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Abstract

Lnterprise is the latest offering in integrated programming environments for dis-
tributed parallel processing. Enterprise is intended for parallel programming on a
network of workstations. The analogy of a business organization or enterprise is used
to describe the various parallel constructs (line, department, division, individual, re-
ceptionist, representative, individual, and service) offered. Each asset or stand-alone
module intended for one processor is created from the user’s familiar sequential code
and the graph that describes the parallelism. Enterprise is designed to use standard C
code. The appropriate low-level communication and synchronization code is inserted
by Enterprise; changes to either resources or the type of parallelism desired are easily
accommodated and involve little user involvement.

This thesis presents four parallel algorithms that were developed using Enterprise:
chaotic Gauss-Seidel, block matrix multiplication, transitive closure and alpha-beta
scarch. The algorithms range from data-intensive (matrix multiplication) to com-
putationally intensive (alpha-beta). Performance and ease of construction were two
important metrics used in the evaluation. Performance was marred by the implemen-
tation of the communication server. Various experiments were done to isolate and
identify the problem areas. Problems local to Enterprise are being addressed. The
communication scrver problems were forwarded to ISIS (creators of the communica-
tion code) and may be addressed in the next release of ISIS. Several of the algorithms
required user intervention to correct deficiencies in the current implementation of
the Enterprise pre-compiler and run-time executive. Modifications to the Enterprise
model and its implementation have resulted from this thesis. The implementation is
now more robust and the model has been extended and simplified.
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Chapter 1

Introduction

Being the first user of a brand new product is always an experience. It is similar to
getting behind the wheel of a new car and taking the car out onto the highway. The
driver has preconceived ideas about what the car can and should do. The car designers
also have preconceived ideas about the typical driver. When these two groups of ideas
collide there is a period of learning and growth before everyone adapts to the reality
of the product.

Enterprise is a new collection of software tools intended to manage the low-level
implementation details of coarse-grained parallel programming on a network of work-
stations. These software tools are presented to the user by way of a graphical user
interface. The user, freed from the tedium and complexity of system dependent low-
level details, can concentrate on developing the parallel aspects of the algorithm.

The complexity associated with developt ag parallel distributed programs is divided
into two areas: the network and the program. The network complexity includes the
heterogeneity of hardware and software. The program complexity involves deadlock,
race conditions, message-passing, und non-determinism issues. The first two issues are
possible in sequential multiuser programming (for example, database programming)
but all of these issues frequently appear in parallel programming. This complexity
affects the implementation of the Enterprise project in its performance and, more
importantly, its usefulness.

The Enterprise project is the blending of three ideas or theoretical models of pro-
gramming: the Enterprise model, the communication model, and the user’s parallel
processing model. This is not a smooth blending of ideas, although each model is
effectively insulated from outside interference (in theory). With the implementation
of the overall system, each model must adapt to the others - compromising principles.
The success of all the models is measured by how little the implementation affects
the final product in both efficiency and usefulness.

If the implementation of Enterprise requires constant user intervention, i‘s use-
fulness will appeal to a much smaller group of experienced implementors. However,
if the user is completely shielded from the complexity, the resulting distributed pro-
gram will not always be efficient. Balancing these two equally valid states is neither
an easy nor a clearly identifiable task. Permitting various shades of shielding allows
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both inexperienced and experienced parallel programmers to have exactly @ vy
environment necessary to quickly and easily produce distributed parallel prograir..

This thesis is an evaluation of ae state of the Enterprise project as of the spring
of 1992.

1.1 Motivation

With the continual increase in the availability of low-cost and high performance work-
stations, there is a steady increase in the amount of unused computing cycles. Fully
utilizing these spare cycles on a network of workstations in the form of a distributed
program results in a low-cost supercomputer. There is a strong interest in harnessing
these idle cycles, but there is a high cost associated with developing and maintaining
such applications. Any tool that reduces these costs is desirable.

Compilers are essential tools designed to convert the user’s high-level specification
language into machine code intended for specific architectures (conventional or par-
allel). Similar tools to shield the general user from the complications of distributed
parallel processing are necessary. Distributed parallel processing involves running pro-
cesses on separate machines with communication between these different processes.
Until software tools similar to compilers are developed for creating distributed parallel
applications, the typical user is stranded, figuratively speaking, back in the dark ages
of computing. The distributed code is hand-crafted to a specific instance of machines
and networks. As such, it is difficult to maintain, modify, or adapt the developed
code to other instances.

The type of parallelism suitable for a distributed network of workstations is coarse-
grained. This means that the computational requirements should be large in compar-
ision to the cost of exchanging information. This large granularity implies functional
rather than instructional parallelism. That is, each processor must perform a complex
scries of instructions in parallel with other processors to offset the cost of communi-
cation.

In practice, it turns out that for most coarse-grained parallel applications, only
a small set of constructs is needed to define the requirements for parallel coding.
This set consists of replication of identical processes, restricted cases of recursion (an
attempt to avoid deadlock or race conditions), a pipeline (each process does part
of the work before passing it on to the next processor), or dividing the work into
heterogencous parts that are capable of being processed in parallel. These constructs
are regular and well defined - ideal for automated code insertion by a pre-compiler.

The term pre-compeiler is chosen because of the temporal ordering of its use. While
both the conventional compiler and the pre-compiler tools use a grammar and symbol
table to translate abstract templates to a specific reality, the distributed reality must
be dealt with prior to dealing with the physical reality. The pre-compiler modifies
the user’s code to represent the distributed code requirements in a high-level for-
mal programming language. Distributed processing is abstracted from the physical
reality since properly developed communication software is not tied necessarily to



a particular machine type or network type. Only after the pre-compiler is finished
does a traditional compiler create executable code intended for a particular machine
architecture.

It is difficult for the general user to write good parallel code cven with these simple
constructs to use as templates for code insertion or modification. Two reasons for
this are inattention to detail and the human tendency to take shortcuts. Back in
the dark ages, programmers hand-crafted machine level code. This is difficult and
error-prone even for an expert. To create a wider community of programmers, the
expertise of the machine-code implementors was abstracted into the formal high-level
programming languages of today and the software tool, the compiler. Compilers
are tools that provide the user with the experience of an expert code implementer.
Compilers can provide tracing and debugging facilities with little effort on the part of
the user. Similarly, by taking the expertise of a good distributed programmer and the
attention to detail offered by automatic code insertion, a pre-compiler tool is created
for parallel processing.

The pre-compiler does two things. First, the user is freed from the tedium of
network communication details. Details like connections between processes, correct
message formats, and error recovery are easily automated. Portability becomes much
simpler since the pre-compiler takes advantage of the independence of the communica-
tion subsystem in both machine and network architectures. The traditional compiler
creates the machine code for each required machine type. Second, the time spent
debugging the communication code is eliminated. It is assumed, of course, that the
pre-compiler does its work correctly. The tracing and debugging capabilities inserted
by the pre-compiler are used to profile problem areas in the user’s implementation
or logic flaws within the algorithm itself. This makes the production of working
programs both faster and easier for the user.

The advent of conventional compilers constrained the types of code that could
be developed. The complexity of adding distributed processing requires limiting the
types of automated code development. The truly dedicated and experienced pro-
grammer can craft the optimal distributed program but the cost is out of proportion
to most needs. Portability also decreases quickly.

The advantage of the pre-compiler is that more people can easily become accom-
plished distributed parallel programmers. The dread of learning all the low-level
communication protocols and the associated debugging skills are large impediments
to the growth of this area of computing science. The real challenge is found in the
creation of distributed algorithms but the current impediment of implementation dis-
courages the trip from theory to practice.

Another low-level preoccupation with this type of parallel computation is the
availability of machines. When should a process be allowed on a machine? Generally,
the user does not own all the machines and access times are limited.

Conversely, when should a process retire from a machine? Not only may the access
time expire, but the workload imposed by the parallel process may interfere with the
machine owner’s use. If a faster or better suited machine becomes available, how
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does the user migrate the parallel process to this new machine? All of these easily
automated tasks can be handled by a run-time ereculive process that is reusable for
many different parallel programs.

The concern with replication details is another easily automated low-level task.
This task is responsible for balancing distribution of work requests to different in-
stances of the same process. This could include adding or deleting new processors as
they are needed or become available, forwarding work requests, and saving requests
until processors become available. This general purpose task is best characterized as
a manager.

The Enterprise project is a collection of software tools intended to aid the gen-
cral user in bridging the complex implementation gap between theory and practice in
coarse-grained distributed processing on a network of workstations. Enterprise pro-
vides the pre-compiler, runtime executive, and managers wrapped up in a graphical
user interface. The user, supplying the sequential code, can test different parallelizing
techniques quickly without having to deal with the tedious and error-prone details of
interprocess communication.

1.2 Enterprise Overview

The Enterprise project is intended to take standard sequential C code and run it
in parallel over a network of workstations [8]. The analogy that drives the program
development is that of a business organization.

The different parallel constructs are couched in business terms. These constructs
are called assets since they are of value to the user. An asset is a template of some
specific parallelism required by the user. An example is the term line. A line is
similar to an assembly line in that one asset does some work and then passes the
partially completed work on to the next asset in the line. The pre-compiler takes the
assets and the user code and produces the processes and communication structure
that reflect this parallelism.

The assets can be coerced into other asset types depending on the user prefer-
ences. The coercion changes the code inserted by the pre-compiler only - the user
supplied code is unchanged. This object-oriented design of Enterprise gives all the
assets a simple external view while the assets themselves could be composed of com-
plex parallel assets. This abstraction permits a clean implementation of the overali
parallelization of the user’s task.

The main user environment is the graphical user interface (GUI). Here the user
draws the graph defining the parallelism, writes the sequential code for each node, inj-
tiates the pre-compilation and compilation of the nodes, and launches the Enterprise
program. All of these software tools are initiated by the GUL The user is shielded
from the implementation details of all of these tools.

The tool, compile, builds each of the nodes into processes suitable for the different
machine types. It accomplishes this by using the user-generated graph to direct the
pre-compiler to insert the necessary communication code. The modified code is then



conventionally compiled to the various target machines.

To launch the Enterprise program there is an Enterprise task, run. This task
provides the interface between the user and the run-time executive. It provides a
single entry-point for user interaction.

The run-time ezecutive is a group of three tools hidden from the user. The first
tool, machine_mgr, launches the user processes and manages machine access and
availability. The second tool, asset_mgr, manages the replicated assets. A separate
asset manager is launched for each group of replicated assets. The third tool, moni-
tor, is a single process used to log messages sent between assets. This is useful when
debugging or profiling run-time behaviour of the Enterprise program. These tasks
are launched with every Enterprise program.

The GUI provides the user with a well-defined environment which is independent
of any machine and network differences. The user need not know the details of Lhe
machine, network, or communication components to successfully create a parallel
program. The more experienced programmer can remove some of the shielding to
obtain a more efficient product. The GUI, launching of programs, run-time executive,
and pre-compiler are part of Enterprise and are not directly modifiable by the user.

With Enterprise there are no new key words or routines to usc when programming.
The current programming language is C. The only restriction is that any pointers to
memory locations cannot be passed in a message from one machine to another. This
makes sense since, what would machine A do with a memory pointer from machine
B?

The creation of the graph, compilation, and run-time steps do not need an inte-
grated interface to run but this is not the purpose of Enterprise. Enterprise assists
in quick prototyping of distributed programs. By providing a GUI, the uscr works
from one place and, unbeknownst to him or her, the details of the pre-compiler and
the launching of tasks arc hidden from view. Creation of the graph file is as simple
as selecting a menu item. Usually, the details of such topics are not relevant to the
development of the distributed algorithm.

By using Enterprise, the user now becomes the chairperson or chief executive
officer of an enterprise and outlines the problem while the well-trained management
team delivers the final product. This is a vast improvement in both productivity and
portability from the previous one-person show.

1.3 Scope of This Thesis

This thesis is an appraisal of the implementation of Enterprise as of the spring of
1992. Specifically, the implementation and execution of four parallel algorithms arc
examined with respect to the implementation considerations (ease of use, thorough-
ness of the pre-compiler) and the performance of the implemented program (speedup
and robustness of the code).

The graphical user interface [19], the executive tasks [28], and the pre-compiler [7]
have been implemented but not tested by a general user. The evaluation done as part
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of this thesis has and will cause changes in all components. Additionally, this work
has uncovered flaws in the communication subsystem.

Four algorithms werc implemented using Enterprise. They are intended to eval-
uate different aspects of Enterprise. The first algorithm is the parallel version of
iterative Gauss-Seidel. This algorithm solves a family of linear equations. The paral-
lel version of this code is non-deterministic in arriving at an answer. It is dependent
on having all components running concurrently. This algorithm cannot be tested
sequentially and reliability is a concern.

The second algorithm is parallel matrix multiplication. This is intended to test
both the manager task when more requests arrive than there are processors available
and how the efficiency of the communication subsystem in transmitting large mes-
sages. The modifications the user is required to make when changing between two
different parallel implementations of the same algorithm are evaluated.

The third algorithm finds all possible connections between different nodes in a
graph - the transitive closure. This algorithm is not easily amenable to the Enter-
prise model since the work, which must be performed in order, is generated by peer
processes for other peers. The Enterprise model expects data to flow down the process
graph.

The fourth algorithm is the alpha-beta game tree search algorithm. This recursive
algorithm is intended to test and contrast the two assets representing replication and
recursion. The user modifies the sequential code necessary for each implementation.
The ease of making the modifications and the efficiency of the two parallel algorithms
was to be compared. Only the version with parallel replication is presented due to
the delay in implementing parallel recursion in Enterprise.

None of the above algorithms achieves outstanding performance; however, the
actual implementation was easy and pairless. An investigation as to why the perfor-
mance was suboptimal centered on the message passing performance of the commu-
nication subsystem to identify any weak points in either Enterprise or the communi-
cation subsystem implementations.

The message passing performance of the communication system is critical to any
distributed processing. Indeed, it is a major factor for the overall success of Enter-
prise. Enterprise shields the user from actual implementation of the protocol. If the
performance is sufficiently poor, Enterprise will not be an efficient tool for producing
quality distributed processing code.

Enterprise employs a manager to coordinate the activity of a replicated asset with
the rest of the Enterprise program. What is the cost of the manager in terms of
performance, machine resources, and efficiency?

1.4 Outline

The thesis is divided into six chapters. The second chapter details the current Enter-
prise model. The third chapter documents the implementation details as of the spring
of 1932. The fourth chapter summarizes the theory, implementation, and some of the



experimental results of four distributed algorithms. The fifth chapter examines the
message passing performance of the communication system and the manager task of
Enterprise. The sixth chapter is a evaluation of the implementation of Enterprise as
of the spring of 1992 and potential research directions.

1.5 Summary

Enterprise is an example of a collection of software tools designed to quickly and easily
prototype parallel algorithms for distributed processing. The time spent debugging
the communication code is more usefully spent developing the distributed algorithm.
The current implementation is close to working as designed but deficiencies which
preclude the general release of Enterprise to the public still remain.

Some of the flaws in the current implementation are attributed to the fault that
the model was not complete before the implementation was started. However, the
model was not found to be incomplete until after the implementation. A continual
source of minor and major flaws is the communication subsystem. The communication
subsystem, ISIS, while a commercial product, is neither as robust nor fully tested as it
should have been. Possibly, Enterprise is using it in a way that ISIS was not intended
to be used, but some of the flaws uncovered are basic to the operation of ISIS.

Both the executive and pre-compiler were tested before they were finished and
completely debugged. Many of the problems will have disappeared with the next
version of these software tools. The Enterprise pre-compiler still has not approached
the model’s requirements. This is not the fault of the implementor since the com-
plexity is not trivial. It does mean that the communication code that is inserted
requires further modification to work correctly. This extra editing is not for the ca-
sual user of Enterprise but rather for someone who has used both Enterprise and the
communication subsystem before and knows the algorithm and its implementation
thoroughly.

The need for something like Enterprise to automatically insert appropriate code
for the communication between processes is essential to move distributed processing
from the perception of a black art toa logical and controllable science. The complexity
still exists for the experienced programmer to extract the last dregs of performance.
However, the hurdle for most users to reap the benefits of distributed processing is
significantly lowered by using Enterprise to develop and run distributed code. k-
abling more users to produce distributed code opens this black art to the jight of
knowledgeable, logical, and rational critical review. A drive in a car to someplace
new is a broading experience; having a new car makes the trip enjoyable.



Chapter 2
The Enterprise Model

The Enterprisc programming model is the latest in a series of programming models
that have appeared in the past few years. Their purpose is to convert existing se-
quential programs to parallel programs or to develop parallel programs directly. The
common goal is to aid the user in transforming an abstract theoretical model into
a concrete application of workable code [7]. The low-level details, daunting to the
casual user, are masked by abstracting the physical layer to a virtual machine. The
low-level process communication and synchronization details are now hidden by a
group of software tools.

These programming tools provide a mechanism for both process and message
identification to aid in monitoring and debugging. This is important in producing
error-free parallel program~. In short, these low-level tools aid the programmer to
create and identify messages sent from one processor to another processor in some
temporal order.

