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Abstract

The evaluation of winter road weather conditions poses a considerable difficulty for na-

tions situated in high latitude areas, leading researchers to devise approaches aimed

at enhancing the recognition of road conditions, enhancing travel safety, and min-

imizing winter road maintenance expenses. The successful combination of sensor

data and advanced data processing techniques has been observed to effectively clas-

sify road conditions, specifically when using stationary Road Weather Information

System (RWIS) stations. This approach is further enhanced by incorporating Geo-

graphic Information Systems (GIS) for interstation data interpolation. Consequently,

a comprehensive framework is established for the continuous detection of winter road

surface conditions. While the system generally proves effective, it faces limitations

due to geographic constraints and the availability of RWIS stations. This thesis aims

to explore potential solutions to address these challenges. The study proposes the use

of dashcam images and the integration of On-Board Diagnostics II (OBDII) data to

estimate winter road conditions. Additionally, it introduces a dynamic segmentation

method to identify road segments with a high risk of hazards. To ensure the reliabil-

ity of the findings, testing and validation are performed using real-world data from

the Mobile Road Weather Information System (MRWIS) collected during the winter

season of 2023. The culmination of this thesis involves performing a performance

evaluation of our methodologies compared to the traditional stationary RWIS + GIS

approach. This evaluation serves as a significant contribution to the advancement

of winter road weather assessment. By overcoming existing limitations through the

use of innovative technology and empirical analysis, our research has the potential to
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greatly enhance the accuracy and effectiveness of evaluating winter road conditions.

Ultimately, this can lead to safer travel especially in cold climate regions.
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Chapter 1

Introduction

1.1 Background

Canada and numerous other countries with harsh winters experience significant chal-

lenges due to dangerous road conditions during the cold months. According to the

Federal Highway Administration, almost 21% of all traffic accidents in the United

States are related to weather, often caused by the deterioration of the road surface

conditions due to snow and ice accumulation. These hazardous conditions result

in over 5,000 fatalities and 400,000 injuries annually [1]. Similarly, adverse winter

weather, characterized by snow, ice, and reduced visibility, substantially increases

the number of accidents, leads to frequent road closures, and disrupts traffic flow.

The economic impact is also profound. Road traffic accidents cost the global econ-

omy an estimated $1.8 trillion in societal, hospitalization, and labor loss costs between

2015 and 2030 [2].

In response to these challenges, governments in regions with severe winters are

compelled to allocate substantial resources to winter road maintenance programs.

Abohassan [3] emphasizes that the use of anti-icing agents and mechanical snow

removal is crucial for ensuring road safety and minimizing traffic disruptions during

the winter months. However, such investments lead to substantial maintenance costs.

To reduce these costs, efficient and accurate estimation of winter road conditions is

essential for optimizing resource allocation and enabling transportation authorities
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to proactively manage road maintenance. However, current traditional methods for

estimating road conditions have significant limitations.

One significant limitation is that existing Road Weather Information Systems

(RWIS) and Geographic Information System (GIS)-based techniques often fall short

in accurately detecting road conditions between two stations. Additionally, Regional

and remote roads may not have adequate coverage of RWIS stations, making it more

difficult to estimate real-time road conditions. Consequently, road condition esti-

mates can be inaccurate or incomplete, leading to potential safety risks for drivers in

these areas.

1.2 Problem Statement and Research Motivation

This research is motivated by the need to improve road condition estimation methods

during the winter months, where traditional methods often fail to provide accurate

and real-time data, especially under adverse weather conditions. The primary goal of

this study is to develop a novel winter road condition estimation model that integrates

data from onboard cameras and OBDII sensors. This integration aims to leverage real-

time data on road surface conditions and vehicle dynamics to provide a comprehensive

and accurate assessment of winter road safety.

The proposed model uses advanced technologies available in modern vehicles, such

as onboard sensors and cameras, to capture detailed and real-time information about

road conditions. By synthesizing data from these technologies, the model seeks to

overcome the limitations of conventional techniques, thus enhancing the accuracy and

reliability of the road condition assessments.

To verify the effectiveness of the model, extensive testing will be conducted across

various winter weather scenarios using both historical and real-time data. These tests

will cover a broad spectrum of conditions, including different types of snow, ice, and

temperatures, with the aim of rigorously evaluating the accuracy of the model and

its ability to function in diverse and challenging weather conditions.

2



Furthermore, the reliability and performance of the model will be validated using

data from the Mobile Road Weather Information System (MRWIS), which provides

localized, real-time weather and road condition information collected during main-

tenance operations. This validation seeks to confirm the model’s adaptability and

effectiveness in real-world conditions.

1.3 Objectives

As identified in previous sections, solely relying on stationary RWIS to predict winter

road conditions has proven unreliable. In response to this limitation, this study

proposes an approach that uses vehicles as sensors, incorporating various sensors such

as cameras and OBD, to enhance the accuracy of winter road condition predictions.

The incorporation of dynamic segmentation methods serves to enhance the accuracy

for predictions across the entire highway corridor.

Placing this research in the context of existing literature requires a thorough in-

vestigation of the challenges related to precise road surface condition estimation,

particularly to optimizing real-time winter road maintenance operations. The com-

plexities of this research stem from the integration of diverse elements, including the

selection of specific weather condition parameters, road surface images captured by

vehicle dashcams, and the application of deep-learning and machine-learning models

and strategic approaches. This combination reveals a level of interdependence and

complexity that previous studies have not thoroughly explored.

In light of these considerations, the primary objective of this thesis is to develop

a robust road condition classification model that integrates data from various vehicle

sensors and dynamic segmentation methods for practical use in real-life winter road

maintenance. The research unfolds in two distinct phases, each addressing specific

aspects of the overarching objective. In phase one, the emphasis is on constructing

a classification model as well as a dynamic segmentation method that outputs real-

time, spatially continuous road condition estimates using data from vehicle sensors.
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Phase two shifts the focus towards comparing model and method performance, the

elements that can influence the final results.

To systematically achieve these overarching goals, the research is structured around

the following specific tasks.

1. Develop a road condition classification method that incorporates data from vari-

ous vehicle sensors and applies it in practice to obtain continuous, spatially continuous

real-time road condition estimates.

2. Conduct a comparative analysis of widely adopted machine learning algorithms

with the aim of identifying the most suitable algorithm for the precise classification

of road conditions.

3. Investigate and compare existing dynamic segmentation methods, seeking to

identify the optimal approach tailored to our specific testing conditions.

4. Generate a road condition map by the selected dynamic segmentation method.

This map serves the dual purpose of helping Winter Road Maintenance (WRM)

personnel make timely and effective decisions while providing crucial information to

road users.

Through the systematic pursuit of these goals, this thesis aims to deliver a method

for classifying continuous road conditions that is both accurate and intuitive. By

contributing practical insights, the research endeavors to improve decision-making in

WRM, ultimately enhancing safety and facilitating efficient resource allocation.

1.4 Thesis Outline

The remainder of this thesis is organized as follows:

Chapter 1: Introduction

This chapter introduces the challenges and impacts of winter road conditions on

safety and traffic management. It outlines the motivation behind improving road

condition estimation methods and discusses the specific objectives of this thesis.

Chapter 2: Literature Review
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This chapter reviews the existing methods for detecting and estimating road sur-

face weather conditions. It discusses various approaches, including the use of RWIS,

machine learning techniques, and the integration of vehicle sensor data. The chapter

also identifies gaps in current research and highlights the need for accurate real-time

estimation methods that can adapt to diverse and changing winter conditions.

Chapter 3: Methodology

This chapter describes the methodologies used in this research, including the devel-

opment of the algorithms for road condition estimation and dynamic segmentation.

It details the integration of various data sources, such as camera feeds, OBDII, and

RWIS data. The chapter also explains the data collection process, the experimental

setup, and the methods used for data analysis and model validation.

Chapter 4: Case Study

This chapter presents a case study to validate the effectiveness of the proposed

methods. It details the data collection on Highway 2 south of Edmonton, the data

pre-processing steps, and the application of the developed models to estimate road

conditions. This chapter evaluates the model’s performance using real-world data

and discusses the implications of the findings in the context of road safety and main-

tenance.

Chapter 5: Conclusions, recommendations and Future Work

The final chapter summarizes the findings of the research, revisiting the main

objectives and discussing how the study contributes to the field of transportation

engineering and road safety. It provides recommendations for future research and

potential improvements in winter road condition estimation techniques. This chapter

concludes with reflections on the impact of integrating advanced data processing

techniques and real-time data for enhancing road safety during winter.

Following this structured approach, this thesis aims to contribute valuable insights

to the field of road safety and transportation, fostering advancements in winter road

condition estimation methods for safer and more efficient driving conditions during
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winter weather. The proposed winter road condition estimation model seeks to fill the

gaps left by traditional methods, particularly in regional and remote areas, ultimately

leading to improved road safety and resource optimization during harsh winter con-

ditions. Additionally, by collecting and utilizing our own winter road condition data,

this research not only enhances the accuracy and relevance of the model but also

establishes a foundation for expanding the dataset in the future, further contributing

to the robustness and applicability of winter road safety solutions.
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Chapter 2

LITERATURE REVIEW

2.1 Methods for Road Surface Weather Condition

Detection and Estimation

Throughout the years, extensive research has been carried out to detect and estimate

the winter weather conditions on road surfaces. In general, these studies can be

classified into three main types, each focused on the main difficulties encountered by

winter maintenance agencies. These problems include the need to efficiently handle

snow and ice management in the face of growing traffic, increasing public demands,

and limited financial resources and personnel [4]. In recent years, there has been a

increase in research dedicated to delivering dependable and uninterrupted data on

the status of road surfaces. This research may be classified into three distinct types.

The first category of methods in this research area involves the processing and anal-

ysis of data collected from stationary stations, such as RWIS, weather base stations,

and mobile RWIS, supplemented by remote sensing data. This approach aims to infer

the state of the road surface across entire corridors or areas closely associated with

these data sources. Gu [5] has done a thorough study on the surface temperatures

of the corridor roads, relying only on data from RWIS stations. Similarly, Wu [6]

utilized cameras mounted on RWIS stations to estimate road conditions near these

locations.

However, despite the use of these methodologies, the field faces significant con-
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straints. The high costs associated with the deployment and maintenance of RWIS

and weather stations lead to their sparse distribution, creating considerable gaps

between stations and consequently, inconsistencies in data quality and availability.

Gu’s study initially demonstrated the potential for precise prediction of road surface

temperature, offering the possibility of accurately predicting winter road conditions.

However, while Gu successfully predicted road surface temperature, the effectiveness

of models based on MRWIS and the creation of semivariograms tends to decrease over

time. Additionally, when attempting to use the predicted road surface temperature to

forecast winter road conditions, significant discrepancies were found compared to the

actual values obtained from MRWIS, indicating inherent limitations in the accuracy

of such forecasts.

The second category of research use various of sensors and vehicle dynamics data to

quantify road surface friction for categorization purposes. According to Khaleghian’s

summary [7], previous work on estimating road surface friction may be categorized

into two main approaches: experiment-based and model-based. The former employs

sensor data, such as sound and temperature sensors, and establishes correlations

with characteristics linked to friction. The latter use simpler mathematical models

to simulate the vehicle dynamic thus estimate the current road friction, which are

categorized into dynamic wheel and vehicle methods, slip-based methods, and tire

model-based methods. The vehicle dynamics-based approach may attain exceptional

precision and consistency, however, the need for specialized equipment makes data

collecting costly and arduous.

