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Abstract

Deep learning has had much success on challenging problems with large datasets.

However, it struggles in cases with limited training data. Transfer learning represents

a class of approaches for transferring knowledge from large source datasets to smaller

target datasets. But many transfer learning approaches have constraints in terms of

dataset size and similarity of output features. In this thesis, we introduce Quality-

Diversity Transfer Learning (QDTL), a novel transfer learning approach based on

neuroevolution for dealing with very small dataset problems with distinct output

features. We demonstrate the success of QDTL on two medical prediction problems,

outperforming standard transfer learning baselines.
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Preface

This thesis presents an original work by Samridhi Vaid under the supervision of Dr.

Matthew Guzdial. This work may be restructured to get published under different

research venues in the near future.
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Those living in an age of crisis must become pioneers of a better age, striving to find

positive solutions and thereby turning the age into one of achievement.

-Arnold J. Toynbee
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Chapter 1

Introduction

Deep learning is currently used to address a wide variety of challenging problems.

A large dataset is one of the key prerequisites for modern deep learning techniques

to be effective [1]. As such, data limitations can serve as a major bottleneck to the

application of deep neural networks (DNNs). Moreover, this problem may be more

prevalent in the future, due to data pollution by large language models [2]. Regardless,

currently a number of domains are missing out on benefitting from DNNs because

they lack sufficient data. The medical domain, due to the costs and privacy concerns

around data gathering, is one such domain.

Currently, low-data machine learning models like linear and logistic regressions are

the most common models in the medical domain, despite their lower accuracy [3].

More complex techniques, like DNNs can be applied to low-data domains via transfer

learning. Transfer learning has been applied to low-data problems in the medical

domain [4, 5]. However, there are challenges associated with the application of transfer

learning. Differences in data collection and variance in the output feature space

between source and target domains can hinder the effectiveness of transfer learning

methods [6]. Additionally, transfer learning models are prone to overfitting, especially

when the target dataset is small, leading to poor generalization performance.

There exist transfer learning approaches like few-shot or zero-shot approaches to

solve the above problems. They rely on large source datasets and are not applicable

1



to our targeted tasks in the medical domain due to the limited dataset sizes and lack

of shared classes. To overcome these limitations and enable the application of DNNs

to more medical problems, we propose a novel transfer learning approach in this thesis

called Quality-Diversity Transfer Learning (QDTL).

QDTL combines neuroevolution, architecture search, and conceptual expansion.

Neuroevolution is a technique that applies evolutionary algorithms to optimize and

evolve neural network architectures. We utilize quality-diversity (QD) optimization,

which directly modifies the weights (parameters) of a DNN, enabling higher perfor-

mance for low-training data tasks. QD optimization considers both the quality and

diversity of solutions, which has the potential to mitigate overfitting. Architecture

search allows us to optimize neural network architecture for the task at hand.

Furthermore, we incorporate the conceptual expansion representation proposed

by Guzdial and Riedl [7], allowing us to describe the target model as a combination

of weights from a source model. This has been helpful in prior works to help with

low-data transfer learning [8, 9].

1.1 Research Questions and Related Contributions

In this thesis, we try to overcome the low data limitation problem for the medical

prediction task. To overcome this limitation, we attempt to answer the following

research questions:

1. Can we outperform standard logistic regression in medical prediction tasks with

our approach?

2. Can we outperform existing transfer learning methods by leveraging a search-

based transfer learning approach for predictive care in the medical domain?

3. Is Quality-Diversity the optimal choice among search-based optimization tech-

niques?
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The following are the contributions of this thesis:

1. A novel transfer learning approach to solve low-data problems via quality-

diversity-based neuroevolution: Quality-Diversity Transfer Learning (QDTL)

2. The application of QDTL to the task of predicting pre-term birth, with the

ability to predict births within 7 days, a massive improvement over the current

state of the art.

3. The application of QDTL to predict the survival days of patients undergoing

organ transplantation surpassing the finetuning approach traditionally applied

to transfer learning medical prediction problems.

1.2 Thesis Outline

This thesis is organized into four chapters, including the introduction. In Chapter 2,

the necessary background knowledge is presented to understand the concepts employed

in this thesis. Chapter 3 focuses on our proposed approach, Quality-Diversity Transfer

Learning (QDTL), and its application to two medical domain problems. The first

task involves predicting the gestational age of pregnant women to anticipate preterm

birth (PTB). The second task entails conducting a survival analysis of patients who

have undergone organ transplants and predicting the post-transplant survival time

until the final check-up. Detailed experiments and comparisons with baselines are

provided in this chapter, emphasizing the performance of QDTL in comparison to

different baselines. Finally, chapter 4 concludes the thesis by summarizing the findings,

discussing future work, and acknowledging the limitations encountered.
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Chapter 2

Background

This chapter serves as a resource providing information on various topics crucial for

readers to understand the content presented in this thesis. Sections 2.1, 2.2, 2.3,

and 2.4 provide a brief overview of Artificial Neural Networks, Recurrent Neural

Networks (RNNs), Long Short-Term Memory (LSTM) Recurrent Neural Networks,

and Bidirectional Long Short-Term Memory (BiLSTM) Recurrent Neural Networks.

LSTMs and BiLSTMs were employed as the primary models in this thesis.

Section 2.5 presents the concept of transfer learning, highlighting its significance

in our research as we introduce a novel transfer learning approach. Additionally, the

chapter covers combinational creativity, Conceptual Expansion based Monte Carlo

Tree Search (CE-MCTS), evolutionary search and architecture search forming the

foundation of our proposed approach known as Quality-Diversity Transfer Learning

(QDTL).

To showcase the effectiveness of our approach, we explore two application domains:

Preterm Birth (PTB) and Organ Transplant and we cover related work in these two

domains.

2.1 Artificial Neural Networks

Artificial neural networks (ANNs) are computational models loosely inspired by the

human brain. This section will delve into the fundamental concepts and principles
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underlying artificial neural networks, providing an understanding of their architecture,

learning algorithms, and applications. We have shown a simple ANN in Figure 2.1

input1

input2

output1

output2

Input
Layer

Hidden
Layer

Output
Layer

Figure 2.1: A Simple Artificial Neural Network

Artificial neurons, also known as perceptrons, form the fundamental units of an

artificial neural network. They are designed to mimic the behaviour of biological

neurons. Each artificial neuron receives inputs, applies weights to those inputs, and

produces an output using an activation function. The activation function determines

the neuron’s response based on the sum of weighted inputs as shown in Equation 2.1.

