rottidle, .

' l’l of Conaca du

nationale

Canadian Theses Service Service des thises canadiennes

Ottaws, Canada
K1A ON4

NOTICE

The quality of this microform is heavily dependentupon the

ality of the original thesis submitted for microfilming.

very effort has been made to ensure the highest quality of
reproduction possible.

i are missing, contact the university which granted
the degree.

Some Paoes may have indistinct print especially # the
igina

es were typed with a poor typewriter n or
it unmgrsity sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30, and
subsequent amendments.

NL-X9 {r.80008) ¢

AVIS

La cr.:alité de cette microforme dépend grandement de la

qualité de la thése soumise au microfi . Nous avons

:_out fait pour assurer une qualité supérieure de reproduc-
ion.

S'il manque des pages, veuillez communiquer avec
iunivers’i‘t? Qui a contéré le grade.

La qualité dimpression de certaines pages peut laisser a
désirer, surtout si les pages originales ont été dactylogra-
phiées a 'aide d'un ruban usé ou si l'université nous a fait
parvenir une photocopie de qualité intérieure.

La reproduction, méme partielle, de cette microforme est

soumise a la Loi canadienne sur ie droit d'auteur, SRC
1970, c. C-30, et ses amendements subséquents.

Canadi

The University of Alberta

MACH: A Master Advisor for CHess

by

Michael William George

A thesis
submitted o the Faculty of Graduate Swdies and Rescarch
in partial fulfillment of the requirements for the degree
of Master of Science

Department of Computing Science

Edmonton, Alberta
Spring, 1989

Bl o™ G Canaga.

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

L'auteur a accordé une licence irrévocabie et
non exclusive permettant & la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées.

L'auteur conserve la propriété du droit d’auteur
qui protége sa thése. Ni la thése ni des extraits
substantiels de celle-ci ne doivent &tre
imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-52843-5

Canadi

THE UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Michael William George
TITLE OF THESIS: MACH: A Master Advisor for CHess
DEGREE FOR WHICH THIS THESIS WAS PRESENTED: Master of Science
YEAR THIS DEGREE GRANTED: 1989
Permission is hereby granted 10 The University of Alberta Library to reproduce single
m;&:ﬁ:dﬁz“nm«xnmhmhmMMyammnswchpur-

The author reserves other publication rights, and neither the thesis nor extensive extracts
from it may be printed or otherwise reproduced wthout the author’s written permission.

Signed) /A’//M///K/Té,/»‘ff/;r\
Pumm,édms/ /
60 Wentworth Street

Saint John, New Brunswick

Canads E2L 2R9

Dated 9 December 1988

THE UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies and Research, for acceptance, a thesis entitled MACH: A Master Advisor for CHess submitted by

Michael William George in partial fulfillment of the requirements for the degree of Master of Science.

Date contie T &7

ABSTRACT

Since Shannon firsi described, in 1949, how a computer could play chess, much effort has been
w»umwa.mwumumwmum'mphmpm
wmmmymmmmmmumwahmmmmmm
mmm.mymwymdeummwmmemdxhkvm;m
ter siatus.

For the most part, developers of chess systiems have concentrated mare on improving the speed of
their sysiems and the number of moves shead that can be searched, instead of analyzing why humans play
50 well, Wmﬁummnmd‘uwhdaymmisdmmynhudw
wma.ﬁmmmu&mammm.mmwﬁﬁu
allow him 10 extract relovant patteras (or chunks) from the bosrd and combine them into a similarity meas-
ure; this measure serves as a key for searching the player’s vast mental database of previously stored pat-
mandpodﬁounﬂnddnﬁhmmmmﬂlpuiﬁomuiummmmm for the
player (0 help guide his search for the best move.

By applying these same methods, we can improve the performance of a chess program. Since virtu-
myemmmmmmmumwﬂywﬁhbkmmxmmka
weconldﬁmlcheummmucumwmwﬁnddnﬁlupodﬁmwmumit
wouldenconmwrdminznwmlphymdamyexmmnmy.memm.mblmﬂom\e
players involved and use them 10 play bester chess.

mm&mnwmﬂwwhichlodeuminemchasymm'sfesibility. By
pmidingchusmumwhhmdvbe.wbeﬁew.kouemydchdngdwmbetmnmm
and machine. As well, the ideas developed here have applicability to other domains.

Acknowledgements

romlwu»umyw.mm.fammmmmm-
muuwnmmmmmummhnmmawu.
even though his choice of & hockey team is questionable. As well, a special thanks goes %0 Carol Smith and
Bev Bayda who helped me format this document cosrectly.

Most of all, I need 10 thank my wife, Jan, whom [dragged 3000 miles 0 that I could get my M.Sc.
Without her support, it never would have beea possibic. Last but not kast is an acknowledgement to my
future child whom I hope 10 teach as much as this graduate degree has taught me.

Table of Contcats

Chapeer rags
Chapter 1: Introduction 1
1.1. Motivation - Building a Better Chess Machine 1
1.2. Related Work 3
1.3. Learning, ._xperioncs & Chess 8
1.4. The ldea 11
1.5. The Thesis e s 12
1.6. Outline e e v ctvmssesemessssssssessssns 13
Chapeer 2: Skill & Perception in Chess - I:
2.1. Human Game Playing 19
2.2. Development of a Theory of Human Game Playing 16
2.3. Eye Movements 18
2.4, Simulations of Memory 19
2.5. Some Experiments /]
2.6. Results & Direction 7
Chapter 3: System Design 29
3.1. Introduction 29
3.2. The GAMETREE 30
3.2.1. A Data Sgucture 30
3.2.2. Adding Games 32
3.2.3. Constructing Positions U
3.3. The FEATUREndx 35
3.3.1. Accessing the FEATUREadx 36
3.3.2. The Partial-Matching Problem and Related Work 36
3.3.3. Three Approaches 37
3.3 4. Invered Files : 38
3.3.5. Tries 39
3.3.6. Restricted Enumeration 41
3.3.6.1. Setting up the Index Files 42
3.3.6.2. Using the Index Flles 45
3.4. Current Stase of MACH 48
Chapeer 4: Similarity and Chunki.g S0
4.1. Introduction 50
4.2. Language and Grammar Development 51
4.3. Qualitative Concerns 3
4.4. Implementing the Language 4

4A4.3. Loz snd Yocc

4A42. Aa Rxample

4.5. Finding Similer Positions

4.6. Using the Languags

4.7. Summary

Chapter 5: MACH's Performence

5.1. lnwoduction

5.2. Advis Pandigms
5.3. Resuks from an Ideatical Match

S4. Results from & Similer Mach

5.5. Results Maching s Chenks

5.6. Guidelines for Constructing Effective Chumk Descriptions
5.7. Summary of problems

Chapter & Conclusion

6.1. General Regults

6.1.1. Partial-Matching Problem
6.1.2. Database Design

6.1.3. Learning

6.14. Knowledge Acquisition

6.1.5. Spinoffs from this work

6.2. Summary

References

Al: Chunk Grammar

A2: Chunks used for recognizing Ruy Lopez and Queea’s Gambis Declined formations

tg228830n

83288I33d33332I=

List of Tobles

Tabls
2.1 Percentags of pisces carvectly placed by a Master, & Class A player and MAPP. oo
22 Maean reconstructive factors over all positions and for each Srouwp by PIECe-tYPS. .ccecmimceccccmcenns,
2.3 Rating improvesent of ssbjects working iu pairs compared 1o working individually. ...
3.1 Number of [£] comblsations.
32 Perceatage of records occupied and average sumber of collisions.
3.3 Comparison of siorage needs for SBA sad BSA.
3.4 File sizes for the 18 fies that maks wp the FEATUREadx.

5.1 MACH's performance oa 20 positions.
$2 Comparison of the number of positions found using »-7 and & chunks

List of Figuwres

Figure
1.1 A typical 3-ply ssasch conducted by Samusl’s chechrs program

1.2 The effiect of saving s score

1.3 Thres basic steps performed by the Zobrist ot. al. program
14 A gereral model of learning

2.1 Average time required 10 place a chess piece as & function of the number of chess relations

2.2 Middie game position wsed by Tikhomirov and Posnyanskays

2.3 Eye movements of the expert player by Tikhomirov snd Posayanskays

2.4 Simulated cye movements made by PERCEIVER

2.5 A schematic representstion of the principal componsats cf MAPP

2.6 Two test positions along with their collective reconstrections

3.1 Deta saructure for a node in the GAMETREE

3.2 A typical GAMETREE condi guration

3.3 Pseudo-code describing how 10 add a game 10 the GAMETREE

3.4 Improved pseudo-code describing how 10 add a game 10 the GAMETREE
3.5 Pseudo-code describing how 10 construct a positions

3.6 A simple trie for c = 4

3.7 Avie withc=$

3.8 File creation procedures of MACH

4.1 A typical chunk description of a castled pstiern and Ruy Lopez opening
42 Methodology used 10 find a group of similar positions

$.1 How Phoenix uses MACH's advice 10 choove a move

5.2 A sample position reached by Phoenix, 5 plies into a game
5.3 The position farther into the game before Phoenix uses MACH's advice

S.4 An unfamiliar position for Phoeaix

$.S Ruy Lopez test position #1

5.6 Ruy Lopez test position #2

$5.7 Ruy Lopez test position #3
5.8 Segment of net that MAPP would use for our kingside chunk

1322222218388 228N

Chapter 1
Intreduction

1.1. Meotivatien - Bullding & Better Chess Machine

It has been almost 40 years since Claude Shannon [ShaSO] first described how a computer could pisy
chess. Since them, a grest deal of ressarch has beea conducted 10 improve on his methods. For the most part,
current chess programs consist of routines 10 make and analyze moves along with small knowledge bases to
enable them 10 piay well. Unfortunstely, despite the memory capacities (gigabyies) and lightning-fast pro-
cessing speeds (100 MIPS or more with parallel processing, though this value is continually increasing) of
modem-day computers, the 10p performing chess programs (e.g. Hitech [Ebe87], Cray Blitz (Hya86]) are
only now beginning 10 challonge grandsmasters. Why?

The fundamental reason for the slow progress of chess programs lies not in errors of programming
but rather in the methods these programs wtilize 10 choose the best move. Making and analyzing moves dur-
ing a game involves troe searching snd move gemerstion !, something which has been well swdied. How-
ever, supplying a program with enough kmowiedge 0 play well is very dificult 0 do. Most chess
knowledge lacks precision of expression; encoding details into rules and exceptions can be 100 restrictive.
Indeed, knowledge swrrounding grandmaster play aad technique cannot be adequatcly expressed in words,
let alone formalised.

We know that the "chess problem” (i.s. achicving a checkmate) is mathematically solvable but,
unfortunsely, is computationally intractable. No known algorithm exists which will yield the best move in
a position, unloss the complese expiloration of every possible move is conducted. Those programs which
apply these so-called bruse-force tactics 10 choose the best move must battle the overwhelming size of the
search wee. If we consider that there are, on average, betweea 40 10 45 complete moves per game (30 10 90
positions or plies) and from each of these 80 © 90 positions there exist approximescly 35 legal moves, the

! For a mose complets descrigtion, ses (Bar80)

1otal sumber of positions that could posentially bs explored is 35%, Aceully, this valus is 100 large, since it
d0es 0ot taks M0 account tranepositions (Le. the same posisions arived at trough different ssquences of
moves). Even by reducing this sumber 10 10 and having a computer that can run at 1,000,000 MIPS (i.c.
for simplicity, let this repressat 10'2 positions examined per sscond), it would still tzice over 10'® cencuries
10 examine every complote path!

In scwual ple/, however, it hes beon detormined thes the average number of worthwhile moves in any
position ie 'ty less tham 2 (on average, 1.76 [DeG6S)) and the average number of moves in a master
level game is 42 (DeGGS). So that brings our tti sumber of positions down 10 near 1.76™ . gtill » huge
number. Given current wonds in hardwaie e hology, we can hazard a guces that it will ks centuries t0
develop a machine that could examine thai many positions in a reasonable amount of time. While it is prob-
sbly true that ia S 10 10 years & chess program will be able 10 search a full 14 10 16 ply deep using the most
sophisticated hardware availsbie, unformmsely, dhere will always be cases where 16 ply is not deep encugh
10 decide what the best move is - i.c. when at least one more move was needed 90 prevent a loss or secure a
win. This is & problem inherest 10 programs which apply fixed depth searches (¢.g. brute-force).

It is obvious that no chess player, regardioss of his skill level, would ever come close 10 examining
that many positions in a game; rather, a player must 0¢ highly selective in choosing which paths 10 explore
due 10 the exponential growth of the search. It was once thought that grandmasters performed well because
of their spectacular search ability, examining hundreds of positions at blinding speed while the poor
beginnes ~ould look ahead but a few moves. Formanasely, this sceaario had beon discoumted by the Duich
psychologist/computer scientit Adrisan De Groot some 20 years ago; in fact, he suggested that grandmas-
ters may actuaily scasch less than beginners (DeG6S).

So what is ke solution? It is clear that using faster machines is not the answer; there are just 100
many peths 10 explore. There exists a well known hypothesis which suggests that dowbling computing
power will resukt in a performance improvement of close 10 100 chess rating points?. However, a result by

2 Thess points will bs eutlined laser; for the tims being, mose is betaes.

Thompeon [Tho82) suggests that this relationship does not hold once the program attains s master rating. In
any event, bumaen processing speeds are not even close to 100 MIPS and yet humans are able 10 play with
remarkable precision.

So what are we missing? “Psychological studies have shown that chess masters have learned t0 “see’
thousands of meaningful configurations of pieces when they look at a chess position, which presumably
helps them decids on the best move, but no one has yet designed a computer program that can identify
these configurations” [Bar80). This author belicves these psychological results hold the key ©0 building a
better chess machine. By extracting knowledge from grandmaster results, we can tailor a chess program to
examine only worthwhile strasegies and search only useful branches. It is in this direction that this disserta-
tion will proceed. We will attack the problems from a hardware-independent view, as most theoretical
computer scientists do, and concentrate on applying the underlying principles involved in human problera
solving.

12. Related Work

It will prove helpful 0 examine the work that has gone into game-playing programs over the last 30
years 10 identify their shoricomings, pitfalls but, more importantly, the researchers’ intuition.

Ten years following the publication of Shannon, A.L. Samuel pioncered the study of leaming as
applied 10 the game of checkers through a series of experiments (SamS9, Sam67). Like chess, checkers is a
dificuk game 1© play well, though it is less complicated (fewer types of pieces and fewer legal moves); as
weil, a complese search of its game tree is not practical, since there are somewhere near 10° moves to be
explored.

Using the standerd minimax search approach, Samuel’s program searched shead only a few plies and
applied a smtic evaluation fusction 10 desermine which side was winning; based on this function, the pro-
gram then chose the move thet lead 10 the best position. As each position was encountered, a description of
that position was “memorized” by the program along with the value from the evaluation function. When a

previously stored position was eacoustered during subeoquest play, its “positiomal-value® could be
retricved rather ‘han recomputed. As more and more games were played, the program came cT08s It ve
and mare familiar positions. Indirectly, the look-shead power of the program became stronger without
searching farther in the tree.

For more insight, refer 10 Figures 1.1 snd 1.2. In the first figure, we see thet the program has
searched 3-ply from position A 0 position D, evalusting that the path through B and C is the best. The

resulting value of 8 is passed up the line 10 position A. A description of this position along with the value of
8 is swored by the program for lster use.

2 6 111 2 18 4 0 A4 6 2 53 L

Figure 1.1 A typical 3-ply search conducted by Samuel’s checkers program.

If we now look at Figure 1.2, we can see where this memorization of position A becomes important.
One of the terminal nodes after a 3-ply search from E is A. The program already knows its evaluation value
based on the previous search 10 D. In fact, this value is more accurate than the static value of A, since it
involved a search. In effect, the program now has information from a 6-ply search through A without using
additional search time. One can see that as more familiar positions are encountered, the deeper the effective

scarch will become.

(O
Figure 1.2 The effect of saving a score.

‘When a saved position is encountered after a normal search,
the effective search depth increases.

Samael found, however, that even though the program fared well in the beginning- and end-games,
its poor play throughout the middlegame resulted in its inability 10 achieve expert status, since he was res-
tricted 10 using & small IBM-704 and writing all his positions 10 tape (in his later experiments, the program
did achieve a master level, though).

Using such limited and primitive resources, Samuel placed great importance on efficiency - i.e. get-
ting programs 10 use as few resources as possible. It can be inferred from Samuel’s results that performance

(in some ssmee) of any system can be hampered by lack of efficiency. In a discussion surrounding this topic,

Lenat, Hayes-Roth and Kishr [Len79] outlined the abilities that an Al program must possess ©0 be efficient,

or as they described to be “cognitively economical.” These abilities included,

« Inselligent learning - being able 1 sense change in the environment and adapt and/or modify itself 1o
reflect the change.

. Intelligent redundancy - storing the results of frequendy requested searches so they do not have 1o be
recomputed, refesred to a8 caching.

o Inelligent focus of attention - using predictions 10 filter expected results and use “surprises” to help
the system model the environment more consistently.

In Samuel’s follow-up study [Sam67), he atiempted to improve his program by improving the
evaluation function. Of course, a more detailed evaluation function meant greater computational time which
wanslated into longer search time; consoquently, Samuel employed methods (alpha-beta pruning, for exam-
ple) 1o reduce the number of nodes examined. However, an even greater problem was being exposed
through his research - the relative importance of knowledge.

