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Abstract

Electromagnetic devices, such as transformers and power reactors, are widely used in

power systems. Traditionally, these essential components are simplified into lumped net-

works in power system electromagnetic transient (EMT) simulations. However, the tradi-

tional lumped network model cannot always accurately represent the transient behaviors

of these inductive components, especially when complex physical phenomena are encoun-

tered (such as magnetic saturation, eddy currents, and hysteresis). On the other hand, the

finite element method (FEM) has become a powerful tool to solve complex physical fields,

due to its superior accuracy, and the ability to handle complex geometries and material

properties. Therefore, researchers have been giving increasing attention to finite element

models for energy system EMT simulations in recent years to achieve high precision de-

signs.

Despite the excellent accuracy, finite element models, comparing with lumped net-

works, require a dramatically larger amount of computational power. This is a result of

the following facts. The device space and electromagnetic field are discretized into many

smaller elements and innumerable degree of freedoms (DOF or unknowns) to be solved.

This leads to an ‘oversized’ nonlinear matrix system. Also, to handle the nonlinearity,

traditional Newton-Rapson (NR) solvers need to repetitively form and factorize the large

matrix system, which significantly slows down the simulation.

With the fast development of parallel computing hardware, researchers have recently

introduced the transmission line modeling (TLM) and the nodal domain decomposition

method to boost 2-D finite element models. These novel ideas eliminate the traditional

repetitive matrix assembly (forming) and factorization during the NR solving process, and

their DOF-level parallelism leads to significant speed-up compared with commercial FEM

software. However, the above fast algorithms are based on 2-D nodal finite elements,

while in reality, power system devices are in 3-D geometry, and simplification from 3-D to

2-D causes excessive information loss. Also, the nodal element leads to significant errors

around sharp geometries. 3-D edge finite elements, in contrast, do not have the above
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shortages, while similar algorithms are rarely seen in 3-D edge FEM.

In this thesis, the above high-performance massively-parallel methods are further ex-

tended to 3-D edge-finite-elements-based EMT simulation models. Challenges due to the

different nature between 2-D nodal and 3-D edge element formulations are successfully

tackled, and parallelism is explored from different perspectives.

First, the TLM algorithm is developed to solve nonlinear 3-D edge element problems

with parallelism explored at each elements’ viewpoint. Transmission lines are deployed to

decouple each element’s local nonlinearity from the global ‘oversized’ matrix. Benefitting

from such isolation, the method only requires massively-parallelized small local Newton-

Rapson iterations in each element, which is perfectly suitable for GPU architectures. The

decoupling also allows constant global admittance matrix. Thus, the repetitive formation

and factorization process of the large global matrix are avoided.

Second, from edge’s view, the edge domain decomposition (EDD) method is proposed

to parallelize nonlinear 3-D edge element problems at edge DOF level. The electromag-

netic device’s entire space is divided into many sub-domains that only contain one edge

unknown. The solution of light-weight nonlinear sub-domain systems can be massively

parallelized, and the neighbor-to-neighbor communication scheme eliminates the need to

form a global finite element matrix. From the perspective of time, the well-known parallel-

in-time method is also adapted to the EDD FEM system to achieve the space-time paral-

lelism.

In addition, the thesis also proposes a novel coupling scheme to interface the 3-D finite

element models with external circuits under large eddy currents without having to com-

bine circuit and FEM system in one matrix. Implementations of these massively-parallel

algorithms indicate excellent efficiency and accuracy.
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1
Introduction

The electromagnetic transient (EMT) simulation has been an essential tool for the design,
test, and engineering of power and energy system. For higher precision of power system
EMT simulation, finite element models have witnessed increasing attention during the
past years to replace traditional lumped power system devices. Benefiting from the devel-
opment of high-performance computation, fast and accurate 3-D finite element models for
power system simulations become possible.

This chapter introduces the background of carrying out the research topic of develop-
ing massively-parallel algorithms for 3-D finite element device models in power system
simulations. The importance of the finite element method for high precision simulation
is explained first. The reason for the high computation burden for traditional finite ele-
ment models is also discussed. The chapter then introduces the development of parallel
computing hardware and some massively-parallelized techniques to accelerate 2-D finite
element simulations. The motivation and challenge of expending these methods to 3-D
finite element models and the outline of the thesis are explained at last.

1.1 Importance of Finite Element Method in EMT Simulation

Electromagnetic devices, such as transformers and power reactors, are essential compo-
nents in power and energy systems. The electromagnetic field inside these devices estab-
lishes the connections between their terminal voltages, currents, and the geometry of the
transformer materials. Such relations are subject to Maxwell’s equations, and how to accu-
rately and efficiently model this relation is an important topic in electromagnetic transient
(EMT) simulations of power and energy systems.

Traditionally, the voltage-current coupling relation for these essential power system
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devices is simplified into lumped models [1–6], which have been widely applied in power
system EMT simulation programs, and these network models can be classified into ad-
mittance matrix representation, equivalent-electrical-circuit representation, and the mag-
netic equivalent circuit (MEC) representation [7], [8]. However, for some electromagnetic
devices such as transformers, motors, and generators, the traditional lumped network
model cannot always accurately represent their transient behaviors, since the complex
phenomena (such as material nonlinearity, eddy currents, and magnetic saturation) are
always encountered in these devices. This is mainly caused by the following reasons. The
equivalent-circuit/admittance matrix models omit the conductivity terms in Maxwell’s
equations so that the coil flux becomes purely linear to the coil current. For the MEC
models, magnetic equivalent resistors cannot precisely represent the complex geometry
and of the flux flow. Also, flux leakage cannot be accurately modeled. Moreover, all of
these lumped parameters are usually assumed constant, which is not true for nonlinear
materials with time-varying magnetic permeability. Therefore, some key information is
lost during the field-to-lumped simplification process, these network models shy away for
high-precision-requiring simulations.

On the contrary, finite element methods are known for their superior accuracy and
ability to handle complex geometries and material properties, and the effectiveness of FEM
has been verified in a variety of physical field problems such as structure, heat transfer, and
electromagnetics analysis. In contrast with the above lumped models, the finite element
method can directly solve Maxwell’s equations for the electromagnetic field inside the
electromagnetic devices, and the EM field distribution can be used to model the relation
between voltage and current on device terminals. Thus, finite element models usually
have the highest precision to represent electromagnetic devices, and researchers have been
giving increasing attention to finite element models for energy system EMT simulations in
recent years.

Despite the superior precision, finite element device models usually lead to an exces-
sive computational burden. Such a huge computation cost is from the complex FEM solu-
tion process, which will be introduced in the next part (1.2).

1.2 General Process for FEM and Scope of This Thesis

For different physical boundary value problems, the finite element method shares a similar
solution procedure. For a better explanation, a power inductor EMT problem is taken as
an example. The electromagnetic field inside a power electromagnetic device is generated
from currents inside the device coil. To find the electromagnetic field distribution, FEM
follows the steps listed below [9]:

• Meshing: The space around the inductor is divided into many small elements (e.g.
triangular or quadrangular for 2D, tetrahedral for 3D) as mesh, and the continuous
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Kgb∙ xgb=bgb ,Kgb is sparse global matrix

1. Pysical space discretization 2. Calculate elemental restrictions 3. Assemble (form) global matrix system 4. Solve global matrix

Direct method:
   Gauss elimination
   Lower-upper decomposition

Iterative method:
   Jacobian iteration
   SOR iteration

General linear sparse 
matrix solver

V2

VN

VN-1

V1 K1x1=b1

K2x2=b2

KN-1 xN-1=bN-1

KNxN=bN

.
..

.
..

For nonlinear case, Newton Rapson iteration repeats until convergence

∑

Figure 1.1: Procedure of traditional finite element method.

electromagnetic field is represented by a limited number of degrees of freedom (DOF,
unknowns to be found) on associated with each vertex or edge.

• Generate elemental local restriction: inside each element, form the local restrictions
between the local coil current density and unknown field DOF associated with the
element.

• Assembly: add each element’s local restrictions of the previous step into the global
matrix system, based on inter-element electromagnetic field continuity principles. :

• Global matrix solution: Trim the global matrix with boundary conditions (i.e. set
values for field intensity on the outer boundary of the inductor physical space). Solve
the large-scale global matrix via sparse matrix solvers for the DOF values (x).

Note: for nonlinear cases, matrix K is dependent on x, and Newton Rapson (NR)
iterations are deployed to find the consistent solution of x and K. The iteration repeats
steps 2 ˜4 in Fig. 1.1 until x convergences to a settled result.

• Post-processing: Restore the electromagnetic field distribution from the DOF values,
plot, and display.

Power inductors usually have iron magnetic materials in the coil cores to increase their
inductance. When magnetic saturation appears in the coil cores, permeability is no longer
constant, and the above nonlinear Newton Rapson iterations become inevitable. During
the NR solution process, all of the above steps (except for the meshing) have to be repeti-
tively carried out. Even worse, the system usually has over thousands of DOFs, and even
more elements, which significantly slows down the assembly and solution process of the
global matrix. Therefore, the global Newton Rapson iteration consumes a large amount of
computation power and becomes the main bottleneck of finite element models in power
system simulations.
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Efficiently improving the efficiency of the above NR solution process will shrink the
design and test cycles in real applications, especially for large scale and multi-parameter
optimizing designs, and this thesis will focus on exploring algorithms to boost or replace
the time-consuming global nonlinear NR iterations, especially for 3-D FEM models. Also,
it is worth mentioning that the meshing and post-processing will not be discussed in this
thesis. These functions are achieved with the help of ComsolTM and MatlabTM .

The development of high-performance computing hardware provides possibilities for
researchers to overcome the bottleneck of finite element models, and this will be intro-
duced in part 1.3 and 1.4.

1.3 High-Performance Computing Hardware

1.3.1 Development of Hardware

The development of computation hardware has reached a bottleneck on the increment of
single-core clock frequency during the past decade. For better overall performance, more
and more processing units are integrated into a single chip to execute programs in parallel.
Parallel computing has witnessed rapid development, and Multi-core central processing
units (CPU) and general-purpose graphics processing units (GPU) are widely applied for
high-performance computing at different levels.

For example, the well-known Compute Canada has a supercomputer system of over
2000000 processing cores capable of providing a throughput of more than 2P floating
points per second [10]. Also, for smaller-scale high-performance computers, theNV IDIA®

company has recently released several flag-ship GPU solutions with thousands of CUDA
cores [11], which is shown in Fig. 1.2.

1.3.2 Cutting-Edge GPU Architecture Used in This Thesis

In this thesis, we will utilize the state-of-art Tesla V100 PCIe GPU and the compatible pro-
gramming API to accelerate power system finite element computation models. The Tesla
V100 GPU consists of 80 multi-processor steaming modules (SM), and Fig. 1.3 illustrates
the inner view of a streaming multi-processors. Each SM has its own dispatchers to si-
multaneously execute instructions on its arithmetic logic units (Cuda cores, including 64
FP32 units, 64 INT units, and 32 FP64 units). This means that the entire V100 GPU is able
to carry out 5120 single-precision and 2560 double-precision operations in parallel. Also,
the 128KB shared memory allows instant communication and repetitive data access for all
threads within each SM. The V100 GPU also provides 16GB HBM2 high bandwidth mem-
ory and NVLink for communication for slower inter-SM and inter-GPU communications.

The Cuda cores (arithmetic logic units) do not have their own instruction dispatcher,
which implies that the GPU is designed for single instruction multiple data (SIMD) ap-
plications, and NV IDIA® has invented the compute unified device architecture (CUDA)
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Figure 1.2: Data sheet of NV IDIA® Tesla V100 series GPU [11].

APIs in C language for researchers to develop SIMD programs. After the GPU despatcher
launches the single instructions (defined as kernel C functions in CUDA API), the same
routines (defined in the kernel function) will be executed on multiple different Cuda cores
(or threads) in order to apply the same operations to multiple different datasets (local vari-
ables in multiple different threads). A typical SIMD example is summing two different
vectors into one. Considering the above dispatching process, the SIMD program structure
becomes crucially important in order to fully utilize the GPU architectures.

Thus, parallel computing becomes an inevitable trend.

1.4 Parallel Algorithms to Accelerate FEM Simulation

Despite the rapid development of high-performance computation device, the many-core
and multi-core hardware do not sufficiently guarantee improvement on the solution speed
of finite element models. To fully boost the FEM computation, algorithms need to be devel-
oped and adapted according to the different hardware architectures, and a suitable parallel
strategy becomes particularly important. For example, the SIMD program structure is re-
quired on GPU for best performance, and it remains a challenge for researchers to create
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Figure 1.3: Architecture of streaming multi-processors in NV IDIA® Tesla V100 GPU [11].

finite element algorithms with suitable parallelism for different architectures, and many
methods have been created in the past.

