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ABSTRACT

In order for practicing engineers to have confidence in the finite
element method (FEM), there is a need for verification that the method
gives results which consistently agree with experimental data on
structures exhibiting a wide range of failure modes. Also, in order for
the practicing engineer to use the nonlinear FEM, the cost and time
constraints must not be exceeded.

In this study a simple concrete constitutive relationship, oriented
in the principal sfrain directions, has been developed, which has been
found to be adequate, when incorporated into a finite element program,
to closely predict the behavior and failure mechanisms of beams and
panels.

Predicted behavior of orthogonally reinforced panels in which
failure modes vary from ductile steel yielding, to one layer of steel
yielding, to brittle failure of concrete is compared to the behavior
observed in tests on panels exhibiting these various failure modes. It
is shown that the ultimate strength of shear panels failing by at least
one layer of steel yielding, can be closely predicted using equilibrium
considerations alone, if the post-cracking compressive strength
criterion developed herein is adopted.

Predicted behavior of beams, which exhibit different failure
mechanisms as the shear span to depth ratio is varied, is compared to
the behavior observed in the laboratory for specimens in which the
failure modes vary from ductile flexural failures, to shear-compression
failures, to diagonal tension failures, to arch and bearing failures.

The effects, on the analysis, of tension softening of concrete at

iv



cracks, tension stiffening of concrete segments between the cracks,
secondary cracking, compressive strain softening, concreté confinement,
shear stiffness of cracked concrete and bond-slip at concrete/steel
interfaces are examined. The influence of modeling parameters such as
the order of the element, order of numerical integration and mesh size
is discussed. Recommendations on the parametric values of concrete
characteristic properties, which produce reliable predictions of
behavior for practical applications, are made. Insights gained during
the analysis into the behavior of shear critical beams are discussed.

It 1is showﬁ that, for reliable predictions, the descending branch
of the tensile stress-strain curve must be modelled and the variation of
the shear modulus of cracked concrete with crack strain must be

represented.
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CHAPTER 1

INTRODUCTION

1.1 Finite Element Analysis of Reinforced Concrete

The design of simple reinforced concrete structures is usually
performed following approximate or empirical procedures prescribed in
codes of recommended practice to satisfy safety and serviceability
requirements. The design of complex structures, such as offshore oil
platforms, nuclear containment structures, high rise buildings and long
span bridges, requires the prediction of the behavior of these
structures under load from a knowledge of the basic properties of the
constituentvmaterials. Predicting the response of structures to loads
and imposed deformations involves two interrelated tasks: (1) modelling
the structure as a system of discrete structural elements interconnected
at joiﬁts or nodal points to determine how the load is shared among the
different elements, usually called 'global analysis'; and, (2)

predicting the response of each individual structural element under its

share of the applied load, usually called 'member analysis'. Depending

upon whether the objective is a global analysis or member analysis, the
finite element chosen may be large, such as beam, column or panel type
elements; or small, such as plane stress, plate bending or three-
dimensional solid elements representing portions of an assumed
continuum.

The vast majority of global structural analyses in engineering
offices follow traditional patterns - linearized, simplified models in
which the reinforced concréte system is assumed to be uncracked,

homogeneous and isotropic. The internal forces and moments calculated



from these models are then used to design the members based on ultimate
strength using the code provisions which in turn have been based on
simplified models and synthesis of experimental data. Special and
complex structural problems are often solved using intuitive judgement
and/or tests on small scale models. The FEM (i.e. finite element
method), because of its ability to take into account the conditions of
equilibrium, compatibility and nonlinear material behavior, is a
valuable analytical tool which can be used to: (1) directly predict the
structural response in the entire load range up to failure; (2) gain
greater understanding of the behavior so that simpler but realistic
models can be developed; and, (3) study the effects of important
parameters on member behavior thus providing a firmer basis for code
provisions.

However, in order for practicing engineers to have confidence in
the FEM, there is a need for verification that the method gives results
which consistently agree with experimental data for a wide range of
geometric and material parameters. Also, in order for the practicing
engineer to use the nonlinear FEM, the cost and time constraints must
not be exceeded. The cost and time involved in the»application of the
nonlinear FEM must be competitive with other possible approaches, such
as a testing program, or perhaps just using a larger factor of safety in
design. Thus there is a need to determine the influence of various
parameters used in the numerical analysis in prediecting the behavior so

that individual analyses can be tuned to the desired accuracy.

1.2 Objectives of this Study

The objectives of this study are:



1. To formulate finite elements and to develop simple constitutive
models which are adequate, when incorporated into a finite element
program, to closely predict the behavior of beams and panels in which
failure modes vary from ductile flexural failures, to shear compression
failures, to diagonal tension failures, to arch action and bearing
failures.

2. To verify thg applicability of the models by comparing the
predicted behavior to the behavior observed in the laboratory for
specimens which exhibit these various types of failure modes.

3. To study the effects (on the analysis) of bond slip, tensile
strain softening, tension stiffening, compression softening, secondary
cracking, multiaxial stress conditions and the shear stiffness of the
cracked concrete, and their importance relative to the various failure
modes.

4, To determine the parametric values of concrete properties and
solution techniques which produce reliable predictions of beam and panel

behavior for practical applications.

1.3 Scope of this Study

This study 1s concerned with the application of the FEM to predict
the behavior of reinforced concrete (hereafter denoted as R/C)
structures and structural members when subjected to in-plane static
loads. The results of this study may, therefore, be used to predict. the
behavior of two-dimensional planar continuum structures which can be
discretized into interconnected elements subjected to in;plane forces,
and to predict the behavior of individual structural members such as

beams, as shown in Fig. 1.1. Displacements are considered small. High



temperature and creep effects are outside the scope of this work.

1.4 Organization of the Thesis

In Chapter 2, fundamentals of the FEM are briefly described;
Specific formulations are developed for concrete, reinforcement and bond
elements based on the principle of virtual work. A numerical analysis
procedure is described.

In Chapter 3, the salient features of the various constitutive
models for concrete and concrete/steel interface behavior that are
available in the literature are discussed. The constitutive models used
in this study are described and the rationale for their adoption is
explained.

In Chapter 4, the behavior of net reinforced concrete elements is
discussed. Simple expressions are developed to estimate the post
cracking compressive strength of concrete. The constitutive models
developed are used to predict the-behavior of shear panels and deep
beams for which experimental results are available.

In Chapter 5, the behavior of R/C beams exhibiting various failure
modes is discussed. The computer program incorporating the simple
constitutive model is used to predict the behavior of some laboratory
specimens exhibiting a wide range of behavior. Required attributes for
the close prediction of behavior are examined. Insights gained from the
analysis into the behavior of beams are described.

In Chapter 6, conclusions derived from the study are given.
Recommendations are made for the material parameters which produce
reliable predictions for practical applications. Recommended areas of

future study are given.



(a) Shallow Beam

| 1

(b) Deep Beam or Large Panel

S
(¢) Shear Wall

FIG. 1.1, Some Structural Types for which This Study is Applicable



CHAPTER 2

FINITE ELEMENT FORMULATIONS

2.1 Introduction

In this chapter, fundamentals of the finite element method (FEM)
are briefly described. Specific formulations are then developed for
concrete, reinforcement and bond elements based on the principle of
virtual work. Where appropriate, finite element models developed herein
are compared to others currently available (ASCE, 1982). Numerical
analysis procedures are described and convergence criteria are

discussed.

2.2 Funadmental Variational Formulation

The principle of virtual work (Dym and Shames, 1973) states that
the necessary and sufficient condition)for equilibrium is that for any
 kinematically compatible displacement field, the external virtual wérk
of the body forces and surface tractions must equal the internal virtual
work. The following derivation follows closely that by Bathe (1982).

Consider a general structure, such as in Fig. 2.1. The external
forces acting on the structure are surface tractions £%, body forces fb,
and concentrated forces F. These forces include all externally applied
forces and reactions. The displaceménts of the structure from the
unloaded configuration are denoted by u and the corresponding
kinematically compatible internal strains are denoted by €. Let virtual
displacements 6# (where 6 denotes 'variation in') produce strains Se.

According to the principle of virtual work, equilibrium exists if



[ setadv = [ sutfdv + | Gustfsds + 5u'F (2.1)
v v s
in which the superscript.t denotes a transpose.

The internal virtual work is given by the left hand side of Eq. 2.1
and is equal to the internal stresses ¢ golng through the virtual
strains € that are kinematically compatible with the imposed virtual
displacements Su. The external virtual work is given on the right side
of Eq. 2.1 and is equal to the external forces fb, £3 and F going
through virtual displacements Su. All bold faced symbols represent
vectors or matrices.

Since the displacement field is assumed to be kinematically

compatible,
€ = Bu ' (2.2)

where B is the matrix differential operator associated with the strain-
displacement equations.

In the finite element analysis, we approximate the body in Fig. 2.1
as an assemblage of discrete finite elements with the elements being
interconnected at nodal points on the element boundaries. The
displacements at any point within a typical element, u, are assumed to
be a function of the n discrete nodal displacements, contained in vector
U (n is the total number of degrees of freedom in the structure).

o™ - g™y (2.3)



where N(®) are the displacement interpolation functions, called shape
functions and superscript (m) denotes element m.

Although all nodal point displacements are listed in U, only the
displacements at the nodes of an element affect the displacements and
strains within that element. Thus, using Eq. 2.2 and Eq. 2.3,

(m)

e(™ - g™

U (2.4)

where B(®) is obtained by appropriately differentiating N(m),

Using the assumption on the displacements within each finite
element, as expressed in Eq. 2.3, we can now derive equilibrium
equations that correspond to the nodal point displacements of the
assemblage of finite elements.’ Equation 2.1 can be rewritten as a sum

of integrations over the volume and areas of all finite elements; i.e.,

(m)t (m), (m) _ (m)t _b(m) ., (m)
ifv(m)ae ¢ Vav /= i fv(m) Su' "/ E Vv
t
+1 suS(™ S g (m) 4 sgty (2.5)
m S(m)

wherem =1, 2, ... k, with k = total number of elements.
Substituting for &€t in Eq. 2.5 by using Eq. 2.4 and for sulm) by

using Eq. 2.3, we obtain,

p(E (@ 4 (@)

t t
sut [z I( ) N(® gb(m) u(m) o o f( )NS(m) S(m) yo(m) 7]
m v " m '

(2.6)



where the surface displacement interpolation matrices 85(®) are obtained
from volume displacement interpolation matrices m®) ig Eq. 2.3 by

specializing to the element surface coordinates and F is the vector of
nodal loads.

Using the notation,

t
Q f()n(m) o(™ gy (™ (2.7)
e
and
)% b(m) , (m) (m)° S(m) ;(m)
=3[ N gp@ym o5 @ Smysm 4 p
m v(m) m S(m)
(2.8)
Eq. 2.6 becomes,
t -

80  [Q-Rr] =0 (2.9)
Since the virtual displacements 85U are arbitrary, Eq. 2.9 can be
satisfied if and omnly if,

¥(U) =0 (2.10a)
where

¥(U) =Q-R (2.10b)



¥ is a function of U because Q is a function of U. Equations 2.10,
which are n simultaneous equations, represent the requirement for
equilibrium for each of the n degrees of freedom. R is the vector of
forces applied externally to the structure. Q is the set of forces
equilibrating the internal stresses (i.e. the forces of resistance of
the structure). In the event that Eqs. 2.10 are not satisfied, it is
useful to interpret the residual vector as an unbalanced force vector.
This provides a convenient physical measure of the error by which the
equations are not satisfied.

If the stress-strain relationship of the material is nonlinear, the
vector of nodal point forces that equilibrate the element stresses
depends nonlinearly on U and Eqs. 2.10 will be nonlinear. Then, it is
necessary to iterate in the solution of Eqs. 2.10.

An incremental step-by-step solution procedure is used in this
study to solve the non~line;r equations. The basic approach in this
procedure is to assume that the solution for the load step 2 is known
and that solution for the load step & + Al is required, where AL is the
load increment. Denoting by U* the correct displacements at load step &

"+ AL, Eqs. 2.10 become,

¥(O*) = 0 = 1+A2Q(U*) - 1+A1R (2.11)

where the left superscript denotes "at load step L + AL".
Assume that the (j—l)St iteration has yielded an approximation for

U* as U(J"1). Then a Taylor series expansion gives,

v(ur) = (o)) +% (3-1) (ox - o¢371)) (2.12)
]

10



Equations 2.12 are approximate because higher order terms are

neglected. Differentiating Eqs. 2.1l1,

2= o 22 : (2.13)

if the external load vector 2+MlR 15 assumed to be independent of U.

Differentiating Eq. 2.7 with respect to displacements, we obtain

(m)
dy (™ (2.14)

29 _ 5 [ g 2o
o0 (m) 20
m v
The stresses in the finite element are expressed as a function of
strains using

5@

- E(e)(m) + °b(m) (2.15)
where E(e)(m) is in general a nonlinear function of strains and Go(m)
are the initial stresses in the undeformed element.

From Eq. 2.15, the expression for incremental stresses, Ad(m), is

obtained as

(m)
2ot™ = 2B pe (2.16a)
- Dt(m)Ae (2.16b)

where Dt(m) is the tangent constitutive matrix for material of element

m. Using Eq. 2.4 to substitute for A€ in Eq. 2.16b in terms of

11



displacements, we obtain

(m) _ p (@
t

(@) g (2.16¢)

Ao B

which yields, at the limit,

(m)
do - p (@)p(m)
5 Dt B (2.164)
90y (m)
Substituting for (Siﬁ from Eq. 2.16d into Eq. 2.14, we obtain,
t
°Q _ (m) " (m)gp(m), (m) _
o ifv<m)3 D B dv K, (2.17)

where K, denotes the tangent stiffness matrix. Denoting

o - pC3D) o ap(d (2.18)

and using Eqs. 2.13 and 2.18, Eqs. 2.12 become,

voxy = 0 = y(ulI™D) 4 g—g (j_l)AU(j) (2.19)
v

Substituting for !(U(J—l)) from Eq. 2.10 and for %% from Eqs. 2.17

(R.'i‘AR.Q(j—l) _ 2.+MR) + XMth(j—l)AU(j) = : (2.20)

which yield the recurrence relation,

LHLL (3-1) pp(3) | A+
t

g - A1 (2.21)

12
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Since Eqs. 2.12 represent only a Taylor series approximation, the
displacement increment correction AU(j) is used to obtain the next

displacement approximation,
A RIS G i D RSN G ) (2.22)

The relations in Eqs. 2.21 and 2.22 constitute the Newton—-Raphson
solution of Egs. 2.1l1.

A modification of the above approach, called 'modified Newton-
Raphson iteration’, can be employed wherein the Eqs. 2.21 will use LK in
place of £+A1K(j—l), Lg being the tangent stiffness matrix corresponding
to any one of the equilibrium configurations. That is, Eq. 2.21 is
approximated as

(3) _ A+AL.  24AR (3-1)

Ly av R Q ' C(2.23)

In the 'inital stiffness method', this will become

LA 1+A£Q(j—1) (2.24)

o aptd) -
where °K is the initial stiffness matrix.
Since an incremental analysis is performed with load steps, the

initial conditions for the first iteration in each load step are

2402 0(0) _ & 2482 (0) _ &

convergence criteria are satisfied.

Q and U. The iteration is continued until the

If the stress-strain relationship is linear, Eqs. 2.10 are linear
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and we obtain

(2.25a)

o
]
w

where

Q== [I(m)n(m)tn(m)n(m)dv(m)] o+ 3 [ B(m)tdodv(m) (2.25b)
m v m
with D(®) being independent of displacements.
One dimensional representations of the three iterative schemes of
Eqs. 2.21, 2.23 and 2.24 are shown in Fig. 2.3a, b and ¢ respectively.
The computer implementation of a typical material nonlinear finite
element analysis procedure is described in Fig. 2.4 as a flow diagram.

The test for convergence of the iterative scheme is carried out on

both the displacements and the equilibrating loads

(3

AU < A (2.26a)

[ty

-1)

lr-o D)
2.26b
TTET] R (2260
where the symbol || || denotes the Euclidean vector norm; Ay, the user

specified tolerance on displacements and kR, the user specified

tolerance on unbalanced forces.

2.3 Isoparametric Element Formulation

The basic procedure in the isoparametric finite element formulation

is to express the element displacements and the element coordinates by



the same interpolation functions using the natural coordinate system of
the element (Zienkiewicz, 1977).
Considering a two dimensional element, as in Fig. 2.2, the

coordinate interpolations are
q
x= I N,x (2.27a)
q
y= L N,y (2.27b)

where x and y are the coordinates at any point of the element and Xy
Yi» i=1, 2, ... q are the coordinates of the q element nodes. The
interpolation functions Ny are defined in the natural coordinate system
of the element £ and 7n, each of which varies from -1 to +1 as they spanr
the element. The fundamental property of the interpolation function Ny
is that its value in the natural coordinate system is unity at node i
and is zero at all other nodes. The interpolation functions can be
constructed for an element with a variable number of nodes by
constructing first the interpolations correspoding to a basic linear
element. The addition of another node then results in an additional
interpolation function and a correction to be applied to the already
existing interpolation functions. The process is further explained in
Appendix A.l1 where shape functions for linear, quadratic and cubic
elements of the Serendipity and Lagrangian families are constructed
using the above procedure.

In the isoparametric formulation (Zienkiewicz et al., 1970) the

element displacements are interpolated in the same way as the geometry.

15
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m q

u = Z Niui (2.28a)
i=1

a q

v = I Nivi . (2.28b)
i=1

where u® and v® are the displacements at any point of the element and
Uy, Vi i =1 ... q are the corresponding element displacements at its
nodes.

The evaluation of the strain-displacement transformation matrix
B(®) in Eq. 2.4 is performed by relating the derivatives in the natural

coordinates to those in global coordinates by the Jacobian operator, J,

d o
- 35 (2.29)
where
0x oy
7= | B (2.30a)
ox oy
on on
! 'a_
d |3
) 3 = X (2.30b)
[ on
5 (2
[ 1 0x
dx 5 (2.30¢)
| 5

for a plane element.

~ ( From Egqs. 2.29, %; is obtained as



2 .ty (2.31)

The inverse of the Jacobian operator exists if there is a unique
correspondence between the natural and giobal coordinates of the
element.

Using Eqs. 2.29 and 2.31, the volume differential dv(™) in the

intergrands of Eqs. 2.5 to 2.8 is written as
dv = det J df dn (2.32)

where det J is the determinant of the Jacobian operator (Zienkiewicz et
al., 1970).

Numerical integration is used to evaluate the integrals in Egqs. 2.5
to 2.8. For example, the expression for Ki(m) in Eq. 2.17 can be

written as

xt(m) = [ ¢™ag an (2.33a)
v

where
t
¢(™ - g(m Dt(m)B(m)det J (2.33b)

since B{®) is in natural coordinates, the integration is performed in
natural coordinates. Using numerical integration, the element stiffness

matrix is now evaluated as

™ - 1 «.q.,. (2.34)

17
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where Gij is the matrix G evaluated at the integration points located at

51 and LEE and @jj are the corresponding weighting factors.

2.4 Formulations of Reinforcing Element and Bond Element

2.4.1 Alternatives for Representations of the Reinforcement

Reinforcement can be represented: (a) as being built into the solid
element, called an embedded formulation; or, (b) as being uniformly
distributed over the concrete element, in which case a composite
concrete-reinforcement constitutive relation may be used; or, (c) as
discrete one dimensional truss or beam elements (ASCE, 1982). Perfect
bond between steel and concrete is usually assumed when using
distributed and embedded representafions of reinforcement (ASCE,

1582). The bond slip phenomenon may be represented in conjunction with
the discrete reinforcement element as: (a) link elements, which consists
of discrete orthogonal springs with no physical dimension and &hich
connect and transmit shear and normal forces at the nodes of the
reinforcement (Ngo and Scordelis, 1967); (b) interface bond elements
which are continuous elements of zero thickness, with the constitutive
relation formulated in terms of the relative displacements of the nodes
(Ngo, 1975); or as, (c) bond zoné elements of finite dimension (the
thickness being approximately equal to the radius of the reinforcing
bar) wherein the contact surface between the steel and concrete as well
as the concrete in the bond zone are considered to have separate
constitutive felationships (de Groot et al., 1981). Since all the above
bond elements are associated with discrete representations of

reinforcement, the finite element mesh layout is controlled by the
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reinforcement locations.

2.4.2 Formulation of Reinforcing Element

To the author's knowledge, all embedded and distributed
representations for reinforcement that are currently availalbe in
literature assume perfect bond between steel and concrete. An embedded
reinforcement formulation including bond-slip is developed herein.

The virtual work of a reinforcing element to be included in Eq. 2.5

is given by

z f e o A dr
s s s
m
where As is the cross-sectional area of reinforcement; dr is the
differential length; €4 is the strain in reinforcement and Og is the
stress in reinforcement. Considering the reinforcing element, as in
Fig. 2.5, the displacement wg at any point of the element in a direction

tangential to the reinforcing bar is written as
W =w +w (2.35)

where LA is the displacement'of the concrete at that point as
interpolated from nodal displacements using Egqs. 2.28 and Wy is the bond

slip (i.e. the relative displacement between the steel and the

concrete).

From Fig. 2.5,

W =ucos 9+ v sin 6 (2.36)
c
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Let Ub > Up, *o- Ub be p slip degrees of freedom of p nodes located on
1 2 P

the reinforcing element. Then,
w = I H,U (2.37)

where Hj are the shape functions used to interpolate the bond slip at

any point. The strain in the reinforcing steel at any point is
€ = —2 : (2.38)

where dr is the differential length of the reinforcing element. From

Eqs. 2.31, 2.32 and 2.34, and assuming that & does not vary along the

element,

dw

_du dv b
€g = 4r ©O8 6 + ar sin © + ir (2.39)

Considering for simplicity that the reinforcing element is placed

parallel to a natural coordinate axis, say the { axis, the relationships

du Ou

du —Edg +6?dn (2.40a)
ov ov

dv = gz-dg + Eﬁ dn (2.40b)

will reduce to

du gg-di (2.41a)



ov
dv=ﬁd§

. since dn

From Fig. 2.5,

dx
cose—d—r
. _ 4y
sin 0 = ar

"and

dr =‘/dx2 + dy2

Also, since the element is isoparametric,

dx
dx—ﬁgdg
-y
dy = 3¢ ¢

Substituting Eqs. 2.43a and b into Eq. 2.42¢c

2 2
-V + (@

That is,

dr

0
o

.dg

0 when n = a constant (Elwi and Murray, 1980).
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(2.41b)

(2.42a)

(2.42b)

(2.42c)

(2.43a)

(2.43b)

(2.44a)

(2.44b)

NT—
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where the Jacobian for steel element is

(o3
(o

2 )
3, = ‘/(ﬁ) + (5%'-) (2.44c)

Substituting from Eq. 2.44c into Eqs. 2.42a and b,

1 03x
cos @ = T 3% (2.453)
]
=L 4y .
sin 6 = JS K13 (2.45b)
Substituting Eqs. 2.4la and b into Eq. 2.39, and using Eq. 2.44b
dw.
1 (Ou ov b
e, I (ag cos 8 + 57 sin 6 + EE’J (2.46)
Using Eqs. 2.27a, b and Eq. 2.37
FaNi 7
F> <0 u
es=%—<cos9 sin 6 > 0% 1
s 6Ni
@ <0> <@—> A
L i ) B
G {Ub } (2.47)
s h|
wherein 1 =1, 2, ... qand j=1, 2 ... p.
Or,
t —
e =B U (2.48a)

where
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ON 1
. <SE—> <0> dH . ?
BS = 3;-<<cos 6 sin 6> aNi <Ezj>> (2.48b)
<0> <'5§—>
and
bt |
0= vi (2.48c)
Ub

If the tangent modulus of reinforcing steel is denoted as Egt, then the

contribution of the reinforcing element to the tangent-stiffness matrix

£+A£K(j—l) in Eq. 2.17 is obtained, by referring to Eqs. 2.7, as

1

t
K =z [ B®E® 3@ 4 ;4 (2.49)
St o -1 s St S S S

which is partitioned as,

s s
[ kss ksb}

K = (2.503)
ool gy
where,
Gl (o
1 —_ 0 cos © i
=3 [ | %
s m -1 6Ni
{0} {f} sin 6
(2.50b)
6Ni
<Sg—> <0> As
ES <cos O sin 6> 3—-d g
t 6Ni s i
<0> Y



{6Ni
s 1 6274 {0} cos © EEi AS .
Ky < {1 [ N } [ ]Est DT (2.50¢)
{0} {Bg—i} sin 0
oN,
. 1 om, GE> <O A,
k=t / {ag } E, <cos @ sin 6> AN 7 &
m -1 t 0> <> 8
3 (2.50d)
. 1 @H, oH, A
kp, == f {52§} E, Gp> 7 48 (2.50e)
m -1 t s

For reinforcing elements placed along the M coordinate axis,
derivatives with respect to § are replaced by derivatives with respect

to n in Eqs. 2.50a through e, and Eqs. 2.45a and b.

2.4.3 Formulation of Bond Element

The virtual work of the bond element to be included in Eqs. 2.5 is

given by

:) .
z é w 0, dS (2.51)
b
where Sb is the area of contact between concrete and reinforcement and
Op is the bond stress.
The differential length dr of reinforcing steel is related to

differential contact area dS by

24
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= A .
dSb pdr (2.52)
where Ap is the contact area per unit length of reinforcing steel. The

bond stress oy, is related to the bond slip Wy by
o, =D w ' (2.53)

where Db is the local bond modulus.
Substituting from Eq. 2.44b for dr, Eq. 2.53 for Oy and Eq. 2.37

for LI into the expression in Eq. 2.51, the virtual work of bond slip

(V'W'bond) is obtained as

1
W. = & z .
VeWepond w, > [z f {Hj} D <H.> AszdF,] {Ub.} (2.54)
j m-l J
where {Ub } is the vector of element-slip degrees of freedom.

J
The contribution of the bond elements to the tangent stiffness

matrix in Eq. 2.17 is obtained as
b 1
oy = 2 {1 {Hj} Dy, <H A JdE (2.55)

where Dy is the tangent bond modulus.
Thus the combined contribution of reinforcing and bond elements to

the structure tangent stiffness matrix is obtained by modifying Eq.

2.50a to become

s K
ss sb
k = (2.56)
(s+b) [ s s b J
t Lk Itk



2.5 Implementation of Finite Element Formulation

The finite element formulations discussed in this Chapter have been
incorporated into the finite element code FEPARCSS (Elwi and Murray,
1980a, 1980b). The primary modification required to the coding of this
program for this study were:

(a) the generalization of the element library to include both
Lagrangian and variable node elements (See Appendix Al); and
incompatible elements (See Appendix A3);

(b) Eigenvalue analysis capability for a single element or entire
‘structure (See Appendix A3);

(c) the inclusion of the bond element as formulated in Sect. 2.4 (Note
that this required the introduction of an ID array);

(d) the inclusion of the nonlinear concrete constitutive relationships
which will be developed in Chapter 3; and,

(e) provision for the use of the fixed crack procedure (Chapter 5) and
the rotating crack procedure (Chapter 4) in the iterative nonlinear
solution.

A typical finite element model for one-half of a beam structure
with quadratic serendipity concrete elements, embedded primary
reinforcing steel, and embedded stirrups is shown in Fig. 2.6. Bond
elements may be included or excluded with each layer of reinforcing
steel. Where they are included, nodal points along the reinforcement
layer, each with a single slip degree of freedom, must be added. In
Fig. 26 the x's represent such nodal points for quadratic bond elements
on the primary reinforcement in the outer quarter span of the model.

Based on some fundamental studies on cracked reinforced elements

(not included herein but related to the convergence studies of Appendix
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A3), a modelling technique in which steel layers are located through the
concrete element integration points (i.e. Gauss points) has been
adapted{ Thus the stirrups in Fig. 2.6 are lumped on the vertical lines
passing through the Gauss points. The primary reinforcement passes
through the Gauss points in the horizontal direction and the areas of
these layers are proportioned such that their accumulated area equals
that of the primary reinforcement and their centroid coincides with the
centroid of the primary reinforcement.

The suitability, or lack of suitability, of this modelling
téchnique will become evident in the numerical studies undertaken in

Chapters 4 and 5.
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Read control parameters
and structure data

Form element shape
functions and derivatives

Calculate element load
vectors and, using member
connectivity, determine
corresponding global load
vector

Read load control
parameters; calculate load
step vector and total
load vector

Form element stiffness
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form structure stiffness

matrix

/
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the structure stiffness
matrix

.

Solve for (by back
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total displacements

/
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FIG. 2.5. Reinforcing Element and Bond Element
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CHAPTER 3

CONSTITUTIVE MODELS FOR CONCRETE

3.1 Introduction

In reinforced concrete members where the failure mode is ductile as
a result of steel yielding, the constitutive model adopted for concrete
has only a small influence on the prediction of failure load (Bathe and
Meyer, 1982) whereas in the case of brittle failure (such as the shear
failure of beams) the concrete material model has a predominant effect
(Ingraffea and Saouma, 1985). Therefore, in order to be able to predict
the behavior of reinforced concrete beams with different physical
characteristics, proper modelling of the material behavior is
important. However, a number of factors have so far prevented the
evolution of a constitutive model for concrete that is universally
acceptable. The major factors are: |

1. Concrete stress—-strain behavior is inherently complex due to its
dependence on a large number of variables such as the water-cement
ratio, aggregate characteristics, workmanship, curing conditions,
specimen size, temperature, moisture conditions, loading rate and age.

2. Test results show considerable scatter, and for a number of
important conditions, are either unavailable or incomplete. For
example, only limited test results are available for concrete under
multiaxial loading conditions. No test results are available to
determine the post cracking compressive strength of concrete and few are
available for concrete subjected to nonproportional loading.

In this chapter, various constitutive models that are available in

the literature for concrete and concrete/steel interface behavior are
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briefly described. Constitutive models used in the present study and
the rationale for their adoption are explained at the appropriate places

in this review.

3.2 Stress—Strain Relationship for Concrete in Uniaxial Tension

3.2.1 Uniaxial Tension Test

Let us consider the behavior of a plain concrete specimen in a
uniaxial tension test, which is displacement controlled and therefore
stable (Fig. 3.la). By measuring the total elongation of the specimen,
a curve of the type shown in Fig. 3.1b is obtained (Hillerborg, 1985).
Initially, in the prepeak region, microcracking is fairly uniformly
distributed throughout the specimen. When the peak stress is reached a
fracture zone will form somewhere along the specimen, as in Fig. 3.la.
The increasing damage within the fracture zone, when the deformation is
further increased, causes a decrease in resistance within that zone and
thus a decreasing stress in the specimen. This is referred to as
'tensile strain softening'. As the stress decreases the parts outside
the fracture zone are unloaded. Thus the fracture zone does not spread
along the specimen, but is limited to the position where it first
started leading to 'strain localization' (Bazant, 1976). The stress-
strain history in the fracture zone and the remainder of the specimen is
illustrated in Fig. 3.lc. In a completely homogeneous material the
width of the fracture process zone, hc, should theoretically approach
zero, but for concrete this width should be several times the
inhomogeneities, that is, several times the aggregate size (Bazant,
1985).

Because of the strain localization, an objective post-peak tensile
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stress-strain relationship cannot be directly deduced from the stress-
elongation curve since such a relationship will depend on the gage
length used. However, the stress versus crack displacement curve is
independent pf the gage length and is considered an invariant property
of concrete (Hillerborg, 1985).

The area under the stress versus crack displacement (i.e., the
displacement across the fracture process zone) curve is the fracture
energy, GF’ which is defined as the amount of energy consumed by crack
formation per unit area of the crack plame. That is,

w
G = [ MaX 54y (3.1)

F
where dw is the elongation in the fracture zone, ¢ is the corresponding
stress and Woax is the threshold crack displacement at which the stress
has dropped to zero.

In order to aid further discussion on Eq. 3.1 and on concrete

cracking, the fundamental aspects of fracture mechanics are reviewed in

Sect. 3.2.2 (Broek, 1982).

3.2.2 Some Fundamental Concepts in Fracture Mechanics

One of the basic equations of fracture mechanics was developed by
Griffith (1921). The Griffith criterion states that crack propagation
occurs if the energy released upon crack growth is sufficient to provide
all the energy required for crack growth. The condition for crack

growth is

du dw
i " da (3.2)
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where %g is the elastic energy released by change in stress due to an

increment in crack length of da and %g is the energy required for the
formation of increment da of the crack length.

