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Abstract

Clinical Practice Guidelines (CPGs) offer concise instruction on the optimal care for the
patient based on the latest clinical findings. The main benefit of a CPG is to improve the
quality of care, and the consistency of care. It is been shown that passive dissemination
of CPGs, like publishing in a medical journal, is ineffective in changing practice behavior.
Nevertheless, integrating CPG knowledge into clinical systems, such as decision support
systems, has shown to be more effective.
In order to best benefit from the knowledge in the CPGs, an interest in automatically
formalizing medical knowledge contained in CPGs has grown. This dissertation describes
a new framework to automate a subset of the common CPGs formalization research
problems. Our framework follows a multi-step approach, which has been shown to be a
good strategy for CPG formalization. One of the major sub-problem to automate the
formalization of CPGs is to detect ambiguity in CPGs and resolve it automatically. In
this dissertation we described two unsupervised algorithms to the resolve ambiguities in
CPGs.
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Chapter 1

Introduction

1.1 Context and motivation

Clinical Practice Guidelines (CPGs) offer concise instruction on the optimal care for
the patient based on the latest clinical findings. The main benefit of a CPG is to improve
the quality of care, and the consistency of care. For a health care professional, a CPG can
help offer explicit recommendations when a health care professional is uncertain about
how to proceed, and can alert a health care professional when an ineffective practice is
pursued [145].

It is been shown that passive dissemination of CPGs, like publishing in a medical
journal, is ineffective in changing practice behavior [42]. Many health care practitioners
are not aware of the existence of the CPG, and even when they are directed to the
relevant CPG, they experience difficulties using it in their daily practice [77]. Nevertheless,
integrating CPG knowledge into clinical systems, such as decision support systems, has
shown to be more effective [144]. In order to best benefit from the CPGs knowledge
by following an active CPG dissemination approach, an interest in formalizing medical
knowledge contained in CPGs has grown.

CPGs are authored by different organizations such as the Scottish Intercollegiate
Guidelines Network (SIGN), and the Guidelines Advisory Committee (GAC) in Canada.
Each organization has it is own standard in developing and reviewing guidelines and
therefore CPGs formats and structures vary across multiple organizations, which further
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Figure 1.1: Extract from the Management of chronic pain CPG [3]

complicates the automation of the CPG formalization. In this research work we used
the “Management of chronic pain. A national clinical guideline.” CPG [3], which is a 71
pages PDF and is publicly available on the Scottish Intercollegiate Guidelines Network.
Figure 1.1 shows an extract from page 19 of the “Management of chronic pain. A national
clinical guideline.” CPG [3].

There are several formal languages developed to help modelling clinical guidelines into
a Computer Interpretable Guideline (CIG); a review study presents many of the popular
formal languages[105]. Assuredly, the development of the guideline modelling languages is
an important step toward facilitating the CPG formalization process, yet the formalization
task remains laborious and complex, mainly because it requires two different areas of
expertise: a medical expertise to correctly interpret the medical knowledge of CPGs, and
a knowledge engineer expertise to correctly represent the medical knowledge using the
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Figure 1.2: Manual CPG formalization

syntax of the modelling language. Figure 1.2 shows a typical manual CPG formalization
process, where medical experts and knowledge engineers collaborate to map CPGs to
CIGs.

The aim of this research is to minimize the effort required by human modellers to
integrate the knowledge contained within CPGs into clinical systems such as clinical
decision support systems (CDSS) by automating the manual CPG formalization process,
a process that translates CPGs to CIGs. Full automation of the CPG formalization is
not possible due to the computational complexity of natural language understanding;
therefore, we narrowed our focus to automate the formalization of parts of the CPG text
that conform to predefined lexical patterns that are used by medical experts to express
specific clinical recommendations such as prescribing a medication or ordering a lab test
for a patient.

To achieve our research target we set three specific goals. The first goal was auto-
matically disambiguate the narrative text of CPGs using medical knowledge bases and
graph-based algorithms. To achieve this goal, we created two unsupervised disambigua-
tion algorithms that are further detailed in Chapter 4. The second goal was to develop
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a system upon the algorithms resulted from our first goal to transform CPGs into CIGs
using a multi-step approach. In Chapter 6, we presented a detailed description of all the
components we developed to build CPG formalization system for one clinical recommen-
dation type. The system proposed in Chapter 6 can be extended to find contradictions
that exist between different CPGs by comparing the extracted rules in multiple CIGs
and highlighting the rules that have the same conditions but with opposite or different
actions. The third goal was to allow human modellers to refine and add other types of
clinical recommendations without rebuilding the system. In Chapter 6, we presented a
detailed 4 steps designed for human modellers to add and refine clinical recommendations
without rebuilding the system.

1.2 Contribution to knowledge

This thesis makes contributions to knowledge in the following areas:

1. A Graph-based Disambiguation approach using the Unified Medical Language Sys-
tem (UMLS) semantic network [67](Section 4.3). This work is published in the
IEEE/ACM International Conference on Advances in Social Networks Analysis and
Mining [46].

2. A Graph-based Disambiguation approach using the UMLS Metathesaurus (Section
4.4). This work is published in the IEEE 15th International Conference on e-Health
Networking, Applications Services (Healthcom) [47].

3. An analysis on the impact of using different UMLS subsets as a knowledge source on
the unsupervised type of Word Sense Disambiguation (WSD) algorithms (Section
4.5). This work is published in the 3rd International Conference on Current and
Future Trends of Information and Communication Technologies in Healthcare [45].

4. A formalization system that can be effectively used to formalize the medication
prescriptions of CPGs into CDSS friendly format. The system provides human
modellers a process to extend the system to formalize other clinical recommendation
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of CPGs (Chapter 6). This work is submitted to the Journal of Health Informatics
(JHI) and is been recommended for publication with changes.

5. A scalability approach for our presented CPG formalization system to adapt new
clinical recommendation types. The approach is based on using transitive verbs
associated to clinical Action Palletes and evaluated the system against the Yale
Guideline Recommendation Corpus (YGRC) (Chapter 7).

1.3 Structure of manuscript

Chapter 2 gives an overview of the CPG formalization processes, and the different
tasks involved. The alternative approaches for knowledge extraction are discussed and the
rational of choosing between them is highlighted. Chapter 3 reports on a systematic review
of the literature on the different disambiguation approaches and knowledge source used.
Chapter 4 presents two unsupervised disambiguation algorithms for biomedical text using
the UMLS knowledge sources. The first algorithm uses the UMLS Semantic Network and
the second algorithm uses the UMLS Metathesaurus. Chapter 4 also present the impact
of using different subsets of the UMLS Metathesaurus on the accuracy of an unsupervised
disambiguation algorithm. Chapter 5 presents the tools and technologies leveraged to
build our CPG formalization system. Chapter 6 presents a CPG formalization system
that follows a multi-step approach. The system is designed to set boundaries around
each of the aspects of the CPG formalization, where each aspect is implemented as a
separate autonomous component in a CPG formalization pipeline to serve the objective
discussed in Chapter 2. Chapter 7 discusses the scalability of the CPG formalization
system presented in Chapter 6.

Finally, Chapter 8 discusses the results of the research in the wider context of ex-
tracting clinical actions from CPG, considers directions for future research, and draws
conclusions. The Appendices to this thesis contain additional material for Chapters 2-7.
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Chapter 2

CPG Formalization - Review

2.1 Definitions

2.1.1 Clinical Practice Guidelines

Clinical Practice Guidelines (CPGs) as defined by the Institute of Medicine are “sys-
tematically developed statements to assist practitioner and patient decisions about ap-
propriate health care for specific clinical circumstances” [52]. Such statements contain
recommendations for best practice that aim to reduce variation in medical care by pro-
moting the most effective treatments.

The gap between evidence and practice is one of the most consistent findings in re-
search of health services [21]. CPGs compose an important source of evidence that rarely
get adopted in practice [59]. The most notable reason for poor CPG adoption, is the
traditional dissemination of CPG on paper alone which has proven to be generally insuf-
ficient [117, 60, 61, 147]. There are other reasons that contributed to the low adoption of
CPG, such as:

1. Variation in the level of details in CPGs; Some CPGs are too general or too specific,
making them hard to adopt in practice. In the “Calcium supplementation in preg-
nant women” CPG [1] the hypertension term is used but not detailed, while in the
“First-trimester abortion in women with medical conditions” CPG [2] hypertension
is defined as uncontrolled blood pressure (BP) (systolic BP >160 or diastolic BP
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Figure 2.1: Suggested scheme for calcium supplementation in pregnant women, adapted
from [1]

>105).

2. Variation of CPGs formats; CGPs are authored by different organizations such as the
Scottish Intercollegiate Guidelines Network (SIGN), and the Guidelines Advisory
Committee (GAC), NHS Clinical Knowledge Summaries; the National Institute
for Clinical Excellence (NICE). Each of these organizations structure CPG content
differently. As an example in the “Calcium supplementation in pregnant women”
CPG [1] the suggested scheme for calcium supplementation in pregnant women is
provided in a table format as shown in Figure 2.1 while in the “Management of
chronic pain” CPG [3] similar type of recommendation is provided as plain sentence
as shown in Figure 2.2.

3. Ambiguity and vagueness in CPGs; Use of ambiguous and vague terms hampers
communication and leads to uncertainty and to variable interpretation [37]. The
usage of a term like “elderly” in many CPGs is a good example of underspecification
which a form vagueness.

4. Lack of the knowledge and information that are necessary to implement CPGs in
practice [125].

The formalization of CPGs has been proposed as a method to increase adoption of CPGs
[30]. But to be most useful, CPGs information should be available at the time and place it
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Figure 2.2: Fluoxetine recommendationf for patient with fibromyalgia, adapted from [3]

is needed and be specific to the task at hand [133]. Such push dissemination approach of
CPGs can be achieved by integrating the information contained within CPGs into clinical
systems.

2.1.2 Computer-interpretable Guidelines

Computer-interpretable Guidelines (CIGs) are formalized models of CPGs. Research
on CIGs started about two decades ago and became more wide-spread in the late 1990s
and early 2000s [105].

At a high level, the published guideline modelling formalisms fall into four categories,
each type guideline formalism can model CPGs from different perspective.

1. Rule-based, is focused on modelling conditions and actions, examples includes: Ar-
den Syntax [65], Guideline Definition Language (GDL) [110]

2. Document-based, is focused on organizing the heterogeneous information contained
CPG documents in a formal model, examples includes: GEM [124]

3. Decision-logic expression languages, are focused on formalizing standard queries and
expressions for decision support. examples includes: GEL [106], GELLO [129]

4. Task-network models, is focused on modelling hierarchical clinical steps “clinical
workflow”. eaxmples includes: GLIF [25], PROForma [53], SAGE [136], Asbru
[122], GUIDE [108], EON [99], GASTON [82, 43], GLARE [11, 132], HELEN [128],
NewGuide [103, 108, 36]

2.1.3 Information Extraction

Information Extraction (IE) is the process of automatic extraction of structured infor-
mation such as entities, relationships between entities, and attributes describing entities
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from unstructured sources such as natural language.
Broadly, the IE techniques fall into three categories:

1. Rule-based methods [70, 93, 123], which are driven by predicates, and

2. Statistical methods [29, 146], which are based on a weighted sum of predicate firings.

3. Hybrid models [31, 35, 39, 50, 92, 111], that attempt to gain the benefits of both
statistical and rule-based methods.

2.2 Introduction

To achieve our objective in minimizing the effort required by human modellers to
integrate the knowledge contained within CPG into clinical systems we need to answer
the following three questions:

• Which CIG to target?

• What IE approach to use?

• Which CDSS type to target?

Answering any of the above three questions would limit our alternatives in answering the
other two questions. Considering that the human-related factor is critical in the formal-
ization process, because regardless of the formalization approach followed, we would have
partial results due to the computational complexity of natural language understanding, it
is important to choose an approach that would allow human modellers not to only under-
stand resulting CIG, but also to control the formalization process. Therefore, we needed
to answer the second question first and decide on the IE approach. There are various
tasks involved in the CPG formalization process, such as text parsing and tokenization,
but the tasks that inflict the biggest challenges to the CPG formalization process are the
IE ones, such as entity extraction and relationship extraction. In the following section we
explore the landscape of IE approaches and advantages and disadvantages of each.
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2.2.1 Rule-based vs ML Information Extraction

The landscape of Information Extraction as discussed in section 2.2.4 is clustered
at a high level into rule-based approaches and statistical machine learning approaches or
hybrid of the two. Each approach has its advantages and disatvantages which are depicted
in Table 1, adapted from [34]

Table 2.1: Advantages and disadvantages of Rule-based and ML-based Information Ex-
traction Systems

Advantages Disadvantages

Rule-based Declarative Heuristics

Easy to comprehend Requires tedious manual labour

Easy to maintain

Easy to incorporate domain knowledge

Easy to trace and fix the cause of errors

ML-based Trainable Requires labeled data

Adaptable Requires retraining for domain adaptation

Reduces manual effort Requires ML expertise to use or maintain

Opaque

In a recent study that surveyed the IE technologies landscape the authors identified
a major disconnect between industry and academia: “while rule-based IE dominates the
commercial world, it is widely regarded as dead-end technology” [34].

Figure 2 shows evidence of this trend drawn from a survey of published research
papers. The study examined the EMNLP, ACL, and NAACL conference proceedings
from 2003 through 2012 and identified 177 different EMNLP research papers on the topic
of entity extraction. The study classified these papers into three categories, based on
the techniques used: purely rule-based, purely machine learning-based, or a hybrid of
the two. The left side of Figure 2 shows the breakdown of research papers according to
this categorization. The right side of Figure 2.2 shows the result of an industry survey
of commercial entity extraction products from 54 different vendors listed in [150]. The
industry survey was conducted in 2013, one year after the end of this ten-year run of NLP
papers. Interestingly, the industrial landscape is not reflecting the research efforts of the
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Figure 2.3: Implementation of Entity Extraction

previous 10 years. As shown in Figure 2.3, only 1/3 of the of the commercial IE product
relied entirely on machine learning. The authors of [34] attribute the disconnect between
the two communities to the way each community measures the benefits and costs of IE,
as well as academia’s perception that rule-based IE is devoid of research challenges.

Despite the greater accuracy of the ML-based IE, the commercial world is still more
attracted to rule-based IE for its interpretability, which has the benefits of easier adoption
and maintainability [79, 14]. In contrast, ML-based systems are riskier to adopt and more
difficult to maintain [55, 140, 91].

One of the most notable reasons behind the academic community’s steering away from
rule-based IE systems is the perception of rule-based IE system lack of research problems
[34]. While manually authoring rules is an easy task, automating it opens many research
questions such as:

1) How can we prevent the system from generating complex rule sets which would be
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difficult to understand or maintain,
2) How can we evaluate the generated rule systematically.

2.3 CPG Formalization System

There are multiple systems for CPG formalization each designed with a different focus,
some are focused on the traceability between CPG and CIG, while others are more focused
on hierarchical representation of CIGs. However, the existing systems are not focused on
providing the human modellers a mechanism to control the granularity of the clinical
knowledge to be extracted. We believe this is an important feature for a CPG formaliza-
tion system in order to have the right level of details in the extract clinical knowledge.
Providing the human modellers a mechanism to control the granularity of the clinical
knowledge to be extracted is the main focus of the system we are proposing in Chapter 6.
In the following subsections we present some of the existing CPG formalization systems.

2.3.1 Stepper

Stepper [118] is a mark-up tool for narrative guidelines, developed by the EuroMISE
centrum – Kardio and the University of Economics, Prague, Czech Republic. The Stepper
project has two main goals:

1. To develop a step-wise method for formalization (in this context, XML transforma-
tion) of text documents of clinical guidelines

2. To develop the Stepper tool, an XML editor enhanced with features to support the
above method

Stepper has been designed as a document-centric tool, which takes a guideline text as
its starting point and splits the formalization process into multiple user definable steps,
each of which corresponds to an interactive XML transformation. The result of each
step is an increasingly formalized version of the source document. An embedded XSLT
processor carries out non-interactive transformation. Both the mark-up and the iterative
transformation process are carried out by rules expressed in a new transformation language
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based on XML, the so-called XKBT (XML Knowledge Block Transformation). This was
because the well-known standard for transformation XSLT did not solve all problems
when explicitly expressing transformations of knowledge in each step. Hence, a tailored
transformation language was developed. The transformation process with Stepper consists
of six steps:

1. Input text format. The format of the original guideline text is XHTML, the XML
version of HTML.

2. Coarse-grained semantic mark-up. Basic blocks of the text are marked (e.g., head-
ings, sentences) and parts without operation semantics are removed.

3. Fine-grained semantic mark-up. Complex sentences are rearranged into simpler
ones and background knowledge is added. In addition, a data dictionary is created,
which describes the clinical parameters involved.

4. Universal knowledge base. The original document is transformed into a universal
knowledge base. This involves changing the structure of the document to achieve
modularity, which is assumed to involve medical experts in part.

5. Export-specific knowledge base. The representation is adapted to ease the export to
the target representation. Therefore, an export-specific knowledge base is produced
from the universal one.

6. Target computational representation. The ultimate format is produced by the
knowledge engineer. This step is assumed to be performed fully automatically using
XSL style sheets.