1.4.1 Traditional Parallelized Finite Element Computation

The domain decomposition method is one of the most commonly used technology to ac-
celerate finite element computations. As is shown in Fig. 1.4, the whole solution region is
divided into several sub-domains. Each sub-domain has its own matrix system, which is
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[Kglobal][xglobal]=[bglobal]
Information 
exchange

at overlapped 
interface

[K1][x1]=[b1]

[K3][x3]=[b3]

[K2][x2]=[b2]

[K4][x4]=[b4]

decompose

Figure 1.4: Domain decomposition scheme: global system and sub-domain systems.

much smaller than the global matrix system on the left. These sub-domain systems can be
solved in parallel and different schemes [12], [13] may be applied to exchange information
on sub-domain interfaces and reach the same solution as the global matrix system. Note
that these information exchange schemes usually lead to much more computation amount
vs. directly solving the global system, but since the sub-domain matrixes are solved in
parallel, the overall execution time becomes smaller.

The global or sub-domain matrix systems can also be solved by parallelized sparse ma-
trix solvers, such as the PARallel DIrect sparse SOlver (PARDISO) [14], and the generalized
minimal residual (GMRES) iterative method [15], and significant speed-ups are achieved
compared with their serial versions.

However, the above traditional parallel FEM methods are limited within the following
stereotype: information is extracted from the distributed elements to generate a big-scale
centralized matrix system. This makes sparse matrix solvers essential for the FEM com-
putation. For many sparse solvers (such as PARDISO), branch structures are widely seen
in different threads. Thus, it is hard to fully vectorize the computation process for SIMD-
based GPU architectures. Also, the traditional FEM still cannot avoid the time-consuming
Newton Rapson nonlinear iterations. During NR solving, the FEM matrix is not constant,
which means local restriction generating, assembly, and sparse matrix solving repeats at
each iteration step. As a result, a large amount of computation power is consumed.

In order to handle the above problems, researchers have recently introduced two in-
novative models for 2-D FEM [16], [17], and the NR iteration process is eliminated with a
dramatic speed-up vs. ComsolTM . This is introduced in 1.4.2 and 1.4.3.
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Vertex DOF as Boundary 
conditions of subdomain
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overlapped subdomains (colored)

Figure 1.5: 2-D NDD scheme proposed in the previous studies.

1.4.2 Nodal Domain Decomposition (NDD) Method for 2-D Finite Element
Models

Fig. 1.5 shows the nodal domain decomposition scheme. For a 2-D problem, the whole
solution space is meshed into many triangular elements with each vertex associated with
a degree of freedom to be found, and the entire mesh is represented as many small over-
lapped sub-domains composed of only one center vertex and all triangles around it. The
sub-domain system is shown on the right, and each sub-domain forms a complete sim-
ple nonlinear boundary value problem: the red vertexes (nodes) are regarded as known
boundary conditions of the BVP, and the blue node becomes the only unknown DOF.

An iteration scheme is applied to achieve a consistent solution of all DOF in the solution
domain. At the start of the iterations, each node DOF is assigned an initial value, which
serves as the red boundary condition in each sub-domain BVP. After that, all sub-domain
are solved in parallel, generating the blue central DOF on each node. Due to overlapping
these blue solutions then serves as the red boundary condition of their neighboring sub-
domains for the next iteration step, and this iteration continues until all DOFs converges
to the final solution.

During each iteration step, all 1-equation sub-domain BVP follows almost the same
light-weight solution routine, with independency on each other. This makes the NDD
scheme perfectly suitable for SIMD GPU architectures. Also, for the entire process, there
is no matrix at all, thus the cumbersome global Newton Rapson iteration is successfully
avoided.
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Figure 1.6: Procedure of traditional finite element method.

1.4.3 Transmission Line Modeling (TLM) Method for 2-D Finite Element Mod-
els

The transmission line was first introduced to isolate nonlinear resistors from linear net-
works in a circuit. The method origins form the fowling phenomenon: The insertion of an
ideal transmission line between circuit components does not affect the steady-state volt-
age/current value on the two components, as is shown in Fig. 1.6(a) and (b). The voltage
on the 2 ends of the transmission line may be different at the moment of insertion, but after
traveling electromagnetic waves reflect and reach a steady state on the transmission line,
the voltage becomes the same at the 2 ends. The process of reaching the steady state can be
converted into a numerical model shown in Fig. 1.6(c). The insertion of the transmission
line leads to isolation of the linear current source and the nonlinear diode, since both of
them can only see traveling waves and constant characteristic impedance of the transmis-
sion line. The waves and characteristic impedance can be converted into 2 Norton sources
with constant internal resistance at the 2 transmission line ends. Thus, the admittance ma-
trix of the current source side becomes entirely constant, and a special iteration scheme
can communicate information between the 2-ends Norton voltage and current, which will
be introduced in the next chapters.

Based on the above discussion, inserting a transmission line at a nonlinear resistor can
convert the nonlinear resistor into the equivalent model of a constant resistor in parallel
with a current source, and this idea can be extended to finite element system. As is shown
in Fig. 1.7, the finite element system is equivalent to a circuit which is formed by parallel-
connected elemental local nonlinear resistors. If one inserts transmission lines on these
resistors, they will become equivalent Norton sources, as is shown in Fig. 1.8. The constant
resistors of the Norton sources in each element form a constant global resistor network,
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3 coupled elemental local nonlinear 
resistors in each elementGlobal circuit topology

Figure 1.7: The equivalent circuit of 2-D FEM system.

Numerical 
model

Figure 1.8: Elemental local nonlinear resistors decoupled by transmission lines to get a
constant global linear resistor network.

and each element’s nonlinearity is isolated into the three local resistors as an elemental
local system. TLM iteration exchanges information between all element systems and the
global linear network until convergence, which is represented by the red arrows in Fig.
1.8.

Since the global resistor network is constant, the TLM decoupling technique only re-
quires one global matrix factorization. Also, the local nonlinearity is isolated within each
element’s local Newton Rapson solving process, which means each element can be as-
signed to a CUDA thread, and the program can be massively paralleled at elemental-level,
and the nonlinear solution is achieved without repetitive factorization/assembly of the
global matrix.
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1.5 Motivation of This Thesis

The above transmission line and NDD eliminate global NR iterations and is suitable for
SIMD based GPUs. However, they are only developed for 2-D nodal elements in previous
works, and 2-D representation and nodal FEM models have the following limitations:

• Power system devices are in 3-D forms. Representing a 3-D object with a 2-D model
leads to geometry and field information loss. For example, 2-D models simplify and
restrict all current flow and electric field in only one direction, which is obviously not
true in reality.

• Nodal element formulations can only represent scalar physical fields, and the 3-D
eddy current field formulation must be represented by 3 sets of nodal element scalar
field for x,y,z directions respectively. This leads to significant numerical errors at
sharp corners of the device geometry [18] Also, A penalty factor is always required
in nodal formulations, which can affect the accuracy of the solution. If the device
materials involve large permeability differences (i.e., the iron core and air), the nu-
merical error becomes substantially large, regardless of the selection of the penalty
factor.

• Many 2-D finite element cases have a total degree of freedoms less than 5000 [16],
[17], which could be even less than a single GPU’s Cuda cores. Thus, the computa-
tional resource cannot be fully used even with NDD and TLM schemes.

In contrast, 3-D edge elements [19] and vector basis functions, which is widely seen
in 3D FEM analysis, do not have the above shortages. However, 3-D finite edge element
models based on the above GPU-friendly transmission line decoupling and the DOF-level
domain decomposition technology have never been implemented in the past.

Considering the above facts, it becomes paramount to explore new algorithms to im-
plement the transmission line decoupling and DOF-level domain decomposition in 3D
edges elements, especially for nonlinear transient electromagnetic analysis where a large
amount of computational resource is needed.

1.6 Challenge in Extending From 2-D to 3-D

The 2-D FEM models ignore the change of magnetic potential change in 2 directions (x,y)
of a 3-dimensional space. This significantly simplifies the full formulation in reality, and
the 3-D edge FEM formulation is way more complex. For example, the 2-D model solves
a scalar field distribution (only z direction), while the 3-D model deals with a vector field
distribution. Thus, many challenges need to be solved in a 3-D FEM model for power
system simulations.
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∇2Az + σ
∂Az
∂t

= Jz. (1.1)

∇×∇×ν ~A+ σ
∂ ~A

∂t
= ~J, (1.2)

(1.1) and (1.2) respectively presents the 2-D and 3-D physical equation of magnetic
potential (which will be explained in the next chapters) in an eddy current field. For non-
conducting materials such as air, the σ in 1.2 becomes 0. This means that the 3-D magnetic
potential field does not have a unique solution, because the ∇ × ∇× operation can only
define the curl of ~A, but the divergence is not given, and a field can only be found when
its curl and divergence are both defined. Therefore, a method must be found to gauge the
divergence of ~A so that the 3-D global matrix can be factorized, which is not necessary in
2-D FEM, since the Az is fully defined.

In addition, the 3-D edge elements and 2-D nodal elements have entirely different in-
terpolation functions. This means that the elemental field restrictions need to be re-derived
and verified. Due to the huge difference between 2-D nodal and 3-D edge elemental restric-
tions, the 3-D elemental equations cannot be converted into 3 coupled nonlinear elemental
resistors (Fig. 1.7) like the 2-D equations do. Also, because the mapping relation from mag-
netic potential to magnetic flux density ( ~B) is rather complex in 3-D, comparing with 2-D,
the 3-D model cannot explicitly express the magnetic flux intensity and the permeability
through the voltage on elemental equivalent resistors. The above facts leads to notable
difficulties in the elemental local Newton Rapson iterations for 3-D edge elements.

1.7 Contributions of the Thesis

In this thesis, the transmission line decoupling technique is modified and successfully ex-
tended from 2-D nodal scalar elements (NSE) to 3-D edge vector elements (EVE) for power
system EMT simulations. Challenges caused by the difference between 3-D EVE and 2-D
NSE are successfully tackled. 3-D FE-discretized formulation for reduced magnetic vector
potential is introduced. In contrast with 2-D triangular NSE, the 3-D EVE formulation is
not full-ranked and a gauge is added to make a unique solvable nonlinear matrix system.
An equivalent electrical circuit network is then extracted from the matrix system to facil-
itate the introduction of transmission lines. Next, this network is solved with elemental
nonlinearity decoupled by the TLM technique. A new concept of scattering box is de-
fined to abstract away elemental local nonlinearity in the form of 21 nonlinear resistors,
compared with only 3 nonlinear resistors for 2-D triangular NSE. Also, the process of as-
signing value after partial Newton Rapson iterations is introduced to solve nonlinearity
inside each element. The new process eliminates the need for an explicit function of ~B as a
dependent variable of the voltage difference, which is essential in 2-D TLM FEM. Transmis-
sion lines are then used to separate the scattering boxes from the linear network, allowing
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massive parallelism at the elemental level. This massive parallelized SIMD-friendly algo-
rithm is verified by a GPU implementation, and the comparison between the proposed
3D-TLM-FEM scheme and ComsolTM indicates an excellent speedup of over 50 while a
good precision (2%).

Also, the thesis extends the former effort of the 2-D NDDR scheme [16] further to the
nonlinear 3-D edge elements. It shares the similar decentralized idea of applying domain-
decomposition to each node and element. However, rather than solving a simple 2-D
problem with scalar nodal unknowns, we achieved edge-level parallelism on the reduced
magnetic vector potential for 3-D vector elements with much larger degree of freedoms.
Different convergence and gauging behaviors are also explored, and an auto-gauging be-
havior is witnessed in the proposed algorithm, and its GPU implementation indicates a
good accuracy (2%) and a decent speed-up of over 43 in comparison with ComsolTM . The
above explorations are based on space parallelism, either through 3-D elements or their
edges. To fully increase parallelism, the thesis also adapts the time-parallel Parareal algo-
rithm into 3-D finite element systems for power system EMT simulation, and time-space
parallelism is achieved to fully utilize hardware resources. Furthermore, a new field-circuit
coupling scheme is explored, which allows large eddy current and separate solution of the
circuit and finite systems with high accuracy.

1.8 Thesis Outline

• Chapter 1: Introduction -The chapter introduces the background, motivation, and
contribution of 3-D finite element models in power system electromagnetic transient
simulations.

• Chapter 2: 3-D finite element formulation for eddy current computation -In this
chapter, the 3-D vector potential formulation is derived from Maxwell’s equation
group for eddy current field computation, and edge tetrahedron finite element is
applied to discretize the space and get a solvable matrix system, which can be paral-
lelized at different levels.

• Chapter 3: Transmission line decoupling for 3-D edge elements -The chapter uti-
lizes the transmission line numerical model to decouple the local nonlinearity in each
element from the global finite element network. The global network stays unchanged
during the entire computation process, thus only one-time factorization of the big-
scale matrix is required, and local nonlinearity is assigned to different GPU cores to
achieve element-level parallelism.

• Chapter 4: Edge domain decomposition of 3-D edge elements -The entire solution
space is divided into many smaller sub-domains which only have one edge degree
of freedom to form a light-weight nonlinear system. The sub-domains communicate
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during a special iteration process and converge to a consistent solution over the en-
tire space. Each sub-domain system is assigned to a GPU core to achieve edge-level
parallelism. The widely applied time Parareal method is applied to the above space-
parallelized 3-D finite element models to achieve parallelism at both space-time level.