By concentrating at a higher level, the user has a more stable programming envi-
ronment since the tools used to manage the low-level operations are able to run on
multiple platforms. Pratt [24] points out that programmers often prefer a familiar
and conveunicnt programming environment with reasonable performance over an en-
vironment which gives maximum performance but requires a significant amount of
additional programming effort.

Tools designed for parallel programming abstract the view of the underlying phys-
ical machine for the programmer. This permits programmers to concentrate on the
parallel structure of their programs rather than dealing with hardware details. Such
ease of programming does not come without a cost. Jones and Schwartz [13] point out
that the masking of the hardware architecture in a distributed system comes with a
performance penalty. The best possible performance in distributed parallel comput-
ing environments requires that the programmer have some control over the mapping
between processes and processors. Ideally, a parallel programming tool should pro-
vide both options: automatic processor allocation for naive users, and full processor
allocation control for advanced users.

An integrated environment for parallel programming provides the programmer
with a set of tools to create, debug, and visualize a parallel program. These tools
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share a consistent user interface displayed in a uniform graphical display. A structural
graph, in the form of a control flow graph or a data dependency graph, defines the
parallel structure of a program. The run-time behaviour of the program is visualized
by animating the defined structural graph. Visualization of program execution is
particularly important to parallel programmers because it provides an easy way to
identify performance bottlenecks of parallel programs.

In addition to the advantage of visualizing the execution of a parallel program,
most of these environments, such as HeNCE [5], Paralex [3], FrameWorks [26), and
PIE [17] separate the definition of functional modules and the definition of the parallel
structure of a program. This option adds the flexibility to restructure a finished
parallel program and to experiment with different forms of parallelism in order to
achieve better performance since these are conceptual models rather than physical
models, portability is improved.

One such conceptual model is object-based parallel programming. The idea be-
hind the object-based model is similar to that of object-oriented programming. An
object-based program is composed of modularly decomposed units. These units are
independent, self-contained entities which may contain data, operations, or both [23].
The basic function of such an entity is to interact with other entities by sending and
receiving messages. This model is ideal for a distributed network of workstations, the
targeted architecture for Enterprise.

2.1 Enterprise Model

The Enterprise model has gone through several changes. This section bricfly describes
the state of the model as of the spring of 1992.

The Enterprise model, described in detail elsewhere (8, 7, 28], is built upon work
developed for Frameworks [26]. The anthropomorphic principle behind Enterprise is
a business. That is, the elements of the model are named after business concepts
that describe the intended parallelism. Business enterprises are naturally parallel
(the successful ones anyway). Various consructs from this business model are used
to describe the intended parallelism. While this is a simple yet powerful model, there
are limitations to the types of parallelism possible.

One such constraint is that there is a hierarchal ordering to the parallelism: there
exists a process thread that proceeds from the beginning of the program until the end.
This is consistent, in part, with the business analogy since arbitrary connections are
not supported either ~ control and data flow through the established chain of com-
mand. Arbitrary connectivity or new paths are not possible on a dynamic basis. The
chain of command is comprised of individuals with different duties; each individual
exchanges messages either with their immediate supervisor or with individuals they
immediately supervise. Control of the data is passed down the organization until an
individual is reached who actually does the work. Coming back to the programming
aspect, the entire program now either rewinds to the beginning or stops execution.

An Enterprise program is described by a directed acyclic graph. Each node rep-



resents an asset, the template for the type of parallelism selected. An arc represents
the communication between processes. The user creates the sequential code for each
individual asset. An important point is that no asset can call itself, except under
special and controlled circumstances. This is intended to reduce or eliminate the
possibility of deadlock or race conditions. Nodes selected for replication represent
multiple instances of the same asset.

Sequential programs are hierarchal in nature. Using Enterprise to express the par-
allelism that is intended from within this sequential ordering is often straightforward.

The method for expressing the intended parzllelism is graphical, either via a tex-
tual format or by drawing a structural graph on the screen. The implementation
coding details are the task of the pre-compiler. The user is responsible for drawing
the graph with the nodes and the connections between nodes.

Replication, expressed as a tuple of minimum and maximum values, is handled
in two different ways by Enterprise. If the two values are the same, Enterprise will
allocate all the requested number of processes at the program startup time. However,
if the two values are not the same, Enterprise will allocate the minimum number of
processes at startup time and dynamically recruit up to the maximum value from the
remaining free processor pool as work becomes available at run-time. If a process
is finished and there is no work waiting for it, Enterprise dismisses the idle process,
freeing the processor for other work. At no time will the number of allocated pro-
cessors fall below the specified minimum. If there are no processors available or the
maximum replication is reached, the requested work must wait for an idle processor.

If a particular asset is already replicated, changing the number of members does
not require a recompilation of the asset. The number of replications is a run-time
concern. The amount of replication can be changed any time by the user prior to
actually running the program. ‘

Any asset identified as an individual (the simplest type of asset) can be coerced to
other, more complex types. The user must supply the sequential code for each asset.
If the user wants to change the parallelism of the program then the graph is redrawn.
The user’s code will likely require modification to reflect the change in parallelism.
The changes involved, if the user designs the implementation correctly, are either
consolidation or separation of asset source files. Each source file represents a portion
of the functionality of the parallel algorithm. Usually, changing the parallelism of the
algorithm involves only consolidating or splitting of the functionality of portions of
the algorithm.

No arbitrary connections of nodes are allowed other than to simple nodes which
are called services. A service is available to all processes from one logical site only.
The graph representation of these services is a node that is separate from the main
graph. In this way the user is aware of the peculiarities of services and the graph
does not get cluttered with the connections of all nodes to the service. However, if
the user wants separate, concurrent Enterprise processes (multiple businesses), then
interaction is available via well-defined interfaces (eventual design for services).

The following sections describe the different assets and their potential uses. Fig-
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ure 2.1 shows a schematic of five simple parallel constructs possible using Enterprise.

2.1.1 Individual

An individual is the base asset of Enterprise. The individual is responsible for
executing some sequential code segiaent. A basic individual can be replicated or
coerced into other assets. An individnal is represented as a singlc node in Figure 2.1a.
An Enterprise program starts as an individual. All leaf nodes in the Enterprise graph
are considered individuals.

There are two special types of indi.:Juals. A receptionist is the entry point for a
composite asset such a: x fine, depastinent, or division. They cannot be replicated
or coerced into any other asset. Representatives are the leaf nodes for a division.
Representatives can be replicated or coerced only to a division. Reasons for these
restrictions will become apparent shortly. Regardless of the type of individual, an
asset classed as an individual has user code associated with it.

2.1.2 Line

The line asset is taken from the idea of an assembly line. There are
n heterogeneous assets in a line composed of one receptionist and
n — 1 assets (Figure 2.1b). Each asset calls the next asset in the
line and replies (if necessary) to the previous asset. Each asset is
assigned a particular piece of work and passes its completed work
I to the next asset in the line. A line has n different computations
being done simultaneously. However, the speedup observed is bounded by the slowest
asset. This asset will have messages waiting to be processed by previous assets and
starving following assets. By replicating or coercing these slow assets, bottlenecks in
computation are reduced or eliminated (Figure 2.1c).

The first asset in a line is the receptionist which shares the name with the line.
It is the only asset that is externally visible. That is, an external asset may only call
the receptionist of a line.

A line can be replicated as a single entity. Its members can be coerced into other
lines, departments, and divisions as well as being replicated. The receptionist cannot
be coerced since it defines the external view of the line.




(d)

(e)

Figure 2.1: Basic parallel constructs of Enterprise.
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2.1.3 Department
A department has two distinct parts (Figure 2.1d). The first is a

& receptionist who is responsible for all requests directed to the de-
partment. The second part is the heterogeneous group of asscts
é (individuals, lines, departments, divisions) that will process the re-

quests of the receptionist in parallel. The receptionist processes the
I external asset’s request and distributes the relevant work to its
managed assets. The current implementation requires these managed assets Lo reply
back to the receptionist who then calls or replies to the next asset in the graph. This
restriction is being removed. While it does increase the complexity of the communi-
cation requirements somewhat, it does not compromise the basic tree structure.

A department can be replicated as a single entity. Its members can be coerced into
other departments, lines, and divisions as well as being replicated. The receptionist
cannot be coerced since it provides the external view to the department.

2.1.4 Division

The division asset is the only asset which can call itself (Figure 2.1e).
This asset is intended for divide and conquer procedures with re-
cursion carefully controlled. The user writes the serial code with a
recursive part and a stopping criteria for the recursion.

A division is considered by the user to be a hlock of homogeneous as-
I sets, all containing the same recursive sequential code. But within

Enterprise, the internal and leaf nodes have different functionality representing the
type of recursion. The internal nodes generating and receiving messages between
the other nodes i~ the division represent the parallel recursion. The internal nodes
perform only parallel recursion. The leaves of the recursion tree are called represen-
tatives. They receive messages from internal nodes and perform sequential recursion
as specified in the user’s code.

All these nodes are associated with distinct communication groups for the correct
control and flow of data. The shaded part of Figure 2.1e shows the identification
of a communication group. This permits the recursion to mimic the effects of the
sequential recursion with the different levels clearly identifiable.

The user specifies the width and depth of the division - the limits of the parallel
recursion possible. The width of each level in the recursion tree is controlled by the
replication factor (permitting arbitrary fanout). The depth of the parallel recursion
tree is the number of divisions created plus the representative asset.

Each level of depth of the parallel recursion is specified by another icon with the
same name. Having the same name for the different asset icons reinforces to the user
that these assets are identical, even though Enterprise assigns different functionality
to the various nodes. In Figure 2.1e, the depth of this tree is three while the width is
three at the first level and two at the second level. The width can vary at each level
depending on the user’s application. The replication factor specified is not the total
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replication for the level but rather the number of assets that communicate with one
assct specified in the previous level. That is, the number of replicated assets at one
level is the product of the replication factor at the current level and the replication
factor of all the previous levels. Care must be taken that the number of processes does
not exceed the number of processors available. The number of processes required in
the example case is ten plus the managers for each processor group. The number of
managers is unknown at this time since the division implementation is not complete.

2.1.5 Service
The service asset is similar to describing a business asset that does
not consume or produce work for the business. An example is a
blackboard or a clock on the wall. All processes may call any service
to request something (a global variable, work-to-do item) or deposit
something (modified global variable, work-to-do list). Having a
service does enable some arbitrary connectivity. A service could
be another Enterprise program but is currently implemented only as an individual
process.

A service usually simulates shared memory in the distributed memory environ-
ment. The high cost of such simulation must be weighed against the need for such
simulation.

2.2 Programming Model

The atomic clement of programming with Enterprise is the user-supplied function or
subroutine. The function’s formal parameters define the composition of the message
sent to it by other assets. The internal structure of the user’s function reflects the
parallelism sclected. For example, in line parallelism the asset expects work to arrive
via the formal parameter list; some processing of the work is performed by the asset;
and modified work leaves by way of a function call to the next asset in the line.

Enterprise requires the user to supply the code segments necessary to express the
parallel algorithm. The user-drawn graph designates to the pre-compiler and run-
time executive both the parallelism of the algorithm and the connections required
between the various code segments.

Enterprise supplies all the communication code necessary to implement the user’s
parallel algorithm. The run-time executive will launch and stop all the processes
necessary to execute the algorithm.

2.2.1 Writing an Enterprise Program

The first thing the user must do to create any parallel program is to think about the
following questions. How is the parallelism expressed in the algorithm - a pipeline,
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different tasks executing simultaneously, or divide-and-conquer? What are the dif-
ferent modules needed to express the algorithm? Under Enterprise, the user calls a
function to express parallelism.

Next, the user needs to determine if the modules require shared memory (global
variables). Can the algorithm be modified (if at all) to exist in a distributed memory
environment? Acessing shared memory in a distributed memory environment i8 ex-
pensive. To simulate this requires either extra parameters being passed (if the globals
are static over the entire run), or a service which will give the caller the current state
of the global variables.

Once these design issues have been addressed, the implementation can begin.
Enterprise implementation is based on an extension of the remote procedure call
(RPC). A standard RPC has a process A issuing a request for work to process B3.
Process A then blocks until a reply (if any) is reccived from process B [27].

Hidden from the user, Enterprise transforms the user function call into an outgoing
message and an incoming message (if necessary). The outgoing message is the list
of parameters the user would use calling the function, while the incoming message
is equivalent to the value returned by the function. The sequential form of the code
would block until the function return.

Enterprise relaxes the necessity for blocking by qucuing messages at the recipient
and acknowledging only the receipt of the message. The process generating a work
request which is not expecting a reply, blocks long enough to send the message; work
then proceeds asynchronously in both processes. The work request that expects a
reply operates with lazy synchronization. First, the process blocks until the receiver
acknowledges the receipt of the message. Second, the calling process is allowed to
continue until it accesses a memory location where the expected reply is to be placed.
The process then blocks until the reply is received. The parallelism is found during
the time spent before blocking.

However, messages are dealt with in a temporal order. A received work request
must be completed prior to the receiver processing the next request. The receiver can
act as a sender to subordinate processes with any number of requests being sent but
all the expected subordinate replies must be received prior to replying to the original
request.

The following simple example (Figure 2.2) demonstrates this. The value of z
is packaged into a message and is sent to f while g continues execution until a is
accessed. If f has responded with an updated value for a then g does not block but
continues execution. However, if f has not responded, g must block until the reply is
received from f.

The user writes the needed functions and support libraries. The algorithm, if
possible, should be debugged sequentially to eliminate as many programming errors
as possible. This also gives a hint as to the performance of the algorithm when
there are limited machines available. Given a working or at least debugged group of
functions, the user is ready to use Enterprise.

In Enterprise, the user draws the graph expressing the parallelism of the algorithm.
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Figure 2.2: An example parallel program using lazy synchronization.

Each asset node is associated with a user-supplied source file. Based on the graph,
Fnterprise will insert the appropriate communication code and compile each asset into
a stand-alone process for each of the desired target machines. When this compilation
is done, the user is ready to run the Enterprise program.

2.2.2 Running a Parallel Program

The user’s C code has been translated into a sequence of messages.
The calling semantics of each function are translated into messages
that are delivered to the process representing the sequential func-
tion. Any return variables or parameters passed by reference to
this function are similarly packaged into a reply to the originator’s
message. Any error conditions that result in a function aborting
are propagated to all the processes composing the Enterprise program resulting in a
clean shutdown of the entire program (similar to what would occur in a sequential
program).

To run the successfully compiled program the user optionally supplies a list of
machine names suitable for execution of the program. The user selects run from the
command menu and the Enterprise executive launches all the appropriate tasks on
the available machines. When the Enterprise program finishes, the executive shuts
down all of the processes.

2.3 Related Tools or Approaches

There arc other products available which have similar functionality to Enterprise.
Four of these are summarized and compared to Enterprise. They are HeNCE, Paralex,
FrameWorks, and PIE.

2.3.1 HeNCE

Heterogeneous Network of Parallel Machines, HeNCE, [5] is a software package that
supports the creation, compilation, execution, debugging, and analysis of parallel
programs. It is the closest to Enterprise in functionality.
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An acyclic graph, specified by the user, determines the parallelism of the program.
Each node of the graph represents a subroutine or function of the program while an
arc represents the data dependencies. HeNCE inserts the necessary communication
code and runs the procedures on the machines in the network. HeNCE supports
dynamically spawned subgraphs, pipelining, loops, fan, and conditional constructs.
HeNCE supports the FORTRAN and C languages.

The parallel constructs defined in Enterprise, such as a department or line, can
be constructed in HeNCE. Recursive parallelism, i.e. divisions, are not readily con-
structed unless the recursion is unrolled. HeNCE programs appear to be at a lower
level in scope than Enterprise because the user has to specify a script to execute
the various subroutines or subgraphs. The parameter passing of HeNCE is specified
separately from the function parameter list. This permits several nodes to supply
different parts of the forinal parameters to a single node. Enterprise takes the pa-
rameters as specified in the function call and transports them to the remote process.
Enterprise does not support multiple nodes supplying subsets of the parameters to a
single node. Each Enterprise message supplies the complete parameter list as specified
in the function definition.

HeNCE has a more advanced graphical interface than Enterprise. The animated
debugging and display are quite sophisticated. A drawback of HeNCE is that the
makefil: (a file containing the instructions for compiling the modules) requires sepa-
rate libraries or preprocessor directives that must be modified by the user. Enterprise
allows the user to fill in a form and creates the correct makefile without further
intervention.

In summary, while HeNCE is more advanced visually, the user must work harder
to express the parallelism. This results in error-prone scripts and poor reusability
when experimenting with different parallelism. The Enterprise model requires the
user to modify the graph and to change the user-supplied source code when changing
the parallelism.

2.3.2 Paralex

Paralex [3] is similar to HeNCE in that the user specifies a dependency graph and
each node in the graph is a function. Multiple nodes may provide input to a single
node as in HeNCE. The differences are that the output is limited to a single value
(simple or complex). The user must code filter nodes that partition the function
output for future nodes in the graph. This limits the portability and modification of
the desired parallelism.

Paralex does not support recursive parallelism. Its fault-tolerance capabilities
preclude access to any external device or file and no process may have a permanent
internal state or external side-effects. The language supported is standard C with the
intention to support C++, FORTRAN, and Lisp.

