(Y1:t−1 = y1:t−1) and

Xt−1|(Y1:t−1 = y1:t−1) using (2.9). Note that the weights in (2.10) are same as that in (2.9).

Remark 2.5.2. From (2.10a), the mean and the covariance of θt−1|(Y1:t−1 = y1:t−1) can

be approximated as Ep(θt−1|Y1:t−1) [θt−1] ,
∫

Θ
θt−1p(dθt−1|y1:t−1) ≈∑N

i=1W
i
t−1|t−1θ

i
t−1|t−1
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= θ̂t−1|t−1 and Vp(θt−1|Y1:t−1) [θt−1] ,
∫

Θ
(θt−1 − θ̂t−1|t−1)(θt−1 − θ̂t−1|t−1)Tp(dθt−1|y1:t−1)

≈∑N
i=1W

i
t−1|t−1(θit−1|t−1 − θ̂t−1|t−1)(θit−1|t−1 − θ̂t−1|t−1)T = Vθt−1 , respectively.

In Remark 2.5.2, θ̂t−1|t−1 ∈ Rr is an MMSE parameter estimate at t − 1. Similarly, an

MMSE state estimate X̂t−1|t−1 ∈ Rn at t− 1 can also be computed using (2.10b). Finally,

to generate a set of random particles from the ISF, substituting (2.9) into (2.5) yields

p̃(zt|y1:t−1) =

∫

Z
p(zt|zt−1)

N∑

i=1

W i
t−1|t−1δZit−1|t−1

(dzt−1), (2.13a)

=
N∑

i=1

W i
t−1|t−1p(zt|Zi

t−1|t−1), (2.13b)

where p̃(zt|y1:t−1) is an SMC approximation of the ISF p(zt|y1:t−1). The approximation in

(2.13b) is a mixture of N transitional pdfs, with a mixing ratio {W i
t−1|t−1}Ni=1 and centred

at {Zi
t−1|t−1}Ni=1. Marginalization of the ISF p(zt|y1:t−1) over Xt ∈ X is discussed in next.

Lemma 2.5.3. Let ξt ∈ Rr in (2.3b) be a sequence of independent Gaussian random

variable, such that ξt ∼ N (ξt|0,Σθt), where Σθt ∈ Sr+ for all t ∈ N then marginalizing

(2.13b) over Xt ∈ X yields a mixture Gaussian pdf for θt|(Y1:t−1 = y1:t−1) given by

p̃(θt|y1:t−1) =
N∑

i=1

W i
t−1|t−1N (θt|θit−1|t−1,Σθt), (2.14)

where θt|θit−1|t−1 ∼ N (θt|θit−1|t−1,Σθt) follws a Gaussian density with mean θit−1|t−1 ∈ Rr

and covariance Σθt ∈ Sr+.

Proof. Using the Law of Total Probability on the ISF p(zt|y1:t−1) yields

p(θt|y1:t−1) =

∫

X
p(zt|y1:t−1)dxt. (2.15)

Substituting (2.13b) into (2.15) and pulling independent terms out of the integral yields

p̃(θt|y1:t−1) =
N∑

i=1

W i
t−1|t−1

∫

X
p(zt|Zi

t−1|t−1)dxt, (2.16a)

=
N∑

i=1

W i
t−1|t−1p(θt|θit−1|t−1)

∫

X
p(xt|Zi

t−1|t−1)dxt, (2.16b)



Sec. 2.5 Adaptive SIR filter 28

where p̃(θt|y1:t−1) is an estimate. Since,
∫
X p(dxt|Zi

t−1|t−1) = 1, (2.16b) simplifies to

p̃(θt|y1:t−1) =
N∑

i=1

W i
t−1|t−1p(θt|θit−1|t−1), (2.17a)

=
N∑

i=1

W i
t−1|t−1N (θt|θit−1|t−1,Σθt). (2.17b)

The equality in (2.17b) follows from the fact that the pdf p(θt|θit−1|t−1) models the noise

distribution ξt ∼ N (ξt|0,Σθt) (see (2.3b)).

(Liu and West, 2001; West, 1993) refer to (2.14) as Gaussian kernel estimate of the

marginalized ISF, whose kernel width is controlled by the noise covariance Σθt . Statistics

of (2.14) are given next to highlight the implications of using SMC methods with ADA.

Lemma 2.5.4. Let the artificial noise in (2.3b) be ξt ∼ N (ξt|0,Σθt) and let θ̂t−1|t−1 ∈ Rr

and Vθt−1 ∈ Sr+ be the mean and covariance of θt−1|(Y1:t−1 = y1:t−1) ∼ p̃(θt−1|y1:t−1) as

computed in Remark 2.5.2. Also, let the SMC approximation of the marginalized ISF

be given by (2.14), such that θt|(Y1:t−1 = y1:t−1) ∼ p̃(θt|y1:t−1) then the first and second

moment of θt|(Y1:t−1 = y1:t−1) is given by

Ep(θt|Y1:t−1)[θt] = θ̂t−1|t−1, (2.18a)

Vp(θt|Y1:t−1)[θt] = Vθt−1 + Σθt . (2.18b)

Proof. Expectation of θt|(Y1:t−1 = y1:t−1) is given by

Ep(θt|Y1:t−1)[θt] =

∫

Θ

θtp(dθt|y1:t−1). (2.19)

Substituting (2.17b) into (2.19) yields

Ep(θt|Y1:t−1)[θt] =

∫

Θ

θt

N∑

i=1

W i
t−1|t−1N (dθt|θit−1|t−1,Σθt), (2.20a)

=
N∑

i=1

W i
t−1|t−1

∫

Θ

θtN (dθt|θit−1|t−1,Σθt), (2.20b)

=
N∑

i=1

W i
t−1|t−1θ

i
t−1|t−1 = θ̂t−1|t−1, (2.20c)
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where (2.20c) follows from Remark 2.5.2, which completes the proof for (2.18a). Now the

covariance of θt|(Y1:t−1 = y1:t−1) is given by

Vp(θt|Y1:t−1)[θt] =

∫

Θ

(θt − Ep(θt|Y1:t−1)[θt])(θt − Ep(θt|Y1:t−1)[θt])
Tp(dθt|y1:t−1). (2.21)

Substituting (2.17b) and (2.20c) into (2.21) yields

Vp(θt|Y1:t−1)[θt] =
N∑

i=1

W i
t−1|t−1

∫

Θ

(θt − θ̂t−1|t−1)(θt − θ̂t−1|t−1)TN (dθt|θit−1|t−1,Σθt).

(2.22)

Simple algebraic manipulation of (2.22) yields

Vp(θt|Y1:t−1)[θt] =
N∑

i=1

W i
t−1|t−1

∫

Θ

(θt − θit−1|t−1 + θit−1|t−1 − θ̂t−1|t−1)

× (θt − θit−1|t−1 + θit−1|t−1 − θ̂t−1|t−1)TN (dθt|θit−1|t−1,Σθt). (2.23)

Simplifying the terms in (2.23) and representing the integral solution as

Vp(θt|Y1:t−1)[θt] =I1 + I2 + I3 + I4, (2.24)

where:

I1 =
N∑

i=1

W i
t−1|t−1

∫

Θ

(θt − θit−1|t−1)(θt − θit−1|t−1)TN (dθt|θit−1|t−1,Σθt) =
N∑

i=1

W i
t−1|t−1Σθt

= Σθt ; (2.25a)

I2 =
N∑

i=1

W i
t−1|t−1

∫

Θ

(θit−1|t−1 − θ̂t−1|t−1)(θit−1|t−1 − θ̂t−1|t−1)TN (dθt|θit−1|t−1,Σθt) =

N∑

i=1

W i
t−1|t−1(θit−1|t−1 − θ̂t−1|t−1)(θit−1|t−1 − θ̂t−1|t−1)T

∫

Θ

N (dθt|θit−1|t−1,Σθt) = Vθt−1 ;

(2.25b)

I3 =
N∑

i=1

W i
t−1|t−1

∫

Θ

(θt − θit−1|t−1)(θit−1|t−1 − θ̂t−1|t−1)TN (dθt|θit−1|t−1,Σθt) =

N∑

i=1

W i
t−1|t−1

∫

Θ

(θt − θit−1|t−1)N (dθt|θit−1|t−1,Σθt)(θ
i
t−1|t−1 − θ̂t−1|t−1)T = 0; (2.25c)
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I4 =
N∑

i=1

W i
t−1|t−1

∫

Θ

(θit−1|t−1 − θ̂t−1|t−1)(θt − θit−1|t−1)TN (dθt|θit−1|t−1,Σθt) =

N∑

i=1

W i
t−1|t−1(θit−1|t−1 − θ̂t−1|t−1)

∫

Θ

(θt − θit−1|t−1)TN (dθt|θit−1|t−1,Σθt) = 0. (2.25d)

Here (2.25a) and (2.25b) are based on Remark 2.5.2, and (2.25c) and (2.25d) use

the relation
∫

Θ
θtN (θt|θit−1|t−1,Σθt)dθt = θit−1|t−1. Finally, substituting (2.25a), (2.25b),

(2.25c) and (2.25d) into (2.24) yields (2.18b), which completes the proof.

Remark 2.5.5. From Remark 2.5.2 and Lemma 2.5.4, while computing p̃(θt|y1:t−1) from

p̃(θt−1|y1:t−1), the mean is unchanged, i.e., Ep(θt−1|Y1:t−1)[θt−1] = Ep(θt|Y1:t−1)[θt], while the

covariance disperses by Σθt , such that Vp(θt|Y1:t−1)[θt]− Vp(θt−1|Y1:t−1)[θt−1] = Σθt .

Remark 2.5.5 highlights the variance inflation problem associated with the ADA. In (Liu

and West, 2001), the authors implied similar results. Note that the results presented here

are important, since they are the key aspects underlying the Ad-SIR filter proposed here.

2.5.1 Kernel smoothing

It is well known that using particles sampled from an over-dispersed ISF will yield a poor

approximation of the posterior pdf (Liu and West, 2001). From Remark 2.5.5, it is clear that

the SMC approximation of the marginalized ISF in (2.14) suffers from a similar dispersion

problem. To overcome the issue of dispersion, use of a kernel method is proposed. The

idea behind this approach is the shrinkage of the kernel width according to

θ̃it−1|t−1 =
√

1− h2
t θ

i
t−1|t−1 +

(
1−

√
1− h2

t

)
θ̂t−1|t−1, (2.26)

where {θ̃it−1|t−1}Ni=1 are the shrinkage locations and ht ∈ [0, 1] is a kernel parameter.

Therefore replacing {θit−1|t−1}Ni=1 with {θ̃it−1|t−1}Ni=1 in (2.14) and setting Σθt = h2
tVθt−1 ,

the SMC approximation of the marginalized ISF in (2.14) can now be represented as

p̃(θt|y1:t−1) =
N∑

i=1

W i
t−1|t−1N (θt|θ̃it−1|t−1, h

2
tVθt−1). (2.27)
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Note that by setting Σθt = h2
tVθt−1 , the kernel width Σθt becomes a non-linear function of

the kernel parameter ht. Tuning of ht is discussed in Section 2.5.2, but first the statistics of

(2.27) as a plausible SMC approximation of the marginalized ISF are discussed next.

Corollary 2.5.6. Let the SMC approximation of p(θt|y1:t−1) with kernel smoothing be

represented by (2.27) then the first two moments of θt|(Y1:t−1 = y1:t−1) ∼ p̃(θt|y1:t−1) are

given by Ep(θt|(Y1:t−1)[θt] = θ̂t−1|t−1 and Vp(θt|(Y1:t−1)[θt] = Vθt−1 , respectively.

Proof. The proof is based on using (2.26) and setting Σθt = h2
tVθt−1 in Lemma 2.5.4.

With kernel smoothing, the SMC approximations of θt|(Y1:t−1 = y1:t−1) ∼ p̃(θt|y1:t−1)

and θt−1|(Y1:t−1 = y1:t−1) ∼ p̃(θt|y1:t−1) have the same first two moments (see Corollary

2.5.6). Finally, defining Z̃i
t−1|t−1 , {X i

t−1|t−1; θ̃it−1|t−1}, the SMC approximation of the

ISF density in (2.13b) with kernel smoothing can be represented as

p̃(zt|y1:t−1) =
N∑

i=1

W i
t−1|t−1p(zt|Z̃i

t−1|t−1). (2.28)

Note that the random particle set {Zi
t|t−1;W i

t|t−1}Ni=1 ∼ p̃(zt|y1:t−1) from (2.28) can be

generated by passing {Z̃i
t−1|t−1}Ni=1 through the transition pdfs, such that

X i
t|t−1 ∼ p(xt|Z̃i

t−1|t−1), (2.29a)

θit|t−1 ∼ p(θt|θ̃it−1|t−1), (2.29b)

where 1 ≤ i ≤ N . Using the generated random particle set {Zi
t|t−1;W i

t|t−1}Ni=1 from (2.28),

an SMC approximation of the ISF distribution p(dzt|y1:t−1) can be represented as

p̃(dzt|y1:t−1) =
N∑

i=1

W i
t|t−1δZit|t−1

(dzt), (2.30)

where {W i
t|t−1 = W i

t−1|t−1}Ni=1. Now to obtain an SMC approximation of the target

posterior distribution p(dzt|y1:t), substituting (2.30) into (2.6) yields

p̃(dzt|y1:t) ∝p(yt|zt)
N∑

i=1

W i
t|t−1δZit|t−1

(dzt), (2.31a)

=
N∑

i=1

W i
t|tδZit|t−1

(dzt), (2.31b)
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where the weight W i
t|t in (2.31b) is given by

W i
t|t =

W i
t|t−1p(yt|Zi

t|t−1)
∑N

i=1W
i
t|t−1p(yt|Zi

t|t−1)
. (2.32)

Note that in (2.31b) the importance weights {W i
t|t}Ni=1 are computed using the likelihood

function. Finally, the MMSE point estimates for the states and parameters at t ∈ N can be

computed from (2.31b) using the procedure outlined in Lemma 2.5.1 and Remark 2.5.2.

2.5.2 Optimal tuning of kernel parameter

Although over-dispersion in the SMC approximation of the ISF is corrected using the kernel

smoothing, optimal tuning of the kernel parameter ht ∈ [0, 1] remains unclear.

Remark 2.5.7. The tuning practices for ht are largely ad-hoc. (Liu and West, 2001)

suggested selecting ht = 0.1; whereas, in (Chen et al., 2005), ht was optimized based

on historical data-set, and then applied to future batches. These ad-hoc rules deliver a

constant ht, for which, optimality cannot be established with respect to the incoming data.

An optimal tuning rule for ht based on an on-line optimization procedure is proposed

in this chapter. The tuning rule is based on minimization of the KL divergence between

the ISF and the target posterior density at each sampling time. The objective of the

optimizer is not only to tune ht, but to also project the particles sampled from the ISF

in the region of high posterior density. This is to allow for adaptation of the SIR filter for

combined state-parameter estimation. A similar idea of adaptive filtering is also proposed

in (Cornebise et al., 2008). In a standard SIR filter, if supp p(zt|y1:t−1) is larger or

smaller compared to supp p(yt|zt) then only a few particles in (2.32) are assigned higher

weights. This is due to insufficient number of particles in the overlapping region (see

Figure 2.1). As discussed in (Ristic et al., 2004), a standard SIR filter is inefficient in

handling such situations. This is because in an SIR filter, the particles from the ISF are

generated without taking the current measurement into consideration (see (2.5)). Methods
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p(zt|y1:t−1)

ISF
Likelihood function
Particles from ISF

(a) Φt ≈ 1 (V[zt|y1:t−1] ≈ V[yt|zt]) (b) Φt < 1 (V[zt|y1:t−1] < V[yt|zt]) (c) Φt > 1 (V[zt|y1:t−1] > V[yt|zt])

p(yt|zt)
p(yt|zt)

p(yt|zt)

zt zt zt

Figure 2.1: A schematic diagram to highlight the possible scenarios for different values of
Ωt ∈ R+, where Ωt , Tr[Vp(Zt|Y1:t−1)[Zt]]/Tr[Vp(Yt|Zt)[Yt]] and Tr[·] is the trace operator.
In Case (a), when Ωt ≈ 1, the ISF is mapped in the high likelihood region, which represents
an ideal estimation scenario for SIR filters. In Cases (b) and (c), either the ISF is peaked
(Ωt < 1) or the likelihood function is peaked (Ωt > 1) compared to the other distribution,
such that only few number of particles generated from the ISF falls in the likelihood region.

such as ASIR filter (Chen et al., 2005; Liu and West, 2001; Pitt and Shephard, 1999);

progressive correction (Oudjane and Musso, 2000); and bridging densities (Clapp and

Godsill, 2001) make use of current measurements to allow sampling from high-likelihood

regions. Proposition 2.5.8 provides an optimal tuning rule for controlling the kernel width

and for making an SIR filter adaptive and efficient for different values of Ωt ∈ R+, where:

Ωt , Tr[Vp(Zt|Y1:t−1)[Zt]]/Tr[Vp(Yt|Zt)[Yt]]; R+ := [0,∞); and Tr[·] is the trace operator.

Proposition 2.5.8. An optimal tuning for ht at t ∈ N based on minimization of the KL

divergence between the ISF p(zt|y1:t−1) and target posterior density p(zt|y1:t) is given by

h?t = arg min
ht∈[0,1]

[
−

N∑

i=1

W i
t|t−1 log[W i

t|t]

]
, (2.33)

where: h?t is the optimal kernel parameter at t ∈ N; and {W i
t|t−1}Ni=1 and {W i

t|t}Ni=1 are the

particle weights given in (2.30) and (2.31b), respectively.

Proof. The KL divergence between p(zt|y1:t−1) and p(zt|y1:t) at t ∈ N is given by

Dq||p(t) =

∫

Z
log

[
p(zt|y1:t−1)

p(zt|y1:t)

]
p(dzt|y1:t−1), (2.34)
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where Dq||p(t) is the KL divergence at t ∈ N. Substituting (2.4) into (2.34) yields

Dq||p(t) =

∫

Z
log

[
p(yt|y1:t−1)

p(yt|zt)

]
p(dzt|y1:t−1), (2.35a)

=

∫

Z
log

[∫
Z p(yt|zt)p(dzt|y1:t−1)

p(yt|zt)

]
p(dzt|y1:t−1). (2.35b)

Computing (2.35b) in closed form is non-trivial for the model considered in (2.1); however,

substituting (2.30) into (2.35b) yields an SMC approximation of (2.35b), such that

D̂q||p(ht) =

∫

Z
log



∫
Z p(yt|zt)

∑N
j=1W

i
t|t−1δZit|t−1

(dzt)

p(yt|zt)




N∑

i=1

W i
t|t−1δZit|t−1

(dzt), (2.36a)

=
N∑

i=1

W i
t|t−1 log

[∑N
j=1 W

i
t|t−1p(yt|Zi

t|t−1)

p(yt|Zi
t|t−1)

]
, (2.36b)

where D̂q||p(ht) is an SMC estimate of Dq||p(t). Note that the dependence of D̂q||p(ht) on

ht can be established from (2.26) and (2.29). Several algebraic manipulations in (2.36b)

followed by substituting (2.32) into (2.36b) yields

D̂q||p(ht) =−
N∑

i=1

W i
t|t−1 log

[
W i
t|t

W i
t|t−1

]
. (2.37)

Finally, a constrained optimization problem can be formulated based on minimization of

D̂q||p(ht) with respect to ht, such that

h?t = arg min
ht∈[0,1]

D̂q||p(ht). (2.38)

Substituting (2.37) into (2.38) yields

h?t = arg min
ht∈[0,1]

[
−

N∑

i=1

W i
t|t−1 log

[
W i
t|t

W i
t|t−1

]]
, (2.39a)

= arg min
ht∈[0,1]

[
−

N∑

i=1

W i
t|t−1 log

[
W i
t|t
]
]
, (2.39b)

where (2.39b) follows from the fact that
∑N

i=1 W
i
t|t−1 log

[
W i
t|t−1

]
is independent of ht,

which completes the proof.
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Remark 2.5.9. Proposition 2.5.8 provides an optimal tuning rule for (a) correcting over-

dispersion in ISF and; (b) making Ad-SIR filter efficient for different values of Ωt ∈ R+.

Note that other tuning rules for ht ∈ [0, 1] can also be readily used in place of Proposition

2.5.8, provided, it is compatible with the developments of previous sections.

2.5.3 Resampling

In importance sampling, degeneracy is a very common problem; wherein, after a few

sampling time instances, the distribution of the weights in (2.31b) becomes skewed. As

a result, the variance of the weights in (2.31b) increases over time (Doucet et al., 2001);

thereby, requiring a large computational effort to update the particles, whose contributions

are negligible. See (Chen, 2003; Ristic et al., 2004) for further details. A systematic

resampling scheme (Kitagawa, 1996) is adopted here that eliminates the low weighted

particles by replacing them with particles with large weight. The choice of systematic

resampling is supported by an easy implementation procedure and a lower order of

computational complexity O(N) (Arulampalam et al., 2002). A systematic resampling

step involves drawing N new particles {Zi
t|t}Ni=1, with replacement from a set of particles

{Zi
t|t−1}Ni=1 realized from the ISF, such that the following equality holds

Pr(Zi
t|t = Zi

t|t−1) = W i
t|t (2.40)

for all 1 ≤ i ≤ N . Here Pr(·) is the probability measure. The resampled particles

{Zi
t|t}Ni=1 ∼ p(zt|y1:t) are identically distributed with weights reset to {W i

t|t = N−1}Ni=1.

Remark 2.5.10. A key feature of the resampling step in (2.40) is that it takes an independent

set of particles {Zi
t|t−1}Ni=1 and returns a set of dependent particles {Zi

t|t}Ni=1. This is due

to the large number of replications of highly weighted particles. As discussed in (Schön

et al., 2011), using correlated particles {Zi
t|t; W

i
t|t = N−1}Ni=1 in (2.31b) further degrades

the accuracy of the MMSE point estimate computed in Remark 2.5.2. In (Ninness, 2000),

the authors showed that the rate of convergence of the MMSE point estimates to the true
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posterior mean decreases as correlation in {Zi
t|t}Ni=1 increases. To avoid any performance

degradation, the MMSE point estimates are computed before the resampling step.

Remark 2.5.11. Stratified (Kitagawa, 1996; Liu and Chen, 1998) or residual (Liu and

Chen, 1998) resampling can also be used as an alternative to the systematic resampling

used here. See (Chen, 2003) for other resampling methods.

2.6 Missing measurements

Missing measurements are common in the process industries, where measurements may

not become available at all sampling time instants. An approach to allow Bayesian state-

parameter estimation with real-time missing measurements is presented in this section.

From (2.32) it is clear that if {Yt = yt} at t ∈ N is missing then (2.32) can no longer be

used to compute (2.31b) or the MMSE estimates obtained therefrom. To address this, if

{Yt = yt} at t ∈ N is missing then the ISF p(zt|y1:t−1) in (2.5) is used instead to compute a

one-step ahead predicted MMSE point estimate for the states and parameters at t ∈ N. The

procedure to obtain an MMSE estimate under missing measurements is outlined next.

Remark 2.6.1. Let the SMC approximation of the ISF p(dzt|y1:t−1) be represented by (2.30)

then a one-step ahead predicted MMSE point estimate for the states and parameters at

t ∈ N can be computed as Ẑt|t−1 ,
∫
Z ztp(dzt|y1:t−1) ≈∑N

i=1W
i
t|t−1Z

i
t|t−1.

It is important to note that if {Yt = yt} at t ∈ N is missing then the posterior p(zt|y1:t)

or its KL divergence with p(zt|y1:t−1) at t ∈ N cannot be computed either. In other words,

ht cannot be optimally tuned (based on Proposition 2.5.8) under missing measurements.

Note that with Proposition 2.5.8, optimal tuning for ht under missing measurement is not

necessary. This is because tuning ht according to Proposition 2.5.8 corrects the variance

inflation problem in the SMC approximation of p(zt|y1:t−1) and also projects the particles

from it onto the region of high posterior density p(zt|y1:t) (see Remark 2.5.9); however, if
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p(zt|y1:t) is unavailable at t ∈ N, Proposition 2.5.8 only addresses the variance inflation in

the SMC approximation of p(zt|y1:t−1), which can be corrected with any ht ∈ [0, 1] value.

Remark 2.6.2. As a general rule, if {Yt = yt} at t ∈ N is missing, ht will be assigned its

previous optimal value h?t−1. Note that, if necessary, the user can choose any ht ∈ [0, 1]

value, or can optimize it based on other tuning rules as well (see Remark 2.5.9).

After computing the one-step ahead predicted MMSE state-parameter point estimate at

t ∈ N (see Remark 2.6.1), the Law of Total Probability on p(zt|y1:t−1) yields

p(zt+1|y1:t−1) =

∫

Z
p(zt+1|zt)p(dzt|y1:t−1), (2.41)

where p(zt+1|y1:t−1) is a two-step ahead prior density, and also the ISF for the sampling

time t+ 1 under missing {Yt = yt}. Since (2.41) does not have a closed form solution, an

SMC approximation of it can be obtained by substituting (2.30) into (2.41), such that

p̃(zt+1|y1:t−1) =
N∑

i=1

W i
t|t−1p(zt+1|Zi

t|t−1). (2.42)

To correct the variance inflation in (2.42), kernel smoothing discussed in Section 2.5.1 is

applied, such that with kernel smoothing the ISF can now be approximated as follows

p̃(zt+1|y1:t−1) =
N∑

i=1

W i
t|t−1p(zt+1|Z̃i

t|t−1), (2.43)

where {Z̃i
t|t−1}Ni=1 = {X i

t|t−1; θ̃it|t−1}Ni=1, and

θ̃it|t−1 =
√

1− h2
t+1 θ

i
t|t−1 + (1−

√
1− h2

t+1) θ̂t|t−1. (2.44)

In (2.44), ht+1 can be tuned based on Proposition 2.5.8, using the next available

measurement {Yt+1 = yt+1}. Note that from (2.43), random particles can be generated by

passing Z̃i
t|t−1 through p(zt+1|Z̃i

t|t−1) for all 1 ≤ i ≤ N . Using the set of generated random

particles, the ISF distribution p(dzt+1|y1:t−1) can be represented as

p̃(dzt+1|y1:t−1) =
N∑

i=1

W i
t+1|t−1δZit+1|t−1

(dzt+1), (2.45)
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Algorithm 1 Complete measurements

1: Select a prior pdf Z0 ∼ p(z0) for the states and parameters.
2: Generate N independent and identically distributed particles {Zi

0|−1}Ni=1 ∼ p(z0) and
set the associated weights to {W i

0|−1 = N−1}Ni=1. Set t← 1.
3: Sample {Zi

t|t−1}Ni=1 ∼ p(zt|y1:t−1) using (2.28). Set {W i
t|t−1 = N−1}Ni=1.

4: while t ∈ N do
5: Use {Yt = yt} and compute the importance weights {W i

t|t}Ni=1 from (2.32).

6: Compute the point estimate Ẑt|t using the procedure outlined in Remark 2.5.2.
7: Resample the particle set {Zi

t|t−1;W i
t|t}Ni=1 with replacement using (2.40).

8: Compute h?t+1 using Proposition 2.5.8 and generate {θ̃it|t}Ni=1 using (2.26).
9: Sample {Zi

t+1|t}Ni=1 ∼ p(zt+1|y1:t) using (2.28). Set {W i
t+1|t = N−1}Ni=1.

10: Set t← t+ 1.
11: end while

where {Zi
t+1|t−1; W i

t+1|t−1 = wit|t−1}Ni=1 is a set of N random particles from (2.43).

Finally, using the next available measurement {Yt+1 = yt+1}, the posterior distribution

p(dzt+1|y1:t−1, yt+1) at t+ 1 can be approximated using SMC methods, such that

p̃(dzt+1|y1:t−1, yt+1) =
N∑

i=1

W i
t+1|t+1δZit+1|t−1

(dzt+1), (2.46)

where {W i
t+1|t+1}Ni=1 are computed using (2.32).

Remark 2.6.3. The on-line Bayesian state-parameter estimation method presented in this

section assumes that measurements are missing at random time instants. Note that, the

proposed method can also handle cases with multiple consecutively missed measurements.

2.7 On-line estimation algorithm

Algorithms 1 and 2 outlines the procedure for estimating Zt ∈ Z in (2.1) for complete and

missing measurements, respectively. Convergence of these algorithms is discussed next.

2.8 Convergence

Computing the conditional mean of Zt|(Y1:t = y1:t) ∼ p(zt|y1:t) requires evaluating the

multi-dimensional integral over Z . As stated earlier, obtaining an analytical solution to
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Algorithm 2 Missing measurements

1: Select a prior pdf Z0 ∼ p(z0) for the states and parameters.
2: Generate N independent and identically distributed particles {Zi

0|−1}Ni=1 ∼ p(z0) and
set the associated weights to {W i

0|−1 = N−1}Ni=1. Set t← 1.
3: Sample {Zi

t|t−1}Ni=1 ∼ p(zt|y1:t−1) using (2.28). Set {W i
t|t−1 = N−1}Ni=1.

4: while t ∈ N do
5: if {Yt = yt} is available then
6: Use {Yt = yt} and compute the importance weights {W i

t|t}Ni=1 from (2.32).

7: Compute the point estimate Ẑt|t using the procedure outlined in Remark 2.5.2.
8: Resample the particle set {Zi

t|t−1;W i
t|t}Ni=1 with replacement using (2.40).

9: end if
10: if {Yt = yt} is unavailable then
11: Compute the predicted point estimate Ẑt|t−1 using the procedure in Remark 2.6.1.
12: end if
13: if {Yt+1 = yt+1} is available then
14: Compute h?t+1 using Proposition 2.5.8 and generate {θ̃it|t}Ni=1 using (2.26).
15: Sample {Zi

t+1|t}Ni=1 ∼ p(zt+1|y1:t) using (2.28). Set {W i
t+1|t = N−1}Ni=1.

16: end if
17: if {Yt+1 = yt+1} is unavailable then
18: Set h?t+1 ← h?t and generate {θ̃it|t−1}Ni=1 using (2.44).
19: Sample {Zi

t+1|t−1}Ni=1 ∼ p(zt+1|y1:t−1) using (2.43). Set {W i
t+1|t−1 = wit|t−1}Ni=1.

20: end if
21: Set t← t+ 1.
22: end while

the MMSE estimate is not possible for the model considered in (2.1). Algorithms 1 and

2 deliver an N -particle approximation to the MMSE estimates. Establishing theoretical

convergence for Algorithms 1 and 2 is beyond the scope of this chapter; however, some of

the practical issues affecting their convergence, include:

• Finding an optimal N <∞, for which the N -particle MMSE estimate ẐN
t|t would

converge to true MMSE estimate Z?
t|t in a ball of some predefined radius is non-trivial;

however, note that the estimates can be made accurate for sufficiently large N .

• Inaccurate noise model can prevent the estimates from converging to their true values.

To circumvent this problem the noise models are known in their distribution class and

their parameters estimated along with model parameters (see Assumption 2.3.1).
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• Poor choice of Z0 ∼ p(z0) can cause serious convergence issues. The problem is

particularly severe while estimating the discrete states of hybrid systems. Any discrete

change in the state require an adaptive mechanism for redefining the ISF for the states.

Since estimation in hybrid systems is not included in the scope of this chapter, it will not

be considered here. Consideration will be made in selecting p(z0) in Section 2.10.

The procedure to reduce computational complexity of Algorithms 1 and 2 is discussed next.

Remark 2.8.1. Algorithms 1 and 2 compute an estimate of Zt ∈ Z . Note for time-invariant

systems, estimation of θt can be bypassed if ∃tα ∈ N, limN→+∞ θ̂
N
t|t − θ? = 0 ∀t ≥ tα,

where θ? ∈ Θ is a vector of true system parameters. The rationale behind this approach

is to reduce the computational complexity of Algorithms 1 and 2 by simply selecting

θ̂t|t = θ̂tα|tα ∀t ≥ tα. Caution is required while estimating in a time-varying systems.

In the next section, some of the key features of the on-line estimation algorithm presented

in this chapter are compared against that of an off-line parameter estimation algorithm.

2.9 Comparison with off-line algorithm

In processes, where developing an efficient off-line parameter estimator is required, an EM

algorithm has been very successful. The EM algorithm is a popular off-line ML based

method for parameter estimation in non-linear SSMs with non-Gaussian noise. The key

advantage with EM is that it can be adopted under a variety of industry relevant situations.

In (Chitralekha et al., 2010; Schön et al., 2011), the authors used the off-line EM algorithm

to estimate the process and noise model parameters (e.g., mean and covariance) under

complete measurements. Extension of the EM algorithm for estimation under missing

measurements was considered in (Gopaluni, 2008).

In terms of computational complexity, the particle smoothing step in EM requires

O(N2Tn) calculations at each iteration (Chitralekha et al., 2010; Gopaluni, 2008; Schön
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et al., 2011), where n is the state dimension and T is the total number of measurements.

Smoothing step with computational complexity O(NTn) has also appeared (Douc et

al., 2011). This highlights the scalability issues with the EM algorithm when n is large.

The brute-force optimization in the M step of EM further adds to the computational cost.

From a theoretical perspective, EM has an advantage in terms of asymptotic efficiency and

consistency; however, in practice, solving the maximization step of EM can be prohibitive,

especially in large dimensional dynamical systems with long measurement sequence.

Depending on the dimension of the system, the number of particles and samples used, the

algorithm may take hours to run on a state-of-the art desktop computer (Gopaluni, 2008).

Focussing only on the parameter estimation aspect of Algorithms 1 and 2, the developed

method can estimate the process and noise model parameters in real-time with either

complete or missing measurement set. The efficacy of the proposed method in dealing with

these cases is demonstrated in Section 2.10. A distinct advantage of the proposed algorithm

is that it can also be used for estimating time-varying systems. Computational complexity

of Algorithms 1 and 2 until time T is of the order O(NTs) whereas the optimization

approach introduced in Proposition 2.5.8 has complexity O(N), where r is the dimension

of unknown parameters. Also, by including Remark 2.8.1, the computational cost can

further be reduced. Direct quantification of the bias introduced through the use of artificial

dynamics approach might be difficult as pointed in (Kantas et al., 2009); however, (Tulsyan

et al., 2013b) proposed the use of PCRLB for assessing the quality of the parameter

estimates. This assessment is done by comparing the MSE for the estimates against the

theoretical PCRLB. Experiments in (Tulsyan et al., 2013b) have confirmed that using ADA,

with the tuning rule in Proposition 1 yields numerically reliable estimates.

Remark 2.9.1. Comparison is not intended to draw conclusions on the validity of the

involved algorithms. Instead, it is provided to highlight key features of the Ad-SIR filter in

handling situations, which have been considered so far only under off-line settings.
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2.10 Numerical illustrations

In this section, efficacy of Algorithms 1 and 2 is illustrated through two numerical

examples. The first example is taken from (Gopaluni, 2008) and the second example from

(Schön et al., 2011). In this study, the estimation problem is formulated to estimate both

states and parameters of a non-linear system, but the analysis is focussed mainly on on-line

parameter estimation as it has been less studied compared to the state estimation problem.

2.10.1 Example 1: A non-linear and non-Gaussian system

Consider the following stochastic SSM (Gopaluni, 2008; Goodwin and Agüero, 2005)

Xt+1 = αtXt + βtUt + Vt, (2.47a)

Yt = γt cosXt +Wt, (2.47b)

where: Ut ∼ N (ut|0, 1); Vt ∼ N (vt|0, Qt); and Wt ∼ N (wt|0, Rt). The process and

measurement noise models in (2.47a) and (2.47b), respectively, are known in their

distribution class and mean, but unknown in their respective variances Qt ∈ R+ and

Rt ∈ R+. (Gopaluni, 2008) used this example for off-line estimation of process and noise

model parameters under complete and missing measurements using EM algorithm. In this

study, real-time state-parameter estimation will be setup using Algorithms 1 and 2.

For comparison with results reported in (Gopaluni, 2008), similar simulation conditions

are maintained to the extent possible. As in (Gopaluni, 2008), the initial condition

for the true state and true parameters in (2.47) are selected as x?0 = 1 and θ?t ,

[α?t ; β
?
t ; γ

?
t ; Q

?
t ; R

?
t ] = [0.9; 1; 1; 0.1; 0.1] ∀t ∈ [1, T ], respectively.

To estimate θt ∈ R5, MC simulations are performed using 45 random realizations

of input-output data {u1:T ; y1:T}. For each input-output data set, MMSE estimates

θ̂t|t ∀t ∈ [1, T ] are computed. For this study a finite filtering time T = 1000 is selected

with N = 20000 particles. A large T and N values help reduce variation in θ̂t|t arising
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Table 2.2: Parameter estimates and standard error computed using Algorithms 1 and 2
based on 45 MC simulations.

Parameter True Parameter estimates ± standard deviation (θ̂T |T ± V 0.5
θT

)

θt θ?t 0% Missing 10% Missing 25% Missing 50% Missing
αt 0.90 0.9027± 0.0060 0.9017± 0.0074 0.9014± 0.0077 0.9041± 0.0079
βt 1.0 0.9926± 0.0210 0.9946± 0.0203 0.9913± 0.0278 0.9865± 0.0367
γt 1.0 1.0179± 0.0225 1.0145± 0.0208 1.0105± 0.0275 0.9743± 0.0415
Qt 0.10 0.1068± 0.0124 0.1054± 0.0145 0.1037± 0.0167 0.0915± 0.0197
Rt 0.10 0.1068± 0.0090 0.0892± 0.0076 0.0932± 0.0129 0.1101± 0.0216

due to randomness in measurement and error associated with SMC approximations,

respectively. The prior density θ0 ∼ N (θ0|Mθ, Cθ) is selected as a mutually independent

multi-variate normal distribution with mean Mθ = [0.5; 0.5; 0.5; 0.2; 0.2] and covariance

Cθ = diag([1; 1; 1; 0.05; 0.05]), where diag(·) is a diagonal matrix.

In this simulation study, estimation is performed on four different experiment runs

each with 0%, 10%, 25% and 50% randomly missing measurements. A MC based

MMSE parameter estimates θ̂T |T along with the standard estimation error at sampling

time t = T are given in Table 2.2. In each of the four experiments the estimated

parameters θ̂T |T are in the neighbourhood of θ?T . Also, comparing with the results reported

in (Gopaluni, 2008), the proposed method delivers θ̂T |T in the neighbourhood of θ?T with

high statistical reliability. Higher parameter accuracy can be attributed to large T and N

values used here in contrast to T = 100 and N = 150 used by (Gopaluni, 2008). This

highlights the advantage of Ad-SIR filter over EM algorithm; wherein, large N can be used

to approximate the posterior without significant increase in the computational load.

Figure 2.2 shows the MMSE estimates α̂t|t and R̂t|t ∀t ∈ [1, T ] computed using

Algorithm 1 (for 0% missing measurements) and Algorithm 2 (for 50% missing

measurements). Under 0% missing measurements, the estimates converge in the

neighbourhood of θ?T within a few sampling time instants; whereas, as the percentage of

missing measurements increases to 50%, the estimates take longer to convergence.

Computation of θ̂t|t ∀t ∈ [1, T ] took 210 seconds (for 0% missing measurements) on
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Figure 2.2: MMSE estimates of: [Top] α̂t|t and [Bottom] R̂t|t computed using Algorithms
1 and 2 based on 45 simulations.

Figure 2.3: Posterior distribution p̃(Rt|y1:t) ∀t ∈ [1, T ] under 0% missing measurements
computed using Algorithm 1: [Top] without kernel smoothing method, and [Bottom] with
kernel smoothing method and tuning rule selected as Proposition 2.5.8.
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Figure 2.4: KL divergence between p̃(zt|y1:t−1) and p̃(zt|y1:t) ∀t ∈ [1, T ] computed using
Algorithm 1. The divergence is computed with T = 1000 and N = 20000.

a 3.33 GHz Intel Core i5 processor running on Windows 7. Computation under missing

measurements is even faster, as the optimization step for tuning the kernel parameter is not

required at all sampling time instants.

Figure 2.3[Top] validates the comment made in Remark 2.5.5 that without correcting the

inflation problem, SMC based marginalized posterior density estimate would continue to

disperse over time. The advantage of using the kernel smoothing method with Proposition

2.5.8 is evident from Figure 2.3[Bottom]; wherein, the proposed method not only corrects

dispersion in the marginalized posterior density, but also reduces it substantially around

the estimates. In Figure 2.4, KL divergence between p̃(zt|y1:t−1) and p̃(zt|y1:t) is shown.

Comparing the mean and variance of the two trajectories in Figure 2.4 it is clear that

Proposition 2.5.8 significantly reduces divergence between the ISF and posterior density.

In summary, Figures 2.2 through 2.4 validate the usefulness of Proposition 2.5.8 in

achieving convergence of θ̂T |T in the neighbourhood of θ?T under compete and missing

measurements. Another non-linear and non-Gaussian example is considered next.
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2.10.2 Example 2: A non-linear and non-Gaussian system

In Section 2.10.1, efficacy of Algorithms 1 and 2 was established under different

percentage of missing measurements. In this study, estimation capability of Algorithm

1 is demonstrated for different values of Γt ∈ R+, where Γt , Vp(Zt|Zt−1)[Zt]/Vp(Yt|Zt)[Yt].

Consider the following discrete-time, stochastic non-linear autonomous SSM (Doucet et

al., 2001; Schön et al., 2011)

Xt+1 =
Xt

αt
+

βtXt

1 +X2
t

+ κt cos(1.2t) + Vt, (2.48a)

Yt = γtX
2
t +Wt, (2.48b)

where: Vt ∼ N (vt|0, Qt); and Wt ∼ N (wt|0, Rt). The initial condition for the true state is

chosen as x?0 = 5 and the true parameters are selected as θ?t , [α?t ; β
?
t ; κ

?
t ; γ

?
t ; Q

?
t ; R

?
t ] =

[2.0; 25; 8.0; 0.05; {0.10; 1.0}; {0.10; 1.0}] ∀t ∈ [1, T ], where {·; ·} denote a set of

possible discrete values for Qt and Rt, considered in this study. In the simulation, the

algorithm parameters are selected as T = 100 seconds and N = 20000 particles.

On-line estimation of process and noise model parameters in (2.48) is considered for

three independent cases, with each differing in the choice of Γt ∀t ∈ [1, T ). In the

first experiment Γt = 1 (with Qt = 0.1; Rt = 0.1) is selected. For the second and third

experiment, Γt = 0.1 (with Qt = 0.1; Rt = 1) and Γt = 10 (with Qt = 1; Rt = 0.1) is

selected, respectively. The choice of the experiments denote the cases in Figure 2.1.

The prior density θ0 ∼ N (θ0|Mθ, Cθ) is selected as a mutually independent multi-

variate normal distribution with mean Mθ = [1; 20; 10; 1; 0.5; 0.5] and covariance Cθ =

diag([1; 15; 5; 1; 1; 1]). Large variance ensures that θ?0 is included in the supp p(θ0).

As in Section 2.10.1, 45 MC simulations are performed. Using Algorithm 1, a MC

MMSE parameter estimates θ̂T |T for the three experiments are given in Table 2.3. Small

uncertainties associated with θ̂T |T across the range of Γt values suggest high statistical

reliability of the estimates. Moreover, comparing the estimates with the true values it is

evident that the estimate θ̂T |T is in the neighbourhood of θ?T |T . Algorithm 1 yields the most
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Table 2.3: Parameter estimates and standard error computed using Algorithms 1 for
different Γt ∀t ∈ [1, T ] based on 45 MC simulations.

Parameter True Parameter estimates ± standard deviation (θ̂T |T ± V 0.5
θT

)

θt θ?t Γt = 1 Γt = 0.1 Γt = 10
(Qt = 0.1; Rt = 0.1) (Qt = 0.1; Rt = 1) (Qt = 1; Rt = 0.1)

αt 2.0 2.0358± 0.0400 2.0694± 0.0812 2.0845± 0.0791
βt 25 24.250± 1.5273 23.686± 1.5997 23.916± 1.6806
κt 8.0 7.9004± 0.3873 7.7611± 0.4154 7.6728± 0.5329
γt 0.05 0.0530± 0.0052 0.0557± 0.0061 0.0566± 0.0067
Qt − 0.1202± 0.0154 0.1284± 0.0204 0.9144± 0.1543
Rt − 0.1084± 0.0151 0.9054± 0.1126 0.1072± 0.0157

reliable estimates for Γt = 1. This is because Γt = 1 presents an ideal scenario for filtering.

Estimates of γ̂t|t and Q̂t|t for Γt = 10 are given in Figure 2.5. On average, γ̂t|t converges

in the neighbourhood of γ?T in about t = 10 seconds, whereas Q̂t|t takes t = 65 seconds to

converge. For this simulation, computation of θ̂t|t ∀t ∈ [1, T ] took 21 seconds of CPU time

to complete. Figure 2.6 gives the kernel parameter computed using Proposition 2.5.8.

The advantage of using KL divergence based tuning rule for ht is highlighted in Figure

2.7. Figure 2.7 gives the SMC based approximate marginalized posterior distribution

p̃(βT |y1:T ) for different choices of ht ∀t ∈ [1, T ]. It is clear that with the proposed tuning

rule, Algorithm 1 projects p̃(βT |y1:T ) around the true parameter β?T = 25 (see Table 2.3).

Interestingly, with ht = 0.01 ∀t ∈ [1, T ], a single particle representation of p̃(βT |y1:T )

is obtained (see Figure 2.7). This is because as ht → 0, Σθt = h2
tVθt−1 → 0 ∀t ∈ [1, T ]. In

the limiting case, when ht = 0, βt has a stationary dynamics. It is well known that using

SMC methods in such situations result in parameter sample degeneracy (see Section 2.1).

Studying the other extreme case, with ht = 0.99 ∀t ∈ [1, T ] the posterior density

p̃(βT |y1:T ) in Figure 2.7 has a wide support. This can again be understood by analysing

p̃(βt|y1:t) ∀t ∈ [1, T ] in limits. As ht → 1, the set of smoothed particles in (2.26)

are projected closer to the mean θ̂t−1|t−1. Under the limiting case, when ht = 1 the

marginalized ISF is given by p̃(θt|y1:t−1) =
∑N

i=1W
i
t−1|t−1N (θt|θ̂t−1|t−1, Vθt−1). Note

that, generating particles from p̃(θt|y1:t−1) under the limiting case only depends on the
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Figure 2.5: MMSE estimates of: [Top] γ̂t|t and [Bottom] Q̂t|t computed using Algorithm 1
for Γt = 10 ∀t ∈ [1, T ]. It is based on 45 MC simulations with 0% missing measurements.
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Figure 2.6: Optimal kernel ht ∀t ∈ [1, T ] tuned using Proposition 2.5.8 for Γt = 10 ∀t ∈
[1, T ] and 0% missing measurements.
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Figure 2.7: Approximate marginalized posterior distribution p̃(βt|y1:t) at t = T computed
based on different tuning rules for ht ∀t ∈ [1, T ]. In the graph, h∗t represents the optimal
tuning based on Proposition 2.5.8 (see Figure 2.6).

estimated parameter covariance Vθt−1 . It is easy to see that in such situations, arbitrarily

wide distributions for the SMC based approximate marginalized posterior density can be

obtained depending on Vθt−1 values.

In summary, this simulation study demonstrates the efficacy of the proposed optimal

tuning rule for a range of process to measurement noise variance ratio.

2.11 Conclusions

In this chapter, a Bayesian algorithm for on-line state and parameter estimation in discrete-

time, stochastic non-linear state-space models is presented. The proposed algorithm uses

an adaptive SIR filter to deliver an minimum mean-square error estimate at each filtering

time. The extension of the algorithm to handle missing measurements in real-time is also

presented. The usual variance inflation problem introduced by adding artificial parameter

dynamics is corrected by introducing a kernel smoothing algorithm. An optimal tuning rule
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for the kernel smoothing parameter is presented under an on-line optimization framework.

The usual degeneracy issues with sequential-importance-resampling filter under different

process to measurement noise ratios are avoided through the kernel smoothing process

based on Kullback-Leibler divergence. The proposed algorithm is an ‘optimization-free’

estimator, which makes it efficient and computationally fast, which is a major advantage

over the traditional maximum-likelihood based methods. Finally, the performance of the

proposed method was demonstrated on two non-linear simulation examples.
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Cornebise, J., É. Moulines and J. Olsson (2008). Adaptive methods for sequential

importance sampling with application to state-space models. Statistics and Computing

18(4), 461–480.

Djuric, P.M. and J. Miguez (2002). Sequential particle filtering in the presence of additive

Gaussian noise with unkown parameters. In: Proceedings of the IEEE International

Conference on Acoustics, Speech and Signal Processing. Orlando, USA. pp. 1621–

1624.



Bibliography 53

Douc, R., A. Garivier, E. Moulines and J. Olsson (2011). Sequential Monte Carlo

smoothing for general state-space hidden Markov models. Annals of Applied

Probability 21(6), 2109–2145.

Doucet, A. and V.B. Tadic (2003). Parameter estimation in general state-space models using

particle methods. Annals of the Institute of Statistical Mathematics 55(2), 409–422.

Doucet, A., N. de Freitas and N.J. Gordon (2001). Sequential Monte Carlo Methods in

Practice. Chap. An introduction to sequential Monte Carlo methods. Springer–Verlag,

New York.

Doucet, A., S. Godsill and C. Andrieu (2000). On Sequential Monte Carlo Sampling

Methods for Bayesian Filtering. Statistics and Computing 10(3), 197–208.

Elliott, R.J., J.J. Ford and J.B. Moore (2002). On-line almost-sure parameter estimation

for partially observed discrete-time linear systems with known noise characteristics.

International Journal of Adaptive Control and Signal Processing 16(6), 435–453.

Evensen, G. (2007). Data Assimilation: The Ensemble Kalman Filter. Chap. Estimation in

an oil reservoir simulator. Springer, Berlin/Heidelberg.

Fearnhead, P. (2008). Computational methods for complex stochastic systems: A review of

some alternatives to MCMC. Statistics and Computing 18(2), 151–171.

Fearnhead, P. and Z. Liu (2007). On-line inference for multiple change points problems.

Journal of the Royal Statistical Society: Series B 69(4), 589–605.

Gamerman, D. (1998). Markov chain Monte Carlo for dynamic generalized models.

Biometrika 85(1), 215–227.



Bibliography 54

Gilks, W.R. and C. Berzuini (2001). Following a moving target–Monte Carlo inference

for dynamic Bayesian models. Journal of the Royal Statistical Society: Series B

63(1), 127–146.
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Chapter 3

Minimum mean square error non-linear
target tracking strategy in presence of
unknown static parameters

Non-linear filters of different approximations and capabilities allow for real-time target

tracking in non-linear systems. We propose a posterior Cramér-Rao lower bound (PCRLB)

inequality based measure to simultaneously assess the tracking performance of different

non-linear filters. Using the developed measure, average-optimal and optimal minimum

mean square error (MMSE) tracking strategies are proposed for target tracking in non-

linear state-space models (SSMs) with non-Gaussian noise and unknown target parameters.

A systematic procedure to monitor the quality of the target estimates obtained with the

proposed tracking strategies is also developed. The practical utility and efficacy of the

developed PCRLB based tools are illustrated on a ballistic target tracking problem at re-

entry phase with unknown ballistic coefficient.

3.1 Introduction and problem formulation

Recent advances in high-speed computing technology have enabled the aerospace industry

to use complex, high-fidelity non-linear stochastic models for their targets. The

This chapter is to be submitted as Tulsyan, A., S.R. Khare, B. Huang, R.B. Gopaluni and J.F. Forbes
(2013). Minimum mean square error non-linear target tracking strategy in presence of unknown static
parameters, for journal publication.
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implementation of advanced control and monitoring strategies using such complex target

models require real-time data processing for tracking key target states and parameters,

which are either unmeasured or unknown. Here, we consider the problem of target tracking

in non-linear SSM, with non-Gaussian noise and in presence of unknown target parameters.

Let {Xt}t∈N and {Yt}t∈N beX (⊆ Rn) and Y(⊆ Rm) valued stochastic processes defined

on a measurable space (Ω,F). The discrete-time state process {Xt}t∈N is an unobserved

Markov process with initial density pθ(x) and Markovian transition density pθ(x′|x):

X0 ∼ pθ(·) and Xt+1|(Xt = xt) ∼ pθ(·|xt) (t ∈ N). (3.1)

The state process {Xt}t∈N is hidden, but observed through a sensor process {Yt}t∈N. It

is assumed that the process {Yt}t∈N is conditionally independent given {Xt}t∈N, with

marginal density pθ(y|x):

Yt|(X0, . . . , Xt = xt, . . . , XT ) ∼ pθ(·|xt) (t ∈ N). (3.2)

θ in (3.1) and (3.2) is a vector of target parameters, such that θ ∈ Θ is an open subset of

Rr. All the densities are with respect to suitable dominating measures, such as Lebesgue

measure. Although (3.1) and (3.2) represent a wide class of non-linear time-series models,

the model form and the assumptions considered in this chapter are given below:

Model 3.1.1. Stochastic non-linear and non-Gaussian SSM

Xt+1 =ft(Xt, θt, Vt); (3.3a)

θt+1 =θt; (3.3b)

Yt =gt(Xt, θt,Wt), (3.3c)

where {θt}t∈N = θ in Model 3.1.1 is a vector of static target parameters.

Assumption 3.1.2. {Vt}t∈N, {Wt}t∈N are mutually independent sequences of independent

random variables known a priori in their distribution classes (e.g., Gaussian; Rayleigh)

and parametrized by a known and finite number of moments (e.g., mean; variance).
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Assumption 3.1.3. {ft; gt}t∈N is a pair of non-linear functions, such that in X and Θ,

{ft; gt}t∈N is Ck(X ) and Ck(Θ), and in Rn and Rm, {ft}t∈N is Ck−1(Rn) and {gt}t∈N is

Ck−1(Rm), where k ≥ 2.

Assumption 3.1.4. For a random realization (xt+1, xt, θt, vt) ∈ X × X ×Θ× Rn and

(yt, xt, θt, wt) ∈ Y×X×Θ×Rm satisfying (3.3a) and (3.3c), respectively,∇vtf
T
t (xt, θt, vt)

and ∇wtg
T
t (xt, θt, wt) have rank n and m, such that using implicit function theorem,

pθ(xt+1|xt) = p(Vt = f̃t(xt, θt, xt+1)) and pθ(yt|xt) = p(Wt = g̃t(xt, θt, yt)) are defined

and do not involve Dirac delta functions.

Assumption 3.1.5. The sensor measurement {Yt}t∈N is target-oriented with probability of

false alarm Prf = 0 and that of detection Prd = 1.

