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A bstract

In this thesis, we study theoretically and empirically the typical-case hardness 

of randomly-generated instances of several algorithmic problems tha t are of 

interest in artificial intelligence research. For randomly-generated instances 

of constraint satisfaction problems (CSP), we identified a new class of al­

gorithmically exploitable structures and proved that under certain instance 

distributions, random instances contain such structures with high probability 

(Chapter 4). In an effort to find a way to eliminate these structures from 

randomly-generated CSP instances, we established an interesting connection 

between the notion of constraint consistency in the literature and the resolu­

tion complexity of random CSP instances. By embedding a recursive structure 

called consistency core into random CSP models, we proposed a novel scheme 

to generate random CSP instances with theoretically guaranteed resolution 

complexity and empirically confirmed hardness (Chapter 5). Our proposal re­

solved the long-standing problem of generating hard random CSP instances 

with bounded domain size that has troubled the society for several years.

While all of the results in Chapters 4 and 5 are aimed at backtracking 

search algorithms, we investigated in Chapter 6 the typical-case behavior of 

random instances in terms of the dynamic programming algorithms whose 

time and space complexities are exponential in the treewidth of the under­

lying structures. This type of algorithm has been widely used in the study 

of Bayesian network inference and CSPs. We established an improved lower 

bound on the threshold for a random graph to have a treewidth linear in the 

graph size. Similar techniques were then applied to random CSPs, random 

Bayesian networks, and fitness landscape models in computational biology 

and evolutionary computation.
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Chapter 1 

Introduction

In physics, the notion of a phase transition refers to the abrupt change of states 
(phases) of compounds a t some values of the system parameters such as the 
pressure and the temperature. Popular examples of phase transitions in the 
physical world are the liquid-to-gas transition of water, and the conductor- 
superconductor transition of electrical resistance of some materials.

Similar phenomena have also been observed in computational and artificial 
intelligence (AI) systems. For example, consider a random graph on n  vertices 
generated by selecting each of the n (n  — l) /2  potential edges independently 
with edge probability p =  p(n). It is well-known that the random graph 
experiences several abrupt changes in its combinatorial properties when the 
edge probability p(n) increases from o (l/n ) to 0(1) [30, 59]. For many NP- 
complete problems such as the Boolean Satisfiability problem (SAT) and the 
graph coloring problem, the probability for a randomly-generated instance 
to have a solution also has a phase transition from zero to one at a certain 
value of the parameter that controls the “density” of the randomly-generated 
instances [35, 41, 101]. In their seminal work [35], Cheeseman a t al. showed 
that for many NP-complete problems and some standard search algorithms, 
the typical hardness of randomly-generated instances is closely related to the 
critical point, called the threshold, where the phase transition occurs.

There are several reasons why a study of phase transitions in NP-complete 
problems is interesting. First, while many algorithmic problems of great im­
portance in AI and other practical fields are NP-complete, it is not necessarily 
true tha t instances of these problems are equally hard. People are particu­
larly interested in a theory tha t addresses the “typical-case” complexity of 
these problems and helps determine the regions in the problem space where 
instances are relatively easy to solve. Second, in the empirical analysis of 
algorithms, the selection of reasonable benchmarks is an im portant factor. 
In addition to real-world benchmarks, random problem instances are widely 
used. However, generating really hard random instances is not a trivial task. 
A classical example is a random SAT model used in early 19S0s tha t has been 
shown to have an extremely strong bias towards generating, sometimes triv-

1
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ially, easy instances [78, 62]. A more recent example is a widely used model for 
the constraint satisfaction problem (CSP) which has been proved to be triv­
ially unsatisfiable asymptotically with probability one [8]. An analysis of the 
typical-case complexity of randomly-generated instances of NP-complete prob­
lems may thus provide a valuable guidance to the design of random instance 
generators [6, 74].

Recent studies on the phase transitions in NP-complete problems have 
given us much insight into the typical-case complexity of these problems and 
help in tackling questions such as “where are the really hard problems?” and 
“why do these hardest problems seem to resist any intelligent algorithms?” 
[39. 44, 63, 114]. Answers to these questions have already stimulated research 
on designing efficient algorithms and appropriate benchmarks [6, 109. 118]. 
See also [85, 86, 87, 118] for a series of popular science articles for the history 
and recent development.

A lesson learned from the study of the phase transition in NP-complete 
problems is the central importance of the structural information in a combina­
torial search problem. We now have a clearer view regarding why really hard 
problems “are well out of reach of any intelligent algorithms”—there is sim­
ply no small structural signatures in these hard problems for any foreseeable 
intelligent algorithms to exploit [44]; Random models with richer structures 
have been proposed to avoid the triviality in existing random CSP models 
and to  generate better testing instances in the study of search algorithms 
[6, 8, 74, 79]; Combinatorial search problems have also been investigated on 
some non-classical models of random graphs such as the power-law graphs and 
the small-world graphs [136, 137]. These graphs have unique structural char­
acteristics and have been found to be ubiquitous in communication networks, 
biological systems, and human natural languages [13].

It is commonly believed tha t the easy-hard complexity pattern associated 
with the phase transition of the solution probability is algorithm-independent. 
While this is true for the class of backtracking search algorithms, there has 
been evidence showing tha t algorithms making use of different structural in­
formation may have very different behaviors [38].

This thesis, as its title suggests, contributes to the ongoing research on the 
phase transitions and typical-case complexity by investigating easy aspects in 
the region of the problem space where random instances have been expected 
to be difficult to solve, and hard aspects for some type of search algorithms in 
the region of the problem space where random instances have been proven to 
be typically easy for backtracking algorithms.

9
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Contributions

Polynomial Resolution Complexity of Random  CSPs

For some popular random CSP models, we identify a new class of subproblem 
structures whose appearance makes randomly-generated CSP instances triv­
ially easy. We prove that this type of subproblem appears asymptotically with 
probability one in a  region of the problem space where instances are free of the 
triviality demonstrated by Achlioptas et al. [8]. This result partly answers an 
open question regarding the (resolution) complexitv of random CSPs posed in
[113]-

Consistency, Resolution Complexity, and Better Random M odels of 
CSPs

Since the work of Achlioptas et al. [8] on the triviality of random CSP mod­
els, there has been much effort in designing better random CSP models tha t 
exhibit non-trivial threshold behaviors and have guaranteed hard instances at 
phase transitions [8, 42, 75, 113, 115, 129, 140]. One of the most significant 
problems with these random CSP models is tha t as a  model parameter, the 
constraint tightness has to be very low for bounded domain size. We establish 
an interesting connection between the notion of constraint consistency in the 
literature and the resolution complexity of random CSP instances. By embed­
ding a recursive structure called consistency core into random CSP models, we 
propose a novel scheme to generate random CSP instances with theoretically 
guaranteed resolution complexity and empirically confirmed hardness.

Typical Size o f Treewidth of Random Graphs and Other Random  
Structures

We study the typical size of the treewidth of random graphs and graph struc­
tures of some randomly-generated problem instances. The significance of the 
typical size of the treewidth lies in the fact tha t the time and space complex­
ities of many popular non-backtracking search algorithms are exponential in 
the treewidth of the underlying graph structures of the problems, including 
the tree-decomposition-based algorithms for CSPs, some exact inference algo­
rithms for Bayesian networks, and the estimation of distribution algorithms in 
evolutionary computation.

We establish an improved lower bound on the threshold for a random graph 
to have a linear treewidth. Using the same analytical technique, we further 
show that the graph structures associated with randomly-generated instances 
of CSPs, Bayesian networks, and fitness landscapes all have a treewidth linear 
in the problem size, even in the region of the problem space where backtracking 
algorithms have been shown to be very efficient.

3
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Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 introduces the no­
tation, concepts, and techniques from the probabilistic method, the theory of 
random graphs, and the theory of computational complexity. Some of them 
will be used in the remaining chapters of the thesis. The last two sections 
of this chapter overview the study of the phase transitions and typical-case 
complexity, including the phase transitions of four typical NP-complete prob­
lems (Section 2.4), and previous studies on generating hard random instances 
(Section 2.5). In Chapter 3, we introduce the constraint satisfaction problem, 
its random models, and existing work on its phase transitions.

In Chapter 4, we establish a set of lower bounds on the constraint tightness, 
an important parameter of random CSP models. Above these lower bounds, 
randomly-generated CSP instances have a polynomial resolution complexity 
asymptotically with probability one.

In Chapter 5, we prove some theoretical results on the connections between 
constraint consistency, another important concept intensively discussed in the 
CSP literature, and the resolution complexity of randomly-generated CSP 
instances. Based on these connections, we propose a novel scheme that can 
be used to design new random CSP models to overcome the difficulties with 
the classical random models. A series of empirical results are also reported on 
the relation between the constraint consistency and the resolution complexity 
as well as on the comparison between our proposed random CSP model and 
previous models.

Chapter 6 is devoted to a discussion on the hard aspect of (typically) easy 
ensemble of problem instances. First, we establish an improved lower bound on 
the threshold for a  random graph to have a linear treewidth. Then using simi­
lar analytical techniques, we show that the typical size of the treewidth of the 
underlying graph structures is also large in random CSPs, random Bayesian 
networks, and some other models in computational biology and evolutionary 
computation. The obtained results indicate tha t several algorithms developed 
in the CSP and Bayesian network communities have a typically exponential be­
havior in the region of the problem space where randomly-generated instances 
can be solved easily by backtracking algorithms. Chapter 7 is the conclusion.

4
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Chapter 2 

Prelim inaries

Let V  = (Q. A , Pr) be a probability space where Q is a sample space. .A is a 
a-field. and Pr is a probability measure. Throughout the thesis, we will use 
the following notations:

£p [X] : the expectation of a random variable X-, 
o%[X] : the variance of a  random variable X:
I  a ■ the indicator function of an event A £ A.

When the probability space is clear from the context, we will suppress the 
subscripts and simply write S[X], <r2[X], and IA.

Let {'Pn =  (fin, A n, P rn) ,n  >  1} be a  sequence of probability spaces and 
let {A n £ A n, n > 1} be a sequence of events. We say that {An £ A n, n > 1} 
occur with high probability (whp ) if lim P rn{.4n} =  1.

n

A random variable X  has the Bernoulli distribution with parameter p £ 
[0,1] if P r { X  = a } =  pa{ 1 — p)1-“, a £ {0,1}. The sum of a sequence of n 
independent Bernoulli random variables has the binomial distribution b(n,p) 
with parameters n and p. The following Stirling’s formula and related inequal­
ities for the binomial coefficients are also frequently used:

n ! =  ( “ )  \/27rne0, 0 <  9 < 1 (2.1)

< c 2V^ i , , 2) 

where 5, C\, and Co are fixed constants.

5
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2.1 The Probabilistic M ethod

The 'probabilistic method, initiated by Erdos and Renyi in their work on ran­
dom graphs [59], is a powerful technique tha t uses probabilistic arguments 
to tackle problems of combinatorial nature. Over the years, the probabilistic 
method has found various applications in many branches of theoretical com­
puter science and discrete mathematics. Probabilistic tools crucial to the use 
of the probabilistic method include basic inequalities such as M arkovs inequal­
ity and Chebyshov’s inequality, as well as more advanced results on Poisson 
approximations and large deviation bounds of random variables [14, 30, 131].

T h e  F ir s t  M om en t M eth o d

In the first moment method, the probability of some event of interest is bounded 
by the expectation of the corresponding random variable. Markov’s inequality 
provides a convenient way to establish such a bound.

L em m a 2.1.1. Let X  be a random variable, k  > 1  be an integer. Then, for  
any t >  0,

P r { p f | > t } < £ [ |* lT  (2.3)

Proof.

s[\x\k] = s[\x\ki{[x̂ y]+s[\x\ki{m>t}]
>  f [ l x l * / { w > t } ] > 5 [ i * / { w > l } ]
=  thPr { |X | >  t }.

□
C o ro lla ry  2.1.1 (M arkov’s In e q u a lity ) . Let X  be a positive random vari­
able. Then, for any t > 0;

P r { X > t £ [ X ] } < ^ .  (2.4)

In particularly, for any positive integer-valued random variable X ,

P r { X  > 0 }  < £ [ X ] .  (2.5)

T h e  Second M om ent M eth o d

The second moment method is typically used to bound the probability of the
event tha t a random variable is within a specific interval around its expec­
tation. The bound is based on inequalities that involve the variance of the 
random variable.

6
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Lemma 2.1.2 (Chebyshov’s Inequality). Let X  be a random variable. For 
any t > 0.

P T { \ X - £ { X ] \ > t S { X ] } < ^ L  (2.6)

In particular, i f  S [ X } >  07 we have

p r { X  =  ° } < § H  (2.7)

Another way to bound the probability Pr{X  =  0} is to use the Cauchy-
Schwarz inequality

£ 2[X Y ] <  £[X2\£[Y2) 

for two random variables X  and Y .

Lemma 2.1.3. Let X  be a random variable. We have

P r { X  =  0 } < l - | S .  (OS)

Proof.

£ 2[X] =  £ 2[X I{ x m ] < £ [X 2]£[I{Xt o}]
=  ( l - P r { X  =  0})£[X 2].

□

The Bounded Differences M ethod

Sometimes it is desirable to have sharper bounds on the tail probability of 
random variables, i.e., bounds tha t decreases exponentially fast. The bounded 
differences method provide such exponential bounds for “smooth” functions of 
random variables.

The classic exponential bounds on large deviations is the Chernoff bound 
for binomial random variables, i.e., the sum of independent and identically 
distributed Bernoulli random variables.

Lemma 2.1.4 (Chernoff Bound [110]). Let (X l, . . . ,  X n} be a sequence 
of independent and identically distributed Bernoulli random variables with 
Pr{Xi =  1} =  p for each 1 < i < n .  Then for any t  > 0,

i

np > t
2 1 -

<  2e ~ (2.9)
t=i
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Proof. Let X  =  Y  X{. Formula (2.9) can be derived from the observation
i=l

tha t for any s > 0,

Pr { X > n p  + t }  = £[ I {x-{np+a)> 0} ] <  £  [ es[X~{np+t))}
=  e - * ( n p + t ) £ [ e »X ] =  e-,(nP+t)(pe« +  (1  _  p ) ) » .

□
The Chernoff bound has been generalized to the cases where {X i, 1 <

n
i <  n} are (not necessarily Bernoulli) random variables and the sum Y  is

i=i
replaced by a function /  of the variables that satisfies the so-called “bounded 
differences” condition.

Lemma 2.1.5 (M cDiarmid [110]). Let {A'i,. . .  ,X n} be a sequence of inde­
pendent random variables with each X i defined on a probability space (Qi, A , Pr*)

n
Let f  : Y[Lli -+ R  be a function such that

t=l

I / M  -  / M ) |  <  a

n
whenever oj.u' G J][ Lli differ only in the i-th coordinate. Then for any t > 0. 

2 = 1

2

Pr { | f ( X u . . . , X n) ~  5 [ /(X ls . . . , * „ ) ] | > * } <  2e"s7?. (2.10)

The Chernoff bound can also be generalized to the cases where the sequence 
of random variables {Xi,  1 <  i < n}  are dependent. The most famous result 
is Hoeffding-Azuma’s inequality for martingale-differences sequences [14, 131]. 
It is worth noting tha t the exponent in McDiarmid’s bound in (2.10) is better 
by a  factor of 4 than those obtained from Hoeffding-Azuma’s inequality [30]. 
See [91, 135] for more recent progress on dependent variables and functions 
tha t violate the “bounded differences” condition.

2.2 Theory of Random  Graphs

The theory of random graphs, founded by Erdos and Renyi [59], is at the core 
of the probabilistic method. It deals with various structural graph properties 
in random models of graphs. Popular random models of graphs include the 
original Erdos-Renyi random graph [30, 120], the random regular graph [100, 
139], and the more recent scale-free random graph [13, 56]. In the following, the 
term “random graph” will always refer to Erdos-Renyi random graph model.

Definition 2.2.1 (M odels of Random Graphs). Let V be a set of vertices 
with \V\ = n.

8
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1. C onstant-Probability M odel G (n,p). In this model, each of the (")
potential edges appears in the graph independently with probability p.

2. Uniform  M odel G (n ,m ). In this model, the graph contains a set of 
m  edges selected uniformly at random without replacement.

It is not hard to see tha t for a given graph G =  G(V, E ) with |i?| =  m,

Pr {G{n,p)  = G}  =

and

P r {(?(n,m ) = G}  =
\  m

A graph property is a subset of graphs. A graph property Q is said to be 
monotone increasing if for any two graphs G and H  such that if G £ Q and 
G C H, we have H  € Q. For a monotone increasing graph property Q, the 
following result is straightforward:

P r { G(n, m i)  € Q } < P r { G(n, m2) € Q } if mi <  m2. (2.11)

To see this, let A \  C  Q be the set of graphs with mi edges and A  C  Q be 
the set of graphs with m2 edges. Each graph in A \  corresponds to (^.I™ 1) 
graphs in Ao, while each graph in Ao corresponds to at most (m2) graphs in

A .  Thus, | A I ( ® : “ -) <  I A I ® .
For many problems, it is much easier to work with the constant-probability 

model than with the uniform model. Fortunately for monotone increasing 
properties and under very mild conditions on p  and m, the two models are 
probabilistically equivalent. See [30, 120] for a  detailed discussion.

In the study of (constraint) satisfiability problems, hypergraphs are also 
widely used. Random models of hypergraphs can be defined in a similar way.

Definition 2.2.2 (Random Hypergraphs).

1. A hypergraph Q =  G{V, E ) is a pair (V', E ) where V  is the set of vertices 
and E  is a collection of subsets o f V,  called hyperedges. A hypergraph is 
k-homogenous1 i f  its hyperedges are all o f cardinality k.

2. Constant-Probability M odel Qk{n,p). In this model, each of the (£) 
potential edges appears in the graph independently with probability p.

3. Uniform  M odel Qk(n , m). Qk{n, m) is a random hypergraph consisting 
of m  hyperedges chosen uniformly at random without replacement from  
the collection of all the (£) potential hyperedges.

Rn the literature, the corresponding concept is called A:-uniform.

9
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Note that the random graph G (n .m ) is just the random 2-homogenous 
hypergraph G2(n ,m ).

A main theme in the study of random graphs is the threshold phenomenon 
and phase transitions tha t characterize the abrupt change of monotone graph 
properties when some parameter of the random model crosses a critical value 
(or function). A detailed account can be found in [30, 120] and the references 
therein.

One of the most interesting results on the phase transitions of random 
graphs is the abrupt change of the component structure of the random graph 
G {n ,m ) at the threshold ~  =  £• It is well-known that for ^  G {n,m ) 
consists of small-sized tree and unicyclic components whp , while for ^  >  1, 
G (n,m ) has a  “giant” component of size O(n) whp [30, 59, 120]. A similar 
result also holds for the random /c-homogenous hypergraph Qk(n,m ).

The excess of a  ^-homogenous hypergraph Q =  Q{V,E) is defined as

ex{G) = ( k - l ) \ E \  -  \V\. (2.12)

A connected hypergraph Q is called a hypertree if ex(G) =  — 1 and a unicycle 
if ex(Q) =  0.

Lemma 2.2.1 ([97]). I f  ^  then whp the random k-homogenous
hypergraph Qk(n ,m ) consists of only hypertrees and unicyclic components.

2.3 D ecision Problem s, Com putational Com ­
plexity, and Proof C om plexity

A decision problem consists of a pair (E, C )  where E is a set of problem instances 
and L, called a  property or a language, is a subset of E. The question is to 
decide the membership of a given problem instance in the language L. The 
set of problem instances of size n  is denoted by En. A decision problem (E, £) 
together with a partial order -< on E is said to be monotone (with respect to 
-<) if one of the following conditions is satisfied:

1. V/i, Jo G E, if Ii -< I2 and £  G C, then I2 G £ ; or

2. V /x , Jo G E, if I i  -< I 2 and Io G C ,  then £  G C.

The graph coloring problem and the Hamiltonian cycle problem are famous 
examples of decision problems that are monotone with respect to the partial 
order defined by the inclusion of edge sets, while SAT and CSP are monotone 
decision problems with respect to the partial order defined by the inclusion 
relation of subsets of clauses or constraints.

A witness, or a proof, for a problem instance is a piece of properly encoded 
information concerning the membership of the instance. A decision problem

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(=., £ ), or more precisely the language £ , is in NP if there is an polynomial-time 
procedure A  such that

£  =  { I  € E : there exists a witness y  such that A  accepts (/, y)}.

The notion of NP-completeness was first formulated by S. Cook and L. Levin 
in early 1970s, and has since then played a  very important role in the study 
of computational complexity and in the analysis of algorithms. A decision 
problem is NP-complete if it is in NP and any decision problem in NP can be 
reduced to it polynomially.

A central task in the study of computational complexity is to provide a 
classification of various decision problems in terms of the required computing 
resources. The subclass P of the NP decision problems is a class of problems 
tha t can be solved in polynomial time. Understanding the relation between 
the classes P and NP is one of the main driving forces in the theory of com­
putational complexity.

The theory of proof complexity, on the other hand, deals with the size of 
the proofs or witnesses of a decision problem. The class co-NP is the set of 
decision problems tha t are the complement of some NP decision problem. A 
proof system  for a language (E, C) in co-NP is a polynomial-time computable 
procedure 5(x, tt) : E x E* —► {0,1} satisfying the following properties

1. Soundness: 3it € £* such tha t S(x , ~)  = 1 =>• x  € £:

2. Completeness: x  € £  => 3?r such th a t S ( x , tt) = 1.

We call 7T € S* a proof and denote its size by |tt|. The central question in 
the theory of proof complexity is tha t of “NP versus co-NP” , i.e., “Does every 
co-NP problem have a polynomial size proof?” A line of research aimed at 
resolving the NP versus co-NP problem is to establish lower bounds on the 
proof size for proof systems of increasing strength.

2.3.1 Resolution Proof System

Proof systems for the propositional satisfiability problem (SAT) in preposi­
tional logic are of special theoretical and practical interest.

Definition 2.3.1 (Literals, Clauses, and Formulas). In propositional 
logic, variables take two possible values 0 (false) and 1 (true). A literal is 
either a variable x  or its negation x.

1. A clause is a disjunction of a set of literals. A clause that contains k 
(distinct) literals is called a k-clause.

2. A conjunctive normal form. (CNF) formula is the conjunction of a set 
of clauses. A CNF formula that contains only k-clauses is called a k- 
CNF formula. It is also common and convenient to simply regard, a CNF 
formula, as a collection of clauses.

11
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The resolution proof system  is a special proof system for the language 
of unsatisfiable CNF formulas, co-CNF. In this system, a resolution proof ir 
consists of a sequence of clauses ,C S} where the last clause Cs is
empty (i.e., a contradiction) and each Ci, 1 <  i < s, is either a clause from 
the original formula or a clause derived from two precedent clauses by the 
following derivation rule:

1. Resolution Rule: Derive C  V D  from a pair of clauses { C V i , D V 5 }  
where x  is a literal.

2. Weakening Rule: Derive C v  D  from C  for any pair of clauses {C .D } 2.

A resolution proof can be represented as a directed acyclic graph (DAG) where 
the vertices are the clauses in the proof and each vertex has two in-edges from 
the two premise clauses. A proof is said to be tree-like if its associated DAG 
is a tree.

D efin itio n  2.3.2. The size |tt| of a resolution proo fs is the number of clauses 
in it. The resolution complexity RES(Jr ) of a CNF formula T  is the minimum  
size o f a resolution proof o f T ,

The minimum size of a tree-like resolution proof o f a formula T  is denoted by
RES t {F).

2.3.2 Hard Formulas for Resolution

The study of the resolution proof system has a long history. Over the past 30 
years, there has been much effort in constructing hard examples of CNF for­
mulas that have exponential resolution complexity. Earlier work includes lower 
bounds on specially-constructed CNF formulas such as the Tseitin formulas, 
the pigeonhole principle, and the clique principle [24, 31, 26, S3].

E x am p le  2.3.1 (T he  P ig eo n h o le  P rin c ip le ) . The pigeonhole principle 
states that it is impossible to put n +  1 pigeons into n  holes so that each 
pigeon is in a distinct hole. The pigeonhole principle can be encoded as an 
unsatisfiable CNF formula as follows:

where for pair of (i . j).  Xij =  1 means that the pigeon i is in the hole j .  Haken 
[S3] established an exponential lower bound on the resolution complexity of

RES(Jr ) =  min{|7r| : n is a resolution proof }

P H P n =
Xu V • • • V x in, fo r  1 < i. < n +
XikVxjk,  for  1 < i . j  < n

2The weakening rule is only for the purpose of convenience and is not essential.
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This result has been later generalized to the case where the number of pigeons 
is any number larger than the number of holes (see. e.g.. [26]).