This is illustrated in Figs. 3.2a and b for the case when the ends
of the specimen are fixed against displacement after stressing to a
level . The elastic energy contained in the specimen before crack
extension is given by area OAB of Fig. 3.2b. If the crack extends over
a length da, the stiffness of the specimen will drop to line OCE thus
relieving the average stress to a level (1), The elastic energy
content in the specimen now drops to a magnitude given by area OCB.
Thus crack propagation from a to at+da will result in an elastic energy

release equal in magnitude to area OAC and is equal to the term %g-in

Eq. 3.2.

du

ia in Eq. 3.2 can be looked upon as the crack driving

The term
force, G, and the term %g as crack resistance, R. If R is a constant,
then G must exceed a certain critical value, the critical energy release
rate, for crack propagation to occur. Griffith derived his equation for
glass, which is a very brittle material. Therefore, he assumed that R
consisted of surface energy only. In ductile materials, such as mild
steel, plastic deformation occurs at the crack tip. Much work is
required in producing a new plastic zone at the tip of the advancing
crack. Since this plastic zone must be produced upon crack growth the
energy for its formation can be considered as energy required for crack

propagation. This means that for metals R is mainly plastic energy, as

the surface energy is so small that it can be neglected.
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3.2.3 Fracture Mechanics Application to Concrete

For concrete, no well defined crack tip exists and micro cracks
(and hence 'Griffith flaws') are randomly distributed throughout the
specimen (Willam, 1984). However, somewhat analogous to the plastic
zone in metals, it can be argued that the fracture energy in concrete,
GF’ consists mainly of the energy in the fracture process zone, i.e. the
area under the crack displacement curve obtained from a tension test
such as that shown in Fig. 3.la. Thus, in concrete, GF is the critical
energy release rate, given by Eq. 3.1.

The energy criterion is a necessary criterion for crack extension
and may not be a sufficient criterion. Even if sufficient energy for
crack propagation can be provided, the crack will not propagate unless
the material at fhe crack tip is stressed to its capacity. Hence for
crack propagation to occur, the stress criterion and the energy
criterion have to be fulfilled simultaneously (Broek, 1982).

With the crack band approach proposed by Bazant and Oh (1983a), the
deformation w of the fracture zome is looked upon as being caused by

strains € within the fracture zone. That is,

w = fh° ed? (3.3)
o
The width of the fracture zone, hc, has a very limited influence
upon the behavior of a specimen as long as this width is small compared
to the épecimen size. The exact distribution of £ within the fracture
zone 1s also then not important. Considering € to be uniformly

distributed along the width of the fracture zone, we obtain
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€
G.=h[ "o qe (3.4)

F
0
where h is the assumed width of the fracture zone (i.e. crack band) and
Cut * Wmax/h’

If the stress-displacement relation is idealized with linear

ascending and descending branches as in Fig. 3.3, we obtain
G,=h<f'e (3.5a)

from which €,¢ can be determined for a given h, Gy and f{. The
descending branch of the stress-strain curve representing the reduction

of stress in the fracture process zone is termed 'tension-softening' in

this study. The tension-softening stress, ft £ is given by
s

Fh
]
mn
~—
(]
=]
(a4

) fore <Ke<e¢ (3.5b)
sf ut  cr cr ut

ft =0 for € > sut (3.5¢)
sf

It is incorporated into the material representation adapted for the

study as described in Sect. 3.3.3 and Sect. 3.7.2.2.

3.2.4 Representation of Cracking in Finite Element Analysis

' The crack band approach is used in conjunction with 'smeared crack'
models wherein the cracking is accounted for by changing the isotropic
elastic matrix to an orthotropic one, reducing the material stiffness in

the direction normal to the cracks in the band (ASCE, 1982). 1In
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contrast, the 'discrete crack' models (Hillerborg, 1985 and Ingraffea et
‘al., 1984) assume that the fracture zone consists of only a 'tied'
crack, i.e. a crack of varying width w with the ability to transfer
stresses ¢ according to the o-w curve.

The smeared crack approach offers a number of advantages over the
discrete crack approach in the finite element analysis. These are

1. Redefinition of the topology of the structure is not required.

2. Multiaxial stress conditions can be easily included.

3. Rotation of the principal stress axes during strain softening

can be treated.

Although the discrete crack approach also offers some advantages,
such as the ability to model more realistically the interface shear
transfer and distribution of concrete and steel stresses, the smeared
crack approach is used in this investigation because of its numerical

efficiency.

3.3 Tension Stiffening

3.3.1 Introduction

'In contrast to Sect. 3.2 wherein the behavior of a plain concrete
tension pull specimen was considered, the behavior of a tension member
containing reinforcement is considered in this section. When a
reinforced concrete member is subjected to tension, the phenomenon of
tension stiffening becomes significant. Tension stiffening refers to
the effect that the intact concrete between the cracks has on reducing
the elongation of the reinforcement by virtue of its being bonded to the
steel. The term bond-slip refers to the relative displacement between

the steel reinforcement and concrete in the tangential direction at the
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steel-concrete interface.

The effects of bond-slip which should be included in a realistic
finite element analysis can be classified into two major categories
(Bergan and Holand, 1978): (1) Anchorage bond; and, (2) Tension-
stiffening bond (see Fig. 3.4a and b).

Anchorage bond (Fig. 3.4a) 1is bond stress which is required to
balance the change in steel stress required by statics rather than
compatibility. This situation arises when the reinforced concrete
member is subjected to shear forces and at anchorage zones of
reinforcing bars. In this case, the concrete may be considered to be
held in place while the unbalanced force in the steel bar tends to pull
it out of the concrete.

In the case of tension stiffening bond, both the concrete and steel
are subjected to tension so that primary cracks form. Figure 3.4b shows
the concrete between two such primary cracks. Intact concrete segments
between the cracks carry some tension which is transferred by bond from
steel and the average stress in steel is less than that at the crack
locations. Hence the stiffness of the steel/cracked concrete system is
greater than that due to steel alone. This tension stiffening effect
has been found to be significant in beams, slabs and shell structures
(Scanlon and Murray, 1972; Floegl and Mang, 1982).

In a smeared representation of cracking, tension stiffening bond
cannot be accounted for by the bond elements described in Chapter 2, but
its effects may be included indirectly by using a shallower softening
branch in the tensile stress-strain curve of concrete (Scanlon and
Murray, 1972) or by using an increased stiffness for reinforcement

(Gilbert and Warner, 1978). Anchorage bond is accounted for by using
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bond elements as described in Chapter 2, for which the constitutive
relation is discussed in Section 3.4 (i.e. the local bond stress-bond
slip relationship).

The role of bond-~slip in tension stiffening can be clarified by
considering the tension pull specimen shown in Fig. 3.5 wherein the
characteristic tensile strength is denoted as f{. Two basically
opposing theories have been advanced to determine the stable crack

pattern: 1. slip theory, 2. no slip theory (Beeby (1979); Base (1982)).

3.3.2 Theories to Predict Crack Spacing

3.3.2.1. Slip theory

Consider the situation when the first crack forms in the member,
say at 1 in Fig. 3.5. Since the variation in the tensile strength is
randomly distributed along the specimen, the location of this crack
cannot be determined. Assuming for the present discussion that a
tension cut-off condition prevails, the stresses in concrete will be
reduced to zero at the crack (Fig. 3.5b). However the bond between
steel and concrete counteracts the unloading of the concrete between the
cracks. The distance from the crack at which the stress distribution
remains unaffected by the crack is called the bond length, So (Fig.
3.5b). Since the crack has reduced the average concrete stresses to
below the tensile strength within a distance So from the crack, the next

crack must form outside the region. The minimum distance between cracks

1s thus S,. If two cracks form at a distance greater than 2S, apart,
there will be an area between the cracks where the stress is not
affected by either of the cracks and so another crack can form between

them (Figs. 3.5¢ and 3.5d). Whereas, if cracks form at a lesser spacing
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than 28, the concrete stresses will be reduced over the entire length
between the two cracks and another crack will not form. When all the
cracks have developed, the maximum possible spacing is thus 2S,, and the ;

final crack pattern will consist of cracks having some distribution of

spacings within the range S, < § < 25,.

The bond length, S,» can be related to the bond stress as follows.

t
So Tmaxk T ¢ ft Ac (3.6)
where Tpmax 1S the maximum bond stress; k is a factor to account for the

distribution of bond stresss; ¢ is the diameter of reinforcement; and A

is the area of concrete tributary to a reinforcing bar. Solving for S0

yields,
f'
5, = k; % . (3.7a)
max :
where
A 2
o = K§_= “2 / Ac (3.7b) i
c
and
4 .
k1 =% (3.7¢)

a constant.
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3.3.2.2. No Slip Theory (Base, 1982)

This theory is opposite to the sliﬁ theory. It contends that there
is no slip between steel and concrete at the time the cracks are
developed and the distance S, between the crack and the point where the
stresses remain undisturbed by the cracks is roughly equal to the
concrete cover. (This is approximately what would be obtained by the
application of St. Venant's principle!) Hence, according to this

theory, the minimum crack spacing, S,, is given by

s =¢ C(3.8)

where C 1s the cover distance.

3.3.2.3 Beeby's Theory of Crack Spacing

Beeby (1979) attempted to reconcile the slip and no slip theories
and suggested the following stages in the development of a stable crack
pattern:

(a) The primary cracks form at locations depending on the tensile
strength distribution.

(b) Further loading causes loss of adhesion adjacent to the primary
cracks, transferring load to the ribs of the bar.

(¢) 1Internal cracks form close to the primary cracks.

(d) Further loading causes more internal cracks to form at successively
greater distances from the main crack.

At stage (a), the bond length S, is approximately equal to the
cover. The effect of developments (b), (¢) and (d) is to increase the

bond-length with increase in load.
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Based on the above argument, Beeby offered the following expression

for the average crack spacing, Sm, for a stabilized crack pattern.

¢
: (3.9)

where K; and K, are constants.

Equation 3.9 could be used to determine the average crack spacing
in a reinforced concrete tension member. It has commonly been assumed
that the conditions in the tension zone of a R/C beam are identical to
those in a tension pull specimen. But this is not the case, since the

cracking in a R/C beam is 'curvature controlled', and the primary crack

spacing, S, is given by (Beeby, 1979)
h <8< 2h (3.10)
cr cr

where hcr is the crack height, which is approximately equal to the
distance from the tension face to the neutral axis of the beam.

If the ratio of concrete cover to crack height, C/h is high (as

cr?
in slabs and panels) secondary cracks do mot form since the primary
crack spacing will be less than that given by Eq. 3.9. On the other
hand, if C/hcr approaches zero, second and higher order'cracks will form
as for a tension pull specimen. Thus, for beams Eq. 3.9 can only be
used with K, dependent on C/hcr' Table 3.1 gives values of K1 and K2
for use with Eq. 3.9 (Beeby, 1979) for beams. This equation gives the
stabilized spacing of cracks at a load level that is only slightly

greater than that at which primary cracks form. Equation 3.9 has been

used to determine the tension stiffening effect in beams (Chapter 5).
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3.3.3 Tension Stiffening Relationships

3.3.3.1 Introduction

Once the crack pattern has been stabilized, the tension stiffening
contribution of concrete depends on the bond-slip characteristics of the
steel-concrete interface and the stabilized crack spacing. In this
study, the tension softening of concrete at the cracks and the tension
stiffening contribution of concrete segments between the cracks, have
been combined together and represented by the descending branch of the
tensile stress—-strain curve adopted for concrete. Figures 3.6a and b
illustrate schematically the stress distribution in concrete. Initially
the reduction in tension stiffening occurs due to the increase in the
bond length. Once this bond length has extended to ome half the crack
spacing, further reduction in tension stiffening occurs due to the
reduction in the stiffness of the bond—slib layer.

Similar to the slip theory and the no slip theory, discussed in
Sect. 3.3.2, the tension stiffening contribution of concrete may be
estimated by assuming in turn (1) a zero bond length; and (2) a bond

length equal to one half the stabilized crack spacing.

3.3.3.2 Tension Stiffening Assuming Zero Initial Bond Length

First the tension stiffening contribution is calculated as follows,
assuming: (1) a tension cut-off condition at the crack; and, (2) the
bond length S, is negligible at the onset of cracking (i.e. 'no slip'
theory). At the onéet of cracking, assuming no bond slip, the average
stress in concrete representing tension stiffening, f(ts), is given by

Eq. 3.12‘
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at € = € (3.12)

f(ts) - £
t cr

With increase in loaQiﬁg, the stress and strain in steel
increases. This increases the incompatibility of strains in the steel
and concrete and produces internal cracks in concrete surroundihg the
reinforcement. The greater the steel stress, the larger is the distance
along the reinforcement over which internal cracks are produced. That
is, the 'bond length' increases with loading thus decreasing the tension
stiffening contribution of concrete. It is assumed that this can be
represented by

£(t8) _ £ () (3.13)

where

fs(cr) = stress in steel at the onset of primary cracking, assuming

no stress in concrete

stress in steel at the current load level, again assuming

+h
[]

no stress in concrete.

Equilibrium at the onset of primary cracking requires that

pfscr = £ (1 + p) (3.14)
where n is the ratio of Young's modulus of steel to that of concrete.

Substituting for fgr from Eq. 3.14 into Eq. 3.13,

2
£17 (1 + np)
f(ts) - _t

0T (3.15)
s
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" The relationship between the average tensile strain, €, and the tensile

stiffening stress, f(ts), is obtained as follows.

) g(ts)

£a -5y (g

_'8’s c_ s p
€ = A E = i (3.16)
s's s

Substiting for fg from Eq. 3.15 into Eq. 3.16 and simplifying,

2
) (1 + np) - 1] (3.17)

) f(ts) fé

€
pPE g(ts)

The total tensile stress in concrete, ft’ is obtained as the sum of
the tensile stiffening contribution, f(ts), between the cracks and

tensile softening stress, £, £ at the cracks. That is,
s

£ =08 L ¢ fore > ¢ , (3.18a)
t tsf cr )

subject to
< f! .
ft ft (3.18b)
At the onset of plastic yielding in steel at the crack faces, the
tension stiffening contribution disappears because the tensile capacity

of steel at the crack faces cannot increase any further. This leads to

the constraint given by Eqs. 3.19

£
£ =0 for E§'> € (3.19a)
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where E; is the average strain at which steel yields at the crack. The
value of E; is obtained by substituting the yield strength of steel,

?;, for £ in Eqs. 3.15 and 3.16. From Eq. 3.16,
fl

f
s __t 1+ mnp)
7 (3.19b)

s p2 f; E

The effective area of concrete contributing to the tension
stiffening effect depends on the cover, the spacing and diameter of the
reinforcement, the orientation of the reinforcement, confining
reinforcement if any etc. The CEB/FIP model code recommends the
tributary areas shown in Fig. 3.7b and is used in this study.

For very small steel percentages, fs(cr) might exceed f;, the yield
strength of steel. For this condition, no tension stiffening exists and

the tension softening relationship of Fig. 3.3 is used (See Fig. 3.7a).

3.3.3.3 Tension Stiffening Assuming Bond Length as One Half the Crack

Spacing
Assuming: (1) linear variation of concrete stress along the bond
transfer length; and, (2) the crack spacing is stabilized at twice the

transfer length we can solve for ft as

]
£1+ ftsf
ft i S— for € < €t (3.20a)
f'
£, = Et— for € > e, (3.20b)

Substituting for f, . from Eq. 3.5b into Eq. 3.20a,
s
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f! £f! e -¢
t t ut
fLo= 5+ 5 (8—-—_-8—) fore <e<e (3.21a)
ut cr
The value of E; in this case is again obtained using Eq. 3.16
- _s ft -
e, = (5 - pT) (3.21b)
] ]
Substituting for ft from Eq. 3.2la into Eq. 3.21b,
= ?; fé Eut " E;
€s=E—'2pE [1 + o ] (3.21¢)
s ] ut cr
" Simplifying,
€
T 20 _ - ut
- s £ ' (eut B Ecr)
e, = 7 1 A (3.214d)
Es¥r ~ (e - € )
t ut cr

Equations 3.20 are applicable if the stiffness of the bond slip
layer remains constant.

Figure 3.7a showé schematically the tensile stress—average tensile
strain relationships for concrete for different transfer lengths and
crack spacing. The tension stiffening adopted in this study depends on
the estimated crack spacing (the larger the crack spacing, the greater
is the tension stiffening contribution) and the bond characteristics of
the reinforcement.

Figures 3.8a and b show the relationship of the anchorage bond and
tension stiffening bond in a cracked R/C beam subjected to moment

gradient. It can be seen that the average bond stress is the anchorage
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bond stress and the tension stiffening bond stress augments the
anchorage bond stress to produce a local bond stress which exceeds the
anchorage bond stress. However, this local variation has not been

accounted for, because of the smeared crack approach used in this study.

3.4 Local Bond Stress-Slip Relationship

3.4.1 Mechanism of Bond-Slip Resistance

The bond stress-slip relationship depends on the mechanism of slip
resistance which arises from different sources based on the magnitude of
slip (Gambrova et al., 1982). With reference to a deformed bar embedded
in concrete, for very small values of the average bond stress, 15, the
only mechanism of bond resistance is chemical adhesion which allows
negligible slip. At increasing values of the average bond stress, the
chemical adhesion is destroyed as a consequence of the wedging action of
the ribs which separate the concrete and steei in between the ribs and
transverse cracks from closé to the steel ribs as shown in Fig. 3.9a.
The next mechanism which is developed is due to the interaction between
the steel ribs and the concrete 'teeth' between the ribs. This
interaction induces large bearing pressures at the sloping rib surfaces
and tensile 'hoop' stresses in the annular concrete teeth between the
ribs (Tepfers, 1979). With increasing average bond stress, the
transverse crack size increases, crushed concrete wedges form in front
of the sloping ribs and the increase in hoop stresses induces localized
splitting cracks (longitudinal cracks lying in planes passing through
the bar axis). If no external confinement is provided, the annular
concrete teeth fail in hoop temsion resulting in continuous splitting

cracks as shown in Fig. 3.9b which indicate the 1limit of the bond
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capacity. If adequate confinement is provided, say, by web
reinforcement, the transverse and longitudinal cracks divide the
concrete into blocks which behave like struts and resist further bond
slip. After the failure of these struts, the confinement action
provides a limited bond resistance and is similar to frictiomal
behavior. The ranges of different mechanisms of slip resistance are

shown in the bond stress-slip curve of Fig. 3.10.

3.4.2 Parameters Affecting the Bond Slip Behavior

Tests conducted to determine the local bond stress—-slip

relationship show results with considerable scatter (CEB, 1982b).
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General agreement is lacking among researchers on the relative influence

of various parameters affecting the bond stress-slip relationship.

Consistent with the description of slip resistance (Section 3.4.1), the

following factors are considered significant (CEB, 1982b).

1. The tensile strength of concrete is of major importance if the

bond failure is caused by splitting. Tensile splitting forces are
generated or by the 'hoop tension' described in Section 3.4.1.

2. The compressive strength of concrete at the steel concrete

interface is a major factor since the reinforcement ribs bear against
the concrete "teeth” after chemical adhesion is overcome. If the
resistance of the concrete cover is sufficient to prevent splitting
failure, bar slip can occur only due to cracking and concrete crushing
in front of the ribs, thus leading to a situation conducive to a pull-
out failure. For this failure mechanism the compressive strength is
important.

3. Pressure in the transverse direction affects the bond behavior
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due to its effect on the splitting and compressive strength of concreée
around the reinforcing bars. If the transverse pressure confines the
concrete, it counteracts the splitting forces thus increasing the slip
resistance. It also increases the pull-out resistance by creating a
triaxial compressive stress field in the concrete in front of the
reinforcement ribs. If the transverse pressure is tensile, it reduces
the splitting resistance.

4. The deformations on the surface of reinforcement significantly

influence not only the mode of bond failure but also the bond strength
and stiffness. With increase in the relative rib area (which is
measured by the ratio of volume of steel ribs to the volume of the bar),
the bond strength and stiffness increase as long as the failure mode is
by bar pull out. The higher the relative rib area the more likely it is
that a splitting failure mode occurs. The inclination of the rib faces,
within an interval of 45° to 90° relative to the longitudinal axis of
the bér, has no significant influence on the bond behavior. 1In North
America, deformed reinforcing bars meeting the ASTM specifications have
the same relative rib area.

5. Position of the bars during casting of concrete significantly

influences the bond behavior. Bars cast in a horizontal position show

lower bond strength than bars cast in a vertical position. This can be
explained by an accumulation of porous mortar at the lower half of the

bar and settling of fresh concrete which reduces the effective depth of
corbels of concrete between ribs.

6. Proximity to a crack seems to influence the local bond slip

behavior significantly (Nilson, 1972; Jiang, Shah and Andonian, 1984)

although tests by Mirza and Houde (1979) contradict this claim.
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Other parameters such as concrete cover, aggregate size, bar
spacing, and bar diameter may affect the bond-slip behavior by

influencing any of the factors mentioned above.

3.4.3 Determination of Local Bond Stress—-Slip Relationship

Local bond stress-slip relationships obtained by several
investigators based on tests show considerable scatter. Figure 3.11
shows the local bond stress-slip relationships for unconfined concrete
(fé approximately 35 MPa) obtained by various investigators. Houde and
Mirza (1979) and Shah et al.‘(1981) used tension-pull specimens whereas
Giuriani (1981) and Eligehausen et al. (1982) used pull-out type
specimens with short bond lengths. The trilinear relationship adopted
in this study is also shown in Fig. 3.11. It is consistent with the
description of the mechanism of bond resistance described in Sect. 3.4.1
and offers the advantage that parameters can be easily varied as more
test data become available. 1In the presence of confining reinforcement,
the transition stresses T, and Ty, may be increased by up to 250%, as

indicated by Eligehausen et al. (1982) (Fig. 3.12).

3.5 Behavior of Concrete in Compression

3.5.1 Basic Mechanism of Concrete Under Uniaxial Compressive Stress

Concrete exhibits varying deformation characteristics under
different loading conditions and load levels. A typical stress-strain
curve for concrete under compression is shown in Fig. 3.13. The stress-
strain relation is closely related to the development of microcracking
in concrete. Three distinct stages are observed namely linear,

nonlinear and post-failure. Even before any loads are applied, micro-
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cracks at the interface between coarse aggregate and mortar (called
'bond cracks') exist (see, for example, Mindess et al., 198l1). These
cracks do not apparently extend until the applied load reaches about 307%
of peak value, which is the limit of the linear elastic stage. Above
this stress level, bond cracks begin to increase in length, width and
number resulting in nonlinear response. At about 70%Z to 907 of the peak
load, cracks through the mortar increase noticeably and start bridging
between bond cracks to form continuous crack patterns. The development
of continuous crack patterns does not lead to the immediate loss of load
carrying capacity because concrete at this stage behaves as a highly
redundant structure (Chen, 1985). As successive load paths become
inoperative through bond cracking, alternate load paths are mobilized to
carry the additional load. As the number of load paths decreases, the
intensity of stress on the remaining load paths increases at a faster
rate than the external load. When the number of load paths has been
reduced considerably the stress—strain relation enters the descending
branch.

The above explanation implies that compressive strain softening is
not an inherent material property but is rather a structural property
wherein the proliferation of cracking leads to a reduction in the
effective cross sectional area. This conclusion is evidenced by
experimental findings (Chen, 1985) of splitting tensile modes of failure
under uniaxial compression wherein steeper softening branches are

exhibited with increasing specimen heights, as discussed in Appendix A4.

3.5.2 Basic Mechanism of Concrete Behavior Under Multiaxial Stresses

Compared to the uniaxial compression case, the crack propagation
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process in concrete under multiaxial conditions has not been well-

studied. Qualitatively, the major difference arises in the post peak

~ (post-failure) behavior. Under multiaxial stress conditions, the

possible failure modes include the tensile splitting mode and shear
failure mode which results from the stepwise joining of the areas of
high crack densities. Splitting modes exhibit strain localization. The
shear failure mode under low to moderate confinement has also been shown
to exhibit strain localization (Chen, 1985). Under high confinement

(for which the octahedral normal stress, © is large) strain

oct’
localization does not occur, strain softening has not been observed, and

concrete behaves in a ductile manner.

3.6 Brief Review of Constitutive Models

There are three aspects to the constitutive modelling of concrete
under multiaxial stress conditions:

(1) Failure envelope

(2) Pre-peak stress-strain relationship

(3) Post-peak behavior.

These three aspects of behavior are discussed in the following
subsections. Since this study deals primarily with beams under in-plane
loading, plane stress conditions are assumed and the following

discussion is restricted to these conditions unless indicated otherwise.

3.6.1 Failure Envelope

A widely accepted representation of the biaxial failure envelope
for concrete is that developed by Kupfer et al. (1969, 1973) shown in

Fig. 3.14. The failure surface is expressed individually for the



58
regions of biaxial tension, tension-compression, and biaxial compression

(Kupfer and Gerstle, 1973):

Biaxial tension: Git = fé ;3 i=1, 2 (3.22)
%2

Tension-compression: O = (1 + 0.8 ETJ fé (3.23)
c

Biaxial compression: c = 1+3.65 f! (3.24a)
2¢c 2 c

(1 + a)
clc = aczc (3.24b)

where ¢ = 61/02; Ot and Oic (i = 1,2) are the peak principal stresses
in tension and compression, respectively; and tensile stresses are taken
to be positive with o 2 Oy

The above failure envelope was developed based on experiments on
concrete plates subjected to monotonically increasing proportional
loading. The failure modes (whether tensile splitting or shear) and
their range of applicability are not well delineated. Nevertheless,
Eqs. 3.22, 3.24 and a modified form of Eq. 3.23 are used in the material

description adopted, herein, as will be discussed in Section 3.7.3.

3.6.2 Pre-peak Stress-Strain Relatidnship

3.6.2.1 Introduction

Almost all the constitutive models assume concrete to be
homogeneous in the macroscopic sense such that a continuum mechanics
approach is justified. The stress—strain relationship of a concrete

element, in general, is nonlinear. However, most of the finite element
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analyses to date (ASCE, 1982) use a linear elasticity approach for
modelling material response in the pre-peak stress range. Perhaps this
is due to the difficulties encountered in assessing various parameters
involved with complex material models and in their computer
implementation (Buyukozturk and Shareef, 1985). Significant improvement
in behavior prediction can be obtained when nonlinearities in the
material stress—strain relationship are taken into account.

Most of the available comstitutive models can be included in one of
the following groups:

1. Elasticity based models

2. Plasticity based models

3. Plastic-fracturing type models

4. Endochronic models

3.6.2.2 Elasticity Based Models

Elasticity based models are either of the hyperelastic (Kupfef and
Gerstle, 1973) or of the hypoelastic type (Darwin and Pecknold, 1974;
Elwi and Murray, 1979). Hyperelastic formulations characterize the
total stress-strain relationship in variable secant modulus form whereas
in the hypoelastic formulation incremental stress-strain relationships
are characterized using variable tangent moduli. Hyperelastic
formulations approximate a path independent reversible process with no
memory, the material response at any instant being a function only of
the current state of stress or strain and not of load history. The
hypoelastic formulation approximates a path dependent, irreversible
process with limited memory (Buyukozturk and Shareef, 1985), the

material respomse at any instant being a function of the current state
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of strain and the stress path followed to reach that strain.

Kupfer and Gerstle (1973) devised a hyperelastic isotropic total
stress—strain relation, based on variable secant bulk and shear moduli,
expressions for which were derived from tests on concrete specimens
under various combinations of biaxial stresses. They obtained a good
match with experimental data at low values of stress, but a poor match
at high values of stress and in the tension compression stress field.

Another isotropic total stress—strain model for concrete under
biaxial loading was developed by Romstad, Taylor and Herrmann (1974).
Rather than utilizing continuous curves to represent the degradation of
concrete, their model uses a number of damage regions, in which the
material properties are altered to match the decrease in stiffness at
higher stresses, as shown in Figs. 3.15a. Within each region, the
modulus of elasticity and Poisson's ratio are held constant.

An orthotropic constitutive model based on total strains was
proposed by Liu, Nilson and Slate (1972) assuming that principal stress
and principal strain axes coincide at all loading stages. The model
expresses the principal stress, O;, as closed form functions of the
principal strains, the ratio of principal stress, a = 01/02, and
Poisson's ratio, v.

An incrementally isotropic ﬂypoelastic model has been developed by
Gerstle (1981) wherein the constitutive relations are expressed in terms
of tangential bulk and shear moduli which are assumed to vary linearly
as functions of the octahedral normal and shear stresses,
respectively. This formulation was based on decoupling of the
hydrostatic and deviatoric components of the response which contradicts

the material response at high stress levels.
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The hypoelastic model proposed by Darwin and Pecknold (1974) is
incrementally orthotropic and is based on the concept of 'equivalent
uniaxial strain'. This concept provides a method for separating the
Poisson effect from the cumulatiﬁe strain. With this model, the tangent
modqli of elasticity are established separately in the current principal
stress directions, as functions of the state of stress and strain in
each of the current principal stress directions, which form the axes of
orthotropy. For an incremental change in principal stress, Adi, the
change in equivalent uniaxial strain, Aeiu, is given by

Ao

i
Aeiu Ei— (3-25)

where E; are the current tangent moduli. The term Agy,, may be thought

_ of as the strain increment that would exist in one direction for zero

stress in the other direction. The total equivalent uniaxial strains
accumulated in principal stress directions are given by integration over

the loading path:

Aci
€ = z —_ (3.26)
v Ey
load
increments

Material properties and stress corrections are based on the
equivalent uniaxial stress-strain curves. From these curves, the stress
at any strain is given as a function of the total accumulated equivalent
uniaxial strain, the principal stress ratio, and load history. The
equivalent uniaxial stress-strain curves are determined using the peak

stress, the strain corresponding to the peak stress, and the initial
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tangent modulus, all of which are derived from test results. The form
of equivalent uniaxial stress—strain curve used by Darwin et al. (1974)
is shown in Fig. 3.16.
Referring to the material axes as the current principal stress
axes, the incremental constitutive relation is given as (Darwin and

Pecknold, 1974)

. 3 - ' -/ N
dc1 E, v/EIE; 0 de1
a, § =1—i-? WwEE,  E 0 dae, G2D)
P 0 0 %{E1+E2 -2awEE) | Jar,

. / - -4 \ /

The tangent moduli E1 and E2 are determined from the equivalent
uniaxial curves. The shear modulus term is determined such that it is
invariant with respect to coordinate transformation. It is interesting
to note that this incremental constitutive relation is isotropic under
proportional loading if the shape of the uniaxial stress-strain curve is
not altered between regions. That is, with the equivalent uniaxial
stress—strain curve for compression shown in Fig. 3.16, the incremental
stress—strain relationship is isotropic in the biaxial compression
region whereas in the tension-compression region it is orthotropic

because a linear stress—-strain relation is used in tension.

3.6.2.3 Plasticity Based Models

Plasticity based models which include work-hardening are
essentially equivalent to hypoelastic models for the loading process but
they differ in defining the unloading paths (Buyukozturk, 1985). The

plasticity based models can accurately predict inelastic dilatancy and
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hydrostatic pressure sensitivity but damage accumulation and degradation
in stiffness exhibited by concrete under stress reversals may not be
represented satisfactorily. However, this degradation is not crucial in
the prepeak region while it is significant in the post peak region
(Chen, 1985). The basic plasticity model is briefly described in the
following.

The central notion with work—-hardening plasticity models is the

existance of a yield function of the form

F (6, k) =0 ' (3.28)

where k is a 'hardening' parameter (Zienkiewicz, 1977), and a flow rule

relating the increments of plastic strain dep to the plastic potential

Q(o,k) as
ge =22, | (3.29)

where A is a proportionality constant. If the hardening parameter, k,
is not a constant, the function F becomes the loading function.

Prager's consistency condition (Chen, 1982) requires that

OF OF OF
dF=&:do’1+SG;+...+ﬁ'dk=0 (3.30)

With a 'work hardening' material, k is taken to be represented by the

amount of plastic work done during plastic deformation. Thus,

dk = o° de (3.31)
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During an infinitesimal increment of stress, changes of strain are

assumed to be divisible into elastic and plastic parts.

de = de + de
e P

(3.32)

The elastic strain increments are related to the stress increments

by a symmetric elastic constitutive matrix D. After substituting from

Eq. 3.29, Eq. (3.32) becomes

d
do = D [de - 53 1]

Substituting from Eq. 3.31 into Eq. 3.30,

oF oF .
(55) do+3.© tie =0

df = ok p

Substituting from Eq. 3.29 for dep,

Substituting for do from Eq. 3.33,

t

_ (3F _a (3R"p2Q , y 2F St 2Q
dF-—(ao)Dde "(au)Da +A 3z 0 55=0
Solving for A
t
OF
(=2) b ae
A = - oo

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)
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Substituting for A from Eq. 3.37 into Eq. 3.33,

D 24; (g—g) D
do = D -~ s de (3.38a)
(2F) poQ _3F ,t2Q
0o 00 0Jk 00
= Dgpde (3.38b)

The term inside the square brackets is the incremental elastic plastic
constitutive matrix, denoted as Dep in Eq. 3.38b.
In case F = Q, called associated plasticity, the elastic-plastic

constitutive matrix De is symmetric. If incremental plastic work, dk,

P

is determined from a uniaxial test, then
dk = o de (3.39)
y up

where deup is the incremental plastic strain and cy is the uniaxial

stress. Noting that for a uniaxial test,
Flo ,k} =0 =0 + k 3.40
(o, k) g (3.40)

the consistency condition (Eq. 3.30) yields,
do

(325
oo dco de
_OF _ _ vy _ = up (3.41)
0k 09k o€ * g g
up y y
Thus, the term - oF at % in the denominator of Eq. 3.38a can be

ok oo
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do
obtained using associated plasticity as simply (SEX—) which is the slope
‘ up o0c
of the uniaxial stress versus plastic strain curve. Denoting EEZ— by

up
H', we obtain the incremental elastic plastic stress—-strain relation for

associated plasticity as,

OF OF
p (=) (%) D
:p - p- L) 2" (3.42)
i+ (35 o35

With elastic-perfectly plastic models, H' = O.