For any generic sequence {ut}t∈N, let ui:j , {ui, ui+1, . . . , uj}. Our aim is to perform

Bayesian inference in Model 3.1.1, conditional on measurement sequence {Y1:t}t∈N. When

{θt}t∈N = θ is known, Bayesian inference on process {Xt}t∈N relies on the posterior

density {pθ(xt|Y1:t)}t∈N. A recursive method to compute {pθ(xt|Y1:t)}t∈N is given by

the optimal state tracking equations (Andrieu et al., 2004). When Model 3.1.1 is linear,

Gaussian SSM or when X is a finite set, {pθ(xt|Y1:t)}t∈N can be solved in closed form.

Unfortunately, in many tracking applications θ ∈ Θ is often unknown, and its estimation is

required before the target states can be tracked. In practical settings, on-line tracking of θ

is often the only realistic solution, since it avoids processing of large dataset, and allows

for adaptation to change in target dynamics.

Joint target state and parameter tracking in Model 3.1.1 is an active area of research

(Minvielle et al., 2010). Let θ? be the true, but unknown target parameter vector

generating {Y1:t}t∈N, such that Xt+1|(Xt = xt) ∼ pθ?(·|xt) and Yt|(Xt = xt) ∼ pθ?(·|xt),

then in Bayesian settings, the joint target state and parameter tracking problem

is formulated by first ascribing an initial prior density θ0 ∼ p(θ0), such that

θ? ∈ supp p(θ0), and then computing {p(zt|Y1:t)}t∈N, where: Zt , {Xt; θt} is a
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Z(⊆ Rs=n+r) valued extended Markov process with (Z0 = z0) ∼ pθ0(x0)p(θ0) and

Zt|(Zt−1 = zt−1) ∼ pθt−1(·|xt−1)δθt−1(·). The Bayesian inference on {Zt}t∈N then relies on

the joint posterior density {p(zt|Y1:t)}t∈N, which provides a real-time inference on the target

states and parameters. Although apparently similar to the target state tracking problem,

joint target state and parameter tracking has proved to be a non-trivial problem (Kantas

et al., 2009; Minvielle et al., 2010). No analytical solution to {p(zt|Y1:t)}t∈N is available,

even for linear and Gaussian SSM, or when X is a finite set. In other words, an optimal

filter, which solves {p(zt|Y1:t)}t∈N in closed form is not realizable for Model 3.1.1.

Over the years many non-linear tracking methods have developed to approximate the

joint density {p(zt|Y1:t)}t∈N. Although tractable, the quality of the target state and

parameter estimates obtained with these filters depend on the underlying numerical and

statistical approximation techniques used in their design. An exposition of these methods

and related approximations can be found in (Kantas et al., 2009; Minvielle et al., 2010).

A recent surge of interest in developing methods to approximate {p(zt|Y1:t)}t∈N for

Model 3.1.1 has left researchers and practitioners inundated with a large number of filters

to choose from. Unfortunately, there is no single filter that is guaranteed to provide best

tracking performance on a given system (Minvielle et al., 2010). Moreover, it is not even

possible to choose a filter that retains high tracking performance under all target conditions.

A practitioner is thus left with no clear substitute for the optimal non-linear filter.

Optimal selection of a target tracking strategy in presence of unknown target parameters

is still an open problem. An approach to resolve this dilemma is to start with a family of

non-linear tracking filters and switch between them as and when required, so as to maintain

high tracking performance. Naturally, this approach has to depend on a performance

measure, which accounts for the uncertainty in unknown target parameters, and is also

independent of the tracking method or any target specific conditions. Despite the strong

practical interest in evaluating the performance of non-linear filters, it remains one of the
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most complex problems in Bayesian inference theory (Šimandl et al., 2001).

In this chapter, we propose: (i) a PCRLB based performance measure for assessment of

different tracking filters; (ii) average-optimal and optimal MMSE target tracking strategies

for Model 3.1.1 in presence of unknown target parameters; and (iii) a systematic approach

to monitor the quality of the target estimates obtained with the proposed tracking strategies.

Initial results reported in (Tulsyan et al., 2013c) use PCRLB inequality for assessment

of tracking filters under known target parameters case. The focus of this chapter is to

generalize the results in (Tulsyan et al., 2013c) for tracking in SSMs with unknown target

parameters.

Notation: N := {1, 2, . . . }; R+ := [0,∞); Rs×s is the set of real valued s × s matrices;

Ss ⊂ Rs×s is the space of symmetric matrices; Is×s is the identity matrix; Ss+ is the cone

of symmetric positive semi-definite matrices in Ss; and Ss++ is its interior, i.e., the positive

definite matrices. The partial order on Ss induced by Ss+ and Ss++ are denoted by < and

�, respectively. Let A = A(i, j), B = B(i, j) be two matrices in Rs×s then Hadamard

product of A and B is denoted by A ◦ B = A(i, j)B(i, j), where 1 ≤ i, j ≤ s; and A

has a Hadamard inverse, denoted by A◦−1 = 1/A(i, j), where 1 ≤ i, j ≤ s, if and only if

A(i, j) 6= 0 for all 1 ≤ i, j ≤ s. Tr[A] represents trace ofA. Let v ∈ Rs be a column vector

then v(i) indicates ith-entry of v and diag(v) ∈ Rs×s is a diagonal matrix with elements in

v ∈ Rs as its diagonal entries. |·| is the absolute value. ∧ and ∨ are logical conjunction and

disjunction operators. Also, ∆y
x , ∇x∇T

y is the Laplacian and∇x ,
[
∂
∂x

]
is the gradient.

3.2 Main results

3.2.1 Assessment of tracking filters in presence of unknown
parameters

The conventional Cramér-Rao lower bound (CRLB) provides a lower bound on the MSE of

any maximum-likelihood (ML) based estimator. An analogous extension of the CRLB to
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the class of Bayesian estimators is called the PCRLB inequality. Extension of the PCRLB

inequality to discrete-time, non-linear tracking in presence of unknown target parameters

was provided by (Tichavský et al., 1998), and is given next.

Lemma 3.2.1. Let {Y1:t}t∈N be a measurement sequence generated from Model 3.1.1 under

Assumption 3.1.5, then MSE of any tracking filter at t ∈ N is bounded from below by the

following matrix inequality

Pt|t , Ep(Zt,Y1:t)[(Zt − Ẑt|t)(Zt − Ẑt|t)T ] < J−1
t (t ∈ N), (3.4)

where: Pt|t ∈ Ss++ is the MSE; Ẑt|t , Ẑt(Y1:t) := Rtm → Rs is the target estimate;

Jt ∈ Ss++ is the posterior Fisher information matrix (PFIM); and J−1
t ∈ Ss++ is the PCRLB

for Model 3.1.1.

Proof. See (Tichavský et al., 1998) for the complete proof.

Lemma 3.2.1 guarantees Pt|t − J−1
t ∈ Ss+. A recursive approach to compute PFIM for

Model 3.1.1 was derived by (Tichavský et al., 1998), and is given next.

Lemma 3.2.2. A recursive approach to compute the PFIM for Model 3.1.1 under

Assumptions 3.1.2 through 3.1.5 is given as follows:

J11
t+1 = H33

t − (H13
t )T [J11

t +H11
t ]−1H13

t ; (3.5a)

J12
t+1 = (H23

t )T − (H13
t )T [J11

t +H11
t ]−1(J12

t +H12
t ); (3.5b)

J22
t+1 = J22

t +H22
t − (J12

t +H12
t )T [J11

t +H11
t ]−1(J12

t +H12
t ), (3.5c)
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where:

Jt+1 =

[
J11
t+1 J12

t+1

(J12
t+1)T J22

t+1

]
; (s× s) (3.6a)

H11
t = Ep(X0:t+1,θt,Y1:t+1)[−∆Xt

Xt
log pt]; (n× n) (3.6b)

H12
t = Ep(X0:t+1,θt,Y1:t+1)[−∆θt

Xt
log pt]; (n× r) (3.6c)

H13
t = Ep(X0:t+1,θt,Y1:t+1)[−∆

Xt+1

Xt
log pt]; (n× n) (3.6d)

H22
t = Ep(X0:t+1,θt,Y1:t+1)[−∆θt

θt
log pt]; (r × r) (3.6e)

H23
t = Ep(X0:t+1,θt,Y1:t+1)[−∆

Xt+1

θt
log pt]; (r × n) (3.6f)

H33
t = Ep(X0:t+1,θt,Y1:t+1)[−∆

Xt+1

Xt+1
log pt]; (n× n) (3.6g)

and pt = p(Xt+1|Zt)p(Yt+1|θt, Xt+1). The PFIM at t = 0 can be computed using the

relation J0 = Ep(Z0)[−∆Z0
Z0

log p(Z0)].

Proof. See (Tichavský et al., 1998; Šimandl et al., 2001) for the detailed proof.

J11
t+1 ∈ Sn++ and J22

t+1 ∈ Sr++ in (3.6a) are the PFIMs for the states and parameters,

respectively. Here, Assumptions 3.1.2 through 3.1.4 are regulatory conditions to ensure

Jt+1 ∈ Ss++ or J−1
t+1 ∈ Ss++ exists.

Remark 3.2.3. Expectation with respect to {Z0:t+1, Y1:t+1} makes (3.6) independent of

(z0:t+1, y1:t+1) ∈ Z t+2 × Y t+1. In fact, the PCRLB only depends on: the dynamics in Model

3.1.1; the noise characteristics of {Vt}t∈N and {Wt}t∈N; and Z0 ∼ p(z0). The PCRLB is

thus a system property, independent of the non-linear tracking filter used.

Remark 3.2.4. An optimal non-linear filter for Model 3.1.1 may not be realisable with

finite computing capabilities, the PCRLB can be regarded as its second-order performance

limit. Using (3.4), the MSE of a filter can be compared against that of an optimal filter.

Using the inequality (3.4), a PCRLB based performance measure for simultaneous

assessment of multiple non-linear tracking filters is defined next.
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Definition 3.2.5. Let J−1
t be the PCRLB for a system described by Model 3.1.1 and Pt|t be

the MSE of a filter used for tracking the target states and parameters of Model 3.1.1, such

that J−1
t and Pt|t satisfy (3.4), then the performance of the filter at t ∈ N can be defined as

Φt = J−1
t ◦ P ◦−1

t|t , (3.7)

where: Φt is the performance measure; P ◦−1
t|t is the Hadamard inverse of Pt|t; and

J−1
t ◦ P ◦−1

t|t is the Hadamard product of J−1
t and P ◦−1

t|t .

Theorem 3.2.6. Let J−1
t ∈ Ss++ and Pt|t ∈ Ss++ be such that they satisfy the PCRLB

inequality (3.4), then Φt in Definition 3.2.5 at t ∈ N satisfies 0 < Φt(i, i) ≤ 1 for all

1 ≤ i ≤ s and is such that: (a) Φt ∈ Ss if P ◦−1
t|t ∈ Ss; and (b) Φt ∈ Ss++, if P ◦−1

t|t ∈ Ss++.

Proof. Note that since Pt|t(i, i) > 0 and J−1
t (i, i) > 0, we have Φt(i, i) =

J−1
t (i, i)[Pt|t(i, i)]

−1 > 0 for all 1 ≤ i ≤ s. Also, since J−1
t and Pt|t satisfy (3.4), we have

Pt|t(i, i) ≥ J−1
t (i, i), which implies Φt(i, i) = J−1

t (i, i)[Pt|t(i, i)]
−1 ≤ 1 for all 1 ≤ i ≤ s.

Combining the two yields, 0 < Φt(i, i) ≤ 1 for all 1 ≤ i ≤ s, which completes the first

part of the proof. Now for part (a) Pt|t ∈ Ss++ implies P ◦−1
t|t ∈ Ss, which with J−1

t ∈ Ss++

implies Φt = J−1
t ◦P ◦−1

t|t ∈ Ss. For part (b), if Pt|t ∈ Ss++ has positive off-diagonal entries

and just one positive eigenvalue then from Corollary 2.8 in (Reams, 1999), P ◦−1
t|t ∈ Ss++.

From Schur Product Theorem (Bapat and Raghavan, 1997), we have Φt ∈ Ss++, if and only

if P ◦−1
t|t ∈ Ss++, which completes the proof.

Theorem 3.2.6 shows that the diagonal entries of the measure in Definition 3.2.5 are

bounded, with 0 < Φt(i, i) ≤ 1 for all 1 ≤ i ≤ s and t ∈ N. From Theorem 3.2.6,

efficiency of a tracking filter is defined next.

Definition 3.2.7. A filter is partially efficient if for at least one target state or parameter

1 ≤ i ≤ s at t ∈ N, Φt(i, i) = 1 (i.e., Pt|t(i, i) = J−1
t (i, i)) and is efficient, if Tr[Φt] = s

(i.e., Tr[Pt|t − J−1
t ] = 0).
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Remark 3.2.8. Performance of a tracking filter can also be defined in terms of Φ′t :=

J−1
t P−1

t|t , with Φ′t = Is×s indicating efficiency; however, with this definition, partial

efficiency of a tracking filter is not easy to define, since it involves inverting the matrix

Pt|t ∈ Ss++.

The choice of the target state and parameter estimate Ẑt|t ∈ Rs, for which Tr[Φt] ∈ (0, s]

at t ∈ N is maximized is discussed next.

Remark 3.2.9. A common method to compute Ẑt|t ∈ Rs is to minimize Tr[Pt|t] ∈ R+. The

optimal target estimate minimizing Tr[Pt|t] ∈ R+ is the MMSE estimate, and is the mean

of the joint posterior density Zt|Y1:t ∼ p(·|Y1:t), i.e., Ẑt|t = Z?
t|t , Ep(Zt|Y1:t)[Zt].

Theorem 3.2.10. Let J−1
t ∈ Ss++ and Pt|t ∈ Ss++ be such that it satisfies the inequality

(3.4), then the estimate Ẑt|t ∈ Rs obtained by minimizing Tr[Pt|t] ∈ R+ also maximizes

Tr[Φt] ∈ (0, s], such that

Ẑt|t = arg min
Ẑt|t∈Rs

Tr[Pt|t] = arg max
Ẑt|t∈Rs

Tr[Φt], (3.8)

where Ẑt|t ∈ Rs is an MMSE estimate given a sequence {Y1:t}t∈N.

Proof. An MMSE estimate Ẑt|t at t ∈ N is obtained by solving the following optimization

problem: Ẑt|t = arg minẐt|t∈Rs Tr[Pt|t] = arg minẐt|t∈Rs
∑s

i=1[Pt|t(i, i) − J−1
t (i, i)] =

arg minẐt|t∈Rs
∑s

i=1[Φt(i, i)]
−1J−1

t (i, i). Here we used the fact that J−1
t is independent

of Ẑt|t (see Lemma 3.2.2). Now note that [Φt(i, i)]
−1J−1

t (i, i) > 0. This is because

0 < Φt(i, i) ≤ 1 (from Theorem 3.2.6) and J−1
t (i, i) > 0 (since J−1

t ∈ Ss++) for all 1 ≤

i ≤ s. Since the terms in the optimization are positive and independent, we can minimize

them separately (Trees, 1968), such that Ẑt|t =
∑s

i=1 arg minẐt|t(i)∈R[Φt(i, i)]
−1J−1

t (i, i) =
∑s

i=1 arg maxẐt|t(i)∈R[Φt(i, i)], where Ẑt|t(i) ∈ R is ith-entry in Ẑt|t ∈ Rs. Again,

since 0 < Φt(i, i) ≤ 1 for all 1 ≤ i ≤ s, the optimization can be written as Ẑt|t =

arg maxẐt|t∈Rs
∑s

i=1[Φt(i, i)] = arg maxẐt|t∈Rs Tr[Φt], which completes the proof.
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Algorithm 3 Average-case tracking strategy

Input: Performance measure Φi
t ∈ Ss and target estimate Ẑi

t|t ∈ Rs for all the tracking
filters in the filter bank B at t ∈ N, where i ∈ F .
Output: Target estimate Ẑo

t|t ∈ Rs to be selected at t ∈ N.
1: Compute Tr[Φi

t] for all i ∈ F .
2: Solve: Ẑo

t|t , Ẑi
t|t = arg maxi∈F Tr[Φi

t].

Algorithm 4 Best-case tracking strategy

Input: Performance measure Φi
t ∈ Ss and target estimate Ẑi

t|t ∈ Rs for all the tracking
filters in the filter bank B at t ∈ N, where i ∈ F .
Output: Target estimate Ẑo

t|t ∈ Rs to be selected at t ∈ N.
1: for j = 1 to s do
2: Solve: Ẑo

t|t(j) , Ẑi
t|t(j) = arg maxi∈F [Φi

t(j, j)].
3: end for

Theorem 3.2.10 shows that the performance of a tracking filter in terms of the measure

in Definition 3.2.5 can be maximized for the choice of an MMSE target state and

parameter estimate. Now, since calculating the MMSE estimate requires computation of

{p(zt|Y1:t)}t∈N, obtaining such an estimate for Model 3.1.1 in closed form is non-trivial.

Remark 3.2.11. Non-linear filters only provide an approximation to {p(zt|Y1:t)}t∈N thus

in practice, the estimate delivered by these filters may not be the MMSE estimate, i.e.,

Ẑt|t , Ep̂(zt|Y1:t)[Zt] 6= Z?
t|t almost surely, where Ẑt|t is the mean of Zt|Y1:t ∼ p̂(·|Y1:t) and

p̂(zt|Y1:t) is an approximation of p(zt|Y1:t) given by the filter.

Remark 3.2.12. Since Φt ∈ Ss is a function of Ẑt|t ∈ Rs, tracking filters of different

approximations and capabilities have different Φt matrices. Thus, while comparing

different tracking filters, ideally, the best performing filter is the one that is efficient;

however, this is rarely achieved in non-linear tracking problems (see Remark 3.2.11).

Equation (3.7) not only provides a tool to assess the performance of various tracking

filters, it can also be used to design the tracking strategy itself. Design of optimal tracking

strategy is discussed next.
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3.2.2 Optimal tracking strategy in presence of unknown parameters

In this chapter, a filter switching strategy is proposed for target tracking in Model 3.1.1 in

presence of unknown target parameters. The strategy is motivated by the fact that there is no

one single tracking filter, which is guaranteed to perform well for all tracking systems, and

in all target conditions. Let B be any arbitrarily chosen bank containing F ∈ N different

tracking filters, such that F = {1, 2, . . . , F} indicates the filter index in B. In the filter

switching strategy, the performance of F tracking filters in B is first assessed based on

(3.7), and then the filter with highest measure is selected for delivering the target state and

parameter estimate at t ∈ N. There are different ways in which the switching strategy can

be implemented, as given in Algorithms 3 and 4.

In Algorithm 3, switching is based on the average filter performance in estimating all the

states and parameters of Model 3.1.1; however, switching can also be based on the filter

performance in estimating individual states and parameters, as given in Algorithm 4.

Theorem 3.2.13. Let F ∈ N be the number of filters in an arbitrarily chosen filter bank

B, then with respect to B, the filter switching implemented with Algorithms 3 and 4 gives

average-optimal and optimal MMSE tracking strategies for Model 3.1.1, respectively.

Proof. The very construction of Algorithms 3 and 4 based on (3.7), makes them average-

optimal and optimal MMSE target tracking strategies, with respect to the filter bank B.

Theorem 3.2.14. Let F ∈ N be the number of tracking filters in an arbitrarily chosen

bank B and s ∈ N be the number of target states and parameters in Model 3.1.1. If the

average-case computational complexity of Algorithms 3 and 4 is N1 and N2, respectively,

then:

(a) N1 = F (s− 1) + F log2 F and N2 = Fs log2 F .
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(b) N1 and N2 satisfy the following conditions




N1 = N2 if s = 1 ∨ F = 2;

N1 > N2 if s ≥ 2 ∧ F = 1;

N1 < N2 otherwise.

Proof. (a) Computing Tr[Φi
t] for all 1 ≤ i ≤ F in Step 1 of Algorithm 3 requires

F (s − 1) computations, while sorting an F dimensional vector in Step 2 with quicksort

requires F log2 F computations (Knuth, 1973). Thus Algorithm 3 has an average-case

computational complexityN1 = F (s−1)+F log2 F . Similarly, Algorithm 4 only requires

to sort an F dimensional vector, s times; thus it has a complexityN2 = Fs log2 F . (b) Note

that N1 can be written as N1 = F (s − 1) − F (s − 1) log2 F + Fs log2 F , which can be

further simplified to N1 = F (s−1)[1− log2 F ]+N2. Now from this it clear that N1 = N2,

if s = 1 ∨ F = 2. Now, for s ≥ 2 ∧ F = 1, [1− log2 F ] > 0, which implies N1 > N2, and

for all other values of F and s, F (s− 1)[1− log2 F ] < 0, which implies N1 < N2.

Remark 3.2.15. Theorems 3.2.13 and 3.2.14 suggest that although Algorithm 3 has less

average-case computational complexity than Algorithm 4, it only computes the average-

optimal target estimates, in contrast to the optimal target estimates obtained with Algorithm

4. This result will further be illustrated in the simulation section (see Section 3.4).

Remark 3.2.16. If only state tracking in Model 3.1.1 is of interest then the switching

strategy can be implemented by replacing Step 2 of Algorithm 3 with X̂o
t|t , X̂ i

t|t =

arg maxi∈F Tr[Ωi
t], or that of Algorithm 4 with X̂o

t|t(j) , X̂ i
t|t(j) = arg maxi∈F [Ωi

t(j, j)]

for all 1 ≤ j ≤ n. Here Ωi
t ∈ Sn is the top-left sub-matrix of Φi

t ∈ Ss and X̂o
t|t is the

target state estimate selected at t ∈ N. The average-case computational complexity of

implementing this algorithm is F (n− 1) + F log2 F or Fn log2 F (see Theorem 3.2.14).

Remark 3.2.17. If only parameter tracking in Model 3.1.1 is of interest then the switching

strategy can be implemented by replacing Step 2 of Algorithm 3 with θ̂ot|t , θ̂it|t =

arg maxi∈F Tr[Ψi
t], or that of Algorithm 4 with θ̂ot|t(j) , θ̂it|t(j) = arg maxi∈F [Ψi

t(j, j)]
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for all 1 ≤ j ≤ r. Here Ψi
t ∈ Sr is the bottom-right sub-matrix of Φi

t ∈ Ss and θ̂ot|t is the

target parameter estimate selected at t ∈ N. The average-case computational complexity

of this algorithm is F (r − 1) + F log2 F or Fr log2 F (see Theorem 3.2.14).

Algorithms 3 and 4 only provide a tracking strategy for Model 3.1.1. Monitoring the

quality of the target state and parameter estimates obtained with these strategies is critical,

and is discussed next.

3.2.3 Quality monitoring of target state and parameter estimates

The second-order estimation error associated with any tracking strategy is completely

characterized by its MSE. Thus monitoring the quality of the target state and parameter

estimates obtained with a tracking strategy requires clear analysis of the MSE.

Decomposition of the MSE into its sources of errors is given in the next theorem.

Theorem 3.2.18. Let Z?
t|t ∈ Rs and V ?

t|t ∈ Ss++ be the mean and covariance of Zt|Y1:t ∼

p(·|Y1:t) and Ẑo
t|t ∈ Rs be the mean of Zt|Y1:t ∼ p̂(·|Y1:t) as computed by Algorithm 3, then

for Ẑo
t|t 6= Z?

t|t almost surely, Pt|t at t ∈ N can be written as follows:

Pt|t = Ep(Y1:t)[V
?
t|t] + Ep(Y1:t)[B

?
t|t[B

?
t|t]

T ], (3.9)

where B?
t|t , [Z?

t|t − Ẑo
t|t] ∈ Rs is the conditional bias in estimating the mean of the

posterior density Zt|Y1:t ∼ p(·|Y1:t) at t ∈ N.

Proof. Using p(Zt, Y1:t) = p(Y1:t)p(Zt|Y1:t), the MSE can be written as: Pt|t =

Ep(Y1:t)Ep(Zt|Y1:t)[(Zt − Ẑo
t|t)(Zt − Ẑo

t|t)
T ]. Adding and subtracting Z?

t|t in Pt|t, followed

by algebraic manipulations yield Pt|t = Ep(Y1:t)Ep(Zt|Y1:t)[K
?
t|t +L?t|t + [L?t|t]

T +B?
t|t[B

?
t|t]

T ],

where K?
t|t = [Zt−Z?

t|t][Zt−Z?
t|t]

T ; L?t|t = [Zt−Z?
t|t][Z

?
t|t− Ẑo

t|t]
T . Now Ep(Zt|Y1:t)[K

?
t|t] =

V ?
t|t; Ep(Zt|Y1:t)[L

?
t|t] = 0, since Ep(Zt|Y1:t)[Zt − Z?

t|t] = 0; and Ep(Zt|Y1:t)[B
?
t|t][B

?
t|t]

T =

[B?
t|t][B

?
t|t]

T , since [B?
t|t][B

?
t|t]

T is independent of Zt|Y1:t. Substituting the results into Pt|t

yields (3.9), which completes the proof.
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Note that Theorem 3.2.18 is the Bayesian equivalent of the classical MSE decomposition

results available for the likelihood based estimators (Trees, 1968). Using Theorem 3.2.18,

bias in the target estimates is defined next.

Definition 3.2.19. The target estimate at t ∈ N is unconditionally unbiased if

Ep(Y1:t)[B
?
t|t] = 0, and conditionally unbiased if B?

t|t = 0 almost surely. The target estimate

which is both unconditionally and conditionally unbiased is said to be unbiased in target

states and parameters. Bias in the target estimate can be similarly defined.

The condition under which a tracking strategy yields unbiased target state and parameter

estimates is discussed in the next lemma.

Lemma 3.2.20. Let Ẑo
t|t ∈ Rs be the estimate delivered by Algorithm 3 at t ∈ N, and

let B?
t|t ∈ Rs be the corresponding conditional bias in estimating the mean of Zt|Y1:t ∼

p(·|Y1:t), then B?
t|t = 0 almost surely is: (a) a necessary condition for Ep(Y1:t)[B

?
t|t] = 0;

whereas, (b) necessary and sufficient condition for Ep(Y1:t)[B
?
t|t[B

?
t|t]

T ] = 0.

Proof. (a) is from Theorem 15.2 in (Billingsley, 1995), while the proof of (b) is a

straightforward use of Theorem 15.2 in (Billingsley, 1995) in conjunction with the fact

that B?
t|t ∈ Rs implies Ep(Y1:t)[B

?
t|t[B

?
t|t]

T ] ∈ Ss+.

Remark 3.2.21. Lemma 3.2.20(a) shows that if the estimates are unconditionally unbiased,

it does not imply it is unbiased as well, but if it is conditionally unbiased, it implies the

estimates are unbiased as well.

The MSE for an unbiased target estimate is given next.

Corollary 3.2.22. Let Ẑo
t|t ∈ Rs obtained with Algorithm 3 be unbiased, such that B?

t|t = 0

almost surely, then Pt|t = Ep(Y1:t)[V
?
t|t]. This is obtained using Lemma 3.2.20(b), and

substituting B?
t|t = 0 into (3.9).
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Theorem 3.2.23. Let the filter i ∈ F in Algorithm 3 be such that Ẑo
t|t , Ẑi

t|t, and let

B?
t|t ∈ Rs be the conditional bias in estimating the mean of Zt|Y1:t ∼ p(·|Y1:t), then the

condition B?
t|t = 0 almost surely ensures that the filter i ∈ F is efficient at t ∈ N.

Proof. If the estimate Ẑo
t|t , Ẑi

t|t delivered by the filter i ∈ F in Algorithm 3 satisfies

the condition B?
t|t = 0 almost surely, then from Corollary 3.2.22, its MSE is given by

Pt|t = Ep(Y1:t)[V
?
t|t]. Since Pt|t only depends on the covariance of Zt|Y1:t ∼ p(·|Y1:t), it

cannot be reduced any further i.e., Pt|t = J−1
t . In fact the MSE is independent of the choice

of the filter. Thus the filter i ∈ F is efficient at t ∈ N. This completes the proof.

Remark 3.2.24. In Definition 3.2.7, filter efficiency at t ∈ N is defined using measure Φt;

whereas, in Theorem 3.2.23 it is defined based on Pt|t value. Note that the two definitions

of efficiency are equivalent, since Φt and Pt|t at t ∈ N are related by Theorem 3.2.10.

The procedure to monitor the quality of the target estimates obtained with any tracking

strategy is summarized in the next theorem.

Theorem 3.2.25. Let Z?
t|t ∈ Rs and V ?

t|t ∈ Ss++ be the mean and covariance of Zt|Y1:t ∼

p(·|Y1:t) and Ẑo
t|t , Ẑi

t|t be the target state and parameter estimate computed by filter i ∈ F

at t ∈ N, then the quality of Ẑo
t|t ∈ Rs can be assessed as follows:

(a) If B?
t|t = 0 almost surely then the PCRLB inequality in (3.4) is given by Pt|t =

Ep(Y1:t)[V
?
t|t] = J−1

t , such that the filter i ∈ F is efficient, and the corresponding estimate

Ẑo
t|t is unbiased and MMSE.

(b) If B?
t|t 6= 0 almost surely, and Ep(Y1:t)[B

?
t|t] 6= 0 then (3.4) is given by Pt|t =

Ep(Y1:t)[V
?
t|t + [B?

t|t[B
?
t|t]
′] � J−1

t , such that the filter is not efficient, and the estimate is

biased (only conditionally biased if Ep(Y1:t)[B
?
t|t] = 0) and fails to yield an MMSE estimate.

Proof. (a) If the filter i ∈ F , delivering Ẑo
t|t ∈ Rs at t ∈ N satisfies B?

t|t = 0 almost

surely, then its MSE is given by Pt|t = Ep(Y1:t)[V
?
t|t] (see Corollary 3.2.22). This implies

that the filter i ∈ F is efficient (see Theorem 3.2.23). Also, B?
t|t = 0 almost surely
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implies the filter yields unbiased (see Lemma 3.2.20(a) and Remark 3.2.21) and MMSE

(see Remark 3.2.9) estimate. (2) If the filter i ∈ F satisfies B?
t|t 6= 0 almost surely,

then from Lemma 3.2.20(b), we have Ep(Y1:t)[B
?
t|t[B

?
t|t]

T ] 6= 0. This implies its MSE is

Pt|t = Ep(Y1:t)[V
?
t|t + [B?

t|t[B
?
t|t]
′] � Ep(Y1:t)[V

?
t|t]. Now, since Pt|t � J−1

t , the filter i ∈ F

is not efficient. Moreover, if the estimate satisfies Ep(Y1:t)[B
?
t|t] 6= 0, then the estimate is

biased and only conditionally biased if Ep(Y1:t)[B
?
t|t] = 0 (see Definition 3.2.19).

Remark 3.2.26. The results in Theorem 3.2.25 are general, and can also be used to monitor

the quality of the estimates obtained with Algorithm 4, Remarks 3.2.16 and 3.2.17 or any

other on-line Bayesian tracking methods.

Although the PCRLB inequality allow for assessment, monitoring, and selection of a

tracking strategy, computing it in closed form is non-trivial, and require numerical methods.

3.3 Numerical computation

Computing PCRLB inequality (3.4) involves solving multi-dimensional integrals, which

do not admit any closed form solution for Model 3.1.1. The Monte Carlo (MC) method is

a popular numerical approach (Bergman, 2001); wherein, the MSE and PCRLB at t ∈ N

can be approximated by simulating M i.i.d. sample paths (zj0:t, y
j
1:t)

M
j=1 ∈ Z t+1 ×Y t using

Model 3.1.1, starting at M i.i.d. initial positions drawn from Z0 ∼ p(z0). It can be shown

that the MC estimate asymptotically converges to its true value (Moral, 2004). The practical

issues with MC based MSE and PCRLB estimates are given next.

Remark 3.3.1. WithM < +∞, the MC based MSE and PCRLB will not necessarily satisfy

the condition Pt|t − J−1
t < 0 for all t ∈ N.

Remark 3.3.2. Since M < +∞, the conditions in Theorem 3.2.25 are relaxed to

|B?
t|t(i)| ≤ ε(i) and |Ep(Y1:t)[B

?
t|t(i)]| ≤ α(i), where 1 ≤ i ≤ s, and ε ∈ Rs

+ and α ∈ Rs
+

are pre-defined tolerance levels set based on M and the required degree of accuracy.
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Remark 3.3.3. A tracking filter satisfying |B?
t|t(i)| ≤ ε(i) for all 1 ≤ i ≤ s, is ε-efficient

at t ∈ N and the resulting tracking estimate is ε-unbiased and ε-MMSE (see Theorem

3.2.25(a)). Similarly, if the target estimate only satisfies |Ep(Y1:t)[B
?
t|t(i)]| ≤ α(i) for all

1 ≤ i ≤ s, then it is α-unconditionally unbiased (see Theorem 3.2.25(b)).

3.4 Numerical illustration

3.4.1 Target tracking at re-entry phase with unknown ballistic
coefficient

We illustrate the efficacy of the tools developed in Section 3.2 on a ballistic target tracking

problem at re-entry phase with unknown ballistic coefficient.

3.4.1.1 Simulation setup

Consider a target launched along a ballistic flight whose kinematics are described in a 2-D

Cartesian coordinate system. This particular description of the kinematics assumes that

the only forces acting on the target at any given time are the forces due to gravity and

drag. All other forces such as: centrifugal acceleration; Coriolis acceleration; wind; lift

force; and spinning motion are assumed to have a small effect on the target dynamics.

With the position and the velocity of the target at time t ∈ N given as (Xt,Ht) and

(Ẋt, Ḣt), respectively, its motion in the re-entry phase can be described by (Tulsyan et

al., 2013a): Xt+1 = AXt + GFt(Xt) + G[0 − g]T + Vt, where: Xt , [Xt Ẋt Ht Ḣt]
T ;

A = I2×2 ⊗
[

1 ∆
0 1

]
; G = I2×2 ⊗ [∆2/2 ∆]T ; ⊗ is the Kronecker product; ∆ is

time lapse between radar measurements; Ft(Xt) = −gρ(Ht)

2θ
(Ẋ

2

t + Ḣ
2

t )
0.5[Ẋt Ḣt]

T is

the drag force on the target; g is the acceleration due to gravity; θ ∈ R is the unknown

ballistic coefficient, whose value depends on the shape, mass and the cross sectional

area of the target; and ρ(Ht) is the air density, such that ρ(Ht) = α1e
(−α2Ht), where:

α1 = 1.227kgm−3, α2 = 1.09310 × 10−4m−1 for Ht < 9144m; and α1 = 1.754kgm−3,

α2 = 1.4910 × 10−4m−1 for Ht ≥ 9144m. Vt ∼ N (0, Qt) is a zero mean multivariate
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Gaussian noise with covarianceQt = γI2×2⊗Ψ, where Ψ =

[
∆3/3 ∆2/2
∆2/2 ∆

]
and γ ∈ R+

is the noise intensity. The target measurements Yt = [Lt Et]
T , where Lt is the range and

Et the elevation are collected by a dish radar assumed to be stationed at the origin, such

that Yt = [(X2
t + H2

t )
0.5 arctan(Ht/Xt)]

T + Wt, where Wt ∼ N (0, Rt) is a zero mean

multivariate Gaussian noise with covariance Rt = diag(σ2
l , σ

2
e), where σl ∈ R+ and σe ∈

R+ are the standard deviation for the range and elevation readings. The target elevation

angle is assumed to be between 0 and π/2 radians. The parameters used here are: g =

9.8ms−2; ∆ = 2s; T = 120s; γ = 1; σl = 0.1km; and σe = 0.017rad. Let Zt = [XT
t θt]

T

be a vector of unknown target states and ballistic coefficient, such that Z0 ∼ N (Mz0 , Cz0),

where Mz0 = [232km 2.290 cos 190okms−1 88km 2.290 sin 190okms−1 40000kgm−1s−2]T

and [Cz0 ]0.5 = diag(1km, 20ms−1, 1km, 20ms−1, 20kgm−1s−2). The results presented in

the next section are valid only under the above settings.

3.4.1.2 Results

Starting with Z0 ∼ N (Mz0 , Cz0), Fig.3.1 gives the PCRLB for {Zt}t∈N for all 0 ≤ t ≤ T ,

obtained as J−1
t (i, i), where 1 ≤ i ≤ 5. In the interval 0 ≤ t ≤ 60, the PCRLB for

{θt}t∈N is almost constant. This is due to absence of drag at higher altitude, where the

target dynamics are linear and no additional information is available to estimate θ. In

60 < t ≤ 90, due to higher levels of air density, the drag force increases and the PCRLB

for {Xt}t∈N grows, but that of {θt}t∈N decreases sharply. In 90 < t ≤ T , the PCRLB for

{Zt}t∈N decreases. Since the PCRLB of {Zt}t∈N in 0 ≤ t ≤ T is bounded, it suggests that,

at least in theory, it is possible to use Bayesian methods to track {Zt}t∈N effectively.

Amongst the class of Bayesian methods for computing the posterior density

{p(zt|Y1:t}t∈N, the artificial dynamics approach (ADA) is a widely used method (Kantas

et al., 2009). The key advantage of ADA is that it can be implemented with both Kalman

and Sequential Monte Carlo (SMC) based tracking filters; however, there are two long-

standing problems with ADA approach as summarized in (Kantas et al., 2009): (a) the
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dynamics of the parameters are related to the width of the kernel and the variance of the

artificial noise, which are often difficult to fine tune; and (b) transforming the problem by

adding artificial noise modifies the original problem, so that, it becomes hard to quantify

the bias introduced in the resulting estimates. The first issue was addressed in (Tulsyan et

al., 2013b); wherein, an approach to auto-tune the kernel width was developed. For the

second issue, we will see how the developments of Section 3.2.3 can be used to quantify

bias in the resulting estimates. For solely illustrative purposes, the following ADA based

Kalman and SMC non-linear filters are tested for their tracking performance: (1) extended

Kalman filter (EKF) (Ristic et al., 2003); (2) unscented Kalman filter (UKF) (Ristic et

al., 2003); (3) sequential importance resampling filter (SIR) (Ristic et al., 2003); and (4)

adaptive sequential importance resampling filter (ASIR) (Tulsyan et al., 2013b).

To assess the performance of filters in approximating {p(zt|Y1:t}t∈N, we construct a filter

bank B, with F = {1, 2, 3, 4}. Fig.3.2 gives Tr[Φt] values for all the tracking filters in B.

From Fig.3.2, it is clear that the tracking performance of all the filters is high in the interval

0 ≤ t ≤ 70 (with EKF being efficient (see Definition 3.2.7)), but plummets in the interval

70 < t ≤ 120. This is again due to the large drag force at lower altitude, which shifts the

target dynamics from linear to non-linear regime, and thus making tracking difficult. Note

that in Fig.3.2, Tr[Φt]) > 5 for certain tracking filters (see Remark 3.3.1).

Figs.3.3(a) and (b) give the average-case and best-case tracking strategies (see

Algorithms 3 and 4) for this problem. At higher altitude, where the target dynamics are

linear, both the strategies suggest using EKF, but recommend switching to advanced filters,

such as SIR and ASIR at lower altitude. Although Algorithm 4 extensively uses UKF in

tracking {Zt(4)}t∈N and {Zt(5)}t∈N (see Fig.3.3(b)), due to the poor overall performance

of UKF (see Fig.3.2), its use is not recommended by Algorithm 3 (see Fig.3.3(a)).

Table 3.1 compares different tracking strategies based on their SNMSE values. It is clear

that Algorithm 3 outperforms all other ‘single filter use’ strategies; however, amongst all
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Figure 3.1: The PCRLB associated with the target states and ballistic coefficient. The
results are based on M = 2000 MC simulations.

the tracking strategies implemented, Algorithm 4 yields the smallest SNMSE. In fact the

SNMSE for Algorithm 4 reflects the optimal performance achievable with the four filters

in the bank. Note that the SNMSE for Algorithm 4 is about 13% less than that obtained

with Algorithm 3, but then, computationally, it is 1.5 times slower (see Remark 3.2.15).

Figs.3.3(c) and (e) and Figs.3.3(d) and (f) give the quality assessment of the target

estimates obtained with Algorithms 3 and 4, respectively. Based on the assumed tolerance

levels ε and α (see Remark 3.3.2), Algorithms 3 and 4 are ε-efficient (> 75% of the

simulations in Figs.3.3(c) and (d) are within the set tolerance limit ε) in the interval

0 ≤ t ≤ 70, and the resulting target estimates are ε-unbiased and ε-MMSE (see Figs.3.3(e)

and (f), Theorem 3.2.25(a) and Remark 3.3.3). In the interval 70 < t ≤ 120, Algorithms

3 and 4 are not efficient (see Figs.3.3(c) and (d)), and the resulting estimates are neither

MMSE nor unbiased (see Theorem 3.2.25(b)), except in 85 < t ≤ 105 and 100 < t ≤ 120,

where Algorithms 3 and 4 are α-unconditionally unbiased, respectively (see Figs.3.3(e)

and (f), and Remark 3.3.3). Note that although Algorithms 3 and 4 are not efficient in
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Figure 3.2: Performance assessment of all tracking filters in the bank.

Table 3.1: Comparing strategies using sum of the trace of normalized MSE (SNMSE), i.e.,∑T
t=1 Tr[Pt|t ◦ [J−1

t|t ]◦−1 =
∑T

t=1 Tr[Φ◦−1
t ]

EKF UKF SIR ASIR Algorithm 3 Algorithm 4
SNMSE 798 5915 668 670 562 489

70 < t ≤ 120, around 50% of the simulations in Fig.3.3(d) are within the set tolerance

limit ε, as compared to 40% in Fig.3.3(c). This suggests that compared to Algorithm 3,

quality of tracking with Algorithm 4 is better.

In summary, the results suggest that, at least in theory, it is possible to achieve higher

tracking performance at lower altitude. This can be achieved by either choosing new filters

or by carefully redesigning the existing ones. Note that choosing new non-linear filters

or redesigning existing ones with certain specific properties (e.g., low estimation bias)

requires a thorough understanding of the statistical and numerical approximations.
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Figure 3.3: Filter assessment, optimal filter switching strategy, and quality assessment of
the target estimates obtained with Algorithms 3 and 4.

3.5 Conclusions

A PCRLB inequality based tool for performance assessment of multiple non-linear tracking

filters is developed. Based on the developed measure, average-optimal and optimal MMSE

filtering strategy for target tracking in non-linear SSMs with non-Gaussian noise and

unknown target parameters are proposed. An approach to monitor the quality of the target

estimates obtained using the proposed tracking strategy is also provided. The monitoring

procedure presented here is general, and can be used to monitor the quality of the estimates

obtained with any on-line Bayesian methods. The utility of the tools were illustrated on a

ballistic target tracking problem at re-entry phase with unknown ballistic coefficient.
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Chapter 4

Error analysis in Bayesian identification
of non-linear state-space models

In the last two decades, several methods based on sequential Monte Carlo (SMC) and

Markov chain Monte Carlo (MCMC) have been proposed for Bayesian identification of

stochastic non-linear state-space models (SSMs). It is well known that the performance

of these simulation based identification methods depends on the numerical approximations

used in their design. We propose the use of posterior Cramér-Rao lower bound (PCRLB) as

a mean square error (MSE) bound. Using PCRLB, a systematic procedure is developed to

analyse the estimates delivered by Bayesian identification methods in terms of bias, MSE,

and efficiency. The efficacy and utility of the proposed approach is illustrated through a

numerical example.

4.1 Introduction

Bayesian identification has a long history, dating at least as far back as (Peterka, 1981).

Despite this, it is not commonly used in practice, except for the linear, Gaussian SSM

case; wherein, Kalman filter based Bayesian estimate is routinely employed (Ninness

and Henriksen, 2010). This is due to the computational complexities associated with

This chapter has been submitted to Tulsyan, A., B. Huang, R.B. Gopaluni and J.F. Forbes (2013).
Bayesian identification of non-linear state-space models: Part II-Error analysis. In: Proceedings of the 10th
IFAC International Symposium on Dynamics and Control of Process Systems. Mumbai, India. Accepted for
publication.
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the computation of the posterior densities, their marginals, and associated functions, such

as posterior mean and variance (Juloski et al., 2005). Recent developments in statistical

methods, such as SMC and MCMC along with advances in computing technology have

allowed researchers to use Bayesian methods in both on-line (Chen et al., 2005; Tulsyan

et al., 2013b) and off-line (Jones et al., 2011; Geweke and Tanizaki, 2001) identification

of SSMs. This chapter is directed towards the class of Bayesian identification methods for

parameter estimation in stochastic SSMs.

The notation used in this chapter is introduced next.

Notation: N := {1, 2, . . . }; R+ := [0,∞); Rs×s is the set of real-valued s× s matrices;

Ss ⊂ Rs×s is the space of symmetric matrices; Ss+ is the cone of symmetric positive semi-

definite matrices in Ss; and Ss++ is its interior. The partial order on Ss induced by Ss+ and

Ss++ are denoted by < and �, respectively. For A ∈ Rs×s, Tr[A] denotes its trace. For

a vector y ∈ Rp, diag(y) ∈ Sp is a diagonal matrix with y ∈ Rp as its entries. |·| is the

absolute value. ∆y
x , ∇x∇T

y is Laplacian and∇x ,
[
∂
∂x

]
is gradient.

4.2 Bayesian identification

Let {Xt}t∈N and {Yt}t∈N beX (⊆ Rn) andY(⊆ Rm) valued stochastic processes defined on

a measurable space (Ω,F). Let these stochastic processes depend on unknown parameter

vector θ ∈ Θ, where Θ is an open subset of Rq. The discrete-time state {Xt}t∈N is an

unobserved process, with initial density pθ(x) and transition density pθ(x′|x):

X0 ∼ pθ(·); Xt+1|(Xt = xt) ∼ pθ(·|xt, ut) (t ∈ N). (4.1)

{Yt}t∈N is conditionally independent given {Xt}t∈N and have a marginal density pθ(y|x):

Yt|(X0, . . . , Xt = xt, . . . , XT ) ∼ pθ(·|xt) (t ∈ N). (4.2)

All the densities are with respect to suitable dominating measures, such as Lebesgue

measure, which are denoted generically as dx and dy. Although (4.1) and (4.2) represent a
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wide class of non-linear time-series models, the model considered here is given below.

Model 4.2.1. Consider the following discrete-time, stochastic non-linear SSM

Xt+1 = ft(Xt, θt, Vt); (4.3a)

θt+1 = θt; (4.3b)

Yt = gt(Xt, θt,Wt), (4.3c)

where {θt}t∈N = θ is a vector of unknown parameters, and {Vt}t∈N and {Wt}t∈N are the

state and measurement noise.

Remark 4.2.2. To minimize use of notation, signal {ut}t∈N is not included in Model 4.2.1;

however, all the results that appear in this chapter hold with signal {ut}t∈N included.

For a generic sequence {rt}t∈N, let ri:j , {ri, ri+1, . . . , rj}. In Bayesian

identification, the problem of estimating the parameter vector θ ∈ Θ ⊆ Rq in Model

4.2.1, given a measurement sequence {Y1:t = y1:t}t∈N is formulated as a joint state and

parameter estimation problem. This is done by ascribing a prior density θ0 ∼ p(θ0),

such that θ ∈ supp p(θ0), and computing the density Zt|(Y1:t = y1:t) ∼ p(·|y1:t),

where Zt , {Xt; θt} is a Z(⊆ Rs=n+q) valued extended Markov process with

(Z0 = z0) ∼ pθ0(x0)p(θ0), Zt|(Zt−1 = zt−1) ∼ pθt−1(·|xt−1)δθt−1(·). A recursive method

to compute {p(zt|y1:t)}t∈N is given by the optimal filtering equation. Having computed

{p(zt|y1:t)}t∈N, inference on {θt}t∈N relies on the marginal density {p(θt|y1:t)}t∈N.

Although computing θt|(Y1:t = y1:t) ∼ p(·|y1:t) appears similar to computing

Xt|(Y1:t = y1:t) ∼ pθ(·|y1:t) (under known parameter case) in the state estimation problem,

calculating {p(θt|y1:t)}t∈N for Model 4.2.1 has proved to be a non-trivial problem (Kantas

et al., 2009; Minvielle et al., 2010). No analytical solution to {p(θt|y1:t)}t∈N is available,

even for linear and Gaussian SSM, or when X is a finite set (Kantas et al., 2009).

There are several simulation and numerical methods (e.g., SMC, MCMC, Kalman based

filters), which allow for recursive approximation of {p(θt|y1:t)}t∈N. Although tractable, the
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quality of these identification methods depends on the underlying numerical and statistical

approximations used in their design.

Despite the widespread interest in developing advanced simulation and numerical

methods for Bayesian identification of Model 4.2.1, there have been no elaborate study

on the quality of these methods. With this background, this chapter proposes the use of

PCRLB as an error bound. Using PCRLB, a systematic approach to assess the quality of a

Bayesian identification method, in terms of bias, MSE, and efficiency is developed. Initial

results reported by the authors in (Tulsyan et al., 2013c), use PCRLB for assessment of

state (but not parameter) estimation algorithms. The focus of this chapter is to extend the

results in (Tulsyan et al., 2013c) to the Bayesian parameter estimation algorithms.

4.3 PCRLB as an error bound

The conventional Cramér-Rao lower bound (CRLB) provides a theoretical lower bound

on the MSE of any maximum-likelihood (ML) based unbiased parameter estimator. An

analogous extension of the CRLB to the Bayesian estimators was derived by (Trees, 1968),

and is commonly referred to as the PCRLB inequality. The PCRLB, derived recently by

(Tichavský et al., 1998) for Model 4.2.1, provides a bound on the MSE associated with the

estimation of the states and parameters from {p(zt|u1:t, y1:t)}t∈N, and is given next.

Lemma 4.3.1. Let {Y1:t = y1:t}t∈N be an output sequence generated from Model 4.2.1,

then the MSE associated with the estimation of {Zt}t∈N from {p(zt|y1:t)}t∈N is bounded by

P z
t|t , Ep(Zt,Y1:t)[(Zt − Ẑt|t)(Zt − Ẑt|t)T ] < [Jzt ]−1, (4.4)

where: Ẑt|t := Rtm → Rs is a point estimate of {Zt}t∈N; P z
t|t ,

[
P x
t|t P xθ

t|t
(P xθ

t|t )T P θ
t|t

]
∈ Ss++,

Jzt ,

[
Jxt Jxθt

(Jxθt )T Jθt

]
∈ Ss++, [Jzt ]−1 ,

[
Lxt Lxθt

(Lxθt )T Lθt

]
∈ Ss++ are the MSE, posterior

Fisher information matrix (PFIM), and PCRLB, respectively.

Proof. See (Tichavský et al., 1998) for proof.
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A recursive approach to compute Jzt ∈ Ss++ was derived by (Tichavský et al., 1998), and

is given next. But first, we give the assumptions on the model considered in Model 4.2.1.

Assumption 4.3.2. {Vt}t∈N and {Wt}t∈N are mutually independent sequences of

independent random variables known a priori in their distribution classes (e.g., Gaussian)

and parametrized by a known and finite number of moments.

Assumption 4.3.3. ft := X ×Θ× Rm → Rn and gt := X× Θ× Rm → Rm are non-

linear functions, such that in the open set X and Θ, {ft; gt} is Ck(X ) and Ck(Θ), and in

Rn and Rm, ft is Ck−1(Rn), and gt is Ck−1(Rm), where k ≥ 2.

Assumption 4.3.4. For (xt+1, xt, θt, vt) ∈ X × X ×Θ× Rn and (yt, xt, θt, wt) ∈ Y ×

X × Θ × Rm satisfying Model 4.2.1, ∇vtf
T
t (xt, θt, vt) and ∇wtg

T
t (xt, θt, wt) have rank

n and m, respectively, such that using implicit function theorem, pθ(xt+1|xt) = p(Vt =

f̃t(xt, θt, xt+1)) and pθ(yt|xt) = p(Wt = g̃t(xt, θt, yt)) are defined.

Lemma 4.3.5. A recursive approach to compute Jzt ∈ Ss++ for Model 4.2.1 under

Assumptions 4.3.2 through 4.3.4 is given as follows:

Jxt+1 = H33
t − (H13

t )T [Jxt +H11
t ]−1H13

t ; (4.5a)

Jxθt+1 = (H23
t )T − (H13

t )T [Jxt +H11
t ]−1(Jxθt +H12

t ); (4.5b)

Jθt+1 = Jθt +H22
t − (Jxθt +H12

t )T [Jxt +H11
t ]−1(Jxθt +H12

t ), (4.5c)

where:

H11
t = Ep(X0:t+1,θt,Y1:t+1)[−∆Xt

Xt
log pt]; (4.6a)

H12
t = Ep(X0:t+1,θt,Y1:t+1)[−∆θt

Xt
log pt]; (4.6b)

H13
t = Ep(X0:t+1,θt,Y1:t+1)[−∆

Xt+1

Xt
log pt]; (4.6c)

H22
t = Ep(X0:t+1,θt,Y1:t+1)[−∆θt

θt
log pt]; (4.6d)

H23
t = Ep(X0:t+1,θt,Y1:t+1)[−∆

Xt+1

θt
log pt]; (4.6e)

H33
t = Ep(X0:t+1,θt,Y1:t+1)[−∆

Xt+1

Xt+1
log pt]; (4.6f)
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and: pt = p(Xt+1|Zt)p(Yt+1|θt, Xt+1); and the PFIM at t = 0 can be computed using

J0 = Ep(Z0)[−∆Z0
Z0

log p(Z0)].

Proof. See (Tichavský et al., 1998) for proof.

Since the focus here is on {θ}t∈N alone, a lower bound on the MSE associated with the

estimation of {θ}t∈N is of interest to us. Using Lemmas 4.3.1 and 4.3.5, a bound on the

MSE for parameter estimates can be derived, as given next.

Corollary 4.3.6. Let P z
t|t ∈ Ss++ and Jzt ∈ Ss++ be such that they satisfy (4.4), then the MSE

associated with the estimation of {θt}t∈N from {p(θt|y1:t)}t∈N, is bounded by

P θ
t|t = Ep(θt,Y1:t)[(θt − θ̂t|t)(θt − θ̂t|t)T ] < Lθt , (4.7)

where θt|t := Rtm → Rq is the parameter estimate delivered by a Bayesian identification

algorithm, and Lθt ∈ Sq++ is the lower right matrix of [Jzt ]−1 ∈ Ss++ in Lemma 4.3.1.

Proof. The proof is based on the fact that Lemma 4.3.1 ensures P z
t|t − [Jzt ]−1 ∈ Ss+.

A recursive approach to compute Lθt ∈ Sq++ is given next.