The third category encompasses the use of machine learning and deep learning,

in conjunction with both visual and tabular data, for the purpose of predicting road

conditions. Due to the emergence of deep learning, an increasing number of research

projects have used machine learning and deep learning techniques to identify the state

of winter roads. In 2010, Fu [8] demonstrated the practicality of using inexpensive

cameras installed on standard automobiles together with Support Vector Machine
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(SVM) to evaluate the state of road surfaces. Subsequent research further developed

this method using sophisticated deep learning models that were trained with transfer

learning techniques for the purpose of classifying dashcam images [9]. However, the

precision of this approach may be influenced by environmental volatility. In order to

improve the precision of winter road surface classification, a recent study conducted

by Juan [10] has shown that integrating weather data (tabular data) with vision-based

data obtained from dash cams can improve the accuracy and reliability of road sur-

face condition classification. This advancement makes it possible to achieve a highly

accurate and cost-effective detection of winter road conditions. Similarly, drawing

parallels from the medical field, Gessert et al. [11] demonstrated a successful ap-

plication of combining tabular data with visual data for enhanced classification. In

their study for the ISIC 2019 Skin Lesion Classification Challenge, they implemented

an advanced CNN architecture that integrates patient metadata with dermoscopic

images to effectively address challenges such as severe class imbalances and varying

image resolutions. Their method, which employs multiple model inputs and a dense

neural network branch for tabular data, suggests potential strategies for refining the

accuracy and robustness of road condition monitoring systems by incorporating anal-

ogous multimodal data integration techniques.

2.2 Factors Affecting the Detection of Road Sur-

face Weather Conditions

Accurately identifying indicators for winter road conditions is crucial for classification

and forecast purposes. The complexity of road conditions arises from the interplay of

several factors, including weather, geography, and human activities, making its direct

assessment challenging. Previous research, shown by the study by Pan et al. [9], has

shown that certain environmental attributes, when evaluated with visual data, might

improve the overall efficacy of models. Therefore, it is essential to identify weather

attributes that improve performance.
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2.2.1 Weather Conditions

Previous studies have shown a significant correlation between the winter road surface

temperature and the accumulation of snow on the roads. The road surface tempera-

ture is influenced by several intrinsic factors, including solar radiation, wind velocity,

humidity, altitude, latitude, elevation, and land use [12].

Ambient Temperature

The correlation between air temperature and road surface temperature is a crucial el-

ement in understanding winter road conditions. Gustavsson’s research [13] highlights

the correlation, especially on nights. His study demonstrates that the presence of

nearby windbreaks has a substantial influence on air temperature fluctuations, thus

influencing the temperatures of road surfaces. These results emphasize the need to

take into account local meteorological variables, particularly variations in air temper-

ature driven by wind and topographical characteristics, when estimating road surface

temperatures. These findings are crucial for the development of precise road weather

models and forecasting systems, which improve the safety and effectiveness of winter

road maintenance.

Humidity

Sarsembayeva[14] investigated the influence of humidity on winter road surface con-

ditions. This research highlights the crucial impact of humidity on the winter road

surface temperatures. The study examines the impact of humidity fluctuations on

the development of ice and frost on roads, a crucial factor in ensuring road safety

and maintenance. The study focuses on the interplay between humidity and road

temperature, specifically concentrating on water vapor migration and its influence

on the road’s structural qualities. Gaining a comprehensive understanding of this

correlation is crucial for the advancement of road weather models, allowing improved

forecasting and maintenance approaches for winter road conditions.
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Wind Speed

Wind speed plays a significant role in modulating the temperature of both the air

and the road surface by affecting the mixing of air layers and the dissipation of cold

air pools[15]. Higher wind speeds enhance the mixing of cooler air near the surface

with warmer air above, thus reducing the extremity of temperature gradients that

develop under calm conditions. This process is particularly important in enclosed

topographies where cold air tends to pool during stable, clear nights, leading to

significant cooling of the road surface.

Cloud Cover and Sun Radiation

During the day, the effects of sun radiation and cloud coverage on road surface tem-

peratures can be explained by their impact on the energy balance and the radiative

fluxes received at the road surface [16]. The sun’s radiation is a primary source of

energy for road surfaces, directly influencing their temperature. On clear days, in-

creased solar radiation leads to higher surface temperatures. This effect is primarily

due to the direct absorption of solar energy by the road material. As the road absorbs

more solar energy, it heats up, increasing the surface temperature. Meanwhile, clouds

significantly modulate the amount of solar radiation that reaches the road surface.

By reflecting and absorbing solar radiation, clouds can reduce the amount of energy

that reaches the road, leading to cooler surface temperatures under cloudy conditions

compared to clear skies. Furthermore, clouds can emit infrared radiation towards the

road, which may offset some of the cooling effects, especially during heavily overcast

conditions. Both relationships are linear under constant conditions, but can become

non-linear when other variables such as wind speed, air temperature, and the physical

properties of the road material come into play.
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2.2.2 Road Surface Index (RSI)

The Road Surface Condition Index (RSI) is crucial to understanding and categorizing

winter road conditions. According to the research conducted by Fu et al [17], RSI may

be utilized as an alternative indicator for the friction level often seen on roadways.

The index plays a crucial role in reflecting various classes of road surface condition

(RSC), as outlined in the road weather information system.

RSI is especially valuable as it is derived from extensive previous field research that

specifically examines the correlation between descriptive characteristics of the road

surface and friction. This connection serves as the foundation for determining the

threshold friction values for each type of RSC, ranging from ideal conditions (bare

and dry) to highly hazardous icy conditions. Using RSI as a friction proxy is crucial

to gain a more detailed understanding of road surface conditions, particularly during

winter, and helps to accurately classifying and forecasting these conditions.

2.2.3 Other Influencing Factors

In addition to the above-mentioned factors, there are a few other geographical fac-

tors that may also play a significant role in influencing road surface temperatures.

Two notable factors are topography and land use [18]. The elevation of a location

profoundly impacts its air temperature and, consequently, the road surface temper-

ature. Generally, as elevation increases, the temperature decreases. This is because

the atmosphere is thinner at higher altitudes, which retains less heat. In mountain-

ous regions, this can lead to significant variations in road surface temperatures, even

over short distances. In addition, the type of land use, particularly the presence or

absence of vegetation, impacts road conditions in theory. The Normalized Difference

Vegetation Index (NDVI) has been studied for its potential effects on road surface

states. However, research, such as that cited by Gu et al. (2020)[18], indicates that

the impact of vegetation coverage on road surface temperatures is minimal and can

often be considered negligible. This finding suggests that while vegetation can in-
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fluence microclimatic conditions, its effect on road temperatures is not substantial

enough to warrant major concern in road maintenance and safety strategies.

2.3 Road Condition Dynamic Segmentation

Effective road condition monitoring and maintenance require accurate segmentation

of roadway sections based on varying pavement quality and safety levels. Segmenta-

tion is essential for identifying areas that require targeted interventions, optimizing

resource allocation, and enhancing overall road safety. To address this need, several

techniques have been developed over the years to accurately divide roadways into

segments with similar characteristics.

One of the earliest and most widely adopted methods is the Cumulative Difference

Approach (CDA), introduced by the American Association of State Highway and

Transportation Officials (AASHTO) in 1993 [19]. CDA provided a straightforward

method for segmenting pavement quality, making it a popular choice for highway and

transportation authorities. However, despite its simplicity, CDA has a significant lim-

itation: it struggles to detect boundaries between segments when the average values

of both segments are lower than the overall average, leading to potential misclassifi-

cation of road segments.

To overcome the shortcomings of CDA, the Wavelet Transform Approach was de-

veloped by Cuhadar et al. in 2002 [20]. This advanced technique excels in automated

segmentation by identifying singularities in continuous waveforms, which are then

marked as boundary points. The ability of the Wavelet Transform to detect sub-

tle changes in road conditions has made it especially valuable in studies focused on

identifying hazardous road segments. Although this approach involves complex calcu-

lations and requires careful parameter tuning for precise segmentation, it effectively

addresses the limitations of CDA, offering a more robust solution for dynamic road

condition segmentation.

On top of that, we also choose several widely used traditional changing point
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detection method, including PELT, Window Sliding, BinSeg, Bottom UP method. In

addition to these approaches, there are several other clustering algorithms available.

However, the methods we select have received considerable attention because of their

suitability for generic data.

2.4 Gap in Research

While there has been significant research on categorizing winter road conditions using

vision data, tabular data, or a combination of both, as well as on segmenting corri-

dors to decrease road maintenance expenses and improve traffic safety, most of these

studies have focused primarily on pavement conditions, specifically surface roughness,

rather than on winter road surface conditions.

Researching the dynamic segmentation of winter road weather conditions is both

practical and essential. First, the fluctuation in winter road conditions poses a

formidable obstacle. Previous research that relies on interpolating road surface condi-

tions between RWIS stations generally makes the erroneous assumption that human

activities have no impact on road conditions. Moreover, the demarcations between

various road conditions are often unclear, which requires the use of data clustering

methods as a crucial component of dynamic segmentation.

Ultimately, achieving instantaneous updates on road conditions requires the in-

corporation of up-to-date data. Contemporary automobiles, furnished with many

sensors, provide a superb reservoir of real-time data. This mitigates the constraint of

stationary RWIS, which have restricted spatial coverage as a result of their fixed po-

sitions. Therefore, using data from these sophisticated vehicle sensors might greatly

improve the precision and promptness of monitoring winter road conditions and im-

plementing reaction tactics.
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2.5 Summary

This chapter examines various methods for detecting and estimating road surface

weather conditions, highlighting the main challenges faced by winter maintenance

agencies. Research related to the detection and estimation of road surface weather

conditions is broadly categorized into three primary approaches. The first involves

stationary stations such as RWIS, weather base stations, mobile RWIS, and remote

sensing data to infer road surface conditions. Although detailed studies and decision

support systems such as Maintenance Decision Support System(MDSS) have been

developed, the high costs and sparse distribution of RWIS and weather stations limit

their effectiveness. The second approach uses vehicle dynamics data to measure

road surface friction. This method is divided into experiment-based and model-based

approaches, with vehicle dynamics-based methods providing the highest precision but

requiring specialized and costly equipment. The third approach leverages machine

learning and deep learning with visual data to predict road conditions. This approach

has gained popularity due to the development of deep learning techniques. Research

has demonstrated the feasibility of using cameras on vehicles combined with machine

learning models such as SVM, random forest, and XGBoost to classify road conditions.

Integrating weather data with visual data collected by dashcams has been shown to

improve the accuracy and reliability of these predictions, offering a cost-effective

solution to detect winter road conditions.

Additionally, the review explores factors affecting the detection of road surface

weather conditions, emphasizing the role of weather conditions such as air tempera-

ture and humidity. Studies show that these factors significantly impact road surface

temperatures and conditions, which are crucial for developing accurate road weather

models. The RSI is identified as an important tool for categorizing road conditions,

providing a proxy for friction levels based on extensive field research.