• Chapter 5: Conclusion -The chapter gives the conclusion of the thesis and provides
suggestions for future research.
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2
3-D Finite Element Formulation for Eddy

Current Field Computation

2.1 Introduction

In this chapter, the basic physical law of Maxwell’s equation is applied for eddy current
electromagnetic field computation. For the convenience of numerical solving, the 3-D vec-
tor potential is derived from Maxwell’s equation to generate a continuous mathematical
formulation over the entire space. Edge finite element is then applied to discretize the
continuous formulation into a limited number of degree of freedoms (DOF). The chapter
finally utilizes Galerkin’s method to obtain a solvable matrix system for theses DOFs.

2.2 Quasi-Static Maxwell Equation and Formulation of Potential
Function

Maxwell’s equations are the basic laws of physics that describe electromagnetic phenom-
ena in real life: 

∇× ~H = σ ~E + ~Je + ε∂
~E
∂t

∇× ~E = −∂ ~B
∂t

∇ · ~B = 0

∣∣∣∣∣∣∣ entire solution domain. (2.1)

The static case of the equation is used to solve static magnetic problems. For low-
frequency electromagnetic field applications such as eddy current magnetic field analysis,
capacitive effects such as displacement current and charge accumulation are ignored, thus
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the ε related terms are deleted, resulting in the following quasi-static Maxwell’s equation:
∇× ~H = σ ~E + ~Je

∇× ~E = −∂ ~B
∂t

∇ · ~B = 0

∣∣∣∣∣∣∣ entire solution domain, (2.2)

where ~Je is current defined inside conductors. The magnetic field induces different mag-
netizing currents in different materials, which in turn affects magnetic fields. This is de-
scribed by the constitutive equation:

~B = µ ~H|entire solution domain. (2.3)

The above equations indicate the following relation at the interface of two materials
inside the solution domain:{

~B⊥1 = ~B⊥2 |interface of material 1 and 2
~B
‖
1/µ1 = ~B

‖
2/µ2 |interface of material 1 and 2

. (2.4)

Together with proper boundary condition [20], ~B can be uniquely solved.
However, if ~B is set as the unknown variable to be solved, one can clearly see that

the parallel component of the variable has to jump at every interface inside the solution
domain. This is difficult for numerical computation, especially when multiple materials or
nonlinearity is involved, since most interpolation functions of the finite element method
are continuous, and it takes to much computation to specially deal with interfaces.

This problem can be solved by introducing Magnetic vector potential ( ~A). Considering
~B is divergence-free, it is replaced by ∇ × ~A .It is possible to make ∇ × ~A tangential con-
tinuous at material interfaces while setting ~A discontinuous. By substituting ~B = ∇ × ~A

into the second equation in (2.2), one gets:

∇×

(
~E +

∂ ~A

∂t

)
= 0, (2.5)

which indicates:
~E =
−→
∇ϕ− ∂ ~A

∂t
. (2.6)

By substituting (2.6) into the second equation in (2.2), and using 2.3 one gets:

∇×∇× ν ~A+ σ

(
∂ ~A

∂t
−∇ϕ

)
= ~Je. (2.7)

(2.7) have no unique solutions of ~A and ϕ because the relation between ~A and ϕ is not
defined. One specialA−ϕ relation is letting ~A∗ = ~A+

∫ −→
∇ϕdt and therefore (2.7) becomes:

∇×∇× ν ~A∗ + σ
∂ ~A∗

∂t
− ~Je = 0, (2.8)

which has a unique solution in conductive materials. This equation is the widely applied
reduced vector potential formulation in eddy current magnetic field computation, and
algorithms will be introduced in the thesis to solve the equation with state-of-art efficiency.
For concise notation, sign ~A∗ is replaced by ~A in the following part of this chapter.
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local edge in eth element is noted as ei 
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…
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of DOFs associated 

with element e :

Figure 2.1: Solution space divided into many small tetrahedral elements and the local and
global number notations for this thesis.

2.3 Gauge for Non-Conducting Materials

When the solution domain includes non-conduction regions, σ in (2.8) becomes 0 for such
region. Inside such region, (2.8) will have infinite sets of solutions: (2.8) loses restriction
to the divergence of ~A and only gives information for rotation of ~A, and a vector field
cannot be uniquely defined unless both its rotation and divergence are known. Different
regulations can be added to restrict the divergence of ~A. The regulations are called gauges
and will be introduced later in the next chapters, since gauges are embedded into the
computation algorithms.

2.4 Finite Element Discretization of The Reduced Magnetic Vec-
tor Potential Formulation

The electromagnetic field distribution can be restored from the vector potential ~A after the
solution of (2.1) through the relation between magnetic flux density and vector potential:

~B = ∇ × ~A. (2.9)

However, (2.1) is in a continuous form. This means (2.1) still needs further discretization
into a limited number of degree of freedoms (DOFs) for numerical solutions.
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Edge1 and  → N1

Edge4 and  → N4

Edge2 and  → N2 Edge3 and  → N3

Edge5 and  → N5 Edge6 and  → N6
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 (x3,y3,z3)
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 (x4,y4,z4) Physical field described by basis functions

Figure 2.2: Interpolation functions for 3-D tetrahedron elements and ~A field described by
edge vector interpolation functions in an element. Note: upper index (e) means variables
or functions in eth element.

To achieve this, the finite element method divides the whole solution domain into
many smaller tetrahedral elements and edges between the tetrahedrons ((Fig. 2.1)). Each
edge has its own direction and one DOF (Aj related to edge number j) that is equal to the
projection of ~A onto its direction. For eth element, ei represents the global number of ith
edge in the eth element (i = 1̃ 6), and within each element, ~A field is represented through
a linear combination of know pattern fields (interpolation functions). As is shown in Fig.
2.2, the interpolation functions (

−→
Ni) are fully determined by the coordinates of the 4 ele-

mental nodes (known), and
−→
Ni ’s projection is 1 on edge i’s direction while 0 on all other

edges. This means that the 6 involved linear combination terms (Ae1 ,Ae2 ,Ae3 , or A(e)
1 ,
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A(e)
2 , A(e)

3 . . . ) of each edge is exactly the DOF on the respective edge. To find the value
of these DOFs (namely, the solution of FEM problem), one can construct local restrictions
between the 6 involved edge DOFs for every single element, and add these local equations
to a global matrix system. The matrix system can then be solved for all edge DOFs.

The Galerkin weighted residual method can be used to obtain elemental restrictions.
The residual is defined by discretizing the left-hand side of (2.8) through the upper equa-
tion in Fig. 2.2. :

∇×∇× ν
6∑
i=1

Aei ·
−→
Ni

(e) + σ
∂
∑6

i=1Aei ·
−→
Ni

(e)

∂t
− ~Je = 0. (2.10)

This is a linear combination of Aei . The residual should always be 0 over the entire space.
Thus, one can multiply any function with the residual, and force the result into 0 in order to
find the degree of freedoms (Aei). If one multiplies the residual with 6 weighing functions
(chosen to be Nj), the following equation can be obtained:

6∑
i=1

Aei ·
∫
V e

−→
Nj

(e) ·

(
νe∇×∇×

−→
Ni

(e) + σ
∂
−→
Ni

(e)

∂t

)
dV =

∫
V e

−→
Nj

(e) · ~JedV, (2.11)

where V e means the space volume of eth element. Due to the below vector identity for-
mulation:

~a ·
(
∇×

(
∇×~b

))
= (∇× ~a) ·

(
∇×~b

)
−∇ ·

(
~a×

(
∇×~b

))
, (2.12)

and the Gauss’s divergence theorem:∫
V e

∇ · ~a dV =

∫
Se

~a ·
−→
ds, (2.13)

(2.11) becomes equivalent to the 6 following equations:

6∑
i=1

Aei ·
∫
V e

(
νe

(
∇×

−→
Nj

(e)
)
·
(
∇×

−→
Ni

(e)
)

+ σ
∂
−→
Ni

(e) ·
−→
Nj

(e)

∂t

)
dV =

∫
V e

−→
Nj

(e) · ~JedV, (2.14)

where j = 1̃ 6. For (2.14), the 6*6 matrix elemental discretized formulation is obtained:

[
Keiej

]
6×6
·
[
Aej
]
6×1

+
[
Deiej

]
6×6
· ∂
∂t

[
Aej
]
6×1

= I [fei ]6×1 + [τei ]6×1, (2.15)

where

Keiej =

∫
V e

νe

(
∇×

−→
Ni

(e)
)
·
(
∇×

−→
Nj

(e)
)

dV, i, j = 1̃ 6, j = 1̃ 6, (2.16)

Deiej =

∫
V e

σe
−→
Ni

(e) ·
−→
Nj

(e)dV, i = 1̃ 6, j = 1̃ 6, (2.17)
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fei =

∫
V e

−→
Ni

(e) ·
−−→
JunitdV, (2.18)

τei =

∫
Se

(
ν∇× ~A

)
×
−→
ds ·
−→
Ni

(e), (2.19)

and V e is the volume, Se is the surface boundary of eth element,
−−−→
JUnit is the current density

distribution at 1 Amp current in the coil of the power device. I is the known current in the
coil which changes with time

The time derivative in (2.15) can also be discretized using Backward Euler method:[
Meiej

]
6×6
·
[
Aej

t
]
6×1

= [bei ]6×1 + [τei ]6×1, (2.20)

where

[bei ]6×1 = I [fei ]6×1 +

[
Deiej

]
6×6

∆t
·
[
Aej

t−1
]
6×1

, (2.21)[
Meiej

]
6×6

=
[
Keiej

]
6×6

+
[
Deiej

]
6×6

/∆t, (2.22)

and Aej
t is the unknowns to solve at current time step, and Aej

t−1 is Aej at the previous
time step. , and

[
Meiej

]
6×6

,
[
Keiej

]
6×6

,
[
Deiej

]
6×6

are noted as Me, Ke, De for simplicity.
To achieve a solution over the entire domain for all elements, the local restrictions of

6 edge DOFs in (2.20) related to each element need to be assembled into a global sys-
tem. During this process, all elements ‘talk’ with each other at surfaces between different
elements with respect to Maxwell equations [21]: 1. Continuity of tangential ~A is auto-
matically ensured by the edge-based DOF discretization format. As a result, normal ~B is
continuous between elements and the upper equation in (2.4) are satisfied. 2. On a trian-
gular surface shared by 2 elements, the τ terms in the 2 elements are opposite to each other
for the same edge, which leads to the continuity of tangential H and consistency with the
lower equation in (2.4). For ith edge, this relation can be expressed as:∑

e

τek = 0|ek = i,k = 1̃ 6, (2.23)

where e represents all elements sharing edge i.
During assembly, local restrictions (2.9) for all elements are directly added together to

make the global matrix equation below for all global edge DOFs, and the surface integra-
tion term does not appear in the global equation. Thus (2.1) and (2.9) are simultaneously
satisfied.

M ·At =

(
K +

D

dt

)
·At = b, (2.24)

where K =
E∑
e=1

Ke, D =
E∑
e=1

De , b = f · Ikt+ D
dt ·A

t−1, f =
E∑
e=1

fe, and E is the total number

of elements.
It can be seen that the matrix M in (2.24) is nonlinear since νe in (2.16) is dependent on

Aej . Such a DOF-level-sized nonlinear system leads to excessive computation burden. The
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following chapters will discuss how to efficiently solve the nonlinear global matrix system
with parallel computation hardware, and a little modification to the notation of the above
matrix system is made in order to concisely adapt to the specific algorithms.

2.5 Summary

This chapter explained the derivation process of the finite element matrix system from the
physical control equations. The Maxwell’s equations were first simplified into a reduced
vector magnetic potential formulation. The potential formulation was then discretized
using finite element representation of elemental local restrictions, which were assembled
into a global matrix system to be solved. The chapter also explained the rank deficiency of
the matrix system due to non-conducting materials.
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3
Transmission Line Decoupling for 3-D Edge

Elements

3.1 Introduction

In this chapter, the transmission line modeling method is combined with 3-D finite edge
elements to handle nonlinearity with parallelism at the tetrahedron element level, and
the background, derivation, and effectiveness are discussed for the 3-D transmission-line-
decoupled finite element model.

The finite element method has been widely applied for field calculation in electromag-
netic apparatus such as transformer, electrical motor, and power inductor, where complex
geometry and nonlinearity stemming from ferromagnetic materials are always encoun-
tered. However, traditional FEM suffers from severe computation burden due to repeti-
tive assembly and factorization of the large-scale Jacobian global matrix at each Newton
Rapson (NR) iteration step.

During the last decade, high-performance computation hardware has witnessed a dra-
matic increase in the number of computational units. This encourages researchers to ac-
celerate the finite element computation with the help of multi-core CPUs or many-core
GPUs.