In the above derivation, isotropic hardening has been assumed.
Plasticity based models using nonuniform loading surfaces have also been
developed (Chen, 1985).

Murray et al. (1979) have developed a constitutive relationship
based on a three parameter elastic-plastic strain hardening theory for
biaxial stress conditions, in terms of equivalent plastic strains in

tension and compression.

3.6.2.4 Other Constitutive Models

In the plastic-fracturing theory the inelastic behavior is
attributed to microcracking in addition to plastic slip (Bazant and Kim,
1979). The plastic strain increments are obtained using conventional
plastic loading surfaces whereas the fracturing stress decrements are
given by a potential function in the strain space. This theory accounts
for pressure sensitivity, inelastic dilatancy due to microcracking,
strain softening, degradation of elastic moduli due to microcracking and
hydrostatic nonlinearity (ASCE, 1982). The resulting constitutive

relation is incrementally linear but the tangential moduli are
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nonsymmetric.

In the endochronic theory (Bazant, 1976) the basic concept is that
of intrinsic time as a non-decreasing scalar variable representing the
evolution of irreversible damage. This theory is even more
comprehensive than the plastic fracturing theory. Increased realism
obtained by plastic fracturing and endochronic theories are associated
with greater complexities and increased number of material parameters.
Both these theories treat the prepeak strain hardening and post-peak
strain softening as material properties. This is in conflict with the
experimenfal evidence (Chen, 1985) wherein the post-peak behavior is

found to be dependent on the specimen size.

3.6.3 Post-Peak Behavior in Compression and Combined Stresses

As discussed in Sect. 3.5, the post-peak behavior under compressive
and multiaxial loading depends on the failure mode. It was stated that
the tensile cracking failure mode and the localized shear failure mode
exhibit strain softening that is not a material property but a
structural property. Thus in these cases the strain softening moduli
are mesh dependent. Hence the load displacement curve should be traced
in tests rather than the stress—strain relationship. Willam et al.
(1985) developed a Composite Damage Model (CDM) based on a series model
of an intact elastic zone and a localized damage zone as shown in Fig.
3.17. 1In one extreme, the CDM recovers the fracture mechanics postulate
of an invariant fracture energy release rate which introduces a
characteristic size effect responsible for the non-local (i.e. mesh
dependent) format of the constitutive model for the equivalent

continuum. In the other extreme, the CDM reduces to the traditional
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strain-softening approach in which the local fracture energy density is
considered a proper property for describing distributed fracture
occuring in concrete under high confinement. At the present stage of
dévelopment of this model, these two types of failure are distinguished
according to the triaxial failure criterion of Mohr-Coulomb for
distributed shear slip and the major principal stress condition for
localized cleavage. Clearly there is a need for a continuous transition
between these two extreme positions. The Mohr—-Coulomb failure criterion
may predict the shear slip type of failure under the biaxial loading of
tension and compression as long as the maximum tensile strength is not
reached (Chen, 1985). This is contrary to the experimental evidence
which indicates that both the tensile failure and uniaxial compression

failure exhibit strain localization.

3.6.4 Post-Peak Behavior in Tension

The post cracking stress—-strain relationship in tension originally
proposed by Litton (Riggs, 1981) and recently used by Rots et al.
(1985), is analogous to the plasticity based models. The fundamental
concept of this approach is the separation of strain into uncracked
concrete strains and crack strains. The incremental strains, Ag, are
resolved into solid concrete strains, Ae®®, and crack strain increments,
AeCT,

pe = Ae°° + 2eSt (3.43)

Equation 3.43 is analogous to Eq. 3.32. The stresses are based on the

uncracked concrete strains through the uncracked constitutive
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relations. The number and orientation of the cracks are not defined_g

priori, but rather a crack forms perpendicular to the maximum principal

tensile stress when the tensile strength is reached. The formulation is
briefly described as follows:

The global crack strains, €®Y, are obtained by transformation of
local smeared crack strains (in crack axes), e®T, into the global

coordinate system using the strain transformation matrix N.

ef = ;T (3.44)

Then, the vector of crack interface stresses, S°T, is obtained by

transforming the global stress vector, o, as

sf=n o (3.45)

The incremental stresses in global areas, Ao, are related to the
incremental solid concrete strains, Ae®?, through the uncracked concrete
constitutive matrix D®°.

Ao = Dco Aeco

(3.46)
The incremental crack interface stresses, AS®Y, are related to the
incremental local crack strains, Ae®Y, through the matrix of crack

interface stress-strain relationship, DFT.

As®T = p°F peSt (3.47)
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Substituting for Ae€® from Eq. 3.43 and €Y from Eq. 3.44 into Eq.

3.46,

Ao = D°° (Ae - Me®T)

Substituting for Ao from Eq. 3.48 into Eq. 3.45

asT = N° p%° (Ae - me")

Substituting for AS®T from Eq. 3.47 into Eq. 3.49,
cr , cr t _co

p°F 2e°T = N °° (2e - me®)

Solving for Ae®F,

cr _ Nt Dco

Ae - S
p°f + N D°°N

Substituting for Ae®T from Eq. 3.51 into Eq. 3.48,

co t ~co
Ao = [Dco - ?r L f 20 ] e

It can be shown that (Rots et al., 1985) for a single crack

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

orientation, the above formulation will yield the same results as the

formulation in Sect. 3.2.
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3.6.5 Interface Shear Transfer

3.6.5.1 Introduction

Cracking in concrete alters the load-carrying mechanisms of the
structure significantly. Shear, which is transmitted by the concrete
continuum before cracking, is either redistributed or carried across
crack interfaces after cracking. Resistance to the relative
displacement of crack faces parallel to each other, called 'shear slip',
arises from the roughness of the crack faces (termed 'interface shear
transfer', abbreviated herein as IST), and the resistance of the
reinforcement to deformation perpendiéular to its longitudinal axis
(termed 'dowel action'). Also, if the reinforcement is not
perpendicular to the crack, axial stiffness of the reinforcement
contribu;es directly to shear resistance, in addition to the indirect
:esistance it provides by decreasing the crack opening displacement
which contributes to IST. Experimental results (ASCE, 1982 and Park and
Paulay, 1974) and analytical studies (Ottosen, 1978) have shown that IST
resists far more shear than dowel action, because large amounts of slip

are usually required to develop significant dowel action.

3.6.5.2 Physical Behavior at Crack Interface

The basic shear carrying mechanism of a single crack can be
described using Fig. 3.18a and b (Riggs, 1981), where the crack has been
idealized by a sawtooth representation. Application of a minimal shear
stress will cause a free slip, 68, after which the asperities come into
contact. The kinematics of deformation for a rigid sawtooth crack when

the crack surfaces are in contact, is given by
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5, = E»m_na: (3.53a)
in which ét is the relative displacement of the crack faces tangent to
the average orientation of the crack, @, igs the angle of the asperity
from the average orientation, and 6n is the relative displacement
between the two faces normal to the average orientation (See Fig.
3.18a). However the crack surfaces (asperities) are not rigid and
surface deformation of the faces occurs. This additional displacement
due to deformation and shearing off of individual asperities is denoted

by 6_. Thus the total 6t is

g

5§ =86 +86 cota +6 (3.53b)
t s n o g

which is illustrated schematically in Fig. 3.18b.

For small crack openings, when the asperities are enmeshed, the IST
is mainly by the bearing mode (represented by 6g in Eq. 3.53b). When
the shearing stresses are high enough, the bearing mode of resistance is
overcome and the frictional mode of resistance (represented by 6n cot
ao) is the major component of IST. The level of resistance due to
friction depends on the compressive force across the crack. Because of
the irregular surface, as slip occurs the crack must also dilate. .The
dilation is restrained by the axial stiffness of the reinforcement
crossing the crack. Tensile forces in the reinforcement created by the
dilation must be balanced by 'compressive stresses across the crack
which in turn increase the frictional shear capacity.

A number of experiments have been conducted to determine the

influence of various parameters on IST (for a summary, see ASCE, 1982)
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and they indicate that: (1) the initial crack width is the most
important parameter influencing the shear stiffness, (2) rougher crack
surfaces lead to stiffer response and roughness of the crack surface is
somewhat insensitive to the aggregate size; (3) IST increases with
increase in concrete strength until the reinforcement yields. Figure
3.19 (ASCE, 1982) shoﬁs the variation of interface shear stiffness,
KrgTs with the initial crack width obtained by several experimental
investigators (Paulay and Loeber, 1974; Fenwick and Paulay, 1968; Houde
and Mirza, 1972; Jiminez et al., 1978). Jiminez et al. (1978) developed
an expression for the interface shear stiffness as a function of the
normal stiffness, in which the coefficients were determined by a
regression analysis of the test results of the references cited above,
which is given by Eq. 3.54a.

-1

=+ 0.0367] (3.54a)
o]

-7
Kigp = [3.9(w° - 0.002) - 1.09 x 10

in which L/ is the initial crack width in inches, KN is the normal
stiffness in ksi/in. and KIST’ given in ksi/in., is the interface shear
stiffness (i.e., the slope of shear stress-shear slip curve which is

approximately linear). For the case of Ky ==, this is claimed to

reduce to Eq. 3.54b.

-1

Kygp = [3.9(wo - 0.002)] (3.54b)
The normal stiffness, Ky, which is the stiffness of the

reinforcement perpendicular to the crack may include the tension-

stiffening effect.
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3.6.5.3 Analytical Models

A number of analytical models are available to represent IST in
finite element analysis. Fardis and Buyukozturk (1979) developed a
model based on a fundamental analysis of the crack behavior. They
modelled the crack surface 'general roughness' by piecewise parabolic
segments and accounted for the normal stresses that develop as the
transverse reinforcement restrained the dilation. They obtained the
following incremental rigidity relationship for a crack in one
direction:

C
1
(d‘Yij —m—;deii) (3.55)

where Gi4 is the uncracked shear modulus; ay = (Kﬁ + czzb)h/cz in

which Kﬁ, Kb are extensional and dowel stiffnesses per unit area of the
crack, and h is the crack spacing; Bi = czzb/Zﬁ; c1 and cy are constants
to be determined from experiments and are dependent on crack geometry;

dy is the incremental shear strain; deii is the incremental normal

ij
strain; dtij is the incremental shear stress.

The model did not allow for degradation of materials, that is, the
shape of the crack was assumed to remain constant. Thus its
applicability to general structures is limited. Buyukozturk et al.

(1979) also developed a more simplified model based on the stiffness of

the reinforcement, of the form (ASCE, 1982)

¢ =] L + 1 3] (3.56)
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for orthogonally cracked reinforced concrete elements. In Eq. 3.56,
subscripts 1 and 2 refer to the orthogonal crack directions, h is the
crack spacing, KN and KD are the transverse and dowel stiffnesses of the
reinforciﬁg, G is the shear modulus of the uncracked concrete, and B is
Ky/Kigps which is assumed to be a function of the initial crack width.
Bazant and Tsubaki (1980) developed a model for the interface

behavior based on the linearized representations of contact friction and

dilatancy:
(o3 o cY
loge | = -k o *+ec ("nn < 0) (3.57a)
5 =a |6t| + e (cn > 0) (3.57b)

where lontcrl is the absolute value of the shear stresé; ounS" is the
normal compressive stress; ¢ is the 'cohesion'; k, the friction
coefficient; ays the dilatancy ratio, and e is the initial crack
width. 1In this formulation, damage to the crack surface has not been
modelled.

Walraven (1981) investigated analytically the fundamental nature of
the aggregate interlock in concrete. Using a statistical analysis to
determine the size and distribution of aggregates protruding from the
crack surfaces, and assuming a crushing strength for the matrix and a
friction coefficient for the matrix and aggregate, the forces acting
across the crack were computed. This model is well suited for specific

studies on aggregate interlock but not easily amenable for computer

analysis using the finite element method.
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3.6.5.4 Shear Modulus of Cracked Concrete to be used in Smeared Crack

Model

In spite of the availability of the various analytical models
described above, the most common approach in finite element analysis is
to use a post-cracking shear stiffness as a function or fraction of the
uncracked concrete shear stiffness. This is mainly due to the lack of
experimental data on parameters to be used in the models described above
and their complexity. Since the most important parameter influencing
the interface shear stiffness is the crack width (which in a smeared
crack approach is distributed along a tributary length as crack strain),

the cracked shear modulus, G is assumed in this study to decrease

cr?

linearly with normal crack strain (Fig. 3.20).

3.7 Representation of Material Behavior in this Study

3.7.1 Requirements of the Constitutive Model

This study is concerned with reliable predictions of the behavior
of reinforced concrete beams and panels under static loads.

Inaccuracies in predictions may result from: (1) the inaccurate
characterizations of the material behavior; and, (2) the errors involved
in the analytical procedure. The desired accuracy of predictions must
be balanced against the scatter of the test results and the costs
involved in the analysis.

The behavior of concrete is inherently complex. Hence,
constitutive models to describe its full range of behavior tend also to
be complex. A number of constitutive models have been reviewed in Sect.
3.6. Such models become mathematically complex in an attempt to

establish consistency and objectivity from a continuum mechanics
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viewpoint. Yet experience has shown that the classical mathematical
theories have been only partially successful in describing concrete
behavior over its full range. Further, many complex material models
have yielded results which do not properly reproduce failure loads or
failure modes in routine structures (see, for example, Collins et al.,
1985) for which designers require reliable answers and for which
empirical design rules give better results.

The approach taken in this study is to attempt to find the simplest
constitutive relationship possible that can capture those essential
characteristics of concrete behavior which are necessary in order that
the model properly reproduce all observed failure modes, with reasonable
accuracy of failure loads, for a limited class of structures, namely,
net reinforced panels and reinforced concrete beams. Reliability of the
model to achieve the above objectives at reasonable cost is the
paramount consideration.

Since a simple and reliable material characterization for concrete,
which covers its entire range o{ behavior, has proved to be an elusive
goal, the available procedure is to incorporate appropriate experimental
data directly into the analysis (Bathe and Ramaswamy,>1979; Romstad et
al., 1974). Thus the following requirements may be identified for the
material representation in this study:

1. It must be amenable to easy incorporation of standard data
obtained from test specimens.

2. It must cover the entire range of the material behavior for
monotonic time independent deformations.

3. It must capture the major features of the nonlinear behavior.

4. It must be simple, yet be able to predict the behavior of beams



78
and panels, exhibiting a wide range of failure modes, with an accuracy

within the scatter of experimental results.

3.7.2 Adoption of Material Representation

In order to determine the major factors influencing the predicted
behavior of concrete beams and panels, numerical analyses were performed
on a number of sample structures for which test results were
available.

Some of these 'numerical experiments' are described in Chapters 4
and 5 and more details about parametric variations are contained in
Appendix A3. From these analyses the following were identified as being
important factors which must be incorporated into the material
characterisation in order to obtain reliable predictions of behavior.

1. Tensile cracking

2. Tension softening and tension stiffening

3. Variation of shear modulus with tensile strain after cracking

4. Strain hardening at high compressive stresses

5. Post-peak strain softening in compression
A description of the resulting material model is contained in the

following subsections.

3.7.2.1 The Uniaxial Stress—Strain Relationship

The piecewise linear uniaxial stress—strain relationships adopted
in this study are shown in Fig. 3.20a to d. The basic idea for the use
of a multilinear relation was put forth by Romstad et al. (1974) (see
Fig. 3.15). Such a relationship satisfies all the requirements

mentioned in Sect. 3.7.1 and includes consideration of all factors
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listed above. The concrete is assumed to be strained monotonically and
at any given time to be in one of 5 damage regions identified by the
integers -2 to 2 (Fig. 3.20).

Material properties to be determined from standard test specimens
for input into the computer program are: (1) fé, the cylinder
compressive strength; (2) Ec(°), the initial elastic modulus; (3)

Ec(—l), the compressive strain hardening modulus; (4) Ec(-z), the
compressive strain softening modulus (which depends on the compressive
strength, confinement by reinforcement etec.); (5) fé, the uniaxial

direct tensile strength; (6) v, the Poisson's ratio; (7) G, the shear
modulus of uncracked concrete; (8) €at? the strain at which the tension
softening stress is reduced to zero and (9) egt, the tensile strain at

. which the sﬁear modulus of cracked concrete, Gops has reduced to the
minimum value (of 0.05G), if different from €at°

Among the various characteristic properties listed above, only fé,
the uniaxial compressive strength, is readily available. The procedure
for estimating the other remaining properties, in the absence of test
data, is described in Appendix A4. The values of fcu and ftu’ shown in
Fig. 3.20 as the peak compressive and tensile stresses, respectively,
are calculated in the stress computation subroutine using the biaxial
failure envelope to be discussed in Sect. 3.7.3. The tension softening
at crack interfaces, the tension stiffening effect of intact concrete
between the cracks and the shear modulus of the cracked concrete are all
influenced by the same set of physical characteristics such as crack
spacing, concrete/steel interface behévior, area and location of
reinforcement and crack interface behavior. Hence, the values selected

for €.t and egt must be consistent with each other and with the expected



80

physical behavior of the structural system.

3.7.2.2 The Tension Softening Relationship

The tension softening (Sect. 3.2.3) and tension stiffening (Sect.
3.4) effects of concrete are combined and represented by the descending
branch of the tensile stress strain curve of Fig. 3.20, as discussed in

Appendix A4. The tension softening is given by Eq. 3.5.
1
G, = E-f £ h (3.5)

where Gp is the fracture energy expended in the formation of a crack;
fyy 1s the tensile strength; h is the width of the crack band; and, € .
is the strain at the completioﬁ of the fracture process.

Equation 3.5 relates to the formation of a single crack and its
application will lead to a mesh independent load-deflection response of
a specimen containing that crack. However, in R/C beams a number of
cracks form at different spacings in the tension zone based on
parameters such as the depth of tension zone, reinforcement ratio, bond
characteristics of the reinforcement and the statistical scatter in the
tensile strength of concrete. If, in the analysis, these individual
cracks can be reproduced (i.e., if 'strain localization' occurs) then in
Eq. 3.5, h may be taken as the length that is tributary to a Gauss
point.

Although attempts have been made to do so (for example by Rots et
al., 1985), localization has not been obtained in the context of smeared
cracking. Bazant (1985) reports that for very fine mesh layout the

cracking zone localizes into narrow, separate crack bands of single
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element width at their tips only if the loading steps are taken to be so
small that no more than one element cracks during the first iteration of
each loading step. However, the significance of strain localization for
reliable prediction of beam behavior has not been established. Hence,
to obtain objective results independent of mesh refinement (i.e., to
obtain the same load-displacement response in the tension zone
independent of mesh size) in a R/C beam, it is appropriate to use in Eq.
3.5 the crack spacing in place of the characteristics length, h. For
beams the crack spacing may be calculated using Eq. 3.9 and the results

of Beeby (1979) in Table 3.1.

3.7.2.3 The Tension Stiffening Relationship

The tension stiffening effect has been incorporated by modifying
the descending branch of the tensile stress-strain curve. The influence
of tension stiffening decreases with increasing distance from the
reinforcement. As shown in Fig. 3.20, a bilinear descending branch is
used for elements containing réinforcement. For elements not containing
reinforcement_and outside the effective concrete area (i.e. the area of
concrete contributing to the temsion stiffening effect which may be
determined using Fig. 3.7b) a linear descending branch is used with €at
calculated using Eq. 3.5 in which the estimated crack spacing is
substituted for h. For elements inside the effective concrete area but
not containing the reinforcement, the value of €t is increased as
described in Appendix A4. 1In all cases, the tension stiffening is

reduced to zero if the strain in steel at the crack exceeds the yield

strain.
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3.7.2.4 Shear Modulus Relationship

Since the variation of the shear modulus of the cracked c;ncrete is
dependent on the crack width, which in a smeared crack representation
depends on the crack strain, the value of Egt is chosen such that the
crack shear stiffness is consistent with the physical behavior described
in Sect. 3.6.5.2. As discussed in Sect. 3.6.5, the shear modulus of

cracked concrete, G is calculated as a function of the normal tensile

cr?

strain and the shear modulus of the uncracked concrete and is given by

Eq. 3.58a subject to the constraint given by Eq. 3.58b.

£~ 51 .
C.p = (=) ¢ (3.58a)
gt cr
G, > 0.056 (3.58b)
where
Ec(°) ,
C=za+vy (3.58¢)

is the shear modulus of uncracked concrete in the elastic region; €.r is
the tensile strain at which cracking occurs; and, 81 is the current
total normal tensile strain perpendicular to the crack. This relation
is shown in Fig. 3.20.

As discussed in Sect. 3.6.5.2, for small crack openings (i.e. up to
about 0.25 mm (0.01"), as estimated by Laible (quoted by Riggs, 1981)),
the IST is mainly by the bearing mode. When the shearing stresses are

high enough, the bearing mode of resistance is overcome and the

frictional mode of resistance is the major component of IST. The
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variation of crack shear stiffness shown in Fig. 3.19 is based on Eq.
3.54b and is applicable for crack widths exceeding 0.125 mm (0.005")
where frictional mode of resistance is dominant. This corresponds to a
uniform strain of 0.001 for a crack spacing of 125 mm (5"). For this
crack spacing and with fy, as 2.0 MPa (290 psi) and Gy as 125 N/m (0.714

1b/in.), the value of €,¢ computed from Eq. 3.5 is 0.001. This

t
indicates that the bearing mode of resistance is dominant until the
tension softening stress is reduced to zero.

In shallow reinforced concrete beams without web reinforcement (or
with only a small amount of web reinforcement) the crack width is
significantly greater at increasing distance from the reinforcement.
Thus the crack shear stiffness due to frictional mode of resistance is
very small. (This can be deduced from Eq. 3.54a. With increasing
distance from the reinforcement, the normal stiffness provided by the

reinforcement, Ky, reduces with the consequent reduction in crack shear

stiffness). Therefore, for shallow reinforced concrete beams €t is

assumed to coincide with Egt*

For net-reinforced panels and deep beams, the crack spacing is
smaller and the crack width is also smaller and more uniform.
Furthermore, the dominant mechanism of shear resistance in these
structures is through the development of compression struts or
compression fields and IST is not as important as for beams in which
diagonal tension mode of shear failure occurs. Based on numerical

studies of test panels (discussed in Chapter 4), € ¢ may be taken as

g

0.01 for net-reinforced panels and deep beams.
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3.7.2.5 Comment on Uniaxial Material Model

The multilinear representation of Fig. 3.20 encompasses the entire
range of material behavior. It delineates the different stages of
behavior discussed in Sect. 3.5 for uniaxial compression, namely, region
'0' where the behavior is linear and elastic, region '-1' where strain
hardening occurs and region '-2' where compressive strain softening
occurs. It also distinguishes the post cracking stage, namely the
development of the fracture process zone, region 'l', and the fully

cracked stage, region '2°'.

3.7.3 Multilinear Representation of Biaxial Behavior

For uncracked concrete (i.e., damage regions 0, -1 and -2), the
damage level is assumed to be constant and the material properties to be
linear isotropic constants. For concrete cracked in tension (i.e.,
damage regions 1 and 2 in one or both directions) the material is
considered to be orthotropic, with the axes of orthotropy parallel and
perpendicular to the crack.

The assumption that material response may be referenced to
orthotropic local axes parallel and perpendicular to the crack has a
number of advantages.

(a) It recognizes that cracking is the dominant factor in
redistribution of stresses in reinforced concrete beams and panels
and hence makes it easier to capture an essential aspect of the
physical behavior.

(b) It permits an adequate description of material response which can
be described simply, by imposing minor modifications arising from

biaxial test results onto observed uniaxial behavior. That is, fcu
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and ftu may be adjustgd to fit a biaxial failure envelope.

(c) It eliminates the complications which arise when attempting to’
describe complex material behavior relative to invafiant reference
frames. Indeed, if the simple locally oriented description is
adequate to reliably predict behavior of the class of problems
under consideration, which, to the author's knowledge, has not been
accomplished to date, the fact that the description may be
nonobjective or lacking in mathematical consistency for tortuous
load paths become irrelevant.

For uncracked concrete, the incremental stress-strain relation is

given by
do, . () 1 v de
do =< v 1 de (3.59)
2 1 - V2 2
ad -v)
dty, 3 dryp

where Ec(k) is the current tangent modulus (i.e. the modulus depending
on the damage region k, k =0, -1 dr =2); v is the Poisson's ratio,
assumed constant; dél, and d€2 are the principal strain increments and
dcl and d02 are the corresponding principal stress increments. The
incremental stresses are accumulated on the principal axes to obtain the
total stresses.

The total principal stresses 9 and o, are checked against the
biaxial failure envelope given by Eq. 3.22 in biaxial tension and Eqs.
3.24a and b in biaxial compression. In the tension-compression stress

field, the biaxial strength envelope is given by
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2f!
£ = c (3.60)

tu o 2f!
2 c

(5= + ;;—J

1 t
The failure envelope is shown in Fig. 3.21. Once the major principal
stress, 0;, has reached a value of ftu’ concrete is assumed to have
cracked perpendicular to the principal strain direction and is
subsequently treated as orthotropic with the local material axes (i.e.,
the axes of orthotropy), parallel and perpendicular to the crack

orientation. The Poisson's ratio is then set to zero. The post-

cracking incremental stress-strain relation in local axes is given by

(L)
do, E, o | de |
(k)
do, o E 0 e, (3.61)
vy 0 0 Cor 4y,

where Et(l) is the tensile strain softening modulus in damage region &,
L =1o0r 2 (Fig. 3.20); and G.pr is the shear modulus of the crécked
concrete. All subsequent stress computations are performed by
transforming strain incrementé to the 1-2 material directions and then
applying Eq. 3.61. The resultant stress increments are added to the
previous total stresses 1in the 1-2 system.

In the so called 'fixed crack model', once tensile cracking occurs
crack orientation is assumed fixed for all subsequent loading and hence
the orientation of 1-2 material axes are assumed fixed. Whereas, in the
so—called 'rotating crack model' (Akbar and Gupta, 1985; Milford and
Schnobrich, 1984) the axes of orthotropy are reoriented in the principal
strain directions at the beginning of each iteration, i.e., the 1-2 axes

are aligned with respect to the most recent 'average crack direction'
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(Milford and Schnobrich, 1984). In anistropically reinforced panels it
has been shown analytically (Akbar and Gupta, 1985) and experimentally
(Vecchio and Collins, 1982) that crack directions do change, whereas in
unreinforced concrete or concrete reinforced in one direction only, no
definite shift in the crack orientation has been observed. Thus, in
‘this study the rotating crack model has been employed for net reinforced
panels and deep beams (Chapter 4) and the fixed crack models for shallow
beams (Chapter 5).

Once tensile cracking occurs, the Poisson's ratio is set to zero
(Eq. 3.61), i.e. axes 1 and 2 are decoupled. However, at the instant of
crack formation, the stress Oq contains the stresses due to the Poisson
effect amounting to (vEcel)/(l - vz) . Setting the Poisson's ratio to
zero at the instant of cracking lets the stress o, 'rebound' by this
amount. (If oy 1is gompressive it increases in magnitude and if Sy is
tensile, it decreases in magnitude). This rebound is included by

considering that, at the instant of cracking, the stresses become

o, = £, (3.62a)
- (K
o, =E_ ¢, ‘ (3.62b)

The ability of this simple multilinear model to reliably predict

the behavior of beams and panels is demonstrated in Chapters 4 and 5.
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Table 3.1 Constants K; and Ky for use in Eq. 3.9 (From Beeby (1979)

Probability of K, ' Ky
exceedance

Value of c/hcr

0 0.1 0.15 0.2 0.25 0.3

Mean 1.33 0.08 0.04 0.03 0.02 0.01 0.01
207 1.59 0.12 0.07 0.05 0.04 0.03 0.02
5% - 1.86 0.20 0.12 0.09 0.07 0.06 0.04

27 1.94 0.28 0.17 0.13 0.10 0.08 0.06
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T2 Continuous Splitting Cracks:
Indicates Failure if no Confinement
T1| —rttere
Q: Formation of Internal Transverse Cracks
:: Cohesion
3»-
Slip
FIG. 3.10. Schematic Bond Stress-Slip Relationship

(Adapted from Gambrova, 1982)
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FIG. 3.12. 1Influence of Confining Reinforcement on the
Local Bond Stress-Slip Relationship (Adapted from
Eligehausen, Bertero and Popov, 1982)
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Compressive Stress

FIG. 3.13.

Compressive Strain

Typical Uniaxial Stress-Strain Curve for
Concrete in Compression
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FIG. 3.14. Biaxial Strength Envelope (Adapted from Kupfer et al., 1969)
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103



104

FIG. 3.16. Equivalent Uniaxial Stress-Strain Curve in
Compression (Adapted from Darwin and Pecknold, 1974)
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FIG. 3.17. Composite Damage Model (Adapted from Willam et al., 1984)
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FIG. 3.18. Components of Shear Slip at a Discrete Crack
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CHAPTER 4

APPLICATION TO REINFORCED CONCRETE SHEAR PANELS AND DEEP BEAMS

4.1 Introduction

Reinforced concrete shear panels and deep beams are, in practice,
usually designed on the basis of equilibrium considerations alone
(Nielsen, 1984; ACI 318-83; CEB-FIP Model Code, 1978), although design
theories considering the associated compatibility conditions (Vecchio
and Collins, 1982) have been incorporated into the Canadian Code (CSA
A23.3-M84). In this chapter, the physical behavior of concrete elements
reinforced in two brthogonal directions (i.e. net reinforced elements)
under in-plane loads is described.

A hypothesis is presented for estimating the post-cracking
compressive strength of these elements based on the biaxial stress
conditions prior to cracking. Ultimate strength predictions, obtained
using this hypothesis in conjunction with equilibrium considerations
alone, are compared to the test data and are found to be sufficiently
accurate for engineering purposes.

Finite element analyses incorporating the simple constitutive
relationships described in Chapter 3 are described. The finite element
predictions are compared to the behavior observed in tests for shear
panels exhibiting various failure modes. The applicability of the
finite element method, and the constitutive relationships developed
herein, to shear panels having been thus verified, the béhavior of a net
reinforced deep beam (which is comprised of net reinforced concrete
elements) is then predicted using these constitutive relationships and

compared to the behavior observed in the test.
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4.2 Behavior of Net-Reinforced Concrete Elements

4.2.1 Equilibrium of Net-Reinforced Concrete Elements

Consider an orthogonally reinforced R/C panel as shown in Fig. 4.la
subjected to bia#ial stresses in plane x-y. Let p, and Py be the cross-
sectional areas of the reinforcement per unit cross sectional area of
the panel, in the x and y directions respectively. 1In all the ensuing
discussion in this chapter, the subscript notation adopted is as
follows: subscripts x and y are used to denote the coordinate
directions; subscripts ¢ and s are used to denote concrete and steel
respectively; subscripts £ and n are used to denote the major and minor
principal streés directions respectively; subscripts 1 and 2 are used to
denote the major and minor principal strains, respectively. For

example, fc
b4

major principal strain in concrete. Tensile stresses and strains are

denotes the stress in concrete in the x direction; ecl the

assumed positive and the major axis refers to the direction of the
greatest algebraic value.

Considering an element which has unit cross—sectional areas normal
to the x and y axes, equilibrium in the x direction requires that,

referring to Fig. 4.1b,

fx=(1-p)f +p f (4.1)

£ o=f_ +p f (4.2)

Similarly, considering equilibrium in the y direction, we obtain
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£ =£f +p £ (4.2b)

Neglecting the shear stress in reinforcement, moment equilibrium

requires that,
T =f (4.2c)

where f Xy is the shear stress in concrete.

First the case of pure shear is considered.

In order to aid further discussion on the ultimate strength of
panels, expressions for principal stresses are derived. This can most
easily be illustrated using Mohr's circle construction, shown in Fig.
4.2a for the case of applied pure shear. The free body diagrams are
shown in Fig. 4.2b and 4.2c indicating the state of stress in the
panei. The Culmann Diagram is shown in Fig. 4.2d.