Theorem 4.3.7. Let Jzt ∈ Ss++ be the PFIM for {Zt}t∈N, and Lθt ∈ Sq++ be the lower bound

on the MSE associated with the estimation of {θt}t∈N in Model 4.2.1, then given Jzt ∈ Ss++,

the lower bound Lθt ∈ Sq++ at t ∈ N can be recursively computed as follows:

Lθt = [Jθt − (Jxθt )T (Jxt )−1Jxθt ]−1, (4.8)

where Jθt , Jxθt and Jxt are the PFIMs given in Lemma 4.3.1.

Proof. The proof is based on matrix inversion lemma (Bapat and Raghavan, 1997).

Remark 4.3.8. Theorem 4.3.7 shows that for Model 4.2.1, Lθt is not only a function of the

PFIM for {θt}t∈N, i.e., Jθt , but it also depends on the PFIMs for {Xt}t∈N, i.e., Jxθt and Jxt .
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Remark 4.3.9. Integral in (4.6) with respect to p(x0:t, θt−1, y1:t) makes Lθt in (4.8)

independent of any random sample from X t+1, Θ, and Y t. Lθt in fact only depends on: the

process dynamics in Model 4.2.1; noise characteristics of Vt ∼ p(vt) and Wt ∼ p(wt); and

the choice of Z0 ∼ p(z0). This makes Lθt a system property, independent of any Bayesian

identification method or any specific realization from X , Θ or Y . This motivates the use of

PCRLB as a benchmark for error analysis of Bayesian identification algorithms.

Using PCRLB inequality (4.7), the MSE for the parameter estimates obtained with any

Bayesian identification method can be compared against the theoretical lower bound. A

systematic approach to compare and analyse the MSE and PCRLB is discussed next.

4.4 PCRLB inequality based error analysis

A common approach to compute θ̂t|t ∈ Rq, is to minimize Tr[P θ
t|t] ∈ R+. This ensures

that Tr[P θ
t|t − Lθt ] ≥ 0 is minimized. The optimal estimate that minimizes Tr[P θ

t|t] ∈ R+

is referred to as the minimum MSE (MMSE) estimate, and is the conditional mean of

θt|(Y1:t = y1:t) ∼ p(·|y1:t), i.e., θt|t = θ?t|t , Ep(θt|Y1:t)[θt] (see (Trees, 1968) for derivation).

Remark 4.4.1. Bayesian identification methods only approximate the true density

{p(θt|y1:t)}t∈N, thus in practice, the estimate delivered by identification methods may not

be an MMSE estimate, i.e., θ̂t|t , Ep̃(θt|Y1:t)[θt] 6= θ?t|t almost surely, where θ̂t|t is the mean

of θt|(Y1:t = y1:t) ∼ p̃(·|y1:t) and {p̃(θt|y1:t)}t∈N is the approximate posterior.

The second-order error associated with {θt|t}t∈N is completely characterized by its MSE.

A thorough assessment of Bayesian estimates requires clear understanding of the MSE. The

next theorem shows decomposition of the MSE into its sources of errors.

Theorem 4.4.2. Let θ?t|t ∈ Rq and V ?
t|t ∈ Sq++ be the mean and covariance of

θt|(Y1:t = y1:t) ∼ p(·|y1:t) and θ̂t|t ∈ Rq be the mean of θt|(Y1:t = y1:t) ∼ p̃(·|y1:t)

computed by a Bayesian identification method, then for θ̂t|t 6= θ?t|t almost surely, P θ
t|t at
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t ∈ N can be decomposed and written as

P θ
t|t = Ep(Y1:t)[V

?
t|t] + Ep(Y1:t)[B

?
t|t[B

?
t|t]

T ], (4.9)

where B?
t|t , [θ?t|t − θ̂t|t] ∈ Rq is the conditional bias in estimating the true conditional

mean θ?t|t ∈ Rq at t ∈ N.

Proof. The proof is adapted from (Tulsyan et al., 2013c). From the definition of

expectation, MSE in (4.7) can be written as P θ
t|t = Ep(Y1:t)Ep(θt|Y1:t)[(θt − θ̂t|t)(θt − θ̂t|t)T ],

where we have used p(θt, y1:t) = p(y1:t)p(θt|y1:t). Adding and subtracting θ?t|t in P θ
t|t,

followed by several algebraic manipulations yield P θ
t|t = Ep(Y1:t)Ep(θt|Y1:t)[F

?
t|t + G?

t|t +

[G?
t|t]

T + B?
t|t[B

?
t|t]

T ], where F ?
t|t = [θt − θ?t|t][θt − θ?t|t]

T ; G?
t|t = [θt − θ?t|t][θ

?
t|t −

θ̂t|t]
T . Now Ep(θt|Y1:t)[F

?
t|t] = V ?

t|t; Ep(θt|Y1:t)[G
?
t|t] = 0, since Ep(θt|Y1:t)[θt − θ?t|t] = 0; and

Ep(θt|Y1:t)[B
?
t|t][B

?
t|t]

T = [B?
t|t][B

?
t|t]

T , since [B?
t|t][B

?
t|t]

T is independent of θt|(Y1:t = y1:t).

Substituting the results into P θ
t|t yields (4.9), which completes the proof.

Note that Theorem 4.4.2 is the Bayesian equivalent of the classical MSE decomposition

results available for the likelihood based estimators. Using Theorem 4.4.2, bias in the

Bayesian parameter estimates {θt|t}t∈N is defined next.

Definition 4.4.3. {θt|t}t∈N ∈ Rq is unconditionally unbiased if Ep(Y1:t)[B
?
t|t] = 0, and

conditionally unbiased if B?
t|t = 0 almost surely. The estimate which is both conditionally

and unconditionally unbiased is an unbiased estimate.

Bias in θt|t ∈ Rq can be similarly defined as Definition 4.4.3. The condition under which

an identification method delivers unbiased parameter estimate is discussed next.

Theorem 4.4.4. Let θ̂t|t ∈ Rq be the estimate of θ?t|t ∈ Rq, as computed by an identification

method, where θ?t|t ∈ Rq is the mean of θt|(Y1:t = y1:t) ∼ p(·|y1:t), and let B?
t|t ∈ Rq be the

corresponding conditional bias, then B?
t|t = 0 almost surely is only a necessary condition

for Ep(Y1:t)[B
?
t|t] = 0, but necessary and sufficient for Ep(Y1:t)[B

?
t|t[B

?
t|t]

T ] = 0.
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Proof. See (Tulsyan et al., 2013c) for proof.

Remark 4.4.5. Theorem 4.4.4 shows that if the parameter estimate θ̂t|t ∈ Rq is

unconditionally unbiased, it does not imply it is unbiased as well, but if it is conditionally

unbiased, it implies θ̂t|t ∈ Rq is unbiased as well.

The MSE for an unbiased estimate θ̂t|t ∈ Rq is given next.

Corollary 4.4.6. Let θ̂t|t ∈ Rq be the estimate of the mean of θt|(Y1:t = y1:t) ∼ p(·|y1:t)

computed by a Bayesian identification method, such that B?
t|t = 0 almost surely, then the

MSE associated with θ̂t|t ∈ Rq is P θ
t|t = Ep(Y1:t)[V

?
t|t].

Proof. Since B?
t|t = 0 almost surely is a necessary and sufficient condition for

Ep(Y1:t)[B
?
t|t[B

?
t|t]

T ] = 0 (see Theorem 4.4.4), substituting Ep(Y1:t)[B
?
t|t[B

?
t|t]

T ] = 0 into (4.9)

gives P θ
t|t = Ep(Y1:t)[V

?
t|t], which completes the proof.

Efficiency of a Bayesian identification method is defined next.

Definition 4.4.7. A Bayesian identification method delivering an estimate θ̂t|t ∈ Rq is

efficient at t ∈ N if the estimate satisfies the equality Tr[P θ
t|t − Lθt ] = 0.

Theorem 4.4.8. Let θ̂t|t ∈ Rq be the estimate of θ?t|t ∈ Rq computed by a Bayesian method,

and letB?
t|t ∈ Rs be the conditional bias in estimating θ?t|t ∈ Rq, thenB?

t|t = 0 almost surely

is both necessary and sufficient condition for the identification method to be efficient.

Proof. For θ̂t|t ∈ Rq satisfying B?
t|t = 0 almost surely, the MSE is given by

P θ
t|t = Ep(Y1:t)[V

?
t|t] (see Corollary 4.4.6). Since P θ

t|t only depends on V ?
t|t, which is the

covariance of θt|(Y1:t = y1:t) ∼ p(·|Y1:t), P θ
t|t cannot be reduced any further i.e., P θ

t|t = Lθt .

Thus from Definition 4.4.7 the estimator delivering θ̂t|t ∈ Rq is efficient at t ∈ N.

Finally, the procedure to systematically assess the quality of the parameter estimates

obtained with any Bayesian identification method is summarized in the next theorem.
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Theorem 4.4.9. Let Lθt ∈ Sq++ be the PCRLB on Model 4.2.1, and let θ?t|t ∈ Rq and

V ?
t|t ∈ Sq++ be the mean and covariance of θt|(Y1:t = y1:t) ∼ p(·|y1:t). Now if θ̂t|t ∈ Rq

is an estimate of θ?t|t ∈ Rq, as computed by an identification method, such that B?
t|t ∈ Rq is

the conditional bias in estimating θ?t|t ∈ Rq, then for P θ
t|t ∈ Sq++ as the associated MSE, the

quality of the estimate θ̂t|t ∈ Rq can be assessed as follows:

(a) If B?
t|t = 0 almost surely, then the PCRLB inequality (4.7) is given by

P θ
t|t = Ep(Y1:t)[V

?
t|t] = Lθt , (4.10)

which implies the identification method is efficient, and the corresponding estimate

θ̂t|t ∈ Rq is unbiased and MMSE.

(b) If B?
t|t 6= 0 almost surely, then the PCRLB inequality (4.7) is given by

P θ
t|t = Ep(Y1:t)[V

?
t|t] + Ep(Y1:t)[B

?
t|t[B

?
t|t]
′] � Lθt , (4.11)

which implies the identification method is not efficient, and the estimate θ̂t|t ∈ Rq is biased

(only conditionally biased if Ep(Y1:t)[B
?
t|t] = 0) and not an MMSE estimate.

Proof. The proof is based on the collective developments of Section 4.4, and is omitted

here for the sake of brevity.

The PCRLB inequality based error analysis tool developed in this section allows

for assessment of parameter estimates obtained with Bayesian identification methods;

however, obtaining a closed form solution to (4.7) is non-trivial for Model 4.2.1. Use

of numerical methods is discussed next.

4.5 Numerical methods

It is well known that computing the MSE and PCRLB in (4.7) in closed form is non-trivial

for the model considered in (4.3) (see (Tichavský et al., 1998; Bergman, 2001)). This is

because of the complex, high-dimensional integrals in the MSE with respect to p(θt, y1:t)
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(see Corollary 4.3.6) and in the PCRLB with respect to p(x0:t, θt−1, y1:t) (see (4.6a) through

(4.6f)) do not admit any analytical solution.

To address this issue, we use Monte Carlo (MC) perfect sampling to numerically

compute the MSE and PCRLB in (4.7). For the sake of brevity, a detailed procedure for

MC approximation of the PCRLB is not provided here, but can be found in (Tulsyan et

al., 2013a); however, for completeness, we provide the following example.

Example 4.5.1. Simulating samples {(θt = θjt , Y1:t = yj1:t)}Mj=1 ∼ p(θt, y1:t),M times using

Model 4.2.1, starting at M i.i.d. initial draws from {θ0}Mi=1 ∼ p(θ0) and computing the

estimates {θjt|t}Mj=1, the MSE P θ
t|t at t ∈ N can be approximated as

P̃ θ
t|t =

1

M

M∑

j=1

(θjt − θjt|t)(θ
j
t − θjt|t)T , (4.12)

where P̃ θ
t|t ∈ Sq++ is an M -sample MC estimate of P θ

t|t.

Since (4.12) is based on perfect sampling, using strong law of large numbers

P̃ θ
t|t

a.s.−−→ P θ
t|t as M → +∞, where a.s.−−→ denotes almost sure convergence (see (Moral,

2004)). Note that L̃θt , which is an M -sample MC estimate of Lθt can also be similarly

approximated using MC sampling. Details are omitted here, but can be found in (Tulsyan

et al., 2013a). There are practical issues with the use of MC methods, as given next.

Remark 4.5.2. With M < +∞, the MC estimate of the MSE and PCRLB may not

necessarily satisfy the positive semi definite condition P̃ θ
t|t − L̃θt < 0 for all t ∈ N.

Remark 4.5.3. Since M < +∞, the conditions in Theorem 4.4.9 are relaxed to |B?
t|t| ≤ ε

and |Ep(Y1:t)[B
?
t|t]| ≤ α, and ε ∈ Rq

+ and α ∈ Rq
+ are pre-defined tolerance levels set based

on M and the required degree of accuracy.

Remark 4.5.4. An identification method satisfying |B?
t|t| ≤ ε is ε-efficient at t ∈ N and

the corresponding estimate is ε-unbiased and ε-MMSE (see Theorem 4.4.9(a)). Similarly,

if the estimate only satisfies |Ep(Y1:t)[B
?
t|t]| ≤ α, then it is α-unconditionally unbiased (see

Theorem 4.4.9(b)).
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4.6 Final algorithm

A systematic approach to assess the quality of a Bayesian identification method, proposed

in Sections 4.3 through 4.5 is formally outlined in Algorithm 5.

4.7 Numerical illustration

In this section we use a simulated system to assess the quality of a Bayesian identification

method using the procedure outlined in Algorithm 5. A brief introduction to the

identification method considered here, is given next.

4.7.1 Bayesian identification: artificial dynamics approach

Artificial dynamics approach (ADA) is a popular Bayesian identification method to

compute {p(θt|y1:t)}t∈N. In ADA, artificial dynamics is introduced to the otherwise static

parameters, such that {θt}t∈N in (4.3b) evolves according to

θt+1|θt ∼ N (·|θt, Qθ
t ), (4.13)

where θt+1|θt ∼ N (·|θt, Qθ
t ) is a sequence of independent Gaussian random variable,

realized independent of {Vt}t∈N and {Wt}t∈N. By appending (4.3a) and (4.3c) with (4.13),

methods such as SMC, EKF, UKF can be used to recursively compute {p(θt|y1:t)}t∈N. A

detailed review on ADA can be found in (Tulsyan et al., 2013b; Kantas et al., 2009).

Even though ADA is the most widely used approach amongst the class of Bayesian

identification methods, there are several standing limitations of this approach as

summarized in (Kantas et al., 2009) (a) the dynamics of {θt}t∈N in (4.13) is related to the

artificial noise covariance Qθ
t , which is often difficult to tune; and (b) adding dynamics

to {θt}t∈N modifies the original problem, which means, it is hard to quantify the bias

introduced in the parameter estimates.

For the former problem, (Tulsyan et al., 2013b) proposed an optimal rule to tune Qθ
t for
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Algorithm 5 Analysis of Bayesian identification methods
Module 1: Computing the lower bound for Model 4.2.1

Input: Given Model 4.2.1, define Zt = {Xt, θt} and assume a prior density on
{Zt}t∈N, such that (Z0 = z0) ∼ p(z0)
Output: Lower bound on the system in Model 4.2.1

1: Generate M i.i.d. samples from the assumed prior density Z0 ∼ p(·), such that
{(Z0 = zi0)}Mi=1 ∼ p(zi0)

2: for t = 1 to T do
3: Generate M random samples from the state {Xt = xit|(Zt−1 = zt−1)}Mi=1 ∼

p(xit|zt−1) using (4.3a)
4: Generate M random samples from the parameters {θt = θit|(Zt−1 = zt−1)}Mi=1 ∼

p(θit) using (4.3b). Note that in this step θit = θi0 for all 1 ≤ i ≤M (see (4.3b))
5: Generate M random samples from the measurements {Yt = yit|(Zt = zit)}Mi=1 ∼

p(yit|zit) using (4.3c)
6: Compute an M -sample MC estimate of J̃zt
7: Compute an M -sample MC estimate of L̃θt
8: end for

Module 2: Computing Bayesian parameter estimates
Input: Measurement sequences from Module 1, denoted as {(Y1:T = yi1:T )}Mi=1 and
a Bayesian identification method, which can compute {p(θt|y1:t)}t∈N (e.g., SMC,
MCMC, EKF, and UKF)
Output: Parameter estimates

9: for i = 1 to M do
10: for t = 1 to T do
11: Compute p(θt|yi1:t) using an identification method and denote density

approximation by p̃(θt|yi1:t)
12: Using p̃(θt|yi1:t), compute parameter point estimate as θit|t = Ep̃(θt|Y i1:t)

[θt]
13: end for
14: end for

Module 3: Error Analysis of Bayesian identification method
Input: Parameter sequences from Module 1, denoted by {(θ1:T = θi1:T )}Mi=1 and their
estimates from Module 2, denoted as {(θt|t = θit|t)}M,T

i=1,t=1. Matrices L̃θt ∈ Sq++ and
P̃ θ
t|t ∈ Sq++ and tolerance level ε ∈ Rq

+ and α ∈ Rq
+

Output: Error analysis of identification method
15: for t = 1 to T do
16: Compute an M -sample MC estimate of P̃ θ

t|t

17: Compare P̃ θ
t|t against L̃θt

18: Compute {B?,i
t|t }Mi=1 and compare against ε ∈ Rq

+

19: Compute an M-sample MC estimate of Ep(Y1:t)[B
?
t|t] and compare against α ∈ Rq

+

20: Use Theorem 4.4.9 for error analysis
21: end for
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all t ∈ N; however, for the later problem, we will see how the developments of this chapter

can be used to assess the quality of ADA based Bayesian methods.

4.7.2 Simulation setup

Consider a univariate, non stationary, non-linear stochastic SSM (Tulsyan et al., 2013a)

Xt+1 = aXt +
Xt

b+X2
t

+ ut + Vt, Vt ∼ N (0, Qt), (4.14a)

Yt = cXt + dX2
t +Wt, Wt ∼ N (0, Rt), (4.14b)

where θ , [a b c d] is a vector of unknown static model parameters. The noise covariances

are constant, and selected as Qt = 10−3 and Rt = 10−3 for all t ∈ [1, T ], where T = 300.

{ut}t∈[1,T ] is a sequence of optimal input (see (Tulsyan et al., 2013a)). For Bayesian

identification of θ, we define {θt = θt−1}t∈[1,T ] = θ as a stochastic process, such that

Zt = {Xt, θt} is a Z valued extended Markov process with Z0 ∼ N (zm, zc), where

zm = [1 0.7 0.6 0.5 0.4], zc = diag(0.01, 0.01, 0.01, 0.01, 0.01). Starting at t = 0, we are

interested in assessing the ADA based SMC method proposed in (Tulsyan et al., 2013b).

4.7.3 Results

Using M = 1000 MC simulations, we compute the PCRLB for (4.14) using Module 1 of

Algorithm 5. Figure 4.1 gives the diagonal entries of {L̃θt}t∈[1,T ]. Note that amongst the

four PCRLBs, the PCRLB for b is the highest for all t ∈ [1, T ]. This suggest estimation

difficulties with parameter b. This result is not surprising, since (4.14) is non-linear in

parameter b; however, the overall decaying trend of PCRLBs in Figure 4.1 suggests that

starting with θ0 ∼ p(θ0), theoretically, it is possible for a Bayesian identification method to

reduce the MSE associated with the parameter estimates. Figure 4.2 compares the PCRLB

against the MSE for b and d, computed using Module 2 of Algorithm 5. Despite the MC

approximations involved, the MSE is greater than the PCRLB at all sampling time instants

(see Remark 4.5.2) and Figure 4.2). It is instructive to highlight that at T = 300, the MSE



Sec. 4.7 Numerical illustration 96

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9

10
x 10

−5

Time (in sec)

P
C

R
LB

 

 

a
b
c
d

Figure 4.1: PCRLB for parameters as a function of time. Note that the vertical axis has
been appropriately scaled for clarity.
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Figure 4.2: Comparing PCRLB against the MSE computed using the ADA based SMC
identification method. Graphs are shown only for parameters b and d. Results for a and c
are similar.
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associated with the estimation of d is about 89% less than that for b, which validates the

claim made earlier about estimation difficulties with parameter b. It is also important to

point that for the ADA based SMC method, Tr[P̃ θ
t|t − L̃θt ] 6= 0 for all t ∈ [1, T ]. Since the

ADA based SMC method fails to satisfy the condition in Definition 4.4.7, it is not efficient,

and therefore requires error analysis.

Figures 4.3 and 4.4 give the conditional and unconditional bias with ADA based SMC

method. The results are obtained using Module 3 of Algorithm 5. Based on an assumed

tolerance level ε = [0.01; 0.01; 0.01; 0.01] and α = [0.001; 0.001; 0.001; 0.001], in the

interval t = [1, 50], less than 70% of the simulations are within the specified ε limit

(see Figure 4.3). Thus from Theorem 4.4.9(b), for t = [1, 50], the ADA based SMC

method is not even ε-efficient, and fails to yield ε-unbiased (except for d, which is α-

unconditionally unbiased, see Figure 4.4) or ε-MMSE estimates. Another interesting

interval is t = [100, T ]; wherein, more than 70% of the simulations are within the specified

ε limit (except for parameter b, where only 60% of simulations are within ε, see Figure

4.3). Thus from Theorem 4.4.9(a), the ADA based SMC method is ε-efficient for all the

parameters, except for b, and the resulting estimates are ε-unbiased and ε-MMSE; whereas,

for b, the estimates are are not MMSE, but are α-unconditionally unbiased.

In summary, the results suggest that for model given in (4.14), the ADA based SMC

method at t = T yields ε-unbiased, ε-MMSE estimates for all the parameters, except for

parameter b, which is only α-unconditionally unbiased.

4.8 Conclusions

A PCRLB based approach is proposed for error analysis in Bayesian identification methods

of non-linear SSMs. Using the proposed tool it was illustrated how the quality of

the parameter estimates obtained using artificial dynamics approach, which is a popular

Bayesian identification method can be assessed in terms of bias, MSE and efficiency.
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Figure 4.3: Conditional bias in parameter estimates with ADA based SMC method. The
broken red line is the ε value.
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Figure 4.4: Unconditional bias in parameter estimates with ADA based SMC method. The
broken red line is the α value.
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Chapter 5

Input design for Bayesian identification
of non-linear state-space models

We propose an algorithm for designing optimal inputs for on-line Bayesian identification

of stochastic non-linear state-space models. The proposed method relies on minimization

of the posterior Cramér Rao lower bound derived for the model parameters, with respect to

the input sequence. To render the optimization problem computationally tractable, the

inputs are parametrized as a multi-dimensional Markov chain in the input space. The

proposed approach is illustrated through a simulation example.

5.1 Introduction

Bayesian system identification has a long history, dating at least as far back as (Peterka,

1981). Despite this, it is not commonly used in practice, except for the linear, Gaussian

state-space model (SSM) case; wherein, Kalman filter-based Bayesian estimation is

routinely employed (Ninness and Henriksen, 2010). This is due to the computational

complexities associated with the computation of the posterior densities, their marginals,

and associated functions, such as posterior mean and variance (Juloski et al., 2005).

Over the last decade, great progress has been made within the statistics community

This chapter has been submitted to Tulsyan, A., S.R. Khare, B. Huang, R.B. Gopaluni and J.F. Forbes
(2013). Bayesian identification of non-linear state-space models: Part I-Input design. In: Proceedings of the
10th IFAC International Symposium on Dynamics and Control of Process Systems. Mumbai, India. Accepted
for publication.
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in overcoming the computational issues, and making Bayesian identification tractable

for a wide range of complicated models arising in demographic and population studies,

image processing, and drug response modelling (Gilks et al., 1995). Recent developments

in methods, such as sequential Monte Carlo (SMC) and Markov chain Monte Carlo

(MCMC) along with advances in computing have allowed researchers to use Bayesian

methods in both on-line (Tulsyan et al., 2013b; Chen et al., 2005) and off-line (Jones

et al., 2011; Geweke and Tanizaki, 2001) identification of stochastic state-space models

(SSMs). An exposition of off-line and on-line Bayesian methods for identification of non-

linear SSMs can be found in a recent review paper by (Kantas et al., 2009).

This chapter is directed towards the class of on-line methods for Bayesian identification

of stochastic non-linear SSMs, the procedure for which is briefly introduced here first.

Let {Xt}t∈N and {Yt}t∈N be X (⊆ Rn) and Y(⊆ Rm) valued stochastic processes, and let

{ut}t∈N be the sequence of inputs in Rp, such that the state {Xt}t∈N is an unobserved or

unmeasured process, with initial density pθ(x) and transition density pθ(x′|x, u):

X0 ∼ pθ(x0); Xt+1|(xt, ut) ∼ pθ(xt+1|xt, ut) (t ∈ N). (5.1)

{Xt}t∈N is an unobserved process, but is observed through {Yt}t∈N, such that {Yt}t∈N is

conditionally independent given {Xt, ut}t∈N, with marginal density pθ(y|x, u):

Yt|(xt, ut) ∼ pθ(yt|xt, ut) (t ∈ N). (5.2)

θ in (5.1) and (5.2) is a vector of unknown model parameters, such that θ ∈ Θ is an open

subset of Rq. All the densities are with respect to suitable dominating measures, such as

Lebesgue measure. (5.1) and (5.2) represent a wide class of non-linear time-series models,

the model form and the assumptions considered in this chapter are given below.

Model 5.1.1. Consider a discrete-time, stochastic non-linear SSM:

Xt+1 =ft(Xt, ut, θt, Vt); (5.3a)

Yt =gt(Xt, ut, θt,Wt), (5.3b)
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where: {θt+1 = θt}t∈N = θ is a vector of unknown static model parameters, and {Vt}t∈N
and {Wt}t∈N are state and measurement noise sequences.

Assumption 5.1.2. {Vt}t∈N and {Wt}t∈N are mutually independent sequences of

independent random variables known a priori in their distribution classes (e.g., Gaussian)

and parametrized by a known and finite number of moments.

Assumption 5.1.3. {ft; gt}t∈N are such that in the open sets X and Θ, {ft; gt}t∈N is Ck(X )

and Ck(Θ), respectively, and in Rp, {ft; gt}t∈N is Ck−1(Rp), and in Rn and Rm, {ft}t∈N is

Ck−1(Rn), and {gt}t∈N is Ck−1(Rm), where k ≥ 2.

Assumption 5.1.4. For any random sample (xt+1, xt, ut, θt, vt) ∈ X × X × Rp ×Θ× Rn

and (yt, xt, ut, θt, wt) ∈ Y × X × Rp × Θ× Rm satisfying (5.3), ∇vtf
T
t (xt, ut, θt, vt) and

∇wtg
T
t (xt, ut, θt, wt) have rank n and m, respectively, such that using implicit function

theorem, pθ(xt+1|xt, ut) = p(Vt = f̃t(xt, ut, θt, xt+1)) and pθ(yt|xt, ut) = p(Wt =

g̃t(xt, ut, θt, yt)) do not involve any Dirac delta functions.

For a generic sequence {rt}t∈N, let ri:j , {ri, ri+1, . . . , rj}. Let θ? ∈ Θ ⊆ Rq be the

true, but unknown parameter vector generating a measurement sequence {Y1:t = y1:t}t∈N
given {u1:t}t∈N, such that Xt+1|(xt, ut) ∼ pθ?(xt+1|xt, ut) and Yt|(xt, ut) ∼ pθ?(yt|xt, ut).

In Bayesian identification of Model 5.1.1, the problem of estimating the parameter

vector θ? ∈ Θ ⊆ Rq in real-time, given a sequence of input-output data {u1:t, y1:t}t∈N is

formulated as a joint state and parameter estimation problem. This is done by ascribing a

prior density θ0 ∼ p(θ0), such that θ? ∈ supp p(θ0), and computing {p(zt|u1:t, y1:t)}t∈N,

where: Zt , {Xt; θt} is a Z(⊆ Rs=n+q) valued extended Markov process with Z0 ∼

pθ0(x0)p(θ0) and Zt|(zt−1, ut−1) ∼ pθt−1(xt|xt−1, ut−1)δθt−1 (θt). The inference on {θt}t∈N
then relies on the marginal posterior {p(θt|u1:t, y1:t)}t∈N. Although a recursive method to

compute {p(zt|U1:t, Y1:t)}t∈N is given by the optimal filtering equation, computing it or its

marginal density for Model 5.1.1, in closed-form is non-trivial (Tulsyan et al., 2013b).



Sec. 5.1 Introduction 105

There are several Bayesian methods, such as SMC, MCMC, extended Kalman filter

(EKF) and unscented Kalman filter (UKF), which allow for recursive approximation of

{p(zt|U1:t, Y1:t)}t∈N. Note that by a judicious choice of the input sequence {u1:t}t∈N,

{p(zt|u1:t, y1:t)}t∈N can be ‘steered’ in order to yield {p(θt|u1:t, y1:t)}t∈N, which gives

more accurate inference on {θt}t∈N. This is called the input design problem for Bayesian

identification or simply, the Bayesian input design problem. A detailed review on this

subject can be found in (Chaloner and Verdinelli, 1995).

Bayesian input design for linear and non-linear regression models is an active area of

research (see (Huan and Marzouk, 2012; Kück et al., 2006; Müller and Parmigiani, 1995)

and references cited therein); however, its extension to SSMs has been limited. Recently,

Bayesian input design procedure for non-linear SSMs, where {Xt}t∈N is completely

observed was developed by (Tulsyan et al., 2012). Despite the success with regression

models, to the best of authors’ knowledge, no known Bayesian input design methods are

available for identification of stochastic non-linear SSMs. This is due to the unobserved

state process {Xt}t∈N, which makes the design problem difficult to solve.

This chapter deals with the Bayesian input design for identification of stochastic non-

linear systems given by Model 5.1.1. The proposed method is based on minimization

of the posterior Cramér-Rao lower bound (PCRLB), derived by (Tichavský et al., 1998).

First, we use Monte Carlo (MC) methods to obtain an approximation of the PCRLB, and

then parametrize the inputs as a multi-dimensional Markov chain in Rp, to render the

optimization problem computationally tractable. Markov chain parametrization not only

allows to include amplitude constraints on the input, it can be easily implemented using a

standard PID controller or any other regulator. The notation used here is given next.

Notation: N := {1, 2, . . . }; N0 := {0} ∪ N; Rs×s is the set of real-valued s× s matrices

of cardinality Card(Rs×s); Ss ⊂ Rs×s is the space of symmetric matrices; Ss+ is the cone

of symmetric positive semi-definite matrices in Ss; and Ss++ is its interior. The partial order
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on Ss induced by Ss+ and Ss++ are denoted by < and �, respectively. Fs×s ⊂ Rs×s is a set

of s × s stochastic matrix. For A ∈ Rs×s, Tr[A] denotes its trace. For vectors x ∈ Rp,

y ∈ Rp, and z ∈ Rp, x ≤ y ≤ z denotes element-wise inequality, and diag(y) ∈ Sp is a

p×p diagonal matrix with elements of y ∈ Rp as its diagonal entries. Finally, ∆y
x , ∇x∇T

y

is a Laplacian and∇x ,
[
∂
∂x

]
is a gradient.

5.2 Problem formulation

Bayesian input design for regression models is a well studied problem in statistics

(Chaloner and Verdinelli, 1995); wherein, the problem is often formulated as follows

ψ(u?1:N) = max
u1:N∈RpN

N∑

t=1

Ep(θt,Y1:t|u1:t)[ψ(Y1:t, u1:t, θt)] (5.4)

where {u?1:N}N∈N is an N -step ahead optimal input sequence, and ψ(·) is a utility function.

When inference on {θt}t∈N is of interest, (Lindley, 1956) suggested using the mean-square

error (MSE) as a utility function, such that

ψ(u?1:N) = max
u1:N∈RpN

N∑

t=1

−Φ(P θ
t|t(u1:t)), (5.5)

where P θ
t|t(u1:t) = Ep(θt,Y1:t|u1:t)[(θt − θ̂t|t)(θt − θ̂t|t)T ] is the MSE associated with the

parameter estimate given by θ̂t|t = Ep(θt|u1:t,Y1:t)[θt], and Φ : Sq++ → R is a test function.

Remark 5.2.1. For the model considered in Model 5.1.1, the marginal posterior density

{p(θt|u1:t, y1:t)}t∈N, or the expectation with respect to it, does not admit any analytical

solution, and thus, (5.5) cannot be computed in closed form.

Remark 5.2.2. Methods such as SMC and MCMC can be used to approximate

{p(θt|u1:t, y1:t)}t∈N; however, it makes the computation in (5.5) formidable (Kück et

al., 2006). Moreover, the input {u?1:N}N∈N is optimal only for the Bayesian estimator used

to approximate {p(θt|u1:t, y1:t)}t∈N.
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To address the issues in Remarks 5.2.1 and 5.2.2, we propose to define a lower bound on

the MSE first, and minimize the lower bound instead. The PCRLB, derived by (Tichavský

et al., 1998), provides a lower bound on the MSE associated with the estimation of {Zt}t∈N
from {p(zt|u1:t, y1:t)}t∈N, and is given in the next lemma.

Lemma 5.2.3. Let {Y1:t = y1:t}t∈N be an output sequence generated from Model

5.1.1 using {u1:t}t∈N, then the MSE associated with the estimation of {Zt}t∈N from

{p(zt|u1:t, y1:t)}t∈N is bounded from below by the following matrix inequality

P z
t|t , Ep(Zt,Y1:t|u1:t)[(Zt − Ẑt|t)(Zt − Ẑt|t)T ] < [Jzt ]−1, (5.6)

where: Ẑt|t = Ep(Zt|u1:t,Y1:t)[Zt] is an estimate of {Zt}t∈N; P z
t|t ,

[
P x
t|t P xθ

t|t
(P xθ

t|t )T P θ
t|t

]
∈ Ss++,

Jzt ,

[
Jxt Jxθt

(Jxθt )T Jθt

]
∈ Ss++, [Jzt ]−1 ,

[
Lxt Lxθt

(Lxθt )T Lθt

]
∈ Ss++ are the MSE, posterior

Fisher information matrix (PFIM), and PCRLB, respectively.

Proof. See (Tichavský et al., 1998) for proof.

A recursive approach to compute the lower bound {J−1
t }t∈N in Lemma 5.2.3 was derived

by (Šimandl et al., 2001; Tichavský et al., 1998), and is given next.

Lemma 5.2.4. Let a discrete-time, stochastic non-linear system be represented by Model

5.1.1, such that it satisfies Assumptions 5.1.2 through 5.1.4, then the PFIM {Jzt }t∈N for

Model 5.1.1 can be recursively computed as follows:

Jxt+1 = H33
t − (H13

t )T [Jxt +H11
t ]−1H13

t ; (5.7a)

Jxθt+1 = (H23
t )T − (H13

t )T [Jxt +H11
t ]−1(Jxθt +H12

t ); (5.7b)

Jθt+1 = Jθt +H22
t − (Jxθt +H12

t )T [Jxt +H11
t ]−1(Jxθt +H12

t ), (5.7c)

where:

H11
t = Ep(X0:t+1,θt,Y1:t+1|u1:t+1)[−∆Xt

Xt
log pt]; (5.8a)

H12
t = Ep(X0:t+1,θt,Y1:t+1|u1:t+1)[−∆θt

Xt
log pt]; (5.8b)

H13
t = Ep(X0:t+1,θt,Y1:t+1|u1:t+1)[−∆

Xt+1

Xt
log pt]; (5.8c)
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H22
t = Ep(X0:t+1,θt,Y1:t+1|u1:t+1)[−∆θt

θt
log pt]; (5.8d)

H23
t = Ep(X0:t+1,θt,Y1:t+1|u1:t+1)[−∆

Xt+1

θt
log pt]; (5.8e)

H33
t = Ep(X0:t+1,θt,Y1:t+1|u1:t+1)[−∆

Xt+1

Xt+1
log pt]; (5.8f)

Also: pt = p(Xt+1|Zt, ut) p(Yt+1|θt, Xt+1, ut+1); and J0 = Ep(Z0)[−∆Z0
Z0

log p(Z0)].

Proof. See (Šimandl et al., 2001; Tichavský et al., 1998) for proof.

Using Lemmas 5.2.3 and 5.2.4, a bound on the MSE associated with estimation of

unknown model parameters {θt}t∈N can also be derived, as given next.

Corollary 5.2.5. Let P z
t|t ∈ Ss++, [Jzt ]−1 ∈ Ss++ be such that they satisfy the PCRLB

inequality (5.6), then the MSE associated with the point estimation of {θt}t∈N, computed

from {p(θt|u1:t, y1:t)}t∈N, is bounded from below by the following matrix inequality

P θ
t|t = Ep(θt,Y1:t|u1:t)[(θt − θ̂t|t)(θt − θ̂t|t)T ] < Lθt , (5.9)

where Lθt ∈ Sq++ is the lower-right sub-matrix of [Jzt ]−1 ∈ Ss++ in (5.6).

Proof. The proof is based on the fact that (5.6) ensures P z
t|t − [Jzt ]−1 ∈ Ss+.

A recursive approach to compute Lθt ∈ Sq++ is given next.

Theorem 5.2.6. Let Jzt ∈ Ss++ be the PFIM for model in Model 5.1.1 and Lθt ∈ Sq++ be

the lower bound on the MSE associated with the estimation of {θt}t∈N in Model 5.1.1, then

given Jzt ∈ Ss++, the lower bound Lθt ∈ Sq++ at t ∈ N can be computed as

Lθt = [Jθt − (Jxθt )T (Jxt )−1Jxθt ]−1, (5.10)

where Jθt , Jxθt and Jxt are the PFIMs given in Lemma 5.2.4.

Proof. The proof is based on the matrix inversion lemma (Bapat and Raghavan, 1997).

Remark 5.2.7. Theorem 5.2.6 shows that for Model 5.1.1, Lθt is not only a function of the

PFIM for {θt}t∈N, i.e., Jθt , but it also depends on the PFIMs for {Xt}t∈N, i.e., Jxθt and Jxt .
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Formulation 5.2.8. An N−step ahead input design problem for Bayesian identification of

{θt}t∈N in Model 5.1.1 can be formulated as follows

ψ(u?1:N) = min
u1:N∈RpN

N∑

t=1

Φ(Lθt (u1:t)) (5.11)

s.t. umin ≤ {ui}t∈[1,N ] ≤ umax,

where Lθt (u1:t) , Lθt ; and umax ∈ Rp and umin ∈ Rp are the maximum and minimum

magnitude of the input.

Remark 5.2.9. The optimization problem in Formulation 5.2.8 allows to impose magnitude

constraints on the inputs. Although constraints on (x0:N) ∈ XN+1 and (y1:N) ∈ YN are

not included, but if required, they can also be appended.

Remark 5.2.10. Integral in (5.8), with respect to p(x0:t, θt−1, y1:t|u1:t), makes (5.11)

independent of the random realizations from X t+1, Θ, and Y t. The optimization in (5.11)

in fact only depends on: the process dynamics represented in Model 5.1.1; noise densities

Vt ∼ p(vt) and Wt ∼ p(wt); and the choice of Z0 ∼ p(z0) and u1:N ∈ RpN . This makes

(5.11) independent of θ? ∈ Θ ⊆ Rq or the Bayesian estimator used for estimating {θt}t∈N.

Remark 5.2.11. Formulation 5.2.8 yields a sequence {u?1:N}N∈N, which is (a) optimal

for all the Bayesian identification methods that approximate {p(θt|u?1:t, y1:t)}t∈N; and (b)

independent of θ? ∈ Rq (see Remark 5.2.10), such that the resulting input {u?1:N}N∈N is

optimal for all θ? ∈ supp p(θ0).

Remark 5.2.12. The input design problem in Formulation 5.2.8 is an open-loop stochastic

control problem. In order to utilize feedback in implementation, (5.11) can also be

implemented using the open-loop feedback-control (OLFC) approach (see (Bertsekas,

1995)). This is done by using the information in the estimate of {θt}t∈[1,N ] to update

θ0 ∼ p(θ0). Note that we will not observe OLFC implementation here.
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There are two challenges that need to be addressed in order to make (5.11) tractable: (a)

computing the lower bound {Lθt}t∈N; and (b) solving the high-dimensional optimization

problem in RpN . Our approach to address the above challenges is discussed next.

5.3 Computing the lower bound

The first challenge is to compute the lower bound Lθt in (5.11). It is well known that

computing Lθt in closed form is non-trivial for the model form considered in Model 5.1.1

(see (Tichavský et al., 1998; Bergman, 2001)). This is because of the complex, high-

dimensional integrals in (5.8a) through (5.8f), which do not admit any analytical solution.

MC sampling is a popular numerical method to solve integrals of the form F (u1:t) =

Ep(X0:t|u1:t)[h(X0:t, u1:t)], where h : X t+1 × Rpt → R. Using M i.i.d. state trajectories

{X i
0:t|u1:t}Mi=1 ∼ p(x0:t|u1:t) generated from the density p(x0:t|u1:t), the probability

distribution p(x0:t|u1:t)dx0:t , p(dx0:t|u1:t), can be approximated as

p̃(dx0:t|u1:t) =
1

M

M∑

i=1

δXi
0:t|u1:t

(dx0:t), (5.12)

where p̃(dx) is a MC estimate of p(dx) and δx0(dx) is the Dirac delta. Substituting

(5.12) into F (u1:t), we get F̃ (u1:t) , F̃ ({X i
0:t|u1:t}Mi=1) =

∫
h(x0:t, u1:t)p̃(dx0:t|u1:t) =

1
M

∑M
i=1 h(X i

0:t, u1:t), where F̃ (u1:t) is an estimate of F (u1:t).

Remark 5.3.1. Using MC methods, the integrals in (5.8a) through (5.8f), with respect

to the density p(x0:t, θt−1, y1:t|u1:t) can be approximated by simulating M i.i.d. sample

paths {X i
0:t, θ

i
t−1, Y

i
1:t|u1:t}Mi=1 ∼ p(x0:t, θt−1, y1:t|u1:t) using Model 5.1.1, starting at M

i.i.d. initial positions drawn from {Zi
0}Mi=1 ∼ p(z0).

Model 5.3.2. Consider a SSM with additive Gaussian state and measurement noise

Xt+1 = ft(Xt, θt, ut) + Vt, (5.13a)

Yt = gt(Xt, θt, ut) +Wt, (5.13b)
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where {Vt}t∈N and {Wt}t∈N are mutually independent sequences of independent zero mean

Gaussian random variables, such that Vt ∼ N (vt|0, Qt) and Wt ∼ N (wt|0, Rt), where

Qt <∞ and Rt <∞ for all t ∈ N.

Note that for Model 5.3.2, using the Markov property of the states and conditional

independence of the measurements, the dimension of the integrals in (5.8a) through (5.8f)

can be reduced, as given in the next theorem.

Theorem 5.3.3. For a stochastic non-linear system represented by Model 5.3.2 and

satisfying Assumptions 5.1.2 through 5.1.4, (5.8a) through (5.8f) can be written as

H11
t =Ep(Xt,θt|u1:t+1)[∇Xtf

T
t (Xt, θt, ut)]Q

−1
t [∇Xtf

T
t (Xt, θt, ut)]

T ; (5.14a)

H12
t =Ep(Xt,θt|u1:t+1)[∇Xtf

T
t (Xt, θt, ut)]Q

−1
t [∇θtf

T
t (Xt, θt, ut)]

T ; (5.14b)

H13
t =Ep(Xt,θt|u1:t+1)[−∇Xtf

T
t (Xt, θt, ut)]Q

−1
t ; (5.14c)

H22
t =Ep(Xt,θt|u1:t+1)[∇θtf

T
t (Xt, θt, ut)]Q

−1
t [∇θtf

T
t (Xt, θt, ut)]

T

+ Ep(Xt+1,θt|u1:t+1)[∇θtg
T
t (Xt+1, θt, ut+1)]R−1

t+1[∇θtg
T
t (Xt+1, θt, ut+1)]T (5.14d)

H23
t =Ep(Xt,θt|u1:t+1)[−∇θtf

T
t (Xt, θt, ut)]Q

−1
t

+ Ep(Xt+1,θt|u1:t+1)[∇θtg
T
t (Xt+1, θt, ut+1)]R−1

t+1[∇Xt+1g
T
t (Xt+1, θt, ut+1)]T (5.14e)

H33
t =Q−1

t + Ep(Xt+1,θt|u1:t+1)[∇Xt+1g
T
t (Xt+1, θt, ut+1)]R−1

t+1[∇Xt+1g
T
t (Xt+1, θt, ut+1)]T

(5.14f)

Proof. (5.14a): First note that the matrix (5.8a) can be alternatively written as H11
t =

Ep(X0:t+1,θt,Y1:t+1|u1:t+1)[−∆Xt
Xt

log pt] = Ep(X0:t+1,θt,Y1:t+1|u1:t+1)[∇Xt log pt][∇Xt log pt]
T (see

(Tichavský et al., 1998)). On simplifying, we have H11
t = Ep(Xt+1|Xt,θt,ut)P (Xt,θt|u1:t+1)

[∇Xt log p(Xt+1|Xt, θt, ut)][∇Xt log p(Xt+1|Xt, θt, ut)]
T . This is

because ∇Xt log p(Yt+1|Xt+1, θt, ut+1) = 0. For Model 5.3.2, ∇Xt log p(Xt+1|Xt, θt, ut)

= [∇Xtf
T
t (Xt, θt, ut)] Q

−1
t [Xt+1 − ft(Xt, θt, ut)]

T . Substituting it into H11
t , and using

Ep(Xt+1|Xt,θt,ut)[Xt+1 − ft(Xt, θt, ut)][Xt+1 − ft(Xt, θt, ut)]
T = Qt, we have (5.14a). Note

that the expression in (5.14b) through (5.14f) can be similarly derived.
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Theorem 5.3.3 reduces the dimension of the integral in (5.8) for Model 5.3.2 from

(t + 1)(n + m) + s to s. Using MC sampling, (5.14a), for instance, can be computed as

H̃11
t = 1

M

∑M
i=1[∇Xtf

T (X i
t , θ

i
t, ut)]Q

−1
t [∇Xtf

T (X i
t , θ

i
t, ut)]

T . Here {X i
t , θ

i
t|u1:t+1}Mi=1 ∼

p(xt, θt|u1:t+1) and H̃11
t is an M -sample MC estimate of H11

t . Note that the MC estimates

of (5.14b) through (5.14f) can be similarly computed. Substituting the MC estimates of

(5.8a) through (5.8f) first into Lemma 5.2.4, and then into Theorem 5.2.6, yields

L̃θt = [J̃θt − (J̃xθt )T (J̃xt )−1J̃xθt ]−1, (5.15)

where L̃θt is an estimate of Lθt , and J̃θt , J̃xθt and J̃xt are the estimates of the PFIMs in Lemma

5.2.4. Finally, substituting (5.15) into (5.11) gives the following optimization problem

ψ̃(u?1:N) = min
u1:N∈RpN

N∑

t=1

Φ(L̃θt (u1:t)) (5.16a)

s.t. umin ≤ {ui}t∈[1,N ] ≤ umax. (5.16b)

Theorem 5.3.4. Let ψ(u?1:N) and ψ̃(u?1:N) be the optimal utility functions, computed by

solving the optimization problem in (5.11) and (5.16), respectively, then we have

ψ̃(u?1:N)
a.s.−−−−−→

M→+∞
ψ(u?1:N), (5.17)

where a.s.−−→ denotes almost sure convergence.

Proof. Since (5.15) is based on perfect MC sampling, using the strong law of large

numbers, we have L̃θt
a.s.−−→ Lθt as M → +∞. Equation (5.17) follows from this result,

which completes the proof.

A natural approach to solve (5.16) is to treat {u1:N}N∈N as a vector of continuous

variables in RpN ; however, this will render (5.16) computationally inefficient for large

N ∈ N. A relaxation method to make (5.16) tractable is given next.
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5.4 Input parametrization

To overcome the complications due to continuous valued input {ut}t∈N ∈ Rp, we discretize

the input space from Rp to U ⊆ Rp, such that Card(U) = r, where r = bp, and b ∈ N is

the number of discrete values for each input in R. If we denote U = {s1, . . . , sr}, then

umin ≤ si ≤ umax, for all 1 ≤ i ≤ r, such that (5.16) can be written as follows

ψ̃(u?1:N) = min
u1:N∈UN

N∑

t=1

Φ(L̃θt (u1:t)). (5.18)

Although {u1:N}N∈N in (5.18) is defined on a discrete input space UN of Card(UN) = rN ,

(5.18) is still intractable for large N ∈ N. To address this, a multi-dimensional Markov

chain input parametrization, first proposed by (Brighenti et al., 2009), is used here.

Definition 5.4.1. For k ∈ N0 and S := {k + 1, k + 2, · · · }, let {Ut}t∈S = {ut−k:t}k∈N0

be a Uk+1 valued first-order finite Markov chain, where Card(Uk+1) = rk+1, such that

the sample values of {Ut}k∈N0,t∈S\{k+1} ∈ Uk+1, depend on the past only through the

sample values of {Ut−1}t−1∈S ∈ Uk+1, such that for all {Ut}k∈N0,t∈S\{k+1} ∈ Uk+1 and

{Uk+1:t−1}k∈N0,t−1∈S ∈ U t−1, we have the following

Pr(Ut = {ut−k:t}|Uk:t−1 = {u1:t−1}) = PΠ(Ut = {ut−k:t}|Ut−1 = {ut−k−1:t−1}), (5.19)

where Pr(·) is probability, and PΠ ∈ Frk+1×rk+1
is a probability transition matrix.

In Definition 5.4.1, PΠ(Ut = s2)|Ut−1 = s1), where {s1, s2} ∈ Uk+1 represents the

probability that the Markov chain transits from {Ut−1}k∈N0,t−1∈S = s1 to the input state

{Ut}k∈N0,t∈S\{k+1} = s2. Consider the following example.

Example 5.4.2. For p = 1, k = 0, and b ∈ N, we have r = b and S = N, such that

{Ut}t∈S = {ut} is a Markov chain on the input space U = {s1, s2, . . . , sb} of Card(U) = b,

then the probability matrix PΠ ∈ Fb×b can be represented as

PΠ =




ps1,s1 ps1,s2 · · · ps1,sb
ps2,s1 ps2,s2 · · · ps2,sb

...
...

...
psb,s1 psb,s2 · · · psb,sb


 ,
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where psi,sj , PΠ(Ut = sj)|Ut−1 = si) ∀1 ≤ i, j ≤ b.

Example 5.4.3. For p = 1, k = 1, and b ∈ N, r = b and S = N \ {1}, such that {Ut}t∈S =

{ut−1:t} is a Markov chain on U2 = {{s1, s1}, {s1, s2}, . . . , {s2, s1}, . . . , {sb, sb}} of

Card(U2) = b2, then PΠ ∈ Fb2×b2 can be represented as

PΠ =




p{s1,s1},{s1,s1} p{s1,s1},{s1,s2} · · · p{s1,s1},{sb,sb}
p{s1,s2},{s1,s1} p{s1,s2},{s1,s2} · · · p{s1,s2},{sb,sb}

...
...

...
p{s1,sg},{s1,s1} p{s1,sg},{s1,s2} · · · p{s1,sg},{sg ,sg}
p{s2,s1},{s1,s1} p{s2,s1},{s1,s2} · · · p{s2,s1},{sg ,sg}

...
...

...
...

...
...

p{sg ,sg},{s1,s1} p{sg ,sg},{s1,s2} · · · p{sg ,sg},{sg ,sg}




.

where p{si,sj},{sl,sm} , PΠ(Ut = {si, sj})|Ut−1 = {sl, sm}) ∀1 ≤ i, j, l,m ≤ b.

Assumption 5.4.4. The Markov chain {Ut}t∈S = {ut−k:t}k∈N0 considered in Definition

5.4.1 is time-homogeneous.

Assumption 5.4.5. The Markov chain {Ut}t∈S = {ut−k:t}k∈N0 in Definition 5.4.1 has a

prior probability distribution Uk+1 ∼ PΓ({u1:k+1}), where PΓ is a 1× rk+1 vector.

Theorem 5.4.6. For k ∈ N0 and S := {k + 1, k + 2, · · · }, let {Ut}t∈S = {ut−k:t}k∈N0

be a Markov chain defined in Definition 5.4.1, and satisfying Assumptions 5.4.4 and

5.4.5, such thatUt|({ut−k−1:t−1}) ∼ PΠ({u1:k+1}|{ut−k−1:t−1}) for all t ∈ S \ {k + 1} and

Uk+1 ∼ PΓ({u1:k+1}) then {Uk+1:N}N∈N ∼ P k+1:N
Γ,Π has a probability distribution

P k+1:N
Γ,Π = PΓ({u1:k+1})

N∏

t=k+2

PΠ({ut−k:t}|{ut−k−1:t−1}). (5.20)

Proof. Using probability chain rule, Uk+1:N ∼ P k+1:N
Γ,Π can be written as

P k+1:N
Γ,Π = P ({u1:k+1}, {u2:k+2}, . . . , {uN−k:N})

=P ({uN−k:N}|{u1:k+1}, {u2:k+2}, . . . , {uN−k−1:N−1})

× P ({u1:k+1}, {u2:k+2}, . . . , {uN−k−1:N−1}), (5.21a)

=PΠk,r({uN−k:N}|{uN−k−1:N−1})P ({u1:k+1}, {u2:k+2}, . . . , {uN−k−1:N−1}), (5.21b)
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where in (5.21b), we have used the first-order Markov property of {Ut}t∈S. Noting the

time-homogeneous property of {Ut}t∈S and repeatedly appealing to the probability chain

rule in (5.21b), we get (5.20), which completes the proof.

Remark 5.4.7. From Theorem 5.4.6, it is clear that: (i) the sample values of the random

variables {Uk+1:N}k∈N0,N∈N is an ordered sequence constructed from {u1:N}N∈N; (ii)

the probability distribution of the sequence {Uk+1:N}k∈N0,N∈N given in (5.20) is uniquely

defined by PΠ and PΓ.