Example 2.3.2 (Tseitin formula). The Tseitin formula encodes the basic 
fact in graph theory that the sum of the vertex degrees of a graph cannot be 
odd. Let G =  G(V, E) be a graph and a : V(G) —>■ {0.1} a weight defined on 
each vertex. To construct the Tseitin formula, we associate a variable xe with 
each edge e € E  and define for each vertex v the following boolean expression

P A R IT Y V : (^ )  x e = cr(v)(mod2).
e€E:v  6e

Let Tv be the set of clauses that is equivalent to P A R IT Y V. The Tseitin for­
mula T(G, a)  is defined to be the set of clauses

T(G, a)  = \ j T v.
V

Urquhart [133] proved that

1. ^fcr(v) is odd => T(G,cr) is unsatisfiable; and
V

2. I f  G is connected, then T(G, a)  is unsatisfiable => J^cr(u) is odd.
V

The resolution complexity RES(T(G, a)) has an exponential lower bound if the 
connected graph G satisfies some expanding property [133, 26].

Example 2.3.3 (The Clique Principle). It is obvious that a k-clique cannot 
be subgraph-isomorphic to any graph that is (k — 1) colorable. The clique 
principle states the even more obvious fact that it is impossible for a k-clique 
to be subgraph-isomorphic to a maximally (k — I)-colorable graph. It has been 
proved that the CNF encoding of the clique principle requires an exponential 
size of small-weight Cutting Planes proof, a restricted Cutting Planes proof 
that still includes the resolution proof as its special case [31].

Another source of hard instances for resolution is randomly-generated CNF 
formulas. Let be a fc-CNF formula on n  variables consisting of m  ran­
domly generated /c-clauses. In their seminal paper, Chvatal and Szemeredi 
[37] proved that for any fixed ^  =  c and k > 3, there is a constant k > 0 such 
tha t

l im P r { R E S (^ J > 2 K” } =  l.

Recently, upper bounds as well as improved lower bounds with an explicit 
estimation of the dependency of k on the ratio ^  were established in [22. 26]. 
In particular, the improved lower bounds imply that the typical resolution 
complexity of is still super-polynomial for some m  that increases as a
polynomial function of n:
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T h eo rem  2.3.1 ([2 2 , 26]). For k > 3 and e >  0, there is a constant 7  >  0 
such that

l i m P r j  RES(.F* ) >  2 " 7 } =  1 , i f  m  < n ^ ~ c.
n  k ’ J

This is in contrast to the results that RES(^-^ „) is polynomial if m = Q(nfc-1) 
[60].

In [4], the resolution complexity of a class of mixed random CNF formulas 
J-n,m is studied tha t contains m  =  cn random 3-clauses and (1 + e)n 2-clauses. 
It was shown that as long as e <  0. i.e., there are less than n  2-clauses, the 
random CNF formula m has an exponential resolution complexity w hp  . 
On the other hand, for e > 0, lF fm has a polynomial resolution complexity 
w h p  since the set of (1  +  e)n 2 -clauses alone makes the formula unsatisfiable. 
Also in [4] are some lower bounds on the running time of backtracking search 
algorithms for satisfiable random CNF formulas. These lower bounds are based 
on the observation tha t backtracking algorithms on random CNF formulas will 
create certain types of mixed random CNF formulas during their execution.

Most of the work on establishing exponential lower bounds exploits the 
relation between the minimum proof size and the minimum of the maximum 
clause length of all the resolution proofs. The idea has been formalized by 
E. Ben-Sasson [27, 26] as the so-called width-method which we briefly discuss 
below.

D efin ition  2.3.3 ([27, 26]). 1. A clause mentions a variable x  i f  it con­
tains either x  or its negation x. The length \C\ of a clause C is the 
number of variables that C mentions. The width of a set of clauses is 
the maximum length of a clause in the set. In  particular, we use w{ftF) 
to denote the width of the CNF formula IF.

2. The width of deriving a clause C  from a CNF formula IF, denoted as 
w(J- h C), is the minimum width o f all the possible derivations.

3. The width of deriving the empty clause w(J- h (ft) is called the refutation 
width of T .

T h eo rem  2.3.2 ([27, 26]). For any CNF formula T , we have

R es(^) =  en( s \  (2.14)

and
Res t {T) = 2 bû 1-® )-^ » . (2.15)

Theorem 2.3.2 reduces the task of establishing exponential lower bounds to 
that of proving the existence of a clause of width linear in n  in any refutation 
proof. For many random decision problems, this latter task amounts to show­
ing tha t (1 ) the minimum unsatisfiable subproblem has a “large sizev w hp , 
and (2 ) satisfiable subproblems with a “medium size” are typically “sparse” 
and thus have a high degree of local consistency, resulting in some long clauses 
in any resolution proof.
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2.3.3 DPLL Procedure and Resolution Complexity

The Davis-Putnam procedure (DP procedure) proposed by Davis and Putnam 
[49] is a dynamic-programming algorithm to generate a special type of reso­
lution proof. Given a CNF formula and an ordering of the variables, the DP 
procedure eliminates the current variable by performing all the possible reso­
lutions on the variable, adding all the resolvents to the formula, and removing 
all the clauses tha t mention the current variable, until the empty clause is 
produced or no more resolvents can be formed. The basic DP-procedure is 
described in Algorithm 2.1.

A lg o rith m  2.1 Davis-Putnam procedure (DP procedure)
In p u t: A CNF formula P  on {xi, • • • ,x„}

fo r (i =  1; i < n; i + + ) do
Resolve each pair of clauses of the form C  V x* and D  V x , in P . and add 
the resolvent C  U D  to P:
Remove all the clauses tha t mention xy, 
if  (P  contains the empty clause) th e n  

return UNSATISFIABLE; 
en d  if  

en d  for
return SATISFIABLE;

The DP procedure is sound and complete, but its time and space complex­
ities is exponential in the “tree-width" of the underlying graph structure of 
the CNF formula under consideration [53].

T h eo rem  2 .3 .3 . D P procedure is sound and complete.

Proof. The soundness follows directly from the soundness of the resolution 
rule. To see the completeness, let P  be the original formula and P i+1 be the 
CNF formula after Step i of the DP procedure where variable x { is eliminated. 
We will show tha t if the DP procedure (Algorithm 2.1) does not create an 
empty clause, then P  is satisfiable.

Assume tha t the DP procedure returns SATISFIABLE after the variable 
x m, 1 <  m  < n  — 1 has been eliminated. Then, all the literals in Pm+i must be 
pure, i.e., each variable mentioned in P m+i appears as either a  positive literal 
or a negative literal in all the clauses of P m+\. Thus, P m+\ is satisfiable. 
Since Pi+\ contains all the resolvents C v D  where C  U { x ,}  and D  U {x,} 
are two clauses in P l , we know that any assignment A(i + 1) to  the variables 
{xk .k  >  * +  1} tha t satisfying P t+\ can be extended to an assignment A(i) 
to the variables {x^, k > 1} to satisfy P x. Otherwise, there must be a pair of 
clauses C  V {x i} ,D  V {xi} such that A(i +  1) does not satisfies C  V D. By 
induction on i. P  is satisfiable. □
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Closely related to the DP procedure is the Davis-Putnam-Logemann-Loveland 
(DPLL) algorithm implemented in [48]. DPLL has been the basis of most of 
the modern high-performance solvers for the propositional satisfiability prob­
lem.

Although being a typical backtracking search algorithm, DPLL can be 
viewed as an algorithm that constructs a refutation proof of the given CNF 
formula. The execution of DPLL can be represented as a rooted binary tree in 
which each internal node corresponds to a recursion call and is labelled by the 
branch variable. The two out-edges of an internal node correspond to the two 
possible assignments (0 or 1) to the branch variable. Each path from the root 
to a leaf defines a (partial) assignment to the variables. For an unsatisfiable 
CNF formula, every leaf is a “failure leaf’, i.e., at least one of the clauses in the 
formula is falsified by the corresponding assignment. A refutation proof can 
be constructed from the execution of the DPLL algorithm as follows. First, we 
label each leaf with a clause falsified by the corresponding assignment. Then, 
recursively we label each node with the resolvent of the two clauses tha t label 
the two children of the node. The root will be labelled by the empty clause.

The above discussion implies that the time complexity of the DPLL algo­
rithm is lower bounded by the (tree-like) resolution complexity of the CNF 
formula. Nonetheless, there has been much effort to improve the efficiency of 
the DPLL-like algorithm by using more clever data structures, devising bet­
ter heuristics, and incorporating more powerful reasoning mechanisms. The 
payoff of these efforts can be observed from the yearly SAT-solver competition 
and success stories of various industrial applications [82],

The basic structure of modern DPLL-based SAT-solvers is presented in 
Algorithm 2.2. The performance of a specific solver depends on the im­
plementation of the three procedures UNIT-PROPAGATION, CONFLICT- 
ANALYSIS, and BRANCHING.

UNIT-PROPAGATION prunes the search space by propagating the con­
sequences of assigning a truth-value to a variable x. It employs a basic form 
of look-ahead strategy similar to that of maintaining arc-consistency in con­
straint satisfaction solving techniques. First, clauses that mention x  are pro­
cessed to record the effect of such an assignment. Then, unit clauses—clauses 
tha t under the current partial assignment have no satisfied literal but exactly 
one unvalued literal—are detected and relevant unassigned variables are as­
signed to make these clauses satisfied. This step is repeated until a clause 
becomes falsified or there are no more unit clauses under the current par­
tial assignment. It turns out tha t UNIT-PROPAGATION, though a powerful 
mechanism for pruning the search space, accounts for a large fraction of the 
overall running time of a SAT solver [55]. This is mainly because UNIT- 
PROPAGATION needs to maintain the status of all the clauses after each 
variable assignment. Several clever data structures have been proposed to 
speed up UNIT-PROPAGATION, and the most effective one is the so-called 
watched-literals [142],

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CONFLICT-ANALYSIS, also known as clause-learning or nogood-learning, 
is invoked when the current partial assignment results in a contradiction and 
the algorithm needs to backtrack [18, 20, 141]. By analyzing the implication 
relationships among the variable assignments, represented as an implication 
graph [141], new clauses that explain the cause of the current failure are added 
to the original CNF formula. These new clauses, though redundant in terms of 
the satisfiability of the original formula, prune a subspace that might otherwise 
be searched repeatedly by the algorithm. It can be shown that algorithms with 
clause-learning mechanism are exponentially stronger than tree-like resolution 
algorithms such as DPLL [23]. Of course, from a more practical perspective, 
the time and memory overhead of clause-learning also have a significant impact 
on the overall performance of a solver.

In BRANCHING, also known as splitting, various heuristics can be used 
to select the next variable to assign a  tru th  value. A variable selected in 
BRANCHING is called a branch variable or decision variable while variables 
tha t are assigned values as a result of UNIT-PROPAGATION are called im­
plied variables. Over the years, many heuristics have been proposed and most 
of them have been summarized in [82, 55].

A lg o rith m  2.2 DPLL Algorithm: D P L L (^r, A)
/ /  Input: T . a formula on {xi, • • • , xn}; A . a list of partial assignment.

A  *- UNIT-PROPAGATION; 
if A  falsifies a clause th en  

CONFLICT-ANALYSIS; 
return FAILURE; 

else if  all the clauses are satisfied th e n  
return SUCCESS; 

e n d  if
x «- BRANCHING;
if  D P L L ( .F ,A u { i= l} )  =  SUCCESS th e n  

return SUCCESS; 
else

return DPLL(JF,AU {x  = 0}); 
en d  if

2.4 Phase Transitions and Typical-case Com­
plexity

The significance of the notion of NP-completeness lies in the fact that unless P 
=  NP, no polynomial time algorithm exists for NP-complete problems. Thus, 
a proof of NP-completeness of a decision problem is a strong evidence that
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the problem is hard. There are several approaches to NP-complete problems. 
One may try (1) to identify subclasses of the problem for which polynomial 
algorithms exist; (2) to design efficient heuristics to solve the problems; (3) to 
develop approximation algorithms with a  performance guarantee for NP-hard 
problems; and (4) to understand the typical-case/average-case complexity of 
the problem instances under some probability distribution. The study of phase 
transitions and typical-case complexity belongs to the fourth approach, but is 
also related to the second approach.

A random model of a decision problem (E, £) is a  triple (E, C. V-=) where 
V s  is a probability measure on E. When the decision problem is clear from 
the context, we will simply call the probability measure V= & random decision 
problem.

Studying properties of random problems and designing efficient (random­
ized) algorithms to solve hard problems w h p  (or on average) have long been 
a  topic of great interest in discrete mathematics and theoretical computer 
science. See, for example, [37, 61, 66, 6S, 104, 107, 131] and the references 
therein. While being elegant and interesting in its own right, the study did 
not a ttract wide attention from the public of computer science in general 
and AI community in particular, until the work of Cheeseman et al. [35] 
in early 1990’s that pointed out an explicit connection between the pattern 
of typical-case complexity and the phase transition of the solution probabil­
ity of randomly-generated instances of NP-complete problems. Over the past 
decade, we have gained much insight into both the nature of the phase tran­
sition of NP-complete problems and the question of where the really hard 
problems are and why they are hard. Computer scientists, mathematicians, 
and theoretical physicists all have contributed to this progress. In the rest 
of this section, we give a brief overview of the study of the phase transitions 
in several NP-complete problems, including SAT, Graph Coloring, Hamilto­
nian Cycle, and Number Partitioning (See, Problem 2.1). For each of the four 
problems, the specific topics and results selected to discuss is based on my own 
interest and is perhaps subjective.

2.4.1 SAT

SAT is one of the most popular and im portant NP-complete problems in com­
putational complexity and AI [S2]. I t is the first problem that was shown to 
be NP-complete and has been the focus of the study of phase transitions and 
typical-case complexity of NP-complete problems.

An instance of SAT is a CNF formula and the question is to decide whether 
there is a truth assignment that satisfies the formula. When the instances are 
restricted to k-CNF formulas, we call the problem A:-SAT. It is well-known that 
k-SAT  is NP-complete for k > 3 and can be solved in linear time for k = 2. 
One of the well-studied random models for fc-SAT is on n variables which 
consists of m  clauses selected uniformly at random from the set of all 2*(£)
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P ro b le m  2.1 NP-complete Problems

S a tisfiab ility  (SAT)
IN STA N CE: F  € E =  { All the CNF formulas}
Q U E ST IO N : Is F  £ L  =  { All the satisfiable formulas}?

G ra p h  k -C o lo rab ility
IN STA N C E: A graph G{V,E) and an integer k > 1.
Q U EST IO N : Is there a coloring c : V  —► (1 .2 ,- --  ,k }  such that c(vi) ^

c(v2) if (v i,v 2) G E l

H am ilto n ia n  C ycle
IN ST A N C E : A graph G (V,E).
Q U E ST IO N : Does G have a Hamiltonian cycle?

N u m b e r P a r t i t io n
IN STA N CE: A set of integers I.
Q U EST IO N : Is there a partition A, I2 of I  such th a t i =  J ^ i l

possible fc-clauses. The ratio r  =  ~  is called the clause-variable ratio or the 
clause density of F^ m.

Intuitively, formulas with a large clause-variable ratio are hard to be sat­
isfied, while formulas with a small clause-variable ratio could have many sat­
isfying solutions. Experimental studies in [114, 101] indicated that at r  4.2 
there is an abrupt change of the probability th a t has a solution—the 
probability is asymptotically one for r  < 4.2 and zero for r > 4.2. This leads 
to the following famous conjecture:

SA T T h re sh o ld  C o n jectu re : There is a constant r^, called the satisfiability 
threshold, such tha t

After more than ten years of work, the above conjecture is far from being 
settled. However, much insight into the hardness pattern  and its algorithmic 
impact has been gained from the effort to try  to understand the behavior 
around the threshold and to improve the upper and lower bounds on the 
threshold.

i eh  i€k

lim Pr { is satisfiablen ’
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Upper and Lower Bounds

Upper bounds on the SAT threshold can be established by Markov's inequality. 
For example, Va e  {0.1}" let Ia denote the indicator function of the event that 
the assignment a satisfies and let I  = ^  Ia. We have

a

Pr{ />0}<£[ / ]  = 5>[/.] = 2”(jr.
a

Thus, ^Fn,m is unsatisfiable w hp if m /n  > log8/-2  =  5.191. This gives an 
upper bound for the SAT threshold. By taking into consideration the intrinsic 
structure of the solution space, better upper bounds can be obtained. See [57] 
for an account on a series of hard work that improves the upper bound from 
5.191 to 4.596.

Lower bounds on the threshold are usually obtained by analyzing polynomial­
time algorithms based on the unit clause heuristic: (1) If there are any clauses 
containing only one literal, then pick one of them and satisfy it. Otherwise, 
randomly pick an unset variable and assign it to TRUE (or FALSE) randomly 
and uniformly. By analyzing conditions under which these algorithms succeed, 
lower bounds can be established [3].

Lower bounds can also be established by the second moment method. The 
difficulty in using the second moment method lies in the fact tha t the random 
variable under consideration is usually a sum of a set of random variables 
tha t are only “close” to being independent. To bound the variance of such a 
random variable, combinatorial structures intrinsic to the problem should be 
utilized in a  smart way [12, 14].

Sharpness of the Phase Transition

In addition to the location of the critical point of the phase transition, the 
sharpness of the phase transition is also interesting. Roughly speaking, a  phase 
transition for a combinatorial property is sharp if the length of the transition 
interval tends to zero faster than the critical parameter itself. A sufficient 
condition for a combinatorial property to have a sharp phase transition has 
been established [65]. The condition basically indicates that in order to have 
a sharp transition, there should not exist small signatures (properties tha t can 
be determined locally) th a t can probabilistically approximate the property 
under consideration.

Backbones and Complexity

In the statistical mechanics approach to the random SAT phase transition, a 
Boolean variable is identified with a binary variable, called a spin, th a t takes 
its values on {—1,1} (-1 for FALSE and 1 for TRUE). A CNF formula T
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is associated with an energy function Ef.77, 5], 5  6 {—l , l } n, defined on the 
possible assignments to the binary variables, indicating the number of clauses 
not satisfied by the assignment.

To investigate the behavior of the optimum of the energy function and 
the structure of the space of the optimal solutions, statistical physicists treat 
the SAT problem as a system of spins whose configuration is governed by the 
Boltzmann distribution

P (S )  =

and its low temperature limit as T  tends to zero. Note that this distribution 
is just a vehicle to carry out statistical mechanics analysis and has n oth ing  
to do with the randomness in the random SAT formula, which is called the 
quenched disorder in physics.

Analytical techniques from statistical mechanics can be used to analyze the 
deep relations among the minimum of the energy function EfJA 5], the Boltz­
mann distribution of the SAT system, and the probability distribution of the 
random SAT. These analyses have revealed interesting structural properties of 
the space of the optimal solutions and help explain why problem instances are 
hard a t phase transitions. Most notably is the notion of backbone variables 
[109, 117].

For each variable Xi, let m* be the average value of the corresponding spin 
over all the optimal assignments. Note that |m;| =  1 implies that the variable 
Xi is fully constrained, i.e., it has to be assigned to  the same value in every 
optimal solution. In this case, the variable is called a  backbone variable or a 
frozen variable [44, 109].

For a random SAT, mi is a random variable in [— 1,1]. Statistical mechanics 
analysis shows tha t the asymptotic behavior of the fraction of backbone vari­
ables is quite different at 2-SAT phase transition and 3-SAT phase transition. 
For random 2-SAT, it changes smoothly across the threshold, while for random 
3-SAT, the fraction of backbone variables jumps discontinuously from zero to a 
positive constant at the phase transition. That is to say, right above the clause 
density threshold, a constant fraction of the variables suddenly become fully 
constrained. There is also theoretical and empirical evidence showing that a 
close relation exists between the behavior of the backbone and backtracking- 
style search algorithms as well as random local search algorithms. See, for 
example, the work on the behavior of backbones in the 2 +  p-SAT problem 
where an instance of the problem consists of a mixture of 2-CNF clauses and 
3-CNF clauses [117].

Analysis also reveals interesting characteristics about the structure of the 
space of the optimal solutions in the satisfiable region

1. When the clause density is well below the phase transition threshold, 
the optimal solutions form a single cluster and these solutions are all 
characterized by a common distribution;
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2. When the clause density is close to the phase transition threshold, the 
single cluster of optimal solutions break up into exponentially many 
smaller clusters. While the distances between solutions in different clus­
ters remains constant, solutions in a single cluster become more and 
more similar to each other as the clause density increases.

2.4.2 Graph Coloring

The study of the phase transition of the graph coloring problem is based on 
the standard random graphs G (n ,p ) or G(n, m) as defined in Section 2.2. 
Similar to random SAT, the phase transition of k-colorability is sharp [5]. 
Currently known upper and lower bounds on the threshold are summarized in 
the following theorem 3:

T h eo rem  2.4.1 ([2, 10, 124]). (1) For the 3-colorability problem.

A lg o rith m  2.3 Greedy k-Coloring 
In p u t: A graph G(V, E) and a set of available colors represented as integers.

Find a vertex order {vi,vo, • • • ,v n}. 
for (i =  1; i <  n; i++) do 

Assign to  Vi the smallest color that is consistent with the colors already 
assigned to the vertices • • • , u,_i. 

en d  for____________________________________________________________

The k-colorability can be decided in constant expected time for random 
graphs with a constant edge probability [104], largely because of the appear­
ance of (k + l)-cliques. As the edge probability becomes smaller, the hardness 
of the k-colorability problem increases significantly.

In the analysis of the typical behavior of the random k-colorability problem 
below the colorability threshold, variants of the greedy coloring algorithm 
(Algorithm 2.3) have been widely used. Given a vertex ordering, the greedy 
coloring algorithm iteratively assigns to the next vertex the first available 
color. Different vertex orderings give rise to different heuristics which are 
used to analyze the typical behavior of the k-colorability problem on random 
graphs. Let G (n ,^ )  be the random graph with the edge probability p = we 
have the following cases.

3See [11] for the more recent progress

lim P r { G (n,p  = c/n) is 3-colorable} = 1, i f c <  4.03
0, if  c > 5 .0 5

(2) For any k >  3,

lim P r {G (n ,p  =  c/n) is k-colorable} =
n
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1. (Arbitrary Vertex Ordering) Algorithm 2.3 with an arbitrary vertex 
ordering can find a k-coloring (k > 3) w hp  if c < 1. This is because 
the random graph with c <  1 consists of only trees and unicycles w hp 
so th a t the number of the colors used by Algorithm 2.3 never exceeds 
3. Algorithm 2.3 has also been shown to be effective on dense random 
graphs [104].

2. (k-Core Heuristic) Earlier lower bounds on the k-colorability thresh­
old were obtained by analyzing the threshold of the existence of a k- 
core in random graphs. A k-core is defined to be the unique maximal 
induced subgraph with minimum vertex degree at least k  [124]. The k- 
core heuristic determines a vertex ordering {ui, v2, ■ ■ - , un} such th a t for 
any i, the vertex degree of u, in the subgraph induced on the vertex set 
V  \  {x i+i , • • • , vn} is less than k. If a graph does not contain a k-core, 
such an ordering exists and can be found in polynomial time. It follows 
tha t greedy coloring with the k-core heuristic finds a coloring whp in 
polynomial time for any c below the threshold of the appearance of the 
k-core. In the case of k = 3, the k-core threshold is approximately 3.35 
[124].

3. (Brelaz’s Heuristic) In Brelaz’s heuristic, the vertex ordering is con­
structed dynamically. At each step, a vertex with the most distinctly 
colored neighbors is selected and is assigned the smallest available color. 
Variants of Greedy k-Coloring with Brelaz’s heuristic has been analyzed 
in [2, 10], resulting in the best known lower bound c >  4.03 on the 
k-colorability threshold of random graphs.

When the edge probability is close to the colorability threshold, the k- 
colorability problem becomes exponentially hard. The typical-case behavior 
of backtracking algorithms has been extensively studied. Bender and Wilf 
proved tha t the running time of a simple backtracking algorithm is 2®0/p). 
In [21, 112], exponential lower bounds are established for the resolution com­
plexity of the k-colorability problem, indicating that most backtracking graph 
coloring algorithms have an exponential running time for non-colorable graph 
instances. Upper bounds for the resolution complexity can also be established 
by analyzing some typical backtracking heuristics [21], For edge probabil­
ity p = -  with c sufficiently large, an expected polynomial-time algorithm 
has been proposed. The algorithm is based a polynomial-time approximation 
scheme for the vector chromatic number of a graph [104].

2.4.3 Hamiltonian Cycle

The threshold behavior of the Hamiltonian cycle problem in random graphs is 
well understood and can be summarized as follows.
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T h e o re m  2.4.2 (See [30]). Let G (n,p ) be a random.graph withp  =  ^(logn-i- 
log log n + Cn). Then,

lim Pr{G (n,p) is Hamiltonian } =  limPr{<J(G(n.p)) >  2}
n n '

where 5{G{n,p)) is the minimum vertex degree.