Considering equilibrium along the x direction for unit area in the

y direction, we obtain from the free body diagram of Fig. 4.2b,

Py fS =1 cot 0 - fc (4.3a)
x g

Similarly, considering equilibrium along the y direction of the

panel with unit area in the x directionm,

p £ =1 tan - f (4.3b)
y sy cE

Similarly, using the free body diagram in Fig. 4.2.c,
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el
Hh
[]

- T tan 0 - £ (4.3¢)
c
X n

- 7 cot 0 - £ (4.3d)
y n

O
[

Substituting for p f, from Eq. 4.3c into Eq. 4.3a, we obtain,
b3

f = f - 7 (cot 6 + tan ©) (4.4)
c c
n g
Substituting for T tan 6 and t cot & from Eqs. 4.3a and 4.3b into Eq.

4.3c, we obtain,
£ +f =-(p . £ +p_f ) (4.5)

The geometric representaﬁion of Eqs. 4.3 to 4.5 can be seen on the
Mohr's circle of Fig. 4.2a. The total stress state is represented by
the Mohr's circle on the right. The stress state in the concrete (only)
is represented by the Mohr's circle on the left. When the tensile
stress contributions of steel on the x and y planés are added to the

concrete stress state the total stress state is recovered.

4.2.2 Ultimate Strength of Net-Reinforced Concrete Elements in Pure

Shear
Expressions based solely on equilibrium considerations can now be

derived'for the ultimate strength of orthogonally reinforced elements.

In order to simplify the derivation at this point, a tension cut-off

criterion is used for concrete. That is, that cracking occurs on the §
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plane and that fc = 0 after cracking. 1In this case, the post-cracking

form of Eq. 4.5 becomes,

C

f =-(p £ +p_f ) (4.6)
n X s y sy

Dividing Eq. 4.3a by Eq. 4.3b, yields the post—-cracking condition,

tanze = p—-———z (4.7a)

and Eq. 4.4 gives,

T =-f sin 6 cos © (4.7b)
ch _

Interpreting Eq. 4.7a geometrically as shown in Fig. 4.3, and

substituting for sin © and cos 6 in Eq. 4.7b yields

( JPX fsx . pr fs}' ) (4.8)

c
n pf +pf pr +p f
stx ysy XS y s

T =~ f

y

Noting from Eq. 4.6 that the denominator of Eq. 4.8 is - f, , Eq. 4.8
n

becomes,

T = Jprsx pyfsy (4.9)

< . o 4.
Let py px Substituting for prSx from Eq. 4.6,
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y s c y s

1:=pr (-f =-p £ ) (4.10)
y n y

Three post-cracking failure conditions can now be identified by

referring to Eq. 4.6.

(L

(2)

If neither the steel along the x direction nor the steel along the
y direction yilelds, a compression failure of concrete will occur.
Denoting the compressive strength of concrete as fc (a negative
number), and assuming that the stiffness contribution of
reinforcement before concrete cracking is neglible, © will be at

45°, and we obtain from Eq. 4.7b,

fc £
=_-N___¢ .
T ax 2 5 (4.11)
This type of failure can be characterised as being 'brittle' and is

identified as the 'B' failure mode in subsequent discussion.

If concrete failure occurs prior to yielding of the steel in the x

direction, so that only the y direction reinforcement yields,

maximum shear stress at failure will be given by Eq. 4.10, with

f; , the yield strength of steel in y direction, substituted for
y

£ and £ for £ . That is
sy c cn ’

o - pr fsy (-, - o, fsy) (4.12)

From Eq. 4.6
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Hence, if the steel in the x direction has not yielded at failure

it follows that

Although final failure is by crushing of the concrete the yielding
of steel in the y direction provides more ductility than the
"brittle' mode described above. Hence, this mode of failure is

identified as a 'DB' failure mode in subsequent discussion.

(3) If both x direction and y direction reinforcement yield, then, from

Eq. 4.9,

T oax =Jpx 'fs py fs (4.13)
X y '

in which case failure is due to steel yielding and hence the behavior is
characterized as 'ductile' and designated as the 'D' failure mode in

subsequent discussion.

4.2.3 Prediction of Failure Mode for Pure Shear

y» Pxr Eg s 'f's and f_, the failure load and

y X
failure mode can be predicted as follows. Referring to Eq. 4.6, it is

Given the values of p

seen that if fs and f; reach the corresponding yield strengths before
X y
f reaches f., a ductile failure results, i.e. the condition for

C.n

yielding of both layers of reinforcement at failure is given by the
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relationship,

< 1.0 (4.14)

Hence, if Eq. 4.14 is satisfied failure will be by mode D.

If Eq. 4.14 is violated it follows from Eq. 4.6 that failure
involves concrete crushing and steel yields in neither direction or only
in one direction. For the case under consideration (pure shear)
cracking will occur at 45° (assuming the steel is not activated in any

substantial way until after cracking) and it follows from Eq. 4.7a that

Hence, Eq. 4.14 implies that if both fractions exceed 0.5 a compressive
failure will occur without steel yield in either direction. That is,

fallure mode B will occur if

pyfs prsx
—If—clf—> 0.5 and W> 0.5

Failure mode DB will occur if Eq. 4.14 is violated and either py?; or
y
prsx is less than 0.5|fc|.

4.2.4 General Stress Conditions

If biaxial normal stresses, f  and fy are applied in addition to

the shear stresses, these will be subtracted from prs and pyfS
X y

respectively in the above derivations. This follows from equilibrium

considerations represented by Eqs. 4.2. In this case Eq. 4.12 becomes
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-£f)) (4.15)

T =J(p? -f) (o -£) (4.16)

when both steel layers yield. When neither layer yields, the load
capacity is reached when the principal compressive stress reaches the
compressive strength of concrete. For cracked reinforced panels this

load is given by Eq. 4.11 if f and f  are equal.

y

4.,2.3 Plasticity Theory of Net Reinforced Elements

Equations 4.11 through 4.16 represent the basis of plasticity based
methods (Nielsen, 1984) wherein elastic deformations and tensile
strength of concrete are neglected and concrete is assumed to be
perfectly plastic. 1In order to match the experimental results, the
plasticity based methods assume an "effective” concrete strength, f_,
(to be used in Eqs. 4.11 to 4.15 for calculating the ultimate strength)

as a fraction of the cylinder compressive strength. That is
= ! 4.17
fc ¢ fc . ( )

where a is the "effectiveness factor"”.
The effectiveness factor, a, is presumed to account for compressive
strain softening, geometrical effects, size effects, loading conditions,

distribution and orientation of cracks and loading history. The
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necessity to use an effeciveness factor is the principal limitation of
the plasticity based methods. Other significant limitations are: (1)
the neglect of tensile strain softening and tension stiffening which
might lead to inaccurate predictions of failure load and failure mode;
(2) the assumption that the crack shear resistance of concrete is
adequate for the yield condition to be attained (the implication of this
assumption is discussed in the following subsection); and, (3) the

assumption of perfect plasticity in concrete.

4.2.4 Modified Compression Field Theory

The so-called Modified Compression Field Theory developed by
Vecchio and Collins (1982) overcomes most of the limitations identified
in Sect. 4.2.3. 1In this theory, the cracked concrete 1s treated as a
new material with its own stress-strain characteristics. Considerations
of equilibrium, compatibility and average stress-average strain behavior
are included at all loading stages up to failure.

In order to aid further discussion on the average stress—average
strain relationship, expressions for strain transformations are derived
in the following by constructing Mohr's circles of strain. In this
derivation compatibility between steel and concrete is assumed, 1i.e.
bond slip is ignored. Therefore, only the subscripts denoting the
directions are required for strains. The principal stress and the
principal strain axes do not necessarily coincide and subscripts 1 and 2
indicate major and minor principal strains, respectively. Denoting the
orientation of principal strain axes by ©', the relationships
represented by the following Eqs. 4.18 are deduced from the Mohr's

circle construction as described in Appendix A2.
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tan o' = 2 (4.18a)
_XY)
(-=0)
2 17 ¢
tan” 6' = ——7 (4.18b)
1 X
e +e =¢e_ +¢ (4.18¢)

In the Modified Compression Field Théory, the equilibrium requirements
are represented by Eqs. 4.3 and the compatibility requirements are
represented by Eqs. 4.18. Complete stress and strain states in the
panel could thus be calculated for any combinations of applied in-plane
stresses, if the relationship between the principal stresses and
principal strains were known. In order to determine this relationship,
Vecchio and Collins (1982) tested thirty reinforced concrete panels
under uniform stresses. Based on these test results and assuming
cracked concrete as a new material with its own stress-strain
characteristics, they developed expressions relating the principal

stresses and principal strains given by Eqs. 4.19.

B = 1 = (4.19a)
0.85 - 0.27
2
= ! "
an B fc (4.19b)
max
2
€2 €2
£, =f,  [2(59) -89 ] (4.19¢)
n n c c
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£ = t (4.19d)

In the abdve equations, f. is the uniaxial cylinder compressive
strength, eé is the uniaxial strain corresponding to fé in cylinder test
and, fé is the uniaxial tensile strength.

The factor B was introduced by Vecchio and Collins to account for
the apparent degrading effect of the normal crack strain on the
compressive strength of the cracked concrete. The expression for B,
given by Eq. 4.19a, was derived by Vecchio and Collins from a plot of
the maximum value of the principal compressive stress calculated for

each test panel, including those test panels where the failure was due

€
to steel yielding, versus the corresponding strain ratio (Elﬂ, as shown

in Fig. 4.4.

Other major assumptions in the modified compression field theory

are

(1) the principal stress axes and the principal strain axes

coincide, 1i.e.
6 =9' (4.20)

(2) the multiaxial stress conditions before cracking do not
significantly influence the ultimate strength of the panel

(3) the average stress—-average strain relation in steel can be
represented by the bilinear elastic-plastic relationships given by Egs.

4.21.
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£, =E € (4.21a)
X
but £ < (4.21b)
X X
£, = E ey ' (4.21c)
y
but f < f (4.214d)
8 S
y y

where Es is the modulus of elasticity of steel reinforcement.

The effect of the stress in concrete between the cracks (the
tension stiffening effect) is represented by Eq. 4.19d. The tensile
stress in concrete, fcg is set to zero if both the x and y direction
reinforcement have yielded. As shown in Fig. 4.5, which contains points

covering the full range of loading, the test points exhibit considerable

scatter.

4.3 Finite Element Prediction of Panel Behavior

4.3.1 Finite Element Modeling

The behavior of net reinforced concrete elements has been
investigated in this study using the Finite Element Method (FEM). 1In
order to investigate a wide range of behavior, nine test panels were
selected for this study from about thirty panels tested by Vecchio and
Collins (1982).

The material parameters of the selected panels and the observed
failure modes are tabulated in Table 4.1. All the test panels were 70
mm thick x 890 mm x 890 mm. They were reinforced with two layers of

welded wire mesh, with the reinforcement parallel to the edges of the
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panel. The welded wire mesh was made of heat treated smooth wires at 50
mm grid spacing. Brass targets were fixed on the reinforcement at 200
mm grid spacing and the average strains were measured using mechanical
strain gages.

The finite element modelling of the test panel is shown in Fig.
4.6. The panel was modelled by a four noded square serendipity element
with the reinforcement concentrated at Gauss sampling points. For
quadratic serendipity elements with the embedded formulation of
reinforcement, lumping steel into equivalent bars through the Gauss
points is required in order for the cracked element to respond with
uniform strains.) Modeling the panel by only one element is adequate
because the average stress—average strain relationship is of interest
rather than the local stress-strain relationships at different points in
the panel. Bond slip between the reinforcement and concrete is ignored
(i.e. perfect bond assumed). The constitutive relation used for the
steel reinforcement is shown in Fig. 4.7. A strain hardening modulus of
2.0 per cent of the elastic modulus 1is adopted to stabilize the
numerical procedure after steel yielding. The constitutive relation
used for concrete is that described in Chapter 3. To the author's
knowledge, no test results are available wherein the post~-cracking
compressive strength of concrete was determined directly. A hypothesis
for estimating the post cracking compressive strength of concrete is
presented in Sect. 4.3.2. The tensile stress-strain relation adopted
for these panels is discussed in Sect. 4.3.3. The stress computation

subroutine is described in Sect. 4.3.4.



124

4.3.2 Post-Cracking Compressive Strength of Concrete

The bilaxial peak strength envelope for concrete in the tension-
compression stress field is shown in Fig. 4.8 where the data from tests
conducted by Kupfer et al. (1969) are compared to the cracking and post-
cracking strength envelopes proposed herein.

As discussed in Sect. 3.7.3, the peak strengths fcu and ft of Fig.

u
3.20 can be obtained from the biaxial strength envelope illustrated in
Fig. 3.21. 1In this figure line AB represents compressive 'failure' and
line BC represents tensile 'failure'. However, in the tension-
compression zone it has been found that in order to obtain results more
consistent with experimental behavior it is beneficial to introduce a
post-cracking peak compressive strength envelope in addition to the peak
tensile strnegth envelope (i.e. - the cracking envelope). The assumed
peak strength relationships are given below in equation form and are

represented graphically in Fig. 4.8.

A compressive failure is assumed to occur for the condition

lfcnl = £ =f_ (4.22a)

providing the biaxial stress path intersects the envelope in the region

fc £f!
e R oy (4.22b)
cg t

This is represented by line AB in Fig. 4.8.

Cracking 1s assumed to occur when

£ > f (4.23a)
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where ftu is given by,

2£!
feu " F
u c, 26) (4.23b)
[
g

(l1ine BC of Fig. 4.8) providing that the biaxial stress path intersects
the envelope in the region
an é
If I < Io.sfol . (4.23c)
CE t

The proposed post-cracking compressive strength envelope is given by,
£ o=(1.5 - =9 £! (4.234d)

That is, the line BD of Fig. 4.8 defines the post-cracking compressive
strength fcu if the stress path intersects the cracking envelope BC
which establishes the value of ftu' The compressive strength fcu of
Fig. 3.20 is thus modified for any particular Gauss point at the instant
of cracking 1if cracking occurs in the tension-compression stress
field. For the stress path OE of Fig. 4.8, the abcissa of F becomes the
value of four

Equations 4.22 and 4.23 are consistent with the following
hypothesis.

As discussed in Chapter 3, Sect. 3.5, internal microcracks (called
bond cracks) exist in concrete at the cement-aggregate interface even

before any loads are applied. If concrete is subjected to uniaxial
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compression, the stress—strain behavior is linear elastic at low load
levels (up ﬁo about 30 per cent of ultimate) because the bond cracks do
not propagate. With increase in load the bond cracks increase in
length, width and number (Mindess and Young, 1981). The effect of the
tensile stress in the bilaxial tension-compression stress field is to
accentuate this damage by increasing strains normal to the compressive
stress direction, thus reducing the compressive strength. With low
ratios of compressive to tensile stress, macrocracking occurs at low
load levels when the behavior is still essentially elastic. Thus, when
macrocracking occurs the direct tensile strain in concrete between the
macrocracks, caused By the tensile stress, is mostly recovered in plain
concrete because the tensile stress drops. In reinforced concrete,
however, significant direct tensile strain is still present because of
the presence of the reinforcement which prevents the complete
recovery. With continued tensile loading after the formation of
macrocracks the stresses in the reinforcement increase and the stresses
in concrete decrease in the vicinity of the macrocracks. The maximum
local tensile strain in concrete between the cracks cannot, in any case,
-exceed the cracking strain. Hence no increase in the direct tensile
strain causing reduction in the compression strength occurs for tensile
straining subsequent to the intersection of the stress path with the
cracking envelope. This is implied in Eq. 4.23d wherein it has been
assumed that the maximum damage in concrete with respect to the
compressive strength occurs at the onset of tenmsile macrocracking.

The major difference between the expressions for compressive
strength in Eqs. 4.19, proposed by Vecchio and Collins (1982), and in

Eqs. 4.23, proposed in this study, is that Eqs. 4.23 are based on the
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multiaxial stress conditions at incipient tensile macrocracking while

Eqs. 4.19 are based on average tensile strains after cracking.

4.3.3 Tensile Stress—Strain Relation

The tension softening and tension stiffening aspects of cracked
concrete have been discussed in Chapter 3, Sects. 3.2 and 3.3. The
tension softening of concrete at macrocracks and the tension stiffening
effect of concrete segments between the macro-cracks are combined and
represented by the descending branch of the concrete stress-strain curve
in tension. The tension softening contribution is calculated using the
fracture energy release rate and the estimated crack spacing in Eq.

3.5. The tension-stiffening contribution is estimated as follows.

The welded wire mesh used in the test panels is well anchored
because of the cross-welds. Thus, after the onset of cracking, decrease
in tensile stresses in concrete between the cracks due to bond slip is
less for the welded wire mesh reinforcement and the tensile stress
strain relationship will approach the 'no slip' curve, that shown for S,
= 0 in Fig. 3.7. Another factor considered when determining the tension
stiffening is that higher strength was used in the perimeter zone of the
test panels in order to avoid edge failures. This increases the tension
stiffening effect, at least at lower load levels.

When the yield strength of the reinforcement is reached its
stiffness becomes negligible. Thus, the tension-stiffening contribution
is set to zero when at least one layer of reinforcement yields at the
crack locations. The adopted average tensile stress—average strain
relationship, given by the following Eqs. 4.24, is plotted in Fig. 4.5a

and in Fig. 4.5b wherein it is compared to the Vecchio/Collins test data
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and their recommended relationship.

£, = (Gr=e) fuu (4.24a)

1 cr
subject to the constraints,

f =0, if f +p f D>p f (4.24Db)
¢y ¢, y sy y sy

f =0, if £ +p f >p ¥ (4.24¢)
c c X s X s
1 1 X X

In Eq. 4.24a, €.r 18 the tensile strain at which cracking occurs. Eq.
4,24 can be derived directly from the Mohr's circles of Fig. 4.2a and
the condition that fc1 shall vanish when at least one layer of steel

yields.

For percentages and yield strengths of reinforcement used in
Vecchio/Collins shear panels, the constraints of Eqs. 4.24b and c

provide the cut-off for tensile stiffening at E; of Fig. 4.5.

4.3.4 Computation of Stresses in Concrete

The stress computation procedure is shown as a flow diagram in Fig.
4.9. The principal strain axes are taken to be the axes of orthotropy
and constitute the local material axes. The stresses and strains are
computed with respect to the local axes. The stresses and strains with
respect to the global axes are obtained using coordinate
transformation. The directions of orthotropy are not, in general,
constant and 'rotate' based on the relative stiffnesses of concrete and

steel after concrete cracking. This implies that the crack direction
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changes, at least in the average sense. That the crack direction can
change has been confirmed in tests conducted by Vecchio and Collins
(1982) and others, and has been recognized by a number of investigators
(for example, Akbar and Gupta, 1985; Milford and Schnobrich, 1984).
Herein, an explanation of this behavior is given with the aid of Mohr's
circle construction.

Consider a reinforced concrete panel containing different amounts
of reinforcement in two orthogonal directions as shown in Fig. 4.6 but
being loaded in pure shear. Based on equilibrium considerations, Mohr's
circles of stress in concrete and the applied stress condition, similar
to those shown in Fig. 4.2a, can be constructed. As the applied stress
is increased, let it be assumed that the steel layer along the y
direction yields, say at load step '%'. The Mohr's circles
corresponding to this load step can be drawn as shown in Fig. 4.10.

With increase in the applied stress at load step & + AL, the stress in y
direction steel cannot increase because it has already yielded. 1In
order to maintain equilibrium, the compressive stresses in concrete and
the stresses in the steel layer not yielded must increase as can be
deduced from Eqs. 4.4 and 4.5. The Mohr's circle of stresses for load
step £ + Al therefore shows an increase in stresses in concrete and x
direction steel and a decrease in the tensile stress (the concrete
having already cracked), whereas the stresses in the y direction steel
remains the same as in load step . This necessitates a chahge in the
principal axes' orientation, as shown in Fig. 4.10. The shear stress
transferred across 'old' cracks (at load step 'L') by aggregate
interlock makes the rotation of principal axes possible.

The shear modulus, G.,., referenced to the local coordinates, makes
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the rotation of principal axes possible by developing shear stresses
across cracks. As described in Chapter 3, Sect. 3.7.2.4, the shear
modulus of cracked concrete is assumed to be given by,

0.01 - El
] G ; 0.05G < G, <G (4.25)

Gcr = (0.01 - €
cr
where G is the shear modulus of the uncracked concrete.
The axes of orthotropy at any iteration, j, are assumed to coincide
with the principal (total) strain axes in the previous iterate (j-1).

The constitutive matrix relating incremental strains and stresses after

concrete cracking is given by Eq. 4.26

Af r E 0 0 v, Ae;
c cr 1
1
Af = 0 E 0 Asz
€2 ¢ (4.26)
Af 0 0 G Ay
c12 . cr 12

where: E,, is the tangent modulus of cracked concrete in tension,
obtained from Eqs. 4.24; Ec is the tangent modulus of uncracked
concrete; and, G., 1s the tangent shear modulus of cracked concrete
given by Eq. 4.25.

The uniaxial stress-strain relationship is summarized in Fig.
4.11. Since only one element has been used to model the panel, the
compressive strain softening has been ignored and a small positive

modulus is used in order to stabilize the numerical procedure at

concrete compressive failure.
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4.3.5 Numerical Solution Procedure

The standard Newton-Raphson iterative solution procedure has been
adopted. In calculating the tangent stiffness matrix for the
computation of deflections using the Standard Newton-Raphson procedure,
the actual material tangent moduli are used, except that after concrete
cracking, the material modulus perpendicular to the crack direction is
taken to be zero (i.e. Eq. 4.26 with E., = 0 is used for the structure
stiffness calculations but not for stress increment calculations).
Numerical integration with 2x2 Gauss quadrature has been used. The size
of the load step is varied. The first load step is such that concrete
cracking does not occur. Subsequent to concrete cracking, 5 to 10 load
steps are applied until failure is reached. Failure is assumed to be
reached when in 50 iterations the convergence tolerance of 0.001 on the
incremental displacement norm and the unbalanced load vector norm is not
satisfied. Unconverged results are output énd analysed to determine
whether the steel has yielded (fs > ?;) and/or the concrete has
crushed (Ifc | > |fcu]) and thereby to determine the mode of failure.

Thirty get reinforced concrete panels were tested by Vecchio and
Collins (1982), the majority of them in pure shear. Of the thirty
panels tested, only 18 failed in 'proper' failure modes. The remainder
failed at the edges, or the welded wire mesh ruptured at the cross
welds, or the concrete contained voids. Of the 18 exhibiting proper
failure modes, one was tested in uniaxial compression, and one was
reinforced in one direction only; four of the panels failed by steel
yielding in both directions from which two were selected for this study
(Panel PV4 which was isotropically reinforced and Panel PV1l which was

orthotropically reinforced); five panels failed by concrete crushing
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subsequent to one layer of steel yielding, from which three were
selected for this study (Panels PV19, PV21l and PV10); six panels failed
by concrete crushing without steel yielding from which three were
selected (Panels PV27, PV25 and PV23); one panel, PV29, was subjected to
nonproportional loading and has been selected for this study. Panels
PV19, PV27, PV25 and PV29 were the subject of an international

competition (Collins et al., 1985).

4.3.6 Analytical Results

4.3.6.1 Panel PV4 (Failure by Steel Yielding in Both Directions)

This panel is reinforced with equal amounts of steel in the x and y
directions and was loaded in pure shear. It failed due to both layers
of steel yielding simultaneously. The behavior of this panel was first
analysed in this study using the tension cut off criterion (wherein
concrete is assumed to carry no stresses perpendicular to the crack).
Another analysis was performed incorporating the tensile stress-strain
relation given by Eqs. 4.24. The results of the analyses are plotted in
Figs. 4.12a to c.

The tension cut off analysis is illustrative of the panel behavior
at the onset of cracking. Figures 4.12 show that the panel 'expands'
after concrete cracking in order to activate the reinforcement to supply
the tensile stresses required for equilibrium. It can also be seen that
tension stiffening must be taken into account in order to closely
predict the behavior prior to steel yilelding. The strains obtained from
the computer analyses were used to construct the Mohr's circles shown in
Fig. 4.13. The sudden large increase in tensile strain when the tension

cut off criterion is used is apparent.
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The predicted failure load is compared with the experimental load
for this panel (and all subsequent panels) in Table 4.2.
Figure 4.14 shows the Mohr's circles of stress immediately prior to
steel yielding. 1In order to predict the failure load correctly, the
importance of reducing the tensile stress in concrete to zero when steel

yields is apparent from Figs. 4.12.

4.3.6.2 Panel PV19 and Panel PV21 (Failure by Concrete Crushing after

Steel Yielding)

These panels, tested in pure shear, were nonisotropically
reinforced and are reported to have failed by crushing of concrete after
one layer of reinforcement yielded. For Panel PV19, the applied shear
stress versus shear strain relationship predicted by the FEM is compared
to the observed behavior in Fig. 4.15a where the relation predicted by
Vecchio/Collins procedure is also shown. The applied shear stress
versus strains in the x and y directions (directions of reinforcement)
are plotted in Fig. 4.15b and 4.15c respectively. The experimental
failure load is given as 3.95 MPa. The finite element prediction is
4.45 MPa. The concrete crushing failure mode has been correctly
predicted in this analysis, the reinforcement yielded in the y direction
and the x direction reinforcement stresses were below the yield
strength. The failure load predicted by Eq. 4.12 is 4.22 MPa if fc, the
post cracking compressive strength, is calculated using Eqs. 4.23 (i.e,
f.y 8iven by Eq. 4.23d is taken as f_ in Eq; 4.12). The Mohr's circles
of stress and strain obtained from the FE analysis are shown in Figs.
4.16 where the rotation of principal axes is seen.

Panel PV21 is similar to panel PV19, except for more reinforcement
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in the y direction. The finite element prediction is compared to the
experimental behavior in Fig. 4.17. The predicted failure load of 5.2
MPa using the FEM compares favorably with the experimental failure load
of 5.03 MPa. Again, using f. given by Eq. 4.23, a failure load of 5.16

MPa is obtained from Eq. 4.12.

4.3.6.3 Panel PV25 and Panel PV23 (Failure by Concrete Crushing Without

Steel Yielding)

Thgse panels were subjected to combined biaxial compression and
shear stresses. Both panels were isotropically reinforced and are
reported to have failed by concrete crushing before steel yielding. The
shear stress versus shear strain relation for Panel PV25 predicted by
the FEM is compared to the experimental behavior in Fig. 4.18a and the
shear stress versus strain in x and y directions are compared in Fig.
4.18b and Fig. 4.18c. The predicted failure load of 7.7 MPa for panel
PV25 is lower than the experimental failure load of 9.1 MPa although a
softening trend is seen at 8.3 MPa when the hydraulic system (used for
loading) failed during the experiment. The influence of biaxial
compressive stresses on the shear capacity of Panel PV25 can be
estimated by comparing the higher failure load of Panel PV25 to that of
Panel PV27 (described in Sect. 4.3.6.4). Panel PV27 contained the same
amount of reinforcement as Panel PV25, but was loaded in pure shear.
The application of Eqs. 4.23 to estimate the post-cracking compressive
strength leads to the correct prediction of increase in shear capacity
with the applied biaxial compressive stress.

The predictive faillure loads of Panels PV25 and PV23 are very

sensitive to the tension stiffening used. This was found to be true for
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all panels investigated in this study which failed by concrete crushing
without steel ylelding. The failure load predicted by the limit Eq.
4.11 using the tension cut off criterion and the post cracking
compressive strength given by Eqs. 4.23, is 6.51 MPa for Panel PV25 and
6.15 MPa for Panel PV23. Thus the tension stiffening contribution to
the load capacity of these panels, predicted by this study, is in the
order of 18 to 24%.

The applied shear stress versus shear strain relation for Panel
PV23 is shown in Fig. 4.19. Although panel PV23 was subjected to a
biaxial compressive stress of only 39 percent of shear stress (compared
to 69 per cent of shear stress for panel PV25) the increase in load
capacity in both panels (compared to panel PV27 of Sect. 4.3.6.4) is
approximately the same, indicating that an increase in biaxial
compressive stresses does not yleld a proportional increase in shear

capacity.

4.3.6.4 Panel PV27 (Failure by Concrete Crushing Without Steel Yielding)
This isotropically reinforced panel had high reinforcement content
and was loaded in pure shear. Failure of the panel occurred by concrete
crushing before steel yielding. The predicted behavior is compared to
the experimentally observed respounse in Figs. 4.20a and b. The
predicted response agrees well with the observed behavior. The stress
in the reinforcement obtained from this analysis was 276 MPa at failure,
which 1s well below the yield strength of 442 MPa. Using the tension
cut off criterion, and the post cracking compressive strength calculated
using Eqs. 4.23, the load capacity 1is obtained as 5.64 MPa compared to

the finite element prediction of 6.25 MPa. Thus, the tension stiffening
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contribution to the load capacity is approximately 12.5 per cent for

this panel.

4.3.6.5 Panel PV29 (Nonproportional Loading)

This panel was subjected to non-proportional loading. The panel
was initially loaded in pure shear up to a stress of 3.9 MPa (which is
approximately 80% of calculated ultimate strength in pure shear). The y
direction reinforcement yielded at this load level. Further increments
in shear stress were accompanied by biaxial compressive stresses of
equal magnitude. Thus, the validity of the post-cracking compressive
strength relations of Eqs. 4.23 may be evaluated by comparing the finite
element prediction with the observed behavior, as shown in Figs. 4.21a
to ¢. The ultimate strength has been correctly predicted as 5.9 MPa.
The load at which the y direction reinforcement yilelds has also been
correctly predicted as 3.9 MPa. The failure mode has also been
correctly predicted as being that of concrete crushing. The deviation
in the predicted stress-strain behavior subsequent to the application of
compressive stresses is attributable to the assumed reduction of tension
stiffening to zero even if one steel layer yields and to the nonzero

strain hardening modulus used for steel.

4.3.6.6 Panel PV1l (Failure by Yielding of Reinforcement)

Panel PV1l is similar to panel PV4 except that the amounts of
reinforcement in the x and y directions are not the same. Panel PV1l is
reported to have failed in a ductile manner after yielding of both x and
y direction reinforcement. The finite element prediction of 3.6 MPa is

very close to 3.56 MPa observed in the experiment. The load deformation
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relationship is shown in Fig. 4.22,

4.3.6.7 Panel PV10 (Failure by Concrete Crushing after One Layer of
Steel Yielding)

Panel PV10 is reported to have failed by concrete crushing after
yielding of one steel layer. The predicted failure load of 4.0 MPa
agrees with the observed load of 3.97 MPa. The load-deformation

relationship is shown in Fig. 4.23.

4.3.7 Predicting Panel Behavior

The failure loads predicted by the finite element anaysis of this
study are compared to the experimental values in Table 4.2. The ratio
of predicted versus test values has a mean of 1.04 and a coefficient of
variation of 8.557%.

The predictions are accurate within 11% for panels PV4 and PVI1l
which failed in a 'ductile' manner due to steel yielding and for panels
PV10, PV19 and PV21l which also failed in a ductile manner but with only
y direction reinforcement (lesser steel percentage) yielding.

The predicted failure loads for panels PV23 and PV25 which failed
in a 'brittle' manner by concrete crushing (and no steel yielding) are
lower than the observed failure loads, mainly due to the fact that Eqgs.
4.24 underestimate the tension stiffening contribution for panels that
fail without steel yielding. The Vecchio/Collins model given by Egs.
4,19 also underestimate the failure loads of these panels for the same
reason (Vecchio and Collins, 1982). Both of these panels were subjected
to bilaxial compression in addition to shear and their predicted failure

loads are very sensitive to the compressive strength of concrete. The
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fact that the failure load of panel PV29 has been predicted accurately
lends support to the post cracking compressive strength estimate given
by Eqs. 4.23.

Simple ultimate load predictions using hand computations from the
equilibrium equations, the post cracking compressive strength from Eq.
4.23, and neglecting tension stiffening, are shown in Table 4.3. It is
seen that the predictions are reasonably accurate for ductile failures
(in which at least one steel layer yields). The failure loads of panels
failing in a brittle manner by concrete crushing are underestimated by
these equations because tension-stiffening has been neglected. The
failure mode has been correctly predicted in most cases by these
equations. Even in cases where the predicted failure modes are
incorrect, the difference in the predicted failure loads is small.

The failure loads predicted by these equations are compared in Fig.
4.24 to the experimentally observed failure loads for panels subjected
to pure shear. It can be concluded that the ultimate strength of panels
failing in a ductile manner is accurately predicted by the equilibrium
Eqs. 4.12 and 4.13, and a lower bound is given by Eq. 4.11 for panels
failing in a brittle manner.

It can also be concluded that the material model used for the
finite element analysis in this study predicts with reasonable accuracy
the behavior of the panels exhibiting a wide range of stress-strain

responsge.

4.3.8 Factors Influencing the Strength of Shear Panels

The influence of various material parameters on the ultimate shear

strength of panels may be deduced from Egqs. 4.11 to 4.13. The influence
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of the reinforcement percentage on the ultimate shear strength is shown
in Fig. 4.25. With 1.0% reinforcement in the x direction, ductile
failure by both layers of steel yielding is obtained for y steel
reinforcement up to 2.67%. Increasing the x direction steel to 2.0%
increases the ultimate shear strength significantly. With further
increase in x direction steel content, the marginal increase in ultimate
shear strength reduces. There is nothing to be gained by increasing the
x-direction steel content from 3.0 to 4.0%. It is also seen that with x
direction steel at 2.0%, there is no significant increase in strength if
y direction steel exceeds 1.83% (which corresponds to the transition
from DB to B type failure).

