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Abstract

This thesis focuses on identification, control and monitoring of bioprocesses. In particular,
it proposes strategies to iiicorporate infrequent and often delayed ineasurements of the
primary process variables into traditional estirration and monitoring schemes. This
incorporation results in algorithms that generate accurate estimates of the fermentation
states. The work reported here also presents monitoring algorithms that give quick
flagging of faults and good predictions of the final quality variable values.

Feedback regulation and control algorithms require (i) a good process model and (ii)
vregular sampling of the controlled process output’. Bioprocesses usually involve several
intermediate reactions and complex feedback mechanisms. It is therefore not possible to
develop an accurate dynamic model for the: bioprocess. A greater and more serious
limitation from the control perspective is the lack of adequate on-line sensors that can
ineasure the primary process variables on a re'gulal‘~ basis. Thus, the task of regulation and
monitoring is a formidable and challenging one.

Traditional estimation strategies address the problem of state and parameter estimation by
using the (extended) Kalman filter in an inferential framework. Secondary measurements
such as the carbon dioxide evolution rate (CER) are used along with an inferential model
of the process to estimate the primary process outputs. Such strategies disregard the
availability of the infrequent, delayed measurement of the primary process variables. To
accommodate such measurements, this thesis proposes to use the.multiratc formulation
of the classical Kalman filter. Observability problems due to measurement delays, that
cormmonly occur due to elaborate off-line assay procedures, are addressed elegantly in the
extended Kalman filter framework. Other obServabiIity problems due to inadequate
modelling of the influence of nutrient concehtrations on the specific growth rate are also
shown to occur. These problems have been addressed by using a multirate formulation
of a reduced order estimator that has been proposed in the literature. The adaptive
estimation schemes proposed in this thesis have been extensively validated using
simulations, experimental and industrial data. Nonlinear control, using the above adaptive

estimator, along a priori specified trajectories is also demonstrated using simulations.



Often times, the only supervisory objective in process control is to perform the task of
on-line monitoring and fault detection. This thesis proposes an approach based on the use
of multivariate statistical tools, to perform monitoring and fault detection for fed-batch
fermentation processes. The off-line measurements of the primary process variables are
included using a multiblock, multirate formulation of the traditional projection to latent
struciures (PLS) algorithm. The resulting monitoring strategy is evaluated by extensive

simulations.
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Chapter 1: Introduction.

Chapter 1

Introduction

Bioprocesses involve the manufacture of low volume, high value specialty chemicals. The
manufacturing process involves a proprietary recipe, is highly specialised and several
parameters need to be optimized to achieve a productive batch run. There are significant
incentives for implementing strategies that promote their optimal operation. Such
optimization strategies however need careful monitoring and goodv control of process
variables at optimal values. Bioprocesses have several deterrents in achieving optimized
operatioh. These processes are poorly modelled, nonlinear, time varying and permit only
- infrequent sampling of tﬁe process due to the risk of contamination. There is also a
significant measurement delay associated with off-line assay procedures. Bioprocesses
therefore offer significant challenges in the development and implementation of
optimization strategies that have proven to be so useful elsewhere in the chemical process
industry. This thesis focuses on the issues related to estimation, control and statistical
monitoring of biochemical processes. The results proposed in this thesis aiso have useful

applications in traditienal chemical processes such as polymerization and distillation.

1.1 Motivation

Feedback regulation of the process variables along a priori established optimal trajectories
or profiles is one of the strategies that achieves optimai fermentation operation. Feedback
control however requires regular sampling of the process variables; a requirement that is
not easily possible in a bioprocess environment. It also needs a good model of the process

that relates the controlled process outputs to the manipulated inputs. Due to the inability
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to model several reactions that take place in a fermentation, a lumped, qualitative model
is used to describe the time evolution of the process states. This particular structural
characterization results in a few process parameters such as the yield coefficient to be
time varying. It also introduces @ small plant-model mismatch. The nonlinear, time
varying nature of such models and lack of knowledge regarding the exact dependence
of critical process parameters such as the specific grbwth rate on the envh‘onmcntzﬂ
variables, preclude the use of linear model based feedback régulation strategies. The
above problems and other issues related to measurement, modelling, estimation and
control in a bioprocess context are discussed in Fish er al.(1989).

~ Inferential estimation strategies, that use other secondary measurements along with
a proceyss model to generaté estimates of the primary process variables, have been
proposed for use in bioprocesses. Pioneering efforts in the area of state estimation for
bioprocesses (Stephanopoulos and San, (1984), Bastin and Dochain (1990)) have shown
that it is possible to use optimal inferential estimation strategies to generate estimates of
the unmeasured critical process states such as the biomass and substrate concentrations
from measurements of other secondary, growth related process outputs such as the \c:mb‘;cm
dioxide evolution rate (CER) and the oxygen uptake rate (OUR). In the work by
Stephanopoulos and San (1984), an extended version of the optimﬁl Kalman Fi’lter (EKF)
has been used along with a model based on material balances using an assumed chemical
formula for thé biomass. Estimation algdrithms, 'siich as the Kalman filter (Kalman
(1960)), are termed optimal because they make use of all the information that is available
about the process through the process model and the measurements and then determine
the optimal estimate of the state variables in a minithum variance sense. Estimaies are
generated by optimally weighing the information available through the process model
versus the measurements. In a typical bioprocess environment, in addition to the
secondary variables, the primary vartables are also sampled, althoug!x infrequently, for off-
line monitoring. In such a scenario, estimation algorithfhs need to accommodate this

infrequently sampled measurement to generate optimal estimates of the system states.
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Thus, there is a need to incorporate the infrequently and irregularly sampled
measurements of the primary process outputs into such estimation schemes. This thesis
proposes a formal way of incorporating the infrequently measured, delayed primary
system output into the estimation scheme by using a multirate extension of the optimal
Kalman filter. o

Observability issues are very important in the design of adaptive estimators. In
fermentation processes (as shown by Stephanopoulos and San (1984)) as well as
polymerization processes (as shown by Schuler and Suzhen (1985)), there indeed are a
few state variables that are unobservable from the measurements. To generate estimates
of such state variables, the strategy followed in both of the above processes, is to use
réduced order estimators. Two subsystems are generated by partitioning the overall system
into observable and unobservable susbsytems. The outputs (estimates) of the observable
subsystem act as inputs to the unobservable subsystem which then generates open-loop
estimates of the unobservable states by direct integration of the model equations. For the
fed-batch fermentation, Stephanopoulos and San (1984) have Shown that it is possible to
generate estimates of the substrate concentrations, which are unobservable, from the
measured CER. For the same problem, this thesis proposes to use the multirate Kalman
filter to generate closed loop estimates of the substrate concentrations and the time
varying yiel'd coefficient. '

Often times, batch or fed-batch fermentations are run by following a prescribed, time
tested recipe. In such cases, feedback regulation and control is not really an important
objective. It may not be necessary to explicitly generate estimates of the primary process
variables. It is perhaps more important to monitor the fermentation usihg information that
is available from the measured variable profiles of past, normal fermentation runs.
‘Statistical process control strategie’s; such as the principal compone;xt analysis (PCA) and
' projection to latent structures (PLS) can be used to analyze the résulting, often
significantly correlated, data and perform early on-line detection of the occurrence of

faults and deviations. Statistical monitoring strategies proposed so far (Nomikos and
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MacGregor, (1994)) disregard the multirate nature of the measurement system so typical

in bioprocesses. This thesis proposes a formal way of including such measurements into

the monitoring scheme.

1.2 Thesis outline

This thesis is organized as follows. A detailed introduction and a summary of the chapter
contributions is given at the beginning and end of each individual chapter. Each chapter

also has a nomenclature section to describe the symbols used in the texi of the chapter.

Chapter 2 looks at issues related to multirate sampling and presents the multirate
extension of the classical Kalman filter that is necessary to accommodate multiple rates

of sampling/ measurement availability into optimal estimation schemes.

The importance of a structural system observability analysis in the design of state and
parameter esnmau(m schemes is empha51zed in chapter 3. Using case studies taken from
the literature, it proposes a modified observation system that alleviates the problem of
reduced system observability due to measurement delays typically found in off-line assay

procedures in chemical and biochemical processes.

Chapter 4 focuses on the use of the multirate Kalman filter presented in chapter 2 with
a sequential parameter estimation strategy illustrated by Park and Ramirez(1990) to
perform adaptivei estimation in fed-batch fermentations. Validation results using

experimental data from two different fed batch fermentations is presented.

The use of an extended version of the multirate Kalman filter to perform simultaneous
state and parameter estimation using infrequent, delayed off-line biomass measurements
and regular, on-line secondary measurements, is presented in chapter 5. The strategy is

evaluated via simulation results involving a fed batch antibiotic fermentation.
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Chapter 6 looks at the effects of maintenance and endogenous metabolism on the adaptive
estimation task. A modified system description and measurement equation has been used
to alleviate the observability problems found to exist in such a scenario. The adaptive

estimator is validated using experimental data from a fed batch fermentation.

A multirate, reduced order estimation scheme to account for unobservability of the
substrate concentrations from on-line measurements, is presented in chapter 7. The
multirate extended Kalman filter developed in chapter 5 is cascaded with a second
multirate estimator to perform the estimation of substrate concentrations and the yield
coefficient. Validation results kusing simulations and data from an industrial fermentation

are presented.

Chapter 8 extends the multivariate statistical monitoring schemes, such as the Principal
Component analysis and Projection to Latent Structures, proposed in literature to include
off-line measurements and applies the resultant scheme to the monitoring of a fed batch
antibiotic fermentation. The monitoring aigorithm is evaluated using extensive

simulations.

Chapter 9 presents conclusion from the results presented in the complete thesis and

provides suggestions and directions for future research.
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Chapter 2.

Optimal Estimation Stratégies for

Multirate Systems

Filtering and estimation tasks for processes commonly encountered in chemical
engineering need to formally accommodate multiple time scales and multiple rates of
measurement availability. To achieve this objective, traditionally used optimal filtering
and estimation algorithms need to be expressed in a multirate form. The main motivation
of this chapter is the presentation of the linear Kalman filter in a multirate form. The
algorithm equations and the filtering mechanism is discussed. Extex]sions needed to make
the linear multirate Kalman filter applicable to proceSses in chemical and biochemical

engineering, which are nonlinear and time varying, are also discussed.



Chapter 2: Optimal estimation strategies for multirate systems.
2.1 Introduction

Traditional control schemes such as classical feedback control rely on regular sampling
of the primary system output that needs to regulated. If the latter is not measurable at
regular sampling times, other measurable secondary process outputs can be used along
with an inferential model, that relates the primary and secondary process outputs, to
generate estimates of the primary process output in some optimal sense. These estimates
are then used to calculate control action updates. Even when measurements of the primary
process outputs are available, they could be corrupted with measurement noise. This may
necessitate the use of optimal filters to generate filtered estimates of the process output.
Thus, traditional control and estimation schemes are designed to run at a uniform rate i.e.
the system outputs are measured and the appropriate control action is computed at the
same sampling rate.

In multi-input, multi-output (MIMO) systems, it is sometimes helpful to use different
sampling rates to obtain measurements of various system outputs and to calculate the
control inputs. Such systems, with different rates of sampling for the measurements and
control actions, are called multirate systems. Analysis of multirate systems was first done
in the early 1950’s (Crochiere and Rabiner,1983). During this time, the focus of the
analysis was to convert the sampling rates of signals in the system from one rate to
another with a view to incieasing the efficiency of a processing algorithm. The need for
multirate estimation and control was first felt in aerospace applications where due to high
frequency bending mode effects, it was necessary to sample a few outputs at a rate that
was an order of magnitude higher than that necessary for suitable control of rigid body
motions (Glasson,1983). Multirate systems can occur broadly in two possible ways:

1. Uniform output rate, multiple input rate : In such systems, every output is measured

at the same sampling rate but the input actions are calculated and implemented at a
different sampling rate. One instance of this case is the paper machine example (Franklin
et al.(1990)) shown in Figure 2.1. Because the air pressure dynamics are faster than the

stock dynamics, the air rate control action needs to be implen:ented more rapidly than the

7
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Figure 2.1 : Multirate sampling in a pressurized #iow box of a paper machine.

Figure 2.2 : Multirate sampling in a magnetic tape drive.
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stock control action.

2. Uniform input rate, multiple output rate : In such systems, every input is sampled at

the same rate but the outputs are measured at different sampling rates. For the magnetic
tape drive (Franklin et al.(1990)) considered in Figure 2.2 , the tension in the tape has to
be measured at a faster rate than the tape position, because the tape tencion results from
faster natural dynamics than the tape position.

The above examples illustrate naturally occurring MIMO systems where differing time
scales/ dynamics require multiple rates of sampling. In many chemical/biochemical
processes, a multirate sampling problem is also naturally posed, not only because of
differing time scales, but often due to sensor limitations. The primary process outputs that
need to be regulated, such as reactant/product concentrations in a reactor, cannot be
measured on-line at a regular sampling time due to lack of adequate on-line sensors. They
are usually sampled irregularly because of costly overheads in off-line assay prOcedures.
The latter also introduces a significant measurement delay in the availability of the
primary process variable values. Other secondary process outputs, such as reactor
temperatures, that are strongly correlatcd with the primary process outputs, can be
measured on-line at relatively rapid sampling rates. These secondary measurements are
traditionally used, together with an inferential model, to generate estimates of the primary
process variables. Thus a multirate sampling scenario exists in chemical/biochemical
processes, even for systems with uniform time scales, due to lack of adequate on-line
sensors for the primary process variables.

Conceptually, estimation schemes to estimate the states (and parameters) of a system from
the measured outputs are said to be optimal when they make the best use of all the
information that is available on the process model, the statistical properties of the process
and meésurement noise and the measured output data. Inferential estimation strategies that
have been proposed so far in the literature for chemical processes do not accommodate

the infrequently measured primary system output are therefore suboptimal with respect

to the above optimality criterion.
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Such state estimators can be considered optimal only if they are able to accommodate,

in addition to regular measurements of the secondary process variables, the delayed and

infrequent measurement of the primary process variables. In essence, such estimators must |
be able to accommodate multiple rates of sampling i.e the slow rates of sampling of the

primary process variables and the relatively rapidrate of sampling of the secondary

measurements. In addition, they must also be able to accommodate delays in the primary

'proccss measurements and compensate for the decreased system obscrvability that is

generally the consequence of delayed measurements.

Approaches to control infrequently measured process outputs via the inferential estimation

route have been published extensively in the literature. Such strategies that have been

proposed for linear systems cannot be directly applied to chemical processes because of
the following characteristics :

(i) Process nonlinearities : For chemical processes, the interrelationships between the

system states are usually nonlinear. Optimal state and parameter estimators thus need to
be implemented in a linearized or a nonlinear framework to be applicable to chemical
processes.

(ii) Time varving parameters: The kinetic parameters that appear in the chemical process

model are not accurately known and are time varying. These time varying characteristics
.require the estimation scheme be implemented in an adaptive framework.

Zstimation schemes, that do not accommodate the infrequently measured output, are
usually based only on an inferential model and use only secondary measurements to
estimate the primary process output (Brosilow and Tong, 1978). Such estimation schemes
often give biased estimates of the process output because of model-plant mismatch and
‘the presence of disturbances. Estimation schemes that incorporaic the infrequently
measured primary process output into estimation échemes were first ,propbsed by
D’Hulster and Cauwenberghe (1981). Guilandoust et al.(1987,1988) proposed a multirate
estimation scheme that uses the infrequent primmary measurement to update.a transfer

function based inferential process model which can then be used to estimate the primary

10
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variables from the secondary process outputs. Shen and Lee (1989) proposed an adaptive
inferential control scheme for processes with intermittent measurements in which a
discrete convolution model was directly adapted using the intermittent measurements. Lu
and Fisher (1990) have formulated the multirate estimation problem such that the working
equations reflect more fully and fundamentally the inferential relationships and have
formally proved the convergencé properties. Iyer (1992) derived the same transfer
function model as a suboptimal casz of the model that resulted from using the model
based multirate Kalman filter formulation of Glasson (1980,1983). Tham et al. (1991)
have implemented a multivariable, multirate self tuning control algorithm on a distillation
column and have shown that improved performance can be obtained using the algorithm
over a PI/PID based strategy. In all of the above approaches, the adaptation is carried out
on a transfer function model of the process. While such an approach has inherent
advantages with respect to global applicability and particularly for poorly modelled
processes, it is useful to study the parameter adaptation to a dynamic state space model
that results from a structural or qualitative description of the process. It is easy to relate
the parameters of the model to the true process and any a priori process knowledge can
be explicitly incorporated into the estimation scheme.

Kalman filtering strategies (Kalman, 1960) have been traditionally used to perform
the tasks of filtering and inferential estimation of chemical processes. The process models
used in the Kalman filter are state space models that result from writing a dynamic
balance on the system states. The assumptions that need to be made in a Kalman filter
formulation are (Maybeck (1979)):

(i) Linear model representation of the process : When nonlinearities exist, a typical
engineering approach is to linearize about some nomini. point to yield a linear
perturbation Aoi"error model. |

(2) Whiteness of the noise processes : This assumption can be justified from the point of
view of mathematical tractability. Also, even if the noise is not white in the system

bandpass, a shaping filter can always be used to achieve the representation of a linear

11
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system driven by white noise.

(3) Gaussian distribution of the noise processes : This assumption can be justified by the
fact that a process or measurement noise is typically caused by a number of small sources
and it can be mathematically shown that when a number of independent variables are

added togéther, the summed effect can be closely described by a Gaussian density.

For non-linear and {or) time varying processes, an extended Kalman filter is thus often
used on a linearized model of the processes. When the system outputs are measured at
different rates, the (ext:ded) Kalman filter needs to be developed in a multrate
framework. |

Glasson (1980,1983) has proposed the multirate Kalman filter algorithm and has used it
for estimation and regulation tasks in aerospace application. In this chapter, the multirate
Kalman filter algorithm will be discussed and comments on extending this formulation

to non-lineay/time varying processes will be presented.
2.2 Plant Model

Consider the overall system state vector X (size n by 1) to be partitioned as X=[x;x.]
where X, (size np by 1) and x; (size ns by 1) are respectively the primary and secondary
system states. The overall plant model can then be written in terms of the primary and
secondary subsystems at any sampling instant i as, .
x(@+D| A A x| |[w®
X(i+1) = -r =77 ™I I 2.1
x (i+1) A A lix® w ()

=p s

Let v (size nv by 1) and y (size ny by 1) be two independent measurement vectors
associated with the measurement of the secondary and primary states respectively. The

system output equations, in terms of the above measurement vectors, can be written as,

@) = [_ﬂ_\] X@ +w () 2.2)

12
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) = [% E® + »,o - (2.3)

In the above equations, w is assumed to be a white, gaussian noise process. Let the
measurement vector y correspond to the measurement of the primary states x,. These
measurements woul.d:be available less frequently than the secondary measurement vector
v. ‘This could occur Because ©f sensor inadequacies in the measurement of y as explained
earlier. Alternatively, it could alsa oszar because of the relatively slower dynamics of a
few of the states that affect y. Both the measurement vectors need to be considered in
developing an estimation strategy that optimally makes the best use of all information
available about the process through process model and measured system outputs. Glasson
(1980,1983) has presented an optimal multirate estimation algorithm that can formally
accommodate the multiple rates of measurements related to the primary ahd secondary

states. The estimation algorithm is discussed in detail in the following section :

2.3 Optimal multirate estimator design

Let us assume that the basic sampling period T to be the sampling period at which the
secondary measurements arrive. We terin those sampling instants when only the secondary
measurements v are available as minor sampling instants. At other sampling instants,
called the major sampling instants, we have measurements y and v associated with the
primary and the secondary states. Let the major sampling instants arrive every JT time
units, where J > 1 for a multirate scenario. The measurement vectors z_m,io, ({ny+nv) by

1) and z ., (nv by 1) at the major and minor sampling instants respectively can be

written as,
H 24
=y ) N e . .
2,0 = | X0 +w O =H XO+w O
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z ()= [i ] X +w (@) = __1_1__m mz(_(i) +w (D) (2.5)

It can be secn‘ that the dimension of the measurement vector 2 varies periodically between
the major and the minor sampling instants. Accordingly, the dimensions of the
measurement noise covariance matrix varies periodically and can be denoted as R, j;;or
((ny+nv) by (ny+nv)) and R, ... (av by nv) at the major and minor sampling instants
respectively. The dimensions and magnitudes of the Kalman filter gains derived by
propagating the discrete Kalman filter covariance equation (Franklin er al.(1990)) to a
(periodic) steady state are also periodic. The optimal multirate Kalman filter can then be
written using the time update and measurement update mechanisms (Franklin et al., 1990)
as follows :

2.3.1 Time update eguations

Assuming that an optimal estimate of the state vector X(i-1/i-1) is available at the
previous sampling instant, the time update equations can be written by simply integrating

the model equations (2.1) as,

?_?(i/i'él) = A X(G-14-1) (2.6)

$Gli-1) = H X(ifi-1) Q@
-y .

9Gfi-1) = H XGfi-1) (2.8)

The a priori (or before measurement) estimate of the covariance matrix of estimation

errors P is given by,
P@fi-1) =A Pi-1/i-1) é_z + R 2.9

In the above equations, A is the state transition matrix defined in a partitioned form in

equation (2.1) and R, is the covariance of the white, gaussian process noise shown in

14



Chapter 2: Optimal estirmation sirategies for multirate systems.

equation (2.1).

2.3.2 Measurement update equations

Since the dimensions of the measurement vector vary, independent update mechanisms
need to be set up at the major and minor sampling instants. At the major sampling

instants, the Kalman gain is a larger matrix (n by (ny+nv)) and can be written as :

-1
K =pPGi-DE" [H PGi-DH  +R ] (2.10)
major = =najuiTmajor— major ==.major
The measurement update equation can be written as,
Xy = Xii-1)+K € (2.11)

—ma;or—"""f"’

where €, is the innovation or estimation error at the major sampling instant and is

given by :
e o - [x(i)—x(z/z-l)] .
—major v(i)-v(ifi-1)

The a posteriori (or after measurement) estimate of the covariance matrix of estimation

errors P is given by :

PG = [I -K H _1_’_(!'/1'—1)] (2.13)

Smajor—major—

At the minor sampling instants the Kalman gain is a smaller matrix (n by nv) and is

expressed as :

K = P@/i-DH" |H P(ifi-1

-1
YT + R
no™—minor— minor ==z minor

(2.14)

The measurement update equation at the minor sampling instant is given by :

15
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Xafiy = XGfi-1) +K e (2.15)
where €., 1S the estimation error at the minor instants and can be written as,
€, = [ - %Gi-1)] (2.16)

The propagated (a posteriori) value of the covariance matrix of estimation errors is :

PGy =[r -K H PGi-1)] 2.17)

WNnorT Mo

The mechanism of the multirate estimation scheme can be explained in the context of a
chemical reactor where the states of primary interest are the reactant/product
concentrations which are generally measured at infrequent (major) sampling instants. The
secondary measurement and state in this context is the temperature of the reactor contents
which can be measured at regular (minor) sampling instants. The objective of the
multirate estimation in the context of the chemical reactor is to generate estimates of the
reactant/product concentrations and (filtered estimates of ) the ternperatures at regular
sampling instants. At the minor sampling instants, when the primary measurements are
not available, the estimates for the overall state vector are inferentially generated using
the secondary measurements. This mechanism therefore requires the plant state vector to
be fully observable from the secondary measurements. Even if the observability criterion
is satisfied, the estimates can diverge for reasons such as mismatch in the inferential
process model. Although this measurement update gives an optimal estimate of the state
vector given the measurements at the minor sampling instant, the error covariance of the
primary state grows with time. At the major sampling instant when the measurement of
the reactant/product concentration is available, the primary state estimate is reset i.e. an
accurate estimate of the primary state is possible with the primary measurement. These
reset estimates are then propagated at subsequent sampling instants via the time update
mechanism until a new primary measurement is available. The Kalman gains also exhibit

a similar periodic behaviour. At the minor sampling instants, the Kalman gains associated
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with the innovations of the secondary measurements grow with time. The gains are reset

when the primary measurements are available at the major sampling instants.
2.4 Summary of the multirate Kalman filter algorithm

Assuming that at any sampling instant i, a state prediction X(i/i-1) and a covariance
matrix prediction P(i/i-1), using data upto the previous (i-1) sampling instant, is available,
the algorithm can be summarized as follows:
Step 1 Check if the sampling instant i is a major or a miaor sampling instant. For
automated sampling devices, i will be an integral multiple of JT (for example,
i=5T,10T.....) at the major sampling instant and simply an integral multiple of T (for
example, i=T,2T,3T,...) at the minor sampling instant. If the primary measurements arrive
due to off-line assay procedures &s in a chemical or a biocheﬁﬁcél process, the arrival of
such a measurement at the major sampling instant can be flagged by the operator.
Step 2 If i is a miajor sampling instant, perform the measurement update using equations
(2.10-2.13). At the minor sampling instants, perform the measurement update using
equatiions (2.14-2.17). The measurement update equations can be summarized as
» Generate the innovations vector by subtracting the measurement from the
prediction (equation (2.12) or (2.16)).
e Evaluate the Kalman gain using the a priori covariance, the measurement noise
covariance and the measurement matrices (equation (2.10) or (2.14))
» Generate the state estimate X(i/i) using equations (2.11) or (2.15).
» Evaluate the a posteriori estimate of the covariance of estimation errors
(equation (2.13) or (2.17))
Step 3 Using equations (2.6j to (2.9) perform a one step ahead prediction of the state and

the covariance matrix of estimation errors.

2.5 Extensions

The above multirate Kalman filter formulation has been developed for linear, time

invariant systems. To make it applicable to a chemical process, it must be extended to be
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applicable to nonlinear processes and processes with time varying parameters. For
nonlinear systems, it is often recommended that the system be linearized around some
nominal operating point and use the same Kalman filter equations on the linearized
system. The resulting filter is called the extended Kalman filter(EKF). Thus the linear
formulation of the multirate Kalman filter can, in principle, be extended for multirate state
estimation in nonlinear systems by formulating an extended multirate Kalman filter. For
time wvarying parameters, several different approaches such as sequential paraméter
updating (Ljung and Soderstrom,1983) and the extended Kalman filter have been
proposed. When time varying parameters are modelled as white noise processes with
unspecified probability demsities (Ray,1981), the resulting state space description is
nonlinear. The task of adaptive estimation has been traditionally camied out using the
EKF. For multirate systems, the time varying case can also be- solved by using the
extended multirate Kalman filter formulation: This will be discussed in greater detail in
Chapters 3 and 5.
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2.7 Nomenclature
Roman

i sampling instant for discrete model representation.
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v vector of secondary process measurements.

w white noise vector.

X state vector in the state space process description.

y vector of primary process measurements.

z measurement noise vector.

A discrete state transition matrix.

H measurement vector in the discrete system description.

K Kalman gain matrix at any sampling instant.

P covariance matrix of estimation errors.

PI proportional-integral controller.

PID pi‘oportional—integral-derivative controller.

R covariance matrix of measurement noise.

X superstate formed by appending the primary and secondary states.

Greek

epsilon innovations vector at any sampling instant.

Superscripts

A state estimate.

Subscripts

major related to the major sampling instant.

minor related to the minor sampling instant.

P related to the primary subsystem.

PP subscript used for appropriate partitioning of the state transition matrix in
equation (2.1)

ps subscript used for appropriate partitioning of the state transition matrix in
equation (2.1)

s related to secondary subsystem.

sp subscript used for appropriate partitioning of the state transition matrix in

equation (2.1)
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Ss subscript used for appropriate partitioning of the state transition matrix in
equation (2.1)

pertaining to the vector of secondary measurements.

pertaining to white noise process.

pertaining to the vector of primary measurements.

N < g <

pertaining to the vector of measurements.
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Chapter 3

Structural Observability Issues in

Nonlinear State and Parameter Estimation

The main objective of this chapter is the investigation of methods to analyze and enhance
the observability properties of nonlinear processes in a linearized framework. The concept
of structural observability is introduc¢ed and a systematic procedure to perform the
observability analysis is described and app#ied so two problems taken from chemical and
biochemical engineering literature. Issues rela¢zd to weak system observability due to the
presence of measurement delays, that are commonly found in’the measurement of
chemical process variables, are also discussed and a simple yet effective way of
modifying the measurement system to erhance the system observability in the presence

of such measurement delays is presented.
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3.1 Introduction

Optimal estimation schemes are often used when some of the system states of a process
are not directly measurable but their values are required to provide }egular control moves.
The measured system output is usually a linear combination/function of the system
internal states. For example, the measured product evolution rates, in a chemical reactor,
are a function of the reactant concentrations. Alternatively, the measured system outputs
can be one of the system states itself. In such cases, the need for optimal state estimation
can also arise because the measurements could be corrupted with sensor noise. A noisy
temperature measurement in a chemical reactor is one example of this case. From a
process monitering and control viewpoint, it is always desirable to have estimates of the
system states that are generated by making best use of the system model and the

measurements. In this sense, optimal estimates of the system states are required.

Central to all optimal estimation strategies is the assumption that the sysiem states are
observable from: the measured system outputs. Conceptually, the system stafes must affect
or influence the measured output in some known way in order for them to be observable
from the measured outputs. Mathematically, the observability critericn can be verified by
constructing an observability matrix and ensuring its full rank at all times. This chapter
will briefly introduce the mathematical steps involved in constructing the observability
matrix and verifying its rank for a linear time invariant system. These ideas will be
extended to nonlinear systems. The concept of structural system observability will be
introduced and applied to analyze the observability properties of

) Fed-batch fermentation process; and

(ii) A non-linear chemical reaction system with measurement delays.

