Judging a Commit by Its Cover

Correlating commit message entropy with build status on Travis-Cl

Eddie Antonio Santos
Department of Computing Science
University of Alberta
Edmonton, Canada
easantos@ualberta.ca

ABSTRACT

Developers summarize their changes to code in commit mes-
sages. When a message seems “unusual”, however, this puts
doubt into the quality of the code contained in the commit.
We trained n-gram language models and used cross-entropy
as an indicator of commit message “unusualness” of over
120,000 commits from open source projects. Build statuses
collected from Travis-CI were used as a proxy for code qual-
ity. We then compared the distributions of failed and suc-
cessful commits with regards to the “unusualness” of their
commit message. Our analysis yielded significant results
when correlating cross-entropy with build status.

CCS Concepts

e Software and its engineering — Software config-
uration management and version control systems;
Software version control; Open source model;

Keywords

commit message, github, travis-ci, cross entropy, n-gram
language model, build status, open source

1. INTRODUCTION

Commit messages are summaries written by developers
describing the changes they have made during the devel-
opment process. Our experience working within the open
source community has given the impression that developers
tend to use a fairly limited vocabulary and restricted struc-
ture when writing commit messages. Alali et al. [1] provide
empirical evidence for this observation reporting that over
36% of all commit messages contained the word “fix” and
over 18% contained the word “add”. Thus, developers may
regard short, terse, and to-the-point messages such as “Add
test for visibility modifiers” to be usual when browsing the
commit log of a code repository.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and /or a fee. Request per-
missions from permissions@acm.org.

MSR’16, May 14-15 2016, Austin, TX, USA

© 2016 Copyright held by the owner/author(s). Publication rights
licensed to ACM. ISBN 978-1-4503-4186-8/16/05...$15.00

DOL http://dx.doi.org/10.1145/2901739.2903493

Abram Hindle
Department of Computing Science
University of Alberta

. Edmonton, Canada
hindle1@ualberta.ca

When a developer reads an unusual commit message that
defies their expectations, such as “Cargo-cult maven”, they
may ask themselves a number of questions. “Why did they
write ‘cargo cult maven’?” “What changes prompted this
cryptic commit message?” “Should I trust the code behind
this commit message?” Such unusual messages may induce
suspicion; a developer reading this message may question
the commit’s quality.

Should developers trust their instinct? This paper seeks to
answer the question: Are unusual commits hiding bad code?
We break this down into the following research questions:

RQ1: How can we measure unusualness of a commit?

RQ2: Is the unusualness of a commit message related to
the quality of the code committed?

2. METHODOLOGY

In natural language processing, n-gram language models
are used to answer questions about frequency, surprise, and
unusualness. We use the cross-entropy of a commit mes-
sage with respect to a language model in order to quantify
its unusualness. To determine the quality of a commit, we
use its build status as provided by Travis-CL' a continu-
ous integration service popular among open source projects.
The build status of any commit can then be evaluated with
respect to the unusualness of its message as measured by
cross-entropy.

To ensure that the commits indeed come from software
development projects, we employed a number of strategies
described in Section 2.1. We describe how commit quality
is determined using data from Travis-CI in Section 2.2. In
Section 2.3, we describe how each commit message was to-
kenized so that they could be used as input for the n-gram
language models. Finally, in Section 2.4, we describe how
the tokenized commit messages were used to train language
models, and how these language models were used to calcu-
late each commit’s unusualness via cross-entropy.

2.1 How were commits chosen?

To obtain commit messages applicable for this study, we
used Boa [2] to query the September 2015 GitHub dataset.
The Boa query and its results are available online.> This
query used the following criterion to establish if a given
project was to be considered in the study.

1. Boa must have parsed abstract syntax trees of the
projects. As of this writing, Boa only parses Java code,

"https://travis-ci.org/
http://boa.cs.iastate.edu/boa/?q=boa/job/public/30188

meaning that only projects that contained parsable Ja-
va code were obtained. Thus, repositories that are un-
likely to be used for software development are pruned.

2. The project must have more than 200 abstract syntax
tree nodes. This filters out stub projects.

3. The project must have more than 6 commits, to avoid
personal and other stub projects, following the rec-
ommendations given in “The Promises and Perils of
Mining GitHub” [6].

4. Finally, the project must have a file named .travis-
.yml, indicating that project uses Travis-CI to track
per-commit build status.

