
The sciences do not try to explain, they hardly even try to interpret, they mainly
make models. By a model is meant a mathematical construct which, with the
addition of certain verbal interpretations, describes observed phenomena. The
justification of such a mathematical construct is solely and precisely that it is
expected to work – that is, correctly to describe phenomena from a reasonably
wide area.

– John von Neumann (1903-1957)
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Abstract

In this thesis different aspects of stereo-based 3D reconstruction and 3D visualiza-

tion and manipulation are investigated. The focus of this research is specifically on

sampled object representations (SOR) in which the object(s) is (are) shown using

a collection of samples such as discrete pixels, voxels, points, or surface elements.

We study different techniques of optimal sampling, and optimal representation and

visualization of SORs for conventional and stereo-based 3D applications. In this re-

gard, we first analyze the process of capturing and viewing stereo content on stereo

capture and 3D display devices, and propose (unified) optimal sampling models for

both the stereo capturing and viewing ends. Specifically, we theoretically show that

for a given total resolution, a finer horizontal sampling rate, compared to the usual

horizontally-vertically similar sample (pixel) distribution, results in a more accu-

rate 3D estimation and enhanced 3D visual experience. We validate our theoretical

results through subjective studies and show that human observers indeed have a bet-

ter 3D viewing experience with an optimized vs. a non-optimized representation of

stereo 3D content. We next study different techniques for compact representation

and interactive rendering of sampled-based (point-based) 3D object representations.

In particular, we introduce a tree structure, called a multi-section tree, and show how

this structure can be used in creating a fully balanced, multi-resolution, hierarchical

structure over space (and time) to support interactive rendering of spatial (or spatio-

temporal samples) of still (or moving) 3D objects. Using an implicit representation

of the multi-section tree and improved, dense hierarchical encoding techniques we



can achieve highly compact representations for both still and animated point-based

3D models. We can also achieve an interactive frame rate, and quality rendering

of large models, on commodity desktop or mobile devices. Finally, we study 3D

interaction and manipulation within a virtual stereoscopic 3D space. In this regard,

based on a stereo-based 3D cursor, we have developed some simple 3D tools for

manipulating point-based 3D objects. We discuss and through user studies show

how this stereo-based cursor can be considered as a generic alternative to its 2D

counterpart in virtual stereoscopic 3D space. We also discuss the pointing accuracy

of the stereo-based 3D cursor with regard to the optimal sampling model proposed

and discussed in the earlier chapters.
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Chapter 1

Introduction

The stereopsis capability of the human vision system is one of the primary means
enabling us to have a 3D perception of the world. This ability provides us with
precise information of the relative depth of the objects and a clear sense of their 3D
shape from two slightly different images captured by the eyes [52]. Providing the
same capability for machines, i.e., the ability to reconstruct a united 3D model from
two or multiple views of a scene, has been one of the most extensively researched
topics in the field of computer vision [91, 93]. In this regard, a large number of
algorithms have been proposed over the years and substantial progress has been
made in different related areas or subproblems including techniques of matching
corresponding regions or features, occlusion handling, multiview reconstruction,
and real-time implementation [20]. Nevertheless, our 3D vision system in most
cases is still far better than these algorithms in many aspects, including matching
accuracy, flexibility, efficiency, and clarity of the resulting 3D models.

The human vision system is not only capable of reconstructing 3D models from
2D images directly captured by the eyes from a real 3D scene, but also often able to
perfectly match stereo pairs that are captured or rendered using an external imaging
device or rendering software. Benefiting from this ability, a wide variety of different
stereoscopic devices have been applied to create the illusion of depth by presenting
two separate, perspectively different views to the left and right eye. Traditionally
most of these techniques required some sort of filtering glasses to separate the left
and right channels, but recent advances enable users to watch stereo content in 3D
without wearing any type of filtering glasses. These display devices, known as
multiview, auto-stereoscopic 3D displays, present multiple views of the scene to
the viewers, but only a pair of adjacent views is visible from each of the viewing
zones surrounding the front side of the 3D display and only that pair contribute to
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the formation of the 3D scene. By changing the viewing zone, viewers are able
to perceive the scene from a different viewing angle, providing them with both
stereo- and motion-parallax perceptual cues [37]. Despite these advances, there
are still several challenges and/or deficiencies in both 3D content generation and
visualization techniques and 3D device technologies that need to be addressed in
order to have an ultimate, ubiquitous 3D experience [65].

Stereo reconstruction and stereo visualization are two sides of the same prob-
lem; hence, progress in one of them can be directly or subsequently beneficial to
the other. The shared part of both problems is 3D modeling where the object is
described in the form of a collection of constructive elements or, alternatively, in
closed form representations. An appropriate 3D representation not only helps with
efficient, quality rendering of the 3D object on the visualization side, but it can also
be used as part of the pre-knowledge of a scene to enhance the 3D reconstruction
results. Efficient, concise representation of a model can be significantly beneficial
for efficient compression and transmission of the visual 3D data, as well.

In this thesis, broadly speaking, we study some of the aspects of stereo-based
3D reconstruction and 3D visualization, with a special focus on sampled object rep-
resentations (SOR) in which the object(s) is/are shown using a collection of samples
such as discrete pixels, voxels, points, or surface elements. These include studying
methods of optimal sampling of stereo content for enhanced 3D reconstruction and
visualization, and improved 3D modeling and representation techniques that pro-
vide us with “better” 3D visualized objects on conventional or (auto)stereoscopic
display devices, while are more efficient in terms of the memory requirements and
computational complexity. We also investigate methods of interaction with and
manipulation of such 3D representations.

1.1 Motivation and Purpose

Over the past few years, stereo-based 3D display technologies have received in-
creasing attention with wide applications in entertainment centers, home theaters,
game consoles, and mobile devices. Research in this area covers a wide range of
related topics including 3D capturing, 3D reconstruction and modeling, transmis-
sion, and display [73, 61, 92, 72, 13], as well as display design and technologies
[56, 104]. Stereoscopic 3D display systems considerably elevate the spatial under-
standing of the 3D data by providing stereo-parallax and, in the case of multiview
displays, motion-parallax perceptual cues for the human visual system. This en-

2



Figure 1.1: Typical components of a spatial or spatio-temporal 3D data generation
and visualization system (parts of the figure are adopted from [16] and Wikipedia).

hanced representation of 3D data can be advantageous in providing a more attrac-
tive and also more comprehensible, interactive environment in many application
areas including entertainment industry, medical data visualization, and educational
applications. However, realizing these capabilities requires improved 3D data pro-
cessing techniques and algorithms optimized for multiple, free view rendering and
3D interaction.

Stereoscopic displays may simply be used for watching raw stereo content such
as stereo images or stereo video streams. Such raw stereo content can be fed into the
display system with little processing effort, although compression and transmission
may become a challenge for multiple channels (views), especially in the case of
limited processing power and/or band-width. In this regard, the 3D picture forma-
tion process based on watching stereo images needs to be revisited and studied with
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respect to the physical or psychophysical parameters affecting the whole process.
This may include display design parameters such as the display screen aspect ratio
and the relative horizontal vs. vertical display resolution (pixel aspect ratio), as well
as different camera configurations or some other underlying depth perception pa-
rameters inherent in the human visual system that affect the quality of the 3D output
delivered to the user. In fact, this is one of the main topics of this research which is
investigated and discussed in Part I, where we try to mathematically formulate the
stereopsis process and derive optimal sampling rates (optimal pixel aspect ratio) for
a given band-width (image resolution). The results of these studies can be useful to
3D display design, as well as in encoding and transmission of 3D visual data, and
even in 3D rendering and interaction.

At a higher level of representation, fully described 3D models may be used for
dynamic, real-time generation of stereo content. This will bring more flexibility to
the application side enabling implementation of an interactive 3D environment for
different view or data manipulation tasks. However, in general, construction of 3D
models is computationally expensive and sometimes hard to achieve. Furthermore,
the process of projecting the 3D model(s) back to the appropriate 2D (perspec-
tive) view(s), namely 3D rendering or 3D visualization, can be computationally
expensive. The complexity of the rendering depends on several factors including
size of the model(s), i.e., type and number of primitives or constructive elements
describing the model, and the desired level of detail and rendering quality. The
back-projection process can be even more challenging in the case of (multiview)
stereo rendering, where at least two different perspective views are necessary to
form virtual stereoscopic 3D space. This increases the difficulty of achieving real-
time/interactive frame rates, especially for large models with a great deal of detail
or complex scenes composed of several objects. This motivates searching for rep-
resentations of high performance in terms of memory or processing requirements
and accurate and flexible enough to achieve quality rendering and visualization at
interactive frame rates, the research topic that we mainly deal with in Part II.

After all, stereo visualization systems add another degree of freedom along the
depth dimension. This essentially implies that the current 2D interaction techniques
need to be developed for supporting this additional dimension. The upgrade should
facilitate free interaction with, and possibly manipulation of, the 3D-visualized ob-
jects along the depth, in a manner more or less similar to the other two coordinate
components. The users of a 3D system not only look for the common functionalities
available on 2D display devices, but they also naturally expect to be able to point
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to, and work in, any arbitrary 3D point (voxel) inside the stereoscopic 3D space (as
they are able to point to any arbitrary pixel on a 2D display). These are the moti-
vations behind our work in Part III, where we present the results of our experience
with a prototype of a stereo 3D cursor and a small set of associated tools we have
developed for selection and manipulation of 3D points inside a virtual stereoscopic
3D space.

1.2 Problem Definition, Focus, and Scope

Figure 1.1 shows typical components of a 3D pipeline composed of spatial or
spatio-temporal 3D content generation, modeling, possibly transmission (not shown
in the figure), visualization, and interaction. As depicted in this figure, our research
mainly deals with stereo reconstruction, 3D modeling and visualization, and 3D
interaction, which are correspondingly organized in three parts, as follows.

• Part I - Optimal Orthogonal Stereo Sampling for Enhanced 3D Estimation: In
this part we study the process of stereo reconstruction from discretized stereo
content and show how the 3D estimation can be improved with regard to an
optimal trade-off in the density of horizontal versus vertical sampling for a
given number of samples (i.e. for a given total 2D resolution). More accu-
rately, the focus of the problem is on finding an optimal pixel aspect ratio, or
equivalently and optimal horizontal vs. vertical discretization, that, given a
specific total 2D resolution, improves 3D point estimation from correspond-
ing 2D projections in the left and right stereo views. We study this opti-
mization problem for both parallel and with vergence stereo configurations,
and show how the optimal sampling ratio may vary with different underlying
stereo parameters. We also extend the research to the case of stereo view-
ing, where the stereo content is presented to human vision system through a
stereoscopic 3D display medium. We propose models of stereo perception on
these 3D display devices, based on which we derive a general solution that
relates the optimal pixel aspect ratio mainly to the device-specific parameters
rather than stereo configuration parameters. This general solution is equally
applicable to both stereo-based 3D reconstruction and 3D viewing applica-
tions. Our results in this part are based mainly on mathematical modeling
and optimization, but we provide substantial numerical results and subjective
user studies in support of our theoretical findings.
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• Part II - Sampled Object Representation and Visualization: Our research in
this part deals mainly with 3D object modeling and representation with the
purpose of achieving descriptions that are more efficient in terms of mem-
ory requirement, accuracy, and flexibility of supporting different interaction
and manipulation tasks at interactive frame rates. Specifically, we will focus
on sampled (or point-based) 3D object representations. This is mainly be-
cause of the simplicity, flexibility, and performance that these representations
demonstrate compared to more traditional representations such as triangular
meshes and functional representations. However, these models are usually
composed of a huge number of samples and hence need specific treatments
in both representation and visualization. In this regard, we will place our fo-
cus mainly on hierarchical, multi-resolution representations which efficiently
accommodate point-based graphics and have shown great success in 3D ren-
dering, especially in dealing with a large number of primitives [85]. We study
these representations and introduce improved techniques, data structures, and
algorithms for hierarchical representation and interactive 3D rendering of
both still and animated point-based 3D models, and for both conventional
and stereoscopic visualization applications.

• Part III - 3D Interaction and Manipulation: This part deals with 3D interaction
and manipulation as part of a typical 3D visualization system. Our research
in this area is generally connected with the problem of 3D pointing and ob-
ject selection within a 3D environment, and in particular with the challenges
of doing these tasks within a virtual stereoscopic 3D space. In this regard,
we study the possibility of using the underlying 3D content, namely point-
based representation of the model, in searching and targeting a 3D point. We
have developed a prototype of a stereo 3D cursor, in which the underlying
content can be used to adjust the depth of the cursor in an automatic, or semi-
automatic manner. The cursor is also equipped with a simple set of tools that
can be used for simple 3D manipulation tasks within the virtual stereoscopic
3D space. Using this prototype, we study and compare the capabilities of a
stereo 3D cursor in stereo space vs. its 2D counterpart in conventional 3D
rendering on a flat 2D space.

The 3D models that we are using in this study are not necessarily the result of
stereo-based 3D reconstruction. Any form of 3D data that can be represented as
(or converted to) a collection of 3D points is appropriate for our research. These
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include data resulting from 3D laser scanners, data acquired by 3D medical imag-
ing techniques, and synthetic 3D data (see Figure 1.1). As a result, we expect
our improvements to be equally beneficial in different application domains such as
medical data visualization, computer games, and multimedia education.

1.3 Contributions

We have made several contributions to the field through this research. The first
and probably our most significant contribution is the optimal 2D sampling (optimal
pixel aspect ratio) model we have proposed for stereo-based 3D reconstruction and
enhanced 3D visualization [7, 11] (see Part I). In fact, we propose mathematical
models for obtaining the maximum gain out of a given number of samples per 2D
view (a given resolution or equivalently a specific bandwidth limit). These optimal
sampling models can be of great practical value in the transmission and display of
3D content, especially considering that the 3D displays rely on more than one 2D
view (at least two views) of the scene to induce the 3D effect. In this work, we
thoroughly reviewed the previous research and unified past work to form a solid,
integrated theoretical model. In this regard, we tried to find strong justifications
and proofs for different approximations and address unseen cases in the previous
related research. We also introduced methods and software for simulating different
non-uniform (horizontally, vertically dissimilar) samplings on conventional capture
and display devices, which enabled us to run subjective user studies in support of
our theoretical findings. We have also extended this work to a general, unified sam-
pling model applicable to the both capturing and viewing ends of the 3D pipeline
(see Chapter 4). This latter extension is of great practical value as it facilitates
applying the same model in design and manufacturing of the stereo capture and
display devices that are used throughout the 3D pipeline.

Our second significant contribution is in the area of point-based representation
and rendering, where we introduce a balanced, layered, multi-resolution structure
for representation and interactive rendering of large point-based 3D models [10]
(see Part II). In this representation, neighboring points are grouped into patches of
the same size (same number of samples), and a hierarchy of patches is created for a
model. Through this structure we impose a type of regularity on the model without
enforcing any explicit connectivity. This regularity facilitates applying/extending
conventional 2D encoding techniques (DCT, wavelet, and vector quantization) to
the 3D samples and their corresponding attributes, and it also facilitates application
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of different deformation models on point-based data. Our representation is very
compact compared to similar structures and is also comparable to the other state-of-
the-art representations. We have successfully applied our balanced representation
in interactive, free view-point rendering of animated point-based 3D models. This
extension enables simultaneous spatial and temporal navigation on animated 3D
objects within an interactive 3D rendering environment. These generalizations and
achievements can be of great practical value in 3D content generation, transmission,
and display. As part of this work, a substantial amount of implementation and
coding has been done in C/C++ to show the efficiency of the basic idea and its
variations, and also to compare the results with other methods proposed in literature.

Our third noteworthy contribution is the stereo 3D cursor that we have devel-
oped as a general method for interaction and manipulation within a virtual stereo-
scopic 3D space (see Part III). In this work, benefiting from the underlying 3D
geometry of a scene, we show how easily and conveniently a stereo 3D cursor can
be implemented and deployed. Here the initial idea was to investigate the possibility
of using stereo visualization techniques in extracting ground truth from 3D medical
images [8]. Starting with this idea, we have managed to implement a prototype 3D
cursor with some simple associated tools for manipulation of a point-based 3D ob-
ject within a stereoscopic 3D space. We explain, and also based on user evaluation
results show, that the stereo 3D cursor can be used as a general 3D pointing method
within such a virtual environment with as many applications that a 2D cursor can
have in a conventional 2D interface [9].

1.4 Outline

The rest of this thesis is organized as follows. In Part I we focus on the problem of
optimal discretization for stereo reconstruction and stereo-based 3D visualization.
This part is composed of four chapters, Chapters 2 to 5, as follows.

In Chapter 2 we review and explain the fundamental concepts of stereopsis pro-
cess. These include models of 3D estimation from stereo images under two com-
mon configurations, namely parallel and with-vergence configurations. We also
present a model of 3D viewing on stereoscopic 3D displays and show how this
process can also be reduced to (approximated by) a stand-alone (parallel) stereo
configuration system. In addition, we discuss the effects of discretization on 3D
estimation and 3D (or stereoscopic) resolution. The basic concepts, models, and
equations that are presented in this chapter will form the bases of analysis and op-
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timizations in the subsequent chapters.
In Chapter 3 we study the problem of optimal 3D point (or 3D scene) estima-

tion from discretized stereo images for a stand-alone stereo system, and for both
parallel and with-vergence configurations. Through mathematical modeling and
optimization, we drive optimal discretization (optimal pixel aspect ratio) equations
for estimating a single 3D point under these configurations. We also present models
and equations of optimized discretization for a volume of the scene constrained by
the cameras’ field of view and a capturing range. In summary, we show that for a
given total resolution, a finer horizontal resolution, compared to the usual uniform
pixel distribution, in general and under more practical configuration parameters,
leads to a more accurate 3D estimation for both configurations, though the optimal
value may vary depending on different configuration parameter values.

In Chapter 4 we extend the results derived in Chapter 3 to the case of 3D view-
ing where the stereo content is presented to the human eyes through a stereoscopic
3D display. In this regard, based on the stereo viewing model presented in Chapter
2, we incorporate the role of the stereoscopy device as a medium into the optimiza-
tion process and establish formulations which relate the optimal pixel aspect ratio
of the 3D display to practical viewing conditions and parameters such as display
size and its distance from the human eyes. More importantly, we propose a general
mathematical model which is equally applicable to both stereo-based 3D capturing
and 3D viewing applications and is independent of the stereo configuration param-
eters. Our optimization models in this chapter also suggest a finer horizontal vs.

vertical discretization for a given total resolution. The model, in fact, suggests that
vertically rectangular pixels with a ratio of 2:3 (width:height) should be used in the
design and manufacture of stereo capturing and stereo display devices.

In Chapter 5 we present our experimental numerical calculations and support-
ive subjective studies for the theoretical results presented in Chapters 3 and 4. We
calculate optimal pixel aspect ratios using the proposed models and equations for
some (practical) parameter values. We also explain a method for simulating dif-
ferent non-square pixel aspect ratios on conventional displays. We have used this
method to conduct subjective user studies on simulated stereo content of the same
resolution but with different pixel aspect ratios. Through these studies we show that
the human observers indeed have a better 3D viewing experience with an optimized
vs. a non-optimized representation of stereo content.

Part II focuses on the sampled (point-based) 3D object representation and ren-
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dering. This part includes three chapters, Chapter 6 to Chapter 8, as follows.
In Chapter 6 we briefly review background concepts and related work in point-

based 3D object representation and rendering. We review major works in this area,
and briefly explain different techniques that are used for the representation and vi-
sualization of point-based 3D models. Specifically we discuss hierarchical, multi-
resolution representations proposed for interactive rendering of high-volume 3D
data. We also discuss the advantages and challenges of creating balanced hierar-
chies as the basis and initiative of our research and improvements we have made in
this area.

In Chapter 7 we introduce a tree structure called a multi-section tree, which
allows a multi-way balanced tree to be built for any arbitrary number of samples
very close to the structure of a complete tree with the same branching factor. We
also introduce algorithms and techniques for implicit representation and traversal of
this balanced tree structure. Furthermore, we introduce algorithms that use this tree
structure in creating a fully balanced, single- or multi-layer, hierarchical represen-
tation of still 3D objects. We also show the results of our algorithms and compare
them with some other representations in terms of compactness, rendering quality,
and preprocessing complexity.

In Chapter 8 we describe our experience with generalizing the notion of inter-
active, multi-resolution rendering to the case of sample-based animated 3D objects.
Again we use a multi-section tree structure, introduced in Chapter 7, to achieve
such an interactive environment over space and time. We introduce techniques and
algorithms for hierarchical quantization, encoding, and animated rendering of 4D
spatio-temporal samples. Some quantitative and qualitative results on compactness
and rendering quality of the representation are also presented at the end.

Part III is devoted to our experience with 3D interaction and 3D manipulation
of sampled object representation within a virtual stereoscopic 3D space. This part
is composed of two chapters, Chapter 9 and Chapter 10, as follows.

In Chapter 9 we briefly review some basic concepts and techniques of 3D inter-
action and manipulation. These include the importance of pointing as a prerequisite
of performing many tasks, especially within a graphical environment, and the min-
imum requirements that have to be satisfied by a 3D pointing technique to perform
well within a 3D environment.

In Chapter 10 we focus on different aspects of the stereo 3D cursor. We use a
multi-view stereo rendering application to evaluate the capability of the 3D versus
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2D cursor in manipulating 3D visualized data, and show how the content of a scene
can be used to virtually enhance the simplicity and efficiency of object selection
and manipulation tasks within a virtual 3D space. We also discuss issues such as
pointing accuracy and the problems caused by occlusion, and possible methods of
handling these problems.

Finally, Chapter 11 is devoted to a summary of all of the work presented in
Chapters 2 to 10, some concluding remarks, and the possible directions in which
different parts of this research can be extended.
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Optimal Orthogonal Sampling for
Stereo Reconstruction and

Visualization
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Chapter 2

Stereo-based 3D Reconstruction and
Visualization

In this chapter we briefly review some of the basic concepts of stereo reconstruction
and 3D visualization. In particular, the geometry of 3D reconstruction from stereo
images and the 3D formation process from stereo content presented on stereoscopic
displays are explained. We also explain how digitized (discretized) visual content
may lead to an intrinsic error, known as discretization error [24, 14, 87], in recon-
struction of the original 3D scene. These basic concepts and explanations will form
the bases of the optimization methods, discussed in the next two chapters, which are
aimed to reduce the amount of 3D estimation error originate from discretization.

2.1 Stereo Matching and Stereo 3D Reconstruction

Stereo matching is among the computer vision problems that have been extensively
investigated during the past decades [20]. The main purpose of the stereo match-
ing algorithms is to find the correspondence between the 2D locations (2D points
or pixels) in two or more views captured of the same scene or object and possibly
finding the occluded and non-matched areas in those views. The problem is called
binocular stereo matching when only two views are used to establish the correspon-
dence; otherwise, it is called multiview stereo matching. The results of matching,
often called a disparity map or a depth map, can then be used in many applications,
including recovering the 3D structure of the scene. A number of studies have ex-
amined multiview stereo matching in recent years considering that increasing the
number of views is generally believed to reduce matching ambiguities, and results
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in better, more accurate 3D reconstruction [59]. Multiview stereo can also be used
to create a complete 3D model of the object [89, 93]. Depending on the application,
the number and direction of views may differ and the views may be captured under
controlled or uncontrolled environmental conditions [93].

Establishing correspondence between views, the correspondence problem, is
ambiguous for several reasons. These include camera-related issues such as image
discretization noise, different camera gains, contrast, and so on; and viewpoint-
related problems such as perspective distortions, occlusions, and specular reflec-
tions. These issues necessitate applying some additional assumptions or constraints
in establishing the correspondence between two (or more) views. Epipolar con-
straint implies that the matching points lie along conjugate epipolar lines and thus
reduces the correspondence problem to a one-dimensional search. The bounded
disparity constraint restricts the amount of disparity to a maximum possible value.
These two constraints are always valid, and together they greatly reduce the cost
and ambiguity of matching. There are also some other constraints that are usually
(but not always) valid, yet are applied in many algorithms for simplifying and solv-
ing the problem. Uniqueness, ordering, local continuity (smoothness), and same
photometric properties are some of these assumptions and constraints [20].

Stereo-matching algorithms include a wide range of different methods, from
simple, fast block-matching, which tries to locally find the best matching point by
minimizing a criterion such as SAD, sum of absolute differences, in a neighborhood
of the point (local optimization), to advanced, often computationally expensive al-
gorithms that try to minimize a global energy function (global optimization) while
at the same time imposing a (local) smoothness constraint [20]. Evaluations show
that the global optimization methods, in general, generate better results than the
local methods, though their performance may notably differ from one image to an-
other [91]. Probabilistic methods [39, 103], such as belief propagation [98] and
graph cuts [63], can be considered as examples of global optimization algorithms
that show better overall performance in terms of matching accuracy [91, 99].

2.1.1 Geometry of Stereo-based 3D Reconstruction

There are two stereo configurations that are commonly used in stereo capture and
stereo-based 3D reconstruction: parallel (Figure 2.1a) and with-vergence (Figure
2.1b) configurations. See also the List of Symbols for a short description of the
notation that will be used throughout this thesis.
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(a) Parallel stereo (b) Stereo with vergence

Figure 2.1: Parallel and with-vergence stereo configurations.

Assuming a pinhole camera model [49] and using triangulation rules, the image
projections of a 3D point (X,Y, Z) on the left and right image screens in parallel
geometry (Figure 2.1a) are given by:

xr =
fX

Z
, xl =

f(X − bx)

Z
, y = yr = yl =

fY

Z
(2.1)

Thus, assuming that corresponding points (xl, y) and (xr, y) are known in the left
and right image planes, the original 3D point location can be computed as:

X = Z
xr

f
, Y = Z

y

f
, Z =

fbx
xr − xl

(2.2)

For cameras with vergence (Figure 2.1b), the projections of the 3D point (X, Y, Z)

on the left and right image planes are given by (see [87] for details):

xr = f
X cosα− Z sinα

Z cosα+X sinα

yr = f
Y

Z cosα+X sinα

xl = f
(X − bx) cosα+ Z sinα

Z cosα− (X − bx) sinα

yl = f
Y

Z cosα− (X − bx) sinα
(2.3)

Again, having the corresponding projections in the left and right images, from
Equation 2.3 the original position of the 3D point can be restored as [87]:

X = Z
A

B
, Y = Z

yr
B
,Z = bx

BC

AC +BD
(2.4)

15



(a) Anaglyph glasses (b) Polarized glasses (c) Shutter glasses

Figure 2.2: Some of common type of glasses that are used to separate the left and
right views (Figures from [104]).

where

A = (f sinα+ xr cosα), B = (f cosα− xr sinα)

C = (f cosα+ xl sinα), D = (f sinα− xl cosα)

2.2 Watching Stereo Content through a Stereoscopic
3D Display Medium

Stereoscopy is the most common approach of presenting three-dimensional visual
content to viewers. These techniques are based on presenting two different views
of the scene, captured from (slightly) different perspectives, to the left and right hu-
man eyes. The human vision system treats these projections as similar to the images
it directly receives from a real scene, and reconstructs a 3D image out of the dif-
ferences (disparities) in the left and right projections. There are several techniques
for separating and conducting the left and right views to the corresponding eyes.
A group of these methods use some type of filtering glasses such as color filters
(anaglyph Red-Blue or Red-Cyan glasses), polarizing filters, or shutter glasses to
separate the left and right views (see Figure 2.2). The drawback of these methods
is that the viewers need to wear these glasses when they watch 3D content [104].
The second group of these techniques does not require the use of additional glasses,
and therefore, they are called autostereoscopic displays. In these types of systems,
the optical aid separating the left and right view for the human eyes is integrated
with the display screen. Parallax barriers (Figure 2.3a) and lenticular sheets (Fig-
ure 2.3b) are two common types of these optical aides that are used to provide the
autostereoscopic capability. Lenticular sheets (optical lens plate) generally provide
better 3D picture quality than parallax barriers. Autostereoscopic 3D displays also
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(a) Parallax barriers

(b) Lenticular

Figure 2.3: Autostereoscopic 3D devices (Figures from [104]).

provide multiple views of the scene so that the 3D image slightly changes as the
observer moves his or her head from one viewing zone to another. Thus, these 3D
displays, to some extent, induce the motion-parallax for the observer, as well [104].
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Figure 2.4: The process of stereo capturing, displaying, and perception. The stereo
system in both the capturing and the viewing sides can be either in parallel or in
with-vergence configuration. Resampling and/or multiplexing may happen when
the stereo content is presented on 3D display.

