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Abstract

Search is one of the fundamental methods in artificial intelligence (AI). It is at the core
of many successes of Al that range from beating world champions in non-trivial games
to building master schedules for large corporations. However, the applications of
today and tomorrow require more than exhaustive, brute-force search, because these
application domains have become increasingly complex. Traditional methods fail to
break the complexity barrier caused by the combinatorial explosion that characterizes
these large, real-world domains.

This thesis enhances our understanding of single-agent search methods. A puzzle
(Sokoban) is used to explore new search techniques for single-agent search. Sokoban
offers new challenges to Al research, because it has a much larger search space than
previously studied puzzle domains and exhibits a new, real-world-like search-space
property. Deadlock, the possibility to maneuver into an unsolvable position, provides
traditional search methods with considerable difficulties. This thesis shows the failure
of these traditional search methods to solve more than trivial Sokoban problems. The
state-of-the-art is significantly improved when traditional methods are changed such
that they are able to adapt to each instance. Furthermore, several new techniques
are suggested to combat the complexities and challenges exemplified by Sokoban.
Most successful is a technique that dynamically gathers knowledge during the search
to avoid deadlocks and to improve the search’s understanding of the search space.
Another technique is described and analyzed that uses the heuristic notion of relevance
to focus the search effort. This thesis closes with a suggestion of a framework and a

classification for single-agent search enhancements.



Preface

It is quite interesting to ask people what they think of their PhD thesis after it is
finished. The reactions range from dismissive hand-waving, to excuses for a number
of things. It is rare to meet somebody who is openly proud of their PhD thesis. That
is good. It means I am not alone...

[ have tried to understand how so much enthusiasm, drive and optimism could turn
into impatience and a hope-it-will-be-over-soon attitude. By trying to understand
what caused my frustration, I did regain some of the lost excitement for the research.
Of course, it always takes too long to finish a thesis. Naturally, the discovery phase is
much more fun than documenting what has been found in full detail. We are hungry
for the knowledge, but not for the clean-up! The writing phase does not give the
same impression of progress — indeed, it seems it will never end. After doing a lot of
research and uncovering many things, I feel that I know less now than ever before.
How is this possible? We start out seeking the Truth, but inevitably find only deeper
questions.

"The more I know, the more I realize how little I know.” — Socrates

In the quest to enlarge our circle of knowledge, we inevitably enlarge the fron-
tier, where the questions lie. In the end, the search for answers is a search for new
questions. A working title for the thesis was "The Search is the Goal”, a play on
the Zen Buddhist adage "the path is the goal”. This might explain why the feeling
of completeness that I was hoping to achieve is missing. To put it in more definite
terms, thesis writing is about drawing the line. When enough new questions have
been created, it is time to stop. Thus, the thesis in front of you is a work in progress,
halted for a moment in time to allow for proper documentation of the results achieved
so far. The circle of knowledge does not stop expanding.

I was privileged to have had the opportunity to come to the University of Alberta,
its Computing Science Department, and not least, the GAMES research group. Stu-
dents from around the world come to Edmonton to study some of the hardest problems
that games have to offer. The diverse interests and expertise of all the members form
a wonderful synergy that leads to high-performance programs and exciting research.
I can recall countless discussions in research meetings and at parties where games and
puzzles (and how to solve them) were the subject of intense debate.

I have many people to thank, without whom this thesis would not be what it is
today. First and foremost, Jonathan Schaeffer and his relentless pursuit of excellence
- nothing is good enough. Drawing from his wealth of knowledge and experience has



allowed me to solve many hard problems. I thank the members of my examining
committee, Peter van Beek, Joe Culberson, Richard Korf, and Gordon Rostoker, for
their time and valuable suggestions on how to improve the thesis. Yngvi Bjérnsson,
for being a sounding board for raw or unpolished ideas, and for the many valuable
hints and ideas he shared. Darse Billings, for stimulating discussions about games
and how they pertain to other aspects of life, as well as his efforts in improving
my speaken and wrotten English. Neil Burch, who rekindled my spirits after a long
drought of ideas. Tony Marsland, for being instrumental in my coming to Alberta.
Other members of the GAMES group that helped produce ideas for this thesis, in so
many direct and indirect ways: Mark Brockington, Aske Plaat, Roel van der Goot,
Duane Szafron, Denis Papp, Lourdes Pefia, and Jack van Rijswijck.

And, last but not least, my family. Manuela, for her patience and support, which
cannot be repaid! Anne and Robert, for the joy and inspiration they gave during the
final stages of this thesis. To all of you — Thanks!
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Chapter 1

Introduction

“To find the way out of a labyrinth,” William recited, “there is only one
means. At every new junction, never seen before, the path we have taken
will be marked with three signs. If, because of previous signs on some
of the paths of the junction, you see that the junction has already been
visited, you will make only one mark on the path you have taken. If
all the apertures have already been marked, then you must retrace your
steps. But if one or two apertures of the junction are still without signs,
you will choose any one, making two signs on it. Proceeding through an
aperture that bears only one sign, you will make two more, so that now
the aperture bears three. All the parts of the labyrinth must have been
visited if, arriving at a junction, you never take a passage with three signs,
unless none of the other passages is now without signs.”

“How do you know that? Are you an expert on labyrinths?”
“No, I am citing an ancient text I once read.”
“And by observing this rule you get out?”

“Almost never, as far as I know...”

Adso and William in the labyrinth, “The Name of the Rose”, Umberto Eco.



1.1 Artificial Intelligence and Search

Research into search methods is a fundamental branch of Artificial Intelligence (AI).
Without joining the debate over what intelligence is and how it can be achieved,
it seems generally recognized that search-based programs can solve problems that
humans would say require intelligence. Games and puzzles are examples of these
problems. They have provided artificial intelligence researchers with excellent exper-
imental domains. First, games are closed and well-defined applications where im-
provements are easily measured. Second, they have supplied researchers with strong
motivation and clear goals, such as beating the best humans with an artificial entity.

Fifty years of Al research using games as an experimental test bed has led to some
important results:

e Some games are solved. That means the computer knows a strategy that allows
it to always achieve the best possible result. Among these games are Go-Moku
and Qubic [All94], Nine-Men’s-Morris [Gas94] and Connect-4 [AlI88].

e In several games, programs have surpassed the best humans. In checkers, the
program Chinook won the World Championship in a regular match and defended
its title several times until it retired [SLLB96, Sch97]. The Othello program
Logistello defeated the world champion 6-0 in a match [Bur97]. The program
Maven plays Scrabble at such a high level that it loses only a few possible points
per game, consistently surpassing human performance.

e In other games, programs are approaching championship caliber that rivals the
best humans. In chess, strong programs can beat all but the very best humans.
Deep Blue even defeated the World Champion Garry Kasparov in an exhibition
match [New96]. Gerry Tesaro’s TD-Gammon plays backgammon on par with
the best humans in the world [Tes95].

e For games like bridge (Gin99] and poker [BPSS99], significant progress is being
made that may lead to high quality play rivaling the best human players.

These are important success stories for Al research. For some of these games,
one could argue that the Turing test has been passed, albeit in a limited domain.
However, some of the programs play so well that they would have to start blundering
once in a while to appear to be human!

Of course, there are many challenges left. Games such as Go and Shogi still resist
the traditional approaches that are successful in most of the mentioned games. We
believe it is no coincidence that success in writing programs for games appears to
be correlated with our understanding of how to make search work for them. This
observation underscores that search is one of the most basic and important tools in
AL

Domains besides two-player games in which search is successfully deployed are
optimization tasks, scheduling, and, to a lesser extent, planning. These applications
are examples of single-agent search domains. In contrast to adversarial games, such as
chess and poker, where opponents try to achieve opposing goals, single-agent search
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assumes that only one agent is manipulating the world in order to achieve some
(optimal) goal. Puzzles belong to the single-agent category as well.

The research into games and puzzles has produced an enormous body of useful
techniques and methods for problem solving that has found its way into main stream
computing science. However, it has also some serious drawbacks. The artificial nature
of games is reflected in their search-space properties. Relatively manageable search-
spaces, either small or well structured, have been implicitly assisting the early progress
of AI research. However, they do not compare to the complexities of the real-world
applications scientists are working on today. Because of the combinatorial nature
of most domains and the resulting exponential size of the search spaces, scalability
of search methods is of great importance. If the domains used as research vehicles
do not keep pace in complexity and relevant properties, the research results are less
likely to be useful for practical domains.

The success of search depends on the ability of the program to visit most of the
relevant parts of the search space. If the search space is too large and/or heuristic
knowledge to focus the search is missing, success is unlikely. Since the search-space
size of a problem is fixed, knowledge is needed to focus the search. This is where
machines currently fail and humans still have a considerable edge: finding and using
knowledge to reduce the problem complexity. Thus, more research on how to focus
search on relevant parts of the search space is needed.

Methods that do not adapt to the problem instance, but instead rely on general
properties of the domain, can help to improve search efficiency. But, they are limited
by the necessity of keeping their knowledge generally applicable. However, humans
are capable of learning during the problem solving process about how to solve the
current problem instance. This suggests developing dynamic methods to glean and use
knowledge that pertains to the specific problem instance currently under examination.
This specificity can help to break the complexity barrier on a problem-by-problem
basis. Specific problem knowledge can remove irrelevant parts from the search with
the precision of a scalpel. Of course, instance-dependent knowledge has its price. It
has to be found over and over again, and generalizing it is not only little understood,
but it would turn this knowledge into a dull, even though larger, machete.

Dynamic knowledge discovery is in fact a form of learning. It is performed at the
level of problem instances, but shows all the properties of learning. As the learning
progresses, the classification of subtrees as relevant/irrelevant becomes more precise.
The result is a more efficient search, reducing the complexity of the search space at
hand. However, our current understanding of these dynamic methods is limited at
best.

In this thesis, a puzzle game (Sokoban) is used to explore new search techniques for
single-agent search. Sokoban offers new challenges, because it has a much larger search
space than previously studied puzzle domains and exhibits real-world-like search-
space properties. Deadlock, the possibility to maneuver into an unsolvable position,
provides considerable difficulties to traditional search methods. This thesis shows
that traditional search methods fail to solve more than trivial Sokoban problems. The
state-of-the-art is significantly improved when traditional methods are changed such
that they are able to adapt to each instance. Furthermore, several new techniques
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are suggested to combat the new complexities and challenges exemplified by Sokoban.
Most successful is a technique that dynamically gathers knowledge during the search
to avoid deadlocks and to improve the search’s understanding of the search space.
Another method that uses the heuristic notion of relevance to focus the search effort
is described and analyzed. This thesis closes with a suggestion of a framework and a
classification for single-agent search enhancements.

The research presented here leaves a great number of important issues open. The
performance of domain-independent solvers is still quite limited. The question is, how
can the enhancements suggested here (and, of course, many others already suggested
elsewhere) be automatically instantiated for a new domain? Can they be formulated
in a domain-independent way? Can we identify the essential properties a domain must
have to be amenable to a certain search enhancement? For simple enhancements,
such as transposition tables, this is possible. Can we find such ways for other, more
complex search enhancements? After all, humans seem to be able to adapt their
cognitive processes to a seemingly endless number of new problems. We are only at
the beginning...

1.2 Contributions

This thesis enhances our understanding of single-agent search with the following con-
tributions:

e The puzzle game Sokoban is investigated and it is shown that its large search-
space size and particular search-space properties offer significant new challenges
for AI research. One of these challenges is the possibility of deadlocks: the
search can create problem configurations that have no solution. In fact, state-
of-the-art single-agent search is shown to be insufficient to even solve Sokoban
problems of modest complexity.

e The concept of macro moves [Kor85b] is improved by adding automatic off-line
macro-move generation. Significant efficiency gains are the result.

® A new search enhancement is introduced: pattern searches. Small, speculative
on-line searches gather dynamic knowledge that helps avoid deadlocks and im-
prove the heuristic estimate of the distance to the solution. The use of this
dynamic knowledge allows orders-of-magnitude reductions in search-tree sizes
for our Sokoban solver. The necessary properties of the application domain and
heuristic function are identified that allow the application of pattern searches.
The feasibility of pattern searches for different domains is shown using the ex-
ample of the 15-puzzle.

* Relevance cuts, a new domain-independent forward-pruning technique is pre-
sented. It is theoretically analyzed, and the risks and benefits are studied. The
analysis is contrasted with the experimental results. Relevance cuts lead to
relatively small search-efficiency improvements in the domain of Sokoban.
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A traditionally successful method for overestimation (WIDA* [Kor93]) is shown
to fail in Sokoban. An explanation for this phenomenon is given. An alternate,
domain-dependent method, driven by the dynamic knowledge gathered with the
pattern searches, is shown to yield significant improvements in search efficiency.

A classification of single-agent search enhancements is presented. It reveals
interesting insights into the strengths and weaknesses of certain fundamental
approaches to enhancing search algorithms.

Control knowledge and control functions, new concepts in single-agent search,
are proposed. The distinction between task and control knowledge allows for a
cleaner treatment during design, implementation and tuning of search enhance-

ments.

A framework for single-agent search enhancements is given. Four basic types of
search enhancements are identified.

1.3 Organization

Figure 1.1 contains a graph showing these inter-chapter dependencies. After an in-
troduction to single-agent search in Chapter 2, Chapter 3 introduces the puzzle game
Sokoban in detail. Chapter 2 will be useful when reading through parts of Chapter 3,
but it is not essential. Readers familiar with single-agent search and/or Sokoban may
wish to skip Chapter 2 and Chapter 3, respectively.

Chapter 4 examines the performance of the standard single-agent search tech-

niques that are available in the literature and shows how to enhance macro moves
with off-line precomputation. This chapter also lays out the experimental setup used
throughout this thesis. It is fundamental to the understanding of either of the fol-
lowing three chapters in terms of methodology and terminology.
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Chapter 5 introduces Pattern Search, a method that dynamically learns how to
avoid deadlocks and improve the lower bound.

Chapter 6 discusses a new forward-pruning technique called Relevance Cuts.

In Chapter 7, the possibilities for overestimation are explored. The reader of this
chapter should be comfortable with ideas and terms defined in Chapter 5.

Chapter 8 shows how these techniques fit into a framework that extends the tra-
ditional view on single-agent search. To get the most from this chapter, the reader
should be well versed with single-agent search (Chapter 2), the standard single-agent
search enhancements (Chapter 4) and the new search enhancements from Chapter 5
to Chapter 7.

1.4 Publications

Chapter 4 “Using Standard Single-Agent Search Methods” is based on two papers.
The first paper, “Sokoban: A Challenging Single-Agent Search Problem” [JS97],
was presented at the workshop “Using Games as an Experimental Testbed for Al
Research” at IJCAI'97, Nagoya, Japan. The second paper, “Sokoban: Evaluating
Standard Single-Agent Search Techniques in the Presence of Deadlock” [JS98c], is a
revised and updated version of the workshop paper. It was presented in 1998 at the
Canadian Al conference in Vancouver, Canada.

Chapter 5 “Pattern Searches” is based on the paper “Single-Agent Search in the
Presence of Deadlock” [JS98b] which was presented at AAAI'98, Madison/WI, USA.

Chapter 6 “Relevance Cuts” stems from the paper “Sokoban: Improving the
Search with Relevance Cuts” [JS99b] which was accepted in 1999 for a special issue
of the Journal of Theoretical Computing Science. This paper is based on an earlier
version, “Relevance Cuts: Localizing the Search” [JS98a], which was presented in
1998 at “The First International Conference on Computers and Games”, Tsukuba,
Japan.

Chapter 8 “Single-Agent Search Enhancements” is based on the paper “Domain-
Dependent Single-Agent Search Enhancements” [JS99a] which was presented at IJ-
CATI'99, Stockholm, Sweden.



Chapter 2

Single-Agent Search

2.1 Purpose of Search

Real-world problems can often be abstracted into models where a state of the world
is described mathematically. State-transition rules describe the conditions for the
transitions between states in the model and the changes these transitions cause.

For example, the children’s toy called sliding-tile puzzle can be modeled in the
following way. A state consists of the current location of the tiles and the empty
space. The state-transition rules define that any of the up to 4 neighboring tiles
can be pushed into the empty space. This simple description allows us to model the
“real-world” problem of the sliding-tile puzzle economically.

Single-agent search assumes that only one “agent” is changing the state of the
world, in principle, having total control within the rules defined by the model. Ad-
versarial search assumes multiple (typically two) agents that both change the world
to achieve opposing goals. We will restrict ourselves to single-agent search in this
thesis.

State descriptions and state-transition rules (collectively, the “model”) implicitly
define a graph that is called the problem or state space. The nodes in this graph
represent the states and the edges are transitions between states. A problem is given
by a start state of the world and a description of at least one goal state. A solution
would be a path leading from the start state to any of the goal states. A solution
path indicates the sequence of transitions needed to transform the start state into
the goal state. Some restrictions on that path might be given, such as the shortest
possible path in terms of number of transitions.

In a problem description as defined above, finding a solution means finding a path
in a graph. Different algorithms have been proposed that attempt exactly that. They
follow different strategies.
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2.1.1 Notation and Terminology

First we will introduce some notation and terminology to help explain the algorithms
in the next sections. The exact distance! from a state s to the closest goal is usually
referred to as h*(s). The function h°(s) is generally unknown. If we had a perfect
function for A*, finding an optimal path to a goal would be trivial and search would be
unnecessary. The heuristic function h(s) estimates h*(s) and is said to be admisszble,
if h(s) < h*(s),Vs € S, where S is the set of all states in the search space. In
other words, h(s) is a lower bound on h*(s). The function h(s) is called consistent, if
h(s1) < h(s2) +c(s1, s2), V51,52 € S, with ¢(sy, s2) being the cost to get from s, to s.
Consistency means that each transition having cost ¢(s), s;) can decrease the heuristic
value by at most that cost. Consistent heuristics are necessarily admissible. For any
of the goal states h(s,) = 0, where s, € G and G is the set of all goal states and
G C S. The value g(s) is the cost of all the transitions (or actions) performed to reach
s from the start state sq, therefore g(sq) = 0. We will also use the function f(s), which
is defined as f(s) = g(s) + h(s)- Intuitively, f(s) is the estimate of the total distance
from the start state to a goal state via s. f*(s) is defined as f*(s) = g(s) + h*(s).
Thus, f*(s) is the actual cost along an optimal path through the state s. We will
call a generated node in a search graph open if all of its successors have not yet been
generated by the search algorithm and closed otherwise.

Figure 2.1 shows an example of a state space which we will use throughout this
chapter to illustrate the different search algorithms. Nodes are marked with A and
h*, and with g and f, as indicated in the legend of Figure 2.1.

!'Cost and distance will be used interchangeably, since we assume cost to be equal to distance.
This simplifying assumption does not invalidate the generality of the following statements, since
distance could be defined differently.




2.2 Algorithms

Many different algorithms have been proposed to traverse search spaces. We will
concentrate on the most important and relevant to this thesis. We will start with
three uninformed searches: random walk, breadth-first search and depth-first search.
We then move on to informed searches, like A*, that use additional information in
the form of heuristic knowledge to guide the search. This section closes with some
intuitive explanations of search spaces and heuristic functions.

2.2.1 Uninformed Search
Random Generation and Random Walk

Random walk does what the name suggests: The algorithm walks randomly through
the search space, choosing any of the neighbors. This might sound silly, but it can be
a good idea if the goal density (the ratio of goal to non-goal states) is high enough, the
quality (cost) of a solution is not a major issue, and little or no knowledge about the
problem domain is available. Systematic search algorithms can suffer from problems
such as space requirements, cycles, transpositions, and infinite paths — problems that
are almost no issue in random algorithms. However, random algorithms are easily
outperformed by more systematic approaches when searching for good quality solu-
tions, or searching in large search spaces with low goal density, or when high-quality
knowledge about the problem is available.

Figure 2.2 shows pseudo code for a random-generation algorithm. Instead of
choosing a neighbor, it randomly selects any of the open nodes. OpenStorage refers
to a data structure that can simply hold states visited, such as a list. The routines
Store and SelectRandomly store and retrieve as well as remove states from that data
structure. Empty tests if the data structure still contains states. Child expands a
state (creates all possible successors by applying all legal actions) and Solution tests
if a state is a goal state.

Some humans practice a form of random walk when they try to find, for example,
baby food in a big department store that they visit for the first time. Without
knowledge of where the products are located, most of their steps take them in a
random direction, eventually reaching the shelf with the baby food.

Breadth-First Search

Intuitively, breadth-first search traverses the search space systematically by visiting
all the nodes that are closest to the start state before visiting the ones further away,
hence breadth-first. Figure 2.3 shows an order the nodes of the example graph in
Figure 2.1 are expanded.

Figure 2.4 shows the pseudo code for breadth-first search. It starts by storing
the start state into a first-in-first-out (FIFO) queue that holds all open states, states
that are due to be expanded.? Until a goal state is found, breadth-first search takes

*Note that Store for OpenStorage in the random walker and Store for OpenFIFO have slightly



RandomWalk( StartState )

{

Store( OpenStorage, StartState );
Success = FALSE;
DO {
CurrentState = SelectRandomly( OpenStorage );
IF( Solution( CurrentState ) )
Success = TRUE;
ELSE
FOREACH( Child( CurrentState ) ) DO
Store( OpenStorage, Child( CurrentState ) );
} UNTIL( Success OR Empty( OpenStorage ) );
IF( Success ) RETURN( CurrentState );
ELSE RETURN( NULL );

Figure 2.2: Random-Generation Algorithm
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Figure 2.3: Illustration of Breadth-First Search
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BreadthFirst( StartState )
{
Store( OpenFIFO, StartState );
Success = FALSE;
Do {
CurrentState = GetFirstIn( OpenFIFO );
IF( Solution( CurrentState ) )
Success = TRUE;
ELSE
FOREACH( Child( CurrentState ) ) DO
Store( OpenFIFQ, Child( CurrentState ) );
} UNTIL( Success OR Empty( OpenFIFO ) );
IF( Success ) RETURN( CurrentState );
ELSE RETURN( NULL );

}
Figure 2.4: Breadth-First Algorithm (for Unit-Cost Actions)

the next state from the queue, expands it and stores all successors at the end of the
queue.

Consider an analogy. When we drop our last match in a dark cellar, one would
usually kneel down, touching the immediate area on the floor, slowly extending our
reach, enlarging the area searched until we touch the match. This is in principle a
breadth-first search. This approach seems reasonable, since we expect the match to
be close by.

This simple algorithm is guaranteed to find an optimal solution, if all actions have
the same (unit) cost. In the case of non-unit-cost actions, having found a solution,
we have to continue to expand all states in the queue that have a cost less than the
currently best solution. Two changes are necessary to achieve this. First, a simple
check of each new state is added before it is put into the queue to see if its cost is less
than the current best solution. Second, the algorithm stops only after the queue is
empty. Dijkstra’s shortest-path algorithm is the generalisation of breadth-first search
to this case.

The immediate concern with this algorithm is its space requirement. The queue
contains the entire search frontier, all the open states. This can quickly exhaust the
memory capacity, even for moderately complex problems. For problems where that
is the case, we need an alternative.

Depth-First Search

Depth-first search explores the search space from top to bottom across the graph (like
columns in a table). More specifically, before searching the siblings of a node, all its
children are searched. Thus, the deepest open nodes are expanded first. Figure 2.5

different semantics, each according to the kind of data structure they are operating on.

11



Step 1 Step 2 Step 3 Step4

O: 2
3 3 3 3
1 1 2 1 2
3 2 2 2
3 1 3 1
4 2 4 2

Step § Step 6 Step 7

3 3 3
1 2 1 2 1 2
3 2 3 2 3 2
3 1 3 1 3 1
4 2 4 2 4 2
1 i
1
1 1 1
o 0
0 i}

Figure 2.5: Illustration of Depth-First Search

shows depth-first search for our example graph in Figure 2.1.

To achieve the behavior from the sketch of the breadth-first algorithm above, we
simply change the queue into a stack (last-in-first-out = LIFO)3. Figure 2.6 shows
the pseudo code for the depth-first algorithm. If the algorithm stops after the first
solution is found, we cannot be guaranteed to have an optimal solution. We will
have to explore all children of the start state to make sure. However, there is one
observation that can be used to improve the efficiency. Once a state s has a cost f(s)
larger than or equal to the currently best solution, exploring its successors will not
yield any better solution and we can stop searching this part of the search space, if
no actions have negative cost.

The advantage of depth-first search over breadth-first search is in the space re-
quirements. The stack only holds all the neighboring states of the states on the
current path. That means that the space needed for the stack is linear in the length
of the current search path, which is logarithmic in the size of the tree. On the other
hand, breadth-first search stores the search frontier, which, because of the exponential
growth of the search tree, grows exponentially.

When Columbus set out from Spain to find India in the West, he did not waste
time trying to find it in the immediate vicinity of Spain; he went straight West. We
know today that this depth-first approach, because of the size of the goal (we assume
it was America), makes perfect sense.

The obvious drawback of this algorithm is the possibility of cycles or infinite paths.

3The attentive reader will notice a slight inconsistency here. If the nodes are generated from left
to right, as is usually assumed, and immediately placed on the stack, they would be expanded right
to left. However, Figure 2.5 shows a left-to-right expansion.
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DepthFirst( StartState )
{
Push( OpenStack, StartState );
Success = FALSE;
DO {
CurrentState = Pop(OpenStack);
IF( Solution( CurrentState ) )
Success = TRUE;
ELSE
FOREACH( Child( CurrentState ) ) DO
Push( OpenStack, Child( CurrentState ) );
} UNTIL( Success OR Empty( OpenStack ) );
IF( Success ) RETURN( CurrentState );
ELSE RETURN( NULL );

Figure 2.6: Depth-First Algorithm

If the problem domain allows for either of these, the simple algorithm of Figure 2.6
might fail to find a solution. If the algorithm had a notion of how much effort was
spent on a certain path and an estimate about how far a potential solution was away,
these two problems could be avoided.

Iterative Deepening

Iterative deepening is an attempt to rectify the problems depth-first search faces
with infinite paths or loops, without incurring the excessive space requirements of
breadth-first search. It was first introduced in [SA77, Kor85a], albeit for minimax-
like algorithms and with a slightly different purpose.

The basic idea is to iteratively deepen the maximum depth a depth-first search
can traverse into the search tree. If a certain iteration has finished without finding
a goal, the maximal depth is increased and the depth-first search is restarted. At
first this might sound like a lot of wasted work, but since the search-tree size grows
exponentially with the depth, the size of the tree is dominated by the effort spent
in the last iteration. Thus, all previous iterations search a relatively small portion
of nodes when compared with the current iteration. Additionally, if a goal is found,
it must be an optimal goal, since the previous iteration searched all nodes reachable
with less moves then the current iteration allows (given unit-cost actions).

Iterative Broadening

Iterative broadening [Gin93a] is to breadth-first search what iterative deepening is
to depth-first search. The number of successors explored at each node in the tree is
restricted to a fixed portion (or alternatively a fixed number) of all successors. If no
solution is found, the search can be restarted with more successors considered at each
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node. It is important to note here that the search-tree size growth is only dampened;
it still grows exponentially!

Since iterative broadening does not impose depth limits per se, loops and infinite
paths can lead to problems if not searched in a breadth-first manner. To avoid
excessive space requirements, one can use the iterative deepening idea in connection
with iterative broadening. However, if a search iteration failed to find a solution, it is
hard to decide if the search should broaden or deepen the search efforts. Very little
research has been done to investigate mechanisms that might be useful to control
such hybrid searches.

Beam Search

Beam search [Win92, Bis92] restricts the number of open states per level in the tree
to a constant — the beam into the search tree. Obviously, the search trees are only
growing linearly in depth. Even though the idea might seem appealing at first, it
comes with its own set of problems that are similar to the hybrid iterative approaches.
If a search returns failure, how much wider should the search beam be? Which nodes
should be kept at a particular level? These and similar issues are under investigation
(For an example see [Zha98].).

2.2.2 Informed Search

All previous algorithms had no more information about a state other than the cost
needed to reach it from the start state. Informed algorithms use additional knowledge
to estimate how far away a solution is. This domain-dependent knowledge is encoded
into a heuristic function. It returns an estimate of the distance to the goal for any
arbitrary state. This heuristic function is called admissible if it never overestimates
the distance (or cost) from any state in the search space to the closest goal. This
estimate is also called a lower-bound estimator.

To get a lower-bound heuristic, one can remove constraints from the original set
of rules for the domain and use this simpler problem to come up with an optimistic
estimate on the cost to achieve a solution. For example, in the sliding-tile puzzle (see
Section 2.6.1), we might choose to ignore the rules that only one tile can be at one
square at a time and that a blank has to be beside a tile to be moved. With these
two relaxations of the rules of the game, we get the Manhattan distance heuristic (see
Section 2.3.3). Of course, the more simplifying (or ignorant) the assumptions are, the
greater the error between the lower-bound estimator and the real cost to a goal.

The fewer the simplifications, the smaller the error between h and h* will poten-
tially be. Taking more details of the domain into account makes the lower-bound
estimator more expensive to compute. However, since decreasing the error in the
lower-bound estimator means a more efficient search?, the gains in efficiency can
offset the more expensive lower-bound calculations.

Many of the good lower-bound functions used for specific domains, such as the
sliding-tile puzzle, are hand-crafted. Often, they result from clever reductions into

4This relationship will become more apparent in upcoming sections.
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BestFirst( StartState )
{
Insert( OpenSortedList, StartState );
Success = FALSE;
DO {
CurrentState = GetBest( OpenSortedList );
IF( Solution( CurrentState ) )
Success = TRUE;
ELSE
FOREACH( Child( CurrentState ) ) DO
InsertSortedOnH( OpenSortedList, Child( CurrentState ) );
} UNTIL( Success OR Empty( OpenSortedList ) );
IF( Success ) RETURN( CurrentState );
ELSE RETURN( NULL );

Figure 2.7: Best-First Algorithm

functions that are easy to compute or approximate. The Manhattan distance is one
such function: a number of table lookups and a summation are sufficient to calculate
it. Furthermore, one can incrementally update the Manhattan distance as moves are
made. This can result in effective and efficient implementations.

However, these good lower-bound functions are application-dependent. Each new
application domain requires new efforts to find good heuristics. For large and non-
intuitive domains this can be a hard problem. Holte et.al. [HPRA96] suggest using
hierarchical searches to establish lower bounds on distances to goals. By abstracting
the real search space (often by simplifying it), a smaller search in an abstract search
space can produce a lower bound on the number of steps required to reach a goal
in the real search space. Geffner [BG98, BG99] suggests a similar approach for his
state-space planner.

Naive (Pure) Best-First Search

Best-first search always expands the best open node next. “Best” is defined with
respect to some measure, typically the estimated distance to the closest goal state
h(s). Thus, at each step a best-first search expands the node that it believes to
be closest to a goal. This behavior can be achieved by keeping all open states in a
sorted list, ordered by the estimate of the distance to the goal (see pseudo code in
Figure 2.7).

Unfortunately, this algorithm is not guaranteed to find an optimal solution. The
search might be misled by an optimistic estimator for a path to a non-optimal solution.
For example, if the heuristic returns a distance of 1 on the path to a non-optimal goal
(see Figure 2.8), the path to an optimal goal is ignored and the suboptimal goal is
found first. Best-first search will follow this suboptimal path to arbitrary depth. A
closer goal was ignored because of a slightly larger estimate of the distance to the
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Figure 2.8: Illustration of Best-First Search
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goal on an optimal path. This happens because the cost of actually getting to the
current state from the start state is ignored.

A*

A* [HNR68] is a best-first algorithm which uses f(s) as the measure for “best”. By
taking both the actual cost of getting to a state and the admissibly estimated distance
to a goal into account, A* is guaranteed to find an optimal solution. Furthermore,
A* handles search graphs, not just trees. This can lead to important efficiency gains
when identical parts of a search tree (or cycles) are detected and multiple traversal
of these parts is avoided. Unfortunately, this comes at a price: every time a node is
generated, it must be checked to see if it was already visited or generated. Two lists
are used to keep track of open and closed nodes, an OPEN list and a CLOSED list,
respectively.

The description of A* in Figure 2.9 shows a simplified version that ignores all the
details we have to take care of when we want to connect parent and child nodes in
the graph. If a shorter path to a node is found, PropagateG is used to update the
improved g value in all the successors of that node. Note that the function Get does
not remove the node from any of the lists. InsertSortedOnF sorts the states in the
queue according to the f value.

It is interesting to note that by appropriately choosing values for g and h, A* can
behave like any of breadth-first, depth-first or the naive best-first algorithms. Setting
the cost of an action to 1 and k to 0, A* defaults to breadth-first search. If we set
the cost of an action to -1 and keep h at 0, depth-first behavior results. And finally,
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A_STAR( StartState )
{
StartState.g = 0;
Insert( OpenSortedList, StartState );
Success = FALSE;
Do {
CurrentState = GetBest( OpenSortedList );
IF( Solution( CurrentState ) )
Success = TRUE;
ELSE

{

FOREACH( Child( CurrentState ) ) DO {
IF( IsIn( OpenSortedList( Child( CurrentState ) ) ) )
{

OldState = Get( OpenSortedList( Child( CurrentState ) ) );

Oldstate.g = min( OldState.g, Child( CurrentState ).g );

}

ELSIF( IsIn( ClosedList( Child( CurrentState ) ) ) )
PropagateG( Get( ClosedList( Child( CurrentState ) ) ) );

ELSE
InsertSortedOnF( OpenSortedList, Child( CurrentState ) );
}

Insert( ClosedList, CurrentState );
}
} UNTIL( Success OR Empty( OpenSortedList ) );
IF( Success ) RETURN( CurrentState );
ELSE RETURN( NULL );

}

Figure 2.9: A* Algorithm
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by setting the cost of actions to 0 (resulting in g being 0) and using the normal A, we
achieve the naive best-first behavior.

The maintenance and size of the OPEN and CLOSED lists, with the expensive Get
and InsertSortedOnF operations, are the main drawbacks of A*. Even moderately
complex problems can bring the space requirements beyond the acceptable.