The influence of the cylinder compressive strength, as predicted by
Eqs. 4.11 to 4.13, on the shear capacity of panels is shown in Fig.
4.26. With small percentages of reinforcement (say, less than 1.5%)
ductile failure by steel ylelding occurs for concrete widely used in
practice (i.e., with fé > 20 MPa) and hence concrete cylinder
compressive strength does not influence the shear strength. With
increasing reinforcement percentages, brittle failure by concrete
crushing becomes the failure mode and hence the shear capacity is
determined by the compressive strength of concrete.

The interface shear transfer stiffness of cracked concrete (i.e.
shear transfer by aggregate interlock and dowel action) does not have a
significant influence on the ultimate strength of the shear panels
investigated in this study. As discussed in Section 4.3.4, the sliding
shear capacity of crack interface is of significance only in panels
where the average crack direction (i.e. principal strain axes)

changes. The influence of the crack shear stiffness on the ultimate
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strength was investigated by analysing panel PV1l with: (1) the crack
shear stiffness same as that of uncracked concrete; and, (2) the crack
shear stiffness equal to 5.0% of the uncracked concrete shear
stiffness. The predicted ultimate strength in both cases was the
same. For panel PV19 (where the difference between the amounts of x and
y direction reinforcement is greater than in panel PV1l), the increase
in ultimate strength was approximately 5.0% when crack shear stiffness
&as increased from 5.0 percent to that given by Eﬁ. 4.25. However, the
crack shear stiffness has greater influence on the stress strain

response of the panel as shown in Fig. 4.27 for Panel PV19.

4.4 Prediction of Deep Beam Behavior

4.4.1 Finite Element Modelling

The analysis of beams will be addressed in Chapter 5. However, net
reinforced deep beams are similar to shear panels and one of the
reinforced concrete deep beams tested by Leonhardt and Walther (1966)
was investigated in this study with the same stress computation and
numerical procedure used for investigating Vecchio/Collins shear
panels. The deep beam selected, WT3, has been studied by a number of
investigators (Al-Mahaidi, 1979; Floegl and Mang, 1982; Buyukozturk,
1977). The 100 mm (3.9 in.) thick beam had a simple span of 1600 mm (63
in.) and a total depth of 1600 mm (63 in.). It was subjected to a
uniform load along its top edge. The dimensions and reinforcement
arrangements are shown in Fig. 4.28. The deep beam was supported by
rigid steel plates on top of steel rollers. The main longitudinal
reinforcement consisted of four layers of two 8 mm diameter (0.315 in.)

bars each securely anchored by hooks lying in a horizontal plane with
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steel wires of 2 mm (.08 in.) diameter helically wrapped around each
pair of horizontal hooks at both ends. The stress-strain relation for
concrete and steel are shown in Fig. 4.29.

The finite element mesh layout is shown in Fig. 4.30. Taking
advantage of the symmetry, only one-half of the deep beam is modelled.
Bilinear rectangular serendipity elements are used with reinforcement
embedded inside the elements. Material parameters input into the
program are listed in Table 4.4. The tensile strength of concrete, fé,
was calculated as 60 per cent of the modulus of rupture as discussed in
Appendix A4. The compressive strength of concrete is taken to be
approximately 88 per cent of the cube compressive strength given by
Leonhardt and Walther (1966). The compressive strength of concrete for
elements 41 and 46 which are directly above the support was assumed to
be 40 MPa to account for the increase in strength provided by the spiral
reinforcement confining the concrete and the hooks of the main
reinforcement. The implications of this assumption are discussed in the
following subsection. The tension softening and tension stiffening were
calculated as discussed in Chapter 3 and the curves are shown in Fig.
4.31. Because of the low percentage of horizontal and vertical web
reinforcement in elements 1 to 40, tension stiffening has been
neglected, whereas in elements 41 to 50 containing the main
reinforcement, tension stiffening has been included, which is consistent
with the procedure described in Chapter 3. The tension stiffening
contribution is neglected after steel yielding at cracks, as discussed
in Chatper 3.

The post-cracking compressive strength and other aspects of the

material model are same as those used for the Vecchio/Collins shear



142

panels.

4.4.2 Predicted Versus Experimental Behavior

The load-midspan deflection relationship is shown in Fig. 4.32.

The left support failed during the experiment at a load of 1000 kN due
to insufficient compaction of concrete at this location (Leonhardt and
Walther, 1966). The damaged support was repaired by connecting steel
plates to the sides of the beam at this support location and the
experiment was continued. However, no further deflection readings were
taken. The final failure was due to concrete crushing at the right
support at a total load of 1290 kN. This corresponds to a bearing
pressure of 40.0 MPa at the support. In order to investigate the
influence of concrete strength at the support location, the deep beam
was analysed with no increase in strength for elements 41 and 46 (i.e.,
with fé = 30 MPa throughout). This analysis gave a failure prediction
of 960 kN, again due to concrete crushing at the support location. Thus
the finite element prediction of the failure mode is correct.

An analysis of the stresses output (with fé = 40 MPa in elements 41
and 46) indicates that element 36 immediately above the support elements
41 and 46 has entered into region -1 (Fig. 4.11) at failure, thus
indicating that any further increase in the strength of the support
elements 41 and 46 would not have resulted in a significant increase in
the load capacity of the beam. The failure mode is further confirmed by
the predicted deflected positions of the beam at two successive load
steps near failure, shown in Figs. 4.33a and 4.33b. It can be seen that
the crushing at the support produced an essentially uniform settlement

of the beam.
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The progress of cracking with increase in load is shown in Figs.
4.34a to e and compares favorably with the experimentally observed crack
patern shown in Fig. 4.35.

The principal stress trajectories at load levels of 47.3% and 100%
of ultimate load are shown in Fig. 4.36a and b, respectively. The
'truss action' is apparent even at the lower load.

The distribution, at the failure load level, of normal longitudinal
and vertical stresses and shear stresses across the depth of a vertical
section near midspan, predicted by the finite element analysis is shown
in Fig. 4.37. The stress distribution is compared to that obtained
using a linear elastic analysis performed on the uncracked beam. It is
seen that a linear analysis underestimates the maximum longitudinal
compressive stress, and the stress distribution is significantly
different. The location of the neutral axis is markedly higher at the
failure load than at smaller load levels. The shear stress distribution
indicates that most shear is being carried by truss action and the shear
carried by aggregate interlock in the cracked region is very small.

The variation of steel stress at midspan with increase in load is
shown in Fig. 4.38. The actual strain in steel, of course, depends on
the proximity to a crack. It 1s seen from Fig. 4.38 that the stresses
(and strains) are bounded by the curve which includes the effects of
tension softening and tension stiffening, and by the curve which ignores
the effects of tension softening and tension stiffening. The curve
which includes tension softening in concrete at the cracks, but excludes
tension stiffening, matches more closely the experimentally observed
value because the strains were measured in the test very close to a

crack at midspan.
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It can be concluded that the finite element method can be used as
described herein to predict the behavior of deep beams with an accuracy

that is completely acceptable for engineering purposes.



145

2an{Tey Bupysnid 23915U0D toanyye3 e popIoL 19KeT judWROI0JUTAA IYITAN - 4
aanTfes Supysnad 333I0U0D ‘popToT4 10U JUSWIDIOJUTSX UOFIV3ITP X {popToFA IUSWDIOJUFDL UOTIVBITP X - aa
aanTiel 18 PoOPIOTA juawWad10juLald uorlo2afp £ pue x ylog - a
(Sutpeol Teuofiaodoad-uoN) . I-:1-°1

ada L° 1T 8100° %T¢ G8800° vy G8L10° 0:0°1 6CAd

4 5°0¢C 6100° (A 68L10° Ty G8.L10° 0:0:1 LTAd

4 2°61 8100° 99y G8LTO" 99Yy G8.10° 69°-:69°-:1 SZAd

d ¢°0¢ 0T00* 816 68.10° 81¢ G8.L10° 6€°—6£°0-*1 €TAd

aa S 61 8100° 0t 96¢10° 8GsY G8L10° 0:0:1 1¢Ad

qd 0°61 S1200° 661¢ €1.00° 8GY G8L10° 0:0°1 6TAd

a 9°61 9700° Ged 90¢10° el 68.L10° 0:0:1 11Ad

qa A LT00° 9.1 66600° 99¢ G8L10° 0:0°1 01Ad

a 9°9¢ G200° [A X4 96010° (A4 96010° 0:0:1 7Ad

BdRl edil Bdl
»m *s
3 %Q 3 Xy .
3:%3:1
(uotradyaosap ww V3 uoFioaaIqd X uoT31091Td X
103 moTaq 230N @3S) uwof3ITPUOD
apol Panired 932a10U0) jusmwaDaI0JUTIY T223S Suyipeo] 12ued

pojeSyisaaul sTaued Is3L 1°% SI4EL



146

*¢*4 o9Tqel 23S ‘syiSus13s 9331ID0UO0D pUB OTIBI JUIWIDIOJUTSI 104 °D
(Z861) SUTTITOD Pue OFYdd3p °q

‘u0T1091fp 2uo uf SurpToTL To91s 1931je JUTYSNID 332I0U0D Aq aanTtel = 494

SuypioI£ To93s 3Inoyim SuTysnid 9321du0d £q anTIed = 4
%€6°6 = SuoT1091Fp Yyioq uf SuyprofL [293s £q L2anTfed = (J °®©
uoFleTiRA JO JUITOTIIS0)D :S910N
€0'1T = UBdK
0°1 06°¢S qa L8°S ! 6ZAd
(At TAR) g GE*9 4 LTAd
81°1 oL L q Z1°6 g GTAd
L1°1 09° L q L8°8 q €TAd
L670 0C°¢S 4a €0°¢ aa 12Ad
68°0 Sh Yy qa S6°¢ (4 6TAd
66°0 09°¢ a 9¢°¢ a TTAd
66°0 00° % 9d L6°¢ 4a 01Ad
I1°1 09°¢ a 68°¢C a YAd
(ea) (edR)
peo1 aaniyed 9poN @anTted nvmoq aanyred n.mmvoz aany1ed
UOT3IOTPo1d JuswoTd 2IFUTL
peol 2anyIej Teluswixadxy JUOTIDFPRId JusweTd IIFURS 1ejuswyaadxy 19ued

aanyTed [oued JO UOTIDTPIad IUSWITH dITUTd ¢°% 9Iqel




147

*(Z861) SUITIOD Pue OFYDI9\ WOIJ sITnsai Tejuadmpiadxy °q

*SUOTJIOOITP Yl0q U] SWeS ST JUdWIDI0OJUTaa aduls 97qedIrddy 3JOoN - °*V°N "B :S330N
s9% €11 %9°¢ VN 68° L GE°9 q 100 8¢ 11 6°0C [TAd
EEDN oy°1 15°9 ‘V°N £€8°9¢ ti°6 q 6€9°0 C0°¢T T°61 GTAd
89X VAAN1 <19 ‘V°N 91°G1 L8°8 q ¢sLt0 oe°tt G*0C €£TAad
ON L1°1 6€° S 6C°S €T L 81°9 g 765°0 8.°01 9°61 7TAd
S9% 8670 9¢° G 91°¢ 99°¢ €0° S aa 99¢°0 €L°01 66T 1CAd
EEDY L6°0 6€°S €9y 69 Y 6%y 9ad S%7°0 8L°01 9°61 0CTAd
ON S6°0 [4ARY (4N Ly G6°¢ aa €02°0 S%°01 0°6T 61Ad
ON 70° 1 9¢€° ¢ 0s°¢ 91°¢ 8¢°¢ ga €C1°0 €L°01 S'61 8IAd
S9X 00°1 L6°S ‘V°N 68" 1 68°1 a 8G¢1°0 %6° 11 L°1C 9TAd
s9x 66°0 oy Y 20°¢ L1°¢ 86°C ga 8€1°0 08°8 0°91 <CIAd
LD 66°0 6T Y 119 65°€ 96 ¢ a 65¢°0 86°8 9°¢1 11IAd
ON 80°1 66°¢ 6L°¢€ 69°€ L6°¢ aa 9%€°0 86° L S'%1  OTIAd
S9% 00°1 0Z°8 *V°N Gl LYy a 0620 6£°91 862 9Ad
sax €1°1 (4% A g V'N 95°T 68°7 a GLT°0 ¢9°¥%1 9°9¢ 7Ad

SuUoT3IdIpaid
RS T ety by (ot cBa)
¢perorpag =~ 11°% b Zi1'y -ba €1°% -bu
9POR peo1 (edn) (Fusuwrpaadxy) ° (Bdn) (edw)
aanyyed aanyyred sdyysuotieray peo 2anyred 2pON NL|MF
30991109 AHMuamEﬂuwmxm untaqITEnby Suysn uofiIoTIpPaAg nﬁmucmaﬂuwmxm aanyred mm%a _om_ _ww_ 1oued

ATug sdrysuorieray wniaqiTInby Suysp wOTIDIPAAd SAnTTed ¢°h OTQE]L



Table 4.4 Material Properties for Leonhardt-Walther Deep Beam WT3

Elements fé E, fé fy Py Py €ut
MPa MPa MPa MPa
1 to 40 30.0 27000 3.0 240 .0017 0017 0.0019
41, 46 40.0 27000 4.0 428 .0179 .0017 Fig. 4.31b
42 to 45 30.0 27000 3.0 428 .0179 .0017 Fig. 4.31b

47 to 50
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Reinforced Element Subjected to Pure Shear
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FIG. 4.2. (b) Stresses on Major Plane (c) Stresses on
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FIG. 4.2, (d) Culmann Diagram for Stress in an Orthogonally
Reinforced Element Subjected to Pure Shear
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FIG. 4.3.
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Geometric Interpretation of Equation 4.7a
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FIG. 4.4, Peak Principal Compressive Stresses Versus the
Corresponding Strain Ratios (Adapted from Vecchio
and Collins, 1982)
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FIG. 4.5. Principal Tensile Stress-Strain Relationship (Contd.)
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(b) Comparison with Test Data of Vecchio/Collins (1982)
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FIG. 4.6. Finite Element Model of an Orthogonally Reinforced Panel
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Incremental Displacements, AU(j), (Eq. 2.24)

1
Incremental Strains Ae(j) = BAU(j)

!

Read from storage, total global strains
up to the previous iterate, %321% and
total global stresses, f .

Calculate principal strafhs and
their orientation, C

Yes Is No
concrete
cracked?
Set axes of orthotropy Calculate increment in
oriented at { (local axes) stresses from isotropic

coz;g%Su:i;eAzfgsix

Calculate incremental stresses

using the cracked concrete

constitutive matrix and Increment total global
accumulate total stresses stresses and calculate
in local axes. principal stresses
ch ’ fcn

A 2 p el
Cc cr

E) R E S PR
c c

[

rﬁ Using (ch/fc ) and the
n

concrete failure envelope,

Transform local stresses calculate tensile and
to global axes and determine compressive strengths.
principal stresses Also calculate the
post—-cracking compressive

strength (See Sect. 4.3).

'

Yes Is ch > tensile
strength?
No
K 3
Yes Is £ > 0.9x No
Cn

compressive __——I___-@
strength?
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Recalculate
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correct constitutive
matrix

'
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Total Global Strains

(g 2 G D¢ 42l
and store fc and €

Return

Fig. 4.9 Flow Diagram of Stress Calculation for Rotating Crack Model
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FIG. 4.11. Stress-Strain Curves for the Investigation of
Vecchio/Collins Panels; (a) Normal Stress-Strain
Curve; (b) Damage Regions and (c) Shear Moduli



Applied Shear Stress
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FIG. 4.12. Applied Shear Stress Versus Strain Relationships
for Panel PV4; (a) Principal Strains
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FIG. 4.15. (Continued)
(b) Applied Shear Stress vs Normal Strain €y
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FIG., 4.16. Mohr's Circles of Stress and Strain for Panel PV19
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FIG. 4.19. Panel PV23 - Applied Shear Stress vs Shear Strain
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FIG. 4.25. Variation of Shear Strength with Percentage of
Reinforcement
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FIG. 4.27. Panel PV19 - Influence of Crack Shear Stiffness
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CHAPTER 5

APPLICATION TO REINFORCED CONCRETE BEAMS

5.1 Introduction

In this chapter, the physical behavior of reinforced concrete (R/C)
beams under monotonic loading is discussed and application of the finite
element method (FEM) to predict the behavior, including beam failure
modes, is described. Through the finite element analysis, in which the
important parameters were varied conveniently and systematically, new
insights were gained which may provide a rational basis for the

comparison and evaluation of appropriate code provisions.

5.2 Engineering Theory of the Strength and Ultimate Load Behavior of R/C

Beams

5.2.1 Introduction

,For reliable predictions of R/C beam behavior using the FEM it is
required that: (1) appropriate material parameters are available from
test specimens; (2) the material représentations capture the salient
features of the material behavior; (3) the finite elemenf model and mesh
layout, and the numerical analysis procedure, are adequate to detect the
significant aspects of the structural response; and, (4) the output from
the analysis is displayed and interpreted in an appropriate manner. In
order to satisfy the last two requirements, an understanding of the
fundamentals of R/C beam behavior is necessary. A brief description of
the behavior of beams exhibiting .various failure modes, as is commonly

understood, follows.
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5.2.2 Flexural Failure

5.2.2.1 Assumptions and Basic Equilibrium Relationships

Consider a reinforced conérete beam without web reinforcement, as
shown in Fig. 5.1. Typical load-deflection behavior of this beam is
schematically shown in Fig. 5.2a and 5.2b. Three basic assumptions used
in deriving an engineeriné theory for the flexural strength of
reinforced concrete sections are (Park and Paulay, 1975)

1. Bernoulli's hypothesis holds, i.e., plane sections which are
normal to the neutral axis before bending remain plane after bending.
This hypothesis implies that perfect bond exists between concrete and
reinforcement and shear deformations are negligible.

2. The tensile strength of concrete may be neglected. This, of
course, implies that tension stiffening (contribution of intact concrete
between cracks) does not influence the ultimate moment capacity.

3. Stress—strain relationships for concrete and steel are known for
all strain ranges.

A reinforced concrete section has a stress distribution as
illustrated in Fig. 5.3 when the fiexural strength is reached.

The resultant internal tensile force is
T=A f . (5.1)

where AS is the area of steel and fs is the steel stress.

The resultant internal compressive force 1s expressed as

C = ky kyf! be (5.2)
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where ¢ is the distance from the extreme compression fibre to the
neutral axis, k3fé is the compressive stress at extreme fibre and k; is
the ratio of the volume of the compressive stress block to the
rectangular stress block defined by k3fébc.
The distance between the resultant internal forces, known as the

internal lever arm, is given by
jd=d - kyc (5.3)
where kzc is the location of the resultant compression force from the

extreme compression fibre.

The moment of resistancg is therefore

M = Tjd = Cjd (5.4)

5.2.2.2 Flexural Tension Failure

If the steel content of the section is small, the steel will reach
the yield strength, fy, before concrete reaches its maximum capacity.
Assuming an elastic-perfectly plastic stress-strain relationship for
steel, the steel force will remain constant at Asfy with further
loading. A slight additional load causes large plastic elongation of
the steel across the flexural cracks, resulting in wide cracking and a
large increase in strain at the extreme compression fibre of the
concrete. This increases the mean compressive stress in the concrete
stress block and, because equilibrium of the internal forces must be
maintained, a reduction in the depth to the neutral axis results. This

reduction in the depth of the neutral axis causes an increase in the
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lever arm and hence in the momenF resistance. The flexural strength of
the section is reached when the strain in the extreme compression fibre
of concrete reaches a limit after which any further increase iﬁ strain
will lead to a reduction in the compressive resultant and crushing

occurs. These stages are schematically shown in Fig. 5.2a.

5.2.2.3 Flexural Compression Failure

If the steel content is large relative to the concrete strength,
concrete may reach its maximum capacity before the steel yields. 1In
such a case the depth to the neutral axis increases as a result of the
nonlinear compressive stress-strain response, causing an increase in the
compressive force as required. Again the flexural strength of the
section is reached when the strain in the extreme compression fibre of
concrete is such that any further increase will lead to a reduction in
the resultant compressive force. The section then fails suddenly in a
brittle fashion. There may be little visible warning of failure since
the widths of the flexural cracks in the tension zone of the concrete
are small because the tensile steel doeé not yleld. This behavior is -

schematically illustrated in Fig. 5.2b.

5.2.2.4 Balanced Failure

If the maximum compressive capacity of concrete and maximum tensile
capacity of steel are simultaneously reached, a 'balanced failure' is
said to occur.

Figure 5.2¢c (Park and Paulay, 1975) shows the variation of flexural
strength of a section with the steel content. Because the flexural

compression failure is brittle and sudden, most codes specify a maximum
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limit on steel content in order to obtain a ductile failure.

5.2.2.5 Engineering Analysis

For any given moment across a reinforced concrete beam cross-
section, the strain distribution (and the corresponding stress
distribution) may be calculated using the assumptions described in Sect.
5.2.2.1 and the conditions of equilibrium. Since the depth to the
neutral axis is not known in advance, this involves an iterative
procedure as follows: (1) a strain in steel and a strain in concrete af'
the extreme compression fib;e are assumed; (2) the depth to the netural
axis 1s easily calculated since the variation of strain across the
section has been assumed to be linear; (3) the corresponding stress
distributions are obtained from the stress-strain curves of concrete and
steel; (4) the condition of equilibrium, C = T, is then checked. If
this condition is violated, another set of strains in concrete and steel
are assumed and steps (1) through (4) are repeated until C = T; (5) the
moment of resistance is then caléulated using Eq. 5.4. If this moment

is not equal to the applied moment, steps (1) through (5) are repeated.

- 5.2.3 Shear Failure

5.2.3.1 Definition

A 'shear failure' is said to occur when the R/C beam collapses in a
nonductile manner under combined shear force and bending moment before
full flexural capacity is reached (MacGregor et al., 1973). Considering
the beam in Fig. 5.1, a shear failure would imply that sections within
the shear span would fail before flexural failure occurs in the midspan

region.
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5.2.3.2 Mechanism of Shear Resistance (Park and Paulay, 1975)

In a reinforced concrete member, such as that shoﬁn in Fig. 5.1,
cracks form when the principal tensile stresses exceed the tensile
strength of concrete. In a region of high bending moments (such as the
midspan region in Fig. 5.1) these stresses are greatest at the extreme
tensile fibre of the member and are responsible for the initiation of
the flexural cracks perpendicular to the axis of the member. 1In the
region of high shear force (such as the shear span region in Fig. 5.1),
the principal tensile stresses produce cracks (also referred to as
diagonal tension cracks) that are oriented at an angle inclined to the
axis of the member. Most often, these inclined cracks are extensions of
flexural cracks. Either a reinforced concrete member collapses
immediately after the formation of diagomnal cracks, or an entirely new
shear carrying mechanism develops which is capable of sustaining further
load in a cracked beam.

The freebody diagram of a segment of a concrete beam, without shear
reinforcement, between two adjacent cracks in the shear span is shown in

Fig. 5.4. Considering now the equilibrium shear-moment relatiomship,
vy - | (5.5)

and substituting for M from Eq. 5.4, we obtain

SN _d oo 4T dG)
V=3~ & (TJd) T dx da+T dx

(5.6)

dT
The term = jd expresses the behavior of a true prismatic flexural
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member in which the internal tensile force T changes from section to

section to exactly balance the applied moment intensity. The term

dr
dx
bond between reinforcement and concrete as bond force q to the concrete

, the rate of change of internal temsion force, is transmitted by

segment. The concrete segment, in turn, acts as a cantilever fixed at
the neutral axis and transfers this bond force q to concrete at the
neutral axis to balance the change in the compressive force, as in a
perfect beam. Should the internal lever arm remain cénstant so that

: 2%%21 = 0, then the entire shear resistance is derived from the "beam

action” as

dr
Viean = 3o Jd4 = qid (5.7)

When E%%ﬂl # 0, the external shear is also resisted by inclined

internal compression, called "arch action", as

d(jd) d(jd)
arch ax - C dx (5.8)

In the normal reinforced concrete beam the two mechanisms, as expressed
by Eq. 5.6, offer a combined resistance against shear forces. The
extent to which each mechanism contributes to shear resistance at
various levels of external load intensity will depend on the
compatibility of deformations associated with these actions.

Each of the concrete segments between cracks, such as the one shown
in Fig. 5.4, may be considered to act as a cantilever with its base nn
at the compression zone. For perfect beam action to take place, these

cantilevers must effectively resist the full bond force q. Experiments
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(Taylor, 1974) have indicated that, in the tension zone, most of the
shear resistance (50 to 70%) 1is due to aggregate interlock, some (15 to
25%) due to dowel action and only about 20% due to the bending
resistance at the 'built in' end of these cantilevers.

The stiffness of these cantilevers reduces with reduction in
stiffness of any of these components. This reduction in stiffness of
the cantilever and any slip between steel and concrete increases the
arch action component of shear resistance. This increase depends on the
a/d ratio, as discussed in the next paragraph. Failure of beam action
may be initiated by the breakdown of any of the components (i.e.,
aggregate interlock, bending resistance of the cantilever and dowel
action), producing secondary cracking at the 'built-in' ends of the
cantilevers in an approximately horizontal direction. These secondary
cracks most often occur as extensions of inclined flexure-cracks. After
the failure of beam action, the remaining intact concrete above the
cracks might not be adequate to resist the applied shear by arch action
alone, leading to diagonal tension failure.

Arch action, as signified by Eq. 5.8, requires that the
reinforcement be properly anchored. vFor efficient arch action, the line
of thrust (connecting the reaction point to the load point) must be
steep. That is, the smaller the shear span to depth ratio, i.e. a/d
ratio of Fig. 5.1, the higher the resistance due to arch action. For
large a/d ratios, say above 2.5, the line of thrust is so shallow that
the resistance capacity due to arch action is less than the load
producing diagonal tension failure. Figure 5.5 schematically

illustrates this concept.
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5.2.3.3 Parameters Influencing Shear Failure

In practice, the importént parameter in evaluating the performance
of a beam is the ratio of the usable moment capacity, M in the
presence of shear to the full flexural moment capacity, Mfl' The
important parameters affecting this ratio, ;?E , In the case of beams
without web reinforcement, are the shear span to depth ratio, a/d, and
p, the tensile reinforcement ratio. Figure 5.6, due to Kani- (1979),

M

shows this relationship. The dependence of EE_ on 0 is not only due to
£2

the fact that calculation of Mﬁz‘involves p, but also because: (1) the
dowel shear will be smaller if p is reduced; and, (2) as p is reduced,
the flexural cracks extend higher into the beam and are wider, reducing
both the shear capacity of the compression zone and interface shear
transfer. |

Another important parameter influencing the shear strength of beams
failing in diagonal tension appears to be beam depth (Kani, 1979). The
ultimate shear stress in beams without web reinforcement decreases as
the effective depth increases. For beams with web reinforcement,
however, the size effect appears to be minor (Park and Paulay, 1975).

The role of web reinforcement is to increase the shear resistance
by:

(1) improving the capacity of the concrete "cantilevers” by
altering them to act as tied cantilevers. That is, a "truss action”
develops whereby the concrete cantilevers act as diagonal compression
members of the truss and the stirrups act as vertical tension members,

(2) improving the contribution of the dowel action by supporting
the longitudinal reinforcement,

(3) reducing the flexural tensile stresses at the 'built-in' ends
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of cantilevers by means of diagonal compression mentioned in (1),

(4) limiting the opeﬁing of diagonal cracks within the elastic
range, thus enhancing and preserving shear transfer by éggregate
interlock, and

(5) providing confinement, thus increasing the compressive strength
of concrete so as to increase the capacity of arch action. '

The truss mechanism traditionally used to explain the behavior of
beams with web reinforcement involves forces Cd in the diagonal
compression strut and VS in stirrups, as shown in Fig. 5.7. 1In this
figure, a denotes the angle of inclination of cracks. Ve being the

resultant of all stirrups forces crossing the crack, we obtain

Af
v =YY

s S

jd cot « (5.9)

where A, is the cross—sectional area of the stirrups, S is the stirrup
spacing and £, is the stress in the stirrups. The diagonal compression

force, Cd, arising from a single concrete 'strut' becomes

- _8 : N
Cd sin « (5-10)

and the diagonal compressive stress, fcd’ becomes

C \
£ o= d = 8
cd bjd cot a sin a bid cot a Sinza
(5.11)
A v
] s

= bjd sin a cos a sin ¢ cos «a

where
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Vv = —a (5.12)

Substituting for Vg in Eq. 5.11 from Eq. 5.9 yields

Af
£, =Y (L ) (5.13)

cd bs sinz «

From Eqs. 5.§>and 5.13, Vg, the shear resistance due to web
reinforcement, and fcd’ the diagonal compressive stress in concrete, are
expected to increase with higher web steel and flatter crack
inclinations.

All the "beam action” mechanisms in beams without web reinforcement
‘are empirically aésumed to be present in beams with web reinforcement as

well and, in practice, it is assumed that (Park and Paulay, 1975),
V=V + Vg (5.14)

where Vi is the shear force at inclined cracking and VS is the shear

resistance provided by web reinforcement assuming a = 45°.

5.3 Requirements for Finite Element Prediction of Behavior

In order to inspire confidence in a practicing engineer about the
ability of the Finite Element Method to predict the behavior of planar
structures reliably, the following requirements may be identified:

1. The material properties required as input must be readily
available or easily derivable from standard tests.

2. The failure load and failure mode must be predicted with
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reasonable accuracy for structures such as beams with a wide range of
variation of geometric and material parameters (such as shear span to
depth ratios, reinforcement percentages and concrete strengths).

3. The load deflection behavior and crack patterns must be
predicted with reasonable accuracy.

4. Computational cost (including manhour costs) should not be
excessive.

From\the earliest days of the application of the finite element
method to the analysis of reinforced concrete, the prediction of R/C
beam behavior has been attempted. Ngo and Scordelis (1967) performed a
linear elastic analysis on a R/C beam with a predefined diagonal tension
Vcrack. Nilson (1968), Scordelis et al. (1974) and Houde and Mirza
(1974) used the discrete crack approach while Franklin (1970),
Valliappan and Doolan (1972), Colville and Abbasi (1974), Nam and Salmon
(1974), Cedolin and Dei Poli (1977), Buyukozturk (1977), Bergan and
Holand (1978), Ottosen (1982), Taniguchi (1984) and Rots et al. (1985)
used the smeared crack approach to predict the behavior of R/C beanms.
However, to the best of the author's knowledge, none of the published
work meets all the requirements cited above, especially the second
requirement. This study endeavours to fulfill this need. In order to
cover a wide range of beam behavior, the following beams were selected
for analysis.

1. One beam tested by Burns and Seiss (1966), shown in Fig. 5.8, which
failed in the ductile flexural mode (i.e., it failed in compression
subsequent to the yielding of longitudinal reinforcement).

2. Three beams with different shear span to depth ratios, tested by

Bresler and Scordelis (1961), all of which failed in shear in the
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diagonal tension mode (i.e., failure of 'beam action'). These are
designated as beams 0OAl, 0A2 and 0A3 in Figs. 5.9 and have shear span
to depth ratios of approximately 4.0, 5.0 and 7.0 respectively.

3. Two beams without web reinforcement tested by Kani (1979) and shown
in Fig. 5.10, with shear span to depth ratios of approximately 2.0
and 2.5.

4. Three beams with web reinforcement designated as Al, A2 and A3 in
Figs. 5.9, with geometric and material propérties very similar to
0Al, OA2 and OA3 respectively except for the web reinforcement.

The geometric and material properties of these beams are summarized

“in Table 5.1.

5.4 Nonlinear Finite Element Analysis of R/C Beams

5.4.1 Introduction

The element formulations described in Chapter 2 and the consitutive
modelling described in Chapter 3 have been coded in the form of computer
subroutines suitable for incorporation into a general purpose nonlinear
finite element analysis code as discussed in Chapter 1. Iﬁ this study,
these subroutines have been incorporated into the finite element code
FEPARCSS (Elwi and Murray, 1980b). Figure 5.11 illustrates the values
of concrete properties at various stress/damage regions. All resultsiin
" this chapter are obtained using the material properties shown in Fig.
5.11 unless otherwise noted. Concrete material properties to be input
into the program were derived from the properties obtained from specimen
tests, as described in Appendix A4 and summarized in Table 5.2.
Reinforcing steel has been modeled as elastic-strain hardening plastic

material. The stress—strain curves for steel obtained from specimen
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tests are input into he program as piecewise linear curves.

The method of stress éomputation, the finite element modelling and
solution procedﬁre, comparison of experimental results with the finite
element prediction, relative influence of parameters on the predictive
failure loads, internal stress distribution and the load-deflection

behavior are dealt with in the following subsections of this chapter.