From each project that passed the above criteria, commits
were chosen only if the commit had an associated Travis-CI
status (described in Section 2.2), and if it was not a merge.
Merge commits were excluded due to their messages being
automatically generated by Git by default. Auto-generated
merge commits are identifiable by their message starting
with “Merge branch”, “Merge pull request”, or “Merge re-
mote.” The message text was used to detect merge commits
since commit parent information is not available in Boa.
Were this data available, merges would be detectable if the
commit has more than one parent.

After filtering, 120,822 commits from 2,679 projects fit the
criteria described above and were used in our analysis.

2.2 Establishing commit quality: Travis-CI

To establish the quality of a commit, we mined Travis-
CI. Travis-Cl.org is an online continuous integration service
that is free for use by open source projects. When a commit
is pushed to any branch on GitHub—be it the main branch,
a derivative branch, or a pull request—Travis-CI will clone,
build, and test that project’s commit in a clean virtual ma-
chine or Linux container. The install phases sets up the
machine by installing the project’s dependencies, and pop-
ulates test databases, if any. The script phase follows, in
which the project is built (compiled) and its test suites are
run. A Travis-CI build may result in one of these statuses:>

errored An error occurred in the install phase. For exam-
ple, a Java project using the Maven build system? may
error due to a mis-configured pom.xml file.

failed An error occurred in the script phase. This usually
means the project either failed to build or was success-
fully built, but failed its test suite.

passed The project built successfully and passed its tests.

A build may also be manually cancelled by a developer,
but such commits were omitted from our analysis.

2.3 Tokenization

We used n-gram language models which use tokens as in-
put. A token is an indivisible unit of meaning that makes up
a message. The process of tokenization transforms a series
of characters into a series of tokens which can then be used
with a language model. To avoid undue surprise, tokens fed
to the language model must accurately represent the notion
of “unusualness” defined in this paper. Thus, we performed
the following steps to tokenize each commit message.’

3https://docs.travis-ci.com /user/customizing-the-build/
#Breaking-the-Build

*https://maven.apache.org/
Shttps://github.com/eddieantonio/judging-commits/blob/
msr2016/tokenize__commit.py#L425

NFC Normalized Updating Manifest.txt. Related to
752283 (#495)
updating manifest.txt. related to
752283 (#495).

Split updating | manifest.txt || related |
f75a283
updating FILE-PATTERN related

E [rT-sHA | [1SSUE-NUMBER |

Lower-cased

Substitutions

Table 1: Each step of the tokenization process

Substitution Meaning Examples

ISSUE-NUMBER | GitHub Issue numbers® |22, #34|

FILE-PATTERN Filenames and globs db.c|, | **/*.jpg

METHOD-NAME | Method names build__indexes()

d670460

VERSION-NUMBER | Version numbers’

GIT-SHA SHA1 commit hashes

Table 2: Examples of semantic substitutions

1. First, the message text is normalized using Unicode
Normalization Form C to ensure character sequences
that “look the same” are compared equal.

2. The message text is transformed into lower-case.

3. The text is then split on whitespace and separating
punctuation.

4. Tokens with similar meaning are substituted with gen-
eric tokens. Upon manually observing over 2500 com-
mit messages, a number of patterns were observed
in their text. For example, one commit would read
“Update README.md”; another would read “Update
pom.xml”. Such messages are not unusual, yet the
amount of individual variety may be immense, due to
the amount of different filenames possible. To capture
this and other regularities, tokens that were obviously
similar were substituted with a generic token such as

FILE-PATTERN | Many such semantic substitions were

defined and employed, as demonstrated in Table 2.

Table 1 shows the tokenization applied to the message,
“Updating Manifest.txt. Related to f75a283 (#495).”

2.4 Training the n-gram language model

For each project in the dataset, an n-gram language model
was trained on the commit messages of all other projects
in the dataset. This is called the “leave-one-out” method.
Excluding each project from its training set ensures that
commit messages from the current project are not already
“known” to the language model, thus biasing their “unusu-
alness” score. The order or n of the n-gram model was set to
three. n-gram models with an order of 3 are also known as
trigram models. A trigram model was chosen because pre-
dictive performance on English text does not significantly
improve for larger values of n [4].