IDA*

Korf [Kor85a] applied the idea of iterative deepening to A*. The resulting algorithm
(see Figure 2.11), Iterative Deepening A* (IDA*), traverses the search tree in a depth-
first manner, iteratively deepening the tree. Each iteration of IDA* tries to find a
solution with a path length equal to PathLimit. For the first iteration, PathLimit is
set to the heuristic estimate for the start state (h(s)). If the heuristic is admissible,
any node s with g(s) + h(s) = f(s) > PathLimit cannot be on a solution path of
length PathLimit and can therefore be ignored (pruned from the tree in this iteration).
Exhaustively searching the tree during an iteration and not finding a solution is proof
that no solution with length PathLimit exists. PathLimit is increased and a new
iteration started. Eventually, we will increase PathLimit to a value that is as large as
the optimal solution length (cost). During this last iteration we will find an optimal
solution.
Is this approach efficient?
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Iteration | (PathLimit 2)

Iteration 2 (PathLimit 3)

IDA_STAR( StartState )
{
PathLimit = H( StartState ) - 1;
Success = FALSE;
DO {
PathLimit ++;
StartState.g = 0;
Push( OpenStack, StartState );
DO {
CurrentState = Pop( OpenStack );
IF( Solution( CurrentState ) )
Success = TRUE;
ELSIF( PathLimit >= ( CurrentState.g + H( CurrentState ) ) )
FOREACH( Child( CurrentState ) ) DO
Push( OpenStack, Child( CurrentState ) );
} UNTIL( Success OR Empty( OpenStack ) );
} UNTIL( Success OR ResourcelLimitsReached() );
IF( Success ) RETURN( CurrentState );
ELSE RETURN( NULL );

Figure 2.11: IDA* Algorithm
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Figure 2.12: Illustration of IDA*
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e Each iteration is a depth-first search, restricting the space requirements to log-
arithmic space in the size of the search tree, whereas A* needed linear space in

the size of the search tree.

e No expensive list operations are needed anymore, lists are replaced with a cheap
stack.

e With the limit on the solution length, an additional cutoff criterion is given that
controls the size of the search tree.

e Since we are dealing with trees that grow exponentially in size, earlier iterations
are usually small enough to be virtually negligible in cost compared to the last

iteration.

These four reasons make IDA* a viable contender for practical applications in search.

The efficiency of IDA* depends directly on the quality of the heuristic function h.
If h = h* the search would simply walk to the solution. It is important to note that
the quality of the heuristic function depends on the average error over all the states in
the search space, not just the root node. Even if the root node is estimated perfectly
(no error), the search might not be able to find a solution because the heuristic is
poor in the rest of the search space. In the worst case, h = 0 for all states, IDA* will
degenerate to a series of depth-limited depth-first searches.

Depth-First Branch and Bound

IDA* starts with a lower bound on the solution length and increases this lower bound
each time it proves that no solution with this lower bound exists. Depth-first branch
and bound (DFBB) [LW66] starts with an upper bound on the solution length. The
upper bound is used to prune parts of the search space that cannot contain a solution
better than the current best solution. That means that whenever DFBB encounters
a node s in the search space that has an f-value (f(s) = g(s) + h(s)) equal or larger
than the best solution found so far, s gets cut of. DFBB traverses the search space
in a depth-first manner. Whenever it finds a new goal when attempting to expand it,
this goal must be better than the previously found. The cost of the new goal is used
to adjust (lower) the upper bound and the search continues. Depth-first branch and
bound depends on a high goal density, otherwise it will suffer from the same problems

as depth-first search.

Bidirectional Search

Nothing forces us to solve the problem in a “forward” direction [Nil80]. Why not
search “backwards”, starting from the goal state and attempting to find a path to
the start state? Choosing the right direction (“forward” or “backward”) can lead to
significant savings, since tree shapes might not be symmetric and a forward tree might
be larger than the corresponding backward tree. However, so far we are not talking
about something new, just that the search direction might be an issue. Backward
search would use inverse actions to create all possible predecessors of a node in a
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Figure 2.13: Illustration of Bidirectional Search

forward sense, which are the successors in a backward sense. We would also have to
exchange goal with start state(s).

But why do we search only in one direction? Could it be beneficial to search from
both sides? Bidirectional search [Poh71] proceeds to deepen the tree from both sides
until both trees intersect at one node, connecting a path between the start and a
goal state. This path is not necessarily an optimal path. The search strategies for
the forward and backward search do not need to be the same. Depending on the
different search-space properties, different strategies might be chosen for the different
directions.

Figure 2.13 shows the search trees for the two directions. As they grow towards
each other, they will eventually meet. A unidirectional approach would have to
expand a deeper tree with a potentially larger number of nodes than the two smaller
trees together. The dark gray area in the third part of the figure shows what the
potential savings could look like.

All this sounds rather convincing. The question is why is this approach not widely
used? There are several problems with bidirectional search. For a long time it was
assumed that it was hard to be able to make the search frontiers meet. However,
Kaindl and Kainz [KK97] show that finding a solution was not so much the problem
as finding an optimal solution. The search spends a lot of effort making sure an
optimal solution is returned. Furthermore, the savings shown in Figure 2.13 are not
necessarily achievable, if the unidirectional search is efficient. If, for example, IDA*'s
last iteration is small because of good move ordering, the savings achievable with
bidirectional search are small.

Furthermore, it is a problem to detect when search frontiers even meet, since at
least one frontier has to be kept in memory to find intersections. Since trees grow
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exponentially, search frontiers and, thus, space requirements do too, a major drawback
for bidirectional search.

Backward searches often face another problem. Since the goal state is not nec-
essarily one state, but a set of states, the backward search could potentially have
several possible start states. This increases the amount of work to be done and simul-
taneously decreases potential savings. Other, more practical reasons might include
difficulties with reverse actions and the overhead of finding, tuning and coding the
additional heuristics.

2.2.3 Choosing the Right Algorithm

When presented with the choice of which algorithm to implement for a certain domain,
one might be confused by the multitude of different approaches and ideas behind the
algorithms. So what drives the selection of an algorithm? What are the properties of
the search space that are used to decide which algorithm to use?

The first choice between informed and uninformed algorithms depends on the
availability of domain knowledge. Usually, informed searches perform better than
uninformed. Therefore, if knowledge is available, informed algorithms are the pre-
ferred choice. As long as the search space fits into memory and the overhead of
maintaining the OPEN and CLOSED lists is no concern, A* is the choice. However,
if memory or list maintenance is a concern, IDA* is the preferred choice.

Now, when would a branch and bound search be useful? Branch and bound
searches operate on the fact that we can easily find a solution, but want to improve
on the quality of that solution. A high density of goal states in the search space is
needed if DFBB is used. Otherwise DFBB will degenerate into a depth-first search.

Random walk algorithms are of use when faced with huge search spaces where we
have little or no knowledge of the search space and we are looking for just any solution,
and not necessarily a high-quality solution. Recent interest in random walk applica-
tions was sparked by advances in the satisfiability (SAT) domain, where WALKSAT
[SKC94] seems to perform rather well. Other random walk algorithms are heuristi-
cally guided, but use the random element to avoid local minima. Genetic algorithms,
and certain hill climbers, such as simulated annealing, belong to that group.

2.3 Enhancements

The description of the algorithms in the previous section conveyed only the basic
ideas. Most of these algorithms are used in connection with powerful enhancements.
Search enhancements potentially increase the search efficiency by orders of magnitude,
depending on the problem domain and algorithm. Often, the choice of the right
algorithmic enhancement(s) is more difficult and crucial to the performance of the
program than choosing the right algorithm. This problem will be discussed in more
detail in Chapter 4.
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Figure 2.14: Example Problem to Illustrate Transposition Tables and Macros

without hash table with hash table

Figure 2.15: Impact of Transposition Tables

2.3.1 Transposition Table

Even though search spaces are generally graphs, most search algorithms treat them
as trees. If a state can have several predecessors, this can lead to duplicate work.
The search could revisit nodes and even entire subtrees several times. These “trans-
positions” are detected using a large transposition table [SA77]% in which useful in-
formation about previously visited nodes is stored. Before expanding a node, the
transposition table is consulted, and if valid information is found, it is used to po-
tentially curtail the search. Transposition tables are usually implemented as hash
tables.

Furthermore, when iterative deepening is used, the transposition table serves to
store information that can be used to make subsequent iterations more efficient (see
Section 2.3.2 “Move Ordering”).

Consider the position in Figure 2.14: Two stones need to make three moves in a
row. We will use a,b,c for the moves of the left stone and d,e,f for the right stone.
The moves of each stone have to be made in sequence, but can be interleaved in any
way between the two different stones. Figure 2.15 shows what happens if the search is
enhanced with a transposition table. Solid nodes represent nodes searched normally,
while light nodes represent cutoff nodes because of a transposition table match, with
dotted lines connecting identical positions in the tree. For example, the top most
light node is reached with the move sequence d,a which results in the same position
that was previously searched after the moves a,d.

3 Another way of detecting transpositions involves finite state machines [TK93].
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Another way of looking at the function of the transposition table is by describing
it in terms of the heuristic lower bound and IDA*. Each state s searched in IDA*
must have the following property: g(s) + h(s) = f(s) <= PathLimit, otherwise the
search would not consider this state. When a state was searched exhaustively and the
search backs up with failure, we have proven that our heuristic function h(s) was off.
We know now that g(s) + h'(s) = f'(s) > PathLimit, or h'(s) > PathLimit — g(s),
or h'(s) >= PathLimit — g(s) + 1. When storing h'(s) in the transposition table,
we allow the search to improve on the heuristic value h(s) every time it revisits the
state s. The value stored in the transposition table is used to improve the lower
bound. This dynamic improvement of the lower bound leads to additional cutoffs in
the search in two ways.

e Within an iteration, revisiting a state with the same or larger g(s) allows us to
improve the lower bound with a transposition table lookup. The improved lower
bound will be enough to cause a cutoff (g(s) + A'(s) = f'(s) > PathLimait).

e If the search revisits the state s with a lower g(s), no cutoff can happen, the
search will proceed. However, in the next iteration, if we visit node s in the
same order, the h'(s) stored in the transposition table is now sufficient to cause
a cutoff when reaching s via a non-optimal g(s).

This scheme also handles cycle detection. Rather than storing the new lower
bound after we searched the subtree, we update the transposition table before de-
scending into the tree. If we ever cycle back into a state that is on the current path,
g(s) must be larger than it was previously and thus, a cutoff will occur. No special
code is needed to detect cycles.®

2.3.2 Move Ordering

Instead of visiting successors of a move in an arbitrary order, one can try to look at
“good” successors first.

Move ordering is not used in best-first searches; the algorithm itself provides for
a global ordering of the alternatives. In depth- and breadth-first searches, move
ordering can lead to efficiency gains because goals are found earlier (left in the tree)
rather than later (right in the tree). Reinefeld and Marsland [RM94] comment on
the effectiveness of move ordering in single-agent search. For IDA*, ordering moves
at interior nodes makes no difference to the search, except for the final iteration.
Because the final iteration is aborted once a solution is found, finding a solution early
in the final iteration can significantly improve the performance, especially considering
that the last iteration is potentially the largest.

The information used to order moves can come from different sources, usually
domain-dependent knowledge. Sometimes domain-independent knowledge gathered

6Some readers might feel uncomfortable with this statement, because there is the remote possi-
bility of collisions in the hash table that overwrite entries, resulting in undetected cycles. While this
is true, this should happen very infrequently and in such rare cases we are willing to go the extra
depth until g(s) is large enough to curtail the search.
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in the search tree (e.g., tree sizes, tree depths...) can be useful. In the case of
iterative deepening, move ordering information is passed from one iteration to the
next by means of the transposition table.

The alpha-beta algorithm, used in adversarial search, relies on good move ordering
to achieve maximal efficiency by establishing good bounds early (worst case tree size
is w?, best case with perfect move ordering is w?%?2, where w is the branching factor
and d is the depth of the tree). In single-agent search, move ordering can be much
more crucial. If a depth-first search had perfect move ordering, it could go straight to
the goal. In the worst case, depth-first search spends exponential effort. Of course,
perfect move ordering does not exist in search, since it would entirely obsolete search
per se. However, the better the move ordering the more efficient the search, if the
overhead of achieving this ordering does not offset the gains.

2.3.3 Pattern Databases

Lower-bound functions provide the search with guidance in the form of cost estimates
for reaching a goal from a position in the search. These functions usually ignore some
of the domain constraints to allow for efficient implementations. A common approach
is to decompose the total cost of solving the problem into solving independent sub-
tasks. These subtasks usually consist in moving physical objects to goal squares. For
example, for the sliding-tile puzzles, the distance of each tile to its target square is
summed to produce a lower bound on the total number of steps required to solve the
entire problem. This heuristic is called Manhattan distance. The Manhattan distance
assumes that every tile can directly move to its goal without detour.

Lower-bound functions following this approach can be very efficiently computed
and are even amenable to incremental updates during the search because of the in-
dependence of the subgoals.

However, the challenge of these puzzles and real-world problems lies in the inter-
actions of the subgoals. Neglecting them creates poor lower bounds. An improvement
to the sliding-tile puzzle’s Manhattan distance, called linear conflicts, was proposed
by Hannson et al. [HMY92]. It uses the observation that one of two neighboring
squares that are in each others way to reach their goal square optimally has to make
at least two non-optimal moves off the optimal path. Identifying two such squares
allows us to increase the lower bound by 2.

Linear conflicts contain the core idea used for pattern databases [CS96]. Instead of
looking at one of the (physical) elements or subgoals at a time, combinations of these
elements (patterns) are used. For each of these patterns a precomputation determines
the minimum cost to get all the elements of the pattern to their respective goals. The
precomputation takes interactions of these elements into account and stores the costs
in a database that can be queried during the search. The more elements are taken
into account the more accurate the lower bound. One could even call the Manhattan
distance a one-tile pattern database and the Manhattan distance plus linear conflicts
a two-tile pattern database.

Culberson and Schaeffer [CS96] show results for the sliding-tile puzzle and Korf
[Kor97] applies the technique to Rubik’s Cube. The improvements in lower-bound
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Figure 2.16: Impact of Macro Moves

quality lead to significant gains in the search efficiency.

Cazenave [Caz99] suggests an interesting improvement on the idea of pattern
databases for the domain of Go. A core pattern is annotated with external condi-
tions. The core patterns are defined by the physical arrangement of stones. External
conditions are logical properties of the board around the core pattern that help to
determine the state of the core pattern. The use of external conditions reduces the
number of total patterns, because a large number of essentially irrelevant details are
abstracted into a few rules.

2.3.4 Macro Moves

The search algorithms discussed so far treat all the moves equally. After making a
move, all legal moves are considered as successors. These algorithms are therefore
considering all sequences of moves even though their order does not matter.

Consider trying to solve the problem of driving to work in the morning. When
trying to devise a plan to get from home to work, all the algorithms are considering
sequences such as: leave-the-house, mow-the-lawn, open-garage, get-in-car, exit-car,
mow-the-lawn, get-in-car... All actions are legal, but not necessarily related. The
method of macro moves [Kor85b] is an attempt to group related atomic actions into
higher level composed actions: macros. This can result in impressive search-space
reductions. Special attention has to be paid to the impact these macro moves can
have. They might influence the correctness and/or the completeness of the search as
well as the ability of the algorithm to find optimal solutions.

Figure 2.16 shows the impact of the move sequence a-b-c being treated as a macro
in the position of Figure 2.14. The effect on the search-tree size is visible, instead of
exploring every possible combination of interchanging moves a, b, c, and d, e, f, the
search visits less nodes and even the depth of the tree is reduced.

James [Jam93] builds on an idea from Iba [Iba89] and dynamically creates macros
by “tunneling” peaks in the search-space landscape. Figure 2.17 shows what happens.
Iba suggested tunneling from one valley in the cost landscape to the next, leading
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Figure 2.17: Tunneling: The Dynamic Creation of Macros

to long macros with many preconditions that are hard to match. James observed
that difficulty and improved on the tunneling idea by suggesting the shortest possible
tunnel that “drains” the water into the next valley. This results in fewer preconditions
and the increased chance to match a macro.

It is important to note that tunneling changes the search space by creating macros
that behave as shortcuts. They detour the error of the heuristic estimate, rather then

decreasing it.

2.3.5 Summary

Enhancements to search algorithms can improve search efficiency dramatically. De-
pending on the application domain, those savings can be several orders of magnitude
for every one of those enhancements. Each enhancement is implicitly benefiting from
properties of the search space. Transposition tables work only if the underlying search
tree is in reality a graph. Macro moves assume that treating several moves as one does
not change the rest of the problem and ultimately its solvability (or completeness?).
For related results see Culberson and Schaeffer [CS94].

Each new enhancement will have a limited scope of domains to which it applies.
The No-Free-Lunch (NFL) theorem, that we will be talking about later, backs this

"Whereas completeness is an important theoretical consideration, we feel it has little or even
no practical value. “Complete” algorithms use exponential time to ensure completeness. Since we
face time constraints in practice, this theoretical completeness is of little value. Furthermore, it
is always easy to construct a complete algorithm. After exhausting a predetermined time limit,
any theoretically complete algorithm can be executed. This two-phase approach is also theoretically
complete, but with a constant run-time overhead. In practice it is only important how many problems
can be solved within the time limit. Complete algorithms have the nice property that they can
prove that no solution exists. But again, if they could do that in a reasonable time frame, the more
efficient algorithm would stop without finding a solution even earlier and the second phase of our
hypothetically complete algorithm will prove that the problem has no solution. Because the first
phase searches less of the search space, it will use less time than the second phase. Our two-phase
algorithm will therefore take at most twice the time for this proof than the complete algorithm of
the second phase would have used on its own.
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intuitive statement up. There is no magic bullet, neither in the form of an algorithm
nor as an enhancement, that could be used to solve every possible domain more
efficiently.

2.4 Heuristic Functions and Search Spaces

This section is an attempt to underpin the formal concepts introduced earlier. Ex-
amples are used that will help the reader develop a more intuitive feeling for search
spaces and how heuristic knowledge can help to guide algorithms through them.

Search spaces are multi-dimensional structures that are very hard to visualize. We
will therefore use simplified search spaces here. Figure 2.18 shows a one dimensional
search space along the horizontal axis of the graph. The function g(s) shows the
distance from the start state. Since search spaces are discrete structures, g(s) should
be a step function. For simplicity, we are using continuous functions here.

A breadth-first search would expand nodes in waves; after all nodes at a certain
depth T; are visited, the next depth is started until the last level, here T, is reached.
It now depends on the order of expansion, when the goal state is found. If the search
is “lucky”, it visits states to the right first, finding the goal state without expanding
states to the left of the start state.

Depth-first search is faced with a different problem. Assume our search space is
much larger than shown. If depth-first search starts searching to the left, it will not
find the solution until it has visited all the states to the left. However, starting to
the right, it would get lucky. Note that in practice, with the many dimensions of a
real search space, getting “lucky” would mean making the right decision many times
- an unrealistic hope.

Figure 2.19 shows the same search space with good heuristic knowledge. In addi-
tion to g(s), the distance from the start state, h(s), the lower-bound estimate of the
distance to the goal, is available. The knowledge is consistent with the location of the
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goal state, h(s) decreases towards the goal state. A*, which uses f(s) for guidance,
will expand states in the search space in similar “waves” as breadth-first search does.
Each new wave T;,, is larger then the previous wave 7;. However, A* needs fewer
waves and each wave-front is smaller than in breadth-first search, because heuristic
knowledge allows A* to prune portions of the search space which would be visited by
breadth-first search.

While Figure 2.19 shows an example with good heuristic knowledge, heuristic
knowledge can be misleading. Figure 2.20 shows such an example. The path away
from the goal looks initially better than the path to the goal state. Due to misleading
knowledge more states are expanded in each wave. However, as long as the heuristic
knowledge is admissible, A* will not expand more nodes than breadth-first search.

Figure 2.21 shows the ideal case. If the search knew the correct distance to the goal
at each state in the search, it could directly go to the goal. As discussed earlier, this
is not an interesting case for search, but it can show what better heuristic knowledge
will asymptotically lead to.

Since Figures 2.18, 2.19, 2.20, and 2.21 show trivial, one-dimensional search spaces,
they cannot convey the exponential growth of consecutive waves. Figure 2.22 shows
two search graphs with the waves shown in different shades of gray. One could imagine
these graphs to show the search space from the top. The exponential growth of each
larger wave is now visible.

Improvements in the heuristic knowledge that is available to the search algorithms
usually lead to two kinds of efficiency gains:

e Fewer waves: With an increase in the heuristic value of the start state, the
difference between h(start) and h*(start) decreases, leading to fewer iterations
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(IDA*) or fewer waves (A*).

e Smaller waves: Improvements to the lower bound for many states in the search
space lead to more cutoffs in the tree which in turn results in smaller waves.

For some problems the solution length is known. That is equivalent to an improved
lower bound for the start state and helps to remove the initial iterations for IDA*,
because it can start with the correct threshold.® However, the last iteration is still as
large as it was before. Because of the exponential growth of the search tree, the last
iteration dominates the effort of the search and thus, the savings are relatively small.

It is more important to improve the lower-bound function on average for the
entire search space to remove large portions of the last iteration. These savings are
potentially much larger. Figure 2.22 shows a combination of the two when comparing
the left with the right figure: on the right side there are fewer iterations searched and
there are fewer states in each of the iterations.

2.5 No-Free-Lunch Theorem(s)

Throughout the computing science literature, the quest for the Holy Grail can be
found: a universal problem solver, universal function optimizer and alike. Some

8This trick has one side effect worth mentioning: The first action away from the start state can
lead to a large reduction in the heuristic value, potentially larger than the cost of the action. The
resulting heuristic is therefore not consistent.
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people even claim to have found such a tool. Others are more modest in their claims;
they restrict their statement to a certain class of problems, such as search problems.
The last wave of such claims could be observed during the advent of evolutionary
algorithms. This was, unfortunately, surely not the last.

2.5.1 Bad News

As seductive as the thought of a one-size-fits-all algorithm is, such an algorithm does
not exist. Wolpert and Macready [WM96] prove with their No-Free-Lunch (NFL)
theorems that all algorithms that search for an extremum of a cost function perform
exactly the same when averaged over all possible cost functions. A “universally best”
search algorithm would have to outperform all other algorithms on average. Wolpert
and Macready show that if an algorithm A outperforms algorithm B on some cost
functions, then B must outperform A on others. Culberson [Cul96] uses adversarial
arguments to come to the same conclusion.

What does that mean? If we look at all possible cost functions (or, for that matter,
search spaces), there exists no algorithm that can outperform all other algorithms.
Worse still, all algorithms, even totally random searchers, will perform the same on
average on all possible search spaces.

Extensions of these theorems in [Cul96] even show that learning does not work over
all possible instances. Not even adaptive (learning) algorithms that try to extrapolate
from what they have seen so far to guess into the future will work better, when
averaged over all search spaces. Heuristic knowledge can also be only problem specific
and not absolutely general. The claim of “universal” can clearly be rejected, in all

cases.

2.5.2 Good News

However, not all is lost. By restricting our algorithm to domains where we have
knowledge available, the knowledge can help to increase performance in that domain
as compared to a knowledge-poor algorithm. Given the above reasoning, we trade the
performance increase for “our” problem with a performance decrease in some other
domain, but we are happy with that trade.

That means that algorithms and algorithmic enhancements work for certain prob-
lem domains. What are these domains, what makes them suited for a certain algo-
rithm and not for another? Usually, the knowledge we are encoding in our algorithms
reflects search-space properties that can be exploited by the search. For example, if
we know that our search space is a graph and not a tree, the use of a transposition
table can yield performance improvements.

The general strategy for tackling a domain is to look for certain search-space
properties and exploit that knowledge for efficiency gains. Therefore, the question
about the generality of a search enhancement (or conversely, how domain dependent
is this enhancement) is not the proper question to ask. One should rather ask, what
the properties of those search spaces are that the enhancement in question relies on
to yield a performance increase.
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2.6 Example Domains from the Literature

The following subsections introduce the domains used most often in research on single-
agent search in the literature. The goal here is to introduce the reader to the general
complexities, special properties, and issues of the search spaces of those domains.

2.6.1 Sliding-Tile Puzzles

The sliding-tile puzzles are a family of the commonly known toys, where a (usually
square) matrix of tiles has to be ordered. In a 4x4 matrix of tiles, there are 15 tiles
and one blank square. The tiles can only be moved into the blank. Other studied
variations are the 24-puzzle (5x3), the 8-puzzle (3x3), and even the 19-puzzle (4x5,
and really MxN).

A state of the 15-puzzle can be described with the location of all tiles. Each state
can have a maximum of 4 legal moves if the blank is in the middle 4 squares, 3 if
it is at the edge and 2 moves if the blank is in a corner. However, since one move
led into the current position, the move unmaking it does not need to be considered.
Therefore, the resulting effective branching factors are 3, 2 and 1, for the respective
positions of the space. Edelkamp and Korf derive 2.13 as the asymptotic branching
factor for the 15-puzzle [EK98].

For the 24-puzzle, Korf [Kor96] reports average solution lengths (for randomly
generated instances) of over 112, for the 19-puzzle 71.5 and for the 15-puzzle 52.6.
The 8-puzzle is small enough to be enumerated exhaustively [Sch67, Rei93]. The
search spaces are almost 10%°, 10'8, 10'® and 10° for the 24-, 19-, 15- and 8-puzzle,
respectively.

The state-of-the-art systems solving sliding-tile puzzles use IDA* with transposi-
tion tables and improved Manhattan distance as the admissible heuristic. Improve-
ments of the Manhattan heuristic are derived from the fact that there might be
conflicts among different tiles when trying to push them straight to their respective
goals (linear conflicts) [HMY92]. Taking this idea even further, Culberson and Scha-
effer [CS96] suggest to use pattern databases that record the optimal number of moves
required to push subsets of tiles to their goal positions. A unified view on this issue
is that each of these approaches allows more and more of the real constraints to be
used in the lower-bound calculation. Whereas the Manhattan distance assumes no
restrictions in the tile movements, linear conflicts take the movements of up to 4 tiles
into account and treat the rest as non-existent. Pattern databases consider even more
tiles (constraints).

Current state-of-the-art search techniques and computers allow us to solve any
random instance of the 15 and 19-puzzles within a reasonable amount of time. The
24-puzzle is still presenting a considerable challenge though.

2.6.2 Rubik’s Cube

Rubik’s Cube, the famous combinatorial puzzle invented by Erno Rubik in the late
1970s, is also used in the literature to investigate search algorithms and their en-
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hancements [Kor85b, FMS*89, Pri93, Kor97|.

Rubik’s Cube has a search-space complexity of about 10!° and a median solution
length of 18. The longest solution is believed to be no longer than 20 moves [Kor97].
Edelkamp and Korf [EK98] calculate the asymptotic branching factor to be 13.35,
if a move can be more than a 90 degree twist. Programs to solve Rubik’s Cube
problems are very similar to programs solving sliding-tile puzzles. IDA* is used as
the search algorithm and large pattern databases are used to achieve a good lower-
bound estimator. Korf reports solving 10 random instances of the Rubik’s Cube

optimally [Kor97].

2.6.3 Mazes

Rao, Kumar and Korf [RKK91] introduce another domain into the literature: mazes.
The task is to find optimal routes between two points in the maze. The complexity
of mazes can be adjusted arbitrarily by scaling. Transpositions can be simulated by
allowing mazes with a graph structure (holes in walls). Whereas Rao, Kumar and
Korf [RKK91] used mazes of size 120 x 90, Kainz and Kaindl [KK96] used mazes of
size 2000 x 2000.

The domain of mazes is interesting because of the property of the lower bound.
When the Manhattan distance is used, the ratio between the correct distance h* and
the estimated distance h can be large. IDA* performs rather poorly, since many
iterations are performed, without finding a solution. A*, because it keeps the entire
graph in memory, should be a better choice.

2.7 Summary

There are a wide variety of strategies for efficiently traversing search spaces. Unin-
formed searches traverse the search space blindly in a systematic fashion. Informed
algorithms exploit knowledge about the search space to search more efficiently. Search
strategies and algorithmic enhancements are chosen to exploit specific properties of
the underlying search tree or graph.

The NFL theorems provide us with the arguments as to why different search
strategies and enhancements are needed for different problem domains. Thus, algo-
rithms should not be judged by obscure performance measures, that were proven not
to exist, but should be qualified by the search-space properties they depend on. An
interesting followup question then might be, if these properties are common among
the domains we are interested in solving.
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Chapter 3
Sokoban

3.1 The Game

ABCDEFGHI JKLMNOPQRS

Ko =0 A ge

He-Ge, Hd-Hc-Hd, Fe-Ff, Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh-Rh-Rg,
Ff-Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh-Qi-Ri,
Fec-Fd-Fe-Ff-Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh-Qg,
Ge-Fe-Ff-Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh-Rh,
Hd-He-Ge-Fe-Ff-Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Pi-Qj,
Ch-Dh-Eh-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh

Figure 3.1: Sokoban Problem #1 With One Solution

Sokoban is a popular one-player puzzle game. The rules and structure of the game
are simple. Figure 3.1 shows a sample Sokoban problem. The playing area consists of
rooms and passageways, laid out on a rectangular grid of size 20x20 or less. Littered
throughout the playing area are stones (shown as circular discs) and goals (shaded
squares). There is a man whose job it is to push each stone to a goal square. The
man must push from behind the stone and can only push one stone at a time. At
any time, a square can only be occupied by one of a wall, stone or man. The initial
challenge is to push all of the stones onto goal squares. To increase the difficulty
one can try to find more efficient solutions by reducing the required number of stone
pushes and man moves.
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Figure 3.2: Sokoban Problem #39

To refer to squares in a Sokoban problem, we use a coordinate notation. Assuming
the maximum sized 20x20 problem, the horizontal axis is labeled from “A” to “T”,
and the vertical axis from “a” to “t”, starting in the upper left corner. In our notation
we focus on stone pushes. For example, in Figure 3.1 Fh-Eh pushes the stone on Fh
left one square. We use Fh-Eh-Dh to indicate a sequence of pushes of the same
stone. A push, of course, is only legal if there is a valid path by which the man can
move behind the stone and push it. Thus, although we only indicate stone pushes
(such as Fh-Eh), implicit in this are the man’s moves from its current position to the
appropriate square to do the push. For example, for the move Fh-Eh the man would
have to move from Li to Gh via the squares Lh,Kh,Jh,Ih, and Hh.

3.1.1 History and Test Suite

The game was apparently invented in the early 1980s by Thinking Rabbit, a computer
games company in the town of Takarazuka, Japan. The game design is said to have
won first prize in a computer games contest. Because of the simplicity and elegance
of the rules, and the intellectually challenging complexity of the composed problems,
Sokoban quickly became a popular pastime.

Several versions of the game appeared over the years, among which are PC, Mac-
intosh and Unix versions. XSokoban is a popular version for Unix running X windows
and can be downloaded at http://xsokoban.lcs.mit.edu/xsokoban.html. There exists
a quasi-standard set of 50 problems, ordered roughly easiest to hardest in difficulty for
a human to solve. According to Hiramatsu [Hir98], this set of 50 problems is derived
from a PC version by Spectrum Holobyte from 1984. Similar problem configurations
can be found in the problem collections “Sokoban 2” from 1984 and are now included
in “Sokoban Perfect”. Some of the problems have been altered slightly, probably to
fit into a 19x16 format.

The test suite we are using in this thesis consists of 90 problems including the 50
standard problems plus 40 more of varying degree of difficulty. These 90 problems

36



ABCDEFGHI JKLMNOPQRS

a
b
c
d
e
f
e
h
i
J
k
I
m
n

Figure 3.3: Examples of Deadlocks

were downloaded from the XSokoban web-site. Problem 1, shown in Figure 3.1, is the
easiest of the set of 90. Figure 3.2 shows maze #39. The shortest recorded solution to
date needs 674 stone pushes. However, the solution length is not a reliable indication
for how hard a problem is to solve. One can easily think of problem configurations
that require even more pushes to solve, but are conceptually simple.

An Internet high-score file is maintained that shows who has solved which prob-
lems and how efficient their solution is (http://xsokoban.lcs.mit.edu/xsokoban.html).
Thus solving a problem is only part of the satisfaction; improving it is equally impor-
tant.

3.1.2 Deadlock

A player new to the game will quickly discover that the constraints given by the
rules of Sokoban offer some unique challenges. If a stone is pushed into a corner, it is
permanently immobilized, and can never be pushed to a goal. Therefore, the problem
becomes unsolvable.

Figure 3.3 shows a variety of simple stone configurations that cannot be solved.
For example, the stone on Hm cannot reach a goal despite having legal moves, because
it can never be pushed off the bottom wall. New players will soon understand that
certain squares in the maze are tabu for stones. We call these squares dead squares.
Stones that can never be pushed to a goal are dead, and a problem configuration
containing a dead stone is said to be deadlocked, or simply a deadlock.

The two stones on Dh and Eg are also dead. Even though neither of the stones sits
on a dead square, they interact in such a way that the man cannot push the stones to
the goals. The four-stone group (Ck, Cl, Dk, DI) in the lower left part of the maze is
also a deadlock - the man can only push one stone at a time, but that is impossible
in this configuration. The group of stones in the upper right corner shows a more
complicated deadlock. None of the five legal moves allows the man to get “behind”
the stones to push them out.

In all the examples in Figure 3.3 the deadlocks are local. In general, deadlocks
can be arbitrarily complex and far reaching. Figure 3.4 shows an example of how
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Figure 3.4: A Large Deadlock in Maze #8
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Figure 3.5: Position of the Man Matters

large and involved these deadlocks can become. They can potentially include all the
stones in the maze.

3.1.3 Position of the Man

The preceding five-stone deadlock in Figure 3.3 identifies an important issue: the
position of the man. Figure 3.5 shows two identical constellations of stones with the
man in two different parts of the maze. The position on the left is a deadlock, whereas
the maze on the right is solvable.

Furthermore, the stone on Gd needs a different number of moves to reach a goal,
depending on the position of the man. If the man is on the right side of the stone,
the stone must be pushed into the left room first before the man can reposition itself
behind the stone to push it towards the goal. Therefore, the position of the man
affects deadlocks as well as the number of pushes required to reach a solution.

The interactions between the stones and the man can be quite complicated, and

avoiding deadlocks becomes the main challenge of the game.
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Figure 3.6: Parking
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Figure 3.7: Sokoban Problem #350

3.1.4 High-Level Themes and Strategies

The beginner will soon find that there are a few general principles and high-level
strategies for solving Sokoban problems. We want to briefly introduce some of them
here, to facilitate later discussions.

Most of the problems appear crowded in the beginning. Problem #39 in F igure 3.2
is an example. To make progress, the stones have to be reorganized to simplify the
maneuvering of stones into the goal area. This reorganization often requires stones
to be packed into a small space without creating a deadlock. Packing is an important
skill that a Sokoban player must acquire early on.

Often stones simply need to be moved out of the way safely until other tasks are
accomplished. We call this maneuver parking, and it is demonstrated in Figure 3.6.
Before any of the stones can be pushed to a goal square, one stone has to be parked
at the square Gb. To understand this, the reader should try to think about filling in
both goal squares /b and Id. These scenarios can be arbitrarily complex. In problem
#50 (see Figure 3.7), many stones have to be moved through the goal area and then
parked and packed in a remote area of the maze before they can finally be pushed to
the goals.

Other problems in the standard suite introduce the player to the important con-
cept of goal-room packing. There are several potential problems to consider. A poorly
placed stone may cause other goal squares to be inaccessible. It could also cause a
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Figure 3.8: Sokoban Problem #38
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Figure 3.9: Hiroshi Yamamoto’s Masterpiece

deadlock by cutting off vital paths for the man, because the goal area is needed for the
man to reach certain parts of the maze. Problem #38 (see Figure 3.8) is an excellent
example of these kinds of problems.

One can find several problems that live or die on communication channels for
the man being accessible to certain regions. Inaccessibility of areas can form subtle
deadlocks that require a lot of higher level reasoning by the player to be avoided.

