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ABSTRACT

Class II bacteriocins are small, heat stable peptides that undergo minimal posttranslational
modification that is generally limited to cleavage of a leader peptide. Export of most class
II bacteriocins depends on dedicated secretion proteins, while a few are exported by the
general secretion (sec) pathway. Immunity of the producer to its own bacteriocin depends
on the product of an immunity gene, usually located downstream of the bacteriocin
structural gene in the same operon. Enterococcus faecium BFE 900 isolated from black
olives produced the heat stable bacteriocin enterocin B. Enterocin B was purified and its
amino acid sequence determined. It consists of 53 amino acids and shares homology with
carnobacteriocin A. Enterocin B and carnobacteriocin A are classified as class IIa
bacteriocins, based on their anti-Listeria activity; however, they differ from these
bacteriocins because they do not contain a YGNGYXC consensus motif at the N
terminus. The enterocin B structural gene was detected on a 2.2-kb and a 12.0-kb
chromosomal fragment. Both fragments were cloned and sequenced. Genetic analysis
showed that enterocin B is produced as a prebacteriocin, with a ‘double-glycine-type’
leader peptide. Apart from an atypically-located immunity gene, no other genes associated
with bacteriocin production were identified from the chromosomal fragments. This differs
from other bacteriocin systems, where bacteriocin structural, immunity, transport and
possibly regulatory genes are located in a gene cluster. Enterocin B was expressed in
heterologous hosts by both the bacteriocin dedicated pathway and the sec-pathway. The
immunity genes for enterocin B and carnobacteriocin A were located downstream and in

opposite orientation to the bacteriocin structural genes and their protein products shared



considerable homology. Absence of the YGNGVXC-consensus motif and the atypical
arrangement of the immunity genes for enterocin B and carnobacteriocin A may suggest a
new class of bacteriocins, class IId. The identification of genes for enterocin B and
carnobacteriocin A production and immunity in this study allows incorporation of these
genes into multiple bacteriocin cassettes in a food grade vector. Use of LAB starters

which contain such a vector is envisaged for biopreservation of foods.
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CHAPTER 1"

INTRODUCTION AND LITERATURE REVIEW.

1.1. The lactic acid bacteria.

1.1.1. Phylogeny and taxonomy of lactic acid bacteria.

he gram-positive bacteria are subdivided into two main groups or clusters. One
T cluster consists of bacteria with a mol% G+C of the DNA higher than 55% which
is designated the ‘Actinomycetes’ subdivision, or the ‘high-GC’ subdivision (Axelsson,
1993). This cluster contains the genera Bifidobacterium, Arthrobacter, Micrococcus,
Propionibacterium, Microbacterium, Corynebacterium, Actinomycetes and Streptomyces
(Woese, 1987, Stackebrandt and Teuber, 1988). The other cluster is termed the
*Clostridium’ or ‘low-GC’ subdivision, and contains species with a mol% G+C content in
the DNA of 55% or less. All lactic acid bacteria (LAB) are included in this subdivision,
together with aerobes and facultative anaerobes such as Bacillus, Staphylococcus and
Listeria, and anaerobes such as Clostridium, Peptococcus and Ruminococcus (Woese,
1987; Stackebrandt and Teuber, 1988). The LAB are considered to form a ‘supercluster’
which phylogenetically lies in between the strictly anaerobic bacteria (e.g., clostridia),
and the facultatively or strictly aerobic bacteria (e.g., Staphylococcus and Bacillus)
(Axelsson, 1993).

The lactic acid bacteria are a heterogeneous group of non-sporeforming, catalase-
negative, coccus, coccobacilli or rod-shaped microorganisms, which by definition
produce lactic acid as the principal end product of fermentation. The metabolism of LAB
is either homofermentative or heterofermentative. Homofermentative LAB produce
mainly lactate as the major fermentation end product, whereas heterofermentative LAB

produce additional products such as acetate, ethanol and carbon dioxide.