Under such circumstances, the TLM, which was introduced to nonlinear circuit net-
work [22], [23] and 2D FEM [24], [25] decades ago, has witnessed increasing attention
recently [17], [26]. When a nonlinear system is solved by TLM, the update happens only
inside the system vector in each iteration step. This indicates that the system matrix re-
mains the same during the whole solution process and only one-time matrix factorization
is necessary. In addition, the parallelism of the TLM-FEM is high because elemental local
nonlinearity is separated by transmission lines. By utilizing these properties, the speed of
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TLM-FEM is fast enough even for real-time simulation [17].
However, all of the above TLM-FEM applications are based on 2-D triangle elements,

while in reality, the geometry of an electromagnetic model is in 3-D form but the 3-D-
TLM-FEM implementation is never conducted. Moreover, the above FEM-TLM was only
implemented for nodal elements in the scalar form, however, nodal elements result in
a large inaccuracy at sharp corners of geometry and when materials have large perme-
ability differences, the numerical error becomes substantial [20], [18]. On the contrary,
edge elements [19] and vector basis functions, which is widely seen and has been utilized
for network equivalence [27], [28] in 3-D FEM analysis, do not have such problem. Con-
sidering the above facts, it becomes paramount to explore new algorithms to implement
transmission line modeling in 3-D edges elements, especially for nonlinear transient elec-
tromagnetic analysis where a large amount of computational resources are needed.

In this chapter, the transmission line decoupling technique is modified and extended
from 2-D nodal scalar elements (NSE) to 3-D edge vector elements (EVE) in nonlinear elec-
tromagnetic field problems. Challenges caused by the difference between 3-D EVE and
2-D NSE are successfully tackled. Firstly, 3-D finite element discretized formulation for re-
duced magnetic vector potential (MVP) is introduced. In contrast with 2-D triangular NSE,
3-D EVE formulation is not full-ranked and a gauge is added to make a unique solvable
nonlinear matrix system.

An equivalent electrical circuit network (rather than a magnetic equivalent circuit net-
work) is then extracted from the matrix system to facilitate the introduction of transmis-
sion lines. Next, this network is solved with elemental nonlinearity decoupled by the TLM
technique. A new concept of scattering box is defined to abstract away elemental local
nonlinearity in the form of 21 nonlinear resistors, compared with only 3 nonlinear resis-
tors for 2-D triangular NSE. Also, the process of assigning value after partial NR iterations
is introduced to solve nonlinearity inside each element. The new process eliminates the
need for an explicit function of ~B as a dependent variable of the voltage difference, which
is essential in 2-D TLM FEM. Transmission lines are then used to separate the scattering
boxes from the linear network, allowing massive parallelism at the elemental level.

This chapter is arranged as follows: 3.2 introduces the gauged eddy current formula-
tion based on reduced MVP, which is discretized by edge element interpolation functions
in Section 3.3. 3.4 and 3.5 describe the massively parallelized TLM-FEM scheme of the dis-
cretized formulation. In 3.6, the massive parallelism is verified by a GPU implementation,
and a comparison between the proposed 3-D TLM-FEM scheme and ComsolTM indicates
an excellent speedup of over 50 while a good precision (2%). Finally, Section 3.7 and 3.8
give a discussion and summary of the chapter.
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3.2 FEM Formulation For Eddy Current Analysis

3.2.1 The Reduced Magnetic Potential Formulation

As is introduced in chapter 2, the quasi-static Maxwell’s equations give restriction of mag-
netic flux density ( ~B) in eddy current analysis. Through Maxwell’s equations, it is obvious
that ~B jumps at the interface between different materials, which causes inconvenience for
numerical computation [29]. To deal with such a problem, the well-known ~A-ϕ formula-
tion was introduced and ~A,ϕ can be made continuous between materials [29]. The ~A-ϕ
formulation can be simplified to the reduced ~A formulation (3.1) when edge element is
used, which allows perpendicular jump of ~A between different conductivities:

∇× (υ∇× ~A) + σ
∂ ~A

∂t
= ~Je, (3.1)

where υ is the field-dependent reluctivity; σ is the electrical conductivity; ~Je is the im-
pressed current density.

3.2.2 Gauge for Non-Conducting region

The system in (3.1) is uniquely solvable if all solution domain are conductors. However,
when solution domain (Ωall) includes non-conduction region (Ωn), (3.1) does not have
unique solution because it loses restriction to the divergence of ~A in Ωn . To get a unique
solution, an innovative gauge [30], [31] can be added by introducing a dummy variable χ
in Ωn, which results in the following:{

∇× (υ∇× ~A) + σ ∂
~A
∂t −∇χ = ~Je,

∇ · ~A+ χ = 0.
(3.2)

Suppose ~Je is divergence-free, by taking divergence to both sides of the first equation in
(3.2), one finds that χ satisfies the Laplace equation:

∇2χ = 0| Ωn. (3.3)

By forcing χ to be zero at the outter boundary of Ωn:

χ = 0| Γn, (3.4)

where Γn is the boundary of Ωn, (3.3) becomes a simple boundary value problem and the
solution is 0 in Ωn. Now that χ is 0, considering second equation of (3.2), ∇ · ~A becomes
0. Therefore, Coulomb gauge is applied to ~A to get a unique solution. For simplicity, the
homogeneous Dirichlet boundary is imposed to ~A in this work:

~A‖ = 0| Γall, (3.5)

where Γall is the boundary of Ωall. Equations (3.2), (3.4), (3.5) form the formulation used
for eddy current analysis in this chapter.
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3.3 Finite Element Method And Discretized Formulation

3.3.1 The Magnetic Vector Potential Field

Finite element method can be used to solve the above vector-and-scalar-hybrid formula-
tion. It simplifies the problem by representing the unknown field with a limited degree of
freedom. The solution domain is divided into many subdomains (elements). Within each
element, the unknown field is a linear combination of known pattern fields (interpolation
functions fully determined by the coordinate of the element, shown in Fig. 2.2. The terms
(A(e)

1 , A(e)
2 , A(e)

3 . . . ) of this linear combination for every element are the degree of freedom
to be solved.

Galerkin method can be used to find those terms. For the method, the weight function
is the same as the interpolation function. The ~A and χ in 3.2 can be discretized to obtain
the numerical residual by the upper equation in Fig. 2.2 and the following scalar field
representation:

χ (x, y, z) =
4∑
i=0

χiLi
(e)|inside element e (3.6)

For concise notation, the element number index e in chapter 2 is omitted in the following
derivations (A(e)

i or Aei changes to Ai, Keiej changes to Kij). If one use vector identities
and force integration of the product of weight function and the residual to be zero within
one element, the elemental discretized formulation is obtained as follows:∫

Se
(υ∇× ~A)× ~ds · ~Ni +

∫
V e

(υ∇× ~A) · ∇ × ~NidV

+ σ
∂

∂t

∫
V e

~Ni · ~AdV −
∫
V e

~Ni · ~∇χdV −
∫
V e

~Ni · ~JedV = 0, (3.7)

∫
Se
Li ~A~ds+

∫
V e

~A · ~∇LidV −
∫
V e
LiχdV = 0, (3.8)

where Se is the surface boundary of the element and i is an integer from 1 to 6. By substi-
tuting 2 FEM-discretized field expressions at the top of Fig. 2.2 into (3.7)-(3.8) and ignoring
the first term in (3.7)-(3.8), the matrix form element discretized formulation is obtained:[

[ÂAij ]6×6 [Âχij ]6×4

[χ̂Aij ]4×6 [χ̂χij ]4×4

] [
[Aj ]6×1

[χj ]4×1

]
+

σ
∂

∂t

[
[ĈCij ]6×6 [0]6×4

[0]4×6 [0]4×4

] [
[Aj ]6×6

[0]4×6

]
=

[
[bi]6×6

[0]4×6

]
,

(3.9)

where
ÂAij =

∫
V e

(υ∇× ~Ni) · (∇× ~Nj)dV, i, j ∈ [1, 6], (3.10)

Âχij =

∫
V e

~Ni · ~∇LjdV, i, j ∈ [1, 6], (3.11)
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χ̂Aij =

∫
V e

~∇Li · ~NjdV, i, j ∈ [1, 6], (3.12)

χ̂χij =

∫
V e
LiLjdV, i, j ∈ [1, 6], (3.13)

ĈCij =

∫
V e

~Ni · ~NjdV, i, j ∈ [1, 6], (3.14)

bi =

∫
V e

~Ni · ~JedV, i, j ∈ [1, 6]. (3.15)

However, (3.9) only indicates the relation between edge/node unknowns that belong to
the corresponding element. In the assembling phase, the relation between all unknowns of
the solution domain is constructed by adding the contribution of every element to a global
matrix. The surface integration in (3.7)-(3.8) is not shown in (3.9). In fact, they are canceled
out during the assembling to ensure the continuity of tangential υ∇× ~A and the continuity
of perpendicular ~A at the interface between every element. As a result, Coulomb gauge is
automatically satisfied and every element can have different υ with almost no computa-
tional expense. Note that Ai is not the value of x, y, or z component of magnetic potential
on the corresponding edge i. In fact, Ai is terms of the edge’s interpolation function. The
value of Ai is the value of the projection of magnetic potential to the edge’s direction. Ac-
cording to the definition of edge interpolation function, ~B can be expressed by Ai:

~B = ∇× ~A =
6∑
i=1

Ai∇× ~Ni =
6∑
i=1

Ai
2 ~∇Li1 × ~∇Li2

li
. (3.16)

3.3.2 The Excitation Current Field

The excitation current field is calculated by solving a 3D static current conservation prob-
lem: 

∇ · ~Je = −∇2σclϕ = 0| Ωcl,

ϕ = 0| ΓGd,

ϕ = V (t)| ΓV s,

~n · ~Je = ~n · ~∇ϕ| Ωcl,

(3.17)

where Ωcl is the coil domain, ΓGd, ΓV s are the boundary of coil surface, ground, and ex-
citation voltage. V(t) is the voltage used to calculate time-variant excitation current field,
and σcl is the material conductivity of the coil. The coil domain is discretized by tetrahe-
drons and the scalar basis function Li shown in Fig. 2.2. Similarly, (3.17) is discretized
with Galerkin method. The voltage value at each tetrahedron vertex is then solved, and
the current inside each element is found by σcl ~∇ϕ.
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3.4 Solving the Nonlinear System

3.4.1 TLM Method for FEM Analysis

The nonlinear system assembled by (3.9) is usually solved by NR or quasi-Newton method.
However, these methods require updating of the global matrix, which slows down the
computation. The transmission line method, in contrast, does not have such a problem.

The transmission line method was already implemented to handle nonlinearity, de-
spite its full-wave physical essence. Although the TLM originates from the Huygens’ wave
propagation model and was used to solve full-wave problems [23], due to the delaying and
isolating function of the transmission line, TLM was successfully extended to solve non-
linear problems, such as the solution of a nonlinear electrical circuit network [22]. By con-
verting 2D FEM equations into a nonlinear electrical circuit equivalence, the TLM method
was further implemented for 2D magnetic field analysis [24].

To stay consistent with previous TLM-FEM works, we opted to represent the 3D FEM
equations with a similar nonlinear equivalent circuit model. According to the circuit anal-
ysis theory [32], the symmetric matrix system in (3.9) can be represented by a circuit net-
work. The RHS corresponds to node injection currents and the unknowns correspond to
circuit node voltage. As to the first matrix, the negative value of matrix element ij corre-
sponds to the conductance between nodes i and j. Sum of the first 6 elements in row i cor-
responds to the nonlinear conductance of node i to ground and sum of the last 4 elements
corresponds to the linear ground conductance of node i. Similarly, the second matrix can
be represented by a linear capacitor network. Since the two admittance matrixes in (3.9)
are added together, the resistive and capacitive networks are, according to circuit analysis
theory, parallel connected to the same circuit topology, which is shown in the next part.

Nonlinear resistors in the circuit network are separated from the linear circuit by trans-
mission lines with arbitrary characteristic impedance Zc. The linear circuit only sees linear
Zc and ‘communicates’ with nonlinear resistors by traveling waves on transmission lines.
After reflecting between the two line terminals many times, the waves reach steady val-
ues. In this way, nonlinearity is replaced by equivalent current sources and the admittance
matrix stays the same during each TLM iteration.

It is worth mentioning that υ is constant inside one element, which implies the coupling
of all nonlinear resistors inside one element. These resistors should be treated as a small
subsystem separated by transmission lines for each element. The subsystem is defined
as a ‘scattering box’ in this chapter. Since these small subsystems (scattering boxes) for
each element are separated by transmission lines, it is possible to solve each subsystem
independently of others.
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Figure 3.1: TLM technique for nonlinear system in (3.9) without χ.