The first breakthrough in the study was made by Posa in 1976 (see, e.g., 
[30]) who proved that the random graph G(n,p) is Hamiltonian whp if p > 
— and K  > 16. A key concept in Posa’s proof is the path rotation. Given 
a path P  = {vQ, ■ - - ,ufc}, a path rotation R O T A T E {P ,vk,Vi) is a new path 
{u0, • • • ,Vi,Vk,vk- i ,  • • • , Ui_i} provided that (vk, is an edge. Let X '  be the 
set of vertices each of which is an endpoint of a path obtained by a sequence 
of path rotations starting from P  and using vQ as the fixed endpoint. A key 
step in Posa;s proof is to show th a t for any longest path P  in a random graph 
G (n,p), the size of the subset X '  must be “large". This is possible because of 
the facts that (1) the size of the open neighborhood of X '  is less than 2\X'[. 
and (2) whp G{n,p) does not contain any small-sized vertex subset S  whose 
open-neighborhood has a size less than 2|S|. Insight obtained in the analysis of 
the threshold behavior of the Hamiltonian cycle problem has motivated several 
average or whp polynomial-time algorithms [30].

The typical-case complexity of backtracking algorithms for the Hamiltonian 
cycle problem was studied in [134]. Unlike random SAT and random graph 
k-colorability that have a typical-case complexity peak at the phase transi­
tion, it is shown in [134] that the probability of generating hard Hamiltonian 
cycle instances at phase transitions is extremely low. In fact, backtracking 
algorithms equipped with pruning techniques specially designed to exploit the 
unique characteristics of the Hamiltonian cycle problem typically have a linear 
running time [134].

2.4.4 Number Partitioning

The number partitioning problem described in Problem 2.1 asks whether a 
given set of integers has a perfect partitioning, i.e., a partitioning in which the 
sums of the two subsets are equal. A more general problem is to ask whether 
the absolute difference between the sums of the two subsets, called the discrep­
ancy, is less than a given value. The so-called constrained number partitioning 
problem is also of interest that imposes a constraint on the difference between 
the cardinalities of the two subsets in a partitioning [32].

a constant c
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Random Models and Control Parameters

To come up with a random model for the number partitioning problem is 
straightforward—a random instance is simply a set of n  integers drawn ran­
domly from a specified range. It is, however, not so obvious what parameter 
one should look at in order to identify a phase transition of the solution prob­
ability. The lack of an understanding of the nature of the control parameters 
has led to an incorrect conclusion tha t the random number partitioning prob­
lem has “no phase transition of any kind” until the work of Gent and Walsh 
[76] who identified the correct control parameter. A random instance of the 
number partitioning problem is a  pair (X, M ) where X  is a set of integers 
{Xi, • • • , X n} chosen independently and uniformly from the set of all the inte­
gers less than or equal to a given integer M. The parameter proposed in [76] 
is the ratio k defined as

_  log, M
AC —  1 .

n
Notice tha t |"log2 M] is the maximum number of bits required to represent an 
integer in the instance. Another way to describe the random number partition 
problem is to consider a set of n  real-valued numbers chosen independently and 
uniformly from (0,1) and to use as the control parameter the ratio between n 
and the maximum effective number of digits.

P h a se  T ran sitio n  o f  S o lu tion  P ro b ab ility

The phase transition of the solution probability of the random number par­
titioning problem is well characterized. Let Zn,i be the number of partitions 
with discrepancy I and write Zn = Zn,o for the number of perfect partitions. 
Based on estimations of the first and second moments of Z n,i, the following 
threshold kc = 1 was established [33]

lim P r{ Z n > 0 }  =  <|
1, if leszK <  1
0, if >  i

In fact, a simple induction on n  shows that the following representation of Zn,i 
is correct:

7  - o n T x  /  1; i f  1 =  0Z n,l -  I n,I X  j 2)  . f  /  >  Q

where
i r  n

In,l = 7p  cos(Zx) J J  cos(z X  X j)dx.
“  -7 T  j =1

It follows from the independence of {Xi, 1 <  i < n} and the Fubini theorem 
that

£[Au} =  J  cos(hr)£n[cos(x x X ))dx
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where X  is a random variable uniformly distributed on the set of integers 
{1,2, • - • , M }. And therefore, £"[cos(x x A)] has an explicit expression. Ex­
plicit formulas for o [/„,/,/n,(2] can be derived similarly. A detailed analysis can 
be found in [33]. The phase transition of the constrained number partitioning- 
problem was analyzed in [32].

A lg o rith m s a n d  T ypical-case  C o m plex ity

The number partitioning problem has a pseudo-polynomial time algorithm 
based on standard dynamic programming techniques. In fact, the algorithm’s 
running time is polynomial if the sum of the numbers to be partitioned is 
polynomial in n—the cardinality of the set of the numbers to be partitioned.

In [76], several heuristic algorithms were empirically analyzed in terms of 
the phase transition behavior of the random number partitioning problem, in­
cluding K o rf’s greedy heuristic, the set-difference heuristic, and a backtracking 
algorithm called the CKK algorithm. In Korf’s greedy heuristic, numbers are 
iteratively put into one of the two subsets. In each iteration, the largest re­
maining number is selected and added to the subset with the smaller sum. The 
set-difference heuristic recursively replaces two numbers by their difference. In 
effect, this is equivalent to asserting tha t the two numbers should be in dif­
ferent subsets; The Karmarkar and Karp heuristic (KK heuristic) is a special 
set-difference heuristic tha t always chooses the two largest numbers to replace; 
The CKK algorithm is a backtracking algorithm that uses the KK heuristic 
to branch. The pseudo-code of the CKK algorithm is given in Algorithm 2.4.

A lg o rith m  2.4 CKK algorithm for number partitioning 
CKK(X)
In p u t: A set X  of integers, 
if  (|X | <  4) th e n  

return SUCCESS/FAIL accordingly 
en d  if
Let x, y be the two largest numbers in X  and assume x > y 
Let a <— (x — y) and b <— (x + y) 
if  (CKK((X \  {x,y}) U {a}) = =  SUCCESS) th e n  

return SUCCESS 
else

return CKK((JA \  {x, y }) U {&})) 
en d  if

Another interesting empirical work is a study on the relation between the 
phase transition and the shape of the energy landscape of the optimal number 
partition problem [130]. The statistics of the shape of the landscape, such as 
the number of local minima and the height of the barriers, are summarized by 
a so-called barrier tree. The conclusion drawn in [130] is that except for the
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maximum barrier height, almost all of the other features considered remain 
constant across the threshold and thus, are insensitive to the phase transition.

2.5 G enerating Hard Instances

Analytical approaches, while being rigorous, often fail to tell “the full story 
about real-world algorithmic performance” [93] because of the worst-case na­
ture of the results or the over-simplified assumptions made in order to make 
mathematical treatment amenable. As a result, empirical study remains an 
im portant approach to the analysis of algorithms [93].

In empirical studies, a specific set of problem instances is used as test in­
stances to gain insight on the strengths and weaknesses of the algorithms under 
consideration and/or to reveal some intrinsic characteristics of the algorithmic 
problems under investigation. In addition to benchmarks manually compiled 
from real-world applications, random problem instances are also widely used. 
However, generating (hard) random instances with controlled characteristics 
is not a trivial task. A classical example is a random SAT model used in 
1980s [78] that has been shown to have an extremely strong bias towards gen­
erating, sometimes trivially, easy instances [62], A more recent example is a 
class of widely-used CSP models which have been proved to be trivially un­
satisfiable asymptotically with probability one [8], In fact, the existence of a 
non-deterministic polynomial-time program to construct all the instance and 
optimal solution pairs of an NP-hard optimization problem with some specified 
characteristics will imply tha t NP =  co-NP [126].

Selman, et al. [127] were perhaps the first to recognize the potential and 
importance of using (hard) instances generated at phase transitions as bench­
mark problems. The study of phase transitions and typical-case complexity 
of random models of NP and co-NP problems provide a  valuable guidance to 
the design of random instance generators. Even though randomly-generated 
instances can be easily criticized for their lack of the structures that frequently 
appear in real-world problems, they are in fact one of the driving forces behind 
the recent dramatic performance improvement of SAT solvers. Nonetheless, 
there have been several proposals that generate test instances for satisfiability 
by encoding random problem instances from other domains such as the quasi­
group completion problem [79] and the subgraph-isomorphism problem, or by 
“morphing” random instances from several different domains [74].

As has been discussed previously, random instances generated from above 
the phase transition threshold typically have an exponential resolution com­
plexity and thus, are hard for many complete algorithms such as backtracking. 
The generating of hard satisfiable random instances is, however, a challenging 
task. A straightforward but not very efficient method is to first generate ran­
dom instances at the phase transition and then filter out those unsatisfiable 
instances by some complete search algorithm. In the past decade, efforts have
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been focused on generating satisfiable instances by embedding (or hiding) a 
pre-specified solution.

Forced-formula in SAT

A forced-formula [15] is a random CNF formula satisfying a pre-specified as­
signment. A plain forced-formula is generated as follows:

1. Randomly generate a tru th  assignment T;

2. Randomly generate a clause. Add the clause to the formula only if it is 
satisfied by T ;

3. Repeat Step 2 until the formula contains the required number of clauses.

A drawback of the plain forced-formula is tha t in addition to the pre-specified 
solution, they usually have many “by-product” solutions that create a strong 
enough statistical bias for randomized local search algorithms to exploit. The 
generator AIM developed in [15] can generate not only plain forced-formulas 
but also forced-formulas with a unique or a small number of solutions. The idea 
used in the plain forced-formula scheme has been extended in [19, 7], Instead 
of hiding one solution, the authors in [19, 7] proposed to hide two comple­
mentary solutions. This can be implemented as follows. Let T  =  {fy, ■ ■ ■ ,£„} 
be an assignment and T  =  {1 — fy, • • - . 1 — £„} be the complement. To gen­
erate a random clause of size k, we first randomly select a  set of k  variables 
{.Tij, • • • , Xik}. Then, we select according to some distribution a clause from 
the set of 2* — 2 possible clauses on - • • , x ik} that are satisfied by both 
T  and T  . In [7], each of the 2k — 2 potential clauses is selected with equal 
probability, while in [19], the distribution is defined by two parameters tha t 
relate the probability of selecting a  potential clause to its Hamming distance 
to the pair of pre-specified complementary assignments on {x^, • • • ,

Hidden-color in Graph Coloring

The basic idea behind generating random k-colorable graphs is as follows. 
First, the set of vertices V  is partitioned into k color-classes C = { V ; , l < f <  
k}. Then edges are selected according to some distribution from the set of 
potential edges {(u,u) e  V 2 : u  € V{,v € V j,i t  j i ­

l t  is easy to see that a graph generated in this way is guaranteed to have 
at least one valid k-coloring. Variants of random models of k-colorable graphs 
can be defined by specifying how the color-classes are formed and how the 
edges are selected. These models can be classified into two categories, the 
random k-colorable graph and the semi-random k-colora.ble graph.
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Random k-Colorable Graphs G(n,p,k)

In G {n,p.k), after the partitioning C =  {Vi, 1 < i < k}  is specified, each 
pair of vertices in {(u,u) G V 2 : u € Vi:v G Vj.i ^  j }  is selected as an 
edge independently and with probability p. Below are several widely used 
partitioning schemes:

1. Equi-Partite [104], In this scheme, the vertex set is partitioned into 
color-classes of equal size.

2. Uniform-Partite. In this scheme, each vertex is assigned to one of the 
k  color-classes uniformly and independently.

3. 5-Partite [43]. The variation of the size of the color-classes can be 
controlled by some parameter S in several different ways.

Semi-Random k-Colorable Graphs

In the semi-random model, additional structures and restrictions are used 
when selecting edges of the graph.

1. Gs(n, fc.p)[132]. In this model, for each pair of vertices (u,v) from dif­
ferent color-classes, an adversary picks a value puv G [p, 1] and includes 
(u:v) as an edge with probability puv.

2. Flat Graph [43]. In the flat graph, the color-classes are of equal size, 
but the edges are selected in such way that for each pair of color classes V] 
and Vj, the maximum vertex degree of the bipartite subgraph on (Vt . Vj) 
is upper bounded by a pre-specified constant.

Quasigroup with Holes [6]

A quasigroup is a pair (Q, *) where Q is a  finite set of symbols and * : Q x Q  
Q is a binary operation such tha t equations of the form

a*  x = b, and y *a  = b

have a unique solution. The multiplication table of a quasigroup defines a 
Latin square, i.e., a |Q| x |Q| table of symbols from Q such tha t no orthogonal 
row or column contains the same symbol from Q twice. |Q| is called the order 
of the quasigroup.

In the quasigroup completion problem (QCP), an instance is a partially- 
filled multiplication table and the question is to decide whether the unfilled 
entries of this table can be filled to obtain a Latin square. The quasigroup 
completion problem has recently been used to generate structured random test 
instances for CSP and SAT search algorithms [SO, 74]. In an effort to design
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better satisfiable random instance generators, Achlioptas, et al. [6] proposed 
the quasigroup with holes (QWH) problem. A random instance of QWH is 
generated in two steps: (1) using the Markov Chain Monte Carlo algorithm to 
generate a uniformly-distributed Latin square; and (2) deleting a fraction of 
entries of the table ( “punching some holes in the table” )- The resulting table 
is an instance of QWH. In fact, the instance is a  satisfiable instance of QCP.

Experiments conducted in [6] showed that random QWH has interesting 
phase transitions and associated easy-hard-easy complexity patterns for both 
complete and incomplete search algorithms.
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Chapter 3

Constraint Satisfaction Problem  
and its Random  M odels

This chapter is an overview of the constraint satisfaction problem, its random 
models, and previous work on the phase transitions in these models.

3.1 Constraint Satisfaction Problem

The study of constraint satisfaction problems was initiated by Montanari in 
his work on problems in image processing [119, 106]. It turns out tha t the idea 
of constraint satisfaction can be used to model a  large variety of problems.

In a constraint satisfaction problem, we are given a set of variables and 
a  collection of constraints. Each constraint is defined over a fixed subset of 
variables and specifies a set of value-tuples tha t these variables can simulta­
neously take. The task is to find an assignment to the variables to satisfy all 
the constraints.

D efin ition  3.1.1 (V ariab les, dom ains, a n d  p ro jec tio n s). Consider a set 
of variables X  = {xx; • • • , x n} where each variable x , takes its value on a finite 
set fli, called its domain. We use

Ct =  fix x x • • • x

to denote the space of all the n-tuples that X  can take. I f  all the variables have 
the same domain CL, we will simply write f2 =  CLX =  fin. Alternatively, each 
variable x, can be viewed as a projection function Xi(co) : Cl —* defined as

Xi(u) = Ui, where u; = (a?x, • • • , cjn) € fi.

D efin ition  3.1.2 (C o n s tra in ts , re s tr ic tio n s , nogoods, a n d  su p p o rt) . 
A constraint C is a relation defined on the product space of the domains 
of a subset of variables. The subset of variables is called the scope of the 
constraint and is denoted by var(C). The arity o f the constraint is the number
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of variables in its scope. In particular, a constraint of arity 2 is called a 
binary constraint.

The constraint relation of a constraint C can be identified as a subset

{uj e  : c (uj) =  0 }

of the product space of the domains of its scope variables. Without causing 
confusion, we will view a constraint as a relation or a subset on the product 
space of domains interchangeably.

A value-tuple ■■ ■ , u ik) is said to be incompatible i f  C(cjn , • • • ,u!ik) =
0. Otherwise it is said to be compatible. An incompatible value-tuple is also 
called a restric tion  or a nogood of the constraint. The tightness of a 
constraint C is defined to be the number of nogoods of C.

Let x  be a variable and ujx be a domain value o fx . A support for ujx from  
another variable y is a domain value u y of y such that (ux,ujy) is compatible. 
I f  there is no constraint between x  and y, then any domain value of y is a 
support o f any domain value o fx .

Definition 3.1.3 (Constraint Satisfaction Problem). A constraint satis­
faction problem can be formally stated as follows.

C onstrain t Satisfaction  Problem (C SP)
IN STA N CE: A set of variables, their domains, and a collection C 
of constraints.
Q U ESTIO N : Is the set f) C -1 (l) non-empty?

cec
Definition 3.1.4 (Flawed constraint and flawed variable). A constraint 
is said to be flawed if  every value-tuple of the scope variables is incompatible. 
A variable x  in a CSP instance is said to be flawed if  for each domain value S 
of x , there exists a variable y such that 6 has no support from y.

Definition 3.1.5 (Arc-consistent, path-consistent, and generalized 
arc-consistent). A constraint C with scope {rr^.rr;,. ■ ■ • , x ik} is generalized 
arc-consistent i f  for any domain value u  of any variable x ij} there is a compat­
ible value-tuple (w ^ ,^ ,, • • • .cjij;) with cjj . =  w. In particularly, a generalized 
arc-consistent binary constraint is simply called an arc-consistent constraint.

A CSP instance is said to be generalized arc-consistent i f  each of its con­
straints is generalized arc-consistent.

A binary CSP instance is said to be path-consistent i f  fo r  2 variables 
{xii : Xi2}, any compatible value-tuple of { x ^ . x a n d  for any other
variable x;3, there is a dom.ain value uiiz o f x lz such that ( ^ . u ^ )  is a com­
patible value-tuple of {x i l . x iz} and is a compatible value-tuple of
( 3: j2, X{3 }•.

Associated with a CSP instance are several graphs that describe the inter­
action structure of the variables.
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D efin ition  3.1.6 (C o n s tra in t (H y p e r)G ra p h  an d  C o n s tra in t P r im a l 
G ra p h ) . Let (X ,C ) be a CSP instance where X  =  {xi; I < i < n} is a set of 
variables and C is a collection of constraints.

1. The prim al graph of the CSP instance is a graph G =  G {V.E) where 
V  corresponds to the set of variables X  and (Vi.Vj) 6 E  i f  and only if  
the corresponding variables Xi and Xj both appear in a constraint in C.

2. The constrain t (hyper)graph is a (hyper)graph Q(V.E) where V  cor­
responds to the set of variables X  and E  contains all the subsets of 
variables that correspond to the scope var(C) of a constraint C  £ C.

Many specific problems can be formulated as a CSP by specifying a set 
of c o n s tra in t te m p la te s—canonical constraints defined on a set of generic 
variables. From now on. we will assume that all the variables have the same 
domain fI. A k-ary constraint template is a boolean function T  : PLk —>• {0,1}. 
The set of all the possible fc-ary constraint templates is denoted by Tfc. This is 
exactly the set of all the Boolean-valued functions defined on Qk, and therefore 
if |Q| =  d, we have |Tfc| =  2d\  We denote by

TT =  ( j T fc
fc>i

the set of all the constraint templates.
Given a fc-ary constraint template T  6 Ij,.. a constraint C  with the scope 

var(C) =  {x il} ■ • - , xifc} can be derived as follows:

C(u) = T (x iwll)(w), ■ ■ ■ ,x iMk)(w)), u  6 n n:

where tt is a  permutation over (1 ,2 , • • • . k}.

D efin ition  3 .1 .7  (Space o f C S P  In stan ces). Let n be the number o f vari­
ables, T  be a constraint template, and C C T* be a set of constraint templates. 
We define the following spaces of CSP instances.

1. C (n ,T ): the collection of constraints that can be derived from T .

2. C (n,C ): the collection of constraints that can be derived from  C.

3. CSP„(C): the collection of the CSP instances whose constraints are from  
C (n ,C ).

4. CSP„,m(C): the subset o f CSP„(C) that have exactly m constraints.

CSP„(C) can also be identified with the product space {0 ,1}C(”’C) since 
each vector (L c ,C  € C(n,C)) € {0, l} c(n’C) defines a set of constraints {C  6 
C(n. C) : L c  = 1}.
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The following are some examples of subsets of constraint templates tha t 
define some special spaces of CSP instances each of which corresponds to a 
specific NP-complete decision problem.

E x am p le  3 .1 .1 . Consider a set o f Boolean variables X  =  {r i , - - -  ,x n}. Let 
C C Tk be the set of k-ary constraint templates.

1. I f  C =  {Ti € Tfc,0 <  i <  k} where Ti(u>) =  0 iff u  =  P0fc_I, then 
CSP„(C) =  k-SAT. This is because each T{ is equivalent to the k-clause 
X i  V • - - V Xi  V V X i + i - - - V Xf. .

2. I f  C — {Ti € Tfc, 0 <  i <  k} where Tiuj) = 0 iffw  = 0l l fc_l o ru  =  l*0fc-i. 
then CSPn(C) is equivalent to the Not-All-Equal-SAT problem (NAE- 
SAT).

3. I f  C = {Ti G Tfc, 0 <  i < k} where Ti(ui) = 0 iff (1 — u,’i) -i 1- (1 —
u>i) + uii+ 1  +  • • • +  cjk =  1. then CSPn(C) is the 1-in-k-SAT problem.

4■ I f C =  {Ti.To} whereTiipj) = u ;1©---©u;fc andTo{u) =  o^©-• -©u;fc©l. 
then CSPn(C) is the k-XO R-SAT problem.

E x am p le  3.1.2. Consider a set of variables X  = {^i, • • • , rrn}.

1. Assume that each Xi has the domain {1,2, - - - .k}. Let C =  {T} C 
T2 such that T{w) = 1 iff wi ujo. Then. CSPn(C) is the graph k- 
colorability problem.

3.2 Random  M odels o f Constraint Satisfaction  
Problem s

Generally speaking, a random model of CSPs can be viewed as a probability 
distribution defined on a space of CSP instances.

D efin ition  3.2.1 (R an d o m  C S P  M odels). Given a set o f constraint tem­
plates C, a random, CSP model is a (discrete) probability space {CSP„(C),P} 
where V  is a probability distribution on CSP„(C).

One way to define a random CSP model is to work directly with the product 
space CSPn(C). For example, we can have the following random models for 
CSPs.

D efin ition  3 .2 .2  (M odel d— dom ain  size, p—-probability,
k— c o n stra in t a rity , n— n u m b e r o f variab les). In this model, each con­
straint in C(n,Tfc) is selected independently with probability p. This is exactly 
the random CSP model (CSP„(Tfc), V) where V  is the independent product 
Bernoulli distribution on CSP„(Tfc) such th a f iL  =  CSP„(Tfc).

w l ) =  n  pLcn - p ) ' - ' - c -
C e C ( r , . 7k)
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Definition 3.2.3 (Model M ^ ) .  In this model, a random instance contains 
exactly m  constraints selected uniformly without replacement from C(n, T*,).

A potential problem with the above random models is that a random in­
stance may contain two constraints with the same scope. However, it can be 
proved tha t for parameters tha t are in the range of interest, whp such events 
do not occur except for the case of k  =  2.

Lemma 3.2.1. Let A n be the event that M.k'* (or M?fdm) contains two con­
straints with the same scope variables. Then, we have for p =  f (respec­
tively, m  =  Q(n)),

Proof. We only consider the model M kf dp. Let a =  |Tfc| (a constant). For a 
fixed set S  of variables, the number of constraints with the scope S  follows 
the binomial distribution b(a,p). Thus, the probability ps that M .k,d contains 
more than one constraint with the scope S  is

ps=i2 (f)^1 - ̂ a_i=o(j>2̂
The number of subsets of variables on which M k'd contains more than oneJliF
constraint has a binomial distribution b(n ,ps). Therefore, we have

P r { A ,}  =  l  —(1 —ps )"‘ , 

and the lemma follows. □

A more intuitive way to specify random models of CSPs is as follows. First, 
a random graph (or random hypergraph) is used as the constraint graph. Then, 
for each edge of the constraint (hyper)graph, randomly select a constraint tha t 
uses the constraint edge as its scope. This approach in its most general form 
is summarized in [115].

Definition 3.2.4 (The m odel C SV d*{G ,P) = {CSPn(T*),P}). In this 
model, the distribution V  is specified by a pair (G , P) where G is a k-homogeneous 
random hypergraph and P is a probability distribution on the Tfc.

We use CSP^jTiiP) (0T ) t° denote the corresponding model in
which the constraint hypergraph is the k-homogeneous uniform random hyper­
graph Qk(n ,m ) (respectively, the k-homogeneous constant-probability random 
hypergrapg Qk{n,p)).

A random instance of C S V ^k is generated as follows. First, a random 
hypergraph is generated. Then for each hyperedge, a constraint on the hyper­
edge is derived from a constraint template T  E TV where T  is selected from 
Tk according to the distribution P.
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3.2.1 Classical Random CSP Models

All of the classical random CSP models are a special case of CSPf;k(G, P).
In these models the constraint hypergraph is either the constant-probability 
random hypergraph Qk{n,p ) or the uniform random hypergraph Qk(n, m). The 
nogoods of a constraint are determined by either (1) uniformly selecting a 
subset of value-tuples from all the possible value-tuples of the given arity; or (2) 
choosing each value-tuple with a fixed probability. Four different combinations 
give us four classical random CSP models known as Models A, B. C, and D 
[75],

Definition 3.2.5 (M odel J\£k,q).