The dynamic segmentation of road conditions is also discussed, tracing the evolu-
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tion from the CDA to more advanced methods like the Wavelet Transform Approach

and machine learning techniques such as Fuzzy C-Mean Clustering. These methods

improve the precision of road segmentation, particularly for identifying hazardous

road segments.

Finally, the review identifies gaps in current research, noting that while significant

work has been done on pavement conditions and segmentation, there is a lack of focus

on winter road weather conditions. The need for real-time data from modern vehicles

equipped with sensors is emphasized to improve the accuracy and timeliness of winter

road condition monitoring and response strategies.
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Chapter 3

Methodology

3.1 Proposed Method

The technique of this research is divided into two independent portions in order to

meet the criteria for a real-time road status map (as shown in Figure (3.1)). The first

phase is to create a vehicle system with the ability to instantly gather and estimate

current road conditions. The second part consists of determining a suitable approach

to data aggregation to enable complete automation and dynamic segmentation in

real time. This research uses many data sources, such as dashcam video footage

from automobiles, vehicle sensor information acquired using OBD interfaces, and

synchronized collection of RWIS (Road Weather Information Systems) data from the

study region.

3.2 Identification of Road Conditions

This work utilizes deep learning to extract features for the efficient real-time cat-

egorization of road surface information obtained from dashcams. Consequently, to

improve the precision of our model, we have chosen to use a fusion strategy. This

involves the integration of vehicle-measured tabular data and RWIS data with the

collected photos. Subsequently, machine learning approaches are used for the final

classification procedure.
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Figure 3.1. Methodological Framework: Research Process Flowchart
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3.2.1 Deep Learning Method

Deep learning has revolutionized the field of image classification, resulting in signifi-

cant improvements in both accuracy and efficiency. As a branch of machine learning,

neural networks with numerous layers are utilized to analyze and comprehend large

amounts of intricate data. These complex neural networks are very good at recog-

nizing patterns and characteristics in images, which makes them very suitable for

image categorization [21]. The primary benefit of deep learning is its capacity to ac-

quire hierarchical feature representations directly from the data, eliminating the need

for human feature extraction. This sets it apart from conventional machine learn-

ing methods. The model’s capacity to train autonomously allows it to adjust and

enhance its precision as it analyzes more data, which is particularly advantageous

in the constantly changing field of picture data. Deep learning has emerged as a

fundamental approach in several modern image classification applications, including

face recognition systems and medical image diagnostics. Its exceptional ability to

effectively process the complex details of visual input is the reason for its widespread

use.

The method of categorization in deep learning often involves the use of complex

artificial neural networks, which consist of layered structures and play a crucial role

in their functioning. The network consists of an input layer that accepts raw data,

such as pixel values in image classification, numerous hidden layers, and an output

layer. The hidden layers, consisting of several neurons, gradually extract and en-

hance characteristics from the input data. The first layers may detect fundamental

components like edges or colors, while the deeper layers understand intricate aspects

such as forms or unique objects. The output layer commonly employs an activation

function to build a probability distribution over the specified classes. The model’s

classification is then chosen by the class with the greatest probability. The training

process of these models entails the execution of forward propagation, where data is
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sent through the network and modified at each step, subsequently followed by back

propagation, where the model adapts its weights according to the error computed

by a loss function at the output.[22] The model may enhance its predictions via an

iterative process, often guided by optimization methods such as stochastic gradient

descent. Convolutional Neural Networks (CNNs) are often used in image classifica-

tion tasks because of their specialized topologies. CNNs efficiently process spatial

data using convolutional and pooling layers, allowing them to effectively capture spa-

tial hierarchy in pictures. Deep learning offers a sophisticated and potent method

for classification tasks, particularly in the analysis and categorization of complicated

picture data, due to its intricate architecture and learning processes.

Convolutional Neural Network

Our research utilizes the finely calibrated basic CNN model that was successfully

used in feature extraction from roadside cameras, as evidenced in the earlier work by

Juan. (2019) [23]. This model is particularly designed to proficiently tackle intricate

picture categorization jobs. The procedure begins with an initial 2D convolutional

layer that has 16 filters of 3x3 size. It uses the ReLu activation function, which is ideal

for handling input pictures of resolution 224x224 with 3 channels (RGB). The design

thereafter advances via a succession of convolutional and max pooling layers, with

the number of filters in these convolutional layers progressively increasing in the order

of 27, 46, 79, and 134. This configuration efficiently captures the characteristics of

the picture while also decreasing the spatial dimensions, hence improving computing

efficiency.

The model also includes a dropout layer with a 50% rate after the convolutional

and pooling layers to reduce overfitting. Following this, there is a flattening layer that

transforms 2D matrices into vectors. The input is then sent through a sequence of

dense layers with 24 and 12 neurons, respectively. Both of these layers use the ”relu”

activation function. The design is completed by the output layer, which consists of a
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dense layer with 3 neurons. These neurons represent the classification categories and

use a ’softmax’ activation function to generate a probability distribution across these

classes. The CNN framework is designed with multiple layers of convolution and

pooling to extract features from images. It also includes dense layers for classification

and strategically incorporates dropout layers to improve computational efficiency and

prevent overfitting.

On top of Juan’s method, our study also explores the integration of methodologies

from Gessert et al., who employed a purely deep learning-based approach for classify-

ing skin lesions using CNNs to process both visual and tabular data. Their method,

which successfully handled various challenges such as class imbalances and integra-

tion of multimodal data, inspired us to adapt our model to combine these advanced

techniques with the existing CNN framework. By incorporating elements from both

Juan and Gessert et al., we aim to create a more versatile and robust system capable

of tackling complex image classification tasks with enhanced precision.

Transfer Learning

Transfer learning has become a powerful method in the changing field of image cate-

gorization, often outperforming traditional convolutional neural networks (CNNs) in

terms of potential. The primary advantage of transfer learning resides in its capacity

to use pre-trained models on extensive and varied datasets, such as ImageNet. Pre-

training provides the models with strong fundamental knowledge, allowing them to

quickly adapt to particular tasks even with little data. This is especially beneficial

in situations where obtaining substantial amounts of training data that are unique

to the job is difficult. Moreover, transfer learning effectively tackles a significant

issue in picture classification: the potential for overfitting, particularly when deal-

ing with less complex datasets. By using pre-trained models, the need for rigorous

training on a short dataset is significantly decreased, therefore reducing the chances

of the model acquiring irrelevant information and abnormalities that are unique to
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the smaller dataset. We conducted an experimental study using well-known transfer

learning architectures, including ResNet50, VGG16, Inception, and MobileNet. Each

model has distinct architectural advantages, making them appropriate for a range of

picture categorization applications. In accordance with the suggestion made by Juan

(2019) [23], we used a strategic methodology for implementing transfer learning by

adjusting the percentage of layers that were kept fixed in these models. This approach

entails the targeted freezing of a certain proportion of the layers, particularly those

located at the beginning of the network, which often play a crucial role in collecting

fundamental and widely applicable characteristics of pictures. The subsequent layers,

which are more suitable for classification tasks, are kept trainable. The objective of

this strategy is to achieve an ideal equilibrium by using the pre-existing information of

the models and refining them to suit our particular dataset. Through this approach,

we want to optimize the possibility of discovering the best appropriate model setup

for our objective.

3.2.2 Machine Learning

Part of this research also utilizes machine learning approaches to fuse image features

and tabular data more effectively, thus improving the accuracy of the final prediction.

Therefore, we chose three of the most frequently used machine learning approaches

for application and analysis. The approaches mentioned include SVM, regression

trees, and random forests. Each of these methods has unique benefits and operating

mechanisms, making them especially appropriate for the intricate tasks of categorizing

features and optimizing prediction accuracy in various data settings.

Regression Tree

Regression trees [24] are decision trees that are especially tailored for predictive mod-

eling in the fields of data mining, machine learning, and statistics. Their functioning

involves partitioning a dataset into smaller subsets, which are easier to handle, using
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decision rules generated from the attributes of the dataset. The rules constitute the

nodes of the tree, where each leaf node represents a numerical value, usually the av-

erage of the target variable for that particular segment. The procedure begins at the

foundation, dividing the data set into binary subsets according to unique properties.

The main objective of each split is to decrease the variability within each resulting

subgroup. The process usually involves choosing the feature and a threshold that

effectively distinguishes the data; however, other criteria such as mean squared error

may also be used.

Data splitting and tree construction techniques and criteria are essential in the

theory of regression trees. The fundamental principle is variance reduction, wherein

the algorithm assesses each prospective split by quantifying the extent to which it

would decrease the total variance, with the objective of maximizing this reduction.

This entails evaluating the difference in variability of the desired outcome variable

throughout the full dataset in comparison to the combined variability of the two

subgroups formed after the split, taking into account their respective sizes. The split

that yields the greatest reduction in overall variance is selected, guaranteeing that the

resulting subsets are as similar as feasible. To minimize overfitting and the creation

of too deep and complex trees, it is crucial to include stopping criteria, such as a

maximum tree depth or a minimum amount of samples in a leaf. These criteria are

crucial for preserving an equilibrium between the tree’s depth and its capacity to

apply to various datasets.

Although regression trees have benefits and are valuable, they also have limita-

tions. An important obstacle in their implementation is the inclination to excessively

match the training data, especially if the tree is allowed to expand without limita-

tions. Methods like pruning and imposing restrictions on tree depth or minimum

sample splits are often used to address this problem. Another issue is their suscep-

tibility to variations in the training dataset. As a consequence of their hierarchical

nature, even slight changes in the data might cause variations in the divisions, which
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may ultimately lead to a substantially different tree configuration. The sensitivity

of the model prompts inquiries about its coherence and robustness across various

datasets. Furthermore, while regression trees are easily understandable, they may

exhibit reduced predictive capability in some situations when compared to more in-

tricate models such as random forests or gradient-boosting machines. Nevertheless,

the efficacy of a regression tree may differ significantly depending on the dataset. In

some instances, a finely tuned regression tree might exhibit comparable performance

to these more advanced models.

Random Forest

Random forests [25] are a more advanced kind of ensemble learning method that rely

upon the principles of regression trees. A Random Forest is a compilation of Decision

Trees, usually Regression or Classification Trees, that functions based on the concept

of ’collective intelligence.’ This approach involves cultivating several trees and con-

solidating their forecasts to get a conclusive determination. The primary advantage

of a Random Forest is its capacity to mitigate the problem of overfitting, which is

often seen in individual Regression Trees, by averaging the outcomes of several trees.