3.4.2 Elemental Electrical Circuit and TLM Process

In (3.9), matrix elements involving χ do not include υ and they correspond to linear resis-
tors. For simplicity, they are not shown in the elemental circuit model. Fig. 3.1a shows the
nonlinear resistors of the equivalent circuit model of submatrix [ÂAij ]6×6, σ[ĈCij ]6×6 in
(3.9). The 6 red dots are the circuit nodes and the voltage of the nodes (Ai) corresponds to
the value of projection of ~A field to the corresponding edge direction. Yellow lines are the
branches between two nodes and blue lines are the branch between each node and ground.
The circuit component of each branch is shown on the right side with the following values:

Gij = −
∫
V e
υe(∇× ~Ni) · (∇× ~Nj)dV i, j ∈ [1, 6], i 6= j, (3.18)
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Figure 3.2: Inside scattering box: coupled elemental nonlinear network for scattering
phase.

Gi =
6∑
j=1

∫
V e
υe(∇× ~Ni) · (∇× ~Nj)dV, i, j ∈ [1, 6], (3.19)

Cij = −σĈCij , Ci =
6∑
j=1

ĈCij i, j ∈ [1, 6], (3.20)

where υe is the unknown reluctivity determined by Ai. υe is to be solved by NR iteration
inside the scattering box.

The TLM process is divided into 2 major phases: scattering and gathering. In the scat-
tering phase shown in Fig. 3.1b, the nonlinear resistors are replaced by transmission lines
and a scattering box. The transmission line characteristic conductance is given by:

YGij = −
∫
V e
υge (∇× ~Ni) · (∇× ~Nj)dV i, j ∈ [1, 6], i 6= j, (3.21)

YGi =
6∑
j=1

∫
V e
υge (∇× ~Ni) · (∇× ~Nj)dV, i, j ∈ [1, 6], (3.22)

where υge is the guessed elemental reluctivity value before computation and should be as
close as possible to the final solution of υe.

In this phase, information of the global circuit is fed to elemental nonlinear resistors
through transmission lines. Injection waves affected by nodal voltages (Ai) and branch
voltages (Ai-Aj) enter the scattering box (Fig. 3.2). Since each scattering box only sees
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Figure 3.3: Detailed massively parallel implementation of the 3D-TLM-FEM method.

transmission lines and incident waves rather than other scattering boxes, the solution pro-
cess inside each scattering box is independent of other scattering boxes. Inside each indi-
vidual scattering box, incident wave at one port is scattered to all ports according to the
coupling relation of nonlinear resistors. After scattering, waves leave the box and becomes
reflection waves. For example, V 1

inj enters port 1 and it is distributed and guided towards
ports 1 to 21 based on the relation between G1 and other conductance. All incident waves
are recombined to form reflection waves. Since υe is determined by (Ai) rather than (Ai-
Aj), only blue ports participate in the NR iteration. The nonlinear relation between Vinj

and Vref is the following:

Gi(V i
inj + V i

ref )− YGi(V i
inj − V i

ref ) = 0 i ∈ [1, 6], (3.23)

where YGi are guessed (fixed) but Gi are functions of V i
inj + V i

ref . These functions are
determined by (3.16) and B − υ/B −H curve. To calculate this 6×6 system, NR iteration
is used and the following equation yields the Jacobian matrix:

∂Gi

∂V j
ref

=
∂Gi

∂B2

∂B2

∂V j
ref

i, j ∈ [1, 6]. (3.24)

After the 6×6 NR iteration, υe is found, and υe is used to calculate the Gij at port 7∼21, and
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the reflection waves for port 7∼21 can be found by:

V ij
ref = V ij

inj

Gij − YGij
Gij + YGij

i, j ∈ [1, 6] (3.25)

The above local NR solving process does not involve nodal voltage difference (Ai-Aj). In
other words, the solution process does not need an explicit function of ~B as a dependent
variable of the voltage difference. Therefore, an extra transformation is unnecessary for
(3.16), which might be extremely difficult.

During the gathering phase (Fig. 3.1c), the reflected waves carrying the information
from elemental nonlinear resistors return to the global circuit network. Transmission lines
and reflected waves are replaced by the Norton model, and node voltages are then updated
for the global circuit network and these voltages are used to generate injection waves for
the next iteration. It is worth mentioning that the circuit network in such phase is a massive
network assembled from all elemental circuits in the mesh.

As is explained above, each TLM iteration involves many independent parallelizable
solutions for scattering boxes during the scattering phase and one solution of the fixed
global admittance matrix.

3.4.3 Time Discretization for Capacitors

As is shown in Fig. 3.1, there are capacitors in parallel with nonlinear resistors. The capaci-
tors involve time derivatives that can be replaced by a resistor and a history current source
by different numerical methods (backward Euler rule used in this work). The admittance
and current source are given by:

YCij = Cij/∆t YCi = Ci/∆ti, j ∈ [1, 6], (3.26)

ICij = YCij(A
(n−1)
i −A(n−1)

j ) i, j ∈ [1, 6], (3.27)

I
(n)
Ci = YCijA

(n−1)
i i, j ∈ [1, 6], (3.28)

where ∆t is the time-step, upper index (n) means current time-step and (n − 1) means
previous time-step.

3.5 Program for Massively Parallel Architecture

As is mentioned above, the scale of NR iteration in the TLM method is small (6*6). More
importantly, the NR iteration of different elements is independent and thus can be mas-
sively parallelized. In addition, TLM iterations do not change the admittance matrix, thus
only one time of admittance matrix inversion is needed for the whole solution process.
These properties make it suitable to run the proposed 3D-TLM edge finite element method
on massively parallelized architectures such as the GPU. A Cuda C program is developed
and the flowchart is shown in Fig. 3.3 for GPU implementation.
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Figure 3.4: Dimensions of studied power inductor.

Figure 3.5: Magnetic flux density distribution (module and vector) at 0.00667s.

3.6 Case Study

To demonstrate the precision and efficiency of the 3D-TLM-FEM method, a power inductor
shown in Fig. 3.4 is studied in comparison withComsolTM . The blue iron core has a size of
0.15* 0.1*0.0475m and it is surrounded by a coppery solid coil. The test case is implemented
on a work station with Intel Xeon E5-2698 v4 CPU and NVIDIA Tesla V100-PCIR-16GB
GPU. Material properties and voltage to generate excitation current are given in Table 3.1.

For the given problem definition, computation is carried out based on the following
parameters. The relative tolerance for TLM iteration is set to 10−5. Time-step for the case
study is set to 1/1200s and time length is 0.25s.

After post-processing, the magnetic flux density vector field is obtained. The field dis-
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Table 3.1: Problem definition
Material information

Domain σ B-H curve
Air 0 H = υ0B
Coil 107S/m H = υ0B

Core 104S/m H=

{
υ0B/2000 |B| < 1.3

υ0[|B|+ (|B| − 1.3)8]× |B|/2000B|B| ≥ 1.3

v(t) 0.45sin(120πt)V

tribution is displayed in Fig. 3.5 at the time when the maximum value occurs.
A comparison is made with ComsolTM to verify the precision and efficiency of the

proposed algorithm and the result shows good accuracy with average relative error less
than 2% over all space and time span. Fig. 3.6 and Fig. 3.7 displays the field results
obtained from both ComsolTM and the TLM-FEM scheme.

Meanwhile, a significant speed-up can be seen for different mesh sizes (Table 3.2). It is
not surprising to witness an excellent speed-up since the proposed 3D-TLM-FEM scheme,
in nature, has excellent parallelism and the V100 GPU has over 5000 cores. However, it is
still worth mentioning that the speed-up depends on TLM iterations needed per time-step
and may vary for different B-H curves and excitation amplitudes. Also, different matrix
solution algorithm affects the solution time.

Table 3.2: Execution Time and Speedup of 3D-TLM
Mesh

ID
Number of Execution time Speed

upElements DOFs Nonlinear DOFs ComsolTM TLM
1 7870 9061 1594 191.1s 3.65s 52.1
2 12533 17423 2604 401.9s 9.69s 41.5
3 20249 27996 4165 736s 24.7s 29.8
4 39258 54559 6109 2636s 162.1s 16.3
5 66706 91664 9236 4750s 342.8s 13.9
6 143964 196973 14283 11464s 912.7s 12.6

3.7 Discussion

As is seen in Table 3.2, speed-up decreases as mesh complexity increases. This leads to the
following questions and discussion: Is the performance hindered by TLM algorithm itself
for the case study? Will the 3D-TLM-FEM method remain efficient for larger mesh size?
More analysis/discussion is given below.

For time analysis, the following approximation is used:

TTLM ≈ NTLM × (tNR + tLU ), (3.29)
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Figure 3.6: Comparison of magnetic flux density module at probe point vs. time.

Figure 3.7: Comparison of magnetic flux density module at Z=0.33 and t=0.00667 (left from
the proposed 3D-TLM-FEM scheme and right from ComsolTM ).

where TTLM is the total TLM execution time, NTLM is the total TLM iterations needed
for entire computation, tNR is the NR iteration time at one single iteration and tLU is the
LU triangle matrix back substitution time. tNR and tLU stays almost unvaried because LU
matrix/routine and scale of NR iteration stays the same during the entire TLM iteration.

To find the reason for the speed-up drop, NTLM for the case study is investigated. By
comparing information in Fig. 3.8 and Table 3.2, it is obvious that the increase of TTLM
vs. DOF is much higher than that of NTLM . According to (3.29), a nonlinear growth of
tNR + tLU is seen, and the timeline generated by CudaV isualProfilerTM indicates that
tNR stays almost the same for all meshes. Therefore, the nonlinear increment of tLU hinders
the computation for a larger mesh, possibly due to the insufficient number of cores to fully
parallelize triangle matrix back substitution. It is the LU solving process, rather than TLM-
FEM scheme, that causes the majority of speed reduction for the case study. With a better
algorithm and more powerful GPU, the LU triangular solution time is likely to approach
ideal O(DOF ) and the performance of the case study will increase dramatically.
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Figure 3.8: TLM iteration number at each time-step for the case study.

Figure 3.9: TLM iterations required to reach tolerance of 10−5 in static scenario.

NTLM is not the ‘black sheep’ in the case study, but is it possible that NTLM grows
impractically large for bigger problems? To eliminate the interference of time-stepping,
another comparison of NTLM between different mesh sizes is carried out for a static case
where excitation current drives the inductor into deeper saturation, and results in Fig. 3.9
show that TLM iteration number is not sensitive to mesh DOF. Even an initial descending
trend of NTLM vs. DOF is witnessed. This coincides with the intuition that TLM iteration
is much more related to matching than network complexity.

Based on the above discussion, the proposed 3D-TLM-FEM scheme is promising, espe-
cially for large mesh since its algorithm complexity comes close to O(DOF ). Furthermore,
for long-time-span transient simulations, the 3D-TLM-FEM will gain more advantage —
NTLM reduces at later time-steps and the difference between NTLM narrows for different
mesh sizes, as is shown in Fig. 3.8. The increment of TLM iterations is much smaller than
that of mesh DOF. With a good convergence rate and an iterative nature, the 3D-FEM-
TLM scheme may look similar to the quasi-Newton method, however, they are essentially
2 different methods.
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3.8 Summary

In this chapter, the transmission line method was successfully extended for the 3D nonlin-
ear electromagnetic field analysis using edge vector finite elements. The challenges were
discussed and conquered, and it turned out that the good features of the TLM such as con-
stant admittance matrix and massive parallelism can also benefit the computation of 3D
nonlinear edge vector elements in practice.

More specifically, the transmission line modeling was applied to the edge-element-
discretized formulation to calculate the EM field with nonlinearity. To solve the discretized
formulation with excellent parallelism, nonlinearity and matrix rank were properly han-
dled. The concept of scattering box was introduced to model elemental local nonlinearity
for the TL-circuit system. Transmission lines in the system successfully decoupled local
nonlinearity from the global linear network so that computation can be parallelized at the
3D element level. In addition, the proper gauge was applied to edge finite element formu-
lation, which results in a full ranked matrix system to allow LU factorization of the global
linear network, making it possible to carry out matrix factorization only once during the
whole computation process.

Due to the above property, the proposed 3D-TLM-FEM is perfectly suitable for high-
performance parallel computation, and a comparison between the TLM implementation
and ComsolTM shows excellent speed up (over 50) while maintaining a good precision for
the power inductor case study.
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4
Domain Decomposition of 3-D Edge Elements

4.1 Introduction

This chapter explores the edge domain decomposition method to parallelize the finite ele-
ment computation at the edge level. The background, prerequisite knowledge, and deriva-
tion of the method are given. The implementation of the edge domain decomposed FEM
shows excellent suitability for SIMD architectures.

The finite element method (FEM) has drawn increasing attention in power system sim-
ulations due to its superior precision and ability to handle complex geometries. However,
the large-scale nonlinear FEM matrix system usually requires a significant amount of com-
putational power during global Newton Rapson (NR) iterations, as is illustrated in chapter
1. Moreover, if the external circuit equations are integrated into the global NR Jacobian ma-
trix, the solvability of the matrix system can be easily damaged [33].

The development of many-core high-performance computation hardware provides pos-
sibilities to improve the efficiency of FEM models in power system simulations, and many
different methods were proposed to adapt the time-consuming nonlinear FE algorithm for
parallel architectures. For example, the domain decomposition methods, including the
overlapping Schwartz scheme [34] and the non-overlapping FETI [35] scheme, divide the
global system into several smaller sub-domain problems so that the lighter sub-domain
matrices can be solved in parallel. To accelerate the solution of those matrices, the super
LU / paralleled Conjugate Gradient method was introduced. To avoid frequent updat-
ing for nonlinearity in those matrices, the transmission line modeling method [36] was
implemented.