3.2 System Observability for Linear Time Invariant
Systems

Consider the following discrete state space model for a linear time¢ invariant system,
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x(i+1) = @ x(@) + L u@® + wl ; Ew wDH=Q (3.1)

20) = H x() + v ; EW)=R, 32

Let the system state vector X have n states and the measurement vector z have m

measurements. The above system is said to be completely observable from the
measurements for t, < t < t; if, for every t, and some t;, every state x(t,) can be
determined from the knowledge of z(t) over the interval t, <t < t,. Mathematically, the
observability criterion can be verified by constructing the m x n by n observability matrix

O as,
Q-[HiH®; i H 2 G3)

For each of the states in x to be observable from the measurement z, the rank cf the

above observability matrix must be n. ‘

Remark 1 : The above observability test is a "yes"” or a "no" measure. Ad-hoc measures
of "strong" or "weak" observability can be obtained by examining the singular
values‘ or condition numbers of the observability matrix (Lin (1979), Shah ez
al.(1981)).

Remark 2 : The above observability criterion gives necessary conditions to achieve
exponential observability for a given system. In other words, if the above criterion
is satisfied, it is possible to achieve arbitrarily fast rate of convergence of the
estimates to their true values by choice of the estimator gain. Even when the
system is not exponentially observable, it is still possible to design observers
whose performance (convergence characteristics) will depend on the experimental
conditions. Such observers are called asymptotic observers (Bastin and
Dochain,(1990)).

3.3 System Observability For Nonlinear Systems

For nonlinear systems, conditions to check for full system observability are difficult to
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apply relative to those for linear systems (Ray,1981). It i3 often recommended that the
nonlinear model equation be linearized first about some nominal trajectory X(t). The
conditions that are used to verify full system observability for linear systems can then be
applied on the linearized model (Hwang and Seinfeld, 1972). The results of such an
observability analysis on linearized models will obviously be valid only in a loczl sense

around the linearization point.

Consider the following continuous time, noniinear process model,

() = fd + E@) GH
YO = hxn + @ (3.5)

Linearizing around some trajectory x(t) that satisfies (4), we get

3x(r) = Al &) | G.6)
Sy(?) = H(OBx() ) G.7
where,
A0 = X 50 ; Ho = 22w 3.8)
= ox = ox

In the above equations, the control input is ignored as it does not affect the observability
analysis. Likewise, the noise processes are ignored because the objective of linearization
is to check for observability and the latter is a property of determinisuc¢ systems (Ray,
1981). In order to check the observability in discrete time, we must discretize the system
equations using a suitable sampling time <. The resulting equations in the discrete domain

at any sampling instant i can be written as,

8x(i+1)=® 8x(i) (3.9)
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Sy = C@DHdx() (3.10)

In traditional estimation strategies, the linearization is done around“the latest state estimate
X(i). The observatility matrix defined in equation 3.3 can be constructed using the above
linearized system matrices and its rank can be checked to verify system observability. In
principle, this exercise must be carried out on all possible values that the state vector x
can take to ensure full system observability over the entire domain. This can be
computationaliy very expensive. However, in practice, observability is found to depend
quite strongly on the system structure (Ray, 1981). These two facts suggest the use of the
concept of structural observability and symbolic computation tools to construct and check
the rank of the observability matrix. The advantages to the symbolic approach are (i)
structurai deficiencies, either in the system description or in the measurement system that
cause the system to be unobservable, can be detected easily without a knowledge of the
actual process parameters and (ii) the results are generic i.e. they are valid over all values
that the state vector x can take with the exception of zero and infinity. In this chapter, two
case studies from the chemical engineering literature are considered to illustrate the
symbolic approach. The symbolic computations were performed using Maple (Waterloo
Maple Software,(1981)). )

3.4 Case Studies
3.4.1 CASE STUDY 1 : Fed batch Fermentation

Consider the following dynamic equation for growth of biomass in a fed-batch

fermentation process :

db(r)

= n(Ob® + w(l) 3.11)

In the above equation, b is the cumulative biomass in mass units, p is the specific growth
rate of the microorganisms and w is a zero mean with unspecified probability distribution.

Due to inadequacies of structural models for the specific growth rate as proposed in the
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literature (Bastin and Dochain,(1990)), its dynamics are assumed to be modelled by a
white noise process as,

d,
Tl‘tl- = w,(9) (3.12)

where w, is again a zero mean white noise input with unspecified distribution. The
specific growth rate is then estimated on-line. Let the measured system outputs be (i)
cumulative biomass b and (ii) the carbon dioxide evolution rate(CER) which is a function

of the growth and maintenance related culture activities. The system output equation can
then be written as,

.| b o b(D) . (3.13)
X5 = [CER([)}T](I) ) [(k,}l(i) +mc(i))b(i)}n(l}

In the above equations, m, is the maintenance coefficient and k, is the yield coefficient
relating biomass growth to CER. The maintenance coefficient can be time varying for the
class of antibiotic fermentations. Although it is not an important parameter in the
fermentation, its value still needs to be updated in an estimator model to prevent bias in

the specific growth rate estimates. Its dynamics are also assumed to be modelled by a
white noise process as,

—= = w,() 3.19)

3.4.1.1 Observability analysis

Our objective is to analyze the observability properties of an estimator model that can
generate estimates of the cumulative biomass, the specific growth rate and the
maintenance coefficient from the measurements of the cumulative biomass and CER. To
do this, we construct an augmented state vector X=[b u m_.]. The dynamics represented
by the augmented state vector X (equations 3.11,3.12 and 3.14) is clearly nonlinear

(bilinear) as it involves a product of two states of X. Linearizing the above equations
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around the latest state estimate X(i) and performing a simple Euler discretization with a

sampling time T, the discrete state transition matrix can be symbolically written as :

1+tpn@) @) 0

d = 0 1 0 (3.15)
N 0 0 1
The linearized measurement matrix H can be expressed as,
H = 1 o 0 (3.16)
=" |kp@m@) kb® bl

The structural observability matrix O=[H;H®;H®?] can be symbolically computed as,

[ 1 0 0|
k() +m () k,b(i) b(i)
. (1 +Tp()) Ll 0| @)
= T kp@+m A+ kp@)+m OYbO+kbG b
(1 +Tp())? ()2 +Tp(D) 0
K p (@) +m YA @Y Q) +m (R+TpEYTHE) +h,b(D) b |

Using Maple (source code and results shown in Appendix B), it can be shown that the
above observability matrix has no structural deficiencies and is of full rank i.e. it has a
rank of 3. Therefore, it can be concluded that the augmented system is observable from
" the measurements defined in equation 3.13.

3.4.2 CASE STUDY 2. A non-linear chemical reaction system

The Nyquist-Ramirez reactor has been extensively studied, in the literature, for estimation

and control (Nyquist and Ramirez, 1971 , Lynch and Ramirez, 1975). The reaction that

takes place in the reactor is the decomposition of hydrogen peroxide to oxygen and water:
H,0, > H,0 () + 1/2 O, (g)
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The reaction is catalysed by potassium iodide which is fed to the reactor with hydrogen

peroxide. The reactor is shown in Figure 3.1. The mathematical model for this process
is as follows (Ramirez, (1994)).

Peroxide Material Balance: The peroxide concentration (C) can be modelled as,

dac _ FC, _ FC
dt 1Z Z

X X

- R (3.18)

Catalyst Material Balance: The dynamics of the catalyst concentration (Cy,) is written as,

dCy, - F Kl Cul
T =%k
dt V., v

x

(3.19)

Energy Balance: The temperature (T) of the reactor contents can be modelled as,

ar _ F,-T) N Q. . (AH)RV_ - B(T-T)

(3.20)
dr v, VeC, V.oC,

with the reaction rate (R) given as,

-E .
R = kocklcem (3.21)

In its original formulation, the system has two measured outputs. One is the reactor
temperature T which is also a state variable. Measurements of reaction rate R, which is
a nonlinear function of the reactant states and temperature, are also available. Since the
reactant concentrations are not directly measured online, an inferential estimation scheme
is necessary to generate estimates of the reactant concentrations from the rate and
temperature measurements. It has been shown (Lynch and Ramirez, 1975) that the above
system is fully observable and the system states can be estimated inferentially using the
rate and temperature measurements. The observability criterion is however only a
necessary <ondition for the estimation scheme to work. Often, inferential estimation
strategies can generate biased estimates of the states due to modelling errors. For routine

monitoring, the primary states i.e. the reactant concentrations are measured irregularly,
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Figure 3.1: Schematic diagram of the Nyquist-Ramirez reactor.
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off-line and with some delay. These measurements can also be incorporated into the
estimation strategy. As will be seen in later chapters, incorporation of the infrequent and
delayed measurement of the primary process variables such as the reactant concentrations
results in (i) generating closed-loop estimates of the state variabies, and (ii) enhancement
of the observability properties of the system in terms of improved condition number of
the observability matrix. In this case study, we will analyze the observability properties
of an estimator model in which, in addition to the temperature and rate measurements,
delayed measurements of the reactant concentrations are also used in the estimation task.
For simplicity, we assume that the catalyst concentration is maintained at a constant value
by manipulating the catalyst feed rate using a perfectly tuned controller. The measurement

delays in the reactant (peroxide) concentrations can be modelled by the addition of a
fictitious state C_, as,

C. () = C(t-t) : (3.22)

At instants when the peroxide concentration, temperature and rate measurements are

available , the output equation can be written as :

o ()
Y oiaior D= T | + VoD (3:23)
R(®

We term these instants as the major sampling instants. At the remaining sampling instants,

termed as the minor sampling instants, only the temperature and rate measurements are

available and the measurement equation is expressed as,

_|T®

_ (3.24)
Y pinor® R

vlm'nor(t)

3.4.2.1 Observability analysis: In this section, we will perform an symbolic observability
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analysis for the system based on measurements at the major and minor sampling instants.
The detailed symbolic matrices that were computed by Maple are not shown in the
analysis here due to lack of space. Instead, a systematic procedure to perform the

observability analysis is presented.

Step I: Linearization of state equations

We first introduce normalized dimensionless state variables as,

(C-C) (T-T)
= ; x2 =

(3.25)

1

where C, and T, are the steady state values of the peroxide concentration and temperature.

Rewriting equations (3.18) and (3.20) in terms of the new state variables x; and x,,

dfy ax _ 1 (x,0x5) - FL) (3.26)
dt|x, dt 2| T

where f, and f, are the transformed dynamic balances of equations 3.18 and 3.20.
Linearizing the above equations around the steady state, the linearized system of equations

can be written in terms of the deviation variables as,
8X() = AdX(r)

Discretizing the above equation with a sampling time t and symbolically evaluating the
matrix exponential during the discretization, the discrete state space equation can be

written at any sampling instant i as,

aX(@i+1) = gSX @ . (3.28)

Step II: Inclusion of delay states into the state equation

We now need to express the delayed states defined in equation 3.22. in the discrete

domain. Assuming that the delay time t_, is an integral multiple of the basic sampling time
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T, we can write the delay equation 3.22 for the case of t,;=2T in terms of the deviation

variables as,

B, (i+1) = &x, () ) (3.29)

ax,(i+1) = ax,() (3.30)

In the above equations, x; and x, are the fictitious states that simulate the delay in the
discrete domain. They can be appended to the system state vector X to form an

augmented state vector X, whose dynamics can be represented by,

OX (i+1) = 2.1 X (D) (3.31)
where @, is given by,
¢, ¢, 0 0]
@ =|'n 0= 00 (3.32)
= 1 0 00
|0 0 1 0

Step IIl: Linearization of the measurement eguation.

At the major sampling instants, the delayed measurement of the peroxide concentration
is available. From equations 3.29 and 3.30, it is easy to see that x, represents x, delayed
by 2 sampling instants. Thus x, represents the measurement C,, normalized according to
-(3.25). Also, the temperature and reaction rate measurements in (3.24), (3.25) can be

expressed in terms of the normalized states x, and x,. The measurement equation 3.23 and

3.24 can thus be re-written as,

x,(D
. =G._. + . ; G, = : 3.34)
Yrinor® = Crino) * Voino 1) 5 Gy, [R(x,(t)xz(t))}
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x,(0)
b4 'Mjﬂf(t) = Gmajor+vmjor > Gmajor = xz(t)
R(x,(6).x,(1))

3.33)

The above equations can be linearized and written in term= of tl.e deviation variables of

the augmented state X;in the discrete domain as,

1 y a(;ma'or
8}’ majnr(l) = Hmajnraxd(i) + nmja,.(l) s H major = aX: (3.35)
. aG .
8 pinarD) = Hinol®X D)+ Moo 5 H ooy = — (3.36)

d

Step IV : Symbolic construction of the observability matrix

The observability matrix can be symbolically constructed using the @, and the H matrices
at the major and minor sampling instants. The rank of the observability matrix can also
be symbolically checked to verify full system observability.

- 3.4.2.2 Results of observability analysis:

The symbolic observability analysis outlined above was performed for the Nyquist-
Ramirez reactor system. The symbolic computations were perfoﬁned using the Maple
software (Waterloo Maple Software, (1981)). The analysis indicated that at the major
. sampling instant, the structural observability matrix had a full rank (i.e. rank = 4) and so
the system was fully observable from the measurements. Therefore at the major sampling
instants, an estimation scheme to generate estimates of the state vector X, using frequent
rate and temperature measurements and infrequent and delayed composition
measurements, can be developed. However at the minor sampling instant, the
observability matrix was found to be rank deficient with a rank defect of 2. Thus only 2

of the states in the augmented state vector X, were  observable from the rate and
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temperature measurements defined in equation (3.34). Thus, thé observation scheme
defined by (H_,...®s) was concluded to be structurally deficient.
3.4.2.3 Alternative measurement scheme _ The results of the observability analysis at

the minor sampling instants indicate that the rank of the observability matrix for the

system without measurement delay (equation 3.26) is equal to that for the delayed system
description (equation 3.31). This indicates that the delayed states x, and x, that have been
added to simulate the delay are unobservable from the measurements available at the
minor sampling instants. Intuitively, the delayed states must influence the past system
outputs and therefore must have some correlation with them. The latter fact also suggests
that if the measurement equation is modified to include past inferential measurements of
the reaction rates and temperatures, it may be possible to achieve full system observability
at the minor sampling instants as well. Since the reaction rate is a function of reactor
temperature which is also one of the states in the system description, we need to add
delayed temperature states in the system description to be able to include past rate
measurements in the measurement equation. The equations to include delays in

temperature measurements can be expressed as,

x(i+1) = ax,(0) (3.37)

Ax (i +1)

8x,() (3.38)

In the above equations, x5 and x, are states that are added to simulate a delay of 2
sampling instants for the temperature measurements. The dynamics of the augmentzd state

vector X, =[x, x, x; x, X5 x5] then become:
d,m 1 2 A3 A4 45 16

8X,, (i +1) = @ 8K, (D) (3.39)

where @, is given by,
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[¢,, ¢, 0 0 0 O]

¢, ¢,, 0 0 00
<I>=1 0 0000O (3..40)
=dm 6 0 1000

0O 1 00¢0O

|0 0 00 1 O]

It was decided to analyze the system observability with the following modified

measurement equation system at the major and minor sampling instants,

x,(2)

.xz(t)

x(7)

+ Vo iormod® 3 Criorimos = x,(2) (3.41)
R(x, (Dx,(1)

Rx,(6).x5(1)

R(x,(0-x (1)) |

=G

y major,mod majar.mod(t)

x,(0
x(t)
x(®) (3.42)
R(x,(0.x,(D)
R(x, () x5(0)
R(x, (x40

Y minor.mod(t) = Gminormod(t) + vrm’nor,mod(t) ’ Gminar.mod(t) =

3.4.2.4 Results of the observability analysis

The structural observability analysis on the above modified system was performed
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symbolically using Maple. It showed that the ebservability matrix was of full rank (i.e.
rank = 6) and had no structural deficiencies at both, the major as well as at the minor
sampling instant. Thus, use of the modified measurement equations 3.41 and 3.42 enabled
formal incorporation of the infrequently available, often delayed measurement of the

primary process state into the estimation scheme.

3.5 Conclusions

Conditions for full system observability are difficult to verify for nonlinear systems.
Symbolic computation tools such as Maple prove to be very useful in analyzing the
observability properties of nonlinear systems because (i) it is easy to perform the tasks
of linearization and rank determination symbolically rather than numerically and (i) it is
relatively trivial to detect structural deficiency in the system. This chapter considered two
case studies that are commonly encountered in chemical engineering. Numerical methods
to ensure full rank of the observability matrix over the entire range of values that the
states and parameters can take are computationally intensive and need a priori
information regarding the expected values of the states and parameters. The structural
observability study presented in this chapter that is based on the use of symbolic
computation tools is more practical and useful as it does not need any such a priori
information and is relatively easy to perform. Its results are valid in a generic sense over
the entire range of values that the states and parameters can take (with the exception of
zero and infinity). The analysis of the nonlinear chemical reaction system has shown gaat
it is possible to enhance system observability by suitably modifying the measurement
system. For chemical reaction systems, which usually have infrequent and significant
measurement delays in the primary variables, the alternative measurement system
proposed in equations (3.41) and (3.42) is very useful to formally incorporate the

irregular, delayed primary measurement into an optimal estimation scheme.
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3.7 Neménclature

Roman

b cumulative biomass in mass units (case study 1)
f nonlinear function in the process description

k, Yield coefficient of CO, evolution over biomass
m, maintenance coefficient (mmol CO, /hr-1)

t continuous time variable

t. time elapsed due to measurement delay

v measurement noise vector

w white noise vector

38



Chapter 3: Structural Observability issues.

X vector of system states
z vector of system measurements
A state transition matrix for the linearized system
C concentrations in the chemical reactor (case study 2)
F flow rates of reactants
G measurement matrix for the linearized system
H measurement matrix for the linear system
Q process noise covariance matrix
R reaction rate in case study 2
R, measurement noise covariance matrix
T temperature of the reactor contents
X superstate of system and delayed states
Greek )
r discrete system matrix
o() deviation variable
a() partial derivative
n measurement noise vector
p specific growth rate
g process noise vector
T sampling time
discrete system matrix
Subscript
d pertaining to the discrete model
d,m pertaining to the discrete model with modified measurement set
major pertaining to the major sampling instant
minor pertaining to the minor sampling instant
0 pertaining to the inlet concentrations

s pertaining to the steady state around which linearization is done
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z pertaining to the measurement vector
KI pertaining to the catalyst concentration
Acronym

CER carbon dioxide evolution rate
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Chapter 4.

The Role of Adaptive Multirate Kalman
Filter as a Software Sensor and its

Application to a Bioreactor

A novel approach to address the problem of simultaneous state and parameter estimation
for a bioprocess is proposed. The formulation is based on the multirate form of the
classical Kalman filter to do model based filtering when multiple rates of measurement
availability are present. Model adaptation is performed sequentially using the maximum
likelihood based estimation algorithm. The proposed formulation ensures that the task of
adaptive estimation is performed using all of and the most up to date measurements.
Validation results of the resulting software sensor using experimental data from two
different fermentations involving the microorganisms (i) Saccharomyces cerevisae and (ii)

Streptomyces clavuligerus is presented in this chapter.

'The experimental validation results shown in this chapter were published as :

(1) R.D. Gudi and S.L. Shah, "The Role of Adaptive Multirate Kalman filter as

a software sensor and its application to a Bioreactor", Proc. of 12" IFAC World
Congress, Sydney, Australia, 1993.

(2) R.D. Gudi, M.R. Gray and S.L. Shah, "Multirate Estimation and Monitoring
of Process variables in a Bioreactor", Proc. of 2™ IEEE Conf. on Control
Applications, Vancouver, Canada,1993. )
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4.1 Introduction

Feedback éontrol requires measured values of variables that need to be regulated . The
benefits of feedback control, continucus monitoring and optimization are difficult to
realize in a bio-process due to the lack of regular on-line measurements of key variables
such as the bicmass, substrate concentrations and other secondary products of metabolism.
Furthermore, the process has characteristics which vary with time in a non-linear way.
Thus a fixed linear model cannot be used in the model-based predicfive control algorithms
that have proven te be so useful in the chemical industry.

Techniques to overcome the above problems have been used in the past. These include
correlating the biomass experimentally with the carbon-dioxide evolution rate using
elemental cell balances. Mou and Cooney(1983) have utilized individual elemental cell
balarces to estimate the time varying yield coefficients and other state variables from
measurements of carbon dioxide evolution rate. To account for time varying nature of
process and noisy measurements, Stephanopoulos and San(1984) used Extended Kalman
filter techniques to estimate the states and parameters from other secondary measurements
such as carbon dioxide evolution rate and oxygen uptake rate. Ramirez (1987) has used
the sequential parameter updating strategy of Ljung and Soderstrom (1983) to deal with
the problem of simultaneous estimation of state variables and model parameters and has
successfully used it to regulate nutrient levels in a bioreactor (Park and Ramirez, 1990).
Chattaway and Stephanopoulos (1989) have also used the method of sequential parameter
hpdating to monitor plasmid stability for fermentation processes. The overall approach in
bioprocess system identification thus has been to use a model, poSsibly in an adaptive
framework, to generate optimal estimates of the states from measurements of all or a
subset of all the states.

Ina Bio—process the states of secondary importance such as carbon dioxide and oxygen
contents in exit gas are measurable at a fairly rapid and regular rate. With the advent of
on-line flow injection sampling and analysis systems (Reda and Omstead,1990) for

infrequcnt "off-line" monitoring of the bioprocess , the measurements of the key variables
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such as biomass and the substrate can be made available although only at slower

sampling rates. It thus seems logical to use these infrequently available primary
measurements as feedback information to the estimator and correct the frequent estimates

that are generated inferentially from the frequently available secondary measurements. To

achieve this objective, multirate system identification techniques need to be used so as

to accommodate multiple rates of sampling that exist in such a scenario. Such techniques

also have useful application in traditional control problems such as distillation columns

and chemical reactors.

Guilandoust et al.(1987,1988) proposed a multirate adaptive inferential estimation

algorithm in state space and input-output form. However the inferential relationship they
propose is not very evident from their working equations. Lu and Fisher (1990) have
formulated the multi-rate estimation problem in such a way that the working equations
reflect fully and more fundamentally the inferential relationships. Tham et al. (1990) have
used an adaptive inferential estimation algbrithm in a multi-rate framework to estimate
process variables in various processes such as polymerization, distillation columns and
continuous fermentors. All of the above approaches to the problem of multirate
identification carry out the adaptation on a transfer function model. While such a black
box approach has inherent advantages with respect to global applicability, it is useful to
study the parameter adaptation to a state space model that results from using a qualitative
description of the bioprocess. Ramseir ef al.(15) have developed an adaptive scheme to
estimate culture states from CER and base addition rate measurements for a continuous
yeast fermentation. Stone ef al.(19) have used off-line measurements to update the
changing maintenance coefficient, using a balancing method of Esener et al. (1), during
‘the secondary production phase in an antibiotic fermentation. Lee and Morari(1992) have
established a generalized inferential control framework for designing robust linear
controllers for multi-rate systems.

In this chapter, a new approach to the problem of adaptive multirate filtering and

estimation is presented. To generate optimally filtered state estimates conditioned on the
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best available model when the measurements arrive at different sampling rates, model
based multirate Kalman filtering (MKF) technique of Glasson (1980,1983) is used. The
model that is needed for the MKF based filtering is adapted to the time varying
characteristics of the process using the maximum likelihood baseci sequential parameter
updating strategy of Ljung and Soderstrom(1983). The proposed strategy is experimentally

evaluated by application to two different fed batch fermentations.
4.2 Process Model

In this chapter, the following case studies i.ave been considered for estimator validation:
(i) growth of baker’s yeast (Saccharomyces cerevisae) ©n glucose in a fed batch
fermentation, and

(ii) Fed batch fermentation of Streptomyces clavuligerus NRRL 3885 in a complex media.
- The material balance equations describing the growth of baker’s yeast on glucose can be

- written as follows:

dx) _

5 S PW® 4.1
dC . .

— =F,C, - kp(xV) - F, C

a (4.2)
—r = kpOV) - F, G .

where

x is the cumulative biomass in (g); C and G are the volume fractions of oxygen and
carbon-dioxide in the exit gas; p is the specific growth rate of the biomass; k,,ahd k, are
functions of appropriate yield coefficients; F, is a variable that depends on the gas phase
dynamics and is assumed to be approximately constant; C,, is the inlet concentration of
oxygen in the sparged gas and the glucose concentration in the feed and V ‘is the broth
volume.

The above equations can be discretized using a simple euler discretization to yield the

following discrete model,
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X@t+1) = A(®0) X() + B u(®) + m, ; EM, np) = Ry (4.4)

where

X =[x, C, G) 4.5)

and 7, is the discretization error. The concentrations of oxygen and carbon dioxide in the
exit gas constitute the vector of measured system outputs. R, is assumed to be the
covariance matrix of measurement noise for these system outputs.

The second case study involves the micfoorganism Streptomyces clavuligerus growing in
a complex medium. The fermentation exhibits endogenous metabolism, changing
maintenance activity and secondary product (Antibiotic) expression during thc
fermentation. The system state (biomass) dynamics can be written after performing a
simple euler discretization of the dynamic equation for growth as,

x(i+1) = [1+tp)Ix@) + w(@) ; Eww™) = R_ (4.6)

Assuming that the amount of CO, in the broth is approximately constant, the system
output equation can be written in terms of the carbon dioxide evolution rate(CER) as,

CER() = [kp() +m ()Ix(@) + v(i); E(wT)=R, 4.7

k. is the yield coefficient relating biomass growth to CER and m_ is the maintenance
coefficient. The CER can be directly calculated online from measurements of CO, content
in the exit gas.
Measurements of the variables such as CO, and O, contents in the exit gas are available
at a fairly fast sampling rate. However these provide only indirect information about the
state of fermentation and hence are termed secondary variables. Measurements of the
 variables such as biomass and substrate are available only at a slower sampling rate. Since
these are of direct relevance, they are termed the primary variables. T is the sampling time
with respect to the secondary variables and.we assume that the primary measurements are
available every Jt time units (J >1). At instants when primary measurements are available,
the secondary ones are also available and we term this sampling instant as a major

sampling instani. At all other sampling instants , only the secondary measurements are
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available and these are termed as minor sampling instants.

4.3 Adaptive Multirate Kalman filter -a unified

approach

For systems with unknown parameters or for time-varying systems, there are two basic
approacies to constructing a state estimator (Goodwin and Sin,1984). The first is the
extended Kalman filter approach in which the state vector is augmented by addition of
the unknown pararieters. The unknown parameters are then identified using information
available as inncvatiens. However, this approach is known to give divergence probiems
(Ljung,1979). The recommended approach is to use the fact that the Kalman filter for
linear systems actually .coincides with a one-step ahead predictor. The prediction error
resulting from the Kalman filter can then be used to estimate the parameters using a
bootstrap method.

Park and Ramirez(1990) have illus.trated. the latter approach using the concepts of
conditional probability density.

4.3.1 Multi-rate Kalman Filter

We first consider the maximization of the probability density function for state estimation
" conditioned hpon uncertain process parameters. The Kalman filter gives an optimal
estimate  of the states conditioned on the best parameter estimate
available(Jazwinski, 1970). Since multiple rates of sampling exist, the claséical Kalman
filter needs to be expressed in multi-rate form to accommeodate them. In this multirate
formulation(Glasson,1980), the dimension of the measurement vector , measurement noise
covariance and the Kalman filter gains are assumed to vary periodically between the
major and minor sampling instants.

At the major sampling instant, the measurements of all the states are available and’
therefore the measurement vector H,.j0r is the identity matrix for the said model and the

measurement equation can be written as
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z . =H |

major major

X (4.8)

The measurement noise covariance matrix corresponding to the rﬁajor sampling instant
would then be a larger diagonal matrix of measurement noise covariances.
The Kalman gains can then be evaluated at the major sampling instant as,
- T -1
K =MH H M H,yor + R, ..)

major major ( major

4.9)
where M is the apriori estimate of the covariance matrix. Note that the Kalman gain
matrix is also a square matrig of size equal to the number of states.

At the minor sampling instants, only the secondary measurements are available and
therefore the measurement vector H, ;.. is a nonsquare matrix with as many rows as the
number of measurements and the measurement equation can be written as,

z. =H. . X

minor nunor

(4.10)
The measurement noise covariance matrix R, ., corresponding to the minor sampling
instants would then be a smaller diagonal matrix of measurement noise covariances.The
Kalman gains for the minor sampling instant can then be written as

Koirer =M Hipinr H, e M Hopinor + R, pinod™ 4.11)
Note that for the minor sampling instant, the' Kalman gain matrix is a nonsquare matrix
with as many columns as the number of measurements.The overall Kalman filter
equations in multirate form would then be the same as the those of the classical Kalman
filter, but with periodicity in Kalman gains,measurement and process covariance matrices.
The two step formulation of the time-varying Kalman filter (Franklin et a/.,1990) can then
be used to express the Kalman filter in its multi-rate form as :
a) Major sampling instant :
1) Measuremeni update:

X = XG) + K, . e® _ (4.12),

e@) =z - H . X0 (4.13)
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P(i) = M(i) - Kmajorh'majaM (i)

ii) Time update :
The time update equations can be written as,

X@+1) = A X@) + B u@d)

M@i+1) = A PG) AT + Q

where Q is the covariance of the model uncertainty.

b) Minor sampling instant :

i)Measurement update:
X@) =XG) + X, el

e(i) =z, - H

minor

X(@)
and the Kalman gain matrix is given by (4.11).
P(l) = M(i) - Knu'nor Hnu'rmr M(l)
ii)Time update :
The time update equations can be written as,

X(@i+1) = A X(Q) + B u(i)
M(@i+1) = A P(G) AT + O
4.3.2 Model estimation

(4.14)

4.15)

(4.16)

4.17)

(4.18)

(4.19)

(4.20)

4.21)

To generate optimal state estimates as shown in the previous section, we need to have a

fairly accurate idea of the signal and noise covariances which reflects in the evaluation

of the Kalman gain matrix. The latter depends on the ratio of the process noise covariance

to the measurement noise covariance. A high ratio of these covariances would mean that

the measurements are weighted more heavily in the generation of the optimal estimates

than the process model. However, at the minor sampling instants, ‘measurements for the

primary variable do not exist and therefore a high value of the covariance ratio would
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deteriorate the estimates ci the primary process variable. At low ratios of these
covariances, the model plays a key role in the generation of the optimal estimates through
the time update equation and therefore one needs to have a model with a good prediction
capability to perform the time update. Identifying such a model is -equivalent to
maximizirig the probability function for parameter estimation i.e. identifying the parameter
vector O that gives the best prediction capability at any instant i. A general objective

function to identify Q has been proposed to be of the form(Goodwin and Sin,1984),

1 o
Vy©) = 3 I33E.0)y®)
N N > (4.22)

where §(1,0) is the prediction conditioned on the best available estimate of 8 and y(i) is
the measurement. They have also shown it to be statistically related to the maximum

likelihood estimation of 8. A typical choice of the objective function could be

1 . .
VO = Y eT(,0Ae(.0)
' 2 (4.23).
where A is a positive definite weighting matrix.