The use of an ensemble strategy significantly improves the overall forecast accuracy

and resilience of the model. Similar to Regression Trees, Random Forests provide

the ability to capture intricate, nonlinear connections and are highly interpretative,

since each unique tree provides valuable understanding of the data. Nevertheless, via

the amalgamation of predictions from several trees, Random Forests often attain su-

perior accuracy and stability compared to a solitary Regression Tree, particularly in

situations involving a significant volume of data and characteristics. Random forests

function by creating several decision trees throughout the training process and pro-

ducing the class that represents the most often occurring class (in classification) or

the average prediction (in regression) of the individual trees. The algorithm begins by

using bootstrapping, a technique that randomly selects sections of the training data
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and attributes to construct several trees. The inclusion of randomization not only

guarantees a wide range of variation among the trees but also enhances the resilience

of the whole model. The mathematical representation of Random Forests may be

seen as an expansion of the ideas used in Regression Trees. Every tree in the forest

generates a prediction by considering the features, and the final output is obtained

by combining these predictions. The principle of reducing variance, as applied in

Regression Trees, is employed in each tree of the forest. However, the aggregation

process further decreases the variance, resulting in a model that is more precise and

reliable. Feature bagging, which involves randomly selecting features at each split

point, introduces an additional level of variance reduction. This makes the model less

sensitive to individual characteristics and more generic in its predictions. Although

Random Forests effectively overcome certain constraints of Regression Trees, they

also present their own distinct issues. Random Forests have a significant benefit over

single Regression Trees in that they are less prone to overfitting. Random Forests

improve their ability to generalize to unknown data by aggregating the outputs of

numerous trees. Nevertheless, this benefit is accompanied by a rise in computational

complexity and resource demands, particularly as the number of trees in the for-

est expands. An additional benefit is their capacity to efficiently manage extensive

datasets with several characteristics; however, this also results in a more intricate

and less comprehensible model compared to a single Regression Tree. While the

decision-making process in Regression Trees is readily viewed and comprehended, the

decision process in a Random Forest may be opaque, rendering it a ”black box” in

certain applications. Furthermore, the process of selecting hyperparameters, such as

the quantity of trees and the depth of each tree, needs meticulous adjustment in order

to get the best possible performance, which may be a laborious task.
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Support Vector Machine

Support Vector Machines (SVMs) [26] are a resilient and adaptable category of super-

vised learning algorithms, primarily used for classification jobs, but also suitable for

regression difficulties. SVMs operate on the core premise of identifying a hyperplane

inside a multidimensional space that effectively separates the data points into dis-

crete categories. The hyperplane is chosen to optimize the separation between data

points belonging to various classes, which is crucial for the efficacy of SVM. Data

points that have the shortest distance to the hyperplane and significant impact on its

location and orientation are referred to as support vectors, thus giving the procedure

its name. SVMs are highly regarded for their capacity to handle high-dimensional

data and their effectiveness in scenarios where the number of dimensions exceeds the

number of samples. As a result, they are particularly well-suited for intricate catego-

rization tasks, such as identifying and categorizing text and images. Moreover, SVMs

are less susceptible to overfitting, particularly in scenarios with a large number of

dimensions, since they rely heavily on support vectors and prioritize maximizing the

margin. SVMs provide a notable benefit in their ability to choose the kernel function,

allowing them to adjust to various data distributions and connections by transforming

input data into feature spaces of high dimensions. SVMs use a unique approach to

categorize data points by using hyperplanes. The ideal hyperplane is characterized

as the hyperplane with the largest margin, which represents the maximum distance

between the hyperplane and the nearest data point of any class. In mathematical

terms, this involves solving a quadratic optimization problem to maximize the mar-

gin while still guaranteeing an accurate classification of the data points. The given

optimization issue may be formulated as the task of minimizing.

1

2
∥w∥2

subject to yi(w · xi + b) ≥ 1 for all i
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The given inequality constraint states that the product of the weight vector and the

training samples, plus the bias, must be greater than or equal to 1 for all training

samples, where the class labels are denoted as yi. The kernel technique, a funda-

mental feature of SVM, enables the method to function in a high-dimensional envi-

ronment without needing to explicitly calculate the coordinates of the data points in

that space. In contrast, the kernel function calculates the dot products of the data

points in the feature space, allowing SVMs to effectively manage intricate nonlinear

connections by selecting suitable kernels such as polynomial, radial basis functions

(Rbf), or sigmoids. Although SVMs provide notable advantages, they also exhibit

certain constraints. A major obstacle in using SVMs is the choice of a suitable kernel

and its associated parameters, since these factors may greatly impact the algorithm’s

performance. The process of selecting typically requires expertise in a certain field

and the use of trial and error, since there is no universally applicable answer. A fur-

ther constraint is the computational efficacy, particularly when dealing with extensive

datasets. SVMs may be computationally demanding, which limits their practicality

in situations involving large datasets. Furthermore, SVMs lack intrinsic probabilis-

tic capabilities and therefore cannot provide probability estimates for classifications.

This limitation may be problematic in situations where the ability to assess the confi-

dence of predictions is vital. Finally, while SVMs effectively handle high-dimensional

data, they may encounter difficulties when dealing with very vast feature spaces or

datasets containing substantial noise. This is because the distinct separation margin

may not be there or may result in overfitting when noisy data are included.

3.3 Dynamic segmentation

The intrinsic fluctuation of road weather conditions has been a consistent problem

in the industry, namely in updating road conditions in real-time and accurately de-

termining their limits. The various weather conditions on the road, including dry,

rainy, and snowy conditions, have a considerable influence on both road safety and
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traffic efficiency. Therefore, it is crucial to create accurate and rapid techniques for

assessing road conditions. A substantial body of literature has been produced on this

topic, presenting several answers to this intricate problem.

Considering the varied characteristics of these techniques and the special demands

of our project, which aims to integrate real-time data processing with the highest

level of accuracy and dependability, we have chosen to concentrate on three widely

used methods of dynamic segmentation. The selection of these strategies was based

on their relevance to the data formats we are dealing with and their demonstrated

efficacy under comparable circumstances. Dynamic segmentation refers to the act

of dividing road networks into parts depending on changing circumstances, enabling

a more detailed and accurate portrayal of road weather conditions. Adopting this

method is essential for creating models that can adjust and react to the changing

conditions of road settings. This will improve the accuracy of the predictions and the

effectiveness of weather-sensitive road monitoring systems.

3.3.1 Traditional Changing point detection

Traditional change point detection has been extensively studied, focusing on three key

elements: the cost function, the search method, and constraints. These components

play a crucial role in recognizing changes in the statistical features of time series or

data sequences, offering a systematic method to detect and pinpoint these changes.

Cost Function

Cost functions play a vital role in Change Point Detection tasks, as they quantify

the level of agreement between a segmented signal or data points and a model. They

effectively assess how well the model explains the data.[27], The fundamental cost

function is expressed by equation (3.1),

minJ(T , y) :=
K∑︂
k=0

c
(︁
ytk..tk+1

)︁
(3.1)

28



where the criterion function J(T , y) is designed to achieve optimal segmentation by

minimizing over segments, with K denoting the number of segments.This situation

can be divided into two cases: one where the segment numbers are known but their

positions are unknown, and another where both the numbers and locations of the

segments are unknown. In the second case, a punishment function, denoted pen(T ),

is required and will be addressed in later sections.

Cost functions vary widely and are categorized based on the structure and charac-

teristics of the data, serving either parametric models, which define variable relation-

ships through a fixed number of parameters, or non-parametric models, which do not

assume a predefined form and adapt to data characteristics. Given the randomness in

winter road conditions due to factors like weather and maintenance, this study opts

for cost functions associated with non-parametric models, specifically Kernel-based,

Mahalanobis distance-based, and Rank-based cost functions.

When dealing with numerical data, it is typical to use linear kernels for paramet-

ric data and Gaussian kernels for complicated nonparametric data[27]. This study

employs a cost function based on a Gaussian kernel (radial basis function), which is

well-suited for nonparametric data characteristics. The function is written as follows:

crbf (ya..b) := (b− a)− 1

b− a

b∑︂
s,t=a+1

exp
(︁
−γ ∥ys − yt∥2

)︁
(3.2)

In equation (3.2), the variable ya..b denotes a contiguous subset of observations rang-

ing from position a to position b in the series. The parameter γ is a positive scaling

factor that determines the width or sensitivity of the Rbf kernel to the similarity

between data points. It is sometimes referred to as the bandwidth parameter. The

expression ∥ys − yt∥2 denotes the squared distance between two data points.

Mahalanobis distance-based cost functions, derived from parameterized versions,

integrate the ideas of Reproducing Kernel Hilbert Space (RKHS) denoted as H, and

a symmetric positive semi-definite matrix denoted as M . This adaption improves the

capacity to analyze non-parametric data without depending on specific assumptions
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about the distribution of the data. As a result, it accurately measures and identifies

points of change within the dataset. The function of this method is defined as

cH,M (ya..b) :=
b∑︂

t=a+1

∥ϕ (yt)− µ̄a..b∥
2
H,M (3.3)

where

∥ϕ (ys)− ϕ (yt)∥2H,M = (ϕ (ys)− ϕ (yt))
′M (ϕ (ys)− ϕ (yt)) (3.4)

In equation (3.3), µa..b represents the mean embedding in the Reproducing Kernel

Hilbert Space (RKHS) of all transformed data points ϕ(yt) from time point a to time

point b.

Last but not least, Rank based cost functions can be expressed by equation (3.5),

crank (ya..b) := −(b− a)r̄′a..bˆ︁Σ−1
r r̄a..b (3.5)

where r can be defined as,

rt,j :=
T∑︂
s=1

⊮ (ys,j ≤ yt,j)−
T + 1

2
, ∀1 ≤ t ≤ T,∀1 ≤ j ≤ d (3.6)

and ˆ︁Σr is defined as, ˆ︁Σr =
1

T

T∑︂
t=1

(rt + 1/2)′ (rt + 1/2) (3.7)

Searching Method

The search methods in change point detection can be classified into two categories:

optimum and approximate detection approaches. Optimal techniques, such as PELT,

produce accurate segmentation results, whereas approximate techniques such as win-

dow sliding, binary segmentation, and bottom-up segmentation provide feasible alter-

natives when the computational complexity of optimum techniques is too high, but

there may be a potential decrease in accuracy.
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PELT The PELT method is designed to address the challenge of changepoint de-

tection. Specifically, it is capable of autonomously identifying changepoints within a

time series without a predetermined number of changepoints [28]. Initially, a penalty

function is determined, and for a new time point to be classified as a changepoint,

the reduction in segmentation cost attributed to this point must exceed the penalty

value. If the reduction in segmentation cost is less than the penalty, the overall

cost will increase, thereby disqualifying the new time point from being considered a

changepoint. The logic of the pruning rule can be formulated as follows.

if [minT V (T , y0..t) + β|T |] + c (yt..s) ≥ [minT V (T , y0..s) + β|T |] then t is not the

last change point

Approximate Techniques All approximate techniques share the same fundamen-

tal: based on their sequential and iterative character, enabling a gradual estimation

of change points in a data set. Contrary to optimal techniques that handle the com-

plete dataset at once, these methods produce a solitary estimation of a changepoint

throughout each iteration, progressively improving the accuracy of the changepoint’s

position with each succeeding iteration. This procedure entails either introducing

novel estimations or modifying current ones. The versatility of these approaches be-

comes apparent when the value of the number of changepoints, denoted as K∗, is

known. This allows the algorithm to iterate a specific number of times to determine

the exact number of change points. On the other hand, if the value of K∗ is not

known, the iterations will keep going until a suitable stopping condition is met. In

practical terms, this implies that although approximate approaches may not detect

all changepoints or reach the same level of accuracy as optimal methods, their com-

putational efficiency makes them well-suited for analyzing big datasets or for when

there are limitations on processing resources.
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Constrain

To avoid increasing complexity and considering that linear penalty functions are the

most commonly used in other studies [28], this research focuses solely on linear penal-

ties, which expressed as (3.8)

penl0(T ) := β|T | (3.8)

where β > 0, A higher β value results in fewer segments, while a lower β increases the

number of segments, potentially making them more susceptible to noise influence.