Y = Activationfunction(
∑︂

(weights ∗ input+ bias)) (2.1)

Activation functions introduce non-linear transformations to the weighted sum of

inputs in artificial neurons. Some common activation functions are the sigmoid

function, hyperbolic tangent function, and rectified linear unit (ReLU) [10]. The

choice of activation function depends on the specific problem and network architecture.

An artificial neural network consists of multiple interconnected layers of perceptrons.

The basic architecture is composed of an input layer, one or more hidden layers, and

an output layer. The input layer takes in features, which are then processed by the

hidden layers, and passed on to the final layer that computes the desired output.

Feedforward neural networks are a type of ANN in which information flows in only
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one direction, from the input layer to the output layer, without any loops. In the

training process, the network’s weights are updated to minimize the difference between

predicted outputs and actual outputs, which is known as loss. Backpropagation, a

widely employed algorithm for training neural networks, calculates the gradients which

is a partial derivative of the loss function with respect to the weights to minimize this

loss. Optimization algorithms like gradient descent are utilized to change the weights

of the network so as to minimize the loss.

Overfitting occurs when a neural network performs well on the training data but

not on the test data. Regularization techniques are employed to mitigate overfitting.

Common approaches include L1 and L2 regularization, which introduce penalties

for large weight magnitudes, and dropout, which randomly deactivates a fraction of

neurons during training. Using our approach proposed in Chapter 3, we try to solve

the overfitting problem for domains with low-data problems.

2.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a type of artificial neural network which

processes sequential data. Unlike traditional feedforward neural networks, which

process inputs independently, RNNs have a form of memory that enables them to

maintain an internal state or hidden representation. This hidden state is updated

recurrently as the network processes each input in the sequence, allowing the network

to retain information about the sequence’s context and dependencies. Figure 2.2 shows

a simple RNN architecture.

Traditional RNNs tend to have limited short-term memory, making it challenging

to capture long-range dependencies in sequences. The recurrent connections that carry

information over time may degrade or vanish over long sequences, resulting in the

network’s inability to effectively utilize past information.
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Figure 2.2: Simple Recurrent Neural Network (RNN) Diagram

2.3 Long Short-Term Memory

LSTMs were specifically designed to address the limitations of traditional RNNs

in capturing long-term dependencies in sequential data. LSTMs process long-term

dependencies because of their ability to selectively retain information.

We cover the LSTM components as we use LSTMs for both problem domains

discussed in Chapter 3. The cell state is regulated by three main components: the

input gate, the forget gate, and the output gate.

• Input Gate: The input gate decides which information is allowed in the cell

state. It takes the current input and the previous hidden state as input and

applies a sigmoid activation function to output a value between 0 and 1 for each

element in the cell state.

• Forget Gate: The forget gate decides which information to discard from the cell

state. It takes the current input and the previous hidden state as input and

applies a sigmoid activation function to output a value between 0 and 1 for each

element in the cell state.

• Output Gate: The output gate determines the amount of information to be

output from the cell state. It takes the current input and the previous hidden

state as input and applies a sigmoid activation function to output a value between

0 and 1 for each element in the cell state. It also applies a tanh activation
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function to squish the values between -1 and 1.

The LSTM cell combines the outputs of these gates to update the cell state and

produce the hidden state at each time step. The hidden state carries the processed

information from the input sequence and is used as the output of the LSTM layer or

as input for subsequent layers in the network.

LSTMs have proven to be effective in capturing and modelling long-term depen-

dencies in sequential data. Their ability to selectively retain or forget information

over time allows them to mitigate the vanishing and exploding gradient problems

commonly encountered in traditional RNNs. This enables LSTMs to excel in tasks

that involve processing sequences with complex dependencies.

2.4 Bidirectional Long Short-Term Memory

Bidirectional LSTM (BiLSTM) is an extension of the Long Short-Term Memory

(LSTM) network. BiLSTM process sequential data in both forward and backward di-

rections simultaneously. This allows them to have access to past and future information

at each time step.

BiLSTM has two separate LSTM layers. The forward LSTM layer processes the

input sequence from the beginning to the end, while the backward LSTM layer

processes it in the reverse direction. The use of BiLSTM is particularly beneficial in

tasks where the prediction at each time step depends not only on past observations

but also on future context [11]. We use BiLSTM in our approach where we had more

data to figure out large-range dependencies.

2.5 Transfer Learning

Transfer learning is an approach that adapts existing knowledge from one domain to

another. It involves transferring knowledge learned from a source domain to a target

domain. Transfer Learning approaches can be categorized into four types: instances-
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based, mapping-based, network-based, and adversarial-based [12]. Most of the prior

work in transfer learning makes use of the finetuning approach [13]. Finetuning is the

process in which a pre-trained model’s weights are further adjusted using a smaller,

task-specific dataset. In this thesis, we use the finetuned model as the base model for

our approach described in chapter 3.

Below are the key components and steps involved in transfer learning:

• Source Task and Pretrained Model: Transfer learning starts with a source task,

where a model is trained on a large dataset. The pretrained model, often a deep

neural network, learns to extract useful features and representations from the

source data.

• Target Task and Target Data: The target task is the task for which we want

to apply transfer learning. In most cases, the source and target tasks are from

different domains. It sometimes might be the case that the target task has

limited labelled data.

• Feature Transfer: In transfer learning, we transfer the features from the source

domain to the target domain. A common approach to do this is finetuning [13].

• Transfer Learning Evaluation: The performance of the transfer learning approach

is evaluated on the target task using appropriate metrics such as accuracy,

precision, recall, or F1 score. By leveraging the knowledge from the source task,

transfer learning aims to improve the performance of the model on the target

task, especially when the target data is limited.

We discuss transfer learning, as our approach described in Chapter 3 is a novel

transfer learning method to resolve the issue of data scarcity.
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2.6 Combinational Creativity

Combinational creativity, also known as combinatorial creativity, refers to the gen-

eration of novel ideas by combining existing concepts, elements, or components [14].