However, the above methods still need large matrices and massive parallelism is hardly
achieved, since piecewise information, generated from each domain element, is integrated
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into one big system and is solved simultaneously in a single step. This is a centralized
way of thinking. A decentralized thinking pattern, in contrast, could fully unlock the com-
putational power of massively-parallelized architectures. For example, the GPU-based al-
gorithm achieved element-wise parallelism to accelerate matrix-vector multiplication [37],
and a decent speed-up was observed. In addition, a novel decentralized scheme called
nodal domain decomposition relaxation (NDDR) was introduced recently for 2-D nodal
triangular FEM [16]. The method has the following key features. All sub-domains are
shrunk into a minimum size at the single-node level, and each sub-domain has only 1
degree of freedom that can be independently solved. Also, each sub-domain only commu-
nicates with its neighboring domains in a distributed manner. Benefitting from the above
properties, the method allows the handling of material nonlinearity during iterations, as
well as nodal-level parallelism and matrix-free computation.

Despite the excellent modularity for massively parallelized architectures, the above
nonlinear NDDR method was only developed for 2-D triangular elements. While the 2-
D nodal element and geometry lead to significant error and deviation from reality, as is
explained in section 1.5. Thus, it is important to explore new algorithms to integrate the
above decentralized domain decomposition scheme with 3-D edges elements, especially
for nonlinear transient field-circuit co-simulation where a huge amount of computational
resources is needed.

In this chapter, we extend our former effort of the 2-D NDDR scheme [16] further to the
nonlinear 3-D edge elements. It shares the similar decentralized idea of applying domain-
decomposition to each node and element. However, rather than solving a simple 2-D
problem with scalar nodal unknowns, we achieved edge-level parallelism on the reduced
magnetic vector potential (RMVP) for 3-D vector elements with much larger degree of
freedoms. Different convergence and gauging behaviors are also explored. Furthermore,
We purpose a field-circuit coupling scheme which allows large eddy current and separate
solution of circuit and FE systems with high accuracy. Inductor and transformer cases
are studied to verify the accuracy and efficiency of the proposed EDD and field-circuit
coupling scheme, and comparison with ComsolTM indicates a good accuracy and decent
speed-up of over 43.

The chapter is arranged as follows. Section 4.2 introduces the eddy current RMVP for-
mulation discretized by edge element interpolation functions. In 4.3, the decentralized
idea is extracted from traditional schemes and is extended as the new EDD method. Sec-
tion 4.4 proposes the field-circuit coupling technique, which is then integrated with the
EDD method in the case studies shown in Section 4.5. Finally, Section 4.6 and 4.7 give the
discussion and the summary of this chapter.
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4.2 FEM Formulation For Eddy Current Analysis

4.2.1 Reduced Magnetic Potential Formulation

As is introduced in chapter 2 and chapter 3, instead of directly dealing with the quasi-static
Maxwell’s equations, one can solve the following for low-frequency magnetic problems:

∇× (υ∇× ~A) + σ
∂ ~A

∂t
− ~Je = 0, (4.1)

where υ is the field-dependent reluctivity, σ is the electrical conductivity, and ~Je is the
impressed current density.

4.2.2 Finite Elements And Discretized Formulation

When the finite element method is applied, the above equation can be simplified into a lim-
ited degree of freedoms (DOFs). To achieve this, the edge domain decomposition scheme
follows a similar derivation process presented in chapter 2. However, for concise nota-
tion, the element number index e in chapter 2 is omitted (A(e)

i or Aei changes to Ai, Keiej

changes to Kij), and the 6× 6 matrix-form elemental discretized formulation as follows:

[Kij ]6×6[Aj ]6×1 + [Dij ]6×6

∂

∂t
[Aj ]6×1 = I[fi]6×1 + [τi]6×1, (4.2)

where
Kij =

∫
V e

νe
(
∇×

−→
Ni

)
·
(
∇×

−→
Nj

)
dV, i, j ∈ [1, 6], (4.3)

Dij =

∫
V e

σe
−→
Ni ·
−→
Nj dV, i, j ∈ [1, 6], (4.4)

fi =

∫
V e

−→
Ni ·
−−→
Junit dV, i ∈ [1, 6], (4.5)

τi =

∫
Se

(
ν∇× ~A

)
×
−→
ds ·
−→
Ni, i ∈ [1, 6], (4.6)

and Ve is the volume, Se is the surface boundary of the element,
−−→
Junit is the coil current

density at 1 Amp coil current, and I is known current in the coil which changes with time.
The time derivative in (4.2) can also be discretized using the Backward Euler method:

[Mij ]6×6 ·
[
Aj

t
]
6×1

= [bi]6×1 + [τi]6×1, (4.7)

where
[bi]6×1 = I[fi]6×1 + [Dij ]6×6/∆t ·

[
Aj

t−1
]
6×1

, (4.8)

[Mij ]6×6 = [Kij ]6×6 + [Dij ]6×6/∆t, (4.9)
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and ∆t is the time-step length, Ajt is the unknowns to solve for at current time-step, Ajt−1

is Aj at the previous time-step.
When the element is inside a ferromagnetic material region, the νe become dependent

on magnetic flux density ~B, and ~B is a function of Ai. This means that (4.7) becomes a
nonlinear equation of Ai. The common NR iteration can be used to solve the nonlinear
system. According to the method, (4.7) becomes a form of Jacobian matrix and residual.
The following equations are necessary to form the Jacobian matrix:

~B = ∇× ~A =

6∑
i=1

Ai · ∇ ×
−→
Ni =

6∑
i=1

Ai ·
2
−−−→
∇Li1 ×

−−−→
∇Li2

li
, (4.10)

∂νe
∂Ai

=
∂νe
∂B2

· ∂B
2

∂Ai
, (4.11)

where ∂νe
∂B2 is determined by B-H curve of the material.

However, the above discussion only gives the restriction of 6 local Ai inside one single
element. To achieve solution over the entire domain, all elements must communicate with
each other. The communication is subject to Maxwell’s equations:
1. Every edge has only 1 global direction and value Ak. When one edge is shared by
multiple elements, all local Ais of such edge in different elements are equal to Ak. And all
local ~Nis adjust signs so that their components on the edge all point in the global direction.
This ensures the continuity of tangential ~A, thus normal ~B is continuous between elements
[19].
2. On a triangular surface shared by 2 elements, the τis in the 2 elements are opposite to
each other. As a result, tangential ν∇× ~A or ~H is continuous between elements.

How to effectively handle the above elemental nonlinear equation and inter-element
communication consistency presents a challenge to different methods. This will be dis-
cussed in the next part.

4.3 Edge Domain Decomposition To Solve The Global Nonlinear
System

As is shown in Fig. 4.1(a), the traditional method only has one domain for the whole solu-
tion area. The method explicitly enforces elemental restrictions and global consistency
through the assembly process. During assembly, one global matrix system is formed,
where each edge only has one global unknown (the global counterpart of multiple ele-
mental unknowns sharing the edge). Elemental matrices and vector are added directly
to the global matrices/vector at the position of the global counterparts, and the surface
integration of (4.6) does not appear in the system since they are canceled out. Thus all
local and inter-element restrictions are respected. After the application of a proper global
domain boundary condition, the matrix system can be solved.
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[Mglobal][Aglobal]=[bglobal]
Information 
exchange

at overlapped 
interface

[M1][A1]=[b1]

[M3][A3]=[b3]

[M2][A2]=[b2]

[M4][A4]=[b4]

Figure 4.1: (a) Left side: traditional single domain FEM. (b) Right side: overlapping do-
main decomposition method with 4 sub-domains marked in different colors.

Figure 4.2: EDD scheme with sub-domains containing only one unknown edge element.

4.4 Edge Domain Decomposition To Solve The Global Nonlinear
System

However, the sparse global matrix may have several millions of unknowns (total number
of edges in the domain). In addition, the matrix system must be globally assembled and
solved at every NR iteration, which could be computationally expensive even for efficient
matrix solvers.

Such costs can be reduced using a traditional domain decomposition method. As is
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Figure 4.3: Detailed formulation within each sub-domain for the EDD scheme.

shown in Fig. 2(b), the whole solution region is divided into several sub-domains. And
similar assembly happens in each sub-domain to generate smaller matrix systems. These
sub-domain systems can be solved in parallel and different schemes [35], [34] may be ap-
plied to exchange information and reach consistency (inter-element consistency) on sub-
domain interfaces.

For example, if Schwartz scheme [34] is applied, the parallelism and consistency are
ensured by an overlapping/iteration technique. Under this scheme, the interface is a thin
layer of elements, which means any given sub-domain’s interface boundary locates inside
other sub-domains. All sub-domain’s interface boundary is given a guessed initial value
at the start of the iteration. With global/interface boundary conditions, each sub-domain
system is then solved independently to generate a domestic result on its inner edges, which
is used to update other sub-domain’s Dirichlet boundary condition at the next iteration
step. Such iteration repeats until a consistent global result is reached.

Due to reduced problem size and inter-sub-domain parallelism, the DD method has
significantly improved efficiency for some parallel computing architectures (such as multi-
core CPU). However, the sub-domain systems, depending on the domain partition, can
still possibly have thousands of unknowns [35]. And a large nonlinear sub-domain sys-
tem may still require expensive and repetitive assembly and solving at NR iterations. In
addition, extra computation burden may be caused by special techniques to handle inter-
sub-domain consistency. These properties make the DD implementation not suitable on
GPU architecture, which is designed for massively parallelism of light-weight tasks.

To expand parallelism and reduce single-core workload, a natural idea is to shrink the
size of each sub-domain. Fig. 4.2 shows an extreme situation where each edge has its own
sub-domain and each domain only consists of elements sharing the edge. In each domain,
there is only 1 internal edge. This means the sub-domain system becomes a super light
1 × 1 equation after the Dirichlet boundary condition is applied. When one applies the
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above overlapping/iteration scheme, those Dirichlet boundaries are simply the respective
neighbor edges’ values at the previous iteration step. Due to the overlapping, each edge
is updated based on its direct neighbors and, meanwhile, serves as boundary conditions
when its neighbors are updated at the next iteration step (see the black and green edge in
Fig. 4.2). A consistent global result can be reached after iterations. Therefore, each internal
edge can be updated independently by a 1 × 1 equation, and edge level parallelism is
achieved.

Fig. 4.3 explains how the 1 × 1 equation is formed for the black example sub-domain.
The Hexagonal pyramid domain includes 6 elements and 19 edges. Each edge has its
global direction labeled in arrows (upper red and lower blue). For easier interpretation, the
3D shape is projected into a plane with elemental local edge numbers displayed. The only
domain inner edge becomes the center black dot. Each elemental system only contributes
its inner-edge row into the 1 × 1 equation. For example, the inner edge (Ak) is numbered
1 inside element Ωk1. Thus, in matrix Ωk1, only the first row is valid because the other 5
edges’ rows are eliminated as boundary conditions. The other 5 elements follow similar
pattern. Since tangential ~H continues on all surfaces sharing edge Ak, sum of black τis
becomes 0. This gives rise to the following equation:∑N

i=1
F ki (Ak) = 0, (4.12)

where k is the global index of the edge to be solved, N is the total number of neighboring
elements sharing edge k , ki is the element index of its ith neighboring element, and Fki

is the inner-edge row of the ith neighboring element. Note that the equation only has
one unknown Ak, and during its assembly, inter-element consistency is well respected by
explicitly applying the restrictions. When NR method is used to solve the nonlinear (4.12),
the increment of Ak is calculated by:

∆Ak =

∑N
i=1 F

ki (Ak)∑N
i=1

∂Fki(Ak)
∂Ak

(4.13)

Based on the above discussion, the EDD scheme handles nonlinearity, inter-element
consistency, while simultaneously allowing massive parallelism and a light-weight single-
core task. Moreover, no global matrix is needed because all information needed for the
single-edge calculation can be drawn from its neighbors. The calculation program flowchart
is shown in Fig. 4.5. To effectively access data for the program, the C language structures
are defined in Fig. 4.4. Each element and edge consumes a fixed memory space. As a
result, the total memory needed is linear to the problem size.

It is also worth mentioning that the proposed 3D-EDD scheme is equivalent to Jacobi
iteration under linear cases, which is similar to the N-scheme in [38]. However, the 3D-
EDD can easily integrate nonlinearity and matrix solution process without significantly
affecting the convergence rate. Also, since the EDD method is originated from domain
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typedef struct
{

int Type; //boundary Edge?
int TotalCountNeiborElems;
int NeiborElemsIDNum[20];
int LocalNumInNeiborElem[20];
//1,2,3,4,5,6
float f; float b;
//see Eq.(3),(8)
float Ed; //eddy current term
float A0;float A1;
//edge values for iteration

}Edge[TotalCount_Edges];

typedef struct
{

int EdgeID[6];
//6 edges' global numbers
int Type;
//air or iron core?
float K[6][6]; //Eq. (3)
float D[6][6]; //D/dt Eq.(3)
float DdotA[6];
//eddy current buffer
float A_2_Bxyz_term[3][6];
//6 edges' Ai -> Bx By Bx

}Elem[TotalCount_Elements];

Figure 4.4: Data arrangement of EDD scheme in C language.

decomposition, replacement or modification of the sub-domain boundary condition may
dramatically increase the convergence speed.