2.3.2 GEM

The GEM Cutter [107] is a tool with the aim to facilitate the transformation of CPGs
into the Guideline Elements Model (GEM) format [124]. It was developed by Yale Center
for Medical Informatics at Yale University School of Medicine.

The GEM format is an XML-based guideline document model that can store and
organize the heterogeneous information contained in practice guideline documents. GEM
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is intended to facilitate the translation of natural language guideline documents into
a standard computer interpretable format. It encodes considerable information about
guideline recommendations in addition to the recommendations themselves, including
the reason for each recommendation, the quality of evidence that supports it, and the
recommendation strength assigned by the developers. For encoding guideline knowledge
no programming knowledge is required, but a markup process is applied. The authoring
process for GEM guidelines takes place in three steps:

1. The GEM document, which has an XML-based syntax, is created based on the
original guideline using the GEM Cutter. The elements of the GEM document are
then stored in a relational design database.

2. Knowledge Customization: meta-information is added, the guideline can be locally
adapted, and abstract concepts of the guideline can be implemented. This step is
guided by the knowledge customization wizard.

3. Knowledge Integration into the clinical workflow depending on local circumstances.

GEM is constructed as a hierarchy with more than 100 discrete elements and more than
nine major branches. The majority of the elements describes properties of the guideline
as a whole (e.g., title, developer, purpose, target, target population). The content of the
guideline can be described in detail by three groups: Recommendations, definitions, and
algorithm. Recommendations can be conditional or mandatory. For the recommended
action the benefit, risk, and cost are stored and reason, evidence quality, strength of
recommendation, costs, and so on are annotated. Definitions consist of term and term
meaning, which are both free text. Algorithm consists of an action step, a conditional
step, a branch step, and a synchronization step.

Unlike the Stepper approach, GEM Cutter does not retain the connection between
the CPG and the formal GEM format.

2.3.3 Document Exploration and Linking Tool / Addons (DELT/A)

The Institute of Software Technology and Interactive Systems at the Vienna University
of Technology is developing a tool to provide a relatively easy way to translate free text
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into various (semi-)formal, XML-based representations. It achieves this by displaying
both the original text and the translation, and showing the user which parts of the formal
code correspond to which elements of the original text. This not only makes it easier
to author plans, but also to understand the resulting constructs in terms of the original
guideline.

DELT/A [81, 138, 139] provides two main features:

1. linking between a textual guideline and its formal representation, and

2. applying design patterns in the form of macros.

DELT/A allows the definition of links between the original guideline and the target repre-
sentation. Therefore, if someone wants to know the origin of a specific value in the XML
file DELT/A can be used to jump to the correlating point in the text file where the value
is defined and the other way round.

The second feature of DELT/A is the usage of macros. A macro combines several
XML elements, which are usually used together. Thus, using macros allows creating and
extending specific XML files more easily through the usage of common design patterns.

DELT/A supports the following tasks:

1. Authoring and augmenting guidelines.

2. Understanding the (semi-)formal representation of guidelines.

3. Structuring the syntax of the (semi-)formal representation. DELT/A provides a
structured list of elements of the target language – the macros – that need to be
done in a way that best supports the authoring of plans.

By means of these features, the original text parts need not be stored as part of the target
representation elements. The links clearly show the source of each element in the target
representation. Additionally, there is no need to produce a guideline in natural language
from the target representation since the original text remains unaltered.

The described approaches (2.3.1- 2.3.3) are mostly based on manual steps to gradually
convert CPGs into CIGs; although the accuracy of the manual steps is straightforwardly
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controlled, as the resulted accuracy is as good as the input provided by the human mod-
ellers, these approaches are expensive to use in formalizing large numbers of CPGs. The
motivation of our work is to build a semi-automated information extraction based system
that provides the human modellers a mechanism to control the granularity of the clinical
knowledge to be extracted.
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Chapter 3

Text Disambiguation - Review

3.1 Introduction

Human language is ambiguous. Words can have multiple meanings depending on the
context in which they occur. In the study [102]authors manually tagged 192,800 English
words with senses from WordNet [97], and found that the 121 most frequently used nouns
have an average of 7.8 senses. Text disambiguation is the process of finding the correct
meaning of every word in the text; this process is relatively easy for human but for
machines it is as hard as an AI-complete problem, which means solving it would require
solving all the difficult problems in artificial intelligence (AI), such as natural language
understanding [69]. In the field of computational linguistic, the problem is called Word
Sense Disambiguation (WSD), and is defined as the problem of finding the correct sense
of a word when used in a particular context.

According to theoretical linguistics literature [90, 38], words with lexical ambiguity
are divided into two types, namely polysemous and homographs. A word is polysemous
if it can be used to express different unrelated meanings (e.g., “Astragalus” which refers
to “ankle bone in the human body” and to the “Astragalus plant species”). On the other
hand, a word is a homograph if it can be used to express different related meanings (e.g.,
“lens” which refers to “human body part in the eye” and to an “optical device”). There
are, however, many other cases for which this decision is not clear.

The WSD is one of the oldest computational linguistic problems; it goes back to the
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early days of machine translation (MT) in the late 1940s [141]. The difficulty of the
problem was recognized in the MT research in the 1960s [17]. In the 1970s the artificial
intelligence (AI) research community worked on the WSD problem [143, 115]. In the
1980s, large-scale lexical resources became available, which hugely benefited the progress
of the WSD; for example in 1986, Lesk [88] used Oxford Advanced Learner’s Dictionary
of Current English (OALD) to address WSD. In the 1990s, WordNet became available,
and had a greater impact on the WSD compared to the already existing machine readable
dictionaries because of its hierarchical organization of word meanings called synsets. In
the late 1990s, Senseval [75] started a community-based evaluation exercise for WSD, and
it became easier to compare different WSD systems. Before Seneseval, the evaluation
of different WSD systems required to consider the disparities in test words, and sense
inventories used by the different systems which made the evaluation process extremely
difficult. WSD has many applications in machine translation and Information Retrieval.
In this thesis we are using WSD for Information Extraction purposes. Analyzing text
accurately requires resolving ambiguities; for example solving multiple lexical matches in
Named-entity recognition (NER).

Approaches to WSD are classified as either as unsupervised approaches which do not
use a pre-annotated corpora, or a supervised approaches which use pre-annotated corpora
to train itself. As WSD algorithms mostly rely on existing knowledge sources such as
dictionaries or a lexical knowledge bases to get the full list of senses for a given word, this
created another dimension to classify WSD approaches based on the knowledge source
used, so that some approaches are called dictionary-based or knowledge-based.

3.2 WSD Task Description

WSD is essentially a classification task, where word senses are the classes, and each
ambiguous term in the text could be assigned to more than one class. A WSD algorithm
is the task of classifying ambiguous to one or more class “sense”. More formally, a text T

can be viewed as a sequence of words (w1, w2, ..., wn), and Senses is a function that maps
from an input word w to a discrete output space S = {s1, ..., sk}, such a mapping is usually
given by means of external knowledge sources such as dictionaries. A WSD can be viewed
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as the task of identifying a mapping A from words to senses such that A(wi) ⊆ Senses(wi).
The ultimate goal of WSD is to find a mapping A such that |A(wi)| = 1, meaning to map
each ambiguous word to just one sense, without such condition, a mapping A is considered
to reduce ambiguity rather than resolving it. Another alternative of the WSD is the Word
Sense Induction (WSI) or Word sense discrimination, where the Senses function is not
given, and therefore senses need to be induced. The WSI is essentially a clustering task
where each cluster represents a sense. WSI is sometimes referred in the literature as
the unsupervised approach to WSD. In this thesis our focus is on the approaches where
the inventory of senses is provided, which at high level could be categorized as either
supervised approaches or knowledge-based approaches.

3.3 Supervised WSD

Generally, supervised WSD have shown better results than the knowledge-based “un-
supervised”. However, it is difficult to find the required minimum number of occurrences
per each sense of a word in any tagged corpora, a problem that is called knowledge ac-
quisition bottleneck [56]. The knowledge acquisition bottleneck remains a big challenge
for adopting supervised WSD at a large scale.

Probabilistic Methods

The Naïve Bayes classifier [56] is one of the simplest probabilistic classifiers. It has
been used for resolving WSD [48, 85, 104, 57]. The classifier does no feature selection,
but has the ability to combine evidence from multiple features. The Naïve Bayes assumes
conditional independence of the attributes used for description, and consequently the
structure and ordering of words is ignored. In spite of this simplifying assumption, the
Naïve Bayes classifier perform well compared to the other supervised methods [28, 98, 102].

Decision Lists and Decision Trees

A decision list [114] is an ordered set of rules for categorizing test instances. The rules
are tested in order based on their score until one matches the test instance. Decision lists
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have already been successfully applied to WSD [149] and performed well.
A decision tree partitions the feature space into classes of word senses using a minimal

set of features, and assembles them into a tree. Each node in the decision tree represents
a choice point between a number of different possible values for a feature. WSD with
decision tree is to find a path in the tree from the root to a leaf node that corresponds
with the observed features. Decision trees have already been applied to WSD [98]using
the C4.5 algorithm [109] to generate the decision tree.

Neural Networks

A Neural Network, is an interconnected assembly of artificial neurons that have asso-
ciate weight reflecting the strength of connections. The neuron computes by forming a
weighted sum of its input. Neural networks are trained to find the correct weight values
that partition the training contexts into non-overlapping sets corresponding to the desired
responses. A learning algorithm is used to tune the weights; usually it start by assigning
random weight and with each learning step, it slightly modifies the weights toward the
values that properly partition the training contexts. Neural networks have been applied
to WSD and performed well compared to other supervised methods [84, 134].

Support Vector Machines (SVM)

SVM [24] is based on the idea of finding the linear hyper-plane between the two classes
in a training set by maximizing the margin between the classes. As SVM is a binary
classifier and WSD requires multiple class “sense” classification, the problem needs to be
casted to multiple binary classification. In [86], the authors evaluated various learning
algorithms for WSD and the result claimed that linear SVM is the best classifier compared
to other supervised approaches.

Instance-Based Learning

Instance-Based Learning approaches perform classification by searching the training
instances for the one that closely resembles the instance to be classified. There is no model
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learned compared to other supervised approaches. The k-Nearest-Neighbor (kNN) algo-
rithm is one of the widely used Instance-Based Learning approaches. The kNN classifier
finds the k nearest training instances to the ambiguous test instance, and then classifies
the ambiguous test instance based on the majority vote of k nearest training instances.
In [101], the authors evaluate the kNN classifier and the result claimed that the kNN is
one of the highest-performing classifier in WSD.

3.4 Knowledge-based WSD

The objective of knowledge-based disambiguation is to use knowledge resources such
as dictionaries, and ontologies to infer the senses of words. Knowledge-based methods
do not rely on annotated corpora and in some literature the definition of Knowledge-
based WSD is further restricted to methods that do not rely on any corpora even the non
annotated ones. The Knowledge-based methods usually have lower performance than their
supervised alternatives, but they do not suffer from the knowledge acquisition bottleneck
[56]problem, and therefore they have a wider coverage.

Lesk Algorithm

The Lesk algorithm [88] is based on the calculation of the word overlap between
the sense definitions (glosses). Given two words, the algorithm selects those senses whose
definitions have the maximum overlap. The Lesk algorithm inspired many sense definition
overlap algorithms. In[76] the author presented a variation of the Lesk algorithm that
disambiguates each word separately, which have been shown to outperform the original
Lesk algorithm [137]. In [15] the authors proposed another variation of the Lesk algorithm
called the adapted Lesk algorithm, in which each gloss is extended to include a definition
of related words based on the WordNet semantic relations.

Semantic Similarity

The underlying hypothesis of the semantic similarity based approaches is the fact that
words in a discourse must be related in meaning for the discourse to be coherent [62].
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This is a property of human languages which presents a semantic constraint “Similarity
constraint” that can be very useful for automating the disambiguation process. Similarity
measures usually rely on semantic networks such as WordNet for computing metrics; The
list below provide some of the similarity measures that could be used as a measure of
semantic relatedness between a pair of concepts:

• Leacock–Chodorow [83] semantic relatedness between two concepts c1 and c2 is
defined as:

Rellch(c1, c2) = −log length(c1,c2)
2D

wherelength(c1,c2) is the length of the shortest path between c1 and c2 using node-
counting, and D is the maximum depth of the hierarchy.

• Resnik [112] semantic relatedness between two concepts c1 and c2 is defined as

Relrsn(c1, c2) = IC(LCS(c1, c2)

whereIC is defined as:

IC(c) = −logP (c) and P (c) is the probability of encountering an instance of con-
cept c in a large corpus.

LCS(c1, c2) is the least common subsumer of c1 and c2.

• Jiang–Conrath [71] semantic relatedness between two concepts c1 and c2 is defined
as

Reljcn(c1, c2) = 1
IC(c1)+IC(c2)−2∗IC(LCS(c1,c2))

• The Lin [89] semantic relatedness between two concepts c1 and c2is defined as

Rellin(c1, c2) = 2∗IC(LCS(c1,c2))
IC(c1)+IC(c2)
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3.5 Knowledge sources for WSD

Knowledge-based WSD methods use diverse types of knowledge resources such as
dictionaries, treasuries and lexical knowledge base which is one of the commonly used
resources. In the lexical knowledge base category, WordNet [130] is one the most used
resource in NLP domain-independent applications, while in the context of biomedical
domain, the Unified Medical Language System (UMLS) is the biggest lexical resource
publicly available. UMLS is the knowledge base we used in the disambiguation algorithms
presented in Chapter 4. In the next subsection we describe the different components of
the UMLS.

3.5.1 Unified Medical Language System

The Unified Medical Language System (UMLS) [67] is a repository of multiple con-
trolled bio-medical vocabularies developed by the U.S. National Library of Medicine
(NLM) and is composed of the following three knowledge sources:

1. The Metathesaurus, a vocabulary database of biomedical concepts with their var-
ious names, and the relationships among them. The Metathesaurus of the UMLS
2011AB release contains more than 2.6 million concepts collected from 161 vocab-
ularies, such as: SNOMED Clinical Terms (SNOMED-CT) and Medical Subject
Headings (MSH). The Metathesaurus organises knowledge based on concepts, where
each concept is identified by a Concept Unique Identifier (CUI). A CUI may refer
to multiple terms from the individual terminologies. These concepts are labeled
with Atomic Unique Identifiers (AUIs). For example, the AUI Cold Temperature
[A15588749] from MeSH and the AUI Low Temperature [A3292554] from SNOMED-
CT are mapped to the CUI Cold Temperature [C0009264].

2. The Semantic Network, a set of semantic types to categorize all concepts represented
in the Metathesaurus, and a set of semantic relations to define possible relationships
between semantic types. The Semantic Network in the UMLS 2011AB release con-
tains:
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(a) 133 semantic types. Examples of semantic types include: Enzyme, Genetic
Function, Therapeutic or Preventive Procedure, Laboratory Procedure.

(b) 54 semantic relations. Examples of semantic relations include: affects, treats,
disrupts, prevents, process_of. Semantic relations are interconnected by se-
mantic types. For example, the semantic types Enzyme and Genetic Function
are interconnected by the semantic relation affects.

3. The SPECIALIST Lexicon, a set of lexical entries with one entry for each spelling or
set of spelling variants in a particular part of speech and describes the morphologic,
orthographic and syntactic properties of a word.

3.6 Mapping biomedical text to UMLS concepts

Mapping biomedical text to concepts in the UMLS Metathesaurus is not always a
simple lexical exact match, as a term in a biomedical text can appear with a different
variation than the one in the UMLSMetathesaurus. There are different approaches to map
biomedical text to concepts in the UMLS Metathesaurus, some approaches [78] can detect
noise in the text such as spelling errors and unfinished sentences while other methods
are based on lexical analysis [12, 13] like MetaMap which we describe in the following
subsection. We used the MetaMap tool in the CPG formalization system presented in
Chapter 6 to map the text of CPG to concepts in the UMLS Metathesaurus.

3.6.1 MetaMap

MetaMap [12, 13] is a program developed by the NLM and is composed of the following
five components:

1. Lexical/Syntactic Analysis: This component segments the biomedical text into
phrases and then into terms. The text is Xerox part-of-speech tagged using the
Xerox POS tagger.
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2. Variant Generation: This component generates a variant for each phrase identified
by the Lexical/Syntactic Analysis component. A variant is one or more phrase
words accompanied with its spelling variants, derivational variants.

3. Candidate Identification: This component retrieves the set of concepts from the
UMLS Metathesaurus that contain at least one variant identified by the Variant
Generation component.

4. Candidate Evaluation: This component evaluates each candidate against the in-
put text. The mapping score is computed using a combination of four linguistical
measures: centrality; variation; coverage; and cohesiveness. The four measures are
combined linearly such that coverage and cohesiveness get twice the weight of cen-
trality and variation. The score is normalised to a value between 0 and 1,000, where
a score of 1,000 means a perfect candidate.

5. Mapping Construction: This component combines all the Metathesaurus candidates
that match the input text.

3.7 Evaluation data set

The availability of different test data sets complicate the task of comparing the ac-
curacy of the different WSD algorithms, as a WSD algorithm does not perform with the
same reported accuracy on all other data sets, since each data set has different coverage
of terms and concepts.