* A version of this chapter entitled Enterococci at the crossroads of food safety? has been submitted for
publication to the International Journal of Food Microbiology by Charles M.A.P. Franz, Wilhelm H.
Holzapfel and Michael E. Stiles.
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The taxonomy of lactic acid bacteria is based on morphological and physiological
features as well as the more modern molecular tools such as mol% G+C content of the
DNA, electrophoretic properties of gene products, DNA:DNA hybridization studies and
structures and sequence of ribosomal RNA (rRNA) (Stiles and Holzapfel, 1997). The
LAB group currently includes the following genera: Aerococcus, Alloiococcus,
Carnobacterium, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Oenococcus,
Pediococcus, Streptococcus, Tetragenococcus, Vagococcus and Weissella (Schieifer and
Ludwig, 1995; Stiles and Holzapfel, 1997). Despite great advances in LAB taxonomy
over the past years the classification of LAB is in a state of constant flux and it is the
focus of intense study (Stiles and Holzapfel, 1997). The need for a polyphasic approach
of modern taxonomy involving phenotypic, genotypic and phylogenetic information is

recognized and applied in LAB taxonomy (Vandamme et al., 1996).

1.1.2. Lactic acid bacteria as food spoilage organisms.

Lactic acid bacteria are well known for their preservative effect in food
fermentations; however, their role in spoilage of foods is also well documented. For
example, lactic acid bacteria are well adapted for growth in refrigerated, modified
atmosphere or vacuum-packaged cooked meats and poultry (Huis in’t Veld, 1996). The
combination of microaerophilic conditions in packages, the presence of curing salts and
nitrite and low storage temperatures favors the growth of resistant LAB and they usually
represent the predominant spoilage population of these products (Borch et al., 1996; Huis
in’t Veld, 1996). Lactic acid bacteria spoil packaged meats by fermentation of sugars to
form organic acids, carbon dioxide and slime, which lead to a drop in pH and off-flavors
(Huis in’t Veld, 1996). The main LAB genera associated with spoilage of packaged
meats are Lactobacillus and Leuconostoc (Borch et al., 1996). Sulfide-producing L. sake
strains have been associated with sulfide-spoilage of vacuum-packaged meat (Egan et al.,
1989). Spoilage of unprocessed, fresh meat products by LAB can also occur, especially
when such products are vacuum-packaged or modified atmosphere packaged. The role of

LAB in spoilage of fresh meats and the use of bacteriocin-producing LAB in preservation
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of meats is actively being investigated in our research group and will be discussed in
more detail below.

Other examples of LAB in food spoilage include: cracking defects due to gas
production in Gouda or Edam cheese caused by L. bifermentans; spoilage of citrus fruits,
wines and beer by L. brevis; spoilage of beer by Pediococcus damnosus; ‘greening’ of
cured meat products by Weissella viridescens (Hammes et al., 1991); and spoilage in
sugar processing as a result of production of dextrans by leuconostocs (Stiles and
Holzapfel, 1997).

1.1.3. Lactic acid bacteria in food preservation.

The lactic acid bacteria have been used for food preservation, knowingly or
unknowingly, since ancient times. For example, excavations in Switzerland have shown
that sourdough bread, a LAB fermented product, was part of a typical diet over 5000
years ago (Wahren, 1990). Fermented dairy products are mentioned in archaic texts from
Uruk/Warka (today’s Iraq) dated around 3200 BC (Nissen et al, 1991). Pasteur
contributed significantly to research on lactic acid fermentation in 1857, and the use of
lactic starter cultures for cheese and sour milk production was introduced in 1890 in both
Germany and Denmark (Stiles and Holzapfel, 1997).