A unique feature of Paralex is the analysis of the parallelism of the final program.
The nodes are grouped together when it is obvious that they must be run sequentially.
This reduces the number of messages and hopefully speeds up the program. This
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condensation produces chains of nodes. The drawback to this occurs when multiple
strcams of data are flowing through the program. When this happens the grouped

nodes cannot be condensed into one process.
Enterprise and Paralex both use the commercial communication subsystem JSIS

to provide all communication needs. While Paralex has utilized a wide range of ISIS
capabilities, Enterprise uses a limited subset. As a result, Enterprise does not have
the fault-tolerance of Paralex. However, Enterprise is less committed to one particular
communication subsystem.

2.3.3 Frameworks

Frameworks [26] is a graph-based parallel programming environment similar to the
previous two models. The feature that is fundamental to Enterprise, the template,
was developed here. The template concept is used for expressing input, replication,
pipelines, and assimilating data flow from various nodes.

The communication subsystern used is the Network Multiprocessor Package
(NMP) [6]. This package has some system specific limitations but has low process-
ing overhead. It provides a minimal set of software tools necessary for distributed
processing using Frameworks.

Frameworks is not discussed here since Enterprise evolved from it. Enterprise
has clarified and extended the programming model. The graphical interface is more
powerful. With the extension of the model and interface, the NMP communica-
tion package proved insufficient for providing the necessary software tools. Other
communication subsystems were investigated. The communication subsystem is now
ISIS [12] which provides system independent message processing and process groups
for easier maintenance of replicated processes.

23.4 PIE

Programming and Instrumentation Environment (PIE) [25] for parallel processing is
intended for a different architecture than the previous systems. It is targeted for
shared-memory multiprocessor systems requiring medium to large grain parallelism.
It provides a meta-language for modular programming. This meta-language provides
the support, in a programming language independent fashion, to efficiently manipu-
late parallel modules, access shared data constructs, and observe the program status.

PIE uses an objeci-oriented approach to modularize paralielism. It has as its
lowest level an activity, the sequential code. A frame is composed of activities that
manipulate shared-memory directly. A team is a group of frames that cooperate
together by interprocess and interprocessor communications. The sensor construct
is used to monitor resource consumption or variables of the previous three paralle!
constructs.

PIE utilizes templates or forms that allow the user to quickly implement common
parallel program techniques. For example, a master-slave, recursive master-slave, and
pipeline are some of these techniques. The user is able to observe graphically both
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the construction and running of the parallel program. This is similar to the previous
tools. Enterprise has only a static display of the connection graph. Again, like the
previous systems, the user is shielded from low-level implementation details. The user
is freed to concentrate at the abstract model level.

2.4 Summary

A brief introduction to the motivation of a tool like Enterprise has been presented.
The Enterprise model has been summarized along with a generalized approach to
developing and running code using the current implementation.

Four other software tools with similar functionality have been presented and com-
pared to Enterprise. It is clear that Enterprise is not unique. The advantage of
Enterprise is the degree of abstraction enjoyed by the user from the low-level imple-
mentations. The Enterprise model is the most recent and easiest to use of all these
tools. It is not possible to say that any of these software tools produce extremely
efficient code but the common goal of all of them is to enhance the productivity of
the user.
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Chapter 3

The Enterprise Implementation

We saw in Chapter 2 a summary of the Enterprise theoretical model. For a theory to
be adequately tested, a reasonably complete implementation must be available. As
with any theory, the implementation details are specific to a. site or incarnation. This
chapter answers how the theoretical model is implemented, in this case, on a network
of homogeneous workstations. It does not address the performance considerations of
Enterprise programs.

All three components of Enterprise (pre-compiler, run-time executive, and the ISIS
communication system) have well-defined interfaces. Details of the pre-compiler are
found in Chan’s thesis [7], while Wong’s thesis [28] documents the run-time executive.
ISIS implementation details are summarized in the ISIS User Reference Manual [12].
What is presented here is a summary of the implementation of each component and
its integration into Enterprise. For purposes of clarity, the tested implementation of
Enterprise is referred to as version 0.5 while the newer version of Eaterprise is known
as version 0.6, unless otherwise stated.

These implementation details are broken down into five areas ~ the shell, commu-
nication server, the graph file, the compiler, and the run-time environments. These
components are interdependent on one another to different extents and are difficult
to cleanly separate. The first two are not applicable to this discussion since they are
either a simple one time modification or not relevant to this thesis. Details of the
first two areas are provided in Appendix B.

The last three areas are presented. First, the two versions of graph files are dis-
cussed. The first version is the tested version of the graph file (version 0.5). The sec-
ond version (version 0.6) is the new, improved, and verbose graph file. It is intended
to be produced by the graphical user interface (GUI) and used by the other Enter-
prise programs without any user intervention. Second, the Enterprise pre-compiler
implementation details are discussed briefly. The pre-compiler uses the user-supplied
graph file and sequential C source code files for each asset to produce the parallel
Enterprise program. Third, the implementation of the run-time executive is detailed.
This group of software tools is responsible for the launching and shutdown of an
Enterprise program, monitoring messages and processors, and managing replicated
assets. Finally, a summary of the implementation details for the version of Enterprise
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used for this thesis closes this chapter.

Each Enterprise program starts with the . ser doing a functional decomposition of
the problem. These functions will determine what the graph will look like and what
source code to develop. Enterprise is a tool used for the easy implementation of a
parallel algorithm intended for a distributed network of workstations. Enterprise is
not intended to parallelize the user’s algorithm.

3.1 Graph File

The heart of Enterprise is the simple textual file known as the graph file. It doc-
uments the necessary conrections between the various Enterprise processes and how
to construct them.

Currently, there are two text file versions: the graphical user interface (GUI) ver-
sion which conforms to the new model and the original version described by Wong [28].
The new graph file is intended to be created by the GUI interface and is complete
(and verbose) while the older format is simpler for the user to encode.

The two graph file formats are presented next with some discussion of flaws and
benefits of both. The same sample program, which is an example of a more compli-
cated parallel program built up from simpler parallel constructs, is used in both cases.
The graphical representation of the file is found in Figure 3.3. The program uses two
services (Asset14, Asset15), two lines (Assetl, Asset2, Asset3, Asset13 and Asset 10,
Asset]l, Assetl12), two departments (Asset3, Assetd, Asset8, Asset9, Assetl0 and
Asset4, Asset5, Asset6, Asset7), and a division (Asset8). There are two replicated
assets (Asset2 and Assetll) and the division has a width of three for each of its two
levels. The program does not represent a real program but is an illustration of the
Enterprise assets. The number of processors required is a minimum of thirty-one to
to a maximum of thirty-four plus the communication server.

3.1.1 Old Graph File

The graph file format for the version of Enterprise used in this thesis is found in
Table 3.1. There is one advantage to this format for the user: it requires the minimum
amount of typing since only the information that is not defaulted to some pre-specified
value needs to be included.

The ordering of the statements describing the graph is not important. However,
the graph description must be first. Each asset (individual, department, line, or
division) is completely represented on one line. The default asset is an individual.
Hence, no individuals are described. This contrasts with the new version of the graph
file, where placement of asset descriptions and complete descriptions of all assets
composing the graph are critical to the successful use of Enterprise.

After the graph has been described, each asset that requires special libraries or
machine placement instructions is listed with its name on one line and with some or
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Figure 3.3: A large Enterprise program.



line 4 Assetl Asset2 Asset3 Asset13
pool 3 Asset2
department 4 Assetd Assetd Assct8 Asset9 Assct]0
department 4 Asset4 Asset5 Asset6 Asset?
line 3 Asset10 Assetll Assetl2
contract Assetll
division 3 3 Asset8
service Assetl4
service Asset15
CFLAGS -DVERBOSE
Assetl
include sass-lake
exclude sundog
library mylib.a -lm
Asset12
library mylib.a -lin
exclude sundog
Asset13
library myotherlib.a mylib.a -Im

Table 3.1: Old graph format for a sample program.

all of the include, exclude, or library statements that apply to that asset following
on separate lines. The default is the default system and communication libraries.

In the example given, CFLAGS has the compiler variable VERBOSE set for all
assets. Assetl, Asset12, and Asset13 need the standard math library (-lm) and the
user’s library mylib. Asset13 also needs the user library myotherlib, Assetl and
Asset12 are not to be run on the machine sundog while Assetl should be placed on
the processor sass-lake if possible. All other processes can be placed on any machine
present in the machine file and are to be linked with the standard C libraries and
ISIS libraries.

The division asset has only a depth and breadth parameter following it. Varying
the breadth parameter at each level of recursion should be a user option. The next
version of Enterprise allows this.

Assets that require variable replication are identified by the key word contract.
Contracts start with one member and expand to use all of the free machines supplied.
There are no lower or upper limits applied to contracts. The term contract has been
dropped in favour of a pool with variable lower and upper replication values. This
simplifies and enhances the model.

One problem occurs in compiling with the old graph file. The CFLAGS option
works well but is a global feature. It may be necessary to have separate compile
options for each separate architecture. This has beer. changed in the new version.
For testing purposes, a homogeneous collection of machines is assumed.



3.1.2 New Graph File

The new graph file (Table 3.2) is a textual summary of a depth-first search of the
Fnterprise graph. Each asset is described along with a listing of the machines it is
preferred to either run on or avoid. The compiler flags are local to the asset, as are
the link options. This results in a dramatic increase in the verbosity of the graph
file. The local information is detailed for each asset. The user is not supposed to
sec this file or, for that matter, touch it. The graphical user interface (GUI) is solely
responsible for translating the desired operations to the appropriate textual format.
This increases the flexibility for the system to respond to site and target architectures.

Part of the file in this implementation is not used. The machine-independent
flags DEBUG/NDEBUG (enable/disable debugging) and OPTIMIZE/NOPTIMIZE
(enable/disable optimization) are ignored by the new version of the pre-compiler.

Replication is defined by giving minimum and maximum bounds on the size of
the pool. If the lower limit is set to zero, one process is created upon startup and
additional processes are started up as required until the maximum is reached. If the
maximum limit is zero as well, additional processes are created until all the available
machines are used.

Divisions are no longer specified with only a depth and width parameter. Each
level of the parallel recursion is specified, with the last level having the special as-
set name, representative. This indicates where the parallel recursion stops and the
sequential recursion begins. Each level is specified separately since the user may
sometimes want different branching factors for different levels. The important issue
in the new division format is that the source file for a division asset remains the same,
regardless which level of the recursion tree is being compiled.

3.2 Source Code Caveats

In addition to the graph file, the next files created are the source code files for each
Enterprise asset. Each asset is viewed as a function call under Enterprise. The user
can use this asset code to test each function sequentially. In fact, the user can usually
construct and test a sequential version of the program by just compiling the various
asset code fragments. This allows another level of debugging before complicating the
program with parallelism.

The user’s code must not contain the following code fragments in order to be
parallelized by Enterprise. They are as follows:

® Do not use register variables as parameters in function calls that are intended to
be Enterprise assets. This may change in later versions since this is a problem
of the pre-compiler not the communication subsystem.

¢ Delete all forward declarations of functions bearing the Enterprise asset name.
A forward declaration indicates to the compiler that the function, for example

double foo();
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Assetl line 1 1 ORDERED DEBUG NOPTIMIZE =
CFLAGS -DVERBOSE

EXTERNAL mylib.a -lm

INCLUDE sass-lake

EXCLUDE sundog

Asset2 individual 3 3 UNORDERED NDEBUG OPTIMIZE
CFLAGS -DVERBOSE

EXTERNAL

INCLUDE

EXCLUDE

Asset3 department 1 1 ORDERED DEBUG NOPTIMIZE 4
CFLAGS -DVERBOSE

EXTERNAL

INCLUDE

EXCLUDE

Asset4 department 1 1 ORDERED DEBUG NOPTIMIZE 3
CFLAGS -DVERBOSE

EXTERNAL

INCLUDE

EXCLUDE

Asset5 individual 1 1 ORDERED DEBUG NOPTIMIZE
CFLAGS -DVERBOSE

EXTERNAL

INCLUDE

EXCLUDE

Asset6 individual 1 1 ORDERED DEBUG NOPTIMIZE
CFLAGS -DVERBOSE

EXTERNAL

INCLUDE

EXCLUDE

Asset? individual 1 1 ORDERED DEBUG NOPTIMIZE
CFLAGS -DVERBOSE

EXTERNAL

INCLUDE

EXCLUDE

Asset8 division 1 1 ORDERED DEBUG NOPTIMIZE 1
CFLAGS -DVERBOSE

EXTERNAL

INCLUDE

EXCLUDE

conlinued on next colymn

Asset8 division 33 ORDERED DEBUG NOPTIMIZE
CFLAGS -DVERBOSE

EXTERNAL,

INCLUDE

EXCLUDE

Asset8 shadow 3 3 ORDERED DEBUG NOPTIMIZE
CFLAGS -DVERBOSE

EXTERNAL

INCLUDE

EXCLUDE

Asset9 individual 1 1 ORDERED DEBUG NOPTIMIZE
CFLAGS -DVERBOSE

EXTERNAL

INCLUDE

EXCLUDE

Asset10line 1 1 ORDERED DIEBUG NOPTIMIZE 2
CFLAGS -DVERBOSE

EXTERNAL

INCLUDE

EXCLUDE

Assetl] individual 3 6 ORDERED DEBUG NOPTIMIZE
CFLAGS -DVERBOSE

EXTERNAL mylib.a -lm

INCLUDE

EXCLUDE sundog

Asset12 individual 1 1 ORDERED DEBUG NOPTIMIZE
CFLAGS -DVERBOSE

EXTERNAL

INCLUDE

EXCLUDE

Aszet13 individual 1 1 ORDERED DEBUG NOPTIMIZE
CFLAGS -DVERBOSE

EXTERNAL myotherlib.a mylib.a -lm

INCLUDE

EXCLUDE

Asset14 service DEBUG NOPTIMIZE

CFLAGS -DVERBOSE

EXTERNAL

INCLUDE

EXCLUDE

Asset15 service DEBUG NOPTIMIZE

CFLAGS -DVERBOSE

EXTERNAL

INCLUDE

EXCLUDE

Table 3.2: New graph format for a sample program.



returns a value that is of type double, not the default type of int. Enterprise
redefines the function type and the forward declaration will confuse the conven-
tional compiler which will report loader errors. The user will need these forward
declarations for only the sequential version.

e Run the source code through a program like indent or resist the temptation to
write code of the format

if (bar == 0) return;

Enterprise will remove the conditional statement and the return statement when
modifying this code fragment. The Enterprise code will consist of just the
distributed return statement without the conditional statement. Again, this is
a problem with the tested version of the pre-compiler.

e Avoid using an individual element of an array as objects of a future return
variable! Using an array element usually implies the messages are intended
for lifferent memory locations and are, as a result, non-blocking. The tested
version of the pre-compiler does not support this yet. The user, however, may
try to use a simple variable as a return variable and then assign the value
to the array element. The drawback to this is that the program will block
immediately waiting for the message to be returned. If the user wants non-
blocking return variables, then the code must be modified by the user to use
individual array elements. This is recommended only for users who are familiar
with the communication subsystem and the tested Enterprise implementation.

There are currently some unresolved faults with the communication subsystem.
Enterprise uses the ISIS library function beast_1() to send a message to another asset.
The size of the local stack must be increased by 2,516 bytes after any declaration of
a return variable. This empirical finding holds if and only if the return variable
(structure) is less than 2,516 bytes in size. Enterprise can be modified to introduce
a dummy variable to make up this deficiency in ISIS. ISIS is not going to rectify
this problem in the near future. Moving to another communication subsystem would
eliminate this problem (and probably create new picblems).

3.3 Compiling an Enterprise Program

The creation of an Enterprise program has several steps. At this point though, the
user should have a graph file and the associated source code for each asset. The graph
file is used by both the pre-compiler and the run-time executive.

The program compile [28] reads the graph file. From the graph, it is able to
create the binary stand-alone processes for each asset. These stand-alone processes
compose an Enterprise program.

After the graph file is read by compile, it creates the source code file for the
distributed process. This source code file has the character string _ent. prefixed
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to the asset file name. Compile then inserts the necessary ISIS code for handling
communication between processes. This includes code for attaching the process to
any service process groups. (Recall that services can be connected anywhere in the
graph). Replicated assets have code inserted for communicating with the replication
manager of that process group. Finally, code for attaching any callee’s process group
(the processes connected to this node further down the graph file) is inserted. After
this preamble is written, the asset source code is appended to this file. The next stage
of the process is modifying the new source file by inserting the appropriate code for
processing and sending messages within the user supplied routine.

The pre-compiler has two passes. It is a modified version of the GNU compiler
(gce). It parses the asset source file searching for other asset function calls. The
specific assets looked for are determined by the graph file. It then inserts the necessary
ISIS function calls for decoding ard encoding messages. Also, it inserts code for lazy
synchronization of return variables. The pre-compiler creates a .sym and a .chk
file corresponding to each asset. The next pass inserts the necessary variables used
for lazy synchronization. The second pass also checks the consistency of the calling
structure of the assets. That is, if a function g calls f with two parameters then f
had better expect two parameters and the two parameter types must match.