Combinational creativity (CE) has been used in previous work. Guzdial and Ried [7]

introduced an approach called conceptual expansion. In conceptual expansion, a

particular weight is represented as a combination of α and f. Representing a particular

weight in this manner allows us to discover combinations of weights [9]. Equation 2.2

represents CE, where the weights of the DNN model serve as the components that are

recombined:

CE(F, α) = α1 ∗ f1 + α2 ∗ f2 + ...+ αn ∗ fn (2.2)

Where W represents a weight in the final output model, F = f1, f2, ..., fn represents

existing weights and α = α1, α2, ..., αn are alpha value filters, which undergo pairwise

multiplication with the weights. The alpha filters play a vital role in modifying

the weights during the combination process. Within the conceptual expansion (CE)

framework, the same f value can be present multiple times in F but with different alpha

(α) values. This flexibility allows CE to represent a diverse set of combinations [8]

We have used conceptual expansion for our approach which allows us to describe the

target model as a combination of the weights from a source model, modelling the

source model knowledge as a combinational creativity task.

2.7 Conceptual Expansion-based Monte Carlo Tree
Search (CE-MCTS)

Conceptual Expansion-based Monte Carlo Tree Search (CE-MCTS)[8] is a prior work

most related to our work and one of the approaches we compared our proposed approach

with. Mahajan and Guzdial used a tree-based transfer learning approach to learn the

behaviour of an individual on a target task using the data of that same individual

available on a secondary task in the financial domain. They proposed a solution called
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Conceptual Expansion-based Monte Carlo Tree Search (CE-MCTS) based on transfer

learning and combinational creativity and showed its effectiveness in limited data

scenarios. The approach involves training a source model on other individuals’ data

for the target task and using data from the specific individual on the secondary task to

guide MCTS in the search for weight combinations to approximate a final model. CE

defines the search space of possible models by representing combinations of existing

knowledge (weights from the source model). Similar to their approach, we are using

a finetuned model as an input. The major differences between their work and ours

are that they employ Monte Carlo Tree Search (MCTS) instead of Quality-Diversity

Search and that they did not employ architecture search, meaning they searched over

fixed models. We anticipate that our approach will outperform MCTS because of

these two differences because Quality-Diversity Search uses a population of points and

the diversity factor allows us to find far-off models in the search space.

2.8 Evolutionary Search

Evolutionary algorithms are a class of computational techniques inspired by the process

of biological evolution. They are used to solve optimization problems by mimicking

natural selection and genetic mechanisms [15].

In the evolutionary algorithm, a population of candidate solutions is generated.

Using a process called a mutation, with some probability, the potential solution is

replaced with its variation. Then using a process called crossover a new population

is derived by combining solutions in a domain-dependent way. This new population

is added to the existing population. The reduction process helps in converging the

population by gradually eliminating less fit individuals to select the top K solution

using some fitness function where K is the population size [15].

Quality diversity algorithms are a specific subset of evolutionary algorithms that

emphasize the generation of a diverse set of high-quality solutions. Traditional

evolutionary algorithms often focus solely on optimizing a single objective or finding
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the single best solution. In contrast, quality diversity algorithms aim to explore and

maintain a diverse set of solutions that cover different aspects of the problem space.

Quality diversity algorithms utilize two fitness functions that take into account both

the quality and diversity of solutions. Diversity represents how different a solution is

compared to the existing solutions in the population. By promoting diversity, these

algorithms can uncover a wide range of solutions, allowing for a more comprehensive

exploration of the problem space. These algorithms have been applied in various

fields, including robotics, optimization, game design, and generative art, to name a

few, where exploring and discovering a range of solutions is valuable [16–18].

2.9 Architecture Search

Architecture search is a method used in machine learning to automatically discover

the optimal neural network architecture for a given task [19]. The roots of this

approach can be traced back to the 1980s when researchers introduced evolutionary

optimization techniques aiming to discover both the architectures and weights of

neural networks [20].

Singamsett et al. [9] demonstrated successful results by employing evolutionary-

based search methods combined with transfer learning in the domain of image classifi-

cation. In our work, we have introduced a unique approach that combines Quality-

Diversity (QD) and evolutionary-based search. While our approach shares similarities

with the previous work, there are notable differences in terms of the optimization

approach, the emphasis on regression tasks, and the specific setup of the architecture

search problem. Our GA ablation can be considered as an approximation of their

approach, albeit with some distinct characteristics. Liu et al. [21] combined federated

learning with neural architectures search to do image classification for providing

medical data security solutions. Our work we are not employing federated learning.

Guo et al. [22] used a stochastic deep collection method that used neural architecture

search to help protect the groundwater quality. Our work differs in optimization
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approach, regression task emphasis, and architecture search setup. We don’t compare

our approach with these works as our contribution is not to architecture search as a

field.

2.10 Preterm Birth

Preterm birth is defined as the delivery of a baby before 37 full weeks of gestation.

In a full-term pregnancy, the gestational period typically lasts around 40 weeks.

Preterm birth is the leading health problem during the perinatal period, the leading

cause of death in children < 5, and a major cause of chronic disease [23–25]. A

diagnostic approach for predicting preterm delivery is the need of the hour as it will

help communities worldwide and will stimulate the creation of treatments against

preterm birth. Many clinical laboratory tests are also expensive and therefore not

attainable for those populations most at risk for PTB [26–28]. Moreover, the existing

DNN approaches would require a lot more data than what is available for PTB due to

data availability and privacy concerns.

2.11 Organ Transplant

Organ transplantation is a medical procedure in which a failing or damaged organ is

replaced with a healthy organ from a donor [29]. It allows people with terminal organ

failure and no other treatment options to receive a donor organ from another human.

Commonly transplanted organs include the heart, kidneys, liver, lungs, and pancreas 1.

Days to the endpoint measure the number of days after an organ transplant the patient

survives censored at the end of the observation period. Censored at the end of the

observation period means that the survival time for some patients may not be fully

observed or known because the study or observation period has ended before the event

(e.g., death) occurs for those patients.

1https://optn.transplant.hrsa.gov/data/view-data-reports/national-data/
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Chapter 3

Quality-Diversity Transfer Learning
(QDTL)

In this chapter, we delve into an in-depth explanation of our approach known as

Quality-Diversity Transfer Learning (QDTL). The chapter begins with Section 3.1,

providing an overview of the QDTL approach. It encompasses a comprehensive

understanding of the problem definition and the architectural framework. Section 3.2

is dedicated to presenting and describing the two specific domains we have chosen for

evaluation and experimentation. This section provides insights into the characteristics

and peculiarities of these domains, setting the context for the subsequent analysis. The

evaluation of our approach is thoroughly discussed in Section 3.3, where we provide

an in-depth examination of the experimental setup, methodologies, and metrics used

to assess the performance of QDTL.