3.1.5 Cereativity, Art and Challenge

Playing our test suite, one could easily get the impression that Sokoban can be in-
ordinately beautiful and intellectually stimulating. But it is much more than that.
Sokoban is also an art. For some people it is creative work and especially in Japan
it is very serious fun. The results are wonderfully elaborate and challenging designs.
There are designs with only a few stones that shine with elegance and beauty because
they combine simplicity and challenge. The game of Sokoban has so many “levels”
that there is no end to discovery. If solving problems should ever become monotonous,
there is always the possibility of creating new ones.

Figure 3.9 shows the winning design of the last Sokoban contest held in 1996. The
designer Hiroshi Yamamoto succeeded in putting many of the complications of a good
Sokoban puzzle into a small space.

For some humans simplicity is not a necessary element of beauty. Masato Hi-
ramatsu created the intellectual monster shown in Figure 3.10. It is an excellent
example of the level of reasoning that humans are capable of. The understanding
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Figure 3.10: Masato Hiramatsu’s Creation
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Figure 3.11: Michael Reineke’s Christmas Tree

of intricate details and the ability to abstract them into subproblems and in the end
combine those subsolutions to solve the entire problem, taking all the interrelated spe-
cial cases into account, is the hallmark of human intelligence. Creating such problems
goes beyond...

The challenge in Sokoban can be combined with fun as well. An excellent example
is Michael Reineke’s Christmas tree shown in Figure 3.11.

The examples shown here can only skim the surface of Sokoban, only playing the
game can give an indepth understanding of the beauty of the game.

3.2 Why Is Sokoban Challenging?

Many of the academic applications used to illustrate single-agent search, such as
sliding-tile puzzles and Rubik’s Cube, have some or all of the following properties:

e Given a solvable start state, every move preserves solvability.

e These domains also have small branching factors and moderate solution depths,
resulting in moderate-sized search spaces.
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Figure 3.12: Example of Necessary Irreversible Moves

o Furthermore, simple and effective lower-bound estimators are available to guide
the search.

Sokoban has none of these desirable properties, nor is a good lower-bound function
known. This section examines these differences in more detail.

3.2.1 Deadlock

In most of the single-agent search problems studied in the literature, all state transi-
tions preserve the solvability of the problem, though not necessarily the optimality of
the solution. That is because all state transitions (moves) are reversible — there exists
a move sequence which can undo a move. For example, a tile just pushed in a sliding-
tile puzzle can be pushed back, and any rotation on a Rubik’s Cube can be undone.
Sokoban has irreversible moves (e.g. pushing a stone into a corner), and these moves
can lead to states that provably have no solution. In effect, a single move can change
the lower bound on the solution length to infinity. If the lower-bound function does
not reflect this, then the search will spend unnecessary effort exploring a subtree that
has no solution.

The presence of deadlock states in a search space creates a serious dilemma for
real-time search algorithms. While we are searching, even irreversible moves are
reversible via backtracking in the search space. This situation changes if we have to
commit to a move in the real world before the search has found a solution, because
of constraints on time or other resources. We may inadvertently move to a deadlock
state — a part of the search space without solution. Since many of these deadlock
scenarios cannot be determined without search, a real-time algorithm will have a
difficult time allocating resources to guarantee that a solution will be found.

The simple problem in Figure 3.12 demonstrates that irreversible moves may be
necessary to solve a problem. Therefore, simply avoiding irreversible moves is not
feasible.

The existence of irreversible moves reveals an important property of the underlying
search space: It is a directed graph. The traditional domains used to examine single-
agent search map onto undirected graphs. This distinction leads to a rather significant
difference. In a domain with an underlying undirected graph, a move of cost ¢ can
only change the distance to the goal by at most c. In domains with a directed graph
search space, a legal move can decrease the distance to a goal by at most ¢, but can
increase it by an arbitrary amount. In the extreme that is infinity, meaning deadlock.
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3.2.2 Search-Space Size

The large size of the search space for Sokoban is due to potentially large branching
factors and long solution lengths compared to previously studied domains. The num-
ber of stones ranges from 6 to 34 in the standard problem set. With 4 potential moves
per stone, the branching factor could be over 100. The solution lengths range from
97 to over 650 stone pushes, ignoring man moves. The trees are bushier and deeper
than in previously studied problems, resulting in a search space that is many orders
of magnitude larger.

Note that there are different definitions of an optimal solution to a Sokoban prob-
lem: minimizing the number of stone pushes, minimizing the number of man moves,
or minimizing some ratio between pushes and moves. For a few problems there is
one solution that optimizes both stone pushes and man moves, but in general they
conflict.

Calculating an upper bound for the search-space complexity for Sokoban reveals
the startling size of the search task. For simplicity, let’s restrict the size of the problem
configurations to mazes of size 20 x 20. Requiring walls around the perimeter leaves
an internal area of at most 18 x 18 = 324 squares where stones can move. Maximizing
the possible arrangements of stones in this area requires (18 * 18)/2 = 162 stones.

This leads to
324 _ 324! ~ 10%
162 / ~ (324 — 162)! « 162!

possible stone configurations. Since the man can be on any of the empty squares, we
need to multiply this number by 162, resulting in a number of the order 10%. When
considering equivalent man positions for the task of minimizing stone pushes, the size
of the search space is somewhere between 10% and 10%.

In these calculations we assume that there are no dead squares and that the maze
is as large as possible with no other walls. In practice that is not the case. In our
test suite the average number of squares is 113, of which 77 squares are not dead, and
there are 16 stones on average. Table 3.1 shows the search-space size for each maze
considering only the non-dead squares. This number assumes that the search will not
generate moves onto dead squares, a reasonable assumption.

The median search-space size for all 90 problems using only non-dead squares is
roughly 10'® - far less then the initial estimate of 10%. However, the search-space
size is not necessarily a good indicator of the difficulty of the problem, since it does
not reflect the decision complezity [All94]. If a problem is over-constrained or under-
constrained, it might be easy to solve or prove that no solution exists, respectively.
The hard problems can be expected to be in the middle zone. Since the problems
in the test sets are composed by humans for humans, we can assume that they are
generally challenging and have a high decision complexity. The property of a sudden
increase in difficulty at certain constraint levels is called a phase transition ((CKW91]
is an excellent reference).
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non- search non- search
# | stones | squares | dead space # | stones | squares | dead space
squares| sizes squares| sizes

1 6 36 41 10° 46 14 97 68 10%°

2 10 70 46 10 47 16 85 73 108

3 11 56 43 101! 48 34 94 84 10%

4 20 112 77 10%° 49 12 81 37 104

5 12 71 54 108 50 16 134 96| 10%

6 10 60 41 10t 31 14 72 54 10

7 11 64 43 101! 32 18 132 101 102

8 18 109 85 102 a3 15 133 76 10%7

9 14 83 60 108 24 16 135 82 1019
10 32 172 116 103! 33 12 128 72 1018
11 14 93 68 1018 56 16 123 82 101°
12 15 104 66 | 10' 57 16 130 90| 10%°
13 16 118 7 108 38 15 135 92 1012
14 18 121 83 10%° 39 16 122 81 108
15 15 104 77 107 60 13 121 77 1016
16 15 81 33 1018 61 20 131 82 102
17 6 87 33 10° 62 16 126 86 1019
18 11 105 7 104 63 17 140 94 102
19 13 123 84 108 64 16 117 82 10%9
20 18 151 96 10% 65 15 130 80 108
21 13 94 64 1015 66 18 144 89 10%
22 27 167 116 1028 67 20 121 82 102
23 18 127 104 1022 68 15 132 84 1018
24 22 157 114 10% 69 18 139 82| 10%®
25 19 140 88 10! 70 18 130 84 107
26 13 80 38 10 71 18 135 77 10%9
27 20 122 92 1022 72 16 132 84 10
28 20 112 83 10% 73 14 139 88 108
29 16 107 39 10'¢ 74 16 126 73 108
30 18 119 78 101 75 17 130 77 10%°
31 20 110 85 10% 76 17 130 88 10%
32 15 7 59 105 77 14 126 80 10%7
33 15 93 62 10¢ 78 8 90 66 102
34 14 93 62 108 79 12 100 68 10%3
35 17 130 101 102 80 12 110 80 106
36 21 124 92 10% 81 12 95 72 1018
37 20 130 92 10% 82 12 85 635 10
38 8 49 40 10° 83 10 102 66 1013
39 25 142 105 | 10% 84 12 104 5| 10
40 16 107 77| 108 85 15 145 78 10
41 15 94 67 10'6 86 10 73 49 102
42 24 118 98 10% 87 12 111 74 1018
43 9 88 61 10!2 88 23 133 114 10%
44 9 95 64 1012 89 21 155 104 10%
45 17 98 68 107 90 23 181 133 10%®

AVG: 16 113 T 10'%

Table 3.1: Search-Space Sizes for the Test Suite
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3.2.3 Lower Bound

In general, it is hard to admissibly estimate the number of stone pushes needed to
solve a Sokoban problem.! The tighter the bound, the more efficient a single-agent
search algorithm can be. The stones can have complex interactions with elaborate
maneuvers often being required to reposition stones. For some problems, without a
deep understanding of the problem and its solution, it is difficult to obtain a reason-
able bound. For example, in problem #350 (see Appendix A), the solution requires
moving stones through and away from the goal squares to make room for other stones.
Our best lower-bound function returns 100 stone pushes (see Section 4.3), whereas
the best known human solution requires 370 moves. This is clearly an enormous gap,
and an imposing obstacle to an efficient IDA* search.

Several ideas come to mind when trying to design a good lower-bound function.
Trivially, one could use the number of stones not on a goal; or, with a little more so-
phistication, one could compute the sum of the distances of each stone to its respective
closest goal. Unfortunately, neither of these two heuristics is accurate.

Each goal can accept only one stone, so instead of using the goal closest to each
stone, we can try to find a matching of stones to goals. Since we are looking for a
lower bound (i.e. an admissible heuristic) we need to find a minimum cost matching
of stones to goals, where the cost is the number of pushes required to get a stone from
its current position to a specific goal.

This lower-bound heuristic is expensive to compute (O(n?)), which is yet another
distinction from simpler domains (for example the Manhattan distance used in the
sliding-tile puzzles). Despite the expense of computing this lower bound, it is still of
rather poor quality. None of the complex interactions of stones that can increase so-
lution lengths dramatically are taken into account. The resulting differences between
h and h* can be large, causing IDA* to fail since its efficiency depends on reasonably
small errors. We will discuss this lower-bound estimator and possible enhancements
for Sokoban in more detail in Section 4.3.

3.2.4 Conclusions
Sokoban is a difficult search application for many reasons:
1. the branching factor is large and variable (potentially over 100),

2. the solution may be deep in the search tree (some problems require over 500
moves to solve optimally),

3. solutions are inherently sequential, subgoals are often interrelated and thus
cannot be solved independently,

4. it has a complex lower-bound estimator, and

1Ve chose to solve problems minimizing stone pushes. Solving for man moves instead of stone
pushes would require a different lower-bound estimator than we are currently using. In our opinion,
it would be harder to find and most likely of poorer quality.
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5. the search space is a directed graph that contains states with no solution.

However, humans can successfully solve Sokoban problems. They apply higher-
level reasoning, pattern matching, detect exceptions and special cases, learn from
previous examples, combine partial solutions, and are able to find the exact reason
for why a particular strategy failed. As a testbed for artificial intelligence techniques,
Sokoban offers a significant challenge to researchers, since many of the core problems
of artificial intelligence need to be addressed to build a program that rivals the best
human performance in solving Sokoban problems.

3.3 Related Work

Unbounded Sokoban has been shown to be NP-hard [DZ95] and P-SPACE complete
[Cul97]. Dor and Zwick [DZ95] show that Sokoban is an instance of a motion planning
problem, and compare the game to other motion planning problems in the literature.
For example, Sokoban is similar to Wilfong’s work with movable obstacles, where
the man is allowed to hold on to the obstacle and move with it, as if they were one
object [Wil88]. Sokoban can be compared to the problem of having a robot in a
warehouse move a number of specified goods from their current location to their final
destination, subject to the topology of the warehouse and any obstacles in the way.
When viewed in this context, Sokoban is an excellent example of using a game as an
experimental test-bed for mainstream research in artificial intelligence.

There are a number of other known Sokoban solvers in existence. It is interesting
to see the different approaches people have taken.

3.3.1 Mark James

In 1993, Mark James wrote his Master’s thesis at the University of Calgary on the
automatic creation of macro moves [Jam93]. He used Sokoban to show the limitations
of his suggested methods which worked well in other domains (see Section 2.3.4). His
Sokoban program was able to solve problem #1 using over 2 hours of CPU time. No
other problems where solved.

3.3.2 Andrew Myers

Andrew Myers’ program appears to be an interesting approach, and it has solved nine
problems. Myers [Mye97] writes that his:

... program uses a breadth-first A* search, with a simple heuristic to select
the next state to examine. A compact transposition table stores the states.
When the solver runs out of memory, it discards some states below the
10th percentile in moves made. This feature allows the program to handle
levels [problems] like level 51. The solver tries to minimize both moves
and pushes. It does not support macro moves.
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The heuristic estimates both the number of stone pushes and the number
of man movements needed to complete the puzzle. The number of pushes
is estimated more quickly but less accurately, taking advantage of the
usual clustering of the goal spaces in one area of the board. The estimate
has two parts: the number of moves and pushes needed to push a ball
to the nearest goal square, and the number of pushes needed to push a
ball to each goal square from the nearest non-goal square. In addition,
the estimator compensates for the ball that is optimal for the man to
push next. The estimate is summed quickly, using approximately 700K of
precomputed tables. The estimate does not consider linear conflicts, which
would probably help. The heuristic is not monotonic; a conservative,
monotonic estimate is used to discard suboptimal states.

Deadlocks are automatically identified for 3x3 regions, and also for certain
goal locations that can never be filled. A goal location can only be filled
if in one of the four directions, the two immediately adjacent squares can
be made empty. If an immovable ball is placed in either square, the state
is deadlocked. An optional deadlock table allows easy specification of
complex deadlock conditions by hand. However, the program does not
attempt to automatically fill the deadlock table.

3.3.3 Stefan Edelkamp

Stefan Edelkamp, working on his PhD at the University of Freiburg in Germany,
has developed a program that can solve 13 problems of our test suite [Ede98]. His
program attempts to solve for minimal number of stone pushes and uses a sophisti-
cated decomposition algorithm to reason about the presence of static deadlocks with
minimal lookahead. An elaborate data structure is used to store and match minimal

deadlock patterns.

3.3.4 Meiji University

At Meiji University, Japan, A. Ueno, K. Nakayama and T. Hikita developed a strong
Sokoban solver based on A*, but using non-admissible heuristics [UNH97, Hik99].
The program uses a heuristically driven deadlock search; no conflicts of potential
solutions are exploited. The solutions found are neither move- nor push-optimal.
The program can solve 25 of the 90 problems.

3.3.5 Sokoban Laboratory

Sokoban Laboratory is a program developed in Japan to facilitate the construction
of Sokoban problems. It also contains a solver, which solves 55 problems of the test
suite, using a heuristically driven best-first search. Their solutions are non-optimal,
for either pushes or moves. The program is based in part on the Sokoban solver
developed at Meiji University. It appears to be a team effort of several people, either
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contributing directly, or making code of their solvers available: K. Takahashi, A. Ueno,
K. Nakayama, T. Hikita, Y. Murase, Y. Oki as well as deepgreen.

3.3.6 Deepgreen

The best overall program we have heard about so far is by an author who calls himself
or herself deepgreen. The program can solve 62 of the 90 problems [dee99]. No details
are known about this program at the moment. However, deepgreen is in communi-
cation with the authors of the other strong Japanese programs and we assume the
program builds on previous efforts of the strong Japanese Sokoban community.

The collaborative approach to solving Sokoban problems make the Japanese efforts
unique. Each new program can build on over 10 years of team effort. Sharing source
code and ideas accumulates a wealth of knowledge that is unparalleled.
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Chapter 4

Standard Single-Agent Search
Methods

This chapter investigates the power and limitations of state-of-the-art single-agent
search techniques. We will consider the choice of algorithm and the plethora of search
enhancements available to increase search efficiency as given in artificial-intelligence
text books. We implemented those techniques in the program Rolling Stone to obtain
experimental results that allow us to evaluate them for the domain of Sokoban.

The next section contains a clarification of what the problem is that we are trying
to solve. Each of the following sections is then devoted to single-agent search and its
enhancements as discussed in Chapter 2. Starting with the choice of algorithm and
moving on to the lower-bound function, transposition table, move ordering, dead-
lock tables and macro moves, this chapter discusses and explains how the standard
techniques from the text books can be applied to the domain of Sokoban and, more
importantly, what their strengths and limitations are.

To evaluate these methods, one central experiment is used throughout this (as well
as the following) chapter(s). The program is given a fixed amount of search effort
per problem ~ 20 million nodes. The program tries to solve each of the 90 problems
within the search constraints. With each enhancement discussed and added to the
program, more of the 90 problems can be solved. This “evolutionary” approach to
performance evaluation has its pitfalls. Therefore, a section is included that estimates
the value of each of the enhancements in a different way.

The conclusion of this chapter is that even though text books stress the importance
of choosing the correct algorithm, this is usually a trivial task. In contrast, finding,
implementing and tuning the right combination of search enhancements is far more
difficult and important for performance. Furthermore, even though standard search
enhancements can give some impressive search tree reductions, they are far from being
sufficient to solve even moderately difficult problems in the domain of Sokoban.
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4.1 Problem Definition

As discussed before, there are several possible ways to solve Sokoban problems. The
difference lies in what one tries to optimize: man moves, stone pushes or a (weighted)
combination of both. For real-world domains, the optimization would try to minimize
cost. That cost is usually dependent on the actions performed: an airplane’s operating
cost, the time to load or unload a truck — any number of costs can be imagined. Since
Sokoban is a game, real costs do not exist and we have the choice of what costs we
associate with each action.

Rolling Stone is designed to find solutions that optimize the number of stone
pushes; the number of man moves is not considered. Expressed in terms of cost, we
associate a cost of 1 with a stone push and a cost of 0 with a man move. This choice
was deliberate, because we felt that a good lower-bound estimator for man moves was
harder to design and implement than for stone pushes.

When comparing human solutions to those found by Rolling Stone, this becomes
immediately obvious: the number of man moves is usually higher. Those solutions
contain sequences of pushes that can be optimized for man moves by simply rearrang-
ing the stone pushes. One could add a post-processing phase that takes a solution
and tries to reorganize the stone pushes to reduce the number of man moves. This
post-processor could be compared to a scheduler of tasks provided by the planner
(Rolling Stone) minimizing the resource “man moves”.

Our initial attempts to solve Sokoban optimally could solve only a few small prob-
lems. Relaxing the optimality criterion allows us to use more aggressive approaches
that enable us to solve more problems. The tradeoff is between solving a few problems
optimally and solving many more problems nearly optimally. We believe strongly that
optimality is of little practical value if it means that only a small percentage of the
posed problems can be solved. For humans, the satisfaction comes from finding any
solution to a Sokoban problem; few are interested in or capable of finding optimal

solutions.

4.2 Search Algorithm

When choosing the algorithm to solve problems from the Sokoban domain, we consider
some of the crucial search-space properties:

e there are few goal nodes, and they are located deeply in the tree,
e heuristic information, in the form of a lower-bound heuristic, is available and
e the search space is large.

These properties dictate an informed search that finds sparsely distributed goals in
a huge search space: IDA*. As discussed in Section 2.2.3, the choice of algorithm is
rather trivial.
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Figure 4.1: Minmatching Example

4.3 Lower Bound Heuristic

To design a lower-bound heuristic for Sokoban that estimates the number of stone
pushes required to get all the stones to the goals, we could ignore the distance to
goals and the stone-man interactions. These simplifications result in a lower-bound
estimator that counts the number of stones that are not on goals. Let’s call this
lower-bound function Count. If we still ignore stone-man interactions, but take dis-
tances into account, we get a computationally inexpensive lower bound summing
the distances of all the stones to their respective closest goal. Let’s call this function
Closest. Of course, these extreme simplifications are unlikely to lead to a high-quality
lower-bound estimator. Allowing more of the constraints of the problem to be taken
into account results in a better lower-bound estimator, albeit at a possibly higher
computational cost.

4.3.1 Minimum Cost Matching

The fundamental observation leading to the lower-bound heuristic used in Rolling
Stone is the following: Only one stone can go to any one goal. For each stone, there
1S a minimum number of pushes required to maneuver that stone to a particular
goal. This distance (or cost) assumes no adverse interactions with other stones in the
maze, basically pretending the maze is empty. The problem is to find the assignment
of stones to goals that minimizes the sum of these distances.

Since there are as many stones as there are goals, and every stone has to be
assigned to a goal, we are trying to find a minimum cost (distance) perfect matching
on a complete bipartite graph. Edges between stones and goals are weighted by the
distance between them, and assigned infinity if the stone cannot reach a goal. We
will call this heuristic Minmatching for short.

Figure 4.1 shows an example of the lower-bound calculation. The table lists
the distances from the three stones to each of the three goals in the maze. The
bold entries represent a minimum cost matching. It is important to note here that
the Minmatching solves one important problem. Even though the stone on Cc and
the stone on Id both have goals close by, they have to be pushed to a goal further
away. While the functions Count and Closest would return 3 and 5 respectively,
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Figure 4.2: Minmatching Detects Deadlock

Minmatching returns 14! This larger lower bound allows the search to eliminate large
parts of the search space.

4.3.2 Deadlock Detection

Figure 4.2 shows an example where the Minmatching algorithm detects a deadlock.
None of the stones can reach the goal on Fc, the goal on Db is over-committed.
This example shows how powerful this lower bound is, compared to the more naive
approaches.

4.3.3 Underlying Algorithms

Minimum cost perfect matching for a bipartite graph can be solved using minimum
cost augmentation [Kuh35]. Given a graph with n nodes and m edges, the cost
of computing the minimal cost matching is O(n * m * log(2.m/n)n). Since we have a
complete bipartite graph, m = n?/4 and the complexity is O(n®*loga4+n/4yn). Clearly
this is an expensive computation, especially if it has to be performed for every node
in the search.

However, there are several optimizations that can reduce the overall cost. First,
when we find a matching that reduces the minimum cost by the cost of the move,
we know we can not do better and we can abort immediately. Second, during the
search we only need to update the matching, because each push results in only one
stone changing its distances to the goals. This requires finding a negative-cost cycle
[Kle67] involving the stone pushed. Finally, we are looking for a perfect matching,
which considerably reduces the number of such cycles to check.

Even with these optimizations, the cost of maintaining the lower bound dominates

the execution time of our program.

4.3.4 Entrance Improvement

How can we be more efficient in computing the Minmatching? Consider Figure 4.3:
Both stones need to go through the entrance square Ce to enter the goal area. When-
ever two stones (Sy, S2) must go through one square (let’s call that square E) to get to
their goals (G, G2), the assignment of stones to goals does not matter, since the sum
of the distances is a constant (distance(S, G) denotes the distance from the square S
to the square G):
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distance(S,,G,) + distance(S2,G,) = (distance(S;, E) + distance(E,G1))
+(distance(S,, E) + distance(E, G,))

= (distance(S;, E) + distance(E,G,))
+(distance(S,, E) + distance(FE, G,))
= (distance(S),G>) + distance(S,,G)))

Most of the problems that we are interested in solving follow similar principles.
They have goal areas with single entrances. This observation can lead to significant
speedups when worked into finding negative-cost cycles. However, even after this
improvement, our lower-bound estimator is still more expensive to compute than
most of the lower-bound functions used in the single-agent search literature (such as
the Manhattan distance used for sliding-tile puzzles). Note that the entrance trick
only improves the efficiency of the computation, but does not improve the quality of
the lower-bound estimate.

4.3.5 Position of the Man

Simply using the distance of the stone to the goals ignores an important issue: The
position of the man with respect to the stone to be pushed.

What is the distance of a stone to a particular goal? One could assume the man
is able to travel from anywhere in the maze to anywhere else. However, the maze,
even with only one stone in it, restricts the man’s movements. If a stone’s path leads
through an articulation point! in the maze, the man’s movement is restricted by that
one stone.

Consider the maze in Figure 4.4. Even though the stone is only three squares
away from the goal, the man is on the wrong side of the stone to be able to push the
stone with three pushes to the goal. To reposition itself to the left side of the stone,
the man needs to push the stone two pushes away from the goal, swing behind it, and
then push it to the goal. The capability to detect this and improve the lower bound
is called the backout conflict.

! Articulation points (or squares) are squares that divide the maze into at least two disjoint parts.

53



ABCDEFGHI

A Qanoe

Figure 4.4: Distance Depends on the Position of the Man

ABCDEFGHI

“hangae
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Figure 4.6: Backout Conflict Improves Lower Bound for Problem #4
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Figure 4.7: Example of Linear Conflicts

Figure 4.5 shows how this idea carries over to stones that are not on articulation
squares yet, but that are forced to move through them. Problem #4 in Figure 4.6
is an excellent example of the effectiveness of this lower-bound enhancement. Four
stones have to be backed out of their current room to reposition the man behind
them: Ge, Gg, Dh and El. For each of these stones the lower bound is off by 6. The
lower bound is increased by 24, from 331 to 355, resulting in a large reduction in
search-tree size.

As already discussed in Section 2.2.2, this improvement is possible because further
problem constraints are used in the lower-bound calculation. Whereas previously,
the man was allowed to ignore the placement of the stones, with the backout-conflict
enhancement the man cannot simply jump over stones anymore. That results in
larger and more realistic distances that stones have to travel between squares and
therefore in an increased lower-bound estimate.

4.3.6 Linear Conflicts

The linear conflicts enhancement is used to improve upon the Manhattan-distance
lower bound in the sliding-tile puzzles. There, if two neighboring tiles are in each
other’s way (their paths directly conflict), an evasive maneuver of at least one of the
tiles is necessary to allow the other to pass. This allows for an increase of the lower
bound by two.

Consider Figure 4.7: The minimum matching lower-bound estimator would return
a value of 10. That assumes that both stones can use an optimal path from their
current location to the goal they are targeted to. But can they? No. Similar to the
linear conflicts in the sliding-tile puzzles, one stone has to move off its optimal path to
allow the second stone to pass or to allow the man access, depending on which stone
gets pushed aside. Either the stone on Dc has to move down one square to allow tiie
man to push the stone on Ec or, alternatively, the stone on Ec has to be pushed down
to allow the stone on Dc to pass. In either case, two extra pushes are required.? That
means the minimum cost matching is off by at least two in this case. Whenever two
stones are on these two squares, we can increase the Minmatching lower bound by
two without violating admissibility. We call this increase a penalty of two.

2However, if we would take man moves into account, we would have to break the linear conflict
such that we minimize man moves as well. In that case, pushing Dc-Dd to break the conflict takes
the fewest man moves with an equal number of stone pushes. Since we simplified our objective to
only minimize stone pushes, we can ignore that issue in the program.
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Figure 4.8: Complications With Linear Conflicts

All this is very well, but... there are two problems that we want to draw the
reader’s attention to that spoil the beauty® of the idea of linear conflicts and, unfor-
tunately, will come up in a later chapter again.

First, consider the left maze in Figure 4.8. There are two linear conflicts of the kind
we have seen in Figure 4.7. Identifying two linear conflicts does not automatically
permit us to increase the lower bound by 4. By pushing the stone on square Dc
down, only one non-optimal push is necessary to push all stones to goals. However,
if the middle stone was blocked, say by a wall on square Dd, this maneuver would
be impossible and both end stones in the chain of linear conflicts would have to be
pushed. The penalty of 4 would be justified.

The second problem is shown in the right maze of Figure 4.8. Note the additional
entrance. None of the linear-conflict reasoning holds anymore, because the stone
moving down to allow the others to pass can now move towards its goal using the
new entrance. It is therefore important to know if a stone is forced to use one direction
from a square to reach all goals in the maze. To make matters even more complicated
here, once a stone is pushed towards the lower entrance it can be the only one moving
there without being penalized. Only one stone can enter through the lower entrance
because there is only one goal to be filled that is reachable from it. That means we
still have to break the linear conflict with the middle stone, otherwise one non-optimal
push is required. But we digress...*

4.3.7 Dynamic Updates

The distances used for the Minmatching are precomputed before the search starts.
They represent the number of stone pushes required to push a stone from any square
in the maze to any other square. These distances are optimistic distances in that
they assume no interference with other stones. The only restrictions are the walls in

the maze.

3If the reader senses a little sarcasm here, she is right. It has been a recurring theme while working
in the domain of Sokoban to find neat and beautiful ideas that looked so innocently promising -
on the surface. After intense programming and debugging efforts (because the results where not
favorable or seemed otherwise wrong) exceptions or special cases where found that had to be dealt
with.

4If the reader feels slightly lost in all this discussion, that is understandable. Even after several
years of active research we are still not able to say that we fully appreciate the depth and subtlety
that Sokoban provides us with. We could not resist the temptation to introduce the reader to some

of these wonderfully intricate features here!
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Figure 4.10: Limitations of the Lower Bound Estimator

When a stone is pushed into a corner, it becomes fixed. If that corner square is
not a goal, the stone will never be able to reach a goal square and the position is a
deadlock. The lower bound will detect this deadlock because of the infinite distance
from the corner square to all goal squares.

However, if the corner square is a goal, the position is not necessarily a deadlock.
Fixed stones on goal squares can be treated as walls. They potentially change dis-
tances, because walls are obstacles. Consider Figure 4.9. In the left maze, the stone
on Ed can be pushed up. The distance from square Ed to square Eb is 2. However,
in the right maze, since the stone on square Fe is fixed, the distance from Ed to Eb
is no longer 2; it is 6.

Rolling Stone therefore recalculates distances whenever stones are pushed onto a
fixed goal square. Note also that after a stone is fixed, other squares beside it can
potentially become fixed.

4.3.8 Limitations

As the example of the linear conflicts shows, dynamic interactions of groups of stones
(and possibly the man) are not reflected in the lower-bound estimator. While lin-
ear conflicts usually result in penalties of two, larger penalties resulting from other
stone interactions are possible. This is dramatically illustrated with the deadlock
in Figure 4.10: The position of the stones and the man create a deadlock that the
lower-bound estimator cannot detect. The search could potentially explore a large
tree exhaustively just to prove that there is no solution to this problem. It would do
so without understanding why no solution exists.
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4.3.9 Results

Table 4.1 shows the effectiveness of our lower-bound estimate. The table shows the
lower bound achieved by minimum cost matching (MM), inclusion of the backout
enhancement (+BO), inclusion of the linear conflict enhancement (+LC), and the
combination of all three features (ALL). The upper bound (UB) is obtained from
the global Sokoban score file. Since this file represents the best that human players
have been able to achieve, it is an upper bound on the solution length. The table is
sorted according to the last column (Diff), which shows the difference between the
lower bound with all the enhancements (ALL) and the upper bound (UB). Clearly,
for some problems (notably problem #50) there is a huge gap. Note that the real
gap might be smaller, as it is likely that some of the hard problems have been non-
optimally solved by human players. Furthermore, if the difference is 0, the optimal
solution lenght is known.

Using the IDA* framework and this sophisticated lower-bound function, the search
cannot find even one solution to any of the 90 problems with a limit of 20 million
search nodes. Even increasing our effort limit 50 fold to 1 billion nodes did not yield
a single solution.

Judging the numbers of Table 4.1, one should keep in mind that the efficiency
of the search depends on the overall quality of the lower-bound estimator for the
entire search tree, not just the root node as shown in the table. This is one of the
reasons why we cannot solve any of the problems, even though for some problems the
lower bound of the root node matches the upper bound given by the human solution.
Usually this would represent the ideal case in which the search should excel and easily
find the solution. However, even though our lower-bound estimator seems to deliver
reasonable results for the root nodes of the problems, the average error throughout
the search tree is higher and leads to large and inefficiently searched trees. Examples
are deadlocks that are created by the search, but not detected by the lower bound.
The search, led by the poor lower-bound estimator, will explore large parts of the
search space where no solution can be found.

4.4 Transposition Table

4.4.1 Implementation

Transposition tables are a standard tool to accomplish two different tasks: to avoid
cycles and duplicating work by detecting nodes previously visited. Our implementa-
tion uses unique 64 bit hash keys that are used to create an index into a large hash
table. The hash table used for the results reported here has 2!8 entries. It is organized
as a two-level table.’ The replacement scheme keeps the entry searched deepest in
the first level and stores the most recent entry in the second level of the table.

The hash keys incorporate only the exact stone positions. To match an entry, the
keys must be identical. Since the position of the man is of importance, a second test

5See [Bre98] for a description and evaluation of two-level transposition tables.
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Figure 4.11: Adding Transposition Tables (Linear and Log Scale)

is performed. The man squares of both positions must be connected by a legal man
path. This simplification is possible because we only optimize stone pushes. If we
insisted on identical man positions, we would get fewer successful matches from the
transposition table.

The value of an entry in the transposition table is composed of two things: the
matching frequency and the amount of work saved when matched (the size of the tree
that is cut off). The two-level strategy reflects both. An entry that was searched
deeply is most likely going to save a lot of work if matched again. More recent entries
have a much better chance to be matched again. By keeping both kinds of entries, the
transposition table is used more effectively than using a single replacement scheme in
a one-level transposition table.

4.4.2 Results

Adding transposition tables to IDA* allows the search to solve 5 problems in our
test suite, when given a limit of 20 million nodes. 20 million nodes is roughly two to
four hours CPU time on current fast machines. Figure 4.11 shows the effort needed
to solve those problems ordered by search-tree size on a linear and a logarithmic
scale. The vertical axis shows the number of nodes searched to solve the problems.
The horizontal axis shows the number of problems solved. We will use this kind of
graph throughout the thesis and refer to them as effort graphs. The keys of the effort
graphs refer to different versions of Rolling Stone. In Figure 4.11, “R0” refers to IDA*
plus Minmatching lower bound including enhancements. “R1” is a version that adds
transposition tables to “R0”.

A second experiment was performed to evaluate the power of matching equivalent
man positions instead of exact man positions. Using exact man positions, the number
of successful hits dropped below 10% and with the same effort limit of 20 million
nodes, only problem #1 could be solved. The node numbers for problem #1 increase
from 41,640 to 297,498, roughly 5-fold. Problem #78 was solved with 66,309 nodes
before. It cannot be solved anymore when matching exact stone positions. The
number of nodes increases by at least 2 orders of magnitude.
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Figure 4.12: The Effect of Move Ordering (Averaged Over 1% and 5% Depth)

4.5 Move Ordering

We have experimented with ordering the moves at interior nodes of the search. One
could argue that our inability to solve problem #51 is caused by bad move ordering.
For this problem, we have the correct lower bound - it is just a matter of finding the
right sequence of moves.

4.5.1 Implementation

We are using a move ordering scheme that we call inertia. Looking at the solution
for problem #1 (Figure 3.1 on page 35), one can observe long runs where the same
stone is repeatedly pushed. Hence, moves are ordered to preserve the inertia of the
previous move in the following way:

1. Inertia moves are considered first.

2. Then all the moves are tried that decrease the lower bound (optimal moves),
sorted by distance of the stone pushed to the goal it is targeted to, with close
stones first.