The variables that are passed as parameters to another process must be pre-
declared (static) variables. The tested state of Enterprise does not permit using
dynamically declared variables (pointers). If the user wishes to use dynamically de-
clared variables, the source code from the pre-compiler must be modified by the user
and then conventionally (read manually) recompiled. This is only for users who are
familiar with both ISIS and Enterprise programming. The use of dynamic variables
will be possible in Enterprise version 0.7.

3.4 Running an Enterprise Program

After the user has successfully compiled the various processes that represent the assets
in the graph file, the user is ready to run the Enterprise program.

An important question at this point is whether or not to dynamically launch
the assets when needed or to statically launch all processes before starting up the
Enterprise program. The dynamic launching argument stresses the sequential flow
of the user’s program. The beginning assets could be finished before later assets
are needed. This results in better processor usage and possibly reduced numbers
of processors needed. The main drawback is the implementation. A call to a non-
existent process will not trigger a program error but, rather, signals the Enterprise
executive to launch the missing process. However, when a process exits, there exists
a constraint in that the internal state of that process cannot be required for the next
use of the process.

Statically launched processes require the maximum number of processors available
at run time (excluding the variable replication). If there are not enough processors,
multiple processes occur on a single processor. This is not conducive to good speedups.
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Static launching is, however, casier to implement in the executive. The tested version
of the executive statically launches the assets. Variable replicated assets have the
minimum number of processes launched.

Enterprise requires a list of machines that are available to run the program. The
user must make sure the ISIS server is up and running on the machine specified as
the communication host. The binary files (run, asset_mgr, machine_mgr, and
monitor) composing the run-time executive must be symbolically linked to the local
directory. In addition to the user’s asset binary files, two user supplied files are needed
- the graph file and the machine file.

The next section discusses the machine file. Following that, the next three sections
detail the Enterprise launching process (run), the machine manager (machine_mgr),
the asset manager (asset_mgr), and the monitor (monitor) programs.

3.4.1 Machine File

The machine file lists the machines available for running the Enterprise program.
The available machines are listed in an ASCII file with one machine name per line.
The environment variable mach_file can define the file name; otherwise, the local
directory is searched for a file named mach._file.

The usable machines can be further restricted by using the keyword EXCLUDE
in the graph file - that machine will never be used for that process. If the load average
on an INCLUDE machine is above some critical value then that machine is not used
until its load average has dropped to some prespecified minimum value.

Machine names on a network are unique. There are long and short formats for
describing a machine name. The long format has the machine name and the symbolic
Internet address appended to it. An example is silver-vly.cs.ualberta.ca where
silver-vly is the machine name. The short form is just the machine name. Depending
on the way the host names are bound, either the short form or long form of the host
names are needed. This is system dependent.

3.4.2 Launching Enterprise Programs

To launch an Enterprise program from the command line the user types
run (command-line-parameters| graph-file-name [command-line-parameters).

The run command command-line parameters fall into three groups. First are the
optional command-line parameters for the run program. There are two useful run
parameters: -/ for logging to a file and -d for monitoring executive duties. Second is
the mandatory filename of the graph describing the Enterprise program. Third are
any optional command-line parameters intended for the user’s program. Redirection
of output will result in a merger of both the user’s and run-time executive outputs.
The run command starts the machine_mgr, asset_mgr, and monitor processes.
Only when all the processes have successfully connected to ISIS will the distributed
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program be started with the appropriate command-line parameters. If the user wishes
to abort the process, sending a QUIT signal to run will cleanly abort the entire
program.

If Enterprise programs are run from a script, separating the run command by a
sleep of ten seconds is recommended to allow for all processes to complete properly
ard allow ISIS to complete any bookkeeping it needs. This is not a problem with
run. This is not a good solution to the problem, but it does allow unattended runs to
complete. The script fails more often than not if the sleep command is not inserted.

The CFLAGS option in the old grapl file must be commented out before running
the Enterprise program. The current version attempts to launch CFLAGS as an
asset. When it fails to do this, the entire Enterprise program aborts. This has been
corrected in the version 0.6 of Enterprise.

3.4.3 Machine Manager

The machine manager (28], machine_mgr, is responsible for launching all processes
needed by the Enterprise program. It requires a machine file containing the list of
available machines and the graph file. The machine manager selects the machines
from the machine file that have load averages less than some predefined threshold.
The graph file is used to select the processes to run and to determine where they
should be placed.

If a particular process has been specifically designated for a processor (INCLUDE),
an attempt will be made to place the process on that processor. If the machine has
already been taken by another process, it will place the spurned process elsewhere. If
the keyword EXCLUDE was used, the process will not be placed on that processor
under any circumstances.

The machine manager recruits new processors from the free processor list it main-
tains when asked by the asset manager during the user’s program execution. If there
are no free processors, the recruitment fails. This failure to recruit is not a critical
failure since the user has specified that a variable number of processors is acceptable
in the first place in the graph file. The startup mechanism has provided at least
the minimum number of processors for this asset. The asset manager will queue the
request until a processor does become available. The machine manager will maintain
only one process per processor except for the user’s machine.

If there are no free processors at the startup of the Enterprise program, the pro-
gram can get into serious difficulties that are not really the user’s responsibility. A
partial solution allows multiple processes on the user’s processor. This is not effective
parallelism but it does allow the Enterprise program to start. The machine manager
prints a message warning the user if this happens.

A cost incurred with the machine manager is the number of process slots taken
by the ISIS server processor. The machine manager is currently running on the ISIS
server processor. The manager uses the rsh command to launch all remote processes.
This takes up two process slots on the server machine for each process launched. The
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kernel on the server must have extra process slots if larger Enterprise programs (many
assets) are to be run.

For example, a program has a line of two assets with the second asset of the line
having a fixed replicated factor of ten. This program requires six slots for the ISIS
server, one for run, two for starting asset, two for the asset manager responsible for
the replicated asset, two for machine inanager, and twenty for the replicated asset.
Thus, a total of thirty-three slots are taken for one Enterprise program. Typically, on
the laboratory network machines used for experiments in this thesis, there are twenty-
five to thirty process slots taken up on an idle machine. With a total of only seventy
process slots typically available, there is little room for multiple users of Enterprise.
The processors executing the asset processes do not have this large demand of system
resources. The main demand derives from the Enterprise executive and its location
on the server processor.

The version 0.6 of Enterprise has the machine manager process installed on the
user’s processor. This allows the ISIS server to process many users with minimal
impact on the communication server processor.

3.4.4 The Asset Manager

The asset manager [28], asset_mgr, becomes the receptionist for one replicated asset.
This is not the same as the department receptionist which is defined by the user. The
assct manager is automatically spawned once for every replicated asset identified in
the graph. It is responsible for receiving and forwarding all messages intended for the
replicated asset to an individual worker.

If a worker process is unavailable, the asset manager stores the message in a
queue for forwarding when a worker does become available. If the asset has variable
replication, the asset manager attempts to recruit a new processor from the machine
manager. If no work is available, the asset manager is able to dismiss idle processors.
This frees up processors for other duties. The cost involved with variable replication
is substantially higher than with fixed replication. The additional time needed for
recruiting and setting up the new process is substantial (10-30 seconds). This includes
launching the process, connecting to the ISIS server, and joining the various process
groups. This cost is hidden when using a fixed replication factor since the startup
times are done in parallel on each processor. _

By specifying the -d parameter on the command line, more information is displayed
relating to the asset manager duties.

3.4.5 The Monitor

A monitor process is launched with every Enterprise program. If logging (-I) is re-
quested, then messages due to machine manager duties are logged to this process. If
the asset manager details are needed, one can use the debugging option (-d). The
logging file is the graph file name appended with .log.



3.5 Summary

The implementation details for the tested version of Enterprise have been presented.
Most of the undesirable features have been modified or eliminated in the version 0.6.

Some of the startup costs for using Enterprise are a one-time-only cost. The
additional environment variables and the symbolic links can be set up using a shell
script.

The awkwardness of the compiler and graph file has been reduced. This includes
the reduction in the number of files, controlling the degree of compilation, and the
more detailed description of each asset.

The Enterprise environment has been improved by the development of the GUI
controlling the user’s interaction with the specifics of the implementation.
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Chapter 4

Performance Evaluation

The performance of Enterprise can be measured on many levels. Chapter 3 has
gone over the tasks the user must perform to install, compile, and run an Enterprise
program. This was done at a general level, without any specifics for a particular
parallel algorithm. However, specifics are an important performance metric. The
Enterprise model is just that, a theoretical description for coarse-grained parallelism.
Its performance on a network of workstations can be measured by implementing
different parallel algorithms. For example, measuring how easy the parallel algorithm
is to implement using Enterprise, the speedup, and assessing how different parallel
templates affect the user’s algorithm are some important performance characteristics.

To measure these subjective and objective metrics, four parallel algorithms have
been implemented using Enterprise. Each algorithm is intended to exercise some
aspect of Enterprise and provide some useful data on the Enterprise model and its
current implementation. )

The first algorithm is a parallel version of the Gauss-Seidel algorithm. Gauss-
Seidel is an iterative algorithm for solving families of linear equations. The parallel
algorithm is non-deterministic regarding the solution reached. It is implemented as
a line with one member replicated. This was the first algorithm implemented using
Enterprise for this thesis. Details relating to the creation of the Enterprise program
from the algorithm are typical of all the presented algorithms.

The second algorithm is block matrix multiplication. This data intensive algo-
rithm is used to contrast two different parallel constructs. The first construct, a line
of three assets, has the centre asset replicated. The centre asset does the matrix-
matrix multiplication. This centre asset separates the creator-of-work and the assim-
ilator assets. The second construct, a department, combines the first and last asset
functions into one asset while replicating the multiplication asset.

The third algorithm originates from graph theory. It seeks to find all nodes in a
graph that are connected to one another. The particular algorithm chosen does not
fit well with . Enterprise model. The implementation uses a constant polling stage
which generates unnecessary traffic over the network. Despite this flaw, the program
shows speedup performance using Enterprise.

The fourth algorithm is a game tree search. It was intended to contrast the
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difference between a department or line implementation of a recursive algorithm and
the use of the Enterprise parallel construct of a division. The division was not ready
in time for this thesis; only the department results are presented.

Each algorithm is presented in the same format. First, the theory behind the
algorithm is presented. Second, the implementation details are described. Third,
the experiments themselves are detailed. Fourth, a discussion of the observed results
is presented. Finally, each algorithm is summarized as to its implementation and
performance under Enterprise.

The performance of all the algorithms is marred by the performance of the com-
munication server. The results and nature of this work uncovered two basic flaws in
the implementation of the server. These problems are discussed in detail in Chapter 5.

The first and most serious flaw of the communication server is the failure to release
or delete a message once it has been consumed. An unnecessary and large portion of
the local memory on a processor is wasted preserving these consumed messages. The
second flaw, which is related to the first one, is that as the list of unconsumed messages
(in this case undeleted) increases in length, there is a sharp one-time increase in the
delivery time of a single message. These two fundamental flaws of the communication
server limit the performance of all the tested parallel algorithms.

All experiments were run in a laboratory of twenty SUN IPCs. Each machine
has 12 megabytes of local main memory and 32 megabytes of local virtual memory.
Communication between processors was via ethernet. The UNIX operating system
was SUNOS version 4.1.1.

4.1 Chaotic Gauss-Seidel

The Gauss-Seidel algorithm, found in many matrix algebra texts, is an iterative pro-
cedure used to solve the family of equations

Az =b

where A is the N x N coefficient matrix, z is the 1 x N vector of unknowns, and
b is the 1 x N vector of constants [2]. Two sufficient conditions for convergence are
either that matrix A is strictly diagonally dominant [10] or that matrix A is a positive
definite symmetric matrix [2]. If either condition is met, the solution will converge
regardless of the starting point.

The drawback to this procedure is that, while convergence can be guaranteed, the
rate of convergence depends on how much smaller the spectral radius (magnitude of
the maximum eigenvalue) of the matrix C is less than one [14]. C is defined as

C=(I-LyU
where I is the identity matrix and L and U are derived from A,

A=I-L-U,
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where L and U are the lower and upper triangular matrices with null principal diago-
nals respectively. The closer the spectral radius is to one, the slower the convergence.
Three problems were examined with different convergence rates. The first is a di-
agonally dominant dense matrix which converges quickly. The second problem is a
tridiagonal matrix with a spectral radius close to one. The third problem, a banded
matrix, again has a spectral radius close to one. The last two problems have their
convergence rates controllable by the user.

A technique for speeding up the slow convergence is successive over-relaxation
(SOR). It provides an estimate for the predicted answer by taking advantage of the
previous iteration. It extrapolates a new point using the current answer and the
previous estimate. The formula used is

P = wz™" + (1.0 — w)zPM
where w € R. For simplicity, w was set to 1.5. In a more rigorous approach, an
eigenvalue analysis would be used to determine an appropriate value for w.

4.1.1 Design and Implementation

Baudet suggested various ways of parallelizing this algorithm in his Ph.D thesis [4].
He proposed that less synchronicity between parallel components will result in better
speedup since processors do not have to wait for slower processors. The drawback is
the non-determinism of the answer. This is readily apparent from the experiments.
The answers were not the same from run to run, but they were similar.

To parallelize this algorithm, the answer vector is divided into independent blocks,
each processed by one processor. Hence, the number of blocks is the degree of par-
allelism. Relaxing the requirement that all blocks sent out must return before the
next round of work improves performance. Now, idle processors are utilized rather
than waiting for the slowest processor to finish. But, increasing the number of blocks
increases the observed non-determinism between runs. The non-determinism of the
answer complicates the recognition of a valid solution. The solution error is deter-
mined locally for a segment of the solution vector. Only that segment is modified by
a processor. No one processor contains the entire coefficient matrix so a global error
cannot be calculated. The global error is derived from all the local errors which are
based on different global solution vectors.

Estimating the global error of the solution is difficult when synchronization is
relaxed. At given iteration, n, the answer vector is composed of only the returned
blocks from iterations < n. A processor requesting a new solution vector gets only
a snapshot of the answer composed of blocks of varying degrees of iteration (< n).
A processor that returns a new solution for its block will likely have portions of the
original solution vector used to derive the new solution changed while the block was
being processed. Sequentially checking the experimental results confirms that the
answers are acceptable, but the reported error estimates are higher than the actual
estimated global error. All the errors reported fall below the user-supplied tolerance.
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The local error for a block is determined during the run by calculating the esti-
mated error of the block between two successive iterations. The local errors of the
other blocks are ignored. The global estimated error is the sum of these local errors.
The error is initially set to some arbitrarily high value so that all blocks must be
examined before any answer is deemed accurate enough.

Writing the serial version of this algorithm is easy. However, to break up the work
into modules that can be separated on to different processors is more complicated.
The program is divided up into three sections. The first section receives input from
the user and then divides up the work and distributes it to the processors. This is an
abstract concept only. In reality, the program appears to repeatedly call a function
in a loop. This program exits after scheduling all the work.

The second section acts as shared memory. It keeps the current estimate of the z
vector and its error along with the size of the vector. This section responds to requests
from other routines to either initialize, update portions of the vector, or return the
current state of the vector. In Enterprise, this section is implemented as a service.

The third section does all the real work. It asks the service for the current state
of the = vector. It then iterates its section of the vector until the user-supplied
tolerance is met for one of three conditions. First, if the vector has met the error
tolerance overall, the program exits. Second, if the group of elements that a particular
replicated part of the program is working on has an error estimate less than the user-
supplied tolerance, an update is sent to the service. Third, if the change in the error
falls below the user-supplied tolerance, the service is updated. In turn, the service
replies with the new estimated solution it has received in the interim from all the
other processors. The code then loops back and repeats until the exit condition is
met.

The workload on this third set of modules is uniformly distributed. The problem
comes in finding enough work for the processors to do to make the communication
cost worthwhile. From preliminary experimental data, the program exhibits speedup
of 1.8 with problem sizes of only 500 elements and 2 processors. There is, conversely,
a slowdown exhibited for the larger sized problems. For example, a problem size of
1,500 elements and 2 processors has a speedup of 0.4. This is due to page faulting,
which will dominate the timing results. In this case, page faulting is much more costly
than the communication delays.

Figure 4.4 shows the graph describing the parallelism. The parallelism is not
obvious at first glance. The algorithm is divided into two distinct assets (Baudet
and GaussS). However, the replication factor is the number to the upper right of the
icon representing the asset, GaussS, and indicates the degree of parallelism desired.
The service (XVector) is separated from the graph but is actually connected to all
processes in the graph.

Fixed replication is used since all the segments must be running simultaneously
in order for the program to finish. All blocks must be processed at least once to
get the error estimate below the user-supplied tolerance. A processor gets a block of
the solution vector to work on only when it starts up. There must be a one-to-one
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Figure 4.4: The Enterprise graph for chaotic Gauss-Seidel.

correspondence between processors and blocks.

4.1.2 Experiments

The problems were created by the user specifying a size and a blocking factor. The
input will, depending on the compilation flags (CFLAGS), create one of the three
problem matrices: a dense matrix, a tridiagonal matrix, or a banded matrix.

After the code was tested, a number of runs were generated in order to determine
the running times. Details of the sequential experimental results can be found in
Appendix A Table A.10. The parallel results are in the Appendix A Table A.11.
Speedups are seen in Figure 4.5. It was quickiy apparent that the sequential version
took a large penalty with the increasing size of the problem. In fact, the penalty
became infinite when attempting to solve a problem of size 2,000: the process con-
sumed all available memory on the processor. The user times showed a steady, smooth
increase and it was possible to extrapolate to a problem size of 2,000.