5.4.2 Stress Computation

The flow chart of the stress computation subroutine is shown in
Fig. 5.12. Concrete is assumed to be isotropic unless tensile cracking
develops whereafter the axes of orthotropy are set parallel and
perpendicular to the primary crack orientation. These axes of
orthotropy (local material axes) are assumed fixed for all subsequent
loading. Thus the assumption about orientation of the axes of
orthotropy differs from the rotating crack model used in Chapter 4.

This assumption is appropriate for elements under proportional loading
and contalning no reinforcement or reinforcement in one direction
only.

The use of a positive shear modulus for cracked concrete in
conjunction with fixed axes of orthotropy allows the direction of the
principal concrete stresses to rotate, and hence there is the potential
for subsequent cracking to occur in new directions non—-orthogonal to the
initial crack direction. However, this secondary cracking is often
ignored or inconsistently dealt with in the literature (ASCE, 1982). 1In
several cases the second crack is assumed to occur only if the tensile
stress exceeds the tensile strength in the orthogonal direction (Darwin

and Pecknold, 1974). But such a limitation may violate the tension
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failure criterion within the element (Crisfield, 1984; Milford, 1984)
and hence overestimate the failure load.

In this study this problem is dealt with as shown in Fig. 5.12.
The second crack is assumed to develop orthogonal ta the first crack
when the stress at any orientation to the first crack exceeds the
tensile strength, and the shear stress is limited to such a value that
the tension failure criterion is not violated. The tangent shear
modulus is set to zero after the appearance of the second crack.

That such a procedure reasonably represents the actual physical
behavior can be seen by considering shear critical beams in which
failure of the 'beam action' occurs. The shear sﬁiffness of the
elements is a measure of the stiffness of the concrete 'cantilevers'
such as that shown in Fig. 5.4. The secondary cracking is expected to
be parallel to direction n-n at the 'built-in' ends of these
'cantilevers', approximately perpendicular to the primary crack and the
loss of shear stiffness is a manifestion of the attainment of the limit

capacity of these 'cantilevers'.

5.4.3 General Considerations for Finite Element Model

The finite element modelling parameters were selected based on
detailed studies of their comparative influence, as discussed in
Appendix A3. A typical finite element mesh layout for beams
investigated in this study is shown in Fig. 5.13. The quadratic
serendipity element has been selected instead of four node
quadrilaterals because such elements are more flexible and produce
reliable crack patterns even for coarse mesh layout (Appendix A3). The

aspect ratio of the elements has been selected to be between 1 and 2 in
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order to minimize the directional bias with respect to crack formation
(Rots et al., 1985; Darwin, 1985). The size of the elements 1s expected
to have a significant influence on the predicted failure loads,
especially for shear critical beams when fracturé energy considerations
are not included (Appendix A3; Darwin, 1985). Even when fracture energy
aspects are considered, selection of an appropriate mesh size is
important because local failure at a node will result in the failure of
the numerical procedure which is then interpreted, herein, as the onset
of structural failure. Local failure at a node will be observed only
when all the elements connected to this node fail. Thus, the element
.size should be such that it contains the 1ocalized failure region yet
not so large as to overestimate the stiffness of the structure. This is
discussed in detail in Appendix A3.

Both the flexural and shear failure of reinforced concrete beams
involve crushing of concrete in compression at the ultimate load. Thus
the size of the element for R/C beams has been chosen such that it
approximately equals, at ultimate stage, the distance of the neutral
axis from the extreme compression fibre. 1In the tension region of
beams, the retention of a minimum shear modulus of 5 percent of the
uncracked concrete modulus (Fig. 5.11) was found to prevent spurious
‘local instabilities from occuring.

The cracking at a sampling point (Gauss point) is assumed to be
distributed only in an area of the element that is tributary to that
point. The behavior of the element is relatively insensitive towards
local cracking because the overall behavior of the element reflects the
material response at all contributing integration points within the

element. Thus, there is a stabilizing effect on the solution procedure
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when numerical integration is used, the effect being more pronounced the
higher the order of integration and the greater the strain gradient in
relation to the mesh size. The beneficial effects of increasing the
number of integration points must be weighed against the cost of
analysis which increases considerably. With the quadratic serendipity
element the choice of integration rule is essentially limited to 2x2
reduced integration or 3x3 full integration. Reduced integration has
been f;und to produce spurious zero energy deformation modes where a
concrete element is cracked and also lead to nonobjective results with
mesh refinement (Appendix A3; Darwin, 1985). Thus 3x3 Gauss quadrature
has been selected for use in this study.

Some fundamental studies on cracked reinforced elements (not
discussed Herein, but related to the convergence studies described in
Appendix A3) indicated that the embedded formulation of the
reinforcement in quadratic elements may not, in general, be able to
reproduce a constant strain condition unless the reinforcement is lumped
at the Gauss points corresponding to 2x2 integration. Specific studies
on beams showed that the main (longitudinal) reinforcement may be
located at the actual location whereas the stirrups must be lumped at
the natural coordinates of + 0.5774 (i.e., Gauss points corresponding to
2x2 integration). _

The standard (or 'full') Newton-Raphson interation procedure has
been used to solve the nonlinear system of equations until the failure
load of the structure is reached. The maximum number of iterations were
specified as 25, the norms of incremental displacement and unbalanced
force vectors as 0.1% and 1.0% respectively. 1In calculating the tangent

structure stiffness matrix, actual tangent material moduli are used
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except in the cracked regions where the material moduli perpendicular to
crack directions are set to zero. Failure load is assumed to have been
reached when there is failure of convergence of both the displacement
and force vector norms in the specified number of iterations or if the
structure tangent stiffness matrix contains a zero or negative element
in the diagonal.

The corresponding load level is referred to as the collapse load
although it might actually be only the numerical procedure that has
failed and not the structure. Thus, in order to confirm that failure of
the structure has in fact occurred and to determine the mode and causes
of failure, it is useful to output the stresses and strains at the
unconverged final load step. A modified Newton-Raphson iterative
procedure, wherein the structure stiffness matrix of the last converged
equilibrium position is used, may be adopted for this purpose. In some
instances it might also be illustrative to modify the tangent moduli
(for example, reduce the compressive strain softening modulus or
increase the crack shear modulus) in order to obtain a solution. The
stresses and strains thus output are examined to ascertain the mode and
causes of failure.

In the following sections, the results of the application of the
FEM to predict the behavior of beams failing in flexure, shear critical
beams without web reinforcement and beams with web reinforcement are
described. The effects of bond slip (i.e. bond elements) have been
included for shear critical beams without web reinforcement because, in
these beams, the relative proportion of shear carried by beam action and
arch action, asvrepresented by Eq. 5.6, is dependent on the bond between

steel and concrete. Whereas in beams with web reinforcement, the change
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in the shear carrying mechanism after concrete cracking can be

reproduced without bond elements.

5.5 Prediction of Flexural Failure

As an example of ductile flexural failure, a beam (Mark J4) tested
by Burns and Siess (1966) has been selected. This beam is reported to
have failed in a ductile manner, after yielding of the longitudinal
reinforcement. Numerical analyses of this beam by the finite element
method have been carried out by a number of investigators using
different approaches (Arnesen, 1979; Darwin and Pecknold, 1974; Hand,
Pecknold and Schnobrich, 1972; Suidan and Schnobrich, 1973).

The finite element mesh layout used in this study is shown in Fig.
5.13, wherein, due to symmetry, only one half of the span is modelled.
The post-yield stress—strain relationship for steel is not available.
In order to stabilize the numerical solution after steel yielding, an
elastic-strain hardening stress-strain curve has been used in this
study, as shown in Fig. 5.14. 1In order to investigate the effect of the
steel strain hardening modulus, analyses were performed with two
different values for this modulus, one with O.lEs and another with
0.005E; (the latter being closer to the test value). Large load steps
were used, the size of each load step until steel yield being about 1/5
ultimate load. After steel yielding the size of the load step was
reduced. Convergence was obtained in about 20 to 25 iterates. The load
deflection relationship is shown in Fig. 5.15.

It is seen that the finite element analysis which takes into
account the tension softening in concrete, predicts the load deflection

response well. The load corresponding to the yielding of steel has also
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been closely predicted. In addition, the deflection corresponding to
concrete crushing agrees closely with the test value. The 'rise' of the
neutral axis after steel yielding is shown in Fig. 5.16. The crack
pattern.obtained using the finite elemen: analysis is shown in Fig. 5.17
for two successive load steps, one before steel yielding and the other
after steel yielding. The cracking is predominantly vertical (because
of the low reinforcing percentage). Secondary cracking has occurred at
a number of Gauss points, but not sufficient to produce shear failure.

The longitudinal stress distribution in concrete and steel are
shown in Figs. 5.18a and b for a load of 37.5 kips (167 kN). It can be
readily seen that a linear elastic analysis seriously underestimates the
stresses in concrete. The horizontal 'shift' in the steel stress due to
the inclination of cracks has also been predicted by the finite element
analysis. This 'shift' is rather small in this case, because the cracks
are nearly vertical.

The load-deflection curves obtained by several investigators are
compared to that obtained in this study in Fig. 5.19. The simple
concrete material model used in this study is thus seen to be adequate
for predicting all the salient features of the physical behavior of this
beam and, by inference, those of all beams which fail in a ductile

flexural mode.

5.6_Prediction of Shear Failure - Beams Without Web Reinforcement

5.6.1 Bresler Scordelis Beam 0OAl - a/d = 4.0

The finite element mesh layouts for all the shear critical beams
without web reinforcement investigated in this study are shown in Figs.

5.20a through e. The load-deflection curve for the Bresler-Scordelis



226
beam OAl (with shear span to depth ratio of 3.97) predicted by the
finite element method is compared to the experimental curve in Fig.
5.21. The curves are essentially identical up to the experimental
failure load. The experimental crack patterﬁ is shown in Fig. 5.22a.
The analytical crack pattern obtained in this study is shown in Fig.
5.22b and c. Figure 5.22 b corresponds to a load level of 60 kip (167
kN) (the load at which inclined cracking was observed in the test), and
Fig. 5.22c¢ to a load level close to the ultimate. Figures 5.22d and
5.22e show the corresponding crack patterns when a tension cut-off
criterion is used. The development of horizontal cracking at ultimate
load close to the neutral axis is apparent'in the analytical crack
pattern.

At the analytical failure load level the number of Gauss points in
damage region 2 of Fig. 5.11 significantly increased, particularly near
the mid span of the beam. 1In fhe next load step, divergence occurred
regardless of the structural stiffness matrix used for iteration. The
reduction in the size of the load step to 1.0 percent of the total load
could not produce convergence either. An analysis of the stresses at
the failure load level and at the next unconverged load step leads to
the conclusion that the numerical failure was c;nnected to the
uncontrollable increase in strain at a number of cracked integration
points. At the maximum load level (at which convergence occurred) no
element exhibited compression softening (although the top four Gauss
points nearest to the load entered into region -1 of Fig. 5.11, that is,
they entered the compression hardening region). The stress in steel was
approximately 42.0 ksi (290 MPa), well below the yield strength of 80.5

ksi (555 MPa). .Thus the numerical failure is directly attributable to
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the loss of shear stiffness in a number of elements which is the
manifestation of the failure mode designated as 'beam action' in Sect.
5.2.2 (that is, the failure of concrete segments between the cracks).

The failure mode can also be verified by comparing the relative
vertical displacement between the top and bottom faces of the beam as
shown in Fig. 5.23. The marked change in slope at the onset of inclined
cracking, which was observed in the test, has been reproduced using the
finite element analysis that takes into account the tension softening in
concrete. The prediction using the tension cut~off assumption is
evidently too soft, as also observed by Ottosen (1982).

The principal stress trajectories can be identified in Fig. 5.24
for a load level very close to the ultimate. The length of line of the
‘cross' at each Gauss point is proportional to the magnitude of the
stress and the lines are oriented along principal stress axes. The
absence of arching action from the load point to the support is
apparent, again indicating the failure mode as diagonal tension.

The stress distribution across three sections, first at a section
close to the load point, second near quarter span and the third at a
section near the support, are shown in Fig. 5.25. The shear stresses
were averaged over the element whereas normal stresses were averaged
over Gauss points at the same level in the element. This shear stress
distribution indicates greater contribution from aggregate interlock
than that assumed by MacGregor and Walters (1967). The normal stress
distribution is essentially linear. The distribution of shear and
normal strains\indicates the large increase in shear strains in the
cracked region.

The stresses in the reinforcement are compared to those obtained
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using the engineering analysis described in Sect. 5.2.2.5 as shown in
Fig. 5.26. The finite element analysis using the tension cut-off
criterion correctly predicts a 'shift' in the stress level due to the
inclination of the cracking. The average stresses obtained when tension
softening and tension stiffening are included, can be used to determine
the stresses at the crack locations by adding the tension contribution
from the concrete to these average stresses. Such computations‘show the
stress level in the steel reinforcement to be approximately same as that
obtained using the tension cut-off analysis. It is also apparent that
the practice of using elastic linear finite element analysis to
determine the tensile .stresses in steel and concrete and lumping all
tension Iin steel underestimates the stresses in the reinforcement.

The longitu&inal compressive stresses in concrete at the top Gauss
points are shown in Fig. 5.27. The linear elastic analysis
significantly underestimates the stresses because uncracked section
properties were used. The stresses near the load point exceed the
uniaxial compressive strength due to the presence of normal compressive
stresses in this region (i.e. due to biaxial compression, see Fig.
3.21). The reduction in concrete compressive stresses from the cracked
section engineering analysis due to tension softening and tension
stiffening is minor. This is in contrast to deep beams where the
tension stiffening signficantly reduces the compressive stresses

(Chapter 4, Floegl and Mang, 1982).

5.6.2 Kani's Beam No. 65 - (a/d = 2.5)

This beam with shear span to depth ratio of 2.46, shown in Fig.

5.10, was tested by Kani (1967) and was reported to have failed in the
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diagonal tension mode. The computed load deflection curve is shown in
Fig. 5.28. (Except for the experimental failure load, no other data on
the results of the experiment are available.) Convergence to the
specified tolerance of 1.0 percent on the norm of the unbalanced load
vector occurred up to a load of 27.5 kips (122 kN). At the next load
step (for a total load of 30.0 kips (133 kN)) the unbalanced load vector
fluctuated, the least value of the norm being 1.75 per cent. In the
subsequent load step divergence occurred starting from the first
iteration and both displacement and force tolerances were exceeded.
Displacement and stresses output on this unconverged load level
indicated disproportionate increase in strains over the previous load
level. The load versus relative vertical displacement between the top
and bottom féces of the beam (shown in Fig. 5.29) also indicates an
abrupt increase at the unconverged load step signifying diagonal tension
failure. Figure 5.29 also shows a marked change in slope at a load
level of 20 kip (89 kN) indicating the onset of inclined cracking.
Compressive stresses throughout the beam were in region '0', i.e.
elastic at failure. Thus, the failure was not initiated by the
compression softening near the load point but rather by the uncontrolled
increase in strain at a number of cracked integration points. This can
also be deduced from the analytical crack pattern shown in Fig. 5.30.

It is apparent that the height of cracks is greater in the shear span
than in the constant moment region. (Also most of the 'cracked' Gauss
poiﬁts were 1n damage zone 2 in the shear span whereas they were in
damage zone 1 in the constant moment region. The prevalence of
secondary cracking (in sections adjacent to the load) in the shear span

region can also be seen.
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The principal stress trajectories are shown in Fig. 5.31. The
length of the line of the 'cross' at each Gauss point is proportional to

the magnitude of the stress. The abéence of a 'direct' load path
betwéen the load and support points (i.e. the absence of arch action)
can be seen. (This is even more evident when the crack pattern shown in
Fig. 5.36 for Kani's Beam 72, which is discussed subsequently, is
compared to that for Beam 65.) Some degree of 'strain localization' can
be discerned from the analytical crack pattern.

The longitudinal stress distribution along the length of the beam
is shown in Fig. 5.32 and is compared to the linear elastic finite
element analysis and to the conventional engineering analysis neglecting
concrete in tension. The linear elastic finite element analysis
underestimates the concrete stresses in the cracked region. There is
also significant increase in concrete stresses at the load point due to
stress concentration. The shear stress distribution across a section
approximately 6 in. (150 mm) away from the load point in the shear span
is shown in Fig. 5.33 and is compared to that assumed by MacGregor and
Walters (1967) in their analysis. As for beam OAl, greater contribution
from aggregate interlock is predicted by this analysis than they have

assumed.

5.6.3 Kani's Beam 72 - a/d = 2.0

This beam, also tested by Kani, has been reported to have failed in
the 'slow diagonal failure' mode. The experimental load deflection
curve is not available. The load-midspan deflection curve obtained
using the finite element analysis is shown in Fig. 5.34. Convergence to

the specified tolerance of 1.0 percent on the unbalanced force vector
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norm was obtained up to a load level of 37.5 kips (166.8 kN). 1In the
next load step (at a total load of 40.0 kips (178 kN)), the best
convergence that could be obtained was 1.5 percent. In the subsequent
1§ad step, divergence occurred starting from the second iteration. The
stresses and strains output on this unconverged load indicated a highly
disproportionate increase in displacements and a large increase in the
number of cracked integration points. The load versus relative vertical
displacement between the top and bottom faces of the beam ('thickening')
is shown in Fig. 5.35. 1In contrast to Beam 65, the thickening is
gradual, probably due to the ‘'arch action'. Some degree of arch action

-can also be identified from the analytical crack pattern shown Fig.
5.36. The absence of 'strain localization' is significant, especially
when compared to the crack pattern for Beam 65;

The shear stress distribution across the depth of the section is
shown in Fig. 5.37. The distribution is smoother than for the other
beams and approaches that of a solid section. This can be attributed to
the strain softening in tension and the smaller reduction in the cracked
éhear stiffness compared to beams with greater shear span to depth
ratios. The principal stress plot shown in Fig. 5.38 also supports the
notion that the contribution of arch action to shear resistance is

significant in this case.

5.6.4 Bresler-Scordelis Beam 0A2 - a/d = 5.0

The load-deflection curve for this beam with a shear span to depth
ratio of 4.90 is shown in Fig. 5.39. The deflected shape at two
successive load steps near failure load is shown in Figs. 5.40. The

finite element prediction is again in good agreement with test
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results. The convergence to the specified tolerance of 0.1 per cent on
the incremental displacement norm and 1.0 percent on the unbalanced
force vector norm, occurred up to a load level of 90 kips (400 kN)
although a definite reduction in stiffness occurred at 80 kips (356 kN)‘
load level (i.e. at the experimental failure load). At the next load
step divergence occurred starting at the first iteration. The failure
mode can be identified by comparing the cracking pattern at failure,
Fig. 5.41b, to that of the previous load step, shown in Fig. 5.4la. The
horizontal cracking near the load point and the increase in the number
of Gauss points with secondary cracking, clearly indicate the failure
mode as diagonal tension. The analytical crack pattern compares
favorably with that obtained from the experiment, shown in Fig. 5.4lc.

There was no 'compression softening' in any of the elements,
although a majority of Gauss points in the top two elements adjacent to
the load point have entered into the damage region '-1'. Even when this
region was extended such that the strain corresponding to the maximum
compressive strength was 0.00375 instead of 0.002, the numerical failure
occurred at the same load level. This does not support the assertion
made by Ottosen (1982) and by Glemberg anbd Samuelsson (1984) that the
visible diagonal cracking is a consequence of the crushing and softening
in the compression zone. It is interesting to note that a tension cut-
off analysis indicates compression softening at some Gauss points near
the load, which perhaps might have led to the above assertion. As for
beam 0Al, the numerical failure, attributable to the uncont;ollable
increase in tensile strain at a number of Gauss points, indicates a
diagonal tension mode of failure.

The failure mode can also be verified by comparing the relative
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vertical displacement between top and bottom faces of the beam obtained
from the analysis to that measured during the experiment, as shown in
Fig. 5.42. The marked increase in the 'thickening' at failure load is
apparent. As for beam 0Al, the prediction using tension cut-off ‘
criterion is too soft. This figure also illustrates the significant
loss of stiffness at 80 kips (356 kN) load level, and hence indicates
that this may be appropriate as a predicted failure load.

The distribution of shear stress across the depth of the section is
shown in Figs. 5.43a and b for two different load levels. The
distribution of average shear stress is more even than if tension cut-
off and a constant shear reduction factor are assumed. Comparison of
the shear stress distribution across section closer to the load point,
at two successive load steps near failure, indicates that shear carried
by intact concrete at the top increased substantially with increase in
load while the shear carried in the cracked portion below the neutral
axis did not increase significantly.i Failure occurs because of the
reduction in shear stiffness of the cracked concrete and its consequent
inability to transfer the incremental force in steel without undergoing
large strains. This of course confirms the importance of aggregate
interlock in shear resistance.

The distribution of shear stress across sections farther from the
critical section is more uniform and the increase in stress at two
successive load steps 1is also more uniform. The shear stress
distribution assumed by MacGregor and Walters (1967) 1is also shown in
Fig. 5.43. As for Beam OAl the difference is mainly attributable to the
estimated contribution from aggregate interlock. The finite element

analysis including tension softening predicts the contribution from
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aggregate interlock and dowel action to shear resistance to be
approximately 50 percent.

The principal stress plot is shown in Fig. 5.44. The absence of
arch action is evident. The distribution of longitudinal stress across
the depth of a section approximately 11.75 in. (300 mm) from the load
point, is shown in Fig. 5.45. The penetration of the crack well into
the compression region at ultimate load (in approximately horizontal
direction) is apparent. The change in neutral axis location is
insignificant, indicating that flexural failure is far from being
imminent.

The longitudinal distribution of maximum compressive stress is
shown in Fig. 5.46. As for beam 0Al, linear elastic finite element

analysis underesg}mates the stresses.

5.6.5 Bresler-Scordelis Beam 0A3 - a/d = 7.0

This beam with a shear span to depth ratio of 6.94 is reported to
have failed in the diagonal tension mode. The load deflection
relationship observed during the experiment is’ compared to the finite
element prediction in Fig. 5.47. Again the prediction is good. The
numerical failure was initiated by compression softening and crushing
near the load point. This is confirmed by the absence of numerical
failure until a load of 115 kips (511 kN), instead of 90 kips (400 kN),
when the length of the compression damage zone '-1' was increased such
that the strain corresponding to the maximum uniaxial compressive stress
is 0.00375 (instead of about 0.002 obtained from cylinder tests). The
increase in shear capacity of this beam when higher compressive

ductility of concrete is assumed can be attributed to the high bending
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compressive stresses resisting the penetration of diagonal cracking into
the compressive zone above the neutral axis.

The load versus relative vertical displacement between the top and
bottom faces of the beam is shown in Fig. 5.48. The onset of diagonal
cracking has been predicted well using this analysis. That the failure
mode may be characterized as diagonal tension is supported by the large
increase in the relative vertical displacement beyond the 90 kip load
level.

The crack pattern observed in the experiment, shown in Fig. 5.49a,
compares favorably with that predicted by the analysis, shown in Fig.
5.49b.

The distribution of longitudinal and shear stresses across the
depth of the section is shown in Fig. 5.50. Compared to beam 0A2, there
is less penetration of cracking into the compressive zone due to the
larger compressive stresses. The shear stress distribution across the
section is fairly even. The shear strain distribution is highly skewe&
towards the cracked region and the magnitude of the shear strain in the
cracked region is in the same order as that of normal strain. Failure
occurred because of the loss of shear stiffness above and below the
neutral axis. This is in contrast to beams OAl and 0A2 which failed due
to the loss of shear stiffness in the tensile cracked region only.

The principal stress plot is shown in Fig. 5.51. Vertical

compressive stresses are insignificant and arch action is absent.

5.7 Prediction of Behavior of Beams with Web Reinforcement

5.7.1 Bresler-Scordelis Beam A3 - Flexural Failure

The finite element mesh layouts for the beams with web
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reinforcement investigated in this study are shown in Figs. 5.52a, b and
¢c. Bresler-Scordelis Beam A3 with web reinforcement had material and
geometric properties the same as those of Beam 0A3 and is reported to
have failed in flexural compression. Since the longitudinal
reinforcement ratio in this béam exceeds the 'balanced' ratio, as
calculated using the ACI code, the beam is expected to fail in
compression. The increased ductility in concrete due to confinement
provided by the steel stirrups has been accounted for by using a
shallower compression softening branch as shown in Table 5.2. The post
yield stress—strain relationship used for longitudinal steel
reinforcement becomes important in this case. The stress—strain curve
for s;eel obtained from test is compared to that used in this study in
Fig. 5.53. Since the use of a horizontal 'plateau' in the stress—strain
curve for steel will introduce numerical instabilities in the solution
procedure, strain hardening is assumed to start at the yield point.

The load deflection relation predicted by the finite element method
is'compared to that observed in the experiment, in Fig. 5.54. The
failure load calculated by Bresler and Scordelis (using a rectangular
equivalent compressive stress block and a limiting strain of 0.003 for
concrete) as governed by flexure has been given as 96 kips (427 kN).

The experimental failure load of 105.3 kips (468 kN) exceeds this value
due to the increased ductility in concrete. This is confirmed by
calculations using the ACI code assumptions and the finite element
analysis which give the load correséoﬁding to the onset of steel
yielding as 106 kipé (471 kN). The finite element analysis gives
converged solutions beyond this level because the horizontal plateau in

the steel stress—strain curve has been ignored.
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The failure mode is characterized as flexural compression which is
inferred from the strain softening in the biaxial compression region
near the load point indicated by the finite element analysis. This is
also confirmed by the absgnée of significant deformation in the load-
relative vertical displacement relation shown in Fig. 5.55. The
stirrups have not yielded and their effect in increasing the load
carrying capacity above that of beam 0OA3 is due to confinement of
concrete in compression. Thus the presence of stirrups in this beam has
altered the failure mode from diagonal tension to flexural compression.

The experimental crack pattern shown in Fig. 5.56 compares
favorably with the finite element prediction, shown in Fig. 5.57a and
5.57b at two successive load steps just before fallure. The increase in
the number of Gauss points in the midspan region where secondary
cracking has occurred and the number of cracked Gauss points in the end

regions is apparent.

5.7.2 Bresler Scordelis Beam A2 -~ Shear Compression Failure

Except for the provision of web reinforcement, this beam has
geometric and material properties the same as for Beam 0A2. This beam
is reported to have failed in shear-compression. The increased
ductility in concrete due to the confinement provided by the sfeel
stirrups has been accounted for in the input material properties, as
shown in Table 5.2. Tension stiffening in the web reinforcement has
been neglected because the cross-sectional area of stirrups is very
small compared fo the area of concrete. The load deflection relation
predicted by the finite element method is compared in Fig. 5.58 to that

observed in the experiment. Again, the prediction is seen to be good.
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Failure (in the analysis) 1s initiated by the yielding of steel
sfirrups. The longitudinal steel has not yielded. The compressive
stress at most of the Gauss points near the load is in regiomn '-1' but
no softening (region '-2') occurred at any of the Gauss points."The
numerical failure was manifested as a zero or negative term on the main
diagonal of the tangent structure stiffness matrix. That the failure
was initiated by the yielding of stirrups is confirmed by the load-
relative vertical displacement curve shown in Fig. 5.59, which shows a
sudden increase in the 'thickening' of the beam prior to failure. This
is further confirmed by the increase in failure load to 112 kips (498
kN) in a finite element analysis in which tension stiffening was assumed
in web reinforcement as well. This analysis also exhibited compressive
strain softening at some Gauss points near the load. Thus it is seen
that, in contrast to Beam A3, an increase in the amount of web
reinforcement would change the finite element prediction to a flexural
compression failure at about 112 kips (498 kN) load rather the shear
compression failure at 100 kips (448 kN).

The distribution of stresses in stirrups at various distances from
the center of the beam is shownin Fig. 5.60. It is seen that yielding
has occurred in stirrups in the end quarter spans of the beam rather
than the mid half span. This could be explained using the crack
pattern. The crack pattern observed in the experiment is shown in Fig.
5.61 and that obtained using the finite element analysis is shown in
Fig. 5.62. Both crack patterns show the crack inclination to be closer
to the horizontal in the end quarter span because of the higher ratio of
shear stresses to flexural stresse in this region. It could be deduced

that the diagonal tension crack started at the end closer to the support
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and propagated towards the load point, the function of the web
reinforcement being to delay this propagation. This is also confirmed
by the thickening at various distances from the load point, observed
during the experiment, shown in Fig. 5.63. The relative vertical
displacement is much greater at ends closer to the supports indicating
that the stirrups have yielded in this region.

The distribution of shear stresses across the depth of the section
is shown in Fig. 5.64. The form of distribution does not differ
significantly from that for Beam 0A2.

The finite element model thus correctly predicts that the effect of
stirrups is to change the failure mode from diagonal tension failure of
Beam 0A2 to the shear compression failure of Beam A2, as observed in

tests.

5.7.3 Bresler—-Scordelis Beam Al - Shear Compression Fallure

Except for the addition of web reinforcement, this beam has the
same material and geometric properties as for beam OAl. As indicated in
Table 5.2, the confinement provided by the web reinforcement increases
the strain softening modulus and the ductility and this is taken into
account in the selection of the input parameters. The load-deflection
behavior predicted by the FEM is compared to that observed in the
experiment in Fig. 5.65. Failure of the numerical analysis was
initiated by the yielding of stirrups. This is confirmed by the load-
relative vertical displacement ('thickening') behavior, shown in Fig.
5.66. At the final load step, there was an abrupt increase in stirrup
stresses from the previous load step with stirrups yielding at a number

of Gauss points, indicating that failure occurred when the released
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stresses from the cracked concrete could not be accommodated by steel
stirrups. The crack péttern obtained from the finite element analysis
for the last two successive load steps is shown in Fig. 5.67a and 5.67b .
and compares well with the observed crack pattern shown in Fig. 5.67c.
The large increase in the number of cracked Gauss points in elements
closer to the support can be seen when Figures 5.67a and 5.67b are
compared. The crack inclination is almost horizontal at a number of
Gauss points lying just below the neutral axis and are at sections where
stirrups have yielded. 1In contrast to Beam A2, the yilelding of stirrups
has occurred at a number of points not only in the outer 1/4 span but in
the full span. This might again be attributed to the higher ratio of
shear to normal stresses inducing cracking closer to horizontal.

The distribution of stresses in stirrupsAat various locations in
the span is shown in Fig. 5.68 for two successive load steps near
failure. The‘abrupt increase in stresses is apparent.

The distribution of stresses in concrete at two successive load
steps near failure is shown in Figs. 5.69a and Fig. 5.69b. The increase
in the principal compressive stresses due to yielding of stirrups in
'Region A' and due to additional cracking in 'Region B' can be seen.

The compressive stresses at a number of Gauss points near the load point
have entered into damage region "-1" at failure. Thus the change in
failure mode effected by web reinforcement, from that of diagonal
tension for Beam 0Al to shear compression for Beam Al, has been

correctly predicted by the finite element analysis.

5.8 Evaluation of Finite Element Prediction

Failure loads predicted by the finite element analysis are compared
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to the experimental values in Table 5.3 and in Fig. 5.70. Comparison is
also made in Table 5.3 and Fig. 5.71 to Zsutty's (1971) prediction.
Zsutty developed the following empirical equations for lower bound based
on the statistical analysis of a large number of test results:

For beams without web reinforcement:

d1/3
= fo— . .
Vuc 60 (fcpa) bd for a/d > 2.5 (5.15a)
d1/3 2.5
-— ! m— - Rxa
Vie = 59 (fcpa) bd (a/d) for a/d < 2.5 (5.15b)

For beams with web reinforcement:
v
V =V +—f d (5.15¢)

where V, . is the concrete contribution given by 5.15a or 5.15b and A, is
the area of stirrups, fyw is the yield strength, S is the spacing of
stirrups, p is the main reinforcement ratio, b is the width of cross
section, and d is the effective depth.

In Table 5.3, comparison is made as well to the provisions of the
ACI code (1983) which are given by Eq. 5.16a for beams without web

reinforcement and Eq. 5.16b for beams with web reinforcement

vd
= T .
Vie (1.9/fc + 2500p i ) bd (5.16a)
A f
VY.
Ve " Ve T ) d (5.16b)
M
where —%— = & o shear span
vd d depth
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The ratio of the Zsutty's predictions to the finite element
predictions varies between 0.82 and 0.96 which is certainly acceptable
considering the wide variation in material properties and reinforcement
ratios for the test beams of this study.

The correlation in Table 5.3 with the ACI code equations is also
good, the ratio of the ACI loads to the predicted loads varying from
0.63 to 0.82. Since the ACI code provision ignores the additional
capacity due to arch action for low a/d ratios (a/d < 2.5), it
underestimates the shear capacity of beams in this range. The finite
element method predicts the_'valley' of diagonal failure of Fig. 5.5 as
well, as shown in Fig. 5.72.