Parameters: n —number o f variables; p — edge probability; d—domain size; 
k —constraint arity; q— nogood probability.

Distribution: The same distribution as C SP ^k(¥) where the probability dis­
tribution P  is defined on the set of all the possible constraint templates of 
arity k such that for any T  € Tfc with tightness 0 < t  < dk.

P(T) =  , ‘(1 -  g f ~ ‘.

Comments: It is obvious that with non-zero probability, there is a constraint 
in Model A that excludes all the possible value-tuples, resulting in a trivially 
unsatisfiable instance.

Definition 3.2.6 (M odel

Parameters: n —number of variables; m —number of constraints; d — domain size 
k —constraint arity; t —tightness.

Distribution. The same distribution as C S P ^ ^ iP) where P  is the uniform dis­
tribution on

T[. =  {T  € Tfc : The tightness o fT  is t]

Definition 3.2.7 (M odel Cik,t).

Parameters: n —number of variables; p — edge probability; d—domain size; 
k —constraint arity; t —tightness.

Distribution. The same distribution as C SP ^k(P) where P  is the uniform dis­
tribution on

T[. =  {T  € Tfc : The tightness o fT  is t}

Definition 3.2.8 (M odel ©Jjj’*).
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Parameters: n —number o f variables: m —number of constraints: d—domain size 
k — constraint arity; q—nogood 'probability.

Distribution. The same distribution as C S V ^ m iw h e r e  the probability dis­
tribution IP is defined on the set of all the possible constraint templates of 
arity k such that for any T  € T t with tightness 0 < t < dk,

P(T) = q \ l - q f - t.

3.2.2 Improved Random CSP Models

CSP is one of the NP-complete problems whose phase transition has been stud­
ied since the early 90’s. Stimulated by the work of Achlioptas et al [S] showing 
the flawedness of the classical random CSP models, there has been growing 
interest in designing appropriate random models with non-trivial phase tran­
sitions and studying the typical-case complexity of these random models.

Achlioptas et al [8] proposed the model E as an alternative to the classical 
random CSP models.

D efin ition  3.2.9 (M o d e l E).

Parameters: n —number of variables; d—domain size;
k — constraint arity; m —number of nogoods.

Distribution: For each set o f variables of size k. there are dk possible nogoods. 
In  model E , we selects independently and uniformly with replacement m  no­
goods from the (£) dk possible nogoods of all the possible subsets of variables 
of size k. Once the m  nogoods are determined, we form  a CSP instance by 
merging nogoods on the same set o f variables into a single constraint. 
Comments: It has been proved that model E  with m  =  0 (n ) has interesting 
threshold behaviors. However, as we are going to show, model E  with m  =  
0 (n ) is not without problem—the constraint tightness of an instance is w hp  
less than 2. This indicates that model E  is simply a “multi-valued” version of 
the Boolean SA T  model, and thus, short of many features that we expect to see 
in CSPs.

L em m a 3.2.2. Assume that m  =  0 (n ) and let A n be the event that all the 
constraints in a random instance of model E  have a constraint tightness less 
than 2. Then, we have

lim P r { An } =  1, for any k > 3 .
TI

Proof. Let A xn be the event that the first i nogoods are on different subsets of 
variables, and B ln be the event that the i-th nogood is on a subset of variables
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different from those of the previous (i — 1) nogoods. We have

Pr{A ,} =

>

The lemma follows.

Gent, et al [75] proposed the flawless model to overcome the triviality of 
the classical random CSP models. A key observation is that the existence of 
the flawed variables might be a direct result of the fact that classical random 
CSPs are not arc-consistent. A more detailed discuss on the flawless model 
will be given in Chapter 5 where a random CSP model generalizing this idea 
will be developed.

Another viable approach to overcoming the triviality is to allow a slowly 
increasing domain size in the classical random CSP models. Threshold behav­
iors and typical-case complexity of such a CSP models have been discussed in 
[58, 129, 140].

3.3 Phase Transitions of Random  C SPs

As we have discussed in Chapter 2, there is a phase transition of the solution 
probability in random models of several NP-complete problems such as k-SAT 
and graph fc-colorability. In these problems, the threshold behavior is largely 
determined by a  sing le  parameter that summarizes the “constraintedness" of 
the random models. For random &-SAT, the parameter is the clause density 
of the formula, while for graph /c-colorability, it is the edge density of the 
random graph. This is, however, far from true for general CSPs. In fact, local 
properties specifying how the nogoods of the constraints are selected play a 
significant role in the threshold behavior of general random CSPs.

3.3.1 Flawed Variables, Flawed Constraints, and Well- 
behaved CSPs

Achlioptas, et al [8] were the first to notice the difference between general CSPs 
and other special problems such as fc-SAT. It was shown in [8] th a t in most 
regions of the parameter space, the four classical random CSP models A-D are 
trivially unsatisfiable in the sense that w hp  they all contain liflawed variables'' 
(variables whose domain values are all incompatible with some other variables) 
or '‘‘flawed constraints" (constraints that contain all the possible value-tuples

3S

W W ' }  x P r{ S " -1 |.4” - 2} • • ■ P r{ B ;|4 ,}
m—1

i=l

l  -

m  — 1
771— 1

G)
□
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as its nogoods). As a consequence, there is in fact no phase transition in these 
models at all. Results related to the phenomena of trivially unsatisfiability in 
random CSPs can be summarized in the following theorem.

T h eo rem  3.3.1 ([8, 75]). Let q > 0 and c>  0 be fixed constants.

1. For any m  and n s.t. ^  =  c and p =  p£rr.

lim Pr {A '^k’q( orT>nm) îas a flawed constraint} =  1.
n J

2. For any m  and n s.t. ^  = c. p = ^=r, and t G [dfc_1, dfc],

lim P r { (or Cd'k,t) has a flawed variable } =  1.
n y  J

3. For any m  and n s.t. ^  , p =  and t G [0,dfc_1) ;

lim Pr { B ^  (or C^k,t) satisfiable ) =  1.
n J

Proof. (1) In A ^ q and the number of nogoods of a constraint has the
binomial distribution b{dk,q). The probability for a constraint to have all 
the dk possible tuples as its nogoods is thus qdk. Since the nogoods of the m  
constraints are determined independently, the probability that there is a t least 
one flawed constraint is

1 -  (1 -  <^)m.

(2) We only consider C%k,t with k  =  2. Let G be the constraint graph of 
C ^ .  Fixing a  variable ordering {xi, - • ■ ,x n} and let V' =  {^i, • • • ,x n}, 1 <  
i < n. Consider a procedure that at each step 1 <  i < checks to see if the 
variable x* is flawed in the sub-instance induced by V*. Let Pi be the probability 
that at step i , the procedure finds tha t X{ is flawed in the sub-instance induced 
by Vi. Let Ai be the event that the vertex degree of X{ in the induced graph 
Gvi on Vi is exactly d, and let p j be the probability that a variable with d 
incident constraints is flawed. Then, we have that p j > 0. Since p =  A it is 
also true that

P r{  Aj } >  P r{  Aa } > 0 .

Since the sequence of events {A,-, 1 <  i < §} are independent, the probability 
that Cd,k,t has a flawed variable is a t least71,

n/2
1 “  1 1 ^  -  Pr { At }) >  1 -  (p ,(l -  Pr { Aa })) * -> 1.

i=l

(3) If t  G [0, dfc_1), a randomly-generated instance is always arc-consistent. 
This, together with the fact that for ^  , p = , the random
hypergraphs Q(n,m) and Q{n,p) w h p  contains only hypertrees and unicycle 
components, finishes the proof. □
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Theorem 3.3.1(3) indicates that for t € [0, dfc_1), B^jff and C7f ^  are still 
interesting. The models and 'D ^ q, however, remain trivial even if
q =  q(n) =  o(l). In fact, an argument similar to those in [70] can be used 
to show tha t if q(n) decreases too slowly, the two models are still trivially 
unsatisfiable, but if q(n) decreases too fast, randomly-generated instances of 
these two models can be decomposed into subproblems of fixed sizes.

Molloy introduced in [115] the random CSP model CSV%Km(F) (see Def­
inition 3.2.4). Several general conditions on the support supp(P) C  T&, i.e. 
the set of constraint templates T  such tha t P(T’) >  0, were identified for 
CSVn^niP) to have interesting threshold behaviors.

D efin ition  3.3.1 ([115]). The model C S V ^km{P) is said to have a partial 
phase transition i f  there are constants C\ , c2 > 0 such that

lim P r { C S V it iF )  is satisfiable } {  >  %m <  Cl” ;n 1 n'mK '  (  =  0, i f m > c 2n

CSVn^ f P)  is said to have a phase transition i f  there are constants ci, c2 > 0 
such that

lim Pr { C SV ^m iP) is satisfiable } =  (  ! ’ < ^n 1 n'mK ’ J J [ 0, i fm  > c2n

Let C C  T* be a set of constraint templates. We say tha t C is symmetric 
with respect to the domain Bl [115] if for any two domain values 5 and 7  € 12, 
there is a bijection (j): Q —► Cl such that for any constraint C, we have C  6  C 
if and only if the constraint 4>{C) is in C, where o(C) is the composition of 
the relation C  and the mapping <f>. The following conditions are due to Molloy 
[115], where the case of asymmetric subsets of constraint templates is also 
discussed.

D efin ition  3.3.2 ([115]). Let C C  T* be a set of constraint templates. We 
say that C is well-behaved i f  it satisfies the following two conditions:

1. Any constraint template C  £  C is generalized arc-consistent.

2. 'id € there is at least one C  € C s.t. (6, . . . .  6) is a nogood of C.

C is said to be very well-behaved i f  in addition, we have

3. a CSP instance is always satisfiable i f  its constraints are all derived from  
C and its constraint hypergraph is a cycle.

Notice tha t condition 3 in the above definition is stronger than arc-consistency, 
but weaker than path-consistency. The following is a generalization of Theo­
rem 3.3.1.

T h eo rem  3.3.2 ([115]). CS‘P ^km{P) has a partial phase transition (or phase 
transition) i f  and only i f  the support supp{P) of the probability distribution P 
is well-behaved (respectively very well-behaved).
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3.3.2 Sharpness of CSP Phase Transitions

The beauty of phase transitions in NP-complete problems lies in the sudden 
and dramatic jump of the solution probability at a threshold of the model 
parameter. However, determining the existence and the exact value of such 
a threshold remains a challenging open problem for some of the NP-complete 
problems including random fc-SAT and fc-colorability in random graphs. A 
breakthrough is Friedgut’s work [65] showing that we can study the sharpness 
of the transition without knowing the existence of the threshold. Random 
Ar-SAT. random graph A;-colorability, and many other NP-complete problems 
have been shown to have a sharp phase transition [5, 65, 105].

After the introduction of the general random CSP model C S V ^ fP )  in 
[115], and independently in [42] in the case of domain size 2, several efforts 
have been made to identify conditions under which random CSPs have a sharp 
phase transition [42, 90, 115]. We summarize below the conditions that have 
been established so far.

D e fin itio n  3.3.3 (S h arp  T h resh o ld  o f R an d o m  C S P s). Assume that 
C S V ikrn{T) has a phase transition. I f  there is a function c{n) > 0 s.t. for any 
e >  0 ,.’

It turns out that the notion of a “very well-behaved” collection of constraint 
templates (Definition 3.3.2) captures much propotion of the conditions for 
random CSPs to have a sharp threshold. But at least for binary' CSPs, it is 
far from sufficient [84, 115]. Below are some of the currently-known sufficient 
conditions.

T h e o re m  3.3.3. 1. [84] Model has a sharp threshold for any d .k  > 2
and t such that 1 < t < dk~l .

2. [42, 90] Model C SV ^m iP) has a sharp threshold when d = 2, supp(P) is 
very well-behaved, and P  is uniform on supp(P ).

3.3.3 Random CSPs with (Slowly) Increasing Domain 
Size

Interestingly, random CSP models with (slowly) increasing domain size behave 
quite differently from those with bounded domain size. A series of studies

lim Pr { C .S 'P ^(P ) is satisfiable } =  |

we say that CS’P ^ ( P )  has a sharp threshold at the phase transition. Other­
wise, C S V ^ fP )  has a coarse threshold.

showed that for d =  d(n) ranging from log1/ 2 n to n 1, 7  > 0, the classical CSP 
models do exhibit interesting threshold behaviors [67, 129, 140].
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Rather than citing conditions in these works on the necessary growth rate 
of the domain size (all of which are complicated and messy), we would like 
to provide a more intuitive account of why an increasing domain size helps 
avoid the triviality. Take, for example, the model V ^ q where d =  d(n) is 
the domain size and 0  <  q < 1 is the nogood probability. Consider a given 
constraint edge (xi,Xj). The probability tha t a value § of has no support 
domain values from Xj is qd. The probability tha t all the domain values of 
has support from Xj is at least 1 — dqd. Thus, the probability that no variable 
is flawed is at least

(1  -  dqd)m

which, assuming m  =  o (rr), tends to 1 as long as, say, d = 31og1//(?(n). As a 
m atter of fact, large deviation bounds for the binomial distribution can even 
guarantee tha t with probability exponentially close to 1 , any domain value of 
any variable has a fixed fraction of supports in any constraint.
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Chapter 4

Random  CSPs w ith Polynom ial 
R esolution Com plexity

4.1 Introduction

In this chapter, we study the resolution complexity of the classical random 
CSP model B (Definition 3.2.6) with domain size d = 2, constraint arity 
k , and constraint tightness t. We also assume that the constraint density ^  is 
independent of n. In fact, we will be considering a slightly generalized version 
of B2' ^  that allows for a non-integer tightness t:

1 . For an integer t. the constraints are constructed as usual.

2. For a  non-integer t = tQ + a, where t 0 is an integer and 0 <  a  <  1 , a 
constraint is constructed by selecting a random set of to nogoods with 
probability 1 -  a  or a random set of to +  1 nogoods with probability a.

This generalized model is still denoted by B%^ with the understanding that 
the parameter t can now take any real value in the interval (0 , 2 fc].

Since the domain size is 2 , each constraint with a  constraint tightness t 
corresponds in a straightforward way to a set of t clauses defined on the same 
set of variables. Consequently, an instance of Bg%£ is equivalent to a k-CNF 
formula. Thus, we define the resolution complexity of B 2-^1 to be the resolution 
complexity of the equivalent CNF formula.

In [S], it is shown that for any t £ [2fc-1 ,2fc], B2' ^  is whp unsatisfiable 
because of the existence of the flawed-variables. An immediate consequence 
of this result is tha t for any t £ [2 fe-1, 2 *], the resolution complexity of B2'k̂  
is almost surely 0 (1). On the other hand, Mitchell [113] shows that for any 
t £ (0 , k — 1], the resolution complexity of Bt££ is whp exponential.

The main result of this chapter is that for t  £ (2k~2 — 1 , 2fc_1), the resolution 
complexity of B 2’̂  is whp polynomial if the constraint density ^  is high. 
Specifically, we establish for each t £ (2k~2 — l ,2 fc_1), an upper bound on
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the constraint density ^  for B fkf  to have an exponential complexity. These 
upper bounds partly answer the open problem regarding the CSP resolution 
complexity when the constraint tightness is between k  — 1 and 2fc_1 [113]. In 
Section 4.4, we will discuss some more recent and independent work since the 
publication of the result presented in this chapter [72],

4.2 M ain R esults

T h eo rem  4.2.1. Let B2,̂ f  be a random CSP. We have

lim Pr { B2' ^  is satisfiable } =  0 

if  c =  and t satisfy one of the following

1. For t  = 2k~2 — 1 +  a with 0 <  a  <  1,

e > . (* --)  (41) 
2 k ( k - l ) a  [ }

2. For t = 2k~2 + j  + a with 0 <  a  <  1 and 0 <  j  <  2fc_1 — 2k~2 — 1 ,

c >  2k(k - 1) (1 +  C' J + T )_1 (4'2)

The theorem is proved by showing tha t for any constraint tightness t and 
constraint density c satisfying (4.1) or (4.2), a random instance of B2'^f asymp­
totically almost surely implies an unsatisfiable 2-SAT subproblem. The intu­
ition is that a constraint C  with t nogoods is equivalent to a fc-CNF formula 
with t  clauses defined on the same set of k  variables. If t > 2k~2, there is a 
non-zero probability that these t  clauses imply a 2-clause. As a result, if there 
are enough constraints, we will get enough implied 2-clauses to form an unsat­
isfiable 2-CNF formula called the criss-cross loop 1. In fact, this situation has 
been shown to  be true in a different context where the so-called NK landscape 
model is analyzed ([70]). An NK landscape defined on a set of n  variables 
can be viewed as a special random CSP consisting of exactly n  constraints 
{ C i,. . . ,  Cn} such that for each 1 <  i <  n, the constraint Ci is defined on the 
variable Xi and (k — 1) other randomly selected variables.

Consider a constraint Ci of B2-kf  Let C  with |Cj| =  i be the set of k- 
clauses equivalent to Ci and let J )  be the set of all the 2 -clauses th a t can be 
derived from C*. The proof of Theorem 4.2.1 indicates that the set of 2-clauses 
{fFi, 1 < i < M  = 0 (m)} is unsatisfiable. Since the resolution complexity of 
an unsatisfiable 2-SAT problem is polynomial, we have

JIt should be noted that the implied 2-CNF clauses are not uniformly distributed and the 
resulting 2-CNF formula is not equivalent to a standard random 2-SAT. Consequently, the 
current result does not follow from the proof of the satisfiability threshold of the standard 
random 2-SAT [36, 77].
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T h e o re m  4.2.2. For any t  and c = ™ satisfying the conditions in Theorem 
4 -2 .1, the resolution complexity of is almost surely linear, and a linear 
refutation can be obtained in linear time.

Proof. The set of 2-clauses T x can be derived from the set of k-clauses C, as 
follows:

1. Let V  =  Ci;

2. Resolve all the pairs of clauses of the form {A, a:} and {A, x}  in V, where 
A is a clause of size larger than 2. Insert all the resolvents into T> and 
repeat this step until there are no more pairs of clauses in V  tha t can be 
resolved in this way.

3. Let Ti be the set of all the 2-clauses in V.

Since the number of constraints is m  — cn , it takes linear time to run the above 
procedure for all the constraints, and the length of the resulting sequence of 
clauses is also linear in n. □

From Theorems 4.2.1 and 4.2.2, we can see that for a  given tightness 
t € (2k~2 — 1,2*-1), the resolution complexity of the random CSP B2̂  is 
polynomial if the constraint density is larger than a certain value. This partly 
answers the open problem regarding the resolution complexity of random CSP 
inside the constraint tightness interval k  — 2 < t < 2k~ 1 ([113]). For k =  3, 
fixed c > j ,  and integer tightness t, our results actually show tha t t = 2  is 
the exact tightness threshold for the exponential resolution complexity since 
Bnjn t = 1 is simply random 3-SAT and has an exponential resolution 
complexity [37].

The existence of upper bounds characterized by unsatisfiable 2-SAT sub­
problems raises concerns tha t B ^ ff  might be still flawed even if the tightness 
t  is less than 2fc_1. However, this is not the case. Using a random hypergraph 
argument and the fact that a cycle of 2 -clauses is satisfiable, it can be shown 
that for any fixed t < 2k~l — 1 , B f f f  does have a phase transition with a 
threshold lower bounded by k^ _ y) ■

T h e o re m  4.2.3. For any fixed t <  2k~l — 1 and c =  ^  B2'$f is
asymptotically almost surely satisfiable.

Having established that B 2,*ff has a phase transition, it is obvious that the 
tightness t serves almost the same role as the parameter p in the (2+p)-SAT 
[9] to model the gradual changing from the first order transition to the second 
order transition. For each fixed constraint tightness 1 < t < 2fc_1 — 1, let 
Cfc(i) be the threshold of the constraint density of the satisfiability transition. 
When t  =  1 , we get the k-SAT model, and hence, Cjt(l) is exactly the k-SAT 
threshold. As the tightness t gradually increases. Ck(t) decreases to a limit
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Figure 4.1: The upper bound u(t) for the threshold c3(t) as a function of 
tightness t. Left figure: the function itself. Right figure the derivative of the 
function.

value larger than or equal to continuously or discontinuously. Theorems
1 and 2 indicate that for random CSPs, it is possible to have different types of 
easy-hard complexity pattern if we can pick an appropriate relation between 
constraint tightness and constraint density. The property of the threshold as 
a function of the constraint tightness and constraint density deserves further 
investigation, and the behavior of the upper bounds in Theorem 4.2.1, as 
depicted in Figure 4.1, is suggestive. Some empirical results related to these 
issues will be reported in Chapter 5.

4.3 Proofs of the R esults

4.3.1 Proof of Theorem 4.2.1

First, we give some definitions to be used to characterize CSP subproblems 
tha t imply unsatisfiable 2-SAT problems.

Definition 4.3.1 (k-Criss-Cross Loop). Let p > 0 be an integer and V  = 
{u0, v i , . . . ,  u3p} C X  =  { x ! ,... ,a :n} be a subset of variables. A k-criss- 
cross loop (k-cc-loop) C(V, E) is a k-uniform. hypergraph on X  whose hyper­
edges E  =  { E i , . . . ,  Ezp+o] form, two cycles Si =  { E i , . . . ,  Ep+1} and So =  
{Ep+o, . . . ,  Ezp+o} such that

1. Ei n Ep+i n Ep+o c  Eojp+o = {Vo}

2. Ei fl Ei+i =  {vi},Vl <  i < p;

3. Ei fl Ei+i = {ut-i}, Vp +  2 <  i < 3p +  1; and
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4. VI <  i < Zp +  2 ,1 Ei \  V\ =  k -  2, and {Ei \  V, 1 <  i <  3p +  2} are 
mutually disjoint.

We call the variables in V  the cyclic variables (or cyclic vertices) of the k-cc- 
loop. The variable vq is called the special variable o f the k-cc-loop.

V .-i

V l vj+i
"Ep+S

Vprt

Ei

V  
/V*

Ej+i E*+2

■3p+l

V*P

Figure 4.2: An illustration of a k-cc-loop. Only the cyclic variables 1 < i < 
3p. are shown. Each hyper-edge Ei contains two cyclic variables from V  and 
{k — 2) variables from X  \  V.

In a k-cc-loop, there are exactly two cycles tha t touch at the special vertex 
V q . This type of construct was first proposed by Franco in [60] and can be 
viewed as a generalization of the notion of simple cycles used in the study of 
the phase transition of random 2-SAT [36, 77]. The difference between the 
k-cc-loop defined in Definition 4.3.1 and those used in [36, 60, 77] is that the
former is defined on variables while the latter are defined on literals.

Definition 4.3.2 (Reducible k-cc-loop). Let C {V ,E) be a k-cc-loop where 
V  = { Vq . V i , . . . , V3 p} and E  = { E i , . . . ,  £ 3^+2}- A sequence of constraints 
C =  { C i,. . . ,  C3P+2} is said to be a reducible k-cc-loop on £(V, E) if

1. Each Ci has Ei as its constraint scope;

2. Each Ci implies a 2-CNF clause defined on two cyclic variables in Ei 
such that the resulting set of 2-CNF clauses is o f the form

Uq V u i . U i V u o , u f  V Us,  ■■■,  Up- 1 V Up,  u f V u o ;

U q  V U p j - 1 ,  t i - p ^ - i  V  U p + 2 ,  U p — 2  V  V p J - S ,  ,  V. Sp—1 V U s p ,  U s p  V U q ,

where U i  is a literal of the variable vt .

We call the above 2-CNF formula a contradictory bi-cycle on the k-cc-loop 
£{V. E).
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In the following, we assume that I = 3 p + 2 = o(y/n).

L em m a 4.3.1. Let B ^ , c  =  be a random CSP. Let C (V .E ) be a k-cc-
loop where V  =  {uo,^’i ---- ; u3p} is the sequence of cyclic variables and E  =

is the sequence of hyperedges. The probability that contains 
a reducible k-cc-loop on C(V, E ) is

( » ) « > •
where r is such that

1 . For t =  2k~2 — 1 +  a with 0 <  a  < 1,

r =  - 4 - ( l  +  2k- 2Q),
V2fc-2J

2. For t = 2k~2 +  j  +  a  with 0 <  a  < 1 and 0 <  j  < 2fc_1 — 2k~2 — 1,
a  k~2+j\ 0k- 2

r  =  V ^ 1 +  a TTT>- 
(*-») 3 + 1

Proof. Let N  =  (£) be the number of possible hyperedges. Let

C = { C u C2, . . . , Q }

be a  sequence of constraints where each constraint Ci has the hyperedge Ei 
as its scope. Then, the probability that contains the constraints
C = {C i,C 2, . . . ,C i}  is

1 f N  — l \  (  Ĉ 1 V ~ ,  x

o U - iH * ) 0(1)=(;?=Oe(1)' (43)
Let C  be a constraint that has Vi and Vj as two of its scope variables. Given

a literal u{ of the variable Vi and a literal Uj of the variable vj. we calculate
the probability that C  implies the clause Ui V uj. Here we give the details for 
the case of t =  2k~2 + j  + a  with 0 <  a  <  1 and 0 <  j  < 2fc_1 — 2k~2 — 1. The 
case of t = 2k~2 — 1 +  a  can be handled similarly.