2.2.1 Geometry of 3D Reconstruction through a 3D Display

Section 2.1.1 presents 3D-reconstruction equations for a standalone stereo system,
whereas, as illustrated in Figure 2.4, two stereo systems are involved in the process
of stereo perception through a stereoscopic 3D display:

1. a real/virtual stereo capturing/rendering system that is used to provide the
stereo content, and

2. the human stereo vision system, which tries to reconstruct the 3D scene from
the stereo content provided.

In this process, the stereoscopy device, either in the form of glasses or head-mounted
displays, or integrated with the display system, has the role of a medium that directs
the left/right views to the corresponding human eyes.

As depicted in in Figure 2.4, stereo systems in both the capturing and the view-
ing sides can be either in parallel or in with-vergence configuration, independent
of the other one. Thus, four different scenarios are possible for the whole process,
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(a) (b)

Figure 2.5: Watching stereo images captured under parallel configuration through
a 3D display device: (a) assuming parallel configuration for human eyes, and (b)
assuming vergence configuration for human eyes.

which will be discussed and modeled in this section. We will use subscripts c, D,
and h to refer to different components of the process: c for a stereo imaging system
(cameras), D for a stereoscopic 3D display, and h for the human vision system. For
example fc stands for the focal length of the cameras while fh denotes the eyes’
focal length (see also List of Symbols).

If we consider parallel geometry for the capturing side, then according to Equa-
tion 2.1, the projection of a 3D point (X,Y, Z) on left and right camera image
planes is given by:

xrc =
fcX

Z
, xlc =

fc(X − bxc)

Z
, yc = yrc = ylc =

fcY

Z
(2.5)

The images captured by the stereo cameras may be scaled by a factor S, i.e. re-
sampled, and possibly multiplexed before presenting on the stereoscopic display
device. Thus, the corresponding 2D point coordinates in display space are given
by:

xrD = Sxrc, xlD = Sxlc, yD = yrD = ylD = Syc (2.6)

Now, if we assume that display is placed at distance d of the human eyes, and the
sight direction is perpendicular to the display screen, then the 3D points that are
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perceived by the left and right human eyes will take the following form:

Pl = (xlD, yD, d)

Pr = (xrD, yD, d) (2.7)

Now, it is not difficult to show that in this case, in which the stereo content is
captured under parallel configuration, the original 3D scene can be viewed without
distortion up to a scaling factor and irrespective of the human stereo configuration.
If we assume parallel configuration for human eyes (Figure 2.5a), the projection of
Pl and Pr on the corresponding eye is obtained, using Equation 2.1, as follows [7]:

xrh =
fhxrD

d
, xlh =

fhxlD

d
, yh =

fhyD
d

(2.8)

From Equation 2.8 the 3D point P (Xh, Yh, Zh) reconstructed by human eyes is
given theoretically by:

Xh = Zh
xrh

fh
= Zh

xrD

d

Yh = Zh
yh
fh

= Zh
yD
d

Zh =
fhbxh

xrh − xlh

=
dbxh

xrD − xlD

(2.9)

If we assume that human eyes watch stereo content with a vergence angle α

(Figure 2.5b), then using Equation 2.3 the corresponding point projections on hu-
man eyes can be calculated as:

xrh = fh
xrD cosα− d sinα

d cosα+ xrD sinα

yrh = fh
yD

xrD sinα+ d cosα

xlh = fh
xlD cosα+ d sinα

d cosα− xld sinα

ylh = fh
yD

xlD sinα+ d cosα
(2.10)

From the above equations the reconstructed 3D point P (Xh, Yh, Zh) for this case is
obtained as:

Xh = Zh
A

B
, Yh = Zh

yrh
B

,Zh = bxh
BC

AC +BD
(2.11)
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where

A = (fh sinα+ xrh cosα), B = (fh cosα− xrh sinα)

C = (fh cosα+ xlh sinα), D = (fh sinα− xlh cosα)

Substituting Equation 2.10 into Equation 2.11, Equation 2.9 is obtained again. For
instance, by substituting xrh into Xh equation we have:

Xh = Zh

fh sinα+ fh
xrD cosα−d sinα
d cosα+xrD sinα

cosα

fh cosα− fh
xrD cosα−d sinα
d cosα+xrD sinα

sinα

= Zh
d sinα cosα+ xrD sinα2 + xrD cosα2 − d sinα cosα

d cosα2 + xrD sinα cosα− xrD sinα cosα+ d sinα2

= Zh
xrD(sinα

2 + cosα2)

d(sinα2 + cosα2)

= Zh
xrD

d

Derivations for Yh and Zh are similar.
This means that, in theory, the 3D-scene reconstructed by the human eyes from

stereo images that are captured/rendered under parallel configuration is independent
of the amount of the vergence of the human eyes.

If stereo content is captured under vergence, it is still possible to configure the
display device so that the original 3D scene can be reconstructed without distortion.
For this purpose, the left and right images should be inwardly rotated to duplicate
the capturing vergence angle, and the human eyes should be positioned at a specific
distance so that the original epipolar planes can be resembled. In practice, a specific
viewing distance cannot be enforced in many applications. Moreover, current 3D
displays do not have any mechanism for supporting vergence. As a result, the stereo
images that are captured with some vergence may lead to distorted or deformed 3D
scenes when presented to the viewer [56]. In this case, the stereo images can be
rectified before presentation on a 3D display [49]. However, for small vergence
angles we may assume that the human eyes compensate for the inconsistent vertical
disparities to establish correspondence between the left and right projections [7]. As
a result, Equation 2.9 can be used as a general model for 3D estimation by human
eyes when the stereo content is viewed using a stereoscopic 3D display device. In
other words, the 3D reconstruction via a 3D display is also reduced to a single stereo
system where the display viewing distance d and the baseline of the human visual
system bxh are the focal length and baseline of the system, respectively, and the left
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Figure 2.6: Left: Parallel-camera stereo projection with baseline bx. Right: Dis-
cretization error.

and right display screens serve as its left and right image planes.
Note that, for the sake of simplicity, we have dropped the subscript c in all

equations referring to a standalone stereo capturing configuration throughout this
thesis, unless it is not clear enough from the context that we are talking about a
single stereo capturing system. Subscripts D and h still will be used to discriminate
between different spaces and components throughout the remainder of this thesis.

2.3 Discretization Error in Stereo Reconstruction and
Visualization

In the world of digital imaging and digital display devices, (stereo) images are rep-
resented in the form of a grid of (generally square) pixels. In this representation
the actual point projections (x, y) are rounded to the nearest pixel position (x̂, ŷ)

(see Figure 2.8). Apart from the effects of this discretization in finding the corre-
sponding projections, this introduces an inherent error in 3D estimation called dis-

cretization error [14, 24, 87]. In fact, since the location of a 3D-point P (X, Y, Z) is
determined using rounded point projections rather than the actual ones, in the case
of parallel configuration (Figure 2.6) the location of P is estimated based on (x̂r, ŷ)

and (x̂l, ŷ) as:

X̂ = Ẑ
x̂r

f
, Ŷ = Ẑ

ŷ

f
, Ẑ =

fbx
x̂r − x̂l

(2.12)
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Figure 2.7: Left: Stereo camera projection with vergence α and baseline bx. Right:
Discretization error.

Figure 2.8: Rounding off of the actual 3D point projections to the nearest pixel due
to the discrete nature of digital imaging or display devices.

Similarly, in the case of stereo with vergence (Figure 2.7), because of the discretiza-
tion error (x̂r, ŷr) and (x̂l, ŷl) will be used in the computations resulting in an esti-
mation error with respect to the original 3D point.

Discretization is closely related to the 3D resolution or stereoscopic resolution

which is defined in terms of the precision in locating 3D points within the comfort-
able viewing range of a 3D display [52] (see Figure 2.10). The magnitude of the
discretization error (or the coarseness of the 3D resolution) depends on the pixel
distance (pixel size) in 2D views and is proportional to the viewing distance. Fig-
ure 2.9 shows the error pattern for two camera configurations: parallel geometry
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(a) (b)

(c)

Figure 2.9: Discretization error patterns: (a) parallel-axes stereo, (b) stereo with
vergence, and (c) 3D-view of error pattern for two corresponding pixels.

(Figure 2.9a) and with-vergence geometry (Figure 2.9b). Figure 2.9c illustrates a
3D-view of an error generated by two corresponding pixels. The quadrilateral vol-
ume in Figure 2.9c corresponds to a voxel (3D pixel) of a stereoscopic 3D display
or a 3D region that is projected on a pair of corresponding pixels.

Obviously, reducing the pixel size and thus increasing the total resolution will
reduce size of the voxels (3D pixels) or equivalently will reduce the amount of
3D point estimation error. However, assuming a constant total resolution R, it
is reasonable to look for an optimal pixel aspect ratio which minimizes the size
of voxels or equivalently the discretization error inside the viewing region. Such
optimization can improve the output image quality of a typical 3D TV system while
the size of the input data is unchanged. The optimal solution can also be beneficial
for stereo-based depth estimation and 3D reconstruction problems [20, 91].
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Figure 2.10: Stereoscopic resolution of 3D displays (Figure from [52]).

2.4 Related Work on Optimal Discretization

An early investigation on the optimal discretization problem, as stated above, dates
back to the work of Basu [14] with the aim of using the results to improve the 3D-
point estimation in stereo reconstruction applications. The approach is based on
establishing a tight upper bound on the relative estimation error on the Y compo-
nent, and then minimizing this error function to achieve the best horizontal versus
vertical discretization with regard to the maximum relative error in the estimation of
Y and for a single 3D point. This result then is extended to the case of optimization
over a capturing volume constrained by a range of depth values, Zmin to Zmax, and
a range of y values, −ymax to +ymax, in order to derive a solution of more practical
value. The study is limited to the parallel stereo configuration. Following a similar
approach, Cheng et al. have extended these results to a capturing region enclosed
by the field of view of the cameras and the afore-mentioned depth and height ranges
for both parallel and with vergence stereo configurations [24, 27].

In a different approach to the problem Sahabi and Basu [15, 87] have studied
the effect of vergence, the inward or outward turning of the cameras to look at an
object of interest, on the depth estimation error in two different case. First, they
consider a uniform pixel distribution over the x and y axes of the cameras’ image
plane. They show that in this case the vergence can be used to reduce the depth
estimation error, but this error cannot be minimized without some adjustments in
the cameras’ focal length. In the second case, they consider a spatially varying
pixel distribution similar to the human eyes where the resolution is more dense in

25



the center of the image plane and (exponentially) reduces toward the peripheries.
In this case, the optimal vergence angle, i.e., the vergence angle that minimizes the
object depth estimation error, is the angle at which both cameras look at the object
of interest [87].

Extensive research has also been conducted on stereoscopic 3D imaging tech-
niques and 3D display design and technologies [56, 16, 75, 74]. Specifically, re-
search shows that wider display screens with aspect ratios (display width:display
height) between 5:3 and 6:3 are more visually pleasant to most viewers [73, 76]
and provide a better sensation of depth even with 2D images (display aspect ratio
should not be confused with pixel aspect ratio, which is the focus of this research).
This observations have led to the design of wider screens for HDTV displays than
those used in previous TV generations [56]. As another closely related study, Kon-
rad et al. [64] analyze and model the process of view subsampling and multiplexing
in lenticular autostereoscopic 3D displays. This analysis is used to derive the spec-
ifications of some optimal filter to reduce the aliasing effect. When deployed prior
to view multiplexing, these optimal anti-aliasing filters demonstrate improvements
in perceived 3D quality for this class of 3D displays and generally for 3D display
technologies that are based on spatial view multiplexing.

In the next three chapters, we study the optimization problem elucidated above
for both stereo configurations, parallel and with vergence. We review and integrate
previous work [14, 24, 27], and provide comprehensive proofs and justifications for
previous equations and results, and also some extensions to the case of stereo with
vergence [27]. We also extend the research to the case of stereo viewing, where
the stereo content is presented to the human vision system through a stereoscopic
3D display device or medium. In this regard, we propose a general model that
relates the optimal pixel aspect ratio mainly to the device-specific parameters rather
than stereo configuration parameters, and hence is equally applicable to both stereo-
based 3D reconstruction and 3D viewing applications. To support these theoretical
findings, we also present extensive numerical results and subjective user studies for
the optimal solutions obtained for these different models and scenarios.
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Chapter 3

Optimal Sampling for Stereo
Reconstruction

In this chapter we study the problem of optimal 3D point (or 3D scene) estimation
from discretized stereo images. Reviewing and extending the earlier research ([14,
87, 15, 24, 27]), we show how the 3D estimation can be improved with regard to the
density of horizontal versus vertical sampling for a given number of samples (total
resolution) and for different stereo configurations: parallel and with vergence. We
also show how the optimal sampling ratio (pixel aspect ratio) varies with different
configuration parameters.

3.1 Optimal 3D Estimation for a Single 3D point

As mentioned earlier (see Section 2.3), the discrete nature of a digital imaging de-
vice leads to rounding error. The rounding error is bounded by half a pixel (see
Figure 2.8). Thus, in the worst case:

x̂r = xr ± (ex/2)

x̂l = xl ± (ex/2)

ŷr = yr ± (ey/2)

ŷl = yl ± (ey/2) (3.1)

Considering the stereo setup with parallel configuration (Figure 2.6) where yr =

yl = y, and the worst-case error in 3D estimation, which will be our default as-
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sumption in the rest of this part, from Equations 2.12 and 3.1 Ẑ is obtained as [14]:

Ẑ =
fbx

(xr − xl)± ex
= Z

(
1± ex

Z

fbx

)−1

(3.2)

The Taylor series expansion of Equation 3.2 about Z = 0 is given by:

Ẑ = Z

(
1± ex

Z

fbx

)−1

= Z

(
1± ex

fbx
Z ±

(
ex
fbx

)2

Z2 ±
(

ex
fbx

)3

Z3 + · · ·

)
(3.3)

In practice f and bx values are much greater than values taken by ex. Therefore, we
can assume that the higher order terms in the above expansion are negligible. As a
result, Ẑ can be properly approximated as:

Ẑ ∼= Z

(
1± ex

Z

fbx

)
(3.4)

Bounds on error in estimating X can be obtained as follows:

X̂ =
Ẑ

f
x̂r

∼=
Z

f

(
1± exZ

fbx

)(
xr ±

ex
2

)
= X

(
1± exZ

fbx
± ex

2xr

± e2xZ

2fbxxr

)
(3.5)

Similarly, for Y :

Ŷ = Y

(
1± exZ

fbx
± ey

2y
± exeyZ

2fbxy

)
(3.6)

or, ∣∣∣∣∣ Ŷ − Y

Y

∣∣∣∣∣ ≤ gp(ex, ey) =

{
exZ

fbx
+

ey
2|y|

+
exeyZ

2f |y|bx

}
(3.7)

Considering a unit image capturing or viewing area:(
1

ex

)(
1

ey

)
= R or ey =

1

exR
(3.8)

Applying Equation 3.8 in 3.7 we have:

gp(ex) =

{(
Z

fbx

)
ex +

(
1

2R|y|

)
1

ex
+

Z

2f |y|Rbx

}
(3.9)
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From Equation 3.5 it is obvious that the best solution which minimizes the estima-
tion error of X or Z is to have ex as small as possible. Nevertheless, this is also the
worst possible choice for estimating the Y component. As a compromise, Equation
3.9, which is the upper bound of the relative estimation error in Y as a function
of ex constrained by the total resolution R through Equation 3.8, can be used to
find the best vertical vs. horizontal resolution trade-off for estimating Y . In fact,
optimizing for the maximum relative error in estimation of Y implicitly involves X
and Z components while at the same time prevents significant degradation in esti-
mation of the Y component itself. This motivates the derivations of a mathematical
model for optimal discretization for a single 3D point in parallel configuration as
follows [14]:

Result 1. Considering the parallel stereo configuration in Figure 2.6, the optimal

discretization for estimating Y for a single 3D point (X, Y, Z) is:

ex =
1√
R

√
fbx
2|y|Z

, ey =
1√
R

√
2|y|Z
fbx

(3.10)

Proof. The results are obtained by equating the derivative of gp(ex) in Equation 3.9
to zero to minimize the error:

g′p(ex) =

{
Z

fbx
− 1

e2x

(
1

2R|y|

)}
(3.11)

Solving the above equation in terms of ex gives the value of ex in Equation 3.10. To
show that the function gp gets the minimum value at this point we need to perform
the second derivative test. From the above equation the second derivative of gp in
terms of ex is calculated as:

g′′p(ex) =

(
1

R|y|

)
1

e3x
(3.12)

On the other hand, from Equation 3.8 we can see that ex changes over the open in-
terval (0,∞) which means that ex always takes positive values. Since the other two
parameters involved in the above equation are also positive, the second derivative
of gp is always positive over the domain of possible values for ex. As a result, gp is
strongly convex over this domain and takes its minimum value at ex given by Equa-
tion 3.10. The value of ey in Equation 3.10 can be obtained from ex by applying
Equation 3.8.
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Figure 3.1: Comparing discretization error pattern and changes of error in estima-
tion of Y for regular square pixels, ex = ey, (left) vs. vertically rectangular pixels,
ex < ey, with optimal pixel aspect ratio (right).

It is worth mentioning that the above solution is also optimal for absolute esti-
mation error on Y and estimation error on Y relative to |Y Z|, which are respectively
defined as follows:∣∣∣Y − Ŷ

∣∣∣ ≤ Z

f

((
Z|y|
fbx

)
ex +

(
1

2R

)
1

ex
+

Z

2Rfbx

)
(3.13)

∣∣∣∣∣Y − Ŷ

Y Z

∣∣∣∣∣ ≤
(

1

fbx

)
ex +

(
1

2R|y|Z

)
1

ex
+

1

2Rf |y|bx
(3.14)

This can be proven in the same way as Result 1. This means that the optimal
solution is not affected by the monotonic increase of error along with the Y and
Z components, which in turn allows the discretization optimization problem to be
studied independent of the pixel location on the image plane.

The solution that is obtained in this way is not only optimal in terms of the
maximum (relative) estimation error on Y , but often yields better estimates for the
X and Z components, as well. From 3.10 the ratio of ex to ey can be calculated as:

ex
ey

=
fbx
2|y|Z

=
(xr − xl)

2|y|
(3.15)

In Equation 3.15, (xr−xl) is the amount of the disparity between the corresponding
points in the left and right image planes and is always greater than or equal to zero
(note that xr and xl are measured with respect to the corresponding camera coordi-
nate system). The amount of disparity (xr − xl) in most (practical) cases is smaller
than 2|y|. This means that in practice the ratio in Equation 3.15 is usually less than
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one, or equivalently ex is often smaller than ey. As a result, the optimal solution in
Result 1, while minimizing the maximum error in estimation of Y , often improves
the estimates of the X and Z components as well. However, when ex < ey the
optimal solution changes the error pattern so that the Y estimation error may be
increased for some 3D points estimated by (X̂, Ŷ , Ẑ). This phenomenon is picto-
rially illustrated in Figure 3.1 for a typical error pattern. As shown in this figure,
the optimal pixel aspect ratio less than one (i.e. ex < ey) results in improvement
in estimation of X and Z plus reduction of the maximum error in estimation of Y ,
which in turn means improvement in the estimation of Y for some 3D points. But
generally this is achieved in the cost of degradation in the estimation of Y for some
other 3D points.

Now we focus on the stereo setup with vergence, shown in Figure 2.7. We start
with some auxiliary derivations as follows.

Auxiliary Result 1. Assuming a small vergence angle α, the estimated depth Ẑ of

a 3D point for the vergence configuration (Figure 2.7) can be related to the true

depth Z by:

Ẑ ∼= Z

(
1± exZ cosα

2bx(f cosα− xr sinα)
± exZ cosα

2bx(f cosα+ xl sinα)

)−1

(3.16)

Proof. From Equation 2.4, Z is estimated as:

Ẑ =
bx(f cosα+ x̂l sinα)(f cosα− x̂r sinα)

(f cosα+ x̂l sinα)(f sinα+ x̂r cosα) + (f sinα− x̂l cosα)(f cosα− x̂r sinα)
(3.17)

Using the same approach as the case of without vergence:

Ẑ =

(
f sinα+ x̂r cosα

bx(f cosα− x̂r sinα)
+

f sinα− x̂l cosα

bx(f cosα+ x̂l sinα)

)−1

=

(
f sinα+ (xr ± (ex/2)) cosα

bx(f cosα− (xr ± (ex/2)) sinα)
+

f sinα− (xl ± (ex/2)) cosα

bx(f cosα+ (xl ± (ex/2)) sinα)

)−1

(3.18)
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Assuming that (ex/2) sinα ≈ 0 for a small vergence angle α:

Ẑ ∼=
(
f sinα+ 2xr cosα± ex cosα

2bx(f cosα− xr sinα)
+

2f sinα− 2xl cosα± ex cosα

2bx(f cosα+ xl sinα)

)−1

=

(
Z−1 ± ex cosα

2bx(f cosα− xr sinα)
± ex cosα

2bx(f cosα+ xl sinα)

)−1

= Z

(
1± exZ cosα

2bx(f cosα− xr sinα)
± exZ cosα

2bx(f cosα+ xl sinα)

)−1

(3.19)

Auxiliary Result 2. Assuming a small vergence angle α, for the vergence configu-

ration the estimated depth of a 3D point is bounded by:

Ẑ ≤ Z

(
1 +

exZ

fbx
K

)
whereK =

(
1 +

xmax

f
tanα

)
(3.20)

Proof. As in the parallel configuration case (Equation 3.3) the Taylor expansion of
Equation 3.16 about Z = 0 can be calculated. Assuming a small vergence angle α,
the higher order terms in the Taylor series expansion can be ignored, and Ẑ can be
properly approximated as:

Ẑ ∼= Z

(
1± exZ

2bx

cosα

(f cosα− xr sinα)
± exZ

2bx

cosα

(f cosα+ xl sinα)

)
(3.21)

Expanding the second term of Equation 3.21 and ignoring higher order terms, we
have:

cosα

(f cosα− xr sinα)
=

1

f

(
1− xr sinα

f cosα

)−1

≈ 1

f

(
1 +

xr

f
tanα

)
(3.22)

Similarly, for the third term:

cosα

(f cosα+ xl sinα)
=

1

f

(
1 +

xl sinα

f cosα

)−1

≈ 1

f

(
1− xl

f
tanα

)
(3.23)
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From Equations 3.21, 3.22, and 3.23:

Ẑ ≈ Z

(
1± exZ

2bx

1

f

(
1 +

xr

f
tanα

)
± exZ

2bx

1

f

(
1− xl

f
tanα

))
= Z

(
1± exZ

2fbx

(
2 +

(xr − xl)

f
tanα

))
≤ Z

(
1 +

exZ

fbx

(
1 +

xmax

f
tanα

))
(3.24)

where xmax = max
(
xr−xl

2

)
is half of the maximum possible horizontal disparity,

which is in fact equal to the maximum possible value of x or equivalently half of
the image plane width.

Auxiliary Result 3. Assuming a small vergence angle α:∣∣∣∣∣ Ŷ − Y

Y

∣∣∣∣∣ ≤ gv(ex) =

{(
ZK

fbx

)
ex +

(
1

2R|yr|

)
1

ex
+

ZK

2f |yr|Rbx

}
(3.25)

Proof. For a small vergence angle α, the parallel configuration equations can be
used to approximate the Y component. Therefore:

Ŷ ≈ Ẑŷr
f

≤ Z

f

(
1 +

exZ

fbx
K

)(
yr ±

ey
2

)
≈ Y

(
1 +

exZK

fbx
± ey

2yr
± exeyZK

2fbxyl

)
(3.26)

Considering a total resolution of R, Equation 3.25 can be obtained from Equations
3.8 and 3.26.

Summarizing the above-mentioned derivations, the following result can be stated
for a stereo configuration with vergence.

Result 2. Assuming a stereo system with a small vergence angle α (Figure 2.7), the

optimal discretization for a single 3D point can be obtained as:

ex =
1√
R

√
fbx

2|yr|ZK
, ey =

1√
R

√
2|yr|ZK

fbx
(3.27)

Proof. As in the parallel configuration, from Equation 3.25:

g′v(ex) =

{
ZK

fbx
−
(

1

2R|yr|

)
1

e2x

}
(3.28)

33



The results can be obtained by equating Equation 3.28 to zero, and solving it in
terms of ex. The same argument as Result 1 can be applied to show that gv indeed
takes its minimum value at this point, considering the domain of permissible values
for ex.

3.2 Optimizing within a Viewing Volume

The derivations in the last section consider optimization with respect to a single 3D
point. Instead, we need to consider a region in 3D defined by a set of constraints
on the range of values in depth, height and the stereo Field-Of-View (FOV). Obvi-
ously, the particular values obtained for ex (or ey) in the previous section will not
be optimum for all points satisfying these constraints. A solution to this problem
could be calculating the integral of the error function gp or gv over the entire spec-
ified region. However, this approach leads to logarithmic terms which complicate
subsequent steps in the optimization process. Instead, we consider minimizing an
appropriate error metric subject to the restrictions imposed.

For the parallel camera configuration (Figure 2.6), we use Equation 3.11 to
obtain such an error metric. In this case, from Equation 3.11 for the optimal dis-
cretization ex for a single 3D point we have:

Z

fbx
=

1

e2x

(
1

2R|y|

)
fbx
Z

= |y|2e2xR

or equivalently
fbx
Z

− |y|2e2xR = 0 (3.29)

In other words, for a single 3D point, the derivative of gp or equivalently the right
side of Equation 3.29 is zero at the optimal discretization and non-zero in its neigh-
bourhood. This, in fact, gives a distance criterion that can be used as an error metric
for optimizing the discretization error over the entire region. We define the square
of this distance as the error metric, as follows:

Ep =

(
fbx
Z

− |y|2e2xR
)2

(3.30)

On the other hand, for a parallel configuration the range of values of X varies
with changes of depth Z and values of the cameras’ field of view according to the
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(a) Parallel configuration

(b) With-vergence configuration

Figure 3.2: Viewing region constrained by a range of values on depth (Zmin, Zmax)
and field of view of the cameras.

following simple relationship (see Figure 3.2a):

X ∈
{
X0 ±

∆X

2

(Z − Z0)

(Zmax − Z0)

}
(3.31)

Thus, we need to optimize the following function w.r.t. ex:

Gp(ex) =

Zmax∫
Zmin

+ymax∫
−ymax

X0+
∆X
2

(Z−Z0)
(Zmax−Z0)∫

X0−∆X
2

(Z−Z0)
(Zmax−Z0)

(
fbx
Z

− |y|2e2xR
)2

dXdydZ (3.32)

Calculating the integral in 3.32 and equating its derivative to zero gives us the
following result:

Result 3. Considering the parallel stereo configuration given in Figure 3.2a, the
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discretization in x for optimizing the average error in estimation of Y is given by:

ex =

(
−fbx
2R

Z0I1[Zmin, Zmax]− I2[Zmin, Zmax]

I3[Zmin, Zmax]− Z0I4[Zmin, Zmax]

) 1
2

(3.33)

where,

I1[Z1, Z2] =

∫ Z2

Z1

∫ +ymax

−ymax

|y|
Z

dydZ = y2max ln

(
Z2

Z1

)
I2[Z1, Z2] =

∫ Z2

Z1

∫ +ymax

−ymax

|y|dydZ = y2max(Z2 − Z1)

I3[Z1, Z2] =

∫ Z2

Z1

∫ +ymax

−ymax

Zy2dydZ =
y3max

3
(Z2

2 − Z2
1)

I4[Z1, Z2] =

∫ Z2

Z1

∫ +ymax

−ymax

y2dydZ =
2y3max

3
(Z2 − Z1)

(3.34)

Proof.