A recursive maximum likelihood algerithm to minimize the above objective function is

provided by Ljung and Soderstrom(1983) and can be summarized as follows :

6() = 8G-1) - H'(BG-1) JOG-1)) (4.24)

where J and H; are the gradieﬁt and the hessian of the objective functicn respectively -and

are updated using the following recursive relationships :
JOG-1) = -y A &)
H(6(-1)) = H(0G-2)) + yOA ()

4.25)

(4.26)
where W is the negative gradient of prediction error £(t) with respect to 6 and is evaluated
using a recursive relationship (Ljung and Soderstrom,(1983)), (Park and Ramirez (1990)).
The weighting matrix A must be equal to the covariance of prediction errors(Ljung and

Soderstrom,1983). Since an initial estimate of this is not known, it is updated using the
recursive relationship,
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A = AG-1) + yi)(e®e” - AG-1) ’ “4.27)

where v is a suitably chosen gain sequence. The bootstrap strategy presented in the above
sections can then be said to be optimal with respect to the maximum likelihood criterion.
As is evident frorm the multirate Kalman filter equations presented in section 3.1, the
innovations in both the primary and secondary variables are used to generate optimal state
cstimates of both the variables. Further, the sequential parameter updating strategy
presented in this chapter uses information on the prediction error at every instant to
update the process model matrix A. The proposed strategy thus generates optimal
estimates of all the states and the model parameters at every sampling instant.
Remarks:
B From an implementation point of view, the observability aspects of the states
and parameters need to carefully considered. A symbolic observability analysis
carried out for the system considered in the first case study (fed batch fermentation
of Baker’s yeast) shows the system to be fully observable at the major as well as
the minor sampling instants. For the antibiotic producing fermentation of
Streptomyces clavuligerus, the overall system was found to be partially observable
at the minor sampling instants. Thus, only a subset of the overall system viz. the
state (biomass) and one of the parameters (specific growth rate p) could be
updated from the innovation resulting from the CER measurement. The system
was found to be fully observable at the major sampling instants. So the
maintenance coefficient parameter was updated only at the major sampling instant.
®m Another implementation aspect that needs attention is the efficiency of the
recursive update algorithm for the updating of parameters of a time varying
system. Kumar and Moore (1980) have proposed a gain sequence to keep the

updating algorithm sufficiently alert as follows :
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4.4

-1 -

Y = 14K %k (4.28)

where 7 is initialized by a value greater than 1-K,. The gain sequence converges
to a final value determined by the choice of K, which can be chosen depending
on the time-varying characteristics of the process. This has been used in the above
updating step to keep the algorithm'alert. The updating step also needs inversion
of the hessian matrix H. This matrix suitably modifies the gradient search direction
to a more efficient one. For the recursive case, the updating of this hessian matrix
depends on several factors such as the choice of the gain sequence and may not
accurately represent the hessian of the objective function proposed. Besidz=s, the
inversion step itself could be prohibitive. However, to ensurc that minimization
of the proposed objective function occurs, any positive definite matrix could be
used in place of the hessian and the stochastic gradient algcrithm is a direct result
of using such an implementation. In this algorithm, the choice of the hessian is
made to be some multiple of the identity matrix and the scaling is chosen to be
the trace of the matrix WA'P. In the model updating step of the proposed
multirate algorithm, the gain sequence described above coupled with the stochastic

gradient algorithm has been used to perform the task of parameter estimation.

Experimental evaluation

4.4.1 Experimental system I : Fed batch Fermentation of Saccharomyces cerevisae

The strategy was evaluated on experimental data generated from a fed-batch fermentation
of Saccharomyces Cerevisiae by Namdev(1991). Fed batch fermentation with an

exponentially increasing feed strategy was started from chemostat conditions established

in a culture of S.Cerevisiae. The feed concentration of glucose was 100 g/l and was

supplied to the culture at an exponential rate according to,
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F() = ”Y;‘f" e

where the initial conditions uscd were: biomass X, = 2.5g/l; fermentor volume V =1L,
glucose concentration in feed S,;=100 g/l. The desired growth rate p was assumed to be
0.16 hr! and the biomass yield on substrate Y, was assumed to be 0.45.

The fermentor off-gas was analyzed for O, and CQO, by a Dycor quadruple mass
spectrometer every two minutes. Infrequent off-line assays of the biomass was available
from the experimental data. However these were irregular and spaced at 1.5 hour
intervals. It was thus decided to use a model developed for fed-batch fermentation based
on the hypothesis of Sonnleitner and Kappeli(1986). The model parameters proposed by
the above authors were adjusted to give good match of (i) the simulated profiles of the
biomass with the infrequent experimental assays and (ii) the simulated exit gas
concentrations with those obtained experimentally.

The strategy was thus evaluated by using

(i) frequent measurements of exit gas concentrations from the experimental data every 6
minutes and

(ii) infrequent but regular measurerments of the biomass along with culture volume from
the model simulations everv 18 minutes. Random noise t¢ the extent of 10 % of the
measured values was added to simulate noisy measuremziis.

4.4.1.1 : Results and discussions

The success of the multi-rate adaptive estimator deperids among other things on its ability
to generate optimal estimates of the primary variables at miner sampling instants from
secondary innovations. Obviously, the ratio of covariances of states and measurements is
an important tuning knob for the performance of the filter-estimator. For the case when
all the states are measured regularly, Park and Ramirez(1992) have shown this to be true.
A high value of this ratio would give less of model-based fil.tering action but the
parameter adaptation is faster. A low value would give optimally filtered

estimates,especially at the minor sampling instants for the primary variable, but the
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adaptation of the model would be slow. For our estimation, the optimal covarignce
matrices were Q=diag(5,5,5) and R =diag(1,10,1).

Figure 4.1 shows the periodicity in the elements of the MKF. At minor sampling instants,
the primary states are estimated from the optimal estimates of the secondary states and
the secondary innovations. The error covariance and the off diagonal Kalman gains
(Kalman gains of the primary estimate from the secondary innovation) increase in size
till the next major sampling instant. At this point, an accurate estimate of the primary
variable is generated due to the primary variable itself and therefore the cross Kalman
gains and the error covariance are reset. This behaviour is periodic between major
sampling instant. Figure 4.1 is plotted to show this periodic behaviour by assuming that
the major sampling instant arrives after cvery 6 minor sampling instants. Thus after the
12" sampling instant which is a major sampling instant, the trace of the covariance of
errors and the cross Kalman gains rise till the 18® sampling instant which is the next
major sampling instant, when they both are reset to low values. Figure 4.2 shows the
adaptation of the critical parameter 8, which is associated with the biomass growth. For
a predicted specific growth rate of 0.16 hr' and sampling time of 0.1 hr, the expected
value of 8, is 1.016. As can be seen from this figure, the parameter estimate converges
quite rapidly to its expected value of 1.016.

Figure 4.3 shows the comparison of the MKF state (biomass) estimates with those
available experimentally. It can be seen that MKF in association with the parameter
estimator gives good : :.imztes of ali the states from noisy measurements. True filtering
action is clearly observed for the oxygen content in exit gas in Figure 4.4. Since this
measurement has a lot of noise asspciaied with it, the measurement noise covariance for
this state is specified to be greater than the state covariance. Thus the measurements are
weighted to a lesser extent in the state estimate and the Kalman gains are small. The
smaller filter gains affect the sensitivity of the state estimator as can be observed towards
the end of the fermentation run when the oxygen uptake rate drops resulting in higher

oxygen contents in the exit gas. This behaviour is tracked slowly by the state estimator.
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This slow trackiﬁ'r is also due to the slower model adaptation for the parameter 6(2) due
to the low Kalman gain associated with this measurement. For all other variables, the
measurement noise is small and therefore the measurement noise covariance is specified
to be small. Thus the measurements get higher weighting in the state estimates. Excellent
match of the experimental data is observed for the last state variable viz., CO, content in

the exit gas.
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Figure 4.1 Periodicity in the multirate Kalman filter (MKF) elements : The Kalman

gains and the error covariances increase at the minor sampling instants and are reset
at the major sampling instant.
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Figure 4.2 Profile of an estimated parameter for the fed-
batch fermentation of Saccharomyces cerevisae. The growth

rate related parameter converges to its expected value of
1.016,
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Figure 4.3 State estimate profiles using the MKF for the

Saccharomyces system: Excellent agreement is seen
between the estimated and measured values.
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Figure 4.4 Exit gas profiles : MKF based filtering of the exit gas oxygen measurements
for the saccharomyces system.
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4.4.2 Experimental system II : Fed batch Fermentation of Streptomyces
clavuligerus
Experimental data from fed batch fermentation of Streptromyces clavuligerus NRRL 3885
in complex media was used to analyze the perforrnance of the algorithm. The
fermentation exhibits a lysis phase after about 24 hours of fermentation in the fed-batch
mode and so a feeding strategy as shown in Figure 4.5 was choscn.to minimize substrate
limitation of the secondary product (Antibiotics).
It was decided to study the monitoring of biomass using (i) CER measurements available
every 20 minutes and (ii). Biomass measurements available every 3 hours. A two
parameter model relating CER to the growth and maintenance associated activities of the
culture was used as an inferential model. The CER measurements were generated by

monitoring exit gas concentrations using a Dycor mass spectrometer and the biomass was
monitored by optical density measurements.
4.4.2.1 Results and Discussion

Secondary product expression takes place typically at low growth rates. During this phase
of the fermentation, the maintenance activity and endogenous metabolism in the culture
is expected to be significant(Mon er al. (1983)). 1t is therefore necessary to express the
overall CER as the sum of its growth associated and maintenance, associated terms and
update the value of the maintenance coefficient, whenever possible, to prevent bias in the
estimation of the biomass and the specific growth rate. Stone et al. (1992) performed the
updates of the maintenance coefficient by using the balancing method of Esener er
al.(1981). This method is however accurate only if the fractional increase in biomass is
small and has thus been used for updation only during the production phase. The adaptive
multirate estimation algorithm proposed in this chapter does not have the above

restriction. It can therefore be used in a more general way even when the maintenance
coefficient is not accurately known.
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Figure 4.5 The nutrient feeding profile for the antibiotic
fermentation. The nutrient feeding profile shown above was
used to prevent substrate inhibition of growth and product
expression. :
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Singe the Kalman filter in a multirate framework forms the basis of this algorithm, the
incorporation of the infreqixcntly available measurement into the overall optimal filtering
and estimation strategy is also more formal.

Figure 4.6 shows the estimation of the biomass. The tracking of biomass in the initial
linear region of growth is quite good. At the major sampling insta.ms a measurement of
the biomass becomes available and this is used to correct the estimates derived
inferentially from CER measurements. These corrections are seen as small spikes in the
estimated biomass profile. During the period of lower growth and significant maintenance
activity, these corrections are quite drastic.This is because the maintenance coefficient
changes with time and the inferential model relating CER to growth alone is not capable
of generating estimates of the growth rate and biomass. It is therefore necessary to
incorporate a two parameter model relating CER to growth and maintenance associated
activities of the culture and track the changing maintenance coefficient whenever possible.
Figures 4.7 and 4.8 show the estimates of the specific growth rate p and the maintenance
coefficient m, respectively. The algorithm was initialised with values for p and m, equal
t00.25 hr! and 1.1 mmol CO,/hr-g biomass respectively. It can be seen that the tracking
of the specific growth rate and the maintenance coefficient is excellent in the region of
linearly increasing feed strategy. Antibiotics are expressed after about 8 hours of growth
in the fed batch mode or at about the 25" sampling instant. At about the 75" sampling
instant, the feed is lowered to a constant value. This also approximately coincides with
the lysis phase observed in the fermentation. The estimation of the growth rate and the
maintenance coefficient is as expected. The growth rate drops to zero and then becomes
negative to indicate cell lysis and then returns to a small constant value around zero. The
maintenance coefficient increases to a value close to 1.8 mmol CO, /hr-g biomass to
indicate an increase in the maintenance activity of the culture. It is easy to see that this

is the also the value that would be predicted from the terminal conditions of CER and the
total biomass weight .
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Figure 4.6 MKF state estimates for the antibiotic
fermentation: The cumulative biomass shows good
agreement with the experimental values. :
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Figure 4.7 MKF based estimation of the specific growth for
the antibiotic fermentation.
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Figure 4.8 MKF based estimation of the maintenance
coefficient for the antibiotic fermentation.
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Since the growth rate is a small positive value close to zero at the terminal point, all the
CO, evolved can be attributed to maintenance activity in the culture. Knowing the
terminal biomass weight enables evaluation of the maintenance coefficient to be about 1.9
mmol CO, /hr-g biomass. This is close to the estimated terminal value of the maintenance
coefficient. The algorithm is thus capable of generating regular estimates of the primary

state viz. the biomass and the parameters p and m,.

4.5 Conclusions

The multirate adaptive estimator derived above has been shown to have a good theoretical
basis. It is based cn decomposing the problem of simultaneous identification of states and
parameters. Optimal estimates of the states , conditioned on the best available model, are
generated using the multirate formulation of the classical Kalman filter. The model used
in the filtering is adapted using a sequential updating strategy. The multirate adaptive
estimator thus utilizes information in both the primary and secondary measurements in
an optimal way to generate regular, filtered estimates of all the states from

(i)frequent measurements of the secondary states ;
(il)infrequent measurements of the primary states.
The performance of the multirate adaptive estimator has been experimentally evaluated

by application to two different fed batch fermentations.
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4.7 Nomenclature

Roman

k. .k, functions of appropriate yield coefficients.

K. yield constant for CO, evolution

m, maintenance coefficient in mmol CO,/l-hr

u control input to the system

w white noise vector

X " cumulative biomass in mass units

z vector of measurements at any instant i

AB discrete state transition matrices

C volume fraction ¢f oxygen in exit gas

F variable dependent on gas phase dynamics

G volume fraction of carbon dioxide in the exit gas

) 2 measurement matrix at any sampling instant

H, hessian of the maximum likelihood objective function
J gradient of the maximum likelihood objective function
K Kalman gain matrix at any sampling instant

K, constant for gain sequencing

M a priori estimate of the covariance of estimation errors.
P

a posteriori estimate of the covariance of estirmation errors.
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Q
R

\%
X
Greek

AT > © 3 m <

Superscripts

A

Subscripts

X
major
minor

Acronym
CER

covariance matrix of process noise
covariance matrix of measurement noise
maximum likelihood objective function

system state vector for the first fermentation

gain sequence for the weighting matrix

innovations vector at any sampling instant

process noise including errors due o discretization
vector of system parameters

weighting matrix for the maximum likelihood function
specific growth rate for the microorganisms

sampling time

state estimate after measurement

state prediction via time update equation

relating to gas phase dynamics

pertaining to the inlet conditions

associated with the measurement vector in second case study
associated with the measurement vector in the first case study
related to the process in the 2nd case study

pertaining to the major sampling instant

pertaining to the minor sampling instant

carbon dioxide evolution rate
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Chapter 5

Development of a multirate EKF based

state and parameter estimatoz

This chapter is concerned with the design and development of a multirste software sensor
#ir use in the chemical process industry. The measurements of process outputs that arrive
at different sampling rates are formally accomunodated into the estimation strategy by
using the multirate formulation of the iterated extended Kalman filter. Measurement
delays associated with some of the process outputs are included in the system description
by additioni of delayed states. Observability issues associated with state and parameter
estimation in a multirate framework are discussed in detail and modified measurement
equations are proposed, fof systems with delayed measurements, to ensure relatively
"strong" system observability. The evaluation of the proposed multirate state and
parameter estimator through simulations on a fed batch fermentation system gave

satisfactory performance and illustrated the practicality of this approach.

! A version of this chapter has been accepted for publication in the AIChE Journal
as : R.D. Gudi, S.L. Shah and M.R. Gray, "Adaptive Multirate State and Parameter
estimation strategies with application to a bioreactor”.

69



Chapter 5: Development of a multirate EKF based estimator.

5.1 Introduction

This chapter addresses issues related to continued monitoring of process outputs when
they are measured at infrequent and/or irregular times with or without a delay. Such
problems are frequently encountered in typical chemical and bioéhemical processes when
it is often difficult to measure the key process variables on-line on a regular basis due to
lack of adequate sensors. In addition, even if such measurements are possible, there may
be delays between the time the samples are taken and when the actual measurements are
obtained due to elaborate assay procedures. Typical examples of traditional chemical
processes where such problerns arise are fermentation reactors, distillation columns and
polymerization processes. In particular, this study examines the issues of software sensors
or inferential estimators in the context of classical control concepts of system
observability and Kalman filters based on state-space system descriptions.

infzrential estimation strategies have been and continue to be used to address the above
probleras. An inferential estimation strategy uses frequently available measurements of
secondary process outputs whose behaviour is correlated with that of primary output
{process variables or outputs that need to be carefully monitored and or controlled) via
a process model that describes the correlation, to generate frequent regular estimates of
the primary output. If the process is time-varying, the process model can be estifnated and
updated in an adaptive framework.

Early work in the area of inferential estimation for cligrnical processes for the time-
invariant case was done by Brosilow and co-workers (Brosilow (1978,1979) and Joseph
et al. (1978)). Morari et al. (1980) have discussed strategies for optimal selection of
secondary measurements to perform state estimation in the face of persistent unknown
disturbances. Applications in the area of inferential estimation for bioprocessés include
the work by Mou er al. (1983), Stephanopoulos et al. (1984) and Bastin and
Dochain(1990). In the study by Mou et al. (1983), elemental cell balances based on an
empirically derived molecular formula for the biomass formed the inferential model that

related secondary outputs such as the carbon dioxide evolution rate (CER) to the biomass
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(primary output) growth. In the antibiotic fermentation considered by them, a different
correlation was used in the production phase to account for the time-varying process
behaviour resulting from the changing rmaintenance activity of the culture. To account for
noise in real time measurements and also simultaneously estimate critical parameters of
the culture such as specific growth rate and the culture states, Stephanopoulos et al.
(1984) proposed the extended Kalman filter (EKF) approach. They recommended
compensation of the secondary measurements for the maintenance activity if the latter was
significant. The EKF is, however, known to be very sensitive to modelling errors and can
generate biased estimates of the states in the presence of model plant mismatch. In a
different approach to simultaneous state and parameter identification, Ramirez (1987) and
Chattaway et al. (1989) used the Kalman filter coupled with the sequential parameter
updating strategy of Ljung and Soderstrom (1983) to perform the state and parameter
estimation. Park and Ramirez (1990) have also successfully applied the above strategy to
regulate nutrient levels in a bioreactor. In their experimental setup, however, the primary
state variables such as the biomass and substrate concentrations were measurable on an
on-line basis.

The performance of inferential estimation strategies proposed above can be made more
robust by formally incorporating the infrequently available primary measurement. With
the advent and possible application of on-line flow injection sampling and analysis
systems (Reda and Omstead, 1990) or by including infrequent "off-line" monitoring of
the bioprocess, such- measurements can be made available only at siow sampling rates.
It thﬁs appears logical to incorpofate these infrequently available measurements formally
as feedback information to the estimator, i.e. use this information to correct the frequent
estimates of the primary states that are generated inferentially from the frequéntl_y -
available secondary measurements. To achieve this objective when the process is time
varying, adaptive multirate system identification strategies need to‘ be used to formally
accommodate the two er more sampling rates that exist in such a scenario. Guilandoust

et al.(1987,1988) proposed an adaptive multirate inferential estimation algorithm in state
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space and transfer function form. Lu and Fisher (1990) have formulated the multirate
estimation problem such that the working equations explain the inferential relatiohships
in a more fundamental way and thus have formally proved the convergence properties of
such an inferential control algorithm. Tham et al.(1990) have used an adaptive inferential
estimation algorithm in a multirate framework to estimate process variables in various
processes such as polymerization reactors, distillation columns and continuous fermentors.
All of the above approaches to the problem of multirate identification carry out the
adaptation of a transfer function model of the process. While such a black box approach
has inherent advantages with respect to global applicability, it is also useful to study the
parameter adaptation of a state space model that results from a qualitative or structural
description of the process. The merits of the latter lie in the use of apriori information
such as mass and energy balances, albeit in a qualitative form, for performing estimation.
The model parameters in such a state space description also have a physical significance
in relation to the process. Such apriori process information is not directly useable in the
-transfer function based approaches. It is also often difficult to relate transfer function
parameters to the physical parameters of the actual process.

The main focus of this chapter is the introduction of a novel approach to
address the problem of adaptive multirate filtering and estimation. To generate optimally
filtered estimates of the primary states when the measurements arrive at different
Samplin g rates, the model-based multirate Kalman filtering strategy of Glasson(1980,1983)
is used. The model that is used is the type that would result from direct linearization and
discretization of the mass and energy balance equations based on a qualitative description
of the process. To adapt the model used for the inferential estimation to the time varying
characteristics of the process, a Bayesian formulation of the multirate Kalman filter is
used so as to include estimation of the time varying parameters. The deterioration in
estimator performance caused by nonlinearities in the measurement equation is addressed
by using the iterative version of the extended Kalman filter (Jazwinski,1970) expressed

in a multirate framework. Delays, that result due to relatively long analysis times in
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elaborate off-line assay procedures, are accounted for in the above formulation by
incorporating delayed state variables in the state space model. The incorporation of
delayed states increases the order of the model and thus reduces the relative observability
of the overall system. Therefore, to enhance system observability, we propose retaihing
past measurements in the output equations. Thus, a simple yet robust method to ensure
relatively strong system observability at all sampling instants has been incorporated. The
resulting multirate, iterative, extended Kalman filter based sensor is evaluated by
simulated and experimental applications on antibiotic fermentations involving the

microorganism Streptomyces clavuligerus.
5.2 Problem Formulation

Consider the following state description of the process :

X = fu.8,0+E@® B.1D
z = gxu8,n0 + n® (5.2)

where & and n are both zero mean, independent noise processes with unspecified
distributions. The state vector x could consist of states such as reactant/product
concentrations in a semi-batch exothermic reactor or biomass/substrate concentrations in
“a fed-batch bioreactor. In a chemical or a biochemical process, these are the states of
primary interest but are, however, sampled slowly, sometimes off-line, due to lack of
adequate on-line sensors. We term these state variables as primary variables. A suitable
requirement for control is that these measurements be available more frequently. Let the-
size of the state vector x be n. The parameter vector @ contains the time varying system

parameters. These parameters are modelled as zero mean white noise processes with
unspecified distributions. Thus,

8 = w(® | (5.3)
Let the dimension of © be n6. Commonly, the time varying parameters © are appended
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to the system state x to constitute an augmented state vector X=[x;6]. The augmented

system description can be written as,

X=FXun + £ (5.4)

z = GXun + 1@ (5.9)

where E,=[E;w]. The above augmenfed description is clearly nonlinear either due to
inherent nonlinearities in the system description equations 5.1 and 5.2 and/or due to
bilinear product terms consisting of the states in x and the parameters in 6. z is the
measurement vector which, at some instants, could consist of both primary as well as
other inferential, secondary measurements. At some other sampling instants, only the
secondary measuremenis could be available. If ns secondary outputs exist, the dimension
of z would be n+ns or ns depending on the measurement set available at any sampling
instant. The secondary measurements relate to those process outputs whose behaviour is
correlated with that of the primary states and which can be used with the process model
in an inferential estimation scheme to generate estimates of the primary states. i.e. they
are process outputs from which the primary states are observable. The secondary
measurements are available more rapidly than the primary ones due to availability of
robust online sensors. Therefore there exists a multirate sampling scenario where the
measurements of the primary states are available only slowly and the secondary
measurements are available more rapidly. Such a scenario can be depicted as seen in
Figure 5.1, We term the sampling instant at which both the primary and secondary
measurements arrive as the major sampling instant and the sampling instant at which only
secondary measurements are taken as the minor sampling instant. We also term the time
elapsed between two minor sampling instants as the basic sampling time *.

Mahy strategies to estimate the primary states from only the secondary measurements
have been proposed. These range from the model based Bayesian filtering strategies such

as the Kalman filter for linear time invariant systems to the extended Kalman filter(EKF)
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Figure 5.1 Schematic diagram of multirate sampling for processes commonly
encountered in chemical engineering.
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for non-linear, time varying systems. In a recursive implementation, the EKF is_prone to
divergence problems due to repeated linearization of the process model around the filter’s
latest state estimate. The latter problem causes any initial error/model mismatch to
propagate which eventually leads to divergence. When the states in the state vector
represent physically measurable variables in thc system such as would result from a
linearization and discretization of the mass and energy balance equations of a system ,
it is logical to use these slowly sampled primary measurement as feedback information
to the estimator and thus make the estimation more robust. In earlier studies, Gudi et al.
(1993a,b) used a Kalman filter coupled with a sequential parameter updating strategy in
a multirate framework to perform the state and parameter identification. However, it was
not possible to tailor this strategy for the case of measurement delay. Furthermore, tuning

guidelines for robust performance of the overall algorithm could not be easily expressed.

multirate extended Kalman filter framework.

5.3 Multirate Software Sensor
5.3.1 Multirate Iterated Extended Kalman Filter

We first present the equations for the extended form of the linear multirate Kalman filter.
Linearizing equation 5.4 around the latest state prediction X(i) and discretizing using a

sampling time T yields,
3X(i+1) = ¢ dX() + Tdu@®) + E@ (5.6)

where ¢ and I' are the linearized and discretized system matrices and 8(.) denotes the
perturbation or the deviation operator. At the major sampling instant when the
measurements of both, primmy as well as the secondary measurements are available, the |
measurement vector Z=z,,;, is of a larger dimension (n+ns by 1). The linearized, discrete
measurament -equation t,an be written by linearizing equation 5.5 at the major sampling

iristant as,
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8&(1) major =H

major

8X@ + 5.7

major

where,

aGma'or e
H, o = axj 1X=X(i) ) (5.8)

is the linearized measurement matrix at the major sampling instant and has dimensions
‘n+ns by n+n@. The measurement noise covariance matrix corresponding to the major
sampling instant R, ... EMpajorMmaor’) Would also be a larger diagonal matrix of
measurement noise covariances. The Kalman gains can then be evaluated at the major

sampling instant as,
- - T T -
h najor M H"’aj"’ (Hmajor M H’""J"” * Rz.mujnr) : (5'9)

where M is the apriori estimate of the covariance matrix. Note that the Kalman gain
matrix (size n+n0 by ns+n) is a larger matrix with as many columns as the number of
measurements. At the minor sampling instants, only the inferential secondary
measurements are available and the measurement vector z=z, .. is of a smaller
dimension( size ns by 1). The linearized measurement matrix H,, , is also a smaller

matrix (size ns by n+n6) with as many rows as the number of measurements. The

linearized measurement equation can be written as,

82.(1) minor = Hminar SX(I) + T]rru'lmr (510)
where
oG, -
H . = ___Fnori¥=X(i G.11)
nunor ax I-—— —-( ) .