In 1987, van der Meulen addressed, at least partially, this problem for the game of chess [Van87].
Instead of using a single evalustion function for all chess positions, van der Meulen applied a ser of special-
ized evaluation functions, one for each type of chess position. By using a set of 500 chess positions and
knowing the correct move in each, he constructed groups of similar positions using statistical discrimina-
tion and assigned a correct evaluation function (i.e. one that would produce the correct move) to each group
by solving a system of inoqualities. As a position was encountered during actual play, it would be mapped
into one of these groups and the corresponding evaluation function of that group would be applied 1o that
position, hopefully yielding the correct move (since it did so using the test positions of the group). By
employing different functions %o different sets of positions, thereby shifting the importance of certain
paraneters, the problem of weight assessment in evaluation functions was more suitably addressed. Unfor-
tunately, his methods for determining similar positions were quite unnatural and cestainly non-trivial.

Recently, building on the methods of Samuel, David Slate worked with transposition tables in chess
-.mammwm.mmmum.mmnm
Mmmmmymmm.mwwwmymaum
and useful only for identical positions: we will see later why positions are not required to be identical 10 be
useful.

The ides of similarity and identifying similar positions has been a prevalent theme in chess research
for the last 20 years. However, implementing correct procedures has been a problem because the notion of

similarity requires a great deal of chess knowledge.

Perform
Calculate Apply Advice Look-ahead
Internal (patterns) using

Represe:tation — Store — Snapshots ——

o to
Chess Position Snapshots Evaluate Board RJPS"
Positions ove

Figure 1.3 Three basic steps performed by the Zobrist et. al. program.

A big step towards this goal came in 1973 at the University of Southen California [Zob73). Unlike
most chess programs of the day which relied on brute-force and mathematical algorithms 10 choose the best
move, the USC system searched a given board position for all instances of centain patierns and recorded
them internally into a "snapshot.” These patierns (or chunks) were coded in a simple but effective chess
language, related mostly t0 attack and defence properties of the position. Figure 1.3, taken from [Zob73],
outlines the three basic steps employed the program. As the authors poinied out, “for the first time the com-

puter [was] mo longer compleswely dependent on expert programmers for the acquisition on chess

knowledge. We [saw) in our approach the fascinating possibility that the game's greatest players, such as
Fischer, could record their chess technique for posterity.” A significant result from this approach was that
minor changes in chess knowledge simply involved changing the description of the patierns; using conven-
tional programming technigues, on the other hand, would involve many hours of programming and debug-
ging. Given the hypothesis that human massers use patiern recognition skills w0 recall similar situations that
aid in their move choices [ChS73a, Sim73a, Sim73b), the USC method certainly models human problem
solving maore closely and provides a more natural approach.

Further 1 this notion of pattern knowledge and recognition, Bratko and Michie developed a package
known as Advice Language 1 (AL1) (Bra80] which was used 10 transfer kmowledge surrounding chess
endgames 10 a chess program. They constructed Advice Tables which contained advice lists (tactics 10 use
against the opponent), sets of goals (things for which one should strive) and a number of move constraints
0 improve efficiency. Interestingly, their method required the pieces of advice 10 be ordered such that the
most ambitious goals came first (c.g. 10 mate); by doing 0, it guaranteed that the program would play
towards the most desirable goal (to win).

It should be evident that pattern recognition in chess is required for players 10 be successful; why
should it not also be required for chess programs? To accomplish this, however, will require a program that

leams and uses experience, not necessarily its own. We will explore these notions next.

13, Learning, Experience & Chem

Al research on leamning has been going on for years. There are many views or. the subject. but
Simon's perspective is probably the most general; he describes learning as "any process by which a system
improves its performance” [Coh82]. This improvement can be realized by applying new methods and/or
knowledge to the problem or by improving current methods by making them faster, more accurate or more
consistent. Figure 1.4 illustrases more clearly this simple mode! of learning. The environment supplies

information 10 the leamning element 10 help it make improvements 10 the knowledge base of the system; this

mwummumaum.mmu.uwu
fed beck 10 the learning mechanism ©0 further develop the knowledge base.

Learning nowledge Performance
Environment Element Base Element

Figure 1.4 A general model of leaming.

For the most part, four types of leaming situstions exist:

* leamning by memorizing (rote learning)

* learning by taking advice

* learning by example

* leaming by analogy

The first type of learning is characieristic of Samuel's checker player. By memorizing positions, his
peogram improved its performance by recalling these positions when similar ones were encountered during
play. Rote leaming simply involves sioring new knowledge 30 that when it is needed again, retricval (vs.
computation) is all that is necessary. Leamning by waking advice is illustrated in Bratko and Michie’s AL1
package. The system interpresed high-level pieces of advice, relating it 0 what it already knew, and pro-
ceeded to fulfill the supplied goals. Leaming by example is similar 10 rote learning but involves generaliza-
tion; like induction, the methods must determine the relationships involved in the examples and generalize
them 10 be applicable 10 the problem(s) at hand. Leamning by analogy is similar 10 learning by example in
the sense of generalization; in this case, thoug?., analogies must be recognized and used to improve the per-

10

formance of the sysiem. These last two types have received little attention in the literature and are probably
the most difficult to specify.

Tied to the concept of leaming is that of experience. Past situations must be recalled t0 guide and
improve. Certainly, chess machines must both “experience and learn™ 10 become more effective.

By examining human leamning and experience, one can hopefully open the doors 10 creating a more
powerful leaming machine. For example, in the Data Processing (DP) world these days, phrases like
"...with 3 to0 S years experience using CICS in a DOS/VSE environment...” is an often used phrase required
of Systems Analysts’ positions. The operative word here is experience - that intangible skill that is so vital
in the DP world, and in most areas, in fact. Both educational and work experience provide people with the
necessary skills to solve problems that are identical or similar to previous situations. The more experience a
person possesses, in general, the more easily and effectiveiy he/she can deal with problem situations.

To masser a skill, such as playing chess, is no different. To become a grandmaster (GM), one must
play thousands of games not only 10 gain "experience”™ but also to leam different openings, atiacks and
counterattacks, see different strategies and combinations of moves and 10 be exposed %0 endgame play.
From this intense exposure, a GM remembers important fragments of games (sometimes even the entire
game score) to allow him to relate his future games to similar past encounters. This recall is a fundamental
component of a GM’s experience, as we shall see; it influences many of his decisions and fine-tunes his
expertise.

Unfortunately, experience, the proverbial best teacher, is lacking in oday’s computer chess sysiems.
From incomplete knowledge, these systems usually do not leam from their mistakes; they could make the
same wrong move in similar situations, game afier game, although Siae’s Mouse system was able to over-
come this drawback in specialized situstions. From playing thousands of games, GMs, on the other hand,
accumulate a wealth of knowledge and rarely make the same mistake twice. What if chess programs could,
somehcw, (ap into this experience of GMs? Remember, recording the chess technique of the world’s
greaiest players was something Zobrist et al. conceived of doing. A chess sysiem that could improve by

n

obeerving the moves and strategy of the GMs could not help but play like them; certainly, this is what most
advanced players do 10 improve their performance. Learning from others’ experience (by example or anal-
ogy. in a sense) may provide the key in making these programs behave more human-like, a characteristic

foreign 10 many expert sysiems.

14. The ldea

Cusrently, it is possible 10 have virtually every master and grandmaster chess game ever played in
machine readabie format (¢.g. ChessBase [Edi87]). If a chess program could search this vast database of
games and find identical or similar positions to those that it would encounter during normal play, it could
extract the strategy, the moves, the blunders of the players involved and use them to play better chess (if a
GM played a censin way, there is a high probably that it was the "best™ way to play).

The uses of this information would have far reaching implications. For example, the size of a8 chess
mm's'mw&'muew:mbngamﬂdihvewbe'mm'mopeningahe
coded with the strategy behind the opening. Instead, the program could follow a GM’s strategic openings.
In addition, with well-designed similarity functions, a program could maich similar positions and follow the
GM'’s pian throughout the middiegame. As well, endgame performance (the nemesis of most chess pro-
grams) could rise dramatically. Since GMs sometimes follow "standard” endgame strategies much 100
difficuk 10 code into chees kmowledge or heuristics, a program following the example of a GM's endgame
play could increase its likelihood of a viciory.

More importantly, this idea could be extended 10 other areas of expertise such as medicine or law.
For medical diagnosis, past cases of millions of patients could be stored in a database and indexed by a
similarity measure (c.g. the major sympeoms of each illness). A physician could then determine the symp-
toms of a given patient, search this database for similar cases and consult the prescribed diagnosis.

In the field of law, snalyzing past cases is a common occurrence. Lawyers frequently search for pre-
cedents 10 help design their cases. A case database could be constructed 10 aid the lawyer in this search. For

12

example, cach case could be indexed by its type (¢.g. a murder), how the trial was conducted (¢.g. by judge
and jury), snd the damages involved (e.g. $1,000,000). Within minutes, the lawyer would have, at his
fingertips, s list of similar cases and their outcomes.

Indeed, for these domains, finding a similarity measure is much easier than for chess. In fact, a few
keywords may be all that is needed 1 distinguish dissimilar cases.

1.5. The Thesis

In theory, this sounds like a hopeful solution. Notwithstanding, the: lie: any issucs to be addressed
before any practical implementation can srise. Therefore, it is not the nent of this project to efficiently
design, code and implement a compiese experience teacher for chess. Rather, we wish o devise an experi-
mental testbed on which 10 desermine such a system’s feasibility. In other words, our task is 10 see whether
a chess program’s performance could be improved with the addition of this experience and we want o
determine this result as quickly as possible. It will be evident that our implementation will be (in spots)
grossly inefficient; however, the speed of the experimental system will certainly not influence its correct-
ness. To build 8 wonderfully quick and efficient system would be pointless if it could not improve the play
of the chess program.

Two critical issues must be addressed 10 implement such a system: similarity and search.

Where one draws the line w0 desermine whether two positions are similar is certainly a non-trivial
problem. We must be able t0 weed out useless positions since our datsbase of games and positions will
number in the millions. As mentioned previously and described more thoroughly later, psychology theory
suggests that buman players recognize certain patierns on the chess board and the combinations of these
paticrns guide the players’ search for quality moves and enables them 10 recall “similar” positions. This so-
called "chunking” hypothesis will serve as a basis for our similarity sests.

In regards 10 search, once a similarity value for a position has been calculated, it is necessary to

access onl’ worthy candidste positions in our database swiftly since time is 30 crucial in a real-time appli-

13

cation. Our effort expended on developing effective similarity measures would be futile if simil. ans
could not be rerieved within a fcw seconds.

By no means are those the only concerns 10 be addressed; indeed, additional problems will arise
which must be solved at some point 10 produce 3 workable system. For example, how do we develop a
database of useful patterns, large enough 10 produce an effective similarity measure? As well, once the pat-
terns in a position have been found, how do we desermine those that are most important (o the ensuing stra-
tegy of the game from which the position was extracted? Moreover, what happens if we encounter a posi-
tion that contains no recognizable patierns? Suggestions 10 combat these barriers will make up a large pan
of our discussion.

Assuming our experimental system succeeds, though, many significant implications would arise.
First of all, our knowledge base would be easily extendible since not only could information from
middiegame and endgame books be included but also 6000 new and useful GM games, on average, could
be added each year from various sources. Secondly, “human-like” play (a potentially important featurc)
would be a possibility, in hopes of negating some of the inferior "machine-like” tendencies. But more
importantly, a program’s performance could improve without additional programming effost; new games
mean new positions which effectively increases the chess knowledge at the program’s disposal. The more
waﬂnbbpaiimmhhmmhdmh(ﬁmﬂsaidmﬁed)faadumwhkh.

theoretically, should make it play stronger games.

14. Outlise

Our discussion will be divided into 5 chapters. Chapeer 2 will introduce the theory associated with
chunking snd describe some experiments in chess cognition. With the basics outlined, chapeer 3 will pro-
vide an in-depth description of our testbed system (referred 10 as MACH - Master Advisor ior CHess)
detailing the modules that are (or should be) integrated as well as discussing some options for an efficient
search routing; these modules will be designed 0 work independent of any chess program. Our language

14

for describiag chess patierns will thea be supplied in Chapter 4. The following chapier will detail the
results of the experiments, showing where MACH did and did not help the chess program (for our tests, we
will interface with the chess system PAoenix [Sch§6)). Finally, the sixth chapter will sugges: ways for
improvement and outline a serics of tasks 10 be completed that will produce an effective and useful experi-
ence teacher for chess.

Chapter 2
Skill & Perception in Ches

2.1. Human Game Playing

Humans are very good st learning board games. Afer given a brief introduction 1 the rules of the
game including the goals involved, humans usually play reasonsbly well. In fact, the moves made by a
beginner are almost always logal, most often poor but usually never random (Eis73). From the beginning,
even incxperienced players gemerats primitive swratogies (¢.g. "capture pieces”). Games, by definition, are
goal directed which guide players in move selection and strategy development.

Quality of human play can he dramatically improved through teaching and experionce; people can be
tsught certain moves, powerful strasegic comcepts and 10 recognize key patiorns of pieces. In the chess
world, part of the strength of the maser or grandmaster is his ability 10 perceive the curront situation (i.c.
determine the important featusos and characteristics) and recognize that it is similer 0 one from another
game (or games) he has previously played. For the most part, this ability allows him 0 extract relevant pat-
torns from the board, which migit include a king in check, an open file or s passed pawr.. The combination
of the important patterns in a given board position serves as & key for searching the maswr’s vast mental
databese of previously swored panerns and positions (50,000 or more (Sim73b)) 0 find similar omes (i.c.
those thet resembie the Current position, at lsast as far as the master is concerned). Associaed with each of
these positions is the so-calied “best” move Or strategy - something the player has execuwiod many times
before and knows 10 bs superior. Unlike today’s computers, the buman brain has 2 very compiex associs-
tive memory and mental “programs” which aliow the player 10 encode a position into chunks and recon-
struct similer posicions within s few ssconds - indeed, a vital componeat for the maseer playes.

Heace, sa advanced player can be influenced 10 make a particular move based on his experience of
being in & sicastion similar 00 the one at hand and remembering the best move or strategy 10 perform. Asa
result, only a limited amownt of look-shead may be needed 10 evaluste the best move (7 plies seems 10 be

15

the maximum ssarch depth most grandmasters ususlly require [(Cha77]). In some instances, though, he just
knows what move 0 maks (comsider the Blitz Toumaments). Since begianers remember only s fow
thousand patterns, they, mose often then not, are faced with unfamilier positions and must resort © more
search. In fact, De Groot has shown thet most of their search time is spont examining worthicss moves,
unlike the grandmaster who ssems (10 know the best paths 10 explore [DeG6S).

Of courss, this superior ability doss not mean thet the GM possesses some sort of photographic
memory or is significantly more intelligent then the sovice. Obviously, & certain aptituds is required (spe-
tial abilities, for example) but more impormatly, it is the hours of practice and dedication thet is needed 10
build up a largs knowiedge bass of patterns, along with their meanings and & ssarch method tailored 10 pur-
suing useful moves - R0 experts dsvelop overnight, by any means. Gensrally, 10 cmulate the successss of a
Fischer or 3 Kasparov one must have the motivation, the time and the desise 10 play and stady chess for
many, Many yoars; some cotisats 8 minimum of a decads is needed [Cha77).

To continue, though, let us look deeper into how thess hypothesss were developed.

2.2. Development of 2 Theery of Human Game Playing

As previvusly ssed, De Groot, in the mid 1960s, explosed the reasons why master-level players per-
formed 30 much better than their novice counterparts. Some cight yoars laser, Chase and Simon costinued
©0 examine the performance of chess masters [ChS73b). Their studies involved a sumber of experiments
including a memory test, similer 10 thet conducted by De Groot.

For a period of 2 10 10 ssconds, masters and beginners alike were shown mesningful chess positions
(i.e. thoss tahen from actusl games) containing 20 10 25 pieces and asked 10 reconstruct what they had just
seen. Masters® reconstructive abilities were 93% accurate, experts placed 72% of the corvect pisces on the
correct locasions, class A players scosed oaly S0% while boginners semembered a mere 33% of the pieces.’

3 Poyem ase mnbed based en & aumber of fostess, insinding the mumber of games wen snd lost and with whem ey
wors plsyed. In ths USCF (United Sutss Chuss Fodasmtion) system, the scals is: Class § (baginners) < 1208, Cass D:
1200-1999, Class C: 1400-1999, Class B: 1600-1799, Class A: 1000-1999, Enpen: 2000-2199, Messer: 2200+ and ObMs
genenally have sutings ever 2900 [Qa77].

17

These same players were laser shown random positions (i.e. where pieces were haphazardly placed)
for tho same length of time snd asked 1 reconstruct thee. Surprisingly, the beginners performed just as
wdl(cpa)u&suxdlphmmldnuﬂonly3a4ﬁew(mmy These results con-
clusively showed that the superior players were subject 10 the same short-torm memory constraints as the
weaker players. But when these advanced players were faced with subject material that was meaningful,
they wuly outperformed the less experienced, indicating that some deeper perceptual processes must have
been at work. The ability 10 recognize familiar patierns on the chess board, Chase and Simon found, was &

o
’-

Lateaey
(s0e) 3

L

2F

3 ke A L A

] 1 2 3 4
Number eof Relations

Figure 2.1 Average time required 10 place a chess piece as & function of the number of chess relations.

To botter understand these perceptual processes, Chase and Simon devised what they called a percep-
tion task. Two chess boards were placed on a table, one containing the control position and the other empty.
The chess players wers thea asked 0 reconstruct the control position on the empty board as quickly and as
accurstely as possible (they could look back 1 the position as ofien as they wished). Their head movements
were used 10 segment the patterns (or chunks) of the position, sssuming, of course, that afier each head

18

mCvement ORG pattern was recogaized (i.e. one chunk was eacoded in the player’s momory). It was found
that the piayers placed within-chunk pieces significantly quicker than between-chunk pioces. Pieces within
a single chunk were more closely relasted then those from different chunks: in particulsr, they were related
in terms of sttack and defense properties of the pieces, as well as common color, type and proximity fac-
tors. In fact, they were abie 10 desermine that if the player psused for mose thes: 2 veconds, 8 aew chunk was
being assimilated. Figure 2.1, taken from [ChS73a], clearly illustrates that as the sumber of relations
among a group of pieces (or centred on one piece) increases, the time required for the placement of those
pieces decreases.