Gp(ex) =

Zmax∫
Zmin

+ymax∫
−ymax

X0+
∆X
2

(Z−Z0)
(Zmax−Z0)∫

X0−∆X
2

(Z−Z0)
(Zmax−Z0)

(
fbx
Z

− |y|2e2xR
)2

dXdydZ

=

Zmax∫
Zmin

+ymax∫
−ymax

∆X
(Z − Z0)

(Zmax − Z0)

(
f 2b2x
Z2

− 4Re2xfbx
|y|
Z

+ 4R2e4xy
2

)
dydZ

= e2x

4∆XZ0Rfbx
(Zmax − Z0)

Zmax∫
Zmin

+ymax∫
−ymax

|y|
Z

dydZ − 4∆XRfbx
(Zmax − Z0)

Zmax∫
Zmin

+ymax∫
−ymax

|y|dydZ


+ e2x

4∆XZ0Rfbx
(Zmax − Z0)

Zmax∫
Zmin

+ymax∫
−ymax

|y|
Z

dydZ − 4∆XRfbx
(Zmax − Z0)

Zmax∫
Zmin

+ymax∫
−ymax

|y|dydZ


+ I0

(3.35)

where I0 is independent of ex, and thus has no influence on the minimization of

36



Gp(ex).

Gp(ex) = e2x

[
4∆XZ0Rfbx
Zmax − Z0

I1[Zmin, Zmax]−
4∆XRfbx
Zmax − Z0

I2[Zmin, Zmax]

]
+ e4x

[
4∆XR2

Zmax − Z0

I3[Zmin, Zmax]−
4∆XR2Z0

Zmax − Z0

I4[Zmin, Zmax]

]
+ I0

(3.36)

where I1 to I4 are the aforementioned integrals.
Considering the derivative of Gp(ex) in terms of ex and equating it to zero, we

have:

G′
p(ex) = 2ex

[
4∆XZ0Rfbx
Zmax − Z0

I1[Zmin, Zmax]−
4∆XRfbx
Zmax − Z0

I2[Zmin, Zmax]

]
+ 4e3x

[
4∆XR2

Zmax − Z0

I3[Zmin, Zmax]−
4∆XR2Z0

Zmax − Z0

I4[Zmin, Zmax]

]
= 0

(3.37)

Since we cannot take ex = 0 as the optimal point, we should have:

fbx(Z0I1[Zmin, Zmax]− I2[Zmin, Zmax])

+ 2Re2x(I3[Zmin, Zmax]− Z0I4[Zmin, Zmax]) = 0

(3.38)

Solving this equation in terms of ex, and again considering that we cannot take
negative values for ex as the optimal point, we obtain the following equation (or
Equation 3.33) as the possible optimal point:

ex =

(
−fbx
2R

Z0I1[Zmin, Zmax]− I2[Zmin, Zmax]

I3[Zmin, Zmax]− Z0I4[Zmin, Zmax]

) 1
2

= exOpt

For ease of reference in the rest of the argument, we have renamed the value
of ex in the above equation as exOpt. Now, we need to show that Gp(exOpt) is
the only minimum value of Gp(ex) over the domain of possible values for ex (as
we discussed earlier in Result 1, the domain of possible values for ex is the open
interval (0,∞)). For this purpose, we first show that Gp(ex) has a local minimum
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at exOpt under the specified assumptions, and then we show that it does not take any
other minimum over the (0,∞) interval. We use the second derivative test to show
that Gp(ex) has a local minimum at exOpt:

G′′
p(ex) =

8∆XR

Zmax − Z0

[fbx(Z0I1[Zmin, Zmax]− I2[Zmin, Zmax])

+ 6Re2x(I3[Zmin, Zmax]− Z0I4[Zmin, Zmax])
]

(3.39)

Therefore,

G′′
p(exOpt) =

8∆XR

Zmax − Z0

[fbx(Z0I1[Zmin, Zmax]− I2[Zmin, Zmax])

+ 6R

(
−fbx
2R

)(
Z0I1[Zmin, Zmax]− I2[Zmin, Zmax]

I3[Zmin, Zmax]− Z0I4[Zmin, Zmax])

)
× (I3[Zmin, Zmax]− Z0I4[Zmin, Zmax])]

=
8∆XR

Zmax − Z0

[fbx(Z0I1[Zmin, Zmax]− I2[Zmin, Zmax])

− 3fbx(Z0I1[Zmin, Zmax]− I2[Zmin, Zmax])]

=
8∆XR

Zmax − Z0

[2fbx(I2[Zmin, Zmax]− Z0I1[Zmin, Zmax])]

(3.40)

Replacing I1 and I2 with their definitions we have:

G′′
p(exOpt) =

(
8∆XR

(Zmax − Z0)
fbxy

2
max

)
((Zmax − Zmin)− Z0(lnZmax − lnZmin))

If G′′
p(exOpt) > 0 then Gp(ex) has a local minimum at exOpt. Since the first factor in

the above equation is positive, this condition implies that the second factor should
be positive. In other words, we should have:

(Zmax − Zmin)− Z0(lnZmax − lnZmin) > 0 (3.41)

or equivalently,
Zmax − Zmin

lnZmax − lnZmin

> Z0

Considering that Zmax ≥ Zmin, we can assume Zmax = rZmin, r ≥ 1. Substituting
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Figure 3.3: A close-up of Figure 3.2b illustrating its geometric constraints.

this in the above equation we have:

rZmin − Zmin

ln(rZmin)− lnZmin

> Z0

Zmin(r − 1)

ln r
> Z0

Zmin

Z0

× (r − 1)

ln r
> 1

Now considering that Zmin

Z0
≥ 1, based on the above equation we have

r − 1

ln r
≥ 1

This last equation is always true for r ≥ 1, and as a result Equation 3.41 is true.
Therefore Gp(exOpt) is a local minimum.

Following the same procedure as above for the other two extrema, i.e., ex =

0 and ex = −exOpt, it is not difficult to show that Gp(0) and Gp(−exOpt) are
the local maximum and local minimum, respectively. Therefore, considering that
Gp(−exOpt), Gp(0), and Gp(exOpt) are the only local extrema of function Gp(ex),
Gp(exOpt) should be the only minimum, or equivalently a global minimum, over
open interval (0,∞).

Determining the range of values of X when Z varies over a specific domain is
a little more complicated for the vergence configuration (see Figure 3.2b). This is
because between Z0 to Zint the values of X vary in a certain way, and for Z > Zint

the values of X vary in a different way. The values of Z0 and Zint are given through
the following equations.
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Auxiliary Result 4. Given a field of view θ and a vergence angle α:

Z0 =
bx
2
tan

(
π

2
− α− θ

2

)
Zint =

bx
2

cos(2α) + cos θ

sin(2α)
(3.42)

Proof. Follows from Figures 3.2 and 3.3, using simple geometric rules, such as the
sine rule. The details are omitted.

Auxiliary Result 5. Considering the setup with vergence in Figure 3.2b, the range

of values of X , depending on depth Z and the field of view of the cameras, varies

based on the following rules:

∆Xint =
bx
2

sin θ

sin(2α)
for Z = Zint (3.43)

∆X = ∆Xint
(Z − Z0)

(Zint − Z0)
for Z0 < Z < Zint (3.44)

∆X = (∆Xint − bx)
Z

Zint

+ bx for Zint ≤ Z (3.45)

(It is assumed that the X-axis is the dashed line joining the centers of the two cam-

eras.)

Proof. Follows from trigonometric rules and the earlier derivations. Details are
skipped here.

Here again, we need to consider an appropriate error metric to minimize over the
range of possible X , Y , and Z values. Similar to the parallel configuration scenario,
we use the following error metric based on the derivative in Equation 3.28:

Ev =

(
fbx
Z

− |yr|2RKe2x

)2

(3.46)

We thus need to optimize the following function w.r.t. ex (from this point forward,
for simplicity we ignore subscript r in yr):

Gv(ex) =

∫
Z

∫
y

∫
X

(
fbx
Z

− |yr|2RKe2x

)2

dXdydZ (3.47)

Unlike the multiple integral in Equation 3.32, the computation of the above
integral may need to be divided into two parts depending on the values of Zmin and
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Zmax relative to Zint. If Zint ≤ Zmin or Zmax ≤ Zint, we need to consider either
Equation 3.44 or Equation 3.45 in computing this integral. However, if Zmin <

Zint < Zmax, then we must consider both Equations 3.44 and 3.45.
By calculating Gv(ex) in these three possible cases and equating corresponding

derivatives to zero, we can obtain optimal discretization for all cases. Thus, we can
state the following general result.

Result 4. Considering the stereo system framework in Figure 3.2b, the discretiza-

tion in x for optimizing the average error in estimation of Y is given by:

I) Zint ≤ Zmin

ex =

(
fbx
2RK

A[Zmin, Zmax]

B[Zmin, Zmax]

) 1
2

(3.48)

II) Zmax ≤ Zint

ex =

(
fbx
2RK

C[Zmin, Zmax]

D[Zmin, Zmax]

) 1
2

(3.49)

III) Zmin < Zint < Zmax

ex =

(
fbx
2RK

A[Zmin, Zint] + C[Zint, Zmax]

B[Zmin, Zint] +D[Zint, Zmax]

) 1
2

(3.50)

where,

A[Z1, Z2] = bxI1[Z1, Z2] +
(∆Xint − bx)

Zint

I2[Z1, Z2]

B[Z1, Z2] = bxI4[Z1, Z2] +
(∆Xint − bx)

Zint

I3[Z1, Z2]

C[Z1, Z2] = I2[Z1, Z2]− Z0I1[Z1, Z2]

D[Z1, Z2] = I3[Z1, Z2]− Z0I4[Z1, Z2]

(3.51)

I1 to I4 are equations defined in Result 3.

Proof.

Case I) Zint ≤ Zmin

Considering the equations in Auxiliary Result 5, the integral in Equation 3.47
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should be calculated according to the following range of values:

Gv(ex) =

Zmax∫
Zmin

+ymax∫
−ymax

+ 1
2

[
(∆Xint−bx)

Z
Zint

+bx
]∫

− 1
2

[
(∆Xint−bx)

Z
Zint

+bx
]
(
fbx
Z

− 2RKe2x|y|
)2

dXdydZ

Thus,

Gv(ex) =

Zmax∫
Zmin

+ymax∫
−ymax

(
(∆Xint − bx)

Z

Zint

+ bx

)
(
f 2b2x
Z2

− 4RKe2xfbx
|y|
Z

+ 4R2K2e4xy
2

)
dydZ

= e2x

[
−4RKfb2xI1[Zmin, Zmax]−

4(∆Xint − bx)RKfbx
Zint

I2[Zmin, Zmax]

]
+ e4x

[
4(∆Xint − bx)R

2K2

Zint

I3[Zmin, Zmax] + 4R2K2bxI4[Zmin, Zmax]

]
+ I0

where I0 is again independent of ex and has no effect on the optimization of Gv(ex),
and I1 to I4 are defined as in Result 3.

G′
v(ex) = 2ex

[
−4RKfb2xI1[Zmin, Zmax]−

4(∆Xint − bx)RKfbx
Zint

I2[Zmin, Zmax]

]
+ 4e3x

[
4(∆Xint − bx)R

2K2

Zint

I3[Zmin, Zmax] + 4R2K2bxI4I4[Zmin, Zmax]

]
= 0

or [
−fb2xI1[Zmin, Zmax]−

(∆Xint − bx)fbx
Zint

I2[Zmin, Zmax]

]
+ 2e2x

[
4(∆Xint − bx)RK

Zint

I3[Zmin, Zmax] +RKbxI4[Zmin, Zmax]

]
= 0

Solving the last equation in terms of ex and again considering that we cannot pick
negative values as the optimal point, the value given in Equation 3.48 is obtained.
To show that the function Gv(ex) takes a minimum value at this point and that this is
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its global minimum value over the allowable values for ex, we calculate the second
derivative of Gp(ex) at this point:

G′′
v(ex) = 2

[
−4RKfb2xI1[Zmin, Zmax]−

4(∆Xint − bx)RKfbx
Zint

I2[Zmin, Zmax]

]
+ 12e2x

[
4(∆Xint − bx)R

2K2

Zint

I3[Zmin, Zmax] + 4R2K2bxI4I4[Zmin, Zmax]

]
= 8RK

[
−fbx

(
bxI1[Zmin, Zmax] +

∆Xint − bx
Zint

I2[Zmin, Zmax]

)
+12e2xRK

(
∆Xint − bx

Zint

I3[Zmin, Zmax] + bxI4[Zmin, Zmax]

)]
Recalling the expression in Equation 3.48 as exOpt, the value of second derivative
of Gv(ex) at exOpt is calculated as:

G′′
v(exOpt) = 8RK

[
−fbx

(
bxI1[Zmin, Zmax] +

∆Xint − bx
Zint

I2[Zmin, Zmax]

)
+ 12RK

(
fbx
2RK

)(
bxI1[Zmin, Zmax] +

∆Xint−bx
Zint

I2[Zmin, Zmax]
∆Xint−bx

Zint
I3[Zmin, Zmax] + bxI4[Zmin, Zmax]

)
(
∆Xint − bx

Zint

I3[Zmin, Zmax] + bxI4[Zmin, Zmax]

)]
= 40RKfbx

(
bxI1[Zmin, Zmax] +

∆Xint − bx
Zint

I2[Zmin, Zmax]

)
Considering the definitions of I1 and I2 and also noting that (∆Xint− bx) is greater
than zero, we can see that G′′

v(exOpt) is greater than zero. As a result, Gv(exOpt)

is a local minimum for Gv(ex). Following the same procedure for the other two
extrema, it is not difficult to show that Gv(0) and Gv(−exOpt) are local maximum
and local maximum, respectively. Since Gv(−exOpt), Gv(0), and Gv(exOpt) are the
only extrema of Gv(ex), we can say that Gv(exOpt) is the global minimum over the
interval (0,∞).

Case II) Zmax ≤ Zint

43



In this case following integral should be calculated:

Gv(ex) =

Zmax∫
Zmin

+ymax∫
−ymax

+ 1
2

[
∆Xint

Z−Z0
Zint−Z0

]∫
− 1

2

[
∆Xint

Z−Z0
Zint−Z0

]
(
fbx
Z

− 2RKe2x|y|
)2

dXdydZ

=

Zmax∫
Zmin

+ymax∫
−ymax

(
∆Xint

Z − Z0

Zint − Z0

)(
f2b2x
Z2

− 4RKe2xfbx
|y|
Z

+ 4R2K2e4xy
2

)
dydZ

As in Case I, calculating the derivative of Gv(ex) and equating it to zero gives
the result. To show that the expression obtained, i.e. Equation 3.49, minimizes Gv

over the domain of allowable values for ex, the same argument as in Result 3 should
be applied. Because of the many similarities with the derivation of Result 3 the de-
tails are skipped here.

Case III) Zmin < Zint < Zmax

In this case the integral in Equation 3.47 should be divided into two parts as follows.

Gv(ex) =

Zmax∫
Zmin

+ymax∫
−ymax

+ 1
2

[
∆Xint

Z−Z0
Zint−Z0

]∫
− 1

2

[
∆Xint

Z−Z0
Zint−Z0

]
(
fbx
Z

− 2RKe2x|y|
)2

dXdydZ

+

Zmax∫
Zmin

+ymax∫
−ymax

+ 1
2

[
(∆Xint−bx)

Z
Zint

+bx
]∫

− 1
2

[
(∆Xint−bx)

Z
Zint

+bx
]
(
fbx
Z

− 2RKe2x|y|
)2

dXdydZ

The other steps are similar to those in Cases I and II and are skipped here.
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Chapter 4

Optimal Sampling for Stereo-based
3D Visualization

Chapter 3 explains the process of optimizing 3D estimation from stereo images for
a standalone (parallel or with-vergence) stereo configuration. In stereo-based 3D
visualization, the stereo content is presented to the human eyes through a stere-
oscopy device such as an autostereoscopic 3D display, stereo filtering glasses or
a head-mounted display. In this regard, it is necessary to consider the role of the
stereoscopy device as a medium, and the effect of other parameters such as viewing
distance, as well as the actual behavior of the eyes when they are watching a 3DTV,
in the optimization process. In this chapter we use the stereo viewing model sug-
gested in Section 2.2 to incorporate these factors into the optimization process and
establish formulations which relate the optimal PAR of the 3D display to practical
viewing conditions and parameters such as display size and its distance from the
human eyes. More importantly, we extend our research [7] by proposing a general
mathematical model which is applicable to both stereo-based 3D reconstruction and
3D viewing applications. This is achieved by transferring the optimization problem
from the stereoscopic 3D space to the image plane/display screen space. The so-
lution that is obtained in this way is related mainly to the image plane/3D display
aspect ratio, a device-specific parameter, rather than to the stereo configuration pa-
rameters. This unification, as well as its independence of the stereo parameters, is
practically very important as it facilitates applying the same discretization model to
both the capturing and the viewing ends of the 3D pipeline.
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4.1 3D Estimation Through a Stereo-based 3D Dis-
play Medium

As explained in Section 2.2.1 the whole process of 3D viewing via a 3D display
system can be reduced to a single stereo system. In this system, the focal length is
the viewing distance to the 3D display, d, the baseline is the baseline of the human
visual system, bxh, and the left and right display screens play the role of its left and
right image planes (see Figure 2.5). In this system the 3D point that is reconstructed
by human eyes can be obtained using Equation 2.9, which is repeated here for ease
of reference:

Xh = Zh
xrh

fh
= Zh

xrD

d

Yh = Zh
yh
fh

= Zh
yD
d

Zh =
fhbxh

xrh − xlh

=
dbxh

xrD − xlD

(4.1)

As in the case of digital stereo images, due to the discretized nature of the
display screen the actual projections are rounded off to the nearest pixel. Therefore,
the location of a 3D-point is determined using (x̂rD, ŷD) and (x̂lD, ŷD). This implies
that the 3D-point (Xh, Yh, Zh) is estimated as:

X̂h = Ẑh
x̂rD

d
, Ŷh = Ẑh

ŷD
d
, Ẑh = dbxh

(x̂rD−x̂lD)
(4.2)

Following the same procedure as in the case of direct estimation from stereo
images (Section 3.1), and again considering the worst-case error in 3D estimation,
bounds on error in estimating Yh can be obtained as follows:∣∣∣∣∣ Ŷh − Yh

YhZh

∣∣∣∣∣ ≤ f(ex, ey) =

{
ex
dbxh

+
ey

2|yD|Zh

+
exey

2d|yD|bxh

}
(4.3)

Considering a unit display area, from Equation 3.8 and Equation 4.3 we have:

g(ex) =

{(
1

dbxh

)
ex +

(
1

2R|yD|Zh

)
1

ex
+

1

2d|yD|Rbxh

}
(4.4)

Calculating the first derivative of g(ex) in Equation 4.4 with respect to ex and equat-
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ing it to zero we have:

g′(ex) =

{
1

dbxh
− 1

e2x

(
1

2R|yD|Zh

)}
= 0 (4.5)

By solving Equation 4.5 in terms of ex the following result is obtained.

Result 5. The optimal display discretization in terms of the relative error in esti-

mating Yh for a single 3D-point is given by:

ex = 1√
R

√
dbxh

2|yD|Zh
ey =

1√
R

√
2|yD|Zh

dbxh
(4.6)

Proof. Follows from the same argument as Result 1 and is skipped here.

Result 5 can be extended to optimize error over a viewing volume formed by a
range of depth values [Zmin, Zmax]. Using Equation 4.5 as the basis, a MSE error
metric can be defined as:

E(Zh, yD) =

(
dbxh
Zh

− 2|yD|e2xR
)2

(4.7)

and we then need to optimize the following function with respect to ex :

G(ex) =

Zmax∫
Zmin

+ymax∫
−ymax

X0+
∆X
2

(Zh−Z0)

Zmax−Z0∫
X0−∆X

2

(Zh−Z0)

Zmax−Z0

E(Zh, yD) dXh dyD dZh (4.8)

where

ymax = max(yD), xmax = max(xrD)

X0 =
bxh
2
, Z0 =

X0d

xmax

∆X = 2
(
X0 − Zmax

xmax

d

)
Again, calculating the derivative of G(ex) with respect to ex and equating it to zero
gives the following result [14]:

Result 6. The optimal display discretization with respect to the average relative

error in the estimation of Yh over a viewing volume defined by a depth range is

given by:

ex =

(
−dbxh

2R

Z0I1[Zmin, Zmax]− I2[Zmin, Zmax]

I3[Zmin, Zmax]− Z0I4[Zmin, Zmax]

) 1
2

(4.9)
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Figure 4.1: Maximum possible disparity in a typical stereo system.

where I1 to I4 are the integrals defined in Result 3.

Proof. Proof is similar to that of direct reconstruction from stereo images (Result
3) and is skipped here.

4.2 General Optimization Model Over the Effective
Capturing/Viewing Range

Chapter 3 and Section 4.1 consider a region in 3D defined by a set of constraints
on the range of values in depth, height and the stereo Field-Of-View (FOV) and
the integral of an error metric over the entire specified region is calculated and
optimized to obtain the optimal discretization. The solution that is obtained in this
way depends on the stereo-configuration parameters and cannot be easily applied
as a general/standard solution in the design and manufacture of 3D capturing and
display devices. In this section, we turn the problem into an optimization within
the 2D image (display) space. The resulting optimal PAR, as follows, is related
mainly to the image plane/display screen aspect ratio, whereas the effective 3D
capturing/viewing volume of the stereo device is also implicitly taken into account.
As a result, the solution can equally be applied to both the capturing and viewing
ends of the 3D pipeline.

Recall the error metric used in Result 3, i.e. Equation 3.30, which is repeated
here for ease of reference:

Ep =

(
fbx
Z

− |y|2e2xR
)2

(4.10)
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Now, using Equation 2.2 the above error metric can be rewritten as:

Ep =

 fbx(
fbx

xr−xl

) − |y|2e2xR

2

=
(
xr − xl − |y|2e2xR

)2
=
(
t− |y|2e2xR

)2 (4.11)

where t = xr − xl is the disparity between the corresponding points (xr, y) and
(xl, y). Equation 4.11 can be used as the basis to transfer the optimization problem
to the image plane space. Considering the discrete nature of the image plane, and
assuming that xmax and ymax represent the maximum values for x and y, and tmin

and tmax bound the range of expected values for disparity t (see Figure 4.1, also
note that 0 ≤ tmin ≤ tmax ≤ 2xmax), the summation of error over all possible
corresponding pixels in the left and right image planes can be expressed as:

G(ex) =

m2∑
i=m1+1

n∑
j=−n

(k − i)
(
ti − |yj|2e2xR

)2 (4.12)

where m1 =
tmin

ex
, m2 =

tmax

ex
, n = ymax

ey
, and k = 2xmax

ex
.

Considering that ti = iex and yj = jey, and applying Equation 3.8, G(ex) is further
simplified as:

G(ex) =

m2∑
i=m1+1

n∑
j=−n

(k − i)
(
iex − |jey|2e2xR

)2
= 2

m2∑
i=m1+1

n∑
j=0

(k − i)
(
iex − 2jeye

2
xR
)2

= 2e2x

m2∑
i=m1+1

n∑
j=0

(k − i) (i− 2j)2 (4.13)

If we define

H(ex,m) = 2e2x

m∑
i=0

n∑
j=0

(k − i) (i− 2j)2 (4.14)

then Equation 4.13 can be written as:

G(ex) = H(ex,m2)−H(ex,m1) (4.15)
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Now, expanding H(ex,m) we have:

H(ex,m) = 2e2x(kS1 − S2) (4.16)

where

S1 =
m∑
i=0

n∑
j=0

(
i2 + 4j2 − 4ij

)
S2 =

m∑
i=0

n∑
j=0

(
i3 + 4ij2 − 4i2j

)
. (4.17)

Using the following summation formula

n∑
i=0

i =
n(n+ 1)

2

n∑
i=0

i2 =
n(n+ 1)(2n+ 1)

6

n∑
i=0

i3 =
n2(n+ 1)2

4

S1 and S2 in Equation 4.16 can be calculated as:

S1 =
mn

6
((m+ 1)(2m+ 1) + 4(n+ 1)(2n+ 1)

−6(m+ 1)(n+ 1))

S2 =
nm(m+ 1)

12
(3m(m+ 1) + 4(n+ 1)(2n+ 1)

−4(n+ 1)(2m+ 1)) (4.18)

Considering that ey ≪ ymax, n will be large enough to assume (n + 1) ≈ n and
(2n+1) ≈ 2n. Similarly, assuming that ex ≪ t, (m+1) ≈ m and (2m+1) ≈ 2m.
Applying these approximations, S1 and S2 can be approximated as:

S1 ≈
mn

3

(
m2 + 4n2 − 3mn

)
S2 ≈

nm2

12

(
3m2 + 8n2 − 8nm

)
(4.19)
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From these simplified equations H(ex,m) is obtained as:

H(ex,m) = 2e2x(kS1 − S2)

= −e2x
6
mn

(
3m3 − 8m2n− 4km2 + 8mn2

+12kmn− 16kn2
)

(4.20)

Substituting m, n, and k with their corresponding definitions m = t
ex

, n = ymax

ey
,

and k = 2xmax

ex
in the above equation, and after some simplification and factoriza-

tion, we obtain:

H(ex, t) ∼=
tymaxR

6ex

[
8R2y2max(4xmax − t)e4x

− 8Rymaxt(3xmax − t)e2x + t2(8xmax − 3t)
]

(4.21)

From Equations 4.15 and 4.21, and recalling that m1 = tmax/ex and m2 = tmin/ex,
we have:

G(ex) = H(ex, tmax)−H(ex, tmin) (4.22)

Finally, calculating the derivative of G(ex) with respect to ex and equating it to zero
leads us to the following result.

Result 7. The optimal discretization to improve 3D estimation from a pair of stereo

images is given by:

ex =

(
b+

√
b2 − ac

aR

)0.5

(4.23)

where

a = 24y2max[tmax(4xmax − tmax)− tmin(4xmax − tmin)]

b = 4ymax[t
2
max(3xmax − tmax)− t2min(3xmax − tmin)]

c = −[t3max(8xmax − 3tmax)− t3min(8xmax − 3tmin)]

Proof. Differentiating Equation 4.22 with respect to ex we have:

G′(ex) = aR2e4x − 2bRe2x + c (4.24)
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Solving Equation 4.24 for e2x while taking into account that ex is positive, we have:

e2x =
b+

√
b2 − ac

aR
(4.25)

The square root of the above equation gives the value for ex. We can easily show
that G(ex) takes its minimum at this point by performing the second derivative test
for G(x).

From Result 7 and Equation 3.8, the optimal pixel aspect ratio for stereo-based
3D reconstruction is obtained as:

ex
ey

=
b+

√
b2 − ac

a
(4.26)

Considering the discussion in Section 2.2, Result 7 can also be applied to the 3D
estimation through a stereoscopic 3D display. Therefore, Equation 4.26 can be
considered as a general optimal solution to both stereo-based 3D reconstruction and
3D perception applications. Moreover, this equation does not depend on the stereo
configuration parameters such as focal length of the cameras, stereo baseline and
so forth. In fact, it gives the optimal pixel aspect ratio as a function of the relative
size of image plane (display) dimensions and the range of plausible disparities.