The measurement noise covariance matrix R inor, COITESpONding to the minor sampling
instants would then be a diagonal matrix of mieasurement noise covariances with an

appropriately smaller dimension. The Kalman gains for the minor sampling instant can
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then be written as

Ky =M Hpppo (H,., M HL,,, + R

-1
mino miinor z;m’nor)

(5.12)

Note that for the minor sampling instant, the Kalman gain matrix is a smaller matrix (size
n by ns) with as many columns as the number of measurements. The overall extended
Kalman filter equations in multirate form are therefore the same as the those of the
classical extended Kalman filter, but with periodicity in Kalman gains, measurement and
process covariance matrices. The two step formulation of the time-varying Kalman filter

(Franklin and Powell,1980) can then be used to express the extended Kalman filter in its
multirate form as :

a) Major sampling instant :

i)Measurement update:

X0 = X0) + K, 0 (5.13)
D =2 i = G ir (5.14)
P(i) =M@ - KmajoerajorM(i) . (5'15)

b) Minor sampling instant :

i)Measurement update:

X0 = XO + K, £0) (5.16)
;e-(i) = Z minor .c_;.rm'nor (5'17)
PGy = MG) - K, H,_, M@ (5.18)

To perform the measurement update at eVery sampling instant, predictions of the state X

and the covariance M are required. These are obtained using the time update equations
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by performing an actual integration of the nonlinear augmented system description. Thus,

X =FXun (5.19)

M=F,P+PFy+0 (5-20)

where Fy is the Jacobian of the augmeiied system description and is given as,

Ay = kA (5.21)
T iy

ot 2 5.22)
X io 7/ :

n0.n0

The measurement update step at any instant could be interpreted as a step towards
rsinimizatio® of the objective function of the estimation/measurement error suitably
weighed by the covariance matrices. For linear time invariant systems, the Kalman gain
represents the necessary information for this minimization quite accurately and therefore
the measurement update step, when performed once, minimizes the relevant objective
function. For a nonlinear system however, the extent to which the K.alman gain represents
the minimization information is dependent on the reference trajectory around which the
system linearization is done. If an apriori nominal trajectory is chosen, the information
accuracy depends on how close the nominal trajectory is to the true one. If the
linearization is done around the latest state estimates, the information accuracy depends
on filter performance itself and the objective function may not be necessarily minimized
in one step of the measurement update equ#tion. This motivates the use of an iterated
version of the extended Kalmn:an Fiiter equations (Denham and Pines (1966) and Jazwinski
(1970)). The iterated extended Kalman Fiter JEKF) has been recommended for strong
nonlinearities in the output equation and has been successfully used for fermentation

processes by Bellgardt er al. (1989), Sargantanis and Karim (1994). The iterated version
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of the extended Kalman filter cquations can be expressed as shown below: Assume that
the state presiiction X(i}? is available at instant i, then the local recursive scheme can be

invoked by initializing (1) to be equal to X(i) and then recursing over the equation,
(5.23)

Y+ = X@) + KO {2, - GREOUD] - HE®] XO-XK) )} . &k = 1.0

The Kalman gains K and thie linearized output matrix H are based on the latest estimate
¥{k). As has been shown by Denham and Pines(1966), significant improvements in the
estimates occur in the first few local iterations. Nevertheless, the above equation is
iterated until there is no significant improvement in any successive estimates of y. The
above locally iterated EKF based strategy has been used in a multirate framework in this
work, for robust estimation. The iterative extended multirate Kalman filter formulation
<an thus be used to formally incorporate the slowly sampled primary measurement into
the overall filtering and -estimation scheme. It is important to note that the above
" multirate formulation does not require a fixed integer ratio of the minor and major
sampling instants. In earlier appreaches to multirate identification (Lu ez al. (1990},
Guilandoust 2r al. (1988)), using transfer function models, it was required that the major -
sampling time arrives every fixed integer, say J, sampling intervals of the minor sampling
instants. This is too restrictive a requirement for the resulting sivategy to be generally
applicable at an implementation level. The above multirate Kalman filter formulation 19
more flexible as it simply uses a different set of equaticns at the major sampling instants
whenever the primary measurements arrive, and otherwise switches back to the inferential
equation set at the minor sampling instants.

5.3.2 Measurement delays

Typically, measurement of the primary state could involve sampling followed by elaborate
off-line assays in the laboratory thus leading to a delay in the availability of the results
of sampling. Such delays can easily be incorporated into the system model equations by

addition of delayed states. Consider, for simplicity, the following discrete state space
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model :

Sx(i+1) = ¢dx() + Idu(d + w() (5.24)

8z(f) = HBx(y+v (D) (5.25)

Assume for simplicity that there is only ene sampled state x, in the state vector x. The
measurement relationship H is then equal to 1. If the state x; is sampled with a
measurement delay of t, time units, the equations to obtain the delayed state x, in

continuous time can be written as,

x, () = x,(t-1) . (5.26)

Assuming for simplicity that the delay time is an integral multiple of the basic sampling
time 1, we can ‘write the delay equations for the case of t;=27, in terms of perturbation

variables in the discrete domain as,

ax,li+1) = dx,() (5.27)

Br,(i+1) = dx,() (5.28)

where x, and x, are the delayed states. The corresponding measurement equation should
also then be modified to indicate that the measurement of the primary state arriving at any
instant i relates to the delayed state x; and not to x,. Thus, the overall augmented systemi

description can be ‘written as,

SX(+1) = 68X + Tou@ + wi) - (5.29)

82() = H,8X() + ¥(i) (5.30)

where,
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$ 00

9. =110 0 (5.31)
010

H, =100 H] (5.1)

The augmented system consisting of the basic system states and the delayed states can
now be considered as representative of the system behaviour. In general, measurement
delays reduce system observability and deteriorate estimator perﬁénnancc‘ However, as
will be shown in the modified observer fovrmulation in section ;5,'4.4, it is possible to
enhance system observability by using past inferential measurements in the measurement
equation. Thus, the above equations, along with the modified obsérvci,ﬁ'formulation. can
be used :0 effectively address the problems posed by measurement delays in the primary
variables.

5.3.3 Comments en System Observability

Implicit in the foregoing development is the basic assumption. that the augmented system
consisting of the :iriginal system states, time varying pavameters and delayed states is
completely observable from the process outputs. This needs to be verified before the
strategy can be used. For non-linear systems, observability properties are relatively
difficult to verify (Ray(1981)). It is often recommended that the tools developed for
observability analysis of linear systems be used for nonlinear systems by considering a
linearized approximation of the latter about some nominal, apriori assumed trajectory.
Thus, the observability matrix can be constructed for the linear approximation of the
nonlinear system and conditions on the positive definiteness of the information matrix
(Jazwinski,1970) or the rank of the observability matrix can be applied to ensure system
observability. It must be noted that linear filters constructed for nontinear systems can still
diverge even though the above teSts on obsérvability are mef. In general, system

observability is a "yes" or "no" measure. Ad-hoc measures of observability such as
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“weakly" or "strongly" obscrvable systems can be obtained by examining the singular
values of the observability matrix (Lin(1979),Shah et al.(1981)).

In a multirate framework, tesis for observability must be carefully carried out because
the dimensions of the process output vector varies between the major and minor sampling
instant. Idéally, one would like the system to be completcly observable from the
secondary process outputs alone. However, the availability of the slowly sarnpled primary
measurement at the major sampling instant can serve to make the estimator performance
more robust in face of uncertain initial conditions and parameters by providing additional
feedback information to the estimator rather than relying on feedback from estimates
generated from the secondary outputs alone. The availability of the.pri‘mary measurement
also serves to update a larger set of system parameters, if necessary, and may thus help

to make the system strongly observable.
5.4 Case Study

Analysis of the proposed software sensor has been carried out on simulation and
experimental data from fermentatiocn systems. Such systems exhibit significant time
varying behaviour due t¢ changing conditions in the growth medium throughout the
fermentation. For examrle, the specific growth rate and maintenance coefficient vary with
time. In fermentations of recombinant organisms, the growth rate could change due to
induction of ihe plasmids. Fermentations exhibiting diauxic growth phenomenon can also
exhibit time varying specific growth rates due to a change in #¥i¢ type of nutrients being
assimilated. The system considered in this case study is a fed batch antibiotic producing
fermentation known to exhibit significant maintenance activity and endogenous
metabolism during the secondary product (antibiotic) expression phase.

For numerical simulation , the system was modelled using dynamic balances ziong with
empirical growth models for cell growth and product formation (Bajpai and Reuss (1980),
Tsobanakis er al. (1991)) and dynamic balances for the gas phase (Cardello and
San(1988)). The detailed equations are presented in Appendix A. The systern was
simulated usirig a stiff equation solver LSODES (Hindmarsh (1983)) that is available from

&3



Chapter 5: Development of a multirate EKF based estimator.

the Lawrence Livermore Laboratories. The profiles of various states thus generated by
simulation were then sampled according to a multirate sampling scheme chosen for the
study.

5.4.1 Estimator Equations

Inferential estimation of the biomass, net specific growth rate p_and the maintenance
coefficient m_ was pi'oposed to be carried out from (i) frequent and regular measurements
of the carbon dioxide evolution rate (CER) available at the basic sampling rate and (ii)
infrequent, delayed measurements of the biomass available at a slower sampliﬁg rate
which is assumed to be some integral multiple of the basic sampling rate.

The balance equation for the cumulative amount of biomass x,(=XV) can be written by
performing a simple transformation of the dynamic balance equation for the biomass

(equating ry = pX in equation A.1 of the Appendix) as,

M px, (5.2)
dt

Commonly, structural models, such as the Monod model, that relate the growth rate to

biomass and substrate concentrations are used to explain the variation in p. In the above

equation however, p is assumed to be a time varying parameter and no growth model is

assumed to describe it. A measurcment delay t, = 2 basic sampling instants was assumed

for the biomass. In continuous time, the following equation simulates the delay.
x (0 = x,(t-t) (5.3)

However, two delayed states need to be introduced as discussed in section 3.2, to simulate
the delays in the discrete domain. The discrete, output equation can be expressed in terms
of the CER (mmol/h) by assuming the gas phase dynamics to be significantly faster than

the rates of growth or substrate consumption. Thus from equation A.7 in Appendix A,
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CER() = [k,p(@) + m )] x,3) (5.4

where k, is the yield coefficient.
The measurement equation at the major sampling instant, when we have measurements

of the cumulative biomass and CER, can be written as,

;= x3(i) cyv = xJ(i) v o (5.5)
- [CERG] T K@) +m )X, () | T

At ‘the minor sampling instant, measurement of only CER is available and the

measurement equation can be written as,
Z.minﬂr = CER(i) + y_minar = [klp(i) + mc(i)] xl(i) + Xmizwr (5'6)

The specific growth rate p and the maintenance coefficient ni, are time varying and need

to be estimated in addition to the states. They aie modelled as discussed earlier as,

o= w, 5.7)

(5.8)

where w, and w; are zero-mean noise processes with unspecified probability densities.
5.4.2 Observability analysis

For time varying, nonlinear systems, observability conditions can be checked by
considering linearized approximations. Structural -unobscrvabilitiesy, if any, Would render
the system unobservable at all sampling instants. These can be easily detected if the
relevant observability matrices are constructed symbolically and then checked for rank
deficiencies. The fesults of such a symbolic ovservability analysis are independent of the
values that the parameters can take and are thus generic. For the above nonlinear systehn
of equations, we perform a structural observability analysis using Maple (1981). We

consider the observability of the system in a locally linearized sense under the following
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scenarios:

(i) System with no measurement delays

The system equations that need to be considered here are (5.33), (5.38) and (5.39)

The state transition matrix after linearization and discretization -of the above system

equation can be written as,

1+() @) 0
o= 0o 1 o0 5.9
o 0 1

At the major sampling instants, measurements of biomass and CER are available and the

linearized measurement equation is,

h = [ 1 o 0 } (5.10)
major =\ u(i)+m (i) kx, (D) x,)
The corresponding structural observability matrix, Om;,go,:[hmjo,; Npajor®s Nenjor®?]” can be
written as,
1 0 0
k(@) +m (i) kx, () x, (@)
(1 +Tp() T, () o G1D
Orsjor = (kp()+m (D)(1+Tp(@)) (k,p@) + m @), @)+k x, () x,(D)
(1+tp@))* ™, (D)2 +Tp@) 0
kp(@D+m (D)A+p@)*  kyp@)+m OQ+@)wx,(@) + kx, () x,()

Using Maple, this matrix can be shown to be of full rank and therefore the augmented
system of the states and the parameters is completely observable from the process outputs

at the major sampling instant.

At the minor sampling instants, since only measurements of the CER are available, the
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linearized measurement equation can be written as,
By =L@ +m (D) K, () X, D] (5.12)

The observability matrix for this case can be verified to be,

k() +m () ke, () %)
0, = | K@) +m ()1 +Tp(D) (ke n (@) +m (DYTx, (@) +k x, () x5 (5.13)
(k;l-l(i')+mc(l))(l +’CP(I))2 (kl}l(i) +mc(l))(2+'cp(i))1:xl(i) ...ijl(i) xl(l) _I

The above matrix can be shown to be rank deficient. It has a rank of 2 i.e. a rank defect
of 1. The system is thus structurally unobservable, so that the overall system of states and
parameters is only partially observable from the secondary measurements. From intuition
and from systems theory (such as the directed mode expansion of the output), it is easy
to verify that at minor sampling instants, only the state x, and the specific growth rate p
are observable from the CER. Thus if the maintenance coefﬁcieﬁt m, is constant, state
estimation can still be done. | ’

(i) System with measurement delay

The system equations that need to be considered for this case are (33),(34),(38) and (39).

The state transition matrix after linearization and discretization can be written as,

[1+1tp() 0 0 () O]
1 00 0 O
o=l 0o 10 0 o .14)
0 00 1 0O
| 0 00 o0 1]

Major samnling instant

The measurement of the biomass that is available at this sampling instant corresponds to

the delayed state x;. Thus the measurement equation can be written as,
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x,(0)
zmajar.dclav = . ’ - . + -Y- majoradelay (5.15)
T |G @) +m (D)x, () voraee
The linearized measurement equation thas is,

major delay = klp(i).”nc(i) 00 klxl(i) xl(i)

Using Maple, the observability matrix (omitted here for brevity) can be constructed and
verified to be of full rank. Thus even for the case of measurement delay, the system is
fully observable at the major sampling instant.

Minor Sampling instant

The measurement equation remains the same as the case of no measurement delay since
the delayed biomass measurements are not available at this sampling instant at all. The

state vector, however, does include the delayed states and the linearized measurement

equation can be written as,
hminar',dclay = [klp(1)+mc(i) 00 klxl(i) xl(l)] (517)

Using Maple, the observability matrix for this case can be found to be rank deficient with
a rank of 2.

Compared to the case of minor sampling instant with no measurement delay, we see that
that there is an increase in the rank defect. From intuition and from systems theory, it is
easy to see that this increase in rank defect of 2 is due to the addition of the delayed
states at the minor s'amplimg instant. These delayed states are not correlated with the
system output (CER) and are thus not observable at the minor sampling instants. Thus at

the minor sampling instants, when there is delay, the maintenance coefficient and the

delayed states are not observable.
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5.4.4 Modified Observer

From the préceding observability analysis, it is then possibie to conclude that
@) the system with measurement delay is fully observable at the major sampling
instants, |
(i) At the minor sampling instarits, the system is unobservable.
One obvious implementa’ion of the estimator for the case of undelayed measurement is
to update the maintenance coefficient at the major sampling instant and to assume that
the major sampling instants arrive frequently enough to track the changing maintenance
coefficient. For the case with measurement delay, however, one can then extend the same
ideas, provided of course that it is possible to make the delayed states observable in some
way. This motivates the use of a modified observer presented below.
The basis for the modified observer formulation lies in the fact that past inferential
measurements must be correlated with the delayed states. Since, we know that the rank
defect at the minor sampling instant increases by the number of added delayed states, by
including past measurements in the observation equation, we can attempt to decrease the
rank defect by the same number. The motivation for doing so can also be drawn in
analogy with the philosophy of adding delayed states. The latter are only hypothetical
states added to simulate delay in the state space description i.e. for mathematical
tractability. Thus, to observe them we can add as many delayed measurements i.e. past
measurements in the measurement equation. Fer the above minor sampling instants, the

measurement equation can then be written as,

CER()
SCER(i-1)| + v

i (5.18)
- nu'nor.mod:ﬁed—
CER(i-2)

minor,modified

If we now make the additional assumption that p and m, remain constant during the

measurement time delay (a valid assumption considering the dynamics of the bioprocess),

we can write
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(k,p@+m (D)x (D)
Z nminormodified”™ k,p@+m (x| + v minormodificd | (5:19)
(k1 (i) +m (D)x, (1)

The linearized measurement matrix can be written as

kn(i)+m_(0) 0 0 kx, (i) x,(i)
hirmoized =| 0 kp@m@® 0 kx® x| ©20
I o0 0 kp@)+m (D kx,() x,30)

Using Maple, the observability matrix for the linearized system with the meodified
measureriient equation can be verified to be of full rank. Comparing the resuits obtained
at the minor sampling instants in this section with the modified measurement equation
with those obtained in section 5.4.3, it is possible to conclude that by inclusion of the past
measurements and by exploiting the system structure it has been pqssiblc to decrease the
rank defect to zero and make the system completely observable.

~ As mentioned earlier, ad-hoc measures of observability such as "weakly" or "strongly"
observable systems can be obtained by examining the singular values of the observability
matrix. Thus, a system could be termed as "strongly"” observable if it had a well
conditioned observability matrix. In the foregoing analysis, although the observability
matrix was of full rank at the major sampling instants indicating that the system was fully
observable at these instants, past measurements were still used in a modified measurement
equation to improve the condition number of the resulting observability matrix and thus
make the system more strongly observable at the major sampling instants.

Thus at the major sampling instants, the measurement equation is written as,
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x,(D
(k,p(@D+m (D)x, (D) )
z major.modified = . . + 3 major.modified (5.21)
' ke p @D +m (D)x,(D)
K p@+m x|
The linearized measurement equation can be written as
0 0 1 0 0
kp@)+mi 0 0 kx, (D x,(D (5.22)
hmaior.modtﬁtd = 0 k,ll(i) +mc(i) 0 klxz(i) xz(i)
0 0 Ep@+m(D kx® x0

It was verified using symbolic computation that the observability matrix, when the

modified observer equations were used at the major sampling instants, was also of full

rank.

Thus the system which initially had structural unobservabilites at the minor sampling

instants. has been made fully observable at all sampling instants by including past

measurements in the system description. |

® Remark 1: The results of the above structural observability analysis can be said to be
generic, and ap'plicable to all systems having a similar structure. However, their
validity as applied to nonlinear systems, is restricted to the locally linearized
system description.

® Remark 2: Fisch delayed and/or infrequent sampling of the primary process variables,

fa @ oy

gcenario as presented above, is present in many chemical processes
which ziveive sampling and elaborate off-line analysis or assay procedures. The
structural unobservabilities seen above are also typical of many chemical process
systems. For example, in an exothermic batch reactor, the temperature of the
reactor contents is influenced by the reaction as well as the heat transfer rates.

Commonly, reactor temperature measurements are used to infer typical reactor
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states (reactant compositions) and parameters (réaction rates) (Bonvin er.al
(1989),de Valliere and Bonvin (1989)). If the heat transfer rates changé due to a
change in the overall heat transfer coefficient, the state and parameter estimates,
' generated from temperature measurements alone, could be biased. It would then
be necessary to update the heat transfer coefficient in exactly the same way as the
maintenance coefficient discussed above, to enhaiice the quality of the state and
parameter estimates.

5.5 Estimation Results )

Simulation study

The system of equations presented in Appendix A was solved for a time interval of 120
hours for a linearly changing value of the maintenance coefficient m_ between 1.1 to 1.6
mmol CO,/h-1. A constant nutrient feed rate of 5.6 ml/h was assumed. The profiles for
biomass concentration, CO, content in the exit gas, the specific growth rate and the
maintenance coefficient thus generated are shown in Figure 5.2.

A tultirate sampling scenario was chosen as follows. Measurenient of the biomass was
assumed te arrive every 3 hours from the simulations. Measurements of the CO, content
in the exit gas and the broth volume were assumed to arrive every 6 minutes. In terms
of the sampling instants, the major safnpling instant arrived every 3 hours or after every
30 minor sampling instants. A delay of 2 minor sampling instants was assumed for the
primary measurement. White Gaussian noise with zero mean was added to the
measureménts to simulate noisy measurements with a relatively smaller signal to noise
ratio. The objective of the estimator was thus to estimate, from the measurements arriving
at multiple rates of sampling described above, the cumulative biomass, the specific growth

rate and the maintenance coefficient.

Base case Estimation : Figure 5.3. shows the behaviour of the estimator for the base case

estimation. It can be seen that state and parameter estimation is excellent. The parameters
are tracked quite well but the estimates are noisy due to the high sensitivity of the filter

to the measurement noise added. For the above run, the process noise covariance matrix
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Biomiass profiles
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Cumulative Biomass estimates
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TABLE 5.1

Process noise covariance matrices for the simulation runs.

Validation case

Process noise covariance

Figure number in the text

matrix of the chapter.
Base case estimation 1000 times Figure 5.3
diagonal(1,1,1,50,50).
Effect of major sampling | 1000 times Figure 5.4
interva]‘ diagonal(1,1,1,50,50).
Effect of measurement 1000 times Figure 5.5
delay diagonal(1,1,1,50,50).
1000 times Figure 5.6

Effect of modified
parameter covariince

diagonal(1,1,1,10,10).
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Q was assumed to be a diagonal matrix with entries corresponding to the "process noise"
levels of each of the states. The measurement noise covariance matrix was alSo assumed
to be 0.1 times an appropriately sized identity (diagonal) matrix with entries
corresponding to the covariance of measurement noise. The values of the process noise
covariance matrices that were used in the estimation run are mentioned in ‘Table 5.1.
The cumulative biomass profiles show corrections on arrival of a biomass measurement
at the major sampling instants. This is through the appropriate specification of the process
and measurement noise covariances such that greater confidence is placed on the
estimates of .the biomass generated from primary measurements that are available at any
sampling instant as opposed to the estimates generated inferentially from the CER.

Effect of Major sampling frequency : Figure 5.4 shows the perforrnance of the estimator

when the major sampling instant occurs every 60 minor sampling instants. It can be seen
that, due to slower availability of thc primary measurement, the tracking of the true
parameters is sluggish. This can also be judged from the drastic corrections madc by the
estimator at thé major sampling instant to generate the biomass estimates. These drastic
corrections indicate that, due to slower tracking of the parameters, the estimates of the
biomass generated inferentially from the CER at the minor sampling instants do not track

the true values correctly.

Effect of Measurement delay : Figure 5.5 depicts the performance of the estimator when

there is a measurement delay of 30 sampling instants. Comparing this case with the base
case (Figure 5.3), it is easy to con¢lude that the estimator can robustly accommodate
measurement delays. The estimator run in Figure 5.5 corresponds to a sampling regime
where a primary sampling is made when the results of the previous measurement is

obtained. Due to large delays in measurement availability, the tracking of the parameters
is quite sluggish.

Effect of Parameter covariance: Figure 5.6 depicts the estimator performance when the
parameter covariance matrix assumes values 10,000 times the appropriate identity matrix.

For the extended Kalman filter formulation used in this work, this parameter covariance
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matrix is a subset of the overall process noise covariance matrix. The measurement noise
covariance matrix was assumed to be 0.1 times the appropriate identity matrix for both
the major and minor sampling instants.

Figure 5.6 shows that biased parameters are obtained for a small value of the parameter
covariance. However, the tracking of the primary state is quite good. Furthermore,
because the tracking of the parameters is sluggish, these trajectories are quit= smooth and
are not sensitive to the measurement noise at all. As the parameter covariance is
increased, the parameter estimates become less biased and converge to the true values.
However when the parameter covariance is increased, the filter becomes more and more
sensitive to the measurement noise and the parameter estimates are noisy. This can be

seen by comparing pararrieter trajectories in Figure 5.3 and Figure 5.6.

5.6 Conclusions

® An algorithm to formally accommadate the multiple rates of sampling that typically
exist in chemical processes has been px;oposed. It has been shown to have a sound
theoretical basis by formulating it as an extended version of the multirate Kalman filter.
® Measurement delays associated with the primary measurement are formally
incorporated into the system description. The subsequent decrease in system observability
due to incorporation of the delays, if any, is addressed by using past measurements in the
measurement vector to annul the rank deficiency of the observability matrix.

@ The algorithn‘i has also been shown to not have restrictive assumptions on the
frequency of primary and secondary measurements as in the transfer function based
approaches proposed earlier in the literature. These features allow the estimator to be
easily implementable in a typical real time sampling scenario involving measurement
delays and irregularities in measurement ava.ilability.

@® The algorithm has been validated on a case study involving fermentation systems.
Validation using both simulation and experimental data from an antibiotic fermentation
has been successfully carried out (Gudi et al.(1994)). The practicality of the proposed

algorithm has thus been confirmed by an experimental application.
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Cumulative Biomass estimates
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5.8 Nomenclature

Roman

f nonlinear process model for a general plant

g nonlinear measurement function for a general plant
u manipulative variables of the process

t time variable |
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Superscripts

A

Subscripts
‘major

time elapsed due to measurement delay

white noise vector

vector of system states

nonlinear function for the augmented system description
nonlinear measurement function for the augmented system
linearized measurement matrix

Kalman gain at any sampling instant

a priori estimate of the covariance of estimation errors

a posteriori estimate of the covariance of estimation errors
covariance of process noise

superstate in the augmented system deseription

control matrix in the discrete stiis space model

dummy variable used for iterating in the IEKF formulation
deviation or perturbation operator

vector of innovations at any sasnpling instant i

vector of measurement noise

vector of time varying system parameters

specific growth rate of the microorganisms

imeasurement noise vector

vector of process noise

sampling time

discrete state transition matrix

state estimate via the measurement update equation

state prediction via the time update equation
pertaining to the major sampling instant
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minor pertaining to the minor sampling instant

2 pertaining to the measurement vector

106



Chapter 6

Multirate Adaptive Estimation in an
Antibiotic Fermentation with delayed

measurements’

This chapter discusses issues related to estimation and monitoring of fermentation
processes that exhibit endogenous metabolism and time varying maintenance activity.
Such culture related activities hamper the use of traditional, software sensor based
algorithms such as the extended Kalman filter(EKF). In the approach presented here, the
individual effects of the endogenous decay and the true maintenance processes have been
lulhpcd td represent a modified maintenance coefficient, m.. Model equations that relate
the measurable process outputs such as the carbon dioxide evolution rate (CER) and
biomass to the observable process parameters such as net specific growth rate and the
modified maintenance coefficient are proposed. These model equations are used in an
estimator that can formally accommodate delayed, infrequent measurements of the culture
states such as the biomass as well as frequent, culture related secondary measurements
(such as the CER). The resulting multirate software sensor based estimation strategy is
used to monitor biomass profiles as well as profiles of critical fermentation parameters

such as the specific growth for a fed batck fermentation of Streptomyces clavuligerus.

' A version of this chapter has been published as: R.D. Gudi, S.L. Shah and
M.R.Gray, "Multirate state and parameter estimation in an antibiotic fermentation with
delayed measurements"”, Biotechnology and Bioengineering, 44, pp. 1271-1278, (1994).
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6.1 Introduction

Monitoring of process variables en a regular basis in a bioreactor continues to be a
formidable task due to the lack of adequate sensors that can provide measurements of the
key culture states on an online and regular basis. In addition to being able to perform
tasks such as fault diagnosis, such monitoring may also be necessary to formulate online
control policies designed for sptimal operation of the fermentation run. In the latter case,
it may also be necessary to generate estimates of key parameters,such as the specific

growth rate, to design an effective control policy for the fermentor.

Inferential estimation strategies have largely been used to generate estimates of the key
variables such as the biomass and substrate concentrations and key parameters such as the
specific growth rate( Stephanopoulos and San {1984). In such strategies, the key variables
and parameters are estimated from other correlated measurements of secondary variables
such as the carbon dioxide evolution rate (CER),assuming certain systems related
conditions such as observability are met. The concept of observability is central to the
design of state estimators. Loosely speaking, a system is said to be observable, if all its |
states can be estimated from a knowlcvdge of the model and some measurements of a
linear combinations of a small subset of the states. Even when such observability
conditions are not met, Bastin and Dochain (1990) have shown that it is possible to
design asymptotic observers whose convergence characteristics and performance would
then depend on experimental conditions.

Inferential estimation strategies mentioned above have their basis in Bayesian methods
such as the Extended Kalman filter (EKF) algorithm to simultaneously estimate the key
states and parameters. Pioneering efforts (Stephanopoulos and San (1984), Bastin and
Dochain (1990)) in the use of such strategies for estimation have shown them to be
workable on biochemical processes. The convergence properties of these estimators are
however known to be very sensitive to modeling errors and errors in specifying initial

conditions. To address these problems, such algorithms have also been used in an iterated
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framework (Bellgardt et al. (1986)).
The concept of maintenance energy of a growing population was first introduced by
Herbert (1958) and Pirt(1965) to explain the 6bserved variation in the yield coefficient
Y,, that appears in the Monod model. Roels (1983) has also related the maintenance
coefficient to endogenous metabolism which results in a decrease in the biomass. From
an inferential estimation viewpoint, a changing maintenance coefficient alters the
correlation between the biomass growth and the CER and therefore ignoring the time
varying nature of the :raintenance coefficient can affect the performance of the estimator.
This was implicitly shown in the work of Mou and Cooney (1983) who, for an antibiotic
fermentation, used a different inferential correlation during the secondary production
phase when the maintenance coefficient can be expected to change due to significant
endogenous metabolic activity.
In a typical bioprocess environment, it is common to measure the key variables, such as
the biomass concentration, irregularly on an off-line basis. Information available from
such infrequent measurements is then subsequently used for monitoring of the bioprocess.
Work in this area was first done by Halme er al. (1985). They used a Gaussian
distribution function defined over a window around each sample point to quantify sample
uncertainty. The component gains of the estimator related to the measurement were made
to approach zero at the boundary of the window. Thus each sample had a validity interval
after which it provided very little or no useful information to the estimator performance.
In another approach, for antibiotic fermentations, Stone et al.(1992) used off-line
measurements to update the maintenance coefficient that appeared in an inferential
correlation relating the carbon dioxide evolution rate (CER) to the l;iomass. This updating
used a balancing method of Esener et al. (1981) which was valid at low specific growth
rates only and was performed off-line.
In this chapter, the problem of state and parameter estimation for a class of fermentations
that exhibit significant endogenous metabolism and time varying maintenance activity is

addressed. Occurrence of endogenous metabolism results in a decrease in the net specific
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growth rate of the microorganisms. The carbon dioxide evolution is however only due to

the growth and maintenance processes that occur in the fermentation and as such does not
reflect the effects of endogenous metabolism. Thus, there is an apparent loss of
correlation between the CER and growth at the onset of endogenous metabolism. ’in
addition, the ‘true maintenance cogfficient can also change during the fermentation. These
problems are aidressed by using & modified form of the traditionally used inferential
relationship between the bioitiass growth and CER. Due to unobservability problems of
some of the parameters in the modified relationship, the state and parameter estimation
task cannot beé performed by using the secondary measurements of éER alone as has been
done in traditional approaches using the EKF. It has been shown that the infrequently
available, delayed measurements of the biomass can also be formally accommodated in
the estimation strategy to ensure good system observability and thus update all the
parameters in the modified inferential relationship online. We also present experimental
validation results of the resulting estimation strategy for monitoring biomass and the

specific growth rate in a fed-batch fermentation of Streptomyces clavuligerus NRRL 3885
6.2 Materials and methods
Cuiture ‘

The culture used in the experiments was Streptomyces clauvuligerus NRRL 3885, from
which stock spores were prepared. Spores were scraped from TOA plates (oatmeal,20g/L;
agar(Difco), 25g/L; pH=6.8) into 20 % glycerol. To speed up suspending, a sonicator was

used. When the spore suspension was dark green, it was dispenséd into 1.0ml cryovial
and frozen at -70°C.