Selecting a data set for the purpose of evaluating a WSD algorithm is a critical task
as it impacts our understanding of the strength and weakness of the WSD algorithm.
Obviously the broader the coverage of data set the better, but as the test data set has to
be finite, it becomes impossible to build a test data set that can cover all possible terms
in all plausible contexts and therefore it is crucial to define a few key properties required
in a data set to be considered as a proper test data set for the disambiguation task. The
main goal of a WSD algorithm is to properly disambiguate senses. Therefore, the richness
of ambiguous terms should be the most important property of the test data set – and not
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only that but to have equal distribution of the different senses of any ambiguous term.
Below we provide a brief description of two data sets that are rich with ambiguous UMLS
concepts:

• The NLM WSD [142] data set consists of 50 frequently occurring ambiguous terms
from the 1998 MEDLINE baseline. Each ambiguous term in the data set contains
100 instances. The total number of instances is 5,000.

• The MSH WSD [72] data set contains 203 ambiguous words. The 203 words are
composed of 106 ambiguous terms, and 88 ambiguous acronyms, and 9 words that
are combinations of both. The data set has up to 100 instances for each possible
sense. The total number of instances is 37,888.

The accuracy of the disambiguation algorithms presented in Chapter 4 is evaluated based
on the MSH WSD data set.
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Chapter 4

Disambiguation using UMLS

4.1 Introduction

Extracting information automatically from biomedical documents is challenged by the
ambiguity of natural language, in which words can have multiple meanings. For instance
the word “lens” has different meanings in the following two article title sentences which
we captured from the MSH-WSD dataset [72].

a) Lens cadmium, lead, and serum vitamins C, E, and beta carotene in catarac-
tous smoking patients.

b) A simple solution to lens fogging during robotic and laparoscopic surgery.

In the first sentence, lens is used to refer to a human body part, while in the second
sentence lens is used to refer to a medical device part. Disambiguation is an essential task
for the CPG formalization. Therefore, automating the CPGs disambiguation is required
for the automation of the CPG formalization.

As detailed in Chapter 2, supervised learning approaches outperform unsupervised
ones, but in the biomedical domain it is very expensive to create a manually annotated
corpus for algorithm training purposes, which makes the unsupervised approach a more
practical choice [74, 44, 96, 7]. In a WSD study focused in the biomedical domain [120] the
authors believe that combining unsupervised learning and established knowledge proved
to be most effective.
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This chapter presents two unsupervised graph-based approaches toWSD in the biomed-
ical domain that use the UMLS [67] as its knowledge base.

4.2 Background and Related Work

Most unsupervised WSD studies are domain ignorant, meaning that they are not cus-
tomised for a specific field or domain. The key component that classifies an unsupervised
WSD as domain specific is the knowledge base, for example the UMLS is commonly lever-
aged by WSD focused on the biomedical domain [95, 9] while WordNet [130] is commonly
leveraged by domain-independent WSD [8, 127, 100, 135]. In Table 4.1. we list six recent
unsupervised graph-based WSD algorithms along with their reported accuracy.

In domain-independent WSD the Senseval [74, 44, 96, 7], with its different versions,
is the commonly used data set for algorithms evaluation. WordNet and Senseval can
still be applied to biomedical text disambiguation but would result in lower accuracy
when compared to a biomedical knowledge base and dataset. We can clearly see the
difference when we compare the results between [8] and [9], where the authors applied
the same algorithm, but used WordNet and Senseval in the first attempt [8] and UMLS
and NLM-WSD in the second attempt [9] in which they achieved close to 10% accuracy
improvement.

Evaluating our algorithms by comparing accuracies with all algorithms presented in
Table 4.1 was not possible because these algorithms’ implementation are either not pub-
licly available or use different test data sets than the MSH-WSD test that we used. In-
stead, we defined our baseline algorithm to be a disambiguation algorithm that randomly
chooses one sense from the set of plausible senses for each ambiguous term, which would
result in an accuracy of 50% as ambiguous terms have two or more plausible senses.

4.3 Using UMLS Semantic Network

The disambiguation algorithm we propose is based on the hypothesis [57] that words
closely located to each other in a text must have some degree of semantic relatedness,
examples of semantic relatedness metrics are provided in section 3.4. We used the UMLS
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Table 4.1: Recent Unsupervised Graph-based WSD Approaches

Knowledge

base

Evaluation

Dataset

Accuracy

Bridget McInnes, Ted Pedersen,
Ying Liu,Genevieve Melton

(2011) [95]

UMLS

Metathe-

saurus

MSH-WSD 72.0%

Eneko Agirre, Aitor Soroa,

Mark Stevenson (2010) [9]

UMLS

Metathe-

saurus

NLM-WSD 68.1%

Eneko Agirre, Aitor Soroa

(2009) [8]

WordNet
Senseval-2,

Senseval-3
58.6% - 57.4%

Ravi Sinha, Rada Mihalcea

(2007) [127]

WordNet
Senseval-2,

Senseval-3
56.4% - 52.4%

Roberto Navigli, Mirella Lapata

(2007) [100]

WordNet /

EnWordNet

SemCor,

Senseval-3
–

George Tsatsaronis, Michalis
Vazirgiannis,

Ion Androutsopoulos (2007)

[135]

WordNet Senseval-2 49.2%
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Algorithm 4.1 Graph-based WSD algorithm using UMLS semantic network
1: procedure WordSenseDisambiguate(W , t, s)
2: Load UMLS semantic network as a graph G

3: Map words W1..n to UMLS semantic types
4: let A = { sematic types of Wt}
5: let B = { sematic types of Wl | l = (t− 1..t− s) ∪ (t + 1..t + s)}
6: for each a in A do
7: for each b in B do
8: RelatednessDist(a) = RelatednessDist(a) + Shortestpath(a, b, G)
9: end for

10: end for
11: let m = minimum{RelatednessDist(a) | a ∈ A}
12: return {a | a ∈ A ∧RelatednessDist(a) = m}
13: end procedure

Semantic Network as our knowledge base to find the relatedness between words. For
example, an ambiguous term x (i.e. for which we have different semantic types) we take
the neighbouring words before and after in a given window and check their respective
semantic types using MetaMap [12, 13]. We select the semantic type of x the one which
has the smallest distance from the set of neighbouring word semantic types based on
UMLS Semantic Network. Algorithm 4.1 shows the pseudo-code of our approach.

In line 1, the algorithm takes three input parameters:

• W , a sequence of n words,

• t, an index in W pointing to the word we need to disambiguate,

• s, a window size of the words before and after t to include in the analysis.

In line 2, we convert the UMLS Semantic Network to a directed graph G, where each
semantic type is a node, and semantic relations between semantic types are the edges
between the nodes. In line 3, we map all words in W to UMLS concepts using the
MetaMap [12, 13] tool. In line 4, we populate set A with all the semantic types of the
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word we need to disambiguate Wt. In line 5, we populate set B with the semantic types
of the words located before and after Wt by the given window size 2s + 1. In lines 6-10,
we measure the relatedness distance between each semantic type in set A to all semantic
types in set B based on their closeness to each other in G . The semantic type of A that
receives the lowest relatedness distance is deemed the semantic type of the correct sense.
To prevent the algorithm from favouring one central edge and consequently resulting
in equal relatedness distances, we added weights to edges in G using the betweeness
centrality [26]. The betweeness centrality helped us rank two nodes in set A that have
same distances to nodes in set B; modifying the edges in graph G using the betweenes
centrality let the uncommon edges between the different nodes in set A have different
weights and consequently different relatedness to nodes in set B.

As a running example we will use the following sentence from the MSH-WSD [72] data
set.

• A simple solution to lens fogging during robotic and laparoscopic surgery.

The word we need to disambiguate is “lens”. As provided by the MSH-WSD data set
the word lens can have any of the three possible UMLS concepts and their corresponding
semantic types are shown in Table 4.2.

Table 4.2: Ambiguous UMLS Concepts

UMLS Concept
Semantic Type

Unique Id Name
C0023308 Lens Diseases. Disease or Syndrome
C0023318 Lens (device). Medical Device
C0023317 Lens, Crystalline. Body Part, Organ, or Organ Component

The correct concept of the word “lens” in the given sentence is C0023318 which has
the sense of a medical device lens.

Figure 4.1 illustrates this running example. For simplicity, in the example we only take
a size window of 1 and draw only 133 semantic types of graph G without the edges. We
show elements of both set A and set B. Set A elements are the grey nodes representing
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Figure 4.1: Graph-based WSD using UMLS semantic network

the three candidate semantic types of Wt word lens, and set B elements are the black
nodes representing the semantic types we extracted from MetaMap for the Wt−1 word
“solution” and the Wt+1 word “fogging”.

We know that all the grey and black nodes of set A and set B must be nodes in the
graph G, so we highlighted them in G. After having the graph G with highlighted grey
and black nodes, the problem can be described as: which of the grey nodes is more related
to the black nodes. To answer this question we calculate the sum of the shortest paths
from each grey node to all the black nodes, and the grey node that receives the lowest
values is deemed to have the highest relatedness.

4.3.1 Algorithm Evaluation

We evaluated our method using the MSH-WSD [72] dataset containing 203 ambiguous
words. The 203 words are composed of 106 ambiguous terms, and 88 ambiguous acronyms,
and 9 words that are combinations of both. The dataset has up to 100 instances for each
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possible sense. The total number of instances is 37,888. We ran our algorithm on the
MSH-WSD dataset with a window of size 3 and the resulting average accuracy was 60.3%.
Table 4.3. shows the 10 words with highest accuracies and Table 4.4. shows the 10 words
with lowest accuracies. The small size window of 3 is chosen for scalability reasons as
the semantic types of the neighbouring words add a combinatorial set of distances to
compute. One important fact worth of note is that in our algorithm we use a relatively
small knowledge base that we do not alter. Comparing our accuracy with [95] who used a
graph-based algorithm, the authors reported an average accuracy of 59% for a window size
of 2 words, which are similar to our algorithm accuracy. Our algorithm has the advantage
of using lightweight approach as it only uses semantic types in its graph representation
which is a much smaller knowledge base than the one used in [95].

Table 4.3: Graph-based WSD using UMLS semantic network (Highest 10 accuracies)

Word True Positive False Positive False Negative Accuracy
CDA 192 6 0 97%
CTX 177 6 0 97%
FAS 190 8 0 96%
MCC 124 7 0 95%
BPD 186 12 0 94%
BSE 186 12 0 94%
DAT 187 10 1 94%
Epi 187 11 0 94%
SS 136 7 1 94%
CRF 185 13 0 93%

4.4 Using UMLS Metathesaurus

The limitation of the algorithm presented in Section 4.3 is the inability to disambiguate
distinct terms that have the same UMLS semantic type. It is limitation resulted from
using the UMLS Semantic Network as a knowledge base, in which many UMLS concepts
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Table 4.4: Graph-based WSD using UMLS semantic network (Lowest 10 accuracies)

Word True
Positive

False
Positive

False
Negative

Accuracy

Lupus 12 0 285 4%
Medullary 8 0 190 4%
TPO 8 0 190 4%
TSF 2 0 51 4%
MBP 4 0 139 3%
TNC 5 0 162 3%
CCD 3 0 138 2%
RA 5 13 279 2%
Gamma-Interferon 1 0 197 1%
Murine sarcom virus 0 0 180 0%

are mapped to more than one semantic type. In the following algorithm we propose to
leverage the UMLS Metathesaurus as our knowledge base source to solve the limitation
from the algorithm presented in Section 4.3. We represented the UMLS Metathesaurus as
a graph K, such that UMLS concepts are the nodes and relation between UMLS concepts
are the edges. The proposed algorithm is inspired by the approach presented in [100].

The nodes and edges of graph K are created based on the following UMLS tables:

• The MRCONSO table, which contains mappings of concepts in individual source
vocabularies to concepts in the UMLS, is used as the source of our nodes in the
graph K, and we used the CUI filed as our node identity.

• The MRREL table, which contains contains both hierarchical and non-hierarchical
relations between UMLS concepts, is used as the source of our edges in the graph
K.

Table 4.5 shows a subset of relations between concepts that we extracted MRREL tables.
The MRREL table contains ten different types of relations between concepts; for the
performance consideration we focused on the following six relation types:
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• PAR, the parent relation

• CHD, the child relation

• RB, the broader relation

• RN the narrower relations

• SIB, the sibling relation

• RO, the other relation

Table 4.5: UMLS Concepts Relations

UMLS Concept Relation UMLS Concept
Metabolisms, Energy CHD Rates, Basal Metabolic
Metabolisms, Energy PAR Processes, Metabolic
Drug-Induced Abnormality RN Fetal hydantoin syndrome
Drug-Induced Abnormality PAR Deformity
Drug-Induced Abnormality RN Warfarin syndrome

After building the knowledge source and represent as the graph K, it is fed into our
algorithm along with the following inputs:

• W , a sequence of n words, representing the text containing the word to be disam-
biguated,

• t, an index in W pointing to the word we need to disambiguate,

• s, a window size of the words before and after t,

• A, a set of plausible senses for the word being disambiguated.

Algorithm 4.2 shows the pseudocode of our approach. We progressively build a graph for
each Wt word to be disambiguated; the graph is composed of:
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Algorithm 4.2 Graph-based WSD using UMLS Metathesaurus
1: procedure WordSenseDisambiguate(K, W , t, s, A)
2: let V = { UMLS concept of Wl | l = (t− 1..t− s) ∪ (t + 1..t + s)}
3: let V = V ∪ A

4: for each v in V do
5: X = DFS(K, v, p)
6: for each x in X do
7: if (x /∈ V ) then
8: let V = V ∪ {x}
9: end if

10: end for
11: end for
12: let E = GetEdges(V, K)
13: let V Ranks = Betweenness(V, E)
14: let m = maximum{V Ranks(a) | a ∈ V ∧ a ∈ A}
15: return m

16: end procedure

• V , a set of nodes representing the UMLS concepts of the words before and after Wt

within a window of size s, combined with the set A. We used the MetaMap tool
for mapping words to UMLS concepts. In line 4-11, we loop through all nodes in
V , and for each node in V we search for its neighbour nodes in the graph K using
depth-first search. All neighbour nodes found in K that do not exist in V are added
to the V .

• E, the edges that interconnect all nodes in V based on the K graph.

The algorithm uses the following 3 functions:

• DFS(K , v , p ), which returns the set of nodes encountered when performing
depth-first search starting from node v in the graph K at a maximum depth p.

• GetEdges(V , K), which returns the set of edges in graph K that interconnect all
nodes in the V set.
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• Betweenness (V , E ), which returns a set of all nodes in V with their betweeness
metric.

We compute the betweenness score [54] of all nodes of the graph (V , E ), the node in V

that exist in A and receive the highest betweenness score is assumed to be the node of
the correct sense of the Wt word.

4.4.1 Algorithm Evaluation

We evaluated our method using the MSH-WSD [72] dataset containing 203 ambiguous
words. The 203 words are composed of 106 ambiguous terms, and 88 ambiguous acronyms,
and 9 words that are combinations of both. The dataset has up to 100 instances for each
possible sense. The total number of instances is 37,888. We ran our algorithm on the
MSH-WSD dataset with a window of size 2 and the resulting average accuracy was 59.2%.
Table 4.6 shows the 10 words with highest accuracies and Table 4.7 shows the 10 words
with lowest accuracies.

Table 4.6: Graph-based WSD using UMLS Metathesaurus (Highest 10 accuracies)

Word True Positive False Positive False Negative Accuracy
Lawsonia 99 16 0 86.09%
Eels 104 26 0 80.00%
HR 87 10 12 79.82%
DE 98 27 1 77.78%
PCB 93 28 6 73.23%
Torula 89 33 0 72.95%
PAF 82 33 0 71.30%
Callus 99 51 0 66.00%
EM 82 47 0 63.57%
CCD 88 42 11 62.41%

Sources of ambiguity varies but one of the common sources of ambiguity is that many
medical abnormalities share the same lexical term with the physical object associated
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Table 4.7: Graph-based WSD using UMLS Metathesaurus (Lowest 10 accuracies)

Word True
Posi-
tive

False
Posi-
tive

False
Nega-
tive

Accuracy

Hemlock 19 54 4 24.68%
PCP 72 225 0 24.24%
CP 70 227 0 23.57%
Arteriovenous Anastomoses 30 99 0 23.26%
DON 26 100 0 20.63%
ORI 22 101 0 17.89%
MAF 21 99 0 17.50%
PCA 79 390 22 16.09%
WBS 17 111 0 13.28%
PHA 12 98 0 10.91%

with it. As an example from Table 4.6, the term callus is ambiguous because it is one
lexical term that is used to refer to the callus tissue and the acquired abnormality from
the callus tissue, as shown in the following two sentences from the MSH-WSD [72] test
dataset.

• Callus tissue sense: Myostatin (GDF-8) deficiency increases fracture callus size, Sox-
5 expression, and callus bone volume.Myostatin (GDF-8) is a negative regulator of
skeletal muscle growth and mice lacking myostatin show increased muscle mass.

• Callus abnormality sense: The association between callus formation, high pressures
and neuropathy in diabetic foot ulceration.

Comparing our accuracy with [95] who used a graph-based approach, the authors reported
an average accuracy of 59% to 61% for a window size of 2 words, which is similar to our
algorithm accuracy. Using the betweenness score [54] as the semantic similarity metric
in our disambiguation algorithm resulted in similar accuracy obtained from the semantic
similarity metrics used in [95] such as the Leacock–Chodorow metric [83] and the Resnik
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metric[112] that were described in Section 3.4.