For the special case of tmin = 0, Equation 4.26 is simplified as:

ex
ey

=
tmax(

√
2S + 6xmax − 2tmax)

12ymax(4xmax − tmax)
(4.27)

where S =
√
114x2

max − 72tmaxxmax + 11t2max.
If additionally we assume that the maximum disparity is plausible for the sys-

tem, i.e. if we assume that tmax = 2xmax, then Equation 4.27 is further simplified
as:

ex
ey

=

(√
7 + 1

)
6

× xmax

ymax

(4.28)

where xmax

ymax
is the aspect ratio of the display screen (camera image plane). It is

worth mentioning that, in practice, and especially for wider screens, the amount of
disparity is bounded to a fraction of display screen width. As a result, Equation
4.26 better describes practical capturing/viewing conditions.
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Chapter 5

Experimental Results and Subjective
User Studies

In this chapter we present some experimental results to support the theoretical find-
ings and derivations presented in Chapter 3 and Chapter 4. In this regard, we
calculate optimal pixel aspect ratios for different stereo parameters and configu-
rations and see how optimal PAR varies depending on different parameter settings.
Moreover, based on some pixel grouping techniques, we present methods for sim-
ulating 3D viewing with different pixel aspect ratios on conventional 2D displays.
These methods enabled us to conduct human observer evaluations on both simple
and complex 3D objects. Our evaluation results show that given a constant total
resolution it is possible to improve the 3D visual experience by choosing a finer
horizontal discretization relative to the vertical discretization. Based on theoretical
findings and these subjective studies, and following the usual, more practical view-
ing conditions, we suggest a ratio of 2:3 for pixels of a 3D capture or 3D display
device.

5.1 Numerical Results

In this section we examine the optimal solutions derived in previous chapters versus
some typical values for different parameters involved in these equations to show
their numerical validity and soundness. In this regard, we first examine optimal
models developed for a standalone stereo configuration (Results 3 and 4) by con-
sidering some parameter values that closely mimic the human visual system param-
eters. We then present some numerical calculations for the model developed for
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stereo 3D viewing (Result 6) and also the general model that is developed for stereo
reconstruction and viewing (Result 7). Again we try to use parameter values that
simulate more practical capturing or viewing conditions.

5.1.1 Numerical Results for a Standalone Stereo Configuration

Table 5.1 shows a typical set of parameter values used for calculating optimal pixel
aspect ratios (ex/ey) for with and without vergence stereo setups. Values of xmax,
ymax, and R are set to 3.15 mm, 2 mm and 40635 pixels per mm2, respectively.
These values are obtained assuming that a CCD of size 6.3x4.0 mm with a reso-
lution of 1280x800 (around 1 mega pixel) is used in the capturing process. Focal
length and stereo baseline are set to 17 and 65 mm respectively, values which are
close to average for the parameters of the human visual system. Table 5.1 also
includes the range of values used for Zmin and Zmax in our calculations. Figure
5.1 shows the results of our calculations for parameter values in Table 5.1 based
on Result 3 and Result 4 and other related equations. Figure 5.1a shows how the
optimal pixel aspect ratio changes with different viewing volumes at different dis-
tances in the parallel configuration. Figure 5.1b presents corresponding results in
the vergence configuration using three different small vergence angles, α = 1, 3,
and 5 degrees, over the same depth ranges and viewing volumes. The corner of
the original graph is magnified in order to highlight the effect of applying different
vergence angles. It can be seen that for small vergence angles there is no significant
difference either between the top and bottom graphs or between results obtained for
different small vergence angles on the bottom graph. Based on this observation, we
can say that at least for small vergence angles the effect of vergence in determining
the optimal pixel aspect ratio is negligible. It should be noted that for a stereo base-
line of 65 mm, a 5 degree vergence angle is equivalent to focusing on a point about
371 mm from cameras/viewing point, which is a good representation of a practical
situation.

Another observation from these graphs is how the optimal pixel aspect ratio
changes relative to the viewing range start point (Zmin) and length of the viewing
range (Zmax − Zmin). For closer start points with smaller viewing ranges, a larger
optimal ratio is obtained; but if the start point is far enough or the viewing range
is large enough, a smaller aspect ratio is calculated. Moreover, these graphs reveal
that even though the optimal points are obtained by optimization of the relative
error in estimating the Y component, the optimal aspect ratio is smaller than one in
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Table 5.1: Parameter values used for calculating the optimal pixel aspect ratio for a
stereo camera.

Parameter Value(mm) Parameter Value

f 17 Zmin From 200 mm to 600 mm
bx 65 Zrange(Zmax − Zmin) From 1 mm to 2000 mm
xmax 3.15 Resolution (R) 1280× 800 (40635 p/mm2)
ymax 2

Table 5.2: Some optimal pixel aspect ratios calculated for both without- and with-
vergence configurations using parameter values mentioned in Table 5.1.

Zmin(mm) Zmax(mm) α(Degree) Z0(mm) Zint(mm) K ex/ey

1 200 1000 0 175.3968 - - 0.6315
2 180 650 0 175.3968 - - 0.9007
3 500 2500 0 175.3968 - - 0.2687
4 200 1000 3 135.3982 599.4954 1.0097 0.5844
5 200 940 5 117.2110 359.0514 1.0162 0.6153
6 180 650 3 135.3982 599.4954 1.0097 0.9538
7 180 650 5 117.2110 359.0514 1.0162 0.8747
8 500 2000 3 135.3982 599.4954 1.0097 0.3143
9 500 2000 5 117.2110 359.0514 1.0162 0.3718
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(a) Parallel camera configuration

(b) Vergence camera configuration (vergence angles α = 1, 3, and 5 degrees)

Figure 5.1: Variation of optimal pixel aspect ratio for parameter values listed in
Table 5.1

most configurations (and in fact in more practical configurations). This means that
the X and Z estimates are improved as well, compared to the conventional pixel
arrangement where pixels are equally distributed over the x and y axes.

Table 5.2 presents a set of optimal aspect ratios and some other parameters
calculated for a number of typical start points and viewing ranges. As noted above,
the optimal ratio may vary significantly depending on viewing distance and volume.
For example, if we optimize for an object appearing between 200 and 1000 mm,
i.e., within one meter of the camera (Table 5.2 - row 1), then the optimal pixel
aspect ratio will be calculated as 0.6315, which after rounding off is approximately
equal to a non-square discretization of 2:3 (pixel-width:pixel-height) aspect ratio
or equivalently filling the image plane (CCD) with vertically rectangular pixels of
height 1.5 times longer than their width. If an object appears between 500 and
2500 mm (Table 5.2 - row 3) the optimal pixel aspect ratio will be 0.2687, which
is close to a 1:4 pixel discretization. Figure 5.2 shows these two non-square pixel
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(a) (b)

Figure 5.2: Filling the display screen with non-square pixels: (a) 2:3 discretization
i.e. three horizontal pixels vs. two vertical pixels, and (b) 1:4 discretization.

distributions.

5.1.2 Numerical Results for 3D Displays

Table 5.3 shows a typical set of values used for calculating optimal PARs (ex/ey) for
stereoscopic 3D displays. Here, values of xmax, ymax, and R are obtained assuming
that a 14.1” display with 1280x800 resolution is used. As in the case of a standalone
stereo camera (Table 5.1), the focal length fh and baseline bxh are selected to be
close to the human vision system parameters.

Figure 5.3 shows the computational results for values mentioned in Table 5.3
based on Result 6 formulations. As in the case of standalone stereo camera con-
figurations (compare this figure with Figure 5.1), for closer minimum depth (Zmin)
with smaller ranges (Zmax − Zmin), a larger ratio is obtained, but if the minimum
depth is far enough or the viewing-range is large enough, a smaller optimal pixel as-
pect ratio is calculated. Specifically, for the range 150-600 mm, which is a practical
range for this configuration, the optimal ratio is calculated as 0.6621 or approxi-
mately 2:3 (3 horizontal vs. 2 vertical pixels). Regarding the discussion in Section
2.2 these results can be applied irrespective of the stereo configuration in the cap-
turing side (see also Section 5.3).
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Table 5.3: Values used for calculating optimal pixel aspect ratio for a stereoscopic
3D display.

Parameter Value (mm) Parameter Value

fh 17 R 17.76 pixel/mm2

bxh 65 d 500 mm
xmax 303.7021 Zmin From 200 to 400 mm
ymax 189.8138 Zrange(Zmax − Zmin) From 1 to 800 mm

Figure 5.3: Optimal pixel aspect ratio changes for values mentioned in Table 5.3.

5.1.3 Calculating a Unified Optimal PAR for Stereo Capturing
and 3D Viewing

The optimal PARs that are calculated using Results 3, 4 and 6 depend on stereo
configuration parameters such as the stereo base-line and the focal length of the
cameras, or viewing conditions such as the viewing distance or size of the 3D dis-
play. In practice, we may follow more practical capture and viewing conditions
to calculate an appropriate PAR. Alternatively, we can use Result 7 to calculate an
optimal PAR that can universally be applied throughout the 3D pipeline, as follows.

Figure 5.4 shows the optimal PARs calculated using Result 7. This figure shows
changes of optimal pixel aspect ratio as a function of maximum plausible disparity
tmax for displays (imaging sensors) of different aspect ratios, namely 4:3, 15:9,
and 16:9, and for two cases where minimum disparity tmin is set to zero and 100,
respectively. Figure 5.4a is representative of scenes with some objects/background
at infinity and Figure 5.4b is representative of some indoor scenes where even the
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(a)

(b)

Figure 5.4: Optimal pixel aspect ratio as a function of maximum plausible dispar-
ity, tmax, for displays (imaging sensors) of different aspect ratios: (a) Minimum
disparity, tmin, is set to zero, and (b) Minimum disparity is set to 100.

background objects might have some disparities.
As can be seen in these figures, the optimal PAR becomes larger with wider

disparity ranges, i.e., becomes larger with having larger capturing or viewing vol-
umes. The reader may have noticed that this is opposite to the behavior of the other
optimal solutions depicted in Figures 5.1 and 5.3. The explanation lies in the way
that the optimal solution is calculated in Results 3, 4, and 6. The integral in these
optimizations overweighs the voxels of bigger size, and as the size of voxels in-
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creases with the distance to the viewer or camera (see Figure 2.9), these models
suggest sharper (smaller) optimal PARs with larger capturing or viewing volumes.
In contrast, the optimization process in Result 7 uses a summation over a discrete
space and equally treats all voxels within the optimization range.

In general, the optimal PAR suggested by Result 7 remains smaller than 1 ex-
cept for those extreme cases of having very large disparities which are practically
impossible. For more practically plausible disparity ranges, in which, depending
on the size of the display, we may assume that a maximum disparity tmax of up
to 1/4th to 1/3rd of the display width is plausible, the optimal pixel aspect ratio
changes from 0.35 to 0.65. For example, for a display of 8:5 (xmax

ymax
= 8

5
) aspect

ratio, assuming the disparity is bounded within 10 to 35 percent of the screen width
(tmin = 0.10∗2∗xmax and tmax = 0.35∗2∗xmax), from Equation 4.26 the optimal
pixel aspect ratio is calculated as 0.58. Similarly, for a display with aspect ratio of
16:9, if we assume that tmin = 0 and the maximum possible disparity is bounded to
35 percent of the display width (tmax = 0.35 ∗ 2 ∗ xmax) then using Equation 4.27
the optimal pixel aspect ratio is calculated as 0.51. For the spacial case of having
a unit display or imaging area (xmax

ymax
= 1), from Equation 4.28, the optimal pixel

aspect ratio is calculated as 0.61. In other words, if we optimize for a unit display
or imaging area and take into account all possible disparities, i.e. tmin = 0 and
tmax = 2 ∗ xmax, then an optimal pixel aspect ratio of 0.61 or approximately 2:3 (3
horizontal vs. 2 vertical pixels) is obtained again, irrespective of the stereo imaging
or stereo display configuration parameters.

5.2 Subjective User Tests with Stereo 3D Models

We have conducted a set of user tests to validate our theoretical results with sub-
jective user evaluations. Our studies are based on simulating different pixel aspect
ratios on a conventional display. In practice, the standard ratio may be determined
based on user studies on actual display prototypes with vertically rectangular pixels
of different pixel aspect ratios.

5.2.1 Simulating Different PARs on Capturing and Viewing Sides

Since we were using conventional 2D displays in our subjective studies and it was
impossible to adjust the actual pixel aspect ratio on these screens, we needed to de-
vise some techniques to simulate different discretization ratios along the horizontal
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(a) (b) (c)

Figure 5.5: Simulating different pixel aspect ratios by grouping neighboring pixels
as a single pixel while preserving the same total resolution by devoting almost the
same number of pixels to each virtual pixel in all three configurations: (a) 3:8, (b)
2:3, and (c) 1:1 pixel aspect ratio.

(a) PAR 1:1 (b) PAR 2:3 (c) PAR 3:8

(d) PAR 1:1 (e) PAR 2:3 (f) PAR 3:8

Figure 5.6: Conventional uniform pixel distribution vs. horizontally finer pixel
distributions for the same total resolution R ∼= 42000. First row: (a) PAR (Pixel
Aspect Ratio) = 1.0, (b) PAR = 0.66 , and (c) PAR = 0.38. Second row: Enlarged
images corresponding to the part of the pin in first row images to see the differences
in these pixel arrangements.

and vertical axes. For this purpose, we established a virtual stereo imaging system
with arbitrarily sized rectangular pixels. This virtual stereo imaging system accepts
3D structure descriptions such as 3D triangular meshes or 3D point clouds as input
and generates stereo projections based on the given stereo configuration.

On the display side, we used a group of neighbouring pixels of a conventional
display to simulate different pixel aspect ratios. For example, by grouping a set of
5x5, 6x4, or 8x3 neighbouring pixels together as a single pixel we can simulate 1:1,
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2:3, and 3:8 pixel aspect ratios, respectively, while the total resolution is kept almost
the same for these three combinations. Figure 5.5 shows a pictorial description of
this process. We have also used this technique to create test sets from real stereo
images. We used pure red and blue colors for generating the left and right views,
respectively. A pair of simple anaglyph red-blue glasses was used to guide the
right and left views to the corresponding eyes of the viewers. Figure 5.6 shows
samples of stereo images simulated in this way. The figure shows how different
pixel distributions look like for two rational PARs, i.e., 2:3 and 3:8 (Figures 5.6b and
5.6c, respectively), compared to the conventional pixel distribution with 1:1 PAR
(Figure 5.6a) for the same total resolution. These images must be viewed using Red-
Blue anaglyph glasses and preferably in their original size for the best 3D effect.
However, to better demonstrate the differences between these pixel arrangements,
part of the pin in the images of the first row is enlarged and represented in the
second row. In general, even though this method is a bit restrictive in terms of
selecting any arbitrary pixel aspect ratio, it is a very simple, inexpensive technique
for achieving different pixel aspect ratios on conventional displays in the absence
of actual (prototype) display devices having none-square pixel arrangements.

5.2.2 Subjective Evaluation Criteria

The evaluation criteria have been chosen from the 3D visual experience model pro-
posed in [94]. These criteria include sense of depth, picture quality and overall

sense. Sense of depth refers to the extent to which objects are distinguishable and
well-shaped across the depth dimension. Picture quality refers to the quality of the
perceived image, which may be influenced by several factors such as blockiness,
brightness, noise and blurriness. Here, the picture quality is affected mainly by the
non-similar discretization across the vertical and horizontal dimensions. Overall
sense measures viewer’s overall satisfaction with the given stereo 3D representa-
tions. Once again, these representations differ only in the aspect ratio of the pixels,
while the total resolution is kept the same.

5.2.3 Statistical Analysis of Subjective User Tests

In our subjective studies, depending on the experiment setup, two or more sam-
ples of user preferences or ranks given to the various PAR representations of the
same image(s) are examined for the null hypothesis, i.e., equality of the mean of
drawn samples (see Sections 5.2.4 and 5.2.5). Depending on the number of groups
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(number of PARs) involved in the experiment, either the T-Test or the analysis of
variance (ANOVA) is used to examine the statistical significance among groups.
The T-Test is used if only two PARs are involved in the experiment or two specific
PARs are needed to be compared among several PAR representations. ANOVA is
used if more than two PARs are involved in the experiment. The result of a T-Test
is usually reported in the form of a P-value that shows how certain we can be that
the null hypothesis is false. On the other hand, the results of an ANOVA test are
often reported in the form of a table (see Table 5.4). The table shows and com-
pares two sources of variation, i.e., between-groups and within-groups variations.
Between-groups variation is the sum of the squares (SS) of the differences between
group means and the average of all the sampled items (grand mean). Within-groups
variation is measured by summing the square (SS) of the distances of each value
to the corresponding sample mean. These values are divided by the corresponding
degree of freedom (df ) to obtain the mean square (MS) of the variation. The test
statistic F is calculated as the ratio of the in between and within groups MS, and in
combination with the two degrees of freedom, it is used to find the P-value from the
F distribution. The larger the F or equivalently the smaller the P -value, the more
certain we are that the null hypothesis is false [78].

5.2.4 Experiment 1 - User Tests with Synthetic Stereo Images

Experiment 1 Setup: Figure 5.7 shows a set of three red-blue images used to
conduct our first set of user tests. These images are generated from a synthetic 3D
model with three different PARs (3:8 (8x3), 2:3 (6x4), and 1:1 (5x5)) using our
virtual stereo imaging system. Here, the model is composed of a set of 3D points
which collectively describe a sphere with a radius of 19 cm and an ellipsoid with
semi-minors of 50, 15, and 35 cm. The centers of the sphere and ellipsoid are
located at a distance of 40 and 80 centimeters, respectively, from the stereo camera.
Two arbitrary rotations are also applied to the ellipsoid. The colors (intensities) are
randomly assigned to the 3D scene points, but geometric shape of the objects is
preserved by assigning the same color to the points located on the same orbit. For
this test set, the imaging and displaying systems are configured using the values
shown in Table 5.1 and Table 5.3. Considering the depth range filled by these
two objects, the theoretical optimal PAR is given by the first row in Table 5.2, i.e.

0.6315, which is almost equivalent to an aspect ratio of 2:3, the ratio that is used to
generate the middle image in Figure 5.7.
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(a) Image 1, PAR 3:8

(b) Image 2, PAR 2:3

(c) Image 3, PAR 1:1

Figure 5.7: Red-blue stereo pairs generated from a synthetic scene with different
PARs.

Fifteen subjects (university graduate students) participated in this experiment.
Participants were asked to rank the images according to the above-mentioned crite-
ria, i.e., sense of depth, picture quality, and overall sense. Before ranking, we asked
all participants to describe the reconstructed 3D scene to make sure that all of them
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(a) Sense of Depth

(b) Picture Quality

(c) Overall Sense

Figure 5.8: Results of conducting subjective tests with images shown in Figure 5.7.

were able to clearly perceive the ellipsoid and the sphere in front of it. The entire
screen, 14.1” display with 1280x800 resolution, was used to display an image, and
the viewers were able to switch forward and backward to view all three images for
comparison. We did not fix any time limit for the viewers and they could look at
the 3D pictures as many times as they needed to decide on the rankings.
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Experiment 1 Results: The pie charts in Figure 5.8 illustrate the result of this sub-
jective study. The figure also presents some statistics for each evaluation criterion
including mean and variance in each group (image). These results suggest an as-
sociation between the sense-of-depth and pixel aspect ratio. As depicted in Figure
5.8a, 57 percent of viewers have the best sense of depth with Image 1, which has a
pixel aspect ratio of 3:8, 20 percent have the best sense of depth in Image 2, with
a pixel aspect ratio 2:3, and 23 percent selected Image 3, with a regular 1:1 pixel
aspect ratio. In other words, a majority of the viewers preferred Image 1 (average
rating 1.63), which has the finest horizontal resolution, as their first choice. This
result, in general, is consistent with our theoretical results showing that images with
horizontally finer resolution provide better sensation of depth.

For ranking against picture quality (Figure 5.8b), viewers were asked to rank
images regardless of any perception of depth. Again, the results show a meaningful
but inverse relationship between pixel aspect ratio and picture quality. More than
50 percent selected Image 3 for the best picture quality (average rating 1.73). As
discussed in Section 3.1, this may be the result of image degradation that happens
in the vertical direction when the discretization becomes coarser in that direction,
and as a result the Y component estimation error might be increased. However,
this trade-off of having finer horizontal discretization by sacrificing some quality
in the Y component improves both the X and Z components, and therefore the
viewers have a better overall sense preference in Image 1 and Image 2, which have
non-square discretization (Figure 5.8c). We observe in Figure 5.8 that in terms of
overall sense, Image 2, with aspect ratio 2:3, has been the first or second choice for
most of the viewers (average rating 1.77). This result illustrates certain compromise
in the viewers’ decisions towards the trade-off between sense of depth and picture
quality.

In general, the results of Experiment 1 can be considered as supporting evi-
dence for our theoretical deductions. This experiment is also worthwhile in terms
of showing how different quality factors may change with different PAR represen-
tations. However, it should be noted that the ANOVA test on Experiment 1 samples
does not give strong evidence for rejecting the null hypothesis based on this small
set of samples. The one-way ANOVA test P -Values for examining the difference
in mean of the samples are 0.14, 0.23, and 0.31 for sense of depth, picture quality,
and overall sense, respectively. Nevertheless, these P -values are aligned with our
assumptions, and as shown in Experiment 2 we expect more statistically significant
results with a growing number of samples.
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(a) Aloe (b) Bowling

(c) Rocks (d) VP (e) Chinese dragon

Figure 5.9: Set of images used in Experiment 2 - user evaluation with real images
and objects.

5.2.5 Experiment 2 - User Tests with Real Stereo Images

Experiment 2 Setup: We conducted a second round of user tests to study the ef-
fects of the pixel aspect ratio on 3D perception using real stereo scenes and objects.
We simplified evaluation criteria in this experiment and asked the users to compare
the images only in terms of their overall personal preference. In this experiment we
used several scenes with various textures and structural patterns and features, shown
in Figure 5.9. Figure 5.9a, Aloe, has slanted textural patterns and sharp edges or
lines in all directions. Figure 5.9b, Bowling, is composed of mainly rounded ob-
jects. Figure 5.9c, Rocks, has some sharp horizontal edges with some other mainly
horizontally aligned textural patterns, whereas in Figure 5.9d, VP, vertical structural
edges have superiority over other visible features. Finally, 5.9e, Chinese Dragon, is
an image rendered from the Chinese Dragon 3D model that contains a combination
of regular and irregular line and textural patterns.

As described earlier, we used the pixel grouping technique to create images with
different PARs from real stereo images. For each scene, stereo pairs with different
pixel aspect ratios but the same total resolution were generated and the users were
asked to choose their preferred ones in a pair-wise manner. More precisely, assum-
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Figure 5.10: Summary of the results of the subjective tests (Overall Personal Pref-
erence) on real stereo pairs for 3:8, 2:3, and 1:1 PARs.

ing that I1, I2, and I3 are the three stereo images generated for scene S with three
different PARs 1:1 (5x5), 2:3 (6x4), and 3:8 (8x3), we created three pairs I1I2 (or
I2I1), I2I3 (or I3I2), and I1I3 (or I3I1) of these images (the order of images was
picked at random). Images (b), (c), (d), and (e) of Figure 5.9 were used for gen-
erating these test cases. We put all these pairs together and shuffled them to form
the test set. We enriched the test set by randomly interleaving some other cases
that were generated with some finer total resolutions to examine how users treat
the images when the noise introduced by pixel grouping technique is less apparent.
These finer test cases were generated from images (a), (b), (c), and (d) of Figure
5.9. These test cases were generated by grouping 4x4 and 5x3 pixels to examine
1:1 PAR versus 3:5 ( 2:3) PAR, and by grouping 3x3 and 4x2 pixels to compare 1:1
PAR versus 1:2 PAR.

Thirteen subjects participated in this experiment, the majority of them being
university graduate students. During the test, the users were asked to show their
preference toward one of the stereo images in each pair. As in Experiment 1, we
did not enforce any time limit, but all subjects spent almost the same amount of
time (between 25 to 30 minutes) to evaluate all cases. We also did not enforce a
specific viewing distance, but we recommended the viewing distance of 70-80 cm
considering that we were using wider display screen (19” display) in this experi-
ment.
Experiment 2 Results: Figure 5.10 shows the user evaluation results for 5x5, 6x4,
and 8x3 groupings (1:1, 2:3, and 3:8 PARs, respectively). As can be seen from the
pie charts, the results are quite different for these three groups in favor of the images
with a pixel aspect ratio 2:3 (6x4 pixel grouping). The outcome of the ANOVA test
(F = 52.19, P -value = 8.99E-18) also confirms the substantial difference between
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Table 5.4: Single factor ANOVA test for comparing user evaluation results on real
stereo images for 3:8, 2:3, and 1:1 PAR groups.

Groups Count Sum Average Variance

PAR 3:8 49 133 2.71 0.29
PAR 2:3 49 71 1.45 0.34
PAR 1:1 49 90 1.84 0.56

ANOVA: Single Factor

Source of Variation SS df MS
Between Groups 41.18 2 20.59
Within Groups 56.82 144 0.39

F = 52.19 Fcritical = 3.06 P -value = 8.99E-18

Figure 5.11: Comparing subjective test results for different scenes used in the sec-
ond experiment.

groups (see Table 5.4). PAR 2:3 not only was selected as the first choice by many
viewers (59 percent) but also rarely was the third choice of viewers (4 percent). In
other words, in 96 percent of the cases, images with PAR 2:3 are selected either as
the first or the second preferred image. In contrast to the results of Experiment 1
(synthetic scene), here images with PAR 1:1 (i.e. images with square pixel distri-
bution) mainly occupied second place (43 percent) and images with PAR 3:8 were
often selected as the least favorite ones (76 percent). This can be explained by the
way that pixel grouping technique treats image features. In fact, the real images we
used in this experiment possess more textural or structural features than the simple
synthetic scene of Experiment 1, which is composed of poorly featured geometrical
objects. As a result, these images are more prone to the noise introduced by sharper
simulated PARs.
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Figure 5.11 shows a more detailed representation of the results presented in
Figure 5.10 pie charts. The line charts of this figure show how different scenes are
treated by viewers. In general, the drawings show a consistent behavior toward all
four different scenes that are used in this experiment. However, the results seem to
be affected to a certain extent by the scene structures. For example, for the PAR
1:1 representation (5x5 grouping), the users more frequently selected the Rocks
scene, which has more horizontally oriented edges and textural features, as their
first choice than the VP scene, which has more vertically aligned structures. How-
ever, the differences are not that significant that contradict the general trend and the
expected theoretical results.

We separately analyzed the results of the test cases with finer total resolution.
For 3x3 versus 4x2 test cases, 54 percent of viewers were in favor of images with
square pixel distribution (PAR 1:1 (3x3)). We did not find a statistically significant
difference between these two groups. However, at least, we can say that the images
with PAR 1:2 (4x2), which have less apparent pixel grouping noise, have received
much more attention than images with PAR 3:8 (8x3) when compared to the im-
ages of corresponding square pixel distribution. For 4x4 versus 5x3 cases we found
that 63 percent of viewers were in favor of images with non-square pixel distribu-
tion (PAR 3:5 (5x3)) with a statistically significant difference between two groups
(paired T-Test P -value = 0.01). These results are consistent with those obtained for
the images of the same PARs with coarser total resolution (see pie charts in Figure
5.10).

5.2.6 A Closer Look at the Effects of Non-square Pixel Discretiza-
tion on Picture Quality

Figure 5.12 represents more clearly the image quality degradation for a coarser dis-
cretization in the vertical or horizontal direction. These images are generated from
the Chinese Dragon 3D point cloud using our virtual stereo imaging system with
1:4, 1:1, and 4:1 pixel aspect ratios, respectively, and with the same total resolution.
For the PAR 1:4 image (Figure 5.12c) the discretization is more apparent along the
horizontal lines. This is evident, for example, in the horizontal supplementary tail
over the vertebral line of the dragon. On the other hand, for the PAR 4:1 image
(Figure 5.12e) the degradation is more apparent along the vertical lines. This is
perceptible, as an example, in the dragon’s vertical tail. Both of these images re-
veal lower image quality in some parts compared to the conventional square pixel
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(a) Original 3D object (red channel projection) (b) PAR 1:1 (2x2)

(c) PAR 1:4 (4x1) (d) PAR 1:4 (4x1), Enlarged

(e) PAR 4:1 (1x4) (f) PAR 4:1 (1x4), Enlarged

Figure 5.12: Samples generated from the Chinese Dragon 3D point cloud with
different pixel aspect ratios.

discretization in the PAR 1:1 image (Figure 5.12b). In general, for complex scenes
composed of a set of edges, line, or textural features, depending on the feature direc-
tions, non-square pixel discretization may degrade the picture quality in parts while
quality may be improved in some other areas. However, since a finer resolution in
the horizontal direction also improves the 3D estimation (sense of depth), and also
considering that the optimal PAR reduces the maximum error in the estimation of
Y , a better 3D picture is experienced overall when an appropriate (optimal) PAR is
selected. This enhanced 3D experience can also be explained by the way the visual
cortex processes disparity information. The primary visual cortex only responds to
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(a)

(b)

Figure 5.13: Orientation of eyes in response to (a) different disparities and (b) dif-
ferent stereo capturing vergences.

the absolute disparity of visual stimuli [32], i.e., the difference in the location of a
feature within the left and right retinal images with respect to the anatomical land-
marks on the left and right retinas [12]. On the other hand, the finest stereoacuity
judgments are psychophysically generated in higher processing levels and based on
the stimuli that contain relative disparities, i.e., the differences in the absolute dis-
parities of different visual features [68, 102]. Our model puts more emphasis on the
horizontal axis. This provides more accurate disparity cues to the primary visual
cortex, which in turn may lead to more accurate judgment on relative disparities.