Lactic acid bacteria are involved in fermentations of dairy, vegetable, milk and
cereal products (Lindgren and Dobrogosz, 1990; Hammes and Tichaczek, 1994; Stiles
and Holzapfel, 1997). Historically, some of these food fermentations were based on
empirical processes involving the natural microflora present on the raw material
combined with technical manipulations (e.g., mincing, chopping or tight packaging to
enhance distribution of fermentative flora and the systems anaerobicity), or additions
(e.g., addition of salt, sugar or ‘back slopping’ of starter material) (Lindgren and
Dobrogosz, 1990). It was estimated that 25% of the European diet and 60% of the diet in
developing countries consists of fermented foods (Holzapfel et al, 1995). Lactic
fermentations improve food flavor, aroma and texture (Lindgren and Dobrogosz, 1990;

Holzapfel et al., 1995; Stiles, 1996).
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The preservative action of LAB in foods is a result of formation of fermentation
end-products with antimicrobial activity (Lindgren and Dobrogosz, 1990; Holzapfel et
al., 1995). Such antimicrobial compounds include: organic acids (e.g., lactic, acetic and
formic); carbon dioxide; hydrogen peroxide (in the presence of oxygen); diacetyl;
aldehydes (e.g., B-hydroxypropionaldehyde) and bacteriocins (Lindgren and Dobrogosz,
1990; Gould, 1992; Hammes and Tichaczek, 1994; Holzapfel et al., 1995).

Bacteriocins have received great interest in recent years for potential application
as food ‘biopreservatives’. Consumers today demand food of high quality, which is less
severely processed (less intensive heating and minimal freezing damage), less heavily
preserved, more natural (free of artificial additives) and safer (Ohlsson, 1994; Gould,
1992, 1996). These demands are addressed in the marketplace by the emergence of a new
generation of chill stored, minimally-processed foods (Ohlsson, 1994; Stiles, 1996).
These foods rely on processing procedures that change the inherent fresh-like quality
attributes of the food as little as possible (minimally) but at the same time endow the food
with a sufficient shelf life (Ohlsson, 1994). However, minimal processing may lead to a
loss of intrinsic preservation (e.g., less sugar, salt, preservatives) and to a loss in
protection from processing (e.g., less severely heated) (Gould, 1992). As a result, new
preservation technologies are sought that employ ‘natural’ antimicrobial agents for
preservation, and that prolong shelf life and safeguard food from foodborne pathogens,
but do not have a detrimental effect on quality attributes of the food (Ohlsson, 1994,
Holzapfel et al, 1995). Such a ‘natural’ preservation possibility is offered by the
‘biopreservation’ technology which makes use of either a ‘natural’ LAB microflora as so-
called ‘protective culture’, or their antimicrobial metabolites, notably bacteriocins
(Holzapfel et al., 1995; Stiles, 1996). Many LAB are considered to be ‘food grade’
organisms, because they have been involved in numerous food fermentations known to
man for millennia, and some are designated as GRAS (generally recognized as safe)
organisms (Holzapfel et al., 1995). With the exception of some streptococci, LAB are
rarely pathogenic to humans and animals (Aguirre and Collins, 1993; Gasser, 1994).
However, LAB can act as opportunistic pathogens, especially in immunosuppressed

patients or patients with underlying disease (Aguirre and Collins, 1993). Generally these
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are rare cases, but a notable exception is the involvement of Enterococcus spp. in human

infections, and this will be discussed in more detail below.
1.2. Bacteriocins produced by lactic acid bacteria.
1.2.1. Definition and classification of bacteriocins.

B acteriocins are produced by both gram-negative and gram-positive bacteria and it
was bacteriocin production by the gram-negative bacteria that received initial
attention with the discovery of an antimicrobial agent produced by E. coli strain V
(virulent in experimental infections) that was later referred to as colicin V (Gratia, 1925;
Jack et al., 1995). This was followed by a period of discovery of new colicins produced
by E. coli and closely related members of the Enterobacteriaceae. It soon became clear
that the unusually small size and heat stability of colicin V set it apart from the colicins
that were subsequently isolated. Colicin V has a double-glycine-type leader peptide
(Havarstein et al, 1994) and it does not appear to be postiranslationally modified;
therefore, it more appropriately fits the description of a class II bacteriocin (see below).

