

Background

- Banded iron formations (BIF) are iron-rich and silica-rich de
- The samples were collected from the Joffre Member as a Hamersley Group, situated in North-West Australia.
- This formation was deposited during the Paleoproterozoid which occurred around 2.5-1.6 Ga.

Fig 2. A graph showing the relationship between the size of BIFs and the approximal time of formation.

Konhauser et al., 2017 Fig 1. (A) The geolocation of the Australia. (B) An illustration that BIFs and their time of deposition

 Studying the composition and nitrogen isotope concentration provide a vital look into the microbial life and conditions o during the Precambrian.

Methods

- The BIF samples, after collection, are hand ground using mortar and pestle to prevent nitrogen contamination.
- Around 100mg of each sample is loaded into quartz tubes using an Isotope-Ratio Mass Spectrometer (IRMS) and a cu ultrahigh-vacuum metal line to evaluate the stable nitroge concentrations. (Fig 3.)
- A third of the samples were loaded into crucibles and place furnace at 550°C for 4 hours then weighed to determine t ignition.
- The rest of the samples were digested using H_2O_2 , HNO_3 , H_3BO_3 to remove all organics and convert the rocks into a
- The digested samples are then filtered and diluted for the Coupled Plasma Mass Spectrometer (ICP-MS) to determin earth element concentrations and the bulk element conce

Fig 3. The cu ultrahigh-vac located at th Alberta.

Analyzing the Composition and Nitrogen Isotope Concentrations of a Paleoproterozoic Era Banded Iron Formation