3.1 System Overview

In this section, we present our Quality-Diversity Transfer Learning (QDTL) approach1.

Our approach is based on domain transfer, where we have distinct source and target

domains and transfer knowledge from the source to the target domain. Our approach

can be defined as a three-step process. We first train a model on the source domain

data, this step is domain-specific. We then use the weights of this model trained on
1https://github.com/SamridhiVaid/Medical-Predictive-Modelling-using-Transfer-Learning
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source domain data and further finetune it on target domain data. Finally, we take

the model finetuned on the target domain data and run quality-diversity over the

model weights to find the most optimal model to solve our problem. To the best of our

knowledge, this is the first time QD has been applied as neuroevolution for supervised

transfer learning.

3.1.1 Problem Definition

In this thesis, we focus on low-data medical prediction tasks. By low-data, we mean

a <200 instance dataset. These medical domain problems are structured such that

we take as input a series of features representing an individual patient and output a

prediction in terms of the time until some future medical event. We assume we have

access to two datasets. A small dataset that represents our target task with less than

140 instances and a larger dataset with 1000 instances represents another medical

prediction task. The problem then is how best to adapt the knowledge from the larger

source domain dataset to the smaller target domain dataset. Most of the existing

machine learning approaches would not work in our case because firstly, our dataset is

very small invalidating most non-transfer learning approaches. Secondly, our source

task and target task have some shared input features but the output feature is different

for our source and target task, invalidating many transfer learning approaches.

3.1.2 Architecture

We use a bidirectional Long Short Term Memory (Bi-LSTM) Recurrent Neural

Network-based architecture as our source model. Consisting of 4 Bi-LSTM layers.

Each of the 4 Bi-LSTM layers contains 512 units with a dropout size of 0.2. They use

the default linear activation function. These 4 Bi-LSTM layers are followed by a dense

prediction layer using the default linear activation function at the end with a unit size

of 1. We employed Keras and used all the default values for its Bi-LSTM and Dense

layers otherwise. We use a small model because of the lack of training data and to
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avoid overfitting. We use RMSprop as our optimizer and mean square error (MSE)

for calculating loss for both step one where we train our model on the source data

and step two, where we finetune the model on our target data. We call the model

from step one as the source model and from step two as the target model. Since we

are predicting numerical values, we chose MSE as our loss function. For our target

model, which is the basis for our approach and all baselines and ablations, we use all

the same parameters as our source model but instead of 4 Bi-LSTM layers, we use 4

LSTM layers. We used the bidirectional LSTM model for our source model because it

has a larger dataset size, moreover, the data is not sequential. The Bi-LSTM model

works better with larger datasets and helps us figure out larger-range dependencies in

the case of the source model. For our target model, we used an LSTM model as this

allowed us to compare to CE-MCTS [8] more easily.

3.1.3 Quality-Diversity Transfer Learning

Quality-Diversity (QD) is an evolutionary algorithm, which involves generating and

evolving a population of models over many generations. Our QDTL algorithm uses

QD to optimize the performance of a DNN model trained on a source task for our

target task. We employed QD over other optimization approaches in pursuit of

a variety of models to reduce the risk of overfitting. We hypothesized this would

allow for higher performance of our final DNN models for our low-data tasks [19].

In our approach, the fitness of each generated model is evaluated based on quality

and diversity fitness objectives, and these selection pressures encourage both high-

quality and diverse solutions in the population. Our approach assumes two objective

functions fQ : Rn → R and fD : Rn → R for quality and for the diversity populations

respectively. For each model sQϵSQ and sDϵSD, where SQ is our generated quality

population and SD is our diversity population, the goal of our approach is to select

models from these population based on their respective objective functions and then

select the top 10 models based the quality fitness function. We finally return the
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single best model.

Algorithm 1 represents our entire approach. We first train our model on the source

dataset, which in our case is a Cervical Cancer dataset2 with 858 samples. We chose

this particular dataset as our source dataset due to the domain similarity and some

feature similarity with our target domains. For example, demographic information and

historical medical data are some similar features. This dataset has 46 input features.

We employed a 60/40 train-validation split, we used this split to make the size of the

training set closer to the target dataset across both domains. We train the neural

network architecture described above for 100 epochs, with a learning rate of 0.0001.

We determined all hyperparameter values based on the validation set. We further

finetune this model on training data from our target task. This is our baseline model,

which we refer to as finetune. This target model is given as input to a quality-diversity

process, in which we optimize the weights directly according to the target training

dataset. Line 1 represents this input model.

We run our QD architecture search and transfer process to output the final target

model. Based on the input, we initialize two populations (i.e., quality population

and diversity population) of fixed size by running our mutation function popsize− 1

times. As with other evolutionary algorithms, QD requires specialized mutation,

crossover, and fitness functions, which are described in the subsections below. We run

the search process for 20 generations, then select the top 10 models according to our

quality fitness and return the final best model. We chose 20 generations and our other

hyperparameters based on the validation performance of our first domain.

3.1.4 Crossover

In this subsection, we discuss our QDTL crossover function. In quality-diversity

search, the crossover function combines genetic information from two or more parent

models to create a new offspring model that explores different regions of the search
2https://www.kaggle.com/datasets/loveall/cervical-cancer-risk-classification
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Algorithm 1 QDTL Approach
Input: An architecture A, the population size pop_size, maximal generations gen,

the source dataset, and the target dataset.
Output: Best performing architecture.

1 A ← train A on source

2 popQ = {A }
3 popD = {A }
4 while |popQ| < pop_size do
5 networkQ ← Mutation(A)
6 networkD ← Mutation(A)
7 popQ.append(networkQ)
8 popD.append(networkD)
9 end

10 i ← 0
11 while i < gen do
12 pop ← Crossover(popQ, popD)
13 pop ← Mutation(popQ, popD, mutationRate)
14 pop ← Reduce(pop, fitness_Q, fitness_D)
15 i ← i + 1
16 end
17 architecture = best_model(popQ)
18 return architecture

space and promotes diversity among the models. We conduct crossover between both

populations. First, we select two parents via a weighted sampling based on the quality

and diversity of fitness scores. Second, we identify the position of the LSTM layers in

both selected parents. Then we randomly choose one position in the LSTM layers

of both parents. We only track LSTM layers as these are the layers in which feature

extraction occurs. Using this position, we take the initial half of the weights and layers

from the first model, and the latter half of the weights and layers from the second

model. By creating new models from the quality and the diversity population, we

hope to combine the good qualities of existing models and promote diversity in the

search space.