3. Then all the “non-optimal” moves are tried, sorted like the optimal moves.

Since the exact distance to the goals can be arbitrary (see Section 4.3.4 “Entrance
Improvement” ), the actual distance used for the sorting is the distance to the entrance,
except if the stone is already inside the goal area.

4.5.2 Results

Figure 4.12 shows the effect of move ordering.® The vertical axis shows the number
of moves. The horizontal axis shows the depth of the tree in percent of the solution

6The data was compiled from all the positions on solution paths for all the solutions known to
the best version of Rolling Stone used in this thesis.
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Figure 4.13: Adding Move Ordering (Linear and Log Scale)

length. The left and right graphs show the same data. The left graph clusters the
data points for each 1% of tree depth, the right graph averages 5% of the data points.
The upper curve indicates the average number of moves considered by the program
plotted over the depth of the tree.” The effective branching factor is changing with
the depth of the tree. In the beginning, the problem is constrained because most of
the stones are still outside the goal area. As stones are being pushed to goal squares,
more room becomes available for the man and other stones to maneuver, hence the
increasing branching factor. Eventually, after more stones are pushed to the goal
squares where they are fixed, the number of moves decreases, approaching 1.

The middle curve shows where the solution move is located in the move list after
the move generation and before the move ordering. Not surprisingly, solution moves
are on average in the middle of the move list. The third and lowest curve shows that
after move ordering solution moves are closer to the front of the move list. The earlier
the solution moves are considered, the more efficient the search is. Specifically, the
last iteration will be smaller. Move ordering becomes more accurate with decreasing
distance to the goal. In fact, after about 20% into the depth of the tree, the move
ordering is close to perfect. In the beginning, with many complications in the maze,
seemingly good moves might actually lead to deadlocks. Many of the problems in
our test suite are designed in such a way that an initial “knot” has to be solved by
“adding space”. This can most often only be achieved with non-optimal moves. After
the knot is untangled, a “mop-up phase” is entered during which stones are simply
pushed to the goals. This is where our heuristic excels.

Figure 4.13 shows an additional curve in the effort graph. It shows the effect of
adding move ordering to the lower bound and the transposition tables (R2). Sur-
prisingly, one problem cannot be solved anymore and two others need more nodes to
be solved. This result is not favorable for move ordering. However, we will see later
that after other features are added, move ordering is a valuable contribution. Qur
move ordering heuristic leads to “compression”. Stones close to the goals are pushed

“Some of the legal moves are discarded immediately because they lead to trivially provable
deadlocks. These moves are not included in the graph. See Section 4.6 for more details!
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closer and closer together, even though pushes away from the goals are necessary
first. Compression makes deadlocks more likely. With additional enhancements that
we will add later, these deadlocks become less likely and the advantages of the move
ordering can work to its full potential.

4.6 Deadlock Tables

Many trivial deadlocks occur in the search. Initially, we hand-coded tests for some
of the simple and common deadlock patterns into the move generation routine. This
quickly proved to be of limited value, since it missed many frequently occurring
patterns, and the cost of computing the deadlock test grew as each test was added.
Instead, we opted for a more “brute-force” approach.

Pattern databases are successfully used to improve lower bounds in the sliding-tile
puzzles [CS98, CS96] and Rubik’s Cube [Kor97]. We implemented a special case of
pattern databases for Sokoban. In an off-line computation, all deadlock patterns in
a 5x4 square were found and stored in a database which can be queried during the
search. If a move is considered for generation, the pattern of stones, walls and empty
squares that is about to be created is looked up in the deadlock table. If the pattern
is a deadlock, the move is not inserted into the move list.

4.6.1 Construction

An off-line search was used to enumerate all possible combinations of walls, stones
and empty squares for a fixed-size region. For each combination of squares and
their contents, a search was performed to determine whether or not a deadlock was
present. This information was stored in the deadlock tables. The deadlock tables
are implemented as decision trees. Interior nodes represent subpatterns, with links to
three successors. These successors represent the parent’s subpattern plus one more
square’s content specified as either empty, wall or stone. Each level in the decision
tree contains different subpatterns of the same shape. The leaf nodes in the tree
represent the status of a pattern: deadlock or alive. For implementation details see
Appendix C.1.

For our experiments, we built two differently shaped deadlock tables for regions
of roughly 5x4 squares (containing approximately 22 million entries). The two tables
differ in the order the squares in the maze are queried. With two different ways
to create patterns, more potential deadlocks can be found, since conflicts with goal

squares can sometimes be avoided.

4.6.2 Verification and Compression

Each of our deadlock tables was verified by a separate run with a different program

to ensure correctness.
Since the information in the tree is encoded in its structure and leaf node val-

ues, identical subtrees can be collapsed into one. Compression ratios of almost 5:1
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Figure 4.14: Example Coverage of the Deadlock Tables

are achieved using this subtree collapse. This type of compression does not create
runtime overhead during the search, since the lookup is still on a non-compressed
structure. With this more compact data structure, cache coherence may even be

improved because less memory is used.

4.6.3 Usage of the Deadlock Tables

When a push Xz-Yy is considered for generation, the destination square Yy is used
as a base square in the deadlock table and the direction of the stone push is used to
rotate the region, such that it is oriented correctly. If the push Fh-Fg is made in the
maze of Figure 4.14, then a deadlock table could cover the 5x4 region bounded by the
squares Hh, Hd, Ed and Eh. Note that the table can be used to cover other regions as
well. To maximize the usage of the tables, reflections of asymmetric patterns along
the direction the stone was pushed are considered as well.

4.6.4 Limitations and Open Problems

A 5x4 region may sound like a significant portion of the 20x20 playing area. However,
many deadlocks encountered in the test suite extend well beyond the area covered by
our tables. Unfortunately, it is not practical to build larger tables.

Most of the effectiveness of the deadlock table is lost if a deadlock-table pattern
covers a portion of the board containing a goal node. Once a stone is on a goal
square, it never needs to move again. Hence, the normal conditions for deadlock do
not apply.

Furthermore, for a deadlock to be in the table, all the conditions for the deadlock
must be present within the region covered by the deadlock table. In the example
of the push Fh-Fg in the maze of Figure 4.14 this is not given; conditions (such
as connectivity and reachability for stones and man) extend beyond the area of the
deadlock table. That is by far the most limiting factor of precomputed tables that
are restricted to a certain area.

For the game of Go, Cazenave suggests [Caz99] using external conditions for pat-
terns to improve their effectiveness dramatically. It remains to be investigated which
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Figure 4.16: Adding Deadlock Tables (Linear and Log Scale)

conditions can express the properties of Sokoban mazes sufficiently well to generalize
deadlock patterns.

4.6.5 Results

Figure 4.15 shows the number of moves in the move list over the depth of the tree.
Positions on paths to solutions were chosen to avoid pathological cases. The top curve
shows how many legal moves those positions have, averaged over all test positions at
certain depths in the tree (1% and 5% clusters as before). The second curve shows
how many legal moves exist that are not directly pushing stones onto dead squares.
Note that this simple test reduces the effective branching factor by about 20%. The
third curve shows how many moves are actually considered after screening moves with
the deadlock tables. The savings are similar to the simple dead-square checking. On
average, we can save about two moves per node that the search does not need to
consider. That is equivalent to decreasing the branching factor by 2. These curves
also show that the average number of moves varies considerably with the depth of

the tree.
In Figure 4.16, we add another entry to the effort graph to indicate the effect of
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adding deadlock tables to the program (R3). Now, we can solve 5 problems again,
regaining the one lost with move ordering, reducing the search-tree size by orders of
magnitude. It is rather illuminating to see that such an impressive reduction in the
branching factor does not allow us to solve more problems.

4.7 Macro Moves

Macros are a potentially powerful tool to reduce search spaces by combining several
actions into one super-action — a macro. The benefits can be dramatic. To achieve
maximal savings with macro moves, they cannot simply be added to the move list. In
that case, all iterations but the last would increase in node count since the branching
factor is increased. Adding a macro move reduces the search tree only if at least one
other atomic (non-macro) move is deleted from the move list. This way the effective
branching factor is essentially the same (or less if more than one move is deleted),
but the depth of the tree is reduced. Here we are discussing the specific macros used

in our implementation.

4.7.1 Tunnel Macros

A tunnel is the part of a maze where the maneuverability of the man is restricted
to a width of one. Figure 4.17 shows one such construct: The squares Ec to Ic are
part of a tunnel. Since there can only be one stone in a tunnel without creating an
immediate deadlock, tunnels cannot be used to store more than one stone.

One-Way Tunnel Macros

If a tunnel is composed of articulation squares, as in Figure 4.17, we call the tunnel a
one-way tunnel. If a stone is pushed into a one-way tunnel, it is forced to move all the
way through to the other side. There is no reason why one would delay those moves;
the man cannot get to the other side of the tunnel since the stone in the tunnel cuts
the man off.

When the move generator creates a move into the tunnel, in our example the push
Dc-Ec, this push is substituted with the macro Dc-Kc. Note that the end square is
not just Jc, but K¢ — pushing the stone through and out away from the entrance of
the tunnel. Of course, the push Jc-Ic is equally substituted with the macro Jc-Cec.
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Before substituting a move with a tunnel macro, we have to check if the tunnel
is empty, otherwise the tunnel-macro move is illegal. If this test fails, not only is the
substitution not executed, but the initial move is deleted from the move list, because
it would create a deadlock and should not be considered by the search. Thus, the
tunnel-macro substitution is also preventing some deadlocks.

Two-Way Tunnel Macros

One-way tunnels cannot be used as “storage” for stones. Once the stone is inside,
it has to be pushed all the way. What if the man can come back from the other
side and push the stone out again? That means the tunnel cannot be a one-way
tunnel; the end points of the tunnel must be connected by at least one more path
(the tunnel squares are not articulation points). Figure 4.18 shows two such tunnels.
The following discussion uses the upper tunnel because the lower one is composed of
dead squares.

The upper two-way tunnel in Figure 4.18 consists of 5 squares: Ec,Fc,Gc,He, and
Ic. Since a two-way tunnel could be used to park a stone (pushing it in, making other
moves in other areas of the maze and later coming back to push it out), we have
to allow for at least one stop of the stone inside the tunnel. Since we are interested
in solutions with the fewest stone pushes, parking the stone at the entrance it was
pushed in is the most sensible strategy if, for example, we just want to push the stone
out of the way. Therefore, the push Dc-Ec into the tunnel is not changed, because it
is valid if we want to park the stone. However, if we want to continue pushing the
stone through the tunnel, the only purpose could be to push it all the way out the
other side. Thus, the push Ec-Fc is substituted with Ec-Jc. Note that this time we
have to stop directly outside the tunnel, since the man could go around a different
path to change the stone’s direction right after it leaves the tunnel.

The substitution of moves with tunnel macros does not affect any other move that
was generated. However, since another stone might be parked in the two-way tunnel
already, before adding a macro, we have to verify the validity of the macro move. If
it is not valid, we not only cancel the substitution, but also the move itself (it leads
to deadlock) — thereby cutting down on the effective branching factor.
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Results

In Figure 4.19 the effect of tunnel macros is visible: 6 problems can now be solved
(R4), one more than in the previous version. The savings for previously solved prob-
lems are not as large as for the addition of deadlock tables.

4.7.2 Goal Macros

Precomputation

Many of the Sokoban problems have the goal squares crowded together in rooms.
These goal areas are accessible through a few squares which we call entrances. One
can decompose the problem of solving a maze into

e how to get all the stones to the entrances, and
e how to pack them into the goal areas.

Most of the time these two parts can be solved independently, thus reducing the
search space enormously. Problem #1 is a good example. As soon as a stone reaches
the goal area at the right side of the maze, the stone should be pushed directly to its

final destination.
We achieve this in principle by

1. defining the goal area and marking its entrances,

2. precomputing the order in which goal squares are filled without introducing
deadlock in the goal area and

3. creating a structure to hold that information to be retrieved during the actual
(IDA*) search.

The details of the implementation used in Rolling Stone can be found in Ap-
pendix C.
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Figure 4.20: Comparing Tunnel and Goal Macro Effects
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Figure 4.21: Parking in a Goal Area

Move Substitution

During the search, if a move is generated that pushes a stone into the entrance of
a goal area, that move is substituted with the goal-macro move. Depending on the
precomputation, this could be one or many goal macros. All other moves are deleted
from the move list; only the goal-macro moves are considered. If we can put a stone
“away”, nothing else should matter at the moment. That is different from the tunnel
macros, where no other move was affected.

By cutting alternative pushes, the effect of goal macros is even more dramatic than
the effect of tunnel macros. Figure 4.20 shows the difference in tree-size reduction.
While tunnel macros yield large savings on their own, if we can introduce a goal
macro, the savings are larger.

Limitations and Open Problems

The goal macros in their current implementation have limitations. One underlying
assumption is that no stone will leave the goal area once inside. Problems like #50
cannot be solved without pushing stones through the goal area. A second, even
stricter assumption is that once a stone is inside the goal area, it will never move
again. This does not allow for parking inside goal areas. Sometimes it is necessary
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to park a stone in a key position inside the goal area until later in the solution when
it can finally be pushed to its final goal square. Figure 4.21 shows one such problem
(assume Fc is the entrance square). Before any other stone can be pushed onto a
goal square, a stone has to be parked at Gb. The stone on Gb can be pushed to its
goal square only after the square Id contains a stone. These interactions violate the
assumption that a stone will never move again after being pushed into the goal area
and onto a goal square.

The problem of goal-macro generation in Figure 4.21 is handled correctly in our
implementation. The goal-macro generation fails and goal macros are disabled. That
allows the search to solve the problem, however without the benefits of goal macros.

Note that we could not solve the goal-macro generation for this problem with
the current algorithms, even with a different goal area that was smaller, say only
containing goal squares. In that case the first stone would have to leave the goal area
after entering it, violating the assumption of a stone never leaving the goal area after
it enters.

Another limitation, unrelated to the problem just described, is that a goal area
containing several man entrances is often a traffic area for the man; certain parts of
the maze need to stay connected to allow the man to push stones in a certain way
outside the goal area. Even though we can solve the problem of packing stones inside
the goal area, they might obstruct the man from other areas of the maze. Problem
#38 is an example of such a case.

However, the toughest problem is when stones have to travel through the goal
area to enter again later from a different entrance. Problem #50 is one such problem.
Since only a limited number of stones can be entered through the lower entrance,
stones have to be pushed through the goal area to the other side, parked in the lower
right part of the maze until we can finally push them back into the goal area.

These open problems show that the goal macro creation is still far from being
solved satisfactorily. Interactions between the goal area and the outside parts of the
maze make it difficult to create good goal macros. However, their positive impact in
the problems where they work is so large that any high performance Sokoban program
needs to implement them in one form or another.

Results

Figure 4.22 shows the dramatic effects of goal macros (R5). Instead of solving 6
problems, we can now solve 17! The savings for individual problems are again several
orders of magnitude. For example, the search nodes for problem #5535 drop from over
20 million down to a mere 333 - almost 5 orders of magnitude! On average, the
searches are a factor of 20 smaller with the goal macros. These are lower bounds,
since unsuccessful searches are stopped at 20 million nodes.

4.7.3 Goal Cuts

We are cutting all alternative moves when we substitute goal macros. The reason
being that if we can push a stone to its final destination, it will not affect other moves
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Figure 4.23: Adding Goal Cuts (Linear and Log Scale)

and we can ignore them. Could we not apply the same reasoning to the move that
pushed the stone to the square from which it will be “macro”-pushed to the goal
square? Goal cuts do exactly that recursively further up the tree: if a stone is pushed
to a goal with a goal macro at the end without interleaving other stone pushes, all
alternatives to pushing that stone are deleted from the move list.

Currently, we have implemented a scheme that will cut moves only after a stone
push towards its macro move was explored. The search backs up the cut information,
instead of statically trying to deduce that such a move exists in a certain position.
This could potentially lead to missed opportunities for additional cuts if other moves
are explored before the one that leads to the goal cut. Since the move ordering will
sort moves that are close to goals towards the front of the move list, lead-off moves
to goal macros are likely considered early in the move list.

Results

Figure 4.23 shows savings of around one to two orders of magnitude in search-tree
size for the version using goal cuts (R6). Now, 24 problems can be solved with a
search node limit of 20 million. Problem #65 was not solved without goal cuts. Now
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it is solved with just over 600 nodes — the search tree is over 4 orders of magnitude
smaller. On average, the search trees are at least a factor of 6 smaller.

4.7.4 Correctness, Completeness and Optimality

Tunnel macros preserve correctness, completeness and optimality of the original IDA*
algorithm. A solution with goal macros is still correct, but might not be optimal. For
all the reasons discussed in 4.7.2, extra moves might have been necessary to find a
solution. For the same reasons, completeness is not guaranteed.

4.8 Experimental Results

Table 4.2 shows the numbers for the effort graphs that where presented throughout
this chapter. There are a few entries worth pointing out. Enabling all search en-
hancements allows problem #1 to be solved with fewer nodes than the length of the
solution. Macro moves and good move ordering allow this efficient search. For exam-
ple problem #4, enabling goal macros allows the search to solve it with just under
600 nodes. Previously, it was not possible to find a solution with 20 million nodes.
That is an efficiency gain of at least 6 orders of magnitude.

Each search enhancement is able to potentially save orders of magnitude in search-
tree size. However, some search enhancements yield overlapping savings. That means
that if two features can each save 50 percent of the search tree, together they may
reduce the search tree by less than 75 percent. Savings of individual search enhance-
ments are rarely additive.

Comparing search enhancements the way we did throughout this chapter may
be misleading. If a search enhancement is introduced late, when others are already
present, it is harder to save on top of an already trimmed down tree. Therefore,
comparing the impact of search enhancements would be unfair to the ones introduced
at a later point. To exclude this effect, we ran an experiment where we turned off one
feature at a time. All the other search enhancements were enabled. The results will
tell us how unique the savings are that a certain search enhancement can achieve.

Figure 4.24 shows that goal macros are indeed the most valuable search enhance-
ment that we have for Sokoban; without goal macros only 6 problems can be solved.
That is a loss of 18 problems! Note that if we turn off goal macros, goal cuts are
also disabled. The next most important search enhancement is the transposition
table. Turning it off allows us to solve only 9 problems. With either of these two
features missing alone, the search efficiency goes down dramatically and other search
enhancements cannot substitute for the loss.

The version with goal cuts disabled solves 7 problems less, and the average tree size
is about 6 times larger. Turning off move ordering reduces the number of problems
solved to 20, losing 4. The trees grow an average of 4 times and all the problems
need more nodes to solve. This shows that despite the findings in Section 4.5.2 move
ordering is a valuable enhancement. These savings come only from reducing the last
iteration. Surprisingly, turning tunnel macros off is not a great loss — we can still solve
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Figure 4.24: Turning One Search Enhancement Off at a Time

22 problems, 2 less than the full version. The trees are about twice the size without
tunnel macros. Turning off deadlock tables loses one problem and most problems are
between 2 and 50 times more expensive to solve. Table 4.3 shows all the numbers for

this experiment.

4.9 Summary and Conclusions

Sokoban is a hard problem; even fixed-size Sokoban shows exponential behavior. Each
additional problem becomes exponentially harder for the search to solve. To solve one
or two more problems with the same amount of effort (search nodes), large portions of
the search tree have to be pruned. Reducing the search tree by 50 percent is usually
not enough to solve more problems; one to two orders of magnitude are needed to
make significant progress.

In many search domains, an increase in search efficiency by 25% might be an
interesting result. In Sokoban, even performance improvements of 50% are irrelevant.
The research in single-agent search has so far focused on “simple” domains. Sokoban
shows that more powerful search techniques are needed.

The basic text-book approach of IDA*, even equipped with a good lower-bound
estimator, cannot even solve one problem. Using state-of-the-art techniques, such as
transposition tables, move ordering and deadlock tables produces a program that can
solve 5 problems of the standard 90 problem test suite. Simple tunnel macros can
increase the number of solved problems to 6.

To make significant progress beyond the first 6 problems solved, the idea of macros
has to be carried to its extreme. Goal macros represent the solution to the subproblem
of how to arrange the stones in goal areas. The success of goal macros, the immense
reduction of the search tree, can be attributed to successfully splitting the solution to
a Sokoban problem into two parts: How to get the stones to the goal-area entrances
and how to push them from there to their final goal square. Despite the short-
comings of the current implementation of goal macros, their impact on the program’s
performance is the largest of all the search enhancements introduced into our program.
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They allow 11 more problems to be solved, for a total of 17. Goal cuts extend the
idea of the goal macro and can push the number of solved problems to 24.

Even though the reductions in search-tree sizes are impressive and result in an
increase in the number of problems solved from 0 to 24, we should not forget that
the best version of the program can still only solve 24 of the 90 problems. Even
though this set is challenging for humans, many problems not yet solved should be
well within reach of a computer program.

We have seen that rather impressive search-tree size reductions result in small
increases in the number of problems solved. If we want to increase the number of
problems solved significantly, we will have to trim the search trees radically.

We can identify two main inefficiencies in the program:

e The lower bound does not capture dynamic interactions of stones that block
each other and/or the man. If we could find a way to capture this information
and be able to improve the lower bound with it, the search should improve
dramatically.

e The mazes are large and often contain parts that are virtually non-interacting.
However, the search will consider moves in any of those separate parts in any
order. Had the program knowledge about which moves are not influencing the
currently attempted subgoal, legal, but irrelevant, moves could be ignored. This
could lead to a reduction in the branching factor that can potentially remove
large portions of the search tree.

We will discuss methods that address these points in the next two chapters.
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Chapter 5

Pattern Search

5.1 Introduction

In the previous chapter, we concluded that the standard techniques are insufficient to
make further progress in the domain of Sokoban. Additional search enhancements are
needed to enable us to solve significantly more problems from the test set. Since large
portions of the search are wasted searching problem configurations with deadlocks
present, we speculated that the detection of these deadlocks could lead to significant
efficiency gains. The techniques suggested in this chapter are a direct attempt to

rectify this problem.
In this chapter, we introduce a new search enhancement that dynamically finds

deadlocks and improves lower bounds. Pattern search is a real-time learning algorithm
that identifies the minimal conditions necessary for a deadlock, and applies that
knowledge to eliminate provably irrelevant parts of the search tree. By speculatively
devoting a portion of the search effort to learning properties about the search space,
the program trades off search-tree size versus acquired knowledge.

In the game of Sokoban, the additional knowledge gained by the pattern searches
improves the program'’s search efficiency. The average growth rate of the tree is
roughly a factor of 600 times smaller per IDA* iteration. This results in 48 solved
Sokoban problems, and significant progress towards solving many more.

We start by introducing the general concepts by looking at deadlock detection
and later in this chapter show how to generalize these concepts and methods to the
more general case of lower-bound improvements.

5.2 Basic Idea

After making a move, establishing the presence of a deadlock can be quite involved.
The deadlock may consist of as few as one or as many as all the stones in the maze.
We will describe how to prove the presence of deadlock by showing that the conditions
needed to prevent deadlock are not present.

In general, proving that a subset of stones in a maze (a pattern) of stones creates
a deadlock requires a search to verify that no possible solution path exists. A pattern
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PatternSearch( From, To ) {
clear TestMaze;
StonePath = {To};
FOR( i = 1; i <= MAX_PATTERN.SIZE AND NOT EffortLimit(); i ++ ) {
IF( stone s on a square in StonePath )
add closest s to TestMaze
ELSE IF( stone s on a square in ManPath )
add closest s to TestMaze
ELSE BREAK;
solution = PIDA*( TestMaze, SolLength, ManPath, StonePath );
/* Test for a deadlock s/
IF( solution == NO AND NOT EffortLimit() ) {
GeneralizeAndAddPattern( TestMaze, infinity );
BREAK;
}
/* Test for a lower bound increase */
IF( solution == YES ) {
1b = LowerBound( TestMaze );
IF( SolLength > 1b )
GeneralizeAndAddPattern( TestMaze, SollLength - 1b );

Figure 5.1: Pseudo Code for Pattern Searches

search consists of repeated IDA* searches of patterns with more and more stones.
A pattern search may result in the discovery of a deadlock pattern which can be
used throughout the search to assign the correct lower bound of infinity to any state
containing that deadlock. For maximal reusability it is of interest to find the minimal
pattern of stones that causes the deadlock.

Detecting deadlocks is only a special case of a more general problem. Stones
are interacting in such a way that the total number of pushes required to get them
to goals is more than the lower-bound function estimates. Whereas deadlocks are
corrections of the lower bound to infinity, the general case is smaller increases of the
lower bound, so called penalties.

5.3 Basic Algorithm

In the following, we will refer to two different mazes:

e the original maze, which is the maze with all the stones of the current IDA*
position, and

e the test maze which will be used for the pattern searches.
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The pattern search will perform small searches in the test maze with a subset of
stones from the original maze to determine if the last move introduced a deadlock.
In principal, the algorithm performs the following 4 steps:

1. Start by putting only the last stone moved into the test maze.
2. Try to solve the problem.
3. If no solution is found a deadlock is detected, exit.

4. If a solution is found add a stone that is on a square that is needed for the
solution.

5. Goto 2.

More specifically, a pattern search iterates on the number of stones in the test
maze. If we make a move A-B, we might introduce a deadlock. If this deadlock was
not present before the move, then the moved stone, now on square B, must be part of
the deadlock pattern. This is the initial stone included in the test maze and PIDA*!
is called to solve it. PIDA* either returns with failure (no solution, hence deadlock),
or it finds a solution. In the latter case, we are interested in the set of squares that are
used by the stone and the man during the solution. We call these sets of squares the
StonePath and the ManPath, respectively. These sets of squares are preconditions
for the solution to work. The ManPath and the StonePath are used to determine
which stone from the original maze to include next in the test maze. Stones in the
original maze that are on one of the squares in ManPath or StonePath conflict with
the test-maze solution. The stone in StonePath closest to square B (the square the
stone was moved to in the original maze) is added next to the test maze. If such a
stone does not exist, the stone that is on ManPath closest? to square A is used. If no
such square exists, the pattern search returns without finding a deadlock.

After including the next stone, PIDA* is called again. It returns with a solution
and the two conflict sets. If no deadlock was found, then the conflict sets are used
again to add another stone to the test maze. The pattern search terminates in either

of three cases:
e the effort limit is reached (usually a predetermined number of nodes),

e a deadlock was detected (all frontier nodes have a heuristic value of infinity or
have no moves), or

e no more stones conflict with the solution found.

See Figure 5.1 for the pseudo code describing the pattern search.

IPIDA* is a special version of IDA*. See Appendix C.3 for details.
2Closest is always with respect to the distance of either the stone or the man to the conflicting
stone. These distance measures are possibly different due to the more restricted movements of the

stones.
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Figure 5.3: Sequence of Test Mazes as Passed to PIDA* (a, b, c, and d)

5.4 Example

Figure 5.2 shows a simple position, before and after the move Gd-Fd. The question
is whether or not this move introduces a deadlock. Figure 5.3 shows how the test
maze is built. Since the last move ended up on square Fd, the test maze is initialized
with a single stone on Fd (Figure 5.3a). A PIDA* search finds a 5-push solution,
and returns a ManPath (Gd-Ge-Fe-Fd-Gd-Gc-Fc-Ec-Dc-Cc) and a StonePath (Fd-
Fc-Ec-Dc-Cc-Bc). Since a solution was found, we continue the pattern search.

The original maze has a stone on one of the squares (Ec) that the stone moved
over. Now this stone is included in the test maze (Figure 5.3b). PIDA* will solve the
test maze with the two stones and again return a ManPath (Gd-Gc¢-Fc-Ec-Dc-Dd-Cd-
Cc-Dc-Ec-Fc-Ge-Gd-Ge-Fe-Fd-Gd-Ge-Fe-Ec-De-Cc) and a StonePath (Ec-Dc-Ce-Ch
Fd-Fc-Ec-Dc-Cc-Bc). This time, there are no stones in conflict with the StonePath.
However, there is a conflict with the ManPath on square Ge. Therefore, the stone on
Ge is added to the test maze (Figure 5.3c) and another search is started. A solution
will be found, requiring a fourth stone to be added (Figure 5.3d).

The fourth call to PIDA* will return no solution and announce a deadlock with
this pattern of four stones. Identifying the critical stones has been driven by whether
or not they conflict with a potential solution. The irrelevant parts of the maze (such

as the stone on Hc) are ignored.

5.5 Minimizing Patterns

The fewer stones in a deadlock pattern, the more likely it will match an arbitrary
position and be used to eliminate futile branches of the search. A minimal deadlock
pattern is a deadlock pattern from which no stone can be removed without making
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Figure 5.4: Penalty Example

the remaining pattern solvable. The attentive reader will have noticed that only
three stones are needed to guarantee the deadlock in Figure 5.3; the stone on Ec
is unnecessary. Before saving the deadlock pattern, our program will attempt to
minimize the number of stones in it.

The deadlock minimization routine takes an N-stone pattern and considers each of
the possible (N-1)-stone subpatterns. Each of the (N-1)-stone subpatterns is searched
to verify whether removing the other stone preserves the deadlock. If the deadlock
still exists, the removed stone was not part of a minimal deadlock set and is removed
from the deadlock pattern.

In general, there might be several different minimal deadlock sets. We exper-
imented with different ways of minimizing deadlock sets, but concluded that the
greedy and straightforward removal of stones is the most cost-effective way. Often
the cost of minimization is greater than the cost of finding the deadlock pattern itself.

5.6 Deadlocks and Penalties

The presence of a deadlock pattern in a position means that the lower bound increases
to infinity. Can we find patterns that allow us to increase the lower bound by an
amount less than infinity?

Assume there are three stones in the test maze and PIDA* starts its first iteration
but fails to find a solution. Hence PIDA* proved that this pattern cannot be solved
with the number of moves that the heuristic lower bound indicated. In other words,
the lower bound is wrong.

A pattern search will fail to find a deadlock after the push Hd-Gd in Figure 5.4.
However, this pattern search will discover that it requires 2 iterations (4 moves) more
to solve this problem. Hence the lower bound is off by 4. The pattern just discovered
can be minimized and used throughout the IDA* search to improve the lower-bound

calculations.

5.7 Specializing Pattern Searches
Our program Rolling Stone uses three specialized pattern searches. Specialization

is a means of improving the efficiency of pattern searches, even though they might
miss a few patterns. By decreasing the cost of the individual pattern search, more
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pattern searches can be executed. All three pattern searches are designed to find
different types of deadlocks and/or penalties. Whereas deadlock searches are geared
towards finding deadlocks involving many stones, penalty searches are designed to
find penalties with fewer stones. Area searches are aimed at cheaply finding deadlocks
caused by inaccessible areas. We believe that our attempts at specialization are only
a start. Further progress is certainly possible. For more details see Appendix C.3.

Deadlock Search: The deadlock search follows the generic outline of a pattern
search as described above. However, a deadlock PIDA* search is allowed to
take a few shortcuts. For instance, the definition of a goal node is more liberal.
A position where the man can reach all squares in the maze (the stones do not
block parts of the maze) is considered unlikely to contain a deadlock. These
shortcuts reduce the cost of the deadlock searches and allow them to include
more stones. However, deadlock searches are less likely to find increases in lower
bounds.

Penalty Search: After a deadlock search fails to produce a cutoff (either by prov-
ing deadlock or finding a large enough penalty), a penalty search is executed.
Penalty searches are not allowed to take shortcuts. Therefore, they have a
chance to find penalty patterns that the deadlock search missed. Penalty
searches are more expensive (no shortcuts) and usually include less stones with
the same effort limit.

Area Search: If even the penalty search fails to discover a large enough penalty to
cause a cutoff, a third and final pattern search is executed. Instead of using the
solution conflicts to find the next stone to include, area searches use heuristics
to determine the stone(s) most likely to be involved in a penalty pattern. They
try to prove that an area inaccessible to the man and adjacent to the last stone
moved is enclosed by a deadlock pattern. To that end, prior to calling the
PIDA* search, all the stones are included that are surrounding the area that is
inaccessible to the man. The area PIDA* searches are as liberal as the deadlock
PIDA¥* searches. If the search cannot find a large enough penalty to cause a
cutoff, more stones are included that surround other inaccessible areas, this
time not directly beside the man.

5.8 Parameters and Control Function

Pattern searches can be costly. There are three main factors involved in their cost:
the frequency of the pattern searches, the bound on the size of a pattern search (the
effort limit), and the bound on the deadlock-pattern size (number of stones allowed).

Frequency of Pattern Searches: We cannot afford to do a pattern search at ev-
ery node in the IDA* search. We use some non-trivial heuristics (the control
function) to decide when to invest in a pattern search. A pattern search is exe-
cuted if any of the three front and two side squares of the stone pushed contains
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either a stone or area the man cannot reach. The directions are with respect to
the orientation of the last move. Otherwise it is unlikely we have introduced a

penalty or deadlock.

Figure 5.5 shows an example. Assume the move Cd-Cc was the last, then none
of the squares ahead (Bb, Cb, and Db), nor the side squares are occupied by
stones or are inaccessible to the man. The move Cd-Cc is unlikely to have
introduced a deadlock. Now, assume Cd-Dd was the last move (instead of Cd-
Cc). Ed, the square ahead of the stone moved to square Dd, is not accessible
to the man. Furthermore, there is a stone on De, just to the side of the stone
moved onto square Dd. Either of these two conditions is sufficient to trigger a
pattern search.

The transposition table stores whether or not a pattern search was performed
to avoid multiple pattern searches at the same node.

Size of the Pattern Search: Pattern searches are restricted to a maximum effort
of 1000 nodes. If this limit is reached, the search is aborted. However, whenever
a pattern search is successful in finding a penalty, it is allowed to continue
searching for another 1000 nodes.

1000 nodes per pattern search seemed to achieve most of the benefits for a
still reasonable overhead. Increasing the effort limit did decrease the number
of IDA* nodes, but the additional overhead outweighs the benefits. Smaller
pattern searches cannot find large enough penalties.?

Pattern Size: Pattern searches are stopped once they have included all but two*
stones from the original maze. This is an artificial limitation, but we have
not fully explored the tradeoffs of finding larger deadlock patterns versus the
effort required to find them. Because large patterns are also less likely to match
again later in the search, the benefits of large patterns are small. Furthermore,
the searches become exponentially more expensive the more stones are present.
Therefore, it seemed prudent to limit the pattern size.

SHowever, the number 1000 is still chosen quite arbitrarily. We will see this kind of “magic”
number many times. They are the result of educated guesses and sometimes tuned by experiments.
However, the tuning depends on many other variable search parameters and the test suite used.
Truly optimizing these “magic” numbers is at least computationally prohibitively expensive, if not
impossible. We will get back to the issue of tuning in a little more depth in Section 8.6.

iThis is another one of these magic numbers.
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Figure 5.6: Maximizing the Total Penalty (a to d)

Controlling these three parameters is vital for the success of the pattern searches.
Too many and too expensive pattern searches can quickly create a large overhead,
easily offsetting the savings achieved with the pattern knowledge.