Inoculum culture was incubated in a 500ml shake flask containing 100ml medium. The
composition of the medium' (per liter) was as follows : soluble starch(Difco), 10g;
tryptone(Difco), 17g; soy peptone(Scott), 3g; NaCl Sg; K;HPO,, 1.25g; MOPS buffer,
20g; trace elements solution 1.0ml ceusisting of 0.1 % (w/v) each of FeSO,.7H,0,
ZnS0,.7H,0, MnCl,.4H,0 and CaCl,. The pH was adjusted to 6.8 with HCl. The medizm

was inoculated with 1%(v/v) spore suspension and grown on a rotary shaker (250 rpm)
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at 28°C for 24 hrs.

Equipment

All experiments were conducted using a 2L New Brunswick Multigen fermentor. Sensors
for;pH (Phoenix autoclavable double reference electrode),DC (Ingold autoclavable DO
probe) and temperature (Omega) were connected to a microcomputer system via an
OPTO-ZZ data acquisition system. The pH was controlled by an Omega PHCN-36
pH/ORP controller. A Tylan mass flow controller system coupled to the computer through
the OPTO-22 systerm was used to regulate the flow of gas to the fermentor. The feeding
rate was controlled by a Pharmacia peristaltic pump-1 through the computer. The
fermentor off-gas was analyzed for concentrations of O, and CO, by a Dycor mass
spectrometer.

Fermentation

All experiments were carried out with 2 % innoculum and an initial volume of medium
of 1L. There were two. feeding phases in all experiments. The first _feeding phase started
at a rate of 7.5 ml/h after 12 hrs of batch growth and finished at a rate of 22.5 m¥/h after
24 hrs of feeding. The second feeding phase began almost immediately after the first and
had a constant feeding rate of 3.5 mi/h until the end of the run(Figure 6.1)

The medium composition used in the batch growth phase was as follows: SQluble starch,
3g/L; tryptone, 5.1g/L; soy peptone, 0.9g/L; NaCl, 5.0g/L; K,HPO,, 1.25 g/L; trace
elements Iml/L. The same medium was used in both the feeding phases and its
composition was as follows : Maltose, 20g/L; Tryptone, 34g/L; soy peptore, 6g/L; NaCl,
5.0 g/L K,HPOQ,, 1.25 g/L; trace elements, lml/L. During the fermentation, the pH was
controlled between 6.7 and 6.9 with 2N HCI or 2N NaOH. The fermentor was agitated
at 580 rpm, and aeration set point was 1.6 L/miri. The foam was controlled using 2 %
antifoam SAG 471 (Union Carbide).

Analyses

Samples taken from the fermentor were centrifuged to separate mycelia and the
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supernatant. The mycelia, after washihg, resuspensicn and sonication, were used for
protein analyses. The supernatant was analyzed for glucose, reducing sugar and starch.
Proteins were determined using the dye-binding assay (Sedmack and Grossberg, 1977) on
the supernatant obtained from the centrifugation of sonicated cells.

The Nelson-Somogyi micro-colorimetric method (Southgéte, (1976)) was used to
determine the total reducing sugar. Glucose concentration in the supernatant was
determined using a glucose analyzer (YS1 Model 27). The maltose concentration was

determined by taking the difference between the total reducing sugar and glucose
concentrations.

Computational Methods

The computations for validating the estimation and filtering strategies were performed on
MATLAB V4.0. (MATLAB, 1992).

6.3 Process Modelling

For fed-batch fermentation systems exhibiting endogenous metabolism, the following
equation can be used to describe the net rate of growth of biomass,

dx q .
== -nx -Ax 6.1)
dt Bx = R |

in the above equation, q is the nutrient feed rate, p is the specific growth rate observed
on substrate consumption and p, is the specific growth rate of the endogenous decay
process (Roels (1983)). If we set p,.=p-p. and assume x,=xV, where V is the volume of

the broth, the above equation can be expressed more compactly as,

dx

R | 6.2)
dt pncftl

At constant pH and head pressure we can assume that the amount of CQO, in the broth is
approximately constant due to the rapid gas phase dynamics. Therefore, the total gaseous
CO, outflow rate can be equated to the CER. The CER itself can be related, using a two

parameter model, to the growth and non growth associated activities of the culture as,
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CER = kp x,+mx, (6.3)

In the above equation, k, is the yield coefficient for CO, evolution on biomass growth and
m is the maintenance coefficient. The above equation for CER can be written in terms of

the net specific growth rate p,,, as :

CER = kp, x, + mx, 6.4>

The coefficient m, can be considered to be a modified maintenance coefficient
representing the individual effects of the true maintenance and the endogenous decay
processes. Comparing (1.3) and (1.4), the modified maintenance coefficient can be written

as,

m, = kpom 65)

In typical fermentations, the specific growth rate p is time varying due to its dependence
on the time varying nutrient concentrations and therefore when the maintenance activity
is negligible or constant, it is possible to use an EKF to simultaneously estimate the
biomass as the state and the specific growth rate as the parameter from measurements of
CER using equations (6.1) and (6.3). However, when there is significant endogenous
metaboli$m and when the maintenance coefficient is not negligible or is time varying,
the above equation set cannot be used to perform state and parameter estifnation. This is
‘because two of the parameters, p, and m are not observable from: CER alone. Formulation
of the modified equation set (6.2) and (6.4) helps in reducing the number of unobsefvable'
parameters by one. However, due to observability problems, it is still not possible to
estimate both p ., and m, simultanédusly from CER measurements alone. It is necessary
to utilize information from other measurerﬁent,s which are sampled infrequently, such as
the biomass to update the modified maintenance coefficient m,.

Issues related to foma?.’ incorporation of the infrequently sampled measurement into the

estimation equations for a Bayesian estimator have been investigated by the authors in an
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on-going research project on software sensor development. The authors have also

investigated methods of enhancing systcm observability. We present here the estimation
equations for the above problem.

Performing a simple Euler discretization on equation 6.2 we obtain,

x,G+1) = (A+Tp@)x,0) + w,@) | - - (66)

where T is the sampling time and w, is the discretization error. ‘A delay is usually
associated with the sampling of the primary biomass measurement due to elaborate assay

procedures. Assuming a delay of 2 sampling instants, we simulate them by introducing
two hypothetical state variables as

x,(i+1) = x,(i) | ®.7)

x,G+1) = x,0) (6.8)

The parameters p,, and m, can be modelled as random variables with unspecified
distributions and can be written as,

p G+1) = p_ () + w,() ' 6.9)

mG+1) = m (@) + wid) | (6.10)

The above time varying parameters can be updated along with the system states using an
EKF formulation(Ray- (1981), Stephanopoulos and San (1984)). For thisb task, an
augmented system description is constructed by appending the parameters to the sysiem
state vector. The new augmented system description has a nonlinearity (bilinearity) due
to terms that have a product of two states of the augmented state vector. State (and
parameter) estimaiion is then carried out using the EKF by applying the linear Kalman

filter equations to the linearized system. However, since we have multiple rates of
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sampling or measurement availability, the multirate formulation of the basic Kalman filter
equations (Glasson (1983), Gudi er al. (1993)) needs to be used aleng with the linearized
system desCription. For the above process description, it can be shown that the overall

system of equations for the state vector X defined by X=[x,:x,;x3;p;m_.] can be written as,

X(i+1) = AIXO] + wd | 6.11)

#md the Jacobian associated with the linearization of the above equation is :

[1+tp() 0 0 () O
1 00 0 0
A=l 0 10 0 0O (6.12)
0 00 1 O
| 0 00 o 1]

At any sampling instant i, we can have measurements of CER amd/or the biomass. We
term the sampling instant at which we have measurements of biornass and the CER as a
major 'sampling instant. At the minor sampling instant, measurements of only the CER
are assumed to be available. Using symbolic computation tools such as Maple (Waterioo
Maple Software, (1981)), it can be shown that inclusion of as many past measurements
of CER as the number of system delays enhances the observability properties of the new
extended system. In addition, if an assumption is made that the parameters remain
constani during the time period of delay, the'system can be shown to be fully observable
from the process outputs at the major as well as the minor sampling instants. It must be
mentioned that the results of the above symbolic observability analysis are applicable in
a generic but only a locélly linearized sense to systems having a structure similar to the
above system. Since we have assumed a delay of * .éémpling instants the measurement

equation and the measurement vector at the major simpling instant can be expressed as,
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X0 ]
. |Eeomono 613
maior = | (e (i) +rm (X,0)
k1, D +m DY,

_ NN
x,(D)
. CERG) |, v {6.14)
o YCER@-1) ihid
| CER(-2) |
where v, is the associated measurement noise vector. At the minor sampling instants,

the measurement equation and the measurement vector is :

(k,n,, () +m (D))x, () -
(6.15)

hminor = (kl pncl(i) +mc(i))x 2(1 )
kn,, ()+m (D))x,(0)
CER()
Zo=|CERG-1D) | + v . (6.16)
CER(i-2)

The linearized measurement equations at the major and minor sampling instants are:

| .
0 0 1 0o 0
i P _ k(i) +m i 0 0 kx,() x,G) 6.17)
X 0 k,n(i)+m (i) 0 kx) X0
0 0 kp(@+m (D) kxy) x,0) |
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k,n(@)+m () 0 0 kx, () x,(0)
H oo, a’g";"‘" | 0 kp@m® 0 kx® x® (©.18)
0 0 kpOmD kx® x,®

The time varying formulation of the basic Kalman filter( Franklin er al.,(1990) modified
for the case of multirate measurements (Gudi et al.,(1993)) can now be used alongwith
the above linearized system of equations to set up the estimator algorithm. |
Assuming that a state prediction X and the state covariance prediction M are available at
the major sampling instant, the innovations &, is first generated in equation (6.19) using
the measurements. The linearized Kalman gain K, is then calculated in equation (6.20)
using the measurement equation linearized around the current state prediction X. The state
estimate X is then generated by suitably weighing the innovations and the state prediction
in equation (6.21). The aposteriori (after measurement) state covariance matrix P, which
represents the estimation accuracy immediately after the measurement is precessed, is then
calculated in equation (6.22). P is then used in equation (6.28) to generate a prediction
of the state covariance for the next sampling instant.

Thus at the major sampling instant, the estiation equations are written as,

Maior Sampling instant

€ pnajor = ZrajorPajor (6.19)
K ior = MH@JXG)] (H o [XDIMDH (XD + R, 3 (6.20)
X0 = XG) + &,,,e0) ' (6:21)
P = M@ - K_. ‘h M@) | 6.22)

major’ “major

At the minor sampling instant, the above set of equations can be rewritten with different

(smaller) dimensions on the measurement equations and the Kalman gains. The equations
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at the minor sampling instant can be: written as,

Minor Sampling instant

S T ) LA (6.23)
K ior ™ MH i JXOHH [XOIMOH L0 [XD] + R, )™ (6.24)
@) = XO + K2 (6.25)
PG) = MGW)-K,, k. M(3) (6.26)

In the above equations, R, is the covariance of measurement noise and is chosen to reflect
the errors in the measurement device. The above equations are essentially - the

measurement update equations at any instant i assuming that the state prediction X and
covariance prediction M are available. The latter are provided by the time update

equations which are written by performing an actual integration of the nonlinear equation
set as,

X =f&n , (6.27)
M=fo+Pf;+Q {5.28)

In the above equations, Q is the covariance of process noise and is chosen to reflect errors
in the process model. The iterated extended Kalman filter {EKF) has been recommended
for systems with nonlinearities in the measurement equation (Bellgardt et al. (1986)). The
authors have investigated the possibil’ity of using the IEKF in the above multirate
framework. However, the nonlinearities in the above measurement equations were not
found to significantly influence the convergence characteristics of the multirate estimator.
The above equations were thus found to be adequate to perform state and parameter

estimation tasks at the major and minor sampling instants.
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6.4 Results and Discussion

Fermentation

The fermentation experiments were fairly reproducible and a single experiment which was
found to be representative of nine experiments was chosen for the estimator validation.
Figure 6.1 shows the profiles for the cumulative biomass, the feeding policy and the
carbon dioxide evolution rate. The maltose concentrations were between 1-2 g/L
throughout the fermentation run. The culture exhibited a lysis phase at or about 40 h of
fermentation. This phenomenon was verified from the profiles of dry cell weight as well
as the protein content and was observed for both the fed-batch and batch runs. Since the
maltose concentrations were fairly steady, the onset of lysis indicated a limitation of some
other critical nutrient necessary for growth.

Estimator Performance

Estimator validation was carried out by presenting the cumulative biomass (with an
assumed measurement delay) and the CER data in an “on-line” fashion to the estimation
equations. The estimator was run on the basis that the time period between two sampling
instants (basic sampling time) was 20 minutes. Accordingly, the major sampling instants
arrived approximately every nine sampling instants (3 h) for the sampling strategy chosen.
At this sampling instant, measurements of both , the cumulative biomass (possibly
delayed i.e the measurement corresponded to sampling done at an earlier time) and the
CER, were available. At the miror sampling instants, which occurred after every basic
sample time, measurements of only the CER were available. It was proposed to generate
estimates for the cumulative biomass, speific growth rate and the modified maintenance
coefficient from the data collecied for th¢ fed-batch fermentation. k, has been assumed
to be 0.0372 mmol CO, / g X (Pirt et 41.(1967), Stone et al. (1992)). The initial values
for the states and parameters assumed for the estimation run are presented in Table .

Reference parameter profiles

The estimator was first run by assuming that the curnulative biomass and the CER

measurements were available at every sampling instant. The cumulative biomass values
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Cumulative Biomass estimates
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Figure 6.1: Experimental profiles for the cumulative biomass, the nutrient feeding rate and

the CER for fed-batch ferementation of Streptomyces clavuligerus NRRL 3885. A single

fermentation run representative of nine runs is shown. The biomass measurements were

taken every 3 h and the CER measurements were taken every 20 minutes.
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that were needed for such a run were generated by linear interpolation of the sampled
points. Under such a scenario, all the sampling instants were major ones, and therefore
the system was completely observable at all the sampling instants. The parameter profiles
that were generated converged to values that could be verified from visual examination
of the biomass and CER profiles. At the end of the fermentation, the specific growth rate
was close to zero. Thus all the CER could be attributed to maintenance activity alone.
Knowing the terminal biomass and CER values, it is possible to verify that the expected
terminal value of the maintenance coefficient was about 1.8 mmol CO,/hr-g.biomass. This
value was in close agreement with what was predicted from by the estimator. Thus, the
reference parameter trajectories generated above were assumed to be representative of the
true values in the fermentation and were then used to compare the performance of the
estimator under a multirate sampling scenario.

Effect of measurement delay

Figure 6.2 presents the results of the estimation for different values of the measurement
delay. For the case when no past CER measurements are included in the measurement set,
the system observability matrix is rank deficient at the minor sampling instant. The
maintenance coefficient is not observable from the instantaneous CER measurement. The
system is, however, fully observable at the major sampling instant and accordingly, the
maintenance coefficient is updated only at the major sampling instants and remains
constant at the minor sampling ones. With 5 progressive increase in measurement delay
from two to four sampling instants(40 min to 80 min), the rank deficiency of the
observability n.atrix at the minor sampling instant increases, because the additional states
that need to be incorporated in the system description to simulate measurement delays,
are also now unobservable from the system output. This enabled the updating of
maintenance coefficient to be perforined only at the major sampling instants and hence

its tracking was sluggish.This resulted in biased state and parameter estimates.
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Cumulative Biomass estimates
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Figure 6.2 : Estimator performance in the presence of measurement delay using
instantaneous CER values. (0) Observed experimental values for biomass (g);(--)
estimated profiles assuming a measurement delay of 40 min; (-.) estimated profiles

assuming a measurement delay of 80 min;(solid line) reference parameter profiles.
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Modified observer performance

In the modified measurement equation, the unobservability of the delayed states at the
minor sampling instants is addressed by appending as many past measurements as the
number of delayed states. Furthermore, making an assumption that the parameters remain
constant during the measurement delay time, makes the system fully observable at the
minor sampling instants too. Thus, incorporation of the mcdified measurement equations
(13-16) makes the system fully observable at all sampling instants. Figure €.3 shows the
performance of the estimator when the modified measurement equations are incorporated.
it can be seen that the estimator performance about the time the feed is switched to a
smaller value ( after 24 h of linearly increasing feed) was a little erratic. This is because
the assumption made regarding the constancy of parameters during the measurement delay
time was not valid. The true parameters changed quite rapidly during this time due to the
transient response of the culture to the feed change. However, the parameter estimates did
converge quickly to the reference values; this is a result of improved system observability
realized by incorporation of the modified measurement equations. The estimator can be
seen to be quite robust to measurement delays. An increase in the measurement delay
from 40 minutes to 80 minutes does not have any significant effect on the estimated
parameter profiles. If a more rapid sampling scheme is chosen in the transient behaviour
region, the state and parameter tracking are improved. This can be seen in Figure 6.4,
when the major sampling instants urrive after every 40 minutes. Thus, the multirate
estimator is capable of providing unbiased state and parameter estimates for the case of

multirate sampling with measurement delay.

6.5 Interpretation of Results

Significant maintenance and endogenous metabolism related activity can be expected
during the nutrient limitation phase resulting from a shift in the nutrient feeding policy.
Recognising this, Mou et al. (1983) used a different correlation during the transition and

penicillin production periods, to calculate cell growth. The parameter m, defined in this
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Cumulative Biomass estimates
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Figure 6.3 : Estimator performance in the presence of measurement delay using modified
measurement equation. (o) Observed experimental values for biomass (g);(--) estimated
profiles assuming a measurement delay of 40 min; (-.) estimated profiles assuming a

measurement deiay of 80 min;(solid line) reference parameter profiles.
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Cumulative Biomass estimates
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Figure 6.4: Estimator performance in presence of measurement delay using modified
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parameter profiles.
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study includes the effect of endogenous metabolism and the true ma.intenance activity. For
the fermentation studied here, the sudden switching over from a linearly increasing
nutrient feed rate to a smaller constant value could have caused a limitation in some key
component necessary for growth. This limitation could have triggered the endogenous
decay process, causing p, in equation (6.1) to assume a small positive value. This

interpretation could explain in part the increase in the value of m, during the later time
of fermentation.

The true maintenance coefficient m can also change during the fermentation. As has been
shown by Niejssel et al. (1975), the true maintenance rate can be manipulated by the rate
at which the carbon substrate is added to the culture. They observed that it is also a
fdnction of the redox state of other essential nutrients. Hill er al. (1993) have also
observed an increase in the combined maintenance and energy spilling or wastage
components under conditions of nutrient limitation. For the fermentation studied here, it
is also possible that the microorganism had to expend more energy to assimilate the
nutrients available from the endogenous decay process, thus resulting in an increase in the

true maintenance energy during the lysis phase of the fermentation.

6.6 Conclusions

Problems associated with estimation and monitoring of fermentation processes that exhibit
significant endogenous metabolism and time-varying maintenance activity have been
addressed. Modified model equations have been proposed and used along with a multirate
state and parameter estimator that can formally accommodate the delayed, infrequent
primary measurement. Experimental validation studies of the resulting software sensor, |
for the estimation of states and parameters in a fed-batch fermentation of Streptomyces

clavuligerus, have been successfully carried out.
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6.7 Nomenclature

f nonlinear model of the augmented state

h measurement equation at any sampling instant

k; yield coefficient for CO, evolution over biomass growth
m maintepance coefficient in terms of mmol CO,/hr-1

m, modified maintenance coefficient

q nutrient feeding rate for the fed-batch fermentation

t time variable -

x cumulative biomass in mass units

z measurement vector in sampling instant

A jacobian associated with the linearization

H linearized meag#rement equation at any sampling instant
M a priori estimate of the covariance of estimation errors
Q covariance of process noise

R covariance of measurement noise

v fermentation broth volume

Greek

B specific growth rate

Pe specific growth rate of the endogenous decay process
Paa specific growth rate

£ innovations vector

Subscripts

major pertaining to major sampling instant

minor pertaining to minor sampling instant

Superscripts :

A state estimate via measurement update

- state prediction via time update
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TABLE 6.1

Initial conditions and parameters used for the estimation runs

Initial Conditions

x,(0),%;(0),..... X412, (0) = 0.9596 g
p(0) = 0.08 hr'!

m 0) = 1.1 mmol CO,/g X-hr

Parameters
Yield coefficient k, = 0.0372 mmol CC,/g X

Covariance matrix Q= diagonal matrix of appropriate size having values 10 for the states

and 30 for parameters

Covariance matrix R = diagonal matrix of appropriate size with values 0.00105 as

diagonal elements.
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Chapter 7

Adaptive Multiraie Estimation and
Control of Nutrient Levels in a Fedi-Batch
fermentation using off-line and on-line

Measurements'

A multirate adaptive estimation algorithm developed earlier (Gudi et al. (1995)) is
extended to perform estimation of nutrient levels using frequent on-line measurements of
the carbon dioxide evolution rate(CER) and off-line, infrequent and delayed
measurements of the biomass and the substrate concentrations. It has been shown that the
algorithm can be designed to track changing substrate yield coefficients as well. The
estimation algorithm has been verified using simulations and industrial data from a fed- -
batch fermentation involving a secondary metabolite producing microorganism. It has
been coupled with a nonlinear control law designed to track prespecified optimal nutrient

trajectories. The resulting closed loop control schemie is evaluated using simulation runs.

! A version of this chapter has been submitted for publication to the Canadian Journal
of Chemical Engineering as: R.D. Gudi, S.L. Shah, M.R. Gray and P.K. Yegneswaran,
" Multirate Estimation and Control of Nutrient levels in a fed-batch fermentation using
off-line and on-line Measurements". : ' '
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7.1 Introduction

This chapter focuses on estimation and control of nutrient levels in a fed-batch
fermentation. From a control perspective, the nutrient or substrate level in a fed-batch
fermentation is the most important state variable that influences the growth and i‘:roduct
expression reactinons. However, due to a lack of adequate on-line sensors, it is difficult to
measure the nutrient concentrations at a desired sampling rate. Often a measurement delay
is also associated with the nutrient measurements due to elaborate off-line assay

procedures. These problems make the regulation of nutrient levels a challenging task.

Strategies to inferentially generate estimates of unmeasured state variables, such as
nutrient concentration, from measurements of other secondary.variables have been
proposed to address this problem. Stephanopoulos and San (1984) used an extended
Kalman filter (EKF) to generate estimates of critical culture states such as the biomass
and the substrate concentrations and parameters such as the specific growth rate from
measurements of exit gas concentrations. To be able to perform the above estimiation, a
system related mathematical criterion called observability needs to be ensured. Loosely
speaking, a system is said to be observable if all its states can be estimated from a
knowledge of thie model and some measurements of a linear combination of a small
subset of the states. The estimator model used by Stephanopoulos and San (1984) did not
allow the observation of nutrient concentrations from exit gas CO, rmeasurements. They
therefore proposed to first generate estimates of the observabl:: states and parameters from
exit gas measurements, then substitute these values into a dynamic nutrient balance
equation which could be integrated over time to yield estimates of the nutrient levels.

Although this strategy works quite well, the nutrient estimation strategy is open loop. Park
and Ramirez (1990) used a sequential parameter updating strategy to monitor and regulate
nutrient levels at desired values. However, they assumed that the nutrient measurements

were available at desired sampling rates.

In general, sensors t0 measure nutrient levels on-line at regular intervals, without
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a time delay for analysis do not exist. In addition, unless relationship expressions such
as the Monod or Contois models that relate the specific growth rate to nutrient levels are
assumed, the nutrient concentrations are unobservable from other growth rate related
measurements. The yield coefficient of substrate on biomass may also be typically
unknown and can possibly change. Stephanopoulos and San (1984) used material balances
based on molecular reactions and an assumed stoichiometric formula for the biomass. This
method generates estimates of the yield coefficient; however, the stoichiometric balances
are not easy to write for complex fennentations. An incorrect estimate of the yield
coefficient can result in biased estimates of the nutrient levels.

In this chapter, we propose a novel approach to address these problems. The observation
strategy that we propose is based on formal incorporation of the infrequently available
and delayed measurements of the primary variables such as the biomass and substrate into
the estimation strategy. In an earlier work (Gudi et al.,1995), we have shown that a
Kalman filter expressed in a multirate framework coupled with an estimator model that
describes delays, can be used to perform the tasks of filtering and estimation when
measurements are available at different time scales and with delays. This estimator has
been successfully used to generate estimates of the biomass and the specific growth rates
from on-line exit gas and off-line, delayed biomass measurements. This approach
requires the states and parameters in the estimator model to be fully observable from the
measurements available at any sampling instant. Since models proposed in the literature
to relate the specific growth rate with nutrient levels have problems in estimation of their
parameters(Bastin and Dochain,1990), they are not commonly used. Rather, the time
evolution of the specific growth rate is modelled as a white noise process. Hence the
nutrient levels are unobservable from the on-line, growth related, exit gas measurements.
Thus, the nutrient levels cannot be updated at instants when only exit gas measurements
are available. To address this problem, we propose to cascade a multirate estimator for
biomass and specific growth rate estimation (Gudi et al.,1995) with another estimator

designed to estimate nutrient levels. At sampling instants when only exit gas
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measurements are available, the nutrient e¢fimator uses the biomass and specific growth
rate estimates to update its model. It then generates estimates of the nutrient levels by
direct integration of the model equations. In this sense, at these sampling instants, the
observation strategy is similar to that used by Stephanopoulos and San(1984). However,
the nutrient estimator also formally accomrnodates the nutrient measurement whenever
the latter is available. A structural observability analysis has been performed and
presented to show that it is possible to estimate and update the substrate over biomass
yield coefficient at instants when a delayed nutrient measurement is available. It is shown
that the infrequently available, delayed measurement of the nutrient concentration provides
feedback information and corrects the estimates generated inferentially by integrating the
appropriately updated nutrient balance equation, thus evolving a closed-loop observation
strategy. The new estimation algerithm has been validated using simulations involving a
fed-batch fermentation. It has also been successfully evaluated using data from an
industrial antibiotic fermentation involving a secondary metabolite producing specie. The
estimation strategy has also been coupled with a nonlinear control law designed to
regulate/track nutrient levels. The resulting closed loop control algorithm is validated by

simulations involving a fed-batch fermentation process.

7.2 Process model

The dynamic mass balances for biomass growth and substrate depletion in a fel batch
fermentation can be written as,

& ux-Fx (7.1)
dt vV
ds F
2 = k + Z_(s. ~5 (1.2)
dt s B X V( in™S)
av _F (1.3)
dt

In the above equations, x is the biomass concentration, s is the nutrient concentration,V

is the broth voilume and F is the nutrient feeding rate. Performing simple variable

134



Chapter 7: Multirate estimation and Control of Nutrient Levels.

transformations x,=xV and s,=sV and then discretizing using a simple Euler discretization
method for a basic sampling time T, the aone equations can be rewritten at any sampling
instant i as,

x,(+1) = (A+TpDx, () +w, () 749

5,G+1) = -k Bmp@x,@ + 5, + Fs,, + wd (7.5)
where p is the specific growth rate of the biorﬁass. It is time variant and a function of
several physio-chemical and biological factors. Several growth models relating p to the
culture states have been proposed (Bastin and Dochain, 1990). However, there are
practical difficulties in identifying the kinetic constants of such a model and it is therefore
recommended by Bastin and Dochain {(1590) that p be treated as a time varying parameter
which can be estimated online. The time evolution of p is therefore medelled as a white

noise process of unknown probability density. Thus,
pi+1) = p@ + w, (7.6)

It must be noted that treating p as an independent time varying parameter however masks
the link between substrate depletion and other growth related activities of the culture, thus
making the nutrient concentrations unobservable from the growth related measurements.
k, is the yield coefficient of substrate on biomass. It could be typically unknown or time

varying and is also modelled as a white noise process,
k(i+1) = k@) + w, ' .7

The process outputs of primary interest are the substrate and biémass concentrations
which as menﬁoned before are measured infrequently and with some delay. We term
these variables as the primary variables. Other secondary process outputs such as the
carbon dioxide evolution rate (CER) can be obtained online more frequently and without
much delay. These secondary process outputs are correlated with the primary process
outputs and can be used in an inferential setup to estimate the latter, provided that certain
- systems related criterion such as observability is met. The CER can be related to the

growth and maintenance related activity of the culture (Gudi et al.,1994) as,
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CER(i) = k, p(®) x(@) + m_ (i) x(D) » (7.8)

In the above equation mc is the maintenance coefficient which is typically time varying

for the class of secondary metabolite producing fermentations. It can be modelled by a
white noise process and can be described as,

m(i+1) = m (@) + w, 1.9)

Delays in measurement availability of the primary variables result in decreased system
observability. For simplicity, let us assume a measurement delay of two sampling instants
in the biomass and substrate measurements. The delays can then be included in the

estimator model by the addition of fictitious delayed states as,

x,G+1) = x,0) (7.10)
x,i+1) = x,0) | (7.11)
s,G+1) = 5,0 (1.12)
5,G+1) = 5, (1.13)

Our objective is to generate estimates of the states x;, x,, X3, §;, S5, 53 and the parameters
k., p and m_ from on-line inferential measurements of the secondary variables and off-line
delayed primary variable measurements. We call the sampling instants at which ‘we have
the delayed primary measurement and the current secondary measurement as a major

sampling instant. Thus, at the major sampling instants, the measurement vector and the
measurement equation can be written as,

x,5(0)
Zmajor = S3(i) + Vmajor (7 : 1 4)
CER@)
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x,(D
5,0 (7.15)

Kp@) + m 0

G

major

At the minor sampling instant, only the current secondary measurements are assumed to
be available and accordingly the measurement vector and the measurement equation can

be written as,

z . =CERQG) + v, = (kp@+m@Ox @ + V., (7.16)

nuno,

G inor = (ke p(@® + m (D)x,(D) (7.17)

Two issues need to be addressed related to the above objective of estimating the states
and parameters. Firstly, we need to perform the task of estimation when we have a
multirate sampling scenario i.e. the slow availability of the primary measurements and the
relatively fast availability of the secondary measurements. Simultaneously, we also need
to address the issue of decreased system observability dué to delays in the measurement

of the primary variables.
7.3 Estimator equations

To satisfy the first objective of filtering and estimation in the presence of multirate
measurements, a multirate Kalman filter (Glasson,(1980),(1983)) based estimation scheme
has been shown (Gudi et a/.(1993a,b)) to formally accommodat;a the slowly sampled
primary measurement into the observation strategy. In the presence of time vafying
parameters however, an extended version of the multirate Kalman filter needs to be used.
In addition, Gudi et al.(1995) have shown that weak system observability due to
measurement delays in the primary variable measurements can be enhanced or
compensated by appending as many past inferential measurements as the number of
delays. We have also shown, based on a structural observability analysis, that it is
possiblé to obtain relatively "strong" system observability when past inferential

measurements are appended to the measurement vector at the major sampling instants as
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well. These ideas can be used here to generate estimates of the state x,.x,,X;,5,,5,.5; and
the parameters k,,n as follows. | 4 '

Due to the assumption that the specific growth rate p is independent of the nutrient
concentrations, the latter are unobservable from the CER measurements. Therefore, we
estimate the biomass states and the nutrient states separately. Consider first the sub-
problem of estimating the biomass states and the parameters p and m_ from the off-lire
biomass and regular CER measurements. As shown in Gudi et al(1994), the following
estimator equations give unbiased state and parameter estimates.