The n-gram implementation used was MITLM [5], which
implements modified Kneser-Ney smoothing to interpolate

Shttps://help.github.com/articles/
autolinked-references-and-urls/#issues-and-pull-requests

"According to Semantic Versioning: http://semver.org/

1.00-

0.75-

0.50-

0.25-

0.00-

0 5 10 15
Cross—Entropy (bits)

Number of commit messages (commulative)

Figure 1: ECDF of the number of passed (in green),
failed (in purple), and errored (in orange) commits
as cross-entropy (“unusualness”) increases. Note
that failed, initially grows slower than passed and
errored; by 10 bits, however, failed is indistinguish-
able from passed and errored.

probabilities in the very likely case of data sparsity. With
Kneser-Ney smoothing, the model is not “infinitely surpris-
ed” when it encounters a trigram it has never seen before—a
trigram that is actually composed of one or more bigrams
(2-gram) or unigrams (a single token) that it has seen before.
Instead, Kneser-Ney smoothing interpolates the probability
with a penalty—that is, the model is surprised, but not too
surprised.

To quantify the “unusualness” of each commit message,
the text of each message is tokenized and evaluated using
MITLM to calculate the mean cross-entropy of the commit
message with respect to a language model trained on all
other projects. That is, the cross-entropy of each trigram
in a message is calculated with respect to the leave-one-out
language model and averaged to produce the cross-entropy
of the entire message. Intuitively, cross-entropy measures
how much information a distribution needs to explain an
observation. The higher the cross-entropy, the more difficult
it is for the model to explain a given observation. The
higher the cross-entropy a commit message has, the
more unusual it is.

3. RESULTS

Figure 2, left, is a histogram displaying the cross-entropies
of all 120,822 commits. The width of the bins in the his-
togram were chosen using the Freedman-Diaconis rule [3].
What is instantly notable from this histogram are the four
major “outlier” bins; in general, the distribution of cross-
entropies tends to follow a somewhat normal distribution;
however, these bins (quite literally) stick out.

Examining the messages in these bins revealed that, de-

spite the previous discipline in removing merge commits due
to their automatically generated commit messages, these au-
tomatic messages still crept in. For the exception of the
second largest bin, which contains the messages of the form
“Update ”, the messages in these outliers are
caused by tools which automatically make commits. Specif-
ically, the Maven release plug-in, and its clone, the Gra-
dle release plug-in both, of which generate messages of the
form, “[maven-release-plugin| prepare for next development
iteration”. The largest outlier bin was filled with 2880 mes-

sages of the form, “| PrRoJECT-1SSUE | Build version advanced
to | BUILD-VERSION |.” These commits were automatically

generated by a bot that modifies build configuration; most
of these commits had a build status of errored.

Lesson: Not all commit messages are written by hand;
even non-merge commits may be automatically generated.

We were curious about “very unusual” messages—those
belonging to the rightmost bins in Figure 2, left. Manual
inspection of these bins revealed that the majority of the
messages in the right-tail were not written in English. Since
most of the corpus is in English, the language models would
report commits in other languages as very unusual indeed;
additionally, this would affect our distribution and hypoth-
esis, since, if a message is usual in its respective language,
it would skew the results of unusual English commits.

Lesson: commit messages on GitHub cannot be assumed
to be written in English.

To determine if the cross-entropies of passed, failed, and
errored commits had different distributions, we calculated
the pairwise comparisons using the Wilcoxon rank sum test.
Letting o = 0.01, we obtained a significant p-value near zero
for all comparisons of passed vs. failed, passed vs. errored,
and errored vs. failed, meaning that the cross-entropy dis-
tributions differed depending on build status.

However, we were suspicious of the effects of the outlier
bins; note that the tallest bin visually seems to have a dis-
proportionate amount of errored results. Thus, we repeated
the pairwise Wilcoxon rank sum test with all five outlier bins
removed. Only passed vs. failed and passed vs. errored dis-
tributions resulted as significantly different with a p-values
near zero and 0.0021, respectively. Errored vs. failed, were
not significantly different (p = 0.2518). This means that the
cross-entropy distributions of passed vs. “broken” (either er-
rored or failed) may be different. Still, since the bins were
merely removed from the significance tests after the mod-
els had already been trained, the cross-entropies analyzed
in these tests are still affected by commit messages in the
outlier bins.

Given the significant effect of outliers and the fact that
the tail had commits in languages other than English, it
became obvious that the leave-one-out methodology must
be recalculated without such confounding factors.