5.9 Storage and Matching

To incorporate the deadlock and penalty patterns into the regular IDA* search, we
need to save the patterns found and use them to match positions in the search. The
pattern matching is complicated by the fact that one needs to match not only the
stones, but also the man position. With each pattern of stones, the squares which
the man in the test maze cannot reach (non-reachable squares) are stored. To match
a pattern, the current position must have stones in the same places as the pattern
and the man must not be on any one of the non-reachable squares stored with the
pattern.

As seen with the linear conflicts, patterns can overlap. To ensure admissibility,
each stone can only be used once for a pattern that is included in the total penalty.
Therefore, we have to optimize which of the overlapping patterns to include to maxi-
mize the total penalty. First, all penalty patterns are collected that are overlapping.
Then, for each of these sets of conflicting patterns a search is used to find the subset
of patterns that maximizes the penalty that can be achieved.

Consider Figure 5.6. Four penalty patterns are matched for the position shown at
the top. The penalties for the patterns from left to right (a to d) are: 2, 2, 8, and 4.
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Figure 5.7: Maze #30 With a Penalty of 38 (24+14)

What is the maximal penalty that can admissibly be given to that position? Since all
patterns overlap with pattern c, none can be included if pattern c is. However, the
patterns e, b, and d could not all be included at the same time either, because the
patterns a and b overlap as well. Including pattern d and either one of a or b could
only lead to a penalty of 6. Therefore, only using pattern c results in the largest
admissible penalty: 8.

The penalties of non-overlapping patterns are simply added. We are using a
second improvement in Rolling Stone to speed up the pattern matching which we
call lazy mazimization. The search passes a parameter to the matching algorithm
that indicates the minimum (or target) penalty needed to cause a cutoff. When
the matching algorithm has produced at least the target penalty, it can prematurely
return, thereby saving further matching effort.

Figure 5.7 shows maze #30 with a stone configuration that arises during the
search. Two penalty patterns are successfully matched, resulting in a lower-bound of

38 (14+24).
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5.10 Cutoffs and Back-Jumping

Matching a deadlock pattern always causes a cutoff. Matching a penalty pattern
may allow an increase in the lower bound. A cutoff happens only when the matched
penalty patterns increase the lower bound sufficiently (above the current threshold).

However, these direct cutoffs are only part of the benefits of the patterns. The
pattern searches might uncover a pattern that wasn’t created by the last move. In
that case, when the last move is unmade, the pattern is still present. In fact, the
lower bound of a state can change during the search of a subtree. Therefore, when
the search returns from a recursive call, the search has to check if the lower bound
is now sufficient to cause a cutoff. In that respect, such a pattern leads to a kind
of dependency-directed backtracking, as known from constraint-satisfaction problems
[SS77, GasT79]. As long as the pattern exists in the maze, the search continues to
backup. When the move that created that pattern is unmade, the associated penalty
disappears and the search proceeds normally.

5.11 Scan Search

The accuracy of the evaluation at the root node determines how many iterations are
needed to find a solution. The larger the gap between the lower bound of the root
node and the correct solution length, the more iterations have to be searched.

Rolling Stone runs one penalty search for each of the stones in the initial position to
find preexisting penalty patterns — the scan search. Finding such preexisting patterns
increases the lower bound of the root node and reduces the total number of iterations
of the IDA* search.

However, increasing the lower bound at the root node will only help to save the
early, small iterations, not the latter, large iterations. Since these early iterations
help explore and find patterns, cutting early iterations might be detrimental to the
overall performance of the program. Furthermore, executing scan searches comes
with a significant overhead, usually over 20,000 nodes and as much as 58,000 nodes.
Especially for searches that are small, this overhead can be significant.

5.12 Utility Considerations

Controlling the number of pattern searches and their individual costs is only part
of the cost of the pattern knowledge. Whenever a lower bound is calculated, all
the patterns in the database have to be tested to find which ones match. This can
quickly lead to Minton’s utility problem [Min88]: The costs of matching patterns
slows the program down to the point where the benefits in node savings are offset by
the additional cost of pattern matching. To reduce this cost, a limit can be imposed
on the total number of patterns. But, which of the patterns should be kept and which
should be deleted?
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We chose to limit the number of patterns to 800°. When this pattern limit is
reached, we remove the worst pattern before inserting a new one. “Worst” is defined
as least recently used. To avoid deleting patterns before they have had time to show
their worth, patterns are given a grace period of 50,000° nodes from the time they
are created during which they are not removed. Also, once a pattern was used more
than 8007 times, it will never be removed. Thus, the pattern limit of 800 is a soft
limit, it is possible that more patterns are stored.

With this limit in place, on average about half of the patterns are eliminated.
The removal heuristic seems to work well, because patterns that are removed would
rarely be matched. One problem is an exception: #19. Without the pattern limit,
Rolling Stone can solve problem #19 with 17 million nodes. With the pattern limit
in place, the number of nodes needed increases beyond 20 million. Because of the
“softness” of the pattern limit, further decreasing the pattern limit results only in
small further decrease in the number of patterns stored. Note that in many problems
the pattern limit is never reached. In other problems, this limit is exceeded exces-
sively and massive run time savings are possible when large amounts of patterns are
deleted. Problem #?22 is such an example. Without a pattern limit, 13,458 patterns
are collected. With the soft pattern limit of 800, only 1,742 patterns are stored,
significantly reducing the cost of pattern matching.

5.13 Related Work

The idea of storing minimal patterns is similar to Ginsberg’s Partition Search [Gin96],
where the entries of a hash table are generalized to hold information about sets of
problem states. In Rolling Stone a pattern contains the information about the lower-
bound increase of the set of problem states in which this pattern is present.

The notion of bit (stone) patterns can be compared to the Method of Analogies
[AVADT75]. Pattern searches are a conflict-driven top-down proof of correctness, while
the Method of Analogies is a bottom-up heuristic approximation.

5.14 Limitations and Open Problems

There are complications when reasoning about penalties as we have seen in Sec-
tion 4.3.6. Pattern searches assume that a stone will go to its closest goal. If the
optimal path to that goal cannot be used because it is obstructed, a different, poten-
tially longer path has to be taken. A penalty is the result.

But what if the Minmatching lower bound has already targeted the stone towards
a goal further away? Consider Figure 5.8. Even though we have a stone configuration
that might look like a linear conflict, it is not. One of the stones has to be pushed to
the goal further away. This knowledge is implicit in the lower bound. But because

>Yet Another Magic Number (YAMN).
SYAMN.
TYAMN.
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the pattern search assumes that each stone will go towards the closest goal, it will
find a penalty of 2 in this position. Even though we have so far treated the penalties
resulting from pattern searches as admissible, there are rare cases in which they are
not.

This problem arises from the discrepancy between the pattern search’s assumption
and the reality of where the Minmatching is targeting the stones to. Unfortunately,
there is no general way of solving this problem, without conditioning the penalties.
These conditions would have to account for the assumptions of the pattern search
and each pattern matching would have to verify that the current Minmatching is not
violating these assumptions (e.g. which goals a stone can/cannot move to.) It is an
open problem how to encode these conditions efficiently. In the version of Rolling
Stone described here, this problem is completely ignored, resulting in the occasional
wrong penalty (and possibly non-optimal solution).

An observation that we have not been able to exploit is the hidden pattern. Assume
that at a node all successors are searched without finding a solution. That means
the search has just proven that there is no solution for the current threshold in this
subtree. However, the lower bound did not cause a cutoff when we started searching
this subtree. At this point, we know that our lower bound is off. A penalty pattern
remains undetected in the current position. The search has no knowledge about why
it failed. Back-jumping is impossible. Just executing a pattern search to find the
hidden pattern has two draw-backs:

e Presumably we did a pattern search when we created this node, starting with
the stone last pushed. With which stone should we start now?

e If we find a solution before we revisit this node, then this speculative search
effort would be wasted.

It seems obvious that the knowledge about the existence of a hidden pattern should
be used, but we don’t know how to do so efficiently.

A fundamental limitation of the current implementation of the penalty patterns
and penalty searches is that stones on goals cannot be part of a pattern. The number
and kind of penalty anomalies increases dramatically when stones on goals are allowed
in patterns. This limits the patterns in the kinds of penalties that they can express.
We experimented with stones that where fixed on goals, but found that the dynamic
distances capture most of the benefits already.
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Figure 5.10: Effort Graph Including Pattern Search (Linear and Log Scale)

5.15 Experimental Results

Rolling Stone can solve 24 Sokoban problems without pattern searches. Table 5.1 and
Figure 5.9 show the effect of adding each of the pattern searches alone: area search
(AR), deadlock search (DL) and penalty search (PN). Penalty searches outperform
the rest of the searches clearly, solving 48 problems, that is an increase of 24! Area
searches solve 6 problems less, a total of 42. Deadlock searches, the initial idea, can
solve only 6 more problems than a version without any pattern searches: 30. Note
the entries for problem #54. While the program enhanced with the area search can
solve problem #54, the program with the penalty searches cannot. Area searches and
penalty searches are finding different kinds of penalties.

Figure 5.10 shows the effort graph, now including the version of Rolling Stone using
all pattern searches. Turning all the pattern searches on, we can solve 48 problems,
24 more than the previous best version! The last column of Table 5.2 shows the exact
numbers.

Since penalty searches alone can solve 48 problems, why is it beneficial to include
deadlock and area searches? First, small reductions in search effort are achieved. More
importantly however, by allowing different kinds of pattern searches to be executed,
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# (| -AR -DL -PN +AR -DL -PN -AR +DL -PN -AR -DL +PN
IDA* IDA* | IDA*+PIDA* IDA* | IDA*+PIDA* IDA® | IDA*+PIDA*®
1 33 50 728 53 633 33 573
2 316 85 4,640 82 5,077 82 4,347
3 2,493 166 4,711 119 11,872 107 13,530
4 597 187 45,652 187 47,480 187 49,562
5 1,275,146 57,723 429,175 2,484 135,636 488 50,711
6 283 160 4,110 85 3,954 160 3,982
7 48,209 3,998 21,752 3,504 102,281 1,376 21,645
8 || > 20,000,000 23,729 273,954 > 106,657 | > 20,000,000 426 408,708
9 659,972 8,460 117,093 3,098 355,472 841 126,353
10 ff > 20,000,000 | > 4,589,251 | > 20,000,000 > 63,766 | > 20,000,000 2,419 1,429,198
11 § > 20,000,000 j > 2,186,237 | > 20,000,000 > 310,567 | > 20,000,000 44,357 7,818,164
12 | > 20,000,000 3,613,901 9,394,754 > 565,536 | > 20,000,000 300,828 5,852,854
17 11,910 7,470 35,424 3,830 17,332 7,838 27,063
18 | > 20,000,000 | > 2,308,996 { > 20,000,000 > 133,139 | > 20,000,000 61,500 12,365,851
21 10,643,971 15,306 168,209 202,317 10,206,666 1,906 145,409
25 J| > 20,000,000 | > 2,282,812 | > 20,000,000 > 130,791 | > 20,000,000 1,396 373,552
33 || > 20,000,000 {| > 10,349,835 | > 20,000,000 > 195,637 | > 20,000,000 5,520 639,635
34§ > 20,000,000 73,999 697,988 150,281 18,350,039 511 267,401
38 19,083 10,166 41,411 11,971 111,629 9.031 53,341
43 6,084,369 45,373 421,089 > 385,422 | > 20,000,000 17,825 935,196
45 || > 20,000,000 | > 5,363,550 { > 20,000,000 > 116,217 | > 20,000,000 1,439 467,809
49 5,189,494 228,985 851,493 600,506 5,550.628 195,260 357,651
51 80,504 145 5,720 2,194 38,390 137 8,331
53 | > 20,000,000 159 21,334 9,921 597,100 159 24,004
54 || > 20,000,000 114,481 336,415 || > 2,509,932 | > 20,000,000 |f > 3,896,911 | > 20,000,000
35 144 104 2,072 136 3,803 97 2,393
56 || > 20,000,000 15,233 99,878 123,173 2,147,733 376 51,996
S7 || > 20,000,000 75,612 339,663 84,591 4,897,724 265 114,407
58 | > 20,000,000 3,386 85,637 > 154,522 | > 20,000,000 723 195,767
59 || > 20,000,000 1,106,457 2,730,849 > 244,323 | > 20,000,000 1,223 499,166
60 || > 20,000,000 1,111,060 1,584,426 216,622 1,395,471 205 20,372
61 || > 20,000,000 | > 10,696,415 | > 20,000,000 > 330,504 | > 20,000,000 325 110,862
62 6,337 1,996 42,355 18,268 2,519,713 167 56,024
63 || > 20,000,000 8,836 139,172 > 156,097 | > 20,000,000 437 150,211
64 || > 20,000,000 193,037 2,610,202 > 81,434 | > 20,000,000 379 234,400
65 604 221 17,899 228 18,343 196 18,747
67 | > 20,000,000 773,199 7,828,791 > 197,121 | > 20,000,000 54,963 654,594
68 i > 20,000,000 26,908 521,170 > 392,557 | > 20,000,000 1,119 229,055
7l > 20,000,000 217,772 1,530,250 > 235,488 | > 20,000,000 415 118,595
72 It > 20,000,000 348 26,524 898 257,112 134 39,038
73 || > 20,000,000 424 23,896 6,389 567,742 205 58,459
76 {1 > 20,000,000 1,098,753 4,037,793 > 95,223 | > 20,000,000 191,703 4,521,473
78 465 64 2,680 7 2,513 64 2,387
T 5,964 149 9,032 143 11,715 131 12,660
80 114,930 830 30,684 123 19,419 155 24,063
81 221,690 25,943 74,914 9,095 536,209 21,505 147,737
82 99,236 2,126 59,223 15,362 1,266,520 86 34,698
83 20,847 262 5,055 164 8,155 166 9,451
84 354,295 142 4,816 227 23,768 95 8,325
>524,840,912 || > 47,644,501 | >174,682,633 || > 7,871,059 | >429,210,129 | > 4,825,891 | > 58,760,250

Table 5.1: Enabling One Pattern Search
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Figure 5.11: Disabling One Pattern Search (Linear and Log Scale)

we have some insurance against missing some types of patterns that could prevent us
from finding solutions to new, unseen problems. As can be seen in Table 5.2, different
combinations of pattern searches solve different problems.

Except for the small searches (<20,000 nodes), the cost of performing the addi-
tional PIDA* searches is offset by the reduction in the IDA* search nodes. Problem
#53 is an example. The savings for the IDA* tree are dramatic. Previously, with
20,000,000 nodes the search was unable to solve this problem. Now the search suc-
ceeds with only 159 IDA* nodes and a total of 22,310 nodes (21,081 of those are
scan-search nodes). Clearly, the pattern searches dominate the search cost, but the
knowledge uncovered allows us to solve the problem where we failed previously. In
this example, Rolling Stone searches fewer IDA* nodes than the length of the solution!
The search backtracks a mere 13 times for a solution of 186 pushes.

Table 5.2 and Figure 5.11 show the version of Rolling Stone that uses all pattern
searches and what happens when one of the pattern searches is disabled at a time. The
smallest loss comes from disabling area search; 48 problems are still solved. Disabling
penalty searches loses a total of 11 problems. Turning off the deadlock search loses
one problem, but gains one, problem #19!

Problem #19 is an interesting case. Adding penalty searches alone allows Rolling
Stone to solve the problem with over 12 million nodes. Further enabling area searches
increases the number of nodes needed to close to 16 million. When all the pattern
searches are enabled, the problem cannot be solved anymore; the overhead becomes
too high.

Analysis of the data shows that the average growth rate of the search tree from
iteration to iteration in an IDA* search decreased by a factor of over 600. Although
this represents a significant reduction in search effort, it demonstrates how resistant
the problem is to search. Decreasing the growth rate of the search-tree size generally
increases the number of iterations that the main IDA* search can perform in the same
time.

Pattern searches are a gamble: we invest search effort (PIDA* nodes) expecting
to find useful knowledge. Problem #78 is one example of where the gamble does not
pay off. Even though the tree size (IDA*) is reduced about 50 fold, including the
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# -AR +DL +PN +AR -DL +PN +AR +DL -PN +AR +DL +PN
IDA®* | IDA*+PIDA® IDA* | IDA*+PIDA* IDA®* | IDA*+PIDA® IDA* | IDA*+PIDA®
1 a3 826 30 864 30 934 30 1,042
2 82 6,122 82 5,790 82 6,468 82 7,332
3 94 13,846 107 13,472 110 10,347 94 13,445
4 187 19,324 187 49,386 187 48,527 187 50,369
5 436 60,141 478 50,071 2,031 138,172 426 39,249
6 85 4,691 160 3,120 85 4,603 835 3.119
7 1,704 26,633 1,376 23,612 2,814 67,350 1,704 28,561
8 408 530,814 328 279,027 10,890 2,141,491 317 339,255
9 810 184,307 745 125,123 1,658 210,090 704 168,412
10 2,127 2,002,162 1,926 999,098 > 80,071 | > 20,000,000 1,909 1,480,115
11 14,704 4,429,873 21,985 4,778,984 > 366,200 | > 20,000,000 14,048 4,691,929
12 162,263 4,233,033 300,669 6,136,043 > 720,970 | > 20,000,000 162,129 4,373,802
17 3,077 25,702 6,767 44,135 3,045 29,532 2,473 30,111
19 > 63,223 | > 20,000,000 75,007 15,793,144 > 96,292 | > 20,000,000 | > 39,433} > 20,000,000
21 1,889 190,935 1,904 125,511 32,57 2,653,175 1,853 154,393
235 1,331 568,490 1,346 417,736 > 126,416 | > 20,000,000 1,239 333,900
33 3,009 838,878 5,319 649,862 > 298,642 { > 20,000,000 3,035 866.085
34 382 401,802 391 299,695 52,733 3,556,437 342 298,674
38 7,576 72,264 9,031 75,401 3,363 38,608 2,539 31,276
43 16,566 1,417,432 6,758 358,133 17,389 1,203,589 3,308 690,426
435 1,086 439,895 1,799 492,574 > 123,327 | > 20,000,000 1,685 308,124
49 371,153 1,246,397 | > 7,229,739 | > 20,000,000 403,401 2,459,295 375,293 1,670,236
31 137 9,618 137 7.7 145 10,839 137 8,825
33 139 24,008 139 22,306 159 22,310 139 22310
M 106,663 788,320 | > 2,439,627 | > 20.000,000 111,832 981,285 106,663 910,532
33 97 2,651 97 2,735 104 3,074 97 2,993
36 432 62,281 381 49,590 8,495 209,164 333 37.783
7 236 122,994 265 112,900 1,777 1,860,321 236 121,384
38 716 315,546 433 170,709 2,382 383,630 426 268,713
39 1,198 668,701 812 240,794 > 391,840 | > 20,000,000 795 348,214
60 205 28,124 223 29,016 2547 127,104 223 41,310
61 290 93,241 325 111,873 > 562,852 | > 20,000,000 314 106,206
62 167 60,329 211 64,446 1,865 230,463 211 70,478
63 437 198,790 367 192,649 123,280 12,431,967 367 239,537
64 370 302,697 387 238,103 > 92,640 | > 20,000,000 378 300,684
63 196 19,883 196 20,433 221 20,486 196 21,442
67 32,987 905,298 18,571 620,139 > 205,793 | > 20,000,000 18,107 601,178
68 1,721 336,291 2,297 359,463 21,054 2,682,015 2,278 541,080
70 413 148,995 412 104,721 356 96,670 412 125,434
72 134 46,411 134 38,519 348 30,085 134 44,908
7 201 87,068 205 58,308 363 84,811 201 87,019
7 192,230 6,726,931 334,655 5,046,214 > 300,026 | > 20,000,000 185,633 6,236,636
It 64 3,219 64 3,646 64 3,702 64 4,451
7 125 14,464 131 14,065 141 13,567 125 15,833
80 100 19,640 135 22,986 102 13,849 100 16,114
81 21,501 221,154 21,505 161,099 25,269 467,708 21,501 234,235
82 86 38,430 86 33,506 1,980 183,123 86 33,445
83 91 7.867 97 7,879 91 5,759 91 7,294
84 94 5,578 95 3,944 137 21,304 94 3,960
> 1,035,555 | > 48,022,338 || > 10,508,581 | > 78,662,584 || > 4,248,390 | >274,475,834 | > 976,746 | > 46,536,293

Table 5.2: Disabling One Pattern Search
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PIDA* nodes triples the total number of nodes searched.

Node numbers and success rates vary for the different pattern searches. An un-
productive pattern search costs between roughly 50 and 600 nodes. A productive
pattern search typically costs between 600 and 3,200 nodes. While penalty searches
are expensive, they are successful about 10% of the time. On the other hand, area
searches are cheap, but their success rate is only about 1%. Although this sounds
low, the results show the value of the discovered knowledge.

The results reported here are not the best numbers that can be achieved. In
Table 5.2, the PIDA* nodes dominate the cost of the search for some problems.
Some additional heuristics for deciding when to execute pattern searches could result
in further improvements in the search efficiency. There are numerous parameters in
the search, each of which can be tuned for maximal performance. For example:

e the effort limit in number of nodes,

e the pattern-size limit,

e the effort limit after finding a pattern,
e the control function, and

e which of the multiple conflicting stones to include next.

Building the pattern searches was easy. All the effort was spent in tuning the param-
eters for best performance.

5.16 Theoretical Considerations

The question arises as to whether or not pattern searches can be used in domains
other than Sokoban. What fundamental properties of the domain and its heuristics
are needed for pattern searches to be applicable and to produce admissible lower

bounds?

5.16.1 State Description Properties

First, we will examine the domain properties. Let us assume that a state in a domain
can be described by a set of descriptors S = {ci,...,cn}. These ¢; could relate to
objects and their properties, such as location or value. For the domain of Sokoban
one could imagine a ¢; to describe the location of a stone. A subset Sy C S is a state
with fewer or the same number of such descriptors than S, for the Sokoban example,
stones. A state description is reductble, if the solution for any state Si is at most as

long as the solution for any S:
jsol(Se)l < |sol(S)]. (5.1)

The term |sol(S)| stands for the length of an optimal solution for S. It is non-negative

(Isol(®)| = 0).
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A state description is called splitable, if for any two disjoint subsets S; and S, of
S (51,52 C S and $; N S; = @) the following holds:

[sol(S)| = |sol(S1)|+ |sol(S2)| + |sol(S — (S, U SQ))|[+C (5.2)

This means that the solution of S is at least as long as both subsolutions added.
The third term accounts for additional steps that might be needed for conditions c¢;
that are neither in S; nor S;. The term C stands for subsolution interactions. These
subsolution interactions can only increase the solution length of S (C > 0).

The example Sokoban-state description is reducible, because whenever a stone (or
even a wall) is removed, the solution is not getting more complicated, but potentially
simpler. This state description is also splitable. In Sokoban, the term C can become
as large as infinity. Consider Figure 5.12 as an example. The two linear conflicts,
shown in the left (S;) and middle maze (S,), combine to form a deadlock when added
in the right maze (S). The third term in Equation 5.2 (|sol(S — (S; U S5))|) is 0,
because S — (S; U S;) = 0. Adding the solution to the subproblems S; and S, leads
to an infinitely smaller sum than the actual solution length of the right maze.

5.16.2 Heuristic Properties

Now, let us consider the properties of the admissible heuristic h used for the applica-
tion domain. A heuristic is reducible, if the following holds:
h(Se) < h(S), (5-3)
given that Sy C S. A heuristic is splitable, if the following holds:
h(S) = h(S1)+ h(S2) + h(S - (S, US,)), (5.4)

given that S;,S, € S and S; NS, =0.

The Minmatching heuristic in Sokoban is reducible but not splitable, because
Minmatching does take stone-goal interactions into account. This is one reason why
the pattern searches use the simpler heuristic Closest. The lower bound is the sum of
the distances of each stone to their respective closest goals. This heuristic is reducible

and splitable.
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5.16.3 Penalties

The pattern search can start with solving any S C S and adding new conditions
¢; will only monotonically increase the solution lengths, as defined in Equation 5.1.
A penalty pattern Sy is discovered, when there is a difference between |sol(Sk)| and
h(Sk). Since h is admissible, the following must be true:

|sol(Sk)| — h(Sk) > O. (5.5)
We will define the penalty of Si as
pen(Sk) = |[sol(Sk)| — h(Sk). (5.6)

The sum h(Sk) + pen(Sk) is therefore by definition admissible.

What happens with multiple penalty patterns that match in one state? When
these patterns overlap, only one can be used, as previous considerations in Sec-
tion 4.3.6 with the multiple linear conflicts have shown. What about non-overlapping
patterns? Would the sum of the lower-bound function and all their penalties still be

admissible?
Let 51 and S; be two non-overlapping subproblems of S, with the usual conditions

51,82 € S and $1NS; = 0. For h(S) +pen(S;)+pen(S,) to be admissible (}sol(S)] >
h(S) + pen(S:) + pen(S.)), the following must hold:

pen(S) = pen(S:) + pen(S,). (5.7)
Using Equations 3.1 to 5.6 this is easy to show.
pen(S) [sol(S)| — h(S)
= [sol(S1)] + |sol(S2)| + [sol(S — (S1 U S2))| +C
—(h(S1) + h(S2) + h(S — (51 U S2)))

= |[s0l(S1)] — h(S1) + [s0l(S2)| — h(S2)
+sol(S — (S1 U S2))| — h(S — (S1U S2))

+C
= pen(S)) + pen(S,) +gen(S - (S1US,)) + Q
>0
> pen(S;) + pen(Ss) (5.8)

Thus, given the properties outlined above for the domain and the heuristic, the penal-
ties of non-overlapping patterns can be added and the resulting heuristic remains

admissible.

5.16.4 Conclusions

We were able to show the sufficient properties of the state description and the lower
bound that ensure the theoretical applicability of pattern searches. If the state de-
scriptions and the heuristic lower bound for a domain have both the properties of
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reducibility and splitability, pattern searches are possible. Starting with small prob-
lems (patterns), pattern searches can iteratively increase the pattern size until a
penalty pattern is detected. For Sokoban, we used the conflict heuristic to determine
the next ¢; (stone) to include, but any other heuristic could be used. It was also shown
that the penalties of non-overlapping patterns can be added to the lower bound of a
position without losing admissibility. However, in practice it might not be wise to use
pattern searches. Their use comes with a considerable overhead and the cost-benefit
ratio will determine if pattern searches are beneficial.

We previously discussed a few inconsistencies between the pattern knowledge and
the admissibility of the resulting evaluation in Sokoban. Now, we have the theoretical
tools to see where these issues arise from. The pattern searches have to use a different
heuristic than the main IDA* search. Therefore, the admissibility of a pattern does
not necessarily carry over from the pattern search into the main IDA* search. Sokoban
proves to be difficult, again.

What about other domains? How common are the properties of reducibility and
splitability? The sliding-tile puzzles and Rubik’s Cube have these properties. The
Manhattan distance used as a lower-bound function for the sliding-tile puzzles is
reducible and splitable as well. We will see in the next section, how the ideas developed
for Sokoban can easily be transferred into the different domain of the 15-puzzle.

5.17 Pattern Searches in the 15-Puzzle

The 15-puzzle is reducible. Removing tiles introduces more blanks and they allow
the problem to be solved faster. It is also splitable. Traditionally, the Manhattan
distance is used as a lower bound. The Manhattan distance has both properties:
reducibility and splitability. Therefore, the sliding-tile puzzles are perfect candidates
for pattern searches from a theoretical point of view.

Practically, however, there are a number of drawbacks to this domain when trying
to improve run time with pattern searches.

e Pattern searches excel at finding local conflicts by ignoring irrelevant parts of the
problem. Because of the limited physical dimensions of the 15-puzzle, almost
everything is local. Thus, one of the main advantages of the pattern search is
diminished considerably.

e The sliding-tile puzzle programs have very little overhead per node. Move gener-
ation and lower-bound functions reduce to table lookups of small constant time.
On today’s fast PCs (Pentium III 450MHz) they easily search up to 8 million
nodes per second. Adding any kind of overhead will slow down the program
considerably, and that slowdown is hard to offset with node savings. Pattern
searches will create considerable overhead, because they have to be executed
and the patterns have to be matched.

e There are enhancements to the lower bound, such as the linear confiicts [HMY92],
that can efficiently improve the Manhattan distance.
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e While in Sokoban a move could increase the distance to the goal by an arbitrary
amount, in the sliding-tile puzzles, each move can increase the distance to the
goal by at most 2, because every move is reversible. Therefore, the penalties
that can be found will be smaller for the 15-puzzle and thus the benefits (the
likelihood of cutoffs) will be less.

Despite these obstacles, a significant reduction in node count could show the
feasibility of pattern searches beyond the domain of Sokoban.

5.17.1 Implementation

We started with Korf’s original implementation of a 15-puzzle solver [Kor85a].8 It
contains nothing but the Manhattan distance as lower bound, IDA* as the search al-
gorithm and an enhancement to prevent cycles of length 2. There are no transposition
tables, linear conflicts, macro moves and pattern databases.

Pattern Searches

Our implementation of the pattern search starts with a designated tile that is assumed
to be part of a penalty pattern. The pattern search tries to solve the problem with
the single tile; everything else is assumed to be blanks. The search returns a solution
and a conflict set consisting of all the squares the tile moved over. The next tile
included is the one in the conflict set which is closest to the first tile, and so forth.
Closest in our implementation is a modified Manhattan distance. Every tile in the
same row or column has the normal Manhattan distance. All other tiles are assigned
the Manhattan distance plus 2. This ensures that all tiles in the same columns or
rows are included first, in order to facilitate the detection of linear conflicts.

Patterns are restricted to 4 tiles, and each pattern search is given a limit of 50
nodes. If a pattern is found, the search continues, but the limit is increased to 250.
Pattern searches are only executed to a search-tree depth of about half the IDA*
threshold (i.e. are restricted to the top of the tree).

At the beginning of an IDA* search, the equivalent of a Scan Search is performed.
For each tile a pattern search is called. During the IDA* search, a pattern search is
axecuted if the tile that was moved is not part of a pattern that was included in the
penalty for the current position. This reduces the number of unproductive pattern
searches, even at the risk of missing a small percentage of the patterns.

Pattern Storage and Matching

To speed things up, each pattern is stored in a number of dynamic arrays. There
are 16 x 16 such arrays, one for each tile-square combination. Each of these arrays
contains all the patterns that have a specific tile on a specific square in the puzzle grid.
Thus, a linear conflict with two tiles would be stored twice, once for each tile-square
combination in the pattern.

8We used Korf’s original source code to implement our ideas.
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To reduce the run-time overhead, we use a greedy approach when trying to deter-
mine the penalty of a position. For each tile in the puzzle we try to find the maximal
penalty available for this tile using a minimal number of tiles. We commit to using
this penalty. The tiles used by committed penalties are marked and excluded from
further matches to ensure only non-overlapping patterns are used. This routine is not
guaranteed to find the maximal penalty, but was a compromise to obtain most of the
benefits of the patterns with the least amount of overhead.

5.17.2 Experimental Results

The parameters given above were tuned only a little, but improvements are certainly
possible. We use the 100 problems from Korf’s original test suite [Kor85a].

Figure 5.13 shows node numbers corresponding to Korf’s original code (upper
line), the corresponding node numbers for the pattern-search version (dots), and the
same numbers sorted by increasing size (shown as the lower line). Savings of about
66% are possible with our current implementation. The nodes searched split about
equally among the top-level nodes and pattern-search nodes.

Reusing Patterns

In Sokoban, the patterns found in one problem are not generally usable in another
problem, because the layout of the maze and the location of the goals change. Since
the 15-puzzle does not change its layout or the goal state, patterns found once are
reusable for future problems. A test was run that retains the patterns from problem
to problem. An additional 10% savings are possible, reducing the number of nodes
required to roughly 24%. Figure 5.14 shows the results. Tables 5.3 and 5.4 contains
the numbers for both experiments.