3.3.2 Changing Point Detection in Civil Engineering Field

In the field of civil engineering, research since the 1990s has been dedicated to de-

veloping improved change point detection methods to segment road conditions. The

earliest method, the Cumulative Difference Approach (CDA), was introduced by the

American Association of State Highway and Transportation Officials (AASHTO) in

1993 [19] and quickly gained popularity for its simplicity and effectiveness. However,

after 2000, many researchers recognized that CDA has many limitations [29][30][31],

such as its inability to detect multiple segments with different average response levels

and its sensitivity to changes in the parameters of road conditions, leading to the

proposal of new methods. Table (3.1) shows the methods that have been developed

over years.

Three approaches stand out from the rest in terms of data types that are rele-

vant to our research: the cumulative difference technique, the wavelet-based method,

and Fuzzy c-mean clustering. Among these, Fuzzy c-mean clustering requires prior

knowledge of the number of segments, rendering it unsuitable for our context. Con-

sequently, we focus solely on the CDA and wavelet-based methods.

Cumulative Difference Approach

CDA is a very straightforward method among all change-point detection methods.

Figure (3.2) illustrates the process of using CDA to determine the change point of
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Table 3.1: Changing point detection method in Civil Engineering field

Study Methods Response Variable

Divinsky et al. (1997) CDA Roughness, Generic

Ping et al. (1999) CDA and significance
testing

Rut

Cuhadar et al. (2002) Wavelet based method Generic

Misra and Das (2004) CART Roughness

Tejeda et al. (2008) Accumulated sum
(CUSUM)

Skid Resistance

Yang et al. (2009) Fuzzy c-mean clustering Pavement Condition Rat-
ing

D’Apuzzo and Nicolosi
(2012)

Various Methods Skid Resistance

Abdelaty and Jeong
(2018)

affinity propagation clus-
tering method

IRI and rutting

the pavement distress value, where (a) represents the actual pavement distress value,

(b) shows the cumulative area, and (c) shows the comparison between the cumulative

area and the average value.

In general, it contains three parts: calculating the cumulative area at any point

within the profile and determining the cumulative difference by comparing the actual

cumulative area to the average, identifying unit boundaries where the slope of this

difference changes sign, and highlighting transitions between homogeneous units. The

cumulative difference can be shown as follows:

Zx =
n∑︂

(i=1)

ai −
∑︁n

i=1 ai
L

n∑︂
i=1

xi (3.9)

Where ai is the interval area,

ai =
(ri−1 + ri)× xi

2
(3.10)

In equation (3.9) and (3.10), n is the nth pavement response measurement, r is the

value of the pavement response and L is the total length of the corridor.
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Figure 3.2. CDA approach illustration [19]
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Wavelet-theory-based Approach

Introduced by Cuhadar [20] and further validated by Boroujerdian [32], the wavelet-

theory-based approach to the detection of change points is highly effective for au-

tonomously identifying boundaries within road condition datasets. In general, the

method can be described in the following steps: 1. This method begins by trans-

forming data that is not evenly distributed in space into a spatial framework that

is evenly distributed using equation (3.11), establishing a consistent foundation for

further research.

FL =
(︂
1− x

∆

)︂
F and FR =

(︃
X

∆

)︃
F (3.11)

where we assume ∆ is the distance of the uniform point on the grid (minimum

segment), x is the distance between the measurement and the point on the left grid

and ∆− x is the distance between the measurement and the point on the right grid.

2. The approach then detects major changes at different scales using the continuous

wavelet transform. This is critical for accurately recognizing subtle transitions within

the data. This capacity is improved by using high-frequency filters to remove noise,

hence enhancing the emphasis on significant signal modifications.

The continuous wavelet transform can be defined as (3.12)

Wψf(a, b) =
1√︁
|a|

∫︂ +∞

−∞
f(x)ψ∗

(︃
x− b

a

)︃
dx (3.12)

where a controls the window width, b is the position of the wavelet, and f(x) is the

road surface condition data.

In our research, ψ∗ represents the chosen wavelet. We opt for the Mexican hat

wavelet due to its high variance, making it suitable for edge detection purposes.

Furthermore, its spatial localization properties enable the analysis of signals at various

scales, facilitating the detection of multiscale features. The ψ∗ is then defined as[33]

(3.13)
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ψ(x) =
2√
3 4
√
π

(︁
1− x2

)︁
e−

x2

2 (3.13)

3. Ultimately, by identifying the central point and boundaries of various road

conditions, we can determine the position and boundaries of each segment, thereby

achieving segmentation of the road condition.

3.4 Ordinary Kriging

Kriging, initially applied in estimating mineral content, has gained widespread use

in various fields such as geology, hydrology, and environmental science due to its

high accuracy and relative simplicity.[34][35]It is particularly valuable for estimating

values at unmeasured locations. Among its types, ordinary kriging (OK) is favored

for its simplicity compared to universal kriging and regression kriging, and for its

increased effectiveness compared to simple kriging, making it our choice for interpo-

lating RWIS data. This approach serves two main purposes: comparing with vehicle

sensor data and supplementing critical data for road condition forecasts not available

from vehicles.

According to a previous study [36], the OK estimator can be written as:

Ẑ(x) =
m∑︂
k=1

λk(x)Z (xk) +

[︄
1−

m∑︂
k=1

λk(x)

]︄
m(x) (3.14)

Here, Ẑ(x) represents the estimated value at an unmeasured site, m(x) is the mean of

the random variable Z(X), and λK is the weight applied to Z(Xk) for the estimation

location x.

For Ordinary Kriging, the covariance model is pivotal, encapsulated by the semi-

variogram equation (3.15)

γ̂(p) =
1

2n(p)

n(p)∑︂
k=1

[z (xk + p)− z (xk)]
2 (3.15)
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where γ̂(p) denotes the estimated semivariogram for a lag distance p, with n(p) rep-

resenting the count of observation pairs separated by this distance. This model quan-

tifies the spatial dependency, which is crucial for the interpolation’s precision.

3.5 Summary

This chapter provides an overview of the methods and algorithms used in this thesis.

We explored the use of basic Convolutional Neural Networks and pre-trained models

using transfer learning to augment accuracy in the process of extracting picture data.

To improve accuracy, our strategy involves merging these characteristics with mete-

orological data and using machine learning classification methods. We have selected

regression trees, random forests, and support vector machines, all of which have been

previously studied in terms of their advantages, disadvantages, and underlying con-

cepts. In order to monitor winter road surface conditions in real-time, we are using a

technique called dynamic segmentation. This method involves dividing the roads into

segments depending on their conditions, with the goal of grouping together areas with

similar surface characteristics and identifying any changes that occur. Finally, as a

result of insufficient vehicle sensor data, we are contemplating the use of the kriging

technique, which involves employing RWIS data to deduce the absent information.
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Chapter 4

Case Study

4.1 Data Description and Pre-Processing

This study was conducted on Highway 2, south of Edmonton, Alberta, which was

selected due to its high latitude (53.5461° N) and significant snowfall during winter.

These conditions are typical of northern climates, making them an ideal proxy for

assessing winter road safety technologies. The data collection system consisted of

a test vehicle equipped with a MRWIS, a Zed2 dashcam to capture front vehicle

images, and an OBDII USB adapter for real-time vehicle data collection. RWIS data,

crucial for obtaining accurate meteorological conditions on the road, was collected

simultaneously with vehicle data and front imagery to ensure temporal consistency

through the 511alberta API.

Our data collection efforts in the winter of 2022-2023 encountered several chal-

lenges, primarily unpredictable weather and technical limitations of our equipment,

which led to only four successful data collection sessions. Each session followed a pre-

determined route starting from Southgate mall, moving south along Gateway Blvd,

onto Highway 2, and then returning from Red Deer. The sessions were carefully

planned to capture a range of conditions: from the dry road conditions on the morn-

ing of March 4 to the snow-covered roads in the subsequent sessions on March 11 and

18. This variability in road conditions was essential for testing the responsiveness of

our data collection setup under different environmental stresses.
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(a) (b) (c)

(d)

Figure 4.1: (a) mobile RWIS unit. (b) ZED II camera. (c) ELM327 OBD-USB
adapter. (d) RWIS station

4.1.1 Vision Data

Initially, video frames were directly extracted from dashcam footage and classified

into three classes: bare / dry, partially covered snow, and fully covered snow to

construct a dataset using image-level labeling. Despite the high training and valida-

tion with deep learning, the precision of real-world applications dropped to around

70% (depicted in Figure (4.3a)), indicating severe overfitting. Further analysis of

the model’s penultimate layer revealed a focus on cloud-like features rather than the

road (4.3b), underscoring the importance of cropping images to direct the model’s

attention to road conditions. Based on this, we decided to crop the frames captured

by the dashcam to focus solely on the road surface. To standardize the data and

ensure accurate cropping of the road surface, we initially used cones to determine the

cropping coordinates, as illustrated in Figure (4.4).
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Figure 4.2: Data collection route

(a) Image-level labeled dataset show very
low accuracy on test dataset

(b) CNN focus on the sky in-
stead of the road

Figure 4.3: Analysis of model performance and focus areas
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Figure 4.4: cones are arranged in a 7.5 meter by 7.5 meter square, located 15 meters
ahead of the vehicle.

Subsequently, to facilitate the integration of these images into deep learning models,

we performed a perspective transformation on the cropped images and resized them

to 224x224 pixels for efficient processing.

(a) Dry (b) Partially covered (c) Fully covered

Figure 4.5: Analysis of model performance and focus areas

4.1.2 Tabular Data

The tabular data encompasses dozens of vehicle sensor data collected via OBD and

12 MRWIS parameters. Drawing on previous research[23], we selected potential pre-
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Figure 4.6: correlation heatmap of the potential predictors

dictors of road surface conditions and performed correlation tests to evaluate their

predictive utility. (4.6)

We collected a grand total of 10,728 completely synced data items. During the

first processing phase, we transformed each category into numbers ranging from 0 to

6 to enable the inclusion of descriptive factors such as surface state in the correlation

analysis. A value of 0 was assigned to indicate bare conditions, while a value of 6 was

assigned to reflect ice circumstances.

The correlation heatmap indicated a strong positive association (coefficient of

0.805) between the percentage of ice and the surface state. This aligns with the
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intuitive hypothesis that higher percentages of ice correlate with icier road condi-

tions. The variables that had a strong correlation with the outcome were the depth

of the water and the friction of the road, with correlation values of 0.657 and -0.635,

respectively. However, since there is a limited number of car sensors and the RWIS

is incapable of measuring these characteristics, we made the choice to exclude these

three predictors. Relative humidity, which ranked fourth, had a correlation of 0.477

with the surface state. This indicates that there is a tendency for humidity to in-

crease as road conditions get wetter, which is a sensible observation. Subsequently,

the air temperature sensor, intake air temperature, ambient air temperature, and sur-

face temperature were measured, yielding coefficients of -0.2968, -0.226, -0.2646, and

-0.2774, respectively. The parameters that show low correlations, such as latitude and

longitude, had a correlation coefficient of around -0.1. However, parameters such as

barometric pressure and intake manifold pressure, which had correlations below 0.1,

were considered to have no influence on the accuracy of the model and therefore were

ignored. To summarize, the information chosen to be combined with the attributes

of the picture consisted of ambient temperature and humidity.