5.3 Effects of Vergence on 3D Viewing

To understand the behavior of human eyes when they are watching stereo content
on a 3D display, we tracked their reaction to the changes in disparities and also
changes in stereo capturing vergence. Figure 5.13 shows a subset of red-blue im-
ages used in these tests. The two upper rows (Figure 5.13a) are samples of stereo
images rendered with different disparities and the corresponding images of the eyes
when watching these images. The images roughly show that the eyes’ orientation is
almost independent of the amount of disparity. The two bottom rows (Figure 5.13b)
are the stereo pairs generated from the Bunny 3D mesh under different vergence an-
gles using the virtual stereo imaging system we have established for this purpose
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(a) Original 3D object (blue channel) (b) PAR 3:8 (8x3)

(c) PAR 2:3 (6x4) (d) PAR 1:1 (5x5)

Figure 5.14: Samples generated from the Bunny 3D mesh in parallel camera con-
figuration.

(a) PAR 3:8 (8x3) (b) PAR 2:3 (6x4) (c) PAR 2:3 (1x1)

Figure 5.15: Samples generated from the Bunny 3D mesh in which vergence is
included.

(see Section 5.2.1). Again, we can see that, in accordance with our assumption in
Section 2.2, the eyes reveal almost the same behavior in dealing with the stereo
pairs generated under different vergence configurations.
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Apart from the effects of capturing vergence on the reaction of the eyes, which
seems not to be significantly affected, the vergence can be sometimes beneficial in
providing stereo content. In order to study these benefits we compared the effect of
visualization at close range with and without vergence. Figure 5.14 shows a test set
generated for the Bunny 3D mesh under parallel camera configuration. As depicted
in this figure the amount of disparity for this small model is quite large. This makes
it difficult for some people to easily merge the left and right views and may cause
eye strain after a short period of time. Vergence can help control the amount of
disparity in the stereo output. Even with a small vergence angle the amount of
disparity is significantly affected. Figure 5.15 shows the images generated for the
same model as in Figure 5.14, but incorporating a vergence angle of approximately
3 degrees. These images are much easier to fuse together for a human observer.
However, vergence influences the 3D output in several ways. In fact, the amount
of disparity affects the extent of “popping-out-of” or “sinking-into” the screen. In
other words, focusing in front of the object moves it farther away and focusing at
the back of the object brings it closer to the viewer of a 3D display. Although these
effects may help provide enhanced impressions for some 3D content, they may also
cause some undesired side-effects such as improper scale or unnatural shape [56].
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Part II

Sampled Object Representation and
Visualization

75



Chapter 6

Sample-based Object Representation

Many visual media content representations can theoretically be considered as sam-
ples of some specific, often lower dimensional cases of a generic 7-dimensional
plenoptic function I = f(x, y, z, ϕ, θ, λ, t). This function, in its general form,
gives the amount of the radiance received along any direction V (ϕ, θ) arriving at
any point P (x, y, z) in space, at any time t and over any range of wavelength λ.
Such a complete representation would implicitly include a description of any pos-
sible photograph that could be taken of any particular part of the world at any time
[4]. Assuming that the intensity of rays does not change along their direction, then
the points representing a motionless 3D object can be thought as samples of a 6-
dimensional (time-independent) plenoptic function measured at the surface of the
object. Dynamic 3D objects can be represented in the same way but with an ad-
ditional time argument (7-dimensional plenoptic function). Here, we may assume
that the surface sampling process is repeated in appropriate time intervals to de-
scribe changes in the position of samples (and other attributes such as intensity)
over time. In this description the samples with the same time index or sequence
number collectively describe the object pose at that specific time frame.

Point-based (sample-based) 3D model representation, rendering, and manipula-
tion have been extensively studied during the past decade [62, 88]. These represen-
tations bring several advantages to the rendering stage, including the possibility of
progressive rendering at different levels of detail, early culling decisions, and dense
representation of spatial data via hierarchical coding and quantization. Together,
these factors all allow rendering at real-time, interactive frame rates even for large
models composed of tens of thousands or millions of samples. In this and the next
two chapters we study these representations and introduce improved techniques,
data structures, and algorithms for hierarchical representation and interactive 3D
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rendering of both still and animated point-based 3D models. Specifically, in this
chapter we review major works in point-based rendering, and briefly explain differ-
ent techniques that are used for the representation, visualization, and manipulation
of point-based models. We also discuss the advantages and challenges of creating
balanced hierarchies, as this will be a major part of our research focus in the next
two chapters (Chapters 7 and 8) and the basis of the improvements we have made
in this area of research.

6.1 Point-Based Three Dimensional Rendering

In general, there are two paradigms for rendering 2D images from 3D scene data:
image based rendering (IBR) and geometry based rendering (GBR). In the GBR
paradigm the initial scene is described in terms of geometrical surfaces with dif-
ferent properties such as color, transparency, and reflectance. Conventional render-
ing techniques are used to synthesize 2D views (projections) from a set of primi-
tives that accurately or approximately represent the object’s geometry. In the IBR
paradigm the initial scene is described in terms of a set of images that are captured
from a 3D scene [107]. These images can be considered as the output of a plenoptic
function for some specific range of values assigned to its input variables. Synthesis
of a particular view is achieved through reconstruction of a slice of the plenoptic
function from the available 2D images [107]. The IBR paradigm has some advan-
tages over the GBR approach. For example, there is no need for construction of a
geometrical 3D model. The models can be directly sampled from a real 3D scene
using, for example, a CCD camera. However, it is not clear how some operations
such as changing the shape of the objects and light conditions can be elegantly
performed in an IBR approach [107]. Moreover, the synthesized views may not
provide the expected rendering quality.

Point-based representations and rendering techniques (PBR) bring the advan-
tages of both IBR and GBR paradigms to the rendering stage [107]. On one hand,
based on the above explanations, 3D points representing an object can essentially
be understood as the samples of a plenoptic function, often enabling direct and
simplified capturing of the 3D model. In fact, these samples can be practically es-
timated/reconstructed using range scanners and/or several views of the object cap-
tured from different viewpoints surrounding the object. On the other hand, these
3D points, as the simplest geometric primitives, collectively and implicitly describe
the geometry of a 3D object in a simplified way, providing a view-independent rep-
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Figure 6.1: A point sample and some of its properties: position, radius, normal, and
normal cone.

resentation of the object [46]. In this regard, there is no need to keep information
of connectivities between the descriptive elements of the scene. The 3D points are
simply assumed to be connected if they are close enough to each other. In addition,
point-based representations conveniently accommodate rendering at different lev-
els of detail through the use of appropriate hierarchical structures, and possibly by
applying different culling techniques for fast, quality visualization of the object. In
practice, the 3D point samples, in addition to their 3D position coordinates, carry
some other attributes. These may include point normal and radius, color, trans-
parency, reflectance properties and so forth (see Figure 6.1).

The idea of using points as rendering primitives dates back to the work of Cat-
mull in 1974 [21, 36]. In 1985 Levoy and Whithed introduced the notion of point
as a general meta-primitive for the purpose of separating modeling geometry from
the rendering process and showed how the geometrically defined objects, curved or
flat, can be transformed into points [69]. However, major studies on PBR techniques
have been undertaken during the past decade, begining with the work of Grossman
and Dally in 1998 [36, 88, 46]. The idea of using a multi-resolution hierarchy in
PBR for the first time was introduced in 2000 by Rusinkiewicz and Levoy in QSplat
[36, 85] and at the same time by Pfisher et al. in Surfels [36, 82]. In fact, QSplat
and Surfels are two major leading works in the area of multi-resolution PBR.

6.1.1 QSplat Multi-resolution Representation

In QSplat the model is represented in form of a 4-d hierarchical tree of bounding
spheres in which each level of the hierarchy represents a level of detail. Each node
of the tree contains the sphere center (vertex position), a normal, the width of the
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(a) Recursive break-down of the points w.r.t the middle of the bounding box at each level.

(b) The corresponding 4-ary tree structure for the breakdown depicted in (a).

Figure 6.2: Pictorial representation of QSplat build tree process using one-
dimensional points.

normal cone and some other optional attributes such as color. The hierarchy is built
by recursively splitting the bounding box of the vertices into halves along its longest
dimension until sub-partitions containing 4 or less elements are achieved. Then
these groups of four or less vertices are repeatedly combined to form the vertices
in the upper level. In this process the position of the upper level vertices (internal
nodes of the tree), and also their normal and color, are calculated as the average of
the properties in their children. Figure 6.2a illustrates this recursive process using
one-dimensional data. The tree corresponding to the break-down in Figure 6.2a is
depicted in Figure 6.2b.

The radius of the parent nodes is calculated so that the parent sphere contains
all of its children, and the width of the normal cone is conservatively calculated to
guarantee proper visibility of the geometry from the viewpoint of the camera (user)
at lower levels. At the highest level, the process simply creates a single sphere that
can be considered as the bounding sphere of the whole object.

In writing the hierarchy into a file the position and radius of the vertices are
quantized relative to their parent radius. Normals and colors are quantized inde-
pendently. During the rendering the 3D vertices are progressively reconstructed
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Figure 6.3: Spherical visualization of point samples at different levels of detail for
the Bunny 3D model (Figure is adopted from [85]).

(a) Sufels: Surface elements. (b) Layered depth cubes (LDC), 2D represen-
tation

Figure 6.4: Surfels and two dimensional representation of layered depth cubes (Fig-
ures are adopted from [82]).

(decoded) starting from the root toward the leaves. The level of detail, i.e., the level
of progress toward leaves, is decided by the screen resolution and proportional to
the available computational power. See Figure 6.3 to see the spherical visualization
of the samples at different levels of detail for the Bunny model.

6.1.2 Surface Elements and Layered Depth Cubes

Surfel, which is an abbreviation for surface element, is defined as a zero-dimensional
n-tuple with shape and shade attributes that locally approximate the surface of an
object. Like to the spheres in QSplat, surfels have the position and the normal.
However, instead of using a sphere for representing the vertex, a circle, which is
centered at the surfel position and is located on its tangent plane, is used. These
circles, called tangent disks, are used to determine the surfel neighborhood color
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or texture properties (see Figure 6.4a). The hierarchy is built using layered depth
cubes (LDC) (see Figure 6.4b). During the rendering the LDC tree is traversed from
the top (the lowest resolution) to the bottom (the highest resolution). The bound-
ing box of the LDC blocks at each level can be used for frustum-culling and, as in
QSplat, the visibility cones can be used for back-face culling [82].

6.1.3 QSplat Variations and Optimizations

Several other hierarchical representations are introduced that are inspired in some
respect by QSplat or that try to achieve improvements using some properties of
the QSplat structure. In [22], a hybrid point and polygon rendering system called
POP is introduced. POP uses the same structure as QSplat but allows switching to
polygon rendering at the lowest level of the hierarchy. This ensures the quality of
the rendered object at closer distances (e.g., when a user brings the object closer
to the camera or zooms into it). PMR, point-to-mesh rendering, is another render-
ing system that implements a hybrid point-polygonal rendering [36]. However, the
hierarchy is built up in a totally different way. PMR builds a multi-resolution hier-
archy for both points and triangles at all levels. Thus, it has access to the multiple
resolution of triangles as well as of points. In PMR, unlike QSplat, the point hierar-
chy is created following a feature-based approach introduced in [34] for decimating
samples for the purpose of mesh simplification. Roughly speaking, the method cal-
culates the maximum distance of the 3D point to its neighboring samples dr (dr
may also considered as the radius of the point) and its approximate distance from
the medial axis of the object dm. Then, if the ratio of dr to dm is smaller than
a threshold τ , the 3D point is considered an oversampled point and is decimated.
PMR creates different levels of the hierarchy by adjusting the value of the threshold
τ . The triangle hierarchy is built using the Delaunay triangulation method intro-
duced in [35] for shape reconstruction. The method is used to equip each point in
each level of the point hierarchy with a set of triangles that approximate the surface
of the object at that resolution level. During the rendering the radius of the point
dr is used to decide between rendering a point or a set of triangles attached to the
point. In [70] a case study on rendering massive data sets is presented that again
benefits from a hybrid polygonal and point-based rendering. The work is significant
in the method of handling large data sets. This is accomplished by partitioning the
data set into square chunks with some overlapping margins, after which each chunk
is processed independently.
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In [95] and [96] the authors investigate the geometrical properties of the QSplat
structure and the distribution of child attributes (position and normals) relative to
those of their parents. Specifically in [95] child spheres sorting and the parent nor-
mal cone are used to reduce the set of valid indices for children’s positions and nor-
mals respectively. Applying these reduction techniques, they can achieve lossless
compression of QSplat data up to 60 percent of the original storage requirement.
In [96] the positions of the children are transformed to a local coordinate system
defined by the position and normal of the parent. Then, benefiting from the more
compact representation of the positions of the children in the local coordinate sys-
tem, vector quantization (instead of scalar quantization) is applied on the groups of
children to provide a compact, adaptive distortion-rate representation of the QSplat
data.

PBR techniques are also applied in rendering volumetric data. TetSplat is an
algorithm which is proposed for real-time rendering and volume clipping of point
samples obtained from tetrahedral meshes [77]. In this algorithm the input mesh
is divided into two parts called shell and solid. The hell is the exterior or the vis-
ible surface of an object and the solid is the interior part or invisible tetrahedrals
assuming the volume is an opaque object. Two hierarchical trees are created for
both shell and solid parts. The hierarchical tree for the shell is built similarly to the
unbalanced quad-tree used in QSplat, but since the solid part is in fact a triangu-
lated 3-manifold, an octree is used to build up the tree. No normal is stored for the
samples of the solid part. Shading of the interior part is derived from a CSG probe
that is used for volume clipping during the rendering process.

6.1.4 Other Multi-resolution Representations

There are several other works on PBR which use many different techniques for
building up the hierarchy tree and rendering points. In [18] a representation is
introduced which automatically balances the sampling density and quantization ac-
curacy. Such a representation is achieved by first fitting a regular 3D grid to the 3D
samples of the object so that each cell of the grid contains at most one 3D point of
the model. Then, the 3D grid is recursively sub-sampled until a single cube, that
is the bounding box of the model, is reached. Binary values (0 or 1) are used to
show whether or not a cubic section of the space is occupied by some samples. The
representation is highly compact, but the need for explicit addressing and correction
of the leaves’ position reduces its size efficiency.
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In [43], a layered approach is proposed that organizes the points into a hierarchy
of nearly equally sized point clusters so that the final multi-resolution structure has
the same number of points as the input. This is obtained by uniformly selecting
a small subset of samples as the root of the hierarchy. The remaining samples
are spatially divided into halves, and the process is repeated on each half until a
predefined size limit is met. In [80] a hierarchy of the plane patches is created by
fitting a plane to the positions of the children at each level. The child planes are
encoded with respect to their parent plane using the distance of three points that
are appropriately selected on the parent plane and their projections along with the
parent normal on the child plane.

In [106] a point-based method for rendering large tetrahedral meshes is intro-
duced which can potentially be used on non-conforming meshes as well. The paper
introduces a method for sampling the tetrahedral elements of the mesh one by one
so that the sample set provides a good approximation of the underlying scalar field.
An efficient stratified decimation is used to decimate samples when the renderer
is initialized. PBR techniques are used in combination with ray tracing as well
[55, 83], and finally, PBR techniques are available for single-pass or multi-pass
multi-view rendering [53, 54] (see also Section 6.2).

6.1.5 Balanced Hierarchical Representations

All the above-mentioned methods lead to imbalanced structures. In recent years
there has been a tendency toward balanced representations, as it is generally ex-
pected that a balanced hierarchy results in faster rendering speed (for the same struc-
ture) [58], lower memory requirements [57], and more symmetrical progressive
rendering. A balanced k-dimensional tree can be achieved by splitting the points
based on the median of their coordinate in the splitting dimension [57]. Figure 6.5a
represents the breakdown process according to this scheme for one-dimensional
data, and Figure 6.5b shows the corresponding balanced tree. Comparing the trees
in Figure 6.2 and Figure 6.5, it can be seen that a balanced tree has a more dense
representation for the same collection of points.

In practice, a complete balanced tree often cannot be created since the number
of vertices is not usually a power of the tree branching factor. A left-balanced tree
may be considered [57], but it does not completely use the whole address space of
the tree. Hubo et al. [55] use a kd-tree that stores the quantized value of the split
plane position at each internal node. The method is, in essence, similar to the com-
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(a) Recursive break-down of the points w.r.t the median of the points at each level.

(b) The corresponding 4-dimensional balanced tree structure for the break-
down depicted in (a).

Figure 6.5: Pictorial representation of building a 4-dimensional balanced tree using
one-dimensional points.

pact representation in [18], but the authors need to keep track of the splitting point
(median) in a balanced representation. Kalaiah and Varshney [58] introduce a statis-
tical representation (vs. deterministic representation) based on principal component
analysis. PCA is used to estimate mean and variance of point positions and their
attributes. The hierarchy is built using k-means clustering. Mahalanobis distance
or alternatively Euclidean distance is used for clustering. In either case, especially
for the Mahalanobis distance, their method may not achieve a well-balanced struc-
ture. They switch to Euclidean distance if the Mahalanobis distance leads to an ex-
tremely imbalanced tree structure. The mean, variance, and principal components
at all levels are quantized and stored. For the rendering, these estimated Gaussian
distributions are qausi-randomly sampled and splatted to the screen. Goswami et

al. [44] propose a balanced multi-way kd-tree with an adaptable branching factor.
An adaptive clustering technique is introduced that uses the position and normal
attributes to disseminate the points among the children.

Apart from the number of samples, creating a balanced k-ary tree also man-
dates distributing equal number of constructive elements of the model, i.e. points,
triangles and so on, among a specific number of groups while the proximities inside
each group also need to be preserved. The constraint of having the same number
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(a) Bunny (b) Hand

Figure 6.6: Artifacts (highlighted points) resulted from inappropriate grouping of
points in balanced partitioning.

of primitives in each group increases the possibility of grouping points that are not
close enough to each other. This can be seen in Figure 6.5a for our sample one-
dimensional data, where the point in the middle is grouped with three other points
that are far from it. Of course, the probability of grouping the points that are not
close enough to each other increases with the use of 3D data. This may lead to con-
siderable error in hierarchical quantization, and may later cause serious artifacts in
model restoration and rendering. Figure 6.6 shows some of these rendering artifacts
in the case of QSplat, where the median of the samples is used to break the samples
down. These rendering artifacts appear in the form of points (spheres) that are dis-
similar in size and inaccurate in position relative to their neighboring points. Some
of these artifacts are highlighted in Figure 6.6 for better visibility. As perceived,
these artifacts may occur even with some simple models such as the Bunny (Figure
6.6a). The problem intensifies with more topologically complex objects such as the
Hand model (Figure 6.6b). This phenomenon is not usually observed in the case of
imbalanced hierarchical trees since these structures often asymptotically follow the
geometry of the object. Clustering techniques may be applied to put nearby points
in the same group [44, 58], but as mentioned above these techniques may not lead
to completely balanced structures [58] or may not properly work on all 3D surface
models.
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6.2 Stereo Visualization

There are two different approaches to (multiview) stereo visualization: multi-pass
rendering and single-pass rendering. Multi-pass methods repeat the underlying
single-view rendering algorithm with appropriate view-dependent parameter set-
tings for N different passes where N is the number of views. The result of N passes
may then be masked and composed in different ways depending on the targeted
stereoscopic display device. A multi-pass rendering algorithm that does not exploit
the similarities between different views can take N times longer than a mono-view
rendering algorithm [38]. In this case, reducing the whole processing time can be
accomplished by improving the efficiency of the underlying single-view rendering
algorithm. There are also some acceleration methods which try to manipulate and
transform the primitives projection on a single, directly rendered view to the corre-
sponding projections on the other desired views assuming that the properties of the
corresponding primitives in different views are the same [50, 66, 101, 5]. However,
the speed improvements obtained by these methods is generally at the cost of image
quality. In particular, for the case of auto-stereo, where several views are needed,
these methods may lead to more and stronger artifacts [53]. As an alternative ap-
proach, the actual rendering can be done for more than one, but a subset of the total
number of required views. Then, the desired in-between views may be obtained
by applying appropriate image-based rendering techniques. Single-pass multiview
rendering methods are more recent techniques that try to simultaneously generate
all views that are needed for the 3D display in a single pass over the 3D data. Some
works in this area exploit the programming capabilities of modern GPUs for direct
calculation of multiple views on a per-fragment basis [54, 53]. Nevertheless, even
in these methods the basic per-fragment operations that are required for generating
multiple views remain proportional to the number of views.

6.3 Sampled 3D Object Deformation and Manipula-
tion

There has also been substantial research into the methods of manipulating and de-
forming sampled object representations, including point-based 3D models [23]. De-
formations are often achieved by applying some empirical (no or little physics in-
volved) or physically-based deforming models on sampled representation of fluid,
solid, or elastoplastic objects [42, 81, 3], and may use a combination of different
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preprocessing and manipulation steps. Deformation models can be considered as
the integral part of the computer animation, i.e., modeling and rendering temporal
behavior of the object. Depending on the model complexity and size of the object,
these models may not often be useful within an interactive environment. How-
ever, they can be used to generate a series of object poses (and properties) from
motionless 3D objects. These simulations can be considered a valuable source of
spatio-temporal samples describing a dynamic 3D object.
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Chapter 7

Interactive Visualization of Still
Point-based 3D Models Using
Balanced Hierarchies

Balanced structures can generally be advantageous in terms of memory require-
ments due to more efficient use of the tree addressing space, as well as to the
possibility of implicit representation; i.e., there is no need to explicitly store in-
formation related to the tree structure itself such as the number of children of a
node and their address. In addition, subject to the appropriate dissemination of the
samples among children, they can also lead to a more harmonized progressive ren-
dering which makes the approach more convenient for interactive and/or remote
rendering. However, as already mentioned, it is in practice very improbable to have
a number of samples appropriate for creating a complete multi-way balanced tree
structure, and it is not quite obvious how exactly to disseminate samples among
children. In this chapter we address the first problem by introducing a structure
called a Multi-section tree, which allows a multi-way balanced tree to be built for
any arbitrary number of samples very close to the structure of a complete tree of the
same branching factor. We also introduce algorithms and techniques for the latter
problem, i.e., appropriate distribution of samples within the balanced tree structure.

7.1 Balanced Multi-section Tree Structure

The Multi-section tree, hereafter also MSTree, can be considered as an extension
of bisection tree [45] with an arbitrary branching factor m = 2l (for bisection tree
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Figure 7.1: Balanced multi-section tree: the numbers of vertices assigned to the
siblings are either equal or differ at most by one.

m = 2). The structure is built by recursively dividing the set of vertices assigned to
each node of the current level into m subsets which are assigned to the m children
in the next level, so that the numbers of vertices in all subsets are equal or differ
by at most 1. As a result, all of the internal nodes at all levels get the maximum
possible, literally equal number of children. In following subsections we describe
the recursive process of building the MSTree structure and explain how the tree
structure can be traversed implicitly.

7.1.1 Constructing the MSTree Structure for an Arbitrary Num-
ber of Vertices

Algorithm 1 presents the recursive process of building a generic multi-section tree
with a branching factor of m = 2l for an arbitrary number of multi-dimensional
samples. The recursive process stops if the breakdown reaches a partition of size
smaller than or equal to m. Otherwise, the bi-partition procedure is repeatedly
applied to divide the input into m sub-partitions. Here, bi-partition is a general
partitioning or clustering procedure that divides its input P into two equally sized
partitions P1 and P2 assuming that it devotes one more sample to P1 if the number
of samples in P is odd. In this way, the numbers of samples assigned to each of the
m sub-partitions and consequently the numbers of samples assigned to the siblings
at each level (the number of leaves beneath all siblings) differ by at most one. As
we will see, this helps in distinguishing the leaves from the internal nodes without
explicit labeling, even if they are shuffled with each other at the penultimate level.
In addition, this allows the whole tree structure to be stored on a disk without using
any explicit addressing at all levels.
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Algorithm 2 presents a simpler version of Algorithm 1 for the special case of
m = 4 which is easier to read. Figure 7.1 shows an example of applying Algorithm
1 (or Algorithm 2) to break down 29 vertices with a branching factor of m = 4. The
numerical node labels in this figure show the number of vertices (leaves) beneath
each internal node. As can be seen, it is not necessary that the number of vertices be
a power of 4 to end up with an equalized tree structure. However, when the number
of vertices is close to a power of m, the space available in the last row will be used
more efficiently.

Algorithm 1: Recursive construction of multi-section tree.

n = mBalance(P,m)
Input: P : Set of points, m = 2l: Branching factor
Output: n: Tree node

if |P | < m then1

return Combine(P );2

Q.PushBack(P ) ; // Q is a queue3

while (Q.Length < m) do4

{P1, P2} = bi-partition(Q.Front());5

Q.PopFront();6

Q.PushBack(P1);7

Q.PushBack(P2);8

for (all Pi in Q) do9

vi = mBalance(Pi,m);10

return Combine({vi});11

Algorithm 2: 4Balance build tree algorithm.

n = 4Balance(P )
Input: P : Set of points
Output: n: Tree node

if |G| < 4 then1

return Combine(P );2

{P1, P2} = bi-partition(G);3

{P11, P12} = bi-partition(P1);4

{P21, P22} = bi-partition(P2);5

return Combine(4Balance(P11), 4Balance(P12), 4Balance(P21), 4Balance(P22));6
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Figure 7.2: Calculating various parameters necessary for MSTree traversal; SP :
number of siblings in the left hand side of P , LP : number of leaves in the left hand
side of P , and BP : number of leaves beneath P .

7.1.2 General MSTree Traversal Scheme

Assuming that the MSTree structure is stored in (main) memory in a breadth first
order (see Figure 8.2a), the tree can be traversed following a recursive equi-division
process similar to the recursive equi-partitioning method that was used in building
the tree structure. Figure 7.2 gives a pictorial description of the different parameters
involved in this process and shows how they are calculated. For a parent (internal)
node P , the number of its immediate children is calculated simply as the minimum
of m, the tree branching factor, and BP , number of leaves beneath node P (for the
root node R, BR is the total number of vertices). In other words, each internal node
P will have m or less number of immediate children. For each immediate child C of
P , number of leaves beneath C, BC , is calculated from BP by repeatedly dividing
BP and subsequent halves by 2 until size of all immediate children is found. For
example, BC for the children of node P in Figure 7.2 is calculated as:

BC12 = ⌊BP/2⌋+ 1 = 4

BC34 = ⌊BP/2⌋ = 3

BC1 = ⌊BC12/2⌋ = 2, BC2 = ⌊BC12/2⌋ = 2

BC3 = ⌊BC34/2⌋+ 1 = 2, BC4 = ⌊BC34/2⌋ = 1 (7.1)
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In practice, BC values can be directly obtained from BP by dividing it by the tree
branching factor m, and then through appropriate handling (adding up and round-
ing) of the fractional part of the division. BC can be used to distinguish a leaf from
an internal node: a tree node C is a leaf simply if BC = 1.