Run Time

Even though we could show wins with respect to node numbers, the overall run time
increases. The overhead of matching the patterns is not offset by the node savings.
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Plus Pattern Searches with Reuse of Patterns

# || Plain IDA* Plus Pattern Searches
IDA*+PIDA* IDA* PIDA® | IDA*+PIDA* IDA* PIDA*
1 540,859 239,547 142,508 97,039 239,547 142,508 97,039
2 546,343 276,468 198,862 77,606 267,188 193,074 74,114
3 877.822 289,709 201,934 87,775 256,627 182,675 73,952
4 927,211 463,991 283,028 180,963 399,477 253,956 145,521
3 1,002,926 437,631 274,859 162,772 347,658 229,040 118,618
6 1,280,494 794,419 430,652 363,767 674,873 372,343 302,530
7 1,337,339 949,669 543,679 405,990 753,357 437,515 315,842
8 1,411,293 750,560 480,549 270,011 524,327 347,662 176,665
9 1,599,908 718,377 430,931 287,446 534,140 340,121 194,019
10 1,650,695 898,062 500,979 397,083 705,983 407,199 298,784
11 1,897,727 894,044 578,177 315,867 700,093 471,535 228,558
12 1,903,022 696,823 412,605 284,218 496,921 296,423 200,498
13 2,196,592 959,296 654,233 305,063 671,943 489,194 182,749
14 2,304,425 900,628 562,093 338,333 599,977 400,609 199,368
15 2,351,810 823,599 512,078 311,521 556,369 379,907 176,462
16 2,725,455 1,566,132 833,726 710,406 1,200,524 664,060 536,464
17 3,222,275 1,976,483 1,188,101 788,382 1,511,135 935,646 575,489
18 5,934,441 2,611,918 1,734,902 877,016 1,993,995 1.362,206 631,789
19 6,158,732 2,454,218 1,666,046 788,172 1,593,941 1,142,821 431,120
20 7,096,849 1,387,873 843,966 543,907 900,469 579,749 320,720
21 7,115,966 3,533,735 1,963,898 1,571,857 2,798,760 1,557,218 1,241,542
22 7,171,136 2,282,133 1,485,085 797,048 1,633,121 1,088,971 544,150
23 8,841,526 4,945,501 | 2,670,870 | 2,274,631 4,338,745 | 2,376,398 1,962,347
24 8,885,971 1,855,272 | 1,093,178 762,094 1,179,823 733,615 446,208
25 9,982,568 3,576,460 | 2,262,624 | 1,313,836 2,406,177 | 1,565,450 840,727
26 10,907,149 4,963,290 3,073,845 1,891,445 3,689,342 | 2,341,576 1,347,766
27| 11,020,324 6,196,510 | 3,496,018 | 2,700,492 4,692,929 | 2,702,278 1,990,651
28 11,861,704 3,136,569 1,915,277 | 1,221,292 2,082,440 1,287,875 794,565
29 || 12,808,563 2,587,918 | 1,532,363 | 1,055,535 1,587,803 958,001 629,802
30 12,955,403 6,900,357 | 3,904,078 | 2,996,279 3,689,404 | 3,244,098 2,445,306
31 15,300,441 6,393,789 3,347,777 2,846,013 5,302,386 | 2,984,188 2,318,198
32 13,971,318 3,811,782 | 2,242,701 | 1,569,081 2,805,897 | 1,621,794 1,184,103
33 17,954,869 7,914,991 4,198,511 3,716,480 6,326,621 3,375,560 2,951,061
34 17,984,050 3,973,317 2,133,762 1,839,555 2,978,373 1,606,509 1,371,864
35| 18,918,268 8,437,534 | 4,807,670 | 3,629,864 6,255,292 | 3,679,995 2,575,297
36 | 18,997,680 3,756,295 | 2,417,514 | 1,338,781 2,380,043 | 1,602,348 777,695
37| 19,355,805 6,671,833 1 3,570,891 | 3,100,942 4,590,206 | 2,501,976 2,088,230
38 | 20,671,551 5,313,551 | 2,954,753 | 2,358,798 3,859,176 | 2,248,633 1,610,543
39 | 22,119,319 4,100,671 | 2,554,452 | 1,546,219 2,486,509 | 1,640,228 816,281
40 | 23,540,412 13,843,415 | 7,789,833 | 6,053,582 11,430,164 | 6,424,676 5,005,488
41{ 23,711,066 11,348,938 | 6,333,195 | 5,015,743 9,004,498 | 5,067,043 3,937,455
42 [ 24,492,851 6,775,014 | 4,358,482 | 2,416,532 4,987,035 | 3,223,251 1,763,784
43 i 26,622,862 12,666,910 | 6,667,429 | 5,999,481 7,827,761 | 4,443,516 3,384,245
44 || 32,201,659 9,579,153 | 5,226,829 | 4,352,324 6,865,400 | 3,866,877 2,998,523
45 | 39,118,936 8,677,734 | 5,182,695 3,495,039 5,759,803 | 3,499,410 2,260,393
46 [ 41,124,766 15,859,652 | 9,256,714 | 6,602,938 10,856,777 | 6,696,506 4,160,271
47 || 42,693,208 18,962,035 | 10,458,390 | 8,503,645 15,720,595 | 8,760,179 6,960,416
48 || 42,772,588 8,786,352 | 4,544,081 | 4,242,271 6,769,114 | 3,553,502 3,215,612
49 [| 47,506,055 14,785,232 | 8,744,593 | 6,040,639 10,364,124 | 6,382,613 3,981,511
50 || 51,501,543 25,153,931 { 13,156,713 | 11,997,218 20,651,664 | 10,892,728 9,758,936

Table 5.3: Experimental Results for the 15 Puzzle (I)
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# Plain IDA®* Plus Pattern Searches Plus Pattern Searches with Reuse of Patterns

IDA*+PIDA* IDA* PIDA® || IDA®*+PIDA* IDA* PIDA*

31 59,802,601 12,074,808 7,129,909 4,944,899 7,198,419 4,642,938 2,335,481

32 62,643,178 18,193,320 10,275,974 7,917,346 14,344,342 8,275,975 6,068,367
33 63,036,421 20,635,688 12,069,795 8,565,893 14,248,474 8,790,770 5,457,704
M 63,276,187 25,257,298 13,569,322 11,687,976 21,132,597 11,433,740 9,698,857

35 64,367,798 12,986,228 7,853,068 5,133,160 9,633,860 6,022,843 3,611,017
56 64,926,493 14,115,956 7,803,041 6,312,915 10,480,885 5,924,554 4,536,331
37 65,533,431 5,740,186 3,704,815 2,035,371 3,885,367 2,573,896 1,311,471

38 67,880,035 35,223,825 17,184,643 18,039,182 30,288,769 14,792,560 15,496,209
39 83,477,693 30,115,905 18,253,002 11,862,903 23,599,128 14,608,924 8,990,204
60 93,733,124 13,243,348 6,998,780 6,244,568 9,588,006 35,208,168 4,379,838
61 100,734,843 34,617,503 17,763,516 16,853,987 29,281,463 14,983,111 14,298,352
62 106,074,302 26,373,781 15,994,142 10,379,639 18,261,302 11,288,695 6,972,607
63 109,562,358 25,511,033 14,047,076 11,463,957 19,080,166 10,744,264 8,335,902
64 117,076,110 41,217,374 20,879,485 20,337,889 31,983,878 16,701,461 15,282,417
65 126,638,416 62,396,258 31,005,988 31,390,270 53,339,225 26,754,479 26,384,746
66 132,945,853 68,225,185 34,163,403 33,761,782 57,658,610 29,156,218 28,202,392
67 150,346,071 63,446,995 34,816,085 28,630,910 52,569,497 29,576,740 22,992,757
68 151,042,570 46,491,721 24,539,442 21,952,279 37,919,076 20,271,548 17,647,528
69 166,571,020 77,540,544 40,375,099 37,165,445 66,931,919 34,669,581 32,262,338
70 183,526,882 69,997,313 34,168,994 35,828,319 63,421,285 31,048,124 32,373,161

71 198,758,702 87,766,281 12,008,873 45,757,408 76,176,289 36,961,403 39,214,886

72 220,374,384 33,538,763 27,602,309 25,936,454 46,973,422 24,213,232 22,760,190

73 226,668,644 89,537,891 45,389,557 44,148,334 75,627,138 39,075,879 36,551,259
74 252,783,877 62,831,732 33,492,626 29,339,106 56,096,209 30,135,218 25,940,991

73 257,064,809 86,979,437 45,004,537 41,974,900 77,236,295 40,110,310 37,125,985
76 260,054,151 104,589,901 33,261,229 51,328,672 93,056,576 47,351,110 43,703,466
T 276,361,932 81,643,020 42,051,951 39,591,069 63,776,719 32,769,750 31,006,969

78 280,078,790 87,685,598 43,861,039 43,824,539 66,929,943 34,529,085 32,400,858
7! 306,123,420 49,235,148 27 457,411 21,797,737 39,012,336 22,198,724 16,813,612
80 377,141,880 79,935,949 38,767,275 41,168,674 65,789,788 32,312,648 33,477,140
81 387,138,093 129,453,081 66,898,520 62,554,561 107,124,954 54,052,442 33,072,512
82 465,225,697 208,661,165 101,646,975 107,014,190 174,073,215 85,885,772 88,187,443
83 480,637,866 134,867,828 73,184,295 61,683,533 108,870,176 59,592,195 49,277,981
84 543,598,066 214,335,023 | 111,301,616 | 103,033,407 187,555,926 97,691,048 89,864,878
85 563,994,202 287,160,880 | 137,981,294 | 149,179,586 261,971,051 | 125,619,342 | 136,351,709
86 602,886,837 192,918,480 94,363,487 98,554,993 174,974,578 85,013,556 89,961,022
87 607,399,539 221,127,339 | 133,786,893 87,340,646 189,874,808 | 115,809,263 74,065,635
88 661,041,935 286,235,800 | 139,080,450 | 147,155,330 235,709,707 [ 125,105,040 | 130,604,667
89 750,745,754 204,800,942 | 105,361,957 99,438,985 178,697,814 92,261,405 86,436,409
90 995,472,711 121,031,679 60,948,602 60,083,077 99,164,337 51,023,344 48,140,993
91} 1,031,641,139 123,558,336 67,093,299 56,465,037 101,684,685 53,108,784 46,575,901
92 11 1,101,072,540 200,479,934 | 101,685,292 98,794,642 147,986,726 76,928,139 71,058,587
93 || 1,199,487,995 351,686,002 ;| 175,182,845 | 176,503,157 316,488,886 | 159,031,174 | 157,457,712
94 1,207,520,463 327,199,700 | 170,091,890 } 157,107,810 286,948,657 | 149,565,191 | 137,383,166
95 || 1,369,396,777 212,473,752 | 120,284,300 92,189,452 178,676,839 | 103,461,995 75,214,844
96 || 1,809,933,697 484,738,238 | 253,644,380 | 231,093,838 439,595,890 | 231,180,827 [ 208,415,063
97 || 1,957,191,377 712,647,322 349,499,366 | 363,147,956 661,802,397 | 325,793,021 | 336,009,376
98 || 3,337,690,330 | 1,269,110,078 | 586,394,135 | 682,715,923 | 1,059,849,206 | 491,356,136 | 568,493,070
99 | 5,506,801,122 || 1,034,169,009 | 480,236,703 | 553,932,306 928,186,443 | 434,107,129 | 494,079,314
100 | 6,320,047,979 | 1,633,097,516 | 774,048,263 | 839,049,253 | 1,516,183,963 | 721,815,799 | 794,368,164
36,302,807,931 || 10,093,823,634 | 5,020,547,096 | 5,073,276,538 || 8,803,189,857 | 4,399,402,805 | 4,403,787,052

Table 5.4: Experimental Results for the 15 Puzzle (II)
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Figure 5.14: Pattern Searches in the 15-Puzzle Reusing Patterns (Linear and Log
Scale)

The savings are lower because the penalties that can be found are smaller than in
Sokoban, because all moves are reversible. Thus, the likelihood of them being able
to cause a cutoff is smaller as well. The matching increases the time spent per node
about 35-fold. That is not surprising, since the original code has an extremely low

overhead.

5.17.3 Conclusions

The sliding-tile puzzles are quite different when compared to the Sokoban domain.
However, they have similar properties that allow pattern searches to work. Even
though the pattern searches result in significant node savings, the matching overhead
is larger, because the 13-puzzle is a low-overhead domain, with an efficient and effec-
tive lower-bound function, reversible moves and high locality. The cost-benefit ratio
is not in favor of pattern searches for the 15-puzzle.

The lower-bound improvement of linear conflicts can reduce the node numbers
much more, but that knowledge is static and is hand coded. Pattern searches can
detect much more general conflicts of tiles and are not restricted by our understanding
of the domain. The main objective of this section, to show that pattern searches have
potential beyond the domain of Sokoban, was realized.

5.18 Conclusions

The property of deadlocks in a search space adds considerable complexity to the
search. Deadlock tables are beneficial for local deadlock detection, but inadequate to
handle non-trivial situations. Pattern searches can detect global deadlock scenarios
and are able to improve the lower bound considerably, resulting in a substantial

improvement in search efficiency.
Patterns give the search knowledge about how the stones and the man interact.

This additional knowledge allows the search to avoid parts of the search space that
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have no solutions and/or only solutions that are longer than the current threshold.

This knowledge comes at a price: executing the speculative pattern searches.
However, the overhead of pattern searches is well worth the effort in the domain of
Sokoban. The knowledge gained allows dramatic improvements in efficiency and leads
to twice the number of problems solved. Given 20 million nodes of search effort, our
program can now solve 48 problems of the 90 problem test suite.

Pattern searches can be used in other domains, if reducable and splitable state
descriptions and heuristics can be found. The 15-puzzle is such a domain. However,
to be of practical benefits, the savings of the pattern searches must outweight their
considerable overhead. While this is true for Sokoban, the 15-puzzle did not benefit
from pattern searches in our implementation.
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Chapter 6

Relevance Cuts

6.1 Introduction and Motivation

It is commonly acknowledged that a human’s ability to successfully navigate through
large search spaces is due to their meta-level reasoning [Gin93b]. The relevance of
different actions when composing a plan is an important notion in that process. Each
next action is viewed as one logically following in a series of steps to accomplish a
(sub-)goal. An action judged as irrelevant is not considered.

When searching small search spaces, the computer’s speed at base-level reasoning
can effectively overcome the lack of meta-level reasoning by simply enumerating large
portions of the search space. However, it is easy to identify a problem that is simple
for a human to solve (using reasoning) but is exponentially large for a computer to
solve using standard search algorithms. The pigeonhole problem is an example: fit
N +1 stones into /V pigeonholes. We need to enhance search algorithms to be able to
reason at the meta-level if they are to successfully tackle these larger search tasks. In
the world of computer games (two-player search), a number of meta-level reasoning
algorithmic enhancements are well known, such as null-move searches [GC90] and
futility cutoffs [Sch86]. For single-agent search, macro moves [Kor85b] are an example.

In this chapter, we introduce relevance cuts, a meta-level reasoning enhancement
for single-agent search. The search is restricted in the way it chooses its next action.
Only actions that are related to previous actions can be performed, with a limited
number of exceptions being allowed. The exact definition of relevance is application
dependent.

Consider an artist drawing a picture of a wildlife scene. One way of drawing
the picture is to draw the bear, then the lake, then the mountains, and finally the
vegetation. An alternate way is to draw a small part of the bear, then draw a
part of the mountains, draw a single plant, work on the bear again, another plant,
maybe a bit of lake, etc. The former corresponds to how a human would draw the
picture: concentrate on an identifiable component and work on it until a desired level
of completeness has been achieved. The latter corresponds to a typical computer
method: the order in which the lines are drawn does not matter, as long as the final

result is achieved.
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Unfortunately, most search algorithms do not follow the human example. At each
node in the search, the algorithm will consider all legal moves regardless of their
relevance to the preceding play. For example, in chess, consider a passed “a” pawn
and a passed “h” pawn. The human will analyze the sequence of moves to, say, push
the “a” pawn forward to queen. The computer will consider dubious (but legal) lines
such as push the “a” pawn one square, push the “h” pawn one square, push the “a”
pawn one square, etc. Clearly, considering alternatives like this is not cost-effective.

What is missing in the above examples is a notion of relevance. In the chess
example, having pushed the “a” pawn and then decided to push the “h” pawn, it
seems silly to now return to considering the “a” pawn. If it really was necessary to
push the “a” pawn a second time, why weren’t both “a” pawn moves considered before
switching to the “h” pawn? Usually this switching back and forth (or “ping-ponging”)
does not make sense but, of course, exceptions can be constructed.

In other well-studied single-agent search domains, such as the N-puzzle and Ru-
bik’s Cube, the notion of relevance is not important. In both of these problems, the
geographic space of moves is limited, i.e. all legal moves in one position are “close”
(or local) to each other. For two-player games, the effect of a move may be global in
scope and therefore moves almost always influence each other (this is most prominent
in Othello, and less so in chess). In contrast, a move in the game of Go is almost
always local. In non-trivial, real-world problems, the geographic space might be large,
allowing for moves with local and non-local implications.

This chapter introduces relevance cuts and demonstrates their effectiveness in
Sokoban. For Sokoban, we use a new influence metric that reflects the structure of
the maze. A move is considered relevant only if the previous m moves influence it.
The search is only allowed to make relevant moves with respect to previous moves
and only a limited number of exceptions are permitted. With these restrictions in
place, the search is forced to spend its effort locally, since random jumps within the
search space are discouraged. In the meta-reasoning sense, forcing the program to
consider local moves is making it adopt a pseudo-plan; an exception corresponds to
a decision to change plans.

The search-tree size, and thus the search effort expended in solving a problem,
depends on the depth of the search tree and the effective branching factor. Relevance
cuts aim at reducing the effective branching factor. For Rolling Stone, relevance
cuts result in a large reduction of the search space. On the standard set of 90 test
problems, relevance cuts allow Rolling Stone to increase the number of problems it
can solve from 48 to 50. Given that the problems increase exponentially in difficulty,
this relatively small increase in the number of problems solved represents a significant

increase in search efficiency.

6.2 Relevance Cuts

Analyzing the trees built by an IDA* search quickly reveals that the search algorithm
considers move sequences that no human would ever consider. Even completely un-
related moves are tested in every legal combination—all in an effort to prove that
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there is no solution for the current threshold. How can a program mimic an “un-
derstanding” of relevance? We suggest that a reasonable approximation of relevance
is influence. If two moves do not influence each other, then it is unlikely that they
are relevant to each other. If a program had a good “sense” of influence, it could
assume that in a given position all previous moves belong to a (unknown) plan of
which a continuation can only be a move that is relevant—in our approximation, is
influencing whatever was played previously.

6.2.1 Influence

An influence metric can be achieved in different, domain-specific ways. The following
shows one implementation for Sokoban. Even though the specifics aren’t necessarily
applicable to other domains, the basic philosophy of the approach is.

We approximate the influence of two moves on each other by the influence between
the move’s from squares. The influence between two squares is determined using the
notion of a “most influential path” between the squares. This can be thought of as a
least-cost path, except that influence is used as the cost metric.

When judging how two squares in a Sokoban maze influence each other, using the
Euclidean distance is not adequate. Taking the structure of the maze into account
would lead to a simple geographic distance which is not proportional to influence
either. For example, consider two squares connected by a tunnel; the squares are
equally influencing each other, no matter how long the tunnel is. Elongating the
tunnel without changing the general topology of the problem would change the geo-

graphic distance, but not the influence.
The following is a list of properties we would like the influence measure to reflect:

Alternatives: The more alternatives exist on a path between two squares, the less
the squares influence each other. That is, squares in the middle of a room where
stones can go in all 4 directions should decrease influence more than squares
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in a tunnel, where no alternatives exist. See Figure 6.1 for an example. The
squares A and B influence one another less than the squares C and D. There
are more possible ways to get from A to B than from C to D. Squares C and D
are more restricted because they are situated on a wall.

Goal-Skew: For a given square sq, any squares on the optimal path from sq to a goal
should have stronger influence than squares off the optimal path. For example,
square B in Figure 6.2 is influenced by C more than it is by A. The location of

the goals is important.

Connection: Two neighboring squares connected such that a stone can move be-
tween them should influence each other more than two squares connected such
that only the man can move between them. In Figure 6.1, square A influences
C less than C influences A, because stones can only move towards C, and not

towards A.

Tunnel: In a tunnel, influence remains the same: It does not matter how long the
tunnel is (one could, for example, collapse a tunnel into one square). Figure 6.3
shows such an example: two problem mazes that are identical, except for the
length of the tunnel. Influence values should not change because of the length

of the tunnel.

Our implementation of relevance cuts uses small off-line searches to statically
precompute a (20 x 20) x (20 x 20) table (InfluenceTable) containing the influence
values for each square of the maze to every other square in the maze. Between every
pair of squares, a breadth-first search is used to find the path(s) with the largest
influence. The algorithm is similar to a shortest-path finding algorithm, except that
we are using influence here and not geographic distance. The smaller the influence
number, the more two squares influence each other. See Appendix C.4 for details.

Note that influence is not necessarily symmetric.

InfluenceTable[a, b) # InfluenceT able(b, a]

A square close to a goal influences squares further away more than it is influenced
by them. Furthermore, InfluenceTable[a,a] is not necessarily 0. A square in the
middle of a room will be less influenced by each of its many neighbors than a square
in a tunnel. To reflect that, squares in the middle of a room receive a larger bias than

more restricted squares.
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Our approach is quite simple and can undoubtedly be improved. For example,
influence is statically computed. A dynamic measure, one that takes the current
positions of the stones into account, would certainly be more effective.

6.2.2 Relevance Cut Rules

Given the above influence measure, we can now proceed to explain how to use that
information to cut down on the number of moves considered in each position. To do
this, we need to define distant moves. Given two moves, m1 and m2, move m2 is said
to be distant with respect to move ml if the from squares of the moves (ml.from
and m2. from) do not influence each other. More precisely, two moves influence each
other if

InfluenceTable[ml. from,m2. from] <= infthreshold

where infthreshold is a tunable threshold.

Relevance cuts eliminate some moves that are distant from the previous moves
played (i.e. do not influence), and therefore are considered not relevant to the search.
There are two ways that a move can be cut off:

1. If within the last m moves more than & distant moves were made. This cut will
discourage arbitrary switches between non-related areas of the maze.

2. A move that is distant with respect to the previous move, but not distant to
a move in the past m moves. This will not allow switches back into an area
previously worked on and abandoned just briefly.

In our experiments, we set £ to 1. This way, the first cut criterion will entail the
second.

To reflect differences in mazes, the parameters infthreshold and m are set at
the beginning of the search, taking the average values in the I'nfluenceTable into
account. By varying infthreshold and m in the definition of relevance, the cutting
in the search tree can be made more or less aggressive. The desired aggressiveness is
application dependent, and should be chosen relative to the quality of the relevance

metric used.

6.2.3 Example

Figure 6.4 shows an example where humans immediately identify that solving this
problem involves considering two separate subproblems. The solution to the left and
right sides of the problem are completely independent of each other. An optimal
solution needs 82 pushes; Rolling Stone’s lower bound estimator returns a value of
70. Standard IDA* will need 7 iterations to find a solution (our lower-bound estimator
preserves the odd/even parity of the solution length, meaning it iterates by 2 at a
time). IDA* will try every possible (legal) move combination, intermixing moves from
both sides of the problem. This way, IDA* proves for each of the first 6 iterations
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(¢ = 0..5) that the problem cannot be solved with 70 + 2 * ¢ moves, regardless of the
order of the considered moves. Clearly, this is unnecessary and inefficient. Solving
one of the subproblems requires only 4 iterations, since the lower bound is off by
only 6. Considering this position as two separate problems will result in an enormous
reduction in the search complexity.

Our implementation considers all moves on the left side as distant from those on
the right, and vice versa. This way only a limited number of switches is considered
during the search. Our parameter settings allow for only one non-local move per
9-move sequence. For this contrived problem, relevance cuts decrease the number of
nodes searched from 32,803 nodes to 24,748 nodes while still returning an optimal so-
lution (the pattern searches were turned off for simplicity). The savings (25%) appear
relatively small because the transposition table catches repeated positions (many of
which may be the result of irrelevant moves) and eliminates them from the search.
Although the relevance cuts provide a welcome reduction in the search effort required,
it is only a small step towards achieving all the possible savings. For example, each
of the subproblems can be solved by itself in only 329 nodes! The difference between
329 x 2 and 32,803 illustrates why IDA¥* in its current form is inadequate for solv-
ing large, non-trivial real-world problems. Clearly, more sophisticated methods are

needed.

6.2.4 Discussion

Further refinement of the parameters used are certainly possible and necessary if the
full potential of relevance cuts is to be achieved. Some ideas with regards to this issue
will be discussed in Section 6.5.

The overhead of the relevance cuts is negligible, at least for our current imple-
mentation. The influence of two moves can be established by a simple table lookup.
This is in stark contrast to the pattern searches, where the overhead dominates the
cost of the search for most problems.
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6.3 A Closer Look at Relevance Cuts

The goal of using relevance cuts is to reduce the search-tree size. This is achieved
by eliminating legal moves from the search, thereby reducing the effective branching
factor of the tree. As with many other (unsafe) forward pruning techniques, this
could potentially remove solutions or postpone their discovery. Therefore, aggressive
pruning can increase the search effort by requiring additional search to find a non-
pruned solution. A solution could be found in the same IDA¥* iteration, or could
result in an additional iteration being started. A good heuristic for relevance is the
key to finding the right balance between tree reduction and the risk of eliminating
solutions.

6.3.1 Relevance Cuts in Theory

To better understand the implications of relevance cuts, we will now try to apply
Korf’s theoretical model [Kor97] to our algorithm.! Section 6.4.2 discusses how well
the model predicts the practical performance of our algorithm.

The number of nodes considered in a standard IDA* search is given by the fol-

lowing formula, which is a generalization of Korf’s model.

pd—e (6.1)

d-1
n = > bt o+
1+ sq

i=h(root) e’
last (partial) iteration

complete iterations
where
n is the total number of nodes;
d is the length of optimal solutions;
h(root) is the heuristic value of the root node (<= d);
b is the effective branching factor;
e is the average heuristic value of the interior nodes in the tree; and
Sq is the number of solutions with (optimal) length d.

In this formula, the variable-depth search tree is approximated as a fixed-depth
tree. With no lower-bound information (h(position) = 0), the search tree would be
of size O(b?). An average lower bound of e reduces this exponent to d — e.

The first part of the formula represents the sum of the sizes of all the iterations
that have no solution in them. The second part is the size of the last iteration. It

'Korf and Reid refine this model in [KR98]. The irregularity of the search space (irreversible
moves and search enhancements such as transposition tables) and heuristic function (caused by the
numerous lower-bound enhancements) for Sokoban and Rolling Stonerender this model less suitable
than the one in [Kor97].
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assumes that the solutions are uniformly distributed throughout the leaf nodes. Thus,
if there is only one unique solution path, that solution will be found, on average, half
way through the search of the last (d) iteration.

Relevance cuts modify the equation in two ways. First, the iterations without
solutions are reduced in size. This is achieved by eliminating moves from consider-
ation, in effect reducing the branching factor. Second, there is the possibility that
additional search will be needed if the first solution happens to be eliminated by a
relevance cut. Thus, on iterations >= d the savings from the reduced branching
factor can be (partially) offset by having to do extra work. If all solutions at depth d
happen to be cut off, then at least one more iteration is required (and possibly more).
Equation 6.1 is modified to reflect both ways that relevance cuts affect the search:

d—1 ) d+a(z)-1 _ (b _ ,’.(z))d+a(z)—e
n = (b-r(z))c+ (b-r(z)) %+ (6.2)
izh(zroot) )) lgd J ‘1 + (1 - p(I)) * sd+a(z)‘
= completezeration: d additional f:ll iterations last (pa"tiaT) iteration
d+a(z)—1 ) b—r(r d4a(z)—e
~ Y (b-r(@))c+ ( (z)) (6.3)

‘1 + (1 - p(.’L‘)) * sd+a(.t)‘

i=h(root)
last (partial) iteration

o

complete iterations

where

z is the aggressiveness of the cuts (in our relevance metric, this corresponds to chang-
ing m or infthreshold);

r(z) is the average branching-factor reduction as a function of the aggressiveness;

p(z) is the probability that a solution is cut from the search tree, assuming these
probabilities are independent. This probability also depends on the aggressive-
ness z of the relevance cuts;

a(z) is the expected number of additional iterations. This number depends on the
aggressiveness T of the cuts, and the probability that these cuts will eliminate

all solutions in an iteration; and
Sd+a(z) 1S the number of solutions at level d + a(z).

The effectiveness of relevance cuts in reducing the search-tree size depends solely
on the aggressiveness of the cuts, which controls the branching-factor reduction and
the penalty incurred for missing a solution. Increasing the aggressiveness of the cuts
will decrease the number of nodes searched in the complete iterations (iterations < d),
but will increase the risk of solutions being cut off. When solutions are cut off, not only
can the last iteration potentially grow, but we might actually introduce new iterations
when all the solutions contained in an iteration are pruned. Hence, relevance cuts
can introduce non-optimal solutions, or postpone the discovery of solutions beyond
the resource limits.
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The performance tuning effort must therefore be directed towards finding the right
balance between savings (reduced search-tree size) and cost (the overhead of having
to search further than should be needed).

6.3.2 Randomizing Relevance Cuts

In a deterministic environment, where relevance cuts follow the exact same rules
for the same situation, the search will always cut off solutions that depend on a
maneuver mistakenly considered “irrelevant”. Given that relevance cuts will make
mistakes (albeit, hopefully, at a very low rate), some mechanism must be introduced
to avoid worst-case scenarios, such as eliminating all solutions.

A solution is to introduce randomness into the relevance cut decision. If a branch
is to be pruned by a relevance cut, a random number can be generated to decide
whether or not to go ahead with the cut. The randomness reflects our confidence
in the relevance cuts. For example, the random decision can be used to approve
100% of all possible relevance cuts (corresponding to the scheme outlined thus far,
confident that not all solutions will be eliminated), down to 0% (which implies no
confidence—relevance cuts will never be used). Somewhere between these two ex-
tremes is a percentage of cuts that balances the reductions in the search-tree size
with the overhead of postponing when a solution is found.

6.4 Experimental Results

Our previous best version of Rolling Stone (R6) was capable of solving 48 of the
test problems within the tree-size limit of 20 million nodes. With the addition of
relevance cuts (no random cutting), the number of problems solved has increased to
50. Table 6.1 shows a comparison of Rolling Stone with and without relevance cuts
for each of the 50 solved problems.?

The tree size for each program version given in Table 6.1 is again broken into
two numbers: IDA* nodes and total nodes, including pattern-search nodes. The
third column gives the number of IDA* iterations that the program took to solve
the problem. Note that problems #9, #11, #12, #21, #25, #34 and #38 are now
solved non-optimally, taking at least one iteration longer than the program without
relevance cuts. This confirms the unsafe nature of the cuts. However, since none
of the problems solved before is lost and 2 more are solved within the 20,000,000
node limit, the gamble paid off. The size of the search space dictates radical pruning
measures if we want to have any chance of solving some of the tougher problems.

Table 6.1 shows that relevance cuts improve search efficiency by at least a factor
of 2 in IDA* nodes. The savings in terms of total nodes are less with about 25%.
Clearly, the numbers are dominated by a few problems, such as #19 and #40.

*The numbers reported in [JS98a, JS99b] differ slightly from the ones presented here. Since these

publications, Rolling Stone was significantly improved, specifically the pattern searches, allowing for
a much more efficient search. The resulting smaller searches allowed less room for improvement.
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with relevance cuts

# without relevance cuts
IDA* nodes total nodes | iterations | IDA* nodes | total nodes | iterations
1 50 1,042 2 50 1,042 2
2 82 7,532 1 80 7,530 1
3 94 13,445 1 87 12,902 1
4 187 50,369 1 187 50,369 1
5 436 59,249 2 202 43.298 2
6 85 5,119 1 84 5,118 1
7 1,704 28,561 2 1,392 28,460 2
8 317 339,255 3 291 311,609 3
9 704 168,412 2 1,884 435,388 5
10 1,909 1,480,115 1 1,810 1,713,429 1
11 14,048 4,691,929 10 5,679 2,994,297 11
12 162,129 4,373,802 3 4,912 559,184 8
17 2,473 30,111 7 2,038 29,116 7
19 59,433 | > 20,000,000 9 16,606 7,269,595 9
21 1,853 154,593 6 1,177 179,734 7
25 1,239 553,900 6 21,536 5,784,086 7
33 5,035 866,085 3 2,765 586,684 3
34 542 298,674 2 11,431 1,981,993 3
38 2,539 51,276 5 7,011 154,969 6
40 41,131 | > 20,000,000 6 23,274 | 17,004,253 7
43 5.308 690,426 7 1,729 421,483 7
45 1,685 508,124 2 339 181,566 2
49 373,293 1,670,236 9 53,113 327,643 9
51 137 8,825 1 256 21,491 1
53 159 22,310 1 157 22.308 1
54 106,663 910,532 2 163,757 2,031,577 2
55 97 2,993 1 97 2.993 1
56 353 57,785 3 377 61,189 3
57 256 121,384 2 234 114,416 2
58 426 268,713 2 211 130.474 2
59 795 348,214 4 1,420 773,733 4
60 223 41,310 1 160 27,386 1
61 314 106,206 5 309 105,411 5
62 211 70,478 3 195 101,934 3
63 567 259,537 1 703 312,546 1
64 378 300,684 4 405 332,402 4
65 196 21,442 2 196 21,442 2
67 18,107 601,178 6 12,669 512,488 6
68 2,278 541,080 6 1,953 538,509 6
7 412 125,454 3 431 140,765 3
72 134 44,908 2 134 44,908 2
It 201 87,019 1 214 94,568 1
7 185,633 6,236,656 4 74,315 3,775,394 4
7 64 4,451 1 64 4,913 1
7 125 15,833 2 122 15,527 2
80 100 16,114 1 165 26,943 1
81 21,501 234,235 1 2,662 42,445 1
82 86 33,445 2 86 33,445 2
83 91 7,294 1 80 5,631 1
84 94 5,960 1 106 7,938 1

1,017,877 | > 66,536,295 419,155 | 49,388,544

Table 6.1: Experimental Data
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Figure 6.5: The Effect of Relevance Cuts

Comparing node numbers of individual searches is difficult because of many volatile
factors in the search. For example, a relevance cut might eliminate a branch from the
search justifiably. However, by doing so a pattern search might now not be done that
could have uncovered valuable information that might have been useful for reducing
the search in other parts of the tree. Problem #80 is one such example: despite the
relevance cuts the node count goes up from 100 to 165; an important discovery was
not made and the rest of the search increases. However, the overall trend is in favor
of the relevance cuts. An excellent example is problem #49: the total nodes are cut
by roughly a factor of 5.

In Figure 6.5, the amount of effort to solve a problem, with and without relevance
cuts, is plotted. The numbers from Table 6.1 are used, sorted by the number of nodes
searched by the version without relevance cuts. The figure shows that the exponential
growth in difficulty with each additional problem solved is being dampened by rele-
vance cuts, allowing for more problems being solved with the same search constraints.
For the 25 to 30 “easiest” problems, there is very little difference in effort required; the
relevance cuts do not save significant portions of small search trees. As the searches
become larger, the success of relevance cuts gets more pronounced. However, there
are two problems where relevance cuts result in a large increase in node numbers:
#25 and #34. Their numbers increase roughly 10 and 6 fold, respectively.

Figure 6.6 shows the effort graph, now including the relevance cuts. Only the last
problems show that relevance cuts are beneficial.

6.4.1 Randomizing Relevance Cuts

The numbers presented so far deal with a version of Rolling Stone that executes 100%
of the relevance cuts. A version of Rolling Stone was instrumented to simulate the
effects of different degrees of randomization, varying from 0% (all relevance cuts are
ignored) to 100% (all relevance cuts are used). Thus, the level of, for example, 80%
corresponds to randomly accepting 80% of the cuts, while rejecting 20% of them.
Figure 6.7 illustrates the relevance cuts’ potential for savings in the search tree.
The graph presents for various degrees of randomness (from 0% to 100% in 10%
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Figure 6.7: Relevance Cuts Savings

increments) the percent of the search tree that can be saved by the relevance cuts.
For each search, the relative savings are plotted. Only searches where the 0% version
required at least 500 nodes and the 100% version found a solution were included. The
small search trees (< 500 nodes) were excluded from this and subsequent graphs, since
these trees tend to have very few opportunities for savings. For example, problem #1
is already a paltry 50 nodes; there is neither need nor room for further improvement.
Each of the data points in a column corresponds to one of the 14 problems that passed
our filter. The line represents the average of the savings.

The figure shows that roughly 65% of the search tree can be eliminated by rele-
vance cuts. Further, in our implementation one need only perform 50% of the cuts to
reduce the search by 60%. Thus, even a small amount of cutting can translate into
large savings.

To put this into perspective, one might suggest that the relevance cuts are just a
fancy way of randomly cutting branches in the search tree. An additional experiment
was performed with random cutting, in line with the frequency of relevance cuts. The
result was some savings for a small amount of cutting, but as the frequency of cutting
increased, so did the search-tree sizes! By cutting randomly, more solution paths were
being eliminated from the search, increasing the likelihood of having to search more
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iterations.
Equation 6.3 essentially broke the relevance-cut search nodes into two components.

The first was the search effort required to reach the first solution. Clearly, relevance
cuts provably reduce this portion of the search since some branches are not explored.
In fact, Figure 6.7 is portraying exactly these savings. However, these savings can be
offset by the the second component, the additional effort needed to find a non-cutoff
solution.

Of the 50 problems solved, 7 have non-optimal solutions (14%). As stated earlier,
solution quality is not a concern since, given the difficulty of the problem domain,
any solution is welcome. Furthermore, for solutions of lengths typical in Sokoban
(several hundred) adding two or four pushes is a small increase. The significance of
these non-optimal solutions is discussed in the next subsection.