4.5 Analyzing the impact of UMLS relations on the

Word Sense Disambiguation accuracy

Comparing accuracies of both algorithms in Section 4.3 and 4.4 motivated us to find
why the accuracy are very close despite the big difference in the size and details of
the knowledge sources. Our expectation was to experience accuracy improvement when
switching from the UMLS Semantic Network (Section 4.3) to the UMLS Metathesaurus
(Section 4.4). Therefore, we analyzed the impact of using different subsets of the UMLS
Metathesaurus on the resulted accuracy of the unsupervised WSD algorithm.

Our focus in this analysis is on the unsupervised WSD algorithms that leverage the
UMLS Metathesaurus as a knowledge source. There have only been a few attempts
in this research area with different reported accuracies. Interestingly the difference in
accuracy cannot only be credited to the rigorousness of the algorithm as each algorithm
used different subsets of the UMLS, which could have a special impact. Moreover not all
algorithms were evaluated using the same dataset.

There are multiple unsupervised WSD algorithms that leverage the UMLS. Some al-
gorithms used the UMLS Metathesaurus knowledge source [9, 95], while others used the
UMLS Semantic Network knowledge source [66, 10]. Generally, WSD algorithms that
leverage the UMLS Semantic Network would run faster compared to the WSD algorithms
that leverage the UMLS Metathesaurus, because of the smaller size of the Semantic Net-
work knowledge base. But the main disadvantage of leveraging the UMLS Semantic
Network is the fact that it restricts the WSD algorithm to only disambiguate words with
concepts that belong to different UMLS semantic types. In the following subsections we
provide a brief description of two different types of unsupervised WSD algorithms that
used the UMLS Metathesaurus knowledge source.
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4.5.1 Similarity-based unsupervised WSD

The similarity-based unsupervised WSD measures the similarity of each sense of the
word being disambiguated to the words in the surrounding text, and the sense that has
the highest similarity is assumed to be the correct one. The approach presented in [95] is
a recent implementation of a similarity based unsupervised WSD.

4.5.2 Graph-based unsupervised WSD

The graph-based unsupervised WSD builds a graph representing all possible senses
of the word being disambiguated. The nodes in the graph correspond to the senses and
the edges in the graph correspond to the relation type between senses (e.g. parent, child,
broader). Next, the graph is assessed to determine the importance of each node: the
node “sense” that is considered the most important of the word being disambiguated is
assumed to be the correct one. The approach presented in [9] is a recent implementation
of a graph-based unsupervised WSD.

4.5.3 Methods

For the purpose of our analysis we implemented the graph-based unsupervised WSD
algorithm presented in Section 4.4 with a slight variation to the way we compute the vertex
ranks in our graph. We used the PageRank metric [27] rather than the Betweenness
metric [54] to compute the vertex ranks. The algorithm is inspired by the approach
presented in [100]; Algorithm 4.3 shows the pseudo-code of our approach. We ran the
WSD algorithm against different subsets of the UMLS Metathesaurus. The way we split
the UMLS Metathesaurus into smaller knowledge bases is by the different relations defined
in the MRREL table, so each subset contains all the UMLS concepts but with only specific
types of relations interconnecting them. We created four Metathesaurus subsets:

• PAR/CHD, a subset that contains only the parent and child relations;

• RB/RN, a subset that contains only the broader and the narrower relations;

• SIB, a subset that contains only the sibling relation;
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Algorithm 4.3 Graph-based WSD using UMLS Metathesaurus
1: procedure WordSenseDisambiguate(K, W , t, s, A)
2: let V = { UMLS concept of Wl | l = (t− 1..t− s) ∪ (t + 1..t + s)}
3: let V = V ∪ A

4: for each v in V do
5: X = DFS(K, v, p)
6: for each x in X do
7: if (x /∈ V ) then
8: let V = V ∪ {x}
9: end if

10: end for
11: end for
12: let E = GetEdges(V, K)
13: let V Ranks = PageRank(V, E)
14: let m = maximum{V Ranks(a) | a ∈ V ∧ a ∈ A}
15: return m

16: end procedure

• RO, a subset that contains only the other relation.

Input:

• K, a graph representing the subset the UMLS Metathesaurus,

• W , a sequence of n words,

• t, an index in W pointing to the word we need to disambiguate,

• s, a window size of the words before and after t to include in the analysis,

• A, a set of plausible senses for the word being disambiguated. Only one element of
A is the correct sense.

The algorithm uses the following 3 functions:
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• DFS(K , v , p ), which returns the set of nodes encountered when performing
depth-first search starting from node v in the graph K at a maximum depth p.

• GetEdges(V , K), which returns the set of edges in graph K that interconnect all
nodes in the V set.

• PageRank(V , E ), which returns a set of all nodes in V with their PageRank
metric.

Each of the four UMLS Metathesaurus subsets is represented as a K graph, where the
UMLS concepts are the nodes, and the UMLS relations between concepts are the edges.
For the mapping step (line 2 of the WordSenseDisambiguate function), we used the
MetaMap tool. In the DFS function we set p (the maximum depth of the depth-first
search) to 1 for execution time purposes.

4.5.4 Results and Discussion

We evaluated our method using the MSH-WSD [72] dataset containing 203 ambiguous
words. The 203 words are composed of 106 ambiguous terms, and 88 ambiguous acronyms,
and 9 words that are combinations of both. The dataset has up to 100 instances for each
possible sense. The total number of instances is 37,888. We executed our algorithm against
the MSH-WSD test dataset, with a window size of 2, and we executed the algorithm using
the 4 subsets of the MRREL table (PAR/CHD, RB/RN, RO, SIB). Table 4.8 shows the
average accuracy for the usage of each of the 4 subsets of the MRREL table. The results
shows the PAR/CHD subset have the best average accuracy, but from our observation
of the terms and acronyms with top accuracies of each MRREL table subset as shown
in Table 4.9-4.12 we can conclude that there is no real winner. The RO relation which
is worst performing among the 4 subsets was able to detect specific terms and acronyms
with higher accuracy compared to the other 3 subsets that have higher average accuracy.
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Table 4.8: Graph-based WSD - Average accuracy

Category PAR/CHD RB/RN RO SIB
Term 66.00% 38.42% 26.38% 61.16%
Acronym 64.14% 30.95% 30.96% 60.84%
Average 65.07% 34.69% 28.67% 61.00%

Table 4.9: Graph-based WSD - Highest 5 accuracies of the PAR/CHD relation

Term/Acronym PAR/CHD RB/RN RO SIB
dC 94.44% 51.01% 5.56% 50.51%
HC1 93.94% 49.49% 50.51% 60.16%
PCD 93.94% 49.49% 49.49% 36.36%
BPD 93.43% 0.00% 0.00% 50.51%
SCD 92.93% 0.51% 49.49% 50.00%

Table 4.10: Graph-based WSD - Highest 5 accuracies of the RB/RN relation

Term/Acronym PAR/CHD RB/RN RO SIB
PHA 15.45% 86.36% 9.09% 15.45%
PAF 22.61% 86.09% 16.52% 96.52%
PCB 77.95% 83.46% 0.80% 68.50%
lymohogranulomatosis 19.33% 82.35% 83.19% 15.13%
DON 2.38% 78.57% 3.97% 76.19%

Table 4.11: Graph-based WSD - Highest 5 accuracies of the RO relation

Term/Acronym PAR/CHD RB/RN RO SIB
HR 25.69% 0.00% 88.07% 22.94%
lymohogranulomatosis 19.33% 82.32% 83.19% 15.13%
sex factor 8.40% 0.00% 71.76% 29.01%
CDR 41.50% 33.33% 68.03% 40.82%
Callus 21.33% 2.00% 66.00% 36.00%
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Table 4.12: Graph-based WSD - Highest 5 accuracies of the SIB relation

Term/Acronym PAR/CHD RB/RN RO SIB
PAF 22.61% 86.09% 16.52% 96.52%
MCC 86.26% 3.05% 25.95% 93.89%
Eels 19.23% 4.62% 0.00% 91.54%
BAT 46.46% 50.00% 0.00% 90.91%
CAD 54.55% 49.49% 50.00% 90.40%

4.6 Summary

In this chapter we propose two unsupervised disambiguation algorithms for biomed-
ical text using the UMLS knowledge sources. In the first algorithm we used the UMLS
Semantic Network and in the second algorithm we used the UMLS Metathesaurus. In
the UMLS Semantic Network based approach, we built a graph to represent the UMLS
semantic network, such that nodes represent the UMLS semantics types, and edges repre-
sent the semantic relations between the semantic types. In the the UMLS Metathesaurus
based approach, we built a graph to represent the UMLS Metathesaurus such that nodes
represent the UMLS concepts extracted from the MRCONSO table and edges represent
the relation between UMLS concepts extracted from the MRREL table.

Both algorithms are evaluated using the MSH-WSD dataset, the UMLS semantic net-
work based approach resulted an average accuracy of 60.3%, while the UMLS Metathe-
saurus based approach resulted an average accuracy of 59.2%. Despite, the big difference
in the size of the knowledge source used in both algorithm, the resulted accuracy is close.
Therefore, we analyzed the impact of using different subsets of the UMLS Metathesaurus
on the resulted accuracy. In the analysis we divided the UMLS Metathesaurus into 4
subsets based on relation type and we found that each subset excels in disambiguating
different terms/acronyms, which indicates that using all relations of the UMLS MRREL
table is not necessarily the best approach.
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Chapter 5

Tools and Technologies used

5.1 Introduction

Building Information Extraction (IE) system requires a synthesis of different com-
ponents to inter-work. Many tools have been developed to support IE for domain-
independent text, but less tools have been built for the biomedical domain. This chapter
discusses the generic and biomedical-domain specific tools and technologies that we lever-
aged to perform common IE tasks. Some of the tools discussed in this chapter had to be
programmatically customized in order to inter-work with the rest of the components of
our system, which we cover in detail in Chapter 6.

5.2 UIMA

The Unstructured Information Management Architecture (UIMA) [51] is a component
architecture and software framework (Apache UIMA) implementation for the analysis of
unstructured information like natural language text, speech, images or videos. UIMA
uses the concept of an Analysis Engine, which analyzes a segment of unstructured data
“called artifact” and saves the information in a comment analysis structure (CAS) object.
CAS is the data structure to represent the data artifact and the metadata annotations
which is exchanged between the UIMA Analysis Engines. The artifact is encapsulated
in one or more Subjects of Analysis (Sofas). The definition of an annotation structure is
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called the Type System which describes a domain model.
In a survey study [16] the authors compared UIMA to other frameworks such as GATE

[40] and assessed UIMA as the most evolved and comprehensive architecture. In another
study [63], the authors valued UIMA over GATE for two reasons: it separates the en-
gineering problems from the NLP issues and takes in charge many of the engineering
needs like the data transmission or the data serialization; Second, it provides a program-
ming framework for defining and managing NLP objects present in analysis tasks such as
creating or getting the annotations of a given type.

5.3 UIMA Ruta

Apache UIMA Ruta [80] is a rule-based script language supported by Eclipse-based
tooling called the Apache UIMA Ruta Workbench. There are other rule-based systems
for information extraction such as is JAPE [41], AFST [23], SystemT [33], TokensRegex
[32]. JAPE or “Java Annotation Patterns Engine” is one of the most noted systems, and
it is integrated into the GATE [40] framework. JAPE creates finite state transducers that
operates over both text and annotations, based on regular expressions. One of the main
advantages of the UIMA Ruta is that it offers a more compact representation of rules. A
rule in the UIMA Ruta language is composed of a sequence of rule elements that consists
of the following four parts:

1. “Matching reference condition” is a type of annotation by which the rule element
matches on the covered text of one of those annotations.

2. “Optional quantifier” specifies whether it is necessary that the rule element success-
fully matches and how often the rule element may match.

3. “List of conditions” specifies additional constraints that the matched text or anno-
tations need to fulfill.

4. “List of actions” defines the consequences of the rule and often creates new anno-
tations or modifies existing annotations.
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Both the Ruta rule language and the UIMA Ruta Workbench integrate smoothly with
Apache UIMA and are designed to enable rapid development of text processing appli-
cations supporting all aspects of the development process like authoring of rules, syntax
checking, debugging, and quality assessment.

Ruta rule language provides:

• 41 Actions (MARK, UNMARK, CREATE, ADD, . . . )

• 27 Conditions (CONTAINS, PARTOF, REGEXP, AFTER . . . )

5.4 openEHR

OpenEHR is a non-proprietary standard for EHR architecture which purpose is to fa-
cilitate the creation and sharing of health records by consumers and clinicians. OpenEHR
standard is based on modelling the clinical domain using the so called two-level approach
[19]. The two-level approach distinguishes a Reference Model, used to represent the
generic properties of health record information, and Archetypes, which are meta-data
used to represent the specific characteristics of the various kinds of clinical data [73].

The Reference Model (RM) represents the general features of the components of the
EHR, how they are organized and the context information needed to satisfy both the
ethical and legal requirements of the record. It includes a flexible syntax and some generic
types of clinical information as observations, evaluations, instructions and actions. Then,
instances or specialisations of that RM are devised in the form of constraints expressed
through more concrete “archetypes”, which serve as a shared language for common and
specialised clinical concepts as “blood pressure”, “medication order”, and “heart rate”.

All clinical information created in the openEHR EHR is ultimately expressed in “En-
tries”. An Entry is logically a single ‘clinical statement’, and may be a single short
narrative phrase, but may also contain a significant amount of data, e.g. an entire mi-
crobiology result, a psychiatric examination note, a complex medication order. In terms
of actual content, the Entry classes are the most important in the openEHR EHR Infor-
mation Model, since they define the semantics of all the ‘hard’ information in the record.
They are intended to be archetyped, and in fact, archetypes for Entries and sub-parts
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Figure 5.1: Ontology of recorded clinical information. Adapted from [20]

of Entries make up the vast majority of archetypes defined for the EHR. The openEHR
ENTRY subtypes are shown in the ontolgy in Figure 5.1.

There are five concrete subtypes: ADMIN_ENTRY, OBSERVATION, EVALUA-
TION, INSTRUCTION and ACTION, of which the latter four are kinds of CARE_ENTRY.
The choice of these types is based on the clinical problem-solving process shown in Figure
5.2 [20].

Archetype instances themselves conform to a formal model, known as an Archetype
Model (which is related to the Reference Model) and are specified using the Archetype
Definition Language (ADL), Figure 5.3 shows an example of an the ADL of the “Tobacco
Use” observation Archetype downloaded from the openEHR Clinical Knowledge Manager
(CKM) [6], which is a web-based repository allowing for archetype search, browse and
download.
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Figure 5.2: Relationship of information types to the investigation process. Based on [19]

5.5 Guideline Definition Language (GDL)

The Guideline Definition Language (GDL) [110] leverage the designs of openEHR
Reference Model and Archetype Model, Figure 7.4 shows the classes that are based on
the openEHR specifications in blue colour. The yellow classes are the ones that were
introduced to represent guidelines. The Guide class is the parent class used to model a
CPG, in our formalization process we are most interested to capture clinical knowledge
which would be represent as a set of rules using the Rule class.

The Rule class has two main members:

• whenStatments, a list of expressions that represent the condition that must be eval-
uated before the rule get fired.

• thenStatments, a list of expressions that represent the action that must be execute
if the condition was met.

Both whenStatments and thenStatments are of type ExpressionItem which is the core of
all the rules that we will extract from our narrative text.
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Figure 5.3: Tobacco use Archetype
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Figure 5.4: GDL Guide Package
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5.6 Summary

This chapter has outlined the technologies and tools used for the development of
our CPG formalization system. The following two chapters discuss how these tools are
leveraged and customized. Chapters 6 provides the details of each of CPG formalization
system components, and how these interconnect with the rest of other components of
the system. Chapter 7 provide a slight modification to the system for the purpose of
evaluating text coverage across multiple CPGs.
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Chapter 6

Putting it all together: The CPG
formalization system

6.1 Introduction

CPG formalization approaches that have been published and described in Chapter 2
are either based on a set of manual steps to gradually convert CPGs into CIGs, or based on
automated information extraction mechanisms frequently using linguistic patterns. While
the accuracy of the manual approaches is straightforwardly controlled, as the resulted
accuracy is as good as the input provided by the human modellers, these approaches are
expensive to use in formalizing large numbers of CPGs. On the other hand, the automated
and semi-automated information extraction based approaches are in theory more suited
to formalize a relative large number of CPGs but these approaches do provide the human
modellers a mechanism to control the granularity of the clinical knowledge to be extracted.
Therefore, the motivation of our work in building a CPG formalization system is to balance
between accuracy and the specificity of CPG knowledge extracted. This chapter describe
how all the tools fit together to form a system for CPG formalization, with a focus on the
Information Extraction automation task.
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Figure 6.1: CPG formalization activities

6.2 Methods

The proposed system follows a multi-step approach, which has been shown to be a
good strategy for CPG formalization [121]. We designed the system to set boundaries
around each of the aspects of the CPG formalization, where each aspect is implemented
as a separate autonomous component in a CPG formalization pipeline as illustrated in
Figure 6.1.