Other parameters for recursive traversal of the tree are calculated as follows:

• The number of leaves to the left hand side of C, LC , is calculated as the
number of leaves in the left hand side of the parent node P , LP , plus the
summation of BC for all children of P on the left hand side of C.

• The number of siblings to the left hand side of C, SC , is calculated as SP ∗
m+ i where i is the number of immediate children of P on the left hand side
of C.

Knowing LC and SC , it is easy to determine Si
C and Sv

C , the number of siblings on
the left hand side of C that are internal node and leaf, respectively (SC = Si

C+Sv
C).

From there the children offset of C, OC , can be calculated as:

OC = OL + Si
C ∗ iSize+ Sv

C ∗ vSize (7.2)

where OL is the offset of level L, and iSize and vSize are the size of the internal
nodes and size of the leaves, respectively. iSize and vSize can potentially be dif-
ferent, making it possible to store different/additional information in leaves of the
tree.

7.2 Using MSTree in Balanced Representation of Still
3D Objects

Algorithm 1 refers to a general partitioning procedure named bi-partition that di-
vides input vertices into two sets of the same size. Different partitioning or cluster-
ing schemes can be applied here. However, the technique should be able to appro-
priately distribute the points among the clusters so that the proximity of the points
inside the partitions be preserved and therefore high quantization errors, and hence
noticeable rendering artifacts similar to those appearing in the case of median-based
partitioning (see Figure 6.6), can be avoided. In general, as explained in Section
6.1.5, establishing such a well-balanced hierarchy remains a challenge as clustering
techniques that work for a class of models may not generate desirable results for

92



other structurally different classes of objects. Here we introduce two algorithms for
distributing samples within an MSTree structure.

The first algorithm, Algorithm 3, is a graph-based partitioning scheme in which
we try to preserve the proximity of samples within sub-partitions by keeping them
as connected components of a graph to the greatest extend possible. The algorithm
is based on recursively applying a type of graph bi-partitioning that tries to preserve
connectivity of the partitions instead of minimizing the number of edge cuts. The
resulting partitions are not necessarily located on two sides of a splitting plane
but resemble a patch of the neigbouring points on the surface of the model. As a
result, their points are spatially close enough together to avoid the aforementioned
quantization errors and rendering artifacts.

The second algorithm, Algorithm 5, is a two-phase approach to the problem, i.e.,
a bottom-up grouping using Algorithm 4, followed by a top-down recursive splitting
process, resulting in a two-layer structure. The initial bottom-up grouping keeps
neighboring points together at the first stage, avoiding the necessity of applying a
perfect, intricate clustering algorithm. Again, considering the whole surface of a 3D
object as a graph, we try to partition the surface into a set of small, nearly equally
sized connected components or patches. Then the MSTree structure is used to build
a set of balanced hierarchies (subtrees) for each of these groups. The main MSTree
is created over all group representatives (subtree roots) [10]. As we will see, this
two-layer balanced representation results in a very compact representation (as low
as 25 bits per sample radios, position, and normal) compared to the first algorithm,
Algorithm 3, and also compared to the other, state-of-the-art algorithms.

7.2.1 Graph-based Dissemination of Vertices

Assume that the whole surface of a 3D object is represented as a graph G(V,E),
where V is the set of vertices of the model and E represents the set of edges connect-
ing the neighboring vertices. A 3D mesh obtained by applying Delaunay triangula-
tion [35] on the object samples may simply be thought of as a graph representation
of the model. Having this representation, we turn the problem into a graph parti-
tioning problem with the specific constraint of preserving the connectivity inside
each partition while trying to employ the geometric properties of the shape as well.
The intuition behind this approach is the close relationship between proximity of
vertices in a 3D surface model and connectivity of the vertices in the corresponding
graph representation. Therefore, if we keep the sub-partitions internally connected
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(a) A sample graph that cannot be partitioned
into two same-size connected components.

(b) Partitioning of the graph in (a) into four
same-size connected components.

Figure 7.3: Partitioning a graph into same size connected components.

we, in fact, group the vertices that are close to each other.
Contrary to the classical graph partitioning problem that looks for the pieces

that have the fewest connections between them (or equivalently looks for the fewest
number of cuts) [60], in our graph-partitioning it does not matter how many edges
are cut. Enforcing the connectivity constraint inside sub-partitions may, however,
lead to cases where the problem does not have a solution at all. Figure 7.3a shows
an example of such a graph, which cannot be separated into two connected pieces
with the same number of nodes. Nevertheless, this will not be a major issue, at least
in the higher levels of the breakdown process, considering the number of vertices
used for a typical 3D model representation.

The graph partitioning problem is called a graph bisection problem when the
number of targeted partitions is two [41]. A graph can be partitioned into m = 2k

components of (approximately) the same size by recursively repeating the bisec-
tioning algorithm to the subcomponents for k times (see Statements 4 to 9 of Al-
gorithm 1). It should be clarified that in general such a recursive algorithm may
fail to reach to the final solution, even if such a solution is possible. For example,
the graph in Figure 7.3 can be partitioned into four connected components (see Fig-
ure 7.3b) but a recursive bisectioning fails to achieve this solution since it cannot
divide the whole graph into two connected components in the first step. Neverthe-
less, in practice the recursive bisectioning is a good approach to a multi-partitioning
problem.

The pseudo-code of our bi-partitioning algorithm, called ConnBiPart, is shown
in Algorithm 3. In this algorithm MedPart refers to the median-based partitioning.
ConBiPart uses MedPart in two ways. Firstly, MedPart is tried on all three di-
mensions of the bounding box D and the connectivity of the resulting partitions is
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checked to see whether or not it can solely divide the graph into two connected com-
ponents (Lines 5 to 9). Secondly, it is used whenever ConnBiPart cannot achieve
two equally sized connected components. This includes the case where P itself is
not connected, a possibility which is checked before proceeding to any further step
(Lines 2 to 4). The algorithm goes to the next phase, if applying MedPart on all
dimensions does not lead to a solution. It starts by initializing P1 and P2 with two
vertices, namely near end vn and far end vf , which are the vertices located on the
two ends of the longest dimension of the bounding box of P . Starting from the near
end vn (alternatively can be the far end), the algorithm tries to grow P1 by repeat-
edly attaching the neighboring vertices that are closer to that end, until a connected
set of vertices P1 of half the size of the whole graph P is achieved. At this point,
the remaining undecided vertices may form one or more connected components.

Algorithm 3: ConnBiPart bi-partitioning algorithm.

{P1, P2} = ConBiPart(P )
Input: Partition P

Output: Sub-partitions P1 and P2 so that |P1| = (|P |+ 1)/2 and |P2| = |P | − |P1|

Let D = [d1, d2, d3] be the bounding box of P so that d1 ≥ d2 ≥ d3;1

if P is not connected then2

return {P1, P2} = MedPart(P ,d1);3

for all d in D do4

{P1, P2} = MedPart(P ,d);5

if both P1 and P2 are connected then6

return {P1, P2};7

vn = the vertex with minimum projection on d1 (near-end);8

vf = the vertex with maximum projection on d1 (far-end);9

P1 = {vn}, P2 = {vf};10

repeat11

Add v ∈ P − (P1 ∪ P2) to P1 if v is adjacent to some vertices in P1 and is12

closest vertex to vn;
until |P1| = (|P |+ 1)/2 or no new elements can be added to P1 ;
Repeatedly add v ∈ P − (P1 ∪ P2) to P2 if v is adjacent to some vertices in P2;13

Add all v ∈ P − (P1 ∪ P2) to P1;14

Balance number of vertices in P1 and P2 by growing P2 toward P1 if |P1| > |P2| or15

P1 toward P2 if |P2| > |P1|;
if succeeded to balance without disconnecting P1 and P2 then16

return {P1, P2};17

return {P1, P2} = MedPart(P ,d1);18
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One of these components will be adjacent to vf which is already tagged as P2. The
vertices belonging to that component are all tagged as P2 (Line 17) and all other
undecided vertices (if any) are appended to P1 (Line 18). Finally, the algorithm
tries to balance the number of elements in the two partitions by growing P2 toward
P1 (if |P1| > |P2|, which is usually the case) or vice versa without losing their in-
ternal connectivity. If it does not succeed in maintaining the connectivity constraint
it simply switches back to the MedPart scheme again.

7.2.2 Balanced Dissemination of Vertices in a Two-Layer MSTree
Structure

The main problem with Algorithm 3 is that it does not always generate connected
components. Our second algorithm addresses this problem by introducing an initial
bottom-up grouping step that keeps the neighboring points together at the first stage,
eliminating the necessity for applying a perfect, intricate clustering algorithm.

The bottom-up grouping of neighboring vertices is modeled again as a graph

Algorithm 4: Bottom-up grouping of 3D object vertices.

{Ci} = GroupObjVerts(G(V,E), f)
Input: Object graph G(V,E), Grouping factor f
Output: Set of connected components {Ci}

Vg = Φ; Vug = V ; i = 0;1

while (Vug ̸= Φ) do2

Ci = {v}, v ∈ Vug ∩Adj(Vg) ; // New component3

while (|Ci| < f) ∧ (Adj(Ci) ∩ Vug ̸= Φ) do4

Ci = Ci ∪ {v}, v ∈ Adj(Ci) ∩ Vug;5

if (|Ci| < f) then6

if (∃Cj ∈ N(Ci) so that |Cj |+ |Ci| < 2f) then7

Ci = Ci ∪ Cj ;8

else9

m = min{k|Ck ∈ N(Ci)};10

while (|Ci| < 2f − 1) do11

Ci = Ci ∪ {v}, v ∈ Adj(Ci) ∩ Cm;12

Vug = Vug ∪ (Cm − Ci);13

Vg = Vg ∪ Ci; Vug = Vug − Ci; i = i+ 1;14

return {Ci};15
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Figure 7.4: The structure of the whole balanced hierarchy.

partitioning problem. Algorithm 4 shows the pseudo-code of this vertex grouping
procedure. Here Vg and Vug refer to the set of grouped and set of ungrouped vertices,
respectively. Adj(C) is the set of all vertices adjacent to a connected component C
and N(C) is the set of all components neighboring C.

The algorithm gets as input a graph G(V,E) representing the surface of the
object as before, and a grouping factor, f , that shows the (minimum) size of the
connected components (patches) that are going to be created. Starting from an
arbitrary vertex v ∈ V , the algorithm repeatedly tries to cut connected components
Ci of size f from G (Steps 3 to 5). Whenever a component Ci of size f cannot
be achieved (for example when the algorithm is trapped in the object corners) Ci is
merged with one of its neighboring components, provided that the total size does
not exceed 2f − 1 (Steps 7 and 8). If all neighboring components fail to satisfy this
condition, Ci is merged with part of a neighboring component Cm which has the
minimum index m (Steps 9 to 13). Merging Ci with a component which has the
minimum index assures that the algorithm will not fall into an endless loop. The
remaining part of Cm is returned back to the set of ungrouped vertices Vug for later
processing. In practice, the majority of the components created by Algorithm 4 will
be of size f .

The whole balanced two-layer hierarchy is created using Algorithm 5. Algo-
rithm 5 first calls Algorithm 4, GroupObjVerts, to partition the object surface into
a set of nearly equal-size pieces {Ci} based on a given grouping factor f . Then by
repeatedly calling Algorithm 1, mBalance, a subtree with fixed branching factor 4 is
created for all these components. The root of each subtree is considered a represen-
tative of the corresponding component, and the mBalance algorithm is called again
to create the main tree over these group representatives using a branching factor m
determined by a user. Here, the mBalance algorithm uses a simple median-based
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approach as its bi-partitioning scheme, but using this simple scheme does not lead
to any rendering artifacts because of the initial bottom-up grouping phase. Figure
7.4 shows a sample of the whole two-layer balanced structure for grouping factor
f = 16 and branching factor m = 8.

7.3 Combining Tree Leaves and Nodes

Algorithm 1 uses a procedure named Combine which is called within the recursive
process to build up the hierarchy. Method Combine combines the lower level nodes
to form the internal upper-level nodes of the tree. Method Combine returns the ver-
tex itself if the partition passed into it has only one vertex (a leaf node); otherwise
Combine creates a new node which will become the parent node at the upper level.
The parent node position is calculated as the average of the positions of its children
[85]. Other attributes including normal and color are treated similarly, but consid-
ering that our partitioning algorithms keeps the neighboring 3D points together (as
demonstrated below), taking advantage of the similarity of these properties within
a patch we can more compactly store these information in the internal nodes (espe-
cially the internal nodes of the subtrees of the two-layer structure) [10].

7.4 Tree Quantization and Encoding

The hierarchical quantization method in [85] is extended to a multi-accuracy scheme
that allows quantizing position and radius of the points with different precisions (9
to 16 bits). Multi-accuracy quantization is implemented using separate quantiza-
tion/lookup tables. It can also be implemented by mapping all valid combinations
at all accuracy levels to the same lookup table at the cost of losing quantization

Algorithm 5: Building the whole two-layer balanced hierarchy.

R = TwoLayerHierarchy(G(V,E), f,m)
Input: Object graph representation G(V,E), Grouping factor f , Branching factor m
Output: Root of the hierarchy R

Ci = GroupObjVerts(G(V,E), f);1

for all Ci in {Ci} do2

ri = mBalance(Ci, 4);3

return R = mBalance({ri},m);4
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uniformity for lower level accuracies. We have also implemented an improved hi-
erarchical quantization scheme base on a hierarchy of bounding boxes (see Section
8.2) that could be used here to obtain more accurate quantization at the same bit
rate.

Dividing the surface of a 3D object into small pieces suggests the plausibil-
ity of applying frequency domain encoding schemes based on DCT or Wavelet
transform to the compression of point colors, a technique similar to those used in
JPEG/JPEG2000 image compression. Point normals are more sensitive to quan-
tization noise and it is better to be quantized independently. Here, normals are
quantized based on repeated tessellation of a unit sphere into spherical triangles
[18], starting with a regular tetrahedron. 14 bits (7 tessellation levels) are used for
storing quantized normals. For the case of a two-layer structure, we still benefit
from the directional similarity of the normals in a small neighborhood and factor
out the common leading bits of quantized normals within each subtree to devote a
smaller number of bits to the normals.

The hierarchy is written into the disk in a breadth-first order. The tree branching
factor and the total number of vertices, and some few other parameters’ values,
such as quantization accuracy, are stored in the header of the file. These are the
only information that is needed to traverse the hierarchy (see Section 7.1.2), and
there is no need to store any information regarding the tree structure itself. For the
case of a two-layer structure, the main tree is stored first followed by all subtrees.
Depending on the number of common leading bits of the quantized normals within
each subtree, a different amount of memory is dedicated to the normals. In addition,
the number of vertices in each subtree can be different. Therefore, there will be
some difference in the size of subtrees and due to these differences we need to keep
track of the subtrees’ offset. This is the only place in the two-layer structure where
explicit addressing is used.

7.5 Experimental Results

In the following subsections we present some qualitative and quantitative results
of our suggested algorithms, the ConnBiPart and the two-layer structure respec-
tively. We compare these results versus some other representations and show their
superiority in terms of compactness and accuracy of the representation especially
in the case of the two-layer structure. We also briefly discuss the preprocessing
complexity of our algorithms.
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(a) Point-based rendering (b) Spherical visualization

Figure 7.5: Rendering of the Bunny model based on ConnBiPart algorithm.

7.5.1 Results of ConnBiPart Algorithm

Figure 7.5 shows the result of rendering the Bunny model reconstructed from a
representation obtained by applying Algorithm 3, ConnBiPart. It can be seen that
all of the artifacts shown in Figure 6.6 are successfully eliminated. In fact, for such
a simple model ConnBiPart does not even need to go further than step 10; balanced
partitioning is achieved just by selecting an appropriate splitting axis.

Figure 7.6 presents the rendering results for a set of more complex objects using
MedPart, simple median-based partitioning, and ConnBiPart algorithms. The mod-
els include Armadillo, Chinese Dragon, and Statuette. Images in the left hand side
of Figure 7.6 show the results for the representations generated by MedPart. Some
of the significant artifacts caused by median-based partitioning are highlighted in
these images. The right hand side of Figure 7.6 shows the corresponding rendering
results from representations generated by ConnBiPart. The same rendering algo-
rithm is used for both representations. As can be seen all significant artifacts are
eliminated in the right hand side images.

Table 7.1 shows the mean, standard deviation, and maximum quantization error
for the representations generated by the original QSplat, MedPart, and ConnBiPart

algorithms, respectively. The quantization error for each individual vertex is calcu-
lated as the Euclidean distance between the original and the recovered 3D position
of each vertex, and the differences are used in calculating mean, standard deviation,
and maximum distortion for each model. Table 7.1 also presents the size of the
imbalanced structure created by QSplat and the balanced structures created either
by MedPart or ConnBiPart, and the percentage of the saving achieved in balanced
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(a) Armadillo, upper part, MedPart (b) Armadillo, upper part, ConnBiPart

(c) Armadillo, lower part, MedPart (d) Armadillo, lower part, ConnBiPart

(e) Chinese Dragon, MedPart (f) Chinese Dragon, ConnBiPart

(g) Statuette, MedPart (h) Statuette, ConnBiPart

Figure 7.6: Rendering results for the Armadillo, Dragon, and Statuette 3D models.
Left hand side: Rendering from representations obtained from MedPart; significant
artifacts are highlighted. Right hand side: Rendering from representations obtained
by applying ConnBiPart; no significant artifact is observable.

representations. Values in Table 7.1 show that for all models the mean and standard
deviation of error calculated for ConnBiPart is lower than of those calculated for
both QSplat and MedPart. The maximum quantization error of ConnBiPart, except
for the two Dragons, is also considerably lower than the maximum error generated

101



Table 7.1: Quantitative comparison between MedPart, ConnBiPart, and original
QSplat representation.

Models
Alg Stat Bunny Armad Buddha Dragon ChDrag Statuette Avg

O
ri

gi
na

l Mean 1.95e-4 0.07084 5.40e-5 6.93e-5 0.01552 0.03325
Std Dev 9.15e-5 0.03330 3.55e-5 4.05e-5 0.00772 0.03685
Max 5.20e-3 1.82827 0.00102 7.78e-4 1.21989 7.10705
Size(KB) 224 1125 3545 2852 23248 32467 10577

M
ed

Pa
rt Mean 1.35e-4 0.05748 3.87e-5 5.66e-5 0.01361 0.03210

Std Dev 6.72e-5 0.03041 2.72e-5 4.15e-5 0.00953 0.03897
Max 2.76e-3 2.95777 0.00191 3.11e-3 2.76759 6.11213
Size(KB) 190 890 2978 2390 17513 26092 8342

C
on

nB
iP

ar
t Mean 1.32e-4 0.05635 3.86e-5 5.62e-5 0.01342 0.03116

Std Dev 5.97e-5 0.02486 2.49e-5 3.72e-5 0.00694 0.03576
Max 8.86e-4 0.20318 5.56e-4 9.29e-4 1.97643 4.62511
Size(KB) 190 890 2978 2390 17513 26092 8342
Save(%) 15 21 16 16 25 20 21

by QSplat, and significantly lower than the MedPart for all 3D models. On the
other hand, MedPart algorithm in all cases leads to large maximum errors which
usually appear as unpleasant outgrowths during rendering (highlighted points in
Figure 7.6). In general, ConnBiPart leads to better, more smooth rendering while
on average more than 20 percent saving in memory is achieved. Depending on the
number of vertices and the tree branching factor, a file size up to about 30 percent
smaller can be achieved.

7.5.2 Results of Two-Layer Tree Structure

Figure 7.7 shows the rendering result of the Hand 3D model using two-layer bal-
anced representation (TLTree). Our two-phase balanced representation does not
generate any rendering artifacts for this topologically complex 3D surface (com-
pare with the rendering result in Figure 6.6b).

Figure 7.8 shows different renderings of the Chinese Dragon obtained by TL-

Tree, QSplat, and MedPart, respectively. Again our method does not generate any
artifacts, whereas MedPart results in several noticeable artifacts (highlighted splats
in Figure 7.8c).

Figure 7.9 shows the close-up of different renderings of the Armadillo obtained
from QSplat and TLTree at different point position quantization accuracies (11, 13,
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Figure 7.7: Result of rendering from a two-layer balanced representation (TLTree
representation) of the Hand model. This can be compared with the rendering result
in Figure 6.6b.

(a) TLTree, 13 bits (b) QSplat, 13 bits (c) MedPart, 16 bits

Figure 7.8: Chinese Dragon renderings respectively obtained from (a) two-layer
representation, TLTree, (b) QSplat, and (c) MedPart. Major artifacts in (c) are high-
lighted for better visibility.

and 16 bits). It can be seen that the rendering quality of TLTree is comparable to or
better than that of QSplat, whereas QSplat fails to appropriately restore parts of the
original surface (highlighted splats in Figure 7.9a). Our experience with different
models shows that at the same quantization accuracy our method better represents
sharp edges than does QSplat. Moreover, our method does not generate any disorder
in any quantization precision, though the rendering quality degrades to some extent
at lower accuracies (9 and 10 bits).

Table 7.2 shows some of the statistics for different Chinese Dragon representa-
tions obtained from the QSplat, MedPart, and TLTree balancing approach. Again,
the quantization error statistics (mean, standard deviation, and maximum error) are
calculated from the difference in (the Euclidean distance of) the reconstructed and
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(a) QSplat, 13 bits (b) TLTree, 11 bits (c) TLTree, 13 bits (d) TLTree, 16 bits (e) TLTree, 16 bits

Figure 7.9: Close-up of the Armadillo renderings obtained from QSplat and TLTree
representations at different quantization accuracies.

Table 7.2: Accuracy and compactness of TLTree versus QSplat and simple median-
based balancing, MedPart, for Chinese Dragon.

Parameters Quantization Error Statistics File Size
Method

g fmt
q Mean Std Dev Max Size Save bpp(bits) (KB) (%)

QSplat - 4 13 0.0155 0.0077 1.2198 23,248 - 52.76
MedPart - 4 16 0.0093 0.0061 2.0812 17,513 25 39.74

TLTree

256 4 9 0.0590 0.0284 0.7103 11,034 53 25.03
256 4 11 0.0309 0.0147 0.3743 12,211 47 27.71
256 4 13 0.0188 0.0088 0.2816 13,388 42 30.38
256 4 16 0.0100 0.0047 0.1878 15,147 35 34.37
64 8 9 0.0599 0.0289 0.8240 10,892 53 24.71

Number of vertices: 3,609,455 g : Grouping factor
Avg sampling distance: 0.1195 q : Pos quantization accuracy

fmt : Main tree branch factor
bpp : Number of bits per point

Table 7.3: Preprocessing time of our method, two-layer tree structure, versus QSplat
and simple median-based balancing approach.

Model Preprocessing Time (Seconds)
Armadillo Blade Chinese Dragon

Method g (172,974) (879,712) (3,609,455)

QSplat - 0.457 2.325 9.520
MedPart - 1.702 9.282 60.271

TLTree
16 3.753 12.651 78.671
64 1.766 10.838 47.016
256 1.409 8.000 34.841

the original point positions. The maximum error in simple median-based balancing,
MedPart, is about 18 times larger than the average sampling distance, even with 16
bits quantization accuracy. This significant error is the source of some noticeable
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rendering artifacts, presented in Figures 7.6 and 7.8c. In contrast, our approach,
TLTree, leads to smaller maximum error even with lowest quantization accuracy.
As a result, no significant distortion is observable in the rendering results, while
we can achieve file sizes that are more than 50 percent smaller than those of QS-
plat (see Saving column in Table 7.2) with compactness as low as around 25 bits
per point position and normal. To the best of our knowledge this is lower than
the values reported in other representations (see [43, 17, 44]), whereas we believe
that our method - and in general relative hierarchical quantization - leads to better
rendering results than absolute quantizing to the sampling distance used in those
representations. Since in our hierarchical quantization point positions are estimated
at accuracies lower than the sampling distance (see Mean column of Table 7.2),
rendering splats better resemble the original 3D surface of the object.

The complexity of our equi-partitioning algorithm, Algorithm 4, is O(|V |+|E|)
where |V | = n and |E| are the total number of vertices and edges, respectively.
In the current implementation, we sort vertices along with the splitting dimension
to find their median. As a result, the complexity of building the median-based
balanced tree is O(n2 log n), and the complexity of building the whole two-layer
balanced hierarchy is O(n+|E|+N ∗(N logN+f 2 log f)) where f is the grouping
factor and N = n/f is the number of groups or subtrees. On the other hand, the
complexity of creating an imbalanced QSplat tree is O(n log n). This means that the
complexity of the off-line preprocessing phase for creating the two-layer structure
stands somewhere between QSplat and MedPart Algorithms. In practice, as shown
in Table 7.3, the preprocessing time of the two-layer structure, TLTree, falls below
that of the MedPart if the grouping factor f is large enough to affect the whole
processing time. It is possible to improve the preprocessing time of both MedPart

and TLTree by using a subset of vertices, using a linear-time selection algorithm
[30], or using both, to find the median. It is expected that these modifications bring
the preprocessing time of our algorithms close to that of the QSplat independent of
the number of vertices.

Our rendering is optimized for progressive visualization with a rendering speed
comparable to that of QSplat. However, since our representation divides vertices
into approximately same size groups, much like to the layered representation in
[43], which divides the model into approximately equal-size chunks of points, the
OpenGL Vertex Buffer Object extension could be used to achieve much faster ren-
dering speeds.
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Chapter 8

Interactive Visualization of
Animated Point-based 3D Objects

Traditionally, PBR techniques have mostly been used in modeling and rendering of
the surface (or sometimes the volume) of still 3D objects. Generalizing this notion,
a moving or animated 3D object can be described as a sequence of sampled, object-
centered representations of the 3D object over time, rather like a 2D movie can be
considered a sequence of sampled (digital) 2D projections. In this representation
each set of samples having the same time index collectively describe the 3D ob-
ject (surface) pose and properties at that specific time index. These representations
can be obtained from a wide variety of sources and techniques. For example, such
4D dynamic descriptions can be obtained by sampling analytical object representa-
tions [23], directly reconstructed from multi-view video recordings [100], obtained
from the data captured by medical imaging devices, or generated by simulating the
dynamic behavior of the object using some 3D object deformation models. Having
such spatio-temporal 4D representations, it would be very interesting to apply inter-
active, multi-resolution PBR techniques to the 4D space to simultaneously provide
the user with conventional 3D interactions (fly-through, rotating, zooming, panning,
and so on), as well as standard motion controls (play-forward, play-back, pause,
slow-motion, and so on) on live moving objects. Such spatio-temporally interac-
tive environments can be beneficial in many application areas, including medical
or educational applications, especially when it is necessary to study an object, for
example a body organ, in action. It can be very attractive in 3D computer games
and graphics applications, as well.

In this chapter, assuming that the spatio-temporal sampled description of the
object is available or can be generated, we focus on establishing an environment

106



for interactive, multi-resolution rendering of the object over space and time. This
extension is achieved through deploying the MSTree structure introduced in the
previous chapter to the case of spatio-temporal samples of moving 3D objects. We
also introduce an improved hierarchical quantization scheme based on a hierar-
chy of hypercubes so that the position and time index of the samples at each level
are simultaneously encoded in a compact representation. The implicit, balanced
representation, combined with dense hierarchical encoding, results in a compact
representation of the moving model for a fairly long sequence of 3D frames where
each frame is composed of several thousands of 3D samples. We can also achieve
interactive frame rates and quality rendering of such large models on commodity
desktop or mobile systems.