3.1.5 Mutation

We have eleven mutation functions and randomly select one of them for our mutation

process. Conceptual expansion is utilized in our mutation functions, which involves

18



broadening the scope of a concept beyond its original meaning, in our case that is the

model weights. Conceptual expansion re-represents a neural network as a combination

of α and f values, where f represents the features (weights) of some input model and

α represents a matrix paired to each f value. To calculate the final weight we have

each paired α and f value undergo pairwise multiplication then sum across all pairs.

For further detail please see the original paper [7].

By representing a specific weight as a combination of α and f, we are able to discover

high-quality weight combinations. Directly modifying the α and f values associated

with each weight allows us to manipulate the network weights [8]. Our first mutation

four functions are the ones used for conceptual expansion in the work by Guzdial and

Reild [7]. These were successfully employed by Mahajan’s transfer learning approach

[8]. As a result, we use the same four functions in our approach. For our remaining

seven functions, we take inspiration from the work by Singamsetti et al. [9] and in

addition to using two of their mutation functions which are, adding random α and f

values to a random position to a random mutation layer, we extend these by using

subtraction, multiplication and division to a random layer and index. Below are the

mutation functions we used in this work

• The first function multiplies a randomly selected index of a randomly selected α

with a scalar value in the range [-2, 2].

• The second function multiplies an entire randomly selected α matrix by a scalar

value in the range [-2, 2].

• The third function swaps two randomly chosen α and f values (with equivalent

dimensions).

• The fourth function adds two randomly chosen α and f values (with equivalent

dimensions) to a CE approximation.
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• The fifth function adds a random α and f to a random position to a random

mutation index

• The sixth function adds a random α and f to a random position to a random

mutation layer

• The seventh function subtracts a random α and f from a random mutation index

• The eight function subtracts a random α and f from a random mutation layer

• The ninth function multiplies a random α and f to a random mutation index

• The tenth function multiplies a random α and f to a random mutation layer

• The eleventh function divides a random α and f from a random mutation index

3.1.6 Fitness Score

We use two fitness scores, one for the quality population and the other for the diversity

population. For the quality fitness function, we evaluate the mean square error on

the training set. For the diversity population, we use exploratory fitness. For this,

we create a matrix of the weights of the input model which is represented WB and

take the absolute difference with the matrix of weights of the child model which is

represented by WC . We return the mean of this difference. We use this exploratory

fitness function to find models in the search space that are far apart from our input

model.

3.2 Domain

We test our algorithm for two tasks in the medical domain. For our first task, we

predict the gestational age of pregnant women in order to predict preterm birth (PTB).

Gestational age is the number of days after which the woman will deliver. For our

second task, we conduct a survival analysis of patients who have undergone organ
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transplants and we predict the number of days after the transplant that these patients

survive (up to a final check-up). Since both delivery date prediction and survival

days after an organ transplant are more complex functions that cannot be reduced to

a simple linear or logistic function, we believe DNNs are better suited to solve this

problem. To demonstrate this, we performed logistic regression on one of our tasks

and compared its performance with that of finetuning. It surpassed logistic regression.

One of the most basic requirements of modern DNNs is a large dataset. However,

there are limited samples in both cases, and a naive application of DNNs would not

provide an effective solution. We, therefore, hypothesized that a transfer learning

approach would be better suited to solve these problems. It is important to note that

we obtained informed consent to utilize this data for our research purposes.

3.2.1 Preterm Birth (PTB)

PTB is defined as birth before 37 full weeks of gestation. Preterm birth is the leading

health problem during the perinatal period, the leading cause of death in children less

than 5 years of age, and a major cause of chronic disease [23–25]. A diagnostic approach

for predicting preterm delivery is the need of the hour as it will help communities

worldwide and will stimulate the creation of treatments against preterm birth. Many

clinical laboratory tests are also expensive and therefore not attainable for those

populations most at risk for PTB [26–28]. Moreover, the existing DNN approaches

would require a lot more data than what is available for PTB due to data availability

and privacy concerns. Our approach not only tries to overcome the low-data limitation

problem but predicts women at risk for a PTB, and actually predicts when these

women will deliver. This output would be helpful in designing appropriate treatment

for these women.

For this problem, we had 70 features and 135 total samples. We got these 135

samples from Christiaens et al.’s work [30]. Where 43 samples were of women who had

PTB and the remaining 92 samples of women who had normal delivery or non-preterm
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birth (NPTB) samples. Since we had two sets of data PTB and NPTB, for this task

we finetune the source model trained on the cervical cancer dataset twice. First, we

finetune the model on an NPTB dataset and then further finetune on a combination

of PTB and NPTB samples for 30 epochs each with a learning rate of 0.0001. This

model then serves as the input to our QD approach.

3.2.2 Organ Transplant

Solid organ transplantation allows people with terminal organ failure and no other

treatment options to receive a donor organ from another human. In our case, samples

of children requiring heart, kidney or liver transplants have been collected in a national

collaboration before and 3 and 12 months after transplantation. We predict days to the

endpoint, which is the number of days after an organ transplant the patient survives

censored at the end of the observation period. For the organ transplant problem, we

had 130 samples in this task and 158 features. For this task, since we have a single

dataset, we only finetune the source model which is trained on the cervical cancer

dataset once for 45 epochs, with a learning rate of 0.001.

3.3 Evaluation

In this thesis, we try to overcome the low-data limitation problem in the medical

domain by utilizing transfer learning and quality-diversity optimization. We show

how well our approach performs on two tasks from the medical domain by evaluating

our approach on five-fold cross-validation. Since for both tasks, we had limited data,

moreover due to the nature of the domain, a small improvement in performance

can have a significant impact on patient outcomes. Hence, we employed a five-fold

cross-validation.

For our first task, the Preterm Birth (PTB) we are predicting the gestational age.