The system is based on the Unstructured Information Management Architecture (UIMA)
[51] and data interchange between text analysis components which is performed using the
UIMA Common Analysis Structure (CAS) [58], a commonly shared data structure to
represent the artifact as well as according metadata. In the following subsections, we
provide a description of each component in our CPG formalization system.
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6.2.1 XML parsing

We used CPGs extracted from the National Guideline Clearinghouse (NGC) [5] in
XML format. The XML parsing component extracts the content of the XML CPG doc-
uments into a structured object. Although we extract the content of all the sections in
the XML document, we only use the Major Recommendations section, which contains the
diagnosis and/or treatment narrative text of the clinical knowledge that we try to identify
and formalize.

6.2.2 Text cleansing

Most of the sections extracted by the XML parsing component contain narrative text
mixed with HTML tags. HTML tags are used by Web browsers to render text for visual
display, but as we are not interested in composing the text for web browsers, we removed
all HTML tags from the text.

6.2.3 Medical Concept tagging

Medical Concept tagging is a component to map CPG text to a medical vocabulary;
we used the Unified Medical Language System (UMLS) Metathesaurus as our biomedical
vocabulary database; The UMLS Metathesaurus contains more than 2.6 million concepts
each assigned to at least one semantic type from the set of the 133 semantic types of
the UMLS semantic network. We used MetaMap [12, 113], to map CPG text to the
UMLS Metathesaurus concepts; For integrating MetaMap with the UIMA framework
we leveraged the MetaMap UIMA Annotator [116] which is a wrapper that makes the
MetaMap tool usable as an UIMA analysis engine.

Due to a technical limitation in the UIMA Ruta [80] dealing with arrays (UIMA Ruta
will be disccused in the following subsection), we modified the MetaMap UIMA Annota-
tor to output multiple UMLS concept annotations for concepts associated with multiple
semantic types instead of just one UMLS concept annotation with an array of semantic
types. Figure 6.2 illustrates the change we applied. The “Candidate” data structure in
Figure 6.2 is one of the MetaMap UIMA Annotator output objects; we defined a more
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Figure 6.2: MetaMap UIMA Annotator output annotation “Candidate” for text Fluoxe-
tine split into two separate “SubCandidate” annotations

flat data structure, the “SubCandidate” and modified the MetaMap UIMA Annotator to
generate the described flat data structure instead of the hierarchical “Candidate” data
structure.

6.2.4 Medical Tags Disambiguation

Medical Tags Disambiguation is the process of finding the correct UMLS concepts,
when multiple concepts are assigned by MetaMap with the same score. For example the
word lens could get annotated by MetaMap with three different UMLS concepts that have
different meanings as shown in Table 4.2.

To solve this type of ambiguity we used the graph-based disambiguation algorithm
[47] that we described in Section 4.4. The disambiguation algorithm ranks the generated
MetaMap UMLS concepts based on their relatedness to the context of co-located text
using the betweeness centrality metric [26].

6.2.5 Clinical recommendation pattern detection

Clinical recommendation pattern detection is a rule-based extraction component. This
component is the first level of our clinical recommendation extraction mechanism; its
function is to extract parts of CPG text that contain the minimum necessary features of
the clinical recommendation in question. Extracting clinical recommendation based on
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Figure 6.3: Ruta extraction rules

the minimum necessary features follow the top-down approach [119] where only general
rules that cover as many possible instances of clinical recommendation need to be defined,
which means rules that have high coverage and poor precision. Because general extraction
rules tend to be in small numbers and simple to define, the rule authoring task is a good
fit for the medical experts who usually lack extensive knowledge in rule authoring. To
further simplify the rule authoring task for the medical expert we used UIMA Ruta [80] as
it has a defined rule-based language with the ability to build rules against the text as well
as against the semantic annotations of the text. We also defined a process of four steps to
structure the effort required. The human modeller might need to do multiple iterations
of these four steps to either increase the accuracy of rules or to author extraction rules
for multiple clinical recommendations. In the following subsections we describe each of
the four steps to author drug recommendation extraction rules with sample Ruta syntax
highlighted in Figure 6.3.
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6.2.5.1 Step 1) Set text analysis boundaries

While analyzing the CPG as one big unit is too complex, analyzing the CPG text as
a bag of tokens is impractical; therefore, we need to break down the CPG document into
text chunks small enough for easiness of analysis. Step 1 in Figure 6.3, shows the Ruta
code to break CPG text into a set of sentences, where the first line defines a new type
“Sentence” using the DECLARE keyword, the second and third lines define two rules
to identify any set of tokens that either end with a period or are enclosed between two
periods, and then annotate them with the new type “Sentence”.

6.2.5.2 Step 2) Cluster UMLS semantic types

Each UMLS tag “SubCandidate” is assigned to one UMLS semantic type, and as
we have a set of 133 semantic types in the UMLS semantic network, this gives us a
wide spectrum of semantic types that is too granular for our analysis. Clustering the
UMLS semantic network into smaller set of semantic types helps eliminate duplicate rules
across UMLS semantic types. To achieve this goal we followed the approach presented in
[22] and aggregated semantic types. In Table 6.1 and Table 6.2 we show two groups of
semantic types, the Chemical & Drugs (CHEM) and the Disorder (DISO) used for drug
recommendations.

Step 2 in Figure 6.3, shows the Ruta code to define two new types (CHEM and DISO),
then scan all tokens in the CPG that are annotated with the SubCandidate type, and
assign them one of the two new annotations based on their current UMLS semantic type.
Similar rules apply to all elements in Table 6.1 and Table 6.2.

6.2.5.3 Step 3) Structuring clinical data

In this step, the human modeller A) defines the clinical data structures and B) pro-
vides conditions to assign the newly defined clinical data structure to tokens in the CPG
text. Defining clinical data structures could be coarse, e.g. the drug prescription data
structure composed of the medicine name, and the dose; or more granular to include the
dose timing and the duration of the treatment. The expressivity of the clinical recommen-
dation extraction rules heavily depends on the granularity of data structures used, the
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Table 6.1: Chemical & Drugs semantic types group (CHEM)

Semantic Type Abbreviation

Amino Acid, Peptide, or Protein aapp
Antibiotic antb
Biologically Active Substance bacs
Biomedical or Dental Material bodm
Carbohydrate carb
Chemical chem
Chemical Viewed Functionally chvf
Chemical Viewed Structurally chvs
Clinical Drug clnd
Eicosanoid eico
Element, Ion, or Isotope elii
Enzyme enzy
Hazardous or Poisonous Substance hops
Hormone horm
Immunologic Factor imft
Indicator, Reagent, or Diagnostic Aid irda
Inorganic Chemical inch
Lipid lipd
Neuroreactive Substance or Biogenic Amine nsba
Nucleic Acid, Nucleoside, or Nucleotide nnon
Organic Chemical orch
Organophosphorus Compound opco
Pharmacologic Substance phsu
Receptor rcpt
Steroid strd
Vitamin vita
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Table 6.2: Disorders emantic types group (DISO)

Semantic Type Abbreviation

Acquired Abnormality acab
Anatomical Abnormality anab
Cell or Molecular Dysfunction comd
Congenital Abnormality cgab
Disease or Syndrome dsyn
Experimental Model of Disease emod
Finding fndg
Injury or Poisoning inpo
Mental or Behavioral mobd
Neoplastic Process neop
Pathologic Function patf
Sign or Symptom sosy

more granular the clinical data structures the more expressive rules can be authored but
also the more complex the rule authoring task becomes. Therefore a good balance needs
to be achieved by defining the least granular level of clinical data structure that is suffi-
cient for the required expressivity of the extraction rules. To follow pre-reviewed clinical
data structures we defined our clinical data structures based on the openEHR archetypes
[18]; openEHR archetypes are a set of common specialised clinical concepts in the form
of structured constraint statements based on the openEHR Reference Model [18]. The
openEHR archetypes have different types such as observations, evaluations, instructions
and actions, which are adapted from the problem solving process model illustrated in Fig-
ure 6.4. The role of a health care practitioner in this model is to make observations, form
opinions, and then prescribe instructions. Generally, a human modeller needs to specify
at least two clinical data structures to formalize clinical recommendation knowledge, one
to represent the input to the health practitioner and another to represent the output from
the health practitioner.

Detecting an instance of the defined clinical data structure in the CPG text is achieved
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Figure 6.4: Relationship of information types to the investigation process, based on [19]

by annotating the CPG text with the clinical data structure types based on predefined
conditions. The conditions could be based on specific lexicon, syntax or previously anno-
tated semantics; Step 3 in Figure 6.3 shows the Ruta code of our version of the “problem
diagnosis” evaluation archetype and the “medication order” instructions archetype. The
defined clinical data structures contain one element for simplicity, but each of these data
structures can contain multiple elements; we also defined relaxed conditions that capture
tokens annotated with the DISO and CHEM semantic groups, and tagged the former as
an element of the “problem diagnosis” evaluation archetype, and the latter as the medicine
element of the “medication order” instructions archetype.

6.2.5.4 Step 4) Clinical recommendation semantic relations

Each clinical recommendation could be modelled as an instance of semantic relation
between clinical data, for example drug recommendation could be modeled as a disease-
to-drug semantic relation or symptoms-to-drug semantic relation. Annotating CPG text
with clinical recommendation semantic relation requires the human modeller to 1) define a
semantic relation, and 2) define conditions for mapping instances of clinical data structures
to a semantic relation. Step 4 in Figure 6.3 shows the Ruta code to define a binary
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relation between the “problem diagnosis” data structure, and the “medication order” data
structure, we also defined relaxed condition that capture instances of “problem diagnosis”
and “medication order” that are co-located in the same sentence, and then create an
annotation of the “Diagnosis Medication Relation” semantic relation. The condition we
used is relaxed for simplicity but medical expert can define more strict conditions for
the lexical patterns of the text between “problem diagnosis” data structure, and the
“medication order” data structure; a recent study [148] shows that drug-disease treatment
pair can be identified with high precision using a set of lexical patterns such as in patients
with, for treatment of, in the management of.

Clinical recommendation filtering, this component is responsible for removing the clin-
ical recommendation instances wrongly labelled by the clinical recommendation pattern
detection component. We used logistic regression [64] classification algorithm to decide
on the correctness of the drug recommendation labels. Because this classification algo-
rithm is supervised, which means it requires to be trained using a correctly annotated
data set; we generated a training data set composed of 117 recommendation sentences
extracted from the Yale Guideline Recommendation Corpus (YGRC) [68]. The YGRC
is composed of 1275 recommendations which cover a broad range of diseases and mental
disorders extracted from the NGC. We annotated all YGRC sentences with MetaMap
and then selected 117 sentences that have tokens in the DISO semantic group in addi-
tion to other tokens in the Procedure (PROC) or CHEM semantic group. We manually
tagged each sentence as either drug/procedure recommendation or non-drug/procedure
recommendation.

Clinical recommendation mapping, a component to map instances of clinical recom-
mendation semantic relations to their target CIG constructs as a set of rules. We used
the openEHR Guideline Definition Language (GDL) [110] as our target CIG; GDL lever-
age the designs of openEHR Reference Model and Archetype Model that we used in the
pattern detection step, therefore, the mapping is straightforward. In GDL, the Guide
data structure is the parent data structure used to model a CPG, in our formalization
process we are most interested to capture clinical knowledge which would be represented
as a set of rules using the Rule data structure that is decomposed into main members:
whenStatments, a list of expressions that represent the condition that must be evaluated
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Figure 6.5: Annotations for the drug recommendation

before the rule get fired. thenStatments, a list of expressions that represent the action
that must be execute if the condition was met. Although the clinical recommendation
mapping is still a manual task to be done by the knowledge engineer, it can be fully auto-
mated if the medical expert modeller used a standard naming convention for the clinical
data structures used in the clinical recommendation pattern detection component.

To demonstrates an example of drug recommendation CPG clinical sentence anno-
tated using the 4-steps method detailed in the above sub-sections, we used the following
sentence: “Fluoxetine (20-80 mg/day) should be considered for the treatment of patients
with fibromyalgia” from the “Management of chronic pain. A national clinical guideline.”
CPG. And in Figure 6.5 [3], we show all annotations for this sentence based on the UIMA
Ruta 4-steps drug recommendation pattern defined in Figure 6.3.

6.3 Results and Discussion

We implemented our formalization system in JAVA and integrated it with the GDL
editor. Figure 6.6 shows the rule extracted from the example given in Figure 6.5 in
the native GDL format, and Figure 6.7 shows the extracted rule as it display in the GDL
editor; due to the lack of access to independent human modellers we could not measure the
manual effort saving introduced by our system; nevertheless, we evaluated the accuracy
of the drug recommendations knowledge extracted by our system.
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Table 6.3: Recommendation sentences classification evaluation

Recommendation Precision Sensitivity/Recall Specificity

Chemicals & Drugs 78% 71% 73%
Procedures 70% 75% 79%
Average 74% 73% 76%

To build our gold standard for the drug recommendation clinical context to mea-
sure against, we used all recommendations from the “Management of chronic pain” CPG
[3] and the “Management of lung cancer” CPG [4], and then we manually tagged each
recommendation as either drug/procedure recommendation or non-drug/procedure rec-
ommendation. The resulted test data set is composed of 169 recommendation sentences.
Our evaluation was based on measuring the precision, sensitivity/recall and specificity of
the extracted drug recommendation rules form the above CPG. The precision, sensitiv-
ity/recall and specificity are measured based on the correctness of our system in finding
instances for the UIMA Ruta patterns defined by the medical expert. More formally,
assume that I is the set of all sentences in a CPG, and IG denotes the subset of I that
contains sentences with both a medication and a disease; IG′ denotes for all sentences in
I that do not contain both a medication and a disease; IF denotes the set of sentences
extracted by our system; IF ′ denotes set of sentences not extracted by our system

• Precision = |IG∩IF |
|IF |

= T rueP ositives
T rueP ositives+F alseP ositives

• Recall/Sensitivity = |IG∩IF |
|IG|

= T rueP ositives
T rueP ositives+F alseNegatives

• Specificity = |IF ′ |
|IF ′∪(IF∩IG′ )| = T rueNegatives

F alseP ositives+T rueNegatives

In Table 6.3 we show the accuracy of our framework on classifying the 169 recommendation
sentences.

We evaluated the correctness of the formalized recommendations by manually checking
the extracted rules and we assigned a coefficient of: 1 for rules that are correctly coded
and complete, 0.5 for rules that are correct but partial (e.g. not all elements of the rule
conditions are captured), 0 for rules that are wrong. In Table 6.4 we show the accuracy of
the extracted rules based on the described metric. There are two main sources of errors
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Table 6.4: Recommendation sentences extracted rules accuracy

Recommendation Accuracy

Chemicals & Drugs 87%
Procedures 81%
Average 84%

for the wrong rules: either wrong MetaMap annotations or wrong classification from our
clinical context filtering component using logistic regression.

The precision is impacted by the size and the quality of our training data set; in the
presented example we used a training data set made of 169 sentences which is small to
provide high precision. This issue could be lessened by feeding the outputted rules of the
system back to the training data set, a step that requires a minor manual tagging of which
rule are correctly extracted and which ones are wrongly extracted. The sensitivity/recall
is impacted by how we split our CPG into smaller text chunks, e.g. in the presented
example we split the CPG into sentences, but some drug recommendations within the
CPG have the drug and the medication located in two separate sentences, and therefore,
these ones are missed by our extraction rules. This issue could be lessened by changing the
size of our unit of analysis from one sentence to two consecutive sentences or to the whole
paragraph, but such a modification would hurt the precision unless we add more rules to
handle cross sentences extraction. Different cross sentences extraction approaches can be
applied. One approach would be to perform cross sentence extraction when a sentence only
contains one part of the clinical recommendation such as a sentence with only a disease,
followed by a sentence that only contains the other part of the clinical recommendation
such as a sentence with only a medication. This approach is very conservative and would
not impact the precision of the in-sentence extraction rule; Incorporating other cross
sentences extraction approaches that have more coverage would likely interfere with other
in-sentence extraction rules. Therefore, with every cross sentence extraction approach we
need to evaluate the cross sentence extraction precision gain to the in-sentence precision
loss. The specificity is impacted by how strict are our conditions for tagging a sentence
with a specific semantic relation. In the presented example we achieved high specificity
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Figure 6.6: Drug recommendation extracted GDL rule

because our conditions for tagging drug medication semantic relations are very strict.
We found that different clinical recommendations of CPG do not only necessitate

different types of text analysis, but could also require different target knowledge repre-
sentations, e.g. a knowledge representation using rules works for the medication recom-
mendations of CPG, but it would not be the best representation for clinical workflow.
Therefore, we had to consider specific quality attributes when constructing our formal-
ization system to be generic and yet easily reusable by a human modeller. We found that
there are three quality attributes intrinsic to achieving our goal:

Clinical Interoperability: The ability to consistently express clinical meanings within
electronic health record (EHR) systems and medical knowledge repositories. The Clinical
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Figure 6.7: Drug recommendation rule in GDL editor

Interoperability could be measured using the four levels defined in the SemanticHEALTH
report [131], where the lowest level of interoperability means no interoperability at all,
and the highest level of interoperability means full semantic interoperability, shareable
context, seamless co-operability. Clinical intolerability is manifested in our system by the
adoption of: (1) openEHR Reference Model, a generic reference models for representing
clinical data; (2) openEHR archetypes, an agreed clinical data structure definitions; (3)
UMLS metathesaurus, a clinical terminology systems.

system Extensibility: The ability to allow system extensions without a major source
code rewrite; Extensibility is particularly needed when new text analysis engines or new
extraction rules to be added. Extensibility is manifested in our system by the adoption
of: (1) Apache UIMA Java framework, a common and extensible means for representing
unstructured information; (2) UIMA Ruta, a rule language to author clinical recommen-
dation detection patterns.

system Integrability: The ease with which separately developed components, can be
made to work together [87]. As the output of our formalization system is a CIG that
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would need incremental refinement by human modeller, we implemented our system to
integrate easily with CIG editors. Integrability is manifested in our system by the plug-in
implementation mode that allows it to be hosted within a CIG editor application with
minimal programing effort.