Discovery of the production of antimicrobial substances by gram-positive bacteria
followed, with the term ‘bacteriocin’ coined by Jacob et al. (1953). A review by Tagg et
al. in 1976 on bacteriocins produced by gram-positive bacteria defined these compounds
as ‘proteinaceous compounds that kill closely related bacteria’. Bacteriocin production
has been described for all genera of LAB (DeVuyst and Vandamme, 1994). In a review
on the genetics of bacteriocins produced by LAB, Klaenhammer (1993) recognized that
while the definition of Tagg et al. (1976) held true in many cases, it was evident that
bacteriocins could ‘take many forms and elicit bactericidal activity beyond species that
are closely related’. Klaenhammer (1993) also took into account reports that surfaced at
that time, that claimed that bacteriocins could be composed of protein with additional
carbohydrate or lipid moieties.

Four distinct classes of LAB bacteriocins were defined by Klaenhammer (1993):
Class I bacteriocins are also known as the ‘lantibiotics’ and these are small, ribosomally

synthesized peptides that undergo extensive posttranslational modification. They contain
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unusual amino acids such as lanthionine and f-methyllanthionine, and dehydrated
residues. The best characterized lantibiotic is nisin. It is used world-wide in preservation
of foods such as processed cheeses and canned fruits and vegetables (Hurst, 1981;
Delves-Broughton, 1990; Holzapfel et al,, 1995). Class II bacteriocins are small, heat
stable peptides that do not undergo extensive posttranslational modification except for
cleavage of a leader peptide during transport, and in some cases the formation of
disulfide bridges between cysteine residues. These bacteriocins are produced as
prepeptides that contain a ‘double-glycine-type’ leader peptide, which is characterized by
a conserved processing site of two glycines at positions —2 and —1. Three subgroups of
class II bacteriocins were defined: Class ITa are the ‘Listeria-active’ peptides which
contain a conserved N-terminal YGNGVXC-consensus sequence; class IIb are poration
complexes consisting of two proteinaceous peptides for activity; and class IIc are thiol-
activated peptides requiring reduced cysteine residues for activity. Class III bacteriocins
are large, heat labile proteins while class IV bacteriocins are complex bacteriocins
composed of protein as well as additional chemical moieties such as lipid or carbohydrate
(Klaenhammer, 1993). The class IV bacteriocins are the least characterized and direct
evidence for a requirement of an additional chemical moiety for activity is lacking.

Nes et al. (1996) re-grouped the class II bacteriocins: Class ITa bacteriocins are
the ‘pediocin-like’ bacteriocins which contain the YGNGVXC-consensus motif; class IIb
are the two-peptide bacteriocins; and class Ilc are bacteriocins that are secreted by the
sec-pathway and which contain a typical signal peptide that is required for sec-dependent
secretion. While Nes et al. (1996) did not re-classify class I and III bacteriocins as
defined by Klaenhammer (1993), they excluded class IV bacteriocins because they are
not yet adequately characterized at the chemical level. Also, they suggested that the
observed complex bacteriocinogenic activities could be artifacts, caused by interaction of
protein with cell or medium constituents.

While these classifications of bacteriocins allow grouping of many bacteriocins
into one of the respective classes, some bacteriocins display unusual characteristics that
do not allow assignment to any of the existing bacteriocin classes. For example the
bacteriocins, camobacteriocin A (Worobo et al., 1994) and enterocin B (this study) do not
contain the YGNGVXC-consensus motif at the N-terminus of the respective peptides.
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Although these bacteriocins are Listeria-active, similar to other class IIa bacteriocins,
they clearly lack the ‘pediocin-like’ structure. The bacteriocin AS-48 is a cyclic molecule
(Martinez-Bueno et al,, 1994) while the bacteriocin/hemolysin produced by many E.
Jfaecalis strains is a two-component lantibiotic (Booth et al., 1996). Enterocins L50A and
L50B are novel in that they do not require either a leader peptide or signal peptide for
secretion (Cintas et al., 1998). Hence, the current classification schemes of Klaenhammer
(1993) and Nes et al. (1996) are inadequate. However, Nes et al. (1996) noted that
‘subgrouping of bacteriocins is a way to organize the present knowledge in a functional
way’; because the knowledge of bacteriocins is increasing, and novel types of
bacteriocins have been recently discovered that do not fit the current classification

scheme, bacteriocin classification may have to be revised again in the future.