Estimator I: The states in this estimator are given by X=[x, x, x; # m_] and the relevant
system equations are those given by equations (7.4),(7.6),(7.9 - 7.11). At the major

sampling instants, the measurement vector and the measurement equation are given by,

20
. =| CER®D | (1.18)
maiord = | CERG-1) majord

CER(i-2) |
L x®
(k,n@)+m (D)x,(P)
(k,n(@)+m (D)x, (i)
Un () +m ()5, |

Assuming that the linearized measurement matrix is given by Hy,;o, 0G0 /0X and the

£7.19)

majord ~

a priori covariance of the estimation error is given by M,, the measurement update

equations, for the time varying Kalman filter (Franklin et al. (1990)) formuiation, are :
a) Major sampling instant

Q@) Méasurement update :

T T _ :

Kmajor,l = Ml HMJO'J(HmajorJ‘M majord Rg major _,) ! (7.20)
anjorj(i) = ijng‘ija,J (7.21)

@) = XG) + Ko € majors® (7:22)
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Pl(i) = Ml(i) —Kmajar mjarﬂ[(i) (7.23)
At the minor sampling instants, the measurement vector and the measurement equation
are :
CER()
Z,imory = |CERGE-1) + v ., (7.249)
| CER(i-2)

&,n@d + m (D))x,{)
Grrors = | D@D + m D)5, () (7.25)
|Gn@) + m ()x,()

The measurement update equations at the minor sampling instants are given by :

b) Minor sampling instant
(i) Measurement update :

K inors = My HyinarsCH e MiHrinors + R, iy )™ (7.26)
€ pinorsD) = Zoioors=GCrinons . (7.27)

XG) = XG) + K, € i sD (7:28)

PG = M)-K,, H, . M) (7.29)

The state predictions needed to perform the measurement updates are obtained by
performing an actual integration of the relevant system equations. The prediction of the

a priori covariance of the estimation error is obtained by performing an integration of the

following equation :
M(i+1) = FP()Fyx + O, (7.30)

where Fy is the Jacobian of the system description. Q; is the covariance matrix of process

noise and R, ,;,.; and R, ,;; are the covariance matrices of the measurement noise at the

major and minor sampling instants respectively.

Estimator XI: Let us now consider the problem of estimating the nutrient concentrations
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from on-line and offline measurements. The relevant system equations are given as,

5,G+1) = k@) T p@) x,G) + s, + Fs,, + w(d) (7.31)
5,(i+1) = 5,0) (7.32)

5,(+1) = 5,0) - (7.33)

kGi+1) = k(@) + wy(D) (7.34)

Consider the observability of the augmented system S={s, s, s, &,] from off-line, delayed
nutrient measurements. The discrete state transition matrix after linearization of the above

system of equations can be written as,

1 0 0 —t@x, @)
o100 O (1.35)
010 0
0 00 1 ] |
The measurement vector and the measurement equation for this case can be written as,
zmajarJl(i) = s3(i) + vmajor 1/ (7.36)
G jorst = 530 - (7.37)

Assuming that G, i=0Gyajor./0S, the structural observability matrix can be symbolically
written as,

0 6 1 0 |
0190 0
_ 7.38
o —[Gmajor.ll GmajorJl(I) GIMJWJ'(DZ G’"“I"” -”(I)J]T 1 00 0 ( )
1 0 0 -tp@x,Q)

Using the symbolic manipulation capabilities of Maple (1-981), it can be verified that, as
long as p is non-zero, the above observability # . - ss¢s not have any structural
deficiencies and is of full rank. Thus, in addition #: - . system states in the vector S, the
parameter k; can also be estimated at major sampling instants for a non-zero value of the

specific growth rate. At the minor sampling instants, a similar structural observability
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analysis indicates that, because there is no assumed dependence of p-on the nutrient levels
in equation (6), the latter are unobservable from CER measurements. Thus it is not
possible to use the growth rate related measurements available at the minor sampling
instants to update the state vector S. However, the estimates of the specific growth rate
and the biomass generated at the minor sampling instants by Estimator I can be used to
integrate the relevant state equations and yield estimates of the state S as proposed by
Stephanopoulos and San(1984). In ter':¢ of the measurement and time updaté equations
of the Kalman filter, we perform a time update or prediction using the most recent state
estimates available at the current sampling instant. For estimator II, ai the major sampling
instant, we use the delayed nutrient measurement to perform a measurement update as
given in equations (7.39-7.42) below and generate estimates of S. At the minor sampling
instants, we simply set the time update to be equal to the measurement update. The
estimator equations can be expressed as :

| (1) Measurement update (Major sampling instant) :

T s
Kjorn =M, H_ . (H ., M Heior + R:mj,,,ﬂ) 1 (7.39)
smajor.ll(i) = zmjor.ll—Gmajor.ll (7'40)
S(i) = -'Sf(l) + ijar,llemajar.ll(i) | (7.41)
P,y = M, (D) _KmajorJl‘HmjarJl‘Mll(i) (7.42)

(ii) Measurement update (Minor sampling instant) :

S0 = f(i) : (7.43)
Py = M) (7.44)

The time update at all sampling instants is performed, as in Estimator I, by an actual
integration of the relevant system equations. These yield predictions of the state S for the
next sampling instant. The prediction of the covariance matrix M, is obtained by an actual

integration of the equation :
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. T 3
M,(i+1) = FP (DFs + Q, ) (7.45)

The overall block diagram of the estimation scheme is shown in Figure 7.1.

CER (frequent) - Biomass

Volume (frequent) Estimator

Biomass (infrequent)

. » Frequent and regular estimate:
of growth rate and biomass
Substrate(infrequent) . Substrate

Volume (frequent) Estimator

\ 4 ,
Frequent and regular substrate and yield
coefficient estimates.

Figure 7.1 Block diagram for the biomass and substrate estimation algorithm.
The significant differences in the estimation scheme proposed here over that proposed |
by Stephanopoulos and San (1984) are as follows. For estimator I, incorporation of the
infrequently measured biomass measurement and use of the ‘modified ; measurement |
equations (18) and (24) yields unbiased state and parameter estimation even in the
presence of a changing maintenance coefficient. Such estimators are thus useful for a
wider class of fermentations that involve a changing maintenance coefficient. The
observation scheme of Stephanopoulos and San (1984) is applicable to a different class
of fermentations where the maintenance coefficient can be assumed to be constant or
negligible. In addition, in this work the infrequent and delayed measurement of the :
nutrient concentration is formally incorporated into the estimation scheme in estimator II,

thus making the estimation scheme proposed here closed-loop based, albeit at the ‘major
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sampling instants only. To track the changing substrate to biomass yield coefficient,
Stephanopoulos and San (1984) propose an approach using elemental balances based on
an assumed stoichiometry of the fermentation reactions which need to be re-established
for every new fermentation. The approach proposed here uses the delayed and infrequent
nutrient measurement to update any change in the yield coefficient. It is thus able to
accommodate shifts in stoichiometry with time in a fed-batch fermentation as well.
Although the yield coefficient updating is relatively slower in the approach proposed here,
no a priori kngwledge of the fermentation stoichiometry is required. A few issues
however nied 1o carefully considered from an implementation vicwpoint. In the industry, |
the biomass ¢oncentrations are usually measured in terms of the packed cell volume
(PCV), which is a relatively unreliable measurement when there are suspended solids in
the fermentation broth. However, recent work (Kennedy et al.(1992) in the development
of a light scattering technique offers a promising olution to the above problem.
® Remark : In the above approach, it was necessary to separate the biomass and substrate
estimation tasks because of observability problems. Such a classification of the
‘overall system state into observable and unobservable subéystems has also been
- done by Schuler ‘and Suzhen (1985) for a polymerization reactor. Due to
unobservability of a few system states, the temperature, moncmer and initiator
concentrations are estimated in the first sﬁbsystem. These estimates act as inputs
to a second subsystem in which the chain length distribution and its characteristic

parameters are estimated.

7.4 Non-linear feedback control

Since the adaptive estimator described above generates estimates of the nutrient
concentrations at a more frequent rate, a feedback control law based on these estimates
can be used to obtain good regulation/tracking of the nutrient profiles by manipulating the
nutrient addition rates. - The dynamics of the nutrient concentration described in equation
(7.2) is nonlinear (bilinéar) and therefore a simple nonlinear control law based on

_feedback linearization (Slotine and Li(1991), Bastin and DocHain (1990), Chen et
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al.(1995)) has been used to design the control law. Let s (t) be the reference nutrient
trajectory to be tracked and let the desired dynamics of the closed loop system be :

ds

E = T‘l(sref -S) * nz (sref_s)dt (7 '46)

Since the right hand side of equation (7.2) has relative degree 1, we can equate it to the

right hand side of equation (7.46) to obtain the non-linear control law,

Vv
(5;,=5)

7.5 Estimation Results

F =

[—kspx+nl(sn,—s) +‘r|2f(s"f—s)dt] | (;7 A7)

The proposed software sensor was analyzed using simulations as well as data from an
industrial, secondary metabolite producing fed-batch fermentation. For the simulation
study, a fed-batch antibiotic producing fermentation known to exhibit significant
maintenance activity and endogenous metabolism was considered for verification.

7.5.1 Simulation Study

For numerical simulatioh, the system was modelled using dynamic balances along with
empirical growth models for cell growth and product formation(Bajpai and Reuss(1980),
Tsobanakis et al.(1991)) and dynamic gas balances for the gas phase (Cardello and San
(1988)). The detailed equations are presented in Appcndix A. Since the gas phase
dynamics are relatively rapid as compared to the dynamics of the broth, the above system
of equations is stiff. Therefore, a stiff equation solver LSODES (Hindmarsh,{(1983))
available at the Lawrence Livermore Laboratories was used for the simulation. The
systemvof dynamic balance equatibr.s was solved for a time interval of 120 hours fora
Iinearly changing value of the maintenance coefficient m, between 1.1 to 1.6 mmol
COz/h;l. The initial conditions used in the simulation are also presented in Appendix A.
The profiles of various culture states thus generated by simulation were then sampled
according to the following multirate sampling scheme. Measﬁrements of the primary
process variables viz. biomass and substrate were assumed to arrive every 6 hours or 60

sampling instants of fermentation. Measurements of the CO, content in the exit gas and
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the broth volume were assumed to arrive every 6 minutes or every sampling interval. A
delay of 2 minor sampling instants (12 minutes) was assumed for the primary
measurements. White gaussian noise with zero mean was added to the measurements to
simulate noisy measurements with a relatively smaller signal to noise ratio. The objective
of the estimator was to estimate the nutrient (substrate), biomass concentrations and the
system parameters on a frequent basis (i.e every 6 minutes) using the measurements
arriving at multiple rates of sampling as'describcd above.

Base case Estimation: Figure 7.2 shows the state estimates generated from the adaptive
estimator. It can be seen that excellent tracking of biomass and substrate profiles is
achievable. Figure 7.3 shows the parameter estimates generated by the estimator. It can
be seen that unbiased estimates of the parameters are obtained using the adaptive
estimator. The choice of ratio of the process noise covariance to the measurement noise
covariance matrices is very critical to the estimator performance. By appropriate
specification of these covariance matrices, greater confidence or weighting can be given
to the primary measurements relative to the state predictions at the major sampling
instant. Accordingly, at the major sampling instants, corrections in the state estimates can
be seen for the biomass profiles. These corrections are relatively small for the substrate
estimates, '

Effect of initial guess of the vield coefficient: In a typical fermentation involving

complex nutrients, the yield coefficient is generally unknown. To analyze the estimator
performance when the yield coefficient is poorly_knoWn, a 10 fold mismatch in the yield
coefficient was‘presented to the estimator as an initial guess. Figlires 7.4 and 7.5 show
the adaptation of the substrate to biomass yield coefficient. An initial guess of k=9 was
used while the actual value of the yield coefficient used in the simulation was 0.9. It can
be seen that the algorithm updates the yield coefficient quite well. Since the yield
coefficient is unobservable from measurements at the minor sampling instants, the
updating is done only at the major sampling insiant. The yield coefficient values remain

constant at the minor sampling instants.
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Cumulative Biomass estimates
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Figure 7.2 Base case estimation: The state estimates generated by the estimator (solid

iline) agree quite well with the values available from simulations(o).
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Specific growth (1/h)
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Figure 7.3 Base case estimation: The parameter profiles generated by the estimator (solid
line) are quite close to the values specified in the simulations (.-)
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Effect of measurement delay: Measurement delays generaily have the effect of reducing
overall system observability. For the biomass estimator (estimator I), the system
observability can be enhanced by the addition of past inferential(secondary) measurements
as shown in equations (18) and (24). However, the nutrient concentrations and the yield
coefficient are unobservable from the secondary measurements. Thus, measurement delays
in the nutrient concentrations can significantly affect the performance of estimator Il
Figure 7.6 and 7.7 show the effect of an increase in the measurement delay from 2
sampling instants (12 minutes) to 5 sampling instants (30 minutes). It can be s¢en that the
estimator performance deteriorates quite significantly because of the measure:nent delay.
The updating of the yield coefficient is very small. The estimator performance for 2 high
gain estimator is also seen in Figure 7.6 and 7.7 The filier gain relating the yield
coefficient to the innovations in the nutrient concentrations is increased by specifying a
higher covariance entry for the yield coefficient. This change does make the filter
sensitive and capable of adapting to time varying dynamics. However, a high filter gain

also makes the estimator increasingly s nsitive to measurement noise.

Effect of a changing vield coefficient : In typical fermentations, due to metabolic shifts

or varying culturing maintenance requirements, the yield coefficient may be slowly time
varying. It would be desirable to track this change in the yield coefficient as this would
generate accurate estimates of the rate of substrate depletion. An important point that must
be taken into account here is that a changing yield coefficient can be tracked only so long
as the specific growth rate is non-zero. If the specific growth rate takes on values close
to zero, the depletion term -k,px approaches zero. The estimator is then unable to detect
a mismatch in the yield coefficient and will therefore not update it. To illustrate this and
to study the estimator perfomiance under such a scenario, simulati(_)n data was generated
by varying the yield coefficient from 10 to 20. The dotted line in Figure 7.8 shows the
substrate estimation profile for a changing yield coefficient during the 45 hours of
fermentation. It can be seen that a changing yield coefficient gives biased estimates of the

cumulative substrate. Drastic corrections to the state estimates via the measurement update
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Cumulative Biomass estimates
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Figure 7.4 Effect of poor initial guess of the yield coefficient on the state estimates: The
biomass estimates (solid line) compare quite well with the simulated values (0). However,

in the initial instants, the substrate estimates are not good when there is significant
mismatch in the yield coefficient.
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Figure 7.5 Estimation of the yield roefficiens starting from a poor initial guess: The
specific growth rate and the maintenance coefficient estimates (solid line) are relatively
unaffected and agree with the values used in the simulations(-.). The yield coefficient is

updated at the major sampling instants and converges quickly to the true value.

150



Chapter 7: Multirate estimation and Control of Nutrient Levels.

Cumulative Biomass estimates

H
o

14 1]

[N
o

Biomass (g)
n
Q

10
o N 1 i [ |4 {1
0 200 400 600 800 1000 1200
sampling instants
Cumulative Substrate estimates
400 T y
’._300 D R R R R R R R RN R s SO RS AR L
o
o
m ......................................
% 200 N R R e, o - .
Kel
=
@D
1 OO Y 0’ P R R R EE L R AR AR R R R R R R AR S S -t
0 1 ] 1
0 200 400 600 800 1000 1200

sampling instants

Figure 7.6 Effect of measurement delays in the primary measurements on the state
estimates : For an increase in measurement delay from 12 minutes to 30 minutes in the
nutrient measurements, the substrate estimates (solid line) differ significantly from the
simulated values (0). When a high gain estimator is used, the substrate estimates (--)

agree quite well with the simulations.
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Figure 7.7 Effect of measurement delays in the primary measurements on the parameter
tracking : The yield coefficient estimates (solid line) are not updated at all for the smaller
gain estimator. For the higher gain estimator, the estimates (--) converge quickly to the

true values.
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equation of the Kalman filter is seen at the major sampling instants. By appropriate
specification of the covariance term that corresponds to the yield coefficient variaton in
the overall process noise covariance matrix, the estimator was tuned to track the changing
yieid coéfﬁcicnt. ’l"hé solid line in Figure 7.8 shows that good tracking of the cumulative
substrate is achievable. Figure 7.9 shows the adaptation of the yield coefficient. The
updating is done relatively slowly and is in fact very small after about 45 hours (450
sampling instants). This is to be expected because the value of the specific growth rate
approaches zero after about 450 sampling instants. The observability matrix defined in
equation (38) is rank deficient under such conditions’ and the system is only partially
observable. More specifically, the effect of a changing yield coefficient is not seen in the
substrate profiles. Figure 7.10 shows the cumulative substrate estimates for the overall
run. It is seen the estimation for the fermentation duration after 45 hours is good. It is

unaffected by the changing yield coefficient.
7.5.2 Verification using industrial data

The adaptive estimator was validated using data from an industrial, fed-batch, antibiotic
fermentation reactor involving a streptomyces specie. After 30 hours of batch growth, a
linear nutrient addition rate is followed during the fed-batch phase of the fermentation.
The measurements that were available from the fed-batch fermentation and the frequency
of availability are presented in Table 1. The actual values of the process variables and
the resuits are presented on a normalized scale in Figure 7.11.

#3 a first step, the packed cell volume(a) measurements were converted to biomass
concentrations(X) using the equation,

X = apc f (7.48)

where p. is the bulk density and f is the ratio of the dry cell weight to the wet cell
weight. The value of f was obtained by performing simple gravimetric analysis in th._
region of interest. Both p., and f were approximately constant throughout the
fermentation. For the estimator, a measurement delay of 2 minor sampling instant (30

minutes) was used in the model. A value of 1.1 mmol CO,/h-g biomass was assumed for
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Figure 7.8 Effect of a changing yield coefficient on the substrate concentration estimates.
Biased estimates and drastic corrections at the major sampling instants are seen (dotted

line) in the substrate estimates. The solid line shows the substrate estimates when the

yield coefficient is adapted to the time varying dynamics.
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Figure 7.9 Adaptation of the yield coefficient. The adaptation is performed only when the
specific growth rate is non-zero. As the specific growth rate approaches zero, the yield

coefficient is unobservable from the substrate measurements and cannot be updated at the
major instants.
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Cumulative Biomass estimates
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Figure 7.10 Profiles of the state estimates for a changing yield coefficient over the entire

fermentation run.
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the yield coefficient k, (Pirt and Righelato, (1967)). The estimator was initialized with
appropriate values of the parameters. The initial conditions for the fermentation states
were assumed to be the same as that measured in the fermentation. Prefiltering of the
'CER measurements was performed using a Butterworth filter to remove high frequency
sensor noise. Outliers and gross errors in the measured PCV values were detected and
removed using a statistical prefilter that was constructed using the datasets from each
fermentation run. The PCV profiles were interpolated to get "measurements” every 6
hours. In the absence of information regarding the time evolution of the parameters, a trial
and error based tuning procedure was used to tuné the process noise covariance matrix
relative to the gﬁeasurement noise covariance matrix. Accordingly, the process noise and
measurement ﬂbise covariance matrices were chosen as specified in Table 1.

. Figure 7.11 and 7.12 show the performance of the adaptive estimator for one cf the
representative runs of the fermentation. It can be seen that excellent tracking of the
biomass and the nutrient concentrations can be obtained. The real potential of this strategy
is better seen when the estimator operates in an on-line manner. In such a scenario, the
primary measurements are not available at all times and the estimator has to predict the
biomass and substrate values at sampling instants between the primary measurements. It
can be seen from Figure 7.11 that the estimates of the biomass and the nutrient
concentrations at the minor sampling instants are quite good. The adaptive estimator thus
provides accurate inferential estimates of the states at the minor sampling instants and
therefore has good potential for use in an on-line control scheme for regulation/tracking

of nutrient levels.
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Figure 7.11 Estimator validation using industrial data: State estimates (solid line) agree
quite well with the measured values (0). The estimates in between major sampling instant

are quite consistent.
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Figure 7.12 Estimator validation using industrial data: Parameter estimates for the

industrial un.
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7.6 Control Performance

The performance of the non-linear control law defined in equation (7.47) was verified
using simulations involving the fed-batch fermentation described above. The fortan code,
for simulating the system dynamics (Appendix-A) was interfaced to MATLAB?® using the
Matlab external interface engine. The estimator was rur: under MATLAB?® and received
"measurements" from the external interface. The appropriate value of the nutrient feeding
rate was calculated and sent through the interface to be implemented on the "process".

For verification, a simpIe first order reference profile was specified for the nutrient
concentration trajectory. The algorithm was evaluated for its ability to track the reference
profiles by manipulating the nutrient feeding rate even in the presence of significant
mismatch in the yield coefficient. Figure 7.13 shows the nutrient concentration profile and
the nutrient feeding rate profile for the above objective with values of 1,=0.6 and 1n,=0.
It can be seen that excellent tracking of the nutrient concentrations is achievable. Figure
7.14 shows the effect of a mismatch in the yield coefficient. The control actions in the
nutrient feeding rate is very erratic when there is significant mismatch in the yield
coefficient. However, as the estimated value of the yield coefficient approaches the true

value, the nutrient additions become less erratic and good setpoint tracking is observed.

7.7 Conclusions

Problems associated with estimation and control of nutrient levels in a fed-batch
fermentation are discussed and addressed in this paper. An adaptive multirate estimator
has been propesed to formally incorporate delayed and infrequent, off-line measurements
of the primary process variables, such as the biomass and substrate concentrations, into
traditional inferential estimation strategies. It has been shown that these off-line
measurements enhance estimator performance by providing *closed loop’ estimates of the
states and parameters. The adaptive estimator has been extensively validated using
simulations and industrial data from a secondary metabolite fermentation. The estimator

has been used in conjunction with a nonlinear control law. The control law has been
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Figure 7.14 Nonlinear control of the nutrient levels in the presence of yield coefficient
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successfully verified using simulations involving a fed-batch fermentation and has been
shown to give good performance even in the presence of significant mismatch in the yield

coefficients.
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TABLE 7.1

Measurement frequencies of the process variables for the industrial fermentation

lMeasurement ‘ Frequency !

% Packed Cell Volume Infrequently.

Nutrient concentrations | Ekry 6 hours

Broth Volume measurements Every 15 minutes

CER measurements Every 15 minutes

Feed rates Every 15 minutes “

Process noise and Measurement noise covariance matrices for the Industrial fermersitation
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7.9 Nomenclature

Roman

k, substrate over biomass yield coefficient (g/g).

m, maintenanceb coefficient (mmol /1-hr).

s substrate concentrations (g/1).

t time variable for integration.

w noise process with unspecified probability densities.

X biomass concentrations.

z vector 6f process measurements.

F nutrient feeding rate.

Fx.Fs Jacobian obtained after linearization of biomass and substrate subsystems

G measurement equation expressed as a function of state variables.

] a priori (before measurement) estimate of the covariance of estimation
errors.

C symbolic observability matrix.

p a posteriori (after measurement) estimate of the covariance of estimation
eITors.

Q process noise covariance matrix.

R measurement noise covariance matrix.

S superstate formed by augmenting substrate concentrations and the yield

| coefficient.

A% Volume of the broth.

X ‘ superstate formed by augmenting biomass concentrations and the yield
coefficient. | |

Greek

€ innovations vector obtained in the Kalman filter equations.

m i controller tuning constant in equation (46).

1, controller tuning constant in equation (46).
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subscripts

ref

specific growth rate.
measurement noise vector.

sampling time for discretization.

related to the process irnputs.

related to the biomass concentrations.
related to the substrate concentrations.
pertaining to the major sampling instant.
pertaining to the minor sampling instant.
used in the first (biomass) estimator.

used in the second (substrate) estimator.
reference ( a priori established) trajectory.

pertaining to the measurement.
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Chapter 8 |
Statistical Monitoring of Fed-batch

fermentations'

The recent shift in chemical process industries towards the production of high-quality, low
volume specialty products has emphasized the need for monitoring of batch and fedbatch
processes. Reproducibility of plant operations is difficult to achieve due to the absence
of reliable process sensors, changes in feed conditions, process disturbances and the
discontinous nature of the process itself. The main motivation of this chapter is the
presentation of a monitoring algorithm that is based on the use of multivariate statistical
tools. Unlike traditional first principal models, the monitoring algorithm does not need a
mechanistic mode! and makes use of all available on-line and off-line measurements as
well as a priori process information to detect and diagnose faults and to make final
quality predictions. It achieves data compression in that fewer variables, in a suitably
transformed space, need to be monitored. The monitoring algorithm is evaluated on a fed-
batch antibiotic producing fermentation and is found to give quick and early detection of

faults and good predictions of the final antibiotic titre.

! The work presented in this chapter has been carried out collaboratively with S.
- Lakshminarayanan in an on-going Ph.D research project. A version of this chapter has
been accepted for presentation at the AIChE Annual meéting 1995 as : S.
Lakshminarayanan, Ravindra D. Gudi, Sirish L. Shah and K. Nandakumar, "On-line
Monitoring of a Fed-batch Fermentor using Muitirate-Multiblock- Multiway Projection
to Latent Structures". ‘
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8.1 Introduction

This article focuses on statistical monitoring of fermentation bioprocesses. In particular,
it discusses the development of an online strategy to detect and diagnose, faults and
deviations from prescribed plant behaviour using multivariate statistical tools. Such
strategies also have useful applications in traditional chemical processes such as batch
distillation and batch/semibatch polymerization. , |
Fermentation processes are excellent examples of very high value, low volume
and demand specific specialty products that follow a proprietary, a priori established
manufacturing recipe. The manufacturing costs are significantly high. The process is
fraught with risks of contamination by foreign microorganisms and lower product yields
due to suboptimal operation or deviations from prescribed behaviour due to disturbances.
There is, therefore, a strong incentive to develop monitoring and fault diagnosis strategies
for bioprocesses. An early detection of faults can help in taking corrective action, when
possible, to alleviate the fault or to shut down the batch to prevent wastage of expensive
feed material.
Bioprocesses in general and fed batch/batch fermentations in particular pose significant
challenges from a monitoring viewpoint. Most importantly, the requirement of sterility or
an aseptic environment in the reactor and a lack of adequate on-line sensors to measure
the primary process variables severely restricis the frequency of sarﬁpling of the broth on
a regular basis. Only a few infrequent measurements of thc primary culture, states such
as the biomass and the subpstrate cohccmrations are available. This restriction influences
the monitoring strategy that can be used. Since other secondary process variables‘arc
measurable quite frequently in a non-intrusive way, inferential estimation stratc’gies need
to be used. An inferential estimation strategy infers the primary prbcess variablés from
other secondary measurements. In a bioprocess context, there are several such
measurements like the carbon dioxide evolution rate (CER), the oxygen uptake rate
(OUR), the acid/base addition rates and the pH. The second important limitation for

monitoring in a bioprocess arises from a lack of detailed process knowledge about the
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fermentation. Due to tlie several intermediate reactions that occur to form the final
product of interest such as the antibiotics or other intermediates, a detailed mechanistic
process model is impossible to develop. Thus model based fault diagnosis strategies are
difficult to implement in a bioprocess.
In the literature, the problem of monitoring batch processes has been tackled broadly in
three ways (Nomikos and MacGregor, (1994a)). The first approach is based on using
several state estimators in parallel, each based on models that characterize different modes
of operation viz. the normal operation mode and different fault/failure modes (King
(1986),(1992)). Although off-line measurements can be incorporated into a state
estimation framework (Gudi ef al.,(1995)), state estimators require regular measurements
of the primary process variables. Such measurements are usually not available for
iioprocesses. In an inferential setup, state estimators need a fairly accurate process model;
a requitement that is again not met in a bioprocess context. To alleviate the convergence
problems that usually result, MacGregor et al. (1986) propose the use of stochastic
integrator states. Such state estimators need to be carefully tuned to achieve accurate
reconstruction of the states. In general, state estimators need a careful choice of
measurements that can be used in conjunction with the process model in that the system
model and the measurement must form (mathematically) an observable pair. Thus only
a subset of measurements that are commonly logged in regular plant operations can be
“used. State estimators function by constructing an accurate estimate of the plant states.
This is useful only in the context of feedback regulation. For monitoring and fault
diagnosis purposes, such an estimate is usually not required explicitly.
The second approach to the development of monitoring and fault diagnosis strategies is
based on the use of expert systems and artificial intelligence based algorithms to constfuct
~ a database of regular and faulty modes of plant operation (Venkatsubramanian and Chan
(1989)). Any plant operation can then be classified as regular or faulty using a pattern
classifier. The limitation of this approach lies in the construction of the database.