6.4 Summary

The proposed system can be effectively used to formalize the drug recommendation
and procedure recommendation clinical contexts of CPGs into CDSS friendly format.
More significantly, it provides human modellers a process to extend the system to formal-
ize other clinical recommendations of CPGs. The system is focused on automating the
CPG common formalization steps while allowing the human modeller to stay in control of
all the knowledge extraction steps. By configuring the clinical recommendation detection
pattern component, the human modeller could define how CPG text would be split into
smaller chunks for analysis, and control the level of granularity of the clinical knowledge
extracted. This control balances generality and specificity in order to maximize usefulness
of the extracted knowledge. If the extracted knowledge is too specific/expressive it unnec-
essarily complicates the extraction rules. We believe that such configuration capabilities
in our system would help reduce the human modeller’s annoyance and dissatisfaction ac-
companied with either the lengthy manual CPG formalization steps, or the inflexibility of
other automated CPG formalization approaches. The proposed system can be extended to
find contradictions that exist between different CPGs by comparing the extracted rules in
multiple CIGs and highlighting the rules that have the same conditions but with opposite
or different actions.
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Chapter 7

The CPG formalization system
Scalability

7.1 Introduction

One of the important factors for human modellers to adopt a CPG formalization
system such the one we proposed in Chapter 6 is the system’s ability to scale. In this
chapter we focus of two different type of scalabilities: 1) scaling out, which is the ability of
the CPG formalization system to adapt new clinical recommendation type 2) scaling up,
which is the effectiveness of CPG formalization system when applied on heterogeneous
CPGs. The focus of this chapter is to on scaling up the system.

7.2 Methods

7.2.1 Scaling out

Scaling the system to adapt new type of clinical recommendations can be achieved
by introducing new pattern as explained in Section 6.2.5, in which we used a pattern
composed of two UMLS clusters, the Chemical & Drugs (CHEM) and the Disorder (DISO)
for detecting drug recommendations. In [94] the authors depicted some relations between
UMLS groups, which we present in Table 7.1.
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Table 7.1: Some relations between Semantic Groups [94]

Semantic Group Relation Semantic Group

Chemicals & Drugs treats Disorders
Procedures treats Disorders
Devices treats Disorders

Genes & Molecular Sequences carries out Physiology
Genes & Molecular Sequences property of Chemicals & Drugs

The relations between UMLS groups could be used as a basis for new clinical recom-
mendation patterns. For example human modellers could define a pattern for the proce-
dure recommendation based on the co-location of the Procedures cluster (PROC) and the
Disorder cluster (DISO). With every new clinical recommendation introduced, the clas-
sifier of Clinical recommendation filtering component which is responsible for removing
the clinical recommendation instances wrongly extracted by the Clinical recommendation
pattern detection component need to be retrained.

7.2.2 Scaling up

Scaling the system to formalize more heterogeneous CPGs with the same effectiveness
can be achieved by refining one or both of the following two components:

• Refine the extraction patterns of the Clinical recommendation pattern detection
component to be more constrained or more flexible.

• Train the classifier used in the Clinical recommendation filtering component with
more heterogeneous instances of the extracted clinical recommendation.

We believe that investing human modeller effort in refining extraction patterns is more
valuable than finding more instances to train the classifiers of the Clinical recommen-
dation filtering component. Therefore we present a scalability approach that support
human modellers to refine extraction pattern. Our scalability approach is based on Ac-
tion Palettes [49] which we present in the next subsection.
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7.2.2.1 Clinical Action Palettes

Action Palettes [49] is a set of action types that comprehensively categorize activities
recommended by the majority of clinical guidelines. The set of these action types are
extracted from a pool of randomly selected 100 recommendations (test and validation
sets) each from the National Guideline Clearinghouse, then three recommendations from
each guideline are randomly selected. The study [49] resulted in the creation of a library
of 300 randomly selected clinical recommendations with 405 actions, and the following 12
action palettes were found sufficient to categorize all the 405 actions.

1. Prescribe: Order a treatment requiring medication or durable medical equipment.

2. Perform therapeutic procedure: Order activities that are therapeutic in nature.

3. Educate/Counsel: Inform the patient about means to improve/maintain health,
or instruct on how to perform specific activities.

4. Test: Obtain or collect additional data through inquiry (ask patient), laboratory
testing (chemistry panel, X-Rays, etc. . . ) or other investigative procedures whose
intent is not curative.

5. Dispose: Initiate an activity to direct the flow of patients, such as Admit, Dis-
charge, Follow-up, Transfer, etc.

6. Refer/Consult: Direct a patient to another clinician for evaluation and/or treat-
ment.

7. Conclude: Determine a diagnosis or clinical status

8. Monitor: Make serial observations according to specific criteria and schedule.

9. Document: Record one or more facts in the patient record. Document includes
situations in which a document (such as a medical report) is to be forwarded to
legal authorities or guardians of a minor child to inform or report a condition.

10. Advocate: Argue in support of a policy.
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11. Prepare: Make ready for a particular guideline directed activity by training, equip-
ping, or gaining new knowledge (e.g., through research).

12. No recommendation: A statement that no activity is advised, usually because of
insufficient scientific evidence for or against the activity.

The authors of the study [49] showed that these action types can be used to construct
a system for design of clinical decision support systems. In a more recent study [126],
the authors extended Action Palettes by building a set of verbs that could be used to
represent each action type in CPGs. Such mapping was done by classifying more than 700
recommendations from the Yale Guideline Recommendation Corpus (YGRC) to action
types and extracted the verbs associated with each. The YGRC will be detailed in Section
7.3. From the list of extracted verbs, the authors identified a list of transitive verbs.
Transitive verbs take a direct object to describe an action that is done to something or
someone and to link the action taken with the object upon which that action is taken.
A total of 279 verbs pertinent to the 14 action types was categorized and incorporated.
The list below shows the mapping of verbs to their action types, and Figure 7.1 shows
the grouping of these 14 action types.

1. Inquire: ask, assess, complete, conduct, gather, include, incorporate, inquire,
obtain, review, screen, verify.

2. Examine: assess, auscultate, examine, include, inspect, palpate, percuss, perform,
use

3. Test: assess, begin, carry out, check, conduct, continue, determine, do, evaluate,
have, identify, indicate, measure, need, obtain, offer, perform, prefer, receive, recommend,
repeat, require, reserve, restore, screen, take, test, trigger, undergo, use, utilize

4. Monitor: arrange, ascertain, assess, check, conduct, continue, determine, evaluate,
examine, follow up, have, include, institute, maintain, manage, monitor, obtain, occur,
offer, perform, provide, reassess, receive, recommend, repeat, require, review, screen,
warrant

5. Conclude: assess, base, conclude, consider, contact, coordinate, determine, di-
agnose, distinguish, exclude, give (attention), recognize, recommend, respect, review,
suspect, take (into account), use, weigh



73

6. Advocate: advocate, encourage, endorse, ensure, focus, recommend, work (to)
7. Dispose: admit, dispose, hospitalize, guide, observe, refer
8. Document: complete, document, identify, notate
9. Educate/Counsel: adhere, advise, benefit, clarify, counsel, deliver, discuss, ed-

ucate, enable, encourage, explain, have, help, identify, include, incorporate, inform, in-
struct, involve, modify, negotiate, offer, promote, protect, provide, receive, recommend,
reinforce, review, start, support, teach, tell, use

10. Perform: confine, ensure, follow, give, implement, include, incorporate, indicate,
inspect, offer, operate, perform, place, receive, recommend, relate, resect, reserve, select,
start, treat, undergo, use

11. Prepare: address, adhere, adjust, adopt, analyze, attempt, be (aware), become,
begin, collect, continue, dedicate, define, develop, encourage, engage, ensure, establish,
form, have, identify, include, incoporate, initiate, institute, know, lead, perform, plan,
prepare, recommend, review, share, train, understand, undertake, use

12. Prescribe: add, adjust, administer, advance, apply, attempt, avoid, change,
choose, continue, desensitize, dilute, discontinue, exercise, improve, increase, indicate,
individualize, influence, initiate, institute, manage, offer, order, prefer, prescribe, pro-
vide, receive, recommend, reduce, repeat, replace, reserve, restart, review, start, suggest,
supplement, taper, titrate, treat, use, utilize, warrant

13. Prevent: administer, avoid, cleanse, combine, continue, discard, encourage, give,
immunize, minimize, practice, prevent, provide, receive, recommend, use

14. Refer/Consult: assess, conduct, consult, manage, obtain, offer, recommend,
refer, seek, work (together)

We integrated all the verbs that belongs to the Prescribe action type in the Clinical
recommendation pattern detection component, by adding a new condition to the clinical
recommendation semantic relation (Section 6.2.5.4) to ensure that one of the 44 verbs of
the Prescribe action type is co-located to “problem diagnosis” and “medication order”.
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Figure 7.1: Action types adapted from [126]
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7.3 Results & Discussion

We evaluated our approach with against the Yale Guideline Recommendation Corpus
(YGRC) [68]. The YGRC is composed of 1275 recommendations which cover a broad
range of diseases and mental disorders extracted from the NGC. The recommendation as
defined by the authors in [68]: “a statement whose apparent intent is to provide guidance
about the advisability of a clinical action”.

Recommendations in YGRC were identified based on: (1) semantic indicator, (2)
formatting, (3) headers and (4) presence of recommendation strength indicators. The
following subsection describe the four criteria:

1. Semantic indicators, YGRC defined several semantic indicators to recognize rec-
ommendations. These indicators include:

(a) Modal operators (e.g., terms such as “should,” “must,” “may”) to express a
level of obligation or permission or

(b) Statements of suitability under specific circumstances (e.g., “is appropriate”,
“is indicated”).

• Example: An F 18-deoxyglucose positron emission tomography (FDG_PET)
scan should be performed to investigate solitary pulmonary nodules in cases
where a biopsy is not possible or has failed, depending on nodule size, position
and CT characterization.

2. Formatting, YGRC defined several formatting indicators such as:

(a) Enumeration of statements.

(b) Boldface text.

(c) Bulleted text.

3. Headers, YGRC used indicative headings and titles, such as ‘Recommendations’
and ‘Recommended’ to demarcate recommendation statements.
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• Example: Recommendation: Treat duodenal ulcers with H2RAs or PPIs for 4
to 8 weeks.

4. Presence of recommendation strength indicators. Recommendation state-
ments may be accompanied by an indicator of evidence quality or strength of rec-
ommendation. Following is an example from the YGRC in which strength of rec-
ommendation and quality of evidence is indicated:

• Example: Rituximab is active in the treatment of Wm but associated with the
risk of transient exacerbations of clinical effects of the disease and should only
be used with caution, especially in patients with symptoms of hyper-viscosity
and/or IgM levels >40 g/L. Level of evidence IIb, Grade of Recommendation
B.

We achieved a precision of 70.1%, and a recall of 72.3%. In our evaluation we only
selected the sentences that are drug recommendation from the YGRC and we excluded
all the medical test recommendations or procedure recommendations.

7.4 Summary

Scalability is an important factor for human modellers to adopt a CPG formalization
system, in this chapter we discussed how the CPG formalization system presented in
Chapter 6 can scale up. We used a set of 44 transitive verbs that have been shown to
be associated to the Prescribe action type and integrated them in the the Clinical recom-
mendation pattern detection component of the CPG formalization system. We evaluated
the system against the Yale Guideline Recommendation Corpus (YGRC) and achieved a
precision of 70.1%, and a recall of 72.3%.
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Chapter 8

Discussion and conclusion

We have presented an approach to formalize CPGs. In this chapter, the main contribu-
tions of this thesis are outlined and a number of directions for future work are presented.

8.1 Summary of Contributions

Recall in Chapter 1, the objectives of the work was to minimize the effort required by
human modellers to bridge the gap between CPG and its formalized version by extending
the automation of the formalization process. The overall purpose is decomposed into the
intermediate goals of this work. The goals of this work are to:

1. Automatically disambiguate the narrative text of CPGs using medical knowledge
bases and graph-based algorithms.

2. Develop a system upon the algorithms resulted from our first goal to transform
CPGs into CIGs using a multi-step approach.

3. Allow human modellers to refine and add types of clinical recommendations without
rebuilding the system.

We discuss our contributions according to these objectives. In this thesis, the overall prob-
lem of formalizing CPGs is approached with focus on 1) developing a set of autonomous
components that can be developed and maintained independently and 2) give the human



78

modeller a control over the expressiveness of the extraction rules in the formalization
system without rebuilding the system . The main contribution of this work are:

• A Graph-based Disambiguation approach using the UMLS semantic network (Sec-
tion 4.4)[46], we proposed an algorithm based on the hypothesis that words closely
located to each other in a text must have some degree of relatedness. We used
the UMLS semantic network as our knowledge base to find the relatedness between
words. For an ambiguous term, we take the neighbouring words before and after in a
given window and check their respective semantic types using MetaMap. We select
the semantic type of the one which has the smallest distance from the set of neigh-
bouring word semantic types based on UMLS semantic network. We evaluated our
method using the MSH-WSD [72] dataset containing 203 ambiguous words.We ran
our algorithm on the MSH-WSD dataset with a window of size 3 and the resulting
average accuracy was 60.3%.

• A Graph-based Disambiguation approach using the UMLS Metathesaurus (Sec-
tion 4.5)[47], The approach presented in chapter 4 has the advantage of using a
lightweight knowledge base which is the UMLS semantic network. Lightweight
knowledge bases such as the UMLS semantic network give the human modeller
the easiness of refining the disambiguation process by adding or removing UMLS
semantic types and/or semantic relations. However, the main limitation of leverag-
ing the UMLS semantic network as a knowledge base is the inability to disambiguate
between two words that belong to the same semantic type. Because of this limita-
tion we proposed another algorithm that uses the UMLS Metathesaurus[67] as its
knowledge base, the proposed algorithm is inspired by the approach presented in
[100]. We evaluated our method using the MSH-WSD [72] dataset containing 203
ambiguous words. We ran our algorithm on the MSH-WSD dataset with a window
of size 2 and the resulting average accuracy was 59.2%.

• An analysis on the impact of using different UMLS subsets as a knowledge source
on the unsupervised type of WSD algorithms (Section 4.5)[45], we analyzed how
WSD accuracy is impacted by the different subsets of the UMLS Metathesaurus.
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For the purpose of our analysis we implemented a graph-based unsupervised WSD
algorithm that computes the importance of each node “sense” in the graph using
the PageRank metric [27]. The way we split the UMLS Metathesaurus into smaller
knowledge bases is by the different relations defined in the MRREL table, so each
subset contains all the UMLS concepts but with only specific types of relations
interconnecting them. We created four Metathesaurus subsets:

– PAR/CHD, a subset that contains only the parent and child relations;

– RB/RN, a subset that contains only the broader and the narrower relations;

– SIB, a subset that contains only the sibling relation;

– RO, a subset that contains only the other relation.

We executed our algorithm against the MSH WSD test data set, with a window
size of 2, and we executed the algorithm using the 4 subsets of the MRREL table
(PAR/CHD, RB/RN, RO, SIB). For each run we captured the accuracy for all
terms/acronyms of the MSH-WSD data set. From our observation of the resulted
accuracy of the 4 UMLS subsets, there is no real winner; each UMLS relation excels
in disambiguating some terms/acronyms, and this indicates that using all relations
of the UMLS MRREL table is not necessarily the best approach.

• A CPG formalization system (chapter 5-6), we implemented a multi-step CPG for-
malization approach, in which we designed the system to set boundaries around
each of the aspects of the CPG formalization. Each aspect is implemented as a sep-
arate autonomous component in a CPG formalization pipeline. The disambiguation
algorithm is integrated into the CPG formalization pipeline as an autonomous com-
ponent. The system is based on the Unstructured Information Management Archi-
tecture (UIMA) [51] and data interchange between text analysis components which
is performed using the UIMA Common Analysis Structure (CAS)[58]. The core of
the system is the clinical recommendation pattern detection component which is a
rule-based information extraction component. This component is the first level of
our clinical recommendation extraction mechanism; its function is to extract text
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fragments that contain the minimum necessary features of the clinical recommenda-
tion type in question. Extracting clinical recommendation based on the minimum
necessary features follow the top-down approach [119] where only general rules that
cover as many possible instances of clinical recommendation need to be defined,
which means rules that have high coverage and poor precision. Because general ex-
traction rules tend to be in small numbers and simple to define, the rule authoring
task is a good fit for the medical experts who usually lack extensive knowledge in
rule authoring. To further simplify the rule authoring task for the medical expert
we used UIMA Ruta [80] as it has a defined rule-based language with the ability to
build rules against the text as well as against the semantic annotations of the text.
We also defined a process of four steps to structure the effort required. The human
modeller might need to do multiple iterations of these four steps to either increase
the accuracy of rules or to author extraction rules for multiple clinical recommenda-
tions.We implemented the proposed formalization system in JAVA and integrated
it with the GDL editor [110]. we evaluated the accuracy of the drug recommenda-
tion knowledge extracted by our system. To build our gold standard for the drug
recommendations to measure against, we used all sentences from the “Management
of chronic pain. A national clinical guideline” CPG that contain medication and a
disease, then we manually selected the sentences that are medication recommenda-
tion. Our evaluation was based on measuring the precision, sensitivity/recall and
specificity of the extracted drug recommendation rules form the above CPG. The
precision, sensitivity/recall and specificity are measured based on the correctness of
our system in finding instances for the UIMA Ruta patterns defined by the med-
ical expert. We achieved a precision of 72.5%, a sensitivity/recall of 76.8% and
specificity of 97%.