4.2 Evaluation of RSC Based on Dashcam

4.2.1 Model Development and Comparison

To address the limited availability of frames in the partly and totally covered cat-

egories, we used oversampling techniques to expand the dataset. This resulted in

a balanced distribution of 17,591 photos in three categories: 5,895 images of bare

surfaces, 5,185 images of partially covered surfaces, and 6,511 images of fully cov-

ered surfaces. Building upon the research conducted by Juan[23], we implemented

a convolutional neural network model for the purpose of feature extraction. For the

transfer learning approach, we conducted three training sessions for each model, fo-

cusing on the fully connected layer (fc), the final 5% of the layers and the last 15%
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of layers, respectively.

As previously mentioned, the models we select for transfer learning are: ResNet50[37],

VGG16[38], Inception[39], and MobileNet[40]. During the training phase, the data

sets were split into 90% for training and 10% for testing, with a learning rate of

0.001. Batch size and epoch count were set at 32 and 50, respectively, and pretrained

ImageNet weights were used.

Figure 4.7: Accuracy and loss diagram
for Resnet50

Figure 4.8: Accuracy and loss diagram
for VGG16

Figure 4.9: Accuracy and loss diagram for simple CNN

The performance of ResNet50 (4.7) and VGG16 (4.8), specifically on the fully con-

nected layer, showed high accuracy and low loss on the training set but poor outcomes
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on the validation set, indicating weak generalizability and potential overfitting due

to model complexity. On the contrary, simpler CNN models demonstrated robust

performance, achieving 96% accuracy in both training and validation data sets after

50 epochs.

4.2.2 Factors Affecting Classification Model Accuracy

Testing model reliability in real-world conditions is essential. Drawing from prior

research[41][42], we recognize that pure visual approaches can suffer accuracy fluctu-

ations due to resolution and lighting variations. Consequently, this study explores the

impact of different resolutions on our initial 224x224 setting and examines lighting

effects on visual classification by altering image contrast.

The CNN model’s performance is analyzed across several resolutions which shown

in Table (4.1), and it achieves the highest accuracy of 97.1% at a resolution of 400x400.

Remarkably, the accuracy reached its lowest point at a resolution of 600x600, namely

at 96%. Based on the marginal variation of 1. 1% in accuracies, we may conclude that

camera resolution has an insignificant effect on our straightforward three-category

winter road surface condition classification problem.

Table 4.1: Accuracy and Loss of different input resolution

Image Size

Metric 224x224 300x300 400x400 600x600

Accuracy 96.23 96.39 97.1 96

Loss 0.1553 0.1543 0.1520 0.1559

However, unlike resolution, lighting greatly impacts classification accuracy. Ini-

tially, the model was trained with the original data set and then pre-processed to

simulate low-light conditions by decreasing the exposure as shown in Figure (4.10).

The confusion matrix in Figure (4.11) revealed a significant decrease in accuracy

from 96% to 49.5% by simply applying the model on the low-exposure dataset. Poor
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Figure 4.10: decrease the image exposure to simulate bad lighting condition

Figure 4.11: Confusion matrix when applying trained model on low-exposure dataset

performance was particularly observed in distinguishing between partial and full snow

coverage, with most full snow coverage images misclassified as bare pavement. This

misclassification may be due to reduced exposure making snow coverage resemble

darker pavement, which aligns with our expectations.
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Selected OBD II 

PIDs and weather 
data from RWIS

ML

Final classification

Figure 4.12: Integration process of vision data and weather data using CNN and
machine learning

Figure 4.13: Integration process of vision data and weather data using CNN

4.3 Evaluation of RSC Based on Dashcam and the

Weather Data Collected by Vehicle and RWIS

Sensors

Although a simple CNN model may already achieved up to 96% accuracy during

training and validation on the dataset, as discussed in the previous section, relying

solely on the visual system may not ensure the reliability and stability of road predic-

tion systems under complex real-life conditions. Drawing from prior research [23][10],

we believe that integrating vision data (provided by the dashcam) and weather data

collected by both vehicle sensors and RWIS stations is a viable approach to enhance

the accuracy and reliability of road surface recognition.

We investigated two different data fusion strategies. One was proposed by Juan

[10], with the specific process shown in Figure 4.12. The other was inspired by Nil’s

research [11], with the general architecture shown in Figure 4.13

Juan’s method consists of two main parts. The first part involves feature extrac-

tion from vision data, resulting in a one-dimensional tensor for each image. The
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second part combines these one-dimensional tensors with selected weather data from

vehicle sensors and RWIS stations. Machine learning techniques are then applied to

the fused data to achieve the final classification of road conditions. In order to find

the most suitable machine learning method, we tested Random Forest, Naive Bayes,

and SVM classifiers. The performance of each classifier on the test dataset is summa-

rized in Table (4.2). Among these classifiers, Random Forest demonstrated superior

performance, making it our classifier of choice.

Nil’s method also consists of two parts. The first branch extracts features from

image data using a CNN. The image data input size is (224, 224, 3), and through a se-

ries of convolutional and max-pooling layers, the feature maps are gradually extracted

and down sampled. Finally, global average pooling is applied to convert the convo-

lutional feature maps into a one-dimensional vector, which is further processed by

fully connected layers. The second part processes tabular data through multiple fully

connected layers to extract features. The image and tabular data feature vectors are

then concatenated, followed by further processing through a series of fully connected

layers to produce the final classification output. For the image branch we adopted

Juan’s image feature extraction network as the baseline model and fine-tuned the

channel and neuron parameters. The tabular data processing remained unchanged

from the original study. During fine-tuning, the accuracy of each model on the test

set is summarized in Table (4.3) . We found that when the number of channels was

reduced to 0.5 times and the number of neurons increased to 1.5 times the baseline

model, the overall model achieved the highest accuracy of 98.6% on the test set.

As shown in Figure 4.14, by plotting the confusion matrices for both methods,

we noticed that Nil’s method outperformed Juan’s method in accurately classifying

the ’snow fully covered’ road class. Consequently, we chose Nil’s architecture as

the method for road surface state recognition in this study. Compared to using

only visual data for road condition classification (Figure 4.15), the incorporation of

visual data with supplementary modalities substantially improves the precision of the
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Table 4.2: Performance Metrics of Different Machine Learning Classifiers

Machine learning classifier

Metric Random Forest Naive Bayes SVM

accuracy 0.979 0.973 0.978

precision 0.9804 0.9730 0.98

Recall 0.9804 0.9730 0.98

F1 score 0.9804 0.9730 0.98

Table 4.3: Model fine tune for Nil’s method

Metric baseline 50% neuron 75% neuron 125% neuron 150% neuron

baseline 0.9771 NA NA NA NA

50% channel 0.9804 0.953 0.9778 0.968 0.986

80% channel 0.973 NA NA NA NA

120% channel 0.967 NA NA NA NA

150% channel 0.976 NA NA NA NA

model for the three categories assessed. This improvement is especially remarkable

in the model’s enhanced capacity to differentiate between ’uncovered road surface’

and ’partially covered with snow’. The findings emphasize the effectiveness of data

fusion in boosting the model’s ability to distinguish and classify, underscoring the

significance of using various data streams to enhance the accuracy of predictions in

classification scenarios.

4.4 Performance Evaluation of the Selected Dy-

namic Segmentation Method

Given the limitations and challenges associated with real-world datasets on winter

road surface conditions, including subjectivity in data labeling, noise due to limited

sensor coverage area, and the lack of variability in some road segments, the decision
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Figure 4.14: Left: Juan’s fusion method; Right: Nil’s fusion approach

Figure 4.15: Left: Vision data as the only input; Right: Fuse the vision data and it’s
corresponding weather data

was made to use a synthetic dataset for this task. The synthetic dataset allows

for a controlled environment where the characteristics of the data can be precisely

defined and manipulated. This enables a more rigorous examination and comparison

of dynamic segmentation techniques, and provides a clearer understanding of their

strengths and weaknesses before applying them to real-world data.

4.4.1 Methods Comparison

Synthetic Dataset Development

The development of the synthetic dataset is guided by the Canadian government’s

classification of road surface conditions [43] which it divided into three categories:
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bare, partially covered, or fully covered. Given that dynamic segmentation methods

require numerical data, the initial step involves converting the textual data into nu-

merical form. This conversion is facilitated by employing the RSI table[17], which

serves as a reference to translate road condition descriptions into quantifiable metrics.

Road surface index (RSI)

Class RSC category RSC category defined by TAC Max Min Average

1 Bare and Dry Bare and Dry 0.9 1 0.95

2 Bare and Wet Bare and Wet 0.8 0.9 0.85

3 Slushy Partly Snow Packed, Partly Icy 0.7 0.8 0.75

4 Partly Snow Covered Partly Snow Covered 0.5 0.7 0.6

5 Snow Covered Snow Covered 0.3 0.5 0.4

6 Snow Packed Snow Packed 0.2 0.3 0.25

7 Icy Icy 0.05 0.2 0.125

Table 4.4: RSI Table

From the RSI table (4.4), we categorize road conditions into three classes with

specific RSI ranges: ’Bare’ (0.8 to 1), ’Partially Covered’ (0.5 to 0.8), and ’Fully Cov-

ered’ (0.05 to 0.5), taking average RSI values for each category as 0.9, 0.65, and 0.225

respectively. Considering a 200km corridor divided into 0.5km segments, we assume

9 segments with distinct RSI values varying from 0 to 1, ensuring adjacent segments

have different RSIs. The noise in the data comprises normal random fluctuations

and vehicle misjudgments of road conditions. Assuming an unbiased road condition

estimator with uniformly distributed errors, there’s a 2% chance of random misclassi-

fication into incorrect categories. This controlled introduction of noise allows for the

testing of dynamic segmentation methods under conditions that closely mimic real-

world challenges. The synthetic dataset, both with and without noise, is illustrated

in Figure (4.16), which highlights the variations in RSI across the segments and the

impact of noise on these measurements.
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Figure 4.16: Left: Synthetic data without noise; Right: Synthetic data with noise

Comparison Between Different Segmentation Methods

In our study, we used 21 traditional changing-point-searching methodologies, along

with two widely recognized techniques from the field of civil engineering: the CDA

approach and a wavelet theory-based method. To facilitate a holistic evaluation of

the performance of each method, we used four distinct metrics: precision and recall,

Hausdorff distance, and Rand index. Ideally, both precision and recall, as well as the

Rand index, should approach a value of 1 to indicate optimal performance, whereas

a Hausdorff distance nearing 0 signifies more accurate segmentation. The accuracy

of segmentation across the synthetic data, as assessed by these metrics for all the

methods considered, is summarized in Table (4.5).

In the comparision presented in Table (4.5), the PELT technique, especially when

using the Rbf cost model, demonstrates exceptional performance on several measures,

achieving a Hausdorff distance of 0 and a Rand Index of 1. This emphasizes the

efficiency of the PELT approach in reliably finding segmentation sites.