Due to message deallocation problems (discussed in Chapter 5.2.3), the parallel
version for tridiagonal and banded matrices failed to complete. The slow convergence
resulted in many messages being sent over the net requesting updated versions of
the solution vector. The CPU load was reduced since only one or two iterations are
necessary to meet the local error tolerance. The communication costs quickly soared.

Using SOR for the dense matrix problem gave poorer performance than without
it. This problem converged quite rapidly without SOR, indicating a spectral radius
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Figure 4.5: Speedup of chaotic Gauss-Seidel.

closer to zero than one. Good results were obtained by setting w to one which had
the same effect as not having SOR at all.

A pleasant surprise is the large matrix sizes that are solvable. Results for matrices
with dimensions as large as 3,000, not obtainable using the serial version, are now
possible by taking advantage of the local memory at each processor.

The speedup graph (Figure 4.5) shows that, with an increasing replication factor,
the speedup increases. The replication factor is not the total number of processors
used. The total number of processes used is the replication factor plus four (one each
for the server, Baudet, the asset manager, and X Vector processes). The respectable
speedup of about five for a replication factor of ten is due to the chaotic nature of
the work. There are no synchronization points and the work is evenly distributed to
all processors with the GaussS process. The only bottleneck is the network itself
when messages are being passed to and from the service to the replicated members.
These are the best observed times of five runs. If the network is busy the <-eedups
are lower. The observed times on different days give different elapsed times.

4.1.3 Discussion

This was the first algorithm developed using Enterprise for this thesis. The prelim-
inary version of Enterprise tested had several flaws which were quickly eliminated.
The most frustrating of these was the failure to return control to the user when the
program was finished.

All the program runs exhibited some degree of non-determinism when attempting



to stop correctly. Sometimes the program would relinquish control back to the shell
after the program exit. Other times the program would finish but control would
remain with Enterprise indefinitely.

Having a non-deterministic program confused the issue somewhat since the failures
were non-deterministic. Converting the algorithm to a deterministic version was easily
done by having each module solve its section, update the service, and return control to
the calling program. The calling program would, after all the work sections returned a
value, re-issue the work requests until all the processes were satisfied with the overall
error.

This time the code worked correctly with the replicated members called in bursts of
the user supplied block size. However, the running of the code is still non-deterministic
as far as the successful return of control to the user at the end of the run. The
explanation supplied is that the loss of packets by the communication server causes
certain processes to miss their stop message. The packet loss explanation is likely
since the program runs and stops correctly using five replicated members all the
time. Using a fixed replication factor of ten, the program stops correctly two out of
three times. The size of the messages this chaotic program generates is two to sixteen
kilobytes. The non-determinism of stopping increases with increasing message size
which indicates packet loss as a prime candidate for the source of this error.

Subsequent modifications to the Enterprise executive to overcome this fault have
all but eliminated the non-deterministic stopping. The solution was to force a reply
to the calling process for an abort or stop message.

4.1.4 Summary

Chaotic Gauss-Seidel yields a speedup of 5.4 using 10 processors for larger problem
sizes. The implementation code did not require further modification after the pre-
compiler stage. Non-determinism remains a problem for determining an exact answer.
Slowly converging problems cause a large number of messages with respect to the
computational requirements. While this is not efficient, the large number of messages
revealed a flaw in the deallocation mechanism of messages in the communication
subsystem. When this fault is fixed, the problems can be re-tested to clearly evaluate
the effect of slow convergence using this algorithm.

4.2 Block Matrix Multiplication

Multiplying two matrices sequentially has a well-known traditional algorithm (Fig-
ure 4.6). However, one parallel technique is to split the two matrices into compatible
blocks then multiply these smaller blocks independently. The product of this multi-
plication is then added to the existing answer matrix.

Two matrices A € RM*N and B € RV*9 can be divided into blocks of submatrices

to solve
C = AB
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/* A € Rm)(n */
/* B € Rnxo */
/* C E Rm)(o */
int i, j, k;
fori =1 toi < m increment by 1 do
forj =1 to j < o increment by 1 do
Cij = 0;
for k = 1 to k < n increment by 1 do
Cij = Cij + Au * Byj;
endfor
endfor
endfor

Figure 4.6: Traditional sequential matrix multiplication.

where C € RM*© by using the formula

Nfbn
Cij= ) AuBy;
k=1

where i =1 : M/by, j = 1: O/bg and by, by, and bo are the number of process-
ing blocks of each dimension [11]. The advantage in a parallel environment is that
these blocks of submatrices can be multiplied in parallel by a conventional sequential
method. The addition or merging of these matrices can be done by another processor.
The cost of communication of the blocks is balanced against the computational price
of the matrix multiplication.

4.2.1 Design and Implementation

Two versions of this algorithm were developed. The code is almost identical but the
effects are quite different. The pseudo-code for the generator, multiplier, and collector
tasks are given in Figure 4.8. The sequential matrix multiplication code (found in
any matrix algebra textbook [2]) is given in Figure 4.6.

The first version is a line of three processes (Figure 4.7): a make-work process
(Block) which divides up the two matrices into blocks and distributes the work, a
process which multiplies the two blocks (Multiply), and a collector process (Col-
lector). The collector process merges the submatrix into the larger global matrix,
performing the necessary additions. No process expects a reply to any message. The
second process is replicated to parallelize the program.

The number of messages is a function of the size of the two matrices. The dimen-
sion divided by the block size gives the number of messages. The block size used is
a 100 by 100 matrix. To multiply two matrices of this size takes about one to two
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Figure 4.7: Enterprise graph for parallel block matrix multiplication - line of three.

seconds of processor time to calculate, giving a good balance between message passing
and processing. As discussed earlier, the number of messages is a problem with the
first process. Multiplying two 700 by 700 matrices with the previously stated block
size generates 343 messages of size 160,032 bytes. These messages are generated much
faster than they are consumed, which overloads the asset manager queuing space (ie.
using virtual memory which results in page faults). Experimentally, the collector
process had no apparent problems keeping up with ten processors.

The second version was a department of two processes (Figure 4.9). The three
components are still present, however, this time the make-work process (Block) acts
as the collector as well. The multiplication process (Multiply) returns the product
matrix to the caller. The caller process would generate some work and then wait
for the products to return. It was found empirically, that if the two matrices were
completely divided up and sent off before any collection was done, the memory re-
quirements quickly flooded the system resulting in extremely poor execution times or
the program aborting due to insufficient memory. The user-code for Block vas mod-
ified to only generate the work necessary for the inner loop of the algorithm. When
the results were returned the next batch of work was generated. This synchronization
permitted the programs to run using large matrices but the cost demonstrates the
trade-off in performance.

The user also becomes intimately involved with the specific amount of parallelism.
The number of return messages (array of blocks) must have space allocated for them.
If the number of parallel tasks increases, the source code must be recompiled since
only statically allocated memory is allowed for return variables. The return variables
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/* Initialize matrices A € RM*N and B ¢ RN*C */
A = InitializeMatrix(M,N);
B = InitializeMatrix(N,0);

/* Generate the work */
fori = 1to N / BlocksOfRowsOfA increment by 1 do
forj = 1 to M / BlocksOfColumnsOfA increment by 1 do
for k =1 to O / BlocksOfColumnsOfB increment by 1 do
/* Send a block of matrix A and B to a processor */
Send-message(ProcM.u.-,,l,, Aij, Bjx, i, j, k,
BlocksOfRowsOfA, BlocksOfColumnsOfaA, BlocksOfColumnsOfB);

/* Perform the matrix multiplication with the sub-matrices */
do while (NOT ENDOFMESSAGES)
Receive-message(A, B, Arow, ACol, Beol, m, n, 0);
/* Traditional sequential matrix multiplication (Figure 4.6) */
id_tag = {Arow, Acol, Beol};
Send-message(CollectorProcessor, C, id_tag, m, o);
enddo

/* Collect the work */
do while (NOT ENDOFMESSAGES)
Receive-message(CBlock, id.tag, RowsOfCBlock, ColumnsOfCBlock);
UpdateCMatrix(CBlock, id_tag, RowsOfCBlock, ColumnsOfCBlock);
enddo

/* Do the matrix multiplication on the sub-block */

do while (NOT ENDOFMESSAGES)
Receive-message(A, B, Arow, ACol, Bceol, m, n, o);
/* Traditional sequential matrix multiplication (Figure 4.6) */
id-tag = {Arow, Acol, Beol};
Send-message(CollectorProcessor, C, id_tag, m, n, 0);

enddo

Figure 4.8: Pseudocode for the generator and collector in the block matrix multipli-
cation algorithm.
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Figure 4.9: Enterprise graph for parallel block matrix multiplication - department of
two.

must be statically declared not dynamically declared, but this is a problem of the
pre-compiler not the communication subsystem.

The pre-compiler tested was not able to handle array elements as return variables.
The code needed to be further edited by the user to successfully compile. This involved
creating an array of message tokens and inserting the proper return variables in the
message passing function. This is to be fixed in the next version of the pre-compiler.

The problem still remains of unconsumed ISIS messages. Unconsumad messages
are queued messages waiting for processing; it is faster to generate messages than to
consume them. This extra baggage taxes the system resources of the server. The
maximum problem size solvable is smaller than it need be due to resource contention
from the unconsumed messages.

4.2.2 Experiments

The experimental data is found in the Appendix A Table A.12 and A.13. The
speedups are shown in Figure 4.10 for both the line and department experiments.

The optimal block size w- ., astablished to be a matrix of 100 by 100 elements (1.8
seconds user time). This permits a good balance between communication costs and
processor utilization. Larger block sizes showed a slower consumption of outstanding
messages, while smaller block sizes resulted in processor under-utilization. Messages
could not get through fast enough.

The line configuration multiplied two square matrices of size 100, 200, 300, 400,
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Figur~ 1.10: Speedups observed for block matrix multiplication - line of three and
depar. ~nt of one.

50t . v together using 4, 8, and 10 replication factors. Larger problem sizes did
not . «te due to failure of the memory system. The results reported are the best
elapsed times of at least four runs.

Consolidating the creator-of-work and the collector, then repeating the experiment
using a replication factor of eight, resulted in the maximum problem size lim" 1to
only 400.

4.2.3 Discussion

Figure 4.10 shows that the speedup using a line decreases when the replication factor
is increased. While the performance is not good, the observed decrease is puzzling at
first.

One explanation is offered. The asset manager is receiving and forwarding large
messages. When there are many large incoming and outgoing messages, physical
contention for the bus is evident. These large messages interfere with the smaller
messages of idle processors checking for more work. This results in more idle time
and hence poorer performance.

Closer inspection of the results identified the problem as a failure to deallocate
messages properly in the communication subsystem. The generator-of-work (Block)
quickly runs out of main memory.

A brief example will demonstrate this. Using the previous example of multiply-
ing two 700 by 700 element matrices with a block size of 100 by 100 elements, 343
messages of 160,032 bytes were generated. The memory requirements for the main
process and replication manager are a maximum value of 54 megabytes. Given that



the memory of the machines used in these experiments is only 32 megabytes it is
obvious that the program will fuil. The consumption of messages (excluding the deal-
location flaw) should balance the creation of messages. When the communication
subsystem fault is patched, these experiments should be re-run to see the true effect
of generating an unconstrained number of messages. That is, the asset manager can
still be overwhelmed by queued messages.

A minor annoyance is that the asset manager cannot be specifically placed on a
particular processor. The asset manager is part of the executive and should run on
any machinebut, in this case, having a machine with more main memory would speed
up message forwarding. Any time a processor generates a number of page faults, there
is a significant performance degradation.

Consolidating the generator and collector of blocks of data multiplies the effect of
this memory problem. The maximum problem size reduces from 600 by 600 to 400
by 400. Resource contention reduces the speedup to less than one. Even with the
communication patch the observed speedup (if any) will be less than any speedup
obtained with the line. The task of collection overlaps the task of message generation
and should not be included in the same sequential process. Figure 4.10 shows the
slowdowns for a department of one with a replication factor of eight.

4.2.4 Summary

Speedup is observed for the line implementation f this algorithm. The speedup is
limited to a maximum of 2 because a flaw in the communication subsystem prevents
it from releasing consumed messages.

Having the generator and collector of work in the same process results in a slow-
down. This is not unexpected since the two tasks overlap.

Changing the code between the two implementations involves modification of the
multiply routine to return the product of the two matrices to the caller rather than
sending a message to a different process. The main task needs the collector code
included with the generator code. The main loop generates a set number of messages
and then waits for their return. This cycle repeats until all the work is sent out.
This is not efficient since the number of return variables for the collector must be
predeclared at compile time.

4.3 Transitive Closure

Given a graph G with n vertices (v) and m edges, there is associated with G a
connectivity matrix C. The elements of C are defined as,

o 1 if there is a path of length zero or more from v; to v;
Y71 0 otherwise

fori,7 =0,1,...,n— 1. C is also known as the reflezive and transitive closure of
G. To compute C the adjacency matrix A for G is needed. The elements of A are
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defined as,

0 = 1 if there is a path of length zero or one from v; to v;
Y71 0 otherwise.

By repeatedly performing boolean matrix multiplication of the matrix A, C is
derived in [log(n — 1)] matrix multiplications. Akl [1] describes an algorithm for
a cube-connected SIMD computer that has complexity O(n3log®n). Using matrix
multiplication, the load balancing of the algorithm would be evenly distributed.

This boolean matrix multiplication is a variant of the block matrix multiplication
algorithm discussed earlier (Chapter 4.2), hence it was not implemented. LeBlanc
and Markatos [15], in their study of shared memory versus message passing, use
another version to calculate the transitive closure of G. This algorithm has definite
load imbalances that are controllable by the user.

This algorithm is chosen for implementation for two reasons. First, the previous
two algorithms divide the workload evenly amongst all replicated processes. Using
an algorithm with controllable load imbalances would be a good test of the pool
implementation. Second, this algorithm broadcasts work to peers, which is not easily
implemented using the Enterprise model.

4.3.1 Design and Impleinentation

Figure 4.11 shows the transitive closure program set up as a line. The first asset
(StartUp) initializes the adjacency matrix by sending a message to the AdjMatrix
service. It then initializes the shared memory asset (RowVect) with a message
and finally, divides up the work for each individual in the TransClos asset. Each
individual of TransClos requests its block of the adjacency matrix from AdjMatrix.
This could represent the data coming from another Enterprise program. Each row
of the adjacency matrix is posted on RowVect, with all processors wh. execute
TransClos busy-waiting until all of TransClos is finished with that row before a
new row is posted. The completed work is then sent to AdjMatrix for potential
delivery to another Enterprise program.

The pseudo-code for the algorithm is found in Figure 4.12. M € RV*VN is the
global boolean adjacency matrix that is distributed amongst the ¢ processors (P) in
blocks of rows of length N defined by start and finish.

The actual implementation was done using a busy-wait process. This was neces-
sary because of the communication model upon which Enterprise is based. A node
can either send a message and block for a reply or send a message without expecting
a reply. The receiver of the message, however, must reply back to the user before re-
sponding to any further messages. This eliminates any chance for queuing a message
at a server that will be responded to when the conditions are correct (i.e. new work is
available). The caller must repeatedly send messages to the callee, requesting if new
work is available. The callee responds negatively - hence the busy-wait. System re-
sources (network, CPU) are tied up doing useless work. More importantly, it imposes
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Figure 4.11: Enterprise graph for parallel transitive closure.

an unnecessary load on the uetwork which will slow down overall throughput. This
needs to be changed in the next version of Enterprise if peer-to-peer communication
is desired. How to do this is beyond the scope of this thesis.

Both the supplier and consumer of work must use busy-wait. The supplier cannot
contribute new work until all other processors have consumed the current work. The
consumer must wait until new work is supplied. If the work is not evenly distributed,
several processors will generate larger quantities of these useless messages, slowing
down the overall response of the system.

An annoying and unexpected adaptation from serial to parallel was found nec-
essary. The first asset must have a sleep statement inserted just before the return
statement of the asset. The reason for this extra step is the shutdown of the overall
Enterprise program, initiated by the return of the first asset. All the other assets
are sent finish messages. These assets will process the finish message and propagate
the finish message to their children. The problem lies with the services. They are
not in this hierarchal order and after the first asset successfully finishes the program
responsible for launching the assets, machine_mgr, sends a finish message to the
next asset in the Enterprise graph. When ihe reply to this message is received, the
services are sent the finish message.