8.1 Using MSTree in Balanced, Hierarchical Repre-
sentation of Animated 3D Objects

Interpreting samples’ position and their properties, namely intensity/color, normal,
and so on, as multidimensional tuples within a hyperspace suggests the possibil-
ity of extending the techniques of hierarchical organization of 3-dimensional points
(see Section 6.1) to multidimensional data. Such a general scheme has the ad-
vantage of encapsulating all sample properties together and is expected to result
in a dense representation of the object. However, in practice, due to little depen-
dency between geometrical properties of samples, namely the position of samples,
and other sample properties, namely color, normal, illumination, and so on, these
multi-dimensional tuples form a very sparse set within the high-dimensional hyper-
space. This makes it difficult to apply efficient clustering/dividing techniques on
them during the multi-dimensional break-down process. On the contrary, there is
a high correlation between sample properties, geometrical or visual, over consecu-
tive time intervals (frames) which can be used in encoding sampled representation
of the moving objects. Specifically, the sample’s position and its time index can be
efficiently encoded together within the 4-dimensional spatio-temporal space with
little or no effect on visual quality of the moving object. Nevertheless, such a gen-
eralization often introduces additional challenges to both the preprocessing and the
rendering phases. For example, some structures such as QSplat are optimized for
a 2-manifold 3D surface (a maximum of 4 children are allowed for each internal
node), and some others such as the compact representation of Botsch et. al. [18]
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are mostly efficient for three dimensions or fewer. Moreover, we face the problem
of mapping 4D samples to the 3D/2D space during the rendering. In this regard, the
representation should efficiently support some appropriate time-culling techniques
to realize smooth object movements across consecutive time frames.

MSTree is a simple and flexible structure that can be deployed to address these
challenges and provide a compact and efficient representation for interactive ren-
dering of sampled animated 3D objects. Here we explain how the bi-partitioning

and combining steps of Algorithm 1 in Chapter 7 can be customized to successfully
deploy the MSTree structure to the case of these 4D spatio-temporal samples.

8.1.1 Embedding the Time Component within the Tree-Structure

Here we assume that samples are originally in form of (x, y, z, t) where (x, y, z)

is the spatial position of the sample, and t is its time index or frame number, and
that they are accompanied with a normal and some optional attributes such as color,
material and so on. Moreover, we assume that each sample has a radius r which is
calculated based on its spatial distance to the neighboring samples in the same time
frame. The radius is conservatively calculated to be large enough so that the surface
of the object is appropriately covered by samples in each frame.

The bi-partitioning scheme we use here, Algorithm 6, is a simple median-based
approach [44]. As explained in Chapter 7, for the case of 3D spatial data such a
simple scheme may lead to some serious rendering artifacts, due to inappropriate
spatial classification of the points that are not close enough to each other. In the
case of 4D spatio-temporal samples, and assuming there are small object move-
ments between the consecutive frames, the spatial density of the whole sample set
increases, resulting in a reduced probability of inappropriate classification. Never-

Algorithm 6: Median-based bi-partitioning of 4D spatio-temporal samples.

(P1, P2) = bi-partition4D(P )
Input: Set of samples P
Output: Partitions P1 and P2

{dx, dy, dz, dt} = bounding hyper-box of P ;1

d = max{dx, dy, dz, dt}; // the longest dimension2

m = median of samples on longest dimension d;3

P1 = {p ∈ P∥p(d) ≤ m};4

P2 = P − P1;5

return (P1, P2);6
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theless, the simple median-based approach may still result in some incorrect classi-
fications which are treated using a two-level relative quantization (see Section 8.2).
These makes Algorithm 6 good enough for the purpose of our application; however,
in general, this algorithm could be replaced with other, possibly more sophisticated
clustering techniques.

The 3D (moving) objects are usually sampled at different densities and rates.
For this reason, we initially adjust the time index t of the samples to equalize the
effect of the spatial and temporal components in the partitioning process. This is
done by multiplying the time index t of samples by a nominal time interval or time
span value ts. This nominal value is calculated proportional to the spatial bonding
box of all samples of all frames together and the spatial sampling density of the
object surface. The bi-partition4D algorithm uses the adjusted time indices of the
samples in calculating the bounding hyper-box of the input samples. The set of
input samples P is divided into two parts P1 and P2 along the longest dimension
of the bounding hyper-box. Assuming that the median is the average of the two
middle numbers for an even number of samples, Algorithm 6 fulfills the assumption
that P1 will either be of the same size as or will get only one more sample than
P2. This simple bi-partitioning scheme implicitly incorporates the time index or
frame number of samples into tree structure whenever samples are divided along
the (adjusted) time dimension.

8.1.2 Calculating the Internal Nodes of the Tree-Structure

Procedure Combine in Algorithm 1 builds the internal nodes in upper levels (lower
resolutions) of the tree. Our implementation of Combine calculates the parent
spatio-temporal position Cp(xp, yp, yp, tp) as the center of the tightest hypercube
containing the hypercubes of all of its children Ci(xi, yi, zi, ti). Figure 8.1 shows
a 2D illustration of these calculations. Assuming di is the dimension of the hyper-
cube of child Ci (for the tree leaves di is simply the dimension of a cube with the
same diameter as the sample diameter 2r), the lower bound and the upper bound of
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Figure 8.1: Creating parent nodes from lower-level children.

the occupied space by all children are calculated as:

xlb = min
i
(xi − di/2), xub = max

i
(xi + di/2)

ylb = min
i
(yi − di/2), yub = max

i
(yi + di/2)

zlb = min
i
(zi − di/2), zub = max

i
(zi + di/2)

tlb = min
i
(ti − di/2), tub = max

i
(ti + di/2) (8.1)

From the above equation the center of the parent node is calculated as:

xp =
(xub + xlb)

2
, yp =

(yub + ylb)

2

zp =
(zub + zlb)

2
, tp =

(tub + tlb)

2
(8.2)

and the parent hypercube dimension dp is calculated as:

dp = max(xub − xlb, yub − ylb, zub − zlb, tub − tlb) (8.3)

Finally, the parent radius rp is computed as the radius of the circumscribed hy-
persphere of its hypercube. In other words, rp is simply half of the diameter of a
hypercube of dimension dp. The parent node, which is obtained through Equations
8.2 and 8.3, not only spatially contains all of its children but also covers their time
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span. This helps to appropriately filter out those samples that are not crossed by the
desired (time) frame during the rendering phase (see Section 8.3). Of course, the
parent radius may be spatially overestimated if the time frames of its children are
not close enough to each other. However, successive breakdowns across the time
dimension rapidly dissolves such spatially oversized estimations on finer resolution
levels. The bounding boxes (spheres) that are calculated using the above equations
are often tighter than those that are obtained by the averaging method used in QS-
plat [85] to build the bounding spheres. Thus, this method results in more accurate
hierarchical quantization for the same quantization bit rate (see Section 8.5 for some
comparative results).

8.2 Hierarchy Quantization and Encoding of Spatio-
Temporal Data

Extending the 3D hierarchical encoding [85] to 4D space, here we explain how
the children’s spatio-temporal position and dimension (radius) are quantized rela-
tive to those of their parent. Recall from the previous section that the hypercubes
of children are completely contained in the hypercube of their parent. Assuming
(δx, δy, δz, δt) are the components of the distance vector

−−→
CpCi, all of these com-

ponents as well as the child dimension dc are smaller than or equal to the parent
hypercube dimension dp. Hence, all child components can be expressed as a frac-
tion of the parent dimension where often a subset of different combinations of these
components are valid for a given quantization precision. To get the most compres-
sion out of this, the valid combinations are precalculated, indexed, and stored in
a look-up table. Then, the quantization task is reduced to finding the index of a
valid combination that best resembles the relative position and dimension of a child
with respect to those of its parent. For simplicity we call this the STPR (spatio-
temporal position and radius/dimension) index. Again, note that quantizing the
children’s components relative to the parent dimension (instead of parent radius
[85]) increases the quantization accuracy. We also found that this method is more
numerically stable during our implementation and experiments.

Considering that the balanced MSTree can be represented and stored in an im-
plicit form, there is no need to store any information related to the tree structure
and the whole memory space dedicated to a node can be used to store sample data.
Here, as depicted in Figure 8.2, we have considered a size of at least 4 bytes or
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(a) Order of storing tree on a disk

(b) Internal node layout

(c) Leaf node layout

Figure 8.2: Storing order and node layout of multi-section tree.

32 bits for each node. 16 bits of these are used to store the STPR index. With 16
bits, excluding the invalid combinations, we are able to quantize the ratio of the
children’s components to the parent’s dimension to 10 values ranging from 1/10 to
10/10 = 1. To obtain further quantization accuracy, we switch to 3D hierarchical
quantization whenever the whole spatial 3D sphere of the parent node falls within
the nominal time interval ts. In other words, we switch to 3D hierarchical quan-
tization whenever the time span of the parent node P (xp, yp, zp, tp) does not cross
two or more time intervals (see Figure 8.3). Switching to 3D hierarchical encoding,
16 bits are good enough to quantize the spatial position and dimension of a chil-
dren relative to its parent dimension to 22 values ranging from 1/22 to 22/22 = 1.
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Figure 8.3: Switching between 3D and 4D relative, hierarchical quantization.

This considerably increases the accuracy of representation, which in turn results in
improved, quality rendering of the object surface at finer resolutions. As shown in
Figures 8.2b and 8.2c, one bit is used to show if hierarchical encoding is in 3D or
4D.

Normals are quantized based on repeated tessellation of a unit sphere into spher-
ical triangles [18]. For the internal nodes 13 bits are devoted to normal index. Start-
ing with a regular spherical octahedron and after 6 tessellation levels we will have
2 ∗ 46 = 213 spherical triangles, which can be encoded in 13 bits. The other 2
bits are used to quantize the width of the normal cone, which is used for back-face
culling, to four values 1/16, 4/16, 9/16, and 16/16 = 1. According to [85], on a typical
3D data set, this level of quantization is sufficient to discard over 90 percent of the
nodes that would be culled using exact normal cone widths. However, at the mo-
ment, we have not tested whether the same claim can be made for the case of 4D
spatio-temporal data sets. For the leaf nodes, normals are quantized using 14 bits.
This time we start tessellation with a spherical tetrahedron and proceed to 7 levels
which gives us 47 = 214 spherical triangles.

Depending on the data set, tree nodes could have some optional attributes such
as color, material properties, and so on. These attributes can be quantized accord-
ingly and preferably in multiples of byte for easier and more efficient decoding.

Recalling the challenges of appropriate equi-partitioning (see Section 7.2 and
also [10]), some samples (usually very few) may not be appropriately clustered,
causing significant quantization error even with the improved quantization scheme.
This quantization error shows itself in the form of rendering artifacts in the render-
ing stage. To address this problem, here we test the leaf nodes for the precision
of the quantized samples with respect to the original ones. We calculate the Eu-
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clidean distance between the original and quantized sample, and use the ratio of
this distance to the sample radius to estimate the quantization accuracy. In case
of significant difference, which is decided using a threshold value, we add a sec-
ond level of quantization assuring that the sample’s position and radius are accu-
rate enough when restored and rendered. The STPR indices of these few doubly-
quantized leaves are stored in a series of lists right after the tree (see Figure 8.2a).
For these samples, we need two additional bytes (16 bits) to store this extra infor-
mation.

The whole balanced hierarchy is written into the disk starting from the root and
following a breadth-first order. As already mentioned, we do not need to store any
explicit addressing or label the nodes as internal node or leaf. The tree branching
factor and the total number of samples are enough to determine the address of chil-
dren and also distinguishing the leaves from the internal nodes (see Section 8.3 for
details). This results in a compact representation of the spatio-temporal data sets
with memory usage of about 5.5 bytes per 4D sample with increased quantization
accuracy compared to other representations. The amount of the memory usage may
vary depending on the branching factor, number of samples and length of sequence.

8.3 Interactive, Animated Rendering of Restored 3D
Model

Algorithm 7 shows the main steps in multi-resolution rendering of spatio-temporal
samples. Starting from the root, and following an adaptive depth-first tree traversal
method, the algorithm recursively decodes the lower-level children relative to their
parent. Figure 8.4 shows a pictorial description of this process. For each child C of
parent P , BC , LC , SC , and OC are calculated as defined and explained in Section
7.1.2. Having the child offset, OC , the algorithm can extract the child information
including the STPR, normal, and normal cone indices. Depending on the type of
relative encoding, 3D or 4D, which can be determined by examining the leading
bit of each node, the algorithm uses the corresponding 3D or 4D look-up table to
find the spatial or spatio-temporal position and radius of C relative to those of P .
In case of 3D encoding, the temporal position of C is set as the temporal position
of its parent P (Steps 4 to 8 in Algorithm 7). Similarly, the normal index is used
to find the sample normal from the normals’ look-up table(s) and the normal cone
index is used to calculate the width of the normal cone.
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Algorithm 7 applies different conventional culling techniques such as frustum
culling [90] and back-face culling [67] to discard most of those samples that are
not visible to the user [85]. In addition, we have the special time culling technique
(Steps 9 and 10) which is, in fact, the main step that enables animated rendering
of a dynamic 3D object over time. For time culling, we examine whether the time

Algorithm 7: Multi-section tree traversal and progressive rendering of point-
based animated 3D objects.

TraverseMSTree4D(P (xp, yp, zp, tp, rp), NP , LP , SP , l)
Input: P (xp, yp, zp, tp, rp): Parent node,

BP : Number of leaves beneath P ,
LP : Number of leaves in the left hand side of P ,
SP : Number of siblings in the left hand side of P ,
l: Current level

Determine number of children of P ;1

for (each child C of P ) do2

Determine BC , LC , SC , and OC ;3

// Determine spatio-temporal position and radius of C
if encoding is 4D then4

Determine xc, yc, zc, tc, and rc of C;5

else6

Determine xc, yc, zc, and rc of C;7

Set tc as of the parent node P ;8

// Check for different culling types
if C does not cross the current time span then9

Continue; // time culling10

if C is out of the frustum then11

Continue; // frustum culling12

if C does not face the viewer then13

Continue; // back-face culling14

// check if we recurse
if C is a leaf then15

if time of C is within the current time interval then16

Draw C;17

else if C is too small OR is smaller than current splat size then18

Draw C;19

else20

TraverseMSTree4D(C,BC , LC , SC , l + 1);21
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Figure 8.4: Hierarchical rendering of a dynamic 3D model. The adaptive deepening
threshold regulates both spatial and temporal details.

span of the given node has any overlap with the current animation time interval
ta ± ts/2.0. The node (and all its underneath subtree) is culled if it satisfies the
following condition:

(ta +
ts
2.0

< tc − rc) OR (tc + rc < ta −
ts

2.0f
) (8.4)

After various culling steps, the algorithm checks whether it is necessary to re-
curse or whether the node should be drawn immediately. A splat is drawn if the
node is either a leaf or the projected size of the splat on display screen is so small
that no more quality is gained with looking further into the details of the lower
levels. Checking for a leaf (Step 15) is as simple as testing whether or not BC is
equal to 1. At the leaf level another time-related refinement is performed based on
the time position tc of the sample alone, and regardless of the length of the sam-
ple radius rc. This filters out the overlapping samples from neighboring frames
which according to our experience leads to considerable improvement in the ren-
dering of a single frame and also generates a smooth, noiseless transition among
the consecutive frames. If the node is not a leaf (BC > 1), then the approximate
size of the corresponding splat on the display screen is checked; and if it is too
small (i.e. smaller than the pixel size), or is smaller than an adaptive threshold, the
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Figure 8.5: Streaming and rendering large and long dynamic sequences.

algorithm stops further deepening and draws the sample right away. The threshold
is adapted proportional to the time needed for processing and drawing individual
samples to achieve the desired frame rate. In fact, even though a depth-first tree
traversal scheme is applied, the level of deepening is decided by different environ-
mental conditions, most of them succinctly reflected by the value of the adaptive
threshold. The algorithm goes into further details (Step 21) only if none of all
the above-mentioned conditions are satisfied. Note that the threshold value con-
currently regulates both spatial and temporal details (see Figure 8.4 again) which
makes this structure very efficient in streaming and rendering large dynamic mod-
els.

The animation time ta is a parameter that is either automatically incremented
by the application on a regular time interval or controlled by a user. The first mode
is called playing mode and the latter one is called navigation mode. A user is
able to switch between these two modes by pushing a play/pause button similar
to a conventional video player application. In navigation mode the user is able to
increase or decrease the current frame number, or jump to a specific frame including
the first and the last frame of the sequence. The user is also able to do all the
conventional spatial navigations, such as panning, zooming, rotating, spinning, and
so forth, either in playing or in navigation mode.
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Figure 8.6: Circular management of device RAM for streaming and rendering large
sequences.

8.4 An Architecture for Streaming Large Dynamic
Point Clouds

For real time streaming of dynamic point clouds we need to make efficient updates
to the data stored on RAM based on the current viewing location. Real time vi-
sualization coupled with real time streaming can be enabled by storing a list of
consecutive data blocks or fragments in memory that contains (tc − T ) to (tc + T ),
where tc is the current frame index and T is determined based on the capacity of
the device RAM. As depicted in Figure 8.5, each of these fragments contains a bal-
anced tree built on a set of successive frames, where adjacent fragments may have
one or more boundary frames in common. These overlapping frames aid in the
smooth transition between successive fragments in playing mode.

The device RAM itself is managed in a “circular” way (see Figure 8.6). When
the sequence is playing forward, the next right-hand-side fragment is read into
memory and replaces the fragment with the smallest frame number. Conversely,
when the sequence is playing backward the next left-hand-side fragment is read
and substituted for the fragment with the largest frame index. Note that because the
data blocks are spatio-temporally coded, the actual information loaded into mem-
ory does not need to be the entire body of information as in the case of loading a
sequence of video frames. In fact, as already explained, depending on the amount
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(a) (b) (c) (d)

Figure 8.7: The 3D models that are used in calculating statistics in Table 8.1: (a)
Stanford Bunny, (b) Armadillo, (c) Hand, and (d) Chinese Dragon.

Table 8.1: Comparing accuracy of cube-based hierarchical quantization (our
method) versus the sphere-based method used in QSplat.

3D Model
Bunny Armadillo Hand Dragon

Number of Samples 34834 172974 327323 3609600
Mean Sampling Distance 0.00147 0.52391 0.01232 0.11552

Spherical Encoding
Mean 0.00022 0.07084 0.00168 0.01552
Std Dev 0.00011 0.03330 0.00078 0.00772
Max 0.00587 1.82827 0.02604 1.21989

Cubic Encoding
Mean 0.00014 0.04794 0.00114 0.01102
Std Dev 0.00005 0.01777 0.00043 0.00436
Max 0.00176 0.85422 0.01423 0.65409

Mean Error Ratio (%) 60 68 68 71

of the device RAM and/or the channel bandwidth, the level of spatial or temporal
details can be controlled using the adaptive threshold. Therefore, the user will be
able to get a general sense of the motion of the object in real time even with limited
resources, but should wait for transmission and loading of all data if he/she wants
to see all details.

8.5 Experimental Results on Animated Point-based
Rendering

Table 8.1 shows some quantization error statistics calculated based on two different
quantization schemes: the sphere-based hierarchical quantization used in QSplat,
and the cube-based hierarchical method we have used in our implementation. The
statistics are calculated for four different still 3D models shown in Figure 8.7. Both
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Table 8.2: Compactness of the representation for some animated 3D meshes of
different length and different number of samples per frame.

Model Number Total Number Number of File Size Number of Bits
Name of Frames of Samples Samples per Frame (Bytes) per 4D Sample

Bee 72 7,551,216 104,878 41,091,284 43.53
Crane 48 7,680,096 160,002 41,301,576 43.02
March 250 2,500,500 10,002 14,573,072 46.62
Samba 175 6,978,650 39878 38,811,660 44.49

Average 44.42

methods are applied to the same quadtree structure and the same number of bits
(13 bits) are used for relative quantization of the spatial position. The statistics
(mean, standard deviation, and maximum error) are calculated from the differences
(in terms of the Euclidean distance) in the original (non-quantized) points position,
and their corresponding position which is reconstructed from the quantized repre-
sentation. It can be seen that for all four models of different topological complexity,
the cubic method results in a more accurate representation through an increase of
some 30 to 40 percent in quantization precision (see the last row of Table 8.1).
More importantly, during the experiments we noticed that the cubic method is nu-
merically more stable, especially in the boundary conditions and for the case of 4D
samples.

Figures 8.8 and 8.9 show a series of rendering results for animated 3D objects
composed of spatio-temporal 4D samples in navigation mode and playing mode,
respectively. The user switches between these two modes by simply clicking on a
play/pause button. In the navigation mode, when the playing is paused, the user
is able to move the playing head to the previous, next, first, last or any other spe-
cific frame. In addition, the user is able to perform all of the spatial interactions
such as rotating, zooming, panning, and spinning on the single frame which is nav-
igated to or paused on. Figure 8.8 shows some of these capabilities for a mesh
sequence called Crane. This sequence is composed of 48 frames with, on the aver-
age, 160,002 samples in each frame and 7,680,096 samples in total (see also Table
8.2).

In playing mode, where the frames of the sequence are rendered one-by-one
based on a regular time interval, the user is able to apply the spatial interactions at
the same time as the object moves. This enables interactively watching the desired
parts of the sequence (the moving object) from closer distances, different perspec-
tives, and viewing fields. Figure 8.9 shows some snapshots of applying some spatial
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(a) First frame (b) Frame 26 (c) Frame 27

(d) Frame 27, Rotating (e) Frame 27, Zooming (f) Frame 28 (g) Last frame

Figure 8.8: Rendering in navigation (or pause) mode. Navigation mode provides
the possibility of going to the next, previous, first, or last frame, and also allows for
spatial interaction (rotating, panning, zooming, and so on) with the frame that user
is navigated to/paused on.

(a) (b) (c) (d)

Figure 8.9: Rendering in playing mode with possibility of simultaneous application
of all spatial interactions such as panning, zooming, rotating, and spinning on the
moving object.

navigations on the Bee sequence in playing mode. The Bee sequence is composed
of 72 frames, with 104,878 samples in each frame. As perceived, the user is able to
watch the flying bee from different angles and distances whereas in the default posi-
tion and orientation the bee is visible to the user only from the upper side throughout
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(a) March (b) Samba

Figure 8.10: Front and back face of the first frame of (a) March and (b) Samba
sequences.

the sequence.
Table 8.2 summarizes some statistics related to the size and compactness of four

sequences of different length and different number of samples per frame. These in-
clude the Bee, Crane, March, and Samba models. The front and back side of the
first frame of March and Samba are shown in Figure 8.10. The file size (or more
accurately the number of bits per 4D sample) depends on different parameters in-
cluding the branching factor of MSTree and also the number of frames and number
of samples per frame. The values in Table 8.2 are calculated based on using a
MSTree structure of branching factor 8. For this representation, on the average, we
need about 44 bits per sample to encode the spatio-temporal position, radius, and
normal of samples at all resolutions.

We are able to render all the sequences in Table 8.2 in interactive frame rates.
Specifically, we are able to play the Crane sequence, which has the highest number
of samples per frame among these sets, at 20 to 30 frames per second (depending on
the rendering primitive) on commodity laptops and desktop machines. It should be
clarified that the adaptive, multi-resolution rendering technique used in Algorithm
7 allows interactive frame rates to be achieved for models of higher number of
samples per frame and on less powerful machines but at lower resolutions over
space and time.
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Part III

Interactive Manipulation of Sampled
Object Representations
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Chapter 9

3D Interaction and Manipulation

Along with the advances in stereoscopic display technologies it is also necessary
to evolve the current 2D/3D interaction techniques and devices to work with these
new attractive virtual 3D environments. Among different interactions, the abil-
ity to point to the targets (objects or other GUI components) using devices such
as a mouse is probably the most common and appealing method of interaction.
This ability is especially necessary and useful for working in a graphics environ-
ment [33]. For this reason, providing the possibility of pointing to any arbitrary
voxel of the 3D space is one of the primary requirements of any application func-
tioning in 3D space. In this part we study 3D interaction and manipulation within
a virtual stereoscopic 3D space. In this regard, we begin this chapter by briefly
reviewing some basic concepts and techniques of 3D interaction and manipulation.
Then in the next chapter we study a stereo-based 3D cursor, and its capabilities and
weaknesses as a generic pointing tool within a stereoscopic 3D space. We also dis-
cuss the pointing accuracy of the stereo-based 3D cursor with regard to the optimal
sampling model proposed and discussed in Part I.

9.1 Three-Dimensional Pointing and Interaction Tech-
niques

Several efforts have been made over the years to simplify interaction with 3D ap-
plication environments. On one hand, benefiting from different mechanical, elec-
tromagnetic, optical, acoustic, and inertial sensors and technologies, several kinds
of 3D input devices have been introduced to facilitate working with 3D models and
applications [47, 40]. On the other hand, several task-specific or general-purpose
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interaction techniques have been developed [33] which in combination with the
enhanced 3D input devices and technologies provide an easier, more natural way
of handling tasks within a 3D environment. In general, these interactions can be
classified into three different task domains [40, 48]:

• Object selection and manipulation

• Viewpoint manipulation (navigation and travel), and

• Application (system) control

Pointing to the targets (objects or other application components) may be considered
one of the most widely used interaction techniques in GUIs; it is a prerequisite for
performing many tasks in each of the above-mentioned task domains. A pointing
task is usually achieved by manipulation of a 2D/3D cursor position and/or orien-
tation using an appropriate input device.

A chronological survey of several 3D pointing techniques and 3D cursor con-
cepts is presented in [33]. These include Skitters and Jacks (1987), Ray casting
(1994), Spotlight (1994), Virtual hand (1995) and many other older or recent tech-
niques. According to the survey, all of these methods are based mainly on a virtual
hand, ray, or spot-light technique. Following this classification, a more formal defi-
nition for a 3D cursor is presented. The definition is based on two assumptions and
a set of requirements and constraints that together have to be satisfied by a typical
3D cursor as follows.

• Assumptions:

– The pointing device has 6 or more (at least 3 translational and 3 rota-
tional) degrees of freedom (DOF).

– The selectable target has to be visible to the user.

• Requirements and constraints:

– Visual presentation - the 3D cursor has a graphical presentation which
makes its position and orientation observable to the user.

– Behavior - the movements of the 3D cursor are controllable by the user
using an appropriate input device.

– Constraints - the 3D cursor reaches all the positions on the (3D) graph-
ical display and is able to touch only one target at a given instant.
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Based on this definition, two main types of 3D cursors are considered for 3D
UIs: the 3D point cursor and the 3D line cursor. These two main types satisfy
all above-mentioned requirements, and all aforementioned 3D pointing techniques
can be derived from them [33]. In fact, the other 3D pointing techniques may be
considered to be the result of exploiting some virtual enhancements to improve the
performance of the 3D pointing (or the 3D target acquisition time). Here, a virtual
enhancement means changing the values of one or more parameters effective in
the 3D target acquisition time according to the 3D Fitts’ law. The 3D Fitts’ law
formulates the target acquisition time (or the average movement time) to select a
target. The law states that the target acquisition time or the average movement time

(MT ) to select a target depends on the distance to move (A), the target size (W :
width, H: height, and D: depth of the target), and also the viewing angle (θ) at
which the target is seen by the user through the following equation:

MT ≈ 56 + 508 log2

√fW (θ)

(
A

W

)2

+
1

92

(
A

H

)2

+ fD(θ)

(
A

D

)2

+ 1


(9.1)

where fW (0◦) = 0.211, fW (90◦) = 0.717, fW (45◦) = 0.242, fD(0◦) = 0.194,
fD(90

◦) = 0.312, and fD(45
◦) = 0.147. In this regard, reducing the movement dis-

tance A, increasing the target size (or equivalently the cursor size), or a combination
of these changes can be considered as examples of such virtual enhancements.