Formulation 5.4.8. Using Definition 5.4.1 and Theorem 5.4.6, the input design problem in

(5.18) can be reformulated to the following stochastic programming problem

ψ̃(U?
k+1:N) = arg min

PΠ,PΓ

{
k+1∑

t=1

Φ(EPΓ
[L̃θt ({Uk+1)]) +

N∑

t=k+2

Φ(EPk+1:t
Γ,Π

[L̃θt (Uk+1:t)])

}

(5.22a)

s.t. 0 ≤ PΠ(si|sj) ≤ 1 ∀ 1 ≤ i, j ≤ rk+1, (5.22b)
rk+1∑

i=1

PΠ(si|sj) = 1 ∀ 1 ≤ j ≤ rk+1, (5.22c)

0 ≤ PΓ(si) ≤ 1 ∀ 1 ≤ i ≤ rk+1, (5.22d)
rk+1∑

i=1

PΓ(si) = 1. (5.22e)

Note that the expectation in (5.22a), with respect to PΓ and P k+1:t
Γ,Π can again be

approximated using a perfect MC sampling, such that

P̃ k+1:t
Γ,Π =

1

Mu

Mu∑

i=1

δU ik+1:t
(Uk+1:t) (5.23)

where P̃ k+1:t
Γ,Π is a Mu-sample MC approximation of P k+1:t

Γ,Π . Now marginalizing (5.23),

with respect to {Uk+2:N}k∈N0,N∈N yields

P̃Γ =
1

Mu

Mu∑

i=1

δU ik+1
(Uk+1), (5.24)

where P̃Γ is a Mu-sample MC approximation of PΓ.
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Formulation 5.4.9. Substituting the MC approximation of P̃ k+1:t
Γ,Π and P̃Γ, given in (5.23)

and (5.24), respectively into (5.22a) in Formulation 5.4.8 yields

ψ(U?
k+1:N) = arg min

PΠ,PΓ

1

Mu

{
k+1∑

t=1

Φ

(
Mu∑

i=1

L̃θt (U
i
k+1)

)
+

N∑

t=k+2

Φ

(
Mu∑

i=1

L̃θt (U
i
k+1:t)

)}

(5.25a)

s.t. 0 ≤ PΠ(si|sj) ≤ 1 ∀ 1 ≤ i, j ≤ rk+1, (5.25b)
rk+1∑

i=1

PΠ(si|sj) = 1 ∀ 1 ≤ j ≤ rk+1, (5.25c)

0 ≤ PΓ(si) ≤ 1 ∀ 1 ≤ i ≤ rk+1, (5.25d)
rk+1∑

i=1

PΓ(si) = 1. (5.25e)

Note that solving the stochastic optimization problem in Formulation 5.4.9 yields

U?
k+1:N ∼ P k+1:N

Γ?,Π? , which is the optimal distribution of the input sequence.

Corollary 5.4.10. Let ψ(U?
k+1:N) and ψ̃(U?

k+1:N) be the optimal utility functions, computed

by solving the optimization problem in Formulations 5.4.8 and 5.4.9, respectively, then

ψ(U?
k+1:N)

a.s.−−−−−→
Mu→+∞

ψ̃(U?
k+1:N), (5.26)

where a.s.−−→ denotes almost sure convergence.

Proof. Proof is similar to Theorem 5.3.4.

Remark 5.4.11. There are several advantages of using the formulation given in (5.25): (a)

the optimization is independent of N ∈ N, as the number of parameters to be estimated

are rk+1(1 + rk+1); (b) easy to include magnitude and other transition constraints on

the inputs; and (c) samples from the optimal distribution can be easily sampled, and

implemented using a PID or any classical regulator; and (d) although the input is designed

in probability domain, the input spectrum is shaped by the choice of PΠk,r and PΓk,r (Bilardi

et al., 1983; Brighenti et al., 2009).
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Algorithm 6 Input design for Bayesian identification of Model 5.1.1
.

1: Choose an initial value for the input design parameters PΓ = P
(0)
Γ and PΠ = P

(0)
Π . Set

c← 0.
2: while converged do
3: for i = 1 to Mu do
4: Generate a random input sequence U i

k+1:N ∼ P k+1:N
Γ,Π using the distribution given

in (5.20).
5: Generate M random samples of states and parameters from the prior density

{Zj
0}Mj=1 ∼ p(z0).

6: for t = 1 to N do
7: Generate M random samples of the process states {Xj

t |(Zj
t−1, u

i
t−1)}Mj=1 ∼

p(xt|Zj
t−1, u

i
t−1) and parameters {θjt = θjt−1}Mj=1 using Model 5.1.1.

8: Generate M random samples of the measurements {Y j
t |(Zj

t , u
i
t)}Mj=1 ∼

p(yt|Zj
t , u

i
t) using Model 5.1.1.

9: Approximate the lower bound L̃θt using (5.15).
10: end for
11: end for
12: Evaluate the approximate cost function in (5.25a).
13: Use any standard constrained non-linear optimization algorithm to find a new input

design parameters PΓ = P
(c)
Γ and PΠ = P

(c)
Π . Set c← c+ 1.

14: end while

5.5 Final algorithm

In this chapter, the optimization problem in Formulation 5.4.9 is implemented through an

iterative approach, that involves standard numerical solvers (Nocedal and Wright, 2006).

The proposed method for input design, including the iterations in the optimization, is

summarized in Algorithm 6. Next we illustrate the efficacy of the input design procedure,

outlined in Algorithm 6 on a simulation example.

5.6 Numerical illustration

Consider a univariate, and non-stationary stochastic SSM (Tulsyan et al., 2013a)

Xt+1 = aXt +
Xt

b+X2
t

+ ut + Vt, Vt ∼ N (0, Qt), (5.27a)

Yt = cXt + dX2
t +Wt, Wt ∼ N (0, Rt), (5.27b)
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where θ , [a b c d] is a vector of model parameters to be estimated, with

θ? = [0.8 0.7 0.6 0.5] being the true parameter vector. The noise covariances are selected

as Qt = 0.01 and Rt = 0.01, for all t ∈ N. For Bayesian identification, {θt = θt−1}t∈N = θ

in (5.25) is a random process, with Zt = {Xt, θt}, such that Z0 ∼ N (zm, zc), where

zm = [1 0.7 0.6 0.5 0.4], zc = diag(0.01, 0.01, 0.01, 0.01, 0.01). Here we assume

that umin ≤ {ut}t∈N ≤ umax, where umin = −0.8 and umax = 0.8. Starting at t = 0, we

are interested in choosing an input sequence {u1:N}N∈N that would eventually lead to

minimization of the MSE of the parameter estimates, computed using an SMC based

Bayesian estimator given in (Tulsyan et al., 2013b). Algorithm 6 was implemented with

N = 100, M = 2000, and Mu = 2000. The input is parametrized according to Example

5.4.2, with g = 2, such that U = {umin, umax}. Here {Ut}t∈N = {ut} have the following

initial and transition probability

Case 1: PΓ = [p1 1− p1], PΠ =

[
p1 1− p1

1− p1 p1

]
; (5.28a)

Case 2: PΓ = [p1 1− p1], PΠ =

[
p1 1− p1

1− p2 p2

]
; (5.28b)

Case 3: PΓ = [p0 1− p0], PΠ =

[
p1 1− p1

1− p2 p2

]
, (5.28c)

where pi, where i = {0, 1, 2} in Cases 1 through 3 are the probabilities. For comparison

purposes, we also consider a pseudo-random binary signal, which can be represented as

Case 4: PΓ = [0.5 0.5], PΠ =

[
0.5 0.5
0.5 0.5

]
. (5.28d)

For all of the above cases, Φ(·) in (5.25a) was selected as the trace. Table 5.1 gives PΓ?

and PΠ? for Cases 1 through 3 as computed by Algorithm 6, and Figure 5.1(a) gives the

corresponding trace of the lower bound. It is clear from Table 5.1 and Figure 5.1(a) that

Case 3 yields the lowest objective function value. Although the objective value for Case 2

is comparable to Case 3; Case 3 provides the most general form of the Markov chain in U .

Figure 5.1(b) validates the quality of the designed inputs based on the performance of

the Bayesian estimator. From Figure 5.1(b), it is clear that with Case 3, the estimator yields
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Figure 5.1: (a) Trace of the approximate lower bound; (b) trace of the MSE. Magnification
of the key region of (a) is provided as inset.

the lowest trace of MSE at all sampling time. The same is also evident from Table 5.1;

wherein, the sum of the trace of MSE is smallest with Case 3 as the input. The Results

are based on 500 MC simulations, starting with 500 i.i.d. input path trajectories generated

from {U1:N} ∼ P 1:N
Γ?,Π? for Cases 1 through 4. If required, a more rigorous validation of the

designed input can be performed using the approach proposed in (Tulsyan et al., 2013a).

The results appear promising; however, we faced problems in solving the optimization.

As discussed earlier, (5.25) is a stochastic programming problem, as a result (5.25a) tends

to be non-smooth, and have many local minima. In future, we will consider use of

stochastic gradient-based methods.
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Table 5.1: Results as computed by Algorithm 6.

Case 1 Case 2 Case 3 Case 4
p0 N.A. N.A. 0.34 N.A.
p1 0.62 0.63 0.61 N.A.
p2 N.A. 0.92 0.72 N.A.

ψ(U?
1:100) 0.42 0.37 0.36 0.51∑100

t=1 Tr[P θ
t|t] 1.66 1.27 1.25 2.02

5.7 Conclusions

An algorithm for input design for Bayesian identification of stochastic non-linear SSM is

proposed. The developed algorithm is based on minimization of the PCRLB with respect

to inputs. One of the distinct advantages of the proposed method is that the designed input

is independent of the Bayesian estimator used for identification. Simulation results suggest

that the method can be used to deliver accurate inference on the parameter estimates.
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Chapter 6

Designing priors for robust Bayesian
optimal input design

Building mathematical models is a common task in process systems engineering; wherein,

parameter estimation is often the final step of the modelling exercise. Model based

input design has evolved as a potential statistical tool for reducing uncertainties in the

parameter estimates. Designing optimal experiments for parameter estimation in non-linear

dynamical systems is still an open research problem. Often a huge volume of process

information is generated as an end result of an experiment design. This chapter deals

with how information available a priori, can be organized and systematically used under

the Bayesian framework for designing optimal experiments. Several novel techniques for

organizing a priori process knowledge are also explored from a theoretical view point. The

influence of the proposed prior designs on parameter estimates is demonstrated on a semi-

continuous Baker’s yeast fermenter problem.

6.1 Introduction

In last few decades, dynamic modelling has attracted a lot of interest amongst researchers

in both academia and industries. These dynamic models are useful in describing the

underlying chemical, physical or biological laws governing the process. Thus, obtaining a

This chapter has been published in Tulsyan, A., J.F. Forbes and B. Huang (2012). Designing priors for
robust Bayesian optimal experimental design. Journal of Process Control 22(2), 450-462.
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reliable model is very important from product design, optimization and control perspective.

The capability of a model to mimic a real system, depends heavily on its structural

parameters, thereby making it of paramount interest to estimate them precisely. Both

parameter estimation and model validation exercises require sampling of appropriate

experimental data set; however, conducting experiments is expensive both in terms of time

and resources. This motivates the need to design informative input with limited resources

(e.g., materials, cost, analyses and time).

Classical input design methods aim at systematic minimization of the joint confidence

region formed by the estimates in the parameter space. Design criteria developed based on

this principle can be found in (Box and Lucas, 1959; Hill and Hunter, 1974). Earlier, the

research in input design was more focussed for linear and non-linear steady-state models

(Box and Lucas, 1959; Hill et al., 1968; Box, 1970). Later, (Draper and Hunter, 1966)

extended its use to multi-response models. Eventually, the potential of input design for

dynamical systems was recognized by (Mehra, 1974; Goodwin and Payne, 1977). Relevant

work in input design for identification of state-space models (SSMs) was presented by

(Hosten and Emig, 1975; Espie and Macchietto, 1989). An excellent review on classical

input design for both steady-state and dynamic models can be found in (Franceschini and

Macchietto, 2008a).

The concept of Bayesian alphabetical input design evolved in parallel with the classical

input design (Draper and Hunter, 1967a; Draper and Hunter, 1967b). In the Bayesian

approach, the input design criterion is formulated based on available a priori process

information. In (Chaloner and Verdinelli, 1995), the authors provide a good review on

Bayesian input design for both linear and non-linear models.

Unlike the standard input design, the robust version of the classical and Bayesian

design criteria accounts for the uncertainties in the parameter information available a

priori. Ignoring parameter uncertainties often yields sub-optimal or even poor designs, as
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pointed out by (Walter and Pronzato, 1990). In (Fedorov, 1972; Fedorov, 1980; Goodwin

and Payne, 1977), the authors consider taking mathematical expectation of the design

criterion over the prior parameter space; however, evaluating the expectation is a non-trivial

problem as it often lacks an analytical solution. To avoid evaluating multiple integrals,

(Mehra, 1974) suggested approximating the information matrix directly, or its determinant

(Ng and Goodwin, 1976) by a second order expansion term around the available parameter

estimate. Unfortunately, these methods result in only approximate solution, as pointed

by (Walter and Pronzato, 1990). Recently, (Asprey and Macchietto, 2002) used a

robust version of classical D-optimal criterion to design dynamic input. The authors in

(Asprey and Macchietto, 2002) summarized the parameter uncertainty under a Gaussian

distribution, and used a 3-point multi-dimensional Gauss quadrature rule to numerically

approximate the expectation. To simplify the case further, (Asprey and Macchietto, 2002)

ignored information on parameter correlations while setting up the Gaussian distribution.

Several drawbacks of using the quadrature rule as emphasized by Geweke (Geweke, 1996)

include: 1) results are adequate only in lower dimensional marginals of the functions; 2)

the integrand should be smooth to apply the tensor product rule; and 3) the method suffers

from the curse of dimensionality. Moreover, classical input design criterion adopted by

(Asprey and Macchietto, 2002), in general lacks the necessary mathematical framework to

include prior process information, which is often desirable in designing informed input.

This chapter considers a robust Bayes’ ED-optimal input design for sequential

identification of deterministic SSMs. The sequential Bayesian setting helps in designing

the input sequence based on process and parameter information amassed from previous

experiments. To circumvent the limitations of the quadrature rule, the complex, multi-

dimensional integrals are numerically approximated used Monte Carlo methods. This class

of numerical techniques provides (Veach, 1977) higher convergence rates in all dimensions,

irrespective of the smoothness of integrand and an easy two-step implementation process
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requiring appropriate sampling and point evaluation.

We propose evaluating the expectation of the Bayesian design criterion over the

parameter space defined based on information available from previous input design. Often,

for real processes, hyper-rectangular constraints in the form of upper and lower bounds

are available a priori for model parameters. Failing to contain the parameter space

within the specified hyper-rectangular constraint has serious drawbacks in robust input

design, including: 1) the information contributed by samples outside the hyper-rectangular

constraints may be misleading; 2) implementing the computed design based on infeasible

sampled points may result in unexpected results, such as unstable dynamics; and 3)

sampling from a larger parameter space, by ignoring the hyper-rectangular constraints may

make the design computationally more intensive.

In order to address the above issues, we need to systematically organize parameter

information available from previous input design into the hyper-rectangular constraints.

This is important for achieving an efficient integration of available parameter information

with the input design algorithm. The key challenge is to map information from original

parameter space to a smaller sub-space with minimal loss of information. In this chapter,

we propose three different projection techniques: circular, truncated and directional. These

prior designs differ in the way they project information unto the constrained space. Finally,

the effectiveness of all three priors in estimating parameters of a Baker’s yeast fermenter

model is demonstrated.

6.2 Problem formulation

This chapter considers the problem of Bayesian input design for parameter estimation in

the following class of non-linear systems.



Sec. 6.3 Sequential Bayesian input design 128

Model 6.2.1. Consider a discrete-time, non-linear deterministic SSM given by

xt+1 =f(xt, ut, ū, θ, t), (6.1a)

Yt =g(xt, θ) +Wt, (6.1b)

where xt ∈ X ⊆ Rn and Yt ∈ Y ⊆ Rm are the state variables and system outputs,

respectively. Also, ut ∈ U ⊆ Rp and ū ∈ W ⊆ Rq are the exogenous control variables

and time-invariant control parameters (e.g., initial condition, sampling rate), respectively.

Also, θ ∈ Θ ⊆ Rr is a set of unknown model parameters, such that θLB ≤ θ ≤ θUB, where

θLB and θUB are the hyper-rectangular parameter constraints, assumed to be known a

priori. Wt ∈ Rm is the measurement noise, assumed to follow a zero-mean, finite variance

Gaussian distribution, such that Wt ∼ N (wt|0, R). f and g are n and m dimensional

non-linear state and output vector function, respectively, such that f and g are at least one

time differentiable with respect to xt ∈ X and θ ∈ Θ.

For Model 6.2.1, let ηt = {ut, ū, x0} be a set of design variables, such that ηt ∈ ζ , where

x0 is the initial condition for state variables and ζ is the feasible design space. The problem

addressed in this chapter is discussed next.

Problem 6.2.2. To design sequential Bayesian input, which would provide a maximally

precise Bayesian estimate of θ ∈ Θ using a set of sampled input-output data.

6.3 Sequential Bayesian input design

Sequential Bayesian input design is an iterative procedure in which the information

available at the current time step is used for designing input for the next run. In this

section, we consider a robust Bayesian sequential design criterion for parameter estimation

in processes represented by Model 6.2.1.

Definition 6.3.1. Let a N sample data set from experiment k be denoted as

D(k) = {η(k)
1:N , y

(k)
1:N}, where y

(k)
1:N = {y(k)

1 , y
(k)
2 , . . . , y

(k)
N }T is a set of observed outputs
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corresponding to the design sequence η(k)
1:N = {η(k)

1 , η
(k)
2 , . . . , η

(k)
N }T . Let θ̂(k) ∈ Rr be

a Bayesian estimate computed based on the data set D(k), then the design η
(k+1)
1:N for

experiment k + 1 based on Bayesian ED-optimal design can be computed as

η
(k+1)
1:N = arg max

η
(k+1)
1:N ∈ζ

Ep(θ)|M(η
(k+1)
1:N , θ)|, (6.2)

whereM(η
(k+1)
1:N , θ)| is a Bayesian information matrix, which is inverse of the covariance of

the parameter posterior density; p(θ) is the prior density associated with the parameters;

Ep(·) denotes expectation with respect to the density p(·); and | · | is the determinant.

Based on Definition 6.3.1, a sequential Bayesian design problem aims at finding an

optimal design, which minimizes the covariance of the parameter posterior density.

Remark 6.3.2. The input design obtained by solving the optimization in Definition 6.3.1

is robust as it accounts for uncertainties associated with estimation of θ. Note that p(θ) in

(6.2) is a prior density, which can be constructed based on experiment k results.

Derivation of the Bayesian information matrix for Model 6.2.1 is discussed next.

6.3.1 Bayesian information matrix

In this section, we derive an analytical expression for the Bayesian information matrix or

the posterior covariance used in Definition 6.3.1. First attempt to derive such a covariance

expression was made by (Draper and Hunter, 1967b) for static input-output, non-linear

models. (Zullo, 1991) later extended the results for dynamic non-linear models.

We present a rigorous derivation of the posterior covariance of the parameters of Model

6.2.1. This allows us to introduce the prior design problem addressed in this chapter.

Consider a set of sampled data from experiment k, represented by D(k) = {η(k)
1:N , y

(k)
1:N}.

Using Bayes’ rule, the parameter posterior density at experiment k can be computed as

p(θ|D(k)) ∝p(y(k)
1:N |θ, η

(k)
1:N)p(θ|η(k)

1:N), (6.3a)

∝p(y(k)
1:N |θ, η

(k)
1:N)p(θ), (6.3b)
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where: p(θ|D(k)) is the posterior density for the parameters; p(y(k)
1:N |θ, η

(k)
1:N) is a likelihood

function; and p(θ) is a prior density, available from previous input design, independent

of η(k)
1:N . Note that the posterior density p(θ|D(k)) in (6.3b) summarizes our knowledge

of θ ∈ Θ based on information available from experiment k. In absence of no or limited a

priori knowledge about the parameters, a uniform or Gaussian prior density can be assumed

for θ ∈ Θ. This chapter assumes that (6.3b) is a Gaussian density, such that

p(θ|D(k)) ∝ exp (−1

2
[θ − θ̂(k)]TΣ−1

θ(k) [θ − θ̂(k)]), (6.4)

where θ̂(k) and Σθ(k) are the mean and covariance of θ|D(k) ∼ p(θ|D(k)) in (6.3b).

Remark 6.3.3. Note that for Model 6.2.1, the normality assumption of the posterior density

is valid for the choice of uniform or normal prior density in (6.3b) (Bard, 1974).

Now, if we consider a set of data D(k+1) = {η(k+1)
1:N , y

(k+1)
1:N } from experiment j + 1,

sampled independent of D(k) then the posterior density in (6.3b) can be updated as

p(θ|D(k),D(k+1)) ∝p(y(k+1)
1:N |θ, η(k+1)

1:N ,D(k))p(θ|η(k+1)
1:N ,D(k)) (6.5a)

∝p(y(k+1)
1:N |θ, η(k+1)

1:N )p(θ|D(k)) (6.5b)

Note that in sequential Bayesian design framework, the prior density p(θ|D(k)) in (6.5b) is

given by (6.4). Now for Model 6.2.1, the joint likelihood function in (6.5b) for independent

and identically distributed observations y(k+1)
1:N is given by

p(y
(k+1)
1:N |θ, η(k+1)

1:N ) ∝ exp (−1

2

N∑

t=1

[y
(k+1)
t − g(x

(k+1)
t , θ)]TR−1[y

(k+1)
t − g(x

(k+1)
t , θ)]),

(6.6)

where R−1 is the covariance of Wt ∼ N (wt|0, R), assumed to be constant across k ∈ N.

Substituting (6.4) and (6.6) into (6.5b), we obtain

p(θ|D(k),D(k+1)) ∝ exp(− 1

2

N∑

t=1

[y
(k+1)
t − g(x

(k+1)
t , θ)]TR−1[y

(k+1)
t − g(x

(k+1)
t , θ)]

− 1

2
[θ − θ̂(k)]TΣ−1

θ(k) [θ − θ̂(k)]). (6.7)
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Let θ̂(k+1) be the mean of θ|(D(k),D(k+1)) ∼ p(θ|D(k),D(k+1)) computed using (6.7). Now

linearizing g(x
(k+1)
t , θ) around θ̂(k+1) using a first-order Taylor series, we have

gi(x
(k+1)
t , θ) ≈ gi(x

(k+1)
t , θ̂(k+1)) + [S

(k+1)
t,i ]T (θ − θ̂(k+1)), (6.8)

where gi(x
(k+1)
t , θ) is the i sampling equation in Model 6.2.1; and

[S
(k+1)
t,i ]T =

dgi(x
(k+1)
t , θ̂(k+1))

dθ
(6.9)

is a vector of derivatives of i sampling equation with respect to the model parameters θ.

Note that S(k+1)
t,i in (6.9) can be calculated using the sensitivity equations given below

dxj+1
(k+1)

dθ
=
∂f(x

(k+1)
t , u

(k+1)
t , ū, θ, t)

∂x
(k+1)
t

dx
(k+1)
t

dθ
+
∂f(x

(k+1)
t , u

(k+1)
t , ū, θ, t)

∂θ
, (6.10a)

dgi(x
(k+1)
t , θ)

dθ
=
∂g(x

(k+1)
t , θ)

∂x
(k+1)
t

dx
(k+1)
t

dθ
+
∂g(x

(k+1)
t , θ)

∂θ
. (6.10b)

Note that the sensitivity equations (6.10) can be augmented with (6.1a) in Model 6.2.1 and

solved simultaneously to compute [S
(k+1)
t,i ]T . Now substituting (6.8) into (6.7), and based

on rearrangements suggested by (Draper and Hunter, 1967b; Zullo, 1991), we obtain

p(θ|D(k),D(k+1)) ∝ exp(− 1

2
[θ − θ̂(k+1)]T

m∑

a=1

m∑

b=1

1

σ̂2
ab

[S
(k+1)
1:N,a ]T [S

(k+1)
1:N,b ][θ − θ̂(k+1)]T

− 1

2
[θ − θ̂(k)]TΣ−1

θ(k) [θ − θ̂(k)]), (6.11)

where σ̂2
ab is the R(a, b) element of the covariance matrix R computed as

(N − r)σ̂2
ab =

{
[y

(k+1)
1:N,a − ŷ

(k+1)
1:N,a ]T [y

(k+1)
1:N,a − ŷ

(k+1)
1:N,a ] a = b

[y
(k+1)
1:N,a − ŷ

(k+1)
1:N,a ]T [y

(k+1)
1:N,b − ŷ

(k+1)
1:N,b ] a 6= b

(6.12)

where ŷ(k+1)
1:N is a model based predicted response corresponding to the design vector η(k+1)

1:N

and estimates θ(k+1). In sequential Bayesian design, θ̂(k+1) is not known until experiment

k + 1 is actually implemented on the real process. Therefore, in (6.11), the unknown

estimate θ̂(k+1) can be replaced with θ̂(k), available from experiment k, such that

p(θ|D(k),D(k+1)) ∝ exp(−1

2
[θ − θ̂(k)]T [

m∑

a=1

m∑

b=1

1

σ̂2
ab

[S
(k+1)
1:N,a ]T [S

(k+1)
1:N,b ] + Σ−1

θ(k)
][θ − θ̂(k)]),

(6.13)
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where S(k+1)
1:N,i is a N × r matrix given by

S
(k+1)
1:N,a =




∂ŷ
(k+1)
1,a

∂θ̂
(k)
1

· · · ∂ŷ
(k+1)
1,a

∂θ̂
(k)
r

∂ŷ
(k+1)
2,a

∂θ̂
(k)
1

· · · ∂ŷ
(k+1)
2,a

∂θ̂
(k)
r

...
...

...
∂ŷ

(k+1)
N,a

∂θ̂
(k)
1

· · ·
∂ŷ

(k+1)
N,a

∂θ̂
(k)
r




. (6.14)

Note that (6.13) is a predicted parameter posterior density at experiment k + 1, computed

based on information available until experiment k. Now since (6.13) is a product of two

normal densities, the covariance of θ|(D(k),D(k+1)) ∼ p(θ|D(k),D(k+1)) is given by

Σθ(k+1) = [M(η
(k+1)
1:N , θ̂(k))]−1, (6.15)

whereM(η
(k+1)
1:N , θ̂(k)) is the Bayesian information associated with η(k+1)

1:N and θ̂(k), such that

M(η
(k+1)
1:N , θ̂(k)) =

m∑

a=1

m∑

b=1

1

σ̂2
ab

[S
(k+1)
1:N,a ]T [S

(k+1)
1:N,b ] + Σ−1

θ(k) . (6.16)

Remark 6.3.4. The Bayesian information in (6.16) is derived under a Gaussian posterior

density assumption. Note that this assumption is valid as long as: (i) the local linearization

in (6.8) is reasonable; (ii) prior density p(θ|D(k)) in (6.4) is selected according to Remark

6.3.3; and (ii) the measurement noise Wt in Model 6.2.1 is Gaussian.

Using Eq.(6.15), a correlation matrix for experiment k + 1 can also be obtained.

(Pritchard and Bacon, 1978) proposed a scalar measure of the overall extent of correlation

present among parameters through the use of correlation index

C(η
(k+1)
1:N , θ̂(k)) =

{
r∑

m=1

r∑

m=1

C 2(m,n)

r2 − r

}1/2

m 6= n, (6.17)

where C(η
(k+1)
1:N , θ̂(k)) is a scalar measure of correlation and C (m,n) is the (m,n) term

of the correlation matrix. Note that (6.17) is general, and can be used to calculate overall

correlation between parameters for any experiment, including the current design.
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The Bayesian information matrix in (6.16) is a function of the estimate θ̂(k). Therefore,

to account for parameter uncertainties associated with θ̂(k), Definition 6.3.1 requires taking

expectation of (6.16) with respect to the prior density p(θ|D(k)), computed in (6.4).

6.3.2 Evaluating expectation

The Bayesian ED-optimal input design in Definition 6.3.1 is based on expected Bayesian

information matrix, where the expectation of the Bayesian information matrix is with

respect to the prior parameter density p(θ|D(k)). Unfortunately, for the model considered

in Model 6.2.1, finding an analytical solution to expected Bayesian information matrix is

non-trivial as it involves complex, multi-dimensional integrals of the form

Ep(θ|D(k))|M(η
(k+1)
1:N , θ)| =

∫

Θ

|M(η
(k+1)
1:N , θ)|p(θ|D(k))dθ, (6.18a)

∝
∫ θ1,UB

θ1,LB

. . .

∫ θr,UB

θr,LB

|M(η
(k+1)
1:N , θ)| exp(−1

2
[θ − θ̂(k)]TΣ−1

θ(k) [θ − θ̂(k)])dθ1 . . . dθr,

(6.18b)

where θi,LB ≤ θi ≤ θi,UB for all 1 ≤ i ≤ r. Now considering the limitations of numerical

techniques, such as the quadrature rule (see Section 6.1), we propose a perfect Monte Carlo

(MC) sampling based method to approximate the complex, multi-dimensional integrals in

(6.18b), such that with MC, (6.18b) can be approximated as follows:

Ep(θ|D(k))|M(η
(k+1)
1:N , θ)| ≈ 1

N

N∑

i=1

|M(η
(k+1)
1:N , θi)|, (6.19)

where {θi}Ni=1 is a set of N random samples from the multi-variate Gaussian density

p(θ|D(k)). With (6.19), Definition 6.3.1 can now be approximated as

η
(k+1)
1:N = arg max

η
(k+1)
1:N ∈ζ

1

N

N∑

i=1

|M(η
(k+1)
1:N , θi)|. (6.20)

Note that the approximation in (6.20) can be made arbitrarily accurate for large values of

N . From (6.20), it is also evident that the Bayesian ED-optimal input design depends on

the choice of the prior density p(θ|D(k)), whose design is discussed next.
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constraints

Figure 6.1: 95% joint confidence region for correlated parameters along with the hyper-
rectangular constraints.

6.4 Projection based prior design

In this section, we discuss different methods to construct the prior density p(θ|D(k)) used in

Definition 6.3.1. First, for convenience, we define p(θ|θ̂(k),Σθ(k)) , p(θ|D(k)). Now note

that since p(θ|θ̂(k),Σθ(k)) is a multi-variate Gaussian density (see (6.4)), information in

p(θ|θ̂(k),Σθ(k)) can be represented by a an ellipsoidal joint confidence region, as shown

in Figure 6.1. The ellipsoid is centered at θ̂(k), with axes length proportional to the

uncertainties in the estimates. Note that the orientation of the ellipsoid in Figure 6.1 further

reflects the information on degree of correlation between the estimates.

In presence of a hyper-rectangular constraints on the parameters of Model 6.2.1, a poor

input design or poor parameter estimates may result in supp p(θ|θ̂(k),Σθ(k)) stretching onto

the infeasible parameter space, as illustrated in Figures 6.1 and 6.2(a). Problems related to

sampling from infeasible density support are discussed in Section 6.1. To facilitate proper
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(a) Original prior information
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P(θ)

θ

Designed Prior
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(b) Projected prior information

Figure 6.2: Illustration of the original prior distribution and the new constrained prior
design based on the feasible parameter space.

organization of the prior information, we explore different design techniques, such that

p(θ|θ̂(k),Σθ(k)) can be efficiently projected onto the feasible parameter space, as illustrated

in Figure 6.2(b). In Figure 6.2, p(θ|θ̂(k),Σθ(k)) is projected onto another Gaussian density

defined within the constrained parameter space; however, it is important to note that this

is by no means the only mechanism to project p(θ|θ̂(k),Σθ(k)). The schematic in Figure

6.2 is presented, so that the reader can fully appreciate the problem being addressed in this

chapter.

In this section, we develop and analyze the efficiency of three types of prior projections:

circular, truncated and directional. Each of these prior designs project p(θ|θ̂(k),Σθ(k)) onto

the constrained hyper-rectangular parameter space, thereby allowing appropriate sampling

for Bayesian ED-optimal input design (see (6.20)).

6.4.1 Circular prior design

Circular prior design was proposed in (Asprey and Macchietto, 2002) for designing

Bayesian ED-optimal input design. By construction, a circular prior design ignores

information about θ̂(k) and Σθ(k) contained in p(θ|θ̂(k),Σθ(k)). Instead, a circular prior
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assumes an independent mean θ̂
(k)
Cir and covariance Σθ(k),Cir, such that the prior density

can be represented as p(θ|θ̂(k)
Cir,Σθ(k),Cir) ∼ N (θ|θ̂(k)

Cir,Σθ(k),Cir). A schematic of a typical

circular prior design is shown in Figure 6.3(a). Here, Σθ(k),Cir is a r×r diagonal covariance

matrix, whose entries are selected to make a high percentage of the joint confidence region

of the circular prior circumscribe or inscribe the hyper-rectangular constraints, with center

fixed at θ̂(k)
Cir. Note that this design further ignores the parameter correlation information in

p(θ|θ̂(k),Σθ(k)), thereby resulting in a hyper-sphere around or inside the constrained space.

6.4.2 Truncated prior design

A truncated prior design is a new design approach developed in this chapter, which defines

prior density at the intersection of p(θ|θ̂(k),Σθ(k)) and the hyper-rectangular constraints (see

Figure 6.3(b)). The truncated prior density can be computed as given in the next theorem.

Theorem 6.4.1. Let p(θ|θ̂(k),Σθ(k)) be the prior density given in (6.4), and let θ ∈ Θ for

θLB ≤ θ ≤ θUB be uniformly distributed, such that θ|Θ ∼ p(θ|Θ), then the truncated prior

density defined at the intersection of p(θ|θ̂(k),Σθ(k)) and p(θ|Θ) has a density function

p(θ|θ̂(k),Σθ(k) ,Θ) ∝
{
zp(θ|θ̂(k),Σθ(k)) θLB ≤ θ ≤ θUB,

0 otherwise,
(6.21)

where p(θ|θ̂(k),Σθ(k) ,Θ) is a truncated prior density and z = (θUB − θLB)−1 is a uniform

density calculated based on [θLB, θUB].
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Proof. Since θ ∈ Θ for θLB ≤ θ ≤ θUB is uniformly distributed, its density p(θ|Θ) is

p(θ|Θ) =

{
z θLB ≤ θ ≤ θUB

0 otherwise.
(6.22)

Now since a truncated prior is defined at the intersection of p(θ|θ̂(k),Σθ(k)) and p(θ|Θ); it

density, p(θ|θ̂(k),Σθ(k) ,Θ) can be obtained using Bayes’ rule, such that

p(θ|θ̂(k),Σθ(k) ,Θ) =
p(θ̂(k),Σθ(k) ,Θ|θ)p(θ)
p(θ̂(k),Σθ(k) ,Θ)

, (6.23)

where p(θ) is a prior density on parameters even before knowing the hyper-constraints.

Now by marginalizing p(θ̂(k),Σθ(k) ,Θ|θ) in (6.23), we obtain

p(θ|θ̂(k),Σθ(k) ,Θ) =
p(θ̂(k),Σθ(k) |θ)p(Θ|θ)p(θ)

p(θ̂(k),Σθ(k))p(Θ)
. (6.24)

The result in (6.24) follows from the independent prior information assumption, i.e.,

p(θ̂(k),Σθ(k) ,Θ|θ) = p(θ̂(k),Σθ(k) |θ)p(Θ|θ). Again applying Bayes’ rule in (6.24), we get

p(θ|θ̂(k),Σθ(k) ,Θ) =
p(θ|θ̂(k),Σθ(k))p(θ̂(k),Σθ(k))p(θ|Θ)p(Θ)p(θ)

p(θ)p(θ̂(k),Σθ(k))p(Θ)p(θ)
, (6.25a)

=
p(θ|θ̂j,Σθ(k))p(θ|Θ)

p(θ)
. (6.25b)

Substituting (6.22) into (6.25b), and ignoring the normalizing constant p(θ), we get (6.21),

which completes the proof.

From Theorem 6.4.1, it can be inferred that a truncated prior density maintains its center

at θ̂(k), available from experiment k. Furthermore, it also honours the hyper-rectangular

constraints on the parameters by forcing the density to zero outside the feasible parameter

space. Note that truncated prior design ensures sampling within the constrained space, and

also preserves the overall orientation of p(θ|θ̂(k),Σθ(k)) within the constraint.

6.4.3 Directional prior design

Directional prior is another design approach, in which the original prior density

p(θ|θ̂(k),Σθ(k)) is projected onto a parallel multi-variate Gaussian density defined inside the
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constrained space. Figure 6.3(c) shows a schematic of a typical directional prior density.

Note that, since directional prior is also a Gaussian density, it can be represented as

p(θ|θ̂(k),Σθ(k),Dir) ∝ exp(−1

2
[θ − θ̂(k)]TΣ−1

θj ,Dir
[θ − θ̂(k)], (6.26)

where θ̂(k) is from experiment k, and Σθ(k),Dir is defined to keep p(θ|θ̂(k),Σθ(k),Dir)

contained, and concentric to p(θ|θ̂(k),Σθ(k)). Figure 6.4 illustrates the directional prior

design scheme by projecting 95% joint confidence region of the original prior density onto

the constrained space. Important properties of directional prior design are discussed next.

Proposition 6.4.2. Let p(θ|θ̂(k),Σθ(k)) in (6.4), and p(θ|θ̂(k),Σθ(k),Dir) in (6.26) be

the original and directional prior density, respectively, then p(θ|θ̂(k),Σθ(k)) and

p(θ|θ̂(k),Σθ(k),Dir) have concentric ellipsoids for

Σθ(k),Dir = ΨΛθ(k),DirΨ
T , (6.27)
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where Ψ is a r × r matrix, with columns as eigenvectors of Σθ(k) , and Λθ(k),Dir is a r × r

diagonal matrix of eigenvalues of Σθ(k),Dir.

Proof. Each ellipsoid of p(θ|θ̂(k),Σθ(k)) in Figure 6.3(c) represents a contour of constant

probability density, which can be mathematically represented as

[θ − θ̂(k)]TΣ−1
θj

[θ − θ̂(k)] = c2, (6.28)

where c2 ∼ χ2
df(α) and χ2

df(α) is the upper (100α)th percentile of a χ2 square distribution

with df degrees of freedom. Note that the ellipsoid in (6.28) is centered at θ̂(k), with axes

along the direction of eigenvectors of Σθ(k) and axial length proportional to the square-root

of its eigenvalues, such that spectral decomposition of Σθ(k) is given by

Σθ(k) = ΨΛθ(k)ΨT (6.29)

where Ψ and Λθ(k) are both r×r matrix of eigenvectors and eigenvalues, respectively. Now,

for the ellipsoids of p(θ|θ̂(k),Σθ(k),Dir) to be concentric to (6.28), requires Σθ(k),Dir to have

a spectral decomposition given by (6.27), which completes the proof.

Remark 6.4.3. Directional prior preserves the orientation of p(θ|θ̂(k),Σθ(k)). This

property ensures that the information on parameter correlations, and overall orientation

of p(θ|θ̂(k),Σθ(k)) is carried over the projection.

Remark 6.4.4. Note that in Proposition 6.4.2, Λθ(k),Dir is a diagonal matrix, with r degrees

of freedom selected based on the hyper-rectangular parameter constraints.

Remark 6.4.5. From a practical stand point, for processes with strict constraints (e.g.,

viscosity of a fluid is strictly ≥ 0), projecting 99% of prior information onto the contained

space is imperative to minimize the statistical risk of sampling from infeasible space.

A mathematical mapping scheme for directional prior design is discussed next.
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Proposition 6.4.6. Let p(θ|θ̂(k),Σθ(k)) in (6.4), and p(θ|θ̂(k),Σθ(k),Dir) in (6.26) be

the original and directional prior density, respectively, then p(θ|θ̂(k),Σθ(k)) and

p(θ|θ̂(k),Σθ(k),Dir) satisfies the following equality:

p(θ|θ̂(k),Σθ(k),Dir) = pT (θ|θ̂(k),Σθ(k),T )p(θ|θ̂(k),Σθ(k)), (6.30)

where:

pT (θ|θ̂(k),Σθ(k),T ) =
1

(2π)r/2|Σθ(k),T |1/2
exp (−1

2
(θ − θ̂(k))TΣ−1

θ(k),T
(θ − θ̂(k)), (6.31a)

Σθj ,T =Ψ[Λ−1
θ(k),Dir

− Λ−1
θ(k) ]

−1ΨT , (6.31b)

also: Σθ(k) = ΨΛθ(k)ΨT ; and Σθ(k),Dir = ΨΛθ(k),DirΨ
T .

Proof. Let the density transformation from p(θ|θ̂(k),Σθ(k)) to p(θ|θ̂(k),Σθ(k),Dir) be

represented as

p(θ|θ̂(k),Σθ(k)) = J(θ)p(θ|θ̂(k),Σθ(k),Dir), (6.32)

where J(θ) is a function required for transforming density from p(θ|θ̂(k),Σθ(k)) to

p(θ|θ̂(k),Σθ(k),Dir). Now substituting Eq.(6.29) into (6.4), we have

p(θ|θ̂(k),Σθ(k)) ∝ exp(−1

2
[KTΛ−1

θ(k)K]), (6.33)

where K = ΨT [θ − θ̂(k)]. Now for any two random samples, θ1 and θ2 drawn from (6.33),

we have
p(θ1|θ̂(k),Σθ(k))

p(θ2|θ̂(k),Σθ(k))
= exp(−1

2
[KT

1 Λ−1
θ(k)K1 −KT

2 Λ−1
θ(k)K2]), (6.34)

where Ki = ΨT [θi − θ̂(k)] for i = {1, 2}. Now, formulating a similar density ratio based

on p(θ|θ̂(k),Σθ(k),Dir), using the same sampled point θ1 and θ2, we obtain

p(θ1|θ̂(k),Σθ(k),Dir)

p(θ2|θ̂(p),Σθ(p),Dir)
= exp(−1

2
[KT

1 Λ−1
θ(k),Dir

K1 −KT
2 Λ−1

θ,DirK2]). (6.35)

Substituting (6.34) and (6.35) into (6.32), we have

J(θ1)

J(θ2)
=

exp
(
−1

2

[
KT

1 [Λ−1
θ,Dir − Λ−1

θ ]K1

])

exp
(
−1

2

[
KT

2 [Λ−1
θ,Dir − Λ−1

θ ]K2

]) ,
pT (θ1|θ̂(k),Σθ(k),T )

pT (θ2|θ̂(k),Σθ(k),T )
, (6.36)
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where pT (θ|θ̂(k),Σθ(k),T ) and Σθ(k),T are given by (6.31a) and (6.31b), respectively, which

completes the proof.

Remark 6.4.7. From Proposition 6.4.6, it is evident that projection from the original

to designed prior density is channeled through a multi-variate Gaussian density

pT (θ|θ̂(k),Σθ(k),T ), whose covariance depends on the choice of Λθ(k),Dir.

A procedure to select the eigenvalues of Σθ(k),Dir is discussed next.

6.4.3.1 Selecting eigenvalues

Selecting appropriate eigenvalues of Σθ(k),Dir is a key step in designing effective directional

prior. In this chapter, we select the eigenvalues of Σθ(k),Dir based on ellipsoid’s axial

lengths. For any hyper-rectangular constraints of the form θLB ≤ θ ≤ θUB, the entries

of Λθj ,Dir can be chosen according to

θLB ≤ θ̂(k) ± cΛ0.5
θ(k),Dir ≤ θUB, (6.37)

where 2cΛ0.5
θ(k),Dir

is a r × 1 vector of axial lengths along each principle direction of the

ellipsoid. The advantage of assigning eigenvalues using (6.37) is that axes length of

directional prior density can be independently set along each principle direction.

6.5 Optimal control problem

The algorithm presented in Figure 6.5 shows encapsulation of BayesianED-optimal design

criterion under the optimization framework. Once the design objective is set, the input

design problem is formulated as an optimal control problem. Here, we adopt the optimal

control strategy suggested by (Espie and Macchietto, 1989; Asprey and Macchietto, 2002)

to include a variety of operational constraints on the design.

Note that designing a dynamic design sequence is an infinite dimensional optimization

problem, which can be converted to non-linear programming (NLP) problem using control
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Figure 6.5: The proposed algorithm for sequential input design.
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vector parametrization (CVP) technique (Kraft, 1985). CVP is a complete discretization

approach, where continuous design space is discretized and approximated by simple

parametric functions, as illustrated in Figure 6.6.

In this work, the p dimensional exogenous control variable is assumed to be piecewise

constant in each discrete interval (l), such that ut = ul, where 1 ≤ l ≤ L and 1 ≤ t ≤ N .

Note that a piecewise constant input can be completely characterized by its magnitude,

i.e., ul, and duration of hold, calculated from the input switching time tul . Here, tul is a

p× 1 vector, representing switching time for the p control variables in the finite interval l.

Mathematically, a discretized, piecewise constant input can be represented as

ut = ul, tul−1 ≤ t ≤ tul , (6.38)

where 1 ≤ l ≤ L and 1 ≤ {tul−1 , tul} ≤ N . Other parametric representations such as
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piecewise linear and piecewise quadratic can also be accommodated in the framework by

including appropriate parametric functions. Finally, the discretized control variables ul and

switching time tul for 1 ≤ l ≤ L and 1 ≤ tul ≤ N can be augmented with the time-

invariant control variables ū, and initial conditions x0, such that the design variable η(k)
1:N at

experiment k is given by

η
(k)
1:N =

[
ul, tul , ū, x0

]
, (6.39)

where 1 ≤ l ≤ L and 1 ≤ tul ≤ N . Note that, in presence of other design variables, (6.39)

can be appropriately expanded. The Bayesian ED-optimal design problem formulation

proposed in this chapter is given next.

Formulation 6.5.1. Discretizing the continuous design space ζ , using CVP method

transforms the optimization problem in (6.20) into an NLP optimization problem, such

that substituting (6.16) into (6.20), we have

η
(k+1)
1:N = arg max

η
(k+1)
1:N ∈ζ

1

N

N∑

i=1

|M(η
(k+1)
1:N , θi)|; (6.40a)

s.t.

uLB ≤ ul ≤ uUB 1 ≤ l ≤ L; (6.40b)

ūLB ≤ ū ≤ ūUB; (6.40c)

xLB0 ≤ x0 ≤ xUB0 ; (6.40d)

tLBu ≤ tul − tul−1 ≤ tUBu 1 ≤ l ≤ L; (6.40e)

tuL ≤ N, (6.40f)

where {ūUB, ūLB} and {xUB0 , xLB0 } are the upper and lower bounds for ū and x0.

Remark 6.5.2. Formulation 6.5.1 supports various equality and inequality constraints on

the design variables, as shown in (6.40b) through (6.40f). As discussed in (Asprey and

Macchietto, 2002), the mathematical singularities due to collapse of one or more control

intervals can be avoided through a linear constraint (6.40e). Physically, (6.40e) constraint
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Figure 6.7: Schematic diagram of the Baker’s yeast fermentation reactor

Table 6.1: Process design variables and constraints for the fermenter.

Process variables Symbol Constraints
Initial biomass concentration x1(0) 1-10 (g/L)
Initial substrate concentration x2(0) 0.1 (g/L)
Dilution factor u1(t) 0.05-0.20 (hr−1)
Substrate concentration in feed u2(t) 5-35 (g/L)
Control intervals L 6
Switching time tul 0-40 (hr)
Time lapsed between intervals tul − tul−1 4-20 (hr)
Experiment time N 40 (hr)

the time lapse between two consecutive control moves. Also, the inequality (6.40f) prevents

implementing control actions beyond the final experimentation time N .

6.6 Numerical illustration

Effectiveness of different prior designs discussed in Section 6.4 is demonstrated on a

Baker’s yeast fermentation process (Espie and Macchietto, 1989).

6.6.1 Baker’s yeast fermenter

Baker’s fermenter is a semi-continuous batch reactor with two inputs and two outputs

as shown in Figure 6.7. Assuming Monod kinetics for biomass growth and substrate
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consumption, dynamics in the fermenter is given as (Asprey and Macchietto, 2000)

dx1

dt
= (ω(t)− u1(t)− θ4)x1(t); (6.41a)

dx2

dt
= −ω(t)x1(t)

θ3

+ u1(t)(u2(t)− x2(t)); (6.41b)

ω(t) =
θ1x2(t)

θ2 + x2(t)
, (6.41c)

where x1 and x2 are the state variables representing biomass growth (g/L) and substrate

consumption (g/L) as a function of time t, respectively. Manipulated variables u1 and

u2 are the dilution factor (hr−1) and substrate concentration in feed (g/L), respectively.

Also there are four model parameters θ = {θ1; θ2; θ3; θ4} to be estimated using sampled

input-output data. A priori information available on θ is the parameter constraint, where

0.01 ≤ θi ≤ 1, (6.42)

where 1 ≤ i ≤ 4. For estimation purposes, θ is assumed to be equally probable in the

space defined in (6.42). Note that in (6.41) there is no uncertainty in the model structure,

and both x1 and x2 are measured through the measurement equation given below

Y1(t) =x1(t) +W1(t), (6.43a)

Y2(t) =x2(t) +W2(t), (6.43b)

where W1 and W2 are measurement noise sequences, such that W1 ∼ N (w1|0, 0.04) and

W2 ∼ N (w2|0, 0.04). For this problem, the nominal values and ranges for both design and

fixed process variables are given in Table 6.1. The number of control moves for both u1

and u2 are fixed, and their switching time assumed to be synchronized so that they change

simultaneously (see Figure 6.7 for illustration). In total, there are 19 control variables in

the design vector given below

ηj1:N =
[
x1(0), ul1, ul2, tul

]
, (6.44)

where 1 ≤ l ≤ 6. The objective here is to use a priori information to design a series of

Bayesian ED-optimal input designs for estimating θ.
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Table 6.2: Process design variables for initial input design (η
(0)
1:N).

Process variable Design value
x1(0) 5.00
ul1; 1 ≤ l ≤ 6 0.12; 0.12; 0.12; 0.12; 0.12; 0.12
ul2; 1 ≤ l ≤ 6 15; 15; 15; 15; 15; 15
tul ; 1 ≤ l ≤ 6 0; 7; 14; 21; 28; 35

Table 6.3: Parameter estimates computed using initial input design (η
(0)
1:N).

Covariance Matrix Correlation Matrix
θ θ̂(0) θ1 θ2 θ3 θ4 θ1 θ2 θ3 θ4

θ1 0.5629 0.520 0.715 −0.010 −0.003 1.000 0.991 −0.098 −0.106
θ2 0.4416 0.999 −0.031 −0.009 1.000 −0.219 −0.228
θ3 0.8112 0.020 0.006 1.000 0.999
θ4 0.1036 0.002 1.000

Measure |M(η
(0)
1:N , θ̂

(0))| = 1.7654× 1010 C(η
(0)
1:N , θ̂

(0)) = 0.592

6.6.1.1 Initial input design

A zeroth experiment (η
(0)
1:N) is designed to obtain an initial estimate for the parameters.

Lack of prior information on choice of η(0)
1:N suggests selecting a relatively simple design.

Based on the design constraints (see Table 6.1) η(0)
1:N is selected as given in Table 6.2.

Parameter estimates and corresponding covariance and correlation matrices are

presented in Table 6.3. Standard error for θ̂(0)
1 and θ̂

(0)
2 are larger than the estimated

values which suggests, poor estimation in statistical sense. The overall performance of

the design is shown in Figure 6.8, where model predictions based on initial estimates

ill-fit the dynamics of both biomass and substrate concentration. As discussed in

Section 6.3.1, results from zeroth experiment can be summarized under p(θ|θ̂(0),Σθ(0)).

Histograms generated from p(θ|θ̂(0),Σθ(0)) is presented in Figure 6.9 wherein, samples

for θ1, θ2, θ3, and θ0
4 extend beyond the feasible parameter space defined in (6.42).

The eigenvalues Λθ(0) = [0.0266; 1.5085; 8.42× 10−4; 1.67× 10−6] corresponds to axial

length of ellipsoid generated based on the initial design. Next we implement the prior

design discussed in Section 6.4 to project p(θ|θ̂(0),Σθ(0)) onto the constraints in (6.42).
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Figure 6.8: Infinite step ahead model predictions for initial input design.
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Table 6.4: Process design variables computed using circular prior.

Process variable Design value
x1(0) 6.05
ul1; 1 ≤ l ≤ 6 0.19; 0.11; 0.05; 0.18; 0.05; 0.05
ul2; 1 ≤ l ≤ 6 24.1; 10.4; 16.3; 19.4; 14.4; 16.4
tul ; 1 ≤ l ≤ 6 0; 2.55; 6.95; 12.2; 16.4; 21.9

Table 6.5: Parameter estimates computed using circular prior.

Covariance Matrix (×10−5) Correlation Matrix
θ θ̂(1) θ1 θ2 θ3 θ4 θ1 θ2 θ3 θ4

θ1 0.3365 15.38 75.25 3.086 0.516 1.000 0.917 0.280 0.224
θ2 0.2638 440.0 −1.54 −1.04 1.000 −0.026 −0.085
θ3 0.5279 7.866 1.583 1.000 0.962
θ4 0.0267 0.344 1.000

Measure |M(η
(1)
1:N , θ̂

(1))| = 8.4919× 1016 C(η
(1)
1:N , θ̂

(1)) = 0.6833

6.6.1.2 Circular prior design

As discussed in Section 6.4.1, circular prior design ignores all the information available

from the zeroth run, and instead assumes a multi-variate Gaussian density around the

hyper-rectangular constraints. Here, θ̂(0)
Cir = [0.5; 0.5; 0.5; 0.5] is chosen as the center

of p(θ|θ̂(0)
Cir,Σθ(0),Cir), with Σθ(0),Cir chosen as diag(0.06; 0.06; 0.06; 0.06) to contain 95%

joint confidence region within the hyper-rectangular constraints. The histogram generated

by sampling p(θ|θ̂(0)
Cir,Σθ(0),Cir) is shown in Figure 6.11 in which about 4% of total sampled

points (N = 500) are in the infeasible space. Table 6.4 gives the computed optimal

design vector (η
(1)
1:N) using circular prior. Furthermore, parameter estimates obtained by

implementing the optimal design is given in Table 6.5. Comparing it to the initial estimates

(Table 6.3), there is an average reduction of about 95% in overall parameter uncertainty;

however, the correlation index increases by 13.4% to 0.6833. This is because Bayesian

ED-optimal criterion aims at reducing uncertainties in parameters alone, and does not

include any quantifiable metric of correlation between parameters. Therefore, maximizing

(6.20) could produce larger correlation between parameters as pointed by (Issanchou et

al., 2003).
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Figure 6.10: Infinite step ahead model predictions for circular prior based input design.
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Figure 6.11: Histogram generated by sampling circular prior distributions with initial
estimates marked in green and constraints represented by broken red lines.
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Table 6.6: Process design variables computed using truncated prior.

Process variable Design value
x1(0) 3.48
ul1; 1 ≤ l ≤ 6 0.09; 0.07; 0.11; 0.11; 0.19; 0.06
ul2; 1 ≤ l ≤ 6 17.6; 6.05; 16.11; 5.00; 34.7; 18.3
tul ; 1 ≤ l ≤ 6 0; 1.01; 7.59; 12.4; 17.16; 25.5

Table 6.7: Parameter estimates computed using truncated prior.