The finish 1message is propagated down the graph. The important thing is that
these messages generate a reply before successfully propagating the finish message to
the child assets.
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/* Globally, the adjacency matrix is M € RNXN */
/* Locally, the adjacency matrix is M € RUinish-star)xN 4/

/* Receive the startup message */
Receive-message(start, finish);

/* Get the portion of adjacency matrix to be processed locally */
Send-message(Proc 44jMatriz, start, finish);
Receive-message(& M, & N);

/* Process the local adjacency matrix */
fori=1to N do
i* Aitempt to post the current row for all to work on */
i« . > start AND ¢ < finish then
Mccepted = FALSE;
do while (Accepted == FALSE)
Send-message(Procrouwvect, Mi—ytare, i, N);
Receive-message(Posted Row, N, &Accepted);
enddo;
/* Request the current row to work on */
else
Accepted = FALSE;
do while (Accepted == FALSE)
Send-message(Procgoyveet, ¢, N);
Receive-message(Posted Row, N, &Accepted);
enddo;
endif
/* Process the local adjacency matrix */
for j = start to finish do
if (Posted Row; == TRUE) then
fork =1to N do
if (Posted Row; == TRUE)
M(j-mm),k = TRUE;
endfor
endif
endfor
endfor

Figure 4.12: Algorithm used for transitive closure.
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Figure 4.13: Speedup observed for transitive closure.

The solution to this would be to have the services receive the finish message after
the hierarchal assets have replied to all finish messages. This modification is in the
next version of the Enterprise executive.

The. code did not need modiFication from the compiler.

4.3.2 LExperiments

Matrices representing different sizes of graphs were tried to establish a minimal size
that would yield a good balance between processing and message costs. The serial
version gave user times of 0.5, 1.4, and 4.0 seconds for problem sizes of 100, 150,
and 209 elements. Initially, a processing time of one or two seconds was thought to
give a good balance. However, tie cost of the busy-wait was not taken into account.
Using a larger granularity resulted in a slowdown sir-e the network would have a
longer period of time to generate busy-wait messages. By taking a smaller processing
granularity, the busy-wait messages are reduced, resulting in more productive work.

The size of blocks is set to 100 for the experiments reported here. Problem sizes of
400 to 1,000 with up to ten replicated processes were tested. Different levels of connec-
tivity were tried with a value of 0.6 used for the presented results. Figure 4.13 shows
the speedup possible using this algorithm with Enterprise. Appendix A Tables A.14
and A.15 list the experimental data.

4.3.3 Discussion

The message deallocation problems of ISIS did not cause this program to fail dur-
ing the experimental runs. The only messages sent to replicated assets were small
and posed no significant burden to the calling process (StartUp). The bulk of the



messages were sent between the services (RowVect and AdjMatrix) and the indi-
viduals that belonged to the replicated asset TransClos. Communication services
and individuals are direct, not forwarded (as is the case between individuals and any
replicated asset). It appears that when using direct communication, ISIS deallocates
messages properly.

The speedup graph, Figure 4.13, summarizes the results for different problem
sizes and replication factors. The line representing the speedup for 10 processors
demonstrates the effect of increasing size of blocks for a fixed problem size. The
speedup gradually increased until it peaked with the maximum size of blocks.

The second line in the figure represents the maximum speedup observed for each
problem size. This maximum occurs when the maximum block size for the problem
size is used. Increasing the maximum size of blocks from 100 decreases the observed
speedup.

4.3.4 Summary

Despite the implementation of a busy-wait, the program shows a speedup of 3.1 for
a problem size of 1,000 using 10 processors. This is better than the block matrix
multiplication solution of Chapter 4.2. Those results suggest the problem size of
1,000 is actually unsolvable.

The maximum speedup for each problem size corresponds to using the maximum
size of blocks regardless of any extra processors to the minimum needed. This implies
that filling the blocks and providing the maximum amount of work for the local CPU
is more important than utilizing all the available processors.

The busy-wait implementation requires a smaller processor granularity (one-half
second) than an expected minimum granularity of two seconds to reduce the number
of wasted messages. In this case, busy-wait imposes an unnecessary extra load on
network resources. Reducing the time spent in the busy-wait loop improves overall
throughput even though the ratio between a single productive message and the local
work produced is smaller.

A problem with the Enterprise shutdown procedure required that an extra state-
ment be inserted for the parallel version to work correctly. This problem should
disappear in the next version of the Enterprise executive.

This algorithm does not implement easily using Enterprise. The communication
model used by Enterprise is not suited for peer-to-peer program communication. Per-
haps another asset based on the round-table or board-room meeting analogy should
be developed.

The pre-compiler output did not need further modification to run correctly.

4.4 Alpha-Beta Search

The following is a summary of the discussion found in Nilsson [22] and Akl [1] on
alpha-beta search of combinatorial spaces.
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A min/max tree can represent the state space of a game. The state of the game
is represented by a node, while the arc connecting two nodes represents a legal move.
That is, the possible combinations of legal moves that lead from a given state of a
game to another can be traversed. However, the growth of the tree is exponential.
This growth limits the size or depth of the trees that can be exhaustively searched
within some fixed period of time. For example, searching the entire state space of
chess is not possible.

Limiting the maximum depth searched results in a series of terminator or leaf
nodes. These leaf nodes are be evaluated by a heuristic evaluator function, resulting
in an estimated score. Traversing the tree results in all parent nodes visited acquir-
ing a score based on either maximizing or minimizing the score of the child nodes.
Propagating these scores up the tree, eventually, the root node can be assigned a final
score which guides the selection of a move. The game moves to a new state and the
process starts over.

Alpha-beta search is an algorithm which can prune or eliminate sub-trees from
the search. By eliminating potential search paths, either deeper trees can be searched
or solutions found sooner. At each level of search (ply), a provisional score is assigned
while the children of that node are evaluated. A maximiz.ngnode can never have the
provisional score (alpha) decrease. Conversely, a minimizing node can never have the
score (beta) increase.

To stop searching below a minimizing node, the provisional score of one of its
child nodes inust be less than or equal to the earlier alpha scores. The parent node’s
provisional score is now its final score since the score needs only to be a bounded
value. Similarly, the search is discontinued for a maximizing node if the beta score
of the earlier scores is less than the beta score of one of its child nodes. The parent
- node has its final score set to the provisional score.

This algorithm must search a minimal subset of nodes in the tree to establish a
score. This puts a minimum bound on the number of nodes visited. This is dependent
on the branching factor and depth of the tree. For a given depth D and branching
factor B the minimum number of leaf nodes visited, Np, is given by [22]

N = { 2BYP/? _ even Depth
D=1 BP+1/2 4 BO-1/2 _ 1 odd Depth.

One way to parallelize this search is to search all the child nodes connected to a
node in parallel [20]. This particular algorithm distributes work while traversing the
leftmost branch of the tree. This leftmost branch is called the principal variation of
the tree. All noucs connected to this branch must be examined while other branches
of the tree have the potential for being pruned from the search space.

The potential speedup for random trees is limited to O(y/number of processors)
due to synchronization and load imbalances in the search [9]. (Idle processors waiting
for work are expensive.) By careful ordering of the sibling nodes, good speedups can
be achieved since Lhe limiting bounds found early in the search will result in maximum
pruning of future b wnches. Small branching factors imply only a few processors are
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Figure 4.14: Enterprise graph for alpha-beta search — department or line.

necessary to achieve maximal potential speedup since there is only a limited amount
of work to do in parallel.

4.4.1 Design and Implementation

The alpha-beta algorithm is implemented as either a line of two assets or a department
with otie subordinate asset (Figure 4.14). In either case, the implementation is the
same. The second member of the line or the department replies back to the main
program and new work is sent out. The functionality between a line and a department
at this small scale is identical and the results were identical.

The alpha-beta search is divided into two assets, as seen in the Enterprise graph in
Figure 4.14. The algorithm for the first asset is found in Figure 4.15. The algorithm
for the second asset is any standard alpha-beta algorithm [1]. The first asset (PVS),
the recursive call, traverses the principal variation of the tree. When the granularity of
the recursion reaches the user’s threshold, this routine calls one of the individuals that
compose the second asset (AlphaBeta) to sequentially search a branch of the tree
rooted by one of the child nodes. After all the work has been posted and received
back, the waiting PVS asset sets the score (alpha or beta) for that node and the
recursion unwinds. Unwinding the recursion increases the amount of work at each
level being done by each AlphaBeta process. Each level further up the tree should
have better information available to prune any unsearched branches if the ordering is
favourable.

The program used in these .- periments is a simulation tool for testing different
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/* User parameters */

depth = Depth of tree search.

width = Branching factor at each node.

granularity = Switch from parallel to sequential searching at this depth.
rool = root node of tree to be searched.

/* Start the recursive search */
score = PVS( root, depth, -0o, +00, width, granularity);

/* Recursive principal variation search */
PVS ( treeRoot, depth, a, 8, granularity)
begin
/* Switch from parallel to sequential search */
if (depth < granularity) then
scorefl] = AlphaBeta( treeRoot, depth, a, 3, width);
return score(1};
endif;
/* Generate all possible moves from this node */
treeRoot.son = GenerateMoves(treeRoot);
[*Move down the principal variation */
a= -00;
b =g
score[1] = PVS( treeRoot.son(1], depth-1, -b, ~a, granularity);
a = -score[1];
/* Search the rest of the child nodes in parallel */
parallel i = 2 to treeRoot.moves do
score{i] = AlphaBeta( treeRoot.son[i], depth-1, -b, ~a, width);
endparallel;
/* Find and return maximum score */
score[1] = MAXIMUM(score);
return score(1];
end.

Figure 4.15: Algorithm for parallel alpha-beta search.



search algorithms {21] on random trees with a constant branching factor. The pro-
gram inputs are the search depth, branching factor, and the probability factors. Each
branch is ordered by a probability factor which controls where the eventual answer
will be found. Giving a large probability factor to one branch increases the likelihood
of finding the correct answer within that particular branch. Changing the probability
distribution changes the search pattern. The numbers used to represent the proba-
bility factor are integers and must sum to one hundred. Placing a high probability
factor on the first branch allows the answer to be found in the left-most branches (a
best ordering); a high probability for the last branch makes the right-most branch of
the tree the most likely place to contain the answer (near worst-case ordering).

4.4.2 Experiments

The program compiled after some user intervention. The return values from other
processes needed to be inserted into an array in order to have asynchronous operations.
The pre-compiler cannot currently do this. After some user intervention, the modified
source code was conventionally compiled without further problems.

The serial version was tested with several tree depths and branching factors to get
a set of values that had a running time of greater than threc hundred seconds. This
size of problem should show some benefit of parallelization. Each experimental data
point represents the best speedup after at least five runs.

Each experiment, for a given tree depth and branching factor, represents a change
in granularity. The granularity level of parallelism of a problem is the point where
the problem changes from being solved sequentially to parallel.

There were three groups of experiments. They investigate the effect of the number
of processors, tree depth and branching factor, and the distribution of probability
factors of the branches on speedup. However, the experiments showed that there is
no difference in the speedup when reducing the number of processors available for
parallel work. Only marginal differences were observed when changing the depth of
a tree while keeping the branching factor constant. The data for these experiments
is found in Appendix A, Tables A.18 and A.17. The problem lies with the failure to
deallocate messages by ISIS.

The one set of experiments, which is presented, investigates the effect of changing
granularity with different ordering of the probability factors. Varying the number of
processors did not make any noticeable difference in the observed speedups.

The experiment (Figure 4.16) investigates the effect on the observed speedup
when the probability factors are changed (Appendix A, Table A.18). The probability
factors are varied from a perfect probability (best ordering) to a uniform distribution,
and finally, to nearly the worst case.

The probability values for the nine branches were set to 100, 8(0); 12, 8(11);
8(0), 100 respectively. The term, 8(0), means the next eight probabilities were set
to zero. The tree breadth was held constant while the depth was varied to generate
sufficient work. The best ordering required a depth of thirteen; the uniform ordering
required ten; the worst ordering required nine. The different depths were chosen to
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Figure 4.16: Speedup observed for different granularities with an alpha-beta search
on a tree of breadth nine and depth thirteen (best), ten (uniform), and nine (worst)
using nine replicated processes and different weighting of the branches.

give sufficient sequential time of greater than three hundred seconds. The choice of
the breadth factor was to ensure all the work available would be done in parallel
simultaneously with the maximum number of usable processors available. This is a
physical limit set by the kernel (Chapter 3.4.3).

4.4.3 Discussion

The experiment shows the difference in speedup with trees of different branching
probabilities (Figure 4.16). When the branching factor is optimally ordered, the
speedup observed is maximized. If the answer is found in the leftmost branch, the
other branches that are searched in parallel only have to search the leftmost branches
of the subtree in order to cut off any more searching. This results in a greater observed
speedup than with uniform or worst-case weighting. The best speedup was observed
using a granularity of seven. At this granularity, the optimal balance was struck
between parallel and sequential work.

The uniform and worst-case branch probabilities require searching of more of the
subtrees by each processor. This extra work contributes to the lower speedups. The
balance between parallel and sequential work was at a granularity of seven for uniform
weighting and a granularity of five for worst case weighting.

4.4.4 Summary

A variety of configurations were tested using parallel alpha-beta search. The follow-
ing conclusions were reached: the ordering or weighting of the branching affected the



speedup; if the ordering leads to a perfectly ordered tree, the best speedup was ob-
served; however, the uniform and worst-case ordering do benefit from parallel searches.
The communication server was found to affect the performance of this computa-
tionally intensive algorithm. Unlike a data intensive algorithm (block matrix mul-
tiplication), alpha-beta search has modest nicssage size requirem: ts. However, the
number of messages did affect the time of delivery of reply messages. This delay of
message delivery occurred after a threshold of accumulated messages was recached. A
discussion of the effect of the communication server is found in the next chapter.

4.5 Evaluation Summary

Four algorithms were developed using Enterprise. Line matrix multiplication and
transitive closure did not need any user changes in the output of the pre-compiler.
Department matrix multiplication, alpha-beta search, chaotic Gauss-Seidel needed
the user to modify the pre-compiler generated source code.

Decomposing the problems for the Enterprise model was simple for three of the
four algorithms. The one problematic algorithm, transitive closure, needed substan-
tial modifications before the Enterprise model worked.

All observed speedups are tainted by the major ISIS flaw of not deallocating
messages after the messages are consumed. Tasks that generate minimal numbers of
messages do better (chaotic Gauss-Scidel) than tasks that generate a lot of messages
like matrix multiplication. A more detailed discussion of the ISIS failures are found
in the next chapter.

In general, the observed performance was not impressiv. Chaotic Gauss-Seidel
should have near linear speedups since non-determinism should . atistically give bet-
ter performance. The matrix multiplication should have better results but memory
constraints discouraged any reasonable speedups. Transitive closure, using a differ-
ent algorithm than boolean matrix multiplication, does show better performance but
at the cost of implementing a busy-wait loop in the consumer and producer tasks.
Alpha beta search, while giving near theoretical speedups for smaller problems, suf-
fered from message delivery delays if the number of accumulated messages rose above
a certain threshold.

Using Enterprise to generate the code for these four algorithms results in produc-
tive time spent by the user thinking about the algorithm and its decomposition, and
time not spent debugging low-level communication code. This is the most desirable
feature of Enterprise. To generate working and debugged distributed parallel code
with minimal effort on the user’s part makes distributed parallel processing more of a
science than an art. Users with little or no distributed programming experience can
now test and develop parallel programs without worrying about low-level implemen-
tation details. The abstraction of these low-level details frees the user to concentrate
on the important details of the science of distributed parallel processing.
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Chapter 5

Performance Analysis

Previously, we have seen the performance of Enterprise examined from the point of
view of the programming model and the implementation of four parallel algorithms.
The performance of the programs was not outstanding. Which component of En-
terprise contributed to the observed reduced problem speedups? Were the parallel
algorithms at [ault?

This chapter examines the cost of passing messages utilizing different Enterprise
constructs using ISIS [12] and a comparable structure using the Network Multipro-
cessor Package (NMP) [6]. The efficiency of the asset manager is examined since a
manager should be a minor overhead to the communication cost between two proces-
sors.

The efficiency of the programming model and the communication subsystem is
a large factor in the observed speedup of a parallel algorithm. The performance of
the chaotic Gauss-Scidel is used to evaluate the cost of the replicated-asset manager
program. This algorithm is implemented using Fnterprise and NMP.

5.1 Message Passing Costs

In coarse-grained distributed processing, the balancing of message costs and the an-
ticipated CPU cost is an important factor in performance evaluation. If the number
of messages overwhelms processors, memory management {page-swapping) will dom-
inate the performance costs. If processors are starved for messages, processors will
remain idle with little effective work l.eing done. This also happens if the messages
are large in relation to the amount ¢ CTU processing or if very few messages are
being generated.

The current version of the Enterprise executive is built upon the ISIS commu-
nication subsystem [12]. ISIS is, in turn, built upon the User Datagram Protocol
(UDP) [16]. ISIS has built a large infrastructure to buffer the user from this un-
reliable communication protocol. In contrast, the Network Multiprocessor Package
(NMP) [6] uses Transmission Contro! Protocol (TCP) [i6]. This reliable message
passing enables NMP to be quite smai! and act as a buffer between the user and raw
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sockets. NMP is a set of library routines built upon the sockets using UDP or TCP.
The NMP version tested is based on TCP. To be fair, ISIS contains more capabilities
than NMP, but Enterprise uses only a small subset of ISIS and, for the most part,
NMP suffices.

This leads to an important question. What is the cost of sending a message of size
z bytes from processor P, to processor P;? Enterprise, using replication, created an
asset manager that manages processes. Introducing this extra leve} of bureaucracy
has an associated cost. The following experiments try to quantify this cost and isolate
the reasons for the poor performance in Chapter 5.