1.2.2. Genetics of bacteriocin production.

In the 1990’s there has been an ‘explosion’ of research activity on the bacteriocins
produced by LAB (Klaenhammer, 1993). The majority of this research appears to be
concerned with class IT bacteriocins, although the genetics of production of the important
food preservative nisin has also received considerable attention. Research in our group is
mainly concerned with class II bacteriocins. Because the genetics of the class I
bacteriocin enterocin B is a central component of this study, only the genetics of
bacteriocin production for class II bacteriocins will be discussed here.

The genetic determinants for expression of most well characterized class II
bacteriocins are organized in operons consisting of at least four genes: the bacteriocin
structural gene encoding the prebacteriocin, a dedicated immunity gene generally located
next to the bacteriocin gene and on the same transcription unit, a gene encoding a
dedicated ATP-binding casette (ABC) transporter which externalizes the bacteriocin
concomitant with cleavage of the leader peptide, and an accessory gene which encodes a
protein for which the specific role is not known but it appears to be essential for transport
of the bacteriocin out of the cell (Klaenhammer et al., 1993; Nes et al., 1996). These four
genes are organized either in one or two operons (Nes et al., 1996). In the case of class

Hc bacteriocins the genes for dedicated-bacteriocin secretion are missing because these
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bacteriocins are externalized by proteins of the bacterial preprotein translocase (den
Blaauwen and Driessen, 1996; Economou, 1998), which are also known as the general
secretory (sec) pathway proteins (Pugsley, 1993; Economou, 1998). In addition to the
four ‘basic’ genes, bacteriocin operons may also contain regulatory genes necessary for

bacteriocin production.

1.2.2.1. The bacteriocin and its gene. The structural bacteriocin gene encodes a
prebacteriocin (prepeptide) containing an N-terminal leader sequence (Fig. 1.1). The N-
terminal leader sequence renders the bacteriocin molecule biologically inactive, and
provides a recognition signal for the transport system (Nes et al., 1996; van Belkum et al.,
1997).

mature bacteriocin

external environment & c

%o rebacteriocin
cytoplasm il \, P
2

: <

\\ chromosome 1 plasmidJJ

Figure 1.1  Schematic representation of bacteriocin secretion by the dedicated-
secretion pathway. Plasmid DNA in the cell encoding the bacteriocin structural gene is
transcribed to messenger RNA (mRNA) (1), which is subsequently translated to form the
prebacteriocin (2). The prebacteriocin contains a double-glycine-type leader peptide
which is cleaved (3) by the ABC transporter (ABC) concomitant with export. Secretion is
also dependent on the presence of the accessory protein (accessory), and mature
bacteriocin is released into the external environment (4). Figure based on reviews from

Klaenhammer (1993) and Nes et al. (1996).
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These leader peptides are commonly cleaved following a conserved glycine (-2) glycine
(-1) processing site, and for this reason they are referred to as ‘double-glycine-type’
leader peptides (Havarstein et al., 1995; Nes et al., 1996). Double-glycine-type leader
peptides vary in length from 14 to 30 amino acids (Klaenhammer, 1993; Hivarstein et al,,
1994). They are removed from the prebacteriocin to yield mature bacteriocin by the
ABC-transporter protein concomitant with export (Havarstein et al., 1995) (Fig. 1.1). The
following consensus sequence was determined for double-glycine-type leader peptides:
L(-12), S(-11), X(-10), X(-9), E(-8), L(-7), X(-6), X(-5), I(-4), X(-3), G(-2) and G(-1),
and the glycine at the —2 position is 100% conserved in different double-glycine-type
leaders (Havarstein et al., 1994; Nes et al., 1996) (Table 1.1). Examples of double-
glycine-type leader peptides of class II bacteriocins are shown in Table 1.1