1 WISEST Student Researcher 2 University of Alberta, Department of Earth and Atmospheric Science

Results

eposits.			Depth (m)	Sample ID	SiO ₂ (wt%)	Fe ₂ O	3 Al ₂	O ₃ N	1gO	CaO	Na ₂ O	K ₂ O	MnO ₂	TiO ₂	P ₂ O ₅	LOI	Total	
port of the			94.0	DD98-1	23.41	62.94	1 0.e	57 2	07	0.40	0.20	0.86	0.05	0.01	0.03	3.8	94.47	
part of the			100.7	DD98-2 DD98-3	34.69 71.57	52.61 29.29	L 0.7 9 0.1	76 2 12 1	60	0.89	0.26	1.30 0.13	0.07	0.02	0.36 0.05	4.2 0.7	97.77	
			120.3	DD98-4	22.15	64.29) 0.4	41 1	78	1.05	0.60	0.38	0.53	0.01	0.28	9.0	100.44	
	_		146.6	DD98-7	50.35	52.90) 0.5	54 2	07	0.10	1.59	0.39	0.02	0.04	0.03	-0.9	107.16	
c Era,			102.2 191 3	DD98-8	51.34 45 84	44.16	5 0.8 5 0.6	393 551	9.00 91	0.49	1.95	1.33 0.48	0.02	0.03	0.23	0.5 -0 3	103.90	
B			191.0	DD98-10	45.84 66.56	34.12	2 0.5	56 1	02	0.66	0.87	0.48	0.00	0.01	0.03	0.5	107.21	
Boolgeeda BIF			209.3	DD98-15A	70.33	28.40) 0.1	13 1	.13	0.10	1.62	0.18	0.06	0.00	0.03	1.2	103.15	
B B Woongarra Volcanics			232.8	DD98-16-2	47.86	46.43	3 0.7	73 1	.90	0.31	0.30	1.20	0.19	0.01	0.03	4.6	103.58	
2445±5 Ma (b)			251.7	DD98-19B	46.76	45.74	1 0.5	58 2	.13	1.48	0.36	0.73	0.41	0.02	0.04	5.2	103.44	
Weeli P. S. S. P. Wolli Fm. S. S. S. S.			281.6	DD98-21	28.22	61.02	2 0.7	73 1	.30	0.61	0.21	0.65	0.04	0.02	0.02	0.5	93.37	
Group Vandicoogina Shale 			300.2 310.4	DD98-22	74.21 82.28	22.70 19.91	0.2	22 0 16 0	0.38	0.08	0.47	0.22	0.01	0.00	0.05 0.04	0.0 2 4	98.38 106.66	
Brockman Iron Fm2459±3 Ma (d)			358.2	DD98-24	33.47	49.69) 1.2	23 2		1.82	0.40	0.83	0.56	0.04	0.28	11.6	102.32	
Dales Gorge BIF			364.3	DD98-25	36.64	44.65	5 1.7	74 2	.90	1.88	0.29	1.10	0.41	0.05	0.05	9.1	98.81	
Marra Mamba BIF			411.2	DD98-26B	18.65	74.81	L 0.1	18 1	43	1.11	0.11	0.14	0.03	0.00	0.27	-1.5	95.23	
Fortescue Group			430.5 444.0	DD98-27 DD98-29	48.18	47.01	+ 0.0 1 0.0)8 0)8 1	61	0.38	1.81	0.07	0.02	0.00	0.03	-1.0	99.34	
⁸ 2 2775±10 Ma (a)			448.5	DD98-30	53.62	46.47	7 0.1	12 1	45	0.94	0.25	0.31	0.02	0.00	0.03	1.7	104.86	
Archaean basement		Fia 4.	This cha	art outline:	s result	s fror	n the	ICP-M	S for n	naior el	ement	concer	ntration	s as we	ell as the	e loss	on ianitic	on f
Hamersley group in shows the order of the		each sa	ample.							-)							J	
n.			Depth	Sample														
itions can			(m)	ID	V (ppr	m)	Cr	Ni	Zn	Rb	Sr	Zr	Мо	S	Ва	Со	Ве	
			94.0	DD98-1	5.16		5.48	8.28	/	75.16	5 11.29	10.70	0.40	/	52.26	1.58	0.86	
of the oceans			100.7	DD98-2 DD98-3	6.65 5.75)	8.93 10.90	6.79 9.20	25.80 22.55	101.9	0 39.23 1.48	14.72 4.82	0.19	197.2 /	22.46 /	1.65	3.78 1.32	
			120.3	DD98-4	6.58	}	9.55	9.60	6.77	32.32	30.70	7.23	2.21	/	43.64	2.18	1.28	
			146.6	DD98-7	36.83	3	6.59	8.14	39.31	21.68	2.12	8.42	0.48	/	157.79	3.18	2.55	
			102.2 191 3	DD98-8	12.28 8.23	8 1	18.21 10.48	16.89 8 15	47.29 18.46) 104.1 5 30.61	8 22.63 35 75	9.24	3.54	222.09	€ 57.11 19.39	3.44	1.85	
			197.0	DD98-10	5.59)	12.46	10.81	23.91	L 26.55	5 13.14	7.19	0.91	/	21.27	2.18	/	
			209.3	DD98-15A	3.88	3	5.89	7.42	23.31	l 12.91	2.49	1.57	1.15	/	45.01	0.98	/	
			232.8	DD98-16-2	4.91 5.08	-	5.84 8 15	7.05	26.03 29.70	3 95.27 9 56.50	25.81 22.82	4.45	0.35	/ 237 0'	56.39 76.21	2.07		
			281.6	DD98-21	6.88	3	9.37	10.76	/	59.80	16.59	14.46	0.87	/	128.86	1.13	, 1.44	
			300.2	DD98-22	4.05	•	9.99	12.87	/	20.10) 12.61	3.75	1.80	/	52.35	1.28	1	
an agate			310.4 358 2	DD98-23	8.30) <u>^</u> 1 ^	16.16 12 11	17.07 9.66	/ 22 5/	10.24 1 14 73	4.80	2.08	2.55	753 59	30.83 R 112 95	1.82 3 1/	/	
			364 3	003024	2 15	т -	16.82	12 7/	22.3	67.32	23.30	23 50	0.78	1301.0)	1 15	2 21	
			/111 2	003023	5 66	· -	2 76	5 01	5 00	16.27	· 27.32	6 70	1 27	6	1/ 25	0.76	2.21	
s to be tested			411.2	DD98-20B DD98-27	3.16))	9.37	12.38	5.90	9.34	16.69	1.84	1.45	/	26.00	1.37		
			444.0	DD98-29	2.96	5	3.30	7.42	11.55	6.47	11.37	1.82	0.44	/	27.69	0.55	0.78	
ustom made			448.5	DD98-30	6.49) <u>^</u>	13.24	13.70	18.51	L 52.46	33.90	3.51	1.19	/	16.77	1.38	/	
en isotope		Fig 5.	This ch	art outline	e the re	sults	from t	the ICI	P-MS f	or trace	e eleme	ents.						
		4.60									500.0ך							
		1.60																
cod in a		4.40									450.0-		~~~~		0			
		1.40-									400.0		Change and the second					
the loss on		4.20						्रा	/		400.0-							
		1.20-		_							350.0-						>	
		1.00-		-				, 										
, HF, and		1.00									300.0-					0		
·		%]						h (m)	250.0-			•				
a solution.		(20 (Dent			4					
Inductively	-	0.60-									200.0-			a ea	_			
,				-							150.0-							
ie the rare		0.40-	٩.,								150.0-						<i></i>	
ontrations		0.110									100.0-	(
		0.20-											Ū					
		0.20									50.0 -							
ustom built		0.00																
cuum metal line		0.00	10.0	20.0 30.0	40.0 5	0.0 6	50.0 7	0.0 80	.0 90.0)	0.0 + 2.0	3.0	4.0 5	.0 6.0	7.0	8.0	9.0 10.0	11
e University Of					N (ppm	n)								δ1	5N (‰)			
		Fig 6. /	A graph	ical relation	onship l	betwe	een p	otassi	um	theef		Fig 7. T	he rela	tionshi	p betwe	en the	e nitroger	ן +۲
		of NH	to take	e the place	e of K ⁺ .	(Busi	igny e	et al.,2	use of 013)	ule aff	inity l	depth t	he sam	ples w	ere colle	ected 1	from.	ιπe