¢ Determine the cost of sending 1,000 messages between processor P; and proces-
sor P, having the two processes communicate directly. This will contrast the
cost of using a reliable versus an unreliable protocol.

¢ Repeat the above experiment but introduce a simple manager P; who only
rclays messages betwecn P, and P,. This will give an estimate of the cost of
one level of indirection.

® The final experiment is to use the Enterprise asset manager and examine the
cost of sending a message from P, to a pool of one P;. That is, what is the cost
of the current implementation of Enterprise?

All of these experiments issue a message and then block until the message reply
is received. This provides an estimate for the round trip cost betweer P, and P;. All
runs were done on a quiescent subnet and were repeated at least 4 tiii- - un different
days. The results varied, as expected. The results reported are based on the best
elapsed times. It should be noted that system resource usage varied but, generally,
not in direct proportion to the elapsed times. There does not seem to be a clearly
visible trend.

5.2 Experiments

5.2.1 Line of Two Individuals

Tables 5.3 and 5.4 illustrate the cost of interprocess communication of small messages
using either ISIS or NMP. The user, system, and elapsed times are much lower for
NMP, indicating that there is an overhead processing messages in ISIS. There is an
unexplained anomaly in the ISIS times. Some of the ISIS runs reported low user times
(similar to NMP times) but the elapsed times are similar to the other ISIS timings.
This is attribuied to the internal workings of ISIS being distributed among several
processors which are not being monitored. That is, the request went out quickly
but ran into problems at the server. None of the system times demonstrated this
phenomenon.
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Message Times (seconds) Messages
Size (bytes) User System Elapsed Sent Received

40 0.04  0.94 2.90 1,000 2,000
400 0.21 1.18 4.10 1,000 2,000
800 0.37 1.1 4.98 1,000 2,000
1,600 0.58  1.56 7.83 1,000 2,000

2,800 0.55 1.85  10.20 1,000 2,002
3,200 0.98 359  11.62 1,000 2,880
4,000 1.35  4.27  13.38 1,000 3,082
8,000 1.91 866  28.56 1,000 5,125

Table 5.3: Best elapsed times for NMP - line of 2 individuals.

Message Times (seconds) Messages
Size (bytes) User System Elapsed Sent Received
40 2.81 2.77 11.71 1,000 1,002
400 3.46 2.46 12.94 1,000 1,002
800 3.78 2.73 14.91 1,000 1,002

1,600 437 328  17.53 1,002 1,004
2,800 474 416  22.73 1,002 1,004
3,200 504 418  23.71 1,002 1,004
4,000 559  4.72  27.66 1,002 1,006
8,000 12.13  10.66  48.06 3,002 3,011

Table 5.4: Best elapsed time for ISIS - line of 2 individuals.

The interesting point is the number of messages sent and received. TCP requires
an acknowledgement for every message. This response doubles the number of mes-
sages received since a message must be received before the receiver returns the message
to the sender. If there were exchanges of messages between the two processes, then
these acknowledgements could be piggy-backed onto outgoing messages. UDP does
not require this so the messages received correspond roughly to the messages sent.

In both cases, the number of received messages steadily increases with increasing
message size. This phenomenon was observed to a lesser degree on a busier subnet. On
this other subnet, there was a sharp increase upon moving from 4,000 byte messages
to 8,000 bytes while prior to 4,000 byte messages the received message numbers stayed
very close to 2,000.

The processes spawned by NMP are, in reality, owned by the inetd program
(internet process daemon). The number of messages generated increases at this 4
kilobyte barrier. Examining the source code of getrusage() (a UNIX system function
to get process statistics) revealed that messages sent or received had nothing to do
with the number of packets generated per message. It is possible that the daemon is
responsible for some of the received messages, particularly when a page boundary is
exceeded. This is a supposition only, since source code is not available for the daemon



Message Times (seconds) Messages
Size (bytes) User System Elapsed Sent Received

40 0.14 0.94 4.92 1,000 2,000
400 0.12 1.15 7.90 1,000 2,000
800 0.60 1.28 9.82 1,000 2,000

1,600 0.51 1.33 15.45 1,000 2,000
2,800 0.35 2.94 20.37 1,000 2,000

3,200 T 3.27 23.08 1,000 2,792
4,000 o 4.35 26.42 1,000 2,827
8,000 i 4.92 57.21 1,000 5,077

Table 5.5: Best elapsed time for NMP - line of 3 individuals.

and the manuals are not explicit in this area.

Rerunning with larger message sizes (400 to 1,000 kilobytes) and fewer repetitions
generated large numbers of messages being received to the number of messages being
sent. The number of received messages did go up in relation to the message size.
However, the number of messages received varied without significant changes observed
in elapsed times. There were no page faults reported. This phenomenon is not critical
in lightly loaded networks or machines but a heavily loaded machine or network will
be a bottleneck in the performance of a distributed program.

5.2.2 Line of Three Individuals

Introducing a third process to simply relay messages between the two main processes
should only double the cost of transmission. The cost of a manager should be com-
parable under either system.

Tables 5.5 and 5.6 summarize several statistics from the best elapsed times ob-
served from at least four successful runs. The elapsed times show that the NMP
version of the simple relayer has a cost of double the direct cost. However, the ISIS
version did not manage to achieve this low overhcad unless messages of less than 800
bytes were sent. The cost of implementing a simple relayer using ISIS adds 50 to 100
percent to the ezpected elapsed times.

Overall, NMP generated much better user and s,stem times; this implies that the
machine could do more useful computations rather than consuming resources sending
and receiving messages. This does assume that the message sending process operates
in a non-blocking mode to the program.

There is a definite additional cost to relaying messages in ISIS beyond the cost
of simply forwarding the message. This leads to the evaluation of the asset manager
implemented using the ISIS primitives for process groups.



Message Times (seconds) Messages
Size (bytes) User Systemn Elapsed Sent  Received

40 4.72 4.47 24.51 2,002 2,006
400 4.60 4.32 27.99 2,001 2,006
800 4.85 4.77 32.67 2,000 2,006

1,600 568 526  54.33 2,009 2,013
2,800 631 595  79.56 2,022 2,024
3,200 644 6.19  82.00 2,024 2,026
4,000 6.61 661  125.84 2,048 2,040
8,000 12.40 1045 12627 3,079 3,088

Table 5.6: Best elapsed time for ISIS - line of 3 individuals.

Message Times (seconds) Messages
Size (bytes) ~User System Elapsed Sent Received
40 5.74 2.89 1,042 2,066 5,270
400 5.56 3.00 1,043 2,064 5,270
800 0.70 731 1,855 2,117 5,575

1,600 576 878 1,828 2,109 5,536
2,800 10.72 6.81 2,001 2,118 5,623

‘able 5.7: Best elapsed time for ISIS - pool of 1 individual.

5.2.3 Individual to a Pool of One

The results from Sections 5.2.1 and 5.2.2 lead one to expect that the cost of a manager
would not be an excessive burden. ISIS provides a series of functions for management
of process groups. An individual process can belong to several groups. In fact,
Enterprise takes advantage of this to provide a stream of control and the allocation
of replicated member resources.

The crucial difference between the previous experiments is that the asset manager
is not used when individuals talk to one other. Given a pool of one, the cost of the
asset manager should be comparable to the cost of a line of three individuals plus
some overhead for maintaining some accounting for free processes in the pool.

Table 5.7 shows a shock::. s difference in the observed elapsed times! These times
are not a mistake in typing - 1,042 seconds is quite different from 4.9 seconds for
NMP (Table 5.5) and 24.5 seconds for ISIS (Table 5.6) for 1,000 40 byte messages.

The user and system times do not reflect this dramatic increase. Initially, it was
thought that something that the asset manager is doing is consuming large amounts of
time. Upon examining the source code for the asset manager, there is not much that
it is doing that would account for such observed delays. The caller sends the message
to the asset manager which queues the message. The manager, after dequeuing a
message, forwards the message to the next available pool member (in this case, there
is only the one pool member). The reply from the pool member is sent directly to



the caller, bypassing the asset manager. The freed pool member then contacts the
asset manager for more work.

Timing code inserted into the asset manager and machine manager code deter-
mined where the program spent its time waiting for messages. The results were
surprising. Depending on the size of the messages, the asset manager ¢pent the bulk
of its time waiting for a message to arrive. For 2,800 and 3,200 byte messages the
time was spent either waiting for the machine manager or forwarding messages to the
worker. The idle time reported while waiting for a message dropped from 95 percent
to less than 25 percent.

Another interesting statistic came from the ISIS server program, cmd. This
program can force ISIS programs to dump a large amount of statistics about their
current state. It states in the ISIS User Reference Manual [12), Section 19.11.1, that
if a program is having difficulties in performance to check for cither a large number
(greater than 300) of unconsumed messages, or a large block of memory consumed
(1,000 kilobytes). There were 271 unconsumed messages early on in one process while
sending 8,000 byte messages 1,000 times.

The guilty process is the first asset in the line. This process is started with an
execve() function call from a forked run process. This process, using the ISIS routine
bcast(), sends a message to a process group and expects a reply to be placed in a
user declared array. No message receiving is done except at this point. It appears
that the beast() command is not consuming the messages after they are returned
or sent. Discussions with the ISIS developers indicate that they are aware of this
problem and that it may be fixed in the next release of ISIS (Version 2.2.6).

The caller sees one message to the asset manager and one from the replicated asset
worker. This is similar to the line of two or three individuals. There are several other
messages generated, but they should not dramatically increase the elapsed times. The
asset manager would be rapidly overwhelmed with messages if there were not cnough
idle workers, but in this case, the caller blocks until the message is received before
generating a new message.

During the the alpha-beta experiments (Chapter 4.4), a definite threshold of the
number of messages existed where a dramatic slow-down was obscrved. The message-
passing program described above was modified to time the delay between sending a
message and receiving the reply. Since the pool member does no processing, the cost
of the ISIS overhead is clearly identified. It is assumed that the physical transport of
the message between two processors is negligible.

Figures 5.17 and 5.18 summarize these results. Fach line describes the efect of
particular message size. The sizes chosen reflect the message size of the alpha-beta
algorithm except for the forty-byte messages. This size fits within one ISIS packet.
In each case, there is a definite threshold where the turnaround time increases to
a new relatively constant cost. The size of a message changes where the threshold
occurs. Unfortunately, there is no clear trend where increasing message size shifts
the threshold to fewer messages. The increasing noise at larger message sizes results
from the in: easing number of packets delivered per message.
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Increasing the message size has two effects. The first effect is in the threshold
where message delay time increases. Second, the magnitude of the delay varies.
These effects are not linear with increasing message size. While the effects are clearly
observable, an explanation is not easy since the ISIS source code is not available.
Clecarly, with small messages, memory consumption is not applicable but the cost of
retaining these consumed messages by ISIS is considerable once the threshold has been
reached. Adapting the user’s code to avoid these implementation details is neither
desirable nor, in most cases, possible.

This inability to properly deallocate messages is a major factor in the mediocre
performance of the small test suite of programs used to evaluate the current state of
Interprise. When this problem is fixed, the inefficiencies in the asset manager can be
properly evaluated.

Section 5.3 demonstrates the efficiency of the two communication systems by
contrasting the difference between an NMP impleme:ntation of a chaotic Gauss-Seidel
and the Enterprise version using ISIS. In both cases, the number of messages sent out
from the main program is one for each pool member. More importantly, no reply is
expected and no messages should accrue.

5.3 Comparison Between ISIS and NMP

One of the programs (chaotic Gauss-Seidel) was rewritten to work in a similar fash-
ion under NMP. This is to evaluate the cost of converting between communication
subsystems and the performance.

The details of the algorithm are discussed elsewhere (Chapter 4.1). The main
difference between the two implementations is that the static structures imposed by
the current version of Enterprise are not present in the NMP version. The dynamic
structure size is identical to the static structure messages for 1,000 and 2,000 problem
sizes. The Enterprise version uses a pool of n processors with the 0** pool processor
writing out the answer. The NMP version has the main process delegate the work to
the other processes directly without using a manager.

Tables 5.9 and 5.8 summarize the two experiments. As before, the numbers rep-
resent the best observed elapsed times of at least four runs. The runs were performed
on a quiescent net with homogenecus machines.

Both versions show the same problems when the processors are forced to swap
memory pages due to the large problem size. The performance of the algorithm
critically depends on avoiding page faulting. The critical size using the available
machines is approximately four megabytes of storage space for the segment of the
matrix A. If this size is exceeded (for example 1,500x750) then a 0.2 slowdown
is observed. Conversely, using 10 processors and a problem size of 2,000 yields a
speedup of 9.2 for the NMP version. The ISIS version has a 0.4 and 4.8 speedup
factor for the same problem.

The j. oblem occurring with a large number of undeallocated messages does not
occur since the convergence of this particular matrix is fast .
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Number Matrix size
of 500 1,000 1,500 2,000
processors Time Speedup Time Speedup Time Speedup Time Speedup
Serial 9.89 29.62 66.99 120.1%

2 5.62 1.8 28.71 1.0 186.9 0.4

4 3.63 2.7 10.97 2.7 164.1 0.7

5 3.06 3.2 9.71 3.1 19.85 34

8 6.78 4.4 28.56 4.2

10 6.18 4.8 12.41 5.4 25.24 4.8

{extrapolated value using cubic polynomial

Table 5.8: Elapsed times in seconds and speedup for distributed Gauss-Seidel using
ISIS

Number Matrix size ,
of 500 1,000 1,500 2,000
processors Time Speedup Time Speedup Time Speedup Time Speedup
Serial 9.89 29.62 66.99 120.1%

2 3.22 3.1 11.77 25 441.2 0.2

4 2.16 4.6 7.14 4.1 15.87 4.2 285.9 0.4

) 2.04 4.8 6.00 4.9 12.83 5.2 164.1 0.7

8 6.96 4.3 14.43 8.3

10 2.46 4.0 6.22 4.8 13.11 5.1 13.06 9.2

jextrapolated value using cubic polynomial

Table 5.9: Elapsed times in seconds and speedup for distributed Gauss-Seidel using
NMP.

The difference in speedups is directly attributable to the overhead ISIS contributes
and the cost of a pool manager. Chaotic Gauss-Seidel will demonstrate a super-linear
speedup due to the non-determinism of the overall answer.

Creating the NMP version was tiresome and took a long time to debug. This
exercise demonstrates the need for Enterprise (or something similar) to aid the pro-
grammer in the development of distributed software. Regardless of the underlying
communication protocol/system, the programmer should concentrate on the problem
rather than on the implementation details. That is not to say the implementation de-
tails are not important, but time spent debugging something that is demonstratably
capable, generated automatically by the pre-compiler, is tiine wasted.

5.4 Summary

The mediocre performance of Enterprise required the identification of the bottleneck.
Several experiments were done attempting to identify the bottleneck. The perfor-
mance of simple message passing between NMP and ISIS processes is investigated.



The cost of passing messages between two processes using ISIS is about double that
of NMP. Introducing a simple forwarder increases the difference to about four and
five times between ISIS and NMP. NMP costs between individuals and the simple
forwarder were about double - as expected. The ISIS versions of message passing
between individuals and the simple forwarder ranged between two and four times.
This increasc is not related to an increase in message size. The cost is somewhere in
the ISIS subsystem software.

However, introducing the intelligent asset manager increases the message cost to
about ten times the cost of the simple forwarder. The problem lies not with the asset
manager as first thought, but with the failure of ISIS to properly deallocate consumed
messages. The affected processes page-faulted themselves to drastic slowdowns trying
to manage the extra and unneeded messages.

The identification of a quantum leap in turnaround times between messages is
surprising. The expected response was a steady degradation of performance with an
increasing number of messages. ISIS does degrade in quantum leaps and the threshold
number of messages where this occurs is not proportional to the message size.

Clearly, the ISIS communication subsystem must be discarded for a more suit-
able communication model. These known problems with ISIS have persisted for a
considerable length of time with little prospect of resolution in the near future.

The asset manager does have a cost that is reflected in the speedup differences
between the ISIS and NMP versions of the chaotic Gauss-Seidel algorithm. The dif-
ferences in speedup were 5.4 for ISIS versus 9.2 for NMP. The NMP version was
not easy to implement and debug. Whether or not to use Enterprise must be bal-
anced against the ease of implementation and the relatively poor performance of the
resultant code.
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Chapter 6

Evaluation and Recommendations

The tested version of Enterprise has been evaluated by implementing four parallel
algorithms. The conversion from sequential to distributed processing went well in
theory, but not in practice. Problems with the pre-compiler output having to be
modified by the user prior to conventional compiling interfered with the production
of the parallel programs. The quality of the communication subsystem, ISIS, degraded
the performance of the tested parallel programs.

This version of Enterprise has several problems associated with it. However, given
a choice between the communication subsystem ISIS along with the automatic inser-
tion of the necessary code for distributed processing and using the NMP package,
Enterprise is the obvious choice. Though Enterprise is not perfect, the problems
encountered while producing the programs were trivial compared to the frustration
generated by the NMP programming.

The performance of these parallel programs is an important evaluation criterium.
The performance of the algorithms running under ISIS is poor, even when the er-
rors introduced by ISIS were avoided by reducing either message size or frequency.
Message passing between processes suffers from the failure of message deallocation.
ISIS is aware of this problem and intends to resolve it in the next release. The next
release of ISIS is already several months behind schedule. This and other more minor
problems with this software product have still not been resolved.