Bacteriocins that are transported by the bacterial preprotein translocase do not
possess double-glycine-type leaders but bear signal peptides. These signal peptides are
recognized and cleaved by the signal peptidase of the bacterial preprotein translocase
concomitant with transport (discussed below). Signal peptides share the following
common features: they have a positively charged N-terminal domain of two to fifteen
residues followed by a hydrophobic domain composed of more than eight, predominantly
hydrophobic residues (Pugsley, 1993). The C-terminal domain is less hydrophobic and
contains the signals recognized by the signal peptidase, which are neutral amino acids
with small side chains (e.g., Ala, Gly, Ser) at positions —1 and -3 relative to the
processing site, and a turn inducing residue (usually Pro or Gly) may be present at
position -6 (Von Heijne, 1983; Pugsley, 1993). Signal peptides associated with
bacteriocin secretion are shown in Table 1.2.

Mature class II bacteriocins vary in size from 30 to more than 100 residues (Nes
et al,, 1996). These bacteriocins share a number of common features: they have a high
content of small amino acids, e.g., glycine; they are strongly cationic; their pI’s generally
vary from 8 to 11; and they possess a hydrophobic domain and/or amphiphilic region
which may relate to their activity on membranes (Abee, 1995; Nes et al, 1996). A
number of bacteriocins are known which consist of two peptides (class IIb), both of

which possess a double-glycine-type leader.
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Double-glycine-type leader peptides of class II bacteriocins.

Brochocin A*
Brochocin B®
Carnobacteriocin A

Carnobacteriocin B2

Carnobacteriocin BM1

Camobacteriocin X
Camobacteriocin Y
Enterocin A
Lactacin A®
Lactacin X*
Lactococcin A
Lactococcin B
Lactococcin Go*
Lactococcin GB*
Lactococcin M*
Lactococcin N*
Leucocin A
Leucocin B
Mesentericin Y105
Sakacin A

Sakacin P
Pediocin PA-1
Plantaricin E
Plantaricin F
Plantaricin J
Plantaricin K

Consensus®

MHKVKKLNNQELQQIVGG
MKKELLNKNEMSRIIGG
MNNVKELSIKEMQQVTGG
MNSVKELNVKEMKQLHGG
MKSVKELNKKEMQQINGG
MKSVKELNVKEMQQTIGG
MNKEFKSLNEVEMKKINGG
MKHLKILSIKETQLIYGG
MKQFNYLSHKDLAVVVGG
MKLNDKELSKIVGG
MKNQLNFNIVSDEELSEANGG
MKNQLNFNIVSDEELAEVNGG
MKELSEKELRECVGG
MKNNNNFFKGMEIIEDQELVSITGG
MKNQLNFEILSDEELQGINGG
MKKDEANTFKEYSSSFAIVTDEELENINGS
MMNMKPTESYEQLDNSALEQVVGG
MNNMKSADNYQQLDNNALEOVVGG
MTNMKSVEAYQQLDNQNLKKVVGG
MNNVKELSMTELQTITGG
MEKFIELSLKEVTAITGG
MKKIEKLTEKEMANIIGG
MMLQFEKLQYSRLPQKKLAKISGG
MKKFLVLRDRELNAISGG
MTVNKMIKDLDVVDAFAPISNNKLNGVVGG
MKIKLTVLNEFEELTADAEKNISGG
LS EL I GG

# # **§ #

X PO <SHARPARNROHRONRNZEAN R P I Y R

McCormick etal. 1998
McCormick et al., 1998
Worobo et al., 1994
Quadri et al., 1994
Quadri et al., 1994
Quadri et al., 1997
Quadri et al,, 1997
Aymerich et al.. 1996
Fremaux et al., 1993
Fremaux etal., 1993
Holo et al., 1991

van Belkum et al., 1991
Hévarstein et al., 1995
Hivarstein et al., 1995
van Belkum et al., 1991
van Belkum et al., 1991
Hastings et al., 1991
Hastings et al., 1994
Héchard etal., 1993
Axelsson and Holck, 1995
Tichaczek et al., 1994
Marugg et al., 1992
Diep et al., 1996

Diep et al., 1996

Diep et al., 1996

Diep et al.,, 1996
Havarstein et al., 1994

b

two-component bacteriocin

#, hydrophobic residue; *, hydrophilic residue