Amy Kingston^{1,2}, Hiwot Gebremedhin^{1,2}, Xueqi Liang², Daniela Gutierrez Rueda², Long Li², Daniel Alessi², Kurt Konhauser²

depth the samples were collected from.

- samples are from a BIF.
- 20ppm). (Konhauser et al., 2017)
- formations. (Haugaard et al., 2016)

- means the nitrogen exists in the K bearing minerals.
- Two minerals have K: K-feldspar and stilpnomelane. (Haugaard et al., 2016)
- According to figure 8, enriched $\square^{15}N$ indicates a more oxidize environment and lower values indicate a reduced environment, which is indicated in Fig. 7 (Stüeken et al., 2016).

- WISEST team for making this all possible.
- Jobs for their kind donations.

References

Eva E. Stüeken, Michael A. Kipp, Matthew C. Koehler, Roger Buick, 2016. The evolution of Earth's biogeochemical nitrogen cycle. 160: 220-239 I Klein C. 2005 American Mineralogist 90:1473 I K.O. Konhauser, N.J. Planavsky, D.S. Hardisty, L.J. Robbins, T.J. Warchola, R. Haugaard, S.V. Lalonde, C.A. Partin, P.B.H. Oonk, H. Tsikos, T.W. Lyons, A. Bekker, C.M. Johnson, 2017. Iron formations: A global record of Neoarchaean to Palaeoproterozoic environmental history. 172: 140-177 | Long Li, Kan Li, Yingzhou Li, Ji Zhang, Yifan Du, Mark Labbe. 2021. Recommendations for offline combustion-based nitrogen isotopic analysis of silicate minerals and rocks. 35 (10): 1-7 | Rasmus Haugaard, Ernesto Pecoits, Stefan Lalonde, Olivier Rouxel, Kurt Konhauser, 2016. The Joffre banded iron formation, Hamersley Group, Western Australia: Assessing the paleoenvironment through detailed petrology and chemostratigraphy. 273: 12-37 | Vincent Busigny, Oanez Lebeau, Magali Ader, Bryan Krapez, Andrey Bekker, 2013. Nitrogen cycle in the Late Archean Ferruginous ocean. 362: 115-130.

Conclusions

• Based on Fig. 4 and Fig. 5, we can compare results to determine if the

 Minimal detrital input during deposition is indicated by low concentrations of Al_2O_3 (< 1wt%) and trace elements enriched in crustal rocks (Zr, Th, and Sc <

• There is also a low abundance of TiO_2 (< 0.04 wt%) in banded iron

• The results confirm we are dealing with a banded iron formation.

• Fig 6 resulted in a linear relationship between the N and K.

• All elements were compared to the N concentration, but only K, Rb, and Cs showed a linear correlation, where K was the most pronounced. Which

Fig 8. An illustration of marine nitrogen cycle. Blue marks oxic processes and orange marks suboxic processes.

Acknowledgements

• I want to give special thanks to Katherine Snihur, as one of my main supervisors throughout my time at the University of Alberta, and the

• Thank you to Maicon Araujo for sharing his knowledge in the lab, as well as the rest of the Dr. Konhauser and Dr. Alessi lab groups. • I would like to thank Edmonton Beta Sigma Phi and Canada Summer