Covariance Matrix (×10−5) Correlation Matrix
θ θ̂(1) θ1 θ2 θ3 θ4 θ1 θ2 θ3 θ4

θ1 0.3344 0.816 3.098 1.619 0.459 1.000 0.216 0.709 0.758
θ2 0.3458 250.0 −17.7 −4.88 1.000 −0.44 −0.46
θ3 0.5780 6.390 1.615 1.000 0.952
θ4 0.0381 0.450 1.000

Measure |M(η
(1)
1:N , θ̂

(1))| = 8.846× 1019 C(η
(1)
1:N , θ̂

(1)) = 0.6368

Often, there is a trade-off between reduction in parameter correlation, and increase in

Bayesian information content in an experiment (Franceschini and Macchietto, 2008b).

Figure 6.10 shows an infinite horizon predictions using estimates in Table 6.5.

6.6.1.3 Truncated prior design

Truncated prior design discussed in Section 6.4.2 allows sampling only in the feasible

parameter space. The prior density in the infeasible region is forced to zero as shown

in Figure 6.13. The optimal design vector (η
(1)
1:N) obtained using truncated prior is given

in Table 6.6. Parameter estimates (θ̂(1)) along with covariance and correlation matrices are

given in Table 6.7. On average there is reduction of about 96% in parameter uncertainty

compared to the initial design with information index |M(η
(1)
1:N , θ̂

(1))| being 8.846 × 1019.

The difference between the information index for truncated and circular prior is of three

orders of magnitude. Model predictions using truncated prior based input design is shown

in Figure 6.12, suggesting a significant improvement in overall design quality.
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Figure 6.12: Infinite step ahead model predictions for truncated prior based input design.
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Figure 6.13: Histogram generated by sampling truncated prior distributions with initial
estimates marked in green and constraints represented by broken red lines.
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Table 6.8: Process design variables obtained using directional prior.

Process variable Design value
x1(0) 1.52
ul1; 1 ≤ l ≤ 6 0.16; 0.19; 0.12; 0.05; 0.05; 0.19
ul2; 1 ≤ l ≤ 6 20; 34.5; 33.7; 7.80; 13.6; 16.4
tul ; 1 ≤ l ≤ 6 0; 1.14; 7.24; 12.6; 18.9; 26.2

Table 6.9: Parameter estimates computed using directional prior.

Covariance Matrix (×10−5) Correlation Matrix
θ θ̂(1) θ1 θ2 θ3 θ4 θ1 θ2 θ3 θ4

θ1 0.3172 0.470 0.850 1.180 0.350 1.000 0.174 0.902 0.898
θ2 0.2573 50.1 −2.52 −0.97 1.000 −0.187 −0.24
θ3 0.5497 3.640 1.030 1.000 0.951
θ4 0.0308 0.320 1.000

Measure |M(η
(1)
1:N , θ̂

(1))| = 1.816× 1021 C(η
(1)
1:N , θ̂

(1)) = 0.664

6.6.1.4 Directional prior design

In directional prior design, orientation of p(θ|θ̂(0),Σθ(0)) is preserved by keeping the

eigenvectors of Σθ0 fixed as discussed in Section 6.4.3. The eigenvalues of Σθ0,Dir are

selected as [0.0145; 0.0140; 8.42×10−4; 1.67×10−6] to contain the 95% joint confidence

region for parameters within the feasible space. The eigenvalues corresponding to θ3 and

θ4 are not altered since, more than 95% of the samples with respect to θ3 and θ4 are well

within the hyper-rectangular constraints (see Figure 6.9). The histograms for θ1 and θ2

spread further into the infeasible parameter space, thereby requiring a significant reduction

to their corresponding eigenvalues. The histogram for p(θ|θ̂(0),Σθ(0),Dir) is shown in Figure

6.15 in which only about 2% of the sampled points fall in the infeasible space.

The optimal input design corresponding to the use of directional prior is given in Table

6.8. Also, the parameter estimates and its related covariance and correlation matrices

are given in Table 6.9. It is important to note that the standard error for θ̂(1)
2 reduces

significantly with the use of directional prior. On average there is 98% reduction in

parameter uncertainty using directional prior based design. Compared to truncated prior

(Table 6.7), the improvement with directional prior in terms of information index is of two
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Figure 6.14: Infinite step ahead model predictions for directional prior based input design.
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Figure 6.15: Histogram generated by sampling directional prior distributions with initial
estimates marked in green and constraints represented by broken red lines.
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orders of magnitude (Table 6.9). Furthermore, high percentage fit (over 94%) for both x1

and x2 in Figure 6.14 demonstrates the utility and efficacy of the directional prior design.

One may argue that one of the reasons for improvement using directional design may

be attributed to a smaller prior region that results from the design. In fact, preservation

of direction plays an important role in the improvement. To highlight the advantage

of preserving orientation of p(θ|θ̂(0),Σθ(0)) in a prior design, a simulation exercise is

conducted. Rotating p(θ|θ̂(0),Σθ(0),Dir) about any plane or axes changes its orientation, but

keeps the volume of the ellipsoid, constant (Kay, 1993). In the simulation, we consider a

prior density obtained by rotating p(θ|θ̂(0),Σθ(0),Dir) by 45o in counter-clock wise direction

in the θ3 and θ4 plane. The rotated prior density is given by p(θ|Aθ̂(0), AΣθ(0),DirA
T ),

where A is the required 4 × 4 rotation matrix. The information index computed using

p(θ|Aθ̂(0), AΣθ(0),DirA
T ) as prior density is 8.372 × 1019. The difference in information

index for the two directional prior densities of the same volume, but different orientation is

about two orders of magnitude. This demonstrates the advantage of preserving orientation,

of the original prior distribution.

6.6.1.5 Classical D-optimal design

Results from classical non-robust D-optimal design are also provided here for comparison

purposes. Adopting a similar approach, an optimal design vector is computed using the

D-optimal criterion. Parameter estimates and its corresponding covariance and correlation

matrices are calculated therefrom. Compared to the initial design, parameter uncertainty

computed usingD-optimal design reduce by 85% with information index |M(η
(1)
1:N , θ̂

(1))| =

3.6184× 1016 and correlation index C(η
(1)
1:N , θ̂

(1)) = 0.6545. Certainly, ED-optimal design

is more efficient than D-optimal design, in terms of achieving parameter estimates with

reduced uncertainty. The same is summarized in Table 6.10. Furthermore, it is also evident

from Table 6.10 that directional prior based Bayesian ED-optimal design outperforms the

other two prior designs considered here.
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Table 6.10: Summary of the results obtained using D and ED-optimal designs.

Parameters True value D-optimal (θ̂(1)) ED-optimal (θ̂(1))

Circular Truncated Directional
θ1 0.31 0.352 0.336 0.334 0.317
θ2 0.18 0.433 0.263 0.345 0.257
θ3 0.55 0.569 0.527 0.578 0.549
θ4 0.03 0.035 0.026 0.038 0.030

M(η
(1)
1:N , θ̂

1)(×1017) 0.361 0.849 884 18160

It is important to note that if desired, another sequential run can be similarly performed

by selecting p(θ|θ̂(1),Σθ(1)) as a prior density, where θ̂(1) and Σθ1 are the available parameter

estimate, and its corresponding covariance matrix, respectively. For the simulation example

considered here, the new prior distribution p(θ|θ̂(1),Σθ(1)) do not violate the hyper-

rectangular constraints (6.42) anymore; therefore, it can be used directly without having

to re-design it. Since, the algorithm for sequential input design (Figure 6.5) without prior

design is routine, it is not considered here.

6.6.1.6 Robust design

As discussed earlier, Bayesian ED-optimal designs are optimal in the average sense, since

they consider uncertainties associated with parameter estimates. To validate and compare

the robust nature of Bayesian ED-optimal input with prior designs, another simulation

experiment is performed. The optimal inputs computed based on different prior designs,

along with a new set of model parameters (randomly selected from the feasible parameter

space) are used, to generate model outputs using (6.41). The sampled input-output data

sets are then used for estimating the new model parameters (see Table 6.11). Amongst

the class of Bayesian ED-optimal designs, input design associated with directional prior

is most successful in estimating the new model parameters. The simulation validates the

robust nature of the directional prior based Bayesian ED-optimal experiment.
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Table 6.11: Comparison of the robustness of D and ED-optimal designs

Parameters True value D-optimal (θ̂(1)) ED-optimal (θ̂(1))

Circular Truncated Directional
θ1 0.79 0.906 0.599 0.873 0.795
θ2 0.91 0.980 0.352 0.745 0.852
θ3 0.90 0.915 0.857 0.943 0.922
θ4 0.09 0.096 0.086 0.130 0.098

M(η
(1)
1:N , θ̂

(1))(×1014) 0.74 2.47 6.95 372

6.7 Conclusions

The chapter focuses on the use of robust Bayesian input design in estimating parameters

of non-linear processes. The proposed framework, makes use of a priori information

amassed from previous input design to design informed future experiments. Different prior

designs relating to organization and utilization of available information are discussed from

a theoretical viewpoint. Development of these prior designs arise based on the need to

project a priori parameter information onto the constrained space for achieving efficient

integration of available process information with the input design algorithm.

Apart from the theoretical developments, performance of the prior designs are validated

and compared on a Baker’s yeast fermenter problem. In terms of minimum constraint

violation, truncated prior design was the most effective; however, it fails to preserve a priori

parameter correlation information. The advantage of preserving correlation information

was also demonstrated through a separate simulation. Directional prior on the other hand,

neatly projects complete a priori parameter information onto the contained space, including

the correlation information. Amongst the class of proposed prior designs, directional prior

based Bayesian ED-optimal input design, outperformed both circular and truncated prior

based robust designs. Finally, the robust nature of the directional prior based Bayesian

ED-optimal design in estimating new system parameters was also demonstrated.
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Chapter 7

A particle filter approach to
approximate posterior Cramér-Rao
lower bound: The case of hidden states

The posterior Cramér-Rao lower bound (PCRLB) derived in (Tichavský et al., 1998)

provides a bound on the mean square error (MSE) obtained with any non-linear state

filter. Computing the PCRLB involves solving complex, multi-dimensional expectations,

which do not lend themselves to an easy analytical solution. Furthermore, any attempt to

approximate it using numerical or simulation based approaches requires a priori access to

the true states, which may not be available, except in simulations or in carefully designed

experiments. To allow recursive approximation of the PCRLB when the states are hidden

or unmeasured, a new approach based on sequential Monte Carlo (SMC) or particle filters

(PF) is proposed. The approach uses SMC methods to estimate the hidden states using

a sequence of the available sensor measurements. The developed method is general and

can be used to approximate the PCRLB in non-linear state-space models (SSMs) with non-

Gaussian state and sensor noise. The efficacy of the developed method is illustrated on two

simulation examples, including a ballistic target tracking problem at re-entry phase.

A condensed version of this chapter has been published in Tulsyan, A., B. Huang, R.B. Gopaluni and
J.F. Forbes (2013). A particle filter approach to approximate posterior Cramér-Rao lower bound: The case of
hidden states. IEEE Transactions on Aerospace and Electronic Systems 49(4), In press.
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7.1 Introduction

Non-linear filtering is one of the most important Bayesian inferencing methods, with

several key applications in: navigation (Gustafsson et al., 2002), guidance (Gordon et

al., 1995), tracking (Chang and Tabaczynski, 1984), fault detection (Dearden et al., 2004)

and fault diagnosis (de Freitas et al., 2004). Within the Bayesian framework, a filtering

problem aims at constructing a posterior filter density (Doucet et al., 2001).

In the last few decades, several tractable algorithms based on analytical and statistical

approximation of the Bayesian filtering (e.g., extended Kalman filter (EKF) and unscented

Kalman filter (UKF)) have been developed to allow tracking in non-linear SSMs

(Arulampalam et al., 2002). Although filters, such as EKF and UKF are efficient in

tracking, their performance is often limited or affected by various numerical and statistical

approximations. Despite the great practical interest in evaluating the non-linear filters, it

still remains one of the most complex problems in estimation theory (Šimandl et al., 2001).

The Cramér-Rao lower bound (CRLB) defined as an inverse of the Fisher information

matrix (FIM) provides a theoretical lower bound on the second-order error (MSE)

obtained with any maximum-likelihood (ML) based unbiased state or parameter estimator.

An analogous extension of CRLB to the class of Bayesian estimators was derived by

(Trees, 1968), which is commonly referred to as the PCRLB. The PCRLB is defined as

the inverse of the posterior Fisher information matrix (PFIM) and provides a lower bound

on the MSE obtained with any non-linear filter (Tichavský et al., 1998). A full statistical

characterization of any non-Gaussian posterior density requires all higher-order moments

(Ristic et al., 2004). As a result, the PCRLB does not fully characterize the accuracy

of non-linear filters. Nonetheless, it is an important tool, as it only depends on: system

dynamics; prior density of the states; and system noise characteristics (Bergman, 2001).

The PCRLB has been widely used as a benchmark for: (i) assessing the quality of

different non-linear filters; (ii) comparing performances of non-linear filters against that
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of an optimal filter; and (iii) determining whether the filter performance requirements are

practical or not. Some of the key practical applications of the PCRLB include: comparison

of several non-linear filters for ballistic target tracking (Farina et al., 2002); terrain

navigation (Bergman et al., 1999); and design of systems with pre-specified performance

bounds (Nehorai and Hawkes, 2000). The PCRLB is also widely used in several other

areas related to: multi-sensor resource deployment (e.g., radar resource allocation (Glass

and Smith, 2011), sonobuoy deployment in submarine tracking (Hernandez et al., 2004));

sensor positioning (Farshidi et al., 2006); and optimal observer trajectory for bearings-only

tracking (Passerieux and Cappel, 1998; Helferty and Mudgett, 1993).

The original PCRLB formulation in (Trees, 1968) is based on batch data, which often

renders its computation impractical for multi-dimensional non-linear SSMs. Alternatively,

a recursive version of the PCRLB was proposed by (Bobrovsky and Zakai, 1975) for scalar

non-linear SSMs with additive Gaussian noise. Its extension to deal with multi-dimensional

case was developed much later in (Galdos, 1980; Doerschuk, 1995), where the authors

compared the information matrix of a non-linear SSM with that of a suitable linear system

with Gaussian noise. In the seminal paper (Tichavský et al., 1998), the authors proposed an

elegant approach to recursively compute the PCRLB for discrete-time, non-linear SSMs.

Compared to (Galdos, 1980; Doerschuk, 1995), the PCRLB formulation in (Tichavský et

al., 1998) is more general as it is applicable to multi-dimensional non-linear SSMs with

non-Gaussian state and sensor noise. An overview of the historical developments of the

PCRLB, along with other critical discussions can be found in (Kerr, 1989).

The PCRLB in (Tichavský et al., 1998) provides a recursive procedure to compute

the lower bound for tracking in general non-linear SSMs, operating with the probability

of detection Prd = 1 and the probability of false alarm Prf = 0. Since then, several

modified versions of the PCRLB have also appeared, which allow tracking in situations,

such as: measurement origin uncertainty (Prd = 1 and Prf ≥ 0) (Hernandez et al., 2002);
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missed detection (Prd ≤ 1 and Prf = 0) (Farina et al., 2002b); and cluttered environments

(Prd ≤ 1 and Prf ≥ 0) (Hernandez et al., 2006). However, unlike the bound formulation

given in (Tichavský et al., 1998), the modified versions of the lower bound are mostly for

a special class of non-linear SSMs with additive Gaussian state and sensor noise.

Notwithstanding a recursive procedure to compute the PCRLB in (Tichavský et al.,

1998), obtaining a closed form solution to it is non-trivial. This is due to the involved

complex, multi-dimensional expectations with respect to the states and measurements,

which do not lend themselves to an easy analytical solution, except in linear systems

(Bergman, 2001), where the Kalman filter (KF) provides an exact solution to the PCRLB.

Several attempts have been made in the past to address the aforementioned issues. First,

several authors considered approximating the PCRLB for systems with: (i) linear state

dynamics with additive Gaussian noise and non-linear measurement model (Bergman,

2001; Hurtado et al., 2008); (ii) linear and non-linear SSMs with additive Gaussian state

and sensor noise (Šimandl et al., 2001; Lei et al., 2010); and (iii) linear SSMs with

unknown measurement uncertainty (Zhang et al., 2005). The special sub-class of non-linear

SSMs with additive Gaussian noise allows reduction of the complex, multi-dimensional

expectations to a lower dimension, which are relatively easier to approximate.

7.2 Motivation and contributions

To obtain a reasonable approximation to the PCRLB for general non-linear SSMs, several

authors have considered using simulation based techniques, such as the Monte Carlo

(MC) method. Although a MC method makes the lower bound computations off-

line, nevertheless, it is a popular approach, since for many real-time applications in

tracking and navigation, the design, selection and performance evaluation of different

filtering algorithms are mostly done a priori or off-line. Furthermore, availability of huge

amount of historical test-data, makes MC method a viable option. An MC based bound
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approximation have appeared for several systems with: target generated measurements

(Farina et al., 2002; Hurtado et al., 2008); measurement origin uncertainty (Hernandez

et al., 2002); cluttered environments (Hernandez et al., 2006; Meng et al., 2009); and

Markovian models (Svensson, 2010; Bessell et al., 2003). Although MC methods can be

effectively used to approximate the involved expectations, with respect to the states and

measurements, it requires an ensemble of the true states and measurements. While the

sensor readings may be available from the historical test-data, the true states may not be

available, except in simulations or in carefully designed experiments (Lei et al., 2011).

To avoid having to use the true states, (Lei et al., 2011) proposed an EKF and UKF based

method to compute the PCRLB formulation in (Tichavský et al., 1998). To approximate

the bound, (Lei et al., 2011) first assumes the densities associated with the expectations

to be Gaussian, and then uses an EKF and UKF to approximate the Gaussian densities

using an estimate of the mean and covariance. Even though the method proposed in (Lei

et al., 2011) is fast, since it only works with the first two statistical moments, there are

several performance and applicability related issues with this numerical approach, such

as: (i) relies on the linearisation of the underlying non-linear dynamics around the state

estimates, which not only results in additional numerical errors, but also introduces bias

in the PCRLB approximation; (ii) the method is applicable only for non-linear SSMs with

additive Gaussian state and sensor noise; (iii) convergence of the numerical solution to the

theoretical lower bound is not guaranteed; (iv) provides limited control for improving the

quality of the resulting numerical solution; and (v) it involves long and tedious calculations

of the first two moments of the assumed Gaussian densities.

Recently, (Zuo et al., 2011) derived a conditional lower bound for general non-linear

SSMs, and used an SMC based method to approximate it in absence of the true states.

Unlike the unconditional PCRLB in (Tichavský et al., 1998), the conditional PCRLB can be

computed in real-time; however, as shown in (Zuo et al., 2011), the bound in less optimistic
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(or higher) compared to the unconditional PCRLB. This limits its use to applications, where

real-time bound computation is far more important than obtaining a tighter limit on the

tracking performance. However, in applications, such as filter design and selection, where

the primary focus is on devising an efficient filtering strategy, the PCRLB in (Tichavský et

al., 1998) provides an optimistic measure of the filter performance.

To the authors’ best knowledge, there are no known numerical method to approximate

the unconditional PCRLB in (Tichavský et al., 1998), when the true states are unavailable.

The following are the main contributions in this chapter: (i) an SMC based method

is developed to numerically approximate the unconditional PCRLB in (Tichavský et

al., 1998), for a general stochastic non-linear SSMs operating with Prd = 1 and Prf = 0.

The expectations defined originally with respect to the true states and measurements are

reformulated to accommodate use of the available sensor readings. This is done by first

conditioning the distribution of the true states over the sensor readings, and then using

an SMC method to approximate it. (ii) Based on the above developments, a numerical

method to compute the lower bound for a class of discrete-time, non-linear SSMs with

additive Gaussian state and sensor noise is derived. This is required, since several practical

problems, especially in tracking, navigation and sensor management, are often modelled

as non-linear SSMs, with additive Gaussian noise. (iii) Convergence results for the SMC

based PCRLB approximation is also provided. (iii) The quality of the SMC based PCRLB

approximation is illustrated on two examples, which include a uni-variate, non-stationary

growth model and a practical problem of ballistic target tracking at re-entry phase.

The proposed simulation based method is an off-line method, which can be used to

deliver an efficient numerical approximation to the lower bound in (Tichavský et al., 1998),

based on the sensor readings alone. Compared to the EKF and UKF based PCRLB

approximation method derived in (Lei et al., 2011), the proposed SMC based method: (i) is

far more general as it can approximate the PCRLB for a larger class of discrete-time, non-
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linear SSMs with possibly non-Gaussian state and sensor noise; (ii) avoids numerical errors

arising due to the use of dynamics linearisation methods; and (iii) provides a far greater

control over the quality of the resulting approximation. Moreover, several theoretical

results exist for the SMC methods, which can be used to suggest convergence of the SMC

based PCRLB approximation to the actual lower bound. All these features of the proposed

method are either validated theoretically or illustrated on simulation examples.

7.3 Problem formulation

In this chapter, we consider a model for a class of general stochastic non-linear systems.

Model 7.3.1. Consider the following discrete-time, stochastic non-linear SSM

Xt+1 =ft(Xt, ut, θ, Vt), (7.1a)

Yt =gt(Xt, ut, θ,Wt), (7.1b)

where: Xt ∈ X ⊆ Rn and Yt ∈ Y ⊆ Rm are the state variables and sensor measurements,

respectively; ut ∈ U ⊆ Rp is input variables and θ ∈ Θ ⊆ Rr are the model parameters.

Also: the state and sensor noise are represented as Vt ∈ Rn and Wt ∈ Rm, respectively.

ft(·) is an n-dimensional state mapping function and gt(·) is a m-dimensional measurement

mapping function, where each being possibly non-linear in its arguments.

Model 7.3.1 represents one of the most general classes of discrete-time, stochastic non-

linear SSMs. For notational simplicity, explicit dependence on ut ∈ U and θ ∈ Θ are not

shown in the rest of this article; however, all the derivations that appear in this chapter hold

with ut and θ included. Assumptions on Model 7.3.1 are discussed next.

Assumption 7.3.2. The state and sensor dynamics are defined as ft := X × Rn → Rn and

gt := X × Rm → Rm, respectively, are at least twice differentiable with respect toXt ∈ X .

Also, the parameters θ ∈ Θ and inputs ut ∈ U are assumed to be known a priori.
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Assumption 7.3.3. Sensor measurements are target-originated, operating with probability

of false alarm Prf = 0 and probability of detection Prd = 1. The target states Xt ∈ X are

hidden Markov process, observed only through the measurement process Yt ∈ Y .

Assumption 7.3.4. Vt, Wt and X0 are mutually independent sequences of independent

random variables described by the probability density functions (pdfs) p(vt), p(wt) and

p(x0), respectively. These pdfs are known in their classes (e.g., Gaussian; uniform) and

are parametrized by a known and finite number of moments (e.g., mean; variance).

Assumption 7.3.5. For a random realization (xt+1, xt, vt) ∈ X×X×Rn and (yt, xt, wt) ∈

Y × X × Rm satisfying Model 7.3.1, ∇vtf
T
t (xt, vt) and ∇wtg

T
t (xt, wt) have rank n

and m, such that using implicit function theorem, p(xt+1|xt) = p(Vt = f̃t(xt, xt+1)) and

p(yt|xt) = p(Wt = g̃t(xt, yt)) do not involve Dirac delta functions.

7.3.1 Posterior Cramér-Rao lower bound

The conventional CRLB provides a lower bound on the MSE of any ML based estimator.

An analogous extension of the CRLB to the class of Bayesian estimators was derived by

(Trees, 1968), and is referred to as the PCRLB inequality. Extension of the PCRLB to

non-linear tracking was provided by (Tichavský et al., 1998), and is given next.

Lemma 7.3.6. Let {Y1:t}t∈N be a sequence from Model 7.3.1, then MSE of any tracking

filter at t ∈ N is bounded from below by the following matrix inequality

Pt|t , Ep(X0:t,Y1:t)[(Xt − X̂t|t)(Xt − X̂t|t)
T ] < J−1

t , (7.2)

where: Pt|t is a n× n matrix of MSE; X̂t|t , X̂t(Y1:t) := Rtm → Rn is a point estimate

of Xt ∈ X at time t ∈ N, given the measurement sequence {Y1:t = y1:t} , {y1, . . . , yt}; Jt
is a n × n PFIM matrix; J−1

t is a n × n PCRLB matrix; p(x0:t, y1:t) is a joint probability

density of the states and measurements up until time t ∈ N; the superscript (·)T is the

transpose operation; and Ep(·)[·] is the expectation operator with respect to the pdf p(·).
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Proof. See (Trees, 1968) for a detailed proof.

Inequality (7.2) implies that Pt|t − J−1
t < 0 is a positive semi-definite matrix for all

X̂t|t ∈ Rn and t ∈ N. (7.2) can also be written in terms of a scalar MSE (SMSE) as

P S
t|t , Ep(X0:t,Y1:t)[‖Xt − X̂t|t‖2] ≥ Tr[J−1

t ], (7.3)

where Tr[·] is the trace operator, and ‖ · ‖ is a 2-norm.

Lemma 7.3.7. For a system represented by Model 7.3.1 and operating under Assumptions

7.3.2 through 7.3.5, the PFIM in Lemma 7.3.6 can be recursively computed as (Tichavský

et al., 1998; Šimandl et al., 2001)

Jt+1 = D22
t − [D12

t ]T (Jt +D11
t )−1D12

t , (7.4)

where:

D11
t =Ep(X0:t+1,Y1:t+1)[−∆Xt

Xt
log p(Xt+1|Xt)]; (7.5a)

D12
t =Ep(X0:t+1,Y1:t+1)[−∆

Xt+1

Xt
log p(Xt+1|Xt)]; (7.5b)

D22
t =Ep(X0:t+1,Y1:t+1)[−∆

Xt+1

Xt+1
log p(Xt+1|Xt)−∆

Xt+1

Xt+1
log p(Yt+1|Xt+1)]; (7.5c)

and: ∆ is a Laplacian operator such that ∆Y
X , ∇X∇T

Y with∇X ,
[
∂
∂X

]
being a gradient

operator, evaluated at the true states. Also, J0 = Ep(X0)[−∆X0
X0

log p(X0)].

Proof. See (Tichavský et al., 1998) for a complete proof.

For Model 7.3.1, obtaining a closed-form solution to the PFIM or PCRLB is non-trivial.

This is due to the complex integrals involved in (7.5), which do not lend themselves to an

easy analytical solution. The main problem addressed in this chapter is discussed next.

Problem 7.3.8. Compute a numerical solution to the PCRLB given in Lemma 7.3.6 for

systems represented by Model 7.3.1 and operating under Assumptions 7.3.2 through 7.3.5.

Use of simulation based methods in addressing Problem 7.3.8 is discussed next.
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7.4 Approximating PCRLB

MC method is a popular approach, which can be used to approximate the PCRLB; however,

as discussed in Section 7.2, MC method requires an ensemble of true states and sensor

measurements. While sensor readings may be available from the historical test-data,

the true states may not be available in practice. To allow the use of sensor readings in

approximating the PCRLB, this chapter reformulates the integrals in (7.5) as given below.

Proposition 7.4.1. The complex, multi-dimensional expectations in (7.5), with respect to

the density p(x0:t+1, y1:t+1) can be reformulated, and written as follows:

I11
t =Ep(X0:t+1|Y1:t+1)[−∆Xt

Xt
log p(Xt+1|Xt)]; (7.6a)

I12
t =Ep(X0:t+1|Y1:t+1)[−∆

Xt+1

Xt
log p(Xt+1|Xt)]; (7.6b)

I22,a
t =Ep(X0:t+1|Y1:t+1)[−∆

Xt+1

Xt+1
log p(Xt+1|Xt)]; (7.6c)

I22,b
t =Ep(X0:t+1|Y1:t+1)[−∆

Xt+1

Xt+1
log p(Yt+1|Xt+1)], (7.6d)

where:

D11
t = Ep(Y1:t+1)[I

11
t ]; (7.6e)

D12
t = Ep(Y1:t+1)[I

12
t ]; (7.6f)

D22
t = Ep(Y1:t+1)[I

22,a
t + I22,b

t ]. (7.6g)

Proof. The proof is based on decomposition of the pdf p(x0:t+1, y1:t+1) in (7.5), using the

probability condition p(x0:t+1, y1:t+1) = p(y1:t+1)p(x0:t+1|y1:t+1).

Remark 7.4.2. In Proposition 7.4.1 the integrals are with respect to p(y1:t+1) and

p(x0:t+1|y1:t+1). The advantage of representing (7.5) as (7.6) is evident: using historical

test-data, expectations with respect to p(y1:t+1) can be approximated using MC, while that

defined with respect to p(x0:t+1|y1:t+1) can be approximated using an SMC method.



Sec. 7.4 Approximating PCRLB 171

7.4.1 SMC based PCRLB approximation

It is not our aim here to review SMC methods in details, but to simply highlight their

role in approximating the multi-dimensional integrals in Proposition 7.4.1. For a detailed

exposition on SMC methods, see (Doucet et al., 2001; Ristic et al., 2004). The essential

idea behind SMC methods is to generate a large set of random particles (samples) from

the target pdf, with respect to which the integrals are defined. The target pdf of interest

in Proposition 7.4.1 is p(x0:t|y1:t). Using SMC methods, the target distribution, defined as

p(dx0:t+1|y1:t+1) , p(x0:t+1|y1:t+1)dx0:t+1 can be approximated as given below.

p̃(dx0:t+1|y1:t+1) =
N∑

i=1

W i
0:t+1|t+1δXi

0:t+1|t+1
(dx0:t+1), (7.7)

where: p̃(dx0:t+1|y1:t+1) is an N -particle SMC approximation of the target distribution

p(dx0:t+1|y1:t+1) and {X i
0:t+1|t+1; W i

0:t+1|t+1}Ni=1 are theN pairs of particle realizations and

their associated weights distributed according to p(x0:t+1|y1:t+1), such that
∑N

i=1 W
i
0:t|t = 1.

Using (7.7), an SMC approximation of (7.6a), for example, can be computed as

Ĩ11
t =

N∑

i=1

W i
0:t+1|t+1[−∆Xt

Xt
log p(X i

t+1|t+1|X i
t|t+1)]. (7.8)

where Ĩ11
t is an SMC estimate of I11

t and the Laplacian is evaluated at {X i
t:t+1|t+1}Ni=1.

The convergence of (7.8) to (7.6a) depends on (7.7). Many sharp results on convergence

of SMC methods are available (see (Crisan and Doucet, 2002) for a survey chapter and

(Moral, 2004) for a book length review). A selection of these results highlighting the

difficulties in approximating p(dx0:t|y1:t) with an SMC method are presented below.

Theorem 7.4.3. For any bounded test function φt : X t+1 → R, there exists Ct,p <∞, such

that for any p > 0, N ≥ 1 and t ≥ 1, the following inequality holds

E
[∣∣∣∣
∫

X t+1

φt(x0:t)εt(dx0:t|y1:t)

∣∣∣∣
p] 1

p

≤ Ct,pφ̄t
N1/2

, (7.9)

where εt(dx0:t|y1:t) = p̃(dx0:t|y1:t)− p(dx0:t|y1:t) is the N -particle approximation error,

φ̄t = supx0:t∈X t+1 |φt(x0:t)|, and the expectation is with respect to the particle realizations.
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Proof. See Theorem 2 in (Moral and Doucet, 2003) for a detailed proof.

Remark 7.4.4. The result in Theorem 7.4.3 is weak, since Ct,p ∈ R being a function of

t ∈ N, grows exponentially/polynomially with time (Kantas et al., 2009). To guarantee

a fixed precision of the approximation in (7.8), N has to increase with t. The result in

Theorem 7.4.3 is not surprising, since (7.7) requires sampling from the pdf p(x0:t|y1:t),

whose dimension increases as n(t + 1). In literature Theorem 7.4.3 is referred to as

the sample path degeneracy problem. This is a fundamental limitation of SMC methods;

wherein, forN ∈ N, the quality of the approximation of p(dx0:t|y1:t) deteriorates with time.

The motivation to use SMC methods to approximate the complex, multi-dimensional

integrals in Proposition 7.4.1 is based on the fact that encouraging results can be obtained

under the exponential forgetting assumption on Model 7.3.1. Since θ ∈ Θ is assumed to

be known (see Assumption 7.3.2), the forgetting property in Model 7.3.1 holds. With the

forgetting property, it is possible to establish results of the form given in the next theorem.

Theorem 7.4.5. For an integer L > 0, and any bounded test function φL : X L → R, there

exists DL,p <∞, such that for any p > 0, N ≥ 1 and t ≥ 1, the following inequality holds

E
[∣∣∣∣
∫

XL
φL(xt−L+1:t)εL(dxt−L+1:t|y1:t)

∣∣∣∣
p] 1

p

≤ DL,pφ̄L
N1/2

, (7.10)

where εL(dxt−L+1:t|y1:t) =
∫
X t−L+1 εt(dx0:t|y1:t).

Proof. See Theorem 2 in (Moral and Doucet, 2003) for a detailed proof.

Remark 7.4.6. Since DL,p ∈ R is independent of t ∈ N, Theorem 7.4.5 suggests that an

SMC based approximation of the most recent marginal posterior pdf p(xt−L+1:t|y1:t), over

a fixed horizon L > 0 does not result in the error accumulation.

For our purposes, to make the SMC based PCRLB approximation effective, the

dimension of the integrals in Proposition 7.4.1 needs to be reduced. An SMC based

approximation of the PCRLB over a reduced dimensional state-space is discussed next.
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Lemma 7.4.7. For a system represented by Model 7.3.1, using the Markov property of the

target states in Assumptions 7.3.3, Proposition 7.4.1 can be written as follows:

I11
t =Ep(Xt:t+1|Y1:t+1)[−∆Xt

Xt
log p(Xt+1|Xt)]; (7.11a)

I12
t =Ep(Xt:t+1|Y1:t+1)[−∆

Xt+1

Xt
log p(Xt+1|Xt)]; (7.11b)

I22,a
t =Ep(Xt:t+1|Y1:t+1)[−∆

Xt+1

Xt+1
log p(Xt+1|Xt)]; (7.11c)

I22,b
t =Ep(Xt+1|Y1:t+1)[−∆

Xt+1

Xt+1
log p(Yt+1|Xt+1)]. (7.11d)

Proof. The proof is based on a straightforward use of the definition of expectation and

Markov property of Model 7.3.1. For example, the integrals in (7.6a) can be written as

I11
t =

∫

X t+2

[−∆xt
xt log p(xt+1|xt)]p(dx0:t+1|y1:t+1), (7.12a)

=

∫

X 2

[−∆xt
xt log p(xt+1|xt)]p(dxt:t+1|y1:t+1), (7.12b)

=Ep(Xt:t+1|Y1:t+1)[−∆Xt
Xt

log p(Xt+1|Xt)], (7.12c)

where p(dx0:t+1|y1:t+1) , p(x0:t+1|y1:t+1)dx0:t+1, and in (7.12c), since the integrand is

independent of x0:t−1 ∈ X t, it is marginalized out of the integral. Equations (7.11b) through

(7.11d) can be derived based on similar arguments, which completes the proof.

Remark 7.4.8. The dimension of the expectations in (7.6a) through (7.6c) reduces from

n(t + 2) to 2n; whereas, in (7.6d), it reduces from n(t + 2) to n for all t ∈ N. Moreover,

since expectations in Lemma 7.4.7 are with respect to p(xt:t+1|y1:t+1) and p(xt+1|y1:t+1), an

SMC method can be effectively used with a finite number of particles (see Theorem 7.4.5).

7.4.2 General non-linear SSMs

To approximate the multi-dimensional integrals in Lemma 7.4.7 for Model 7.3.1, a set of

randomly generated samples from the target distribution p(dxt:t+1|y1:t+1) is required. First

note that the target pdf p(xt:t+1|y1:t+1) can alternatively be written as given below.
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Lemma 7.4.9. The target pdf p(xt:t+1|y1:t+1), with respect to which the integrals in Lemma

7.4.7 are defined can be decomposed, and written as

p(xt:t+1|y1:t+1) =
p(xt+1|xt)p(xt|y1:t)p(xt+1|y1:t+1)∫

X p(xt+1|xt)p(dxt|y1:t)
. (7.13)

Proof. First note that the target pdf p(xt:t+1|y1:t+1) can be written as

p(xt:t+1|y1:t+1) = p(xt|xt+1, y1:t, yt+1)p(xt+1|y1:t+1). (7.14)

From the Markov property of (7.1), and from the Bayes’ theorem, (7.14) can be written as

p(xt:t+1|y1:t+1) =
p(yt+1|xt, xt+1, y1:t)p(xt|xt+1, y1:t)p(xt+1|y1:t+1)

p(yt+1|xt+1, y1:t)
, (7.15a)

=
p(yt+1|xt+1, y1:t)p(xt|xt+1, y1:t)p(xt+1|y1:t+1)

p(yt+1|xt+1, y1:t)
, (7.15b)

=p(xt|xt+1, y1:t)p(xt+1|y1:t+1). (7.15c)

Applying Bayes’ theorem again in (7.15c) yields

p(xt:t+1|y1:t+1) =
p(xt+1|xt, y1:t)p(xt|y1:t)p(xt+1|y1:t+1)

p(xt+1|y1:t)
, (7.16a)

=
p(xt+1|xt)p(xt|y1:t)p(xt+1|y1:t+1)∫

X p(xt+1|xt)p(dxt|y1:t)
, (7.16b)

where in (7.16b), the Law of Total Probability is used, which completes the proof.

Remark 7.4.10. The procedure for generating random particles from densities, such as the

uniform or Gaussian, is well described in literature; however, due to the multi-variate, and

non-Gaussian nature of the target pdf, generating random particles from p(xt:t+1|y1:t+1) is

a non-trivial problem. An alternative idea is to employ an importance sampling function

(ISF), from which random particles are easier to generate (Doucet et al., 2001).

In this chapter, the product of two pdfs in (7.13) is selected as the ISF, such that

q(xt:t+1|y1:t+1) , p(xt|y1:t)p(xt+1|y1:t+1), (7.17)
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Algorithm 7 SMC based posterior density approximation
Input: Given Model 7.3.1, satisfying Assumptions 7.3.2 through 7.3.5, assume a prior
pdf on X0, such that X0 ∼ p(x0). Also, select algorithm parameter N .
Output: Recursive SMC approximation of the posterior p(dxt|y1:t) for all t ∈ N.

1: Generate N independent and identically distributed particles {X i
0|−1}Ni=1 ∼ p(x0) and

set the associated weights to {W i
0|−1 = N−1}Ni=1. Set t← 1.

2: Sample {X i
t|t−1}Ni=1 ∼ p(xt|y1:t−1). Set {W i

t|t−1 = N−1}Ni=1.
3: while t ∈ N do
4: Use {Yt = yt} and compute the importance weights {W i

t|t}Ni=1 using

W i
t|t =

W i
t|t−1p(yt|X i

t|t−1)
∑N

j=1 W
j
t|t−1p(yt|X i

t|t−1)
. (7.18)

5: Resample the particle set {Xj
t|t}Nj=1 with replacement from {X i

t|t−1}Ni=1, such that

Pr(Xj
t|t = X i

t|t−1) = W i
t|t, (7.19)

where Pr(·) is a probability measure. Set {W i
t|t = N−1}Ni=1.

6: Sample {X i
t+1|t}Ni=1 ∼ p(xt+1|y1:t) using (7.57). Set {W i

t+1|t = N−1}Ni=1.
7: Set t← t+ 1.
8: end while

where q(xt:t+1|y1:t+1) is a non-negative ISF on X 2, such that supp q(xt:t+1|y1:t+1) ⊇

supp p(xt:t+1|y1:t+1). Choice of an ISF similar to (7.17) was also employed in (Tanizaki,

2001; Schön et al., 2011) to develop a particle smoothing algorithm for discrete-time, non-

linear SSMs. Thus to be able to generate random samples from (7.17), samples from the

two posteriors p(xt|y1:t) and p(xt+1|y1:t+1) need to be generated first. Again, using the

principles of ISF, particles from the posterior pdf can be generated using any advanced

SMC methods (e.g., ASIR (Pitt and Shephard, 1999), resample-move algorithm (Gilks

and Berzuini, 2002), block sampling strategy (Doucet et al., 2006)) or for example, using

the method in (Schön et al., 2011; Gopaluni, 2008). The method described in (Schön

et al., 2011; Gopaluni, 2008) is outlined in Algorithm 7. It is important to note that

in importance sampling, degeneracy is a common problem; wherein, after a few time

instances, the density of the weights in (7.18) become skewed. The resampling step in
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(7.18) is crucial in limiting the effects of degeneracy. Finally using Algorithm 7., the

particle representation of p(dxt|y1:t) and p(dxt+1|y1:t+1) are given by

p̃(dxt|y1:t) =
1

N

N∑

i=1

δXi
t|t

(dxt), (7.20a)

p̃(dxt+1|y1:t+1) =
1

N

N∑

j=1

δXj
t+1|t+1

(dxt+1). (7.20b)

Here {X i
t|t}Ni=1 ∼ p̃(xt|y1:t) and {X i

t+1|t+1}Ni=1 ∼ p̃(xt+1|y1:t+1) are the N pairs of

resampled i.i.d. samples from p̃(xt|y1:t) and p̃(xt+1|y1:t+1), respectively.

Remark 7.4.11. Uniform convergence in time of (7.20) has been established by (Moral,

2004; Chopin, 2004). Although these results rely on strong mixing assumptions of Model

7.3.1, uniform convergence has been observed in numerical studies for a wide class of

non-linear time-series models, where the mixing assumptions are not satisfied.

Substituting (7.20) into (7.17), yields an SMC approximation of the ISF, i.e.,

q̃(dxt:t+1|y1:t+1) =
1

N2

N∑

j=1

N∑

i=1

δXi
t|t,X

j
t+1|t+1

(dxt:t+1), (7.21)

where q̃(dxt:t+1|y1:t+1) is an N2-particle SMC approximation of the ISF distribution

q(dxt:t+1|y1:t+1) and {X i
t|t; X

j
t+1|t+1}

N,N
i=1,j=1 ∼ q̃(xt:t+1|y1:t+1) are particles from the ISF.

Lemma 7.4.12. An SMC approximation of the target distribution p(dxt:t+1|y1:t+1) can be

computed using the SMC approximation of q(dxt:t+1|y1:t+1) given in (7.21), such that

p̃(dxt:t+1|y1:t+1) =
N∑

i=1

W i
t|t,t+1|t+1δXi

t|t,X
i
t+1|t+1

(dxt:t+1), (7.22)

where:

W i
t|t,t+1|t+1 ,

ζ it|t,t+1|t+1∑N
j=1 ζ

j
t|t,t+1|t+1

; (7.23a)

ζ it|t,t+1|t+1 ,
p(X i

t+1|t+1|X i
t|t)

N
∑N

m=1 p(X
i
t+1|t+1|Xm

t|t)
; (7.23b)

and p̃(dxt:t+1|y1:t+1) is an SMC approximation of the target distribution p(dxt:t+1|y1:t+1).
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Proof. Substituting (7.21) into (7.13) followed by several algebraic manipulations yields

an SMC approximation of p(dxt:t+1|y1:t+1), denoted by p̃(dxt:t+1|y1:t+1), such that

p̃(dxt:t+1|y1:t+1) =
p(xt+1|xt)q̃(dxt:t+1|y1:t+1)∫
X p(xt+1|xt)p̃(dxt|y1:t)

, (7.24a)

=
Np(xt+1|xt)

∑N
j=1

∑N
i=1 δXi

t|t,X
j
t+1|t+1

(dxt:t+1)

N2
∫
X p(xt+1|xt)

∑N
m=1 δXi

t|t
(dxt)

, (7.24b)

=

∑N
j=1

∑N
i=1 p(X

j
t+1|t+1|X i

t|t)δXi
t|t,X

j
t+1|t+1

(dxt:t+1)

N
∑N

m=1 p(X
j
t+1|t+1|Xm

t|t)
, (7.24c)

=
N∑

j=1

N∑

i=1

W i,j
t|t,t+1|t+1δXi

t|t,X
j
t+1|t+1

(dxt:t+1), (7.24d)

where

W i,j
t|t,t+1|t+1 ,

p(Xj
t+1|t+1|X i

t|t)

N
∑N

m=1 p(X
j
t+1|t+1|Xm

t|t)
, (7.25)

Equation (7.24d) is an SMC approximation of p(dxt:t+1|y1:t+1). The computational

complexity of the weights in (7.25) is of the order O(N2). As suggested in (Gopaluni,

2008), without significant loss in the quality of the approximation, the complexity can

be reduced to the order O(N) by replacing (7.24d) with (7.22), which completes the

proof.

The distribution of weights in (7.22) becomes skewed after a few time instances. To

avoid this, the particles in (7.22) are resampled using systematic resampling, such that

Pr(Xj
t:t+1|t+1 = {X i

t|t; X
i
t+1|t+1}) = W i

t|t,t+1|t+1, (7.26)

where {X i
t:t+1|t+1}Ni=1 ∼ p̃(xt:t+1|y1:t+1) are resampled i.i.d. particles. With resampling,

the SMC approximation of the target distribution in (7.22) can be represented as

p̃(dxt:t+1|y1:t+1) =
1

N

N∑

i=1

δXi
t:t+1|t+1

(dxt:t+1). (7.27)

Expectation in Lemma 7.4.7, with respect to the marginalized pdf p(xt|y1:t+1) (see (7.11d))

can also be approximated using SMC methods as given in the next lemma.
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Lemma 7.4.13. Let {X i
t:t+1|t+1}Ni=1 in (7.27) be i.i.d. resampled particles distributed

according to p̃(xt:t+1|y1:t+1) then an SMC approximation of p(dxt|y1:t+1) is given by

p̃(dxt|y1:t+1) =
1

N

N∑

i=1

δXi
t|t+1

(dxt), (7.28)

where p̃(dxt|y1:t+1) is an SMC approximation of p(dxt|y1:t+1) and δXi
t|t+1

(·) is a

marginalized Dirac delta function in dxt, centred around the random particle X i
t|t+1.

Proof. See (Tulsyan et al., 2013b) for the proof.

Lemma 7.4.13 gives a procedure for computing an SMC approximation of p(dxt|y1:t+1),

using the particles from the SMC approximation of p(dxt:t+1|y1:t+1). Expectation with

respect to p(y1:t+1) in Proposition 7.4.1 can be approximated using MC method, such that

p̃(dy1:t+1) =
1

M

M∑

j=1

δY j1:t+1
(dy1:t+1), (7.29)

where p̃(dy1:t+1) is an MC approximation of p(dy1:t+1), and M is the total number of i.i.d.

measurement sequences obtained from the historical test-data. Note that the approximation

in (7.29) is possible only under Assumption 7.3.2; however, in general, estimating the

marginalized likelihood function p(y1:t+1) is non-trivial (Kantas et al., 2009).

Finally, an SMC approximation of the PCRLB for systems represented by Model 7.3.1

and operating under Assumptions 7.3.2 through 7.3.5 is summarized in the next lemma.

Lemma 7.4.14. Let a general stochastic non-linear system be represented by Model 7.3.1,

such that it satisfies Assumption 7.3.2 through 7.3.5. Let {Y1:t = yj1:t}Mj=1 be M ∈ N

i.i.d. measurement sequences generated from Model 7.3.1, then the matrices (7.5a) through

(7.5c) in Lemma 7.3.7 can be recursively approximated as follows:

D̃11
t =− 1

MN

M∑

j=1

N∑

i=1

[∆Xt
Xt

log p(X i,j
t+1|t+1|X

i,j
t|t+1)]; (7.30a)

D̃12
t =− 1

MN

M∑

j=1

N∑

i=1

[∆
Xt+1

Xt
log p(X i,j

t+1|t+1|X
i,j
t|t+1)]; (7.30b)
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D̃22
t =− 1

MN

M∑

j=1

N∑

i=1

[∆
Xt+1

Xt+1
log p(X i,j

t+1|t+1|X
i,j
t|t+1) + ∆

Xt+1

Xt+1
log p(Y j

t+1|X i,j
t+1|t+1)];

(7.30c)

and {X i,j
t:t+1|t+1}Ni=1 ∼ p(xt:t+1|yj1:t+1) is a set of N resampled particles from (7.27),

distributed according to p(xt:t+1|yj1:t+1) for all {Y1:t+1 = yj1:t+1}Mj=1.

Proof. For a measurement sequence {Y1:t = yj1:t}, an SMC approximation of the target

distribution in (7.27) can be written as

p̃(dxt:t+1|yj1:t+1) =
1

N

N∑

i=1

δXi,j
t:t+1|t+1

(dxt:t+1), (7.31)

whereX i,j
t:t+1|t+1 ∼ p(xt:t+1|yj1:t+1) are resampled particles. Substituting (7.31) into Lemma

7.4.7, an SMC approximation of (7.11a) through (7.11d) can be obtained as follows:

Ĩ11
t =

1

N

N∑

i=1

−∆Xt
Xt

log p(X i,j
t+1|t+1|X

i,j
t|t+1); (7.32a)

Ĩ12
t =

1

N

N∑

i=1

−∆
Xt+1

Xt
log p(X i,j

t+1|t+1|X
i,j
t|t+1); (7.32b)

Ĩ22,a
t =

1

N

N∑

i=1

−∆
Xt+1

Xt+1
log p(X i,j

t+1|t+1|X
i,j
t|t+1); (7.32c)

Ĩ22,b
t =

1

N

N∑

i=1

−∆
Xt+1

Xt+1
log p(Y j

t+1|X i,j
t+1|t+1), (7.32d)

where Ĩt is an SMC approximation of It. Substituting (7.32) and (7.29) into (7.6e) through

(7.6g) yields (7.30a) through (7.30c), which completes the proof.

Lemma 7.4.14 gives an SMC based numerical method to approximate the complex,

multi-dimensional integrals in Lemma 7.3.7. Note that since Lemma 7.4.14 is valid for

a general non-linear SSMs, the derivatives of the logarithms of the pdfs in (7.30a) through

(7.30c) are left in its original form, but can be computed for a given system.

Building on the developments in this section, an SMC approximation of the PCRLB for

a class of non-linear SSMs with additive Gaussian noise is presented next.
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7.4.3 Non-linear SSMs with additive Gaussian noise

Many practical applications in tracking (e.g., ballistic target tracking (Farina et al., 2002),

bearings-only tracking (Cadre and Trémois, 1998), range-only tracking (Song, 1999),

multi-sensor resource deployment (Hernandez et al., 2004) and other navigation problems

(Karlsson et al., 2003)) can be described by non-linear SSMs with additive Gaussian noise.

Since the class of practical problems with additive Gaussian noise is extensive, especially

in tracking, navigation and sensor management, an SMC based numerical method for

approximating the PCRLB for such class of non-linear systems is presented.

Model 7.4.15. Consider the class of non-linear SSMs with additive Gaussian noise

Xt+1 =ft(Xt) + Vt, (7.33a)

Yt =gt(Xt) +Wt, (7.33b)

where Vt ∈ Rn and Wt ∈ Rm are mutually independent sequences from the Gaussian

distribution, such that Vt ∼ N (vt|0, Qt) and Wt ∼ N (wt|0, Rt).

Note that Model 7.4.15 can also be represented as

log[p(Xt+1|Xt)] = c1 −
1

2
[Xt+1 − ft(Xt)]

TQ−1
t [Xt+1 − ft(Xt)], (7.34a)

log[p(Yt+1|Xt+1)] = c2 −
1

2
[Yt+1 − gt+1(Xt+1)]TR−1

t+1[Yt+1 − gt+1(Xt+1)], (7.34b)

where c1 ∈ R+ and c2 ∈ R+ are normalizing constant and R+ := [0,∞).

Result 7.4.16. The first and second order partial derivative of (7.34a) is given by

∇Xt log[p(Xt+1|Xt)] =[∇Xtf
T
t (Xt)]Q

−1
t [Xt+1 − ft(Xt)], (7.35a)

∆Xt
Xt

log[p(Xt+1|Xt)] =− [∇Xtf
T
t (Xt)]Q

−1
t [∇Xtft(Xt)] + [∆Xt

Xt
fTt (Xt)]Λ

−1
Xt

ΨXt ,
(7.35b)

and the first with respect to Xt+1 ∈ X and the second with respect to Xt ∈ X is given by

∆
Xt+1

Xt
log[p(Xt+1|Xt)] =[∇Xtf

T
t (Xt)]Q

−1
t , (7.35c)
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where: Λ−1
Xt

= Q−1
t In2×n2; ΨXt = [Xt+1 − ft(Xt)]In2×n; In2×n2 , and In2×n are n2 × n2

and n2 × n identity matrix, respectively. Also: [∇Xtf
T
t (Xt)] and [∆Xt

Xt
fTt (Xt)] are

[∇Xtf
T
t (Xt)] ,[∇Xtf

(1)
t (Xt), · · · ,∇Xtf

(n)
t (Xt)]n×n, (7.36a)

[∆Xt
Xt
fTt (xt)] ,[∆Xt

Xt
f

(1)
t (Xt), · · · ,∆Xt

Xt
f

(n)
t (Xt)]n×n2 , (7.36b)

where ft(Xt) , [f
(1)
t (Xt), · · · , f (n)

t (Xt)]
T is a n× 1 vector valued function in (7.33a).

Result 7.4.17. The second order partial derivative of (7.34a) and (7.34b) is given by

∆
Xt+1

Xt+1
log[p(Xt+1|Xt)] =−Q−1

t (7.37a)

∆
Xt+1

Xt+1
log[p(Yt+1|Xt+1)] =[∆

Xt+1

Xt+1
gTt+1(Xt+1)]Λ−1

Yt+1
ΨYt+1 − [∇Xt+1g

T
t+1(Xt+1)]R−1

t+1

× [∇Xt+1gt+1(Xt+1)] (7.37b)

where: Λ−1
Yt+1

= R−1
t+1In2×n2; ΨYt+1 = [Yt+1 − gt+1(Xt+1)]In2×n; In2×n2 , and In2×n are

n2 × n2 and n2 × n identity matrix. Also: [∇Xt+1gt+1(Xt+1)] and [∆
Xt+1

Xt+1
gt+1(Xt+1)] are

[∇Xt+1g
T
t+1(Xt+1)] = [∇Xt+1g

(1)
t+1(Xt+1), . . . ,∇Xt+1g

(m)
t+1(Xt+1)]m×m; (7.38a)

[∆
Xt+1

Xt+1
gTt+1(Xt+1)] = [∆

Xt+1

Xt+1
g

(1)
t+1(Xt+1), . . . ,∆

Xt+1

Xt+1
g

(m)
t+1(Xt+1)]m×m2 ; (7.38b)

where gt+1(Xt+1) , [g
(1)
t+1(Xt+1), · · · , g(n)

t+1(Xt+1)]T is a m× 1 vector function in (7.33b).