Since we had PTB and NPTB data on which we were finetuning our base model,

we created minifolds in addition to five-fold cross-validation. We wanted to test out
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all combinations of the two datasets. For example, for fold1 we use 80% of NPTB

data for training the model. We represent this 80% data as A, B, C and D where

each represents 20% NPTB data. We interchangeably choose 3 folds out of these and

use them for the initial finetuning of the source model. The remaining one fold is

combined with 80% PTB data and used for the final finetuning of the model we get

from the previous step. We repeat this step 4 times, each time combining one of the

NPTB folds with 80% PTB data. We further perform this for each of the remaining 4

folds so as to make sure our model is robust. For our second task, the organ transplant

task we did a simple 5-fold cross-validation, with an 80/20 train-test split.

We used fixed seeds for all tests and computed the average mean square error

and standard deviation on the test dataset to evaluate the performance of different

approaches. All of the baseline approaches, ablations and our QDTL approach are

executed roughly for around 4 hours independently. These experiments are conducted

using 6 CPUs and 2 NVIDIA Tesla V100 GPUs per task.

3.3.1 Baselines and Ablations

In this thesis, we employed two baselines and created four ablations. For all the

ablations we use the same eleven mutation functions as QDTL and we run each for

the same 20 iterations for a fair comparison. For the organ transplant task, we only

use the two baselines for comparison as the PTB task already shows the relative

performance of the ablations. For the baselines, it was essential to compare QDTL

with a finetuning baseline given its prevalence. We additionally show the performance

on a no-transfer learning baseline as this is the more common approach.

Baselines

• The first baseline approach, which we refer to as No-Transfer Learning, involves

directly training the model on the training dataset without any transfer learning.

For the PTB task, we trained the model for 30 epochs, while for the Organ
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Transplant task, we trained it for 45 epochs. We used learning rates of 0.0001

and 0.001, respectively. We selected these hyperparameters based on preliminary

experiments conducted to optimize the training process.

• The second baseline, called Finetune, involves finetuning our source model on

the target domain data. This represents the standard approach one might take

to solve this type of transfer learning problem for a medical prediction task [31,

32]. We utilized this model as an input to all other baselines, ablations, and our

QDTL approach, making it an additional ablation of our approach.

Ablations

• The first ablation is called CE-MCTS and is adapted directly from Mahajan and

Guzdial [8]. For this ablation, we removed the architecture search. In addition,

MCTS is used over QD without the diversity fitness score. We used the same

setup but executed their approach with 20 iterations of 10 rollouts of length 10.

• The second ablation, referred to as "Random Walk," employs a random walk to

explore the model space. For this ablation, we have removed the architecture

search portion of our approach. In addition, a random walk can be understood

as equivalent to QD without a population and without a crossover function.

This allows us to test whether the mutation functions alone are sufficient to

achieve high-quality results. In this technique, at each step, a random child

is selected, and this process is repeated for 20 iterations. The selection of the

best model is based on the quality fitness function criteria used in our QDTL

approach, facilitating a straightforward comparison between the techniques.

• The third ablation, referred to as "Greedy," employs a greedy search strategy to

explore the model space. For this ablation also we have removed the architecture

search portion of our approach. In addition, a greedy search can be understood

as equivalent to QD without a population and without a crossover function. In
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this technique, the mutation function described earlier is utilized to generate

ten random neighbours. The neighbour with the highest node value is selected

at each step, and this process is iterated for 20 steps. The best final model is

chosen based on the quality fitness function criteria used in our QDTL approach.

• The fourth ablation, known as GA, employs a genetic algorithm with the same

configuration as our QDTL approach but we remove the diversity population and

diversity fitness score. The purpose of including this ablation was to demonstrate

that the dual optimization in QD allows for a more beneficial exploration of the

search space.

3.3.2 Comparison with Logistic Regression

As a preliminary experiment, we compared logistic regression to finetuning on the

Preterm Birth (PTB) task on the basis of the number of days by which the model

was off by or the error in days. We only compared finetuning to Logistic Regression

and did not compare it with other low-data machine learning techniques like Decision

Trees or Support Vector Machines because Logistic Regression is the most common

approach in medical domain tasks [33]. We expected SVMs and Decision Trees to

perform similarly to logistic regression due to the complex nature of our problem

which is difficult to solve using these linear models. Moreover, ours is a regression

task and all these models are more compatible for classification tasks.

For these experiments, we employed a slightly modified setup since they were

conducted as part of the initial configuration for our research. For the finetuning

model, we trained the model on 80% of the cervical cancer dataset3, This is our source

model. We used an 80/20 train-test split for this. We finetuned this model on 80%

non-preterm birth data (normal pregnancy dataset). Finally, we finetuned this model

on 20% non-preterm birth data and 20% PTB data. We evaluated the performance of

our model on the remaining 80% PTB data.
3https://www.kaggle.com/datasets/loveall/cervical-cancer-risk-classification
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For our logistic regression model, to compare its performance to the finetuned model

we trained it on 20% non-preterm birth data and 20% PTB data. We evaluated the

performance of our model on the remaining 80% PTB data. Our results are shown in

Table 3.1. These results clearly show the superiority of finetuning, which our approach

outperforms as we cover below. Thus we do not include a logistic regression baseline

for the other experiments. These results also address our first research question.

Table 3.1: Logistic Regression vs. Finetuned performance in terms of the average
error in days

Approach Error in Days

Logistic Regression 20.5±18.19

Finetune 10.12±7.14

3.4 Results

In this section, we present the results of our experiments for two different tasks,

quantified in terms of average mean squared error (MSE) and the average number

of days. We present the results in terms of MSE as it is a commonly used metric

in regression tasks and provides a quantitative measure of the deviation between

the predicted values and the actual values. While we evaluate the performance of

our approach specifically in the medical domain, it is important to note that our

approach is domain-agnostic and can be applied to other domains. Hence, MSE

provides a suitable evaluation metric for measuring the performance of our approach

in a standardized manner.

We additionally present the results in terms of the number of days, so as to see the

actual impact of our approach in these two tasks. Even though in terms of MSE the

difference between our approach and other approaches is fairly minimal, the difference

in days shows the actual impact of our approach. As in the medical domain differences
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of even 1 day are significant due to improving treatment options and outcomes.

To facilitate a comprehensive analysis of the results, we begin by showcasing the

presence of missing data values in each dataset, as depicted in the first subsection.

This serves as an essential context for understanding the subsequent findings and our

interpretations.