2.3. Eye Movements

It wauld seem that the first few seconds (afier any move) are very imgurwss. u s in this time frame
that the master assesses the current situation 10 determine his best recourse, sagmmmng the board 10 find the
important or so-called salient pieces that typify a chunk. Two Soviet psychologists, Pozayanskaya and
Tikhomirov, in 1969, determined that "human intellectual activity is ... clearly reflected in eye behaviour,
which refiects the grasping of various types of interrelationships between elements of situations and estab-
lishes the properties of the specific elements as a result of this interrelationship.” (Poz69).

Figure 22 Middie game position used by Tikhomirov and Poznyanskaya.

19

They placed a chess expert before a chess position (see Figure 2.2) with instructions to seek the best
move while they observed his eye movements during the first S seconds of the experiment. Since the human
eye moves in saccadic motions, they were able 10 recrird 20 different fixations that rested on squares occu-
pied by pieces that any chess player would deem important t0 thet position. Some fixations landed on
empty squares or the edges or comers of the board while the majority of the fixations moved between
pieces that were in one or more chess relations (recall previous discussion) with each other. Interestingly,
the subject seemed to "know" where 10 look next. This suggests that while the player is focusing on the
current square (the human eye can clearly focus on an area of only 1° in radius [Not71]), he must also be
examining the periphery of that square. From visual scanning experiments based on known scanning rases
of the human eye, it seems that some paraliel processing must be occurring - i.e. the actions of searching the
periphery for the next square and preparing 10 move the eye there must overlap in time [ELi71).

The study of these eye movements is relevant 10 the study of chess skill not only because it is an
objective test ("...cye behaviour depends on the problems facing the subject, refiects the nature of the prob-
lem, and most importantly has a problem-solving function™ [Poz69]) but also because it serves as strong
evidence in favor of the hypothesis that players first become aware of the structural patterns of the position
(perception) before they begin to look for a move.

24. Simulations of Memory

To further explain humen eye movements and support the claims of Poznyanskaya snd Tikhomirov,
Simon and Barenfeld {Sim69] developed a program (called PERCEIVER) to0 duplicate the ¢ye movements
of the human piayer; i.c. ind a square on the board, acquire information about the peripheral squares and,
based upon the simpie relations of astack and defense, move 10 another square on the periphery.

PERCEIVER was able 10 show the same pro-occupation with important squares as did the human
expert (sce Figures 2.3 & 2.4). Hence, from using this simple program, it is clear that the chess master first
examines the board for chess significant information (picks out the patterns) and then applies the best stra-

tegy based upon this information.

Figure 2.3 Eye movements of the expert player by Tikhomirov and Poznyanskaya.
‘The squares occupied by the most active pieces are shaded.

Using the result that a player’s reconstructive ability (his pattern recognition processes) depends upon
his chess proficiency and whether or not the position is meaningful, Simon and Gilmartin took PER-
CEIVER one step further, subjecting it 10 the same board reconstruction experiment that the human players
faced. To do this, however, required a number of changes 10 their first approach. They concluded that since
short-term memary can hold only "sevea plus-or-minus two” chunks at one time (see [Mil65]) and not
more than one chunk could be transferred from short-term memory 0 long-term memory in a period of 5
seconds (recall the memory test), the information aceded to reproduce the board after only 5 seconds must
reside in short-term memory; as well, it must be that this information can be encoded in no more than 9
chrinks. To comply with these limitations, they greatly modified PERCEIVER into a system called MAPP
(Memory-Aided Patiern Perceiver).

21

Figure 24 Simulated eye movements made by PERCEIVER.

The thick line is eye movements and the thin lines represent relations
noticed y. The squares occupied by the most active pieces are shaded.

Two years previous o their work, Gregg and Simon [Gre67) developed 8 t wy of discrimination
(built from a system called EPAM - Elementary Perceiver and Memorizer (Fei61]) to explain how the
encoding of chunks takes place (they actually worked with rote-verbal leaming of nonsense syllables but
the principles were the same). In short, the theory states that when stimuli (or chess pieces) match in certain
relations or characteristics of previously recognized stimuli, they are replaced in short-term memory by a
single chunk; this chunk, with which is usually associated a label or name, acts as a pointer into the location
in long-term memory where the actual components (or pieces) are stored. Depending on the complexity of
the chunks, those in short-term memory may actually point to other chunks which, in tarn, point © the
components of the chunk. This hierarchical approach allows the buman 10 effectively “siore” the 20 odd
pieces of the position in short-term memory. Interestingly, it is usually the case that many pieces are con-
tained within more than one chunk. This redundancy helps increase the number of relations between the

2

pieces, leading 10 more accurate recollections of the positions. As De Groot owtlined, the average sumber of
pieces within each chunk is somewhere betweea 3 and 4, while the more “familiar” or frequently encoun-
tered chunks have as many as 6 pieces [DeG6S). It should now be clear how the master could reproduce
positions with 93% accuracy.

Posarn of

et plases BPAM st
°°° _"__.’ ————
L] ® o
* -> —
Ressastrusted
- - — Shess poskien
Chess Pachion Chuske
Salicat plese

is shostaorm
memery

Figure 2.5 A schematic representation of the principal components of MAPP.

Using this theory of discrimination, Simon and Gilmartin designed their MAPP system around a leaming
component and a performance component (see Figure 2.5); this, no doubt, helped Simon develop his learn-
ing model, outlined in the previous chapter.

The leamning mechanism was responsible for simulating "long-term memory” in which the chess
chunks could be siored; the performance component, on the other hand, had © detect the salient pieces in
the position, determine which patierns were present on the bosrd and store their labels in short-term
memory, and Iater decode these labels 10 reconstruct the board (for a more complese description of MAPP,
consult [Sim73b)). To provide comparison with human performance, MAPP was tested on the same posi-
tions as were the humans. However, its repertoire of patierns numbered only slightly more than a thousand.
Table 2.1 illustrates the results.

23

of Pleces Placed

A
Spositions’ § 62 43 34
9positions' | 81 sS4 49

* Positions sfter the 20th move

 Positions whese the plsyer 10 move can securs & decisive tactical advantage
Table 2.1 Percentage of pieces correctly placed by a Master, a Class A player and MAPP.

Not surprisingly, with such a small collection of chunks, MAPP did not perform as well as the master
players (the masters placed about SO% more pieces correctly than MAPP) but functioned better than the
Class A players. More importantly, though, MAPP missed only 30% of the pieces that the masters missed,
indicating that MAPP's patterns were not unlike those of the masters.

From their experiments, Simon and Gilmartin found that not all patserns occur with equal frequency;
as they pointed out, it is most likely a highly skewed distribution (¢.g. harmonic distribution), similar 1o the
distribution of words in natural language. Consequently, they stiempted 10 estimate the number of patterns
required for perfect reconstruction.

As an example, MAPP reproduced a board 20 moves into the game with 55% accuracy using a
mwmallumn%wumdmmwfa 100% accuracy on
boards after 20 moves, then (based on the harmonic distribution),

otrn 1
loglled ~ SS

Solvin;fag”we.umm In addition, boards afier 10 moves were reconstructed with 73% accuracy.

Carrying owt a similar calculation we get x,, = 15,500.

It would seem that the more patterns one has, the better one’s reconstructive abilities. In particular,
MAPP was tested on the same positions using 894 chunks and 1144 chunks. In these test positions, MAPP
placed 160 pieces correctly with the smaller knowledge base compared with 168 using the larger one. The
ratios of the knowledge base sizes and the number of correct pieces seem (0 match, as well: log 1144/l0g

894 = 1.07, 168/160 = 1.05.

The important result 10 recogniae here is not the actual numbers but rather the trends that are evident.
The more chunks a player has at his/her disposal, the more accurate he/she will be in reproducing a chess
position from memory, which, of course, means the more positions the player will recognize as being simi-
lar. However, due 10 the highly skewed nature of the frequency with which these patterns occur, it is prob-
ably the case that doubling the size of one's chunk knowledge base will not double one’s reconstructive
abilities - the law of diminishing returns begins 10 take affect. For example, it may be that 10,000 patterns
will yield 80% accuracy but 10 achieve an additional 19% may require 40,000 new patierns. Hence, the
effort required 10 create these 40,000 patterns may not be worth the 19% increase in performance.

2.5, Some Experimeats

Since this chunking hypothesis was first developed, a number of experiments have been conducied.
Bratko, Tancig and Tancig (Bra86), for example, sought 0 devise a method for detecting positional pat-
tems in chess, similar to what Chase and Simon had done. What the trio wished t0 do was derive chunks
based solely on psychological studies of the master’s behaviour, not artificially define them as Berliner had
done using his CHUNKER program [Ber83]; their method required the use of probability and statistics.

They divided their twenty subjects into two groups: one group contained piayers all rated over 2300
(four of which were grandmasters) and the other group had players rated between 1800 and 2100. Each of

the two groups were shown 24 middle-game positions for periods of 2, 5 and 9 seconds and, as in Chase
and Simon’s experiment, were asked 10 recomstruct them.

Their experiments measured two concepts: a reconstruction factor and collective reconswrucrir The

reconstruction factor (i.c. the success of reconstruction) was defined to be,

PR
PUR

where P is the set of pieces in the original position and R is the set of pieces in the reconstruc - cwsini

F

The term. piece also includes location. As a result, not only is the player rewarded for placing the

25

picces on the correct squares but also is penalized for placing pieces on the wrong squares, 10 eliminase
guessing; the experiments conducted by Chase and Simon and De Groot did not include location in this

A collectively reconstrucsed position is the position that results from the set of the most frequently
placed pieces taken from the subjects’ reconstructed positions. In othes words, a specific piece rests on a
specific square in the collectively reconstructed position only if the majority (some threshold, typically
50%) of the subjects’ reconstrucsed positions contained that piece on that squase.

Based on these two tosts, Bratko et al. were able 10 define the derived chunks as follows: if R is the
set of pieces in the collectively reconstrucied position and Sub(x) is the set of subjects who placed piece x
into their reconstructed position, then a derived chunk is each subset C of R such that

(S(C) =|intersection over C of Sub(x)|> T2 * N
and (H) there is no C' which also satisfies this criterion such that C c C'.

Here, T2 is some threshold between 0 and 1 and N is the number of subjects.

Indeed, this measure could produce chunks that the subjects are not actually using. Nevertheless,
their resukts are rather inseresting. The mean reconstruction factor, F, was betwoen 0.44 and 0.78 (1.00 is &
pesfect score, of course) for Group 1 players but only 0.15 and 0.36 for those in Group 2. Table 2.2, taken
from (Bra86), shows the mean reconstruction factors for each piece-type; note the relative importance of
the pawns.

Using three differents exposuse times, Bratko et al. found that 2 seconds was the most appropriate
time frame for chunk desection whereas the 9-socond exposure allowed the subjects (more notably those in
Group 1) time 10 “think"” sbowut the position and 10 examine attack and defense properties, as well as 10 pick
out features specific 10 the position.

The collective-reconstructed experiment illustrated some fascinating results, as well. Figure 2.6
shows two examples of the experiment. It was found that the mean reconstructive factor for these positions

0334
0.2ss
0.143
0274
0.082
0.107

Table 2.2 Mean reconstructive factors over all positions and for each group by piece-type.

was significantly higher than the average individual performance - 0.68 versus 0.55. Remarkably, the aver-
age number of derived chunks per position tamed out 10 be 7.54 (recall the "seven plus-or-minus two"

rule).

As one can see, the results generally concur with the hypothesis proposed by Chase and Simon; i.c.
the stronger the player, the betier his reconstructive abilitics. In addition, their methods readily derived
chunks that seem "quite natural” [Bra6). However, properly setting the thresholds, T/ and T2, remains to

be rigorously determined.

Taking a different approach, Kopec et al. [Kop86) conducted experiments 10 see how the perfor-
mance of humans and chess programs varied with time. A number of experiments were performed, two of

which provide additional insight 10 the chusking hypothesis.

Pairs

1300-1599
1600-1799
1800-1999
2000-2199
2200-2399

250
100
200
230
100

Table 2.3 Rating improvement of subjects working in pairs compared 10 working individually.

27

The first experiment (calied the Pairs Experiment) was designed 10 see if bumans performed beter in
peirs then as individuals. Results from [BraB6) suggosted that this is wue. Prom using a sample of fifty-
cight positions, it was shown thet the rating for & pair was typically in the category above that for each of
the individuals for the pair; ¢.g. two Class C players would perform as well as a Class B player. Table 2.3
illustrates their findings; the average improvesnent seems 10 be near 200 rating points. Using the F-test, they
concluded that, with 99% confidence, the ratings were statistically improved.

One of the other experiments used, called the Time Sequence Experiment, was designed (o see how
human performance varied with time. Subjects, rated from 1600 o 2300, were shown four sets of 10 posi-
tions for periods of 30 seconds, 1 minues, 2 miswses, 4 minutes and 8 minuses. Results from the 4 and 8
minute test indicated that those players rassd 2000 and above scored as much as 20% higher than those
rated below 2000; on the shorter test, howaver, the increase was less than 8%. This shows that, given
enough time, stronger players can distinguish themselves from weaker ones, developing a greater under-
standing of the problem at hand; perception and recognition - that is the key.

2.6. Results & Direction

In any event, it should be evident that a master or grandmaster plays near perfect chess as a result of
the thousands of patserns (somewhere near 50,000)* at hisher disposal and the only way 10 acquire such a
large number is through howrs and hours of practice. By the same token, it seems reasonable that if a chess
program could somehow access thess 50,000 patterns with their associsted game plans, it migit play
significantly beser chess and bring it one step closer 10 achieving grandmaster status.

By providing chess programs with grandmaster advice, we believe, is the only sure way of creating a
world champion - one thet rivais the top human players.

4 Cousidering thet highly lisssate peopls have vocabulariss of 50,000 words or more, Simon aad Gilmastin concluded
this estimats 10 bs sesscnable.

Chapter 3
System Design

3.1. Intreduction

For MACH 10 be considered a wseful system, it must possess an effective similarity measure and a
fast search procedure. Its main task is ©© quickly find the most similar positions in s large detabase to each
one it encounters over the cowrse of a game. Thea, once these similar positions are retrieved, further tests
must be conducted 10 see which are the best matches in terms of material balance, piece location, exc. In
other words, through the use of similarity criteria, we wish 10 extract readily only a small subset (perhaps a
hundred or 30) of positions out of the millions in our datsbase, 50 that more extensive filiering can take
place.

In this chapter, we will detail the design of MACH which will include a discussion of its components
and an outline of some options for an eficiont search routine. To begin, we will describe the necessary
qualitics that cur database of games (called the GAMETREE) must possess 10 be useful; one of the deciding
factors in its design will involve its enormous size. The next item that will be considered is the develop-
ment of efficiont access methods for this database. Creating what we call a FEATUREndx, developed from
our similarity measures, will help in this segard. The creation of this FEATUREndx will be briefly outlined,
saving the details of its contents for chapter 4; this will be followed by a survey of related work on partial-
metching algorithms and an snalysis of thees approaches 10 the partial-matching problem. To summarize
the chapeer, a diagram illustrating MACH's file Creation procedures will be presemted.

31. The GAMETRER

A key slement that has lead 10 Cur development of & chess experience teacher is the sbility ©0 heve
grandmaster chess games easily accessible in machine readable format. Suddenly, all the chess knowledge
one would ever need is contained in one packags; the trick, however, is 10 extract this knowledge properly
and use it 10 one's advantage. Consequently, the swructuring of the GAMETREE becomes of paramount
importance.

Given that there are, on averags, §0 positions per game and approximately 6000 ssw grandmaster
games are piayed cach year, it is immedistely cbvious that there exists almost a half million positions each
year! In actual fact, the sumber of asw positons is probably closer 0 350,000 since many games opea in
similer fashions. Notwithstanding, ons can easily forecast a detabase of millions of positions if games are
included for the last haif contary. Cloarly, it is evident that efficient sorags of thess positions must be of
great concern. Moreover, we must keep in mind the principles involved 10 attain cognitive economy
(Lea?).

3.2.1. A Deta Structure

A chess game proceeds in & serial faghion, with each side altermating moves. Heace, one can con-
struct position-j from position-i (ot i < j) by executing the moves after posision-i that resulied in position-j;
i.e. given any position, ons can computs aay other following position by simply knowing the moves
involved. Since the stanting position of a gams is always the same, all one requires is the set of moves of 2
game 10 comstruct every position tat occurred in that game. This suggests that it is act aecessary
remember positions of games, oaly the moves. So our database of positions need only be 3 datsbase of
moves aad pointers linking thess moves. This fact helps owr concern for storage efficioncy - a 6-bit move is
cerminly prefersbis 10 a 64-equase chess board.

Another notion which can help reduce storage use is 10 have the games represented with 80 repeated
positiong. A common opening, such as Pd244 (wrinea in algobraic notation), need a0t be stored for each

31

mhwﬁhmﬂ;ﬂu.lﬁﬂmhﬂ“hwmw“(ﬁm
differcat games) can be linked 10 this common opening move. This idea can be repeated throughout the
datsbase, as well. Unfortunately, identical positions which occur st different points throughout individual
games (e.g. st ply #10 in game #24 and ply #34 in game #455) will be repeated. Linking these moves is
M.My.mumwhmmm“mumumm
our test sysem. Consequently, only those identical positions which occur at the same point in different
games are represented only once.

Child Parent M Sibling
link link ove link

Figure 3.1 Data structure for a node in the GAMETREE.

]
Pé2d4

I

o—bose—bi 9 N | Pe7e6 | 0

Pigure 3.2 A typical GAMETREE configuration.