4.5 Coupling Scheme For Field-Circuit Co-Simulation

The above edge domain decomposition scheme can provide electromagnetic field distri-
bution based on an input coil current amplitude. However, coil currents in a power device
(such as transformers) are always from a power system circuit, and a proper field-circuit
coupling scheme is still necessary to interface with the external drive circuit.

There are 2 types of coupling schemes [33]: direct and indirect methods. The direct
method simultaneously solves the entire FE and circuit system in one global matrix, which
is intuitive and precise, and a symmetric matrix may be generated [39]. However, the
method requires FE matrix and it may destroy the iteration convergence of the global ma-
trix, which is not suitable for the matrix-free iterative EDD scheme. On the other hand,
indirect methods allow separate solutions of the circuit and FE systems. But some of the
previous work cannot precisely handle strong eddy currents [17].

In this work, we propose an indirect coupling scheme by observing the time-discretized
restrictions on coil current and voltage through traditional FE matrices. The scheme solves
field and circuit equations separately and can produce accurate results under strong eddy
currents.

The voltage of a 3D coil results from the electric field at the direction of coil wire, which
is also equivalent to time derivative of coil Magnetic flux ϕ:

V =
Ncoil

Scoil
·
∫
V coil

∂ ~A

∂t
· −−→ncoil dv =

∂ϕ

∂t
, (4.14)

where Ncoil is the number of coil windings, Scoil is the wire intersection area, −−→ncoil is the
unit vector of predefined coil wire direction. When the ~A field is discretized by known
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end

max time-step 
reached?

start
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Elem.K,D,A2Bxyzterm  Edge.f 
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contribution to: 

Edge.Ed

EDD Compute for each 
edge to update: Edge.A1

Edge.b=I*Edge.f+Edge.Ed

Edge.A0=Edge.A1

For each element, 
Fetch Local A0[] based on mesh 

link info and then
calculate: DdotA[]=D[][]*A0[]

For each edge,
collect Eddy current info from all 
neighbor elems based on link info
Ed=∑DdotA[localIDofThisEdge]

Update coil 
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Apply boundary condition and 
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EDD Compute for each 
edge to update: Edge.A1

Edge.b=I*Edge.f+Edge.Ed
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update eddy current 
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Edge.Ed
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edge to update: Edge.A1

Edge.b=I*Edge.f+Edge.Ed

Edge.A0=Edge.A1
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For each edge,
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Fetch Local A0[] based on mesh 

link info and then
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For each edge,
collect Eddy current info from all 
neighbor elems based on link info
Ed=∑DdotA[localIDofThisEdge]

tolerance
reached?
y

y

n

n

EDD Compute for kth edge
if kth edge is boundary edge directly return
else do below:
Ak=Edge[k].A0;
do 
  loop  i from 1 to

 Edge[k].TotalCountNeiborElems
 NeiborElmID=NeiborElemsIDNum[i];
 localID=LocalNumInNeiborElem[i];
 from NeiborElmIDth element

 fetch  boundary conditions from A0
 fetch info from localIDth row of M[][]

 In order to
Calculate, accumulate Fki and ∂ Fki/∂Ak 

 end loop
 calculate ΔA k 

while ΔA k/Ak > Tolerance
Edge[k].A1=Ak;

Figure 4.5: Flowchart of EDD scheme.

interpolation functions, the above equation becomes

V =
∑Q

k=1

∂Ak

∂t

(∫
V coil

Ncoil

Scoil
·
−→
Nk · −−→ncoil dv

)
, (4.15)

where Q is the total number of edges, Ak is the field unknown on kth global edge,
−→
Nk is

interpolation functions associated with kth edge. As a result, the voltage becomes a linear
combination of unknowns on each edge noted as:

V = A ϕ · ∂A
∂t

, (4.16)

where A is a column vector of all edge unknowns, and A ϕ is the row vector of the inte-
gration terms in (4.15), which can be found before FEM solution. Note that A ϕ also maps
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Figure 4.6: FE circuit models for circuit coupling: left side is for linear cases, and right side
is for nonlinear ones.

A into coil flux ϕ.
The (4.16) and the FEM global matrix system establish the link between coil current and

voltage, with A as bridge. This relation is used to abstract the FEM model into a circuit
component by several steps:[

K 0
0 −1

]
·
[
A
V

]
+

[
D 0

A ϕ 0

]
·
[
∂A/∂t
V

]
=

[
f
0

]
I(t), (4.17)

where K is theN×N global stiffness matrix, f is theN×1 global excitation column vector
of the coil, assembled by elemental equations (4.2). When Backward Euler method is used
to discretize the time derivative, the above equation becomes:[

K + D
∆t 0

A ϕ
∆t −1

]
·
[
At

V t

]
=

[
f
0

]
It +

[ D
∆t 0
A ϕ
∆t 0

]
·
[
At−1

V t−1

]
, (4.18)

where the upper index t means unknowns of current time-step, and t-1 means knowns
from previous the time-step. After basic linear algebra operations, one can obtain:

V t = ψ
(
f × It + D/∆t ·At−1

)
− ϕt−1

dt , (4.19)

where ϕt−1
dt = A ϕ/∆t · At−1, and the row vector ψ = [A ϕ/∆t] · [K + D/∆t]−1. Note

that multiplying the row vector ψ with a column vector can be interpreted in another way:
solve the FEM problem with the column vector as excitation, and extract the coil flux term
from the solution vector At. This process is defined as ψ operation to a column vector. The
equation explicitly describes the link between V t and It, which directly give rise to the
following circuit models.

For linear cases, operator ψ is fixed. Therefore, (4.19) degenerates into a pure linear
restriction:

V t = Leqv/∆t× It + ϕeddy − ϕ∆t
t−1, (4.20)
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where Leqv = ψ · f , ϕeddy = ψ
(
D
∆t ·Ak

t−1
)
. The FEM system becomes a fixed linear resis-

tor and voltage sources (extracted from history FEM solution) in the circuit, as is shown in
Fig. 4.6 left. For nonlinear cases, operator ψ changes with its input. However, since At−1

is known from previous time-step, ψ becomes a nonlinear function (ϕ∆t) of It, and (4.19)
degenerates into:

V t = ϕ∆t

(
It
)
− ϕ∆t

t−1. (4.21)

Thus the FE system is regarded as a nonlinear current-controlled voltage source and a fixed
voltage bias in the circuit shown in Fig. 4.6 right.

With the above FE circuit model, the FE and circuit systems can be solved separately.
From the circuit solver’s perspective, the complex FEM solution process is abstracted away
as different circuit components and the FE information comes back to the circuit as voltages
on those components. On the other hand, the FE solving process only sees current It from
the circuit as input (operator ψ only sees It).

However, despite the convenience of isolation, the model still needs iterations (usually
2-4 times) to handle the nonlinearity. The purpose of the iterations is to find an It that leads
to consistent voltages on both the FE circuit model and the circuit connected to it. If the

NR scheme is applied, the circuit solver needs to know
∂ϕ∆t(It)

∂It and ϕ∆t

(
It
)

to calculate
the increment of It. The ϕ∆t

(
It
)

can be obtained by directly solving the FEM problem at

coil current It, and there are different methods to find
∂ϕ∆t(It)

∂It . For simplicity, the small
probing increment method shown in (4.22) is used in this work:

∂ϕ∆t

(
It
)

∂It
=
ϕ∆t

(
It + dIt

)
− ϕ∆t

(
It
)

dIt
. (4.22)

Note that the calculation of ϕ∆t

(
It + dIt

)
and ϕ∆t

(
It
)

can be parallelized due to indepen-
dence, and the iteration flow chart is shown in Fig. 4.7.

The iteration converges to the same result of the direct coupling method, regardless of
eddy current strength. The reason is that the proposed scheme simultaneously enforces
the field, circuit, as well as the voltage/current consistency equations, and the same re-
strictions are explicitly assembled into the global matrix in the direct coupling methods.
Also, note that although the scheme derives from matrices, it is still valid for matrix-free
EDD FEM due to independent solutions of field and circuit.

4.6 Case Studies

To demonstrate the efficiency and precision of the above methods, two case studies were
carried out and results were compared with ComsolTM on the same mesh. The first one
verified the nonlinear handling ability of the EDD scheme in a deep-saturated static sce-
nario, and the second one combined field-circuit coupling and EDD in a transient sim-
ulation. The algorithm was developed in CUDA-C language, and the test was imple-
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Figure 4.7: Field-circuit coupling iteration flow chart at time-step t.

mented on Intel Xeon E5-2698 v4 CPU (ComsolTM ) and NVIDIA Tesla V100-PCIR-16GB
GPU (EDD scheme).

For the computation parameters, the termination condition is set to a global relative
change of 1e-6 and a global relative residual of 1e-5, and all domains have Dirichlet bound-
ary condition for the tangential component of ~A:

−→
A‖ = 0. (4.23)

4.6.1 Nonlinear Static EDD Simulation

Table 4.1: Inductor Problem definition
Coil/air permeability µ0 Coil current/winding turns 16A/380

Iron core B-H curve H=

{
υ0B/2e3, |B| ≤ 0.6

υ0B/2e3 + 4e4(|B| − 0.6)4|B|/B, |B| > 0.6

Fig. 3.4 shows a power inductor with a blue iron core and a copper coil. Since it’s
studied in a static case, the D matrix in (3) was set to 0. The material and coil parameters
are given in Table 4.1.

After computation and post-processing, the field is displayed in Fig. 4.8, and the com-
parison with ComsolTM over different mesh size is shown in Table 4.2. The result shows
good accuracy with an average relative error of less than 2% over space domain. Mean-
while, a significant speed-up can be seen due to excellent parallelism and a fast conver-
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Figure 4.8: Saturated static magnetic flux density (T) of the power inductor.

gence rate over DOFs. However, readers should notice that the speed-up may vary for
different B–H curves and excitation amplitudes, since the convergence rate will be affected
by the system spectral radius.

It is also worth mentioning that the static version of (4.2) does not have a full rank
because it cannot specify the divergence of ~A. However, the static case study still converges
to the correct solution. This means that the iteration process can auto-gauge the problem
like the conjugate gradient method [40].

Table 4.2: Comparison With COMSOLTM For The Static Case
Mesh size (DoF) 7870 24.3k 47.5k 79.8k 172k 523k
Time
use(s)

ComsolTM 14.9 47.2 107.5 198.1 579.3 2274
EDD 0.34 1.26 3.82 11.9 38.7 206.9

EDD iteration 5158 5529 7019 9039 13.8k 24.7k
Speed-up 43.7 37.5 28.2 16.6 14.9 10.99

4.6.2 Nonlinear Dynamic Field-Circuit Co-Simulation

As is shown in Fig. 4.9, the studied transformer has 3-phase metal-colored coils and an E-
shape blue iron core. The transformer has 6 coils while the above coupling scheme only de-
scribes the voltage-current relation of a single coil, which means further extension should
be made. Six coils, rather than a single one, all contribute to the total external excitation
current in the finite element domain. The influence of 6 coil currents are packed into a total
column FE excitation vector:

fall =
∑6

i=1
Ii
t × fi, (4.24)

where Iit is the current inside ith coil, and fi is the FE global excitation vector of ith coil. fi
is then fed into the FE solver to obtain the field distribution (A), which generates voltages
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Figure 4.9: Geometry of the three-phase transformer in meters.

Figure 4.10: Test circuit with FE model and the equation to calculate current increment.

on all 6 coils:
Vcoil = A ϕcoil ·A. (4.25)

The above process establishes a 6-by-6 current-to-voltage mapping between the coils.
Thus the transformer FE system becomes a 6-port nonlinear current (It)-controlled voltage
source (Vt), and the Jacobian matrix of the nonlinear source is obtained by similar small
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Figure 4.11: Magnetic flux density (B) field of 3-phase transformer at 0.00733s.

Table 4.3: Transformer Problem Definition
Transformer parameters

Coil/air
permeability

µ0
Winding turns
primary/secondary

750/1500
Core
σ

2000S

Iron core
B-H curve

H=

{
υ0B/1000, |B| ≤ 1.3

υ0B/1000 + 1e5(|B| − 1.3)3 × |B|/B, |B| > 1.3

Circuit parameters
Rs = 15Ω Rp = 300Ω C = 300nF
Vpow are sinusoidal waves with peak amplitude 60kV at 60Hz

Simulation time set-up
Time-step length: 1/60/200s Total time span: 0 to 0.15s

probing increment separately superimposed on 6 coils:

∂ϕ∆t

∂It ij
=
ϕ∆t

(
It
)
i
− ϕ∆t

(
It ∪ dItj

)
i

dItj
, i, j ∈ [1, 6], (4.26)

where dItj means small probing increment of current on coil j, and ϕ∆t

(
It ∪ dItj

)
i

means
time-discretized flux on coil i, generated form reference current It superimposed with dItj .