We curated a list of auto-generated commits, and omitted
such commits when constructing the new corpus. To filter
for English-language commits, we used langid.py [7] to es-
timate the probability that a whole project’s commits are
in English. We found that in some cases, langid.py would
misclassified English commit messages (often as German or
Dutch). Hence, we assisted it by manually verifying over 100
projects, letting langid.py handle the rest. The resultant
corpus contained 108,989 commits from 2,529 projects.

The results are in Figure 2, right. One outlier remains,
which (as in the previous histogram) is filled with messages

3 3
> 4000 - > 4000 -
I I
()] ()]
(%3] (%3]
() ()
£ 3000- £ 3000-
£ £
e e
S 2000 - S 2000 -
(&) (&)
S S
2 1000- 2 1000-
e e
Z Z
0- 0-
0 5 10 15

Cross—Entropy (bits)

Build Status
Errored
Failed

Passed

4 8 12 16
Cross—Entropy (bits)

Figure 2: Histograms of commit message cross-entropies. Note the tall bins (left), which contain a large
number of auto-generated commit messages that were not foreseen when training this model. We recalculated
the histogram (right), removing auto-generated commits, as well as many non-English commit messages.

of the form “Update ”. A portion of these

may be auto-generated, however we deemed these messages
as plausibly hand-written; we did not discard them. Pair-
wise Wilcoxon rank sum test was retried and we found that
passed vs. failed are still different distributions with a p-
value near zero; similarly, failed vs. errored are different with
a p-value of 0.0015. Given a p-value of 0.7527, we fail to re-
ject passed vs. errored as different distributions. Strikingly,
we plotted the empirical cumulative distribution function
(ECDF) of passed, errored, and failed as seen in Figure 1.
We found that failed is different, for lower values of cross-
entropy. Additionally, it steadily closes the gap between
itself and passed and errored. This means that failure rate
is lower given a more usual commit, and gradually increases.
Calculating Pearson’s product-moment linear correlation co-
efficient yields a 99% confidence interval of (0.007,0.468).
Since zero is not in the interval (zero would indicate no cor-
relation) we conclude that build failure and “unusualness”
may be positively correlated—but only marginally.

4. DISCUSSION

Does this mean that developers can use commit messages
to predict build failure? Can we cancel our continuous in-
tegration subscriptions? In short, no.

Though the results are statistically significant, we con-
clude that they are not practically helpful for the average de-
veloper. For example, which of the following commits failed
its status check? “added init.d test to travis config” (cross-
entropy = 5.08), or “I'm sloppy” (cross-entropy = 12.9)?
The latter has a far more unusual commit message than the
former, yet it passed its status check; the “usual” commit
failed. Thus, as a heuristic for estimating the probability of
build failure, commit messages are not very useful.

5. CONCLUSIONS

RQ1: How can the unusualness of a commit mes-

sage be measured? Using n-gram language models, one
is able to use cross-entropy as an analogue for unusual-

ness. Automatically-generated messages and non-English
commits become easy to spot out.

RQ2: Is the unusualness of a commit message re-
lated to the quality of the code committed? Despite
some evidence to suggest that the “unusualness” of a commit
message is positively correlated with build failure, the slope
is so gradual that it is infeasible for an average developer to
judge a commit by simply reading its log message.

6. REFERENCES

[1] A. Alali, H. Kagdi, and J. I. Maletic. What’s a typical
commit? A characterization of open source software
repositories. In 16th IEEE International Conference on
Program Comprehension, ICPC 2013, pages 182-191.

[2] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen.
Boa: A language and infrastructure for analyzing
ultra-large-scale software repositories. In 35th
International Conference on Software Engineering,
ICSE 2013, pages 422-431, May 2013.

[3] D. Freedman and P. Diaconis. On the histogram as a

density estimator: L 2 theory. 57(4):453-476.

A. Hindle, E. Barr, Z. Su, M. Gabel, and P. Devanbu.

On the naturalness of software. In 34th International

Conference on Software Engineering, ICSE 2012, pages

837-847.

[5] B.-J. P. Hsu and J. R. Glass. Iterative language model
estimation: efficient data structure & algorithms. In
INTERSPEECH, pages 841-844.

[6] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer,
D. M. German, and D. Damian. The promises and
perils of mining GitHub. In 11th Working Conference
on Mining Software Repositories, MSR 2014, pages
92-101. ACM.

[7] M. Lui and T. Baldwin. langid. py: An off-the-shelf
language identification tool. In Proceedings of the ACL
2012 system demonstrations, pages 25-30. Association
for Computational Linguistics.

4