Given that only moves are stored for each game in our database, they must be properly linked t0 each
other in order 10 reconstruct each of the positions. As a result, each entry (or node) in our databese should
mumﬂmmWﬁamnmmmmWM)uamnu

32

next move (its child node). Once all the links are in place, the database of games becomes simydy a large
tree (hence, the name GAMETREE). As will be apparent laser, another pointer is required linking each node
with its sibling. Hence, all moves from a game will be linked using a doubly-linked list while all child
nodes of each parent will be linked using a singly-linked list. Figure 3.1 illustrates our data structure for
cach node in the GAMETREE aad Figure 3.2 describes a simple GAMETREE configuration. As illustrated,

each node occupies only 14 bytes of storage.

32.2. Adding Games

PROCEDURE ADD_A_GAMEQ

BEGIN

IF the GAMETREE is empty THEN
ADD_&_LINK(O)

ELSE
Position st root_node in GAME” REE
WHILE current_move matches cwrent_nods DO

Advance © next_move in gams and next_node in GAMETREE

END WHILE
ADD_&_LINK()

ENDIF

END
RETURN

PROCEDURE ADD_&_LINKO

BEGIN
WHILE there are moves left in the current_game DO
Crests 2 new move_nods
Add (next) move from current_game %o current_nods
Link current_nods 10 parent_nods
Link parent_nods 10 current_nods
END WHILE
END
RETURN

Figure 3.3 Pseudo-code describing how t0 add a game 10 the GAMETREE,

With this data structure intact, adding moves (and games) to our GAMETREE becomes relatively
straightforwand. Figare 3.3 illustrases our ADD_A_GAME() and ADD_& LINK() procedures. Of course,
games inust first be added 10 the database before positions can be retrieved.

33

There is one major flaw in this ADD_A_GAME() routine that may not be obvious. To illustrate, let
our GAMETREE contsin the nodes of the sample configuration of Figure 3.2 and let the game we wish to
add contain the opening sequeace of moves, "Pd2d4, Pc7cS, Pc2c4...". Since the GAMETREE in Figure
3.2 is not empty, we immediately proceed to check for identical openings. The opening move of the game,
Pd2d4, masches with the root node of the GAMETREE; 30 the next move of the game, Pc7c5, is read and
the child pointer of the root node in the GAMETREE is followed. At this point, the current node, Pd7ds,
does not match the current move in the game. However, its sibling pointer does point to the move Pc7cS.
Consequently, the WHILE in ADD_A_GAME() would fail 10 find this fact and proceed to duplicate a move
unnecessarily. To correct this, all nodes at the level where the first masch failed must be examined. If no
more nodes exist at that level, caly then can the checking stop. As a result, our ADD_A_GAME() routine
must be modified into the algorithm described in Figure 3.4.

PROCEDURE ADD_A_GAMEQ

Position at root_nods in GAMETREE
WHILE current_nods matches game_move OR sibling_ptr is not NULL DO
IF masch THEN
Advancs © next_move in game and nods in GAMETREE
ELSE
Advancs 0 next_sibling_sods in GAMETREE
ENDIF
END WHILE
ADD_&_LINK()
ENDIP
END
RETURN

Figure 34 Improved pseudo-cr ‘e describing how to add a game 10 the GAMETREE.

It should now be obvious why a sibling poister for each node is required: we noed a way of linking a vari-
able number of nodes at each level ia the tree.

323. Conmstructing Positicns

Now that we have routines 10 add games 10 our GAMETREE, we must be capable of constructing a
chess position, given an arbitrary node in the wee (since it is really the positions we will be masching). This
task is actually easier than adding games simply because each node is linked 0 its parent node and its child
node. Starting at a given node, s, we recurse back up the tree using the parent pointers until the root (the
starting position) is reached; then we traverse back along the same path, making each move as we go, until
node s is reached.

PROCEDURE CONSTRUCT_POSITIONO
ARRAY moves(]

BEGIN
wtal_moves = 0
WHILE perent of current_node < NULL DO
curent_node = parent_nods
otal_moves = total_moves + 1
moves{total_moves] = current_move
END WHILE
FOR i = 0 to0 10tal_moves DO
MAKE_MOVE(moves(i])
NEXT
END
RETURN

Figure 3.5 Pseudo-code @cscribing how to construct a position.

Figure 3.5 outlines the CONSTRUCT POSITION() algorithm in detail. As each move is encountered,
it is stored in an array for rapid processing: once the root is reached, we simply process the array in reverse.
The MAKE_MOVE() routine mentioned in the algorithm is a routine that any chess program would use o0

make a move; this allows us 10 maintain compatibility and eliminate duplicase coding.

35

33. The FEATUREndx

It is should now be clear that once we are positioned at a node in the GAMETREE, we can casily
reconstruct its corresponding position. Unfortunately, finding a set of similar positions is not 30 easy. PP In
order 10 match positions, we must be able 10 discern the important features of them. Consequently, it seems
reasonable to assign some sort of featwre tag 10 each position in the GAMETREE that would indicate the
important features of the position. We could create an index file or group of index files, referred to as the
FEATUREndx, whose records could contain a feature tag of a position along with a pointer 0 the
corresponding position in the GAMETREE. Then, given any position, we could compute its feature tag,
search the FEATUREndsx for identical or similar tags, and follow the pointers into the GAMETREE; follow-
ing thet, for each candidate position, 8 more thorough similarity computation could be performed 10 find the
best match.

At a conceptual level, the task is very simple; implementing efficient procedures 10 carry out the rask
is not. It is apparent that two problems must be addressed:

* calculating this featwre tag

* rapidly searching the FEATUREndx for maiches.

From our discussion of chunking in the previous chapier, it seems appropriate that determining what
chunks existed in & position would produce a reasonabie measure indicating the important features in the
position; our festure tag could simply be a list of the existing chunks. So, given a position in an actual
game, we could chuak the position, cresting a list of its chunks, and then scan the FEATUREndXx for a simi-
lar list - & position does not necessarily require the same chunks 1 be considered similar.

For now, lot us sssume that we can accurstely compute the important features of a position and

readily store it in the FEATUREndx 30 thet we may tum our attention 10 examining ways of retrieving simi-
lar lists from this, presumably, huge file (or set of files).

33.1. Accessing the FEATUREndx

Ouwr FEATUREndx, as already outlined, is the main link into our GAMETREE. Given a current posi-
tion, we wish 10 develop 8 method 10 scan this index file as Quickly as possible, retrieving those links to
positions in the GAMETREE which are likely 10 be similar. Each FEATUREndx record containg a list of
the chunks that are presont in a particuler position in addition © a pointer 0 that position in the
GAMETREE. Our method should pick out those records whose chunks match some subset (proper or
improper) of the chunks of the current position (i.c. the one for which we want similar positions). Requiring
only a subset of the chunks 10 masch is, ultimately, what makes finding an efficient search procedure so
difficuls.

We require only a subset of chunks 10 match (as opposed 10 an exact match) for a number of reasons.
The most significant reason involves our addition of knowledge 0 MACH. Our chunks are defined by an
master-level chess player using a simple chess language (this language is described in the following
chapter). To pick out the chunks, MACH needs 10 know what to look for; however, our chunk descriptions,
since defined by a human, are subject to errors and omissions. By not restricting ourselves 10 exact matches,
we can overcome some of these problems. In addition, since we have not yet developed a method for deter-
mining a chunk’s importance in a position, we do not know which chunk will cause a position t0 be dis-
similar. By setting a tolerance for our maching, we can, in some ways, circumvent the importance prob-
lem.

3.3.2. The Partial-Matching Problem and Related Work

The general partial-matching problem can be stated as follows: given some key, &, with a attributes
(or characters, for simplicity), we wish 10 examine an index file (or files) containing r records (>> 0),
retrieving those records that match m sttributes of k (m < n). The relative positions of the m matching attri-
butes is immaserial; e.g. the string "2679" should maich the key “12689", if m = 3 since the 2, 6 and 9
values match.

37

Unfortunasely, the cusrent liserature surrounding this partial-matching probiem is far from complese.
For the most part, only special cases of the general problem are touched upon. Rivest [Riv76) developed
hash-coding and tree-search algorithms for searching a file 10 find all occurrences thas masch s letters of a
k-letier key. For instance, his algorithms were able 10 quickly find all records in 8 file that madch the word
"W*RD", where the "*" is a "don’t care” character. Upon first glance, this appesrs 0 30ive our problem.
However, his method requires the W, R and D 10 remain in exactly the 1st, 3rd snd 4th positions. While we
could easily find the words, WORD and WARD, we could not find the word SWORD, since the word does
not begin with a W.

Donald Morrison [Mor68) developed his PATRICIA system (0 regieve information coded in
alphanumeric. An attractive feature of his approach is that the effort required to find a key is dependent
solely on the length of the key; i.c. even if the size of the search file doubleg of triples. the search time to
retrieve a particular key remains the same. His unique use of indices linking beginnings and endings of
words as well as substrings of words falls short of finding words within word®, unless the word you are
looking for begins with the correct letter. Fredkin's use of tric memory [Fre61] lacks the fame necessary
ingredient; if the string "BEAD" is stored in his trie memory configuration, it i8 possible 10 find the string
"BEA" but not the string "HEAD".

A recent publication by Blumer et al. [Blu87) goes farther but their function find(w) which retumns the
longest prefix of w that occurs in a database does just that - finds only the prefix.

3.33. Thres Approaches

Faced with this dilemma, we sought s simpie path 10, at icast, demongumes the MACH works with
Phoenix snd works reasonsbly well. Though not adequately solving the general seach problem, we will
examine three different data structures. They are (1) inverted files, (2) tries, and 8 hybrid Of these we will
call (3) restricted enumeration. Note that a more "efficient” data structure or alforithe would not alter the
correctness or validity of our approach; rather, only an increase in execution Speed snd/or a reduction in

sorage would be realized.

334, Inverted Files

This first method is, perhaps, the most naive approach of the three presented. However, its simplicity
allows for minimal programming effort, producing eesy implementation and quick results.

There are a number of definitions describing inverted files in the literature, some being more special-
ized than others. For our purposes, though, we define the following: for each chunk (1,....c), we construct a
file, each containing pointers 10 all those positions in the GAMETREE in which the chunk exists. For
example, the records of file_i would simply consist of pointers to all those positions in the GAMETREE in
which chunk i was present.

If the position in question for which we want similar positions contains chunks (i, j, k), we simply
merge file_i, file_j, and file_k and find all records in common (i.c. retrieve any duplicate pointers © the
GAMETREE). Since there are ¢ chunks and p positions in the GAMETREE, there are a maximum of cp
entrics. As a result, doubling the number of chunks or positions merely doubles the amount of storage
needed, in the worst case. Unfortunately, as the size of these files increase, the time required w0 merge f
files and search for duplicates also increases.

It is obvious this use of inversed files is unacceptable in a real-time application since response time is
the most critical facsor. Conceivably, p could equal 1,000,000 and ¢ could be 10,000 or more. Merging five
or six files of this magnitude and searching for duplicates would certainly yield unacceptable performance,
ot least as far as & chess program is concarned. Nevertheless, this approach is guaranteed to find all posi-
tions in common - a mare efficient implementation could not improve on this result. Moreover, its attrac-
tiveness lies in its minimal programming effort and linear storage requirements. For test purpoees, though,
we can keep p and ¢ small,

39

335. Tries

As a data strucasre, tries were introduced almost thirty years ago. A trie is a form of m-way tree (m 2
2) which stores records at its leaves. The order in which the records are stored has a significant effect on the
search time. Unlike the inversod filo approach, the benefit of this type of structure lies in its fast retrieval
times; notwithstanding, what we gain in speed, we lose in storage requirements. Specifically, this structure
grows exponentially, O(2") in the worst case.

To demonstrate how we can adapt iries 10 our scenario, consider a simple example with ¢, the number
of chunks, equal 10 4. For cach position in the GAMETREE, we know (hopefully) there exists & non-empty
list of chunks. To help matiers, we can insist that this list is 10 be kept in sorted order and cach entry in the
list is 10 be unique (i.e. chunk i can occur at most once). With these constraints, we asrive at the tree in Fig-

ure 3.6. The circles represent chunks and the squares represent pointers to positions in the GAMETREE.

Figure 3.6 A simple tric forc = 4.

mmsmma.s.c).mmmemdmm-ummmmm
itself. This is & result of the sort restriction. In general, for each node { at level /, the maximum number of
sons at level 1+1 is c-i, where ¢ is the sumber of chunks.

mmmmm«j.t).nmwywmmmum
mmmmm:.m.unwuummmmzdmsam
listed, our search procedure is a bit more complicated. In particular, we must look for positions containing

40

ol) i 1),) B, G0 D). G ® B, G, %K), G, *), G &, *), and . &, ©), where °** is a don't-care
uynbd-hmmnynheﬁulnc-mumhhhmah.wum
w“ﬂhﬂﬂhﬂﬁmﬂﬁcm“&hhdﬂmﬁbhhﬂﬁh
method in terms of speed. Unfortunately, it is much more dificult 10 program and the sorage needs are
expensive.

To increase the number of chunks in our previous exampie from 4 10 5 means doubling the number of
nodes in the worst case (see Figure 3.7). In actual practice, this number is, likely, smaller given that some
mWM&Mh»MMdM04M3MWWMM
ldnelolhewlthhichendtledeﬂmd-heaee.lly(l.3....)combimﬁouvillnotbewm
the tree (refer 10 the branches shaded in the figure). Nevertheless, it is the posential explosive growth that
discourages practical use of this spproach. For values of ¢ in excess of 20, our wrie becomes unmanageabie.

root

0 © ORORO
A OO0 G OO OO

o] o o [oRONoRoNoNCHoRERD

o elo oo OM0NDMN M

o 1]

Figure 3.7 A trie withc=$.
The shaded branches would not occur if any (1,3,...) combinations were impossible.

41

33.4. Restricted Enumeration

It appears there is nO easy way 10 stop the exponential growth of the problem. But if there were some
way 10 inhibit this growth, it may be a visble altemnative. By capitalizing on some of the domain-dependent
properties of the problem, we can achieve reasonable file sizes and relatively quick access times; as a result,
we arrive at a method called restricted enumeration which will be described below.

The one feature that we know remains small is the number of chunks per position. Simon and Chase
[Sim73a] have already shown through their memory experiments that the maximum number of chunks a
GM recognizes on a particular board position is in the neighbourhood of 7, plus or minus 2. This, as you
recall, is conmsistent with the notion of a limited short-term memory. By restricting the number of
chunks/position 10 9, we have accounted for a great majority of positions while limiting the number of com-
binations possible. It is true that restricting the number of chunks/position will shrink the size of the tries,
as well. However, we will show that our hybrid takes advantage of both tries and inverted files to yield a
better solution.

Another parameter we can reduce is the number of files needed. We know the some chunks are
definitely instances of others (recall the PERCEIVER implementation of the previous chapeer). As a result,
it is probably worthwhile t0 take a hierarchical approach; thus, each chunk will belong to some equivalence
class of chunks or chunk-class (hereafter called a c-class). Each c-class would contain chunks having simi-
lar descriptions (e.g. castied patterns) and would be specified by a buman expert. By doing this, we can,
hopefully, reduce the number of different files from tens of thousands 0 50 or 60. SO nOw we can say a
position contains c-Classes instead of chunks.

To continue, let the wtal number of c-classes equal ¢ and the number of c-classes/position equal r.
Hence, the number of possible combinations is [ﬁ] In addition, we will impose two other constraints: (1)
all positions must have no more than 9 c-classes and (2) given a position with 7 c-classes, a potentially
similar position is one which maiches at least r-7 of these classes. Chapter S will illustrase some test results
indicating why -1 was chosen as opposed 10 7 or r-2. Again, because our chunk descriptions are subject to

42

errors and omissions, we do not want 10 restrict ourselves w0 perfect maches. We believe, though, that
these constraints will give us the maximum return for our effort. Our intuition tells us that few positions
will contain mare than 9 c-classes (assuming our chunks ase adequately construcied and implemented).

To get a handie on the values of (€], we refer 10 Table 3.1 (for bvious reasons, we chose our ¢
values 10 be powers of 2). You can casily witness the exponential growth: by doubling ¢ from 16 10 32 with

r = 4 increases the number of combinations by a factor of almost 20 and by a factor of over 800 with r = 8;
doubling 7, on the other hand, has a much less effect.

33.4.1. Setting up the Index Files

For each of the 9 values of 7, let us assign a file, the maximum number of records that could be used
in each corresponding to the entries from Table 3.1. For example, if we limited ourselves 10 16 c-Classes,
then our file representing the positions with exactly 4 c-classes/position could point to a maximum of 1820
positions, one record for each of the 1820 combinations. For those positions that mapped into a record
already occupied, they would be stored in an overflow file. Conceivably, we could have a file of arbitrary
size and place all collisions into the next available spot; however, we wish 10 search each c-cClass file as
quickly as possible and duplicates would degrade the search time.

For the next step in our description, let us assume that there are 900,000 positions (representing 10-
15,000 games) we wish to0 place in our GAMETREE and that these are evenly distributed across our 9 files;
i.e. there are 100,000 positions that contain exactly 1 c-class, 100,000 positions that contain exactly 2 c-
classes, and 30 On.

Let us now consider the values in Table 3.2. For values of ¢ and 7 in Table 3.1, based on 900,000
positions, we have determined the percentage of the records occupied in each of the 9 files along with the
average number of collisions per record (this number assumes each c-class has the same probebility of
occurring, namely 1/c, which, in actual practice, is probably not true since certain patterns in chess occur
much more frequently than others).

1 16 32 64
2 120 496 2016
3 560 4960 41,664
4 1820 35,960 633,376
S 4368 201,376 7,624,512
6| soos [o612 | 74974368
7] 11440 | 3,365,856 621,216,192
s | 12670 | 10510300 | 4426165368
9 § 11440 | 28,048,900 | 27,540,584,512
Table 3.1 Number of [¢] combinasons.