3.4.1 Missing Data in the Datasets

In both the preterm birth dataset (PTB) and organ transplant dataset, missing values

were observed, which is a common occurrence in medical data. These missing values

arise due to various reasons. In the PTB task, the data is sourced from a survey, and

some respondents did not provide answers to all the questions. On the other hand,

the organ transplant dataset, collected through a national collaboration, includes

samples with missing data. To handle the missing values in these datasets, we replaced

them with a specific value. For both our datasets we hypothesized that the missing

values would negatively impact our approach. Our experiments further confirmed

our hypothesis. For the PTB task, when we finetune the models on a combination of

PTB and NPTB data, we observed that higher missing values in the NPTB training

dataset lowered the test performance of our model. The missing values in the NPTB

dataset are shown in Table 3.2 and the organ transplant data in Table 3.3.

Table 3.2: Missing values in the NPTB train dataset across each fold for the Preterm
Birth task

Fold1 Fold2 Fold3 Fold4 Fold5

183 178 184 179 178

3.4.2 Results in terms of average mean squared error (MSE)

We present the average mean squared error (MSE) over five cross-validations folds

for each task. The results for the PTB task can be found in Table 3.4. Additionally,

27



Table 3.3: Missing values in the training dataset across each fold in the Organ
Transplant task

Fold1 Fold2 Fold3 Fold4 Fold5

3732 3609 3554 3517 3364

we provide the standard deviation (SD) values across all baselines for each of the

minifolds within this task. Similarly, the results for the Organ Transplant task are

presented in Table 3.5.

Upon careful analysis, it is apparent that our proposed approach, QDTL, consistently

outperforms all other baselines and ablations across both tasks. This empirical evidence

substantiates Quality-Diversity as the superior choice among alternative search-based

optimization techniques (specifically, our ablation techniques), addressing our third

research question regarding the optimal selection of Quality-Diversity. Although the

differences in MSE may appear small, they translate to a difference of multiple days

in the predictive precision. These findings highlight the effectiveness of our approach

in enhancing predictive accuracy, thus addressing our second research question.

On the PTB dataset, the greedy approach performs closest to our approach QDTL

in terms of average MSE. The performance of the no-transfer learning model is

significantly different from our proposed QDTL approach. Additionally, the no-

transfer learning model yields lower performance than the basic finetuning approach.

These findings underscore the importance of transfer learning for our task and further

highlight the need for a more sophisticated approach than basic finetuning to achieve

optimal results. While the CE-MCTS method shows some improvement compared

to no-transfer learning, it fails to provide a significant improvement over the input

model (i.e., finetuning model). Conversely, the results obtained using the greedy and

random exploration approaches are superior, which corroborates our hypothesis that

a more diverse exploration of the model space would help identify an optimal model.
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Table 3.4: Average Mean Square Error (MSE) loss over five cross-validation folds of
the PTB Task

Approach Fold1 Fold2 Fold3 Fold4 Fold5 Average

No-Transfer Learning 0.101±0.020 0.145±0.036 0.115±0.008 0.137±0.065 0.205±0.066 0.141±0.039

Finetune 0.103±0.014 0.136±0.024 0.114±0.013 0.103±0.004 0.218±0.167 0.135±0.044

CE-MCTS 0.095±0.013 0.141±0.013 0.115±0.008 0.110±0.007 0.199±0.095 0.132±0.027

Random Walk 0.096±0.010 0.140±0.009 0.115±0.009 0.108±0.006 0.156±0.049 0.123±0.017

Greedy 0.095±0.013 0.137±0.003 0.115±0.007 0.110±0.007 0.151±0.032 0.122±0.012

GA 0.098±0.009 0.139±0.008 0.117±0.009 0.108±0.005 0.204±0.151 0.133±0.037

QDTL 0.100±0.010 0.124±0.011 0.118±0.001 0.107±0.005 0.132±0.003 0.116±0.006

Table 3.5: Average Mean Square Error (MSE) loss over five cross-validation folds of
the Organ Transplant Task

Approach Fold1 Fold2 Fold3 Fold4 Fold5 Average

No Transfer Learning 0.037 0.108 0.092 0.085 0.069 0.078±0.027

Finetune 0.037 0.110 0.100 0.097 0.070 0.083±0.030

QDTL 0.036 0.108 0.092 0.080 0.065 0.076±0.027

The finetuning approach outperforms QDTL on fold 3 and fold 4, while CE-MCTS

and Combined Greedy approach outperform QDTL on fold 1. This can be attributed

to the higher proportion of missing data in the training dataset (as shown in Table

3.2) for these folds, as compared to fold 2 and fold 5.

In the context of the Organ transplant task, we observe that our QDTL approach

consistently outperforms both baselines on average. Notably, our approach exhibits

significantly better performance than the finetune model, which serves as our base

model for quality-diversity optimization. QDTL performs similarly to the no-transfer

learning approach on fold2 and fold3, and nearly equally on fold1, due to the presence

of more missing data in the training dataset in these three folds compared to the other

two (as shown in table 3.3). Therefore, the performance of our approach is slightly

reduced.
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3.4.3 Results in Average Error in Days

In this section, we present the analysis of the average number of days by which the

model is off for two different tasks: preterm birth (PTB) and organ transplant. The

average number of days off is computed across all folds in each task.

Table 3.6 displays the average number of days off for each fold in the PTB task,

while Table 3.7 represents the same for the organ transplant task.

To calculate the average number of days off for the PTB task, we considered each

mini-fold within a fold and computed the average of the predicted days. For instance,

in the case of fold1, we averaged the predicted days from fold1A, fold1B, fold1C, and

fold1D. This procedure was repeated for each fold to determine the average number

of days for the task. Subsequently, we compared the average number of days to the

actual number of days by calculating the absolute difference. We then divided this

absolute difference by the number of test samples in the particular fold. It is worth

noting that the test dataset contains 9 samples for fold1, fold2, and fold3, while for

fold4 and fold5, there are 8 samples each.

For the organ transplant task, since there are no mini-folds, we directly computed

the absolute difference between the actual and predicted number of days and divided

this absolute difference by the number of test samples. Which is 26 in this case.