6.4.2 Relevance Cuts in Theory Revisited

Let’s revisit Equation 6.3. These generic formulas contain several assumptions, some
of which are explicitly stated in [Kor97], while others are implicit. In theory, we
should be able to use our experimental data to confirm these equations. Of interest

in Equation 6.3 is that the term

(b — 1)t (6.4)

dominates the calculation. We know d (the optimal solution length), and we can
measure b, r and e. Rolling Stone has been instrumented to measure these quantities.

Figure 6.8 shows the average b and r for the 48 problems that were solved by both
versions, sorted in order of increasing b. These statistics were gathered at nodes in
the search that were visited by both programs (one with relevance cuts; the other
without). In other words, nodes which were visited only by the non-relevance cuts
program were not averaged in. As can be seen, the reduction in branching factor
varies dramatically, depending on the problem.
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Figure 6.9: Percent of Relevance Cuts Eliminating Solutions

Measuring e, the average heuristic value of the interior nodes in the tree, showed
little difference with/without relevance cuts.

Plugging d, e, b and r into Equation 6.4 produced a large discrepancy between
the predicted tree size and the observed tree size. Since d is constant in both versions
of the program, and e is effectively a constant, the improvements of relevance cuts
rests solely on r, the reduction in the branching factor. However, in most cases the
observed savings are larger than the predicted savings.

Equation 6.3 has the implicit assumption that the branching factor is relatively
uniform throughout the tree. Certainly this is true for the sliding-tile puzzle. But
Sokoban has different properties. In particular, the branching factor can swing wildly
from move to move. Also, our data shows that the branching factor tends to be
smaller near the root of the tree (too many obstacles in the puzzle) and, as the
problem simplifies (jams get cleared, stones get pushed to their goal squares), the
branching factor increases until near the end of the game when there are few stones
left to move and the branching factor decreases again. In addition, the data shows
that the relevance cuts tend to occur early in the search, rather than later. Hence, the
majority of the savings from relevance cuts come from the smaller branching factor
b near the root of the tree combined with a larger branch reduction. Korf’s formula
only considers averages over the entire tree, whereas any bias towards the root of the
tree can produce larger observed reductions.

The other component of Equation 6.3 is the additional search effort required when
relevance cuts miss the first solution. Earlier, it was suggested that the probability of
searching an extra iteration was quite high (14%). This suggests that the relevance
cuts are being too extreme in their cutting. Rolling Stone was instrumented to keep
searching subtrees that would have been eliminated by a relevance cut to determine if
a solution path lay in that subtree. Figure 6.9 shows that only about 2-4% of the cuts
eliminate a solution. Note that some problems have a relatively high error rate; these
results come from the problems that have small searches, where the total number of
cuts is small and a single error can skew the percentages.

A relevance cut error rate of 4% might seem high. However, consider that these
cuts are done throughout the tree, including near the root. Given that a cut near the
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Figure 6.10: Solution Articulation Sequence

root of the search will eliminate huge portions of the search space, and few of these
cuts eliminate any optimal solution, the cuts must be doing a good job of identifying
irrelevant portions of the search.

Infrequently eliminating solutions may seem important if there are few solutions.
In fact, our experience with Sokoban shows that there are many optimal solutions for
every problem. The number of solution paths grows exponentially with any additional
search beyond the optimal solution length. For example, consider a d-ply optimal
solution. If we now look at solutions of length d + 2,3 then we can randomly insert
irrelevant moves into the solution path, giving O(d * b) more solution paths.

Equation 6.3 assumes that the probability of a solution being cut off is independent
of any other solution being cut off. Unfortunately, this is a simplifying assumption
that does not hold for Sokoban. Since Sokoban problems have been composed to be
challenging to humans (and, inadvertently, computers as well), most problems in our
test suite contain specific maneuvers that are mandatory for all solutions. In other
words, every solution to some problems requires a specific sequence of moves to be
made. We call these maneuvers solution articulation sequences.

A solution articulation sequence is illustrated in Figure 6.10. It shows the set of
move sequences that are solutions to the problem of getting from the start state to
the goal state. First, there are many possible sequences of moves (possibly even move
transpositions) until a specific maneuver is required. Then a fixed sequence of moves
is required (the solution articulation sequence). Having completed the sequence, then
many different permutations of moves can be used to reach the goal(s). Note that
a problem may have multiple solution articulation sequences. As well, there may be

3In general, this would be d + 1. However, since Sokoban solutions preserve odd/even parity,
solutions increase by two pushes at a time.
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classes of solutions, with each class having a different set of articulation sequences.

Relevance cuts use a sequence of moves (the past m moves) to decide whether
to curtail the search or not. If the moves forming the solution articulation sequence
happen to meet the criterion for a relevance cut, then it will be falsely considered
“irrelevant”. Consequently, many solution paths will be eliminated from the search.
One can construct a scenario by which all solutions could be removed from the search.

Solution articulation sequences illustrate that the assumed solution independence
property is, in fact, incorrect. Coming up with a realistic model is difficult. The
solutions tend to be distributed in clusters. Many clusters of solutions are, essentially,
the same solution with minor differences (such as move transpositions or, for non-
optimal solutions, irrelevant moves added).

Although the number of optimal solutions appears high from our experiments,
relevance cuts are vulnerable to solution articulation sequences. Hence, a single cut
has the potential for eliminating all solutions. Randomization seems to be an effective

way of handling this problem.

6.4.3 Summary

Relevance cuts have been shown experimentally to result in large reductions in the
effort required to solve Sokoban problems. Given the exponentially increasing nature
of the search trees, solving an extra 2 problems represents a substantial improvement.
Although it would be nice to have a clean analytic model for Sokoban searches
that could be used to predict search effort, this is proving elusive. Although a model
for single-agent search exists [Kor97], it is inadequate to handle the non-uniformity of
Sokoban. In the past, nuraerous analytic models for tree-searching algorithms have
appeared in the literature. They are all based on simplifying assumptions that make
the analysis tractable, but result in a model that mimics an artificial reality. Histor-
ically, these models correlate poorly with empirical data from real-world problems.
An interesting recent example from two-player search can be found in [PSPdB96].

6.5 Conclusions

Relevance cuts provide a crude approximation of human-like problem-solving methods
by forcing the search to favor local moves over global moves. This simple idea provides
large reductions in the search-tree size at the expense of possibly returning a longer
solution. Given the breadth and depth of Sokoban search trees, finding optimal
solutions is a secondary consideration; finding any solution is challenging enough.
We have numerous ideas on how to improve the effectiveness of relevance cuts.

Some of them include:

e Use different distances depending on crowding. If many stones are crowding
an area, it is likely that the relevant area is larger than it would be with fewer
stones blocking each other. Dynamic influence measures should be better than

static approaches.
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e There are several parameters used in the relevance cuts. The settings of those
are already dependent on properties of the maze. These parameters are critical
for the performance of the cuts and are also largely responsible for increased
solution lengths. More research on these details is needed to fully exploit the
possibilities relevance cuts are offering.

e Using the analogy from Section 6.1, one could characterize Rolling Stone as
“painting” locally but not yet painting in an “object oriented” way. If a flower
and the bear are close, painting both at the same time is very likely. Better
methods are needed to further understand subgoals, rather than localizing by
area.

Although relevance cuts introduce non-optimality, this is not an issue. Once
humans solve a Sokoban problem, they have two choices: move on to another problem
(they are satisfied with the result), or try and re-solve the same problem to get a better
solution. Rolling Stone could try something similar. Having solved the problem
once, if we want a better solution, we can reduce the probability of introducing non-
optimality in the search by decreasing the aggressiveness of the relevance cuts. This
will make the searches larger but, on the other hand, the last iteration does not have
to be searched, since a solution for that threshold was already found.

Relevance cuts are yet another way to significantly prune Sokoban search trees.
We have no shortage of promising ideas, each of which potentially offers another order
of magnitude reduction in the search-tree size. Although this sounds impressive, our
experience suggests that each factor of 10 improvement seems to yield no more than
2 or 3 additional problems being solved.
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Chapter 7

Overestimation

7.1 Introduction and Motivation

To ensure optimality of solutions produced by A*-based algorithms, such as IDA*,
the heuristic has to be admissible. The admissibility constraint limits the choice of
knowledge. Even if some knowledge correlates well with the distance to the goal,
but there is the slightest chance that it overestimates, it cannot be used. Solution
optimality would not be guaranteed.

This shows that optimality has its price. Instead of fitting the function h as closely
as possible to h®, we are restricted to creating a lower bound. The error of such a
lower-bound function is often larger than a function that is allowed to occasionally
overestimate. The larger the error of the lower-bound function, the less efficient the
search.

We have seen in previous chapters that an aggressive treatment of the search
space is needed to make significant progress. The examples of the goal macros and
relevance cuts have shown the benefits that are achievable when the small risk of
losing optimality and completeness is taken. Therefore, it seems logical to question
the admissibility constraint for the heuristic function. The hope is to achieve a closer
fit of the heuristic function h to the correct distance h*, albeit at the cost of non-

optimal solutions.

7.2 WIDA*

To achieve a better approximation of h*, one can scale the admissible heuristic by
a constant factor. Statistical tests measuring the difference between h and A* can
produce a constant w that can be used. Weighted IDA* (WIDA*) uses the cost
function f(s) = g(s) + w * h(s), with w > 1 [Kor93].

This scaling has the effect of a depth bonus. The further the search penetrates
into the tree, the more it is encouraged. Nodes close to the root will have larger
h values and the scaling will inflate these values more in absolute terms than those
nodes closer to the leaves with smaller & values. Each move that decreases the h value
will implicitly receive a small bonus, because the cost of the move is not balancing
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the decrease of h; f drops as the search approaches leaf nodes. This small decrease in
the f value with each move deeper into the tree will eventually allow a non-optimal
move to be considered. This can lead to radical shifts of where the search effort is
spent, further towards nodes deeper in the tree. In Sokoban, trees are highly irregular
and these shifts can lead to large changes in the number of nodes searched per IDA*
iteration.

WIDA* increases h uniformly. The only knowledge implicitly entailed in this
scheme is that nodes deeper in the tree are preferred, because they tend to be closer
to the goal nodes. Because of deadlocks and arbitrary penalties that might remain
undetected in Sokoban, nodes deeper in the tree are not necessarily closer to goals.
The search might end up expanding more effort in parts of the tree that contain no
solution.

7.3 Pattern Overestimation

The lack of domain knowledge used in WIDA* leads to poor performance when
traversing Sokoban search trees. What knowledge could be used to improve the
overestimation? The obvious choice is the dynamic pattern knowledge. How can this
be used effectively?

Since the pattern searches are limited in certain ways to keep them tractable,
the correct size of the penalties and shape of the patterns might not be known.
Therefore, the patterns represent incomplete knowledge. Furthermore, when patterns
are matched, only some of the penalties can be used to preserve admissibility (see
Section 5.9 for details). However, each of the patterns that is matched in a position
suggests that there are complications in the current position. Not using the penalty
of such a pattern is equivalent to ignoring available knowledge.

7.3.1 Maximum Partial Penalties

The following is the best of our attempts to use the knowledge contained in all the
patterns that match in a position. We call this method mazimum partial penalties.

Instead of maximizing and adding the penalties of patterns, the penalties are
attributed to the stones in the maze. The penalty of a pattern that is matched
is split equally among all the stones contained in the pattern. For each stone the
maximum of these partial penalties is stored. The total penalty of a position is the
sum of all the maximum partial penalties for each stone. Thus, every stone involved
in a penalty pattern contributes to the total penalty assigned to a stone configuration.

This total penalty is at least as large as the admissible penalty achieved by the
methods described in Section 5.9. The following explains why:

e Non-overlapping patterns are contributing in the same way as before.

e For the admissible penalty, some patterns cannot be used because they overlap
with others. That means that some stones do not contribute to the penalty,
even though they are part of a penalty pattern that was matched. When using
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Figure 7.1: Maximum Partial Penalty Example

pattern penalty partial penalties
A B C D
left 2 10 |10] O 0
center 2 10| O 1.0 0
right 8 266 | 0O |2.66 | 2.66
maximum partial penalty 266 | 1.0 | 2.66 | 2.66
sum of maximum partial penalties 9.0
scaled by 1.8 16.2
rounded for parity 16

Table 7.1: Calculation of Maximum Partial Penalties

maximum partial penalties, each stone of a matching pattern contributes to the
total penalty.

e The contribution of each stone to the total penalty is at least as large in the
maximum partial penalty method as it is for the admissible penalty, because

the maximum of the partial penalties is used.

To tune the overestimation further, the penalty is scaled by a factor s. A final
rounding step assures that the total penalty is an even number to preserve the parity

property of the heuristic.

7.3.2 Example

The upper maze in Figure 7.1 shows a position with four stones A,B,C, and D. The
lower three mazes show three penalty patterns presumably found by the search. The
penalties are 2, 2 and 8 for the patterns from left to right. Table 7.1 shows the
maximum partial penalty calculation. For each pattern (1,2, and 3) the stones in
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that pattern share the penalty evenly. Summing the maximum partial penalties gives
9.0. When scaling it by s =1.8, a value of 16.2 results!. Rounding it to the next
factor of two sets the final penalty to 16, twice the original penalty of 8.

The position in Figure 7.1 is a deadlock — any increase is justified. Other positions,
such as multiple linear conflicts as seen in Section 4.3.6, will be incorrectly overesti-
mated. The scaling factor s has to be carefully tuned to optimize the benefits of the
maximum partial penalties, balancing the advantages and dangers of overestimation.

7.3.3 Pruning versus Postponing

Adding a limited penalty to the heuristic estimation of the distance to the goal will
only delay the examination of a node. If no solution can be found, the threshold will
increase until the position’s estimated f-value does not cause a cutoff anymore. The
exploration of the node is only postponed. This is in stark contrast to forward pruning
with fixed rules, such as deterministic relevance cuts, that will prune the same node
in every iteration.

Because new patterns are added and useless patterns are dropped, the decisions
to postpone a node change dynamically over the course of a search as new knowledge

is found or other knowledge is discarded.

7.4 Experimental Results
7.4.1 WIDA*

We experimented with different values for w, ranging from 1.025 to 1.25, but the
results suggest an unpredictable behavior. On the one hand, the search can benefit
greatly, saving orders of magnitude by extending lines that lead to solutions in early
iterations. On the other hand, large irrelevant parts of the search tree might be
explored that have no solution for the current threshold. The blind scaling of & is not
effective in Sokoban.

Figure 7.2 shows that changing w effects the search-tree sizes almost randomly.
The line indicates the search-tree size of the problems solved by a version of Rolling
Stone that does not use overestimation (R8). The problems are ordered according to
increasing search-tree size. The dots in each column represent the corresponding tree
sizes for Rolling Stone using WIDA* with different settings of w. Table 7.2 shows the
exact numbers of total nodes for these versions of Rolling Stone. Even though one
more problem can be solved when using w = 1.15, the erratic behavior of the search
makes it difficult to justify the use of WIDA*.

7.4.2 Pattern Overestimation

Several different values for the scaling factor s of the total penalty were tested. Fig-
ure 7.3 shows the results for a selected number of these tests. The results for this

1See the results section about the origin of the magic number 1.8 for s.
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Figure 7.5: Adding Overestimation to Rolling Stone (Linear and Log Scale)

experiment are more conclusive, good values for s can be selected. It appears that
the value of 1.8 is a good setting for s, allowing three more problems to be solved.
Even though setting s to 2.0 can also solve 53 problems, it is inferior because the
average number of top-level nodes is almost double that for s = 1.8. See Table 7.3
for the node numbers corresponding to Figures 7.3 and 7.4.

7.4.3 Summary

Figure 7.5 shows the effort diagram, now including the version of Rolling Stone with
overestimation using maximum partial penalties and a scaling factor of s = 1.8.
The improvement appears significant with about one order of magnitude savings in
search-tree size.

There are a couple of interesting points about the data in Table 7.3. With rel-
evance cuts, almost all problems, except #49, have smaller or insignificantly larger
number of nodes. Problem #26, for example, drops from over 20 million nodes to just
under 123,000. Other problems, like #23, #25, #36, #40, #54 and #76, also drop
in node numbers significantly. While most searches with overestimation use more
iterations to find a goal, the search for problem #26 uses less. The initial position is
overestimated enough to allow the search to find a solution in fewer iterations. On
average, the top-level and total nodes are reduced by roughly half, from 3.6 to 1.7

million and 129 to 71 million, respectively.

7.5 Conclusions and Open Problems

With respect to WIDA*, Sokoban is again proving to be a difficult domain. While in
other domains scaling h allows at least the opportunity to trade off solution quality
for search effort, it seems to only randomly shift the search effort in Sokoban. The
quality of the lower-bound function is not good enough to indicate reliably when
progress is made. Therefore, using depth as an indicator for progress has its pitfalls.
Parts of the search tree that do not contain solutions are explored with more effort
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without the expected success.

Using knowledge that is readily available (the patterns matching in each position)
to identify situations that are likely difficult was proven to be of greater value. Rolling
Stone using this dynamic, knowledge-driven overestimation is able to solve three more
problems.

When looking through Tables 7.2 and 7.3 one can see that Rolling Stone has found
solutions to a total of 54 problems. Problem #77 can be solved when s is set to 2.2.
In fact, Rolling Stone has solved 56 different problems with different combinations of
s and w, but never with one version. A control function to set s and w according
to features of the maze that will have to be identified could be of benefit. How to
identify such features is an open problem. Especially in domains such as Sokoban,
where the absence of a good heuristic function causes inefficient searches, discovering
reliable, predictable features seems a daunting task.
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Chapter 8

Single-Agent Search Enhancements

8.1 Introduction

The Al research community has developed an impressive suite of techniques for
solving state-space problems. These techniques range from general-purpose domain-
independent methods such as A*, to domain-specific enhancements, as we have seen
in this thesis. There is a strong movement towards developing domain-independent
methods to solve problems. While these approaches require minimal effort to specify
a problem to be solved, the performance of these solvers is often limited, exceeding
available resources on even simple problem instances. This requires the development
of domain-dependent methods that exploit additional knowledge about the search
space. These methods can greatly improve the efficiency of a search-based program,
as measured in the size of the search tree needed to solve a problem instance.

Previous chapters reported on our attempts to solve Sokoban problems using an
array of different techniques and search enhancements. This allowed 53 problems to
be solved.! These results show the large gains achieved by dynamically discovering
and applying knowledge in our program Rolling Stone. With each enhancement,
reductions of search-tree sizes by several orders of magnitude are possible.

Analyzing all the additions made to Rolling Stone reveals that the most valu-
able search enhancements are based on search (both on-line and off-line) to improve
the lower bound. In this chapter, we classify the search enhancements along several
dimensions including their generality, computational model, completeness and admis-
sibility. Not surprisingly, the more specific an enhancement is, the greater its impact
on search performance.

When presented in the literature, single-agent search (usually IDA*) consists of a
few lines of code. Most textbooks do not discuss search enhancements other than cycle
detection. In reality, non-trivial single-agent search problems require more extensive
programming (and possibly research) effort. For example, achieving high perfor-
mance at solving sliding-tile puzzles requires enhancements such as cycle detection,

!Due to an oversight, we failed to detect problem # 30 as being solved until it was too late
to include the numbers in this thesis. Recent experiments using Rapid Random Restart [GSK98]
increased this number even further to 57.
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Figure 8.1: Two Simple Sokoban Problems

pattern databases, move ordering and enhanced lower-bound calculations [CS96]. In
this chapter, we outline a new framework for high-performance single-agent search
programs and propose a taxonomy of single-agent search enhancements.

8.2 Application-Independent Techniques

Ideally, applications should be specified with minimal effort and a “generic” solver
would be used to compute the solutions. In small domains this is attainable (e.g., if
it is easily enumerable). For more challenging domains, there have recently been a
number of interesting attempts at domain-independent solvers (e.g., blackbozr [KS96)).
Before investing a lot of effort in developing a Sokoban-specific program, it is impor-
tant to understand the capabilities of current Al tools. Hence, we include this in-
formation to illustrate the disparity between what application-independent problem
solvers can achieve, compared to application-dependent techniques.

The Sokoban problems in Figure 8.1 [McD98] were given to the program blackboz
to solve. Blackbor was one of the best programs at the AIPS’98 fastest planner
competition. The first problem was solved within a few seconds and the second
problem was solved in over an hour.

Clearly, domain-independent planners, like blackboz, have a long way to go if they
are to solve the even simplest problem in the test suite. Hence, for this application
domain, we have no choice but to pursue an application-dependent implementation.

Note also, that many of the domain-description languages used, such as STRIPS,
often do not allow for efficient domain descriptions. While Rolling Stone can use
simplifications, such as ignoring the exact position of the man, planners reading a
STRIPS-like problem description have to deal with a much larger search space, be-
cause the man’s position is encoded explicitly and cannot be handled efficiently.

8.3 Application-Dependent Techniques
Application-dependent techniques are not per se application dependent, in fact they

can be applied to a variety of domains. We call them application (or domain) depen-
dent because the knowledge they use applies to a particular domain.
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The preceding chapters of this thesis show the power and limitations of application-
dependent search enhancements. Their performance comes at a price: programming
and research effort. Figure 8.2 shows how these results were achieved during 2.5 years
of development time. The development effort equates to a full-time PhD student, a
part-time professor, a full-time summer student (4 months), and feedback from many
people. Additionally, a large number of machine cycles were used for tuning and
debugging. It is interesting to note the occasional decrease in the number of problems
solved, the result of (favorable) bugs being fixed. The long, slow, steady increase is
indicative of the reality of building a large system. Progress is incremental and often
painfully slow.

The large reductions in search-tree sizes that we have seen previously are not
achievable with the current state-of-the-art domain-independent techniques. Unfor-
tunately, if solutions to complex problems are required, application-dependent tech-

niques are necessary.
The performance gap between the first and last versions of Rolling Stone in Fig-
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ure 8.3 is astounding. For example, consider extrapolating the performance of Rolling
Stone only with transposition tables (R1) so that it can solve the same number of
problems (53) as the complete program (R9). 10°° (not a typo!) seems to be a
reasonable lower bound on the difference in search-tree sizes.

As already discussed in Chapter 4, the results in Figure 8.3 may misrepresent the
importance of each feature. Figure 8.4 shows the results of taking the full version
of Rolling Stone (R9) and disabling one search enhancement at a time. The exact
numbers can be found split over Tables 8.1 and 8.2. In the absence of a particular
method, other search enhancements might compensate such that most of the solutions
can still be found. But if the search-tree reductions of an enhancement are mostly
unique, turning it off will reduce the total number of problems solved significantly.

While the lower-bound function alone cannot solve a single problem, neither can
the complete system solve a single problem without the lower-bound function. This
explains why the lower bound is never disabled in our tests. It is of paramount
importance, without it no problem can be solved.

Figure 8.4 shows that turning off goal macros reduces the number of problems
solved by 32, more than 50%! When turning off pattern searches, the number of
solved problems drops by 21. Turning off transposition tables loses 18 problems.
Besides the lower-bound function, these three enhancements are the most important
ones for Rolling Stone; losing any one of them dramatically reduces the performance.
Relevance cuts are responsible for 4 solutions and tunnel macros for 2. Turning off
either move ordering or deadlock tables results in the loss of only one problem. Note
that even though in Section 4.8 disabling goal cuts lost 7 problems, the full version
(R9) still solves all problems, only with slightly larger node counts. Pattern searches,
relevance cuts and/or overestimation are able to compensate for the loss of the goal

cuts.
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Table 8.2: Turning One Enhancement Off (II)

134



# || IDA* | IDA* + PIDA* || # IDA* | IDA* + PIDA*
1 14 53 ||| 32 4 9
2 786 830 || 33 12 91
3 9 22 i 34 37 129
4 14 38 Il 35 25 107
5 23 58 il 36 15 71
6 10 30 i 37 82 155
7 6 30 |iI 38 43 183
8 19 50 (|} 39 28 65
9 6 13 || 40 20 119
10 7 14 ||| 41 39 139
11 15 26 ||| 42 13 67
12 10 20 {i 43 34 95
13 S 20 ||| 44 15 45
14 7 16 ||| 45 33 108
15 16 27 1l 46 49 157
16 35 125 |[f 47 22 45
17 16 26 ||| 48 76 131
18 15 57 ||| 49 18 36
19 22 125 iIf 50 68 220
20 20 40 |lf 51 256 848
21 22 72 ||| 52 79 232
22 30 52 ||| 93 11 32
23 11 54 |l 54 771 1,938
24 14 57 Il 55 318 531
25 5 22 ||| 56 170 290
26 63 148 [ 57 135,255 342,785
27 4 9 (|| 58 > 9,486,886 > 20,000,000
28 16 48 lIf 59 27 76
29 41 112 J|| 60 2,866 4,460
30 23 49 |l 61 || > 11,044,404 > 20,000,000

31 19 41
> 20,672,999 > 40,355,448

Table 8.3: The Kids Problems
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8.4 Test Sets and Search Effort

Using one test set to tune end measure progress with will necessarily lead to overfitting
of the program to the test set. We have tested our program Rolling Stone on a set
of 61 simple problems to verify that it is at least not geared towards large problems.
Rolling Stone solves 59 of the 61 problems. The two it cannot solve with 20 million
nodes of search effort require parking in the goal area, a concept the program does
not know about. Appendix B shows the complete test set.

The limit of 20 million nodes in our experiments is arbitrarily chosen. However,
Figures 8.3 and 8.4 show that decreasing the search effort even by 2 orders of mag-
nitude would lead to almost the same qualitative results. To see how close we are to
solving more problems with our 20 million node effort limit, we conducted an exper-
iment with the best version of Rolling Stone, allowing for 1 billion nodes of search
effort. One more problem could be solved: #24 uses 591,287,416 nodes. This confirms
the exponential nature of the domain.

8.5 Knowledge Taxonomy

Several different ways of classifying the domain-specific knowledge used to solve
Sokoban problems can be identified:

Generality: Classify based on how general the knowledge is: domain (e.g., Sokoban),
instance (a particular Sokoban problem), and subtree (within a Sokoban search).

Computation: Differentiate how the knowledge was obtained: static (such as advice
from a human expert) and dynamic (gleaned from a search).

Admissibility /Completeness: Knowledge can be: admissible (preserve optimality
in a solution) or non-admissible. Non-admissible knowledge can either preserve
completeness of the algorithm or render it incomplete. Admissible knowledge is

necessarily complete.

Figure 8.5 summarizes the search enhancements used in Rolling Stone. Other en-
hancements from the literature could easily be added into spaces that are still blank,
e.g. perimeter databases [Man95] (dynamic, admissible, instance). Note that some of
the enhancement classifications are fixed by the type of the enhancement. For exam-
ple, any type of heuristic (unsafe) forward pruning is incomplete by definition, and
move ordering always preserves admissibility. For some enhancements, the properties
depend on the implementation. For example, overestimation techniques can be static
or dynamic; goal macros can be admissible or non-admissible; pattern databases can
be domain-based or instance-based.

It is interesting to note that, apart from the lower-bound function itself, the
three most important program enhancements in terms of program performance are
all dynamic (search-based) and instance/subtree specific. The static enhancements,
while of value, turn out to be of less importance. Static knowledge is usually rigid
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|  Classification Domain |Instance [Subtree |
Static| admissible | lower tunnel |move
bound [macros |ordering
complete
incomplete relevance |goal
cuts cuts
Dynamic| admissible (| deadlock pattern
tables searches
transposi-
tion table
complete overesti-
mation
incomplete goal
macros

Figure 8.5: Taxonomy of Search Enhancements in Sokoban

and does not include the myriad of exceptions that search-based methods can uncover
and react to.

8.6 Control Functions

There is another type of application-dependent knowledge that is critical to perfor-
mance, but receives scant attention in the literature. Control functions are intrinsic
parts of efficient search programs, controlling when to use or not use a search en-
hancement. In Rolling Stone numerous control functions are used to improve the
search efficiency. Some examples include:

Transposition Table: A fixed-size transposition table can only hold so much infor-
mation. Control knowledge is needed to decide when new information should
replace older information in the table. Also, when reading from the table, con-
trol information can decide whether or not the benefits of the lookup justify the
cost. For example, search applications may not look up table entries close to
the leaf nodes.

Goal Macros: If a goal area has too few goal squares, then goal macros are disabled.
With a small number of goals or too many entrances, the search will likely
not need macro moves, and the potential savings are not worth the risk of
eliminating possible solutions.

Pattern Searches: Pattern searches are executed only when a non-trivial heuristic
function indicates the likelihood of a penalty being present. Executing a pattern
search is expensive, so this overhead should be introduced only when it is likely
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to be cost effective. Control functions are also used to stop a pattern search
when success appears unlikely.

Implementing a search enhancement is often only one part of the programming
effort. Implementing and tuning its control function(s) can be significantly more time
consuming and more critical to performance. We estimate that whereas the search
enhancements take about 90% of the coding effort and the control functions only 10%,
the reverse distribution applies to the amount of tuning effort needed and machine
cycles consumed.

A clear separation between the search enhancements and their respective control
functions (task and control knowledge) can help the tuning effort. For example, while
the goal macro creation only considers which order the stones should be placed into
the goal area, the control function can determine if goal macros should be created
at all. Both tuning efforts have very different objectives: one is search efficiency, the
other risk minimization. Separating the two seems natural and convenient.

However, this split is not solving the general problem we are facing when tuning.
As shown in the NFL discussion, when specializing an algorithm (by tuning or any
other measure, such as search enhancements in general) we are trading off performance
of the algorithm for one kind of problem against the performance for other kinds of
problems. When tuning parameters using performance on a test suite as a measure of
improvement, we are implicitly adapting the algorithm to the properties exemplified
in the test suite. For our 90 problems, this is most certainly true. Humans composed
the problems, using concepts such as rooms and hallways, structuring the problems
in a very specific way. Goal macros are a good example how we exploited one of
these properties: goals are often together in lumps in a designated area. Random
instances would defy goal macros. Control functions are an attempt to recognize
these situations and turn goal macros off.

8.7 Single-Agent Search Framework

Figure 8.6 illustrates the basic IDA* routine, with our enhancements included (in
italics). This routine is specific to Rolling Stone, but could be written in more general
terms. It does not include a number of well-known single-agent search enhancements
available in the literature. Control functions are indicated by parameters to search
enhancement routines. In practice, some of these functions are implemented as simple
if statements controlling access to the enhancement code.

Examining the code in Figure 8.6, one realizes that there are really only four types
of search enhancements:

1. Modifying the lower bound (as indicated by the updates to Ib). This can take
two forms: optimally increasing the bound (e.g. using patterns) which reduces
the distance to search, or non-optimally (using overestimation) which redis-
tributes where the search effort is concentrated.
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IDA*() {

/** Compute the best possible lower bound **/
1b = ComputeLowerBound();

b += UsePatterns(); /** Match Patterns *x/
Ib += UseDeadlockTable();

lb += UseOverestimate( CntrlQOverestimate() );

IF( cutoff ) RETURN;

/** Preprocess =/

lb += ReadTransTable();

IF( cutoff ) RETURN;

PatternSearch( CntriPatternSearch() );
lb += UsePatterns();

IF( cutoff ) RETURN;

/** Generate searchable moves #*x/
movelist = GenerateMoves();
RemoveDeadMoves( movelist );
IdentifyMacros( movelist );
OrderMoves( movelist );

FOREACH( move ) {
IF( Irrelevant( move, Cntrilrrelevant() )) NEXT;
solution = IDA*();
IF( solution ) RETURN;
IF( GoalCut() ) BREAK:;
UpdateLowerBound(); /+*+ Use New Patterns #*/
IF( cutoff ) RETURN;

}

/** Post-process #*#/
SaveTransTable( CntriTransTable() );

RETURN;

Figure 8.6: Enhanced IDA*
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FOREACH( domain ) {

/** Preprocess *x/
BuzildDeadlockTable( CntriDeadlockTable() );

FOREACH( instance ) {

/** Preprocess *x/
FindTunnelMacros();
FindGoalMacros( CntrlGoalMacros() );

WHILE( NOT solved ) {
SetSearchParamaters();
IDA=();

}

/** Postprocess *x/
SavePatterns( CntriSavingPatterns() );

Figure 8.7: Preprocessing Hierarchy

2. Removing branches unlikely to add additional information to the search (the
nert and break statements in the for loop). This forward pruning can result in
large reductions in the search tree, at the expense of possibly removing solutions.

3. Collapsing the tree height by replacing a sequence of moves with one move (for
example, macros).

4. Move ordering allows for savings in the last iteration by exploring promising
lines first.

Some of the search enhancements involve computations outside of the search. Fig-
ure 8.7 shows where the pre-search processing occurs at the domain and instance lev-
els. Off-line computation of pattern databases or preprocessing of problem instances
are powerful techniques that receive scant attention in the literature (chess endgame
databases are a notable exception). Yet these techniques are an important step to-
wards the automation of knowledge discovery and machine learning. Preprocessing is
involved in many of the most valuable enhancements that are used in Rolling Stone.

Similar issues occur with other search algorithms. For example, although it takes
only a few lines to specify the alpha-beta algorithm, the Deep Blue chess program’s
search procedure includes numerous enhancements (many similar in spirit to those
used in Rolling Stone) that cumulatively reduce the search-tree size by several or-
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ders of magnitude. If nothing else, the Deep Blue result demonstrated the degree of
engineering required to build high-performance search-based systems.

8.8 Conclusions

This chapter summarizes our experiences working with Sokoban. In contrast to
the simplicity of the basic IDA* formulation, building a high-performance single-
agent searcher can be a complex task that combines both research and engineering.
Application-dependent knowledge, specifically that obtained using search, can result
in an orders-of-magnitude improvement in search efficiency. This can be achieved
through a judicious combination of several search enhancements. Control functions
are overlooked in the literature, yet are critical to performance. They represent a
significant portion of the program development time and most of the program exper-
imentation resources.

Domain-independent tools offer a quick programming solution when compared to
the effort required to develop domain-dependent applications. However, with current
Al tools, performance is commensurate with effort. Domain-dependent solutions can
be vastly superior in performance. The trade-off between programming effort and
performance is the critical design decision that needs to be made.

141



Chapter 9

Conclusions and Future Work

Research into single-agent search methods has been dominated by relatively simple
domains. Domains, such as the 15-puzzle or Rubik’s Cube, have relatively small
search-space complexities and/or decision complexities. The conclusions from the
research in these domains have simplified our view of single-agent search. Often,
implicit assumptions are made for certain methods to work. Well-behaved search
spaces with reversible moves and relatively small branching factors and search depths
are usually assumed. The availability of high-quality, low-cost lower-bound estimators
is another one of these assumptions. Naturally, one has to be careful about conclusions
drawn from domains having such nice properties.

In this thesis, we have seen an instance of a problem domain that defies the
traditional approaches and requires more sophisticated methods. Sokoban has not
just a large search space, but also exhibits the challenging search-space property of
non-reversible moves which lead to deadlock configurations. Furthermore, an efficient
and effective lower-bound function remains elusive. Many or even all the implicitly
assumed preconditions of the text-book approaches are violated and the state-of-the-
art methods fail.