6.1 Recommendations

There are a number of recommendations for the next version of Enterprise. First, here
are the major recommendations. These are important from either the performance
perspective or the user interface. They should have first priority for implementation.

® Replace ISIS with either a custom communication library or some other com-
mercial product. This decision should be made before any more work is done up-
grading the model or executive implementations. It was necessary to have some
communication system to prototype Enterprise. Now that the requirements of
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Enterprise have been identified, any communication package (eg. NMP, sockets)
could and should be used.

All future testing should be done using the graphical user interface (GUI). This
will create some problems until the pre-compiler is upgraded so that, at the very
least, the four algorithms implemented in this thesis can be compiled without
any further modification by the user.

The Enterprise exccutive should be freed from the constraint of using one com-
munication package. This can be done by changing the code inserted by the pre-
compiler so that communication implementation independent code is inserted.
This abstraction is necessary since Enterprise is supposed to be implementable
on any comnmunication system. This applies to both the modified user code and
the Enterprise executive processes.

Provide a mechanism whereby the user can specify which processor the executive
tools are to be run on. Currently, this is not done. The executive processes are
run without any user control. For example, the matrix multiplication algorithm
(Chapter 4.2) would benefit from having the asset manager located on a machine
with lots of main memory.

The following are small details that, while not strictly necessary for the correct
operation of Enterprise, would make the programmer’s life easier.

Modify the graph file to allow dependencies of include files and libraries to
be automatically dealt with when compiling to the distributed level and later
compiling to the machine level. Currently, this is the user’s responsibility.

Change the names of the pre-compiler tools. ccl, gec are used for something
completely different than what the pre-compiler intends.

Change the search path from having to search the local directory first. This is
not acceptable from a security point of view.

Having a directory where all the Enterprise binaries are stored is highly desir-
able. Then, the users only need to add that directory to their path.

Allow the user to insert compiler directives that are machine independent. Op-
timizing code and debugging are two obvious examples. The keywords are
implemented, recognized and ignored by the latest version of the pre-compiler.

When running a distributed program, have an orderly shutdown of all assets
in the graph (not just the first asset) before shutting down any service assets.
This problem was first seen in the transitive closure algorithm.
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6.2 Future Work and Research Areas

Here are several areas that have research potential or are larger bodies of work. These
are intended to enhance Enterprise.

¢ An obvious omission of the simple algorithms tested is a parallel sort. One
such distributed sorting algorithm is parallel sorting using regular sampling
(PSRS) [18] which uses peer-to-peer communication and as such is not casily
implementable using the current version of Enterprise. One way would be to
implement all sorting tasks as services with one master process calling these
services. This is not an effective way to utilize Enterprise since there must be
one process acting as the master while only the slave (service) processes do the
sorting. The code is not easily modified when increasing or decreasing the num-
ber of processors, since each service asset must have its user-supplied source file
modified to reflect change in the communication connections. The implemen-
tation and model should be modified to permit peer-to-peer communication.
This new asset type is not intended to be recursive but rather it permits a
round-table or board-meeting type of communication.

o Test the Enterprise model using a heterogeneous mix of processors. This, while
important in an university environment, is not important to the industrial spon-
sors or users of this work.

® Develop and test larger programs other that these four toy programs using
Enterprise. Larger programs will have different dynamics during the course of
the run. This will stress Enterprise in new ways and demonstrate practicality
for real-world problems.

e The current implementation of Enterprise is a centralized control (the machine
manager) with some distributed parts (asset manager). This implementation
puts a heavy demand on the machine manager processor resources while lightly
loading the other processors. This is neither fair nor reliable. The implementa-
tion of a more distributed control should be examined. The new daemon server
of Enterprise addresses this problem.

¢ An important question in the design of Enterprise was whether or not to dy-
namically launch the assets as needed or to statically launch all processes before
starting up the Enterprise program. The dynamic launching argument stresses
the sequential flow of the user’s program. The beginning assets could be fin-
ished before later assets are needed. This results in better processor usage and
may reduce the number of necessary processors. The main drawback is how
to implement this. A call to a non-existent process will not trigger a program
error but, rather, signals the Enterprise executive to launch the missing process.
However, when a process exits, one constraint is that there can be no internal
state of that process required for the next use of the process.



Statically launched processes require the maximum nuinber of processors avail-
able at run time (excluding the variable replication). If there are not enough
processors, multiple processes are placed on a singie proce:sor. ‘I his is not gen-
erally conducive to good speedups. Static launching is easier to implement in
the executive. The current version of the executive statically 1~unches the assets
for simplicity.

o The process group concept found in ISIS should be implemented in the new
communication subsystem used by Enterprise since it decouples processor loca-
tion from the logical identification of the asset both from the single or replicated
point-of-view.

o Creatc some mechanism that respects the ownership of processors. The pur-
pose of having a low-cost supercomputer based on networked workstations is to
adsorb the idle CPU cycles. If a general user or the owner of a processor wishes
to use that processor, Enterprise should be able to either safely checkpoint the
offending Enterprise process and migrate it to another idle processor or wait
until the processor is idle and then restart computations. All of this should be
transparent to the user.

6.3 Appraisal of Enterprise

Enterprise is intended to free the user from creating and maintaining the code nec-
cssary to set up and ensure communication between different processors. The two
phases ~ the model and implementation - are given separate appraisals.

Enterprise, the model, is in good shape. Many coarse-grained distributed processes
are amenable to casy implementation using Enterprise. The one exception is peer-
to-peer communication. Enterprise is built with hierarchal communication in mind.
Peer-to-peer is possible by using a blackboard mechanism (services) but it is awkward
and potentially costly.

Enterprise, the implementation, is in relatively poor shape. This is based on two
metrics: ease of creation and performance. Ease of creation of distributed programs
is a subjective metric while the performance of the algorithm is an objective metric
for assessing the effectiveness of this system.

The pre-compiler (used for insertion of the distributed code) is not up to the
necessary standard of avoiding routine user intervention. However, when the pre-
compiler does do its work, conversion from sequential to distributed processing takes
virtually no time at all compared to the coding necessary without Enterprise. If the
user must intervene with the pre-compiler output, usually a few minutes are all that
are needed to insert the few necessary code modifications.

The performance of the distributed program is not very good using Enterprise. It
is possible to get a 5.4 speedup using 10 processors for the Gauss-Seidel algorithm
with essentially minimal effort. For some considerable effort, a speedup of 9.2 was
obtained using handcrafted coding. The cost of handcrafting must be weighed against
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the benefits of usir , programs like Enterprise. If the Enterprise program compiles
correctly, no further effort other than developing the serial code is required.

The speedup achieved is only part of the benefit of using distributed processing.
Much larger problems are now solvable by taking advantage of distributed local and
virtual memory, without moving to a different (more costly) machine. Having a group
of low-cost machines is more likely to occur rather than a single larger machine.

The run-time executive of Enterprise has problems. It fails to return control of
the program to the user in a consistent manner for three of the four tested algorithma.
The fourth algorithm has control returned too soon resulting in the program failing
to compute the correct answer.

The blending of the three models, Enterprise, communication, and user’s is still
not complete. The tested version of Enterprise is not viable for general public use
but the promise of Enterprise is seen in its potential capabilities. Despite the serious
implementation flaws, it is possible to appreciate the advantages of Enterprise to
create distributed parallel programs with minimal effort and to achieve speedup.
Solving these implementation flaws will make Enterprise a desirable product both
for research in and production of parallel algorithms on a distributed network of
workstations.
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Appendix A

Experimental Data

Size User Time (seconds)
Dense Tridiagonal 10 Tridiagonal 25 Banded 10 Dense (no SOR)

50 0.46 0.47 0.50 1.62 0.19
100 L77 3.58 1.99 12.53 0.35
200 1.14 25.40 18.68 99.41 117
300 15.21 66.63 85.25 332.57 2.48
400 28.48 128.14 236.70 792.06 4.33
500  44.87 210.15 498.03 1,548.60 9.89
£ 65.03 310.62 883.96 2,675.39 14.04
1, 29.62
1,200 43.03
1,500 . 66.99

Table A.10: User times for serial Gauss-Seidel using successive over -relaxation (SOR).

Replication Matrix size
factor 500 1,000 1,500 2,000

Time Speedup Time Speedup Time Speedup Time Speedup

2 5.62 1.8 28.71 1.0 186.9 0.4
3 98.12 0.7
4 3.63 2.7 10.97 2.7 164.1 0.8
) 3.06 3.2 9.71 3.0 19.85 3.4
8 6.78 4.4 28.56 4.5
10 6.18 4.8 12.41 5.4 25.24 5.1

Table A.11: Elapsed times in seconds and speedup for distributed Gauss-Seidel using
a line.
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Matrix  Scrial Replication 4 Replication 8 Replication 10
Siz¢  Times FElapsed Speedup Elapsed Speedup Elapsed Speedup

100 1.80 3.53 0.5 3.45 0.5 4.09 0.4
200 15.10 9.99 1.5 10.37 1.5 10.78 1.4
300 50.81 28.19 1.8 28.37 1.8 31.43 1.6
400 120.94  62.86 1.9 64.82 1.9 72.56 1.7

500  237.29 123.23 1.9 125.60 1.9 142.33 1.7
600  413.54 211.29 2.0 217.72 1.9 258.31 1.6

Table A.12: Serial user times and distributed elapsed times and speedup for block
multiplication using a line.

Matrix Serial  Elapsed Speedup
Size  User time time

100 1.80 3.76 0.5
200 15.10 18.00 0.8
300 50.81 60.59 0.8

400 120.94 175.51 0.7

Table A.13: Serial user times and distributed elapsed times and speedup for block
multiplication using a department. Replication factor is set to 8.

“Tvoblem  Serial Replication Factor
Size Time 4 5 6 7 3 9 10
A0 44.13 3133 36.31 35.71 54.49
500 86.16 52.75 77.47
§00  149.28 67.17 61.84 87.44
700  236.76 93.77 106.86
800  354.30 122.11 133.03
900  505.09 174.46 775.98
1,000  693.22 225.84

Table A.14: Serial user times and distributed elapsed times for transitive closure using
a department.

Problem Replication Factor
Size 4 5 6 7 8 9 10
400 1.4 1.2 1.2 0.8
500 1.6 1.1
600 2.2 2.4 1.7
700 2.5 2.2
800 2.9 2.7
900 29 29
1,000 3.1

Table A.15: Speedup for transitive closure using a department.



Best weighting: 10000000000

Level of Parallelism  Elapsed time (seconds) Speedup
Serial} 393.0
12 78.64 4.7
10 77.07 4.8
8 76.39 4.9
6 75.36 1.9
4 5 4.8
2 I 3.8

storoghting: 12 11 11 11 11 1111 11 1

Level of Parallelism  '.la'v+ ¢ ..ne (seconds) Speedup
Srialf - 776005
9 134.3 4.5
7 134.7 4.5
5 132.9 4.5
3 132.7 4.5
1 144.8 4.1

Worst weighting: 0000 000 0 100

Level of Parallelism  Elapsed time (scconds) Speedup
Serial} 503.2
8 114.1 4.4
6 111.0 o
4 112.7 4.5
2 115.0 1.4
0 309.9 1.6

1 User time (seconds)

Table A.16: Effect of different weightings on performance of alpha-beta scarch. Repli-
cation factor is set to 9.



Depth 10 Depth 11
Granularity Elapsed Time Speedup Elapsed Speedup

(seconds) (seconds)
Serial} 221.1 872.9
4 59.32 3.8 222.7 3.9
5 59.83 3.8 222> 3.9
6 59.42 3.8 222.4 2.9
7 59.41 3.8 223.2 3.9
8 62.07 3.7 224.9 3.9
9 62.13 3.6 233.7 3.7

Weighting: 4010101010555 5
} User time (seconds)

Table A.17: Distributed elapsed times, and speedup for alpha-beta search on a tree
of width 9 using replication fa-tor of 9.

Granularity Serial 6 processors 9 processors
times Elapsed Speedup Elapsed Speedup
I 4710 1,367 3.4 1,363 35
2 4,706 1,339 3.5 1,346 3.5
3 4,709 1,316 3. 1,315 3.6
4 4,701 1,294 3.6 1,296 2.6
5 4,691 1,287 3.6 1,290 3.6
6 4,418 1,365 3.2 1,367 3.2
7 1,364 1,361 1.0 1,364 1.0

Weighting: 60 15 10 5 10(1) 26(0)

Table A.18: Serial user times, distributed elapsed times and speedup for alpha-beta
search using replication factor of 6 and 9 with a tree of width 40 and depth 7.



Appendix B

ISIS Installation

B.1 Shell Modifications

The shell modifications are primarily directed to the environment variables. However,
the locations of the statements are critical. All these statements must occur before
the .cshrc file exits if the shell started is not interactive.

For this implementation, there are four variables that must be created while: two
others can be created but are defaulted to preset values if not created. Table B.19
lists where a~d what the commands are.

The four that must be created are as follows:

o ISISHOST - the name or address of the machine that is running an ISIS server.
Separating multiple servers by colons is mentioned in the ISIS manual but it
docs not work. Possibly, the run-time executive is not handling this multiple
entry properly.

¢ ISISREMOTE - the port number by which ISIS processes communicate between
one another This could be ignored if ISIS has a /etc/services filc entry. This
only happens if ISIS has been installed by the system manager. With the
implementation tested, this installation was not done by the system manager.

setenv ISISHOST so-heart-rv.cs.ualberta.ca

setenv ISISREMOTE 1¢13

setenv ISISPORT 1612

setenv ISIS_LINCLUDE /usr/maligne-lk/Enterprise/isis2.2/SUN4
#setenv mach file /usr/maligne-lk/grad/ian/.machine-file
##setenv ent dir /usr/maligne-lk/grad/ian/SRC

set path = (. $path)

##skip remaining setup if not an interactive shell

if (§?7USER == 0 || $?prompt == 0) exit

Table B.19: The shell startup (.cshrc) modifications for Enterprise.
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e ISISPORT - the port number by which ISIS processes listen for messages. Again
this can be ignored if ISIS is installed by the system manager.

o ISIS.INCLUDE - the location of the ISIS include files. In the next version of
Enterprise this has been replaced with the ISISPATH and ARCH environment
variables which are intended for heterogeneity and binary locations.

The two optional environment variables are as follows:

e mach file - the file containing the list of available machines. It defaults to
mach file in the current user directory.

e cent.dir - the directory where the Enterprise program is found. It defaults to
the current working directory of the user.

The other major modification to the shell is the PA_H environment variable.
‘The PATH environment variable must be set to look in the current working directory
first. Both the run-time executive and the pre-compiler have to find file: in the local
directory. The simple solution is co use symbolic links for the files. This does 1.t
consume much space; it does clutter the directory.

This modification is only intended as a temporary measure until Enterprise be-
comes 1nore robust and stable. When this happens, the various programs that com-
pose Enterprise can be located in a separate directory and the path added to *he
user’s list. Having to search first for executables in the current directory is neither a
secure nor desirable feature.

B.2 The ISIS Server

Enterprise is currently implemented using the ISIS communication package. The ISIS
server [12] provides all the necessary services for communication between distributed
processes. Other communication subsystems could be used as long as they provide
the minimal subset of functionality required by Enterprise.

‘The notion of process groups is an attractive feature of ISIS. A process group is an
unique logical address where processes rendezvous to dep« it or collect messages. En-
terprise uses this to control replication and interprocess communications. Debugging
is as simple as connecting to the moniioring process group. Starting and stopping of
the various processes is also handled via process groups.

Each ISIS server processor requires six process slots for the various processes that
make up ISIS system. The binary files for ISIS are listed in Table B.20 under the
heading ISIS. ISIS requires three communication ports globally free over the entire
network. The selection of the port numbers is done in the sites file which lists all
sites for possible ISIS servers. It is possible to use different port numbers but the
servers using this different set of port numbers must not know about any other set of
ports. This results in multiple site files and complicates the maintenance of the ISIS
subsystem.
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Compiling Running ISIS

compile run isis
gee asset.mgr protos
ccl machinemgr xmgr
cpp monitor rexec
cppp rmgr
news

Table B.20: List of binary files used by Enterprise.

Port connections are made by the v~lues contained in the environment variables
ISISREMOTE and ISISPORT to the local ISIS server defined by ISISHOST as defined
carlier. If Enterprise is a system installation then ISIS ports would be identified in
the /usr/etc/services file and the two port environment variables would not be
needed.

ISIS permits interprocess communication through unique logical addresses that
are global in scope. A process asks its local server for a particular address; the local
server will forward the message to the appropriate remote server for delivery. If there
are many servers, then the cost of maintaining this global address list has an effect
on network performance.

There is a current limitation on Enterprise caused by the process groups. There
can only be one Enterprise process running on any ISIS network. The run process
which connects to all Enterprise processes is a unique process group name. Any
other Enterprise program that starts up will also use that process group. The results
are non-deterministic, sometimes amusing, but inevitably fatal to both programs.
Creating process group addresses that are unique to the processor thai starts the
Enterprise program is trivial (launching host name and process identifier) and is in
the version 0.6 of Enterprise.