On the other hand, the Cumulative Distance Approach (CDA) demonstrates ex-

cellent performance without requiring an extra cost model. It achieves accuracy and

recall rates of 1.0 and 0.875, respectively. Additionally, it has a Hausdorff distance of

3 and a Rand Index of 0.982663. The CDA approach showcases its ability to provide

very precise segmentation results, even when a particular cost model is not available.
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Table 4.5: Comparison of Segmentation Methods

Search Method Cost Model Precision Recall Hausdorff
Dis-
tance

Rand
Index

PELT Rbf 0.875 0.875 0.0 1.0

PELT Mahalanobis 0.875 0.875 0.0 1.0

PELT L1 1.000 0.875 4.0 0.998

PELT Rank 0.875 0.875 44.0 0.989

CDA approach N/A 1.000 0.875 3.0 0.983

Wavelet approach N/A 1.000 0.875 8.0 0.977

BinSeg L2 0.571 1.000 43.0 0.954

Bottom Up L2 0.571 1.000 43.0 0.954

Window Sliding Normal 1.000 0.500 23.0 0.94

PELT L2 1.000 0.375 21.0 0.915

Window Sliding Mahalanobis 0.750 0.375 23.0 0.909

Window Sliding AR 1.000 0.375 21.0 0.896

Window Sliding Rbf 1.000 0.375 23.0 0.893

Window Sliding L2 1.000 0.375 23.0 0.893

BinSeg AR 0.348 1.000 43.0 0.862

Bottom Up AR 0.308 1.000 43.0 0.856

BinSeg Mahalanobis 0.296 1.000 43.0 0.851

BinSeg L1 0.308 1.000 43.0 0.845

Bottom Up Mahalanobis 0.276 1.000 43.0 0.837

Bottom Up L1 0.276 1.000 43.0 0.833

BinSeg Rank 0.250 1.000 43.0 0.832

Bottom Up Rank 0.250 1.000 43.0 0.832

BinSeg Rbf 0.250 1.000 43.0 0.831

Bottom Up Rbf 0.250 1.000 43.0 0.831

BinSeg Normal 0.205 1.000 43.0 0.821
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The approach based on wavelet theory has somewhat poorer accuracy and recall,

both measuring at 0.625. It also has a Hausdorff distance of 13 and a Rand In-

dex of 0.948241. Although the wavelet technique does not achieve the same level

of performance as the PELT or CDA approaches, it is nevertheless useful in some

situations because of its ability to handle complicated data with noise or nonlinear

characteristics.

Figure (4.17) shows the segmentation performance of the best-performing point-

search technique, CDA, and the wavelet-based technique, respectively. The blue and

red blocks represent the accurate representation of segmentation, whereas the dashed

lines illustrate the results achieved by the segmentation techniques. The PELT+Rbf

combo has the highest level of precision in determining segmentation borders. The

Cumulative Distance approach fails to detect a segment within the range of 75-100 km,

while the wavelet-based method exhibits suboptimal performance in the region of 75-

125 km, where significant variations in road surface conditions exist. We believe that

this difference might be because users have to fine-tune specific benchmark numbers

based on how the data is structured. Segmentation quality may get worse if the

changes aren’t made correctly.

4.5 Application and Evaluation

To validate the proposed method and ensure that the data are not seen by the trained

model, we independently collected data on Highway 2 in January 2024, with the route

depicted in Figure (4.2). Since our test vehicle could not measure relative humidity,

these data were provided by RWIS stations. For convenience, we selected RWIS

stations within a 150 km radius of the midpoint of the route and performed ordi-

nary Kriging interpolation to interpolate the regional relative humidity on that day.

Through GPS coordinates, we obtained relative humidity values at each measurement

point.

Subsequently, we converted the predicted RSC into the RSI and segmented it
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Figure 4.17: (a) Data segment by PELT-Rbf (b) Data segment by CDA (c) Data
segment by wavelet-based method
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Figure 4.18: Road condition segmentation comparison between different methods and
data sources

using the PELT-Rbf method as well as the widly used CDA method. We did the

same procedure for the MRWIS data and treated it as our baseline.

When comparing the pattern of RSI shown in Figure (4.18), RSI measured by our

approach is closely aligned with the results provided by MRWIS. This suggests that

using dashcams and OBD can provide rather precise estimates of road conditions.

The road condition patterns found in this experiment can be summarized as follows:

The road conditions are primarily fully covered or partially covered from 0 to 50

measurement points. From 50 to 750 measurement points, the conditions are mostly

bare. From 750 to 850, 850 to 900, 900 to 950, and 950 to 1000 measurement points,

the road conditions alternate between being fully covered and bare. (Note: The

reason for the symmetrical patterns noticed here is due to the vehicle’s repetitive

movement along the same road segment.)

In terms of road condition segmentation, the CDA technique exhibits a high level of

sensitivity towards regions characterized by substantial fluctuations and noise in the

data. Consequently, this sensitivity results in the generation of several segments that

are either too close to each other or superfluous. This is particularly evident in the

vicinity of the 200 and 900 measurement points. Nevertheless, the PELT approach

56



does not encounter this problem when used with an identical dataset.

In terms of RSI prediction, our system that combines dashcam, onboard diagnos-

tics (OBD), and Road Weather Information System (RWIS) falls short in terms of

providing the same level of detail as the MRWIS data. The main reason for this is

the classification of the training set into only three categories. Increasing the number

of categories may improve the outcomes, however, it could also result in a reduction

in the accuracy of identifying road conditions.

We assume MRWIS + CDA as the baseline for comparison. The following table,

referenced as Table (4.6), presents the evaluation metrics obtained by comparing

various segmentation approaches against this baseline.

Table 4.6: Comparison of Precision and Recall for Different Data Sources and The
Selected Dynamic Segmentation Methods

MRWIS+CDA

Precision Recall

MRWIS+CDA 1 1

Estimated+CDA 0.857 0.286

MRWIS+PELT 1 0.286

Estimated+PELT 0.833 0.238

When comparing different methods for estimating RSC, it has been found that us-

ing a combination of dashcam, OBD, and RWIS data results in higher precision but

lower recall rates when segmenting with the CDA or PELT method compared to the

benchmark MRWIS+CDA approach. This difference arises because MRWIS data,

which only measures real-time road conditions under the left rear wheel, can some-

times misrepresent the overall road condition. This misrepresentation introduces noise

that affects segmentation performance, leading to more segmentation points. Con-

sequently, the hybrid technique, while providing a broader perspective and avoiding

such noise, results in fewer segmentation points.

Although MRWIS data has been proven to be a reliable source for measuring road

surface conditions, the high costs associated with manual labor and equipment make

it impractical for widespread use. Consequently, road surface conditions are often
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estimated using stationary RWIS data and contractor reports in practical scenarios.

These methods do not achieve the same level of accuracy or real-time capability

to predict road surface conditions as MRWIS or the hybrid method that combines

dashcam, OBD and RWIS data.

4.6 Summary

In this chapter, a comprehensive case study was conducted to evaluate road surface

conditions (RSC) during winter on Highway 2, south of Edmonton, Alberta. The

region’s high latitude and significant snowfall made it an ideal location to collect

detailed road surface data. The study used a combination of a mobile Road Weather

Information System (RWIS), a dashcam, an OBD-USB adapter, and data from the

511alberta API.

The data collection took place during the winter of 2022-2023, with four sessions

capturing various road conditions from dry to fully covered with snow. Initially, video

frames from the dashcam were classified into three categories: bare/dry, partially

covered snow, and fully covered snow. Despite high training and validation accuracy,

the image-level labeling approach resulted in severe overfitting, indicating the need

for cropping images to focus on road conditions.

Data analysis revealed strong correlations between certain vehicle and RWIS sensor

data and road surface conditions, particularly relative humidity and temperature. A

substantial dataset of 10,728 synced data items was collected, with categorical data

transformed into numerical values for analysis.

Various convolutional neural network (CNN) models were tested, with simpler

models demonstrating better generalizability compared to more complex ones. Fac-

tors such as resolution and lighting significantly impacted model performance, with

lighting conditions causing substantial accuracy drops.

To improve overall accuracy and reliability, vision data was integrated with weather

data from vehicle sensors and RWIS stations. This data fusion approach resulted in
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an approximate 2% improvement in accuracy. Among the classifiers tested, Random

Forest demonstrated superior performance, making it the classifier of choice for the

integrated data.

Due to the lack of comprehensive real-world data, a synthetic dataset was developed

to test dynamic segmentation methods. The study found that the PELT method with

the Rbf cost model and the Cumulative Distance Approach (CDA) showed the best

performance in segmenting road conditions.

An independent data collection in January 2024 validated the proposed methods.

The hybrid approach, which combined dashcam, OBD and RWIS data, aligned well

with MRWIS data, demonstrating the effectiveness of using multiple data sources.

The PELT method provided more reliable segmentation results compared to the CDA

method, which was sensitive to data noise and fluctuations.

In conclusion, this case study highlighted the importance of integrating various

data streams to enhance the accuracy of winter road surface condition assessments.

The findings underscore the effectiveness of advanced segmentation techniques and

the need for more research to improve the classification accuracy of image data and

address challenges such as lighting variations and data noise.
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Chapter 5

Conclusions, Recommendations, &
Future Work

5.1 Conclusions

In this research, we aimed to predict Road Surface Conditions (RSC) in real-time on

the vehicle side by combining onboard cameras, vehicle sensors and data from RWIS

stations. We evaluated various image recognition and fusion methods and selected

the one that provided high accuracy in predictions. For dynamic segmentation, we

experimented with two commonly used dynamic segmentation methods in civil en-

gineering and several standard change point detection techniques. Our comparison

on synthetic data showed that the PELT-Rbf method had better segmentation accu-

racy. We also conducted a case study with data collected specifically on Highway 2,

demonstrating that our method could effectively predict and segment the states of

the winter road surface in real-life scenario.

5.2 Recommendations and Future Work

Future research efforts could be directed towards several key areas to enhance RSC

estimation and segmentation technologies. A primary area of focus might be the

development of methodologies for the precise labeling of image datasets captured

by dashcams, ensuring the accuracy of the labels and determining the ideal balance

between the number of classes and the overall accuracy of the segmentation model.
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In addition, optimizing vehicle sampling rate is essential to effectively balancing

cost and performance. By adjusting the frequency at which data is collected from

vehicles, researchers can reduce the costs associated with data processing and storage,

while still maintaining a dataset that is robust enough for accurate analysis.

Data preprocessing is another critical area for improvement. Techniques such as

applying greyscale or picture-enhancing methods to increase contrast and highlight

additional details could lead to more effective segmentation by emphasizing key fea-

tures within the imagery. Moreover, considering the influence of lighting conditions

and road surface material colors, datasets could be further classified based on factors

such as day and night conditions and the type of road surface material. This addi-

tional classification step may significantly improve the model’s reliability in real-world

applications, ensuring more accurate predictions across varying environments.

Significant advancements are also needed in road surface segmentation technologies.

For example, integrating actual road maintenance costs into segmentation models

could yield a more comprehensive understanding of the implications of road condi-

tions. Furthermore, lane-specific RSC detection could provide more detailed infor-

mation on road surface conditions, which is critical for targeted maintenance and

improving road safety.