This thesis shows how to tackle this challenge and makes significant progress in
solving non-trivial problem configurations for Sokoban. New search enhancements are
introduced. The most successful of them use small specialized searches to discover
knowledge that can be used to improve the efficiency of the main search. Static,
off-line searches producing goal macros show considerable improvements in search
efficiency. However, dynamic, on-line pattern searches gather knowledge that leads
to more significant reductions in search-tree sizes. It appears that searches, and
dynamic searches in particular, can glean the information that is needed to break
the complexity barrier build up by the combinatorial explosion characterizing these
challenging domains. Other enhancements suggested here, such as relevance cuts
and the pattern-driven overestimation, indicate that further considerable progress is
possible.

An interesting observation made in this thesis is that the most powerful of search
enhancements are closely linked to specific knowledge about the problem instances,
or even specific problem configurations. Examples are:

e Transposition table entries store search results about specific states.
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e Penalty patterns containing information about sets of states of one problem
instance (with these patterns present) are results of searches.

e Goal macros are found by off-line searches and represent the knowledge of how
to solve the subproblem of goal-packing in one instance.

We believe that this is no coincidence. While generalized and broadly applicable
heuristics can help to give the search a general direction, it cannot possibly capture
the subtleties of complex domains. Exceptions and special cases make these problems
difficult and challenging and they have to be found by the search on an instance-by-
instance basis. For puzzle games such as Sokoban, this wealth of intricate details is
what draws humans and keeps them coming back. For the practice, this wealth is
what characterizes many of the challenging real-world problems we are interested in
solving. After all, if general guidelines or rules would apply, we would probably not
perceive these problems as hard.

Even though Sokoban is primarily used as our research domain here, the meth-
ods and enhancements suggested as well as the lessons learned are largely domain
independent and carry therefore over to other domains.

Short from excusing ourselves for picking Sokoban as an experimental testbed, we
would like to point out that it could be a rich and fertile ground for many subfields of
Al Even though we have made considerable progress in this domain using advanced
search methods, search alone is not going to be sufficient to solve the toughest of the
Sokoban problems.

A Sokoban solver could benefit from any of the following areas of Al:

e Reasoning in all its different forms (automated, case-based, probabilistic, geo-
metric and spatial,...) could help to decompose Sokoban instances into subprob-
lems and, taking all the interactions of the subproblems into account, reassemble
the solution for the complete problem.

e Belief revision must certainly play a role for the dynamic discovery of subsolu-
tion interactions. As new, possibly conflicting facts (interactions, partial solu-
tions, constraints), are discovered they have to be integrated into the current
knowledge base.

e Case-based reasoning could help to adapt solutions from similar instances solved
in the past to new problems currently at hand.

e Knowledge acquisition and representation can help to tackle one of the funda-
mental problems of Al, of how to represent and store all the knowledge effi-
ciently. As we have seen, this becomes an important problem.

e Planning can help to direct the search by providing it with the global context
of local actions to assist in critical decisions like forward pruning and move

ordering.

However, these areas can also benefit from Sokoban! Sokoban offers a non-trivial test
bed for many techniques from different subfields of Al.
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There are many more search related challenges and open questions left to explore
in the domain of Sokoban. Search methods can most certainly be improved signif-
icantly. Some of the immediate issues that come to mind are: Can relevance cuts
benefit from dynamically accumulated knowledge? Can move ordering be improved
with additional knowledge? Are there better heuristics to decide which stone to in-
clude next in a pattern search? What could that knowledge be and how could it be
collected?

However, a much more fruitful question to explore is probably how to use the
methods developed for Sokoban in other domains. Different domains can provide
different conditions and properties which these methods can be subjected to. The
necessary generalizations can yield interesting new insights into why and how certain
methods work for different application domains.

Yet another step is to try to use the methods developed here (and of course else-
where) in a domain-independent way. It is fairly straightforward for some of the
simpler search enhancements, like transposition tables, to be instantiated for a new
domain. Especially transposition tables could also be turned off, when simple sta-
tistical tests about hit rates show that the savings do not justify their use. But,
how can other, more complex methods be automatically instantiated like that? How
can the knowledge needed for these domain-dependent search enhancements be au-
tomatically extracted? More to the point: How can we invoke a method, instead of a
scientist? With the example of pattern searches we have shown that we can identify
necessary conditions for the use of search enhancements. Can these conditions be
tested automatically and, depending on the result of the test, search enhancements
be enabled or disabled, or even adjusted? Are domain descriptions the source of most
of the necessary information? Or would example searches reveal certain properties of
the search space (of course assuming we are dealing with a well behaved, predictable

domain)? Or both?

Humans are incredibly apt in adapting their problem solving methods. They do
this on many different levels, such as for different domains, as well as for different
instances of the same domain, and even for different phases of the solution of one
problem instance. Humans are able to recognize when they are not making any
progress and they can change their solution strategies. What are the next steps
towards creating an artificial entity with such capabilities?
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Appendix C

Implementation Details

To improve readability and not to wear the patience of the reader too thin, we decided
to move most of the implementation details into this appendix. These details are non-
essential to the basic ideas of the algorithms, but are important to understand how
the implementation is realized. It is geared towards explaining how something works,
without trying to justify anything. There will be more “magic numbers”, but we will
not point to them specifically anymore.

C.1 Construction of Deadlock Tables

This section contains a detailed account of the implementation used to construct the
deadlock tables.

An off-line search was used to enumerate all possible combinations of walls, stones
and empty squares for a fixed-size region. For each combination of squares and their
contents, a small search was performed to determine whether or not a deadlock was
present. This information was stored in a tree data structure.

Each node in the tree of Figure C.1 represents a certain pattern of stones, walls
and empty squares. The root of the tree is the empty maze, except for the man and
one stone. The three successors of the root represent a pattern with an additional
stone, wall or empty square. Each of their successors represent a pattern containing
one more stone, wall or empty square, and so on. Figure C.2 shows a possible order
of placing/querying the squares in a maze. The pattern with a wall on square 1 and
a wall on square 2 represents a deadlock, and the tree terminates at that point. To
find out if a certain pattern is a deadlock, a special search is performed which tries
to push all stones to goal squares. Every square that is not part of the currently
investigated pattern is a goal square. If the search fails to find a solution — pushing
all stones to goals, a deadlock pattern was discovered.

There are many optimizations that make the computation of the tree more effi-

cient.

e If a wall is placed, such that a stone becomes immediately deadlocked (the wall
creates a dead square on which a stone is positioned), the search can be avoided
and deadlock is declared immediately.
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Figure C.1: Deadlock Tree
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Figure C.2: Example Deadlock Table Query Order

ABCDEFGHI

Figure C.3: Goal Macro Example

e If neither placing a wall nor a stone on a particular square created a deadlock,
placing an empty square there cannot create deadlock either.

e When placing a stone, we can check if the patterns computed so far can identify
this position as a deadlock.

e The search of a deadlock pattern can be sped up by removing stones immediately
when they reach a goal square.

e The search can use a cheap lower bound that sums the distances of all stones
to their respective closest goal.

Even with all these enhancements, computing a deadlock table of approximately 5x4
takes several weeks of computation, since most interior nodes of the pattern tree
represent a small search, averaging several hundred nodes. Pushing deadlock tables
further would require an enormous number of CPU cycles and the effects would be

limited (see Section 4.6.4).

C.2 Goal Macros
C.2.1 Goal Rooms

A goal room is a vague concept. Humans rarely define hard boundaries as are needed
by a program trying to precompute goal macros. The procedure described here should
not be viewed as the ultimate answer to the problem of goal room detection.
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First, all goal squares that are direct neighbors are included in the goal room.
If less than three goal squares are found together, no goal room is created, since
the possible savings do not outweight the risk of producing unsafe goal macros (see
Section 4.7.2). Then, using the goal squares as a start state, a highly pruned depth-
first branch-and-bound search is executed that searches through the search space of
goal room configurations for the “best” goal room. “Best” is defined as follows:

e include as few stones as possible,
e leave as few entrances as possible, and
e include as many squares as possible.

The primary concern is to identify a goal room with a minimum number of en-
trances, and then, if possible, to maximize the number of squares in the goal room.
At each node in this goal-room search, successor states are goal-room configurations
increased by one square through which a stone can enter the current goal-room con-
figuration. To improve efficiency, a transposition table is used to prevent duplicating
work. The result of this search for the example problem in Figure C.3 is a goal room
with the entrances at the squares Dc and Dd. Note, that the squares Gc and Gd
would also form a goal room with two entrances, but with fewer squares inside.

To determine goal rooms is extremely difficult, because many problems influence
it. The larger the goal room the larger the potential gains, but also the higher the risk
of creating goal macros that cut off solutions. Fewer entrances are generally preferred,
since many entrances increase the risk of blocking communication channels. If goal
rooms are too small however, the procedures described in the following sections might
not be able to find solutions because stones have to temporarily leave the goal area.

C.2.2 Entrances
There are generally two types of entrances.
Man Entrance: an entrance through which only the man can enter, and
Stone Entrance: an entrance through which stones (and man) can enter.
If we talk about “entrance” without specifying if it is a man or stone entrance,

we will assume it is a stone entrance. For example, assume the entrances to the goal
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room in Figure C.4 are Ec and Ee, then Ec is a stone entrance, since stones can reach
goal squares from Ec. However, the entrance at Ee is a man entrance only; no stone
can reach a goal from this entrance.

C.2.3 Goal-Macro Trees

Having identified a goal room, another off-line search now creates a goal-macro tree.
We call this search goal-macro tree generation and it is discussed in detail in Sec-
tion C.2.5. Figure C.5 shows an example of a goal-macro tree!. Each node in this
tree represents a specific configuration of stones in the goal room. Edges between
the nodes represent macro moves. Each edge is labeled with the number of pushes
required by the macro it represents. A macro move is defined by the entrance square
and the final goal square the stone is pushed to. The root of the tree represents the
empty goal area at the beginning of the search. If at any point in time during the
search a stone is pushed to the entrance of a goal area, the goal-macro tree is con-
sulted as to which macro(s) should be tried by looking up the node that represents
the current stone configuration in the goal room. To speed up the process of finding
the correct node in the goal-macro tree, a pointer is kept that points to the node in
the goal-macro tree that represents the current stone configuration in the goal area.
This pointer is updated every time a goal-macro move is made or undone.

C.2.4 Target Squares

Given a certain stone configuration in the goal area, the goal-macro generation has
to solve the problem of which square(s) should the next stone be pushed to. These
squares are called target squares. There is a potentially different set of target squares

for each entrance.

Several properties of the empty goal squares are considered. Figure C.6 shows an
example goal room that we will be using to explain the following concepts. There are
five entrance-independent properties used:

FIXED: The stone would be fixed if placed on this square. Squares Ik, Kk and Ke
have this property.

DEAD: Placing a stone on this square would render one or more other empty goal
squares immediately inaccessible, essentially creating a deadlock. The squares
Jg and Jf have this property. Note that the emphasis is on immediately, a one-
move look-ahead. Placing a stone on If creates a deadlock as well, but only
deeper look-ahead is able to verify that.

NONOBSTRUCT: The stone would not obstruct any path to any of the other
squares, meaning if a square is reachable from some entrance under some con-
ditions, it still is. The squares Jh,Jh and Kh are such squares. However, the

'In effect, we treat goal-macro trees as graphs for efficiency reasons. We still call it a tree, because
this is more intuitive.
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square Ig is not. It obstructs the reachability of square Ik from entrance A. A
longer path is needed to get the stone to Ih.

ACCESS: Placing a stone on this square would render some square inaccessible from
some entrance. Squares If and Je are example squares with this property.

COMMUNICATION: Placing a stone on a square with this property does not cut
off any communication paths between stone and man entrances. If possible, one
should avoid placing stones on squares that cutoff certain areas of the maze.

The following square properties are with respect to a specific entrance:

OPTIMAL: The stone can reach the target square with an optimal number of
pushes; no other stone is placed such that we have to make a detour. All
squares have this property for each of the two entrances in our empty example
maze. The man is allowed to leave the goal area.

INSIDE: When pushing the stone to a target square with this property, the man
does not have to leave the goal area. The squares /g and Jh don’t have this prop-
erty for entrance A, neither has square Ke for entrance B, given that optimality
is required.

STRICT: This property is a combination of OPTIMAL and INSIDE. Squares Ig,
Ik and Ke do not have this property. Either the man needs to leave the goal
room or the macro move will require a non-optimal push sequence.

LOOSEST: A target square with this property is only reachable with the man leav-
ing the goal area and the stone taking a non-optimal path.

CLOSEST: CLOSEST is trying heuristically to guess where stones should go if
they come through a specific entrance. Since entrances can be arbitrarily far
away from the first goal square (see entrance A for example), CLOSEST is with
respect to the closest goal square to that entrance. For entrance A the squares
If,Ig and Ih are closest, so are the squares Je and Ke for entrance B.

A heuristic function evaluates each of the target squares using the properties
described above. These values and properties are used to order the target squares to
allow for a more efficient goal-macro tree generation.

C.2.5 Goal-Macro Tree Generation

Goal-macro tree generation is a search that traverses the highly pruned search space
of stone configurations in the goal area to find possible ways to pack the stones into
the goal room. Stones can enter through all stone entrances and in any order. The
search saves its results in a goal-macro tree, such that the IDA* search can reuse the
knowledge found by the goal-macro tree generation.

Each node the search tries a set of target squares for each entrance. It places a
stone on each of the squares in turn and recursively calls itself. The recursive call
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returns successfully if at least one possible way was found to pack all the stones into
the goal area. In that case, the goal macro to the target square is added to the current
node. The search attempts to satisfy each of the following properties with at least one
target square: CLOSEST, OPTIMAL, INSIDE and NONOBSTRUCT. If the search
cannot find any successful target square at a node, it returns with failure.

C.2.6 Pivot Points

If all of the target squares have the ACCESS property (they cut off some square from
some entrance), we call the position a ptvot position and all squares are included as
macros. This is necessary because at pivot points in the search there is no way of
knowing how many stones will be pushed through which entrance. Figure C.7 shows
one such position. Placing the stone at any of the remaining goal squares divides
the goal area into parts accessible only from one entrance. Since the goal-macro
generation cannot know what happens during the IDA* search, any guess might be
wrong. Hence all squares have to be included.

C.2.7 Included Stones

The goal-macro tree creation assumes an empty goal area at the start of the search.
If stones were included in the goal area of the start configuration, then the goal-
macro tree that is created, and the pointer the search has into it representing the
current stone configuration in the goal area, do not correspond. Whenever a move
is generated for a stone inside the goal area during IDA*, a special routine is called
that tries to put the stone in the closest goal square that the current goal-macro tree

node offers.

C.2.8 Parking

If the first attempt to build a goal-macro tree fails, it was most likely because a
parking maneuver is needed that the search cannot handle. A second attempt is
started, and this time the search is allowed to keep nodes in the goal macro tree that
have no successor. It is assumed that at that point, stones need to be parked and that
the IDA* search will be able to solve the parking problem. Since parking happens
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mostly late in the goal packing, we can get most of the benefits of goal macros without
rendering the problems unsolvable.

C.3 Customizing IDA* for Pattern Searches

If the pattern searches used the same IDA* procedure and iower-bound estimator as
in Rolling Stone, the search would be prohibitively large and slow. Instead, we use a
special version of IDA* (PIDA*) that is customized for pattern searches, allowing for
additional optimizations that dramatically improve the search efficiency. By relaxing
the rules of Sokoban and introducing new goal criteria, the resulting search is more
efficient and still returns an admissible lower bound on the solution.

C.3.1 Stone Removal

One enhancement is to remove stones from the test maze once they reach a goal
square. For deadlock PIDA* searches, stones are also removed when they are pushed
onto a man-reachable square. This comes from the observation that most deadlocks
result in a number of stones getting crowded together. Hence, if a stone “breaks free”,
we assume we no longer need to consider it in that search subtree.

C.3.2 Multiple Goal States

Another optimization is to relax what we consider a goal state. In this relaxation,
goal states are also positions where the man can reach all squares, and at least one
conflict with the current StonePath has been found. Penalty PIDA* searches do not

use this simplification.

These shortcuts simplify the search leading to large savings in the cost of a pattern
search. However, this comes at the expense of possibly missing a penalty or deadlock.
In practice, the reduced search effort more than compensates for the few missed

opportunities.

C.3.3 Efficient Lower Bound

Since stones get removed from the board when they reach a goal square, the Min-
matching lower-bound heuristic is not appropriate. A cheaper heuristic can be used:
the sum of the shortest distances of each stone to its closest goal. When a stone
moves, this lower bound is easily updated. This results in large savings in the cost
per node compared to the original O(n3) lower bound. Since the number of stones
is small in a pattern search, most search-related routines are fast, because their cost

depends on the number of stones in the maze.
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C.3.4 Transposition Table Entries

Usually, if an IDA* search is started, the transposition table has to be cleared, since
old entries are not valid for the current search. Since multiple PIDA* searches are
run on the same problem just with different stone configurations, we can potentially
reuse transposition table entries from previous PIDA* searches within the same IDA*
search. However, special care has to be taken when updating the transposition table
at the end of an aborted search. Reusing entries from previous searches can drastically
reduce the overhead for the PIDA* searches.

C.4 Relevance Cuts
C.4.1 Influence Table

Our implementation runs a shortest-path finding algorithm to find the largest influ-
ence between any pair of squares. The first is referred to as the start square; the
second as the destination square. Each square on a path between the start and des-
tination squares contributes points depending on how it influences that path. The
more points are associated with a pair of squares, the less the squares influence each
other. The exact numbers used to calculate influence are the following:

Alternatives: A square s on a path will have two neighboring squares that are not
on the path. For each of the neighboring squares n, the following points are
added: 2 points if it is possible to push a stone (if present) from s to n; 1 point
if it is only possible to move a man from s to n; and 0 if n is a wall. Thus, the
maximum number of points that one square can contribute for alternatives is 4.

Goal-Skew: However, if s is on an optimal path from the start square to any of the
goals in the maze, then the alternative points are divided by two.

Connection: The connection between consecutive squares along a path is used to
modify the influence. If a stone can be pushed in the direction of the destination
square, then 1 point is added. If only the man can traverse the connection
between the squares (moving towards the destination square), then 2 points are

added.

Tunnel: If the previous square on a path is in a tunnel, 0 points are added, regardless
of the above properties.

Figure C.8 is used to illustrate influence. For a subset of squares in the figure,
Table C.1 shows the influence numbers. In this example, the program automatically
determines that an influence relationship > 8 implies that two squares are distant
with respect to each other. How this threshold is determined is described in the next
section.

In this example, square A is influencing squares B and C. However, only B is
influencing A (the non-symmetric property). The table shows that there are several
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Figure C.8: Example Squares
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regions with high locality, whereas most of the entries indicate non-local relationships.
Given the high percentage of non-local entries in the table, one might expect relevance
cuts to eliminate most of the search tree. This is not quite true, in that a sequence
of local moves can result in the start and end squares of the move sequence not being
local with respect to each other.

Consider calculating the influence between squares A and C, as well as C and
A (see Table C.2). The table entries correspond to the contribution of each of the
influence properties. The table indicates the influence scores for the squares A, B,
C, and the intermediate squares p and ¢, as well as for the connection between the
squares (indicated by the arrows). Each line modifies the previous line (adding new
values or changing existing values). The final influence, the sum of the preceding
columns, is shown in the last column.
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Table C.2: Example Influence Calculation

C.4.2 Parameter Settings

To reflect differences in mazes, the parameters infthreshold and m are set at the
beginning of the search. The maximal influence distance, in fthreshold, is computed
as follows:

1. Compute the average value for all entries InfluenceTable[z,y] satisfying the
condition that square y is on an optimal path from z to any goal.

2. The average is too high. Scale it back by dividing it by two.

3. To ensure that the cuts are not too aggressive, in fthreshold is not allowed to
be less than 6.

The length of the history used, m, is calculated as follows:

1. Compute the average value for all entries InfluenceTable[z,y] satisfying the
condition that a stone on square y can be pushed to a goal (e.g. in Figure C.8,
squares F' and G would not be included).

2. To ensure that the cuts are not too aggressive, m is not allowed to be more
than 10.
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Appendix D
Failed Ideas

We had no shortage of “good” ideas during the Sokoban project, many of which did
not produce the expected results. This appendix contains a collection of the most
promising of these ideas that we tried but did not lead to significant improvements.
Even though this might not be considered as a contribution of the thesis (hence the
location in the appendix), it might prove valuable for the keen beginners in Sokoban
to caution themselves.

We have found discussions about Sokoban invariably leading into certain direc-
tions, suggesting things to try and ideas to pursue. Unfortunately, we then have to
point out that we have tried many of the suggested ideas with little or no success.
Some of the ideas are saving search nodes, but come at a cost that prohibits their
use because the overall runtime increases. Other methods work, but only for so few
problems that we did not want them included because we were afraid they could do
more harm than good.

Wherever possible, we try to identify the problems that need to be solved in order
to make some technique feasible. This, of course, is not necessarily a complete list,
other problems might exist that we are not aware of. The reader might also detect
a sarcastic tone in the description of some of our attempts - unfortunately that is
what often remains. After months of design, implementation, tuning and debugging,
redesign, reimplementation and tuning and debugging again, and again, the insights
gained are often demoralizing in nature. The search-tree size is one of these concepts
we still fail to appreciate completely. We are faced with such an incredibly large
search space that searching in it for solutions seems like the proverbial search for the
“needle in the haystack” - except that we probably face an even more daunting task.

This appendix might therefore seem like a turnoff to many, but it is not meant like
that. We are convinced that a public record of “ideas that failed” is needed, not just
for projects like Sokoban, but for Computing Science in general. This appendix is an
attempt to start such a record for the domain of Sokoban and single-agent search.
It might help to spark and/or further the discussion into the merits of these ideas
in general, ultimately possibly leading to interesting publications in their own right.
The potential benefits are manifold and not restricted to avoiding duplicated efforts,
but include focusing future research, improving experimental work and increasing the
communication on hard problems.
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Figure D.1: Development Chain of Success

Why is it so hard to make an idea work? Figure D.1 shows what it takes for us
to consider an idea a success. We need to make three critical transitions.

1. We need to take the idea that was conceived (and often has a vague nature) and
form hard concepts around it. It is often easy to utter fuzzy ideas, but the mo-
ment one has to be more concrete, it is much more complicated to capture what
was meant when one was thinking about it. For example, what do you mean
with “avoid difficult stone configurations”? Maybe the concept of crowding is
more concrete: “Many stones in a restricted area must be avoided.”

o

The second step is to develop a concrete algorithm that represents an idea.
How can a hard concept be put into a concrete algorithm? For example, how
can crowding be calculated in a Sokoban maze? What is “many stones” for a
“restricted area” and what does it mean to “avoid” such situation in the search:
cutting them off, or postponing them?

3. Assuming we haven’t failed so far, now we have to find a way to implement the
algorithm efficiently. Saving 50% of the nodes is not good enough if each node
searched becomes 10 times more expensive.

Often, even though all three hurdles were passed successfully, one finds out that
a certain idea is redundant with another idea already present in the solver and only
small additional gains are possible. This is especially prevalent in high-performance
solvers that are very efficient already: improving on their performance is often in-
credibly challenging.

Worse are interacting features. Even though the new search enhancement works
like a charm, it hinders another one and they conflict in such a way that the overall
performance drops.

We have also seen what we call logical bugs. After developing and implementing
an idea, thorough testing might reveal that pathological cases or exceptions exist. To
handle those exceptions well is often the difference between failure and success of a
method.

And then there are implementation errors - or bugs for short...

We have encountered all these problems-and more-while working on the Sokoban
project. The following list of failed ideas provides some insight into our efforts in
tackling the “Go of single-agent search”: Sokoban. We focus here on the description of
the high-level ideas that failed. Many ideas took weeks of effort to convince ourselves

of their futility.
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Figure D.2: A Problem Where Backward Search Wins

D.1 Means End Analysis

Even before we started seriously thinking about exhaustive search, we invested sev-
eral weeks in trying to make Means End Analysis (MEA) work. The problem we
encountered is how to restrict and order all the possible choices of moves. Interacting
subgoals do not allow for easy ordering of the choices. A lot of domain knowledge
would be needed to solve this problem using MEA.

D.2 Backward Search

As already pointed out in Chapter 2, there is nothing forcing us to search from the
initial position forward to find a goal state. We could also start from a goal state and
search backwards. There are several problems we face when implementing such an
approach:

e Multiple start states: Because only the stone/goal locations are defined, the
man can potentially be in different places in the goal position. For push-optimal
solutions that is a small number, like 1 to usually not more than 4, but for move-
optimal solutions this can be quite a bit more. Of course, that increases the
search-tree size.

e We trade forward deadlocks for backward deadlocks. Backward deadlocks are
usually easier to detect; the man runs out of moves, because it is “compressing”
its own space. But, there are backward deadlocks that are just as hard to detect
as forward deadlocks. Those are the ones where the man compresses an area
of the maze, but can escape to do other (futile) work, leaving a few stones in
a locked position. We found with the pattern searches a way to detect forward
deadlocks, but we would have to change them to detect backward deadlocks.

e Usually, goals are in goal areas (forward searches), but when searching back-
wards, they are scattered throughout the maze, making it hard to establish
orders in which you want to put stones in. Goal macros, one of our most
valuable search enhancements, are useless.

We have a maze in which our backward search beats our forward search, but we
had to specially design it to get the effect. Figure D.2 shows the maze. The forward
search needs 99,829 nodes to solve the maze; the backward search needs only 10,244.
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This comparison is not quite fair, since the backward search is not using pattern
searches and thus does not create their corresponding overhead, nor can it appreciate
any benefits. However, turning off pattern searches in the forward search is an even
bigger looser (364,006 nodes) against the backward search.

The feature in the problem in Figure D.2 that makes this problem amenable to
backward search is that the backward search detects early on (high up in the search
tree) that an extra move is needed to get all the stones out of the goal area. The
forward search detects this only deep in the search, resulting in a much larger search
tree before it switches into the second iteration at which point good move ordering
results in a quick successful termination of the search.

However, in general, the backward searches were much larger than the forward
searches, mostly because of the lost opportunity to apply the goal macros.

D.3 Bidirectional Search

Let’s assume we solve the problems with the backward search. We could combine
forward and backward search to form a bidirectional approach. When using iterative
deepening for forward and backward searches, one can easily alternate both directions.
Since both directions can have different search-tree sizes, it seems natural to exploit
this fact. We tried to deepen the search direction that had a smaller tree in the
previous iteration.

The general idea is the following: Let’s say the lower-bound function estimates the
length of a solution (distance to the goal from the root node) to be D. We can start
the forward search using normal IDA* and give it an additional hard depth limit of,
say, X < D. Then we start the backward search and give it an additional depth limit
of D— X. If there was a solution with length D, then the search frontiers should meet
at depths X and D — X. If the frontiers did not meet, no solution exists with length
D. Consequently, we increase the target solution length and start either a forward or
a backward search, now with increased threshold D and increased additional depth
limit X or D — X. If of the two initial searches the forward search had the smaller
tree, it is probably a good idea to use forward search for the next step.

However, the meeting of the search frontiers is still the most important problem.
Traditionally, this is regarded as the main drawback of bidirectional search. The
trouble is that the search frontiers can be so large that one needs lots of memory to
store them. We changed the transposition table code to detect that, but the likelihood
of overwriting entries is high. Table replacement schemes usually prefer entries from
deep searches, and shallow entries are thrown away. We changed that to save the
frontier nodes from clobbering. Then, the table is flooded with all the frontier nodes.

X is an important variable here. Setting X to about half of the solution length
will keep both trees about the same size, maximizing the theoretical savings of bidi-
rectional search. Using X biased towards cutting one search shorter than the other
will keep at least one search frontier small, allowing it to be stored with practical
amounts of memory.

We faced two major problems with our implementation. The first was predicting

174



which direction was more profitable to search. The previous search sizes are only a
weak predictor of the size of the next iteration, because iterations grow rather errat-
ically. Second, what should X be set to? We tried an iterative approach, increasing
X for the backward search for the same threshold D, but that is not cost effective
because large portions of the tree are re-searched.

Future directions might include searching both directions unbounded, assuming
that the first iterations will fail to make the frontiers meet, and to record how deeply
they penetrated the tree to make a more informed decision as to which search direction
to grow next and where to set the depth limit. It becomes obvious here how important
control functions are. They could control the setting of X and D and switch the search
directions, basically controlling the search using information gathered by previous
searches.

D.4 Real-Time Search

The search now spends all its allocated time to find a solution. What if we had to
control a robot that had to move every n seconds? If n is small enough, such that
we cannot find a complete solution, we have to commit to a move without knowing
if that move leads to a solution. Much worse, and unique to domains with directed
search spaces such as Sokoban, by making a move, we might introduce a deadlock
and thus never be able to solve the problem.

Our attempt at real-time search tried to minimize the risk of being trapped in a
deadlock by executing the following steps:

1. Spend about 25% of the allocated time to order moves by small searches and
using the search results to estimate which move is best. If, by chance, we find
a solution, we are done, the rest of the problem is easy. Else, go to step 2.

[SV]

Check if the currently best move is reversible (use 25% of effort). If the best
move is reversible, go to step 4. Else, go to step 3.

3. Check if we can find a deadlock (use 25% of effort). If so, goto step 1. Else, go
to step 4.

4. Execute best move. Go to step 1 to find next move.

The last 25% are “banked” for the cases when we have to return to step 1 because
a deadlock was found in step 3. This procedure usually gets caught in a loop, because
it finds reversible moves attractive. Some measure of progress is needed to guide the
real-time search. Otherwise the threat of deadlock forces the program into a “safe”,

but unproductive choice.

D.5 General Pattern Databases

After a search finishes, the patterns found by the pattern searches are just forgotten.
We implemented a scheme where these patterns are saved and then reused in later,
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different mazes.
We restricted the patterns saved to areas of size 6x6 and filtered all patterns

to remove “loose” walls. These are walls that, when removing the context outside
the 6x6 area, are not connected to any other wall and do not neighbor any stone.
The resulting patterns are then appended to a dynamically growing database of such
patterns. When starting a search, all patterns are matched in all possible ways in
the maze (rotating, mirroring) and verified by a small search to make sure that the
penalties still hold in the new maze. The approved patterns are then entered into the
database.

The overheads at the end and the beginning of the searches are negligible. Even
the verification searches, limited to 100 nodes each, are fast. What kills this ap-
proach is the pattern matching overhead. Too many patterns are entered in the
on-line database, and matching during the search slows the program down signifi-
cantly. Moreover, the matching rate is small. The majority of the patterns are never
matched and only cost overhead without efficiency gain. That is a typical instance of
the utility problem [Min88].

After we abandoned this idea we implemented the pattern limits. With the pattern
limits, this method might work better, but additional investigation is needed.

D.6 Stone Reachability

One of the most exciting, but failed, ideas we pursued is the idea of stone reachabil-
ity. This idea came up in several serious discussions with interested people and was
suggested in slightly different variations. Don Beal called it roaming, Bart Massey
calls them equivalence classes, Neil Burch’s version was named stone reach and Dave
Gomboc suggested it as canonical form.

The idea is roughly the following: Keep pushing a stone until the reachability of
other stones is effected. Reachability of stones is defined as the squares the man can
push stones to without pushing other stones in between. Alternatively, one can think
of it as the area in which a stone can be pushed around reversibly.

The idea is that one could create pseudo macro moves: as long as no stone reach-
abilities are changed, keep pushing this stone and do not consider any alternative
pushes. However, Sokoban proves itself more difficult than foreseen, again. There are
frequently occurring cases when this heuristic fails and truncates solutions. Second-
order reachability considerations are of importance. Often, by moving a stone to a
certain square, stone reachability is changed, but only if another stone is moved first.
We call this shadowing. Moving stone A would change the reachability of stone B,
but stone C shadows (restricts) stone B’s reachability such that the effect is not im-
mediately visible. Only after removing stone C, one can now see that moving stone
A was indeed changing stone B’s reachability.

We tried a two-step version of the initial idea. If the first-order stone reachability
was not effected, a second test was performed. Now, all stones, except the two in
question (A and B in the previous example) are removed and it is determined if stone
A’s move changes stone B’s reachability. If not, we can treat the sequence of moves of
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stone A as a macro. That works quite well, the search trees get reduced by about 50%,
however, the cost of computing stone reachability increases the cost of computation
for each node by about 10 times! The net loss is about 5 times longer runtimes.
The reader is cautioned to assume this might be an implementation inefficiency. We
reduced the cost of naively computing stone reachability by many clever enhancements
by at least one order of magnitude and closer examination reveals why this cost is so
high. To compute stone reachability, one has to compute man reachability many times
over (at least around the stone to be pushed) and that is an expensive computation
(depth- or breadth-first search).

It is hard to accept the fact that a beautiful idea fails on something as trivial
as computation cost of a constant factor. Unfortunately, high-performance problem
solvers cannot conveniently ignore these constants and thus, even nice ideas are of-
ten retired after months of intense intellectual, programming, tuning and debugging
efforts. This is especially frustrating because one can never be sure when to stop
these efforts. The brilliant idea might be just around the corner to save the method,
or more realistically, one might find the bug that caused the implementation to fail.
After all, admitting defeat also means giving up on a lot of effort spent.

D.7 Super Macros

Another exciting idea we pursued was that of super macros. When a penalty search
fails to produce a pattern because there are no more stones conflicting with the current
StonePath and ManPath, then this is a hint that the set of stones just considered can
be pushed to goals independently of other stones. In principle, the penalty search has
Just proven that there exists a solution for an independent subproblem in the maze:
a set of stones.

The knowledge about the independence of a subset of stones can be used to restrict
the IDA* search to this subset, until this entire subset of stones is pushed onto goals.
Hence the name super macros. This idea was implemented and proven to work, but
the savings are small, usually less than 5%. We decided not to use it because there
are a few problems with the above reasoning. Pattern searches assume that a stone
is going to its closest goal. What if that assumption is wrong? We might not have
an independent set of stones; the pattern search could be wrong. While we did not
witness such adverse effects, the risk involved seemed too high to ignore compared to
the possible savings.

Why are the savings so small? These independent sets of stones are usually close
to the goal areas. Usually they are few stones and optimal solutions can be found for
pushing them to goals. With our move ordering, IDA* will try these optimal moves
close to the goal area first anyways. If these moves lead to goal macros, the goal cuts
are already removing alternatives to these moves in case no solution was found.

Super macros are an example of an idea that is almost entirely subsumed by an
array of other search enhancements, and adding it on top does not improve the search
any further.
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D.8 Conclusions
To put it into one sentence:
Ideas are cheap; making them work is expensive.

Every one of the ideas described in this appendix is interesting, even promising.
Most of the time, the reasons behind their failure are not obvious. Future research,
hopefully motivated by new insights, might find ways to turn some of these ideas into
successful methods. However, it is unlikely to be easy to overcome the problems we

encountered.
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