Lemma 7.4.18. For a system given by Model 7.4.15, under Assumptions 7.3.2 through

7.3.5 the matrices (7.11a) through (7.11d) in Lemma 7.4.7 can be written as:

I11
t =Ep(Xt|Y1:t+1)[∇Xtf

T
t (Xt)]Q

−1
t [∇Xtft(Xt)]; (7.39a)

I12
t =Ep(Xt|Y1:t+1)[−∇Xtf

T
t (Xt)]Q

−1
t ; (7.39b)

I22,a
t =Q−1

t ; (7.39c)

I22,b
t =E p(Y1:t)

p(Y1:t+1)

Ep(Xt+1|Y1:t)[∇Xt+1g
T
t+1(Xt+1)]R−1

t+1[∇Xt+1g
T
t+1(Xt+1)]. (7.39d)
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Proof. (7.39a): Substituting (7.35b) into (7.11a) yields

I11
t = Ep(Xt:t+1|Y1:t+1)

[
[∇Xtf

T
t (Xt)]Q

−1
t [∇Xtft(Xt)]− [∆Xt

Xt
fTt (xt)]Λ

−1
Xt

ΨXt

]
, (7.40a)

= Ep(Xt|Y1:t+1)Ep(Xt+1|Xt,Y1:t+1)

[
[∇Xtf

T
t (Xt)]Q

−1
t [∇Xtft(Xt)]− [∆Xt

Xt
fTt (Xt)]Λ

−1
Xt

ΨXt

]
,

(7.40b)

where (7.40b) is obtained by substituting the probability relation p(xt:t+1|y1:t+1) =

p(xt+1|xt, y1:t+1)p(xt|y1:t+1) into (7.40a). Finally, by noting the following two conditions

Ep(Xt+1|Xt,Y1:t+1)[∇Xtf
T
t (Xt)]Q

−1
t [∇Xtft(Xt)] = [∇Xtf

T
t (Xt)]Q

−1
t [∇Xtft(Xt)], (7.41)

Ep(Xt+1|Xt,Y1:t+1)[∆
Xt
Xt
fTt (Xt)]Λ

−1
Xt

ΨXt = [∆Xt
Xt
fTt (Xt)]Λ

−1
Xt
Ep(Xt+1|Xt,Y1:t+1)[Ψxt ] = 0,

(7.42)

and substituting (7.41) and (7.42) into (7.40b) yields (7.39a).

(7.39b): Substituting (7.35c) into (7.11b) yields

I12
t = Ep(Xt:t+1|Y1:t+1)[−[∇Xtf

T
t (Xt)]Q

−1
t ]. (7.43)

Substituting the probability relation p(xt:t+1|y1:t+1) = p(xt+1|xt, y1:t+1)p(xt|y1:t+1) into

(7.43), followed by taking independent terms out of the integral yields (7.39b).

(7.39c): Substituting (7.37a) into (7.11c) yields (7.39c).

(7.39d): Using Bayes’ rule, the expectation in (7.11d) can be rewritten as

I22,b
t = E p(Xt+1,Y1:t+1)

p(Y1:t+1)

[−∆
Xt+1

Xt+1
log p(Yt+1|Xt+1)]. (7.44)

Now using the probability condition p(xt+1, y1:t+1) = p(yt+1|xt+1)p(xt+1|y1:t)p(y1:t), the

expectation in (7.44) can further be decomposed and written as

I22,b
t = E p(Y1:t)

p(Y1:t+1)

Ep(Xt+1|Y1:t)Ep(Yt+1|Xt+1)[−∆
Xt+1

Xt+1
log p(Yt+1|Xt+1)]. (7.45)

Substituting (7.37b) into (7.45) yields

I22,b
t = E p(Y1:t)

p(Y1:t+1)

Ep(Xt+1|Y1:t)Ep(Yt+1|Xt+1)

[
[−∆

Xt+1

Xt+1
gTt+1(Xt+1)]Λ−1

Yt+1
ΨYt+1

+[∇Xt+1g
T
t+1(Xt+1)]R−1

t+1[∇Xt+1gt+1(Xt+1)]
]
. (7.46)
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Noting the following two conditions

Ep(Yt+1|Xt+1)[∇Xt+1g
T
t+1(Xt+1)]R−1

t+1[∇Xt+1gt+1(Xt+1)]

= [∇Xt+1g
T
t+1(Xt+1)]R−1

t+1[∇Xt+1gt+1(Xt+1)], (7.47)

Ep(Yt+1|Xt+1)[∆
Xt+1

Xt+1
gTt+1(Xt+1)]Λ−1

Yt+1
ΨYt+1 ]

= ∆
Xt+1

Xt+1
gTt+1(Xt+1)Λ−1

Yt+1
Ep(Yt+1|Xt+1)[ΨYt+1 ] = 0, (7.48)

and substituting (7.47) and (7.48) into (7.46) yields (7.39d), which completes the proof.

Using the results of Lemma 7.4.18, an SMC approximation of the PCRLB for Model

7.4.15 can be subsequently computed, as discussed in the next lemma.

Lemma 7.4.19. Let a stochastic non-linear system with additive Gaussian state and sensor

noise be represented by Model 7.4.15, such that it satisfies Assumption 7.3.2 through 7.3.5.

Let {Y1:t = yj1:t}Mj=1 be M ∈ N i.i.d. measurement sequences generated from Model 7.4.15,

then (7.5a) through (7.5c) in Lemma 7.3.7 can be recursively approximated as follows:

D̃11
t =

1

MN

M∑

j=1

N∑

i=1

[∇Xtf
T
t (X i,j

t|t+1)]Q−1
t [∇Xtft(X

i,j
t|t+1)]; (7.49a)

D̃12
t =

1

MN

M∑

j=1

N∑

i=1

−[∇Xtf
T
t (X i,j

t|t+1)]Q−1
t ; (7.49b)

D̃22
t =Q−1

t +
1

MN

M∑

j=1

N∑

i=1

[∇Xt+1g
T
t+1(X i,j

t+1|t)]R
−1
t+1[∇Xt+1g

T
t+1(X i,j

t+1|t)]; (7.49c)

and {X i,j
t|t+1}Ni=1 ∼ p(xt|yj1:t+1) and {X i,j

t+1|t}Ni=1 ∼ p(xt+1|yj1:t) are sets of N resampled

particles from Lemma 7.4.13 and Algorithm 7, respectively, for all {Y1:t+1 = yj1:t+1}Mj=1.

Proof. For {Y1:t = yj1:t}, the SMC approximation in (7.28) can be written as

p̃(dxt|yj1:t+1) =
1

N

N∑

i=1

δXi,j
t|t+1

(dxt), (7.50)
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where X i,j
t|t+1 ∼ p(xt|yj1:t+1). Substituting (7.50) into (7.39a) and (7.39b) yields

Ĩ11
t =

1

N

N∑

i=1

[∇Xtf
T
t (X i,j

t|t+1)]Q−1
t [∇Xtft(X

i,j
t|t+1)], (7.51a)

Ĩ12
t =− 1

N

N∑

i=1

[∇Xtf
T
t (X i,j

t|t+1)]Q−1
t , (7.51b)

where Ĩt is an SMC approximations of It. Substituting (7.51) and (7.29) into (7.6e) and

(7.6f) yields (7.49a) and (7.49b), respectively. Computing an SMC approximation of D22
t

in (7.6g) for Model 7.4.15 requires a slightly different approach. Substituting (7.39c) and

(7.39d) into (7.6g) yields

D22
t =Ep(Y1:t+1)[Q

−1
t + E p(Y1:t)

p(Y1:t+1)

Ep(Xt+1|Y1:t)[∇Xt+1g
T
t+1(Xt+1)]R−1

t+1[∇Xt+1g
T
t+1(Xt+1)]],

(7.52a)

=Q−1
t + Ep(Y1:t)Ep(Xt+1|Y1:t)[∇Xt+1g

T
t+1(Xt+1)]R−1

t+1[∇Xt+1g
T
t+1(Xt+1)], (7.52b)

where Q−1
t is independent of the measurement sequence. Also, Ep(Y1:t+1)E p(Y1:t)

p(Y1:t+1)

[·] =

Ep(Y1:t)[·]. For {Y1:t = yj1:t}, random samples {X i,j
t+1|t}Ni=1 ∼ p(xt+1|yj1:t) from Algorithm 7

delivers an SMC approximation of p(dxt+1|yj1:t) represented as

p̃(dxt+1|yj1:t) =
1

N

N∑

i=1

δXi,j
t+1|t

(dxt+1) (7.53)

where p̃(dxt+1|yj1:t) is an SMC approximation of p(dxt+1|yj1:t). Substituting (7.53) and

(7.29) into (7.52b) yields (7.49c), which completes the proof.

Result 7.4.20. An SMC approximation of the PFIM for Model 7.4.15 is obtained by

substituting (7.49a) through (7.49c) in Lemma 7.4.19 into (7.4) in Lemma 7.3.7, such that

J̃t+1 = D̃22
t − [D̃12

t ]T (J̃t + D̃11
t )−1D̃12

t , (7.54)

where J̃t+1 is an SMC approximation of Jt+1. Applying matrix inversion lemma (Horn and

Johnson, 1985) in (7.54) gives an SMC approximation of the PCRLB, such that

J̃−1
t+1 = [D̃22

t ]−1 − [D̃22
t ]−1[D̃12

t ]T
[
D̃12
t [D̃22

t ]−1[D̃12
t ]T − (J̃t + D̃11

t )
]−1

D̃12
t [D̃22

t ]−1,

(7.55)

where J̃−1
t+1 is an SMC approximation of J−1

t+1 in (7.2) in Lemma 7.3.6.
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7.5 Final Algorithm

Algorithms 8 and 9 give the procedure for computing an SMC approximation of the PCRLB

for Models 7.3.1 and 7.4.15, respectively.

Remark 7.5.1. In practice, an ensemble of M measurement sequences {Y1:T = yj1:T}Mj=1

required by Algorithms 8 and 9 are obtained from historical process data; however, in

simulations, it can be generated by simulating Models 7.3.1 and 7.4.15, M times starting

at i.i.d. initial states drawn from X0 ∼ p(x0). Note that this procedure also requires

simulation of the true states; however, true states are not used in Algorithms 8 and 9.

For illustrative purposes, to assess the numerical reliability of Algorithms 8 and 9, a

quality measure is defined as follows

ΛJ =
1

T

T∑

t=1

[J−1
t − J̃−1

t ] ◦ [J−1
t − J̃−1

t ], (7.56)

where ΛJ is the average sum of square of errors in approximating the PCRLB and ◦ is the

Hadamard product. ΛJ is a n×nmatrix, with diagonal element ΛJ(j, j) as the average sum

of square of errors accumulated in approximating the PCRLB for state j, where 1 ≤ j ≤ n.

7.6 Convergence

Computing the PCRLB in Lemma 7.3.6 involves solving the complex, multi-dimensional

integrals; however, as stated earlier, for Models 7.3.1 and 7.4.15 the PCRLB cannot be

solved in closed form. Algorithms 8 and 9 gives a N particle and M simulation based

SMC approximation of the PCRLB for Models 7.3.1 and 7.4.15, respectively. It is therefore

natural to question the convergence properties of the proposed numerical method. In this

regard, results such as Theorem 7.4.5 and Remark 7.4.11 are important as it ensures that

the proposed numerical solution does not result in accumulation of errors. It is emphasized

that although Theorem 7.4.5 and Remark 7.4.11 not necessarily imply convergence of the
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Algorithm 8 SMC based PCRLB approximation for Model 7.3.1
Input: Given Model 7.3.1, satisfying Assumptions 7.3.2 through 7.3.5, assume a prior
pdf on X0, such that X0 ∼ p(x0). Also, select algorithm parameters- T , N and M .
Output: SMC approximation of the PCRLB for Model 7.3.1.

1: Generate and store M i.i.d. sequences {Y j
1:T}Mj=1 ∼ p(y1:T ) of length T, by simulating

Model 7.3.1, M times starting at M i.i.d. initial states {X i
0|−1}Mj=1 ∼ p(x0).

2: for j = 1 to M do
3: for t = 1 to T do
4: Store resampled particles {X i,j

t|t }Ni=1 ∼ p(xt|yj1:t) using Algorithm 7.
5: Store resampled particles {X i,j

t−1:t|t}Ni=1 ∼ p(xt−1:t|yj1:t) using Lemma 7.4.12.
6: end for
7: end for
8: Compute PFIM J0 at t = 0 based on the initial target state pdf X0 ∼ p(x0). If
X0 ∼ N (x0|Cx0 , P0|0) then from Lemma 7.3.7, J0 = P−1

0|0 .
9: for t = 0 to T − 1 do

10: Compute an SMC estimate (7.30a) through (7.30c) in Lemma 7.4.14.
11: Compute PCRLB J̃−1

t+1 by substituting (7.30a) through (7.30c) into (7.55).
12: end for

Algorithm 9 SMC based PCRLB approximation for Model 7.4.15
Input: Given Model 7.4.15, satisfying Assumptions 7.3.2 through 7.3.5, assume a
prior on X0, such that X0 ∼ p(x0). Also, select algorithm parameters- T , N and M .
Output: SMC approximation of the PCRLB for Model 7.4.15.

1: Generate and store M i.i.d. sequences {Y j
1:T}Mj=1 ∼ p(y1:T ) of length T, by simulating

Model 7.4.15, M times starting at M i.i.d. initial states {X i
0|−1}Mj=1 ∼ p(x0).

2: for j = 1 to M do
3: for t = 1 to T do
4: Store predicted particles {X i,j

t|t−1}Ni=1 ∼ p(xt|yj1:t−1) using Algorithm 7.
5: Store resampled particles {X i,j

t|t }Ni=1 ∼ p(xt|yj1:t) using Algorithm 7.
6: Store resampled particles {X i,j

t−1|t}Ni=1 ∼ p(xt−1:t|yj1:t) using Lemma 7.4.13.
7: end for
8: end for
9: Compute PFIM J0 at t = 0 based on the initial target state pdf X0 ∼ p(x0). If
X0 ∼ N (x0|Cx0 , P0|0) then from Lemma 7.3.7, J0 = P−1

0|0 .
10: for t = 0 to T − 1 do
11: Compute an SMC estimate (7.49a) through (7.49c) in Lemma 7.4.19.
12: Compute PCRLB J̃−1

t+1 by substituting (7.49a) through (7.49c) into using (7.55).
13: end for

SMC based PCRLB and MSE to its theoretical values, nevertheless, it provides a strong

theoretical basis for the numerous approximations used in Algorithms 8 and 9.
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From an application perspective, it is instructive to highlight that the numerical quality

of the SMC based PCRLB approximation in Algorithms 8 and 9 can be made accurate by

simply increasing the number of particles (N ) and the MC simulations (M ). The choice

of N and M are user defined, which can be selected based on the required numerical

accuracy, and available computing speed. It is important to emphasize that due to the

multiple approximations involved in deriving a tractable solution, for practical purposes,

with a finite N and M , the condition Pt|t− J̃−1
t < 0 is not guaranteed to hold for all t ∈ N.

The quality of the SMC based PCRLB solution is validated next via simulation.

7.7 Numerical illustrations

In this section, two simulation examples are presented to demonstrate the utility and

performance of the proposed SMC based PCRLB solution. The first example is a ballistic

target tracking problem at re-entry phase. The aim of this study is three fold: first to

demonstrate the performance and utility of the proposed method on a practical problem;

second, to demonstrate the quality of the bound approximation for a range of target

state and sensor noise variances; and third, to study the sensitivity of the involved SMC

approximations to the number of particles used.

The performance of the SMC based PCRLB solution on a second example involving

a uni-variate, non-stationary growth model, which is a standard non-linear, and bimodal

benchmark model is then illustrated. This example is profiled to demonstrate the accuracy

of the SMC based PCRLB solution for highly non-linear SSMs with non-Gaussian noise.

7.7.1 Example 1: Ballistic target tracking at re-entry

In Section 7.4.3, an SMC based method for approximating the PCRLB was presented for

non-linear SSMs with additive Gaussian state and sensor noise (See Algorithm 9). In this

section, the quality of Algorithm 9 is validated on a practical problem of ballistic target
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tracking at re-entry phase. This particular problem has attracted a lot of attention from

researchers for both theoretical and practical reasons. See (Li and Jilkov, 2001a) and the

references cited therein for a detailed survey on the ballistic target tracking.

7.7.1.1 Model setup

Consider a target launched along a ballistic flight whose kinematics are described in a

2D Cartesian coordinate system. This particular description of the kinematics assumes

that the only forces acting on the target at any given time are the forces due to gravity

and drag. All other forces such as: centrifugal acceleration, Coriolis acceleration, wind,

lift force and spinning motion are assumed to have a small effect on the target trajectory.

With the position and the velocity of the target at time t ∈ N described in 2D Cartesian

coordinate system as (Xt,Ht) and (Ẋt, Ḣt), respectively, its motion in the re-entry phase

can be described by the following discrete-time non-linear SSM (Farina et al., 2002)

Xt+1 = AXt +GFt(Xt) +G.

[
0
−g

]
+ Vt, (7.57)

where the states Xt , [Xt Ẋt Ht Ḣt]
T . Also, the matrices A and G are as follows

A ,




1 ∆T 0 0
0 1 0 0
0 0 1 ∆T
0 0 0 1


 , G ,




∆T 2

2
0

∆T 0

0
∆T 2

2
0 ∆T



, (7.58)

where ∆T is the time interval between two consecutive radar measurements.

In (7.57) Ft(Xt) models the drag force, which acts in a direction opposite to the target

velocity. In terms of the states, Ft(Xt) can be modelled as

Ft(Xt) = −gρ(Ht)

2β

√
Ẋ

2

t + Ḣ
2

t

[
Ẋt

Ḣt

]
, (7.59)

where: g is the acceleration due to gravity; β is the ballistic coefficient whose value depends

on the shape, mass and the cross sectional area of the target (Ristic et al., 2004); and ρ(Ht)
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is the density of the air, defined as an exponentially decaying function of Ht, such that

ρ(Ht) = α1e
(−α2Ht) (7.60)

where: α1 = 1.227 kg·m−3, α2 = 1.09310 × 10−4m−1 for Ht < 9144m; and α1 = 1.754

kg·m−3, α2 = 1.4910 × 10−4m−1 for Ht ≥ 9144m. Note that the drag force, Ft(Xt)

is the only non-linear term in the state equation. In (7.57) the state noise Vt ∈ R4 is a

i.i.d. sequence of multi-variate Gaussian random vector represented as Vt ∼ N (vt|0, Qt),

with zero mean and covariance matrix Qt given as

Qt = γI2×2 ⊗Θ, Θ =




∆T 3

3

∆T 2

2
∆T 2

2
∆T


 , (7.61)

where: γ ∈ R+; I2×2 is a 2 × 2 identity matrix; and ⊗ is the Kronecker product. The

intensity of the state noise, determined by γ, accounts for all the forces neglected in (7.57),

including any deviations arising due to system-model mismatch. The target measurements

are collected by a conventional radar (e.g., dish radar) assumed to be stationed at the origin.

The sensor readings are measured in the natural sensor coordinate system, which include

range (Rt) and elevation (Et) of the target. The radar measurements Yt = [Rt Et]
T are

related to the states Xt through a non-linear observation model given below.

Yt =




√
X2
t + H2

t

arctan

(
Ht

Xt

)

+Wt. (7.62)

In (7.62)Wt ∈ R2 is an i.i.d. sequence of multi-variate Gaussian random vector represented

as Wt ∼ N (wt|0, Rt), with zero mean and non-singular covariance matrix Rt given as

Rt =

[
σ2
r 0

0 σ2
e

]
, (7.63)

where σr ∈ R+ and σe ∈ R+ are the standard deviation associated with range and elevation

measurements. In (7.62), it is assumed that the true target elevation angle lies between 0

and π/2 radians; otherwise, it suffices to add π radians to the arctan term in (7.62).
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Remark 7.7.1. To avoid use of a non-linear sensor model, some authors (Farina et

al., 2002; Lei et al., 2011) considered transforming the radar measurements in (7.62) into

the Cartesian coordinate system, wherein the sensor dynamics manifest themselves into

a linear model. Even though this strategy eliminates the need to handle non-linearity in

sensor measurements, tracking in Cartesian coordinates couples the sensor noise across

two coordinate systems and makes the noise non-Gaussian and state dependent (Li and

Jilkov, 2001b). Since the proposed method can deal with strong state and sensor non-

linearities, the radar readings are monitored in natural sensor coordinates alone.

7.7.1.2 Simulation setup

For simulation, the model parameters are selected as given in Table 7.1. The aim of this

study is to evaluate the quality of the SMC based PCRLB solution for a range of target state

and sensor noise variances. This allows full investigation of the quality of the SMC based

approximation for a range of noise characteristics. The cases considered here are given in

Table 7.2. From Assumption 7.3.2, β is assumed to be fixed and known a priori.

Table 7.1: Parameter values used in Example 1.

Process variables Symbol values
accel. due to gravity g 9.8 m/s2

ballistic coefficient β 40000 kg.m−1 · s−2

radar sampling time ∆T 2 s
total tracking time T 120 s
state noise Vt Vt ∼ N (vt|0, Qt)
sensor noise Wt Wt ∼ N (wt|0, Rt)
noise parameters γ, σr, σe see Table 7.2

initial states X?
0




232 km
2.290 cos (1900) km/s
88 km
2.290 sin(190o) km/s




probability of detection Prd 1
probability of false alarm Prf 0

Figure 7.1 shows a sample trajectory of the target in the X −H plane along with its

velocity map as a function of time, generated using Case 1 (see Table 7.2).
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Table 7.2: Cases considered for Example 1.

Case γ σr σε
1 1.0 100m 0.017rad
2 5.0 100m 0.017rad
3 1.0 500m 0.085rad
4 5.0 500m 0.085rad
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Figure 7.1: Sample trajectory showing position and velocity of the target at re-entry phase.

Table 7.3: Variable values used in Example 1.

Process variables Symbol values
state noise Vt Vt ∼ N (vt|0, Qt)
sensor noise Wt Wt ∼ N (wt|0, Rt)
noise parameters γ, σr, σe see Table 7.2
initial states X0 X0 ∼ N (x0|Cx0 , P0|0)

Cx0




232 km
2.290 cos (1900) km/s
88 km
2.290 sin(190o) km/s




[P0|0]1/2




1km 0 0 0
0 20m/s 0 0
0 0 1km 0
0 0 0 20m/s




Number of particles N 1000
MC simulations M 200
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7.7.1.3 Results

The kinematics of the ballistic target consist of non-linear state and sensor models with

additive Gaussian noise, for which the PCRLB can be approximated using Algorithm 9.

First, the state and sensor models in (7.57) and (7.62), respectively, are defined as

ft(Xt) = AXt +GFt(Xt) +G.

[
0
−g

]
, (7.64a)

gt+1(Xt+1) =




√
X2
t+1 + H2

t+1

arctan

(
Ht+1

Xt+1

)

 . (7.64b)

To compute the required gradients ∇Xtft(Xt) and ∇Xt+1gt+1(Xt+1), differentiating (7.57)

with respect to Xt, and (7.62) with respect to Xt+1, yields

∇Xtft(Xt) = A+GMt(Xt), (7.65a)

∇Xt+1gt+1(Xt+1) = Nt+1(Xt+1), (7.65b)

where: Mt(Xt) and Nt+1(Xt+1) in (7.65a) and (7.65b), respectively, are 2 × 4 matrices,

whose entries are:

Mt(Xt)[1, 1] = 0, (7.66a)

Mt(Xt)[2, 1] = 0, (7.66b)

Mt(Xt)[1, 2] = − g

2β
ρ(Ht)


 2Ẋ

2

t + Ḣ
2

t√
Ẋ

2

t + Ḣ
2

t


 , (7.66c)

Mt(Xt)[2, 2] = − g

2β
ρ(Ht)


 ẊtḢt√

Ẋ
2

t + Ḣ
2

t


 , (7.66d)

Mt(Xt)[1, 3] =
gα2

2β
ρ(Ht)

[√
Ẋ

2

t + Ḣ
2

t

]
Ẋt, (7.66e)

Mt(Xt)[2, 3] =
gα2

2β
ρ(Ht)

[√
Ẋ

2

t + Ḣ
2

t

]
Ḣt, (7.66f)

Mt(Xt)[1, 4] = Mt(Xt)[2, 2], (7.66g)

Mt(Xt)[2, 4] = − g

2β
ρ(Ht)


 Ẋ

2

t + 2Ḣ
2

t√
Ẋ

2

t + Ḣ
2

t


 ; (7.66h)
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and:

Nt+1(Xt+1)[1, 1] =
Xt+1√

Ẋ
2

t+1 + Ḣ
2

t+1

, (7.67a)

Nt+1(Xt+1)[2, 1] =
Ht+1

Ẋ
2

t+1 + Ḣ
2

t+1

, (7.67b)

Nt+1(Xt+1)[1, 2] = 0, (7.67c)

Nt+1(Xt+1)[2, 2] = 0, (7.67d)

Nt+1(Xt+1)[1, 3] =
Ht+1√

Ẋ
2

t+1 + Ḣ
2

t+1

, (7.67e)

Nt+1(Xt+1)[2, 3] =
Xt+1

Ẋ
2

t+1 + Ḣ
2

t+1

, (7.67f)

Nt+1(Xt+1)[1, 4] = 0, (7.67g)

Nt+1(Xt+1)[2, 4] = 0. (7.67h)

To evaluate the numerical quality of Algorithm 1, we compare the SMC based PCRLB

solution against the theoretical values. The theoretical bound is computed using an

ensemble of the true state trajectories, simulated using (7.57) (see (Farina et al., 2002;

Ristic et al., 2004) for further details). Here we compare the square root of the diagonal

elements of the theoretical PCRLB matrix J−1
t and its approximation J̃−1

t for all t ∈ [0, T ].

The results are summarized next for the cases given in Table 7.2. For fair comparison of all

the cases, the parameters required by Algorithm 9 are specified as given in Table 7.3.

Case 1: Figure 7.2 compares the square root of the SMC based approximate bound against

the theoretical PCRLB. Clearly, the approximate bound for both the position and velocity

of the target in both X and H coordinates accurately follows the theoretical bound at all

tracking time instants. Note that the high values of the PCRLB in Figure7.2 highlights

tracking difficulties as the target approaches the ground.

Case 2: In this case the state noise intensity is increased five fold and the sensor noise

is kept at a small value (see Table 7.2). Notwithstanding the increased noise variance,

the PCRLB approximation is almost exact at all tracking time instants. The results for
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Figure 7.2: Comparing the square root of the theoretical (solid line with marker) and
approximate PCRLB (solid line) for all the target states under Case 1.
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Figure 7.3: Comparing the square root of the theoretical (solid line with marker) and
approximate PCRLB (solid line) for all the target states under Case 2.
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Table 7.4: Average sum of square of errors in approximating the PCRLB for the states in
Example 1, under the cases in Table 7.2.

ΛJ values Case 1 Case 2 Case 3 Case 4
ΛJ(1, 1) (×10−6) 9.30 50.7 5.87 130
ΛJ(2, 2) (×10−11) 4.50 2.06 7.08 46.2
ΛJ(3, 3) (×10−5) 3.56 23.1 2.96 100
ΛJ(4, 4) (×10−13) 8.63 24.8 19.6 122

Case 2 are shown in Figure 7.3. Table 7.4 compares the ΛJ values for Case 2 computed

using (7.56). Based on Table 7.4, the results from Cases 1 and 2 closely compare in terms

of the order of the ΛJ values. To allow further comparison with Case 1, the square root

of the approximate PCRLBs for Cases 1 and 2 are compared in Figure 7.6. In terms of

the magnitude, the PCRLB for Case 2 is higher than that for Case 1, suggesting tracking

difficulties with larger noise intensity.

Case 3: Again for Case 3, performance similar to Figure 7.2 is obtained as given in Figure

7.4. The same is evident from Table 7.4, where the average sum of square of error in

approximating the PCRLB for Cases 1 and 3 are of the same order.

Case 4: Results for Case 4 is given in Figure 7.5. Higher values of the PCRLB for Case 4

in Figure 7.6 reaffirms the estimation issues associated with larger noise variances. Similar

conclusions can be drawn based on Table 7.4, where the ΛJ values for Case 4 are the

highest compared to the previous cases. Nevertheless, the errors are bounded and within a

few orders of the ΛJ values reported for Case 1.

All the above case studies suggest that the proposed approach is accurate in

approximating the theoretical PCRLB under large state and sensor noise variances.

Remark 7.7.2. Note that in (Lei et al., 2011), a similar ballistic target tracking problem

at re-entry phase was considered to illustrate the use of an EKF and UKF based method

in approximating the theoretical PCRLB. Unlike the non-linear sensor model considered

here (see (7.62)), (Lei et al., 2011) used the change of coordinates method to obtain a

linear sensor model representation. It is important to highlight that even with a linear
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Figure 7.4: Comparing the square root of the theoretical (solid line with marker) and
approximate PCRLB (solid line) for all the target states under Case 3.
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Figure 7.5: Comparing the square root of the theoretical (solid line with marker) and
approximate PCRLB (solid line) for all the target states under Case 4.
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Figure 7.6: Comparing the square root of the approximate PCRLBs for the target states
under the cases listed in Table 7.2.
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Figure 7.7: Comparing the square root of the theoretical and approximate PCRLBs for
different values of N in Example 1, Case 4. Note that all the sub-figures have been
appropriately scaled up allow clear illustration of the effect of N on the quality of
approximation.
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sensor model, the EKF and UKF based method yields a biased estimate of the PCRLB for

the target states (see Figures 4 through 7 in (Lei et al., 2011)). Whereas, under a more

challenging situation, as one considered here, the SMC based method yields an unbiased

estimate of the PCRLB (see Figures 7.2 through 7.5, and Table 7.4). This highlights the

advantages of the SMC based method (both in terms of the accuracy and applicability) over

the EKF and UKF based PCRLB in presence of strong system or sensor non-linearities.

Next we study the sensitivity of the involved SMC approximations to the number of

particles used. In Figure 7.7, approximate PCRLB bounds are compared against the

theoretical PCRLB for different values of N . The results are obtained by varying N in

Algorithm 1. From Figure 7.7, it is clear that by simply increasing N , which is a tuning

parameter in Algorithm 1, the quality of the SMC approximations can be significantly

improved. For all the simulation cases, the number of Monte Carlo simulations was

selected as M = 200 (see Table 7.3). Computation of a single Monte Carlo simulation

took 0.69 seconds on a 3.33 GHz Intel Core i5 processor running on Windows 7. Note that

the reported absolute execution time is solely for instructive purposes and is not intended

to reflect on the true computational complexity of the proposed algorithm. Collectively,

from Figures 7.2 through 7.7, it is evident that the SMC based method is accurate in

approximating the theoretical PCRLB for a range of target state and sensor noise variances.

7.7.2 Example 2: A non-linear and non-Gaussian system

The aim of this study is to demonstrate the effectiveness of the proposed SMC based

method in approximating the PCRLB in presence of a non-Gaussian noise.
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7.7.2.1 Model setup

A more challenging situation is considered in this section that involves the following

discrete-time, uni-variate non-stationary growth model

Xt+1 =
Xt

2
+

25Xt

1 +X2
t

+ 8 cos (1.2t) + Vt, (7.68a)

Yt =
X2
t

20
+Wt, (7.68b)

where Vt ∈ R is an i.i.d. sequence following a Gaussian distribution, such that

Vt ∼ N (vt|0, Qt). The noise variance is defined as Qt = 5 × 10−3 ∀t ∈ [1, T ], where

T is 30 seconds. Also, the initial state is modelled as X0 ∼ N (x0|0, 0.01). This example

has been profiled due to it being acknowledged as a benchmark problem in non-linear state

estimation in several previous studies (Doucet et al., 2001; Hernandez et al., 2004).

7.7.2.2 Simulation setup

To compute the SMC based approximate PCRLB solution, two different sensor noise

models are considered in (7.68b). For Case 1, Wt ∈ R is an i.i.d. sequence following a

Gaussian distribution, such that Wt ∼ N (wt|0, Rt), while for Case 2, Wt ∈ R is again

an i.i.d sequence, but follows a Rayleigh distribution, such that Wt ∼ R(wt|Rt). For both

the cases, the sensor noise variance Rt = 1× 10−3 ∀t ∈ [1, T ] is considered. Here Case

2 represents a much more challenging situation, where estimation is considered under a

non-Gaussian sensor noise. For fair comparison, M = 200 and N = 100 are selected.

7.7.2.3 Results

Case 1: Comparison of the approximate and the theoretical PCRLB for the Gaussian sensor

noise case is given in Figure 7.8. The results suggest that for the chosenN , the approximate

PCRLB almost exactly follows the theoretical PCRLB at all filtering time instants. The

same is reflected in the error value computed using (7.56), which is ΛJ = 4.19× 10−9.
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Figure 7.8: Comparing the approximate PCRLB against the theoretical PCRLB in Example
2 under Gaussian (left) and Rayleigh (right) sensor noise distributions.

Case 2: Figure 7.8 compares the approximate PCRLB solution against the theoretical

PCRLB for the Rayleigh sensor noise case. Although the approximation almost exactly

follows the theoretical solution, compared to Case 1, the approximation is relatively coarser

at certain time instants. This highlights the issues associated with estimation under non-

Gaussian noise with limited N . Finally, the ΛJ value for Case 2 is 4.62× 10−8, which is

within an order of the value reported for Case 1.

The simulation study clearly illustrates the efficacy of the proposed method in

approximating the PCRLB for non-linear SSMs with non-Gaussian noise.

7.8 Discussions

The simulation results in Section 7.7 demonstrate the utility and performance of the SMC

based PCRLB approximation method developed in this chapter. It is important to highlight

that despite of the many convergence results discussed in Section 7.6, the choice of an SMC

method plays a crucial role in determining the quality of the PCRLB approximation. Here,
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the use of a sequential-importance-resampling (SIR) filter of (Gopaluni, 2008; Schön et

al., 2011) is motivated by the fact that it is relatively less sensitive to large state noise and is

computationally less expensive. Furthermore, the importance weights are easily evaluated

and the importance functions can be easily sampled (Ristic et al., 2004); however, other

algorithms such as Auxiliary-SIR (ASIR) (Pitt and Shephard, 1999) or Regularized PF

(RPF) (Musso et al., 2001) algorithm can also be used in place of SIR, as long as they are

consistent with the approach developed herein.

An appropriate choice of the resampling method in Algorithm 7 is also crucial as it

can substantially improve the quality of the approximations. The choice of the systematic

resampling is supported by an easy implementation procedure and the low-order of

computational complexity O(N) (Doucet et al., 2001). Other resampling schemes such

as stratified sampling (Kitagawa, 1996) and residual sampling (Liu and Chen, 1998) can

also be used as an alternative to systematic resampling in the proposed framework.

In summary, with the aforementioned options, coupled with the user-defined choice of

the parameters N and M , an SMC based PCRLB approximation approach provides an

efficient control over the numerical quality of the solution.

7.9 Conclusions

In this chapter a numerical method to recursively approximate the PCRLB in (Tichavský et

al., 1998) for a general discrete-time, non-linear SSMs operating with Prd = 1 and Prf = 0

is presented. The presented method is effective in approximating the PCRLB, when the

true states are hidden or unavailable. This has practical relevance in situations; wherein,

the test-data consist of only sensor readings. The proposed approach makes use of the

sensor readings to estimate the hidden true states, using an SMC method. The method

is general and can be used to compute the lower bound for non-linear dynamical systems,

with non-Gaussian state and sensor noise. The quality and utility of the SMC based PCRLB
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approximation was validated on two simulation examples, including a practical problem of

ballistic target tracking at re-entry phase. The analysis of the numerical quality of the

SMC based PCRLB approximation was investigated for a range of target state and sensor

noise variances, and with different number of particles. The proposed method exhibited

acceptable and consistent performance in all the simulations. Increasing the number of

particles was in particular, found to be effective in reducing the errors in the PCRLB

estimates. Finally, some of the strategies for improving the quality of the SMC based

approximations were also discussed.

The current chapter assumes the model parameters to be known a priori; however, for

certain applications, this assumption might be a little restrictive. Future work will focus

on extending the results of this work to handle such situations. Furthermore, use of

SMC method in approximating the modified versions of the PCRLB, which allow tracking

in situations, such as: target generated measurements; measurement origin uncertainty;

cluttered environments; and Markovian models will also be considered.



Bibliography

Arulampalam, M.S., S. Maskell, N. Gordon and T. Clapp (2002). A tutorial on particle

filters for online non-linear/non-Gaussian Bayesian tracking. IEEE Transactions on

Signal Processing 50(2), 174–188.

Bergman, N. (2001). Sequential Monte Carlo Methods in Practice. Chap. Posterior Cramér-

Rao bounds for sequential estimation. Springer–Verlag, New York.

Bergman, N., L. Ljung and F. Gustafsson (1999). Terrain navigation using Bayesian

statistics. IEEE Control Systems Magazine 19(3), 33–40.

Bessell, A., B. Ristic, A. Farina, X. Wang and M.S. Arulampalam (2003). Error

performance bounds for tracking a manoeuvring target. In: Proccedings of the 6th

International Conference of Information Fusion. Queensland, Australia. pp. 903–910.

Bobrovsky, B.Z. and M. Zakai (1975). A lower bound on the estimation error for Markov

processes. IEEE Transactions on Automatic Control 20(62), 785–788.
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Chapter 8

Assessment, diagnosis, and optimal
selection of non-linear state filters

Non-linear state filters of different approximations and capabilities allow for real-time

estimation of unmeasured states in non-linear stochastic processes. It is well known

that the performance of these non-linear filters depends on the numerical and statistical

approximations used in their design. Despite the practical interest in evaluating the

performance of different non-linear filtering methods, it remains one of the most complex

problems in the area of non-linear state estimation. We propose the use of posterior

Cramér-Rao lower bound (PCRLB) or mean square error (MSE) inequality as a filtering

performance benchmark. Using the PCRLB inequality, an assessment and diagnosis

tool is developed for monitoring and evaluating the performance of different non-linear

filters. Based on the developed tool, a minimum MSE non-linear filter switching strategy

is proposed to maintain high filtering performance under various operating conditions.

The complex, high dimensional integrals involved in the computation of the PCRLB

inequality are approximated using sequential Monte Carlo (SMC) methods. The approach

is illustrated through a numerical example.

A condensed version of this chapter has been submitted to Tulsyan, A., B. Huang, R.B. Gopaluni and J.F.
Forbes (2013). Assessment, diagnosis, and optimal selection of non-linear state filters. Journal of Process
Control, In review and a shorter version has been published in Tulsyan, A., B. Huang, R.B. Gopaluni and
J.F. Forbes (2012). Performance assessment of non-linear state filters. In: Proceedings of the 8th IFAC
International Symposium on Advanced Control of Chemical Processes. Keynote paper. Singapore. 371–376.
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8.1 Introduction

Recent advances in high speed computing technology have enabled the process and

manufacturing industries to use complex, high-fidelity non-linear dynamical models, such

as in: fermentation bioreactor (Chitralekha et al., 2010); polymerization (Achilias and

Kiparissides, 1992); and petroleum reservoirs (Evensen, 2007). The implementation of

advanced control and monitoring strategies on such complex systems requires measurement

of key state variables; however, in most processes many important state variables are often

unmeasured. These unmeasured states can be estimated within the Bayesian framework

by solving a filtering problem; wherein, a posterior density for the unmeasured states is

constructed at each sampling-time (Doucet et al., 2001). In linear filtering, the posterior

density can be exactly represented by Kalman filter (KF), using a finite number of moments

(e.g., mean, variance); whereas, in non-linear filtering, at least in theory, infinite number of

moments are required for the exact representation of the density (Ristic et al., 2004). Thus,

with finite computing capabilities, an optimal non-linear filter is not realizable.

Over the years several filtering methods based on statistical and analytical

approximations of the optimal non-linear filter have been developed for state estimation in

non-linear systems (Sorenson, 1974; Maybeck, 1982). Most of these non-linear filters can

be classified as either Kalman based filters (e.g., extended KF (EKF); unscented KF (UKF);

ensemble KF (EnKF)) or SMC based filters (e.g., sequential importance resampling (SIR)

filter; auxiliary SIR (ASIR) filter; Rao-Blackwellized particle filter (RBPF)). Although

Kalman and SMC based filters can be used for state estimation in general or specific

type of non-linear systems, their performance (compared to the optimal non-linear filter) is

often constrained by the underlying numerical and statistical approximations. A detailed

exposition of these filtering methods and related approximations is not included here but

can be found in the handbook of non-linear filtering (Crisan and Rozovskii, 2011).

A recent surge of interest in developing advanced methods for state estimation in
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non-linear systems has left researchers and practitioners inundated with a large number

of filtering methods to choose from. To allow researchers to develop efficient filtering

methods, and practitioners to select right filtering strategy for their process, several authors

have considered comparing and analysing the performance of different filtering methods on

general non-linear systems (Kandepu et al., 2008; Arulampalam et al., 2002; Merwe and

Wan, 2001). Many application specific comparisons of non-linear filters have also been

established for systems in: chemical industries (Romanenko and Castro, 2004; Mesbah

et al., 2011; Shenoy et al., 2012); aerospace (Farina et al., 2002; Cui et al., 2005); and

communications (Caffery and Stuber, 2000; Wang et al., 2008).

Notwithstanding the elaborate but empirical comparative studies, optimal selection of

a filtering strategy for a given non-linear system is still an open problem. The problems

associated with non-linear filter selection are highlighted in several recent studies. For

instance, (Mesbah et al., 2011) reported that EKF and UKF performed better than EnKF in

a batch crystallizer and (Pacharu et al., 2012) reported better EnKF performance compared

to EKF and UKF on a packed bed reactor. Similarly, (Shao et al., 2010) reported that SIR

outperformed UKF in estimating the states of a gas phase reaction in a continuous stirred

tank reactor, but (Shenoy et al., 2012) showed that UKF outperformed SIR on a polymer

reactor. Similar inconclusive results have also been observed with other pairs of filtering

methods, such as EnKF and SIR (see (Merwe and Wan, 2001; LaViola, 2003)), and SIR

and ASIR (see (Pitt and Shephard, 1999; Johansen and Doucet, 2008)). Apart from these

results, a recent study done on a stochastic Lorenz system suggests that it is possible for

two filters to outperform each other in different operating regions. (Kivman, 2003) showed

that the performance of EnKF is better than that of SIR and vice versa depending on the

operation region. This highlights the sensitivity of the performance of a non-linear filter to

the process dynamics, the filter approximation, and the process operating conditions.

These elaborate empirical studies indicate that there is no single non-linear filter that
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provides the best estimates for any process. It is not even possible to choose a non-

linear filter that retains high filtering performance on a given process under all operating

conditions. A practitioner is thus left with no clear substitute for the optimal non-linear

filter. An approach to resolve this dilemma is to start with a family of non-linear filters and

switch between them as and when required so as to maintain high filtering performance.

Naturally, this approach has to depend on a performance measure of non-linear filters that

is independent of the process conditions. Contributions of this work are discussed next.

8.2 Motivation and contributions

The performance of a non-linear filter is a function of the process dynamics and operating

conditions- two properties over which a user has limited leverage. A systematic and careful

assessment of non-linear filters will help in: (i) assessing the quality of the numerical

approximations; (ii) comparing their performance against that of an optimal non-linear

filter; and (iii) devising an effective filtering strategy for a given process. Despite the strong

practical interest in evaluating the performance of non-linear filters, it remains one of the

most complex problems in non-linear estimation theory (Šimandl et al., 2001).

Several authors proposed using the normalized estimation error squared (NEES) as a

measure of non-linear filter performance (Farina et al., 2002; Li et al., 2001; Bar-Shalom

and Li, 1993). When the state estimation error for a non-linear filter is approximately

Gaussian, it can be shown that the NEES follows a Chi-square distribution with certain

degrees of freedom (Li et al., 2001). The performance of a filter is then judged based on

the hypothesis test-based confidence levels constructed using the NEES values. Despite its

simplicity, the NEES computations require a priori knowledge of the true states. The true

states are generally not available, except in computer simulations or in carefully conducted

experiments (Lei et al., 2011). (Bar-Shalom et al., 2001) proposed replacing the NEES with

normalized innovation square (NIS); however, the measure is not meaningful for multi-
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modal measurement models. Moreover, since the NIS is based on the measurements and

not the states, inference based on the NIS value alone is not reliable (Jones et al., 2011).

(Bates and Watts, 1988) proposed a non-linearity measure based on the magnitudes of first

and second-order terms in a Taylor series approximation of a non-linear process. This

measure was exploited by (Mallick et al., 2005; Mallick and Scala, 2006) in assessing the

performance of various non-linear state filters.

The NEES, NIS and non-linearity measures provide a convenient and quick way to

qualitatively assess the performance of non-linear filters in real-time; however, there are

limitations of these measures as summarized in (Li et al., 2001; Niu et al., 2008): (i) fail

to provide any quantitative measure of filter performance; (ii) not useful in comparing

multiple filters; (iii) computation requires a priori access to the true states; (iv) can be

constructed and computed only for certain classes of non-linear systems; (v) depend on the

input-output data; (vi) require the state estimation error and innovation sequence to have a

Gaussian distribution; and (vii) provide limited insights for improving filter performance.

A performance measure that improves on the above weaknesses is therefore crucial

for developing an efficient assessment procedure for non-linear filters. The conventional

Cramér-Rao lower bound (CRLB) provides a theoretical lower bound on the mean

square error (MSE) of any maximum-likelihood (ML) based unbiased state or parameter

estimator. An analogous extension of the CRLB to the Bayesian estimators was derived

by (Trees, 1968) and is called the PCRLB inequality. The PCRLB is general and provides

a lower bound on the MSE of any non-linear filter (Trees, 1968) and for any non-linear

system (Tichavský et al., 1998) and thus, provides a reliable performance measure.

Unlike other measures, the PCRLB can only be computed off-line. Nevertheless, for

many real-time applications of state estimation (e.g., in control and process monitoring),

the design, performance evaluation and selection of filters are mostly done a priori or

off-line, thereby making the PCRLB an attractive option. Moreover, the PCRLB is an
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important measure that depends only on the fundamental properties of the process, such

as the process dynamics and noise characteristics (Bergman, 2001). The PCRLB is in

fact independent of the choice of a filtering method or any particular realization of the

input-output data. Some recently reported important practical applications of the PCRLB

inequality are: comparison of several non-linear filters for ballistic target tracking (Farina

et al., 2002), terrain navigation (Bergman et al., 1999), and design of systems with pre-

specified performance bounds (Nehorai and Hawkes, 2000).

Computing the PCRLB inequality involves solving complex high dimensional integral

that does not have an analytical solution for the general non-linear systems (Bergman,

2001). Several authors - (Tichavský et al., 1998; Bergman, 2001; Bergman et al., 1999;

Šimandl et al., 2001) - have used simulation based techniques, such as the perfect Monte

Carlo (MC) method to approximate the PCRLB inequality. Despite the convergence results

showing MC based PCRLB inequality converges to the true inequality (Bergman, 2001),

the MC based method requires access to the true states and measurements. Since, the true

states are rarely available in practical settings, no practical method of approximation should

use true states in the approximation of the PCRLB inequality.

Authors in (Lei et al., 2011) highlighted the problem with MC method, and proposed

using EKF and UKF to approximate the PCRLB inequality. Although the method proposed

in (Lei et al., 2011) is fast, there are several performance and applicability related issues

with this approach: (i) relies on the linearization of the underlying non-linear dynamics

around the state estimates and introduces bias in the approximation; (ii) cannot be used to

approximate the MSE of a non-linear filter; (iii) applicable only to a special class of non-

linear system; (iv) convergence of the PCRLB approximation to the true PCRLB is not

guaranteed; (v) provides limited control for improving the quality of the approximation.

The following are the main contributions in this article: (i) A PCRLB inequality based

performance measure is proposed for off-line assessment of multiple non-linear filters.
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(ii) A PCRLB inequality based procedure for diagnosis of non-linear filter performance is

developed. (iii) A switching filter strategy is proposed for state estimation in general non-

linear state-space models (SSMs). According to this strategy, at each sampling-time, the

performance of a pre-determined bank of Kalman and SMC based non-linear filters is first

assessed using the developed measure, and then the filter with highest performance measure

is selected for delivering the state estimate. (iv) A sequential MC (SMC) based method is

proposed to approximate the PCRLB inequality. This idea has been partially reported by

the authors in two earlier publications (Tulsyan et al., 2013a; Tulsyan et al., 2012); wherein,

an SMC based method is used to approximate the PCRLB. In this work, we revisit those

methods and extend it to approximate the MSE of a non-linear filter. Convergence results

for the proposed SMC based PCRB inequality method is also provided. (v) Finally, the

procedure for assessing and diagnosing the performance of non-linear state filters and its

use in designing an optimal state estimation strategy is illustrated on discrete-time, uni-

variate and non-stationary non-linear SSM. The notation used in this chapter are given

next.

Notation: N := {0, 1, 2, . . . }; R+ := [0,∞); Rn×n is the set of real valued n× n matrices;

Sn ⊂ Rn×n is the space of symmetric matrices; In×n is a n × n identity matrix; Sn+ is the

cone of symmetric positive semi-definite matrices in Sn; and Sn++ is its interior, i.e., the

positive definite matrices. The partial order on Sn induced by Sn+ and Sn++ are denoted by

< and �, respectively. Let A = A(i, j) and B = B(i, j) be two matrices in Rn×n then the

Hadamard product of A and B is A ◦B = A(i, j)B(i, j) and the Hadamard inverse of A is

A◦−1 = 1/A(i, j), where 1 ≤ i, j ≤ n, if and only if A(i, j) 6= 0 for all 1 ≤ i, j ≤ n. (A)T

and Tr[A] are the transpose and trace of matrix A. ‖ · ‖ is a 2-norm operator and |·| is the

absolute value. If x, y and z are three vectors in Rn then z ≤ x ≤ y implies element-

wise inequality. ∇X ,
[
∂
∂X

]
is the gradient operator and ∆Y

X , ∇X∇T
Y is the Laplacian

operator. Ck(R) is a class of continuous function in R with k-order derivative in R. Pr(·) is
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a probability measure and Ep(·)[·] is expectation with respect to the probability density p(·).

8.3 Problem formulation

LetXt ∈ X ⊆ Rn be a discrete-time, unobserved Markov state process characterized by its

initial density p(x0) and a Markov transition density pθ(xt+1|xt, ut). Here, ut ∈ U ⊆ Rp

and θ ∈ Θ ⊆ Rr are the control variables and model parameters, respectively. The process

Xt ∈ X is hidden, but observed through a measurement process Yt ∈ Y ⊆ Rm. Yt ∈ Y at

t ∈ N is conditionally independent given Xt ∈ X and ut ∈ U , and is characterized by the

conditional marginal density pθ(yt|xt, ut). To summarize, we have the following model:

X0 ∼p(x0); (8.1a)

Xt+1|(Xt, ut) ∼pθ(xt+1|xt, ut); (8.1b)

Yt|(Xt, ut) ∼pθ(yt|xt, ut). (8.1c)

Although the representation in (8.1) includes a wide class of discrete-time, stochastic non-

linear time-series models, the class of model structure considered here is given below.

Model 8.3.1. Non-linear SSM with non-Gaussian noise

Xt+1 =ft(Xt, ut, θ, Vt), (8.2a)

Yt =gt(Xt, ut, θ,Wt), (8.2b)

where: the state and measurement noise sequences are represented as Vt ∈ Rn and

Wt ∈ Rm; ft(·) is an n-dimensional non-linear state transition function; and gt(·) is an

m-dimensional non-linear measurement mapping function.

Other standard models used throughout this chapter for illustration purposes are given

below.
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Model 8.3.2. Non-linear SSM with additive Gaussian noise

Xt+1 =ft(Xt) + Vt, (8.3a)

Yt =gt(Xt) +Wt, (8.3b)

where Vt ∼ N (vt|0, Qt) and Wt ∼ N (wt|0, Rt) are mutually independent sequences of

independent Gaussian random variables with zero mean and finite variance.

Model 8.3.3. Linear SSM with additive Gaussian noise

Xt+1 =AtXt + Vt, (8.4a)

Yt =CtXt +Wt, (8.4b)

where At ∈ Rn×n and Ct ∈ Rm×n are known system matrices and Vt ∈ Rn and Wt ∈ Rm

are zero mean, finite variance Gaussian noise sequences, as defined in Model 8.3.2.

Model 8.3.1 represents a general class of discrete-time, non-linear SSMs. Next we discuss

the assumptions on Model 8.3.1.

Assumption 8.3.4. The true model with parameter set θ? ∈ Θ is same as Model 8.3.1 with

θ = θ? known a priori. This ensures there is no process-model mismatch.

Assumption 8.3.5. Vt ∈ Rn and Wt ∈ Rm are the mutually independent sequences of

independent random variables described by the probability density functions (pdfs) p(vt)

and p(wt), respectively. X0 ∈ X is also an independent random variable, such that

X0 ∼ p(x0). These pdfs are known in their classes (e.g., Gaussian; Rayleigh) and are

parametrized by a known and finite number of moments (e.g., mean; variance). This

ensures the densities in (8.1) are known and computable.

Assumption 8.3.6. Ignoring θ ∈ Θ and ut ∈ U , the process and measurement models

defined as ft := X × Rn → Rn and gt := X × Rm → Rm, respectively, are such that

on the open set X , ft is Ck(X ) and gt is Ck(X ), where k ≥ 2. This ensures (8.1) is at least

twice differentiable with respect to the states Xt ∈ X .
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Assumption 8.3.7. For a random realization (xt+1, xt, vt) ∈ X×X×Rn and (yt, xt, wt) ∈

Y × X × Rm satisfying Model 8.3.1, ∇vtf
T
t (xt, vt) and ∇wtg

T
t (xt, wt) have rank n and

m, such that using implicit function theorem, p(xt+1|xt) = p(Vt = f̃t(xt, xt+1)) and

p(yt|xt) = p(Wt = g̃t(xt, yt)). This ensures (8.1) does not involve any delta functions.

Remark 8.3.8. Since θ ∈ Θ and ut ∈ U are known a priori (see Assumption 8.3.4), explicit

dependency of (8.1) on θ ∈ Θ and ut ∈ U will not be considered unless warranted.