The finite element method predicts not only the failure load but
also other salient aspects of the physical behavior such as the failure
mode, re;ative vertical displacement between the top and bottom faces of
the beam and the load deflection relationship for a wide range of beams,
with an accuracy that is completely acceptable for engineering
purposes. With the application of the FEM the unifying and
differentiating features of each beam can be identified and the
qualitative and the quantitative influence of different material
parameters can be estimated, as is done in the following paragraphs for

beams studied in this investigation.

5.9 Comments on the Behavior of Shear Critical Beams

Considering concrete as a continuum even after cracking, a shear
failure criterion can now be identified as follows. Shear failure,
either by diagonal temsion or shear compression, occurs when the shear

modulus of concrete above or below the neutral axis has decreased
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sufficiently to produce shear strains of the same order of magnitude as
normal strains. Diagonal tension failure occurs when cracked concrete
below the neutral axis loses its shear stiffness. Shear-compression
failure occurs when concrete above the neutral axis loses its
stiffness. The role of the web reinforcement is simply to decrease the
rate at which the shear stiffness is reduced; by providing confinement
for concrete above the neutral axis and by reducing crack strains below
the neutral axis. Arch action reduces the shear to be transferred from
below the neutral axis and therefore increases the load at which
diagonal tension failure_occurs. It is postulated that these failures
may be schematically shown by Fig. 5.73.

Although only three beams with web reinforcement were studied, some
conclusions may be drawn as to the effectiveness of the web
reinforcement. For beams containing web reinforcement which fail due to
the yielding of stirrups, such as Al and A2, the load carrying capacity
can be increased by increasing the amount of web reinforcement whereas
for beams failing in flexural compression, such as A3, increase in the
amount of web reinforcement does not significantly increase the load
capacity. Referring to Fig. 5.73, it can be stated that the effect of
web reinforcement is to raise curve 'A' towards curve 'B'. Curve 'B'
also rises, though by a minor amount, due to the increase in compressive'

strength resulting from confinement provided by the stirrups.

5.10 Influence of Material Parameters

5.10.1 Tension Softening Modulus

The tension softening modulus influences the numerical solution

directly by contributing to the capacity of the shear critical beams at
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least at the smaller load levels, and indirectly by its effect on the
shear stiffness (ﬁue to the assumed relation between the shear stiffness
of the cracked concrete and the normal crack strain). The load-
deflection relationships obtained from the analyses using the tension
cut—-off criterion are shown in Fig. 5.74 for Bresler-Scordelis beams
OAl, OA2 and 0OA3 and in Fig. 5.76 for Kani's Beam 72. While failure
loads of the Bresler/Scordelis beams have been predicted equally well by
both tension softening and tension cut-off analyses it is apparent that
tension cut off analysis underestimates the actual stiffness. The
tension cut-off analysis considerably underestimates the failure load
for Kani's beam 72.

Considering the load versus relative vertical displacement between
the tép and bottom faces of the beams (i.e., the 'thickening'), it is
obvious from Figs. 5.23 and 5.42 that the tension cut—off analysis fails
to predict the observed behavior. An advantage of the tension cut-off
analysis is that it yields an upéer bound on the stresses in the
reinforcement. The major disadvantage of the tension cut off analysis
is that the predicted failure load in beams where arch action is
significant (for shear span to depth ratios less than about 2.5) depends
largely on the shear retention factor. This dependence 1is discussed in
mofe detail in subsection 5.10.5. A more fundamental objection to the
tension cut-off analysis is that it does not represent the observed
material behavior.

Analyses performed in this study with different strain softening
moduli show that the predicted failure load is somewhat sensitive to the
softening modulus for shallow beams with short shear spans (for a/d <

2.5) such as Beam 72. For Beam 72, as seen from Fig. 5.75, an increase
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in the ultimate tensile strain from 0.0014 to 0.0018 (a 22% increase)
resulted in an increase in the predicted failure load from 37.5 kips to
40.0 kips (a 6.7% increase). This dependence is not only because of the
increase in the residual shear stiffness when a shallower temnsion
softening branch is used but mainly because the development of the
fracture process zone in this beam is incomplete at failure.

The load-deflection relationship for a plain concrete beam with a
shear span to depth ratio of 2.0 is shown in Fig. A4.6. It is seen that
the maximum load carrying capacity of this beam at point 2 in Fig. A4.6
occurs when the fracture process zone is not fully developed i.e. the
" effective tensile stress has not been reduced to zero at the tip of the
crack. Thus an increase in the fracture energy will increase the
failure load of this beam. For shallow reinforced concrete beams with
short spans, where the fracture process zone 1s not fully developed,
similar dependency exists although to a lesser degree. For Kani's Beam
72 (with shear span to depth fatio of approximately 2), this dependency
is shown in Fig. 5.75. Such dependency has also been observed by Rots
et al (1985) for reinforced and plain concrete beams and by Darwin
(1985) for plain concrete notched beams. However in the practical range
of values of €.t (between say 0.0008 and 0.0018), the difference in the
' values of the predicted failure load is within the scatter in

experimental results for reinforced concrete beams.

5.10.2 Tensile Strength

The tensile strength of concrete significantly influences the
predicted failure loads of shear critical beams. For example, the

predicted failure load for beam OAl was 80 kips (355 kN) for an assumed
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tensile strength of 300 psi (2.07 MPa) whereas numerical failure was not
obtained even at'97 kips (432 kN) load (i.e, more than 21% increase)
when a tensile strength of 757 psi (4.0 MPa) was assumed. However, the

€ was the same in both cases. This influence of tensile strength on

ut
failure load decreases with increasing shear span to depth ratio. For
example for beam OA2, doubling of the tensile strength increased the
failure load from 80 kips (355 kN) to 91 kips (405 kN) (approximately
13.8% increase). For beams failing in a ductile manner by longitudinal

steel yielding, the effect of the tensile strength on failure load is

not significant.

5.10.3 Secondary or Multiple Cracking

The faillure load is overestimated Qhen the tensile strength
criterion is violated in the analysis after concrete cracking. The
influence of secondary or multiple cracking is similar to.that of
tensile strength. For beam OAl, for example, the failure load obtained
from the analysis was 85 kips (378 kN) (Fig. 5.22c) when secondary
cracking was considered>whereas failure was not achieved even at 95 kips
(423 kN) when secondary cracking was ignored (i.e., when the tensile
stress in concrete was allowed to exceed the tensile strength at some
Gauss points in directions other thaﬁ the crack opening direction). The
influence of secondary cracking decreases with increasing shear span to
depth ratio, similar to the influence of temsile strength. For example,
for Beam 0A2, the increase in failure load was only 3.9% when secondary

cracking was not considered.
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5.10.4 Compressive Stress-Strain Relationship

Considefing Fig. 5.73 the reduction in the values of the material
moduli at high compressive stresses and the value of the compressive
strain softening modulus would be expected to have significant influence
on the failure load when failure is governed by curve 'B'. It is also
expected that the predicted failure mode is sensitive to those modulil as
the difference between the resistance values represented by curves 'A'
and 'B' becomes smaller. For Kani's Beam 65, with a/d of 2.5, the
predicted failure load is unaffected by the stress—strain relation
adopted in regions '-1' and '-2' (Sect. 5.6.2.). For Beam OAl, the
value of the compressive strain softening modulus had no effect on the
failure load whereas the modulus in region '-1' had only a minor effect
(Sect. 5.6.1). For beam 0A3, both fhe compresive strain softening
modulus and the modulus in region '-1' greatly influence the predicted
failure load (Sect. 5.6.5). For beams with web reinforcement the degree
of influence of these moduli is dependent on the shear span to Aepth
ratio, amount of web reinforcement and the amount of longitudinal steel.

In beams with short shear span to depth ratios (less than about
2.0) the influence of the tensile stress in the orthogonal direction on
the post-cracking compressive strength also becomes important, as well
as the precracking stress strain felationship due to the high
compressive stresses parallel to the cracks.

Since the use of a multilinear uniaxial stress-strain relationship
in this study has yielded acceptable predictions of beam behavior,
greater refinement in modelling the shape of the stress strain curve
does not seem to be necessary. However, it is anticipated that, unless

attention is paid to all the critical parameters identified herein,
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generalized material models will have significant difficulty in properly
predicting correct failure modes and loads over the full range of

variables as they occur in real structures.

5.10.5 Crack Shear Modulus

The use of a constant crack shear modulus (i.e., a constant shear
retention factor) does not adequately represent observed behavior and
leads to failure load predictions which are highly dependent on the
shear retention factor used. For example, using a constant crack shear
modulus of 5 per‘cent of the uncracked shear modulus leads to close
prediction of failure load for beams 0Al, 0A2, and O0A3. But for Kani's
beams 65 and 72, the predicted failure loads with this modulus were very
low. (For example, the failure load for B72 was 32 per cent lower than
the experimental failure load.) When a shear retention factor of 0.4
was used for beam 0Al, failure was not observed even at 100 kips (which
is 33 per cent higher than the actual failure load). This dependence of
failure load prediction on the shear retention factor is stronger if the
tension cut-off criterion is used.

Thus it is essential to account for the reduction in shear modulus
with increasing normal crack strain in the finite element analysis of
shear critical beams. However, only limited experimental results are
available relating the crack shear stress and the crack shear
displacement in mixed mode fracture conditions. Also, some simplifying
assumptions must be made in deriving an equivalent relationship between
crack stress and crack strain. Fortunately, although it is essential
that the dependency be accounted for, high accuracy in modelling this

relationship does not appear to be necessary in order to obtain reliable
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finite element predictions and the bilinear relationsﬁip adopted in this
study seems adequate.

As mentioned in Chapter 3, a minimum crack shear modulus is
required for numerical stability. A value of 1.0 per cent of the
uncracked shear modulus is adequate to avoid spurious numerical
instability. A value of 5.0 per cent has been used in this study since
it matches the test results more closely, leads to faster convergence

and does not increase the failure load significantly.

5.10.6 Bond-Slip

The effects of bond slip have been the subject of much speculation
both in the context of the physical behavior as well as the numerical
analysis procedure. The results of the analysis of several beams with
and without bond slip are shown in Table 5.4. It is seen that the
effect of bond slip in beams wheré arch action is not significant (i.e.
for a/d > 2.5) is to reduce the failure load whereas for a/d < 2.5
(where arch action is significant) it increases the failure load.

The reduction in failure load due to bond slip for beams with a/d >
2.5 occurs because of the increase in crack strains and the consequent
reduction in shear stiffness. For beams with a/d < 2.5, the increase in
failure load due to bond slip occurs because arch action is enhanced.
That arch action increases at the expense of bond slip is evident when
the predicted failure load of Kani's Beam 72 assuming perfect bond is
compared to that predicted allowing for bond slip (an increase of 10.6
percent). Thus it seems that greater bond stiffening increases beanm
capacity when beam action controls whereas a reduction of bond stiffness

increases beam capacity when arch action controls (although in the
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latter case the probability of anchorage failure increases). 1In either
case it is obvious that bond-slip effects have to be considered to

obtain better predictions of the beam behavior.
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Set damage region in
1n direction to -1 and
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based on total strains
and Fig. 5.11
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Fig. 5.12 Flow Chart of Stress Computation Subroutine
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l CHAPTER 6

‘ S SUMMARY AND CONCLUSIONS
|

6.1 Summary
In this study, simple multilinear constitutive relationships for
concrete have been developed which, when incorporated into a nonlinear

finite element program, closely predict the behavior of beams and panels

exhibiting a wide range of failure modes.
E Concrete and reinforcing element formulations have been
developed. An embedded formulation for the bond element, wherein the
‘ bond slip d.o.f. are added at the reinforcing steel to take into account
i the bond slip at the coﬁcrete/steel interface, has been developed which
obviates the need for locating boundary nodes of concrete elements at
‘ the reinforcing steel locations.
The fundamentals of concrete behavior and the salient features of
] various constitutive models that are available in the literature have
‘ been discussed. For reliable predictions of the structural behavior of
reinforced concrete, the following considerations were included in the
i nonlinear analysis:
1. Tensile cracking
! 2. Tension softening and tension stiffening
5 ' 3. Strain hardening at high compressive stress
4. Strain softening under post-peak compression
5. Post-cracking compressive strength of concrete
6. Variation of shear modulus with the normal crack strain
7. Bond-slip behavior.

The equilibrium and compatibility of net-reinforced concrete
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elements have been discussed. The basics of plasticity based methods
and the modified compression field theory of Vecchio/Collins (1982) were
described. It has been shown that the ultimate strength of net
reinforced concrete elements failing by at least one layer of steel
ylelding can be closely predicted by equilibrium considerations alone
when the post-cracking compressive strength criteria developed herein
are adopted. The 'rotating crack model', wherein the axes of orthotropy
are assumed to coincide with the current principal strain axes, in
conjunction with the multilinear material model for concrete adopted in
this study, has been found to be adequate to closely predict the
behavior of shear panels and net-reinforced deep beams.

The fundamental behavior of reinforced concrete beams has been
discussed. Nonlinear finite element analyses have been performed (as
described in Chapter 5) on: (1) beams exhibiting ductile flexural
failure modes (failure by steel yielding); (2) shear critical beams
without web reinforcement and failing by diagonal tension; (3) shear
critical beams with web reinforcement and failing by shear compression;
(4) deep beams failing in compression, i.e., failure of 'truss' action
or 'arch' action (described in Appendix A3); and, (5) deep beams failing
by concrete crushing at support locations (described in Chapter 4). The
effects on the analysis of various parameters such as tensile strain
softening, secondary cracking, shear modulus of cracked concrete,
compressive stress—-strain relationship and bond slip were
investigated. 1Insights gained during the analysis into the behavior of

shear critical beams are discussed.



6.2 Conclusions

1. The major conclusion from this study is that the finite element
method can be used to closely predict the behavior of reinforced
concrete members subjected to in-plane forces if proper care is taken in
modeling the material characteristics. The load deflection behavior,
crack pattern, failure load and failure mode can be predicted with an
accuracy that 1s acceptable for engineering purposes.

2. In order to obtain reliable predictions it appears to be
necessary to properly include consideration of major sources of
nonlinearity in reinforced concrete, namely tensile cracking, tension
softening and tension stiffening, strain hardening and strain softening
in compression, variation of shear modulus with crack width and bond
slip. Great refinements in modeling these phenomena may not be
required.

3. The embedded formulation of bond elements developed herein
offers the advantage that nodes of solid elements need not be located at
reinforcing elements.

4. A hypothesis for estimating the post-cracking compressive
strength of concrete based on the biaxial stress conditions prior to
cracking has been developed in this study. Ultimate strength
predictions using this hypothesis in conjunction with equilibrium
considerations alone, have been compared to the test data of Vecchio and
Collins (1982) and found to be adequate for panels failing by at least
one layer of steel ylelding. For panels failing by concrete crushing
with no steel yielding, a lower bound on the failure load is obtained.

5. The finite element method, employing the simple multilinear

material model, predicts with reasonable accuracy the load deflection
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behavior, failure mode and failure load of Vecchio/Collins shear panels
failing by steel yielding or concrete crushing including one panel
subjected to nonproportional loading.

6. The prediction of ultimate strength of panels failing by
concrete crushing 1s sensitive to the tenslon-stiffening relation used.

7. The prediction of ultimate strength of panels is insensitive to
the shear modulus of cracked concrete used.

8. The finite element method, employing the rotating crack model,
and the simple multilinear stress—strain relationship, closely predicts
the behavior of a net reinforced deep beam.

9. The finite element analyses lead to the identification of a
shear failure criterion for shallow beams as follows. Shear failure
occurs when the shear modulus of concrete above or below the neutral
axils has decreased sufficiently to produce shear strains of the same
order of magnitude as normal strains. The role of the web reinforcement
is to increase the load at which the shear stiffness 1s reduced to a
critical value.

10. It is important to model the descending branch of the tensile
stress—strain curve of concrete in order to obtain reliable predictions
of the behavior of beams.

11. The tensile strength of concrete has a significant effect on
the failure load of shear critical beams.

12. Secondary cracking must be considered in order to obtain
reliable predictions of the behavior of shear critical beams.

13. For reliable predictions, compressive strain hardening and
strain softening must be considered for beams.

14. It is essential that the variation of shear modulus with the
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crack width (i.e. normal crack strain in the smeared crack approach) is
represented.

15. The effect of bond slip on shear critical beams without web
reinforcement is to increase the failure load if shear span to depth
ratio (a/d ratio) is less than about 2.5 and to decrease the failure

load if a/d > 2.5.

6.3 Recommendations for Future Study

A number of areas remain to be examined for the wider, practical
application of the finite element method for the prediction of concrete
behavior. Some of these are outlined below.

1. Application to prestressed and partially prestressed concrete
members.

2. The effects of bond slip of web reinforcement on the shear
capacity of reinforced concrete members.

3. Extension to plane-strain and triaxial stress conditions.
Triaxial tests show that even moderate levels of confinement can double
the strength and ductility of concrete. The parameters defining the
stress—strain curve of concrete may be modified for varylng degrees of
confinement using failure surfaces similar to the biaxial stress
envelope.

4. Large displacement formulations must be developed and tested so
as to reliably predict the behavior of reinforced concrete columns.

5. The influence of mesh refinement, aspect ratio and orientation
of the elements on the behavior prediction needs to bé examined further.

6. Incorporation of a substructuring solution scheme wherein it may

be possible to eliminate all degrees of freedom associated with the
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linear regions of the structure by static condensation. In this case,
computationally more expensive nonlinear analysis will be restricted to

only those portions of the structure which are expected to behave

nonlinearly under applied loads.
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APPENDIX Al

ISOPARAMETRIC ELEMENT FORMULATION WITH VARIABLE NUMBER OF NODES

Al.l Formulation

The basic procedure in the isoparametric finite element formulation
is to express the element coordinates and element displacements in the
form of interpolations using the natural coordinate system of the
element. Consider, for example, a two dimensional bicubic plane-stress
isoparametric serendipity element, for which the global and natural

coordinates are shown in Fig. Al.l. The coordinate interpolations are
x= I N,x (Al.la)
y= X Ny (Al.1b)

where x and y are the coordinates at any point of the element, and X4,
Yi» i=1, 2 ... q, are the coordinates of the q element nodes. (In '
Fig. Al.1 q = 12.) The interpolation functions N; are defined in the
natural coordinate system of the element, which has variables £ and n
that each vary from -1 to +1. The fundamental property of the
interpolation function Ny is that its value in the natural coordinate
system is unity at node i and zero at all other nodes. That is

N (Ej,nj) = 61j in which 6ij is the Kronecker delta. Using this
condition, the functions N; corresponding to a specific nodal point
layout could be solved in a systematic manner. However, it is

convenient to construct them by inspection (Bathe, 1982). The

formulation is achieved by first constructing the interpolations
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corresponding to a basic bilinear element, given by

N, =i-(1 ree) (1+mm) , 1=1,2,3,4 (A1.2)

The addition of another node then results in an additional
interpolation function and a corresponding correction to be applied to
the already existing interpolation functions. Table Al.1 shows the
interpolation functions of four to twelve variable-number-node two
dimensional elements, of which the bicubic element shown in Fig. Al.l
has the greatest number of nodes.

The application of the above technique can be illustrated for a

seven node element shown in Fig. Al.2. For this element,

2
NX=N6=%(1-TI)(1+§) (Al.3a)
N_ =N, = l—-(9 + 278 - 92 - 27&3) (1+n) (AL.3b)
n- %7732 -+ y
N =N, = l—-(9 - 278 - 9l + 2753) (1+n) (Al.3c)
) 11~ 32 )
1
Ny =N =z (1-g)(1-n) (Al.3d)
N =N, -oN =-(1+8)(1-1) -2n (Al.3e)
k-2 "2% "% W=7 % -Je
1 2 1 _
N =N, -5 N -FN, - 5N (Al.3£)

(Al.3g)
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2 1
N = N4 - §-N - §-N (Al.3h)
1 2 1
=Z(1_§)(1+n) '§N -§‘N (Al.3k)

This technique has been extended to the formulation of Lagrangian
elements as well. For a biquadratic Lagrangian element (which has one
intermediate node on each of the four sides and one internal node) the

shape function, N,, corresponding to the internal node is given by

c

N =(1- £2) (1 - %) (Al.4)

and corrections are made to the side nodes and corner nodes as

1
Ni = Ni - E-Nc for midside nodes (Al.5a)
Lagrangian serendipity
d N = N - l-N £ d Al.5b)
an i i ; N, for cormer nodes (Al.
Lagrangian serendipity
where Ni is the function obtained from Table Al.l.
serendipity

Similarly, the 16 noded cubic Lagrangian element can also be
constructed.

The version of FEPARCS used for this study had the capability of
‘treating variable node isoparametric Lagrangian or serendipity elements

up to bicubic order.
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APPENDIX A2

STRAIN TRANSFORMATIONS
Referring to Figs. A2.la and A.2.1b,

BOA = 20'
since BO = A0 (Both radii)
OBA = 90 - 0"

which leads to, in ABCA, BAC = 9'

-, +¢€
+ _BC_ 2 x
tan © CA Y (A2.1)
(=)

Since ABAC and ADEF are similar, FED = 0'

€ - £
I __1 vy (A2.2)

tan 8' = I ”
(_lﬂq
2

Since ADE = 90°, and FDE = 90 - 6', CDA =6'

In ACDA,

tan ' = —2 (82.3)

gan? 0' = L3 ' (A2.4)

Y
Substituting for (—EXJ from Eq. (A2.1) into Eq. (A2.3) yields
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tan® 6' = ———% (A2.5)
Y
Substituting for (—’—2‘1) from Eq. (A2.1) into Eq. (A2.2) yields

e, +€e, =€ +¢ (A2.6)

Equations A2.1, A2.4 and A2.6 are Eqs. 4.18 of Sect. 4.2.4.
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Appendix A2 - Strain Transformations
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FIG. A2.1. Mohr's Circles of Strain



APPENDIX A3

STUDY OF MODELING PARAMETERS FOR NONLINEAR FINITE ELEMENT ANALYSIS

A3.1 Introduction

The interaction between material modeling, spatial discretization
and solution procedures directly influences the behavior predictions
that are made using the finite element analysis. The degree of accuracy
of the material model should be viewed in light of the errors due to
spatial discretization and solution algorithms.

In this Appendix, some 'patch tests' made on the solid, reinforcing
and bond element formulations described in Chapter 2 are discussed. The
influence of various modeling parameters, such as, order of the elément,
ordef of numerical integration, mesh size and layout, is briefly

described.

A3.2 Studies on Bond Element Formulation

The embedded formulation of the bond element described in Chapter
2, Sect. 2.4.2, was verified by its application to the analysis of a
tension-pull specimen tested by Broms (ASCE, 1982). This specimen was
also analysed using the FEM by Nilson, Houde and Khouzam (ASCE, 1982).
Since this part of the study 1s concerned with the verification of the
embedded formulation of the bond element, the results of this analysis
will be compared to those by Khouzam (ASCE, 1982) who modeled the bond
zone using cracked concrete elements.

The specimen and the finite element mesh layout are shown in Fig.
A3.1. Since the specimen is symmetrical about two axes, only one

quarter of the specimen is modelled, with the appropriate boundary
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conditions. (Note that it is not necessary to place the steel at the
boundary of the solid elements, but this configuration gives the best
model for the problem under consideratiom.)

With the embedded formulation for reinforcement, external load
cannot be applied directly to reinforcement. Load is applied to
concrete and to the slip d.o.f. to result in load being applied to the
reinforcing bar, as shown in Fig. A3.1. In this figure, tension R is
applied to the reinforcing bar by applying R to concrete node (number 8)
and R to the slip degree of freedom (number 22). When the location of
reinforcement does not coincide with boundary nodes, work equivalent
loads are applied to the concrete nodes, i.e., the load R is apportioned

to the nodes such that
R, =¢, () and ZIR, =R

where ¢i(§s) is the shape function corresponding to node i evaluated at
the natural coordinate location of the reinforcement, &, and R; is the
lod apportioned to node 1i.

Concrete is assumed linear elastic and bond stiffness is held
constant at 2000 ksi/in (543 MPa/mm). The stress distribution in steel
and the bond stress distribution are shown in Fig. A3.2a and b for load
P of 4 kips (17.8 kN), 8 kips (35.6 kN) and 12 kips (53.4 kN). It is
seen that bond stress 1s negligibly small in the middle half-length of
the specimen while the maximum bond stress at the end of the specimen
increases with the load. The stress in the steel also increases with
load, but at the center is less than half the applied load. If the

specimen is considered analagous to a segment of concrete between two
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adjacent cracks in the tension zone of a beam, it can be deduced, from
the proportionality of stress distribution to applied load, that the
stiffness of this segment remains constant if the crack pattern is
stabilized and if the bogd-stiffness remains constant.

The stress distribution in concrete along the length of the
specimen is shown in Fig. A3.3 for a load of P = 14 kips (62.3 kN). It
is seen that the stress is approximately constant in the mid half-length
of the specimen (which is to be expected since the bond stress is
negligible in this length). Over this middle segment a plane sections
remain plane condition has essentially been achieved. Towards the end
of the specimen considerable distortion of the cross-section occurs.
Although there are éome points of high local tensile stress at the
loaded end of the specimen, the average stress in concrete is greater in
the mid half-length. Thus, one or more cracks may form through the
entire depth of the specimen anywheré in the midlength.

In order to investigate the effect of crack formation on the Bond
stress distribution, three cracks were introduced in the model, one at a
time, as shown in Fig. A3.4. The first crack was introduced at the
midlength of the specimen. The second and third cracks were introduced
at equal distances from the previous crack, as shown in Fig. A3.4. The
cracks were modeled by the physical separation of the adjacent nodes and
the reinforcing bar crossing the crack was modeled as a truss element.

The displacement interpolation matrix for this truss element is given by

4 3
Uci
U .,
X X X X y ¢J .
u =<{1-=,=,1=-=,=>
s .L L L L Ubi
U
bj
\. /
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where Uci and U, are the displacements at the concrete nodes, Upy; and

h|
Ubj are the displacements at the slip degrees of freedom, ug is the
displacement of the trﬁss element (steel reinforcement) at coordinate x
and L is the length of the truss element (i.e. width of crack). The
strain-displacement matrix and the stiffness matrix are obtained from
the displacement interpolation matrix as described in Chapter 2.

The resulting distributions of bond and steel stresses are shown in
Fig. A3.5a and A3.5b respectively for a load level of P = 14 kips (62.3
kN). It is seen that: (1) tension stiffening decreases with decrease
in crack spacing, because the average stress and strain in the steel
increase; and, (2) the maximum local bond stress decreases, although
only by a small amount, with decrease in crack spacing.

The bond stress, steel)stress and concrete stress distributions may
be compared to those obtained by khouzam (ASCE, 1982) shown in Fig.
A3.6a, b, ¢ and d. It is seen that the distributions are simiiar,

equilibrium is satisfied and hence the bond element formulation is

verified.

A3.3 Studies on Solid Element Formulation

A3.3.1 Stiffness Characteristics

A3.3.1.1 Introduction

Stiffness characteristics of solid elements for use in a linear
elastic analysis have been now well established (see for example,
Zienkiewicé, 1977) for reduced as well as full integration. However,
the numerical behavior of cracked concrete elements has not been studied

as extensively.
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Dodds et al. (1982) studied the stiffness characteristics of
unreinforced cracked elements with varying crack orientations using
eigenanalyses on the element stiffness matrices. Eigenvalues of a
stiffness matrix are proportional to the strain energy gener;ted when an
element is deformed in the shape of the corresponding eigenvector.

Rigid body motion generates no strain energy and thus is associated with

a zero eigenvalue.

A3.3.1.2 Eigenvalue Analysis of Cracked Concrete Elements

The results of eigenanalysis by Dodds et al. are summarized in
Table A3.l1 for elements of the type illustrated in Figs. A3-.7a and b.
Three of the zero eigenvalues in the table correspond‘to the three rigid
body motions (two translations and one rotation). As seen from the
table, the linear serendipity element with a system of parallel cracks
has one additional zero eigenvalue whereas the fully integrated |
quadratic element has three ;dd;tional zero eigenvalues. However, in
most practical problems, cracks form with varying orientations at
different Gauss points inside an element. Both the linear and fully
integrated quadratic elements with randomly oriented cracks (Fig. A3.7b)
have no zero energy deformation modes in excess of the three'required
for rigid body motion. For the linear element, altering the orientation
of just one of four initially parallel cracks eliminates the single
excess zero energy mode. In a fully integrated quadratic element, the
three excess zero energy modes are eliminated by varying the orientation
of just three (of nine) initially parallel cracké. The quadratic
element with reduced integration, however, has eight zero energy modes

irrespective of the crack orientations. Moreover, the formation of each
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crack at any Gauss point in this element introduces a zero energy
deformation mode, i.e., an element with one cracked Gauss point has a

total of five zero energy modes of deformation.

A3.3.1.3 Eigenvalue Analysis of Cracked, Reinforced Concrete Elements

In this study, the effect of embedding the reinforcement on the
stiffness characteristics of the solid element was investigated. The
results are summarized in Table A3.2 for the elements shown in Fig.
A3.7d and e. The provision of reinforcement, as shown (in two
directions), eliminates all the excess zero energy modes even when
reduced integration is used. Thus reduced integration may be used for
net reinforced elements. Even for elements reinférced in one direction
only and for unreinforced elements reduced integration may be used if
the element, when assembled in the structure, is restrained such that
spurious zero energy modes are not activated. In shear critical beéms,
.where the cracked elementé must resist shear and compression, the -
behavior prediction becomes unreliable if the cracked elements have

spurious zero energy modes.

A3.3.2 Linear Versus Quadratic Elements

A3.3.2.1 Introduction

Bilinear serendipity elements are too stiff in bending because of
the shear distortion that must accompany the flexural deformation. This
is illustrated in Fig. A3.8 (Doherty et al., 1969). The inaccuracy of
results with this element increases with the.L/H ratio. A number of
methods have been proposed to reduce or eliminate the spurious shear

energy such as selective integration and addition of incompatible modes
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(Cook, 1981). Selective integration involves sampling the shear strain
at the center of the element while the normal strains are sampled at the
Gauss points. An explanation of how selective integration alleviates
this problem follows.

The displacement interpolation functions for the bilinear element

are given by

u=a, + a1§ + azn + a3§n , (A3.1la)

v = bo + b1§ + bzn + bsan ‘ (A3.1b)

where £ and n are the natural coordinates and ay» b° etc. are constants.

The shear strain is given by

du Ov
Yen = B + E (A3.2)
= a, + a3§ + b1 + b3n N (A3.3)

The constant sheér strain modes and the spurious shear strain modes
associated with bending deformation are indicated in Fig. A3.9a and b,
respectively. The a3t and byn terms in Eq. A3.3 arise from the In term
in Eqs. A3.1, and produce the spurious shear strains indicated in Fig.
A3.9b. If the shear strains are evaluated only at & = 0 = n, the
spurious strain corresponding to the &n term will disappear whereas the

terms corresponding to the constant shear strain will remain.
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A3.3.2.2 Analyses by Dodds et al. (1982)

Dodds et al. (1982) made the following observations from their

analyses on shallow and deep beams. No attempt was made in their

‘analyses using linear elements to avoid spurious shear strains.

1.

3.

Linear elements, because of the spurious shear strains
associated with them, exhibit erratic crack pattern with coarse
mesh layout. For example, at least 5 elements through the depth
were required for R/C beam analyses in order to obtain a
reliable crack pattern.

In a quadratic element, all the Gauss points may not have
cracked even after the crack pattern has been stabilized,
whereas in a linea; element all the Gauss points are cracked or
none at all.

For beams in which the load carrying mechanism remains the same
throughout the entire load range, the load deflection curves and
failure loads predicted using the linear elements are
essentially the same as those using fully integrated quadratic
elements, for a fine mesh layout. Whereas, in beams where a
changé in the load carrying mechanism occurs (as in a deep beam
where the change from beam behavior to tied arch behavior
occurs) the load deflection behavior predicted using linear
elements is stiffer than that using quadratic elements for the
same total number of degrees of freedom. Also the predictive
load at which the transition from a beam to tied arch mechanism
occurs depends on the element type. However the predictive
failure load is the same using linear and quadratic elements.

Both linear elements and fully integrated quadratic elements
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exhibit monotonic convergence with grid refinement.

In their analyses, Dodds et al. investigated beams which invariably
achieved stable equilibrium configurations following extensive crack
formation, when load had been transferred to the reinforcement, and all
the beams failed in a ductile manner by steel yielding. They used a
tension cut-off criterion. Also, they did not analyse any test beams in

order to make comparisons to experimental data.

A3.3.2.3 Analysis of a Shear-Critical Shallow Beam

In this study, a shear critical beam tested by Bresler and
Scordelis, Beam XOB-1, was analysed by modeling it in turn with linear
elements and ﬁuadratic elements with approximately the same total number
of nodes. This beam, with a shear span to depth ratio of approximately
4.0, failed in the test in diagonal tension (the reinforcement did not
yield at failure). Tension softening and tension stiffening were
combined and represented by the descending branch of the avefage tensile
stress-strain curve for concrete as described in Sect. 3.5. A constant
shear retention factor of 0.4 was used. The mesh layouts for linear and
quadratic elements are shown in Fig. A3.10a and b respectively. The
input material parameters are indicated in Table A3.3.