Leveraging deep learning techniques could also revolutionize the refinement of dy-

namic segmentation parameters, increasing the adaptability and performance of seg-

mentation models across a variety of datasets. Additionally, exploring advanced data

fusion techniques, such as multihead cross-attention mechanisms, may improve the

integration of disparate data sources, thereby enhancing predictive accuracy. Such in-

tegration could lead to a more nuanced and holistic analysis of road surface conditions

by effectively combining information from different sensors and data modalities.

61



Bibliography

[1] Federal Highway Administration, FHWA Road Weather Management - Winter
Maintenance Virtual Clearinghouse: Technical Briefs, https://ops.fhwa.dot.
gov/weather / resources /publications / tech briefs / tech briefs . htm, Accessed:
Mar. 13, 2021, 2021.

[2] S. Chen, M. Kuhn, K. Prettner, and D. E. Bloom, “The global macroeco-
nomic burden of road injuries: Estimates and projections for 166 countries,”
The Lancet Planetary Health, vol. 3, no. 9, e390–e398, 2019.

[3] A. Abohassan, K. El-Basyouny, and T. J. Kwon, “Exploring the associations
between winter maintenance operations, weather variables, surface condition,
and road safety: A path analysis approach,” Accident Analysis & Prevention,
vol. 163, p. 106 448, 2021.

[4] J. F. Campbell and A. Langevin, “Roadway snow and ice control,” in Arc
routing: theory, solutions and applications, Springer, 2000, pp. 389–418.

[5] L. Gu, T. J. Kwon, and T. Z. Qiu, “A geostatistical approach to winter road
surface condition estimation using mobile rwis data,” Canadian Journal of Civil
Engineering, vol. 46, no. 6, pp. 511–521, 2019.

[6] M. Wu, T. J. Kwon, and N. Huynh, “Winter road surface condition recognition
using semantic segmentation and the generative adversarial network: A case
study of iowa, usa,” Transportation research record, vol. 2678, no. 5, pp. 184–
195, 2024.

[7] S. Khaleghian, A. Emami, and S. Taheri, “A technical survey on tire-road fric-
tion estimation,” Friction, vol. 5, pp. 123–146, 2017.

[8] R. Omer and L. Fu, “An automatic image recognition system for winter road
surface condition classification,” in 13th international IEEE conference on in-
telligent transportation systems, IEEE, 2010, pp. 1375–1379.

[9] G. Pan, L. Fu, R. Yu, and M. I. Muresan, “Winter road surface condition
recognition using a pre-trained deep convolutional neural network,” Tech. Rep.,
2018.

[10] J. Carrillo, M. Crowley, G. Pan, and L. Fu, “Design of efficient deep learning
models for determining road surface condition from roadside camera images and
weather data,” arXiv preprint arXiv:2009.10282, 2020.

62

https://ops.fhwa.dot.gov/weather/resources/publications/tech_briefs/tech_briefs.htm
https://ops.fhwa.dot.gov/weather/resources/publications/tech_briefs/tech_briefs.htm


[11] N. Gessert, M. Nielsen, M. Shaikh, R. Werner, and A. Schlaefer, “Skin lesion
classification using ensembles of multi-resolution efficientnets with meta data,”
MethodsX, vol. 7, p. 100 864, 2020.

[12] P. E. Thornton, H. Hasenauer, and M. A. White, “Simultaneous estimation of
daily solar radiation and humidity from observed temperature and precipita-
tion: An application over complex terrain in austria,” Agricultural and forest
meteorology, vol. 104, no. 4, pp. 255–271, 2000.

[13] T. Gustavsson, “A study of air and road-surface temperature variations during
clear windy nights,” International journal of climatology, vol. 15, no. 8, pp. 919–
932, 1995.

[14] A. Sarsembayeva, P. Collins, Z. Saginov, and S. Mussakhanova, “The impact of
the temperature and humidity state of the road on heat and mass transfer in
winter,” Technobius, vol. 2, no. 4, p. 0029, 2022.

[15] J. Bogren and T. Gustavsson, “Nocturnal air and road surface temperature
variations in complex terrain,” International journal of climatology, vol. 11,
no. 4, pp. 443–455, 1991.

[16] L.-P. Crevier and Y. Delage, “Metro: A new model for road-condition forecast-
ing in canada,” Journal of Applied Meteorology and Climatology, vol. 40, no. 11,
pp. 2026–2037, 2001.

[17] L. Fu, L. Thakali, T. J. Kwon, and T. Usman, “A risk-based approach to winter
road surface condition classification,” Canadian Journal of Civil Engineering,
vol. 44, no. 3, pp. 182–191, 2017.

[18] L. Gu, M. Wu, and T. J. Kwon, “An enhanced spatial statistical method for
continuous monitoring of winter road surface conditions,” Canadian Journal of
Civil Engineering, vol. 47, no. 10, pp. 1154–1165, 2020.

[19] G. AASHTO, “Guide for design of pavement structures,” American Association
of State Highway and Transportation Officials, Washington, DC, 1993.

[20] A Cuhadar, K Shalaby, and S Tasdoken, “Automatic segmentation of pavement
condition data using wavelet transform,” in IEEE CCECE2002. Canadian Con-
ference on Electrical and Computer Engineering. Conference Proceedings (Cat.
No. 02CH37373), IEEE, vol. 2, 2002, pp. 1009–1014.

[21] R Archana and P. E. Jeevaraj, “Deep learning models for digital image process-
ing: A review,” Artificial Intelligence Review, vol. 57, no. 1, p. 11, 2024.

[22] M. Alauddin, R. Arunthavanathan, M. T. Amin, and F. Khan, “Chapter six -
statistical approaches and artificial neural networks for process monitoring,” in
Methods to Assess and Manage Process Safety in Digitalized Process System,
ser. Methods in Chemical Process Safety, F. Khan, H. Pasman, and M. Yang,
Eds., vol. 6, Elsevier, 2022, pp. 179–226. doi: https://doi.org/10.1016/bs.
mcps.2022.04.003. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S2468651422000034.

63

https://doi.org/https://doi.org/10.1016/bs.mcps.2022.04.003
https://doi.org/https://doi.org/10.1016/bs.mcps.2022.04.003
https://www.sciencedirect.com/science/article/pii/S2468651422000034
https://www.sciencedirect.com/science/article/pii/S2468651422000034


[23] J. Carrillo, M. Crowley, G. Pan, and L. Fu, “Comparison of deep learning
models for determining road surface condition from roadside camera images
and weather data,” in Transportation Association of Canada and ITS Canada
2019 Joint Conference and Exhibition, 2019.

[24] G. De’ath and K. E. Fabricius, “Classification and regression trees: A power-
ful yet simple technique for ecological data analysis,” Ecology, vol. 81, no. 11,
pp. 3178–3192, 2000.

[25] G. Biau and E. Scornet, “A random forest guided tour,” Test, vol. 25, pp. 197–
227, 2016.

[26] H. Drucker, C. J. Burges, L. Kaufman, A. Smola, and V. Vapnik, “Support
vector regression machines,” Advances in neural information processing systems,
vol. 9, 1996.

[27] C. Truong, L. Oudre, and N. Vayatis, “Selective review of offline change point
detection methods,” Signal Processing, vol. 167, p. 107 299, 2020.

[28] R. Killick, P. Fearnhead, and I. A. Eckley, “Optimal detection of changepoints
with a linear computational cost,” Journal of the American Statistical Associ-
ation, vol. 107, no. 500, pp. 1590–1598, 2012.

[29] M Divinsky, S Nesichi, and M Livneh, “Development of a road roughness profile
delineation procedure,” Journal of testing and evaluation, vol. 25, no. 4, pp. 445–
450, 1997.

[30] R. Misra and A. Das, “Identification of homogeneous sections from road data,”
International Journal of Pavement Engineering, vol. 4, no. 4, pp. 229–233, 2003.

[31] A. El Gendy and A. Shalaby, “Using quality control charts to segment road
surface condition data,” in Proceedings of the Seventh International Conference
on Managing Pavement Assets, Calgary, Alta, Citeseer, 2008.

[32] A. M. Boroujerdian, M. Saffarzadeh, H. Yousefi, and H. Ghassemian, “A model
to identify high crash road segments with the dynamic segmentation method,”
Accident Analysis & Prevention, vol. 73, pp. 274–287, 2014.

[33] J. Lewalle, “Tutorial on continuous wavelet analysis of experimental data,”
Syracuse University, 1995.

[34] T. J. Kwon, L. Fu, and S. J. Melles, “Location optimization of road weather
information system (rwis) network considering the needs of winter road mainte-
nance and the traveling public,” Computer-Aided Civil and Infrastructure En-
gineering, vol. 32, no. 1, pp. 57–71, 2017.

[35] R. Olea, Geostatistics for engineers and earth scientists, springer science &
business media, 1999.

[36] R. A. Olea, Geostatistics for engineers and earth scientists. Springer Science &
Business Media, 2012.

[37] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

64



[38] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[39] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the
inception architecture for computer vision,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2016, pp. 2818–2826.

[40] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2:
Inverted residuals and linear bottlenecks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2018, pp. 4510–4520.

[41] J. Zhang et al., “Crop classification and lai estimation using original and resolution-
reduced images from two consumer-grade cameras,” Remote Sensing, vol. 9,
no. 10, p. 1054, 2017.

[42] S. Zentner, A. Barradas Chacon, and S. C. Wriessnegger, “The impact of light
conditions on neural affect classification: A deep learning approach,” Machine
Learning and Knowledge Extraction, vol. 6, no. 1, pp. 199–214, 2024.

[43] Transportation Association of Canada, Winter Road Condition Terminology
User Guide, https://tac-atc.ca/sites/default/files/site/doc/Bookstore/ptm-
condition-finalpub-e.pdf, Accessed: 2011, 2011.

65

https://tac-atc.ca/sites/default/files/site/doc/Bookstore/ptm-condition-finalpub-e.pdf
https://tac-atc.ca/sites/default/files/site/doc/Bookstore/ptm-condition-finalpub-e.pdf

	Introduction
	Background
	Problem Statement and Research Motivation
	Objectives
	Thesis Outline

	LITERATURE REVIEW
	Methods for Road Surface Weather Condition Detection and Estimation
	Factors Affecting the Detection of Road Surface Weather Conditions
	Weather Conditions
	Road Surface Index (RSI)
	Other Influencing Factors

	Road Condition Dynamic Segmentation
	Gap in Research
	Summary

	Methodology
	Proposed Method
	Identification of Road Conditions
	Deep Learning Method
	Machine Learning

	Dynamic segmentation
	Traditional Changing point detection
	Changing Point Detection in Civil Engineering Field

	Ordinary Kriging
	Summary

	Case Study
	Data Description and Pre-Processing
	Vision Data
	Tabular Data

	Evaluation of RSC Based on Dashcam
	Model Development and Comparison
	Factors Affecting Classification Model Accuracy

	Evaluation of RSC Based on Dashcam and the Weather Data Collected by Vehicle and RWIS Sensors
	Performance Evaluation of the Selected Dynamic Segmentation Method
	Methods Comparison

	Application and Evaluation
	Summary

	Conclusions, Recommendations, & Future Work
	Conclusions
	Recommendations and Future Work

	Bibliography