The problem of state estimation in Model 8.3.1 is an active area of research

(Arulampalam et al., 2002; Andrieu et al., 2004). The Bayesian idea for solving the state

estimation problem is to construct the posterior pdf p(xt|y1:t) at t ∈ N. Here, p(xt|y1:t)

is a probabilistic representation of available statistical information on the hidden state Xt

conditioned on the measurement sequence Y1:t = {y1:t} , {y1, . . . , yt}. From the Markov

property of Model 8.3.1 and Bayes’ theorem-

p(xt|y1:t) ∝ p(yt|xt)p(xt|y1:t−1), (8.5a)

p(xt|y1:t−1) =

∫

X
p(xt|xt−1)p(dxt−1|y1:t−1), (8.5b)

where p(dxt−1|y1:t−1) , p(xt−1|y1:t−1)dxt−1. In principle, (8.5) provides a recursive

approach to compute p(xt|y1:t) ∀t ∈ N.

Remark 8.3.9. Except for Model 8.3.3, or when X is a finite set, with finite computing

capabilities, (8.5) cannot be solved in closed form. In other words, an optimal non-linear

filter, which solves (8.5) exactly, is not realizable for Model 8.3.1.

Over the years, many advanced filtering methods have developed to approximate the

optimal filter. Unfortunately, the quality of the state estimates obtained with these non-

linear filters depends on the underlying numerical and statistical approximation techniques

used in their design. The main problems addressed in this chapter are stated next.

Problem 8.3.10. Develop a measure for performance assessment of non-linear state filters.
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Problem 8.3.11. Develop a method for performance diagnosis of non-linear state filters.

Problem 8.3.12. Develop an optimal filtering strategy for state estimation in Model 8.3.1.

The solutions to Problems 8.3.10 through 8.3.12 are discussed in the following sections.

8.4 Posterior Cramér-Rao lower bound for non-linear
state estimation

The central idea to solve Problems 8.3.10 through 8.3.12 is to use a performance

benchmark. As discussed in Section 8.2, the PCRLB inequality will be used as a benchmark

for assessment and diagnosis of non-linear state filters. The PCRLB provides a lower bound

on the MSE of a non-linear state filter, such that the following result holds.

Lemma 8.4.1. Let a non-linear system be represented by Model 8.3.1 and let Y1:t ∈ Y t

be a random measurement sequence generated from Model 8.3.1, then the MSE of any

non-linear state filter, involved in estimation of the state process Xt ∈ X at t ∈ N, given

Y1:t ∈ Y t is bounded by the following matrix inequality

Pt|t , Ep(X0:t,Y1:t)[(Xt − X̂t|t)(Xt − X̂t|t)
T ] < J−1

t , (8.6)

where: Pt|t ∈ Sn++ is the MSE of a non-linear filter; X̂t|t , X̂t(Y1:t) := Rtm → Rn is

the state estimate computed by a non-linear filter; Jt ∈ Sn++ is the posterior FIM (PFIM);

J−1
t ∈ Sn++ is the lower bound or PCRLB; and p(x0:t, y1:t) is a density.

Proof. See (Trees, 1968) for a detailed proof.

The inequality (8.6) guarantees Pt|t − J−1
t ∈ Sn+ for all X̂t|t ∈ Rn and t ∈ N. In scalar

form, (8.6) can be represented as

P S
t|t , Ep(X0:t,Y1:t)[‖Xt − X̂t|t‖2] ≥ Tr[J−1

t ], (8.7)
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where: P S
t|t = Tr[Pt|t]. For n = 1, P S

t|t = Pt|t. A recursive approach to compute the PFIM

or PCRLB in Lemma 8.4.1 can be derived for Model 8.3.1; however, for the sake of brevity,

only the results are presented in this chapter.

Lemma 8.4.2. For Model 8.3.1 operating under Assumptions 8.3.4 through 8.3.7, and

represented by (8.1), the PFIM in Lemma 8.4.1 can be recursively computed as follows:

Jt+1 = D22
t − [D12

t ]T (Jt +D11
t )−1D12

t , (8.8)

where:

D11
t =Ep(X0:t+1,Y1:t+1)[−∆Xt

Xt
log p(Xt+1|Xt)]; (8.9a)

D12
t =Ep(X0:t+1,Y1:t+1)[−∆

Xt+1

Xt
log p(Xt+1|Xt)]; (8.9b)

D22
t =Ep(X0:t+1,Y1:t+1)[−∆

Xt+1

Xt+1
log p(Xt+1|Xt)−∆

Xt+1

Xt+1
log p(Yt+1|Xt+1)]; (8.9c)

and the PFIM at t = 0 is given by J0 = Ep(X0)[−∆X0
X0

log p(X0)].

Proof. See (Šimandl et al., 2001; Tichavský et al., 1998) for a detailed proof.

Remark 8.4.3. Assumptions 8.3.4 through 8.3.7 are the regulatory conditions for the

densities p(x0), p(xt+1|xt) and p(yt+1|xt+1) in (8.9), which ensures Jt+1 ∈ Sn++ or

J−1
t+1 ∈ Sn++ exists.

Remark 8.4.4. Authors in (Ristic et al., 2004; Lei et al., 2011) define expectations in

(8.9a) and (8.9b), and in (8.9c), with respect to the density p(xt:t+1) and p(xt:t+1, yt+1),

respectively. This is because (8.9a) and (8.9b) can be simplified as the integrand is

independent of (x0:t−1, y1:t+1) ∈ X t × Y t+1. Similarly, since (8.9c) is independent of

(x0:t−1, y1:t) ∈ X t × Y t, the joint density can be marginalized. (8.9) facilitates the

developments of the later sections.

Remark 8.4.5. Expectation in (8.9) with respect to the density p(x0:t+1, y1:t+1, u1:t+1)

makes the lower bound independent of random realizations (x0:t+1, y1:t+1, u1:t+1) ∈ X t+2×
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Y t+1 × U t+1; however, the lower bound does depend on the sets themselves. Note that for

Model 8.3.1, X t+2 and Y t+1 depends on the choice of U t+1. Thus the lower bound in

Lemma 8.4.1 only depends on: the process dynamics described in Model 8.3.1; the noise

pdfs p(vt) and p(wt); and the choice of p(x0) and U t.

Remark 8.4.5 highlights the PCRLB as a system property, which is independent of the

choice of a filtering method or any specific realization of the states, measurements or inputs.

Result 8.4.6. For Model 8.3.2 satisfying Assumptions 8.3.4 through 8.3.7, the matrices

(8.9) can be simplified and written as

D11
t =Ep(Xt,Y1:t+1)[∇Xtf

T
t (Xt)]Q

−1
t [∇Xtf

T
t (Xt)]

T ; (8.10a)

D12
t =Ep(Xt,Y1:t+1)[−∇Xtf

T
t (Xt)]Q

−1
t ; (8.10b)

D22
t =Ep(Xt+1,Y1:t)[∇Xt+1g

T
t (Xt+1)]R−1

t+1[∇Xt+1g
T
t+1(Xt+1)]T +Q−1

t . (8.10c)

Proof. See (Tichavský et al., 1998) for a detailed proof of this result.

Result 8.4.7. For Model 8.3.3 satisfying Assumptions 8.3.4 through 8.3.7, the matrices

(8.9) can be simplified and written as

D11
t =ATt Q

−1
t ATt ; (8.11a)

D12
t =− ATt Q−1

t ; (8.11b)

D22
t =CT

t+1R
−1
t+1C

T
t+1 +Q−1

t . (8.11c)

Proof. Defining Model 8.3.2 as ft(Xt) = AtXt and gt(Xt) = CtXt, and substituting

[∇Xtf
T
t (Xt)] = ATt and [∇Xt+1g

T
t (Xt+1)] = CT

t+1 into Result 8.4.6 yields the result.

Performance assessment of non-linear state filters are discussed in the next section.

8.4.1 Performance assessment of non-linear state filters

This section deals with Problem 8.3.10 in Section 8.3. For Model 8.3.1, even though an

optimal non-linear filter, which solves the state estimation problem formulated in (8.5)
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exactly, may not be realisable, the PCRLB can be regarded as a measure of its performance.

Thus, using Lemma 8.4.1, the MSE of any tractable non-linear filter can be compared

against that of an optimal non-linear filter. Despite this, the PCRLB inequality in Lemma

8.4.1 is not convenient to use in the given form. This is because assessment of a non-linear

filter using Lemma 8.4.1 requires simultaneous monitoring of the MSE and PCRLB. To

avoid this, a performance measure is defined, as given next.

Definition 8.4.8. Let Pt|t ∈ Sn++ be the MSE obtained with a non-linear state filter, and

let J−1
t ∈ Sn++ be the PCRLB for Model 8.3.1, both computed at t ∈ N and satisfying the

inequality in Lemma 8.4.1, then the non-linear state filter performance is

Φt = J−1
t ◦ P ◦−1

t|t (8.12)

where: Φt is the filter performance assessment measure at t ∈ N; P ◦−1
t|t is the Hadamard

inverse of Pt|t; and J−1
t ◦ P ◦−1

t|t is the Hadamard product of J−1
t and P ◦−1

t|t .

The properties of Φt in Definition 8.4.8 are given next.

Theorem 8.4.9. Let J−1
t ∈ Sn++ and Pt|t ∈ Sn++ be such that they satisfy (8.6) then Φt at

t ∈ N in Definition 8.4.8 satisfies the inequality 0 < Φt(i, i) ≤ 1 for 1 ≤ i ≤ n and is such

that: (a) Φt ∈ Sn; and (b) Φt ∈ Sn++ if and only if P ◦−1
t|t ∈ Sn++.

Proof. (a) Pt|t ∈ Sn++ implies P ◦−1
t|t ∈ Sn, which with J−1

t ∈ Sn++ implies Φt =

J−1
t ◦ P ◦−1

t|t ∈ Sn. Now, since Pt|t(i, i) > 0 and J−1
t (i, i) > 0, we have Φt(i, i) =

J−1
t (i, i)[Pt(i, i)]

−1 > 0 for 1 ≤ i ≤ n. Also, note that since J−1
t ∈ Sn++ and Pt|t ∈ Sn++

satisfies the PCRLB inequality (8.6), i.e., Pt|t − J−1
t < 0, we have Pt|t(i, i) ≥ J−1

t (i, i),

which implies Φt(i, i) = J−1
t (i, i)[Pt(i, i)]

−1 ≤ 1 for 1 ≤ i ≤ n. Thus combining the two

results, we have 0 < Φt(i, i) ≤ 1 for 1 ≤ i ≤ n. (b) If Pt|t ∈ Sn++ have positive off-

diagonal entries and just one positive eigenvalue then from Corollary 2.8 in (Reams, 1999),

we have P ◦−1
t|t ∈ Sn++. Using Schur Product Theorem (Bapat and Raghavan, 1997),

Φt ∈ Sn++, which completes the proof.
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Theorem 8.4.9 shows that the performance measure in Definition 8.4.8 is bounded with

0 < Φt(i, i) ≤ 1 for 1 ≤ i ≤ n. Using Theorem 8.4.9, filter efficiency is defined next.

Definition 8.4.10. A state filter at t ∈ N is efficient for state 1 ≤ i ≤ n, if Φt(i, i) = 1 (i.e.,

Pt|t(i, i)−J−1
t (i, i) = 0) or efficient for all the states, if Tr[Φt] = n (i.e., Tr[Pt|t−J−1

t ] = 0).

Remark 8.4.11. Another measure of non-linear state filter performance can be defined as

Φ′t := J−1
t P−1

t|t 4 In×n, with Φ′t = In×n indicating efficiency; however, note that with Φ′t,

defining filter efficiency for individual states is not easy. This is because by inverting Pt|t,

the diagonal elements of Pt|t get coupled.

The choice of the state estimate X̂t|t ∈ Rn for which Tr[Φt] at t ∈ N is maximized is

discussed next.

Result 8.4.12. To compute the state estimate X̂t|t ∈ Rn at t ∈ N, a common approach is

to minimize P S
t|t. This ensures P S

t|t − Tr[J−1
t ] ≥ 0 in (8.7) is minimized. The optimal point

estimate that minimizes P S
t|t is referred to as the minimum MSE (MMSE) estimate, and is

the conditional mean of Xt|(Y1:t = y1:t) ∼ p(xt|y1:t), i.e., X̂t|t = X?
t|t , Ep(Xt|Y1:t)[Xt].

Proof. Proof of the MMSE estimates can be found in (Trees, 1968).

Theorem 8.4.13. Let J−1
t ∈ Sn++ and Pt|t ∈ Sn++ be such that they satisfy (8.6) then the

MMSE estimate X̂t|t ∈ Rn minimizing Tr[Pt|t] also maximizes Tr[Φt], such that

X̂t|t = arg min
X̂t|t∈Rn

Tr[Pt|t] = arg max
X̂t|t∈Rn

Tr[Φt]. (8.13)
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Proof. The MMSE estimate X̂t|t ∈ Rn is computed by solving the optimization problem:

X̂t|t = arg min
X̂t|t∈Rn

Tr[Pt|t], (8.14a)

= arg min
X̂t|t∈Rn

Tr[Pt|t − J−1
t ], (8.14b)

= arg min
X̂t|t∈Rn

n∑

i=1

[Pt|t(i, i)− J−1
t (i, i)], (8.14c)

= arg min
X̂t|t∈Rn

n∑

i=1

[Φt(i, i)]
−1 − 1]J−1

t (i, i), (8.14d)

= arg min
X̂t|t∈Rn

n∑

i=1

[Φt(i, i)]
−1J−1

t (i, i), (8.14e)

=
n∑

i=1

arg min
X̂t|t∈Rn

[Φt(i, i)]
−1J−1

t (i, i), (8.14f)

=
n∑

i=1

J−1
t (i, i) arg min

X̂t|t∈Rn
[Φt(i, i)]

−1, (8.14g)

=
n∑

i=1

arg max
X̂t|t∈Rn

[Φt(i, i)], (8.14h)

= arg max
X̂t|t∈Rn

n∑

i=1

[Φt(i, i)] = arg max
X̂t|t∈Rn

Tr[Φt], (8.14i)

where (8.14a) to (8.14b) follows from Result 8.4.12; (8.14e) to (8.14f) follows from the

fact that [Φt(i, i)]
−1J−1

t (i, i) > 0, this is because 0 < Φt(i, i) ≤ 1 (from Theorem 8.4.9)

and J−1
t (i, i) > 0 (since J−1

t ∈ Sn++) for 1 ≤ i ≤ n; and (8.14h) to (8.14i) again follows

from Theorem 8.4.9, which completes the proof.

Remark 8.4.14. Theorem 8.4.13 shows that the performance of a filter in terms of

Definition 8.4.8 can be maximized for the choice of an MMSE estimate. Since, calculating

the MMSE estimate in Remark 8.4.12 requires computation of (8.5), except for Model 8.3.3,

or when X is a finite set, exact MMSE state estimates cannot be computed in closed form.

Remark 8.4.15. For Model 8.3.1, non-linear state filters only provide an approximation to

the posterior density in (8.5) thus in practice, the estimate delivered by non-linear filters
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is not an MMSE estimate, i.e., X̂t|t , Ep̃(Xt|Y1:t)[Xt] 6= X?
t|t almost surely, where X̂t|t is the

mean of p̃(xt|y1:t) and p̃(xt|y1:t) is an approximation of p(xt|y1:t) computed by the filter.

Note that since Φt at t ∈ N in Definition 8.4.8 is a function of the state estimate

X̂t|t ∈ Rn, non-linear filters of different approximations and capabilities have different Φt

matrices. Thus by monitoring Φt, or some scalar metric of Φt (e.g., trace), performance of

multiple filters can be simultaneously monitored for all t ∈ N. While comparing filters,

ideally, the best performing filter is the one which is efficient (see Definition 8.4.10);

however, for non-linear filters, efficiency is rarely achieved (See Remark 8.4.15). For

practical purposes, filter with highest Tr[Φt] value is the the best performing filter at t ∈ N.

Although Definition 8.4.8 provides a vital tool for assessment of non-linear state filters,

it provides limited insight in diagnosing those performance. This is because of the use of

an overall second-order error or MSE in Definition 8.4.8. The PCRLB inequality based

filter performance diagnosis is presented next.

8.4.2 Performance diagnosis of non-linear state filters

This section deals with Problem 8.3.11 in Section 8.3. For researchers designing improved

non-linear filtering methods, it is often in their interest to understand why the performance

of existing filters is low or in which all ways can the overall filtering performance be

improved. This is particularly important for non-linear filters; wherein, the state estimates

are often not the MMSE estimates (see Remark 8.4.15). To answer these performance

related questions, the PCRLB inequality based performance diagnosis tool is presented

in this section. Note that the second-order error associated with a filter is completely

characterized by its MSE. A thorough diagnosis of filter performance, therefore requires

clear understanding of the second-order error. The next theorem shows how MSE of a filter

can be decomposed into its separate sources of errors.

Theorem 8.4.16. Let X?
t|t and V ?

t|t be the true conditional mean and covariance of
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Xt|(Y1:t = y1:t) ∼ p(xt|y1:t), respectively. Let X̂t|t and V̂t|t be the conditional mean and

covariance of Xt|(Y1:t = y1:t) ∼ p̃(xt|y1:t), respectively, as computed by a non-linear filter

then for X̂t|t 6= X?
t|t almost surely, and V̂t|t 6= V ?

t|t almost surely, the MSE for the filter, Pt|t

at t ∈ N can be written as

Pt|t = Ep(Y1:t)[V̂t|t] + Ep(Y1:t)[B
?
Vt|t

] + Ep(Y1:t)[B
?
Xt|t

[B?
Xt|t

]T ], (8.15)

where X̂t|t is an estimate, andB?
Vt|t

, [V ?
t|t − V̂t|t] ∈ Sn andB?

Xt|t
, [X?

t|t − X̂t|t] ∈ Rn are

the conditional bias in estimating the mean and covariance ofXt|(Y1:t = y1:t) ∼ p(xt|y1:t).

Proof. Using the Law of Total Probability, the expectation in the MSE, with respect to

p(x0:t, y1:t) can be written as

Pt|t = Ep(Y1:t)Ep(X0:t|Y1:t)[(Xt − X̂t|t)(Xt − X̂t|t)
T ], (8.16)

where p(x0:t, y1:t) = p(x0:t|y1:t)p(y1:t) is used. Now since [(Xt− X̂t|t)(Xt− X̂t|t)
T ] at time

t ∈ N is independent of the state trajectory (x0:t−1) ∈ X t, (8.16) can be simplified as

Pt|t = Ep(Y1:t)Ep(Xt|Y1:t)[(Xt − X̂t|t)(Xt − X̂t|t)
T ]. (8.17)

Adding and subtracting X?
t|t = Ep(Xt|Y1:t)[Xt] in (8.17) yields

Pt|t = Ep(Y1:t)Ep(Xt|Y1:t)[(Xt −X?
t|t +X?

t|t − X̂t|t)(Xt −X?
t|t +X?

t|t − X̂t|t)
T ]. (8.18)

Several algebraic manipulations in (8.18) yield the following

Pt|t = Ep(Y1:t)Ep(Xt|Y1:t)[K
?
Xt|t

+ L?Xt|t + [L?xt|t ]
T +B?

Xt|t
[B?

Xt|t
]T ], (8.19)

where: K?
Xt|t

= [Xt − X?
t|t][Xt − X?

t|t]
T ;L?Xt|t = [Xt − X?

t|t][X
?
t|t −

X̂t|t]
T ;B?

Xt|t
= [X?

t|t − X̂t|t]. Now while evaluating the inner expectation in (8.19), note

that Ep(Xt|Y1:t)[K
?
Xt|t

] = V ?
t|t. Also Ep(Xt|Y1:t)[L

?
Xt|t

] = Ep(Xt|Y1:t)[L
?
Xt|t

]T = 0, since

Ep(Xt|Y1:t)[Xt−X?
t|t] = 0; and Ep(Xt|Y1:t)[B

?
Xt|t

][B?
Xt|t

]T = B?
Xt|t

[B?
Xt|t

]T , sinceB?
Xt|t

[B?
Xt|t

]T
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is conditionally independent of (xt) ∈ X given a measurement sequence (y1:t) ∈ Y t.

Substituting these simplifying expressions into (8.19) we get

Pt|t = Ep(Y1:t)[V
?
t|t +B?

Xt|t
[B?

Xt|t
]T ]. (8.20)

Again adding and subtracting V̂t|t in (8.20) and substituting B?
Vt|t

= [V ?
t|t − V̂t|t] yields

(8.15), which completes the proof.

Remark 8.4.17. (8.15) can be simplified by substituting V̂t|t +B?
Vt|t

= V ?
t|t. Nonetheless,

we use the representation in (8.15) for reasons which will become apparent later on.

Using Theorem 8.4.16, non-linear filter bias is defined next.

Definition 8.4.18. A filter is conditionally unbiased in mean ifB?
Xt|t

= 0 almost surely, and

unconditionally unbiased in mean if Ep(Y1:t)[B
?
Xt|t

] = 0. A filter which is both conditionally

and unconditionally unbiased in mean is said to be unbiased in mean. Bias in mean can be

similarly defined.

Definition 8.4.19. A filter is conditionally unbiased in covariance if B?
Vt|t

= 0 almost

surely, and unconditionally unbiased if Ep(Y1:t)[B
?
Vt|t

] = 0. A filter which is both

conditionally and unconditionally unbiased in covariance is said to be unbiased in

covariance. Bias in covariance can be similarly defined.

The conditions under which a non-linear filter is unbiased in mean and covariance are

discussed in the next theorem.

Theorem 8.4.20. Let B?
Vt|t
∈ Sn and B?

Xt|t
∈ Rn be the conditional bias in the mean and

covariance, respectively, then: (a) B?
Vt|t

= 0 and B?
Xt|t

= 0 almost surely are the necessary

conditions for Ep(Y1:t)[B
?
Vt|t

] = 0 and Ep(Y1:t)[B
?
Xt|t

] = 0, respectively; and (b) B?
Xt|t

= 0

almost surely is the necessary and sufficient condition for Ep(Y1:t)[B
?
Xt|t

[B?
Xt|t

]T ] = 0.

Proof. (a) First note that B?
Vt|t
∈ Sn is a positive or negative definite matrix depending

on the measurement sequence (y1:t) ∈ Y t. This implies that Ep(Y1:t)[B
?
Vt|t

] ∈ Sn is an
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indefinite matrix, which in turn implies that B?
Vt|t

= 0 almost surely is only a necessary

condition for Ep(Y1:t)[B
?
Vt|t

] = 0. Now from Theorem 15.2 in (Billingsley, 1995), we can

show that B?
Xt|t

= 0 almost surely is a necessary condition for Ep(Y1:t)[B
?
Xt|t

] = 0. (b)

Since for B?
Xt|t

∈ Rn, Ep(Y1:t)[B
?
Xt|t

[B?
Xt|t

]T ] ∈ Sn with positive diagonal elements,

which implies that B?
Xt|t

= 0 almost surely is both necessary and sufficient condition for

Ep(Y1:t)[B
?
Xt|t

[B?
Xt|t

]T ] = 0, which completes the proof.

Remark 8.4.21. Theorem 8.4.20 shows that if a non-linear filter is unbiased in mean or

variance, it does not imply that it is conditionally unbiased as well.

The MSE of an unbiased non-linear filter is given next.

Corollary 8.4.22. Let X̂t|t and V̂t|t be the first and second moment of Xt|(Y1:t = y1:t) ∼

p̃(xt|y1:t) computed by a non-linear filter, such that it satisfies B?
Xt|t

= 0 almost surely then

the MSE of the non-linear filter is given by

Pt|t = Ep(Y1:t)[V
?
t|t] (8.21)

Proof. Substituting B?
Xt|t

= 0 into (8.15), and using the fact that V̂t|t +B?
Vt|t

= V ?
t|t yields

(8.21), which completes the proof.

Remark 8.4.23. Since Pt|t = Ep(Y1:t)[V
?
t|t] is only a function of the true conditional

covariance of the posterior, the MSE cannot be reduced any further. In fact the MSE is

independent of the choice of the filtering method. Thus, a non-linear filter which satisfies

B?
Xt|t

= 0 almost surely is efficient.

Remark 8.4.24. In Definition 8.4.10, filter efficiency at time t ∈ N is defined based on

Φt; whereas, in Remark 8.4.23 it is defined based on Pt|t. Note that the two definitions of

efficiency are equivalent, since Φt and Pt|t are related by Theorem 8.4.13.

Theorem 8.4.16 provides a procedure to decompose Pt|t into its sources of errors, thereby

providing a means to diagnose non-linear filter performance. The PCRLB inequality based

diagnosis results are summarized in the theorem given below.
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Theorem 8.4.25. Let X?
t|t and V ?

t|t be the true conditional mean and covariance of

Xt|(Y1:t = y1:t) ∼ p(xt|y1:t), respectively. Let X̂t|t and V̂t|t be the conditional mean and

covariance ofXt|(Y1:t = y1:t) ∼ p̃(xt|y1:t), respectively, computed using a non-linear filter,

such that X̂t|t is also the state estimate then from Lemma 8.4.1 and Theorems 8.4.16 and

8.4.20 we have

(a) If B?
Vt|t

= 0 almost surely and B?
Xt|t

= 0 almost surely then the PCRLB inequality (8.6)

is given by

Pt|t = Ep(Y1:t)[V
?
t|t] = J−1

t , (8.22a)

which implies the non-linear filter is efficient, unbiased in mean and covariance and yields

an MMSE estimate.

(b) If B?
Vt|t

= 0 almost surely and B?
Xt|t
6= 0 almost surely then the PCRLB inequality (8.6)

is given by

Pt|t = Ep(Y1:t)[V
?
t|t] + Ep(Y1:t)[B

?
Xt|t

[B?
Xt|t

]T ] < J−1
t , (8.22b)

which implies the non-linear filter is not efficient, conditionally biased in mean (or biased

in mean if Ep(Y1:t)[B
?
Xt|t

] 6= 0), but unbiased in covariance and fails to yield an MMSE

estimate.

(c) If B?
Vt|t
6= 0 almost surely and B?

Xt|t
= 0 almost surely then the PCRLB inequality (8.6)

is given by

Pt|t = Ep(Y1:t)[V̂Xt|t ] + Ep(Y1:t)[B
?
Vt|t

] = Ep(y1:t)[V
?
t|t] = J−1

t , (8.22c)

which implies the non-linear filter is efficient, unbiased in mean, but conditionally biased

in covariance (or biased in covariance if Ep(Y1:t)[B
?
Vt|t

] 6= 0) and yields an MMSE estimate.

(d) If B?
Vt|t
6= 0 almost surely and B?

Xt|t
6= 0 almost surely then the PCRLB inequality (8.6)

is given by

Pt|t = Ep(Y1:t)[V̂t|t] + Ep(Y1:t)[B
?
Vt|t

] + Ep(Y1:t)[B
?
Xt|t

[B?
Xt|t

]T ] < J−1
t , (8.22d)
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which implies the non-linear filter is not efficient, conditionally biased in mean and

covariance (or biased in mean and covariance if Ep(Y1:t)[B
?
Xt|t

] 6= 0 and Ep(Y1:t)[B
?
Vt|t

] 6= 0,

respectively), and fails to yield an MMSE estimate.

Proof. (a) Since the filter satisfies B?
Vt|t

= 0 almost surely; Corollary 8.4.22 and Remark

8.4.23 imply that the filter is efficient. From Theorem 8.4.20, the conditions B?
Vt|t

= 0

almost surely and B?
Xt|t

= 0 almost surely are also the necessary conditions for the filter

to be unbiased in mean and covariance. Also, since the filter is conditionally unbiased in

mean, Result 8.4.12 implies that the filter yields an MMSE estimate. Proofs for (b) through

(d) are similar and omitted here for the sake of brevity.

Remark 8.4.26. From Theorems 8.4.25(a) and (c) it is clear thatB?
Xt|t

= 0 almost surely is

the necessary and sufficient condition for filter efficiency. Nevertheless Theorem 8.4.25(a),

which require the filter to satisfy the conditions B?
Xt|t

= 0 and B?
Vt|t

= 0 almost surely, not

only guarantees filter efficiency, but also ensures that the filter is unbiased with respect to

the mean and covariance of the true posterior density.

Remark 8.4.27. To exactly solve the state estimation problem for Model 8.3.1, infinitely

many moments of the approximate posterior density should exactly match with that of

the true posterior density. With finite computing capabilities, since this is not possible

to achieve, the representation of MSE in Theorem 8.4.16 and the results in Theorem 8.4.25,

at least ensure that diagnosis of a non-linear filter is performed based on the first two

moments of the approximate posterior density.

Result 8.4.28. For Model 8.3.3, the KF is efficient, unbiased in mean and covariance, and

yields an MMSE estimate. The MSE of the KF at t ∈ N is given by

Pt|t = J−1
t , (8.23)

where J−1
t ∈ Sn++ can be computed from Result 8.4.7.
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Figure 8.1: [Left] sample performance trajectories of three tractable non-linear filters
(referred to as filters: a, b, and c) computed using (8.12). Note that the Φt ∀t ∈ [0, 9]
values for all three filters are in between 0 and 1; [Right] an optimal switching map based
on the performance of three filters. The idea is to always switch to the filter, which has the
highest Φt ∀t ∈ [0, 9] value.

Proof. It is well known that KF yields conditionally unbiased estimates of X?
t|t and V ?

t|t

(Ristic et al., 2004), such that B?
Vt|t

= 0 almost surely and B?
Xt|t

= 0 almost surely. Since

KF satisfies the conditions of Theorem 8.4.25(a), the result follows.

It is important to highlight that the MSE of the KF in (8.23) is equivalent to its covariance

update step at time t ∈ N (Ristic et al., 2004; Tichavský et al., 1998).

Remark 8.4.29. Theorem 8.4.25 serves as guidelines to assess and diagnose performance

of different non-linear filters. Furthermore, it also provides a better resolution to the

researchers by allowing them to focus their non-linear filter design on either the bias

reduction in the mean or covariance, or both. This is to promote an overall improvement

in the performance and efficiency of non-linear filters.

The PCRLB inequality based optimal filtering strategy for non-linear state estimation is

discussed next.
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8.4.3 Optimal filtering strategy for non-linear state estimation

This section deals with Problem 8.3.12 in Section 8.3. For state estimation in processes

described by Model 8.3.1, a PCRLB inequality based filter switching strategy is proposed

in this chapter. This strategy is motivated by the fact that there is no one single non-linear

filter, which is guaranteed to perform well for all non-linear systems, and at all operating

conditions. In such situations, the idea is to start with a set of multiple non-linear filters,

and switch between them based on their performance.

In the proposed filter switching strategy, the performance of a pre-determined bank of

Kalman and SMC based filters is first assessed using Tr[Φt] values and then the non-linear

filter with highest Tr[Φt] value is selected for delivering the state estimate at t ∈ N. Figure

8.1 illustrates the procedure for devising the filter switching strategy using the performance

measure in Definition 8.4.8. Formally, the filter switching strategy proposed in this chapter

can be represented as given next.

Definition 8.4.30. Let B be a bank of non-linear filters, such that i ∈ F is the filter identity

in B, where F = {1, 2, . . . , F} and F ∈ N. Also, let Φi
t and X̂ i

t|t be the performance

measure and state estimate of the non-linear filter i ∈ F then

i?t = arg max
i∈F

Tr[Φi
t], (8.24)

where i?t ∈ F is the filter in B to be switched to at t ∈ N and X̂ i?t
t|t being the state estimate

to be selected at t ∈ N.

Theorem 8.4.31. Let F ∈ N be the number of non-linear filters in an arbitrarily chosen

filter bank B then with respect to the bank B, state estimation in Model 8.3.1 according to

Definition 8.4.30 gives an optimal minimum MMSE estimation strategy.

Proof. The very construction of (8.24) based on Lemma 8.4.1 makes Definition 8.4.30 an

average-optimal MMSE state estimation strategy for Model 8.3.1, with respect to the filter

bank B. This completes the proof.
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Remark 8.4.32. Theorem 8.4.31 highlights that given a set of non-linear filters, performing

state estimation in Model 8.3.1 according to Definition 8.4.30 yields the lowest MSE.

Remark 8.4.33. The filter switching strategy given in Definition 8.4.30 is based on average

performance of the filter in estimating all the states of Model 8.3.1; however, if required,

the switching strategy can also be implemented for individual states. This would result in

an n-dimensional switching map.

8.4.4 An integrated filter assessment and diagnosis approach

It is possible to integrate the performance assessment, diagnosis tools developed in Sections

8.4.1 and 8.4.2, respectively, for devising an optimal switching strategy for state estimation

in Model 8.3.1 (see Figure 8.2). The first step of this integrated procedure requires the

operating region for Model 8.3.1 to be specified (see Remark 8.4.5). In the second and

third step, a bank of non-linear filters is selected and its performance is assessed using

Definition 8.4.8. If the non-linear filter performance is low, diagnosis is performed using

Theorem 8.4.25. Based on the diagnosis results, the filters are redesigned and reassessed

for its performance using Definition 8.4.8. Once the overall performance of the filters in the

bank over the entire operating region is satisfactory, the optimal switching strategy can be

devised using Definition 8.4.30. Finally, state estimation in Model 8.3.1 over the selected

operating region can be performed according to the developed filter switching map. All the

steps in Figure 8.2 are illustrated on a simulation example in Section 8.6.3.

Remark 8.4.34. Note that the filter redesign step in Figure 8.2 is a non-trivial exercise.

Designing non-linear filters with specific properties (e.g., low bias in mean or variance)

not only requires a thorough understanding of the underlying statistical and numerical

approximations, it also requires a comprehensive knowledge of non-linear filtering theory.

Since, filter design is not included in the scope of this work, it will not be pursued.
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Non-linear 
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Figure 8.2: Flowchart for the PCRLB inequality based performance assessment, diagnosis
and optimal selection of non-linear filtering strategy for state estimation in Model 8.3.1.
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8.5 PCRLB inequality approximation

The PCRLB inequality based tools developed in Section 8.4 allow for performance

assessment, diagnosis and optimal selection of a filtering strategy for state estimation in

Model 8.3.1; however, obtaining a closed form solution to (8.6) is a non-trivial problem.

This is because the complex, multi-dimensional integrals in the PCRLB and MSE cannot

be solved analytically. The use of numerical methods to compute (8.6) is discussed next.

8.5.1 Perfect MC sampling based approximation

The idea of perfect MC sampling is to numerically solve complex, multi-dimensional

integrals of the form St = Ep(X0:t,Y1:t) [ht(X0:t, Y1:t)], where ht : X t+1 × Y t → R.

Using M i.i.d. random trajectories {X?j
1:t, Y

j
1:t}Mj=1 ∼ p(x0:t, y1:t) distributed according to

p(x0:t, y1:t), the distribution p(x0:t, y1:t)dx0:tdy1:t , p(dx0:t, dy1:t) can be approximated as

p̃(dx0:t, dy1:t) =
1

M

M∑

j=1

δX?j
0:t,Y

j
1:t

(dx0:t, dy1:t), (8.25)

where p̃(dx0:t, dy1:t) is an MC approximation of p(dx0:t, dy1:t) and δX0(dx) is the Dirac

delta mass located at random sample X0. Using (8.25), a MC estimate of St is given by

S̃t =

∫

X t+1

∫

Yt
ht(x0:t, y1:t)p̃(dx0:t, dy1:t), (8.26a)

=
1

M

M∑

j=1

ht(X
?j
0:t, Y

j
1:t), (8.26b)

where S̃t is a MC estimate of St. Since (8.26b) is based on a perfect MC sampling, using the

strong law of large numbers (SLLN), asymptotic convergence results, such as S̃t
a.s.−−→ St, as

M → +∞, where a.s.−−→ denotes almost sure convergence can be established. The procedure

to approximate the PCRLB inequality using a MC method is given next.

Result 8.5.1. Simulating M i.i.d. sample paths {X?j
0:t, Y

j
1:t}Mj=1 ∼ p(x0:t, y1:t) using Model

8.3.1, starting at M i.i.d. initial positions {Xj
0}Mj=1 ∼ p(x0) and computing the state
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estimates {X̂j
t|t}Mj=1, the MSE of a non-linear filter at t ∈ N can be approximated as

P̃t|t =
1

M

M∑

j=1

(X?j
t − X̂j

t|t)(X
?j
t − X̂j

t|t)
T , (8.27)

where P̃t|t is a MC estimate of Pt|t based on M simulations.

Proof. Substituting (8.25) into the definition of MSE given in Lemma 8.4.1 yields (8.27),

which completes the proof.

Result 8.5.2. Simulating M i.i.d. sample paths {X?j
0:t, Y

j
1:t}Mj=1 ∼ p(x0:t, y1:t) using Model

8.3.2, starting at M i.i.d. initial positions {Xj
0}Mj=1 ∼ p(x0), an MC estimate of (8.10a)

through (8.10c) in Result 8.4.6 is given as follows:

D̃11
t =

1

M

M∑

j=1

[∇X?j
t
fTt (X?j

t )]Q−1
t [∇Xtf

T
t (X?j

t )]T ; (8.28a)

D̃12
t =

1

M

M∑

j=1

−[∇Xtf
T
t (X?j

t )]Q−1
t ; (8.28b)

D̃22
t =

1

M

M∑

j=1

[∇Xt+1g
T
t (X?j

t+1)]R−1
t+1[∇Xt+1g

T
t+1(X?j

t+1)]T +Q−1
t , (8.28c)

where D̃t is a MC estimate of Dt.

Proof. Substituting (8.25) into (8.10) yields (8.28), which completes the proof.

Substituting (8.28) into (8.8), a MC estimate of the PFIM Jt+1 at t ∈ N can be obtained.

Remark 8.5.3. Though convergence results, such as P̃t|t
a.s.−−→ Pt|t and J̃t+1

a.s.−−→ Jt+1

can be established as M → ∞, the approximation in Results 8.5.1 and 8.5.2 require an

ensemble of the true states and measurements. While measurements may be available from

the historical process data, the true states may not be available, except in simulations or

in carefully conducted experiments. Thus, no practical numerical method should use true

states in the computation of the PCRLB inequality.

An SMC based PCRLB inequality is discussed next.
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8.5.2 SMC based approximation

The central idea to use SMC based methods in approximating the PCRLB inequality in

Lemma 8.4.1 is to allow use of available measurements. To do this, the expectations in the

MSE and PFIM are reformulated and written as given next.

Proposition 8.5.4. The complex, multi-dimensional expectations in (8.9), with respect to

the density p(x0:t+1, y1:t+1) can be reformulated, and written as follows:

I11
t = Ep(X0:t+1|Y1:t+1)[−∆Xt

Xt
log p(Xt+1|Xt)]; (8.29a)

I12
t = Ep(X0:t+1|Y1:t+1)[−∆

Xt+1

Xt
log p(Xt+1|Xt)]; (8.29b)

I22,a
t = Ep(X0:t+1|Y1:t+1)[−∆

Xt+1

Xt+1
log p(Xt+1|Xt)]; (8.29c)

I22,b
t = Ep(X0:t+1|Y1:t+1)[−∆

Xt+1

Xt+1
log p(Yt+1|Xt+1)], (8.29d)

such that:

D11
t =Ep(Y1:t+1)[I

11
t ]; (8.29e)

D12
t =Ep(Y1:t+1)[I

12
t ]; (8.29f)

D22
t =Ep(Y1:t+1)[I

22,a
t + I22,b

t ]. (8.29g)

Also, the expectation in the MSE in (8.6) can be written as

Pt|t = Ep(Y1:t)Ep(X0:t|Y1:t)[(Xt − X̂t|t)(Xt − X̂t|t)
T ]. (8.30)

Proof. Rewriting the integrals using the probability condition

p(x0:t+1, y1:t+1) = p(y1:t+1)p(x0:t+1|y1:t+1) yields the result.

Remark 8.5.5. The integrals in (8.29) and (8.30) are with respect to p(y1:t+1) and

p(x0:t+1|y1:t+1). The advantage of this representation is evident: using historical

data, the integrals with respect to p(y1:t+1) can be approximated using a perfect MC

method discussed in Section 8.5.1, while integrals with respect to p(x0:t+1|y1:t+1) can be

approximated using an SMC method.
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It is not our aim here to review SMC methods in detail, but to highlight their role

in approximating the PCRLB inequality. For a detailed exposition, see (Doucet et

al., 2001; Arulampalam et al., 2002), for example. The essential idea behind SMC methods

is to generate a set of random particles and their weights from the target pdf, with respect to

which integrals are defined. The target pdf in (8.29) and (8.30) is p(x0:t|y1:t). Using SMC

methods p(x0:t+1|y1:t+1)dx0:t+1 , p(dx0:t+1|y1:t+1) can be approximated as

p̃(dx0:t+1|y1:t+1) =
N∑

i=1

W i
0:t+1|t+1δXi

0:t+1|t+1
(dx0:t+1), (8.31)

where: p̃(dx0:t+1|y1:t+1) is an approximation of p(dx0:t+1|y1:t+1)

and {X i
0:t+1; W i

0:t+1|t+1}Ni=1 are the N pairs of particle realizations and their associated

weights distributed according to p(x0:t+1|y1:t+1), such that
∑N

i=1 W
i
0:t+1|t+1 = 1. Using

(8.31), an SMC approximation of (8.29a), for example, is given as

Ĩ11
t =

N∑

i=1

W i
0:t+1|t+1[−∆Xt

Xt
log p(X i

t+1|t+1|X i
t|t+1)], (8.32)

where Ĩ11
t is an SMC estimate of I11

t , with the Laplacian evaluated at the random particle

{X i
t:t+1|t+1}Ni=1.

Convergence of (8.32) to (8.29a) depends on the numerical quality of the estimate in

(8.31). Many sharp results on convergence of SMC methods are available (see (Crisan and

Doucet, 2002) for a survey paper and (Moral, 2004) for a book length review). A selection

of these results highlighting the difficulties in approximating p(dx0:t|y1:t) in (8.31) with an

SMC method are presented below.

Theorem 8.5.6. For any bounded test function φt : X t+1 → R, there exists Ct,p <∞, such

that for any p > 0, N ≥ 1 and t ≥ 1, the following inequality holds

E
[∣∣∣∣
∫

X t+1

φt(x0:t)εt(dx0:t|y1:t)

∣∣∣∣
p] 1

p

≤ Ct,pφ̄t
N1/2

, (8.33)

where εt(dx0:t|y1:t) = p̃(dx0:t|y1:t) − p(dx0:t|y1:t) is the approximation error, φ̄t =

supx0:t∈X t+1 |φt(x0:t)|, and the expectation is with respect to the particle realizations.



Sec. 8.5 PCRLB inequality approximation 240

Proof. See Theorem 2 in (Moral and Doucet, 2003) for a detailed proof.

The result in Theorem 8.5.6 is weak, sinceCt,p being a function of t, grows exponentially

or polynomially with time (Kantas et al., 2009). Hence to guarantee a fixed precision

of (8.31), N has to increase with t. The result in (8.33) is not surprising, since the

approximation in (8.31) requires sampling from the pdf p(x0:t|y1:t), whose dimension

increases as n(t+1). It is referred to as the path degeneracy problem. This is a fundamental

limitation of the SMC method; wherein, for a fixed N , the quality of the approximation of

p(dx0:t|y1:t) deteriorates with time.

Remark 8.5.7. The motivation to use SMC methods to approximate the integrals in

(8.29) and (8.30) is based on the fact that encouraging results can be obtained under the

exponential forgetting assumption on Model 8.3.1. Since θ ∈ Θ is known (see Assumption

8.3.4), the forgetting property in Model 8.3.1 holds.

For Model 8.3.1, it is possible to establish the following result.

Theorem 8.5.8. For an integer L > 0, and any bounded test function φL : X L → R, there

exists DL,p <∞, such that for any p > 0, N ≥ 1 and t ≥ 1, the following inequality holds

E
[∣∣∣∣
∫

XL
φL(xt−L+1:t)εL(dxt−L+1:t|y1:t)

∣∣∣∣
p] 1

p

≤ DL,pφ̄L
N1/2

, (8.34)

where εL(dxt−L+1:t|y1:t) =
∫
X t−L+1 εt(dx0:t|y1:t).

Proof. See Theorem 2 in (Moral and Doucet, 2003) for a detailed proof.

Remark 8.5.9. Since DL,p is independent of t ∈ N, Theorem 8.5.8 suggests that an SMC

based approximation of the most recent marginal posterior pdf p(xt−L+1:t|y1:t), over a fixed

horizon L > 0 does not result in the error accumulation (Kantas et al., 2009).

To make the SMC based PCRLB approximation effective, the dimension of the integrals

in Proposition 8.5.4 needs to be reduced. An SMC based approximation of the PCRLB

over a reduced dimensional state-space is discussed next.
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8.5.2.1 SMC based PCRLB approximation

In this section we present an SMC based approximation of the PFIM and the PCRLB

for Model 8.3.1. The developments of this section have been reported by the authors

in two earlier publications (Tulsyan et al., 2013a; Tulsyan et al., 2012). The results are

presented here for the sake of completeness and are important for the development of the

later sections. Reduction of the complex, multi-dimensional integrals in (8.29) to a lower

dimension is given next.

Lemma 8.5.10. For a system represented by Model 8.3.1, using Markov property of the

state process in (8.2), the complex, multi-dimensional integrals in (8.29) can be written as:

I11
t = Ep(Xt:t+1|Y1:t+1)[−∆Xt

Xt
log p(Xt+1|Xt)]; (8.35a)

I12
t = Ep(Xt:t+1|Y1:t+1)[−∆

Xt+1

Xt
log p(Xt+1|Xt)]; (8.35b)

I22,a
t = Ep(Xt:t+1|Y1:t+1)[−∆

Xt+1

Xt+1
log p(Xt+1|Xt)]; (8.35c)

I22,b
t = Ep(Xt+1|Y1:t+1)[−∆

Xt+1

Xt+1
log p(Yt+1|Xt+1)]. (8.35d)

Proof. The proof uses the definition of expectation and Markov property of Model 8.3.1.

See (Tulsyan et al., 2013a) for a detailed proof.

Remark 8.5.11. Note that the dimension of the expectation in (8.29a) through (8.29c)

reduces from n(t + 2) to 2n; whereas, in (8.29d), it reduces from n(t + 2) to n for all

t ∈ N. Moreover, since expectations in Lemma 8.5.10 are with respect to p(xt:t+1|y1:t+1)

and p(xt+1|y1:t+1), an SMC method can effectively approximate it using finite number of

particles (see Theorem 8.5.8).

Lemma 8.5.12. The target pdf p(xt:t+1|y1:t+1), with respect to which the integrals in

Lemma 8.5.10 are defined can be alternatively written as follows

p(xt:t+1|y1:t+1) =
p(xt+1|xt)p(xt|y1:t)p(xt+1|y1:t+1)∫

X p(xt+1|xt)p(dxt|y1:t)
. (8.36)
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Proof. The proof is based on the use of Bayes’ theorem. See (Tulsyan et al., 2013a;

Tulsyan et al., 2012) for a detailed derivation.

Remark 8.5.13. Generating samples from densities, such as the uniform or Gaussian are

well known; however, due to the multi-variate, and non-Gaussian nature of p(xt:t+1|y1:t+1),

generating random samples from it is non-trivial. An alternative idea is to employ an

importance sampling function (ISF) from which random particles are relatively easier to

generate (Robert and Casella, 2004).

The two posteriors in (8.36) are selected as the ISF, such that

q(xt:t+1|y1:t+1) , p(xt|y1:t)p(xt+1|y1:t+1), (8.37)

where q(xt:t+1|y1:t+1) is a non-negative ISF on X 2, such that supp q(xt:t+1|y1:t+1) ⊇

supp p(xt:t+1|y1:t+1). Choice of an ISF similar to (8.37) was also employed in (Tanizaki,

2001; Schön et al., 2011) to develop a particle smoothing algorithm for discrete-time non-

linear systems. Thus to be able to generate random samples from (8.37), samples from

the two posteriors p(xt|y1:t) and p(xt+1|y1:t+1) need to be generated first. Again, using

the principles of importance sampling, particles from the posterior pdf can be generated

using any advanced SMC methods (e.g., ASIR (Pitt and Shephard, 1999), resample-move

algorithm (Gilks and Berzuini, 2002), block sampling strategy (Doucet et al., 2006)) or for

example, using the method in (Gopaluni, 2008; Schön et al., 2011). The method described

in (Gopaluni, 2008; Schön et al., 2011) is outlined in Algorithm 10. It is important to note

that in importance sampling, degeneracy is a common problem; wherein, after a few time

instances, the density of the weights in (8.38) become skewed. The resampling step in

(8.39) is crucial in limiting the effects of degeneracy. Finally, particle approximation of
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Algorithm 10 SMC based posterior density approximation
Input: Given Model 8.3.1, satisfying Assumptions 8.3.4 through 8.3.7, assume a prior
pdf on X0, such that X0 ∼ p(x0). Also, select algorithm parameter N .
Output: Recursive SMC approximation of the posterior p(dxt|y1:t) for all t ∈ N.

1: Generate N independent and identically distributed particles {X i
0|−1}Ni=1 ∼ p(x0) and

set the associated weights to {W i
0|−1 = N−1}Ni=1. Set t← 1.

2: Sample {X i
t|t−1}Ni=1 ∼ p(xt|y1:t−1).

3: while t ∈ N do
4: Use {Yt = yt} and compute {W i

t|t}Ni=1 using

W i
t|t =

p(yt|X i
t|t−1)

∑N
i=1 p(yt|X i

t|t−1)
. (8.38)

5: Resample {X i
t|t}Nj=1 according to

Pr(X i
t|t = X i

t|t−1) = W i
t|t. (8.39)

Set {W i
t|t = N−1}Ni=1.

6: Sample {X i
t+1|t}Ni=1 ∼ p(xt+1|y1:t).

7: Set t← t+ 1.
8: end while

p(dxt|y1:t) and p(dxt+1|y1:t+1) are given by

p̃(dxt|y1:t) =
1

N

N∑

i=1

δXi
t|t

(dxt); (8.40a)

p̃(dxt+1|y1:t+1) =
1

N

N∑

j=1

δXj
t+1|t+1

(dxt+1). (8.40b)

Here {X i
t|t}Ni=1 ∼ p̃(xt|y1:t) and {X i

t+1|t+1}Ni=1 ∼ p̃(xt+1|y1:t+1) are the N pairs of

resampled i.i.d. samples from p̃(xt|y1:t) and p̃(xt+1|y1:t+1), respectively. See (Gopaluni,

2008; Schön et al., 2011) for further details.

Remark 8.5.14. Uniform convergence in time of (8.40) has been established by (Moral,

2004; Chopin, 2004). Although these results rely on strong mixing assumptions of Model

8.3.1, uniform convergence has been observed in numerical studies for a wide class of

models, where the mixing assumptions are not satisfied.
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Remark 8.5.15. The SMC method in Algorithm 10 provides a procedure to generate

samples from p(xt|y1:t). Based on this one can argue that any non-linear filter can as well

be used in place of the method in Algorithm 10. In (Lei et al., 2011), the authors used EKF

and UKF to approximate p(xt|y1:t). Limitations of EKF and UKF based approximations

are discussed in Section 8.2. Note that since the PCRLB computation is off-line, use

of Algorithm 10 or any advanced SMC methods (e.g., ASIR (Pitt and Shephard, 1999),

resample-move algorithm (Gilks and Berzuini, 2002), block sampling strategy (Doucet et

al., 2006)) would deliver a numerically more efficient estimate of p(xt|y1:t). Compared to

thefilters we are interested in monitoring (e.g., EKF, UKF, EnKF), advanced SMC methods

are computationally intensive, and are rarely used for on-line estimation.

Substituting (8.40) into (8.37) yields

q̃(dxt:t+1|y1:t+1) =
1

N2

N∑

j=1

N∑

i=1

δXi
t|t,X

j
t+1|t+1

(dxt:t+1), (8.41)

where q̃(dxt:t+1|y1:t+1) is an N2-particle SMC approximation of the ISF distribution

q(dxt:t+1|y1:t+1) and {X i
t|t; X

j
t+1|t+1}

N,N
i=1,j=1 ∼ q̃(xt:t+1|y1:t+1) are particles from the ISF.

Lemma 8.5.16. An SMC approximation of the target distribution p(dxt:t+1|y1:t+1) can be

computed using the SMC approximation of q(dxt:t+1|y1:t+1) given in (8.41), such that

p̃(dxt:t+1|y1:t+1) =
N∑

i=1

W i
t|t,t+1|t+1δXi

t|t,X
i
t+1|t+1

(dxt:t+1), (8.42)

where:

W i
t|t,t+1|t+1 ,

ζ it|t,t+1|t+1∑N
j=1 ζ

j
t|t,t+1|t+1

; (8.43a)

ζ it|t,t+1|t+1 ,
p(X i

t+1|t+1|X i
t|t)

N
∑N

m=1 p(X
i
t+1|t+1|Xm

t|t)
; (8.43b)

and p̃(dxt:t+1|y1:t+1) is an SMC approximation of the target distribution p(dxt:t+1|y1:t+1).

Proof. See (Tulsyan et al., 2013a; Tulsyan et al., 2012) for a detailed proof.
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As in (8.38), the distribution of the weights in (8.43a) becomes skewed after a few

time instances. To avoid this, particles in (8.42) are resampled according to the following

equality

Pr(X i
t:t+1|t+1 = {X i

t|t; X
i
t+1|t+1}) = W i

t|t,t+1|t+1, (8.44)

where {X i
t:t+1|t+1}Ni=1 ∼ p̃(xt:t+1|y1:t+1) are the N resampled particles. With resampling,

(8.42) can be represented as

p̃(dxt:t+1|y1:t+1) =
1

N

N∑

i=1

δXi
t:t+1|t+1

(dxt:t+1). (8.45)

As discussed in Remark 8.5.5, the integrals in (8.29e) through (8.29g), with respect to the

pdf p(y1:t+1) can be approximated using a perfect MC sampling method, such that

p̃(dy1:t+1) =
1

M

M∑

j=1

δY j1:t+1
(dy1:t+1), (8.46)

where p̃(dy1:t+1) is an MC approximation of p(dy1:t+1), and M is the total number of

i.i.d. measurement sequences obtained from the historical test-data.

Remark 8.5.17. The approximation in (8.46) is possible only under Assumption 8.3.4.

In general, the marginalized likelihood function p(y1:t+1) does not have a closed form

solution, and approximating it using numerical methods is non-trivial (Kantas et al., 2009).

An SMC approximation of (8.9) is given in the next lemma.