From Table 3.2, we can see that as more cclasses are present, the less the number of collisions that
occur. More importandly, though, with a relatively large number of c-classes, we can achieve a greater
granularity for betier filtering of unwanted, dissimilar positions, which is the sole reason why we need a

feature index.

Table 3.2 Percentage of records occupied and average number of collisions.

16
% fall avgd
14 collisions
1§ 1000 6250.0
2 § 1000 333
3§ 1000 1me6
4 | 1000 549
s § 1000 29
6 § 1000 125
7 § 1000 8.7
8 | 1000 78
9§ 1000 t N J

“

To continue, we shall ke this analysis ome siep 'rther. We now want aa eficient way of sworing a
c-class combination list 30 thet it is easily calculated and can be quickly found.

There are two casy Ways 10 represent a string of numbers such as (2, 4, 5, 6, 14); think of this string
as a list of c-Class identifiers that could be sored in the file containing exactly S cclasses. The first method
assigns a bit for each different sumber in a certain range, combines these bits into a string, and sets each
corresponding ith bit named in the string: we will call this method simple-bir-assignment or SBA. The
socond method desermines the binary representation of each clement in the string, stores it in an a-bit block,
and combines each of the m eloments into one mmn-bit string; this method will be referred 10 a8 bit-sAifting-
assignment or BSA). For example, using simple-bit-assignment on the sbove string of numbers (sssuming a
range of 16 different numbers wer- ‘lowed) yields the following bit representation: 0101110000000100 -
here, the 2nd, 4th, Sth, 6th and 14x b s are set. Using bit-shifting-assignment we get a totally differont
representation: 001001000101C - '+~ here, since four bits are needed 0 represent & sumber from 0
18, each group of four bits represents one of the numbers; ¢.g. the first four bits, 0010, corresponds 10 the
number 2, the next four, 0100, represeats the sumber 4, and 30 on.

For this simpie exampie, 16 bits are nooded 10 represent a string of S sumbers using SBA whereas 20
bits are noeded 0 represent the same string using BSA. Obviously, we would chose the method which
requires the least amount of storage. However, the size of the range can make BSA more space efficient thaa
SBA. Table 3.3 illustrates owr point. Whea we have as many as 64 differont nambers in our swing, the BSA
method outperforms SBA in all respects.

45

Bits nesded o represent 7 integers
from O 0 c-J
c
16 32 64
r | SBA | BSA]| SBA | BSA || SBA | BSA
1 16 4 32 5 64 6
2 16 8 32 10 64 12
3 16 12 32 18 64 18
4 16 16 32 20 64 y/
] 16 20 32 25 64 30
6 16 u 32 30 64 36
7 16 28 32 35 64 42
8 16 32 32 40 64 43
9 16 36 32 45 64 54

Table 3.3 Comparison of storage needs for SBA and BSA.

33.6.2. Using the Index Files

Given 900,000 positions in our GAMETREE and a representation for coding each of éhe c-class com-
binations, we wish to get a feel for the sizes of these index files. Since each of the nine files can experience
overflow, it is necessary 10 associate an overflow file for each for a total of 18 files. We will use the naming
convention file_r and file_ro (for each of the 9 values of 7 in Table 3.1) for each data file and their

Each record in each of the 9 data files will consist of a combination list of c-classes in a certain posi-
tion along with a pointer 10 cither that position in the GAMETREE or a record in the overflow file or both.
Each overflow record will contain a pointer 0 8 position in the GAMETREE as well as a pointer o the next
collision that occurred from the same c-Class list.

Initially, records are added 10 each data file one afier another using some form of an insertion sort; for
large values of ¢, records are stored using the BSA coding. This method can become very slow for large
files but it is used only to add positions, a task that is performed occasionally. On the other hand, since each
file remains sored, any record can be quickly retrieved using a binary . #ch. If a record collides with an

46

existing one during an add operation, i is simply written o the next location in the overflow file and the
pointer from the data file would hold the location of this overflow record; multiple collisions from the same
record would subsequently be linked sogether in the overflow file. Of course, the order in which records are
added to the overflow files is immaserial since each group is linked by pointers.

Since the data files are sorted, finding matches is straightforward. If a given position contains 6 ¢c-
classes, a binary search would be conducted on file_6 o find the specific c-class combination list of the
given position. If it were found, the pointer attached 10 the maiched record would be followed into the
GAMETREE where further similarity tests, which will be outlined in the next chapter, could be used on the
candidate position found there. As well, if the overflow pointer attached 1o this matched record were not
null, meaning multiple positions contained this c-class list, it, 0o, would be followed into the overflow file
and the list of these overflow pointers would each be used to trace through the GAMETREE to find addi-
tional candidate positions. If we required only r-1 c~classes i match, file_S could be searched in a similar
manner 0 maich the subsets of S c-classes of the c-class list of the position.

To determine the maximum file sizes of each of these 18 files, we will consider them separasely, for
each of the 3 values of c in Table 3.1 (16, 32, & 64). The sizes are determined according to the following
simple formulae:

fle_r_size =max_#_records * (c—class_size +2* pointer_size)
Ale_ro_size = max_#_records_in_file_r * avg_# collisions * 2°* pointer_size
Pointers generally occupy 4 bytes but may expand 10 8 bytes when the number of positions grows beyond 4
billion (i.c. 233,

Table 3.4 illustrates the space requirements for the 18 files. For ¢ = 16, note that the overflow file is
considerably larger than the corresponding data file. This is due 0 the small number of different records
that can be represented. On the other hand, for ¢ = 64, the size of the overflow files is virally 0 for ple_70
10 file_ 90, meaning there are very few collisions; this is a result of a large number of combinations. The

sizes of 1l of the overflow files are rounded up to be divisible by eight since each record is typically eight

47

bytes long.

It would scem that the more c<Classes you have the betier. Not only have you increased granularity
for weeding out dissimilar positions but also have made better use of storage space. The 3.5% increase in
total storage from ¢ = 32 10 ¢ = 64 is almost negligible. As well, using slightly more than 10Mbytes of
storage to index 900,000 positions, we belicve, is a reasonable tradeoff.

Flle Sizes (bytes)
c
16 32 64
144 288 576
800,000 $00,000 $00,000
1080 4960 20,160

$3,088 | 1,200,000 | 1,300,000
file_6o 800,000 98,288 1072
file 7 137,280 | 1,300,000 | 1,400,000
file_70 800,000 23.768 136
file_8 154,440 | 1300,000 | 1,400,000
file_8o
file_ 9
file_S¢
- 7...

Tabie 3.4 File sizes for the 18 files that make up the FEATUREndx.

3.4. Current State of MACH

It is clear that each of the three methods discussed have their merits: inverted files are simple to test
and implement, tries have fast retrieval times, and restricted enumeration makes efficient use of storage
with reasonable search times (a binary search is all that is needed to search each of the files for the first

occurrence of c-class list).

Our objective is 10 test whether MACH helps a chess program piay better chess and to achieve results
as quickly as possible. C .-sequealy, we chose the inverted file approach since it was the easiest method to
implement. Our hybrid would probably perform better but its superior performance would not improve the
advice from MACH, only find it quicker. Indeed, an even more efficient search procedure, no doubt, can be
found; so there is no point wasting time implementing a more advanced algorithm if MACH cannot provide
useful advice in the first place. This search problem remains a topic of further study.

Below is Figure 3.8, illustrating the file creation procedures of MACH. MACH processes each game.
in the file GAMES using the BUILD program. This program first extracts the moves and stores them in a
list. At the same time, each position is chunked (i.c. determine the chunks that are present) and the c-class
in which each chunk belonged is added t0 a cclass list; this c-class information is pert of each chunk’s
description. When all the moves have been gathered, the move list is added 0 the GAMETREE using the
ADD_A_GAME() routine discussed previously and then, for cach c-class, the appropriate c-class index files

are updated 10 contain the pointers of the positions in the GAMETREE in which each c-class occurred.

49

£
o
!

-

/E)

N, Heas
=T E

Pu-n h‘n

Figure 3.8 File creation procedures of MACH.

Chapter ¢

Similarity snd Chuakiag

4.1. Introduction

Until now, we have glossed over the details of how to chunt a position; i.c. extract its relevant
features. Instead, we have concentrated our efforts on properly constructing the GAMETREE and develop-
ing a method 10 search through it for a desired group of positions. In this chapier, however, we will tumn our
attention to the difficult task of developing a reliable similarity measure - indeed, the issue at the heart of
this project.

The study of cluster analysis in the field of statistics is sble ©0 supply an application-independent
algorithm for measuring similarity; in fact, Van der Meulen discussed this in his development of proper
weight assessments for evaluation functions (Van87). Indeed, its methods are based in well-established
theories but they lack the pieces of application-dependent knowledge necessary to handle the intricacies of
chess. For example, two positions can be identical in every manner except for the position of one king, and
that can be significant; on the other hand, the difference in only ~ne pawn is usually not enough to consider
the positions dissimilar. It is the relative importance of chess specific knowledge that discourages the use of
numerical methods such as cluster analysis.

Consequently, given the psychological evidence that humans chunak, it will be useful w0 express a
chess position in terms of those chunks in order 10 distinguish important features that will lead to the
development of a similarity measure for the position. Hopefully, by doing 30, a lot of irrelevant information
will be eliminated from the position. To accomplish this effectively, however, will require considerable
chess knowledge (of course, our GAMETREE is sbundant in this knowledge but we must have a way to
extract it). To follow the philosophy of Zobrist et al. [Zob73], we will abandon the use of expert program-
mers and head toward methods that allow chess masters 10 easily express this knowledge 0 us.

51

42. Language snd Grammar Development

By far, natural language is the medium through which most humans arz most comfortable communi-
cating (Chess masters, included). While the study of natural language understanding is certainly a complex
topic in itself, we can, nevertheless, design a simple language specific to chess 1o capnre much information
(this may not be the most efficient way for the masters to communicate but altemate methods, such as a
graphical interface, will be outlined later).

The quality and quantity of the features of the language will determine how useful and accurate the
master-defined chunks will be. To help in deciding what features would be useful in a chunk language, we
can, once again, draw on the results of Simon, Chase and Gilmartin and their PERCEIVER and MAPP sys-
tems. Recall that PERCEIVER was able 10 duplicate the eye movements of a master by simply adhering to
the astack and defense properties of the pieces as well as 10 commonality of piece-color, type and proxim-
ity. Given these fundamenial position features as a basis for the language, i is reasonable to assume that,
for each chunk that can defined, there should exist some minimum set of pieces on specific locations that
must be present for the chunk 0 be present; i.e. if pieces p and g are on squares s and ¢, then chunk ¢ is
present. By the same token, additional pieces, other than those in this minimum set, may be a part of 2
chunk and, if present, should be included in its makeup; their absence, though, would not affect the chunk's
existence.’ Consequently, our language should define a set of required pieces and a set of optional picces
necessary to form a chunk.

An additional feature which is necessary arises from our discussion of c-classes. We found it helpful
10 structure chunks logically in a hierarchical faghion, since many chunks can be defined in terms of others,
For example, we could define open_file a8 a chunk whose definition would require no black or white pawns
on a given file. In addition, a chunk called fle_control could be defined whose makeup would include the
conditions of an open file. Hence, our languags should be flexible enough to allow one chunk to be defined

5 Though thees optional pisces ase ot truly wilisss 1y ow emment system, their pressacs can bs sead 10 determing the
pisces invalved with sach chunk, theseby discovering what piesse wers missed by the chunking process.

52

in serms of other, less compiex, chunks 30 that a respecification of the smaller chunks is not neces. «,

This open_file scenario brings up another point: namely, that of instantiation or parameserization. It is
certainly preferable to specify a simple generic chunk, like open_file, and supply a parameser detailing
which file is open rather than creating a separate chunk for each of the possible cight open files that could
arise. It should be evident that by combining instantiation with the hierarchical facilities just mentioned, a
large number of chunks can easily be created.

For all chunks, their presence can be noted from either the attacking side or defending side or more
precisely, from white's point-of-view or black’s point-of-view; conceptually, it is the same chunk so our
knowledge base of chunks need not include copies of each point-of-view. In a similar vein, many chunks
can be present on either the king's side or the queen's side of the board (castling is a good example). Con-
sequently, only one side need be specified for our chunk knowledge base. As well, it is possible for a
chunk to be expressed with respect 10 (wrt) color and board side (of course, if a certain pattern is in the cen-
tre of the board, it need be expressed only wrt white or black). It should be clear from this discussion that
our language must be capable of handling the specification of chunks with respect to one of these four areas
(white-kingside, white-queenside. black-kingside, and black-queenside) thereby minimizing coding effort
for the master while increasing chunk-data integrity. With this in mind, our chunk-detecting mechanism
must be able 10 transpose a specified chunk into each of these four areas implicitly.

Another way 0 minimize coding effort is 10 include special conjunctive and disjunctive symbols to
handle conditions. In most programming languages, to specify the disjunction of two or more conditions,
each condition must be completely expanded to avoid ambiguity; e.g. to determine if A isequal 0 1,2 or 4,
one must say,

IFA=10RA=20RA=4THEN ..
Our chunk language, however, need not be so verbose. Specifying pieces and locations for a chunk can
quickly.become tedious. To see if a white pawn (WP) is on squares F? or F3 or G3 or G4, we can say,

REQUIRE WPONF2/F3/G3 /G4

53

Here, the /" symbol is a special disjunction symbol to distinguish between the logical disjunction of condi-
tions. To form the latter, we shall use a vertical ber, "I, For example,

REQUIRE (WP ON F2 /G3) i (WB ON G2)
means the chunk requires a white pawn 10 be located on either F2 or G3 or a white bishop to be situated on
G2.

To briefly summarize, we see, at the very least, that our chunk language must include:

« positional features

- attack/defense properties

- location informaticn

- piece-color and type information
* required information
* optional information
* hierarchical facilities
* instantistion facilities
o case of expression

- special and and or symbols

These features are similar to0 those found in frame or prototype languages of Al.

43. Qualitative Concerns

So far, we have discussed concepts that can be easily evaluated in quantitative terms for a chess posi-
tion. For the most part, & feature is either present or not; that is to say, a white pawn cannot be partiaily on a
square. However, there are a number of qualitative issucs that can affect the usefulness of a particular
chunk.

The first issue concerns the relative importance of a chunk, a clearly prevalent theme throughout this
thesis (for chess, in general, in fact). As mentioned in the introduction of this chapeer, the presence of a
king on a certain square is, no doubt, more significant than that of a pawn. By the same twken, a chunk may
be important in one situation but completely irrelevant in another. For example, an opea file is certainly
important if its presence can lead 10 a back-rank mase but it can be quite meaningless if the next move in
the game nullifies its presence. This suggests that our similarity measure should be iniclligent enough to

S4

include a chunk only if it is important in the given position and that its importance may change when it is
associsted with certain other chunks.

Another qualitative issue that should be examined is the notion of advice; it can provide the means
for supplying general rules of thumb when a certain chunk is present. Returning 0 our open_file example,
we could specify the advice "Put major pieces on this file” when the chunk was present. This information
could be passed back to the chess program along with information gathered from the GAMETREE (o aid in
the selection of the best move.

4.4. Implementing the Language

In the current implementation of the chunk language used by MACH, we have made use of the Unix
utilities Lex [Les7S) and Yacc [Joh75] to parse each chunk description and invoke the actions 1o desermine
a chunk’s presence. Consequently, we were able (0 incorporate the positional features of location, piece-
color and type information, the so-called required and optional facilities along with "wrt™ handling and the
special and and or symbols. To some exient, we have made use of the advice notion, though only in a
"comments” role. The chess program using MACH must have the capability to interpret the advice and use
it to its advantage.

However, a direct result of this project is the development of plans within the chess program
Phoenix. In specific cases, Phoenix applies its own "chunking” methods 10 recognize a limited number of
patterns and implements a number of plans accordingly. In fact, the adwice portion of our chunk descrip-
tions could be used 10 incorporase these plans to guide Phoenix in specialized situations.

Unfortunately, the notion of imporiance has not been implemented. Proper development of the neces-
sary mechanisms and heuristics 10 implement this idea is certainly non-trivial and remaing a topic of further
resesrch. In addition, the issucs concerning attack and defense properties and the instaniizion: and hierarch-
ical facilities have not been used simply because of our use of Lex and Yacc and their sequential processing

of the cwnks. Clearly, 0 work with a real-time chess application, all these issucs must certainly be used.

3s

Nevertheless, the features that have been implemented are powerful enough t0 yield interesting results and
are reasonable, we believe, for a first-attempt. Indeed, much experimentation is needed to develop a good
understanding of the influence of each of these issues to provide an effective similarity measure.

44.1. Lex and Yacc

As already mentioned, we implemented our language using Lex and Yacc, in keeping with our
"minimal coding™ philosophy. We needed a simple way of testing our language and Lex and Yacc pro-
vided the means. Letting these utilities worry about the parsing and lexical details allowed us 10 concentrate
on developing the actions that were 10 be taken 10 test the presence of a chunk and recording its c-class for
Iater use.

To determine a chunk’s presence, we simply tested each clause of the chunk description for its truth
value. Included in this test was the transposition mechanism previously mentioned above 10 desermine if the
chunk were present in one of its mimror images. Each action simply remurned true or false and a chunk’s
presence was indicated if all REQUIRE clauses evaluated 10 true. A complete listing of the our grammar is
provided in Appendix Al.