Recall that a constraint contains a nogood set of size t = 2k~2 +  j  with 
probability 1 — a  and of size t — 2k~2 +  j  +  1 with probability a. As we 
are dealing with constraints over Boolean variables, it is easy to see that the 
constraint C  implies the clause U{ V Uj if and only if the set of nogoods contains 
the set of 2k~2 binary vectors (ui,Uj,*) with * being any binary vector in 
{0, l } fc-2. Therefore, the probability that C implies the clause m  V uj is

(2 k —2k ~ 2\  f 2 k —2k~ 2\
'  3 K i  \  , V 3 + 1  /

T -  , oA: N ( +  / 2“ \ Q
V2 k ~ 2 + j )  \ 2 * - 2 + j + l )

r -  k ~ 2+ j \  9 fc- 2

=  T ^ ( 1 + a ^ r r )- (4-4)(2j - s) j +  1
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As the constraint relations of the constraints are determined independently, 
the probability tha t the sequence of constraints C =  {C\, Cz,. . . ,  C/} implies 
the 2-CNF contradictory bicycle defined by a  literal sequence (u0. Ui,--- , u/_2) 
is r l.

Since both of the positive and negative literals of the special variable v0 
have to appear in a 2-CNF contradictory bicycle, there are 2l~2 ways to select 
the literal sequences to form the contradictory bi-cycle. Since the constraint 
tightness t is less than 2k~1. the events th a t the sequence of constraints C 
implies 2-CNF contradictory bi-cycles formed by different literal sequences are 
pair-wise disjoint. It follows that the probability for the sequence of constraints 
C to be a reducible k-cc-loop is

rl2l~2. (4.5)

The lemma is proved by combining (4.3). (4.4). and (4.5). □

L em m a 4.3.2. For any 2k~2 — 1 <  t < 2k~1. the expected number of k-cc-loops 
on which the random CSP # 2’j^ .c  =  (y, contains a reducible k-cc-loop is

4 (2rck(k -  1))'©(1)

where r is the same as in Lemma 4-3.1.

Proof. Let V = {v0,v i ,- - -  ,V3P} be a sequence of variables and C (V .E ) be 
the k-cc-loop defined on V. From lemma 4.3.1, the probability that the CSP 
contains a reducible k-cc-loop on the k-cc-loop C(V, E) is

m h "
The total number of k-cc-loops is

i- i

'  i= 0

n -  I +  1 — (k -  2 )i 
k -  2

U V  —1)!—  1 ^  1 + 1
I -  1 / {{k — 2)!)1 (n — I -h 1 — l(k — 2))!

1=  n«k~V
((fe -  2)!)I©(1)

/-i
where the term n  (" 2 number  of ways to choose the

i=0
variables for Ei \  V  for each hyperedge Et in E. □

P ro o f  o f T h eo rem  4.2.1. Assume that t €  (2fc~2 — 1,2*—1) and c =  ^  
satisfy one of the two conditions in Theorem 4.2.1. Let p = In2 n so that
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I = 0(1) ln2n. Let A[ be the number of k-cc-loops on which contains a 
reducible k-cc-loop. To prove the theorem, it suffices to show that

lim Pr{ Ai > 0} =  1.
71

(4.6)

Lemma 4.3.2 tells us that the expectation S[Aj\ of Ai satisfies

lim £[Ai] =  oo.

In order to use the second-moment method to establish (4.6), we claim 
tha t the variance var{A{) of Ai satisfies

For a k-cc-loop C{V, E) defined on V, let Ic  be the indicator function of
the event tha t 13%** contains a  reducible k-cc-loop on £(V, E). Then, Ai =
52 Ic  where the sum is over all the possible k-cc-loops. Given two k-cc-loops 
c

L  and M ,  we write £  ~  M  if £  and M. share some hyperedges. Since 
£[IcIm ] ~  £[Ic]£[Im ] =  0 whenever the two k-cc-loops £  and M  do not share 
any hyperedges, we have

Assume that L \ and £ 2  share q hyper-edges. Similar to the proof of lemma 
4.3.1, we have

var{A t) =  o{S[Aif).

var(Ai) =  J > a r ( l £ )  +  J 2  W cIm ] ~  S[IcW m \)-
C C ~ M

By the proof of lemma 4.3.2,

C ~ M

=  ( i ( 2 r c k(k -  1))‘)20(1).

Since
^ ~ 2 va r{Ic ) =  ^ £ [ I £](1 -  S [ I c ]) =  o (£ 2[A/]),
c

it is enough to show that
c

£  S[IcIM\ =  o(£2[^ ]). (4.7)

W cAIc*] < (4.8)

(4.9)

Therefore,
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To prove (4.7), we need to count the number of pairs of fc-cc-loops sharing 
q hyper-edges. The counting technique is similar to those used in [60]. The 
following concepts about the cyclic variables in a k-cc-loop are required. Let 
£  be a k-cc-loop and S  be a set of hyper-edges in L. We call a cyclic variable 
appearing in L

1. fixed if it belongs to at least two hyper-edges in S:

2. limited if it belongs to one hyper-edge in 5; and

3. free if it does not appear in any edges in S.

Write A q for the total number of pairs of k-cc-loops sharing q hyperedges 
and A q(S) for the total number of pairs of k-cc-loops sharing a given set S  
of q hyperedges. We need to consider two different cases depending on the 
structure of the set of shared hyperedges S: (1) S  is connected; and (2) S  has 
h >  2 connected components. In each of the cases, we also need to distinguish 
how many of the 4 special hyperedges, i.e., the hyperedges tha t contain the 
special variable v q , are shared.

C ase 1: (T h e  se t of sh ared  hyperedges S  is connected ) Let q — |S|. 
We consider three situations:

1. (Each variable that appears in S  is incident to at most two hyperedges 
of S  .) In this case, S' is a hyper-path, and consequently any k-cc-loop 
tha t contains S  will have q — 1 fixed cyclic variables, 2 limited cyclic 
variables, and (I — 1 — (q — 1) — 2) free cyclic variables. Therefore, the 
total number of pairs of k-cc-loops containing S  is

- 0 (1)

(*-W -9)0(l). (4.11)

where the term I is for the number of possible positions of 5  in a k-cc- 
loop. As the number of possible hyper-paths with q hyper-edges is less 
than

the total number of pairs of k-cc-loops sharing q hvperedges that form a 
hyper-path is less than

^ (5) • H -  ^ t - P2 ) ! ) ^ nW ~1)' n ' lt' 1>' 0 (1 )- (4' 12)
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2. (One variable v appears in three or four hyper-edges in S: The other 
variables are incident to at most two hyper-edges o f S.; And a =  |5I < 
p+ 2). In this case. 5  is a  hyper-tree consisting of three or four hyper-path 
branches that join at the special variable v, as shown in Figure 4.3. If the 
degree of v in S  is 3, then any k-cc-loop that contains S  will have q — 2 
fixed cyclic variables, 3 limited cyclic variables, and I — 1 — (q — 2) — 3 free 
cyclic variables. Since the special variable v appears in S. the position 
of S  in a k-cc-loop containing S is fixed. It follows th a t the number of 
pairs of k-cc-loops tha t share S  is

l-q \ 2

n 4 ((/c _2)!)2 (i-< 7) n ' ^  1)a (4 -13)

The total number of such S. hyper-trees consisting of 3 hyper-path 
branches that join a t special variables, is at most

-  -

Then, the total number of pairs of k-cc-loops whose shared hyper-edges 
form a hyper-tree consisting of three hyper-path branches tha t join at 
the special variable is at most

1), 0 (1) (414)

Similar calculations show that the total number of pairs of k-cc-loops 
whose shared hyper-edges form a hyper-tree of four hyper-path branches 
that join at a special variable is less than (4.14).

3. (One variable v appears in three or m,ore hyper-edges in S; The other 
variables are incident to at most two hyper-edges of S ; And q =  |S| > 
p + 3 ). In this case, in addition to the cases where the shared hyperedges 
form a hyper-path or a hyper-tree consisting of hyper-path branches, 
we need to consider the situation where S  forms a unicycle. If 5  forms 
a unicycle, then any k-cc-loop that contains S  should have q — 1 fixed 
cyclic variables and a t least 1 limited cyclic variable. The total number 
of k-cc-loop pairs sharing a set S  of hyper-edges tha t form a unicycle is 
at most

1
n2((k -  2)!)2i-?

•52
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Figure 4.3: An illustration of a set of q =  6 shared hyper-edges that form a 
hyper-tree containing three hyper-path branches. The variable v appears in 3 
hyper-edges. There are 4 fixed cyclic variables, 3 limited cyclic variables.

C ase 2: (T he  s e t S  o f  sh a re d  hypered g es form  h >  2 connec ted  
com ponen ts)

In this case, the total number of sets of shared hyperedges is more than 
tha t in Case 1. But this is compensated for by the decreasing number of of 
free cyclic variables. In the following, we discuss in detail the case where these 
h components are all hyper-paths. Other cases can be handled similarly. Let 
hi be the number of components in S  th a t are isolated hyper-edges, ho be the 
number of components in S  tha t contain 2 hyper-edges, and h3 =  h — hi — ho 
be the number of components in S  tha t are hyper-paths of length greater than
2. There are 2hx +  2ho +  2h3 limited cyclic variables, ho + ((q — h x — 2ho) — h3) 
fixed cyclic variables, and consequently l — l  — q — h free cyclic variables. Thus, 
the number of pairs of k-cc-loops tha t share S  is at most

A q(S) =  ^ lhk2hn l~1~q~k ^

= / T ^ y _ L n2(*-i)(f-*) l 0(1) (4 16)
[ n 2 J  n2 { ( k - 2 )\)2̂  [ ) ' 1 '

For the total number H  of hyper-edge sets that form h hyper-path compo­
nents, note that there are (h2 + ((q—hx — 2ho)—h3)) =  q—h cyclic variables that 
are non-endpoints of the hyper-path components. Once these q — h variables 
are fixed, there are at most nkhl ways to choose the single-edge components, 
n2(k-i)ho ways to choose the hyper-edges for the hyper-path components whose 
length is 2, and n2̂ fc_1̂ 3(fc”0) q hl ~h2~~h3 ways to choose the interior hyper­
edges for the hyper-paths whose length is greater than 2. Therefore, the total 
number of hyper-edge sets of size q that form h hyper-path components is at 
most

na-hrikhi+2(k-l)(h2+h3)-k(h1+2h2+2h3)+2(hi+2h11+2h3)+(k-2)q *

_ y l ' J - h r ) 2 ( f n + h 2 + h 3 ) + ( k — 2 ) q

=  7l''T,{k- X)q

((fc -  2)')* -h

( ( k -  2)!)*-fc'
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It follows tha t the total number of pairs of k-cc-loops sharing q hyper-edges 
tha t form h hyper-path components is a t most

((.k — 2 )!)2l~v'

Since h > 2  and I =  0(Zn2(«)), we conclude th a t the total number of pairs 
of k-cc-loops sharing q hyper-edges that form h hyper-path components is less 
than Case 1, formula (4.12).

In summary, the number of pairs of k-cc-loops sharing a set of hyper-edges 
tha t form h ,h >  1, components is dominated by the case of h =  1. Therefore, 
the total number of pairs of k-cc-loops sharing a set of q hyper-edges can be 
bounded as follows:

’ j  if 5 >  P +  2. (4' ! '>

where the term “0(Z)” is a result of summing over all the ways in which the q 
hyper-edges are shared, i.e., the number of components and the structures of 
the components. Based on formulas (4.10) and (4.17), we have

<-rr t t V"' f 2r c k \ \2l~q
5Z t £ = 55 ( nk-1 )

C ~ M  g = l  '  '

p+ i

=  0 {l3) \ ( 2rck(k -  l ) )21 J2(2rcfc(fc -  I) )-9 
71 9 = 1

1 ^
+0 (l)— (2rck{k -  I ) ) 21 ^  (2rcfc(fc -  l ) ) -9

n-
9 = P + 2

r \ ( ]Z \  P+1 1
=  5 2 ( 2rcMk -  l ) ) -9 +  £2(A i ) ° ( l) 5 2  (2rcfe(fc -  I))"9

9 = 1  9 = p + 2

=  £2(Ai) + 0(l)(2rck(k  -  l))-(p+2)^

=  o(£2(Al)):

where the last two equations are because of the assumptions that 2rck(k — 1) > 
1 and Z =  3p+2 =  0(Zn2n). This establishes the formula (4.7) and thus, proves 
the theorem. □
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4.3.2 Proof of Theorem 4.2.3

The proof of Theorem 4.2.3 is based on the concepts of and the results on 
hyper-trees and unicycles in random hypergraphs.

Consider the random k-homogenous constraint hypergraph Qk(n,m ) of 
Bn’!m ■ From [97] (see Lemma 2.2.1). we have for any c <  f.-̂ y  Qk(n, m ) w hp 
consists of hyper-trees and unicyclic components. In this case, an instance of 
the random CSP is satisfiable if and only if the subproblems corresponding to 
the components of the constraint hypergraph are all satisfiable. A subproblem 
corresponding to a hyper-tree is satisfiable [115]. In the following, we prove 
tha t a subproblem corresponding to a  unicyclic component is also satisfiable 
if the tightness of the constraint is less than 2k~1. We break up the task into 
three lemmas.

Lemma 4.3.3. For any uncyclic k-homogenous hypergraph Q with the edge 
set E  = (Ei, - ■ ■ , Et), we have

\E in E j\  <  2, VI <  i , j  < t.

Proof. Assume that a = \E, D Ej\ > 2  and let

G '=  ( V ,E - { E i} ) .

Notice that G' has at most k — a + 1 connected components {Gj, • • • , Gfc_a+i}. 
Since a connected hypergraph has at least an excess of -1, we have

ex(Q) =  ex(Gj) +  • • • +  ex(G k-ajr\) +  (k — 1) >  a — 2 > 0.

A contradiction to the unicyclicness of Q. □

Due to Lemma 4.3.3, we only need to  consider unicycles in which edges 
have intersections of cardinality of at most 2.

Lemma 4.3.4. Let C be a CSP such that

1. Its constraint graph Q(V. E) is unicyclic ;

2. The tightness t is less than 2k~1; and

3. There are a pair of hyper-edges Ei and Ej with \Ei fl Ej\ = 2 .

Then, C is satisfiable.

Proof. Let G' =  (V, E —{Ei}). Since \EiC\Ej\ =  2, there should be exactly k — 1 
connected components in G' such that (1) one of the components contains the 
intersection EiC\Ej, and each of the rest of the components contains exactly one 
vertex from Ei — Ej; and (2)each of the connected components has an excess 
of -1. Otherwise, Q would have an excess larger than 0. The satisfiability of 
the CSP can be shown by first satisfying the constraint corresponding to the 
hyper-edge Ei and then satisfy other constraints. This is possible because for 
the tightness t < 2k~l . there is always a t least one assignment that satisfies E, 
and E; simultaneously. □J  *

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Now, we axe in a position to deal with the situation where hyper-edges 
have an intersection of size at most 1.

L em m a 4.3.5. Let C be a CSP such that

1. Its constraint graph G(V. E) is unicyclic ;

2. The tightness t is less than 2k~l ; and

3. For any pair of hyper-edges Ei and Ej; we have with ] Ei Pi Ej | <  1. 

Then. C is satisfiable.

Proof. In this case, the constraint hypergraph Q(V. E) contains one cycle F  =  
(Fi, • • • , Fi) of the form

IF  n F +1| =  l, l <  i < i - 1 , |F  n  F |  =  l.

and some additional hyper-tree branches attached to the cycle. If there is a 
partial assignment satisfying the constraints in the cycle, then we can always 
extend it to satisfy the constraints in the hyper-tree branches. To see there 
exists such a partial assignment, let y{ =  F n F + i  and yn = Fn r\F\. Consider 
the two possible assignments 0 and 1 to yx. If we assign yx = 0 or 1, we can 
find assignments to yi: 2 < i <  n — 1 to satisfy F l ,  • • • , Fn- X. Assume tha t yn is 
forced to take the value a0 for the assignment yx =  0 and ai for the assignment 
2/i =  l. Since there are at most 2fc_1 — 1 restrictions to the variables in E x, 
we know- at least one of the pairs (yx =  0, yn = ao) and (yx =  1 ,yn = ai) 
will satisfy the constraint corresponding to F l. This shows the existence of 
a  partial assignment tha t satisfies the set of the constraints corresponding to 
the cycle F  =  {Fl, - • • , F } . □

4.4 D iscussions

After the results in this chapter first appeared in [72], Molloy and Salavatipour 
published their independent work in which the resolution complexity of B f^ f  
for the general case of d > 2 is investigated [116]. For the case of d = 2, 
their results lead to the same bounds as those presented in this chapter. More 
importantly, their work shows that for t € (2fc-2,2fc_1], these bounds are in fact 
the exact thresholds, i.e., when the constraint density ^  is below these bounds, 

almost surely has an exponential resolution complexity. Their work also 
proves that B f^ f  almost surely has an exponential resolution complexity for 
t  e  ( f c - l , 2 fe- 2).

In summary, the resolution complexity of the model B f f l  has now been 
fully characterized.
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Chapter 5

C onsistency and B etter  
Random  CSP M odels

5.1 Introduction

One of the significant problems with existing random CSP models with bounded 
domain size, including those that have been proposed recently, is tha t as a 
model parameter, the constraint tightness has to be very low in order to have 
non-trivial threshold behaviors and guaranteed hard instances at phase tran­
sitions. For random CSPs with increasing domain size, there is still a certain 
degree of restriction on the possible value of the constraint tightness.

As we have discussed in Section 3.3.1, except for a small range of the 
constraint tightness, all of the four classical random CSP models are trivially 
unsatisfiable with high probability due to  the existence of flawed variables. 
For the case of binary CSPs, the constraint tightness has to be less than the 
domain size in order to avoid flawed variables. Furthermore, the results in 
Chapter 4 and in [116] show that even for a moderate constraint tightness, it 
is still possible for these classical models to  have a polynomial complexity due 
to the appearance of embedded easy subproblems.

Several new models have been proposed to overcome the trivial unsatisfi­
ability. Gent et al. [75] proposed the flawless random model for binary CSPs 
based on the notion of a flawless conflict matrix. Instances of the flawless ran­
dom CSP model are guaranteed to be arc-consistent, and thus do not suffer 
asymptotically from the problem of flawed variables. Achlioptas et al. [S], 
proposed a nogood-based CSP model, the model E, and showed tha t it has 
non-trivial asymptotic behaviors. Random CSP models with a  (slowly) in­
creasing domain size have also been shown to be free from the problem of 
flawed variables and have interesting threshold behaviors [140, 129]. How­
ever, none of these models has specifically addressed the fundamental cause 
and requirement of a low constraint tightness in order to have a guaranteed 
exponential complexity. The flawless random CSP does have a true phase
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transition of the solution probability at a high constraint tightness, but as 
we will show later, it still suffers from the embedded easy unsatisfiable sub­
problems at a moderate constraint tightness. In CSP models with increasing 
domain size, there is still an obvious restriction on the possible values of the 
constraint tightness. In model E. it is impossible to have a high constraint 
tightness without making the constraint (hyper)graph very dense (see Lemma 
3.2.2).

In this chapter, we study the possibility of designing non-trivial random 
CSP models that allow a much higher constraint tightness. This chapter is 
based on [73] published in 2004. We prove that there are strong connections 
between the resolution complexity of (randomly-generated) CSP instances and 
the constraint consistency, a notion th a t has been developed to improve the 
efficiency of CSP algorithms. These connections are somewhat surprising since 
almost all of the existing CSP algorithms exploit, in one way or another, the 
constraint consistency to improve their performance. We propose a scheme to 
generate consistent random CSP instances that can potentially have a high 
constraint tightness. Detailed experimental results are also reported to illus­
tra te  the sensitivity of instance hardness to  the constraint tightness in classical 
CSP models and to show that instances generated by our model are indeed 
much harder at phase transitions than previous CSP models.

5.2 C onsistency and R esolution Com plexity of 
Random  CSPs

Throughout this chapter, we consider binary CSPs defined on a domain D  =  
(1 ,2 ,- •• , d} such tha t |D| =  d. Elements in D will usually be denoted by 
lower-case Greek letters, a, (3, etc.

Constraint consistency is perhaps one of the most important concepts in the 
constraint programming literature [108]. Almost all of the (complete) CSP al­
gorithms exploit, in one way or another, constraint consistency to improve their 
performance. Much effort has been spent to design efficient data  structures 
and algorithms to achieve and maintain a certain level of constraint consistency 
before or during the backtracking search. For example, over seven algorithms 
with increasing efficiency have been proposed to maintain arc-consistency— 
the lowest level of non-trivial constraint consistency. For some special type of 
constraints, one has to solve a maximum bipartite graph matching problem to 
achieve constraint consistency.

D efin ition  5.2.1. Let (X  = {xi, • • • , x n},C, D ) be a binary CSP instance and 
k >  1 be an integer. We say that the instance is k-consisten t i f  for any set 
of (k — 1) variables X k -i  =  {xjj, • • • , any assignment {<5̂ , - • • 5ik_, } E
Dk~l to X k -i satisfying the sub-instance induced on X k - i, cmd for any other
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variable Xik 6 l  \  X k_i, there is an assignment 5ik to x ik such that

{<5jj. • • • 5ik_ j .

satisfies the sub-instance induced on X ^ -i  U
A CSP instance is called s tro n g ly  k -co n s is ten t i f  and only i f  it is j-  

consistent fo r each j  < k. Of special interest are strong k-consistency for k = 
1,2,3, also known as node-consistency, arc-consistency, and path-consistency.

5.2.1 CNF Encoding of CSPs

Mitchell [113] developed a  framework in which the notion of resolution com­
plexity is generalized to CSPs and the resolution complexity of randomly- 
generated CSP instances can be studied. In this framework, the resolution 
complexity of a  CSP instance is defined to be the resolution complexity of a 
natural CNF encoding which we give below.

Following [113], we call an expression of the form x  : a a literal for a 
CSP. A literal x  : a  evaluates to TRUE at an assignment if the variable x  is 
assigned the value a. W ith this notation, a nogood of a CSP can be viewed 
as a disjunction of the negations of a set of literals x; : a i: 1 < i < I, and will 
be denoted by rj(xi : a*. • • • ,x i : <Zi).

Definition 5.2.2 (CNF Encoding and Resolution Complexity of CSPs).
Given an instance T  of a CSP on a set of variables {mj, - * - ,x n} with the 
domain D  =  {1,2, - • • , d}, its CNF encoding CNF(T) is a CNF formula con­
structed as follows:

1. For every CSP variable Xi, there are d Boolean variables {xt : 1 , x, :
2, . . . , X i  : d} each o f which indicates whether or not Xi takes on the 
corresponding domain value.

2. For every CSP variable Xi, there is a clause

X{ : 1 V Xi : 2 V • • • V X{ : d

on the d Boolean variables making sure that Xi takes at least one of the 
domain values;

3. For every nogood (5i, • • • , 5k) E D k of each constraint C with the scope 
var(C) =  {a:*!, • • • ,Xik}, there is a clause

x h : 8i V • • • V x ik : 5k

to respect the nogood.

The resolution complexity o f T i s  defined to be the resolution complexity of its 
CNF encoding CNF(T).
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It is not hard to see tha t a CSP instance T  is satisfiable if and only if its 
CNF encoding CNF(T) is satisfiable:

1. If (a i, • • • ,a„) € I?" is a satisfying assignment, then the CNF encoding 
CNF(T) can be satisfied by the tru th  assignment X; : ai =  T R U E  and 
xi : f3 = F A L S E  for every fi ^  ai.

2. For any truth assignment that satisfies the CNF encoding CNF(T), the 
CSP instance can be satisfied by assigning Xi to any domain value a  for 
which Xi : a = T R U E .