Datasets that characterize the fault modes of plant operation are not easy to get from plant
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operations. Heuristics based expert systems that rely on capturing knowleslge from plant
personnel are also restrictive because they can take into account only as many fault
occurrences and process variable intéractions, that the plant personnel can envision.
The third approach to monitoring, which is also the focus of this paper, is based on the
use of multivariate statistical tools to detect faults and abnormal plant operation. Plant
data, in the form of measured outputs, is often highly correlated. In a fermentation process
context, the measurements such as the CER, OUR are all correlated with one primary
phenomenon that occurs in a bioprocess viz. the biomass growth. Multivariate statistics
tools suck as tke principal component analysis (PCA) and projectipn to latent structures
(PLS) can be used to analyze this highly correlated plant data and identify the lower
dimersion subspace of the process. In these data-based approaches, statistical models are
developed using plant data collected during the normal plant operation. Plant data from
2 currently operating plant is compared with the template of "normal” conditions and
diagnosed for process upsets and sensor failures (Kresta et al., 1991). These approaches
arz very appropriate for bioprocess monitoring because they obviate the need for
understanding the process at a fundamental level and for using intrusive sensors that can
contaminate the fermentation broth. All that is needed is data from normal plant runs that
is routinely logged onto the database. |

In this work an extension of the multiway PCA and PLS based algorithms, so as to
include infrequent and off-line primary variable measurements, is proposed and applied
to monitoring and on-line prediction of final product quality in a fed-batch antibiotic
fermentation. In bioprocesses, data on primary variables such as biomass and substrate
concentrations are available only every few hours due to lack of adequate online sensors.
Elaborate offline laboratory procedures are required to arrive at these values. Multiway
PCA and PLS based batch process monitoring algorithms that have been reported earlier
(Nomikos and MacGregor, (1994b)) disrégard the multirate nature typical of most
systems. Often times, the intermediate and final quality variables such as the antibiotic

concentrations arc strongly correlated with the primary process variables. Incorporating
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off-line measurements of the primary variables during the model building step yields a
statistical model that has better prediction capabilities. With its multirate focus, the
proposed algorithm brings into direct focus this character of the measurement system. The
multiblock feature of the proposed algorithm concemns itself with the various blocks that
naturally emerge from partitioning the measurement system into blocks of initial
conditions, primary measurements, secondary measurements and final quality data. The
multiway feature is needed to consider several normal batches in the construction of the
statistical model. Another novel feature of the proposed algorithm is the incorporation of
a priori knowledge into the model building step. In a fermentation context, it is known
that the underlying reactions are controlled by physiological mechanisms that are difficult
to model explicitly. For example, the final antibiotic titre is strongly influenced by the
initial growth rate of the microorganisms through the production of antibiotic precursors.
Since such dependencies are difficult to model mechanistically, it is proposed to
incorporate online estimates of the specific growth rate parameter into the prediction
model to statistically model its influence on the final antibiotic yield. The resulting
multirate-multiblock-multiway PLS (M3PLS) algorithm has been extensively verified
using simulations and shown to give good prediction of the faults and final antibiotic
concentrations when implemented on-line. ’

This chapter is organized as follows. Section 2 gives an overview of the measurement
system for a fed-batch fermentation. Section 3 outlines the M3PLS algorithm. Section 4
presents the performance results obtained with the M3PLS algorithm. Section 5 presents

the conclusions.
8.2 System description and Block diagram

The system considered in this work is a fed-batch, antibiotic producing fermentation. The
medel equations that describe the system dynamics are presented in Appendix A. Figure
8.1 shows the meassiement system commonly associated with the fed-batch fermentation.

i %= primary process variabiies or culture states are the biomass, substrate and antibiotic

ooncentrations. The finai antibiotic concentration is chosen to be the quality variable that
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needs to be predicted on-line and forms the Quality block (QB). The primary process
variables are measured infrequently and are assayed off-line. These measurements form
the primary variable block (PVB). Sampling instants when the primary measurements
arrive are termed as the major ¢ampling instants. Other secondary measuremefts are
available more rapidly from the fermentation through the use of non-invasive sensors.
Typical among these are the carbon dioxide evolution rzte (CER) and the oxygen uptzke
rate (OUR) whose values can be made avzilable through the analysis of exit gas
concentrations using an on-line mass spectrometer. The dissolved oxygen concentration
is a critical process variable for an aerobic fermentation and its levels are measured using
a dissolved oxygen probe. High levels of dissolved CO, can be inhibitory to cell growth
and may reduce the production of secondary metabolites (Atkinson and Mavituna (1991)).
Tt is not uncommon to monitor the dissolved CO, levels using a dissolved CO, probe
(Puhar et al. (1980)). Broth volume measurements can be made available on-line on a
frequent basis by the use of load cells. All these measurements constitute the secondary
variable block (SVB) and the sampling instants when they arrive are termed as the minor
sampling instants. The concept of analytical redundancy has been used extensively tg
perform fault diagnosis and isolation tasks (Frank (1990)). In the latter approach, inherent
redundancies contained in the static and dynamic relationships among the system inputs
and measured outputs are exploited by the use of a process model. The same concepts
have been used in our work to incorporate a priori information abo.ut the process into the
proposed monitoring scheme. For example, the production of secondary metabolites such
as antibiotics is known to be significantly influenced by the initial specific growth rates
(Nelligan and Calam, (1983), Calam (1987)). Regular estimates of these specific growth
rates generated using an adaptive estimator (Gudi et al., (1995)) can optionally be
included into the SVB as an analytically redundant measurement. Likewise, estimates of
the gas-liquid mass transfer coefficient K,, that are normally generated on-line (Omstead
et al. (1990)), can also be included into the SVB. The nutrient addition rate F usually

follows an a priori determined/prescribed feeding policy. These rate measurements can
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be included into the SVB. In this work however, a constant feeding rate is assumed in the
simulations and therefore the nutrient feeding rate has been included as an initial
condition into the initial condition block (ICB). The ICB is formed by incorporating initial
conditions on the biomass, substrate concentrations and the broth volunie that are used
in the fermentation. The data blocks described above can be generated for several normal
batches. With the exception of iz ¥ECB and the QB, the blocks thus generated are three
dimensional having the batch number as the third dimension in addition to the temporal

and variable dimensions.
8.3 The M3PLS algorithm

Standard linear regression techniques (MLR, ordinary least squares) are commoniy used
toc model the relationship between two variables. However, when several correlated
variables exist for example in a fermentation, such algorithms cannot be used. The PLS
algorithm is often recommended for use in such a scenario. The M3PLS algorithm
proposed in this section is an extension of the standard PLS algorithm to include a third

dimension viz. variation of the process variables among batches. -
8.3.1 Standard PLS regression

The PLS algorithm has been proposed in several different versions (Wold(1978),
Hoskuldsson,1988). The most popular version of the algorithm due to Wold {(1978) is
presented here. Consider the case where we have n measurements on Kk process variables
(CER,OUXR,‘ temperatures, pressures efc.) and m quality and productivity variables (for
example : antibiotic concentrations/ compositions in fermentors, molecular weight
distributions and polydispersity in polymer reactors). Suppose that an inferential model
that predicts the quality variables (Y space) given measurements of the process variables
(X space) is desired. The process variables subspace is highly correlated because the
measured variables such as the CER, OUR are all associated with the primary growth
phenomenon occuring in the fermentation. Use of the ubiquitous multiple linear regression

(MLR, ordinary least squares) for inferential model building can result in serious

176



Chapter 8. : Siatistical monitoring of fed batch fermentations.

numerical probleins owing to the collinear nature of the process variables (X space). In
such, situiFfions, mzivariate statistical techniques like PCA or P'LS is often recommended

to overcoiiie problems resulting from the ill conditioned rature of the measurement space.

PLS cun be viewed as a stepwise procedure where a pair of maximally correlated
components (latent variablesj in the X and Y spaces are selected. After the laient
dimension is extracted, the X and Y spaces are deflated by removing infermation that has
already been used up (in the case of X space) or explained (for the Y space). The
exiraction of latent variables is continued oa the residual space as long as no significant
improvement in the predictive capability of the model is achieved by including an
additional PLS dimension. The deflation ﬁroéedure ensures the orthogonality of the latent
variables for the X and Y spaces. Also, due to the collinearity or correlation between the
process variables, only & few iatent variables are adequate to buiid a‘ good predictive
model relating X to Y. Thus, a lower dimension miodel building is achieved.

Remark : Simultaneous extraction of the latent variables through _infonﬁation exchange
between the X and Y spaces and the data compression feature of PLS stard ip
stark contrast to ordinary least squares where neither of them occur. Consequently,
it is often noticed that while MLR gives a better fit of the calibration data
(because it ases all the X space information), PLS gives better predictions as it

abstracts only predictive information from the dataset.
In PLS, the X and Y matrices are decomposed as :

A
X=Y1tp, + E=TP" + E 8.1

a=1

A A . .
Y=Y ug +F=3btg +F=TBQ" +F 32)
a=1

a=l

In the above decomposition, each t, (a=l,..A) is a score vecfor that indicates the
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rzlationship betvveen the observations (sampies). This means that gimilar observations in
the X space have the same score value. 1, and q, are the loading vectors for the X and
Y spaces respectively carrying the relational jnformation between wvariables of the
individual matrices. The Y block scores u,”s are estimated via a linear ‘‘inner
relationship”’, b,t, (with b, being the slope of the fit); this explains the relatively better
predictive capabilities of the PLS medel. The 1", P, U and Q matrices are constructed by
grouping the t, p, u and q vectors respectively. B is a diagonal matrix with the b,’s as
elements. E and F denote the residuals of the X and Y spaces ; they may contain the less
relevant characteristics of the data and the noise elements. The number of dimensions (A)
to be retained in the final model i3 determined either based on the percentage sum of
squares explained by the model or by the use of sophisticated and statistically scund
techniques like cross-validation.

The PLS comporents are extracted in stages through a sequence of singular value
decompositions or by an iierative technique commonly known as the nonlinear iterative
partial least squares (NIPALS) algorithm. The main steps of the NIPALS technique are
outlined in Table 8.1. Figure 8.2 illustrates the iterations in the NIPALS algorithm (the
step humbers are included in the figure to facilitate easier understanding).

Prediction using PLS

The NIPALS algorithm can be used to generate the PLS model given by equations 8.1
and 8.2. Using this model, predictions of the Y block for new values of X can be made.
The t score of the new observation X, ., is calculated as t,,,, = X,..,.W (P"W™). The value
of y corresponding to X, can be predicted as $,., = t,,BQ". These predicticns made
using the PLS tniodel will be good as Jong as the relationship between the variables at the
current state does not significantly differ from that in the database of normati operations.
If there are any changes made in the process (feed changes, adding a controller, efc.) that
alter the structural relaiionships between the variables, it is necessary to rebuild the model
(or build several models for each operating condition) for using it in a predictive mode.

For online monitoring and fault detection in process plants, a simple check on the validity
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Table 8.1 : The NIPALS Algorithm

1. Start : a=1.

2. Set u equal to any column of Y.

3. Regress columns of X on u to get weights for X : w’ = u"X/u" u

4. Normalize w to unit length.

5. Compute the scores : t= X w / w'w.

6. Regress columns of Y on t to get loadings for Y : q" = ¢ Y/'t.

7. Compute the new score vector for Y : u=Yq/q'q.

8. Check convergence of u (steps 3 and 7) : if yes go to next step ; if no go to
step 3.

9. Compute loadings for X by regressing columns of X ont: p’ =t" X /' t.

10.  Compvte residual matrices : Ry=X-tp’ and Ry=Y-1q" .

11. =a+1; Append t, u, p, g and w to T, U, P, Q and W matrices respectively;
Replace X by Ry and Y by Ry and repeat steps 2 to 11 for the next PLS

dimension (if nezded).

In this version of the PLS algorithm, the b,’s will be unity. Further scaiing of the vectors

generated by the above procedure will result in b,’s that are not equal to unity. However,

this does not affect any of the results.
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Figure 8.2 : Block diagram illusiration of the iterations involved in the NIPALS
algorithm.
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of the PLS model will show if a statistically significant excursior: from normal plant
operation has occurred. This is done (as we shall see later) using a multivariate version
of the familiar univariate charting procedures like the Shewari chart. If an abnomnmal

situation is indicated, corrective measures can ve initiated or the operations halted safely.

8.3.2 Database Structure for Multirate Batch Monitoring

To build a reasonable template of normal operation for a batch process, it is necessary
that a database of acceptable runs be available. Very often, the database can be built as
shown in Figure 8.3. The initial conditions block is a two diménsional matrix of size NB
by NIC where INB is the number of batch runs that make up the database and NIC is the
rumber of variables. The quality variables block has NQ variables recorded for each batch
- these variables are the quality and performance variables that are predicted onlinz using
the M3PLS model (note the arrows from all the other b’ldcks pointing towards this block).
The primary and secondary variable blocks are different in the sense that they have a
higher dimension. This feature is necessary because these variables are recorded over the -
duration of the entire batch run for each batch. We assume that the primary block abnd
secondary blocks carry information on NP and NS variables respectively. The key
difference between these blocks is that the secondary variables are sampled more
frequently compared to the primary variables. Consequently, the secondary variables block
is shown as having a greater depth (NSS > NPS). For the fermentation system considered

here, the variables that go into the different blocks have been detailed in Figure 8.1.

8.3.3 M3PLS Analysis

Decomposition of the 3-way matrices and the building of the PLS model to relate the
quality block to the other blocks can be done in different ways. Published literature in the
area of chemometrics abounds in algorithms that range from cnes that are modest to those

that use intricate tenscr algebra (Wold et al. (1987), Geladi (1989) and Smilde and

181



Chapter 8 : Statistical monitoring of fed batch fermentations.

Block ot Initial
Conditions

Batches

1

Vars.

NIC

Batches

Secondary
Variables

Block

1

Vars.

Primary
Variables
Block

1

Vars.

NP 1

72
(]
L
8 [ . "]
3]
o
NB
v
Quality
Variables
Block
1 Vars. NQ

Figure 8.3 : The database structure for multirate batch monitoring.
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Doornbos(1991)). In this work, we will employ the multiblock PLS algerithm of Wangen

and Kowalski (1988) that is simple to use and is easily interpreted as an extension of the
two block PLS algorithm.

Matrix Unfolding

Using the approach of Nomikos and MacGregor (1994a), the three dimensional primary
and seconda’fy variable blocks are unfolded into two dimensional matrices by placing each
of the vertical slices side by side to the right, beginning with the one corresponding to
the first sampling instant for each block. The unfolding process results in two broad

matrices of size' (NB by (NP*NPS)) and (NB by (NS*NSS)) for the primary and
secondary blocks respectively.

Data Pretreatment

Pretreatment of original data is often recommended when using PCA or PLS. These
methods can be analyzed as eigenvalue-eigenvector problems and hence the magnitude
of the measurements can influence the results of the PCA/PLS analysis considerably. Prior
information about variables can be used to effect the scaling procedure; alternately, when
. little is known about the variables, autoscaling (mean centering and variance scaling) is
done to give equal importance to all the variables. If certain crucial physiochemical
phenomena are known to occur during a particular time interval, higher weight can be
assigned to the variables in this time period by scaling them differently.

Batch processes are characterized by significant nonlinearities and the absence of a steady
state. Mean centering of the initial conditions matrix, the unfolded primary and secondary
matrices and the final quality block removes the nonlinearities and trends (dynamics) in
process data. With this particular unfolding and autoscaling, the M3PLS model tries to
characterize and relate the deviation aboui the mean trajectories of all the variables. In
what follows, the primary and secondary variable blocks are assumed to have been
unfolded and all the resulting two dimensional matrices are autoscaled. For notational

simplicity, the autoscaled initial conditions matrix, primary variables matrix, secondary
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variables matrix and final quality variables matrix are denoted by Z,, Z,, Z; and Z,

respectively.
M3PLS Model Development

The logical structure of the fermentation monitoring and prediction scheme alongwith its
layout is shown in Figure 8.4. The M3PLS model calculation steps are outlined in Table
8.2. The iterative computational sequence to obtain the scores and loading vectors for one
M3PLS dimension is depicted in Figure 8.5. Table 8.3 shows the relationshiy between the
labels shown in Figure 8.5 and the step numbers in the M3PLS algorithm: outlined in
Table 8.2.

8.3.4 Monitoring and Online Predictions with the M3PLS Model
Monitoring and online predicticns for a currently running batch is a nontrivial issue unlike
the predictions with the standard PLS algorithm. As in the standard PLS, prediction with
the M3PLS model depends on the calculation of appropriate t-scores. There is no
difficulty for the initial conditions block as all the information is available in a (1 by NIC)
vector. However; the primary and secondary variable information is not complete - at the
start of the batch it is empty and gradually gets filled as the batch progresses. This means
that at any time instant, except at the end of the batch, we need to make a pragmiatic
guess for the future primary and secondary variables to arrive at reasonable predictions
for the final quality variables. Nomikos and Macgregor (1995) suggest three appreaches
to fillup the unknown data in the procéss variables vector. A brief summary of their
guidelines is presented below :

Approach 1 : This approach assumes that the future observations are in full agreement
with the mean trajcctbries' as calculated from the reference database. This means that we
fill the autoscaled values (that is used in the M3PLS algorithm) with zeros. The result is
a good graphical representation of the batch run but at the cost of the t-scores being
reluctant to flag an abnormal plant operation particularly at the start of a batch run.
Approach 2 : An a]temafe approach is to assumne that the future deviations from the

mean trajectories are equal to the deviations noticed at the current time. This is done at
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Figure 8.4 Logical Structure and layout of the prediction and m.onitoring scheme.
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Table 8.2 : The M3PLS Algorithm

1.  Start : a=1.
2. Set u, equal to any column of Z,

3. Backward Phase
(3a) Z, predicts no blocks, so t, = u,.
(3b) Z,, Z, and Z, predict Z,.
for i=1 to 3 do
(3b1) w,T = u,Z,
(3b2) Normalize w;
3Bb3) {, = Zw;

end

4. Forward Phase

(4a) Z,, Z, and Z, are not predicted, so u; = t; (i=1,2,3).
(4b) Form composite matrix : T=[t, t, t,].
(4c) Compute the composite score vector t..

Acl) w,T=u,'T

(4¢2) Normalize w,

@c3) t, = Tw,

4. (4d) Compute updated vector u, for Z,.
@d1) c,T = ."2¢
(4d2) Normalize c,
4d3) u, = Zc,
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5. Check convergence of u, (steps 3 and 4d3) : If yes go to next step: clse go to
step 3.

6. Compute predictor coefficients and loadings.

(6a) Predictor coefficients : b, = t.Tu, /(t."t.)

(6b) Loadings for Z,, Z, and Z, : p, = Z t/(t"t) (i=1,2,3)
7. Compute residuals.

E =Z - tp]T (i=1,2,3)

E, = Z, - b.tc,’. Note that u, is estimated as bt..

8. a=a+]; Append computed vectors to appropriate matrices; Repeat steps 2 to 8
and extract other M3PLS dimensions (if needed).
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U]

Figure 8.5 : Data block interactions and computations involved in the M3PLS
algorithm.
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‘Table 8.3 : Relationship between the M3PLS algorithm steps and
labels in Figure 8.5

[ Label in Step
Figure 8.5 | Number
a | 3w
b 3b3
c | 4b
d 4cl
“ e 4c3
“ £ 4d1
=
“ h 6b
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each sampling time. With this approach, the t-scores are sensitive and pick up an
abnormality more quickly.

Approach 3 : The third approach capitalizes on the ability of PCA/PLS to handle missing
data. In the PCA/PLS literature, missing data can be filled up by fesnicﬁng them to be
consistent with the already observed values up to the current sample. This method appears
superior to the other two approaches if at least 10 % of the batch history is available for
it gives large and unexplainable t-scores at the beginning of the batch. Also, the control
limits calculated with this approach have censtant trajectories in contrast to the earlier
strategies.

Nomikos and MacGregor (1995) recommend careful employment of these approaches for
process monitoring depending on the nature of the process. For batch processes that : (1)
~ do not exhibit persistent disturbances or (2) have discontinuities in the trajectories of
variables, the first approach can be used. For processes that do not have frequent
discontinuities in trajectories or early deviations the third approach appears to be the
most suited choice. If persistent disturbances are known to occur, then the second
approach is more appropriate. A combination of these methods, for exampie switching
from the second approach to the third after the initial stari-up period is also possible.
Nomikos and MacGregor(1995) report that the second approach generally works well in
most cases.
In this work, we use a slight variant of the second approach. At each time instant, the
future values are set equal to the autoscaled values at the current sampling instant. This
is easily justified because the autoscaled values (rather than the original values) are used
by the M3PLS model for monitoring and predictions. With this approach the nature and
contour of the monitoring charts are very much akin to those obtained from the second
arproach of Norrﬁkos and MacGregor(1995).
Tize key steps and mathematical expressions for online monitoring and predictions
proposed in this work can then be summarized as follows :

Step 1. Preparation of the data vectors
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At the start of the batch, we have the complete initial conditions data which should be
scaled in exactly the same way as the initial conditions in the reference database was
scaled. The scaled initial conditions information is available in the 1 by NIC vector, Z,.
No primary and secondary measurements are available yet. The scaled primary variables
vector Z, and secondary variables vector Z; of dimension 1 by (NP*NPS) and 1 by
(NS*NSS) respectively are filled with zeros implying that we expect this batch run to
behave just as ‘‘normally’ as the runs in the database of good operations.

When each sample from the primary or secondary blocks become available, it is first
scaled in the same manner as the block for the particular time inistant was scaled in the
reference database. This value is then inserted into the appropriate location of the vector
Z, or Z, as is the case. The values for the remaining entries in Z, or Z, are also set equal
to the scaled values computed at the present sampling instant. In any case, we therefore
have complete Z,, Z, and Z, vectors at each major and minor sampling instant.

Step 2. Calculate scores for blocks Z,, Z, and Z,

t, = ZW,
’ia =Z,W,
23 = Z;W;

Step 3. Get squared prediction error (SPE) for the initial conditioi: matrix, primary and
secondary variable block. These are useful for online monitoring as we shall see
later.

Reconstruct Z,, Z,, Z, using the computed loadings Z, = §; p;" (i=1.2,3)
Compute prediction errors ¢, = Z, - Z; (i=1,2,3)
Extract the deviations for this time instant and store it in ¢; (i=1,2,3)
Compute SPE, = ee;,” (i=1,2,3)
Step 4. Compute combined block score
T, =@ *diag(W.(1,)) + {*diag(W.(2,)))+(E;*diag(W(3,)))
Step 5. Predict scores for quality block, z,
a, = t.*diag(b.)
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Step 6. Predict quality block
2, = 0,C,7

Step 7. As a final step, rescale z, to get raw predictions for the quality block.

Control Charts and Confidence Intervals

With the score vectors computed at each sampling instant (major as well as minor) and
the predicted values for the final quality variables, it is possible to construct control charts
for the score vectors of each block and the final quality variables. The SPE values
computed for the blocks at each time instant can be used in a similar manner to perform
online monitoring and fault detection.

Choice of the method used to generate missing data for new runs must be made before
the control limits for the control charts are derived. This is because the same strategy
should be used for handling missing data as well as generating control limits. Any change
in the policy of treatment of missing observations will render the computed control limits
obsolete. To derive the control limits, every batch in the database of normal runs is sent
through the monitoring scheme described above as if it were a current operation. The
initial condition scores and its corresponding SPE are obtained initially. At each major
and minor sampling instant, the t-scores and the SPE for the secondary and composite
blocks as well as the predictions of the final quality variables are collected. Primary block
t-scores and the SPE are evaluated at the major sampling instants when the primary
measurements arrive. Such an approach provides the external reference distribution (for
each block and at each time interval) and facilitates calculation of the control limits. In
doing so, it is assumed that the external distribution sufficiently captures the inherent
variations observed in the database of acceptable process operations and will be applicable
to assess new batch runs.

Different practical problems require the use of various types of intervals. Monitoring of
future batch runs is an analytical study (Deming, 1975) as it involves the use of data from

an existing process to predict the future evolution of a similar process. The use of
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prediction intervals is thus most appropriate. Prediction intervals to contain one or more
future observations, or some function of the future observations, can be constructed from
a previously sampled process. In cur case, the external reference distribution serves this
purpose. Since the reference data was collected during the normal operation of the plant
(when variability in plant data can be attributed only to “common causes” rather than

"assignable causes"), the prediction intervals computed often provide reasonable insights
on the health of a future run. '

A prediction interval for a single future observation is an interval that will, with a
specified degree of confidence, contain the next sample from the process. Assuming that
the reference as well as the future data are random samples from the same parent
population (having identical production procedures and similar process conditions), the
prediction intervals may be computed (Hahn and Meeker, 1991). A two sided 100(1-0)%
prediction interval to contain the mean of a future, independently and randomly selected
observation, using the reference data containing an independent random sample of size

n from the same process described by a normal distribution, is (¢f. equation (4.2) of Hahn
and Meeker, 1991)

—
[UCLLCL] = ¥ £ t,_5,., J(1+_,11_) s 3.3

where UCL and LCL refer to the upper and lower control limits respectively, X denotes
the estimated mean and S is the standard deviation computed from the reference
distribution. The factor t;., .1, represents the critical values of the Student’s t-distribution
for a specified degree of freedom and confidence. Charting quadratic forms such as the
squared prediction errors (SPE’s) require the computation of one-sided confidence limits.
Equation (8.3) is suitably modified and used for this purpose.

Intervals for the predicted quality variables are obtained from a regression analysis
viewpoint. Computation of these involve a clear understanding of the theory of statistical

linear models and concepts like estimable functions and generalized inverses. A clearer
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discussion of the issues involved is presented in Searle(1982). Nomikos and
MacGregor(1994b) and Phatak et al.(1993) provide confidence intervals on final quality
variables; the former is less accurate but the limits are easily computed and therefore used
here. The confidence limits for the predicted univariate y at the significance level o with

dof degrees of freedom at each sampling instant are given by :

(UCLLCL] = 3 % Lo JMSE) J(l«»ff(TfTJ"i) @4

In the above equation § refers to any one of the predicted quality variables in z,; %, is the
composite t scores computed for the current batch, T, is the composite T matrix formed
using the database of normal batches. MSE is the mean sum of errors computed from the
database of normal operations and is given by
- T, -5
MSE = 9909 (8.5)
dof

As stated earlier, the values of the above variables are to be computed or retrieved at
every sampling instant to generate the confidence intervals at each instant.

8.4 Results and discussion

The M3PLS algorithm was verified using simulations involving the fed-batch fermentation
described earlier using the model presented in Appendix A. The model equations
adequately describe the substrate inhibition effects on the biomass growth and antibiotic
production through the use of different empirical models. They however do not model the
dependence of the antibiotic production rate on the specific growth rates for which no
models are proposec in the literature. Due to the presence of significantly different time
scales (the gas phase dynamics are significantly faster than the broth phase dynamics),
a stiff differential equation solver LSODES (Hindmarsh (1983)) availabe at the Lawrence
Livermore Laboratories was used to solve the model equations. The profiles of various
primary and secondary prbcess variables were generated over a time period of 120 hours

of fermentation. Regular estimates of the specific growth rate p and the mass transfer
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coefficient K;,, generated using an online estimator (Gudi er al.(1995)) and an empirical
correlation (Omstead et al., (1990)) respectively, were included into the secondary
variable block. The profiles of the secondary process variables that constitute the SVB
were sampled every 30 minutes while the primary process variables in the PVB were
sampled every 150 minutes. White gaussian noise with zero mean was added to the
measurements to simulate noisy measurements with a relatively smaller signal to noise
ratio. A total of 47 simulations incorporating the common batch to batch variations were
performed by using different initial conditions to yield a database of normal batch runs.
The datasets in this database were used to build a template of normal process operation.
The monitoring algorithm was first evaluated by presenting online data from an average
normal fermentation run. The following faults or deviations that are commonly
encountered in fermentations were implemented in the simulations and the resulting

datasets were presented to the algorithm to evaluate its capability to perform on-line fault

detection and quality prediction.

1. Initial conditions : Lower biomass concentrations and antibiotic yields resualting from
smaller initial concentrations of actively growing biormnass were simulated and used to

analyze the predictive capability of the algorithm.