8.2 Limitation and Future Directions

The following sections outline directions of future work related to the results presented
in this thesis that were not in the scope of this work.
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• Find the optimal window size for the Word sense disambiguation components:

Investigating different approaches of using dynamic windows size for algorithms pre-
sented in Chapter Section 4.3 and 4.4 and measure how it impact the disambiguation
accuracy in order to find the an optimal window size.

• Increase the precision of the CPG formalization system:

The precision is impacted by the size and the quality of our training data set; in the
presented example we used a training data set made of 126 sentences which is small
to provide high precision. This issue could be lessened by feeding the outputted rules
of the system back to the training data set, a step that requires a minor manual
tagging of which rule are correctly extracted and which ones are wrongly extracted.

• Increase the sensitivity/recall of the CPG formalization system:

The sensitivity/recall is impacted by how we split our CPG into smaller text chunks,
e.g. in the presented example we split CPG into sentences, but some drug recommen-
dations within the CPG have the drug and the medication located in two separate
sentences, and therefore, these ones are missed by our extraction rules. This issue
could be lessened by changing the size of our unit of analysis from one sentence to
two consecutive sentences or to the whole paragraph, but such a modification would
hurt the precision unless we add more rules to handle cross sentences extraction.
Different cross sentences extraction approaches can be applied. One approach would
be to perform cross sentence extraction when a sentence only contains one part of
the clinical recommendation such as a sentence with only a disease, followed by a
sentence that only contains the other part of the clinical recommendation such as a
sentence with only a medication. This approach is very conservative and would not
impact the precision of the in-sentence extraction rule; Incorporating other cross
sentences extraction approaches that have more coverage would likely interfere with
other in-sentence extraction rules. Therefore, with every cross sentence extraction
approach we need to evaluate the cross sentence extraction precision gain to the
in-sentence precision loss.
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Appendix A

Glossary

A.1 Betweeness centrality

Betweenness is a metric of a node’s centrality within a graph. Betweenness centrality
for a node v in a graph G, is equal to the number of shortest paths from all vertices to
all others that pass through v.

A.2 Page Rank

Page Rank is an algorithm to compute a numeric value that represents the importance
of a page present on the web. When one page links to another page, it is casting a vote for
the other page. Importance of the page that is casting the vote determines the importance
of the vote. Importance of each vote is taken into account when a page’s Page Rank is
calculated.

A.3 Formalize

The Oxford Dictionary defines formalize as “Give a definite structure or shape to”. In
this thesis formalize is the execution of the process that generate a structured computer
interpretable guideline from a narrative clinical practice guideline.
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A.4 Formalization activities

Formalization activities are the tasks that collectively compose the clinical practice
guideline formalization process.

A.5 openEHR Archetypes

Archetypes are the keystone of the openEHR architecture. They are the models
used for the capture of clinical information into a machine readable specification. Each
archetype is a computable definition, or specification, for a single, discrete clinical concept.
The specification is expressed in Archetype Definition Language (ADL).
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Appendix B

UMLS Semantic Network

The next two sections list the hierarchy of the types and the relations of the UMLS
[67] semantic network.

B.1 Semantic Types

Physical Object
→ Organism
→ → Plant
→ → Fungus
→ → Virus
→ → Bacterium
→ → Archaeon
→ → Eukaryote
→ → Animal
→ → → Vertebrate
→ → → → Amphibian
→ → → → Bird
→ → → → Fish
→ → → → Reptile
→ → → → Mammal
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→ → → → → Human
→ Anatomical Structure
→ → Embryonic Structure
→ → Anatomical Abnormality
→ → → Congenital Abnormality
→ → → Acquired Abnormality
→ → Fully Formed Anatomical Structure
→ → → Body Part, Organ, or Organ Component
→ → → Tissue
→ → → Cell
→ → → Cell Component
→ → → Gene or Genome
→ Manufactured Object
→ → Medical Device
→ → → Drug Delivery Device
→ → Research Device
→ → Clinical Drug
→ Substance
→ → Chemical
→ → → Chemical Viewed Functionally
→ → → → Pharmacologic Substance
→ → → → → Antibiotic
→ → → → Biomedical or Dental Material
→ → → → Biologically Active Substance
→ → → → → Neuroreactive Substance or Biogenic Amine
→ → → → → Hormone
→ → → → → Enzyme
→ → → → → Vitamin
→ → → → → Immunologic Factor
→ → → → → Receptor
→ → → → Indicator, Reagent, or Diagnostic Acid
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→ → → → Hazardous or Poisonous Substance
→ → → Chemical Viewed Structurally
→ → → → Organic Chemical
→ → → → → Nucleic Acid, Nucleoside, or Nucleotide
→ → → → → Organophosphorus Compound
→ → → → → Amino Acid, Peptide, or Protein
→ → → → → Carbohydrate
→ → → → → Lipid
→ → → → → → Steroid
→ → → → → → Eicosanoid
→ → → → Inorganic Chemical
→ → → → Element, Ion, or Isotope
→ → Body Substance
→ → Food
Conceptual Entity
→ Idea or Concept
→ → Temporal Concept
→ → Qualitative Concept
→ → Quantitative Concept
→ → Functional Concept
→ → → Body System
→ → Spatial Concept
→ → → Body Space or Junction
→ → → Body Location or Region
→ → → Molecular Sequence
→ → → → Nucleotide Sequence
→ → → → Amino Acid Sequence
→ → → → Carbohydrate Sequence
→ → → Geographic Area
→ Finding
→ → Laboratory or Test Result
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→ → Sign or Symptom
→ Organism Attribute
→ → Clinical Attribute
→ Intellectual Product
→ → Classification
→ → Regulation or Law
→ Language
→ Occupation or Discipline
→ → Biomedical Occupation or Discipline
→ Organization
→ → Health Care Related Organization
→ → Professional Society
→ → Self-help or Relief Organization
→ Group Attribute
→ Group
→ → Professional or Occupational Group
→ → Population Group
→ → Family Group
→ → Age Group
→ → Patient or Disabled Group

B.2 Semantic Relations

Is a
Associated with
→ Physically related to
→ → Part of
→ → Consists of
→ → Contains
→ → Connected to
→ → Interconnects
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→ → Branch of
→ → Tributary of
→ → Ingredient of
→ Spatially related to
→ → Location of
→ → Adjacent to
→ → Surrounds
→ → Traverses
→ Functionally related to
→ → Affects
→ → → Manages
→ → → Treats
→ → → Disrupts
→ → → Complicates
→ → → Interacts with
→ → → Prevents
→ → Brings about
→ → → Produces
→ → → Causes
→ → Performs
→ → → Carries out
→ → → Exhibits
→ → → Practices
→ → Occurs in
→ → → Process of
→ → Uses
→ → Manifestation of
→ → Indicates
→ → Result of
→ Temporally related to
→ → Co-occurs with
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→ → Precedes
→ Conceptually related to
→ → Evaluation of
→ → Method of
→ → Conceptual part of
→ → Issue in
→ → Degree of
→ → Analyzes
→ → → Assesses effect of
→ → Measurement of
→ → Measures
→ → Diagnoses
→ → Property of
→ → Derivative of
→ → Developmental form of
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Appendix C

MSH-WSD Dataset

The next two sections list the terms and acronyms of the MSH-WSD dataset [72]
formatted as follow:

[Term or acronym] → [UMLS Concept unique identifier] - [UMLS Concept Description]

C.1 Terms

Adrenal → C0001625 - Suprarenal gland
Adrenal → C0014563 - therapeutic epinephrine
Arteriovenous Anastomoses → C0225984 - Structure of anatomic arteriovenous anasto-
mosis (body structure)
Arteriovenous Anastomoses → C0684204 - Surgical construction of arteriovenous shunt,
NOS
Astragalus → C0039277 - Tibial tarsal bone
Astragalus → C0330845 - Plants, Astragalus
B-Cell Leukemia → C0023434 - Well-Differentiated Lymphocytic Lymphomas
B-Cell Leukemia → C2004493 - Lymphocytic Leukemias, B-Cell
Borrelia → C0006033 - Genus Borrelia (organism)
Borrelia → C0024198 - Steere’s disease
Brucella abortus → C0006304 - Brucella melitensis bv. Abortus
Brucella abortus → C0302363 - infection; Brucella, abortus
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Callus → C0006767 - Callus, Bony
Callus → C0376154 - Skin callus
Cardiac pacemaker → C0030163 - supplies cardiac pacemaker
Cardiac pacemaker → C0037189 - Structure of sinoatrial node (body structure)
Cell → C0007634 - THE CELL
Cell → C1136359 - Telephones, Cellular
Cement → C0011343 - Dental Cementum
Cement → C1706094 - Resins, Adhesive, Orthodontic Bracket
Cholera → C0008354 - Vibrio cholerae infection
Cholera → C0008359 - Vaccines, Cholera
Cilia → C0008778 - Cilium, NOS
Cilia → C0015422 - Structure of eyelashes (body structure)
Coffee → C0009237 - Coffee, NOS
Coffee → C0085952 - coffee <Coffea>
Cold → C0009264 - Temperatures, Cold
Cold → C0009443 - VIRAL UPPER RESPIRATORY INFECTION
Cold → C0024117 - respiratory tract; disorder, obstructive, chronic
Compliance → C0009563 - Volume Change to Pressure Change Ratio
Compliance → C1321605 - Treatment Compliance
Cortex → C0001614 - Disorder of adrenal cortex (disorder)
Cortex → C0007776 - Structure of pallium (body structure)
Cortical → C0001613 - Suprarenal cortex
Cortical → C0007776 - Structure of pallium (body structure)
Cortical → C0022655 - Structure of cortex of kidney (body structure)
Crack → C0040441 - tooth; fracture
Crack → C0085163 - Rocks - cocaine
Crown → C0010384 - Total Dental Crowns, Temporary
Crown → C0226993 - Tooth Crowns
Digestive → C0012238 - Digestive tract function, NOS
Digestive → C0012240 - Systema digestorium
drinking → C0001948 - use; alcohol
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drinking → C0684271 - Drinkings
Eels → C0013671 - Order anguilliformes (organism)
Eels → C0677644 - Spectroscopy, Electron Energy-Loss
ERUPTION → C0015230 - Spots [D]
ERUPTION → C1533692 - Tooth Eruptions
Erythrocytes → C0014772 - Whole Blood Erythrocytic Cell Counts
Erythrocytes → C0014792 - Reticuloendothelial System, Erythrocytes
Exercises → C0015259 - Physical exercises (regime/therapy)
Exercises → C0452240 - Therapy, Exercise
Familial Adenomatous Polyposis → C0032580 - Polyposus, Familial Multiple
Familial Adenomatous Polyposis → C0162832 - POLYPOSIS, ADENOMATOUS IN-
TESTINAL
Fish → C0016163 - SECTION C FISHES
Fish → C0162789 - Techniques, FISH
Follicle → C0018120 - Ovary follicle
Follicle → C0221971 - Hair Follicles
Follicles → C0018120 - Ovary follicle
Follicles → C0221971 - Hair Follicles
Gamma-Interferon → C0021740 - Type II Interferon, Recombinant
Gamma-Interferon → C0021745 - type II interferon
Ganglion → C0017067 - Neural Ganglion
Ganglion → C1258666 - Myxoid Cysts
Glycoside → C0007158 - Steroids, Cardiotonic
Glycoside → C0017977 - Glycosides [Chemical/Ingredient]
Haemophilus ducreyi → C0007947 - virulent; bubo
Haemophilus ducreyi → C0018481 - Hemophilus ducreyi
Hemlock → C0242872 - Hemlocks
Hemlock → C0949851 - Tsugas
Heregulin → C0626201 - SMDF
Heregulin → C0752253 - Sensory-and-motor-derived factor
Hybridization → C0020202 - Hybridizations, Genetic
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Hybridization → C0028602 - Nucleic Acid Hybridizations
INDO → C0021246 - Indomethacin product (substance)
INDO → C0021247 - Netherlands East Indies
Iris → C0022077 - Iris, NOS
Iris → C1001362 - Plants, Iris
LABOR → C0022864 - Obstetric Labor
LABOR → C0043227 - Working, function (observable entity)
Lactation → C0006147 - Nursing
Lactation → C0022925 - Lactation, NOS
Language → C0023008 - Languages
Language → C0033348 - Programming Languages
Laryngeal → C0023078 - voicebox
Laryngeal → C0023081 - PROSTHESIS, LARYNGEAL (TAUB)
Lawsonia → C0752045 - Lawsonia McOrist et al. 1995
Lawsonia → C1068388 - Plants, Lawsonia
Leishmaniasis → C0023281 - Leishmaniosis
Leishmaniasis → C1548483 - Vaccines, Leishmaniasis
lens → C0023308 - Lens disorders
lens → C0023317 - Structure of lens of eye (body structure)
lens → C0023318 - Lenses
Lupus → C0024131 - vulgaris; lupus
Lupus → C0024138 - lupus; discoid
Lupus → C0024141 - Systemic lupus erythematosus, unspecified
lymphogranulomatosis → C0019829 - Sarcoma;Hodgkins
lymphogranulomatosis → C0036202 - syndrome; Schaumann
Malaria → C0024530 - Unspecified malaria (disorder)
Malaria → C0206255 - Vaccines, Malarial
Medullary → C0001629 - Suprarenal medulla
Medullary → C0025148 - Myelencephalon
Milk → C0026131 - Milk, NOS
Milk → C0026140 - Mother’s milk (substance)
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Moles → C0027960 - Skin Moles
Moles → C0324740 - Talpidae
Murine sarcoma virus → C0026399 - Virus, Moloney Sarcoma
Murine sarcoma virus → C0026630 - Sarcoma Viruses, Murine
NEUROFIBROMATOSIS → C0085113 - Watson disease
NEUROFIBROMATOSIS → C0162678 - Syndromes, Neurofibromatosis
Nurse → C0006147 - Nursing
Nurse → C0028661 - Sr - Nursing sister
Nursing → C0006147 - Nursing
Nursing → C0028677 - Nursings
Parotitis → C0026780 - parotitis; infectious
Parotitis → C0030583 - Parotitis, NOS
Pharmaceutical → C0013058 - Pharmaceuticals
Pharmaceutical → C0031336 - Pharmacy (field)
Phosphorus → C0031705 - Phosphorus, NOS
Phosphorus → C0080014 - Phosphorus, Dietary [Chemical/Ingredient]
Phosphorylase → C0017916 - Phosphorylases [Chemical/Ingredient]
Phosphorylase → C0917783 - Polyphosphorylase
Plague → C0032064 - Yersinia pestis; infection
Plague → C0032066 - Vaccine, Plague
Plaque → C0011389 - Tooth plaque
Plaque → C0333463 - Senile Plaques
Platelet → C0005821 - thrombocytes
Platelet → C0032181 - Whole Blood Platelet Counts
Pleuropneumonia → C0026934 - Pleuropneumonia
Pleuropneumonia → C0032241 - Pleuropneumonias
Pneumocystis → C0032305 - Pulmonary pneumocystosis (disorder)
Pneumocystis → C0597258 - Pneumocystis species (organism)
Polymyalgia Rheumatica → C0032533 - Syndrome, Forestier-Certonciny
Polymyalgia Rheumatica → C0039483 - POLYMYALGIA RHEUMATICA
posterior pituitary → C0032009 - Posterior Pituitary Glands
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posterior pituitary → C0032017 - Posterior pituitary hormones (substance)
Potassium → C0032821 - Potassium, NOS
Potassium → C0162800 - Potassium, Dietary [Chemical/Ingredient]
Projection → C0016538 - PROJECTIONS PREDICTIONS
Projection → C0033363 - Thought projection
Radiation → C0851346 - Rays
Radiation → C1522449 - Therapy, Radiation
Respiration → C0035203 - Ventilation, NOS
Respiration → C0282636 - Respiration, Cellular
Retinal → C0035298 - Tunica interna of eyeball
Retinal → C0035331 - Vitamin A Aldehyde
Root → C0040452 - Tooth Roots
Root → C0242726 - Roots, Plant
SARS → C1175175 - Severe Acute Respiratory Syndrome [Disease/Finding]
SARS → C1175743 - Urbani SARS-Associated Coronavirus
SARS-associated coronavirus → C1175175 - Severe Acute Respiratory Syndrome [Dis-
ease/Finding]
SARS-associated coronavirus → C1175743 - Urbani SARS-Associated Coronavirus
Schistosoma mansoni → C0036319 - Schistosoma mansonus
Schistosoma mansoni → C0036330 - schistosomiasis; Schistosoma mansoni
Semen → C0036563 - Zygotes, Plant
Semen → C0036614 - Seminal Plasma
sex factor → C0015435 - Transfer Factors, Resistance
sex factor → C0036881 - Sex Factors
Sodium → C0037473 - Sodium, NOS
Sodium → C0037570 - Sodium, Dietary [Chemical/Ingredient]
Staph → C0038160 - Staphylococl infectn,unspcf
Staph → C0038170 - Staphylococcus, NOS
STEM → C0162731 - STEM
STEM → C0242767 - Stems, Plant
Sterilization → C0038280 - Sterilization for infection control
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Sterilization → C0038288 - Sterilizations, Reproductive
Strep → C0038395 - Streptococcus infection
Strep → C0038402 - Streptococcus, NOS
Synapsis → C0039062 - synaptic junction
Synapsis → C0598501 - Synapsis, Chromosomal
THYMUS → C0040112 - Thymus gland
THYMUS → C0040113 - Thymus, NOS
THYMUS → C1015036 - Thymus Plants
Tolerance → C0013220 - Tolerances, Drug
Tolerance → C0020963 - Tolerance, Immune
tomography → C0040395 - Tomography (procedure)
tomography → C0040405 - X-Ray Tomography, Computed
Torula → C0010414 - TORULOSIS
Torula → C0010415 - Torulas
Ventricles → C0007799 - Ventricles, Cerebral
Ventricles → C0018827 - Ventricular
veterinary → C0042615 - veterinary medicine (field)
veterinary → C0206212 - Veterinary Technicians
Wasp → C0043041 - Wasps
Wasp → C0258432 - Wiskott-Aldrich Syndrome Protein [Chemical/Ingredient]
Yellow Fever → C0043395 - YF - Yellow fever
Yellow Fever → C0301508 - Yellow fever vaccine product