Upon analyzing the PTB task results, it is evident that the Quality-Diversity

Transfer Learning (QDTL) approach performs exceptionally well in fold2 and fold5,

with an approximate difference of 2 days compared to other approaches. A difference

of 2 days is significant for our problem. In most cases, medical interventions for PTB

need to be given within a week of likely birth. Although Greedy and Finetuning

perform better on fold1, fold3, and fold4 as compared to QDTL, on average, there

is only a one-day difference between QDTL and the other approaches. Across these

three folds, it is also noticeable that the NPTB training dataset (as shown in Table

3.2) contains more missing data.
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Table 3.6: Average number of days by which the model is off over five cross-validation
folds of PTB Task

Approach Fold1 Fold2 Fold3 Fold4 Fold5

No-Transfer Learning 9.181 3.061 17.289 4.908 18.8

Finetune 9.274 3.054 16.854 4.902 21.144

CE-MCTS 9.197 3.128 17.192 5.273 21.949

Random Walk 9.242 3.126 17.243 5.259 20.491

Greedy 9.181 3.060 17.289 5.296 19.990

GA 9.249 3.156 17.230 5.222 21.094

QDTL 9.380 2.792 17.886 5.179 18.382

In the organ transplant task, the performance of the QDTL approach outperforms

the other two baselines in all folds except for fold2. It is important to note that the

numbers reported for this task are relatively high due to the nature of the data, where

we are predicting over years instead of within a single year.

In this task, each test fold consists of 26 samples, which were used for evaluating the

performance of the different approaches. The QDTL approach demonstrates superior

performance compared to the other baselines, indicating its effectiveness in predicting

the survival days for organ transplant patients across most folds. However, it is

observed that in fold2, the QDTL approach did not perform as well as the no-transfer

learning approach, but the difference is relatively small.

In the majority of folds, finetuning performs worse than no-transfer. This indicates

that for naive backpropagation this problem represents an example of negative transfer.

Despite this, and the fact that we use the finetuning model as input, our approach

outperforms no-transfer learning in all but one fold. This indicates that QDTL can

negate the effects of negative transfer. It also suggests that in cases with negative

transfer it might be wise to use the no-transfer learning model as input for QDTL

rather than finetune.
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Table 3.7: Average number of days by which the model is off over five cross-validation
folds of Organ Transplant Task

Approach Fold1 Fold2 Fold3 Fold4 Fold5

No-transfer Learning 169.660 213.301 216.500 168.357 266.028

Finetune 167.057 214.798 226.761 185.142 275.055

Combined QD 162.697 213.485 216.080 163.765 246.677

3.4.4 Statistical Tests

Statistical tests provide insights into the performance of a model. The p-values

obtained from the tests indicate the statistical significance of any observed differences

in performance. In this analysis, we examine the p-values for paired t-tests conducted

between our approach QDTL, baselines and ablations across the five-folds, allowing us

to assess the significance of the differences and gain a comprehensive understanding

of the comparative performance. Table 3.8 represents the p-values of paired t-tests

comparing the MSE values across each of the folds between QDTL and our baselines

and ablations. From the results, we can see that there are significant performance

differences between QDTL and two of the ablations in fold 1 (e.g., Random Walk in

Fold1, Greedy in Fold1), while in other folds and for other approaches, the performance

differences are not significant. The p-values for both No-Transfer Learning and

Finetune baselines were relatively high in all folds, indicating no significant difference

in performance compared to QDTL. However, we know there were large differences

in terms of error. Thus we interpret these results to indicate that there were similar

predictions being made, but that QDTL was more precise.
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Table 3.8: Paired t-test p-values comparing the MSE observed across 5 cross-validation
folds between QDTL and the different baseline approaches. Bold values are significant

Approach Fold1 Fold2 Fold3 Fold4 Fold5

No-Transfer Learning 0.875 0.413 0.685 0.426 0.105

Finetune 0.333 0.492 0.944 0.398 0.759

CE-MCTS 0.055 0.084 0.556 0.655 0.253

Random Walk 0.005 0.202 0.619 0.776 0.392

Greedy 0.039 0.124 0.574 0.615 0.306

GA 0.069 0.218 0.970 0.826 0.406
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Chapter 4

Conclusion

In this concluding chapter, we summarize the key findings and contributions of this

thesis. Section 4.1 discusses the implications of our work, highlighting the potential

impact and relevance in the respective domains. We also address the limitations

encountered during the research process and discuss potential avenues for future work

in Section 4.2. Lastly, Section 4.3 provides closing thoughts, reflecting on the overall

significance and implications of this work.

4.1 Implications

This research introduced an innovative approach called Quality-Diversity Transfer

Learning (QDTL) to address the limitation of data in medical domain prediction

tasks. The effectiveness of the QDTL approach is evaluated by applying it to two

distinct medical domain tasks. The findings demonstrate that our approach meets or

exceeds the performance of baseline models and ablations in terms of performance,

particularly with low missing values.

Our findings regarding our first research question, which investigates whether our

approach can outperform standard logistic regression, are presented in Table 3.1. The

findings clearly indicate that the finetuning approach yields better results than logistic

regression. Our QDTL approach, as depicted in Table 3.4 and Table 3.5, exhibits

even superior performance compared to the finetuning approach. Furthermore, the
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results in Table 3.6 and Table 3.7 indicate that our QDTL approach surpasses other

transfer learning techniques for predictive care in the medical domain, addressing our

second research question. Finally results in Table 3.4 and Table 3.5 show that quality

diversity optimization performs better than other search-based techniques. Hence

addressing our third research question. In summary, our findings provide compelling

evidence supporting the effectiveness of our approach over standard logistic regression,

as well as other search-based techniques, in addressing predictive care challenges in

the medical domain.

4.2 Limitations and Future Work

The results demonstrate the efficacy of our approach in this domain, suggesting the

potential for it to address low-data problems in other domains. However, further

exploration is needed. In addition, the performance of our approach is currently

dependent on the finetuned model used as input, and the finetuning process requires

careful consideration of the dataset, model architecture, and other features of the source

and target domains. This dependence on the finetuning process creates challenges in

terms of choosing various hyperparameters, which we plan to investigate in future

work. Overall, our study contributes to the ongoing research on addressing limited

data challenges in medical prediction models and paves the way for exploring the

application of QDTL in other low-data domains.

4.3 Closing Thoughts

In this thesis, we present a novel approach called Quality-Diversity-Transfer Learning

(QDTL) to solve low-data problems. This approach relies on a combination of

transfer learning, architecture search and an evolutionary approach. We evaluate the

effectiveness of our approach by comparing it with standard baselines and ablations

on two medical prediction tasks. Our results indicate that QDTL outperforms the
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baselines and ablations in terms of efficiency, resulting in higher-quality models more

closely able to predict desired output features. This demonstrates the potential of our

approach to improve model performance on various low-data tasks.
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