2. Contamination bv foreign microorganisms : An additional contaminant state, to

characterize the biomass evolved due to the growth of the foreign microorganism, was
introduced into the fermentor equations. The ontaminant microorganism was assumed
to grow at a constant specific growth rate that was higher than the maximum specific
growth rate that could be attained in the normal fermentation (Chattaway and
Stephanopoulos, 1988). The foreign microorgénism affected the normal fermentation
profiles by taking up nutrients, oxygen and by evolving carbon dioxide. It aiso affected
the final antibiotic titre through its effect on the environmental variables(see equation (A-
10) in Appendix A). The concentration of the contaminant microorganism also showed

up in the offline measurements of the biomass.

3. Sparger disturbances Changes in the environmental variables, such as the CER, OUR
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and dissolved oxygen, resulting from sparger disturbances were simulated by manipulating
the gassed power P, (¢f. equation A-11 in Appendix). A disturbance was introduced at 20
hours of fermentation time and removed after 23 hours of fermentation. The fermentation
operation returned gradually to the normal operating regime at about 50 hours of

‘fermentation.
8.4.1 Model Building

Table 8.4 shows the batch variations modelled by each addition principal component for
each of the blocks. It can be seen that tﬁ;ée latent dimensions are needed to model almost
al! of the variation in the quality block. The model building steps that result in the data
shown in Table 8.4 can be inierpreted according to each latent dimension as follows. The
first dimension models 22.3 % , 33.3 % and 42.5 % of the variations in the initial
conditions, primary variable and secondary variable blocks respectively. The first latent
dimension effectively explains 47.3 % variation in the quality block. The data for the
second and third latent dimensions can also be interpreted in the same way. The inner
relationship plots shown in Figures 8.6 and 8.7 explain the relationship between the
quality and composite blocks as modelled by the first and third latent dimensions. Almost
all of the batches used in building the normal operation database fall in the linear region
indicating that the inner relationship is linear. It also indicates that, for a good and
normally opefaﬁng batch, good predictions of the final quality variable(s) can be obtained.
The inner relationship plot for the first dimension in Figure 8.6 shows a small scatter
along the diagonal straight line indicating that this dimension is only partly useful in
predictions of the quality block. For the third dimension relationship shown in Figure 8.7,
almost all of the batches fall along a linear region indicating that this dimension is very
useful in the quality predictions. The correlation coefficient, which is a linear measure of
dependence between the quality and the composite blocks, is also shown in the plots in
Figures 8.6 and 8.7. These plots thus emphasize that the inner relationship between the
quality block and the composite block can be extracted using a linear model. If the value

of the correlation coefficient was small or if the inner relationship piots had shown a
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Table 8.4
Model Building Step for the M3PLS algorithm

— e

rer—m—— e

Dimension % explained % explained % explained % explained

number in IC block in PVB in SVB in the QB

22.31

50.10

76.36
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Inner Relationship plot : 1st Dimension
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Figure 8.6 : Model building : Inner relationship plot for the first dimension. A scatter is
seen along the linear region indicating that this dimension is only partly useful in quality

prediction.
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Inner Relationship plot : 3rd Dimension
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Figure 8.7 : Model building : Inner relationship plot for the third dimension. Most of the

batches fall along the linear region indicating that this dimension is very useful in final
quality prediction.
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nonlinear trénd, it would be necessary to use a nonlinear model to explain the relationship
between the quality and composite blocks. From Table 8.4 it is seen that the first
threedimensions exjplain the quality block almost completely. For the primary and
secondary lacks, Figures 8.8 and 8.9 show the cumulative variation explained by each
of the latent dimensions at each sampling instant. It is seen that three latent dimensions
adequately explain the variation in the primary and secondary variable blocks and addition
of another latent dimension is not likely to improve the modelling of the blocks

significantly.
8.4.2 Monitoring a normal fermentaticn run

A new fermentation run, to depict normal process operation, was simulated by using the
mean value of the initial conditions specified for the 47 template runs. Figure 8.10 shows
the scores and the squared prediction error (SPE) plots in the initial condition blcck for
such a normal run. It is seen that the initial condition, when projected onto the scores
plots, falls in the normal region of the space spanned by the 1* and 3™ dimension scores.
Also the SPE for this initial condition falls within the 99 % and 95 % control limits
constructed from the database of normal batches. This indicates that one could expect the
initial condition to propagate and evolve a normal, acceptable batch run. The spaces
spanned by the 2nd and 3rd latent dimensions also needs to checked to ensure that the
projected initial condition falls in the normal acceptable region. However, the SPE plots
generally show up any abnormalities and it is therefore adequate to look at the scores
plots for fewer latent dimensions with the SPE plots.

Figures 8.11 and 8.12 show the evolutior of the batch as monitored by the first dimension
scores and the SPE for the primary and secondary variable blocks respectively. The 99
% and 95 % upper and lower control limits generated from the database of normal plant
operations is also shown and it is seen that the scores and the SPE plots of the batch that
is being monitored fall within the respective control limits indicating that the fermentation
run is indeed normal. Figure 8.13 shows the online final quality prediction at each

sampling instant. It can be seen that the predictions made by the algorithm are quite close
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Cumulative % Sum of Squares Explained : Primary Block
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Figure 8.8 : Model building step for the primary block. The cumulative sum of squares
explained for the primary block by the first (*-.”), second (’--') and third (solid line) is
seen. An additional dimension is not necessary because the third dimension does not

increase the % sum of squares explained.
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Cumulative % Sum of Squares Explained : Secondary Block
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Figure 8.9 : Model building step for the secondary block. The cumulative sum of squares
explained for the secondary block by the first (’-.”), second (’--) and third (solid line) is
seen. An additional dimension is not necessary because the third dimension does not

increase the % sum of squares explained.
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Initial Conditions Block
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Figure 8.10 : Monitoring of a normal fermentation run via the IC block scores: The initial
condition for the batch is characterized as normal in the third dimension scores. The
current batch is shown by the ’x’. In the SPE plots, the 99 % limit ('0’) and the 95 %

limit C+>) are shown and the SPE for the current batch (shown by °x’) lies withiii these

limits.
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Figure 8.11 : Monitoring of a normal fermentation run via the primary block scores : The
first dimension scores plot for the primary block (solid line) is seen to lie between the 99
% (’--") and 95 % (’-.”) limits. In the SPE plots also, the 99 % limit (’--’) and the 95 %
limit ("-.’) are shown and the SPE for the current batch (solid line) lies within these

limits.

204



Chapter 8 : Statistical monitoring of fed batch fermentations.
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Figure 8.12 : Monitoring of a normal fermentation run via the secendary block scores :
The firsi dimension scores plot for the secondary block (solid line) is seen to lie between
the 99 % (’--’) and 95 % (’-.”) limits. In the SPE plots also, the 99 % limit (’--’) and the

95 % limit (’-.”) are shown and the SPE for the current batch (solid line) lies within these
limits.
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Online Final Quality Prediction
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Figure 8.13 : Quality prediction of a normal fermentation run : The 99 % (*--’) and 95
% (’-.”) prediction limits are shown and the prediction of the final quality variable at each

sampling instant is shown. The predictions agree well with the actual final value (C*’).
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to the actual final quality for this batch (shown by asterisk).
8.4.3 Monitoring of abnormalities in the fermentation

(i) Abnormalities in Initial conditions A simulation run starting with a low

concentration of actively growing biomass was generated and used to evaluate the
monitoring algorithm. The algorithm detects the initial condition abnormality aimost
irnmediately as seen in ifie scores and the SPE plots of Figure 8.14. The abnormality
shows up by ¢haracterizing the batch as a distinctly different batch aé seen in the third
dimension scores. It also clearly shows up in the SPE plot as it falls significantly beyond
the 95% and 99% control limits. Often times, the inoculum quality may be poor i.e. it
may contain the right amount of biomass but a smaller proportion of actively growing
biomass( Webb and Kamat, (1992)). In such a case, the abnormality may not necessarily
- show up in the initial conditions block. It would however manifest in the primary and
secondary measurements and show up in the scores plots for the latter. Figures 8.15 and
8.16 show the first dimension scores and SPE plots in the primary and secondary blocks
for the abnormai batch run. Significant deviations from the template of normal operation,
as defined by the control limits, is seen. Figure 8.17 shows the profile of the online final
quality predictions. It is seen that qualitative trends leading to lower antibiotic
concentration are predicted online from about 30 hours of fermentation (around the 60th
sampling instant in Figure 8.15). This is because the antibiotic expression gets triggerred
on around this time and the measurements play a role in the final quality prediction.
However, these predictions are not anywhere close to the actual value of the final quality
variable. The reason for this was discussed earlier in section 8.3.1. The predictions made
by the PLS model will be good ©nly as far as the relationship between the variables does
not differ significantly from that in the database of normal runs. More specifically, the
model gives reasonably accurate predictions only for runs that are in control as defined
by the database of nermal operations. When statistically 5igniﬁcant deviations occur, the
underlying statistical model is no ionger representative &f the process and therefore the
final quality predictions will not be accurate.
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Figure 8.14 : Monitoring of abnormality in an initial condition via the IC block scores:

The third dimension scores plots cléarly shows the current batch(’x’) to be different than

the normal batches(’0’). The SPE plots also flag the initial condition abnormality. The

SPE for the current batch (’x’) lies significantly above the 99 % (’0’) and 25 % (’+’)

limits.
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Figure 8.15 : Monitoring of abnormality in an initial condition via the primary block

scores : The first dimension scores plots for the primary block clearly shows the current

batch(solid line) to be abnormal as it lies outside the 99 % (’--*) and 95 % (’-.’) limits.
The SPE plots also flag the abnormality. The SPE for the current batch (solid line) lies
significantly above the 99 % (’--’) and 95 % (*-.”) limits.
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Figure 8.16 : Monitoring of an abnormality in an initial condition via the secondary block
scores : The first dimension scores plots for the secondary block clearly shows the current
batch(solid linej to be abnormal as it lies outside the 99 % (’--") and 95 % (’-.”) limits.
The SPE plots also flag the abnormality. The SPE for the current batch (solid line) lies
significantly above the 99 % (*--*) and 95 % (’-.”) limits. -
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Online Final Quality Prediction

0.014 T T T T
,\-I"\wﬁa—",/”lg‘.
RO AR I
L Nw -
0.012 e A e e~ A e e -
2] R TR e e e o —— - —
P e R o U T R T i ] -—
%
P g (Y
:5 0.01 B W )
=
c
<
I R ot O -
0-008 — -~ . _:‘ \ o _IJJ‘ \.“'}*h-\’~“'\‘A'A“.“' ------ R i =
-~ VRIS T ey L N N a2 T Tt
0.006 : L — —t -
0 50 100 150 200 250

Sampling Instants

Figure 8.17 : Quality prediction for a batch having an abnormality in an initial condition:
The online final quality prediction is seen along with the 99% (’--’) and 95 % (-.”)
predicticn limits. The decreasing trend in the final quality predictions is seen around the
70th sampling instant due to the arrival of the actual measurements of the quality variable.

The predictions (solid line) do not agree with the actual value of the final quality (C*’).
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(ii) Abnormalities in the sparging system Starting from a normal initial condition,

disturbances were introduced in the sparging system at 20 hours of fermentation. This
corresponded to the 40th sampling instant for the secondary block (secondary
measurements arrive every half hour). Figures 8.18 and 8.19 show the first dimension
scores and the SPE for the secondary and the combined composite blocks respectively.
It is seen that the abnormalities show up quickly in the scores plots. The scores trajectory
for the abnormal run is seen to deviate from the template of normal operations till the
disturbance is withdrawn at 23 hours of fermentation. The trajectory gradually returns into
the normmal region after the disturbance is withdrawn. Since the deviations from the
template of acceptabie plant operation is not significant, the final quality prediction in
‘Figure 8.20 is close to the actual value in the simulations. It must & emphasized here that
this example of abnormiality is chosen only to illustrate the monitoring capability of the
algorithm. In an actual fermentation, the occurrence of a disturbance and its subsequent
compensation will not necessarily bring the fermentation into the normal region of
operation. The switching to a different metabolism of glucosc and its effect on product
yields in a recombinant fermentation, under dissolved oxygen fluctuations, considered by

Namdev et al. (1993) is an excellent illustrative example of this phenomenon.

(iii) Abnormality due to foreign microorganism contamination

“Starting from a normal initial condition, a contaminant microorganism was introduced at
40 hours of fermentation and assumed to grow at a constant specific growth rate of 0.8
hr'. This corresponds to the 80th sampling instant for the secondary variable block.
Figure 8.21 shows the first dimension scores j)lot and the SPE for the secondary block.
It is seen that deviations in the process operation is detected almost immediately. This is
also seen in the composite scores plot of Figure 8.22. The moriitoring of this batch was
terminated at 50 hours of fermentation due t¢ iix> runaway nature of the monitored

profiles.
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Figure 8.18 : Monitoring of an abnormality in the Sparging system via the SPE plots: The
SPE plots for the current batch deviate from the 99 % (’--*) and 95 % (’-.’) limits when

the disturbance is applied but return to the normal region when the disturbance is
removed.
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Figure §.19 : Monitoring of an abnormality in the Sparging system via the secondary

block scores: The scores plots for the current batch as monitored by the first and second

latent dimensions deviate and approach the 99 % (’--’) and 95 % (’-.”) limits when the

disturbance is applied but return to the normal region when the disturbance is removed.
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Online Final Quality Prediction
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Figure 8.20 : Quality prediction of a batch with abnormality in the Sparging system : The
final quality prediction does deviate slightly when the disturbance is applied. However,
since the disturbance is not sustained for a long time, the final quality predictions are

good.
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Figure 8.21 : Detection of contamination of a batch by foreign microorganisms via the
SPE plots : The SPE plots (svlid line) deviate from the 99 % (’--’) and 95 % (’-.”) limits.

The monitoring was stopped at the 100th sampling instant.
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Figure 8.22 : Detection of contamination of a batch by foreign microorganisms via
composite block scores: The combined/composite block scores plots (solid line) deviate

from the 99 % (’--°) and 95 % (’-.”) limits. The monitoring was stopped at the 100th
sampling instant. )
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8.5 Conclusions

The multirate, multiway, multiblock PLS (M3PLS) algorithm proposed in this work has
been evaluated for the monitoring of fed batch fermentation processes. The algorithm is
quite simple in its implementation. It only requires a database of normal plant operating
data. The computationally intensive part of the algorithm is performed only once during
the model building step. The monitoring of a new batch run using the statistical model
is relatively easy to implement online. The algorithm achieves data reduction and makes
the monitoring task easy as fewer variables in the transformed space need to be
inonitored. The monitoring algorithm gives quick online flagging o% abnormal batch rung.
It also gives good online predictions of the final quality variable for new batches as long
as the batch has no abnormalities or deviations from the normal behaviour.

Although the PLS based strategies proposed in this work and elsewhere in literature offer
excellent potential as monitoring algorithms, they are perhaps not appropriate for the task
of final quality prediction. For a good normal run as characterized by the SPE and scores
plots, the range in which final quality value would lie is usually known. For an abnormal
run, the underlying statistical model is obsolete and does not give good final quality
predictions. Although the effects of an abnorma! run and subsequent trends in the final
quality variable can be qualitatively seen, the predictions are far from accurate due to the
invalidity of the statistical model in the presence of significant deviations from normal
plant behaviour. In this sense, the utility of the algorithm for final quality prediction is
rather limited and not of much practical value. An alternative, useful approach could be
to implemei:t such algorithms in a multiple mode! framework to characterize online highly
productive, intermediate and least productive batches based on the scores plots. This has
been done preliminarily using a principal component analysis (PCA) based algorithm
(Saner and Stephanopoulos, (1992)) and can be implemented elegantly in a M3PLS
framework. This would enable quick and online characterization of the batches so as to

implement remedial operations when possible and necessary.
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8.7 Nomenclature

P loading vector for the process variables space
q loading vector for the process variables space
t scores vector for the process variables space
u scores vector for the quality variables space
E residual matrix in the process variables space
F residual matrix in the quality variables space
NB  number of batches in the database

NIC number of initial condition variables

NQ  number of quality variables

NP number of primary variables

NS number of secondary variables

P loading matrix constructed by appending loading vectors (X block)
Q loading matrix constructed by appending loading vectors (Y block)
T scores matrix constructed by appending scores vectors (X block)
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U scores matrix constructed by appending scores vectors (Y block)
w matrix of weights (see Table 8.1)

X matrix of process variables

Y matrix of quality variables

Z, unfolded, autoscaled initial condition block
Z, unfolded, autoscaled primary variable block
Z, unfolded, autoscaled secondary variable block
Z,  unfolded, autoscaled quality variable block
Superscripts

A estimates

- mean

c composite block

Acronyms

CER carbon dioxide evolution rate

OUR oxygen uptake rate

PCA principal component analysis

PLS projection to latent structures
M3PLS multiway, multiblock, multirate PLS
QB quality block

PVB primary variable block

SVB secondary variable block

ICB initial condition block

MLR maximum likelihood regression
NIPALS nonlinear iterative PLS

UCL upper control limit

LLCL lower control limit
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SPE squared prediction error.
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Chapter 9

Conclusions and Recommendations

9.1 Conclusicens

The direct and most important result of the research carried out in this thesis is a formal
way of incorporating delayed, off-line primary variable measurements into online adaptive
estimation, regulation and statistical monitoring schemes. The contributions developed in
the chapters of this thesis are outlined in the conclusions at the end of each individual
chapter. However, the following conclusions are presented in a logical order to link and

consolidate the various contributions of this research.

The multirate formulation of the classical Kalman filter, that was proposed by Glasson
(1983) for use in aerospace applications, was found to be useful in formally
accommodating the multiple rates of measurement availability commonly found in
chemical and biochemical processes.

Structural observability issues were found to be very important for estimator design.
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Measurement delays were found to reduce system cobservability- and adveruziy affect
estimator performance. The structural observability analysis performid symbolically
helped to modify the measurement system so as to enhance system observability in the

presence of measurement delays in the primary process outputs.

The adaptive estimation task for the case of multiple rates of output sampling was
performed using the multirate extension of the classical Kalman filter. In the first
approach, the multirate Kalman filter is used with a least squares parameter estimator to
perform the task of state and parameter estimation in a sequential framework. The‘ second
approach used the extended Kalman filter in a multirate framework to simultaneously
estimate the states and parameters from the measurements. It was found that issues related
to measurement delays in the primary process variables were addressed more elegantly
in the multirate EKF framework. This approach also required relatively smaller tuning

effort when compared with the sequential approach.

The adaptive state estimator us implemented in the multirate EKF framewoi'k, was
used to successfully generate estimates of critical states and parameters in an experimental
fed-batch antibiotic fermentation. Effects of endogenous metabolism and chahging
maintenance activity on the system observability and estimator performance was

systematically analyzed. The system equations were approriately modified to enhance
system observability. |

System observability problems were also encountered while performing the task
of nutrient concentration estimation. A reduced order estimator proposed in the literature
(Stéphanopoulos and San,(l984)), was used in a multirate framework and was found to
yield accurate estimates of the nutrient concentrations and the substrate to biomass yield

coefficient. The resulting adaptive estimator was extensively validated using simulations
and industrial data.

225



Chapter 9 : Conclusions and Recommendations

A new formulation of the projection to latent structures (PLS) algorithm was used
to incorporate off-line quality measurements into online statistical batch process

mdnitoring schemes. The resulting strategy was validated extensively using simulations.
9.2 Recommendations for future work

1. This thesis proposes to alleviate reduced system observability due to measurement
delays by appending past inferential measurements. The estimates generated in this
fashion can be refined further by using a fixed or variable lag smoother. Mutha ef al.
(1994) have used a fixed lag smoother for estimating states from delayed measurements
in a polymerization reactor. The smoothing algorithm can be implemented in a multirate

Kalman filter framework.

2. Observability problems in substrate estimation have been encountered because models
proposed in the literaiw&, to describe the influence of substrate concentrations on the
specific growth rate, are not adequate and hence are not used. An alternative approach,
especially in an adaptive context, could be to model the influence of substrate and

biomass concentrations on the specific growth rate through the relationship :
po= kX - kS ©.1)

and then estimate k, and k;, online. This approabh has been preliminarily evaluated and
found to give promising results. However, this approach needs to be evaluated further in

more depth.

3. Product concentrations can also be estimated online ﬁsing an empirical model that
relates the product expression rates to growth and non-growth associated cbmpot\ents
(Roels, 1983). An ad-hoc assumption for the time delay in the appearance of the product
can be made based on observed, past fermentation runs. This approéch has been
preliminarily evaluated and found to be promising. Secondary product expression is

triggered on when substrate concentrations falls below inhibitory values. So, an alternative
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approach to model the time delay in the product expression can be based on substrate
concentration estimates.

4. Product expression rates are known to be influenced by initial growth rates (Calam,
(1987)). If a high initiéﬂ growth rate profiles is followed, the precursors necessary for the
product expression reactions are not synthesized. If a lower growth rate profile is
followed, lower biomass concentrations are seen. Thus, there appears to be an optimal
value of the initial growth rate that gives optimal rates of secondary product expression.
Since the multirate state estimator generates accurate estimates of the specific growth rate,

it could be used at a process development stage to armrive at optimal values of the spécific
growth rate.

5. There has been considerable recent interest in integrating statistical monitoring schemes
with process control schemes (Mertens et al.(1994)). These ideas need to be investigated

and developed in the context of bioprocess engineering.
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Dynamic balances to simulate a fed-batch fermentation

Biomass
dX X 8
—_—=r, - — F ; X(0)=1.05 (& A.l
= Ty ) ( 1) (A.1)
Substrate
r r S .
s i pom S x-SFs0) =0 (A2)
dt Yy ) g vV, K, +S vV, 1
Secondary product
dr P 8
—_—=r,- kP - _F ; PO =0 (= A3
— p— kP A (V)] ( l) (A.3)
Dissolved Oxygen
doO r r (0
L = ka(0, - O)) - mX~ % ~ P - ZLF; 0,0) = 14-03 (770l (A4
dt X/0 Yoo v, [
Dissolved carbon dioxide
dC r r C .
L = ka(Ci-C) + mX + X« P - ZLF . C(0) = 33 x 1059y (A5)
dt xic YP/C vV, {

Oxygen in gas phase( volume fraction)

do . [0. -0 O
s = RT| g 07-0) + P2l90dd |. ;= 1% | 0 (0) = 021 (A-6)
dt epl 4 RTV H 8
Carbon dioxide in gas phase(volume fraction)
dcC ' [C. -C C
e = RNl g cr-c) + Pl CI N e, S0y = 0 | (A7)
dt ep| RTV H, g
Fermentor volume
dv
L=F; V0 =30 | (A-8)
dt
Growth Model
Ty = By > O.L X- kd, py X (A-9)
KX+S K 0.X+0,
Product Formation Model
S of
Fp = Bp (A.10)
KP+S(1+_I_~§_) Ko X+Of
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Rheological properties

k,a

app

1000P, , ., .
(1.0+2.8N ) (——2)°v AV, (A.11)
~ v,

L

= v, + oX2* (A.12)

Nominazl values of the parameters in the simulation model

k,a correlation exponent (0.9)

k,a correlation exponent (0.667

k. a correlation exponent (-0.86)

nutrient feeding rate (0.0056 1/h)

Henry’s law coefficient for CO, at 30° C (0.035 atm-I/mmol)
Henry's law coefficient for O, at 30° C (0.96 atm-1/mmol)
degradation constant for P (0.01 h )

degradation for the Biomass (0.06 h )

mass transfer coefficient (h )

inhibition constant for S on P (0.1 g/1)

Contois constant for O, limitation of P (3.0 x 10° mmoV/g)
Contois constant for O, limitation of X (1.11 x 10° mmol/g)
‘Monod constant for S limitation of P (1.0 x 10* g/)
Contois constant for S limitation of X (6.0 x 10° g/g)
maintenance coefficient for G, ( 0.467 mmol/g)
maintenance coefficient for S (0.629 g/g)

number of impellers (2)

operating pressure (1.0 atm)

gassed power (23.1 HP/10001)

gas inlet flowrate (720.0 V/h)

Gas constant (0.082 atm-1/mol-K)
“operating temperature (303 ° K)

superficial gas velocity (124 cm/s)

Yield of P.on C (0.2 g/g)

Yield of P on O (0.2 g/g)

Yield of Pon S (1.2 g/g)

Yield of X on C (0.037 g/g)

Yield of X on O (0.04 g/g)

Yield of X on S (0.47 g/g)

Production rate for P (0.0055 h')
Growth rate for X (0.11 h')
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Maple Source Code for Case Study 1 (Chapter 3)

# This is a maple input file used to analyse the observability propérties of
# dynamic systems. Case Study 1 discussed in Chapter 3 of the thesis is
# considered here.

# The following line write the output produced by maple to a file called
# ’caselout’

writeto(caselout);

#
# The following line invokes the linear algebra capabilities of maple.
M :

wiih(linalg);

# _

# First formulate the dynamic balance equation for the biomass (Equation 3.11,
# 3.12 and 3.13). Note that the noise vector is ignored as cbservability is a

# deteministic propersty.

fl1(b,myu,mc):=myu*b;
f2(b.myu.mc):=0;
f3(b,myu,mc):=0;

# Linearize the system around some latest estimate of the state vector X

F(b.myu,mc):=array([[f1(b.myu,mc)],[f2(b,myu,mc)].[f3(b.myu,mc)]]);
Al:=map(diff,F(b,myu,mc),b);

A2:=map(diff,F(b,myu.mc),myu);

A3:=map(diff,F(b,myu,mc),mc);

A:=augment(Al,A2,A3);

#

# Perform a simple Euler discretization

M :
eye:=array(identity,1..3,1..3);

Ats:=scalarmul(A ts);

Ad:=add(eye,Ats);

#

# Ad above is the discrete state transition matrix as defined in equation 3.15
# of the thesis

#

# Now linearize the measurement matrix at the major sampling instant

# ‘ :
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h1l(b,myu,mc):=b;

h2(b,myu,mc):=k1*myu*b+mc*b;
hmat(b,myu,mc):=array([[h1(b.myu.mc)], [h2(b.myu.mc)]])
hcl:=map(diff.hmat(b.myu.mc),b);
hc2:=map(diff,hmat(b.myu.mc).myu);
hc3:=map(diff,hmat(b,myu,mc),mc);

#

# H below is the linearized measurement matrix defined in equation 3.16
# of the thesis.

#

H:=augment(hcl,hc2,hc3);

#

#

# Now construct the observability matrix as seen in equation 3.17
# ‘

HA:=multiply(H,Ad);

HA2:=multiply(HA.A);

Ob:=stack(H,HA HA2);

# .

#

# Now symbolically check the rank of the observability matrix
# .

#

rank_ob:=rank(Ob);

#

# The following line retumns control of maple back to the command line

writeto(terminal);
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Maple Output from the source code for case study 1 (Chapter 3)

Waming: new definition for norm

Warmning: new definition for trace

[BlockDiagonal, GramSchmidt, JordanBlock, Wronskian, add, addcol, addrow, adj,
adjoint, angle, augment, backsub, band, basis, bezout, blockmatrix,
channat, charpoly, col, coldim, colspace, colspan, companion, ccacat,
cond, copyinto, crossprod, curl, definite, delcols, delrows, det, diag,
diverge, dotprod. eigenvals, eigenvects, entermatrix, equal, exponential,
extend, ffgausselim, fibonacci, frobenius, gausselim, gaussjord,
genmatrix, grad, hadamard‘. hermite, hessian, hilbert, htranspose,
ihermite, indexfunc, innerpvrod. intbasis, inverse, ismith, iszero,
jacobian, jordan, kemnel, laplacian, ieastéqrs, linsolve, matrix, minor,
minpoly, mulcol, mulrow, multiply, norm, normalize, nullspace, orthog,
permanent, pivot, potential, randmatrix, randvector, rank, ratform, row,
rowdim, rowspace, rowspan, rref, scalarmul, singularvals, smith, stack,
submatrix, subverior, sumbasis, swapcol, swaprow, sylvester, toeplitz,
“trace, transpose, vandermonde, vecpotent, vectdim, vector]

fl(b, myu, mc) :=myu b |
f2(b, myu, mc) ;=0
f3(b, myu, mc) =0
myu b

F(b, myu, mc) :=

p— — — _— —
—t ) bl b )
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myu

i 1
{ ]
Al = [ 0 ]
{ ]
{ 0 )|
[ b 1
[ 1
A2 = [ 0 ]
[ !
{ 0 ]
[ 0 ]
[ ]
A3 = [ 0 1
{ ]
I 0 ]
[ mya b 0 )
{ ]
A= [ 0 0 0 ]
[ ]
[ 0 0 0 ]
eye := array(ideniity, 1 .. 3, 1 .. 3, [D
[ ts myu tsb O ]
{ ]
Ats = | 0 0 ]
[ ]
[ 0 0 0 ]
1 + ts myu tsb 0
Ad :

]
Py e p— e p——
o
o
o
[S NI S

hl(b, myu, mc) :=b

h2(b, myu, m¢) :=kl myub+mc b

[ b
hmat(b, myu, mc) = |
‘ i kl myub+mcb
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HA :

HA2 =

Ob:

hcl = [ ]
{ k1l myu + mc ]
[ 0 ]
he2 = [ ]
[ klb ]
| 0 ]
he3 := [ 1
| b ]
[ 1 0 0 1
H = [ |
[kl myu+tmc klb b ]
1 +ts myﬁ ts b 0

[
[
[ (k1 myu + mc) (1 + ts myu)

[ (1+tsmyu) myu
[
{ (k1 myu + mc) (1 + ts myu) myu

(k1 myu + mc) (1 + ts myu)
(1 + ts myu) myu

(k1 myu + mc) (1 + ts myu) myu

rank_ob =3
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tsbklmyu+tsbmc+kib b

(1 + ts myu) b -0

(klmyu+mc) (1 +tsmyu)b O

0 ) 0
klb b
tsb 0

tsbkimyu+tsbmc+klb b
(1+tsmyu) b ‘ 0

(k1 myu +mc) (1 +tsmyu) b 0