C.2 Acronyms

AA → C0001972 - Anonymous, Alcoholics
AA → C0002520 - aminoacid
ADA → C0001457 - EC 3.5.4.4
ADA → C0002456 - Dental Association, American
ADH → C0001942 - Oxidoreductase, Alcohol-NAD+
ADH → C0003779 - Vasopressin, Arginine
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ADP → C0001459 - Pyrophosphate, Adenosine
ADP → C0004374 - Processing, Electronic Data
Ala → C0001898 - L-Isomer Alanine
Ala → C0002563 - Pentanoic acid, 5-amino-4-oxo-
Ala → C0051405 - Fatty Acid cis, cis, cis 18:3 n-3
ALS → C0002736 - spinal; sclerosis, lateral (amyotrophic)
ALS → C0003372 - Serums, Antilymphocyte
ANA → C0002463 - Nurses’ Associations, American
ANA → C0003243 - Factors, Antinuclear
BAT → C0006298 - Tissue, Brown Adipose
BAT → C0008139 - Order Chiroptera (organism)
BLM → C0005740 - BLM
BLM → C0005859 - Syndrome, Bloom-Torre-Machacek
BPD → C0006012 - Personality Disorders, Borderline
BPD → C0006287 - ventilator lung; newborn
BR → C0006137 - Brazil (geographic location)
BR → C0006222 - Bromides [Chemical/Ingredient]
BSA → C0005902 - Surface Areas, Body
BSA → C0036774 - Serum Albumin, Bovine [Chemical/Ingredient]
BSE → C0085105 - Self-Examinations, Breast
BSE → C0085209 - Spongiform Encephalopathy, Bovine
Ca → C0006675 - IV, Coagulation Factor
Ca → C0006754 - California Aldasoro et al.
Ca → C0006823 - Canada (geographic location)
Ca → C0019564 - Horn, Ammon’s
CAD → C0011905 - Diagnosis, Computer-Assisted
CAD → C1956346 - Disorder of coronary artery (disorder)
CAM → C0007578 - Molecules, Cell Adhesion
CAM → C0178551 - Membranes, Chorioallantoic
CCD → C0008928 - Scheuthauer-Marie-Sainton syndrome
CCD → C0751951 - Syndrome, Shy-Magee
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CCl4 → C0007022 - Tetrachloromethane (substance)
CCl4 → C0209338 - Small Inducible Cytokine A4
CDA → C0002876 - Dyserythropoietic Anemias, Congenital
CDA → C0092801 - Cladribine product
CDR → C0011485 - Deoxyriboside, Cytosine
CDR → C0021024 - Regions, Hypervariable
CH → C0008115 - PRC
CH → C0039021 - SZ
CI → C0008107 - CL
CI → C0022326 - Republic of Cote diIvoire
CIS → C0007099 - Preinvasive Carcinoma
CIS → C0162854 - Commonwealth of Independent States
CLS → C0265252 - Syndrome, Coffin-Lowry
CLS → C0343084 - Systemic Capillary Leak Syndrome
CNS → C0028654 - Specialists, Clinical Nurse
CNS → C0927232 - Systems, Central Nervous
CP → C0007789 - paralysis; cerebral
CP → C0008925 - Uranostaphyloschisis (disorder)
CP → C0033477 - Propionicibacterium acnes
CPDD → C0008838 - Platinum, diamminedichloro-, (SP-4-2)-
CPDD → C0553730 - Pyrophosph cryst-unspec
CRF → C0010132 - CRH-Corticotrophin rel horm
CRF → C0022661 - Unspecified chronic renal failure
cRNA → C0056208 - RNA, Complementary [Chemical/Ingredient]
cRNA → C1321571 - Nurse anesthetists
CTX → C0010583 - Zytoxan
CTX → C0238052 - Xanthomatosis, Cerebrotendinous [Disease/Finding]
DAT → C0002395 - simple senile dementia
DAT → C0114838 - Transporters, Dopamine-Specific Neurotransmitter
DBA → C0025923 - Mouse, Inbred DBA
DBA → C1260899 - red cell; aplasia, congenital
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dC → C0011485 - Deoxyriboside, Cytosine
dC → C0012764 - Washington, DC
DDD → C0011037 - TDE
DDD → C0026256 - Ortho,para-DDD
DDS → C0010980 - Sulphadione
DDS → C0085104 - Targetings, Drug
DDS→ C0950121 - Wilms’ tumour and nephrotic syndrome with pseudohermaphroditism
DE → C0011198 - Delaware (geographic location)
DE → C0017480 - GM
DI → C0011848 - diabetes; insipidus
DI → C0032246 - Ploidy, NOS
DON → C0012020 - Norleucine, 6-diazo-5-oxo-
DON → C0028652 - Vice President for Nursing
eCG → C0018064 - Gonadotropins, Equine [Chemical/Ingredient]
eCG → C1623258 - Electrocardiography NOS (regime/therapy)
EGG → C0013710 - Eggs (edible) (substance)
EGG → C0029974 - X-bearing ovum
EM → C0014921 - Estramustine [Chemical/Ingredient]
EM → C0026019 - Microscopy.electron
EMS → C0013961 - Services, Medical Emergency
EMS → C0015063 - Sulfonate, Ethylmethane
Epi → C0014563 - therapeutic epinephrine
Epi → C0014582 - Pidorubicin
ERP → C0008310 - X-ray gastrointestinal ERCP
ERP → C0015214 - Potentials, Evoked
FA→ C0015625 - Short Limb Dwarfism-Saddle Nose-Spinal Alterations-Metaphyseal Stri-
ation Syndrome
FA → C0016410 - Vitamin M
FAS → C0015683 - Synthase, Fatty Acid
FAS → C0015923 - syndrome; fetal, alcohol (dysmorphic)
Fe → C0302583 - Iron, NOS
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Fe → C0376520 - Iron, Dietary [Chemical/Ingredient]
FTC → C0041713 - USFTC
FTC → C0206682 - Well-Differentiated Follicular Carcinoma
GAG → C0017346 - Genes, gag
GAG → C0017973 - Mucopolysaccharides
Gas → C0016204 - Wind symptom (finding)
Gas → C0017110 - Gases [Chemical/Ingredient]
HCl → C0020259 - muriaticum acidum/hydrochlor
HCl → C0023443 - reticuloendotheliosis; leukemic
HGF → C0021760 - Plasmacytoma Growth Factor
HGF → C0062534 - Scatter Factor
HHV 8 → C0036220 - Skin cancer, Kaposi’s sarcoma
HHV 8 → C0376526 - Virus-HHV8
Hip → C0019552 - Regio coxae
Hip → C0022122 - Os ischii
HIV → C0019682 - Virus-HIV
HIV → C0019693 - Unspecified human immunodeficiency virus [HIV] disease
HPS → C0079504 - oculocutaneous albinism
HPS → C0242994 - Infections, Hantavirus
HR → C0010343 - HRV
HR → C0018810 - Rates, Heart
IA → C0021487 - Intra-Arterial Injections
IA → C0022037 - Iowa (geographic location)
Ice → C0020746 - Water Ice
Ice → C0025611 - Tina
Ice → C0534519 - P45
Ion → C0022023 - Ions [Chemical/Ingredient]
Ion → C0022024 - Physical medicine iontophoresis -RETIRED-
IP → C0021069 - Precipitations, Immune
IP → C0021171 - Syndrome, Bloch-Sulzberger
ITP → C0021540 - Triphosphate, Inosine
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ITP → C0043117 - Werlhof’s syndrome
JP → C0022341 - JPN
JP → C0031106 - Prepubertal periodontitis (disorder)
MAF → C0079786 - MAF
MAF → C0919482 - Transcription Factors, Maf
MBP → C0014063 - Proteins, Myelin Basic
MBP → C0065661 - MBP
MCC → C0007129 - Tumor, Merkel Cell
MCC → C0162804 - MUTATED IN COLORECTAL CANCERS
MHC → C0024518 - MHC
MHC → C0027100 - Myosin Heavy Chains [Chemical/Ingredient]
MRS → C0024487 - Spectroscopy, MR
MRS → C0025235 - Syndrome, Melkerson Rosenthal
NBS → C0027819 - Neuroblastomas
NBS → C0398791 - Syndrome, Nijmegen Breakage
NM → C0025033 - NM
NM → C0027972 - NM
NPC → C0028587 - Pores, Nuclear
NPC → C0220756 - Vertical Ophthalmoplegias, Supraoptic
OCD → C0028768 - reaction; obsessive-compulsive
OCD → C0029421 - osteochondrosis; dissecans
OH → C0028905 - Ohio (geographic location)
OH → C0063146 - OH
Orf → C0013570 - Sore mouth (ovine)
Orf → C0079941 - Regions, Protein Coding
ORI → C0206601 - United States Office of the Assistant Secretary for Health Office of
Research Integrity
ORI → C0242961 - Replication Origins
PAC → C0033036 - SVE
PAC → C0949780 - PACs (Chromosomes)
PAF → C0032172 - Thrombocyte Aggregating Activity
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PAF → C0037019 - Syndromes, Dysautonomia-Orthostatic Hypotension
PCA → C0030131 - p-Chloroamphetamine [Chemical/Ingredient]
PCA → C0030625 - PCA
PCA → C0078944 - PCA - Pt controlled analgesia
PCA → C0149576 - Structure of posterior cerebral artery (body structure)
PCA → C0429865 - Principal Components Analysis
PCB → C0032447 - POLYCHLOROBIPHENYL CPDS
PCB → C0033223 - Procarbazine [Chemical/Ingredient]
PCD → C0022521 - Triads, Kartagener
PCD → C0162638 - type I programmed cell death
PCP → C0030855 - Phenol, pentachloro-
PCP → C0031381 - Piperidine, 1-(1-phenylcyclohexyl)-
PCP → C0032305 - Pulmonary pneumocystosis (disorder)
PEP → C0031642 - Phosphoenolpyruvate [Chemical/Ingredient]
PEP → C0135981 - Peplomycin [Chemical/Ingredient]
PHA → C0030779 - PHA
PHA → C0031858 - vulgaris Lectins, Phaseolus
pI → C0022171 - Points, Isoelectric
pI → C0812425 - S-Phase Fraction
POL → C0017360 - pol genes
POL → C0032356 - Poland (geographic location)
PR → C0034044 - RQ
PR → C0034833 - Receptors, Progestin
PVC → C0032624 - vinylchloride polymer
PVC → C0151636 - VPC’s
RA → C0002893 - refractory; anemia
RA → C0003873 - Systemic rheumatoid arthritis
RA → C0034625 - Radium, NOS
RB → C0035335 - Retinoblastomas
RB → C0035930 - Rubidium, NOS
RBC → C0014772 - Whole Blood Erythrocytic Cell Counts
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RBC → C0014792 - Reticuloendothelial System, Erythrocytes
rDNA → C0012931 - Recombinant DNA
rDNA → C0012933 - ribosomal DNA
RSV → C0035236 - Viruses, Respiratory Syncytial
RSV → C0086943 - virus, Rous sarcoma
SCD → C0002895 - Sickling disorder due to hemoglobin S (disorder)
SCD → C0085298 - sudden; cardiac death
SLS→ C0037231 - spastic quadriplegia-congenital ichthyosiform erythroderma-oligophrenia
syndrome
SLS → C0037506 - Sulfuric acid monododecyl ester sodium salt
SPR → C0164209 - TACR1
SPR → C0597731 - Surface Plasmon Resonances
SS → C0039101 - Synoviomas
SS → C0085077 - Syndrome, Sweet’s
TAT → C0017375 - tat Genes
TAT → C0039341 - Trans-Activator of Transcription of HIV
TAT → C0039756 - Thematic Apperception Tests
Tax → C0039371 - Taxes
Tax → C0144576 - TAX
TEM → C0040975 - Triethylenemelamine [Chemical/Ingredient]
TEM → C0678118 - Transmission Electron Microscopy
TLC → C0008569 - TLC
TLC → C0040509 - Total lung capacity (TLC)
TMJ → C0039493 - TMJ - Temporomandibular joint
TMJ → C0039496 - TMJPDS-Temprmand jt pn dys syn
TMP → C0040079 - TMP
TMP → C0041041 - Trimethoprim [Chemical/Ingredient]
TNC → C0076088 - TNC
TNC → C0077400 - Troponin-C
TNT → C0041070 - Trinitrotoluene, device (physical object)
TNT → C0077404 - Troponin-T
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TPA → C0032143 - TTPA
TPA → C0039654 - TPA (tetradecanoylphorbol acetate)
TPO → C0021965 - Tyrosine Iodinase
TPO → C0040052 - TSF
TRF → C0021759 - TRF (T cell replacing factor)
TRF → C0040162 - TRH-Thyrotrophin rel horm
TSF → C0021756 - T-stimulating factor
TSF → C0040052 - TSF
TYR → C0041484 - Tyrosinase
TYR → C0041485 - Tyrosine, L-isomer
US → C0041618 - USS - Ultrasound scan
US → C0041703 - USA - United States of America
WBS → C0004903 - Wiedemann-Beckwith-Combs syndrome
WBS → C0175702 - WS
WT1 → C0027708 - WT1
WT1 → C0148873 - WT33


	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Context and motivation
	Contribution to knowledge
	Structure of manuscript

	CPG Formalization - Review
	Definitions
	Clinical Practice Guidelines 
	Computer-interpretable Guidelines 
	Information Extraction

	Introduction 
	Rule-based vs ML Information Extraction

	CPG Formalization System
	Stepper 
	GEM
	Document Exploration and Linking Tool / Addons (DELT/A)


	Text Disambiguation - Review
	Introduction
	WSD Task Description
	Supervised WSD
	Knowledge-based WSD
	Knowledge sources for WSD
	Unified Medical Language System

	Mapping biomedical text to UMLS concepts
	MetaMap

	Evaluation data set 

	Disambiguation using UMLS 
	Introduction
	Background and Related Work
	Using UMLS Semantic Network
	Algorithm Evaluation

	Using UMLS Metathesaurus 
	Algorithm Evaluation

	Analyzing the impact of UMLS relations on the Word Sense Disambiguation accuracy 
	Similarity-based unsupervised WSD 
	Graph-based unsupervised WSD 
	Methods
	Results and Discussion 

	Summary

	Tools and Technologies used
	Introduction
	UIMA 
	UIMA Ruta
	openEHR
	Guideline Definition Language (GDL)
	Summary

	Putting it all together: The CPG formalization system
	Introduction
	Methods
	XML parsing
	Text cleansing
	Medical Concept tagging
	Medical Tags Disambiguation
	Clinical recommendation pattern detection 
	Step 1) Set text analysis boundaries
	Step 2) Cluster UMLS semantic types
	Step 3) Structuring clinical data
	Step 4) Clinical recommendation semantic relations


	Results and Discussion 
	Summary

	The CPG formalization system Scalability
	Introduction
	Methods
	Scaling out
	Scaling up
	Clinical Action Palettes 


	Results & Discussion
	Summary

	Discussion and conclusion
	Summary of Contributions
	Limitation and Future Directions

	Bibliography
	Glossary 
	Betweeness centrality
	Page Rank 
	Formalize 
	Formalization activities
	openEHR Archetypes

	UMLS Semantic Network 
	Semantic Types 
	Semantic Relations

	MSH-WSD Dataset
	Terms 
	Acronyms