4.42. An Example

To better illustrate our work, Figure 4.1 presents an example of a chunk description for an castle
chunk and one for a lopez opening chunk.,

In the castle chunk description, we see the use of the phrase “...wrt white kingside.” The "wrt" verd
details how the chunk is conceived: the patsiern describes the pieces of castled king for white on her king-
side of the board. Implicitly, the pattern for a castled king on white's queenside as well as black’s queenside
and kingside is also present; the transposition facility of the interpreser makes this possible. The second
statement of this description (and, indeed, of all descriptions) specifies that this chunk belongs 0 a specific
c-class; in this case, it is the kings c-class that contains most patierns involving the king. The number / fol-
lowing the "c_class” predicate simply refers 10 the c-class number that is handled by MACH in its

ciumk castie wrt whits kingsids. chunk lopes wit whits.
classification kings c_class 1. classification cantre c_class 2.
require WP on G2. require WP on E4 + D4.
require WP on H2 / H3. require BP on ES + D6.
require WP on F2. WP on C3.
require WK on G1 / H1. BPon CS.
WNonF1/F3. WNon F3.
WRon F1 /EL. BN on F6.
end castle. end lopez.

Figure 4.1 A typical chunk description of a castled pattern and Ruy Lopez opening.

similarity routines. The next four statements, beginning with the require verd, describe the pieces that must
be present for the castled patiern to be present - namely, that there should be a white pawn (WP) on squares
G2, H2 or H3 and F2 as well as the white king (WK) on squares GI or Hl. The next two statements
without a verb indicate the optional pieces that can be present in the chunk. If there is a white knight (WN)
on squares F1 or F3 and a white rook (WR) on squares FI or El, then these picces should be included in
the chunk’s makeup; their absence, of course, would not affect the chunk’s presence. Notice the use
special disjunctive symbol °/°.

For the lopez chunk, we see it is specified in terms of white only. This means that its presence is
meaningful only on the centre of the board. There are two items of importance in this description. The first
involves the classification. Since this chunk describes a centre pattern, it is assigned 10 the openings c-class;
it is not at all related to0 the castie chunk. The other item of interest is the use the *+* symbol 10 represent the
conjunction of squares (of course, this could have been used in the castle chunk for squares G2 and F2 by
writing, "require WP on G2 + F2."; we intentionally omitted this t0 further illustrate its benefits). Both the
special conjunctive and disjunctive can be mixed in any require or optional statement with the correspond-
ing logical symbols, "&" and °I'.

7

43. Finding Similar Pesitions

As you can see, 2 list of simpls conditions can produce a host of complex patierns (0 be sought for in
a position. If qualitative issues such as importance or advics could be reacily manipulated, this language's
power of expression would significantly improve and produce s more accurate filter for dissimiler positions.

Nevertheless, we currently have a good basis 10 develop a reasonable similarity measure 0 quickly
hone in on similar positions. Figure 4.2 illustrates our methodology.

To begin, a given position is chunked 10 produce a list of c-classes (recall from Chapser 3 that the
GAMETREE is indexed by c-classes). Then, we search through the GAMETREE finding positions that have
at least a-] of these c-classes in common. Since a chunk and its sransposes belong 10 the same c-class, two
positions may contain the same c-ciasses but have totally different chunks. As a result, we must weed
through this first group of positions discarding those that do not match at least a- of the actual chunks
present in the given position. To do this requires us 10 cAunk the group of positions once again 10 record the
actual chunks.

e B |

of or

Figure 4.2 Methodology used t0 find a group of similar positions.

Prom this second set of positions, we apply a number of tests, cxamining each position on the basis
of material balance, piece-type and piece location. For each of these tcats, we have assigned ad-hoc scores

10 compare similerity. A position that receives a score of 140 represents a perfect match. Our tests and score
assignment criteria are certainly naive but are adequate for our purposss. As with most first-attempt., there
is obvious room for improvement.

The first test involves material balance (i.c. the net difference in chess material between white and
black). Any position that differs by more then 100 points (i.¢. one pawn-value) in material balance from the
given position is deemed not similar and is discared. Those positions thet have the same amount of

material are given a similarity score of 20; those off by 100 piece points receive only 10 similarity points.

This test, however, has no way 10 detormine mach piece-type, only whether the total material is the
same. For example, one positios may have three pawns totaling 300 points and another position may have a
bishop which also is valued at 300 points. Consequently, the actual material on the board must be checked.
We have determin=d that any position which differs by more than oae in the namber and type of pieces of
each color gets discarded. A perfect match scores 20 similarity poine, a difference of oaly one piece from
cither side receives 15 points and a difference of one piece from each side gets 10 points.

In a similar way, a position may have the same pieces but these pieces could be situated on different
squares, yielding a position that is not at all similer. If a position passes the material balance and piece-type
tests, it is then subjected tn a location est. A score is tabulated based on the sumber of metched pieces and
locations with the given position (recall the memory test of Chase and Simon). Scores range from 0 so0 100,
according to the simple formula,

Lom_m-[wo‘ [3;_"":—;—‘]-1'}0 Tolo%
where T is some threshold betweena 0 and 100.

For our tests, T was set 10 66 2/3, meaning that at least 2/3 of the pieces must lic on the same squares

for the position 10 be considesed similar. Any score less tham O is reset t0 0.

This location test seems 10 work well whea there are many pieces on the board. In the endgame, how-
ever, when the sumber of pieces is small, a difference of only 1 piecce can mean a dramatic drop ia score.

59

To be more useful, this test should be sensitive 10 the actual number of pieces on the board and adjust the
similarity points accordingly. Until we get a better indication for what should comprise an effective simi-
larity measure, we have ignored this detail.

If a position passes all our tests, the "best” move associsted with it is extracted and written 10 an ini-
tial move list along with its similasity score. Once this list is complete, it is likely that it contains duplicate
(i.e. similar positions sometimes produce the same "best” move) and illegal moves for our desired position,
especially if the matches were not identical ones. As well, there may moves from the opposing side only;
these, 100, should be considered illegal (on the other hand, we could view these moves as advice on what
our opponent might do). For example, we may be looking for white move but the move provided by the
maich was a black move.

Consequently, before any information is passed back 0 Phoenix, an extra process must be conducted
10 weed out all duplicae and illegal moves and create a new, more usable list. Therefare, one by one, each
move from the initial move list is examined for its legality. If it passes this test, the new move list is
checked for a matching entry. If none is found, it is written to this new move list along with its correspond-
ing similarity score; if a maich does occur, the higher similarity score gets written. Of course, if the move
were illegal to begin with, it is immediately discarded. This new move list is then passed on to Phoenix to
help in its choice of the best move.

4.6. Using the Language

Developing a comprehensive knowledge base of chunks is not an easy task. One method is to have
an experienced chess plsyer analyze a large number of positions and describe the important patiemns in
cach. Ultimasely, this method is very time-consuming. As well, forcing the master 10 describe each chunk
in our primitive language would not oaly slow his progress further but, more importantly, would increase

the chance of error.

This is because s master recognizes a chunk not by a 6 line description but rather from a visual image

60

of the chess board. Each chunk is defined not only by the pieces within it but also in relation 10 other pieces
on the board (i.c. they are not self-contained). Therefor- *© master could simply place the pieces of the
chunk on a board and let a program covert the ima; - . board into a description, we could be much
more effective and make significantly bester use of the master’s time.

We believe, (0 use the language efficiendy, a fron-end graphical interface describing the chess board
should be used to define the chunks for our knowledge base. The processing of each image into our
language could be performed behind the scenes; transforming location information is trivial for a program.
For the inherent qualitative information of a chunk, such as advice and importance, the master 0 could be

Of course, ous current implementation does not include this facility. Each descripion must be

entered and passed 0 Lex and Yacc for syntax validation. With a graphical interface, the master need not
worry of these tedious details.

4.7. Summary

Developing an effective similarity measure, we have found, is an extremely difficult task. Without
good rules of thumb, much of the testing is simply trial and error. Assigning similarity is not nearly as
difficult or time consuming as constructing useful chunks. Great care must be taken 10 create a chunk that is
neither t0o specific, 30 that it rarely occurs, nor 100 general, 30 that it does not occur too frequently; either
extreme produces an ineffective filier. The next chapter is devoted 10 a presentation of test results of MACH
interfaced with Phoenix, showing where its advice aided and hindered PAoenix as well as useful rules of

thumb that should be applied when developing chunk descriptions.

Chapter 8
MACH'’s Performance

S.1. Introduction

Chapters 3 and 4 have set forth MACH's overall design, including its data and file structures along
with a specific language (0 represent chunks. From the outset, our philosophy has been 1o develop MACH
only to the point of getting a feel for its use.fulness and practicality. We have already outlined some of the
difficulties faced in developing an efficie: « search procedure and an effective similarity measure. Nonethe-
less, some inseresting results hove cony: out of our initial sysiem.

Since our chunk descriptions are certainly not all encompassing, there will exist a set of positions in
which none of the defined chunks will appear. In this case, the chess program maust rely on its own judg-
ment since MACH would be unabile 10 provide effective advice. However, in the areas for which we are tar-
geting - namely, the opening, the early middiegame and late endgame - there do exist patterns that occur
with unusually high frequency. It is these areas where MACH will prove the most beneficial and it is pre-
cisely these arcas where chess programs can easily falter.

This chapeer will show that MACH has successfully demonstrated that grandmaster games can be
used to provide useful advice. As well, we will list a few good rules of thumb that should be followed 10
achieve well-developed chunk descriptions and sum=:.. ‘ze a number of unsolved ilems that require further
experimentation. For all of the tests presented in this chapier, we made use of the chess system Phoenix
{Sch86). In addition, all of our test games are courtesy of Dep Hartmann [HaT86].

61

$2. Advice Paradigms

Mww&mmdm:maumdnsmmbmmmm
advice (use it or discard it) but it noeds 10 avoid situstions that enable it 10 use bad advice or ignare good
advice. uiwuummnwmanmmuMhmm
it; MACH simply reports what it finds.

As outlined in Chapter 4, the final result from MACH’s search and similarity evalustions is a list of
moves and their associated similarity scores. Before Phoenix examines these moves, it performs a search of
its own game tree 10 a predesermined ply. All tarminal nodes from this search are then assigned a score;
refer 1o Figure 5.1. Each of the moves leading 10 the terminal nodes are chocked against MACH's move
ﬁmnmydmemmh.amhmipwdwdmmdddednlhemdmmm.
Phoenix then picks the path (move) with the highest score.

MACH'S
Move List

e
/
A

| T] PHOENIXsscore= F(T)
New score = F(T) o w

Figure 5.1 How Phoenix uses MACH's advice 10 choose & move.

hdwﬁ;mabove.?hoenklmwnpa*hﬁomknTbym&in.ﬂnma.b,c,Mdnd
ssigmdthewefmlouumindmde'r.MAG-l'smovelistinclmmemovua.lmdh.Sinceme

move a is found both in MACH's list and the path leading 10 7, the score at T becomes, F(T) + w, where w

63

is some positive weight. In this case, since the matched move was first on MACH's list, w was given a
value of 20.

As is evident, the moves provided by MACH are not guaranieed 10 be chosen; rather, by adjusting
their weights, the probability of one of them being chosen is simply increased. Since Phoenix has its own
expertise on what constitutes a "best” move, it does not blindly use the moves supplied by MACH. How-
ever, if the scores of two nodes are close 10 each other, MACH's advice will swing the pendulum.

One difficulty in using advice from MACH is the integrity of that advice. Unfortunately, the
GAMETREE will contain useful as well as useless information (we trust the former is more prevalent). The
games are added 10 the GAMETREE as played, including all the good and bad moves made without annota-
tions indicating the quality of a move. A program using this information, therefore, must be careful to filter

the data and extract relevant information, erring, if necessary, on the side of conservatism.

One of the simplest applications resulting from the use of this advice is t0 employ the GAMETREE as
a means for playing opening moves. However, unless each game is examined, there is no guarantee that the
moves in the knowledge base are best. At least in an opening book, such as Encyclopedia of Chess Open-
ings [Ma87), there is a high confidence in the analysis given and the justification for the right move
(although, even then, many errors find their way in). Unfortunately, data from various sources will contain
many moves of questionable quality and hence, Phoenix must apply what it knows about chess to avoid the
negative feedback.

Over the next three sections, several examples will be presented w0 illustrate some of the problems
Phoenix encountered interfacing with MACH.

$.3. Results from an ldestical Match

Since many chess matches open in a predefined and limited number of ways, it is quite common ©
extract identical positions from the GAMETREE, sometimes as many & 20 moves into the game. Some of
these identical matches are presemted bolow. We will use algebraic notation for each of the moves
presented, as done 30 in Chapter 3.

B gt

’xx’x}

Figure 5.2 A sample position reached by Phoenix, 5 plies into a game.

Figure 5.2 shows a board position that Phoenix (as black) encountered afier a game that opened with,
1.Pe2e4 Pe7eS

2.Nglif3 Nb8c6
3.Bflds ?

Through its normal analysis, PAoenix detarmined that the best move 10 make was Ng§5. MACH did,
indeed, report this move 10 be superior; however, it also suggested Pa7a6 and Bd8d7. The reason it sup-
plied more than one move means that the GAMETREE included games that proceeded in at least three
different ways (not surprisingly). But which way is best? We see here a problem of consensus.

The move Pa7a6 is played almost 100% of the time in this situation while the other two moves are
only occasionally played. Though a frequency count could be incorporated into each move. *1ACH has no
way 10 know this fact We could force MACH 10 favor the "most frequently” played moves; however,
because a move is played most ofien does not mean it is the best; indeed, the possibility could arise where

65

an uncommon move proved 10 be brilliant, opening 8 line of attack that no one had previously discovered.
Until betser criteria for selecting moves is defined, MACH unbiasedly reports all moves.

Siaxe both Phoenix and MACH detormined that Ng8f5 was a superior move, it was given enough

weight for it 10 be the one chosen.
3 . Ng8f6
4.0-0 ?

Figure 5.3 The position farther into the game before Phoenix uses MACH's advice.

Continuing the game 10 move #4, PAhoenix arrived at the position in Figure 5.3; here, white had just
castied. Searching 10 a depth of S ply, Phoenix, without MACH's advice, reasoned that Pa7a6 was the best
move 10 make; MACH, however, reported that BfScS was better. With MACH's advice, Phoenix agreed
and proceeded 0 move her bishop. In fact, this advice actually preveated a blunder. If PAoenix chose to
move its pawn from a7 © a6, a search of the tree several plies deeper showed this move 10 cause Phoenix 1o
lose & pawn, resulting in a lost position. This is a case where MACH provided good advice and Phoenix
decided 1o follow it.

As the game progressed, Phoenix, by following MACH's advicc, was forced 10 deviate from the stan-
dard opening and encountered unfamiliar teeritory; figure 5.3 illustrates this point.

4 .. Bf8cS
S.Nf3xeS Nc6xeS

Figure 5.4 An unfamiliar position for Phoenix.

In this last set of moves, PAoenix’ s generased moves were the same as the ones provided by MACH.
After white moved her queen from dI 10 €2, Phoenix began to lose control due 10 inadequate search depth.
Phoenix decided that capturing white’s pawn on d4, using her bishop, was the best move. MACH suggested
retreating the bishop from cS 10 e7. Once again, MACH's advice proved 10 be superior several plies later.
Unfortunately, MACH's advice was not sufficient 10 change Phoenix’s’ decision. By playing BcSd4,
Phoenix lost a piece and eventually the game. This demonstrates a situation where Phoenix discarded good
advice. More importantly, though, it illustrates the need for Phoenix to recognize when it should use
MACH's advice, especially when a board position is unfamiliar.

¢ The Encyclopedia of Chess Openings, MasST).

67

54. Results from a Similar Match

Though we have seen that MACH can provide useful advice when identical matches occur, it would
be far more ineresting and demonstrate MACH's real power if helpful information could be supplied from
only similar matches. Indeed, it would illustrate how effective our similarity tests have been. This section
will present several examples 10 show that MACH's similarity functions are effective enough o retrieve
similar positions. The results presented are but a representative sample of the types of tests and positions
that can be performed.

MACH:'s abilities 10 find similar positions were on a set of 20 chess positions, 10 each arising from
well known openings 7. The positions were generally 15-20 plies into the game. Unlike the previous sec-
tion, an actual complete game was not tested; rather, the tested positions were those in which Phoenix did
not play well. As a result, we did not interface MACH with Phoenix to see if the advice were followed. We
used our own chess knowledge 10 determine whether the moves were useful and the positions similar. In
figures 5.5 t0 5.7, the test position is presensed on the left with MACH's two most similar positions on the
right.

From each of the test positions used in these examples, MACH returned an average of § similar posi-
tions. To speed up our testing, only those games that began with our two selecied openings were added to
the GAMETREE. This resulted in a total of 8526 positions out of some 60,000 positions we had available.

Our chunk descriptions (shown in appendix A1) used for our tests fell into 11 c-classes. Though only
one description was provided for each c-class, using our transposition mechanism effectively 34 different
chunks. Chunking each of the positions in the GAMETREE resulied in 64.4% (5490) of the positions con-
taining at least one chunk. The other 35.6% not covered by our chunks consisted mainly of late middlegame
and endgame positions.

Table 5.1 gives the expearimental data for the 20 positions using the similarity criterion that a-J

7 The Ruy Lopes snd Quesn's Gembit Declined.

chunks must be present for a maich to occur. On average, each of the 20 test positions contained 6.1
chunks. This number is amazingly similar 10 the 5.7 chunks per position of Simon and Gilmartin's MAPP
and confirms their results. Our 6.7 pieces/chunk is significantly higher than MAPP’s 3.9 figure and De
Groot's average of between 3 and 4 (DeG6S). This is a result of the optional piece specification, something
that Simon and Gilmartin did not use. If we include the number of required pieces only, this value drops 10
34.

On the memory test, MACH is able 10 reconstruct an average of 80% of the pieces on the board,
close to the 73% figure of MAPP, again confirming their results.

Sum of MACH’s Performaace
Position i ith found | found Moves
Ruy Lopez (10) 641 56 2
Queen’s Gambit (10) 257 66 20
Total 622 498 122 42
Aversge N1 249 6.1 21

Table 5.1 MACH's performance on 20 positions.