9.2 3D Pointing and Interaction within the Stereo-
scopic 3D space

The review in [33] does not refer to the interaction techniques and 3D pointing in
a stereoscopic 3D environment; however, the same concepts and principles can be
applied to the case of stereo. 3D pointing in stereo space can be achieved through
using a (multiview) stereo cursor. Such a cursor can be created by providing two or
more views of an ordinary 2D cursor at specific distances or disparities. The cursor
depths can be controlled by adjusting the amount of the disparity. This enables the
user to point to any arbitrary 3D location inside the virtual 3D space projected by
a stereoscopic 3D display. This simple technique has been known for years and
has already been applied in some stereoscopic 3D visualization and manipulation
applications and GUIs. For example, OrthoEngine 3D Stereo offers a 3D stereo

126



cursor among its advanced tools for the 3D viewing and manipulation of aerial pic-
tures or satellite imagery data [2]. BioMedCache as an application for molecular
design also offers stereoscopic 3D visualization and 3D stereo cursor [1]. In [86],
authors present their success in modifying the functionality of X Window System
with the purpose of constructing generic tools for displaying 3D-stereoscopic con-
tent. In this context, they refer to the implementation of a 3D pointer through the
creation of a shadow pointer which follows the motion of the real pointer in both
fields of the stereo window. In their implementation the depth of the 3D cursor
is controlled by automatic adjustment of the disparity of the shadow pointer with
respect to the real one. More recently, the prototype of a simultaneous 2D/3D GUI
for (auto)stereoscopic displays is introduced that includes implementation of a 3D
stereo cursor. The stereo cursor is enabled upon the entry of the mouse pointer
into the 3D GUI area [97]. Here again the disparity is automatically adjusted to
keep the virtual 3D cursor in touch with the surface of the 3D objects and 3D GUI
components.

In the aforementioned efforts, the stereo cursor has usually been implemented
as a by-product of the stereoscopic 3D visualization systems, and less attention
has been paid to its capabilities as a generic replacement of the 2D cursor in the
stereoscopic 3D space. In the next chapter, Chapter 10, we study the problem of 3D
pointing in a stereoscopic 3D environment with a focus on different aspects of the
stereo 3D cursor itself [8, 9]. Our stereo cursor implementation essentially follows
the same principles applied by others to form the 3D cursor. However, it supports
two disparity adjustment modes (manual and automatic) which in fact enables us to
show that such a simple technique satisfies all of the requirements of an abstract 3D
cursor. Furthermore, we show how the scene stereo content may be used to virtually
enhance the performance of the technique according to the 3D Fitts’ law. We have
also conducted user tests for comparing the effectuality of 3D cursor to the use of
an ordinary mouse cursor on a conventional 2D screen.
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Chapter 10

Stereo 3D Cursor: A Generic
Method of Interaction within a
Stereoscopic 3D Space

The stereo-based 3D cursor is a 3D pointing technique that has usually been imple-
mented as a by-product of stereoscopic 3D visualization (and/or 3D object manipu-
lation) systems or applications with less attention to the capabilities of the technique
as a generic replacement of a 2D cursor in stereoscopic 3D space. In this chapter
we focus on different aspects of the stereo 3D cursor, hereafter also S3DCursor, and
show how it satisfies the main functionality requirements of an abstract 3D cursor.
We use a multi-view stereo rendering application to evaluate the capability of the
3D versus 2D cursor in manipulating visualized 3D data, and show how the content
of a scene can be used to virtually enhance the simplicity and efficiency of object
selection and pointing tasks within a virtual 3D space. We also discuss some is-
sues such as pointing accuracy and the problems caused by occlusion, and possible
methods of handling these problems. In general, our evaluations suggest the effec-
tiveness of the technique in terms of several factors including detection accuracy,
simplicity of usage, and overall user satisfaction compared to using an ordinary
cursor on a conventional 2D screen.

10.1 Stereo Cursor Implementation

The stereo 3D cursor is obtained by providing replicates of a 2D cursor on two
(binocular) or more (multiview) perspective views of a scene at a specific disparity.
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Figure 10.1: Process of capturing, displaying, and watching stereo images.

The cursor depth can be controlled by adjusting the amount of the disparity between
these replicates. Hence, changing the cursor disparity enables the user to point to
any arbitrary 3D location inside the virtual 3D space projected by a stereoscopic
display.

To examine the applicability and usefulness of the idea we needed a stereo-
scopic 3D environment for interactive 3D multiview rendering and manipulation of
the object. For this purpose, we extended the QSplat rendering engine, which uses
OpenGL as its graphics library, to support rendering multiple views of a 3D ob-
ject. The extension, which is called MVSplat, supports the original QSplat model
representation [85], POP point-polygonal representation [22], and also some of the
balanced representations introduced in Part II. MVSplat enables the user to decide
on the number of cameras (views), the distance between the cameras bxc, and the
amount of horizontal displacement of the views on the display screen bxD (see Fig-
ure 10.1 and also Figure 2.5). The current version assumes parallel configuration
and the same baseline for all cameras. This allows a simplified implementation of
the cameras’ rotation and translation. These movements are applied to a central vir-
tual camera, and then the position and direction of all cameras are set with respect to
this virtual camera. The calculations of cursors’ disparities are also simplified un-
der parallel geometry. The system also supports a special red-blue rendering mode
which offers users the flexibility to use the application on all conventional displays
just by wearing simple anaglyph glasses.
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The stereo cursor is implemented on the top of the MVSplat. Two different dis-
parity adjustment modes are considered for the cursor: manual and automatic. In
the automatic mode the application uses the 3D content of the scene to automati-
cally adjust the disparity of the 2D cursors (the depth of the stereo cursor) so that
the 3D cursor always remains in touch with the surface of the object(s) present in
the scene. The automatic mode is more useful in applications such as 3D games,
where it is often necessary to target the 3D objects already existing in the scene,
and there is usually no need to create new objects. In the manual mode the user
is able to change the depth of the 3D cursor by manually adjusting the disparity
between the left and right cursors. The manual mode is useful when the user wants
to point somewhere other than the visible surface of the 3D object or to adjust the
disparity estimated by a stereo matching algorithm. The latter case in particular can
be used as a cost-effective, accurate method for extracting ground-truth data from
stereo image pairs.

Our implementation does not imply any assumptions about the input pointing
device and fully complies with the current functionality of 2D mice. However,
special input devices, such as the 3D mice currently available, may facilitate the
performance of 3D tasks. Moreover, the disparities are calculated concurrently
with the 3D model rendering process; therefore, it does not impose an extensive
additional computational load on the application. This issue will be completely
resolved by providing a system level support for stereo cursor.

10.1.1 Binocular Implementation

To implement the automatic mode in binocular view, one view, for example the left
one, is considered as the reference view. When the left cursor points at a pixel in the
left view, having the depth information of the pixel (usually available in the depth
buffer) and the camera parameters, the corresponding pixel in the right view (or
the position of the right cursor) can be determined using the basic stereo imaging
formulations as follows.

Considering the OpenGL default perspective projection [51], which implies a
normalization transformation as well, the relationship between the point depth in
the virtual camera coordinate Zc and the depth maintained in the depth buffer Zw

can be stated as:
Zc =

fcdfar
Zw(dfar − fc)− fc

(10.1)

where dfar is the far clipping plane distance and fc is the near clipping plane dis-
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Figure 10.2: Red-blue stereo rendering of the Lucy model with three samples of the
stereo mouse cursor presented at different distances (disparities).

tance or camera focal length. On the other hand, from Equation 2.2 Zc is determined
as:

Zc =
fcbxc

xrc − xlc

=
fcbxc
disp

(10.2)

From 10.1 and 10.2 the amount of the disparity is obtained as:

disparity =
(Zw(dfar − fc)− dfar)bxc

dfar
(10.3)

The disparity calculated in Equation 10.3 should be properly scaled and adjusted
considering the viewport transformation settings and the amount of the views’ dis-
placement bxD.

The automatic disparity adjustment causes the illusion of touching the surface
of the real 3D object so that when the user slides the mouse pointer over the display
screen, the virtual 3D cursor follows the holes or other irregularities on the 3D
object surface. Figure 10.2 shows a red-blue stereo pair of the Lucy model with
three instances of the stereo mouse cursor at different disparities which, in fact,
form three 3D cursors at three different distances from the viewer (readers may
watch this figure in color and using red-blue anaglyph glasses to see the formation
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Figure 10.3: Four-view stereo rendering of the Dragon model with three samples of
stereo cursors on occluded (squares) and non-occluded (circles) areas.

of these 3D cursors at different distances).
Implementing the automatic disparity adjustment over the image/video stereo

pairs implies that an efficient stereo matching algorithm should be incorporated into
the system to find the corresponding projections in the left and right views. Contrary
to the classic stereo matching algorithms, which requires the correspondence for all
pixels to be established, here the correspondence needs to be found only for the
pixel located under the current position of the left (or alternatively right) mouse
cursor. This assumption may lead to finding more efficient algorithms for real-time
applications.

The manual disparity adjustment is simply achieved by allowing the user to
change the amount of the cursor disparities using some appropriate input device
(keyboard or mouse) keys and/or buttons.

10.1.2 Multiview Implementation

The multiview implementation is particularly useful for autostereoscopic multiview
displays. The implementation is essentially similar to the two-view case. Assuming
all cameras are parallel and located on the same baseline at equal distances, all
corresponding projections of a 3D point on the display screen will be located at the
same raster line with the same disparity. As a result, one of the views can again
be considered as a reference for disparity calculations, and the other corresponding
projection can be determined with respect to the reference view.

Although this implementation is pretty simple, it may cause some problems in
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occluded areas. This is because in the autostereoscopic 3D displays the viewer is
only able to see two consecutive views of the scene at a time. As a result, as depicted
in Figure 10.3, the implementation works fine while the corresponding projections,
similar to the instances inside the circles, are visible in all views. The implementa-
tion becomes problematic when corresponding projections fall into occluded areas
in two or more consecutive views. As an example, the reader may observe the
third and the fourth view of the cursors surrounded by squares. When the viewer
moves his/her head to watch the third and the fourth views, the 3D position of the
3D cursor reconstructed from these two cursor views is incorrectly estimated. The
problem could be fixed if each view served as the reference for the next adjacent
view. However, this may lead to the ambiguity in converting the cursor positions to
a unique 3D position. A more advanced algorithm might detect the occluded areas
and hide or highlight the cursor in corresponding views. Upon receiving such a
hint, the user may change the viewpoint or the cursor position to access a specific
point from any desired view.

10.1.3 Stereo Cursor as a Generic 3D-Pointing Technique

In general, the stereo cursor can be considered a 3D pointing technique which sat-
isfies all of the assumptions and requirements of an abstract 3D cursor as follows
(see also Section 9.1).

• It obviously has three translational DOFs, and three rotational DOFs can be
achieved by viewpoint manipulation.

• Although the occlusion problem on autostereoscopic displays may necessi-
tate a further move to grab the target, all visible parts of the scene (all visible
targets) are selectable by the user.

• The cursor has a visual presentation that makes the cursor position observable
to the user. This visual presentation can be used to present the orientation of
the cursor as well.

• The stereo cursor movements are controllable by the user using a conven-
tional mouse; however, more appropriate input devices such as 3D mice may
be adapted for efficiency purposes.

• The stereo cursor is able to reach to all positions in the comfortable viewing
range of the stereoscopic display through appropriate (manual) adjustment of
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the disparity. This is especially important when the user aims to point to an
empty space, for example, for the purpose of creating a new object.

• Finally, since in a stereoscopic 3D space the user only sees the surface of the
opaque objects, (s)he will be able to touch only one target at a time in auto-
matic mode (a priority mechanism may be applied for transparent or translu-
cent objects). In manual mode appropriate visual hints may be implemented
to inform the user of moving the cursor to the physically invisible areas.

Regarding these properties, the stereo cursor can be applied as a general alterna-
tive of 2D cursor in stereo space. Some virtual enhancements may be implemented
to improve the basic functionality of S3DCursor. In fact, automatic disparity adjust-
ments may already be considered as such an enhancement which virtually reduces
the distance to the target (reduces A in Equation 9.1) by “removing the empty space
between the cursor and the targets” - the enhancement that according to [33] has not
already been tried in other 3D pointing techniques. “Increasing the target size”, i.e.

increasing W , H , or D in Equation 9.1, is another enhancement which is espe-
cially useful in handling the accuracy deficiencies of the stereo cursor (see Section
10.1.4). If the application control components are also implemented in 3D, then
several enhancements may be applied to the GUI components, especially on menus
and on the application window itself. These include the appearance of the pop-up
menus at the same depth as that of the 3D cursor, and dynamically managing the
position and size of the windows depending on the scene composition and user ac-
tions. These types of enhancements also may be considered as virtual reduction of
distance to the target.

10.1.4 Stereo Cursor Accuracy

According to the analysis in Section 2.2, the whole stereoscopy system depicted
in Figure 10.1 can be considered as a parallel stereo system whose focal length
is equal to the display viewing distance, d, the distance between its cameras or
its baseline length is equal to the distance between the human eyes, bxh, and the
display screen displaced to the left/right has the role of its left/right image plane.
In Part I we discussed and showed that for this stereo setup, given a total resolution
R, a finer horizontal discretization, ex, versus vertical discretization, ey, yields less
error in the estimation of the original 3D scene. Applying this result to the stereo
cursor, we can say that a finer horizontal resolution not only yields a better 3D
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visualization but also more accurate stereo-based 3D pointing, especially across the
depth dimension.

Another issue related to the stereo 3D cursor accuracy is its heterogeneous be-
havior mainly across the depth dimension. This results fundamentally from the
intrinsic behavior of the perspective projection combined with the discretized na-
ture of digital images. As illustrated in Figure 2.9, all points located inside the
3D quadrilateral (or voxel) formed by the corresponding pixels are estimated to the
same 3D point. These voxels are non-uniformly distributed so that the resolution
(especially the depth resolution) decreases with the distance to the stereo cameras
(viewer) [71]. As a result, the stereo cursor is not sufficiently accurate when the
objects are not close enough to the viewer. Several virtual enhancements may be
applied to compensate for this drawback up to some acceptable extent. Zooming
across the third dimension (bringing the target to the cursor), enlarging the ob-
jects across the depth (changing the target size across the depth i.e. changing the D
parameter in Equation 9.1), or manipulating the target under a fish-eye implementa-
tion (which again may be interpreted as a means of bringing the target to the cursor)
are among the possible enhancements. Another possibility is using the 3D object
information when such information is available. This is different from simply cal-
culating the underlying disparity and can be quite helpful for the disambiguation
of the target selection when the objects are not close enough to the viewer (or far
enough from each other) to be distinguished by the amount of the disparity. In this
situation, the closest 3D object (or 3D object element) to the estimated 3D cursor
position may be prioritized as the targeted object.

10.2 Practical Application of Stereo Cursor

The stereo 3D mouse cursor can be used in a wide range of applications, including
3D computer games and 3D object manipulation. To examine the applicability of
the stereo cursor in manipulating 3D objects, we developed a simple 3D object
manipulation toolset for MVSplat. The toolset contains a pen and an eraser tool
with a few auxiliary displaying-state control buttons which together allow the user
to highlight a desired 3D point of the object or remove the tag of the previously
highlighted points within the virtual stereoscopic 3D space.

Figure 10.4 shows a sample result of applying the 3D editing toolset (automatic
mode) for ground-truth data measurement. Here the S3DCursor is used to specify
a 3D-contour surrounding a TB cavity on a 3D lung model. The red-blue mode of
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Figure 10.4: Marking the TB cavity boundaries on a 3D lung model using stereo
3D toolset. Left: red-blue stereoscopic representation mode. Right: ordinary per-
spective representation.

Table 10.1: S3DCursor user evaluation criteria.

Experiment Criterion

Experiment 1 C1: Stereo mode gives better 3D visual experience
C2: Stereo cursor helps in having better 3D experience

Experiment 2 C3: Object (boundaries) are better distinguishable in stereo mode
C4: Stereo cursor improves distinguishability

Overall C5: Simplicity of using stereo cursor
C6: Satisfaction and usefulness of the stereo cursor

MVSplat is used in order to provide the stereo effect of the model in a virtual 3D
environment. The left image, Figure 10.4a, shows the red-blue representation of
the model and the resulting 3D contour. The right image, Figure 10.4b, shows the
corresponding single-view version of the model and the contour that is generated in
the red-blue visualization mode. Although these images are degraded due to down-
scaling, it should be still possible to watch the stereo effect in 3D using simple
anaglyph glasses and compare it with the corresponding 2D image.

10.2.1 User Evaluation of Stereo Cursor

We used MVSplat and its editing toolset to evaluate the performance of 3D object
manipulation tasks within a stereoscopic environment versus doing the same tasks
on the perspective projection of the object on a conventional 2D display. Again the
red-blue mode of MVSplat was used to provide the stereo effect. We conducted two
sets of experiments. Table 10.1 shows a brief description of the criteria used in these
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Figure 10.5: The stereo cursor user evaluation results.

experiments. None of people who participated in these experiments had previous
experience working with the stereo cursor, but many of them had the experience of
watching stereo content in 3D at least once. Moreover, some of them were already
familiar with some 3D input devices, such as the space navigator, and a few of them
were familiar with some line cursors that are used to point to a 3D location within
the CAVE VR systems [105].

In the first experiment the subjects were asked to compare their visual expe-
rience with 3D stereo visualization versus 2D visualization. The purpose of this
experiment was to show whether the ability of virtually touching the surface of the
objects using S3DCursor gives a better understanding of their 3D shape to the peo-
ple. Three different models i.e. Lucy, Dragon, and Donna were randomly chosen
and used in performing this experiment. As the first criterion in this experiment, we
wanted to make sure that the participants are able to observe the 3D effects of the
stereo using anaglyph glasses and also to separate the 3D feeling caused by stereo
from those possible 3D experiences that may be caused by 3D movements of the
cursor. Even though the red-blue representation usually causes some ghosting ef-
fects, the majority of people (strongly) agreed that they have better 3D experience
with the stereo mode than the ordinary single view rendering mode before using the
3D cursor (see Figure 10.5, column 1). The second criterion asks the subjects if the
S3DCursor helps in having a better 3D visual experience when they use it to touch
different parts of the object’s surface. Again the majority of users believe that when
they slide the cursor over the 3D object, the depth movements of the 3D cursor give
them a better sense of the 3D shape of the object (Figure 10.5, column 2). Accord-
ing to these results, unlike a 2D cursor which may cause some disturbance within
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the stereoscopic 3D environment, the S3DCursor helps to provide a better visual
experience by giving the users the interesting feeling of touching the surface of the
virtual 3D object.

In the second experiment we asked the user to perform the same manipulation
tasks on the 3D Lung model in both single and stereo view modes. In fact, we
asked them to mark the boundaries of a TB cavity in both 2D and 3D representa-
tions. Again our user survey suggests that the stereo cursor provides better depth
information (Figure 10.5, column 3) and that users can more accurately specify the
region of interest than when using the conventional 2D cursor on the 2D display
(Figure 10.5, column 4). In fact, stereo 3D visualization plus S3DCursor move-
ments allow the user to better discriminate the concavities and convexities of the
object surface, and hence the border line of the TB cavity.

Finally, we asked the users to express their overall assessment of the technique
in terms of the simplicity of usage and also its usability based on their short ex-
perience of working with virtual 3D objects using stereo cursor. The majority of
the participants strongly agreed that S3DCursor can be used as easily as an ordi-
nary 2D mouse cursor and many of them found it a useful method for selecting and
manipulating 3D objects.

138



139



Chapter 11

Conclusion

In this thesis we reported on our exploration in the area of stereo-based 3D recon-
struction and visualization. We looked into a variety of different problems involved
in the process of capturing, transmitting, and displaying (stereo) 3D content. The
problems we studied in this thesis, while they were different in terms of approach
and focus, all had one aspect in common, i.e., dealing with the discretized (sam-
pled) representations composed of, for example, picture elements (pixels), volume
elements (voxels), surface elements (surfels), or in general discrete 2D/3D points
or samples. In this regard, we studied methods of optimal discretization of stereo
images for 3D reconstruction and 3D visualization. We also presented algorithms,
techniques, and data structures for compact representation and interactive visualiza-
tion of point-based 3D objects for conventional and stereo-based 3D applications,
as well as methods of interaction and manipulation of such visualized objects. We
organized the results of our work and studies in three parts highlighting the main
directions and focus of our research.

11.1 Part I - Summary

In Part I we described a theoretical model for determining the trade-off between
vertical and horizontal resolutions for stereo-based 3D reconstruction and 3D view-
ing applications. We inferred optimal pixel aspect ratios (PARs) by considering
two commonly used stereo setups, parallel and with-vergence configurations, and
showed how optimal PAR is related to the corresponding stereo configuration pa-
rameters. We extended the results to the case of stereo viewing on stereoscopic 3D
displays by deriving a model of stereo viewing that takes some parameters such as
display viewing distance and human vision specifications into account, and used
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this model to optimize the pixel aspect ratio for 3D viewing on a stereoscopic 3D
display. Using the formulations derived we showed that, in general, for a given
total resolution a more dense distribution of pixels along the horizontal direction
often improves the accuracy of the 3D estimation for both configurations, although
the optimal PAR may vary considerably with different parameter values. Applying
more practical parameter values to the inferred equations, our theoretic suggests
that a pixel aspect ratio of 2:3 (pixel-width:pixel-height) will lead to a better stereo-
based 3D reconstruction.

We further extended the results by proposing a unified model of optimal dis-
cretization for both stereo-based 3D reconstruction and stereo 3D-viewing appli-
cations. We derived this general solution for optimal PAR as a function of the
display or image plane aspect ratio and the range of plausible disparity values. This
general theoretical model reaffirms that, having a fixed total resolution, a more hor-
izontally dense discretization of the imaging sensor or display screen of the stereo
device leads to a more accurate 3D reconstruction as well as a better stereo-based
3D viewing experience irrespective of the stereo capturing or viewing configura-
tion parameters. Based on this general model, we again suggest a pixel aspect ratio
of about 2:3 for both stereo capturing and viewing ends. This extended formula-
tion does not enforce any constraint on capturing or viewing stereo content, such
as enforcing a specific capturing or viewing distance, or using fixed, predefined
values for camera focal length and stereo base-line. This means that this solution
can conveniently be applied in the design and manufacture of digital stereo-based
3D capture and display devices to achieve more accurate 3D reconstruction and
enhanced 3D viewing experience.

We validated the above-mentioned theoretical results through subjective user
evaluations on both synthetic and real stereo content of different simulated pixel
aspect ratios in which groups of physical pixels were used to form a pixel of the
desired aspect ratio. Our experiments on these simulated images showed that from
a subjective point of view, the suggested optimal PAR, 2:3, indeed improves the 3D
output.

11.2 Part I - Future Extensions

There are several directions in which this part of our research can be extended in
the future:

First of all, our method of simulating different PARs using pixel grouping tech-
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nique introduces noticeable blockiness into images. In this regard, it would be
interesting to incorporate the concept of Just Noticeable Difference (JND) for 3D
perception [26] to see how the results may change. We expect that, as with HDTV
displays, the whole effect of applying optimal PAR on a high-resolution 3D display
results in noticeable improvement on the overall 3D output quality, even though the
user may not be able to separately distinguish the individual pixels of such high-
resolution displays.

It will also be interesting to extend these studies to the case of downsizing (sub-
sampling) stereo images/videos apart from the shape of the physical pixel of the
media, which is generally assumed to be square on current digital devices. Con-
sidering our theoretical findings and user studies, we expect that keeping more in-
formation on the horizontal axis would better preserve the 3D content of the scene.
Upon conformance, the idea can be very useful in the compression and transmission
of the stereo content, especially on networks with limited bandwidth.

The mathematical optimization models described in this part all have been based
on minimizing the maximum (relative) estimation error in the vertical position of
a 3D point. This method of optimization implicitly involves horizontal and depth
components and has the advantage of preventing arbitrary degradation of the es-
timation in the vertical direction. However it would be interesting to study the
problem with respect to some other cost functions such as Euclidean distance of
the original and estimated 3D point, or the volume of the 3D voxel formed by two
corresponding pixels in the stereoscopic 3D space. In this regard, different human
perceptual factors [12, 25, 28, 79], motion factors [29], and error measures pro-
duced by cross-talk, correlation, and epipolar constraints [19, 6] may also be taken
into account in the hypothesized cost function. Such extensions may also take into
account the relative importance of vertical vs. horizontal disparities in the human
visual system [84, 31], and may incorporate an image quality metric to reflect the
picture quality changes caused by dissimilar horizontal and vertical discretization.

Finally, our model can be studied with regard to the spatially varying distribu-
tion of the cones in the human eyes [87] or in combination with the subsampling
models and anti-alias filters presented in [64] for further enhancement of the output
of multi-view autostereoscopic 3D displays.
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11.3 Part II - Summary

In Part II we introduced an implicit tree structure, called Multi-Section tree, for
balanced representation of an arbitrary number of points with the capability of dis-
tinguishing between internal nodes and leaves, even if they may not be of the same
size or may be shuffled at the penultimate level. We showed how this structure, to-
gether with our enhanced 3D/4D hierarchical quantization schemes, can efficiently
be used in representation and rendering of both still and animated point-based 3D
models. Specifically, we used this structure to build a two-layer, fully-balanced
hierarchy over the 3D samples representing a still 3D object. This two-layer repre-
sentation is very compact and is more accurate than the state-of-the-art algorithms,
offering the possibility of adjusting the level of accuracy, and as a result the level of
rendering quality, depending on the targeted application. It also works very well in
handling shapes with complex, highly-detailed surface structures. We demonstrated
the efficiency of our balanced structure for the case of moving 3D objects, as well.
In this regard, we introduced algorithms and techniques for appropriate distribution
of the spatio-temporal 4D samples representing a dynamic 3D object within the in-
troduced balanced tree structure. We also introduced an interactive environment for
animated rendering and simultaneous spatial and temporal navigation of the mov-
ing 3D object. Finally, we discussed a streaming and rendering architecture based
on which our current implementation is applicable to long sequences of 3D frames
with a large number of samples in each frame.

11.4 Part II - Future Extensions

The two-layer structure, which we have implemented to represent still 3D objects,
imposes some sort of regularity on the point-based 3D model by dividing its surface
into a number of equally sized, disjointed patches. We are considering extending
this to a multi-layer structure to improve the speed and quality of the rendering, and
the compactness of the representation. We are also thinking of extending this lay-
ered structure to the case of animated objects. This regularity can also be employed
in enhancing the compression ratio of color 3D models, as it potentially allows the
frequency domain encoding schemes, such as the DCT or Wavelet transform, to be
used in the compression of the point colors and other similar attributes. In addition,
the possibility of using on-the-fly Delaunay triangulation on the small patches of
neighboring samples may eliminate the necessity of storing some or all of the point
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normals. This can result in significant reduction in the file size at the expense of
some, probably negligible, processing overhead during the rendering. These regu-
lar patches also introduce some sort of implicit connectivity, in the lack of explicit
connectivity information, which can be very useful in implementing empirical or
physical deformations and manipulations on the 3D object.

As another extension of our work in this area, a hybrid of our representation
and other compact structures such as [18] and [55] may be considered to more
effectively use the points’ similarities in subpartitions to obtain even more compact
representations.

Finally, we are thinking of using of our spatio-temporal interactive rendering
implementation in a virtual stereoscopic 3D space. This interactive environment,
combined with the object selection and manipulation tools we have implemented in
Part III, can be used in many interesting applications such as virtual motion capture,
object motion correction, or even semi-automatic frame interpolation.

11.5 Part III - Summary

In Part III we discussed different theoretical aspects of a stereo-based 3D pointing
technique which enables the users to point to an arbitrary location inside the 3D
space projected by a stereoscopic 3D display, and we described our approach to
implementing such a 3D cursor. We also discussed how such a technique satisfies
all the requirements of an abstract 3D cursor so that it potentially can be considered
as a simple extension of the 2D cursor to the stereoscopic 3D space. The user
experience with the stereo 3D cursor shows that it has great potential for carrying
the most common interaction and manipulation tasks within the virtual space. In
this thesis we showed its usefulness and efficiency in working with 3D objects and
presented some promising results.

11.6 Part III - Future Extensions

Further improvement is necessary to overcome some drawbacks of the stereo cursor
like its low accuracy in the farther depths. This can probably be achieved by im-
plementing some of the suggested virtual enhancements. The optimal pixel aspect
ratio model, described in Part I, can also greatly contribute to the improvement of
the resolution along the depth dimension. However, this improvement is conditional
upon the physical existence of such stereo-optimized 3D display devices. We also
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need to improve our UI tools for smarter manipulation of 3D contours, surfaces,
and volumes based on some shape or shade analysis algorithms, and also using the
capabilities of the more advanced stereoscopic 3D displays and 3D input devices.
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