In [113. 116], upper bounds on the constraint tightness t were established 
for the random CSPs to have an exponential resolution complexity. For ran­
dom binary CSP the bound is (1) t  < d — 1; or (2) t < d and ^  is
sufficiently small. For a moderate constraint tightness, as has been shown 
in Chapter 4 (see also [116]), it is still possible for these classical models to 
have an asymptotically polynomial complexity due to the existence of embed­
ded easy subproblems. The primary reason for the existence of embedded 
easy subproblems is tha t with a  moderate constraint tightness, constraints 
frequently imply constraints which force a pair of involved variables to take a 
single value-tuple.

Definition 5.2.3 (Forcers [116]). A constraint C j with var(Cf) =  {x^ x2} 
is called an (a, fi)-forcer i f  its nogood set is

NG(Cf ) = {^(xi : a , x 2 : 7 ) ;7  #  fi}-

We say that a constraint C  contains an (a, fi)-forcer C f defined on the same 
set of variables as C  z/N G (C/) C NG(C).

Definition 5.2.4 (Forbidding cycles and flowers [116]). An a-forbidding 
cycle for a variable Xq is a set o f constraints

"(C1 (x0, Xi), Cofyi, X2) , . . . , CV_ 1 (xr_2 , Xr—\), Cr(xr_ i, X0)}

such that C i(xo.xi) is an (a, Cki)-forcer. Cr (xr_i,xo) is an (ar_i, a T)-forcer 
(a r 7  ̂ a), and Ci(xj_i,Xj) is an (a ,^ .a f)-fo rcer  (2 <  i < r — 1 ). We call x0 

the center variable of the a-forbidding cycle.
An r-flower R  = ,Cd} consists o f d (the domain size) forbidding

cycles each of which has the length r  such that

1 . Ci. 1 <  i < d, have the same center variable x;

2 . each Ci is an oti-forbidding cycle of the center variable x; and

3. these forbidding cycles do not share any other variables.
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5.2.2 Consistency and Resolution Complexity of Ran­
dom CSPs

In the following, we show that it is not necessary to put restrictions on the con­
straint tightness in order to have a guaranteed exponential resolution complex­
ity. Based on similar techniques as those used in the literature [113, 116, 21], 
we will show that if in B ^ f ,  each constraint is chosen in such a way tha t the 
resulting instances are always strongly ^-consistent (k >  3), then has an 
exponential resolution complexity no m atter how large the constraint tightness 
is.

T h e o re m  5.2.1. Let B%^[SC] be a random CSP such that

1. its constraint graph is the standard random graph G(n, m); and

2 . for each edge, the constraint relation is such that any instance of B^'lf[SC] 
is strongly k-consistent for any given k >  3.

Then, the resolution complexity of B ^ f [ S C ]  is w h p  exponential.

Proof. See Section 5.5. □

Using the tool developed in [116], the requirement of strong k-consistency 
for CSP instances to have an exponential resolution complexity can be further 
relaxed.

D efin ition  5.2.5. A CSP instance is called weakly path-consistent i f  it is arc-
consistent and satisfies the conditions of path-consistency for paths of length 3

or more.

T h e o re m  5.2.2. Let B ^ f\W C \ be a random CSP such that

1 . its constraint graph is the random graph G(n, m); and

2 . for each edge, the constraint relation is such that any instance of B' f ff  [W C ] 
is weakly path-consistent and contains no forcer.

Then, the resolution complexity of B%%£[WC] is almost surely exponential.

Proof See Section 5.5. □

5.3 Consistency Core and Harder Random CSP  
M odel w ith High Constraint Tightness

Having established that random CSPs with a certain level of consistency have 
an exponential resolution complexity, the question remaining to be answered
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is whether or not there are natural random CSP models that are guaranteed to 
be strongly ^-consistent or weakly path-consistent. In fact, the CSP-encoding 
of the graph k-coloring problem is strongly ^-consistent. Another example 
is the flawless random binary CSP proposed in [75] that is guaranteed to be 
arc-consistent, i.e., strongly 2-consistent. In this section, we discuss how to 
generate random CSPs with high tightness tha t are strongly 3-consistent or 
weakly path-consistent.

5.3.1 Flawless Random CSPs

Gent, et al [75] proposed the flawless CSP model to overcome the triviality 
of the classical random CSP models. A key observation is that the existence 
of flawed variables might be a direct result of the fact that classical random 
CSPs are not arc-consistent.

Definition 5.3.1 ( B ^ [  1], Flawless Random  Binary CSP). In the flaw­
less random binary CSP [I], the constraint graph is defined in the same 
way as that in For each constraint edge, the constraint relation is spec­
ified in two steps:

1 . Choosing a random permutation tt of D  = {!,-■■ d}; and

2. Selecting a set of t value-tuples uniformly at random from D x D \  
{ ( z , 7r ( f ) ) ,  1 <  i < n ) }  as the nogood set.

For reasons tha t will become clear later in this section, we have used a 
suffix “[1]” in the symbol B ^ f [  1] to indicate the fact that in the flawless 
random CSP, each value of each variable in any constraint is guaranteed to have 
one support value from the other variable. Consequently, a flawless random 
CSP is always arc-consistent and does not have flawed variables. However, 
even though the flawless random binary CSP B^~f [1] does not suffer from the 
problem of trivial unsatisfiability, it can be shown tha t B ^ [  1] asymptotically 
has embedded easy subproblems for t > d — 1 in the same way as the random 
binary CSP model B ^ .

Theorem 5.3.1. For t > d — 1, there is a constant c* > 0 such that for any 
^  >  c*, whp B ^ f \  1] is unsatisfiable and can be solved in polynomial time.

A detailed proof of Theorem 5.3.1 can be found in Section -5.5. The idea 
is to  show that for ^  > c*, the flawless random CSP 1] contains whp 
an unsatisfiable subproblem called an r-flower. Furthermore, if a binary CSP 
instance contains an r-flower, then any path-consistency algorithm (see, e.g., 
[108]) will produce a new CSP instance in which the center variable of the 
r-flower has an empty domain.
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5.3.2 Generalized Flawless Model and Consistency Core

We are now in a position to introduce our new CSP model, the generalized 
flawless random CSP. which enforces a higher level consistency and is guaran­
teed to have an exponential resolution complexity.

Definition 5.3.2 (23^£[/C], Generalized Flawless Random Binary CSP).
In  the generalized flawless random binary CSP B f f f  [/C], K is a random bipar­
tite graph with each part being the domain D of a variable. The constraint 
graph is defined in the same way as that in B ffif . For each constraint edge, 
the constraint relation is specified as follows:

1 . Generate the bipartite graph JC = (D2, E(IC)) satisfying certain proper­
ties; and

2. Select a set o f t  value-tuples wniformly at random from (D  x D ) \  E{JC) 
as the nogood set.

The idea behind the generalized flawless random binary CSP is tha t by 
enforcing a subset of value-tuples (specified by the edges of the bipartite graph 
JC) to be always compatible, it is possible that the generated CSP instances 
will always satisfy a certain level of consistency. If we define JC to be a 1- 
regular bipartite graph, then B ffif [Af] reduces to the flawless random binary 
CSP model 1].

The following result shows tha t a connected and /-regular bipartite graph 
JC with sufficiently large I can be used to generate strongly 3-consistent random 
CSPs or weakly path-consistent random CSPs.

Theorem 5.3.2. Let JC be an l-regular connected random bipartite graph. 
Then, B^f[JC\ is always

1. strongly 3-consistent i f  and only i f  I > and

2 . weakly path-consistent i f  and only i f  I >

Proof. We only prove the case for the weak path-consistency and the case for 
the strong 3-consistency is similar.

Consider a path xi — x 2 — x 3 — x 4 and any assignment x 4 = i and x 4 = j .  
There are I values of xo tha t are compatible to xi = i and there are I values 
of xz tha t are compatible to x 4 = j .  Since the bipartite graph is connected, 
there are at least / +  1 values of x 3 tha t are compatible to x x =  i. Therefore 
if I > (d — l) /2 , there must be a value of x 3 that is compatible to both x\ =  i 
and x 4 = j.

To see the “only if’ part, we will show that there is a connected bipar­
tite  graph K {V ,U ) on two sets of vertices V = {uj,uo,• • • ,ud} and U =  
{vi .uz,  • • • , Ud} such that the neighbors of the first I vertices in V  are the first
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I + 1 vertices in U. First, we construct a complete bipartite graph on the ver­
tex sets {v i,v2., • • • , vi} and { u i , u 2, • • • , u/}; second, we construct an /-regular 
connected bipartite graph on the vertex sets {'^+1. - • • . Vd} and {ni+1. • • - . Ud} 
such that (u/+i,u/+i) is an edge. We then replace the two edges (vi.u i) and 
{vi+i, ui+i) with two new edges (vL,ut+1) and (vi+i,ui). This gives the bipartite 
graph K(V.U).  The existence of such a bipartite graph K(V,U)  shows that 
when I < it is possible to have a constraint relation such that a constraint 
path of length 3 is not consistent. □

The generalized random CSP model Bff2̂  [/C] with a connected regular bi­
partite graph K  allows a constraint tightness up to (d̂ d- The above theorem 
also indicates that this is the best possible constraint tightness when using an 
arbitrary connected bipartite graph fC. To achieve higher constraint tightness, 
we propose a recursive scheme to  generate a bipartite graph /C that is more 
efficient in its use of edges.

To facilitate the presentation, we call an /-regular connected bipartite graph 
K { V:V)  a strong kernel (or a weak kernel) on V  if I > ^  (respectively.

D efin ition  5.3.3 (C o n sisten cy  C ore). Let D x = Do be the domains of two 
variables with |D i| =  \D2\ =  d. The consistency core for the domains D\ and 
Do is a bipartite graph Qcorc{D\, Do) on D x and Do. and is defined recursively 
as follows.

1. I f  there are integers s , c >  3 such that d =  s x c, then

(a) partition D i,i — 1,2, into s blocks { A j, 1 <  j  <  s} of equal size c;

(b) build a strong (or weak) kernel K(S,  S) on the set S  =  {1,2, • • • ,s}; 
and

(c) let the edge set of QCOTC{I)\,D 2) be

U{the edge set of G crdD u, D2j) :
(■i , j ) are adjacent in the kernel K{S.S)} .

2. Otherwise. GCore{Dx. Do) is defined to be the strong (or weak) kernel on 
D\ and Do.

It should be noted tha t in the above definition, if the domain size d (or 
d /2 ) is prime, the recursive steps will not happen and thus, the consistency 
core is simply a strong or weak kernel on D\ and Do. One way to make it 
work for prime numbers is to consider a fixed subset D' of the domain D  such 
tha t \D'\ can be factorized. Once a consistency core has been built on D '. a 
consistency core on D  can be obtained by padding each element in D \ D '  to 
some block of the A -partition and making it adjacent to every element in any 
other adjacent block.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



T h eo rem  5.3.3. I f  a consistency core is used for K, then £>^[/C] is

1. strongly 3-consistent i f  and only i f  I > f ; and

2 . weakly path-consistent i f  and only i f  I >

Proof. By induction on the domain size and using the previous theorem. □

Using the consistency core, we can define random CSP models with con­
straint tightness well above ^ 7 ^ . For example, if the domain size d is 12, 
the random generalized random CSP model B ^ [ K ]  with a consistency core 
K. allow a constraint tightness up to 144 — 6  * 8  =  96.

Generally, if {.sx, s2, . . . .  sg} is the sequence of partition sizes used in the re­
cursive steps when constructing a consistency core /C, then the highest achiev­
able constraint tightness in the corresponding CSP is

k= 1

We can therefore formulate the problem of finding an optimal sequence of 
partitions as the following optimization problem:

Given an integer d > 0, find a factorization

d = f [ s k
fc= 1

<?
such that I"] is minimized.

k= 1

In our generator, we have implemented a dynamic programming algorithm 
to generate such an optimal partition sequence.

E x am p le  5.3.1. Consider the consistency core JC depicted in Figure 5.1 where 
the domain size is |D | =  9. The domain of a variable is partitioned into 
3 blocks of size 3. The dashed lines are the edges of a strong kernel on the 
blocks. For each pair of blocks connected by a dashed line (e.g.. the pair circled 
by the grey line), we build a 3 by 3 consistency core as depicted at the bottom 
of the figure. The edge set of the consistency core K. consists of all the edges 
of all the 3 by 3 consistency core. In fact, there are in total 36 edges in K,. 
An instance of this CSP model can be viewed as a generalized 3-colorability 
problem.
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Figure 5.1: A special type of consistency core with the domain size 9

5.4 Experim ents

In this section, we report results of two sets of experiments designed (1) to 
study the effect of an increase in the constraint tightness on the typical-case 
complexity; and (2) to compare the typical-case instance hardness between the 
classical random CSPs, the flawless random CSPs, and the generalized flawless 
random CSPs.

5.4.1 Effect of an Increase in Constraint Tightness

Upper bounds on the constraint tightness have been established for random 
CSPs to have an exponential resolution complexity for any constant constraint 
density ^  [72, 116]. It was further shown in [116] that for the constraint 
tightness above the upper bound, the existence of forcers can be compensated 
for by sufficiently low constraint-to-variable ratio so that one can still have 
typical instances with exponential resolution complexity.

We have conducted the following experiments to gain further understanding 
of the effect of an increase in the constraint tightness (and hence an increase 
in the likelihood of the existence of a forcer in a constraint) on the typical- 
case hardness of random CSPs. The experiments also help understand the 
behavior of CSP models, such as the flawless CSP model, that onlv enforce 
arc-consistency (strong 2-consistency).

In the experiments, we start with a random 3-CNF formula whose clauses 
are treated as constraints. We then incrementally increase the tightness of 
each constraint by adding more clauses defined over the same set of variables. 
There are two reasons why we have based our experiments on random SAT 
models. First, the typical-case complexity of the random SAT model is well- 
understood and therefore, experiments based on the random SAT model will
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enable us to have an objective comparison on the impact of an increase in 
the constraint tightness. Secondly, the complexity of Boolean-valued random 
CSPs obtained by increasing the tightness of the random 3-CNF formula has 
been characterized in great detail. We have a clear picture regarding the 
appearance of embedded easy subproblems in these Boolean-valued random 
CSPs [72],

Let m be a random 3-CNF formula with n  variables and m  clauses. We 
construct a new random 3-CNF formula . F ^  as follows:

1. contains all the clauses in

2. For each clause C  in F ^ m. we generate a random clause on the same set 
of variables of C, and add this new clause to with probability a.

In fact. 3-^% is the random Boolean CSP model with a real-valued con­
straint tightness 1 -i- a and has been discussed in [72], For a >  0, it is easy to 
see tha t is always strongly 2-consistent, but is not 3-consistent asymp­
totically with probability 1.

Figure -5.3 shows the median of the number of branches used by the SAT 
solver zChaff on 100 instances of J F ^  with n = 250. Figure 5.2 shows the 
solution probability of the same model.

As expected, an increase in the tightness results in a shift of the location 
of the hardness peak toward smaller m /n .  More significant is the magnitude 
of the decrease of the hardness as a result of a small increase in the constraint 
tightness. For example, we know [72] tha t the upper bounds on m /n  for 
to have an exponential resolution complexity are respectively 23.3 if a =  0.1 
and 11.7 if a = 0.2. Since the constraint-to-variable ratios m /n  considered 
in the experiment are well below' these bounds above which embedded 2SAT 
subproblems appear with high probability, it seems that the impact of forcers 
on the instance hardness goes beyond simply producing embedded easy sub­
problems. As forcers can appear a t a relatively low constraint tightness even 
in CSP models such as the flawless model, approaches that are solely based 
on restricting constraint tightness to generate interesting and typically hard 
instances cannot be as effective as has been previously believed.
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Figure 5.2: Thresholds for the solution probability in the model with 
n  =  250. The z-axis is the solution probability. The axis with the range 1—2 
is for the parameter 1 +  a and the axis with the range 1—6 is for the clause 
density m /n .
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Figure 5.3: Effects of an increase in the constraint tightness on the instance 
hardness for with n  =  250. The z-axis is the median number of branches 
in log-scale. The axis with the range 1.2— 1.8 is for the parameter 1 +  a and 
the axis with the range 2.5—5.5 is for the clause density m /n.
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5.4.2 Comparisons between Three Random CSP Mod­
els

This set of experiments is designed to investigate the effectiveness of the gen­
eralized flawless random CSP model. We generate random instances of the 
classical random models B ^ m, the flawless random model £>^[1], and the 
generalized random model B ^ m[K) with domain size d =  4. For B ^ lm{K}. we 
use a 2-regular connected bipartite graph as 1C. These instances are then en­
coded as CNF formulas and solved by the SAT solvers zChaff [141] and Satz. It 
looks unnatural th a t we have tested random CSP instances by converting them 
to SAT instances and using a SAT solver. This is justified by the following 
considerations. First, all of the existing research on the resolution complexity 
of random CSPs has been carried out by studying the resolution complexity of 
a SAT encoding of CSPs as described in Section 5.2. We have used the same 
encoding in the experiments. Secondly, it has been shown that as far as the 
complexity of solving unsatisfiable CSP instances is concerned, many of the 
existing CSP algorithms can be efficiently simulated by the resolution system 
of the corresponding SAT encodings of the CSPs [112].

ZChaff

As Figure 5.4 shows, the threshold of the solution probability of the generalized 
random CSP model B ^ m[K] is much sharper than those of B ^m and B%*m[ 1]. 
More importantly, instances of Bi*m{K] at the phase transition are much harder 
than those of B ^m and B ^ m[ 1], as shown in Tables 5.1-5.3 where the median of 
the number of branches of zChaff for 100 instances of each of the three random 
CSP models is listed a t different stages of the solubility phase transition: Table 
5.1 is for the constraint density ^  where the maximum median of the number 
of branches is observed; Table 5.2 is for the constraint density ^  where the 
solubility probability is less than 0.1; and Table 5.3 is for the constraint density 
~  where the solubility probability is greater than 0.9.

It can be seen th a t while the classical random CSP model and flawless 
matrix CSP model have little difference, the proposed random CSP model 
Bf^m[lC\ with 1C being a connected 2-regular bipartite graph is significantly 
harder in all of the cases except row 1 in Table 5.3. It is also interesting to 
notice tha t the most significant difference in the hardness among the three 
models is at the phase where instances of the random CSP models are almost 
always unsatisfiable. A plausible explanation for this phenomenon is that 
consistency is a property tha t may also help improve the efficiency of search 
algorithms in solving satisfiable instances.

The big differences between the proposed model and the other two models 
(the standard model and the flawless model) can be seen in Figure 5.5 where 
we plot the median number of branches of zChaff on 100 sample instances as 
a function of the constraints-variables ratio.
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Number of Branches
[n.t) Bdx7 1 .777,

(100,6) 235 228 391
(300,6) 2050 2017 5337
(500,6) 7655 8123 93649
(300,8) 843 1010 2785

Table 5.1: Maximum Median Number of Branches of zChaff on random in­
stances of three random CSP models , over all Domain size d =  4 and /C 
is 2-regular.

Number of Branches
(n ,t) Bd'1^ n j n Bd<t 11 B £ n [ l C \

(100,6) 128 178 312
(300,6) 840 1305 5311
(500,6) 2266 2553 52638
(300,8) 204 269 1118

Table 5.2: Median Number of Branches of zChaff on random instances of three 
random CSP models at the smallest ^  where the solution probability is less 
than 0.1. Domain size d =  4 and JC is 2-regular.

Number of Branches
(n , t ) Bdx^ r u n B & J 1 ]

(100,6) 221 204 169
(300,6) 2050 1572 295S
(500,6) 7655 6457 10632
(300,8) 843(0.67) 709 2785

Table 5.3: Median Number of Branches of zChaff on random instances of three 
random CSP models at the largest ^  where the solution probability is greater 
than 0.9. Domain size d =  4 and K  is 2-regular.
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Model BdnU m
m/n 1.2 1.6 2.2 2.4 2.6
Satz 170 (0.06) 139 (0.06) 68 (0.08) 47103 (44.47) 19230 (20.51)
ZChaff 1249 (0.01) 1839 (0.02) 8845 (0.44) 93649 (180.91) 18212 (10.85)

Model Egm[ 1]
m/n 1.2 1.6 2.0 2.2 2.4
Satz 126 (0.05) 99 (0.05) 71 (0.07) 916 (0.76) 128 (0.17)
ZChaff 1384 (0.01) 2113 (0.02) 6457 (0.14) 5019 (0.43) 2123 (0.16)

Table 5.4: Median number of branches (median time in seconds) of ZChaff 
and Satz on two random CSP models with n =  500, d =  4, and t =  6. 100 
instances for each parameter.

0.9 - 

o .a  •

-*•- binary csp 
- -  flawless csp 
—— generalized flawless

S
a  0.5

I
b A

0.3

1.5 2  2.5
Corrstraints-Variables Ratio

Figure 5.4: Solution probability thresholds for the three random CSP models 
with n =  500, t =  6. For the generalized flawless model, }C is set to be 2-regular. 
The y-axis is solution probability and x-axis is the constraints-variables ratio 
m /n . Sample size for each data point is 100.
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o 10

C onstraints'V ari ab les R atio

Figure 5.5: Hardness for the three random CSP models with n =  500, t — 6. 
For the generalized flawless model, K is set to be 2-regular. The y-axis is 
the median number of branches used by zChaff and x-axis is the constraints- 
variables ratio m jn . Sample size for each data point is 100.
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~*j- m e d ia n ,  s a t is f ib le  in s ta n c e s  
a v e r a g e .  aB in s ta n c e s

V*4>JCo
a

a>
E3z

2 .3 2 .4 2 .5

Figure 5.6: A closeup at the region m /n  =  1 .8--------2.5 for the generalized
flawless model with n  =  500, t =  6 and K  being 2-regular. Sample size for 
each data  point is 200. Two curves are plotted. One is the median number of 
branches for satisfiable sample instances only, another is the average number 
of branches for all the sample instances.
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S atz

Experimental comparison using another SAT solver. Satz. shows similar hard­
ness patterns, and is summarized in Table 5.4. For both solvers, randomly- 
generated instances at the phase transition of model are almost always
much harder than those of the flawless model £>̂ ’£m[l] in terms of both the 
number of branches and the running time. It should be noticed that while the 
running time of the two solvers is comparable, the number of branches of Satz 
is much less. We believe this is a  combined result of the different branching 
heuristics used by the two solvers as well as zChaff’s excessive clause-caching 
overhead and memory usage.

D o u b le  p eak s  in  in s tan ce  h a rd n ess?

As has been depicted in Figure 5.5, in part of the satisfiable region of the gen­
eralized flawless model, the search cost, measured by the number of branches, 
has a small but not insignificant secondary peak. Initially, we had assumed 
tha t this is either a  solver-specific behavior or a result of the finite sampling 
size (100 instances) we used when collecting the statistics. To our surprise, this 
secondary- hardness peak persists in another set of experiments using zChaff 
where 200 instances were generated at each constraint density. See Figure 5.6 
for a closeup view of the behavior of zChaff in this region. Experiments on 
both deterministic and randomized version of Satz also show a similar sec­
ondary peak. As we have measured the search cost by the median number of 
branches, the use of randomized version is not really necessary.

This leads us to speculate tha t the generalized flawless model might be 
the first model that shows solid evidence of the existence of double peaks in 
instance hardness. Recall tha t in the experiment, we used the generalized 
flawless model with d =  4, t  =  6  and a 2-regular connected consis­
tency core. For smaller m /n ,  the consistency core in the generalized flawless 
model makes randomly-generated instances even easier. As m /n  increases, 
perhaps right beyond 1.65—the threshold for the appearance of a 3-core 1 in 
the underlying random graph of the model, should be such that any
assignment that is compatible with the consistency core of each constraint 
cannot be a  satisfying solution. Put another way, for any satisfying assign­
ment (<*!, • • • , a n), there must be a t least one constraint C  with a consistency 
core K c  such that the value-tuple (a*,ocj) is not an edge in I\c- On the other 
hand, for any constraint in with t =  6 , the majority of the compatible
value-tuples (S out of 10) are specified by the consistency core. As a result, 
most search algorithms, if not all, will be misled to explore the consistency 
core part of the solution space in a certain degree to find out tha t any solution 
has to include at least one value-tuple outside of the consistency core. As m /n  
increases further, this becomes more and more obvious, resulting in a decreas­

*A 3-core of a graph is a maximum subgraph of the graph with minimum degree 3.
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ing number of branches. Though there are several assumptions in the above 
speculation that need to be verified theoretically or empirically, we believe it 
provides a plausible explanation on the secondary peak.

5.5 P roof of the Theorem s

In this section, we present more concepts related to the resolution complexity 
results stated in this paper and prove Theorems 5.3.1, 5.2.1, and 5.2.2.