Our first test position is presented in Figure 5.5. In this test, there were actually five positions sup-
plied by MACH; the three positions not shown were not as similar as the two in the figure which indicases

As you can see, the positions MACH found are both visually and structurally similar. This is a result
of over 90% of the pieces residing on the same squares. Interestingly, our chunks found only 47% of the
pieces. In fact, each position contained the same chunks: white’s castled king, queenside’s pawn formation,
white’s undeveloped queenside. One noticeable difference is that position A contains a castled king on
black’s kingside.

For this situation, it was white’s tum 0 move. MACH supplied three moves with equal similarity

A
Figure 5.5 Ruy Lopez st position #1.

scares: Pd2d4, Pc2c3 snd Pa2ad. All are reasonable moves that most players would make.

- v 77 yar
‘%nl/«///dl "I?":’ %,
2%,

A & ?
vy %
% Z

Figure 5.6 Ruy Lupez test position #2.

Figure 5.6 illustrates our second test position. Again, the untrained eye will admit that MACH's
position are visually similar; in fact, position A can be considered structurally similar. Therefore, it is not
surprising that position A received a higher similarity score than did position B. The main fault with posi-
tion B is that 100 many pieces are on different locations. Some of the important structural festures that
mached in the first position include white’s pawns on A3 and d¢, white’s castled king and black’s queen on
8. All of these featurcs are not present in position B. This example illustrases that our chunk descriptions
are useful for finding a similar position but not restrictive enough 0 weed out less helpful ones.

LY

Since PAoenix was black in this position, the moves MACH suggested were PcSdé and NaSc6,
retrieved from positions A and B respectively. Both are good moves.

The final exampie comes from a position 14 plies into the game, presented in Figure 5.7. We see that
MAhMymmm.Wl.m.hwnWhMMlmum
knight misplaced as well as a black rook. Nevertheless, it is still visually similar and most of the structural
qualities match, including the castied kings and the advanced pawn om AJ.

"/////

Illl

%’f/ & Q 2

I
5 A

Figure 5.7 Ruy Lopez test position #3.

From the exact maxch, MACH suggested retreating white's knight from d2 10 f1 and advancing
white's pawn 10 dS. Position B’s move advised us 10 capture black's pawn on ¢S instead of advancing the
pawn to d5.

These examples, we believe, are strong evidence in favor of the chunking theory a8 a similarity meas-
ure but more importantly show that MACH's advice is useful in similer situations. However, it is also true
that the quality of the chunks descriptions determines the similarity's effectivencss, as shown in Figure 5.6.
Later in this chapter guidetines will be presented 10 aid in this important problem. The positions presented
are but a few representative examples that demonstrate the usefulness of 8 MACH-type sysiem. By creating
a wider variety of chunks and a faster chunking process, MACH could provide useful advice in many more
situations; the larger its knowledge base, the move effective it can become.

n

$.5. Resulss Matching » Chanks

As outlined in chapeer 3, we said thet two positions could be similar if they had st least #-/ chunks in
common. We reasoned thet since owr chunk descriptions were subject © errors and omissions and we did
not know whether & chunk was relevant in & position, metching oaly a-7 chunks could, in some ways,
increase the inegrity of our tosts.

To test this reasoning, we ran our five test positions through MACH once again but this time we
force all chunks 10 match. As we might expect, in two instances, MACH provided less moves then it did
using a-/ matches. Unfortunately, three of the five tests retumed the same set of legal moves, mostly
because our chunk descriptions were 100 general.

Nevertheless, table 5.2 illustrates that using » chunks reduces the number of candidate positions by
23.4%, on average. Though we experienced only six reductions of move lists supplied by MACH, the pos-
sibility of missing similar positions is definitely incressed.

Table 5.2 Comparison of the number of positions found using »-/ and » chunks

One other significant result from this test is the speed at which MACH ran. Though we have no real-time
numbers, requiring » chunks 10 mach instead of »-/ greatly increased the speed of MACH. Since the
chunking process (using Lex and Yacc) is the bottleneck, finding a smaller number of candidate positions
cannot help but reduce the sumber of chunk comparisons.

$6. Guidelings for Constry. ting Effective Chuns Descriptions

The slowest task invoived with MACH's development was the addition of chunks; this is not swrpris-
ing since know!~age acquisition is a dificalt process. Without a great deal of experimentation, ons hes 10
rely on common sense move than snything ciss. Unformnately, Simon ot al. did not provids an insight im0
tGhis ares; their chunks comprised patierns thet frequeatly occurred in °..games in the published lesrature”
(Sim73b). Other than mentioning that their patterns adhered ©0 the selations of attack and defences, piece-
type. piece-color, and proximity, no discussion was provided regarding the acwal development of their
chunks. From our experimentation, howeover, & sumber of conclusions can be drawn which can help
expedite future work.

One of the first results we found was that it was very easy 10 cresse chunk descriptions that were 100
general; these descriptions would tend 10 encompass patierns that were not relevant at all, producing an
ineffective filier of dissimilar positions. By the same token, making these chunks 100 specific resulted in
MACH overlooking positions that were similar. There seemed 10 be a narrow region between these two

However, incorporation of an imporsance factor might, indirecty, broaden this acceptable region. By
assessing the relstive importance of each chunk found in a position, general chunks may be weeded out
since, (ypically, their broad descriptions tend 10 cover pieces that are unimportant. Further work is certainly
needed in this area.

Notwithstanding, a chunk can be made less general if the pieces it contains are not spread across the
board; that is, the patiern should be localized on a small portion of the board. Simon et al. used the rule that
two pieces proximate each other if ome of the pieces is within one of the eight adjoining squares of the
other. Our chunk descriptions gemerally adhere 10 this rule except whea they incorporate the use of the "or”
operator. This, typically, multiplies the sumber of chunks that will masch and hes a tendency 10 sproad
picces apart. One the other hand, overuss of the "and” operstor will cause the opposite effect. We believe
that use of both operators should be done sparingly.

73

The only way we discovered this ideas was through our similarity sting. Although trial-and-error is
certainly the least optimal method by which 10 create these chunks and until 8 more accurate and efficient
method can be found, we propoee the following methodology.

1) Define chunks

2) Set up test position(s)

3) See which positions did and did not match

4) If satisfied, stop, else goto swep (1)

The first step in the process is to define a set of chunks, without much concem for generality or

ecificity. The next step is t0 set up a series of test positions for which we expect to find similar positions
in the database. Afier invoking MACH's similarity tests, carcfully examine the set of positions returned by
MACH.

For each of these si .ilar positions, check the similarity score and determine which chunks matched.
If the position should not have been selected, it is likely that at least one of the maiched chunk descriptions
encompasses 100 many patterns (possibly, due 10 an overuse of the "or” operator). Each of the questionable
chunks should be re-defined, perhaps, by splitting each into smaller, more specific chunks.

Though it is more difficult 10 do, it is worthwhile 10 see what positions, if any, in the GAMETREE did
not match simply because some chunks were 100 restrictive.

By identifying these ineflective chunks, the likelihood of discovering all similar positions is
increased. Afier restructuring the chunk knowledge base, the same process should be re-executed. Albeit
slow, we believe this feedback process is necessary towards the development of a useful knowledge base to
enable MACH 10 be truly effective.

Of course, if MACH were "intelligent” enough 10 define and re-define its own set of chunks, this
bottleneck would greatly diminish. Positions could be supplied 10 MACH and it could pick out which pat-
terns were relevant, piece by piece. Unfortunately, this realization is many years away and is another topic
of further study.

74

5.7. Summary of problems

Though we have demonstrated that MACH can certainly provide good advice in most situations,
more importantly, we have uncovered a number of problems that need 10 be addressed before MACH can
seriously be integrated with a real-time chess program.

1) Discarding "good” advice

From our tests involving identical maiches, we saw Phoenix discard good advice from MACH in
favor of capturing a pawn. MACH had led Phoenix into an unfamiliar position and Phoenix ¢id not know
how 10 respond. To avoid further occurrencss of this, we must cither alter the way in which Phoenix uses
the advice (simply by increasing scores) or, when it disagrees with MACH, search farther in the tree to see
why MACH chose its moves.

These two solutions suggest that Phoenix must have more knowledge 0 appreciate good advice.
Unless it is aware that its choice of move is inferior to that of MACH's, Paoenix will still discard good
advice.

2) Different sirategies used by different players

Granumasicrs, over wie _ -a3, have exhibited distinctve styles of play. Some players, like former
World Humea Champion Bobt .her, tend to be aggressive in their play, attacking the opponent fre-
quently, whereas other players adopt a more passive style. When MACH supplies advice, it makes no dis-
tinction between these styles of play. Phoenix has been designed to model an aggressive player and conse-
quently, disagreements can result if MACH is providing the advice of a passive player.

3) Chunking is the most time consuming process

As outlined in the previous section, having MACH use a chunks instead of -/ caused it 10 run
significantly faster. Indeed, chunking positions as » similarity test is an extremely slow process and is
currently the bottleneck of our system. Of course, this is a direct result of incorporating Lex and Yacc since

they parse each chunk description for each position.

75

Nevertheless, great care must be taken in developing an eficient chunking mechanism. Methods
similar 10 those used by Simon and Gilmartin's MAPP system can serve as 8 basis for this development.
They buik a large tree (which they called their EPAM net), with each node carresponding o location check
for a piece (like the REQUIRE staement of our grammar). The top nodes consisted of the salient pieces on
the boerd. Each chunk was triggesed by the discovery of its salient piece which directed the search for the
chunk down a particular path. If the salient piece was not found on the position, it was deemed not 0 exist.

Figure 5.8 illustrates what this tree might look like for our kingside patiern of Appendix A2.

2
7™
N
7N,

Kingnide shunk

Figure 5.8 Segment cf net that MAPP would use for our kingside chunk.

4) Dependence of the GAMETREE oa chunk knowledge

Recall that as ty.: GAMETREE was built, 30 was the FEATUREndXx, indexing each position by its
chunk list. If the chunk knowledge were ever changed (adding new chunks or redefining old ones), this
GAMETRZE and FEATUREndx must be rebuilt. While this was a relatively painless process for our 8500
positions, it can become a real annoyance if the GAMETREE contained a few million positions. Conse-

quently, as a new partial-matching algorithm is sought, it must ty to eliminate this complete dependence.

76

5) Defiaing chunks and c-classes

It is evident that defining chunks is a sedious process. Before a chunk is written to the knowledge
base, it must be checked against all other chunks to see that it does not already appear. Assigning salient
pieces to each chunk can overcome this somewhat but a more involved search must be conducted if a chunk

contains more than one salient piece; this is similar to file having multiple keys.

By assigning each chunk 10 a c-class, we were able 10 reduce the number of comparisons on the first
pass of our similarity wests from potentially wens of thousands down (0 fifty or sixty. However, it is not easy
o define these c-classes; in addition, it is possible to assign one chunk to more than one c-class. In any
event, improper definition of these c-Classes can lead 10 the same problems characteristic of chunks, namely

Yeing 00 general or 100 specific.

We have attempy < - : <xtline some of the major problems involved in the development of a MACH-
type system. Some are easier 10 soive than others. Indeed, more complications remain hidden that will sur-
face o7y when attempts are made 10 combat these outstanding issues. Nevertheless, new ground has been
forged towards the developing of a master advisor for chess.

6.1. General Results

From the outset, our goal was t0 assess the feasibility of a master advisor for chess. To that end, we
have been successful in demonstrating that s.ich a system is worthwhile. Moreover, we have shown that 10
build a comple:- system is certainly a difficult task. However, through our analysis, w: have uncovered a
oumber of very interesting problems that are fundamental 10 many areas of computer science.

6.1.1. Partial-Matching Problem

The first problem we discovered was the so-called partial-maiching problem. At first glance, this
scemed like & relatively casy problem to solve. However, the combinatorial explosion quickly prohibited us
finding a general solution.

Some rescarch has been conducted in this area, as) r=sented in chapter 3, but all studies have touched
upon only special cases of this open problem. He:'ever, it should be notcd that MACH's future develop-
ment does not hinge upon a solution to this problem. Of course, an efficient partial-matching algorithm
would certainly help in this regard. For the time being, though, by taking advantage of the domain-
dependent properties of chess, our restricted enumeration methodology can provide fast reirieval times
with reasonable storage requirements, effective enough to work with a real-time application.

6.1%. Database Design

Related 10 this algorithm problem is that of database design, something which greatly affects the per-
formance of wny information system. As .'¢ mentioned in chapter S, our GAMETREE and FEATUREndx
are both dependent on the chunk knowledge base. Changing the latter results in a complete rebuilding of
both databases. Indeed, a more flexible database design may provide insight into solving the partial-
maiching problem and vice versa. Exploring “Information Retrieval” theory may uncover some clues.

6.13. Learning

Another ares investigated by this thesis is that of machine leaming. We know that Samuel pioneered
this area with his checkers playing program. His methods revealed some important notions that must not be
overlooked.

First of all, his memorization of positions allowed for an increase of performance without an increase
in search depth or time. As well, he enlightened us as to the subtleties of the relative importance of
knowledge - where some ideas are relevant in one aspect of the gune b -k Other.

By applying these two fundamental ideas, a chess . ~ -~ cun gr .- into a more effective system.
Thegh it is primarily the responsibility of the chess progran: : ~.~. ~1ACH can certainly be called upon
t0 leam to improve its advic: - - . - wieval of it. By using the EPAM:-like net described in [Sim73b),
MACH can leam 0 recogrs. - < =g through its chunk descriptions. A testing mode can be esta-
blished whereby MACH proces. . et of positions, displays the set of pattems it recognizes on the board
and interacts with an expert in hopes of learning new pattems.

As far as the chess program is concerned, it can impreve its performance with MACH by becoming
more "cognilively economical.” As the chess program encounters positions where MACH supplies it with
better moves than it determined from its normal evaluation, the chess program could store these beuer
moves for future situstions or update its evaluation function so that it would next time chose these moves

(similar 10 [Van87] method). By doing this, the system becomes . atelligently redundan:.

One of our examples in chapter 5 showed that MACH's advice can produce a problem of consensus.
In particular, one of the moves supplied by MACH was one that would have been played 99% of the time
while the others were played much less frequently. However, because MACH's GAMETREE contains
knowledge from some of the greatest games ever played, one of those less frequent moves may be more
effective than the most commonly played one, exploiting a line of attack never before discovered. By
adapting U: chess program to discover these "surprise™ moves, its focus of atention becomes much more

astute.

)

Though not learning per se, MACH is able 1o provide the means by which a chess system can
improve its performance; learning is simply the next logical step. Of the four types of leaming, taking
advice is the paradigm which best suits the current interface between Phoenix and MACH. Though
Phoenix does not store any information about this advice, it is still able to improve its performance. In addi-
tion, if MACH supplied PAoenrix with a masters’ next » moves, it could examine further lines of play and
lend itself 1o follow the example of the master. As already mentioned, this can be extremely important in

the endgame where strategies are difficu’- w0 code into a chess program.

6.14. Knowledge Acquisition

The assumption made by all these ideas is the cxistence of a large usable chunk knowledge base -
truly a big assumption. In the previous two chapier, #¢ made reference o how slow and difficult this
knowledge acquisition can be.

We have scen that the MAPP system of Simon and Gilmartin contained over 1000 different chunks.
From their memory experiments, that was enough to allow MAPP to reconstruct only 73% of the board, at
best. Indeed, their estimates of 50,000 patterns 1aay, perhaps, be large but c. - .inly it is probably not the
case that a database of chunks is ever 100 big. It is difficult to know when a knowledze base is adequate.

There are several other factors involved in this knowledge acquisition. The first, as outlined as a
requirement for our chunk language, is the relagive importance of a chunk. It sho’ ! now be obvious that a
chunk’s importance is not a static value. Determining this value, however, remains a topic of further study.

Related to this importance problem is the notion that different parts of the game have different
requirements. Strategies for the opening game are much different from those of the middle and endgames.
Indirectly, our chunking mechanism must able to adapt to the changing parts of the game.

One other related item not addressed in this thesis is the problem of what to do with pieces that are
not included in any chunk. Certainly, in some cases, they can simply be ignored; the fact that a pawn is out

of place usually does not have much meaning. However, that same pawn, when associated with other

pieces, may be important 10 include in a few chunk descriptions. Improving our chunk descriptions may
overcome this problem but mechanisms should still be in place to discover occurrences of this.

One way 10 speed up the knowledge acquisition process is to incorporate a graphical interface with
our chunk language 10 enable the expert to define chunks mare readily. Since the image of the pattern is
certainly more meaningful to the expert than s 6-line description of the patern, the graphical interface
places the player in a more familiar environment in hopes of invoking the thought processes that are

involved in an actual game.

6.1.5. Spinoffs from this work

As mentioned in our introduction, this MACH-typ: system can be extended into other areas such as
medicine or law. In fact, any ficld of study that relies heavily on past performance and results can apply the
principles involved with MACH. A. well, designing a system for other areas may uncover clues into the

development of a general advisor.

6.2. mary

To summarize, we see the following list as open problems.
1) Partial-matching algorithm
2) Efficient database design for our games

3) Learning mechanisms for both MACH and the system with which it interfaces
4) Guidelines for effective knowledge acquisition

We believe this project has been a worthwhile experiment; not only have we demonstrated that
Phoenix can improve its performance, we have also uncovered a number of interesting problems. As well,
the ideas incorporated into the design of MACH are not restricted to the game of chess; rather, the underly-
ing principles of human problem solving are applicable to any area of study that relies on advice from
experts in the field and from past experience. Moreover, by attacking the “chess problem” from a more

human-like point of view, we have made sirides towards the creation of world champion chess machine.