Lemma 8.5.18. Let {Y1:t = yj1:t}Mj=1 be M ∈ N i.i.d. measurement sequences generated

from Model 8.3.1, satisfying Assumptions 8.3.4 through 8.3.7, then the matrices (8.9a)
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through (8.9c) in Lemma 8.4.2 can be recursively approximated as follows:

D̃11
t =− 1

MN

M∑

j=1

N∑

i=1

[∆Xt
Xt

log p(X i,j
t+1|t+1|X

i,j
t|t+1)]; (8.47a)

D̃12
t =− 1

MN

M∑

j=1

N∑

i=1

[∆
Xt+1

Xt
log p(X i,j

t+1|t+1|X
i,j
t|t+1)]; (8.47b)

D̃22
t =− 1

MN

M∑

j=1

N∑

i=1

[∆
Xt+1

Xt+1
log p(X i,j

t+1|t+1|X
i,j
t|t+1) + ∆

Xt+1

Xt+1
log p(Y j

t+1|X i,j
t+1|t+1)];

(8.47c)

and {X i,j
t:t+1|t+1}Ni=1 ∼ p(xt:t+1|yj1:t+1) is a set of N resampled particles from (8.45) for all

{Y1:t+1 = yj1:t+1}Mj=1.

Proof. See (Tulsyan et al., 2013a; Tulsyan et al., 2012) for a detailed proof.

Now substituting (8.47) into (8.8) yields

J̃t+1 = D̃22
t − [D̃12

t ]T (J̃t + D̃11
t )−1D̃12

t , (8.48)

where J̃t+1 is an SMC approximation of Jt+1. Applying the matrix inversion lemma (Horn

and Johnson, 1985) in (8.48) yields

J̃−1
t+1 = [D̃22

t ]−1 − [D̃22
t ]−1[D̃12

t ]T
[
D̃12
t [D̃22

t ]−1[D̃12
t ]T − (J̃t + D̃11

t )
]−1

D̃12
t [D̃22

t ]−1,

(8.49)

where J̃−1
t+1 is an SMC approximation of J−1

t+1. Finally, (8.49) gives an SMC based solution

to compute the theoretical PCRLB in (8.6). Note that the numerical solution in (8.49) is

general, and is valid for stochastic processes described by Model 8.3.1.

Lemma 8.5.19. Let {Y1:t = yj1:t}Mj=1 be M ∈ N i.i.d. measurement sequences generated

from Model 8.3.2, satisfying Assumptions 8.3.4 through 8.3.7, then the matrices (8.9a)
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through (8.9c) in Lemma 8.4.2 can be recursively approximated as follows:

D̃11
t =

1

MN

M∑

j=1

N∑

i=1

[∇Xtf
T
t (X i,j

t|t+1)]Q−1
t [∇Xtft(X

i,j
t|t+1)]; (8.50a)

D̃12
t =

1

MN

M∑

j=1

N∑

i=1

−[∇Xtf
T
t (X i,j

t|t+1)]Q−1
t ; (8.50b)

D̃22
t =Q−1

t +
1

MN

M∑

j=1

N∑

i=1

[∇Xt+1g
T
t+1(X i,j

t+1|t)]R
−1
t+1[∇Xt+1g

T
t+1(X i,j

t+1|t)]; (8.50c)

and {X i,j
t|t+1}Ni=1 ∼ p(xt|yj1:t+1) and {X i,j

t+1|t}Ni=1 ∼ p(xt+1|yj1:t) are sets of N resampled

particles from (8.45) and Algorithm 10, respectively, for all {Y1:t+1 = yj1:t+1}Mj=1.

Proof. See (Tulsyan et al., 2013a) for the detailed proof of this result.

An SMC based approximation of the MSE is discussed next.

8.5.2.2 SMC based MSE approximation

An SMC based approximation of the MSE representation in (8.30) and (8.15) is discussed

in this section. Note that to evaluate the inner expectation in (8.30), a set of random particles

from p(x0:t|y1:t) are required. Use of an SMC method to generate random particles from

p(x0:t|y1:t) is ineffective, as it suffers from the path degeneracy problem (see Theorem

8.5.6). To allow an effective use of SMC methods, (8.30) can be written as

Pt|t = Ep(Y1:t)Ep(Xt|Y1:t)[(Xt − X̂t|t)(Xt − X̂t|t)
T ]. (8.51)

In (8.51), since the integrand is independent of (x0:t−1) ∈ X t, it is marginalized out of the

integral. Now since the inner expectation in (8.51) is with respect to the density p(xt|y1:t),

an SMC method can be readily used (see Theorem 8.5.8). Substituting resampled particles

from (8.40a) into (8.51) yields an estimate of the MSE, denoted by P̃t|t, such that

P̃t|t = Ep(Y1:t)

[
1

N

N∑

i=1

(X i
t|t − X̂t|t)(X

i
t|t − X̂t|t)

T

]
, (8.52)
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where {X i
t|t}Ni=1 ∼ p(xt|y1:t) is a set of random particles. Note that the state estimate X̂t|t

being a function of Y1:t alone does not have any running index. Now to evaluate (8.52) with

respect to p(dy1:t), substituting (8.46) into (8.52) yields

P̃t|t =
1

MN

M∑

j=1

N∑

i=1

(X i,j
t|t − X̂

j
t|t)(X

i,j
t|t − X̂

j
t|t)

T , (8.53)

where {X i,j
t|t }

N,M
i=1,j=1 and {X̂j

t|t}Mj=1 are computed using (8.40a) and a non-linear filter,

respectively. SMC methods can also be used to approximate the MSE representation

in (8.15). To do this, note that the true conditional posterior mean and covariance of

Xt|(Y1:t = y1:t) ∼ p(xt|y1:t) (see Theorem 8.4.16) need to be approximated first. The next

lemma discusses an SMC based approximation of the required moments.

Lemma 8.5.20. Let X?
t|t and V ?

t|t be the conditional mean and covariance of Xt|(Y1:t =

y1:t) ∼ p(xt|y1:t), then using SMC methods, the two moments can be approximated as

X̃?
t|t =

1

N

N∑

i=1

X i
t|t, (8.54a)

Ṽ ?
t|t =

1

N

N∑

i=1

(X i
t|t − X̃?

t|t)(X
i
t|t − X̃?

t|t)
T , (8.54b)

where X̃?
t|t and Ṽ ?

t|t are the SMC estimates of X?
t|t and V ?

t|t, respectively, and {X i
t|t}Ni=1 ∼

p(xt|y1:t) is a set of N resampled particles generated using (8.40a).

Proof. Substituting (8.40a) into the definition of X?
t|t yields X̃?

t|t =
∫
X xtp̃(dxt|y1:t) =

1
N

∑N
i=1 X

i
t|t, and substituting (8.40a) and X̃?

t|t into the definition of V ?
t|t yields Ṽ ?

t|t =
∫
X (xt − x̃?t|t)(xt − x̃?t|t)T p̃(dxt|y1:t) = 1

N

∑N
i=1(X i

t|t − X̃?
t|t)(X

i
t|t − X̃?

t|t)
T .

Corollary 8.5.21. Let B?j
Xt|t

and B?j
Vt|t

be the conditional bias in estimating the mean and

covariance of Xt|(Y1:t = yj1:t) ∼ p(xt|yj1:t), then an SMC estimate of the MSE in (8.15) is

P̃t|t =
1

M

M∑

j=1

V̂ j
t|t +

1

M

M∑

j=1

B̃?j
Vt|t

+
1

M

M∑

j=1

B̃?j
Xt|t

[B̃?j
Xt|t

]T , (8.55)

where B̃?j
Xt|t

= [X̃?j
t|t − X̂

j
t|t] and B̃?j

Vt|t
= [Ṽ ?j

t|t − V̂
j
t|t] are an SMC estimate of the

conditional bias in estimating the true conditional mean and covariance, respectively.
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Proof. Substituting (8.54), (8.46) into (8.15) yields (8.55).

Remark 8.5.22. The SMC estimate of the MSE in (8.55) can also be computed starting

from (8.53). As in Theorem 8.4.16, adding and subtracting X̃?j
t|t in (8.53), and following the

steps and arguments presented in Theorem 8.4.16, (8.55) can be obtained.

8.5.2.3 SMC based assessment, diagnosis and filter switching

The SMC based approximation of the measure in Definition 8.4.8 can be computed using

the SMC based PCRLB and MSEcomputed in Sections 8.5.2.1 and 8.5.2.2, respectively.

This is done by substituting (8.49) and (8.53) into (8.12), such that

Φ̃t = J̃−1
t ◦ P̃ ◦−1

t|t , (8.56)

where Φ̃t is an SMC based performance measure at t ∈ N. Similarly, an SMC based non-

linear filter diagnosis can be performed by replacing the true bias terms and true MSE in

Theorem 8.4.25 with their SMC estimates given in Corollary 8.5.21.

Remark 8.5.23. Satisfying B̃?
Vt|t

= 0 almost surely and B̃?
Xt|t

= 0 almost surely may not be

possible in practice. For practical purposes, the diagnosis results in Theorem 8.4.25 can

be selected based on |B̃?
Vt|t
| 4 ε1 and |B̃?

Xt|t
| ≤ ε2, where ε1 ∈ Sn+ and ε2 ∈ Rn

+ are the

user defined threshold values.

Finally, substituting (8.56) into (8.24), an SMC based filter switching strategy can be

represented as follows

i?t = arg max
i∈F

Tr[Φ̃i
t]. (8.57)

SMC based PCRLB inequality algorithm is discussed next.

8.5.3 Final algorithm

Algorithms 11 and 12 give the procedure for computing the SMC based PCRLB inequality

for Models 8.3.1 and 8.3.2, respectively, while Algorithm 14 outlines a procedure
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to perform SMC based performance assessment, diagnosis, and non-linear state filter

selection.

Remark 8.5.24. M measurement sequences {Y1:T = yj1:T}Mj=1 required by Algorithms 11

and 12 are obtained from historical data; however, in simulations, it can be generated by

simulating the process model, M times starting at i.i.d. initial states drawn from p(x0).

Note that this procedure also requires simulation of the true states; however, is not used in

any form to develop the SMC based PCRLB inequality approximation procedure discussed

in Algorithms 11 and 12.

For illustrative purposes, to assess the numerical quality of Algorithms 11 and 12, the

following two measures are defined

ΛJ =
1

T

T∑

t=1

Tr
[
[J−1
t − J̃−1

t ] ◦ [J−1
t ]◦−1

]
, (8.58a)

ΛP =
1

T

T∑

t=1

Tr
[
[Pt|t − P̃t|t] ◦ [P ◦−1

t|t ]
]
, (8.58b)

where ΛJ and ΛP are the average sum of relative errors in approximating the PCRLB and

MSE, respectively.

8.5.4 Convergence

Computing the PCRLB inequality involves solving complex integrals; however, as stated

earlier, for Models 8.3.1 and 8.3.2 the PCRLB and MSE cannot be solved in closed form.

Algorithms 11 and 12 gives a N particle and M simulation based SMC approximation of

the PCRLB and MSE for Models 8.3.1 and 8.3.2, respectively. It is therefore natural to

question the convergence properties of the proposed numerical method. In this regard,

results such as Theorem 8.5.8 and Remark 8.5.14 are important as it ensures that the

proposed numerical solution does not result in accumulation of errors. It is emphasized

that although Theorem 8.5.8 and Remark 8.5.14 not necessarily imply convergence of the
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Algorithm 11 SMC based PCRLB and MSE approximation for Model 8.3.1
Module 1: SMC based PCRLB approximation for Model 8.3.1

Input: Given Model 8.3.1, satisfying Assumptions 8.3.4 through 8.3.7, assume a prior
pdf on X0, such that X0 ∼ p(x0). Also, select algorithm parameters- T , N and M .
Output: SMC approximation of the PCRLB for Model 8.3.1.

1: Generate and store M i.i.d. sequences {Y j
1:T}Mj=1 ∼ p(y1:T ) of length T, by simulating

Model 8.3.1, M times starting at M i.i.d. initial states {X i
0|−1}Mj=1 ∼ p(x0).

2: for j = 1 to M do
3: for t = 1 to T do
4: Store resampled particles {X i,j

t|t }Ni=1 ∼ p(xt|yj1:t) using (8.40a).
5: Store resampled particles {X i,j

t−1:t|t}Ni=1 ∼ p(xt−1:t|yj1:t) using (8.45).
6: Store the true conditional mean X̃?j

t|t using (8.54a).
7: Store the true conditional covariance Ṽ ?j

t|t using (8.54b).
8: end for
9: end for

10: Compute PFIM J0 at t = 0 based on the initial target state pdf X0 ∼ p(x0). If
X0 ∼ N (x0|Cx0 , P0|0) then from Lemma 8.4.2, J0 = P−1

0|0 .
11: for t = 0 to T − 1 do
12: Compute an SMC estimate (8.47a) through (8.47c) in Lemma 8.5.18.
13: Compute PCRLB J̃−1

t+1 by substituting (8.47a) through (8.47c) into (8.49).
14: end for

Module 2: SMC based MSE approximation for Model 8.3.1
Input: A non-linear filter for state estimation in Model 8.3.1.
Output: SMC approximation of the MSE for the non-linear filter.

15: for j = 1 to M do
16: for t = 1 to T do
17: Store the conditional mean estimate X̂j

t|t.

18: Store the conditional covariance estimate V̂ j
t|t.

19: Store the bias in conditional mean estimate B̃?j
Xt|t

.

20: Store the bias in conditional covariance estimate B̃?j
Vt|t

.
21: end for
22: end for
23: Compute MSE P0|0 at t = 0 based on the initial target state pdf X0 ∼ p(x0). If

X0 ∼ N (x0|Cx0 , P0|0) then P0|0 is the covariance of X0.
24: for t = 1 to T do
25: Compute MSE estimate P̃t|t using (8.53).
26: end for

approximate PCRLB and MSE to its theoretical values, nevertheless, it provides a strong

theoretical basis for the numerous approximations used in Algorithms 11 and 12.
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Algorithm 12 SMC based PCRLB and MSE approximation for Model 8.3.2
Module 1: SMC based PCRLB approximation for Model 8.3.2

Input: Given Model 8.3.2, satisfying Assumptions 8.3.4 through 8.3.7, assume a prior
pdf on X0, such that X0 ∼ p(x0). Also, select algorithm parameters- T , N and M .
Output: SMC approximation of the PCRLB for Model 8.3.2.

1: Generate and store M i.i.d. sequences {Y j
1:T}Mj=1 ∼ p(y1:T ) of length T, by simulating

Model 8.3.1, M times starting at M i.i.d. initial states {X i
0|−1}Mj=1 ∼ p(x0).

2: for j = 1 to M do
3: for t = 1 to T do
4: Store predicted particles {X i,j

t|t−1}Ni=1 ∼ p(xt|yj1:t−1) using Algorithm 10.
5: Store resampled particles {X i,j

t|t }Ni=1 ∼ p(xt|yj1:t) using (8.40a).
6: Store resampled particles {X i,j

t−1:t|t}Ni=1 ∼ p(xt−1:t|yj1:t) using (8.45).
7: Store the true conditional mean X̃?j

t|t using (8.54a).
8: Store the true conditional covariance Ṽ ?j

t|t using (8.54b).
9: end for

10: end for
11: Compute PFIM J0 at t = 0 based on the initial target state pdf X0 ∼ p(x0). If

X0 ∼ N (x0|Cx0 , P0|0) then from Lemma 8.4.2, J0 = P−1
0|0 .

12: for t = 0 to T − 1 do
13: Compute an SMC estimate (8.50a) through (8.50c) in Result 8.5.19.
14: Compute PCRLB J̃−1

t+1 by substituting (8.50a) through (8.50c) into (8.49).
15: end for

Module 2: SMC based MSE approximation for Model 8.3.2
Input: A non-linear filter for state estimation in Model 8.3.2.
Output: SMC approximation of the MSE for the non-linear filter.

16: for j = 1 to M do
17: for t = 1 to T do
18: Store the conditional mean estimate X̂j

t|t.

19: Store the conditional covariance estimate V̂ j
t|t.

20: Store the bias in conditional mean estimate B̃?j
Xt|t

.

21: Store the bias in conditional covariance estimate B̃?j
Vt|t

.
22: end for
23: end for
24: Compute MSE P0|0 at t = 0 based on the initial target state pdf X0 ∼ p(x0). If

X0 ∼ N (x0|Cx0 , P0|0) then P0|0 is the covariance of X0.
25: for t = 1 to T do
26: Compute MSE estimate P̃t|t using (8.53).
27: end for
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Algorithm 13 SMC based performance assessment, diagnosis and non-linear filter
selection

Input: Given Model 8.3.1 or 8.3.2, satisfying Assumptions 8.3.4 through 8.3.7,
assume a prior X0 ∼ p(x0). Select an operating trajectory, and a bank with F =
{1, 2, . . . , F} non-linear state filters. Also, select algorithm parameters- T , N and M .
Output: An optimal non-linear state estimation strategy for Model 8.3.1 or 8.3.2.

Module 1: Performance assessment of non-linear state filters
1: for t = 1 to T do
2: Compute J̃t using Module 1 of Algorithms 11 or 12.
3: end for
4: for i = 1 to F do
5: for t = 1 to T do
6: Compute P̃t|t for filter i ∈ F using Module 2 of Algorithms 11 or 12.
7: Compute Φ̃t for filter i ∈ F using (8.56).
8: end for
9: end for

Module 2: Performance diagnosis and redesign of non-linear state filters
10: while (performance is unsatisfactory) do
11: for i = 1 to F do
12: for t = 1 to T do
13: for j = 1 to M do
14: Compute B̃?j

Xt|t
and B̃?j

Vt|t
for filter i ∈ F using Corollary 8.5.21.

15: end for
16: Use Theorem 8.4.25 to perform non-linear filter diagnosis.
17: end for
18: end for
19: Redesign non-linear filters and update the filter bank B.
20: for i = 1 to F do
21: for t = 1 to T do
22: Compute P̃t|t for filter i ∈ F using Module 2 of Algorithms 11 or 12.
23: Compute Φ̃t for filter i ∈ F using (8.56).
24: end for
25: end for
26: end while

Module 3: Non-linear filtering strategy for state estimation
27: for t = 1 to T do
28: Compute the non-linear filter switching strategy using (8.57).
29: end for

From an application perspective, it is instructive to highlight that the numerical quality

of the SMC based PCRLB inequality in Algorithms 11 and 12 can be made accurate by
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simply increasing the number of particles (N ) and the MC simulations (M ). The choice

of N and M are user defined, which can be selected based on the required numerical

accuracy, and available computing speed. It is important to emphasize that due to the

multiple approximations involved in deriving a tractable solution, for practical purposes,

with a finite N and M , the condition P̃t|t− J̃−1
t < 0 is not guaranteed to hold for all t ∈ N.

8.6 Numerical illustration

In this section, we present a simulation example to demonstrate the utility of the PCRLB

inequality based filter assessment and diagnosis tools in devising an optimal filtering

strategy for state estimation in non-linear systems. Consider a process described by a

discrete-time, uni-variate, and non-stationary SSM (Tulsyan et al., 2013b)

Xt+1 =
Xt

2
+

Xt

1 +X2
t

ut + 8 cos(1.2t) + Vt, (8.59a)

Yt =
X2
t

20
+Wt, (8.59b)

where: Vt ∈ R and Wt ∈ R are mutually independent sequences of independent random

variables following a Gaussian distribution, such that Vt ∼ N (vt|0, Qt) and Wt ∼

N (wt|0, Rt); X0 is the initial state, which follows an independent Gaussian distribution,

such that X0 ∼ N (x0|0, 0.5); and ut ∈ R is the scheduling variable, such that ut ∈ U ∀t ∈

[0, T ], where U = {0, 25, 35} and T = 19 seconds.

Remark 8.6.1. In general, as long as a process variable exerts significant influence on

the process dynamics, it can be treated as a scheduling variable. In (8.59) ut controls

the degree of non-linearity in the state process. Note that for large values of ut, the state

dynamics in (8.59a) is highly non-linear.

Remark 8.6.2. In unit operations, scheduling variables help in operating the process in

a certain orderly way, which is normally referred to as the operating trajectory (Xu et
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Algorithm 14 SMC based performance assessment, diagnosis and non-linear filter
selection

Input: Given Model 8.3.1 or 8.3.2, satisfying Assumptions 8.3.4 through 8.3.7,
assume a prior X0 ∼ p(x0). Select an operating trajectory, and a bank B with F non-
linear state filters. Also, select algorithm parameters- T , N and M .
Output: State estimation strategy for Model 8.3.1 or 8.3.2.

Module 1: Performance assessment
1: for t = 1 to T do
2: Compute J̃t using Algorithms 11 or 12.
3: end for
4: for i = 1 to F do
5: for t = 1 to T do
6: Compute P̃t|t for i ∈ F using Algorithms 11 or 12.
7: Compute Φ̃i

t for i ∈ F using (8.56).
8: end for
9: end for

Module 2: Performance diagnosis and redesign
10: while (performance is unsatisfactory) do
11: for i = 1 to F do
12: for t = 1 to T do
13: for j = 1 to M do
14: Compute B̃?j

Xt|t
and B̃?j

Vt|t
using Corollary 8.5.21.

15: end for
16: Use Theorem 8.4.25 to perform diagnosis.
17: end for
18: end for
19: Redesign filters and update bank B.
20: for i = 1 to F do
21: for t = 1 to T do
22: Compute P̃t|t for i ∈ F using Algorithms 11 or 12.
23: Compute Φ̃t for i ∈ F using (8.56).
24: end for
25: end for
26: end while

Module 3: Filtering strategy for state estimation
27: for t = 1 to T do
28: Compute filter switching map using (8.57).
29: end for

al., 2009). The operating trajectory is composed of several pre-designed operating points,

through which different production objectives can be met. Examples for the operating
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Table 8.1: Average sum of relative errors in approximating the PCRLB for a range of
operating conditions and noise variances.

Case Process noise Measurement noise Average sum of relative errors (ΛJ )
Qt Rt ut = 0 ut = 25 ut = 35

∀t ∈ [0, T ] ∀t ∈ [0, T ] ∀t ∈ [0, T ] ∀t ∈ [0, T ] ∀t ∈ [0, T ]

1 0.1 0.1 4.0× 10−3 1.9× 10−2 1.2× 10−2

2 0.1 1.0 6.5× 10−4 3.6× 10−3 2.9× 10−3

3 1.0 0.1 2.9× 10−2 7.9× 10−2 5.3× 10−2

4 1.0 1.0 1.3× 10−2 4.2× 10−2 3.4× 10−2

points, include: different loads of a power plant; and steam quality in a boiler.

The aim of this study is three fold: (i) to evaluate the efficiency of the SMC based

PCRLB constructed for (8.59); (ii) to evaluate the efficiency of the SMC method in

approximating the MSE for a non-linear filter used in estimating the states in (8.59); and

(iii) to demonstrate the utility of the PCRLB inequality based performance assessment and

diagnosis tool in devising an optimal filter switching strategy for state estimation in (8.59).

8.6.1 Experiment 1: SMC based PCRLB approximation

In this experiment we: (i) evaluate the efficiency of the proposed SMC method in

approximating the PCRLB computed for (8.59); (ii) study the quality of the SMC based

PCRLB for a range of operating trajectories and noise variances; and (iii) assess the

sensitivity of SMC approximations to the number of MC simulations (M ) and particles (N )

used. Note that, since (8.59) has the same structure as Model 8.3.2, the true and SMC based

PCRLB for (8.59) can be computed using Result 8.5.2 and Algorithm 12, respectively. To

compute the PCRLB, we first simulate (8.59) to generate an ensemble of the true state and

measurement sequences of size M = 200, starting at M i.i.d. initial states drawn from

X0 ∼ N (x0|0, 0.5). An ensemble of true states is required for computing the true PCRLB

(see Remark 8.5.24). To allow full investigation of the SMC based PCRLB, wide range of

operating trajectories and noise variances are considered (see Table 8.1).

Figure 8.3 gives the results for ut = 25 ∀t ∈ [0, T ]. Figures 8.3(a) and (b) compare
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Figure 8.3: (a) and (b) compare the SMC based PCRLB against the true PCRLB for Cases
1 and 4, respectively. Here (a) and (b) are computed based on N = 2000 and M = 200. (c)
juxtaposes the SMC based PCRLBs obtained in (a) and (b) for comparison. (d) compares
the true PCRLB for Case 1 against the SMC based PCRLBs obtained with different N and
M values. Here (d) has been appropriately scaled up to illustrate the effects ofN andM on
the SMC based PCRLB. The results are all based on (8.59) operating at ut = 25 ∀t ∈ [0, T ].

the SMC based PCRLB against the true PCRLB for Cases 1 and 4, respectively. The

approximate PCRLB solution in Figure 8.3(a) accurately follows the true PCRLB. Even

for the increased noise variance case (see Figure 8.3(b)), the SMC based PCRLB is almost

exact at all sampling-time instants. The approximate PCRLBs for Cases 1 and 4 are

compared in Figure 8.3(c). In Figure 8.3(c), the PCRLB for Case 4 is higher than that for

Case 1, suggesting estimation difficulties with larger noise intensity. Note that this claim

is further validated in Section 8.6.2. In Figure 8.3(d), the approximate PCRLB bounds

for Case 1, with different values of N and M are compared against the true PCRLB. The

results are obtained by varying N and M in Algorithm 12. Figure 8.3(d), suggests that by
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Table 8.2: Average sum of relative errors in approximating the MSE for a range of operating
conditions and noise variances.

Case Process noise Measurement noise Average sum of relative errors (ΛP )
Qt Rt ut = 0 ut = 25 ut = 35

∀t ∈ [0, T ] ∀t ∈ [0, T ] ∀t ∈ [0, T ] ∀t ∈ [0, T ] ∀t ∈ [0, T ]

1 0.1 0.1 5.4× 10−2 4.3× 10−2 2.0× 10−2

2 0.1 1.0 3.8× 10−2 5.5× 10−2 2.3× 10−2

3 1.0 0.1 2.6× 10−2 5.9× 10−2 2.9× 10−2

4 1.0 1.0 4.6× 10−2 10× 10−2 3.8× 10−2

simply increasing N and M , which are a tuning parameters in Algorithm 12, the quality of

the SMC approximations can be significantly improved. Similar conclusions were drawn

for other operating trajectories.

Table 8.1 summarizes the results of this section in term of the average sum of relative

errors ΛJ (see (8.58a)). Based on Table 8.1, the ΛJ values for Cases 1 and 2 closely

compare across all operating conditions; whereas, for Cases 3 and 4, the ΛJ values are

relatively higher, but comparable and bounded. Note that the order of magnitude of ΛJ

is approximately 10−3, which demonstrates the numerical reliability of the SMC based

PCRLB for a range of operating trajectories and noise variances.

8.6.2 Experiment 2: SMC based MSE approximation

The aim of this study is same as Section 8.6.1, except we focus on approximating the MSE

of a non-linear filter. For illustrative purposes, we consider an EKF for state estimation

in (8.59). Using the data from Section 8.6.1, the true and SMC based MSE are computed

using Result 8.5.1 and Algorithm 12, respectively.

Figure 8.4 gives the results for ut = 25 ∀t ∈ [0, T ]. Figure 8.4(a) and (b) compare the

SMC based MSE against the true MSE for Cases 1 and 4, respectively. The approximate

MSEs of Cases 1 and 4 accurately follow the true MSEs at all filtering time instants. In

Figure 8.4(c), relatively higher MSE for Case 4, especially in the intervals t ∈ [9, 14] and

t ∈ [17, 18] validates the claim made in Section 8.6.1 about estimation difficulties at higher
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Figure 8.4: (a) and (b) compare the SMC based MSE against the true MSE for Cases 1
and 4, respectively. Here (a) and (b) are computed based on N = 2000 and M = 200.
(c) juxtaposes the SMC based MSEs obtained in (a) and (b) for comparison. (d) compares
the true MSE for Case 1 against the SMC based MSEs obtained with different N and M
values. Here (d) has been appropriately scaled up to illustrate the effects of N and M on
the SMC based MSE. Note that all the MSEs are for the EKF, and are based on (8.59)
operating at ut = 25 ∀t ∈ [0, T ].

noise intensities. Figure 8.4(d) shows improvement in the approximations with increase in

N and M . Comparing Figures 8.3(d) and 8.4(d) suggest that the quality of the SMC based

MSE is relatively more sensitive to the choice of N and M .

Table 8.2 summarizes the result of this section in terms of the average sum of relative

errors ΛP (see (8.58b)). The ΛP values for Cases 1 though 4 across all operating conditions

are of the order 10−2. A close comparison of ΛJ and ΛP in Tables 8.1 and 8.2, respectively,

can be explained, since the same particle set is used for approximating the PCRLB and the

MSE (see Algorithm 12). Repeating the experiment with other non-linear filters, such as
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UKF, SIR and ASIR yielded similar conclusions.

In summary, the results in Sections 8.6.1 and 8.6.2: (i) suggest that for (8.59), the SMC

method is accurate in approximating the true PCRLB inequality for a range of operating

trajectories and process and measurement noise variances; and (ii) highlight the importance

of carefully tuning N and M for an overall improvement in the quality of the SMC

approximations.

8.6.3 Experiment 3: Optimal non-linear filter switching strategy

In this section, we demonstrate the utility of PCRLB inequality based assessment and

diagnosis tool in devising an optimal filter switching strategy for state estimation in (8.59).

A step-by-step procedure outlined in Algorithm 14 or Figure 8.2 is presented next.

8.6.3.1 Step 1: Selecting an operating trajectory

As discussed in Section 8.4.4, devising an optimal filter switching strategy for a process

requires a priori knowledge of the process operating conditions. The aim of this step is to

define an operating trajectory for (8.59), such that ut ∈ U , where U = {0, 25, 35} and

t ∈ [0, T ]. Figure 8.5(a) shows a randomly generated operating trajectory, and Figures

8.5(b) and (c) give an ensemble of i.i.d. measurement sequences generated therefrom.

Here, Figure 8.5(b) is the training set, which will be used for assessment, diagnosis and

for devising a filter switching strategy; whereas, Figure 8.5(c) is the validation set, which

will be used evaluating the quality of the developed filtering strategy. Note that for the

operating trajectory given in Figure 8.5(a), (8.59a) is linear in state for t ∈ [0, 9] and non-

linear for t ∈ [11, 19].

Remark 8.6.3. Transition from one operating point to another is a common phenomenon

in batch processes; wherein, the product grade decides the process dynamics.
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Figure 8.5: (a) shows a randomly generated operation profile for ut ∀t ∈ [0, T ], such
that ut ∈ U , where U = {0, 25, 35}. (b) and (c) are independently generated
M = 200 measurement sequences, obtained by simulating the model in (8.59) starting
at M i.i.d. initial states drawn from X0 ∼ N (x0|0, 0.05) using the operating trajectory in
(a). Here, the noise variances are selected as Qt = Rt = 0.1 ∀t ∈ [0, T ]. Note that (b) and
(c) are the training and validation set, respectively.

8.6.3.2 Step 2: Bank of non-linear filters

The second step in devising an optimal filter switching strategy for the operating trajectory

in Figure 8.5(a) is to select a bank of non-linear filters (see Figure 8.2). To illustrate this

step, we consider a bank B with four non-linear filters- EKF, UKF, SIR and ASIR. Here,

the EKF and UKF are the standard Kalman based filters; whereas, the SIR and ASIR are

the SMC based filters using an ensemble of 50 particles and a systematic resampling step.

Note that for the sake of brevity, the pseudo-codes for the filters are not provided here, but

can be found in any standard textbook. See (Ristic et al., 2004) for example. All the non-

linear filters in the bank B are initialized withX0 ∼ N (x0|0, 0.5), Vt ∼ N (vt|0, Qt = 0.1),
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Figure 8.6: The SMC based performance assessment measure, Φ̃t ∀t ∈ [0, T ] computed
for the filter bank. Here Φ̃t is computed using (8.56). Appropriate magnification of the key
regions of the main figure are provided as insets. The broken red horizontal lines are the
upper and lower bound for Φ̃t ∀t ∈ [0, T ].

and Wt ∼ N (wt|0, Rt = 0.1). This allows for a fair assessment of the filters, and ensure

there is no process-model mismatch (see Assumption 8.3.4). For all the filters, the state

estimate X̂t|t ∀t ∈ [0, T ] is the conditional mean of the approximate posterior density.

8.6.3.3 Step 3: Filter performance assessment

In this step we assess the performance of the non-linear filters, using the PCRLB inequality

based assessment measure developed in Section 8.4.1. Using the ensemble of the

measurement sequences from Step 1 (see Figure 8.5(b)), we compute the SMC based

PCRLB and the SMC based MSE for all the filters. This step uses a similar procedure

as in Sections 8.6.1 and 8.6.2. Figure 8.6 gives the SMC based assessment measure Φ̃t for

the filters, computed using Module 1 of Algorithm 14.
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Remark 8.6.4. In Section 8.5.3, it was pointed that due to multiple approximations

involved in deriving an SMC based PCRLB inequality, with a finite N , the positive semi

definite condition on P̃t|t− J̃−1
t is not guaranteed to hold for all t ∈ [0, T ]; however, in this

numerical simulation, since Φ̃t ∀t ∈ [0, T ] values for all the filters are in between 0 and 1

(See Figure 8.6), we can conclude that P̃t|t − J̃−1
t < 0 ∀t ∈ [0, T ] for all the filters.

Comparing Φ̃t ∀t ∈ [0, T ] values in Figure 8.6, it is evident that the EKF, UKF and SIR

maintain a high performance over the interval t ∈ [0, 11], but plummets on t ∈ [12, 19];

whereas, the ASIR shows a relatively lower performance on the interval t ∈ [0, 14], but

improves over t ∈ [15, 19]. Note that on the interval t ∈ [0, 9] (see Figure 8.6), the EKF

and UKF outperforms each other at multiple sampling-time points. An instance of this can

be seen in the insets (a) and (b) provided in Figure 8.6. Finally, insets (c) in Figure 8.6

shows the low, but competitive performance of all the filters on the interval t ∈ [12, 15].

In summary, the results of Step 3: (i) establish the numerical reliability of the SMC

based PCRLB inequality under multiple operating points; (ii) reaffirm the popular belief

that filters perform well in the regions of the state-space, where the dynamics is either linear

or can be efficiently linearised; and (ii) highlight the sensitivity of filter performance to the

process dynamics, filter approximation and process conditions.

8.6.3.4 Step 4: Filter performance diagnosis

The diagnosis and filter redesign steps in Figure 8.2 are optional; wherein, the decision to

perform them is based on the assessment results. From Figure 8.6, it is evident that none

of the filters in the bank are efficient, i.e., Φ̃t 6= 1 ∀t ∈ [0, T ] (see Definition 8.4.10).

Moreover, low Φ̃t values in the interval t ∈ [12, 19] suggest huge scope for improvement.

Note that since performance in the interval t ∈ [0, 9] is satisfactory, we only focus on

t ∈ [10, 19]. To perform filter diagnosis, we compute the conditional bias in the mean and

variance for all the filters (see Theorem 8.4.25). This is done using Module 2 of Algorithm

14.
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Figure 8.7: SMC estimate of the conditional bias in the mean computed for the non-linear
filters in the filter bank. The results are based on M = 200 simulations and the color
bar denotes the concentration (in %) of the bias values. The axis has been rescaled to the
operating region of interest.

Figures 8.7 and 8.8 give an SMC estimate of the conditional bias in mean and variance

for all the filters. From Figures 8.7 and 8.8 it is evident that the conditional bias in mean

and variance are non-zero almost surely. This explains why the performance of all the

filters in the interval t ∈ [10, 19] drop (see Figure 8.6). In fact, other than SIR filter, the

conditional bias in mean and variance for EKF, UKF and ASIR blow-up in the interval

t ∈ [11, 14]. This suggest that compared to other filters in the bank, the true posterior

density approximation with respect to the first two moment is relatively better with SIR

filter.

Figure 8.9 gives SMC estimate of the unconditional bias in mean and variance for the

filters in the interval t ∈ [10, 19]. From Figure 8.9 it is clear that unconditional bias in

mean and variance for all the filters are also non-zero. It is instructive to highlight that on
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Figure 8.8: SMC estimate of the conditional bias in the variance computed for the non-
linear filters in the filter bank. The results are based on M = 200 simulations and the color
bar denotes the concentration (in %) of the bias values. The axis has been rescaled to the
operating region of interest.

the interval t ∈ [11, 14], unconditional bias in mean for SIR filter is the least; whereas, on

t ∈ [14, 19], ASIR has the lowest unconditional bias in mean (see Figure 8.9(a)). Figure

8.9 suggest that on an average sense, compared to the EKF; UKF better approximates the

mean of the true posterior, but yields a poor estimate of the posterior variance. Also,

in comparison with the Kalman based filters; SMC based filters yield relatively better

estimates of the mean and variance.

In summary, since the conditional and unconditional bias in mean and variance are non-

zero in the interval t ∈ [10, 19], diagnosis results in Theorem 8.4.25(d) applies: (i) the filters

are not efficient; (ii) yield biased estimates of mean and variance; and (iii) filters fail to yield

an MMSE estimate. Moreover, relatively large values of conditional and unconditional

bias in mean and variance in the interval t ∈ [11, 14] suggest serious problems with filter
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Figure 8.9: (a) compares SMC estimate of unconditional bias in the mean for the non-linear
filters in the filter bank. (b) compares SMC estimate of unconditional bias in variance for
the non-linear filters in the filter bank. Note that the minimum values in (a) for EKF, UKF,
SIR and ASIR are: −1.11; −2.03; −0.42; and −0.25, respectively; whereas, the minimum
values in (b) are: 1.2× 10−2; −56.2; −4.1× 10−3; and 1.9× 10−2, respectively.

performance in that interval.

Remark 8.6.5. Note that for illustration purposes, the diagnosis result is based on filter

satisfying the strict conditions on the bias in Theorem 8.4.25; however, for all practical

purposes, the diagnosis should be performed as in Remark 8.5.23.

8.6.3.5 Step 5: Filter redesign and performance assessment

From Step 4, it is clear that there is a huge scope for improving the performance of

non-linear filters. Now to achieve an overall improvement in the filtering performance,

we can either re-start the assessment procedure with a bank of new filters and hope the

performance to improve, or more formally, improve the design of the existing filters. For
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Figure 8.10: The SMC based performance assessment measure, Φ̃t ∀t ∈ [0, T ] computed
for the bank with redesigned filters. Appropriate magnification of the key regions of the
main figure are provided as insets. The broken red horizontal lines are the upper and lower
bound for Φ̃t ∀t ∈ [0, T ].

the latter option, the assessment and diagnosis results, such as Figures 8.6 through 8.9

provide a means to improve the filter design. Note that designing filters with specific

properties is non-trivial (see Remark 8.4.34), and is not included in the scope of this work.

Nevertheless, for illustration purposes, we present results with simple design changes to

the filters selected in Step 2.

Note that the standard EKF and UKF in the bank do not have any filter tuning parameters;

however, for the SIR and ASIR, we can change the particle size and the resampling

strategy. Considering the on-line implementability issues with SMC based filters (see

Remark 8.5.15), we consider three options for the particle size- 50, 500, and 1000, and four

options for the resampling strategy- systematic, stratified, residual, and multinomial. Using



Sec. 8.6 Numerical illustration 268

the procedure in Step 3, the performance of the SIR and ASIR are assessed for different

combinations of the particle size and resampling strategy. Of the 12 possible combinations,

the SIR with 1000 particles and multinomial resampling, and ASIR with 1000 particles and

residual resampling were found to have the highest performance in terms of Φ̃t ∀t ∈ [0, T ]

values. Identifying the redesigned SIR and ASIR with R-SIR and R-ASIR, respectively,

the bank of redesigned non-linear filters, include: EKF; UKF; R-SIR; and R-ASIR.

Figure 8.10 gives the Φ̃t ∀t ∈ [0, T ] values for the bank of redesigned non-linear filters.

Comparing Figure 8.6 with Figure 8.10, the improvement with the R-SIR and R-ASIR over

the interval t ∈ [12, 19] is evident. Although the performance of the R-ASIR on t ∈ [0, 11]

is still low (compared to Figure 8.6); the performance of the R-SIR increases significantly.

Note that on the interval t ∈ [0, 11] the EKF, UKF and R-SIR outperforms each other

multiple times (see the insets in Figure 8.10).

In summary, the results of Step 5 illustrates the use of the filter assessment and diagnosis

results in designing filters with better performance. Note that Steps 3 through 5 can be

iterated, until the user defined performance requirements are met.

8.6.3.6 Step 6: Filter switching strategy and state estimation

In this step we: (i) design and evaluate the quality of the optimal filter switching strategy

for state estimation in (8.59) under the operating trajectory in Figure 8.5(a); and (ii)

demonstrate the performance benefits with Steps 4 and 5.

Non-linear filter switching strategy is devised using Module 3 of Algorithm 14. Figure

8.11(a) gives the switching strategy for the bank with filters- EKF, UKF, SIR and ASIR

(see Step 2); whereas, Figure 8.11(b) gives the strategy for the bank with filters- EKF,

UKF, R-SIR and R-ASIR (see Step 5). Here, Figures 8.11(a) and (b) are constructed using

the Φ̃t ∀t ∈ [0, T ] values computed previously in Figures 8.6 and 8.10, respectively. It

is important to highlight that the strategies in Figures 8.11(a) and (b) are both optimal,

with respect to the choice of the filter bank (see Theorem 8.4.31). Finally, to evaluate the
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Figure 8.11: (a) the optimal filter switching map without the filter diagnosis and redesign
step. (b) the optimal filter switching map with the filter diagnosis and redesign step.

efficiency of the developed strategies, we perform state estimation in (8.59), according to

Figures 8.11(a) and (b). For comparison purposes, we also consider use of EKF, UKF, SIR

and ASIR as a single-filter-use strategy. Table 8.3 compares six different strategies in terms

of their total MSE, i.e.,
∑T

t=1 P̃t|t. Here, the total MSEs for the two sets are computed using

Result 8.5.1.

From Table 8.3, it is clear that compared to the single-filter-use strategy, the filter

switching strategy yields smaller total MSE for training and validation sets. In summary,

the results of this step: (i) illustrates that for non-linear systems, the filter switching strategy

is the optimal state estimation strategy; (ii) highlight the importance of performing filter

diagnosis and redesign steps before devising the filter switching map.
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Table 8.3: Total MSE in estimating the states of (8.59) with different filtering strategies
using the training and validation data sets.

Measurement set Filtering strategy
UKF EKF SIR ASIR Figure 8.11(a) Figure 8.11(b)

Training (Figure8.5(b)) 356.24 396.43 73.31 129.79 43.52 28.60
Validation (Figure8.5(c)) 405.28 355.77 65.31 161.05 56.37 28.53

8.7 Conclusions

In this chapter we propose the use of a PCRLB inequality as a performance benchmark for

non-linear state filters. Using PCRLB inequality, an assessment measure is developed to

monitor and evaluate the MSE performance of multiple non-linear state filters. A diagnosis

procedure based on second-order filter error decomposition is also developed to improve

non-linear filtering performance. Using the assessment and diagnosis tool, a minimum

MSE non-linear filter switching strategy is proposed for state estimation in general non-

linear SSMs. According to the proposed strategy, at each sampling-time, the performance

of a pre-determined bank of Kalman and SMC based non-linear filters is first assessed using

the PCRLB based measure, and then the filter with highest performance measure is selected

for delivering the state estimate. The complex, multi-dimensional integrals involved in the

computation of the PCRLB inequality and the tools developed therefrom are approximated

using SMC methods. The utility and efficiency of the SMC based filter assessment and

diagnosis tool in devising an optimal filter switching strategy was illustrated on an example.

The current work assumes the model parameters to be known a priori; however, for

certain applications, this assumption might be a little restrictive. Future work will focus on

extending the results of this work to handle such situations.
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Chapter 9

Concluding remarks

In this chapter, the conclusions drawn from the results and analyses presented in Chapters

2 through 8 are summarized. Discussions on some future directions are also presented.

9.1 Conclusions

This thesis considers the use of Bayesian methods for state inference and identification

of non-linear dynamical systems represented by discrete-time, stochastic non-linear state-

space models (SSMs). The basic idea behind the simultaneous on-line state inference

and identification method in Chapter 2 is augmentation of the model parameters with the

process states. This approach is called the artificial dynamics approach (ADA). The ADA

is an on-line Bayesian approach, which allows to cast the Bayesian identification problem

as a state inference problem. The ADA is one of the most important and popular class

of on-line Bayesian identification method for discrete-time, stochastic non-linear SSMs.

Although the idea of state-parameter augmentation is certainly not new, there are several

long standing drawbacks of ADA: (a) the dynamics of the parameters are related to the

width of the kernel and the variance of the artificial noise, which are often difficult to

fine tune; and (b) transforming the problem by adding artificial noise modifies the original

problem, so that it becomes hard to quantify the bias introduced in the resulting parameter

estimates. In this thesis, an attempt to solve the aforementioned problems associated with

278
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ADA has been made.

To address the first problem, in Chapter 2, an adaptive sequential-importance-resampling

(Ad-SIR) filter for ADA based on-line state inference and identification of general

non-linear SSMs with non-Gaussian state and measurement noise is presented. The

usual variance inflation problem introduced by adding artificial parameter dynamics is

corrected, using a kernel smoothing algorithm. An optimal tuning rule for the kernel

smoothing parameter is presented under an on-line optimization framework. The usual

degeneracy issues with sequential-importance-resampling filter under different process-to-

measurement noise ratios are also avoided through the kernel smoothing process based

on Kullback-Leibler divergence. The proposed Ad-SIR method is an ‘optimization-free’

estimator, making it efficient and computationally fast. This is a major advantage over

the traditional maximum-likelihood based methods. The extension of Ad-SIR method to

handle missing measurements in real-time is also presented in Chapter 2.

For the second problem, a posterior Cramér-Rao lower bound (PCRLB) based approach

is proposed in Chapter 4 for error analysis in ADA. The proposed tool has wide

applicability, as it can be used to perform error analysis for an entire class of on-line

Bayesian identification methods and for a general class of non-linear systems represented

by discrete-time, stochastic non-linear SSMs. Using the PCRLB based analysis tool, in

Chapter 4, it is illustrated how the quality of the parameter estimates obtained with Ad-SIR

filter can be assessed in terms of bias, mean square error (MSE) and efficiency.

Another important problem considered in this thesis is that of optimal selection of on-

line Bayesian identification methods. Considering the large number of on-line Bayesian

identification methods available at our disposal, it is often in our interest to select the right

identification method for our system. A PCRLB inequality based tool for performance

assessment of on-line Bayesian identification methods is developed in Chapter 3. Based

on the developed measure, an average-optimal and optimal minimum (MMSE) strategy
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for state inference in non-linear SSMs with non-Gaussian noise and unknown model

parameters is proposed. An approach to monitoring the quality of the the state estimates

obtained under unknown model parameters is also provided. The utility of the tools is

illustrated on a ballistic target tracking system with unknown ballistic coefficient.

In this thesis, the input design problem for on-line Bayesian identification of stochastic

non-linear SSM is also considered. An input design procedure based on minimization of

the PCRLB with respect to inputs is developed in Chapter 5. This development is critical

since to the best of authors’ knowledge, no known Bayesian input design methods are

available for a class of general stochastic non-linear SSMs. One of the distinct advantages

of the proposed method is that the designed input is independent of the on-line Bayesian

method used for identification. Simulation results in Chapter 5 suggest that the method can

be used to deliver accurate inference on the parameter estimates.

The problem of prior design is considered in Chapter 6. This study is performed in

the context of organization of a priori information amassed from previous experiments to

design informed future experiments. Different prior designs relating to organization and

use of available information are discussed from a theoretical viewpoint. Development of

these prior designs arises based on the need to project a priori parameter information onto

the constrained space for achieving efficient integration of available process information

with the input design algorithm. Results in Chapter 6 suggest superior identification

capabilities of Bayesian methods with appropriate prior design.

Besides the above developments, in Chapter 7, a numerical method to recursively

approximate the PCRLB for general discrete-time, non-linear SSMs is proposed. The

presented method is effective in approximating the PCRLB, when the true states are hidden

or unavailable. This has practical relevance in situations wherein the test-data consist

of only sensor readings. The proposed approach makes use of the sensor readings to

estimate the hidden true states, using a sequential Monte Carlo (SMC) method. The
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method is general and can be used to compute the lower bound on the MSE for non-linear

dynamical systems, with non-Gaussian state and sensor noise. The quality and utility of the

SMC based PCRLB approximation was validated on two simulation examples, including

a practical problem for ballistic target tracking at re-entry phase. The numerical quality of

the SMC based PCRLB approximation was analysed for a range of target state and sensor

noise variances, and with different number of particles. The proposed method exhibited

acceptable and consistent performance in all the simulations. Increasing the number of

particles was found to be effective in reducing the errors in the PCRLB estimates. Strategies

to improve the quality of SMC estimates were also discussed.

In Chapter 8, the use of a PCRLB inequality as a performance benchmark for non-linear

state filters is proposed. Using PCRLB inequality, an assessment measure is developed

to monitor and evaluate the MSE performance of multiple non-linear state filters. A

diagnosis procedure based on second-order filter error decomposition is also developed

to improve the non-linear filtering performance. Using this assessment and diagnosis tool,

a minimum MSE non-linear filter switching strategy is proposed for state estimation in

general non-linear SSMs. According to the proposed strategy, at each sampling-time,

the performance of a pre-determined bank of Kalman and SMC based non-linear filters

is first assessed using the PCRLB based measure and then, the filter with the highest

performance measure is selected for delivering the state estimate. The complex integrals

involved in the computation of the PCRLB inequality and the tools developed therefrom

are approximated using SMC methods. The utility and efficiency of the SMC based filter

assessment and diagnosis tool in devising an optimal filter switching strategy was illustrated

with an example.

To summarize, in this thesis, an attempt to develop a unified framework for state

inferencing (see Figure 9.1) and Bayesian identification (see Figure 9.2) of general discrete-

time, stochastic non-linear SSMs has been made. According to Figure 9.1, given a SSM
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Given a system

Figure 9.2: A unified framework for Bayesian identification of non-linear systems.

representation of a non-linear system, the first step to develop efficient state inferencing

method is to perform observability analysis. This step helps determine whether it is

theoretically possible to design state inferencing methods for the given system. Once it

is determined that inferencing is possible, use of different state filters can be investigated

along with assessment of their individual filtering performance. If required, error analysis

of filters can be performed to diagnose and improve their filtering performance. After error

analysis, the best filtering method for state inferencing can be selected for a given system.

Similarly, for Bayesian identification of non-linear systems, a unified approach, as given

in Figure 9.2, can be adopted. Given an SSM representation of a non-linear system

and some a priori process and parameter information, prior density for the parameters

can be designed. This can be followed by estimability analysis, to determine whether

it is theoretically possible to identify the model parameters for the given prior design

and SSM representation. If the model parameters are estimable, optimal input design

and performance assessment of different identification methods can be performed. If
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needed, error analysis on the identification methods can also be performed to improve their

performance. Finally, based on the assessment and analyses results, an optimal method can

be selected, which would allow identification of the given system.

To fully realize the benefits of the proposed unified framework for state inferencing and

Bayesian identification of general discrete-time, stochastic non-linear SSMs, much work

remains to be done, which is discussed in the next section.

9.2 Future work

Throughout this thesis a range of different problems surfaced, which require further

attention. The most notable being the observability and estimability analysis for stochastic

non-linear systems. Working on these two topics would complete the unified framework

illustrated in Figures 9.1 and 9.2. Note that observability and estimability analyses for

stochastic non-linear systems are not only the important links, which are currently missing

in this thesis, but are also, in general, two notoriously difficult unsolved problems in non-

linear estimation theory. Currently, a detailed research on these two topics is being worked

out, and because of the premature results, it has not been included in the thesis.

The simultaneous state inferencing and identification method discussed in Chapter 2 can

be improved in several ways. First, the method used to solve the optimization problem in

Proposition 2.5.8 can be improved. Currently, simple non-linear programming methods are

used to solve it, but due to the non-convex objective function, the use of effective stochastic

optimization methods may be expected to yield superior results. Convergence proof for the

proposed Ad-SIR filter is currently missing, but can be a significant future addition.

The PCRLB based error analysis method developed in this thesis for state inferencing

and Bayesian identification methods is based on comparing the first two moments of the

approximate posterior density with the true posterior density. Now since a non-Gaussian

posterior density requires an infinite number of moments for its exact representation, clearly
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developing the analysis based on only the first two moments is certainly not sufficient. The

same arguments also hold for the PCRLB based performance assessment and selection

tools developed in this thesis. A possible future direction to expand this work would be to

investigate entropy based performance assessment, diagnosis and filter selection.

The prior design strategy presented in this thesis is only valid for non-linear SSMs, with

zero state noise. This is because all the prior designs developed in Chapter 6 (i.e., circular,

truncated and directional prior design), assume the posterior density to be Gaussian. This

assumption may be restrictive or impractical for systems modeled by general stochastic

non-linear SSMs wherein, the posterior density is generally non-Gaussian. Furthermore,

the prior design strategy considered in this thesis is valid only for off-line Bayesian

identification method. A possible direction for future work in this topic could be the

extension of the proposed prior design methods for general stochastic non-linear SSMs

and for on-line Bayesian identification methods. These extensions will help explore how

effective prior can be designed for ADA and other on-line Bayesian identification methods.

An SMC based PCRLB approximation in Chapter 7 assumes the model parameters

to be known a priori; however, for certain applications, this assumption might be a

little restrictive. Future work will focus on extending these results to handle PCRLB

approximation in situations, where parameters are unknown. Furthermore, use of the SMC

method in approximating the modified versions of the PCRLB, which allows inferencing

in applications, such as target generated measurements, measurement origin uncertainty,

cluttered environments, and Markovian models, will also be a useful future addition.

The results in Chapter 5 appear promising; however, solving the optimization problem

is non-trivial. Despite several levels of relaxation and parametrization of the input space,

the optimization in (5.25) is a stochastic programming problem, as a result (5.25a) tends

to be non-smooth, and has many local minima. Development of stochastic gradient-based

optimization methods will definitely help design improved inputs for our system.
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Finally, the tools developed in this thesis have only been tested on simple non-linear

systems, with the exception of the ballistic target tracking system and the Baker’s yeast

fermenter example considered in Chapters 3 and 7, and Chapter 6, respectively. It would

be interesting to study and analyse scalability issues with these methods. Another future

extension would be practical approaches for validation of the unified framework for the

state inference and identification proposed in Figures 9.1 and 9.2, respectively. Currently,

validation of each of the steps in Figures 9.1 and 9.2 is done separately, but to demonstrate

the true potential of the proposed work, all of the steps in Figures 9.1 and 9.2 need to be

validated and studied as an integrated framework.
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