5.5.1 Theorem 5.3.1

This subsection is devoted to Theorem 5.3.1. The following facts are straight­
forward to establish:

1. An r-flower consists of s =  d{r — 1) + I = dr — d + 1  variables and dr 
constraints;

2 . The total number of r-flowers is

3. A constraint in the flawless CSP model contains an (a,/3)-forcer only if 
the pair (a, (3) is one of the pre-selected tuples in the flawless constraint

In the following, we assume tha t r  =  o(yfn). The probability for a constraint 
to contain a forcer and the probability for the flawless random CSP to contain 
an r-flower are given in the following lemma.

L em m a 5.5.1. Consider the flawless random CSP and define f e =

1. The probability that a given constraint C {x \ , xf) contains an (a, (3)-forcer

matrix.

d2-d-d+1\ 
. t - d + 1 .  )

IS

(5.1)

2. Let R be an r-flower and let c =  m jn ,

P r { R  appears in 1] } =  0 (l)(2 c /c)rfr̂ ^ .  (5.2)
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Proof. Equation (5.1) follows from the following two observations: (a)~ is the 
probability for (a, /3) to be one of the pre-selected tuples in the flawless conflict 
matrix; and (b) f e is the probability for the d — 1 tuples, (a, 7 ), 7  =4 /?, to be
in the set of t restrictions selected uniformly at random from df — d tuples.

To calculate the probability that a given r-flower R  appears in 
notice tha t the probability of selecting all the constraint edges in R  is

il-% ) cn(<™ -  1) ■ • • (01 -  d r  + 1 )  o m  / T f '  *
©  N ( N - l ) - - - ( N - d r + l )  U W \ n

where N  = (”). Since for each fixed choice of dr constraint edges in the 
r-flower, the probability for these constraints to contain the r-flower (^ /e)dr, 
Equation (5.2) follows. □

P ro o f  o f T h e o re m  5.3.1. Let c* =  7̂-. We will show that if c =  — > c*.~Jc n
then

lim P r { } contains an r-flower } =  1 . (5 .3 )

Let I r be the indicator function of the event that the r-flower R  appears in 
1] and let X  = J ^ I r where the sum is over all the possible r-flowers.

R
Then, B%*m[ 1] contains an r-flower if and only if X  >  0.

By Lemma 5.5.1 and the fact that s — dr — d + 1 , we have

E[ X]  =  £ £ [ / * ]
R

=  e ( l ) n ( n - l ) - - - ( n - s +

=  © (l)n 1- <i(2c/e)dr.

Therefore, if c > c* and r  =  A log n  with A sufficiently large, we have lim E[X] =
n

OO.

If we can show that £[X2] < £2 [X ] ( 1  +  o(l)), then an application of the 
Chebyshev inequality will establish that lim P r { X  =  0 } =  0. To get an upper

71
bound on £ [X 2], we need a counting argument to upper bound the number 
of r-flowers sharing a given number of edges. This is done by considering how 
the shared edges form connected components [116, 72, 60]. Here, we follow 
the way that is used by Molloy and Salavatipour [116], from which we have
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s
d r —i

£ [x 2 ] -  5 Z  £ [IaIb ] + ^ 2 ia  X ^ 5 ^ - /vy('pu)
A A B :B n A = 0  .4 \ i = l  j = 1

=  Y 1  £ [ I a \ Z { I b ]
A B:BC\A=<2

/  9

+ E '*  E E w dr—i
A  \ i = l  j = l  /

<  £2w + x ; ^ f E E iV«(F« ) * ^ ' )  (w )
A \ i = l  j = 1 /

where (1) iVy is the number of the r-flowers tha t share exactly i constraint 
edges with A  and these i constraints forms j  connected components in the 
constraint graph of A; and (2) ( P i j ) d r~ 1 is the probability that conditional on 
I  a, the random CSP contains the dr — i constraints of a specific r-flower as 
described in Lemma (5.5.1). In [116], iVy is upper bounded by

((2 +  r 2)d(dr2)J- 1) 2j!n s- i- J'ds- i-^+d- 1!

where ((2 +  r2)d(dr2)J'_1)2j! upper bounds the number of ways to choose and 
arrange the j  shared connected components for two r-flowers; upper
bounds the number of ways of choosing the remaining non-shared variables— 
—the number of variables in each of the j shared connected component is at 
least one plus the number of edges in that shared component; and ds~i~j+d~1 
upper bounds the number of ways of choosing the forcing values in these non­
sharing variables. The shared variables have to take the same forcing values 
as those in A  due to the assumption tha t t < d made in [116].

Since in our case d — 1 <  t < dr — d, it is possible for shared variables to 
take different forcing values in different r-flowers. Thus, an upper bound for 
N i j  is

((2 + r ^ i d r 1)’- 1)2 
But in our case, the probability corresponding to (P i j ) d r~ l is

/ N - d r - ( d r - i ) \  .
V c n —i —( d r —i)  )  1 1  * \ d r —i  _ _  G if ']  ^  2  \ d r —i r  1  r  \ d r - i

f N —d r \  t / e j  ~  N  -  dr*
\  c n —i )

=  Q (l)(2cfe)dr~i 1 1
TVd r - i  r f d r - i '
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Therefore, with c* =  we have

' £ ' £ N lj(2c fcr - ‘ 1 1
2=1 j  =  1

s

i = l

n d r - i  (Jdr—i

(2 +  £ ( ^
J = 1

<  ^ 0 ( r 4d' 4)n1"d(2 c fe)dr^ ^ O ( ^ )
i = i

U  i = l  “ CJ e
r 4d

< S [ X \ 0 (— ),

where the last inequality is because c >  From this and formula (-5.4), the 
proof is completed. '  □

R e m a rk  5.5.1. The relatively loose upper bound c* =  ^~ hr the above proof 
may be improved by a factor of d by making a further distinction among the 
r-flowers that share forcing values at different number of shared variables. But 
fo r  the purpose of showing that the flawless random CSP also has potential 
embedded easy sub-problems, our upper bound for the constraint-variable ratio 
c is sufficient since the domain size d is a constant.

5.5.2 Theorems 5.2.1 and 5.2.2

Let T  be a CSP instance and let CNF(T) be the CNF encoding of T . Mitchell 
[113] provided a framework within which one can investigate the resolution 
complexity of T , i.e., the resolution complexity of the CNF formula CNF(T) 
tha t encodes T , by working directly on the structural properties of T . A 
sub-instance J  of T  is a CSP instance such that var[ J )  C var(T) and J  
contains all the constraints of T  whose scope variables are in var(v7). The 
following crucial concepts make it possible to work directly on the structural 
properties of the CSP instance when investigating the resolution complexity 
of the encoding CNF formula.

D efin itio n  5.5.1 (Im plies. D efined in  [113]). For any assignment a  to 
the variables in the CSP instance T , we write ct fo r  the truth assignment to 
the variables in CNF(T) that assigns to a variable x  : a the value TRUE if 
and only if  a{x) =  a.

Let C be a clause over the variables o /C N F(T). We say that a sub-instance 
J  of P  implies C, denoted as J  [= C , if and only i f  for each assignment a 
satisfying J , the corresponding a satisfies C.
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Definition 5.5.2 (Clause Com plexity [113]). Let T  be a CSP instance. 
For each clause C defined over the Boolean variables in var(CNF(T)). define

/j.(C.T) = min{|var(v7)|; J  is a sub-instance and implies C}.

The following two concepts slightly generalize those used in [113. 116] and 
enable us to have a uniform treatm ent when establishing resolution complexity 
lower bounds.

Definition 5.5.3 (Boundary). The boundary B ( J )  of a sub-instance J  is 
defined to be the set of CSP variables such that x G B {J ) if and only if 
the following is true: I f  J  minimally implies a clause C defined on some 
Boolean variables in var(CN F(T)), then C contains at least one of the Boolean 
variables, x  : a, a G D, that encode the CSP variable x.

Definition 5.5.4 (Sub-critical Expansion [113]). Let T  be a CSP in­
stance. The sub-critical expansion o f T  is defined as

e(T) = max min \B {J)\ (5.5)
O<s< m(0 ,T ) s /2 < |v a r ( y ) |< s  V V '

where the minimum is taken over all the sub-instances of T  such that s/2  < 
|v a r(J ) | <  s.

The following theorem relates the resolution complexity of the CNF encod­
ing of a CSP instance to the sub-critical expansion of the CSP instance.

Theorem 5.5.1. [ U S ]  For any CSP instance T ,  we have

w(CNF(T) h 0) >  e(T) (5.6)

Proof. For any resolution refutation tt of CNF(T) and s < ji{%, T ), Lemma 1 
of [113] shows tha t n must contain a  clause C  with

s /2  <  p (C ,T ) < s.

Let J  be a sub-instance such tha t |var( J ) \  = /i(C. T ) and J  minimally implies 
C. Since J  minimally implies C, according to the definition of the boundary, 
w{C) > \B (J)\. (5.6) follows. □

To establish an asymptotically exponential lower bound on the resolution
complexity of a random CSP C, it is enough to show that there is a constant
P* > 0 that does not depend on n  such that

lim Pr{ e(C) >  P’n }  = 1. (5.7)
n

For any a  > 0, let A„,(a) be the event {/x(0,C) >  an} and A ^ o ./T ) be the 
event

min B (J )  >  p*nIir<|var(y)|<arl -
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Notice that

P r { e(C) >  ft*n } >  Pr { A n(a) n  ,8m) }

>  1 -  Pr j.A m(a) ]  -  P r  |  A s{a ,0 m) } .  (5.8)

We only need to find appropriate a * and 0* such tha t

lim Pr |  A m(am) j  =  0 (5.9)

and _________
lix n P rj A (a*,/3*)} = 0. (5.10)

The event A m(a*) is about the size of minimally unsatisfiable sub-instances. 
For the event A s(a* ,0*), a  common practice is to identify a special subset 
of the boundary and show that the size of this subset is large. For different 
random CSP models and under different assumptions on the model parameters, 
there are different ways to achieve this. Following [21], we say a  graph G is
(r, g)-dense if there is a subset of r  vertices that induces a t least q edges of G.

P ro o f  o f T h e o re m  5.2.1. Recall that the constraint graph of B ^ [ S C ]  is 
the standard random graph G(n,rn). Since each instance of B ^ [ S C ]  is 
strongly k-consistent, variables in a minimal unsatisfiable sub-instance J  with 
jvar(J')! =  r  must have a vertex degree greater than or equal to k, and con­
sequently, the constraint sub-graph H (J )  must contains a t least ^  edges. 
Thus,

P r { 7 ^ j }  =  P r { /1( 0 ,S ;y S C ] ) < a -n }

< P r |  [^J {G (n,m ) is (r, rfc/2)-dense } 1 .
I r=fc+1 J

Let Bk(J )  be the set of variables in var(J) whose vertex degrees are less than 
k. Again, since instances of B^^[SC ]  are always strongly k-consistent, we 
have Bk{J )  C B (J )  and thus, 15(^7)! > \Bk(J )\. Therefore, the probability 
Pr |  -As(a*, /3*) |  can be bounded as

P r |  A s(a*,p*) J <  Pr j  A k{a.*:(3*) J 
where A k(a*,3*) is the event

min Bk{J )  > P * n \ .
Q *7i/2<|var(^7')|<a"n J

Random graph arguments (see, e.g. [21] ) show that there exist constants a* 
and 0* such that Pr j  -4m(a:*) j  and Pr j  A k(a*,Pm) j  both tend to 0. Indeed,
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let /3* be such that (1 - 3 ' ) k >  1, c =  a  and N  =- __ n ( n - l ) . We have
[ a  n

Pr |  A n(a*) |  <  P r s U  {G(n. m) is (r, rfc/2)-dense }
r=fc-j-1

< ^  P r < G(n. m) is (r, — )-dense
r= fc + l ^ 

a  *n /  \  / r [ r —1)

r=A :+l

a " n

JV -  //v
m  — ^  I \m

- l

< E
r= fc + l 

a * n

- E
r= & + 1 L 

a ' n

= E
r=f c+l

LlognJ

S E
r=fc+l

en 2ec(r — 1). k 
r kn

. k . k  k~2 k . r . fc-z1 T 
( ) 2 e  2 c s ( ) 2

I  n

,k .k  k~2 k ,\0g n .k -2 
( _ ) 2 e  2 C 2 ( _ )  —

a  n

+ E J ;  * k± 2 * fc_5 
( - ) ^ e   ̂ C2(a*) 2

log n

(5.11)
r =  [lognJ

Similarly, we have for [3 =  =^r.

P r |^ '( a * ,^ * )  |

{ a"  nU {3 a size-r sub-instance J  s.t. \Bk(J ) \  <  P*n}

r = ^

< Pr < |^J {G (n , m) is (r, —* ^ ^ )-dense} >

£ E 2c

( l - P ) k

(l-0)k+2 (1 -P)k-2
e  2 (o; ) 2 (5.12)

wThere the second inequality is because of the fact that for a sub-instance J  
with size r and \& {J )\  <  P"n, its constraint graph contains at least r — ft’n =  
r  — ^-/3n > r  — /3r vertices whose degree is at least k.

There exist a ’ and /?* be such that (1) ^  <  1; (2) (1~f > 1; and (3)
the right hand side of formula (5.11) and the right hand side of formula (5.12)
both tend to zero. This completes the proof of Theorem 5.3.1. □
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We now prove Theorem 5.2.2. First from the definition of B ^m[WC\. we 
have the following

L em m a 5.5.2. For the random CSP B(̂ im\WC}. we have

1. Every sub-instance whose constraint graph is a cycle is satisfiable:

2. For any path of length >  3, any compatible assignments to the two vari­
ables at the ends of the path can be extended to assignments that satisfy 
the whole path.

In an effort to establish exponential lower bounds on the resolution com­
plexity for a classical random CSP models with a  tightness higher than those in 
[113], Molloy and Salavatipour [116] introduced a collection of sub-instances, 
denoted here as Bm { J ) ,  and used its size to give a  lower bound on the size 
of the boundary. For binary CSPs whose constraints are arc-consistent and 
contain no forcer, Bm { J )  consists of two parts: B \j{ J )  and ErM{J). defined 
respectively as follows:

1. B ^ J )  contains the set of single-edge sub-instances X , i.e., var(T) =  2, 
such tha t at least one of the variables has a degree one vertex in the 
original constraint graph;

2. B 2m ( J )  contains the set of sub-instances X  whose induced constraint 
graph is a  pendant path of length 4, i.e., a path of length 4 such that 
no vertex other than the endpoints has a vertex degree greater than 2 in 
the original constraint graph.

It can be shown that

L em m a 5.5.3 ([116]). For any weakly path-consistent CSP sub-instance J , 
we have

Proof. The variable with degree one in any sub-instance in B lM(J )  has to be 
in B {J )\  At least one internal variable in any pendant path B2M{J)  has to be 
in B (J ) .  It is possible that several pendant paths of length 4 share a common 
internal variable that is in B {J ), e.g., in a  very long pendant path. But a 
variable can only appear in at most three pendant paths of length 4. □

W ith the above preparations, the proof provided for Theorem 1 of [116] 
readily applies to our case. To make this thesis self-contained, we give the 
proof below.

P ro o f  o f T h eo rem  5.2.2. By Lemma 5.5.2, any minimally unsatisfiable sub­
instance J  is such tha t (1) its constraint graph cannot be a single cycle; and 
(2) B \i( J )  is empty since \B \j{J)\ =  0 and \B \j{J ) \  =  0 for a minimally
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unsatisfiable sub-instance. According to Lemma 11 of [116], the constraint 
graph of J  has at least (1 +  dj)var(J') edges. Therefore, due to the locally 
sparse property of random graphs (e.g.. Lemma 10 in [116]), there is a constant 
a* >  0 such that formula (5.9) holds, i.e.,

Now suppose on the contrary that there is a sub-instance J  with a*n/2 <  
|var(j7’)| <  a* such that \BlM{J)\ +  < Qn. Then, from Lemmas 10
and 11 of [116], the constraint graph of J  contains only cycle components------
Lemma 11 of [116] asserts that the edges-to-vertices ratio of the constraint 
graph of J  has to be bigger than one. If we remove all the cycle components 
from the constraint graph of J ”, the edges-to-vertices ratio of the remaining 
graph becomes even bigger. But this is impossible from Lemma 10 of [116] 
because the constraint graph of J ,  and hence the remaining graph, has less 
than a 'n  vertices.

It is well-known that w hp a random graph has fewer than log n cycle com­
ponents of length at most 4 for the random graph G{m,n) with m /n  =  c
being constant, the number of cycle components with a fixed length has asymp­
totically Poisson distribution [30]. Thus, the number of variables that are in 
cycle components of length 4 is at most 4 log n. Since any cycle component 
of length I > 4 contain I pendant paths of length 4, the total number of vari­
ables in cycle components of length greater than 4 is at most \B2M{ J ) \  < £n. 
Therefore, we have var( J )  < (n  +  41ogn <  a*n/2  <  var(j7) for sufficiently 
small Q. a contradiction.

We, therefore, conclude that there is a 3* such tha t w.h.p, for any sub­
instance J  with a*n/2 <  |var(j7’)| <  a*, > 0*n. i.e., formula (5.10)
holds. □

lim Pr =  0.
n

To establish formula (5.10), due to Lemma 5.5.3 we have 

P r { ^ ( a L /T )  } >  P r { A , m (W ,/T ) } 

where -4s.a/ ( q;*, ,5’) is the event

mm
a* n /2 <  |var(,7) |<ct" n
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Chapter 6

Easy Random Problem s Are 
Som etim es Hard

6.1 Introduction

It is well known that many NP-complete problems have tractable subclasses 
characterized by certain structural parameters. Treewidth is one such param­
eter and has drawn much attention in algorithmic graph theory [29, 103] and 
artificial intelligence [51].

In the study of the constraint satisfaction problem and the inference prob­
lems in Bayesian networks, there has been much effort in designing efficient 
algorithms that make best use of the property of having a bounded treewidth. 
The notion of tractable classes of CSPs parameterized by treewidth can be 
traced back to the work of [64] and since then, has remained an interesting 
topic [51,52,46, 81]. CSPs with bounded treewidth can be solved polynomially 
using dynamic programming techniques. Recently, treewidth has been shown 
to have a close connection with the complexity of some CSP proof systems 
[16].

In the study of model checking and planning, ordered binary decision di­
agram (OBDD) based propositional reasoning techniques have been widely 
used. OBDD-based satisfiability algorithms have been proposed and proved 
to have time complexity exponential in the treewidth of the underlying graph 
structures [121].

For Bayesian networks with a  tree structure, the famous message-passing 
algorithm solves the inference problem in linear time [123]. For Bayesian 
networks with arbitrary structures, the most widely used method is the algo­
rithm join-tree which transforms the original inference problem into the one 
on a tree of subsets of variables. The transformation is based on triangulation 
and tree-decomposition on the given network. As the size of the subsets in 
the tree-decomposition is directly related to the time and space complexities 
of the join-tree algorithm, there has been much work on finding the optimal
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tree-decomposition, a problem th a t is also NP-hard [25. 92, 102]. Another 
recently proposed approach is to  make sure that the Bayesain networks have 
a controlled treewidth when constructing/learning them from data[17, 96].

In the literature, there have been some attempts trying to relate the hard­
ness of some of the above mentioned algorithms to the phase transition of the 
solution probability. In [111], Bayesian networks converted from randomly- 
generated CNF formulas were studied. In [121, 38], the complexity of OBDD- 
based satisfiability algorithms on randomly-generated CNF formulas were in­
vestigated. The initial intention of both of the studies seems to be a connection 
between the efficiency of these algorithms and the phase transition of the so­
lution probability. However, in both  cases, the authors concluded from their 
experimental results that the instance hardness for these algorithms has a dra­
matic change well below the phase transition threshold and keeps increasing 
beyond the threshold. The results presented in this chapter provide a  the­
oretical justification for these experimental observations: Since the instance 
hardness for these dynamic programming algorithms is largely exponential in 
the treewidth of the problems, it is the phase transition of having a small 
treewidth tha t determines the behavior of these algorithms. As we will show 
in this chapter, the treewidth of the underlying structures of these problems 
has a phase transition from bounded-size to linear-size which occurs well below 
the solution probability threshold, and keeps increasing afterwards.

In Section 6.3, we establish an improved lower bound on the threshold 
for a random graph to have a linear treewidth. In Section 6.4, using similar 
analytical techniques, we show th a t the typical size of the treewidth of the 
underlying graph structures is also large in random CSPs, random Bayesian 
networks, and some other models in computational biology and evolutionary 
computation. These results, initially reported in our work [71, 69], indicate 
th a t several algorithms developed in the CSP and Bayesian network commu­
nities have a typically exponential behavior in the region of the problem space 
where randomly-generated instances can be solved easily by backtracking al­
gorithms.

6.2 N otation and Definitions

The concepts of treewidth and tree-decomposition generalize tha t of a tree and 
characterize the degree to which a graph has a tree-like structure [103]. These 
concepts provide a viable way to characterize the degree of interaction in com­
binatorial structures and optimization problems. We discuss these concepts 
briefly and refer the interested reader to [29, 103, 34] for more details.

Treewidth can be defined in several equivalent ways. The one tha t is the 
easiest to state is via the k-tree.

D efin itio n  6.2.1 (/c-Tree[103]). k-Trees are defined recursively as follows:
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1. A clique with k+1 vertices is a k-tree;

2. Given a k-tree Tn with n vertices, a k-tree with n-1-1 vertices is constructed 
by adding to Tn a new vertex and connecting it to a k-clique o fT n.

Definition 6.2.2 (Partial k-Trees and Treewidth[103j). A graph is called 
a partial k-tree i f  it is a subgraph of a k-tree. The treewidth tw(G) of a graph 
G is the minimum value k for which G is a partial k-tree.

Treewidth has an equivalent definition based on tree-decomposition.

Definition 6.2.3 (Tree-decomposition [103]). A tree-decomposition of a 
graph G  =  (V. E) is a pair V  =  (S , T ) where S  = {S i,i & 1} is a collection 
of subsets o f vertices of G and T  =  (I, F) is a tree with one node for each 
element in S , such that

1- U = / Si =  v ,

2. \/(v,w ) € E  there exists a subset Si € S  such that both v and w are in 
Si, and

3. Vu € V , the set of nodes {i € J; v € 5,} forms a subtree o fT .

The width of the tree-decomposition V  =  (<S, T ) is m ax(|5;| —1). The treewidth
i£l

of a graph is the minimum width over all the tree-decompositions o f the graph.

Treewidth has yet another equivalent definition based on the minimum 
width of a graph and the vertex elimination in a graph. It is also called the 
induced width in AI literature (see, for example, [50]).

Definition 6.2.4. Let G — (V ,E ) be a graph and tr =  {x i,--- , x„) be an 
ordering of the vertices.

1. The width w (x , tr) of a vertex x  under the ordering tr is the number 
o f its preceding neighbors. The width w ( t t )  of the ordering ir is the 
maximum width of all the vertices under the ordering, i.e.,

w[tt) =  maxw(x,7r).
x6V

2. The w-induced graph G(tt) of G under the ordering tt is obtained by
processing the vertices recursively according to ir from x„ to x i . At each
step i, all the neighbors of Xi that precede X{ according to tt are made 
adjacent and then X{ is marked as processed. This process is called the 
vertex elimination.

3. The induced w idth w * ( G , t t )  of G under the ordering tt is the width of
tt in the tt-induced graph G(r) of G. The induced width w*(G) of G is
the minimum induced width over all the vertex orderings.
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Given a graph G  and a vertex ordering t t .  one can obtain a tree decomposi­
tion by (1) forming the induced graph G(tt); (2) identifying all the (maximum) 
cliques of G(tt): and (3) building a tree of this set of cliques in linear time tha t 
satisfies all the requirements of a tree decomposition.

In many applications, it is desirable to find a tree decomposition with a 
minimum width. This problem is NP-hard and has been an interesting topic 
in graph theory and artificial intelligence [29, 103, 34, 25].

6.3 Threshold of Linear Treewidth in Random  
Graphs

In [103], Kloks proved tha t w hp  a random graph G (n .m ) with ^  > 1.18 has 
a treewidth linear in n. Kloks commented tha t it was not known whether his 
lower bound 1.18 can be further improved and tha t the treewidth of a random 
graph G {n,m) with \  < f  < 1 is unknown [103]. To my best knowledge, 
no further result has been obtained regarding the treewidth of G(n, m) since 
Kloks’ work.

In this section, we establish an improved lower bound on the threshold of 
having a linear treewidth. The improvement comes from two factors: (1) the 
use of a new combinatorial construct to make better use of the first moment 
method; and (2) the use of a random graph equivalent to G (n,m ) that makes 
it possible to have a more accurate estimation of some quantity.