The load deflection behavior predicted from the analysis is shown
in Fig. A3.11. It is seen that the predicted behavior is essentially
identical with linear and quadratic elements and shows reasonable
agreement with the behavior observed in the test. The predicted crack
patterné are shown in Figs. A3.12a and b and can be compared to that
observed in the test which is shown in Fig. A3.12c¢c. It is seen that

there is no significant difference between the crack patterns predicted
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using linear elements and quadratic elements.

Thus it can be concluded that linear and quadratic elements, for
the same total number of d.o.f., lead to essentially the same
predictions of<tﬁe behavior of shallow beams wherein the load carrying

mechanism does not change.

A3.3.2.4 Analysis of a Deep Beam

In their analyses which assumed a constant shear retention factor
of 0.4, Dodds et al. (1982) observed signficant difference in the
predicted load deflection behavior of deep beams (wherein the load
carrying mechanism changed from beam action to arch action) when linear
elements and quadratic elements were compared, although the predicted
failure load was approximately the same. (Since the predicted failure
mode was by steel yielding, it would be expected that the same failure
load is predicted.) They 5130 found that the load corresponding to a
change in the load carrying mechanism (from beam to trusé action)
depends on the type of the element.

In this study, the effect of the element type on the predicted
behavior of deep beamé has been investigated by'analysing a deep beam
which failed by concrete crushing. This beam, with a shear span to
depth ratio (a/d ratio) of 1.0, was tested by Rogowsky and MacGregor
(1983). The beam details are shown in Fig. A3.13. Stirrups were
provided at only one end of the beam. The beam was loaded and supported
through column stubs cast integrally with the beam.

}In the test, major inclined cracks developed ‘almost
instantaneously' at a jack load of about 350 kN. The observed crack

pattern is shown in Fig. A3.14. After inclined cracking, the behavior
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was essentially that of a truss or tied-arch. The stirrups crossing the
major inclined crack in the North shear span were at or near yield at
failure. Some of these stirrups reached yield at 50 to 60 percent of
the failure load. Failure occurred in the North end (which contained
stirrups) by concrete crushing at a load of 1204 kN. The beam was then
externally reinforced and retested until compression failure occurred in
the South end of the beam as well at a load of 1397 kN.

The finite element mesh layout using quadratic elements is shown in
Fig. A3.15 and that using bilinear elements is shown in Fig. A3.16.
Since the beam is symmetrical except for the presence of web
reinforcement in one half span, only half the span is modelled excluding
the web reinforcement. (Since a number of stirrups in the test yielded
shortly after cracking, their presence is not considered to alter
significantly the behavioral symmetry.) The input material parameters
derived from specimen tests and reported by Rogowsky and MacGregor are
shown in Table A3.4.

In the finite element analysis, approximately 10 load steps were
used. (This compares with 7 load steps used in the test.)‘ The first
load step in numerical analysis was 400 kN and subsequent load steps
were 100 kN. A convergence tolerance of 0.1% on the incremental
displacement norm and 1.0% on the unbalanced force vector norm were
used. The standard Newton-Raphson iterative scheme with structure
stiffness matrix updated every iterate was used.

Failure in numerical analysis occurred when a negative element
appeared in the main diagonal of the tangential structure stiffness
matrix. For the quadratic elements, this occurred at a total load of

1100 kN. The size of the load step was subsequently reduced to 40 kN



397 .

and the iterative procedure converged up to a total load of 1180 kN.

For the linear elements, the failure in convergeﬁce, again as manifested
by a negative element on a main diagonal, occurred at a total load of
1200 kN. Any reduction in the size of the load step beyond this level
did not producé convergence. Thus the failure load using bilinear
elements is taken as 1200 kN while that using quadratic elements is
taken as 1180 kN. This compares with the test values of 1204 kN and
1397 kN.

The load deflection curves using quadratic elements and linear
elements are shown in Fig. A3.17. The load-deflection curve, labelled
'test', has been adjusted for support settlement, as described in the
report by Rogowsky and MacGregor (1983). It 1s seen that quadratic
elements, for approximately the same total d.o.f., predict a softer load
deflection response at higher load levels than bilinear elements. The
increased stiffness of the bilinear elements might be attributed to the
spurious shear energy associated with these elements. This becomes
significant after cracking, when the deflection due to shear is
considerably more important.

The predicted load range corresponding to a change in the load
carrying mechanism (from beam action to truss or arch action) is the
same with bilinear elements and quadratic elements. This is seen by.
comparing the crack pattern for four load steps, shown in Figs. A3.18 to
A3.21 (the crack pattern is essentially stabilized at a load of 400 kN)
and the load-deflection response shown in Fig. A3.17. This behavior is
in contrast to the findings of Dodds et al., whose finite element
analysis on deep beams showed that the transition load predicted using

linear elements to be significantly higher than that using quadratic
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elements. This difference might be attributed to the tension cut-off
criterion they have used whereas the analysis herein used a descending
branch in the tensile stress-strain relation with Eat = 0.0009, as
indicated in Table A3.4.

The failure mode has been correctly predicted using bilinear
elements as well as quadratic elements. Figufes A3.22 and A3.23 show
the compression strain hardening or strain softening regions. (These
are shown by lines at Gauss points with arrowheads at both ends. A
cross with arrowheads on both lines indicates that the Gauss point has
entered the compression hardening region, (~l1), or softening region,
(-2), and had cracked in tension at.a previous load step.) Although
bilinear elements have more Gauss points in the hardening/softening
region, the crushing of the compression 'strut' is apparent in both
element types. The compression 'stru;' may be more easily identified in
the principal stress plot shown in Figs. A3.24 and A3.25.

The distributions of steel strains predicted using linear elements
and quadratic elements are compared to the strain gage measurements in
Fig. A3.26. Both the linear elements and quadratic elements predict
closely thé distribution of steel strains. The linear elements, being
stiffer, predict lower steel strains.

Thus it can be concluded that linear and quadratic elements give
comparable results for load deflection response, cracking patterns,

failure loads, failure modes and distribution of stresses.

A3.3.3 Effect of Mesh Refinement

A3.3.3.1 Introduction

As for all linear finite element analyses, mesh refinement also has
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some effect on the computed results in the nonlinear material

analysis. However, Bazant and Cedolin (1980), based on their studies on
a reinforced concrete panel containing a single crack, found that the
crack propagation (i.e., extension) depends on the size of the element
if a tensile strength criterion only is used to determine cracking.
(Increasing the finite element size by four times, the load that would
cause crack propagation in an example problem they selected, was
obtained about 3.5 times larger.) Thus they concluded that the use of a
tensile strength criterion alone to determine crack propagation does not
satisfy the condition of objectivity which requires that the solutions
for meshes of different finite element size be the saﬁe, except for a
negligible numerical error. They proposed that an objective as well as
a physically realistic criterion for crack band extension is the value
of the fracture energy dissipated during a unit extension of the crack
band and that this energy criterion is important for reinforced as well
as plain concreté.

There 1s now general agreement on the need for a fracture mechanics
based approach when the propagation of individual cracks in massive
structures (such as dams and large bridge girders) is of interest.
However, in the analysis of common reinforced concrete structures such
as beams and panels that develop numerous cracks, the need for an energy
criterion has been disputed (Dodds et al., 1982).

In order to investigate the effect of mesh refinement on the
computed response of reinforced concrete structures, Dodds et al.
(1982), investigated shallow and deep beams with varyling element
sizes. A partial summary of results from their numerical analysis has

been given in Sect. A3.3.2. All the beams they investigated invariably
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achieved stable equilibrium configurations following extensive crack
formation when load had been transferred to the reinforcement and failed
in a ductile manner by steel yielding. They used the tension cut-off
criterion alone (i.e. stress based approach). Based on their analyses,
they concluded that a stress—based approach (ignoring fracture energy
considerations) 1s adequate to determine the overall response of these
beams. The load deflection response converged to the same solution with
grid refinement. The failure loads predicted by the coarse mesh and
fine mesh were essentially the same.

Included in the study by Dodds'et al. (1982) on the effect of mesh
refinement was a deep beam (with shear-span to depth ratio of 1.0) that
they identified as being 'shear critical'. (In fact this beam is not
*shear critical' since the failure mode is ductile flexure, i.e. the
fﬁll flexural capacity has been attained at failure.) Their analysis of
this beam indicated that the transition load at whicy a change in the
load carrying mechanism occurs (from beam action to truss actibn) is
sensitive to the element size but the failure load is not.

The same deep beam was also analysed by Bazant and Cedolin in the
1982 closure to the discussionvof Bazant and Cedolin (1980), who
investigated the effects of ignoring the fracture energy criterion.
Bazanf and Cedolin used very small load steps and varying grid
layouts. They found that the load required to extend cracking at
midspan to a specific height depended on the element size used if the
fracture energy criterion is ignored. Whereas if an equivalent
strength, based on fracture energy considerations, is adopted this load

was relatively independent of the mesh size.
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A3.3.3.2 Mesh Refinement Study of a Deep Beam

In this study, the effects of mesh refinement are investigated by
analysing the deep beam (shear span to depth ratio of = 1.0) tested by
Rogowsky and MacGregor (1983) which was analyzed in Sect. A3.3.2. The
coarse mesh layout for this beam is shown in Fig. A3.27. The results of
the analysis using this mesh of linear elemeﬁts can be compared to those
obtained using the finer meéh shown in Fig. A3.16. The input material
properties are shown in Table A3.4. Two analyses were made with the
coarse mesh layout; one with €at = 0.0009 which is the same as that used
for the fine mesh layout and anqther with Eat = 0.00045 (i.e., using the
same fracture energy release rate as for the fine mesh).

The load versus midspan deflection relationships obtained from the
analyses are shown in Fig. A3.28. The analysis using the fine mesh
layout correctly predicts the failure mode as being brittle (i.e
concrete crushing with no steel yielding), whereas those using the
coarse mesh layout predict ductile failure mode (steel yieiding before
concrete crushing). Of particular interest is the difference in the
behavior predictions using the same fracture energy release rate for
both fine and coarse mesh layouts. The coarse mesh layout with € . of
0.00045, although less stiff than withe = 0.0009, fails to predict
the correct failure mode and load. This may be explained as follows.

Stresses and 'damage regions' are calculated only at Gauss
points. However, the 'failure' of the structural system (i.e., beam or
panel in this study) 1s assumed to have been reached only if one or more
nodes become unsupported in one or more d.o.f. Such local failure at a
node occurs only if all the elements connected to this node fail. An

element can fail only if the combined contribution to the load capacity
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of all the integration points within that element decreases with
increase in load. Thus, when significant strain gradient is present,
larger elements (i.e. elements significantly larger than the strain-
softening region) 'contain' the local damaged zones whereas smaller
elements 'are contained' in the damaged zones.

This is evident when the compression strain softening region for
the Rogowsky-MacGregor Beam at a load of 1200 kN for the coarse mesh
layout (with €at = 0.00045), shown in Fig. A3.29, is compared to that
for fine mesh layout (with the same fracture energy release rate) shown
in Fig. A3.23. Although the extent of the compression softening regign
(as indicated by lines/crosses with arrowheads) is essentially the same
in both cases, the fine mesh layout predicted failure at this load
whereas the coarse mesh layout did not. The coarse mesh layout predicts
compression failure only when the softening has progressed through a
number of adjacent elements, as shown in Fig. A3.30.

Thus, it can be concluded that for this deep beam the spatial
discretization has a significant effect on the failure load prediction
and this effect has not been eliminated using fracture energy
considerations.

The objectivity with respect to crack extemsion (propagation) may
be deduced by comparing the crack patterns at 800 kN load level for the
coarse mesh layout with € , = 0.00045 (Fig. A3.31) and e, = 0.0009
(Fig. A3.32) and for the fine mesh layout (Fig. A3.21b). It is seen
that with € , adjusted, based on mesh size to obtain the same fracture
energy release rate, the crack pattern and the extent of crack
propagation are essentially the same for both fine and coarse mesh

layouts (Figs. A3.21b and A3.31) whereas the coarse mesh layout with no



ad justment of €, for mesh size has resulted in reduced crack height and
a fewer number of cracked elements. Howevér, the predicted failure load
is not significantly different for the two coarse mesh layouts (1440 kN

vs. 1480 kN).

A3.3.3.3 Mesh Refinement Study of a Shallow Beam

Because the failure of the Rogowsky/MacGregor deep beam was by
compressive failure of the concrete 'strut', a more appropriate example
for illustrating the need for fracture energy considerations in cracking
problems might be a reinforced concrete beam failing in the diagonal
tension mode. In this study, the Bresler-Scordelis beam X0B-1, with a
shear span to depth ratio of 4.0 was also investigated with different
mesh layouts. The coarse mesh layout of quadratic elements is shown in
Fig. A3.33. The results using this layout may be compared to those
using the finer mesh layout shown in Fig. A3.10b.

Two analyses were performed with coarse mesh layout, one with g, =
0.0014 (same as fine mesh) and the other with £, = 0.0005 (to give
approximately the same fracture energy release rate as fine mesh). The

crack shear modulus was taken as

0.0014 ~ ¢

50016 =< © (A3.4)

Ser =

in all three cases. Convergence tolerances of 0.1% on the incremental
displacement vector norm and 1.0%Z on the unbalanced force vector norm
were used. A load step size of approximately 10 per cent of maximum
load was used. The standard Newton Raphson iterative procedure with the

stiffness matrix of structure updated every iterate was adopted.

403
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The load versus midspan deflection curves are shown in Fig.
A3.34. It is seen that the coarse mesh layout with €at = 0.0014 and the
fine mesh layout, also with €t =0,0014, exhibit essentially the same
load deflection behavior except that failure of convergence occurs at a
lower load for the fine mesh layout (37 kips (165 kN) compared to 44
kips (195 kN)) for coarse mesh layout). The coarse mesh layout with €t
= 0.0005 shows a significantly more flexible load deflection response,
especially at higher load levels. |

The analytical crack pattern for three different load levels are
shown in Figs. A3.35a through A3.37c for each of the three cases. It is
seen that the crack pattern using the coarse mesh layout with €at =
0.0014 is essentially the same as for the fine mesh layout (also with
€ut = 0.0014) at loads 22 kips (98 kN) (Figs. A3.35) and 32 kips (142
kN) (Figs. A3.36), whereas some 'crack localization' and greater crack
height are seen with the fine mesh layout at a load level of 37 kips
(165 kN) (Figs. A3.375. The crack patern for the coarse mesh layout

with €at = 0.0005 shows greater height and extent of cracks at higher

t
load levels.

Thus, for this beam, adjustment of €ut (i.e. the descending branch
of the tensile stress strain curve of concrete) based on the mesh size
leads to different crack patterns whereas the crack pattern remains
essentially constant for different mesh sizes if ¢ . 1is held constant.
This is in direct contrast to the case of the propagation of a single
crack in a notched member wherein objectivity with respect to mesh
refinement is obtained only if €ut is adjusted based on the element size
at the crack tip. The difference in the predicted failure loads using

the fine and coarse mesh layouts with the same €4 is attributable to

t
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the strain gradient along the span length and is related to the load at
which elements connected to a node start to decrease in stiffness, as
explained for the Rogowsky-MacGregor deep beam. -However, in this
shallow beam the reduction in stiffness is associated with the cracking
in the tension zone which reduces the shear stiffness.

It must be emphasized that the difference in the mesh layouts
selected for comparisons were somewhat high. This was done in order to
readily identify the effects'of element size and layout. Some
guidelines may be established for selecting the mesh size from the

foregoing.

A3.3.3.4 Selection of Mesh Size

A number of investigators (for instance, Rots et al., 1985;
Glemberg and Samuelsson, 1984; and, Crisfield, 1984) have used the
following Eq. A3.5 to determine €at when analysing shear critical beams

with h as the length tributary to a Gauss point. That is,

2GF .

€at = ?:H (A3.5)

However, as discussed in Chapter 3, Sect. 3.7.2, Eq. A3.5 relates
to the propagation of a single crack. In R/C beams a number of cracks
develop at different spacings in the teﬁsion zone, based on such
parameters as the depth of the tension zone, reinforcemént ratio and
bond characteristics of reinforcement. In order to obtain objective
results with respect to mesh refinement for these beams (i.e., to obtain

the same load displacement response in the tension zone independent of

the mesh size) it is appropriate to use in Eq. A3.5 the value of h as
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the expected crack spacing.
For example, the total elongation of a tension pull specimen of
length L, containing cracks at a spacing of h is given by %'wﬁax where

Wpax is the opening displacement of a single crack when the stress has

ma

reduced to zero. In order to obtain this elongation with the smeared

crack approach,

Since the fracture energy release rate of a single crack is given

by the area under the stress-displacement curve of that crack (Eq. 3.1)
1 .
= E—f W (A3.7)

Substituting for w .,  from Eq. A3.6 into Eq. A3.7,

S (A3.8)

These two aspects (i.e., crack propagation and correct fracture
energy representation) may be reconciled by selecting the mesh size such
that the length tributary'to a Gauss point 1is approximately the same as
the expected crack spacing. This does not imply a serious limitation on
the selection of the mesh size since, as discussed in Sect. 5.10.1, in
the practical range of values of €, (between say 0.008 and 0.0018) the
difference in the predicted failure loads is well within the scatter in
experimental results.

In beams where compressive failure of concrete may occur, the mesh
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size selected should be such that the local failure of a node does in

fact indicate the failure of the structure, unless solution strategies

which are able to trace the descending branch of the load-deformation

response of the entire structure, are adopted.

A3.4 Conclusions

The following conclusions may be drawn from this study on modeling

parameters:

1.

The embedded bond element formulation gives results comparable
to discrete formulations and offers the advantage that
reinforcing elements need not be located at the boundaries of
solid elements. .

Reduced integration may be used if the elements are reinforced
in two orthogonal directions. For cracked concrete elements,
either unreinforced or reinforced in one direction only, reduced
integration may not be used because of the spurious zero energy
modes exhibited by reduce integration.

There is no significant difference in the behavior predictions
of beams using linear and quadratic elements for the same total
number of degrees of freedom. For deep beams, models with
quadratic elements have an advantage in that such models are
somewhat more flexible than those using linear elements.

Mesh size and layout has a significant effect on the behavior
predictions of beams and this effect cannot be eliminated by
simply adjusting the descending branch of the tensile stress-—
strain curve of concrete (based on the mesh size to obtain the

same fracture energy release rate). Some guidelines for the
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selection of mesh size have been given—in Sect. A3.3.

When failure of one or more nodes (as manifested by a zero or
negative element on the main diagonal of the tangent structure
stiffness matrix) is assumed to indicate the failure of the
structure, as is done in this study, the mesh size selected must
be such that this local failure does, in fact, relate to the
failure of the structure. Failure of a node occurs only when
all elements connected to the node fail.

With the smeared crack approach, fracture energy considerations
can be included in the analysis of a structure with a number of
cracks by using the expected crack spacing in place of the width

of the crack band in the expression for fracture energy release

rate.
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Table A3.1

Unreinforced Element Eigenvalue Analysis
(Dodds et al., 1982)

409

Element Type Order of Total Number of Zero
Integration D.O0.F. Eigenvalues
Uncracked Parallel Random
Cracks Cracks
Linear 2 x2 8 3 4 3
Quadratic 3 x3 16 3 6 3
Quadratic 2x2 16 4 8 8
Table A3.2
Reinforced Element Eigenvalue Analysis
Element Type Order of Number of Zero Eigenvalues
Integration
Unconstrained Constrained

Quadratic, uncracked 3x3 3 0
Quadratic, uncracked 2 x2 3 0
Quadratic, E, = 0 2 x 2 3 0
Quadratic, E, = 0 3x3 3 0
Quadratic, E45° =0 2x2 0
Quadratic, Ey = 0 2 x2 0
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Input Parameter for Bresler Scordelis Beam X0B-1

Concrete

E ksi (MPa)

c,
G, ksi (MPa)
v, (Poisson's ratio)

£o5 ksi (MPa)

3100 (21375)
1300 (8964)
0.2

3.66 (25.2)

fé, ksi (MPa) 0.312 (2.15)

€t 0.0014
Steel

A, in.2 (mm?) 4.0 (2586)

s° .

fy, ksi (MPa) 96.5 (665)

Es, ksi (MPa) 29000 (199955)

o 0.0244
Geometry

Span, ft (m)

h, overall depth, in. (mm)

b, thickness, in. (mm)

d, effective depth, in. (mm)

a/d

12.0 (3.66)
21.8 (554)
9.1 (231)

18.03 (458)

3.99
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Table A3.4

Input Parameters for Rogowsky-MacGregor Beam 1/1.0

Concrete
E, (MPa) 20000.0
G (MPa) 8333.0
v (Poisson's ratio) 0.2
£! (MPa) 26.1
£1- (MPa) 2.28
Eut ~ 0.0009
Ger (%f%%‘{‘%;:? G
Steel
E, (MPa) | 200000.0
£, (MPa) 380.0
Eg, (MPa) 10000.0
Ag (mn?) 1800.0

P 0.0095
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APPENDIX A4
DETERMINATION OF CONCRETE MATERTAL PROPERTIES

FOR FINITE ELEMENT ANALYSIS

A4.1 Elastic Moduli

As described in Chapter 3, the stress—strain relationship of
concrete in uniaxial compression is idealized using the multilinear
curve shown in Fig. A4.1. The initial elastic modulus of concrete is

assumed to be given by Eq. A4.1 for normal weight concrete.

E£°) = 57000 /0.9E] in Imperial units

(A4.1)
E£°) = 5000 /b?9fé in SI units

(o)

where Ec

is the elastic modulus in psi (MPa) and fé is the cylinder
compressive strength in psi (MPa).
This compares with the ACI formula for secant modulus at O.Sfé,

given by Eq. A4.2

Ego) = 57000 /?z- in Imperial units
(ACI)
(A4.2)
E£°) = 5000 /£ in SI units
(ACI)

The modulus in region -1, Eé—l), called the compressive strain

hardening modulus, is taken as shown in Fig. A4.1. (In the absence of
(-1)

test results, Ec is taken as Eio)/9 for unconfined concrete and

0.0SEio) for concrete confined by stirrups.)
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(-2)

The compressive strain softening modulus, Ec , depends on: (1)
the concrete strength (the higher the peak stress, the greater the
stress decrement for a given strain increment, as shown in Fig. A4.2);
(2) the specimen size (since strain softening is not a material ‘~
property, as discussed in Chapter 3); (3) the confinement provided by
steel stirrups; and, (4) multiaxial stress conditions.

The dependence of the strain softening modulus on the specimen size
(and thus on the finite element mesh size) is shown in Fig. A4.3. This
dependency is due to strain localization, as discussed in Chapter 3.
However, it is difficult to incorporate this dependency in a finite
element model unless the location of the strain localization band can be
determined a priori. Thus, for the present, a strain softening modulus
of —O.OSEc has been adopted for unconfined concrete.

The effects of confinement on the strain-softening modulus have
been investigated by a number of researchers who arrived at varying (and
some contradictory) results as sho%n.in Fig. A4.4a to g. 1In this study,
the expression proposed by Vallenas, Bertero and Popov (1977) and
modified by Krauthammer and Hall (1982) has been further modified as

given by Eqs. A4.4a to e. The relationship is illustrated in Fig.

A4.4(g).
€
- ' el —— —
£, = £l k [1 - 0.82 e, (eo 1)] (A4.4a)
where
S p"fy"
k=1+0.0091 (1 - 0.245 ;=) ——— (A4.4b)
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0.5

2= 172 3+ 0.002%] (A4.4c)
70" (g  +—F—7o05 - ©0-002
c
) S " fyn
e, = 0.0024 + 0.005 (1 - 0.734 =) p" == (Ab.4d)
o VT 7

c

h" = 0.5 (h{ + h;) » in which hy and h; are the dimensions of the
two sides that describe the rectangular compressive zone in a
beam, as shown in Fig. A4.4h, in inches.

p" = the ratio of the total volume of the confining transverse
reinforcement to the volume of the confined concrete in the
compressive zone; S = the spacing of the transverse reinforcement,
in.; f; = yield strength of the transverse reinforcement, psi; and
fé = the unconfined compressive strength of concrete, psi.

The factor k accounts for the increase in strength resulting from

confinement while Z accounts for the increase in post peak stiffness.

Equations A4.4b, Ad.4c and A4.4d are modified to account for the

cover concrete, which is unconfined, as follows.

(-2) AE +AE . »
E. " TR VA (A4.4£)
[o]

where Ao is the area of the unconfined concrete in the compressive zone
of the beam; Eo is the strain softening modulus ignoring the confining
effect of hoops; Ay is the area of concrete used in the calculation of
p"; and, E; is the strain softening modulus as obtained using Eqs. A4.4a

to e.

The dependence of the strain softening modulus on the multiaxial
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stress conditions is shown in Fig. A4.5 for the case of biaxial
compression. However, test results are lacking for concrete under
combined tension and compression. This dependence has not been included

in this study.

A.4.2 Poisson's Ratio

Poisson's ratio of concrete apparently depends on the stress
level. Kupfer et al. (1969) found the value of Poisson's ratio to be in
the range of 0.18 to 0.20 at lower stress levels when concrete can be
considered to be elastic. Vecchio and Collins (1982), based on a test
of a R/C shear panel, reported the value of Poisson's ratio to range
from 0.10 at intermediate stress levels to 0.25 near ultimate stress
level. At high compressive stress levels concrete exhibits volume
dilation (Kupfer et al., 1969) and hence an increase in the apparent
Poisson's ratio. However, considering the localized nature of concrete
failure (Chapter 3) it would appear that the volume dilation is due to
the onset of a splitting mode of failure. Therefore, in this study
Poisson's ratio is assumed constant. The recommended values of
Poisson's ratios are 0.125 (Vecchio and Collins, 1982) for elements

containing reinforcement and 0.2 (Kupfer et al., 1969) otherwise.

A4.3 Tensile Strength

Since a strain-softening branch is used to describe the stress-
strain behavior of concrete in tension, the tensile strength to be input
is ideally obtained from direct tension tests. However direct tension
tests to obtain reliable results are difficult to perform and hence the

split tension test or flexural test are used to determine tensile
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strength. Values obtained from the split tension tests could be used
directly as fé for this study. However, modulus of rupture values
derived from flexural tests assume elastic conditions at failure and
hence have to be modified to ;btain direct tensile strengths, as
described in the following paragraphs.

As discussed in Chapter 3, a fracture process zone of finite
dimension exists ahead of a crack tip in concrete. Modulus of rupture
tests are usually performed on specimens (6 in. x 6 in.) 150 mm x 150 mm
in cross section. For such small beams, a full fracture process zone
does not develop (Hillerborg, 1985) when maximum load carrying capacity
is obtained. The theoretical development of the fracture zone, and the
corresponding stress distribution, load and deflection for a notched
beam in bending are shown in Fig. A4.6 (Hillerborg, 1985). At maximum
load the length of the fracture zone is about 50 mm (2 in.) for the
specimen of Fig. A4.6. The stress distributions at maximum load for
beams of different depths are shown in Fig. A4.7. It is evident that‘
the stress distributions at maximum load are highly dependent on the
beam depth. For small beams the distribution approaches that given by
the theory of plasticity whereas for deep beams it approacheé that given
by the theory of elasticity. The variation in the length of the
fracture zone at maximum load with the beam depth is shown in Fig.
A4.8. It can be seen from this figure that for the modulus of rupture
specimen the length of the fracture process zone is approximately 50 mm
(2 in.). Figure A4.9 shows the stress distribution at failure of the
modulus of rupture spécimen assumed herein to determine the tensile
strength as follows.

The failure moment obtained using linear elastic theory and a
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tension cut—-off is
1
M= g’f bd _ (A4.5)

where f_ = modulus of rupture.

For equilibrium, the sum of the horizontal forces should vanish.
l-f c = Aa f' + l—(d - ¢ - Aa) f! (A4.6)
2 "¢ t 2 t

Also, for the stress distribution assumed,

f; .fc
d-c-2da ¢ (A4.7)

Substituting for f,, from Eq. A4.7 into Eq. A4.6, the following
expression for ¢ 1is obtained. '

%—cz-(d-c—Aa)Aa—%(d-c-Aa)z=O (A4.8)

With d = 6" (152 mm) and Aa = 2" (50 om), Eq. A4.8 yields c = 2.67" (68

mm). Substituting c¢ = 2.67" (68 mm) in Eq. A4.7 yields

£ =2 £ (A4.9)

The failure moment for the stress distribution assumed in Fig.

A4.9b is, therefore, (using Imperial units)

1

M = (% (Zf":)(2.67)2( 667) + 5 £1 (1.33)2(.667)
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+ () £ (2.33)) b T (A4.10)
= 60.0 £}
Substituting for b an& d in Eq. A4.5,
M =36 f, (A4.11)

Substituting for M from Eq. A4.ll into Eq. A4.10 and solving for fé, we

obtain
fé = 0.6f, (A4.12)

In the absence of test results on direct tensile strength an
expression for fr obtained from experimental results by Rapheal (1984)

as

2/3 in Imperial units (A4.13)

= 1
£ = 2.3 (fc)
may be used to determine this input value. Substituting for f. from Eq.

A4.13 into Eq. A4.12,

fé = 1,38 (fé)2/3 in Imperial units (A4.14)
fé abd f; in psi

2/3

£1 = 0.263 (fé) in SI units (A4 .14Db)
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fé and fé in MPa

A4 .4 Tension Softening and Tension Stiffening

The ultimate tensile strain, is related to the fracture energy

€
ut?

release rate, Gp, by Eq. A4.15, as described in Chapter 3, Sect. 3.2.
. (A4.15)

where h is the width of the crack band.

Only a very limited numbgr of tests have been performed to
determine GF and there does not appear to be any relationship yet
derived from tests relating GF to other material properties such as
fé. Also, most of the fracture tests were performed on small scale
specimens wherein the fracture zone could not be fully developed. Tests
by Gopalaratnam and Shah (1984) and Peterson (as used by Rots et al.,
1985) indicate G to range from 50 N/m to 150 N/m (0.286 1lb/in. to 0.856
1b/in.). In the study a value of 100 N/m (0.571 1b/in.) has been
adopted.

Equation A4.15 was derived in Chapter 3 in order to obtain a mesh
independent response for the propagation of a single crack. Indeed most
of the work in the application of the fracture energy release rate
concept in the literature has related to such an individual crack, often
predetermined as in notched specimens. In R/C beams, however, cracks
form at different spacings in the tension zone based on a number of
parameters such as the depth of the tension zone, bond characteristics
of the reinforcement, area of bars and the statistical scatter in the

tensile strength of concrete. Since Gp is the fracture energy consumed
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in the formation of a single crack, it is appropriate to assume in Eq.
A4.15 that h is the average crack spacing. The average crack spacing

may be calculated using Eq. 3.9, reproduced herein as Eq. A4.16.

Sm = ch + K2 p:ff - (A4.16)
where S is the mean crack spacing, ¢ 1is the diameter of reinforcement
and Paff is the effective steel ratio based on the effective concrete
area, as determined from Fig. 3.7b; K and X, are constants obtained
from Table 3.1.

The effect of tension stiffening is included in the average tensile
stress—-strain curve for concrete. As discussed in Chapter 3, Sect. 3.3,
the tension-stiffening effect decreases with decrease in proximity to
the reinforcement. Thus, Eq. 3.20 and Eq. 3.21»are used for the element
containing the reinforcement and progressively decreasing tension
" stiffening is used for the elements at increasing distance from the
reinforcement. The beams analysed in this study were modelled with 4
elements along the height. The tension stiffening adopted for different
elements is shown inAFig. A4.10. The influence of the descending branch
of the tensile stress strain curve on the top row of elements is not
significant because they are mostly uncracked. The bottom element has
the most tension-stiffening effect and the elements immediately above
the bottom element have less but significant tension stiffening
effect. The value of £y has been taken as 1.33¢, for these

elements. The values of €xt have been denoted as Eut in Table 5.2 and

Table 5.4.
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A4.5 Required Accuracy of Input Parameters

All input material parameters for the analysis of R/C beams can
thus be determined as described in this Appendix. The statistical
scatter in the specimen test results must be taken into account in
interpretting the analytical results. The influence of various input

parameters on the analytical behavior prediction is described in Chapter

5 and Appendix A3.

] JO—
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FIG. A4.3. 1Influence of Specimen Height on Uniaxial
Stress-Strain Curve (Adapted from Chen, 1985)
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Eqs. A4.4b and A4.4d (Adapted from
Krauthammar and Hall, 1982)
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FIG. A4.6. The Theoretical Development of the Fracture Zone,

the Corresponding Stress Distribution, and Load-
Deflection Curve (Adapted from Hillerborg, 1985)
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Maximum Load with Ligament Depth d-a.
(Adapted from Hillerborg, 1985)
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