References

[Bar81) Barr, A. and E. A. Feigenbaum (eds.), "The Handbook of Artificial Intelligence”, Vol. 1, Morgan
Kaufmann, Inc., Los Altos, CA, 1981,

{Bay66) Baylor, G.W. and H.A. Simon, "A chess mating combinations program”, in AFIPS Conference
P uceedings, 1966 Spring Joint Computer Conference, 1966, 28:431-47, Washington, D.C., Spartan

Books,
(Bea86) Beal, DF. (ed.), "Advan.es in Computer Chess 4", Pergamon Press Lid., Willowaale, Ont., 1986.
(Ber73] Berliner, i1.7., "Some Necessary Conditions for a Master Chess Program”, [JCAl 3, 1973 1:77-85.

[Ber83; Bexliner, HJ. and M. Campbell, "Using Chunking 10 Solve Chess Pawn Endgames”, in 2ad Int.

"caf on Al and Chess, Milan, laly, 1983.

[6er86) uerliner, HJ., "Computer Chess at Carnegie-Mellon University”, in Advances in Computer Chess
¢, D. Beal (ed.), pp. 166-180.

(Blu871 Blumer, A.. J. Blumer, D. Haussler, and R. McConnell, "Complete Inveried Files for Efficient
Text Retrieval and Analysis™, JACM, 1987, 34(3):578-595.

[(Bra80] Bratko, 1. and D. Michie, "A Representation for Pattern-Knowledge in Chess Endgames”, in
Advances (n Compuser Chess 2, MR.B. Clarke (ed.), 1980, pp. 31-56.

(Bra86) Bratko, 1., P. Tancig and S.Tancig, "Detection of Positional Paterns in Ches<" in Advances in
Computer Chess 4, D. Beal (ed.), pp. 113-126.

(Cha77] Charness, Neil, "Human chess skill”, in Chess Skill in Man and Machine, Peter W. Frey (ed.),
1977, pp. 34-53.

[ChS73a) Chase, William G. and Herbert A. Simon, "Perception in Chess”, Cognitive Psychology, 1973,

4:55-81.

81

82

(ChS73b] Chase, William G. and Herbert A. Simon, "The mind’s eye in chess®, in Visual Information Pro-
cessing, W.G. Chase (ed.). Proceedings of Eighth Annual Camegie Psychology Symposium, New
York: Academic Press.

[Cla80) Clarke, M.R.B. (ed.), "Advances in Computer Chess 2", Edinburgh University Press, Great Britain,

1980.

[Cla82] Clarke, MR.B. (ed.), "Advances in Compuser Chess 3", Pergamon Press Ltd., Willowdale, Ont.,
1982.

[Coh82) Cohen, Paul R. and Edward A. Feigenbaum (eds.), "The Handbook of Artificial Inselligence™, Vol.

3, Morgan Kaufmann, Inc., Los Altos, CA, 1982,
[DeG65] De Groot, A.D., "Thought and Choice in Chess”, The Hague: Mouton, 196S.

[DeG66) De Groot, A.D., "Perception and memory versus thought: Some old ideas and recent findings”, in

Problem Solving: Research, Method and Theory, B. Kleinmuntz (ed.), 1966, New York: John Wiley.

(Ebe87) Ebeling, C., "All the Right Moves: A VLSI Architecture for Chess”, Ph.D. thesis, Department of
Computer Science, Camegie-Mellon University.

[Edi87) Editor, "A Revolution in Chess”, New In Chess 1987, 1987, 3:94-98.

[Eis73] Eisenstadt, Marc and Yaakov Kareev, “Toward a Model of Human Game Playing”, I/CA/ 3, 1973,
1:458-463.

[(ENI71) Ellis, Stephen H. and William G. Chase, "Parallel processing in item recognition”, Perception &
Psychophysics, 1971, 10(5):379-84.

[Fei61) Feigenbaum, E.A., "The simulation of verbal learm.ng behaviour™, Proceedings of the 1961
Western Joimt Computer Conference, 1961, pp. 121-132.

(Fin74] Finkel, R.A. and J L. Bentley, "Quad Trees: A Data Structure for Retrieval on Composite Keys”,

Acta Informatica, 1974, 4:1-9.

83

{(Frd61) Predkin, Edward, "Trie Memory", Comm. ACM. 1961, %(9):490-500.

[Fre77) Frey. Peter W., "An introduction t0 computer chess”, in Chess Skill in Man and Machine, Peter W.
Frey (ed.), 1977, pp. 54-81.

[Gre67) Gregg, L.W. and H.A. Simon, "An Information-processing Explanation of One-trial and Incre-
menial Leaming”, Journal of Verbal Learning and Verbal Behaviowr, 1967, 6:780-787.

[Gri74] Griffith, Amold K., "A Comparison and Evaluation of Three Machine Leamning Procedures as
Applied 0 the Game of Checkers™, Artificial Intelligence, 1974, 5:137-148.

(Har84] Harbison, Samuel P. and Guy L. Sweele, Jr., "C: A Re‘erence Manual”, Englewood Cliffs. N.J.,
Prentice-Hall, 1984.

(Hat86) Hartston, W.R., "Anificial Smpidity”, in Advances in Computer Chess 4, D. Beal (ed.), pp. 52-58.

(HaT86] Hartmann, D., "Computer Analysis of Grandmasier Games”. Report, I eiden Observatory, 1986.

[Hea77] Hearst, Eliot, "Man and machine: Chess achievements . thinking", in Chess Skill in Man
and Machine, Peter W. Frey (ed.), 1977, po. 167-200.

[Hor86) Horspool, R. Nigel, "C Programwning in the Berkeley UNIX Environment™, Scarborough, Ont.,
Prentice-Hall, 1986.

[Hya86] Hyatt, RM., A.E. Grover and HL. Nelson, "Cray Blitz", in Advances in Computer Chess 4, D.
Beal (ed.), pp. 8-18.

{Joh75) Johnson, S.C., "Yacc - Yet Another Compiler-Compiler”™, Comp. Sci. Tech. Report No. 32., Bell
Laboratories, Murray Hill, NJ., 1975.

(Kop86) Kopec, D., M. Newbom and W. Yu, "Experiments in Chess Cognition”, in Advances in Computer
Chess 4,D. Beal (ed.), pp. 59-79.

(Len79] Lenat, Douglas B., Frederick Hayes-Roth and Philip Klshr, "Cognitive Economy in Artificial
Intelligence Systems"”, JJCAI 6, 1979, 1:531-536.

84

[Les75) Lesk, ME., "Lex - A Lexical Analyzer Generstor”, Comp. Sci. Tech. Report No. 39, Bell Labora-
tories, Murray Hill, NJ., 1978,

(Lev86) Levy, D.N., "Chess Master Versus Computer”, in Advances in Compuser Chess 4, D. Beal (ed.),
pp. 181-194,

(Ma87] Matanovic, A., B. Raber and M. Molerovic (eds.), Encyclopedia of Chess Openings, Chess Infor-
mant, Belgrade, Yugoslavia, 1987. In § volumes.

[Mic82) Michie, D., "Information and Complexity in Chess”, in Advances in Computer Chess 3, MR.B.
Clarke (ed.), pp. 139-144.

[Mic86] Michie, D., "Towards a Knowledge Accelerator”, in Advances in Computer Chess 4, D. Beal
(ed.), pp. 1-7.

[Mils6) Miller, G.A., “The magical number seven, plus or minus two: some limits on our capacity for pro-

cessing information”, Psychvlogical Review, 1956, 63:81-97.

[(Mor68] Morrison, Donald R., "PATRICIA - Practical Algorithm 10 Retrieve Information Coded in
Alphanumeric”, JACM, 1968, 15(4):514-534.

[Nit82] Nitsche, T., "A Leaming Chess Program”, in Advances in Compuser Chess 3, MR.B. Clarke (ed.),
pp. 113-120.

[Not71) Noton, David and Lawrence Stark, "Eye Movements and Visual Perception”, Scientific American,
1971, 224(6):34-43.

[Pit77) Pitrat, Jacques, "A Chess Combination Program Which Uses Plans”, Artificial Intelligence, 8:275-
321

(Pos69] Posnyanskays, E.D. and O.K. Tikhomirov, "On the Function of Eye Movements”, Soviet Psychol-
ogy, 1969, 1:25-30.

[Ric83] Rich, Elaine, "Artificial Intelligence”, McGraw-Hill, New York, N.Y. 1983.

85

[Riv76) Rivest, Ronald L., "Partial-Masch Retrieval Algorithms®, SIAM J. Comput., 1976, 5(1):19-50.

[SamS9) Samuel, AL., "Some Swmdies in Machine Learning Using the Game of Checkers®, /BM "os,
Dev., 1999, 11:601-617.

[Sam67] Samuel, A.L., "Some Swdies in Machine Leaming Using the Game of Checkers. 1) - ®- : Pro-
gress”,IBM J. Res. Dev., 1967.

(Sch86) Schaeffer, Jonathan, "Experiments in Search and Knowledge™, Ph.d. Thesis, Ders. 1ent of Com-
puter Science, University of Waterioo, Waserioo, Ont., 1986.

(ShaS0) Shannon, C.E., "Programming s Computer for Playing Chess", Philosophical Magazine [Series
71,1950, 41.

(Sim69) Simon, Herbert A. and Michael Barenfeld, "Information-Processing Analysis of Percepual
Processes in Problem Solving”, Psychological Review, 1969, 76(5):473-83.

{Sim73a) Simon, Herbert A. and William G. Chase, "Skill in Chess”, American Scientist, 1973, 61:394-
403.

[Sim73b] Simon, Herbert A. and Kevin Gilmartin, "A Simulation of Memory for Chess Positions™, Cogni-
tive Psychology, 1973, 5:29-46.

(S1a77] Slase, David J. and Lawrence R. Atkin, "CHESS 4.5 - The Northwestern University chess pro-
gram", in Chess Skill in Man and Machine, Petes W. Frey (ed.), 1977, pp. 82-118.

[S1a87] Slate, DJ., "A Chess Program thet Uses its Transposition Table 0 Leam from Experience”, /CCA
Jowurnal, June 1987, 10(2):59-71.

(Ten81] Tenenbsum, Asron M. and Moshe J. Augenstein, "Data Structures Using Pascal”, Englewood
Cliffs, NJ., Prentice-Hall, 1981.

(Tho82) Thompson, K., "Computer Chess Strength”, in Advances in Computer Chess 3, M.R.B. Clarke
(cd.), pp. 55-56.

(Van$7] van der Meulen, Masrten, "Weight 5 sasment in evaluation functions”, in Advences in Compuser
Chess S, Noordwijkerhous, Netherlands, 1987, 1-6.

(Wag71) Wagner, Daniel A. and Martin J. Scusrah, "Some Characteristics of Human Problem-Solving in
Chess", Cognitive Psychology, 1971, 2:454-T8.

[Wie87] Wiederhold, Gio, “File Organisation for Database Design”, McGraw-Hill, 1987.

[Wil66) Williams, L.G., "The effect of target specification on objects fixated during visual search”, Percep-

tion & Psychophysics, 1966, 1:315-18.
{Wil79] Wilkins, David, "Using Plans in Chess", [JCA/ 6, 1979, 2:960-967.

(Zob73) Zobrist, Albert L. and Frederic R. Carison. Jr., "An Advice-Taking Chess Computer”, Sciendific

American, 1973, 228(6):92-105.

Appendix Al
Chunk Grammar

/* The following list conisims the toloens used by Lex.

/* Alphabstically, they repressat the following:

ADVICE : ths word "advice” that begins the desigaation of s advice string.

BLACK : the word “black” that designates ths biack pieces.

C_CLASS : the word "c-class” that begins ths designstion of a c-class.

CID : 2 lsbel indicating the c-class © which s chunk belongs.

CHUNK : the word “clumk" that begins the designation of a chunk’s description.

CLASSIFICATION : the word “clezsification” that begins the designation of a
chunk's typs.

END : the word "end” that signals the eand of a description.

FFILE : an entire file on the chess board; ¢.g. D_FILE would represent the
squages d1 through d8 inclusive. Such a specification is represented
by a column (from A o H followed by the string *_FILE".

ID : any unique identifier for a chunk consisting of s followed by any number
of letters, digits or underscores

KINGSIDE : the word “kingsids” used 1o designate that the chunk is described
from the king's point-of-view.

NOTHING : the word "nothing” which specifies that 8 particular square or file
is empty.

NOTON : the string "noton” which specifies that a piece is not located on a
specific square.

OCCUPANT : a string used to designate s pagticular chess piece. It is representod
by & "W" or & “B" (for a white or black piecs, respsctively) followed
by s "PIECE"

ON : the opposite of "NOTON".

PIECE : a 1-character name for sach chess piece: i.e. a "P", K", "Q", "N™, "B",
or "R” 10 indicate a pawn, king, quesn, knight, bishop or rook, respectively.

QUEENSIDE : the word "queensids” used 10 designets that the clumnk is described
from the quesn's point-of-view.

REQUIRE : the key-word "require”™ used 0 designats a condition or set of conditions
that must exist for the chunk 10 bs pressnt.

SQUARE : s 2-character string consisting of a column (from A 0 H follov \d by a
row (from 1 10 8).

WHITE : the woed "whits" that designated the whits pieces.

WRT : the swring "wnt" which specifies the point-ol-view in which the chunk is
described; 6.g. “...wit whits kingsids".

%wken CHUNK WRT WHITE BLACK KINGSIDE QUEENSIDE PIECE

Stoken END ID OOCUPANT FFILE REQUIRE NOTHING CLASSIFICATION
%token ADVICE SQUARE ON NOTON C_CLASS CID

FEFEIEIEFFIIIIETEIIEITIIIFTTIITIIIIITTITIEE S

Saocnsssoc &’ "I' ON NOTON
%aonassoc '!'

%%

program : classifications chunk_list

classifications : classifications class_list
| class_list

clas_Jit : CLASSIFICATION id_lim °.’

id_list 1 id_list*,' ID
IID

chunk_list : chank chunk_lit
| chank

chunk : chunk_hsader chank_group chunk_body chunk_end
chunk end :ENDID'’
chunk_header : CHUNK ID °(’ parameter °)’ with_respect_t0 *.’
| CHUNK ID with_respect_to °.
pwameter :ID ':’ instantistion
instantistion : SQUARE
| FFILE
| PIBCE

with_respect_to : WRT colour side

piece_sq

and_lint

or_list

H

: expr I’ vorm
| tarm

tarm ‘&’ facwor
| factor

: pisce_sq
| (‘wo)'

lor_lm

| oc~upied

: and_list °+’ square
Iocaqndi»lqum

: or_list '/ square
| occupied °/ square

: occupant ON square
Iwmw

: OCCUPANT

: SQUARE
| FFILE

Appendix A2
Chunks wsed for recogniziag Ruy Lepes and Queen’s Gambit Declined formations.
These clunks also appeer in ather openings but not the sams combination.
classification c1, 2, 3.

Typical kingside pattern

chunk ks1 wrt whits kingsids.
classificetion c1 c_class 1.
require WPoa G2
require WP on RIS,
requise WP on P2,
require WK an GIH]1.

WN oa F1F3.

WR on F1EL.
eand ksl.

Pattarn for reguler Ruy Lopez center formation

chank lopez wrt white,
classification ¢2 c_class 2.
require (WP on E4) & (WP on D4).
require (BP on ES) & (BP on D6).
WPoan C3.
BPonCS.
WN oa F3.
BN on F6.

end Jopez.
Pattam for & deferred Ruy Lopez center formation

chunk deferrediopsz wit white.
classificetion ¢3 ¢c_class 3.
requizre (WP on I4) & (WP oa D3).
requise (BP on BS) & (BP on D6).
WP (3.
PeaCs
WNaoa P
BN

end lopes.
Typical Lopex quesn-tids pswn formation

chunk lopeags wrt white.
classification 04 ¢c_class 4.
requise (BP cn AS) & (BP oa BS).
require WP oa AYVAYM.
requise WP on B2/B3/84.
WPoaC3.
BN oa AS/C6.
BQ on DELC7.

BR ea ARCS.
BB ea B7CUD.

end lopengs.
A sids of the bowrd that is wndeveloped yet

clnmk wndevelopedq wrt whits quesnside.
classification cS c_class 5.
require WR on Al.
requises WN oa B1.
requise WB on C1.

WP aa AVA3.

WP on B2B3.

end wndevelopedq.

classification o6 c_cless 6.
require WK on El.
require WR on H1.
require WP o G2/G3.
require WP on F2/F3.
require WP on H/H3.
WB on Fl.
WNoa Gl.

end undevelopedk.

¢
Queen's Gambit Declined chunks.
]

chunk qgdosnter] wrt white.
classification ¢7 c_class 7.
require (WP on D4) & (BP om D3).
require (WP on C4) & (BP on E6/C6).
require (WP on E2/E3).

WNoaC3.

BN F6.

WNeaP.

and qgdosserl.

chunk qpdosntar2 wt whise.
classification o8 ¢_class 8.
requise (WP en D4).
requise BP ea C6.
requiss (WP noton C_FILE).
requizs (BP nowa D_FILE).
recpaise (WP on E2/E3).
WNoa C3.
BN oa P6.
WNoa F3.

and qgdosmter?.

chunk ggdeesser3 wrt whiste.
clessification c9 c_class 9.
requise (WP on D4).

voquise BP ca B4

seguise (WP nowa C_FILE).

requise (PP noton D_FILE).

requize (. .aE¥/R3).
WNeaa O3
BN on F6.
WNoa 3.

end qgdosmest3,

chunk qgdosnterd wrt whits.
classification c10 c_cless 10.
requive WP oan D4.
requise BP on DS.
require WP sown C_FILE.
require BP notwon E_FILE.
WNoaC3.
BN on F6.
WNoaF3.

end qgdoenterd.

]
Others
]

chunk baSpia wrt whits kingsids.
classification c11 c_cless 11.
requise ((WB oa GS) & (BP o H7)) | ((WB on H4) & (BP on H6)).
require BN on P6.
BPon G7.
BB on E2.
PQon DS.

ad tuSpin.