The extended FEM model is connected to the balanced 3-phase circuit shown Fig. 4.10.
The circuit switch simulates an open-circuit fault at the secondary loadsRs. The fault starts
at 0.05s with a duration of 0.05s.

Based on the model in Fig. 4.10 and parameters in Table 4.3, the simulation was carried
out at a fixed mesh size of 15006 DoFs. During computation, the iterations needed for each
time-step are plotted in Fig. 4.13, and time consumed is 501s vs. 1198s on ComsolTM . The
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Figure 4.12: Comparison of EDD scheme and ComsolTM results over time (s) for the 3-
phase transformer.

Figure 4.13: Total EDD iterations vs. time (s) with field-circuit interfaceing. Note: circuit-
field iteration count is fixed at 5 for all time-steps. The figure gives the sum of all coil-
parallel EDD iterations involved in 5 coil-field iterations.

final result is shown in Fig. 4.11-4.12 and a comparison with ComsolTM shows a relative
error of less than 2% over time and space domain.

4.7 Discussion about Speed-up of EDD Scheme

As is shown in Table 4.2, the speed-up decreases with the mesh DOFs, which leads to the
following question: will the EDD scheme becomes slower than ComsolTM for millions of
DOFs? The current performance is hampered by total GPU cores of 5120. This means many
sub-domain solvers are still sequentially executed. However, if all sub-domains are solved
in parallel, the time needed will be proportional to the number of EDD iterations, which
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is slower than the growth of mesh DOFs, and this results in an increasing speed-up vs.
DOFs compared to ComsolTM (note that in reality, there might be some implementation
limit such as communication delay between large number of cores).

It is also seen that ComsolTM is much faster (such as 50 times) in time-domain com-
pared with the static scenario. This is possibly because it utilizes a pre-factorize-and-back-
substitution method to save time at the linear time-steps. The system matrix may be fac-
torized only once and only light back-substitutions are carried out at time-steps of linear
material B-H region. Thus, the time consumption is not comparable with the EDD-circuit
scheme, since the method does both ‘factorization and back-substitution’ at each time-step.

Future research will focus on expending the EDD scheme on clusters with multiple
GPUs to exceed the 5000-core limit. Also, we will integrate the EDD scheme with the pre-
factorize-and-back-substitution method to gain better speed-up for time-domain cases.

4.8 Parallel-in-Time Method for 3-D Finite Edge Elements

4.8.1 Extending Parallelism in the Time Dimension

Algorithms in the above discussion, either the decentralized edge domain decomposition
or the constant-global elemental TLM method, are based on space parallelism. Also, they
are mostly implemented on a single GPU. To further improve parallelism for large-scale
hardware such as GPU/CPU clusters, this section explores another possibility to paral-
lelize 3-D FEM models with the time dimension. The Parareal parallel-in-time technique
suitable to solve ordinary differential equations is firstly introduced. Then, the 3-D FEM
system was combined with a parallel algorithm in a case study with a decent speed-up.

4.8.2 Parareal Method for the Solution of Ordinary Differential Equations of
FEM-Circuit System

The Parareal algorithm can accelerate time-domain ordinary differential equations (ODE)
by introducing parallelism along the time span, and the method has been applied to non-
linear circuit solvers [41] and even nonlinear 2-D FEM analysis [42] with decent speed-ups,
since they are essentially ODE systems. On the other hand, due to the inherent ODE na-
ture, the TLM field solver or EDD field-circuit solver in the above chapters can also be
integrated with the Parareal method. As a result, the parallelism is further extended into
both time and space levels so that hardware resources can be fully exploited.

To explain how the space-time parallelized field-circuit solver works, we introduce the
following definitions:
1. Each edge’s magnetic potential At, and the circuit’s all nodal voltages and branch cur-
rents are noted as state variables. And these state variables are packed in one vector Ut.
2. By repeating the algorithm in Fig. 4.7, the state variables can be propagated from the
initial time point t1 to a given future time point t2. When the system time step ∆t is small
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Figure 4.14: Parareal algorithm explained in detail. Note: U2˜UN are all set to 0 at the start
of Parareal iteration. And U1 is the known initial boundary value.

enough, the program yields precise state variable value at t2, and the computation process
is defined as the precise propagator F :

Ut2
F = F (Ut1 , t1, t2) , (4.27)

If the time step ∆t is much bigger compared toF , the program in Fig. 4.7 can only generate
a coarse estimation of state variables at t2 with a much cheaper computation amount. This
process is noted as the coarse propagator G:

Ut2
G = G (Ut1 , t1, t2) , (4.28)

Due to the time step difference, G requires light computation while F becomes computa-
tionally expensive.

As is shown in Fig. 4.14, the Parareal algorithm divides the whole time span into N-1
smaller time windows. Between these time windows are the time points where the state
variables need to be found. Traditionally, to achieve precise results at these time points, op-
erator F needs to sequentially propagate state values between each time window, which
could be time-consuming considering the dependency of later time points on previous
ones. In contrast, the Parareal algorithm executes the propagators inside each time win-
dow in parallel and utilizes iterations to make the values at each time point converge to
the precise result.

During each iteration, every time window is assigned to a working thread. Each time
window propagates in parallel the state values from their local start time point to the local
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endpoint, and the result is saved in their local buffers (UiGbf or UiF bf ). Note that these
local propagations involve both F and G, and the computational expensive F is parallel-
executed in each different time windows with different initial values. After the local prop-
agations, state values at each time point are sequentially updated by the local buffers and
the information from the previous time point as follows:

Ut
(k+1) = G

(
Ut−1

(k+1), t− 1, t
)

+ F
(
Ut−1

(k), t− 1, t
)
− G

(
Ut−1

(k), t− 1, t
)
, (4.29)

where k is the Parareal iteration count, and t is the time point to be updated.
The Parareal iteration repeats until state variables at the last time point converge into a

stable result. If the Parareal iterations required are less than the number of time windows,
the parallel-in-time algorithm becomes faster than the traditional time-serial method. Once
the Parareal algorithm is combined with the space-parallelized finite element method in
the above chapters, inductive power devices can be accelerated with both space and time
level parallelism at the time points between the time windows.

4.8.3 Case Study for Time-Parallel Technique with 3-D Edge Finite Elements

To verify the feasibility and efficiency of Parareal technique in 3-D edge finite elements, the
above algorithm is applied to the FEM field-circuit system in 4.6.2. The Parareal case study
carries out based on the same circuit, transformer, fault configuration, and total time-span
(0.15s). The Parareal algorithm divides the entire time-span into 15 smaller time windows
for the implementation. Within each time window, the propagator G is assigned a big time-
step of 0.1s for coarse prediction, and the propagator F is given a much smaller time-step
(0.005s) to precisely calculate the state variables.

After computation, the results indicate that the Parareal algorithm takes 5 iterations
to converge with a relative error of less than 1% vs. its time-serial counterpart. Since
the entire computation can be assigned to 15 different threads, the theoretical speed-up
becomes 15/5=3 for this case study.

4.9 Summary

In this chapter, a novel edge domain decomposition method was proposed to calculate the
3-D field for nonlinear electromagnetic devices. The algorithm achieved massive paral-
lelism and was implemented on GPU architectures.

The idea of minimum sub-domain division is implemented with time-domain 3-D
nonlinear edge elements based on RMVP formulation. Benefitting from the extreme sub-
domain size, the method simultaneously solves material nonlinearity and global FE system
without having to assemble the global matrix. Also, the light-weight sub-domain task and
huge sub-domain number result in excellent modularity and massive parallelism, which
made the EDD scheme a perfect choice for many-core GPU implementation. Furthermore,
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an auto-gauging property was seen to converge the rank-deficient system into a stable
solution.

For field-circuit co-simulation, a coupling scheme was developed to interface the EDD
scheme with the external circuit. The scheme can abstract away complex FE model in con-
trolled sources, while maintaining a high precision at the same time, especially under high
eddy current conditions. The efficiency and accuracy of the EDD-circuit method were dis-
cussed and verified through the GPU implementation. The comparison with ComsolTM

indicates a significant speed-up of 43.7 with an error of less than 2%.
Also, the Parareal method was explored to increase parallelism as much as possible at

the space-time dimension. The simulation of the EDD field circuit system was executed
in 15 separate time windows and the result indicates a theoretical speed-up of over 3.
Thus, the Parareal algorithm can be another effective way to boost 3-D edge finite element
models in power system simulation.
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5
Conclusion

5.1 Summary of the Thesis

The decentralized idea of nodal domain decomposition and the transmission line decou-
pling method were successfully implemented with 3-D edge finite element models based
on reduced magnetic vector potential formulation. Parallelism was achieved at different
levels with elements, edges, and time. These algorithms were explored, developed, and
tested with decent efficiency. The summary of contributions is given below:

• The transmission line decoupling technique was extended from circuit analysis into
3-D edge FEM models, and parallelism was achieved at the tetrahedron elemental
level. The method converts the 3-D nonlinear matrix system into a big-scale circuit
network with both linear and nonlinear resistors. The nonlinear resistors associated
with each element were decoupled from the big-scale global linear resistor network
with transmission lines. This resulted in a constant global matrix (linear resistors)
and many isolated small-scale local nonlinear matrixes (elemental nonlinear resis-
tors). Since the global matrix is constant, it only requires only one factorization dur-
ing the entire computation. And each elemental nonlinear matrix was assigned to a
GPU thread to achieve massive parallelism. The local systems and the global matrix
communicates and a consistent solution can be reached in the end. The TLM decou-
pled edge element model was tested on the Tesla V100 GPU, and the result shows
excellent speed-up (over 50) and accuracy (2% error) comparing with ComsolTM .

• The edge domain decomposition (EDD) algorithm was created to boost the compu-
tation of 3-D finite element models with parallelism at edge level. The decentralized
idea of dividing the entire solution domain into many minimum overlapped sub-

57



domains was combined with 3-D finite edge tetrahedron elements. Such overlap-
ping nature and the minimum size of the sub-domain leads to an advanced iteration
scheme that eliminates the need to form any global matrix during the entire solu-
tion of the nonlinear finite element problem. Also, benefiting from the light-weight
size of the sub-domains problems, this matrix-free iteration scheme became perfectly
suitable for implementation over the GPU’s single instruction multiple data architec-
tures. The GPU-friendly and matrix-free EDD scheme was also developed and tested
with CUDA C language on Tesla V100 GPU over different mesh sizes. And the com-
parison with ComsolTM indicates a significant speed-up (best case over 43) and a
great potential for large-scale FEM problems of million-level degree of freedoms.

• An indirect coupling scheme was proposed to interface the FEM inductive device
model and the circuit that dives the device. The complex finite element system was
packaged into a current-controlled voltage source for the convenience of circuit sys-
tem computation. And a field-circuit iterative scheme was developed to obtain a
consistent solution between the circuit and FEM systems. Due to the package-and-
iterative nature, the coupler does not require the combination of FEM and circuit
matrixes, allowing the co-simulation of FEM models and large-scale complex circuit
systems. The coupler was implemented in a 3-phase transformer-circuit study and
the result indicates a fast convergence (typically less than 5 field-circuit iterations)
without compromising precision vs. the traditional direct mixed matrix coupling
scheme.

• The thesis also explored another possibility to expand parallelism from time’s per-
spective. The parallel-in-time or the Parareal algorithm was introduced and adapted
to the above space-parallelized 3-D edge finite element system. For the first time,
the space-time parallelism was achieved in 3-D edge finite element models, and the
implementation indicated an additional speed-up of 3, given enough parallel com-
puting hardware resources.

5.2 Suggestions for Future Work

The algorithms of the previous chapters can be improved through the following aspects:

• The coils of the above FEM transformer were based on homogeneous multi-turn
technology. Future research can focus on distributed modeling of the coils to pro-
vide more realistic results.

• The back-substitution process caused the main time consumption in the TLM decou-
pled 3-D edge finite element models. Better parallelized back-substitution packages
can be applied and tested to improve the total efficiency of the TLM algorithm.
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• The edge domain decomposition technique was based on the first type of boundary
conditions to update the sud-domain central edge DOF. And most information from
the sub-domain matrix was discarded. Therefore, the second type of boundary may
be applied to fully utilize information of the sub-domain matrix, which can possibly
lead to faster convergence speed.

• All of the above methods are developed for a single high-performance GPU. And
speed-up is hindered due to a limited number of cores for large problem sizes. This
means that the algorithms can be implemented on larger platforms (such as super-
computers) to achieve faster computation speed.

• Due to the matrix-free property, the EDD scheme can be applied in changing geom-
etry meshes without additional performance loss. This provides the possibility to
achieve high-performance simulation for electrical machines in the future.
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