T h eo rem  6.3.1. For any ^  = c > 1.081, there is a constant 5 > 0 such that

We will be working on a random graph model G(n, m) that is slightly 
different from G (n ,m ) in that the m  edges are selected independently and 
uniformly with replacement. It turns out tha t as far as the property of having 
a linear treewidth is concerned, the two random graph models are equivalent. 
This is due to the following observations:

1. There are only o(n) duplicated edges in G(n. m). In fact, let / e be 
the indicator function of the event that the potential edge e e  V 2 is 
duplicated and write I  = ^2 Ic. We have

eeV2

And thus, £ [I]  =  0(1). On the other hand, we have for any pair of 
potential edges e\ and eo,

l im P r{tw (G (n ,m ))  >  5n} =  1.71 (6.1)

. where N  =

[ I c J c 2 ] < £ [ I e i ] S [ I e s ]

8S

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



since and / e, are negatively correlated. It follows that the variance 
of I  is also 0(1), and therefore w hp  I  =  o(n).

2. Due to the symmetry of the sampling space, a graph consisting of the 
first m  — o{n) non-duplicated edges of G(n, m ) has the same distribution 
as G(n, m  — o(n)).

3. For any graph G and its super-graph G' such that G' has o(n) more 
edges than G, we have

tw(G') =  tw (G ) +  o(n).

This is because adding one edge to a graph increases the treewidth of 
the graph at most by one.

Based on these observations, we will continue to  use the notation G (n ,m ) 
instead of G(n, m ) throughout this section, but with the understanding that 
the m  edges are selected independently and uniformly with replacement.

As the first step to prove theorem 6.3.1, we introduce the following concept 
which will be used to provide a necessary condition for a graph to have a 
treewidth of certain size:

D efin itio n  6.3.1. Let G (V,E) be a graph with |V| = n. A partition W  = 
(S ,A ,B ) of V  is said to be a rigid and balanced I-partition i f  the following 
conditions are satisfied:

1.  | S |  =  Z + 1 ;

2. | ( n  — I — 1) <  |A|, \B\ <  §(n — I — 1); and

3. S  separates A  and B , i.e., there are no edges between vertices of A  and 
vertices o f B ; and

4- >  |A|, then any vertexv in B  is not isolated in B , i.e., there exists
at least another vertex in B  that is adjacent to v.

A  partition tha t satisfies the first three conditions in the above definition 
is called a balanced partition and was used by Kloks in his proof of the 1.18 
lower bound. The rigid and balanced partition generalizes Kloks’s balanced 
partition by requiring tha t any vertex in the larger subset of a partition cannot 
be moved to the other subset of the partition, and hence the word “rigid” .

L em m a 6.3.1. Any graph with a treewidth I > 4 must have a rigid and bal­
anced I—partition.

Proof. From [103], any graph with a treewidth I > 4 must have a partition, 
say W  =  (S ,A , B ), tha t satisfies the first three conditions in definition 6.3.1. 
If this partition does not satisfy the fourth condition, then we can move the 
vertices tha t are isolated in B  one by one to A  until either |£ | =  \A\ or there 
is no more isolated vertex in B. □
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The following lemma gives an upper bound on the conditional probability 
for a partition W  =  (S, A. B) to be rigid given that the partition is balanced.

L em m a 6.3.2. Let G (n ,m ), c =  be a random graph and let W  =  (S. A, B) 
be a partition such that |5 | =  I + 1, jA| =  a. and |B| =  b. Assume that b = tn  
and b > a. Then for n sufficiently large,

\ r ( t ) n

P r { W  is rigid | W  is balanced } < I -  j  (6.2)

where

r ( t)  =  To ( l )
£ /  1 \  1 —2t(l—t)

Proof. Conditional on that W  is a balanced partition of G (n,m ), each of the 
m  edges can only be selected from the set of edges

Ew  =  V 2 \  {(w, v) : u E A, v  € B}.

Notice that

._  . n(n — 1) , n(n  — 1)
s = \Ew\ = --------------ba = --------------- tn(n — t n — (Z +  1)).

Let Iv be the indicator function of the event tha t the vertex v € B  is isolated 
in B  and m ite  I  = I v. Then, the random variable I  is a function of the

v^B
m  outcomes when selecting the m  edges of the random graph G(n. m). For 
any two sets of outcome (uy, • • ■ ,w m) and (uJj. - • • ,w m) that only differ at 
the f-th coordinate, i.e., the edges of two corresponding graphs are the same 
except for the z-th edge, we have

|J(wi,-•• ,wm) -  - ,«Jm)| <2 .

This is because changing one edge either increases or decreases the number 
of isolated vertices a t most by two. Thus, applying McDiarmid’s inequality 
(Lemma 2.1.5) gives us

Pr { W  is rigid | W  is balanced } =  P r { /  =  0 | W i s  balanced } 
< P r { / - £ [ / l < - £ ( / ] }

2 £ 2 U]

< 4cn

By the definition of the random variable I , the term £[/] is

s J  V n {n  ~  l ) /2  — tn (n  — tn — I — 1)

Formula (6.2) follows. □
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We need two more lemmas on the behavior of some functions that will be 
used in the proof of Theorem 6.3.1.

L em m a 6.3.3. For any c > 1, the function r(i) in Lemma 6.3.2 is monotone- 
decreasing on [1. |] .

Proof. Taking the derivative of the function

log(r(i)) =  21og(i) -  i  ^  ,

we have

1 2(1 — 2i 4- 2t2)2 — 4c(i — 2t2 +  2i3) — 4c(—2i2 4- 4i3)
r ( t) r ~  i ( l  — 2t + 2t2)2

Now consider the numerator of the right-hand-side of the above, i.e.. the func­
tion

h{t) = 2(1 - 2 i 4- 2i2)2 -  4c{t -  2i2 +  213) -  4 c (-2 i2 +  At3).

The monotonicity of the function r(i) can be established if we can show that 
h(t) < 0,Vi 6 [|,§ ]. Since we have h ( |)  =  \ —c < O an d h (|) =  <  0, it
is enough to show that h(t) itself is monotone. The first and second derivatives 
of the function h(t) are respectively

h'{t) =  4(—2 +  Si -  12i2 +  Si3) -  4c(l -  Si +  18i2)

and
h"(t) = 4[(S -  24i +  24i2) -  c (-S  +  36i)].

Notice tha t as a quadratic polynomial, h"(t) =  4(24i2 — (24 +  36c)i +  8(14- c)) 
can be shown to be always less than 0 for any i G [ |. |] .  Since h '(\)  = 
—4c(l +  | )  <  0, it follows tha t h!{t) < 0, Vi 6 [ |, |] . Therefore h(t) is monotone 
as required. □

L em m a 6.3.4. Let g(t) be a function defined as

_  ( l - 2 t  +  2t* +  26ty 
g( l ~  (i(l -  () i- i ,  l)

where c > 1 and S > 0 are constants. Then, for small enough 5. g{t) is 
monotone-increasing on [^ ,|] .

Proof. Consider the function h(t) =  log^(i)

h(t) = clog(l — 2i +  2i2 +  25t) — i logi — (1 -  f) log(l — i).

We have
_2 +  4i +  26 

h 'it) =  c-  -----— — — logt 4- logil -  t)
w  1 -  2i 4  2 i2 4 - 25i 

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and h \ \ )  > 0. The second-order derivative of h(t) is

= (1 - 2 t + 2t2 +  - t ) X z ^ ’ ^

where

z{t,5) = A ( \ -2 t+ 2 t2+ 2 d t) ( l - t ) t - { A t-2 + 2 5 )2( l - t ) t - ( l - 2 t  + 2t2 + 26t)2. 

First, assume that 5 = 0. On the interval [iy, §]. we have

( 4 t - 2  +  2{)2 < ( 4 x | - 2 ) 2 =  j ,

2 1 1 1  
= - < t ( l - t ) <  ^ ( 1 -  =r) =  -  9 — 2 2 4

and
^  < (1 -  2t + 2t2 + 26t)2 < (1 -  2 x ^  + 2 x  ( | ) 2)2 =  |

It follows that

Since the family of functions z(t.S ),S  > 0 are uniformly continuous on 
we have tha t for small enough 6. z(t.S) > 0. Therefore, the second-order 
derivative h"(t) is always larger than zero. And so is h'(t) (recall tha t h'{\) > 
0). It follows that h(t) is monotone-increasing, and so is g(t). □

Proof of Theorem 6.3.1

Proof. Let W  =  (S ,A ,B )  be a partition of the vertices of G (n ,m ) such that 
|S| =  I +  1 =  fin, |i?| >  |A|, \B\ = b =  tn, with |  <  t < Let Jw  be the
indicator function of the event that W  is a rigid and balanced /-partition of
G (n,m ). We have

E\ Iw  ] =  P r { W  is rigid and balanced }
=  Pr { W  is balanced } P r { W is rigid | W  is balanced } (6.4)

From Lemma 6.3.2, we know that

P r { W  is rigid | W  is balanced } < ( -
\ e

By the definition of a balanced partition,

tn(n — tn  — f3n)

j  \  '  ( t ) n

Pr { W  is balanced } =  I 1 —
n(n — l ) /2

=  [ l - 2 t  + 2t2 + 2t0 + O (l/n )}cn. (6.5)
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This is because in order for W  to be a balanced partition of G {n,m ). each of 
the m  independent trials can only select an edge from the set of vertex pairs 
V 2 \  {(u ,v) : u £ A ,v  £ B}. Write

M t)  = [l — 2 f +  2 f2 + 2tfi + 0 ( l /n ) ] c , 

0 2  (t) =

and

so that we have

l V rW 
e

0(t) =  0 l( /)02(t)

£[/w ] =  [0(i)]n.

Let I  =  be the number of rigid and balanced /-partitions of the
w

random graph G(n, m) where the sum is taken over all such possible partitions. 
For a partition (S ,A ,B ), there are (^ J  ways to choose the vertex set S  with 
|S'! =  fin. For a fixed vertex set S. there are (n~/3n) ways (~n < b < |n )  to 
choose the pair (A, B ) such tha t one of them has the size b. Therefore.

S[I]  =  £ £ [ / w ]
w

< n
fin

n

. S . t S ' K *
i n < 6 < | n

< f i n ) , E  ( » •
r;Tl<b<*n

By Stirling’s formula, we have for n  large enough

m  <

By Lemma 6.3.3,

fi0 ( i - p y - 0 j  t E 0l(£)02(£)
in/1 6̂ 1 —,  „ \  b n f l  b \ l - S .

hn<b<ln \ n  I1 “  n) n

02 ( ) <  02 (x )  —71 o
c“ V c /

By Lemma 6.3.4,

0i(S) <
b\i - A

0 i ( l )

(§)»(£)*
_ ( |  +  |0 )
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Therefore,

71

From the above, it can be shown tha t for sufficiently small @ and c >  1.081,

with 0 <  7  <  1. The theorem then follows from Markov’s inequality and 
Lemma 6.3.1:

Discussion: W hy do I believe the threshold is less than  
one?

My conjecture tha t the threshold of having a linear treewidth is less than one 
(actually close to 1 / 2 ) is based on the size of the “giant” component in a 
random graph. Recall tha t Lemma 6.3.1 says tha t in order for a graph to have 
a treewidth <1 — 1, the graph must have a balanced partition W  =  (S , A, B)  
such that |Sj =  I and | ( n  — l ) <  \A\, \B\ < | ( n  — I).

Consider the random graph G {n,m ) with 1/2 < ^  < 1 on the set V  of 
vertices. Let S  C V  be a subset of vertices and assume that |S| =  fin  with 
P small enough. Then, the induced subgraph GV\s(n,m) is a random graph 
with the edges-vertices ratio c slightly less than m /n . Let

and 1 — ps(n) be the probability tha t the size of the largest component of

giant component in a random graph, see e.g. [30], indicates that ps(n) tends 
to zero. It is also true tha t ( 1  — t(c)) is larger than 2/3 even for c well below 
1 . Notice that the probability for G (n,m )  to have a balanced partition of the
form (S , A, B) is less than ps{n) the existence of such a balanced partition
implies tha t the components of the induced subgraph G v\s{n ,m )  are all of 
size less than | n. Since there are ( //)  such S,  we could have shown that the 
threshold of having a linear treewidth is less than one if the probability ps(n) 
is exponentially small. Unfortunately, we currently do not know yet if such an 
exponential upper bound for ps(n) exists.

£ [ I ]  <  0 { n )

lim Pr { tw(G(n, m)) < fin  } <  lim P r { I  > 0 } <  lim £[ I  ] =  0.
n n  n

□

l

G y\s(n, m) is in the order of (1 — t(c))n. The famous result on the size of the
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6.4 Treewidth o f Random  M odels in A I and 
Com putational Biology

In this section, we study the treewidth of the underlying graphs of several 
random models in AI and computational biology. As has been discussed at 
the beginning of this chapter (Section 6.1), the size of the treewidth character­
izes the time and space complexities of several algorithms for these problems. 
A general conclusion to be drawn from the results of this section is th a t all 
of these algorithms will have an exponential behavior even for instances ran­
domly generated well below the threshold of the solution-probability phase 
transition. It should be noted th a t instances randomly generated far from the 
phase transition have been known theoretically and/or empirically to be easy 
for backtracking algorithms.

6.4.1 Treewidth of Random CSPs

We consider the random CSP model B i.e., model B defined in Definition 
3.2.6. Similar results hold for other random CSP models.

Recall th a t the primal graph of a CSP instance is a graph G =  G{V:E) 
where V  corresponds to the set of variables X  and (V{,Vj) 6 E  if and only if 
the corresponding variables x* and x j  appear in some constraint a t the same 
time. The correspondence between the primal graph of a CSP instance and the 
constraint hypergraph of the CSP instance is as follows: For each hyperedge 
(i.e. each constraint), make a  clique on the set of vertices in the hyperedge. 
The primal graph is a graph of cliques whose edge set is the union of the edges 
of the cliques.

T h eo rem  6.4.1. Let G s(n, m ) be the primal graph of the random CSP 
and let c* = fclog3l°-| (1+2fc) - Then, we have

i  i f ™  <  — I—

lim P r{tw (G s(n ,m ))  < k +  1} =  1.
Tl

2 . i f — > c*. there is a constant 5 > 0 such thatJ  n

lim Pr{tw (G B(n,m )) > 5n} =  1.
n

Proof. For the case of ^  > the constraint hypergraph B ^ ff  contains
only hypertrees and unicycles w h p  (Lemma 2.2.1). It can be shown that 
the graph of cliques obtained from a /c-homogenous hypergraph with only 
hypertrees and unicycles has a treewidth of at most k +  1.

The proof of the case ^  >  c* is based on the same technique as tha t in the 
proof of Theorem 6.3.1. The only difference is that the primal graph Gs{n,m .)
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is not the standard uniform random graph. Rather, Gs(n, m) is a “graph of 
random cliques”—its edges are the union of the edges of m  randomly selected 
cliques of size k. □

6.4.2 Treewidth of Random Bayesian Networks

Given a set of random variables X  =  {A^, - - - , X n}, a Bayesian network is a 
pair B(G, P ) where G  is a directed acyclic graph over X  and P  defines a set 
of conditional probabilities Pi =  P r{X i\pa(X i)}  with pa(X{) being the parent 
of the node X t. A Bayesian network provides a concise representation of the 
joint probability distribution of the random vector X .  The moral graph of 
a Bayesian network is an undirected graph obtained by first connecting the 
parents of each node, and then changing all the directed edges into undirected 
ones.

One of the most important problems in Bayesian networks is inference, 
i.e., the problem of calculating the (conditional) probability for a subset of 
variables. There are three types of inference problems:

1. probabilistic inference, also called belief updating. The object is to com­
pute the posterior probability of a subset of variables, given a subset of 
observed evidence variables;

2. most probable explanation (MPE). The task is to find a maximum prob­
ability instantiation consistent with a given set of observed evidence.

3. maximum a posteriori (MAP). The task is to find an instantiation to 
a subset of variables with maximum a posteriori probability conditional 
on a set of given evidence.

All of the three types of inference problems are NP-hard in general [40, 128], 
and hard to approximate up to a constant ratio [1, 45, 125].

For the class of singly-connected Bayesian networks, a polynomial propaga­
tion algorithm, called message passing, has been developed [123]. For general 
Bayesian networks, there are several algorithms for exact inference, including 
the tree-decomposition-based algorithm called the tree-clustering or junction- 
tree [123], the cycle-cutset (also called conditioning) algorithm [123], and the 
more general variable-elimination scheme called bucket elimination [50]. Sim­
ilar algorithms have also been used in practical applications of CSPs [52, 81]. 
These algorithms’ running times are exponential in the maximum size of the 
subsets in the tree-decomposition used by the algorithms [50, 51], which in 
turn is lower bounded by the treewidth of the underlying structures. The 
task of finding a tree-decomposition whose maximum subset size achieves the 
treewidth is known to  be NP-hard [103], and many heuristics and approxi­
mation algorithms have been proposed in the literature of algorithmic graph 
theory and Bayesian networks [25, 28, 102, 103]. However, finding the best
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tree-decomposition is far from resolving the fundamental complexity issues in 
these inference algorithms. It has been found that Bayesian networks usually 
have large treewidth [95]. Several heuristics have been proposed to achieve 
the time-space tradeoff, resulting in so-called any-space inference algorithms 
[47. 54],

As there has been growing interest in using randomly-generated instances 
to evaluate tree-decomposition based algorithms [98, 122], it is important to 
understand the typical behavior of the treewidth in random models of these 
problems so that experimental results can be properly interpreted. Unfor­
tunately, there has been no generally accepted random models for Bayesain 
networks. In [111], random Bayesian networks are generated by converting 
random SAT instances in a way similar to the reduction in the NP-hardness 
proof [40]. In [89], random Bayesian networks are generated by using Markov 
chain Monte Carlo method to make sure the network is uniformly distributed. 
In [98, 122], random Bayesian networks are generated in a way similar to the 
classical random graphs with a restriction on the variable ordering so that the 
resulting networks are acyclic.

We define two random Bayesain network models and consider the typical 
size of the treewidth of their moral graphs.

D efin ition  6.4.1 (R an d o m  B ayesian  N etw orks). Given a set of random 
variables X  =  (Xi ,  ■ ■ ■ ,X n), a random Bayesian network Bin) is specified by 
selecting the parents of each node randomly and independently. I f  we assume 
that the node X i chooses as its parent each of the rest of the nodes randomly 
and independently with the probability pi, we use B(n.pi, 1 < i < n) to denote 
the corresponding random model.

Of course, the above random model is not guaranteed to generate directed 
acyclic graphs. To generate directed acyclic networks, we may consider a 
modified version of the model that first chooses a random order of the variables, 
and then let each variable select their parents only from the precedent variables 
according to the order. The idea of our analysis can be extended to this 
restricted model with some complication.

The second model that we will consider is simpler. It is defined on the set 
of directed acyclic bipartite graphs. A typical example of this type of Bayesian 
networks is the QMR-DT database where the upper layer has about 600 nodes 
representing diseases and the lower layer has about 4000 nodes representing 
the symptoms [95]. Even with such a simple structure, the exact inference 
generally remains intractable. See [95] for empirical evidence and [40] for an 
idea of an NP-complete proof.

D efin ition  6.4.2 (R an d o m  B ip a r tite  B ayesian  N etw orks). A random, 
bipartite Bayesian network B(Vi, Vo, k) is a Bayesian network in which Vj and 
Vo are respectively the sets o f nodes of upper and lower layers, and each node 
x  6 Vo randomly chooses a set o f k nodes in V\ as its parents.
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For random bipartite Bayesian networks, we have the following

T h eo rem  6.4.2. Let B(Vi, Vo, k ) be a random bipartite Bayesian network with 
|Vi| =  n, \V2\ =  m. Let tw(B(V \ , V2, &)) denote the treewidth of the moral graph 
o fB (y 1:V2,k) and define c* =  k^ 3^ 1+oky Then, we have

IT <  k(k-1)-

lim Pr { tw(B(Vy, V2, k)) < k +  1} =  1.
71

S. i f  — > c*, there is a constant 6 >  0 suc/i that

lim P r { tw(B(Vlt V2, k)) > Sn } = 1 .
71

Proof. Let G(V\,V2) be the moral graph of the Bayesian network and Gi(V'i) 
be the induced graph of G{Vi ,V2) on Vi. By the definition of the treewidth 
and the fact that G(V1, V2) is bipartite, it can be shown that the treewidth of 
G{V\, V2) is the maximum of k + 1 and the treewidth of Gi(Vi). The theorem is 
proved by applying Theorem 6.4.1 to the graph of random cliques Gi(Vi). □

For general Bayesian networks, if we want to use theorem 6.4.1, then the 
cliques in their moral graph have to be added randomly and independently. 
This is however not an appropriate assumption in the context of Bayesian 
networks because (1) the generated networks are not guaranteed to be acyclic 
and (2) there is no reason to assume that each variable has the same constant 
number of parents. The random model introduced in Definition 6.4.1 is a first 
step toward a more realistic random model for Bayesian networks, where we 
assume that each node selects its parents randomly and independently. It 
should be noted that this model can still generate cyclic networks. However, 
the idea of the analysis on this model can be extended to more elaborated 
models with some complication.

T h eo rem  6.4.3. Let B (n ,p i, 1 <  i < n) be a random Bayesian network on 
n variables and tw(n) the treewidth of its moral graph. Then, there exists a

0 <  5 <  1 such that lim P r{tw (n ) <  5n} =  0 if (£1(1 — P*))^ <  b-
"  i= 1

Proof. Similar to the proof of theorem 6.4.1, let V  be the set of all the 
k —partitions of the vertex set of the moral graph of the Bayesian network 
tha t satisfies the first two conditions of the definition of balanced partition. 
For a given P  =  (S , A , B) G V, let E  be the event tha t P  is a balanced parti­
tion, i.e., the event that there is no edge between vertices of A  and vertices of
B.

For each 1 <  i < n with X i E A  (or X { E B), let E{ be the event that all 
of its parents are in u4(JS (or in B (J S respectively). For X i E S, let E{ be 
the event that all of its parents are in A  (J S  or in B  (J S. We have

e =  n
l < i < n

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Since by assumption, each node selects its parents independently from the 
others, we have

n

P r{E } = Y [ P r { E i}. (6 .6 )
i = i

For & A  (or X{ G B). we have

P r{E i}<  ( l - Pi) ^ n- k-V

and for X i e  S, we have

P r{E i} < 2(1 -  Pi) f r - k~» -  (1 -  Pi)k.

The rest of proof is similar to that of theorem 6.4.1. □

Discussions

In the study of Bayesian network inference, randomly-generated networks have 
been used to evaluate and compare various inference algorithms [98, 122]. Our 
results show that the treewidth of the random instances is asymptotically in the 
order of the size of the networks even if the random model itself is quite sparse. 
This implies that purely random Bayesian networks are not adequate at least 
for the evaluation of tree-decomposition based exact inference algorithms. A 
natural question then is how to devise a random model tha t has a controlled 
treewidth. Motivated by the k-tree based definition of treewidth, we propose 
the following random model. Starting from a clique of k nodes, we add new 
nodes one at a time. The new node is then connected to the nodes of a 
randomly selected k-clique in the old graph. We illustrate the idea by giving 
the following random Bayesian network model.

D efin ition  6.4.3. Let X  =  (X i,X o,--- ,X n) be a random vector. A random 
Bayesian network with bounded treewidth(RBNBT) is a Bayesian network con­
structed using the following procedure

1. Randomly select k random variables and make the first (k  — 1) of them 
parents of the kth variable;

2. Randomly select a variable X i from the rest of the variables and a k-clique 
from the moral graph of the Bayesian network in the previous step. Make 
each variable of the selected, k-clique a parent of X i;

3. Repeat previous step until all the variables have been considered;

4. For each variable, randomly remove some variables from its parent set.

It is easy to see that the moral graph of the RBNBT has a treewidth at 
most k with probability one for any problem size. It might be interesting to 
see how many parent variables we have to remove before the treewidth of the 
generated Bayesian network is strictly less than k.
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6.4.3 Treewidth of NK Landscapes and Other Additive 
Fitness Functions

NK landscape, proposed by Kauffman [99], is a versatile model for the study 
of biological evolution and networks of biological molecules. An NK land­
scape consists of n variables {X i: 1 <  i < n}  and a set of control functions 
{fit  1 <  i <  n}. These variables represent the states of a set of genes, mR- 
NAs, or proteins. In the context of biological networks, the control function 
fi  determines the next state of Xi, while in the context of biological evolution, 
fi  represents the fitness contribution of X i  to  the overall fitness /  =  ^  fi of 
the whole genotype. In an NK landscape, the control function fi depends on 
Xi and k  other variables selected according to  some rules.

In the study of gene networks, topics of current interest are (1) the be­
havior of the NK landscape as a dynamic system and (2) efficient methods to 
reconstruct the control functions that represent the interaction among genes. 
As a model for biological evolution, one of the major tasks is to characterize 
the relation between the degree of gene interactions, the shape of the fitness 
landscape, and the complexity of searching and exploring the landscapes to 
find genotypes with higher fitness. NK landscapes have also been widely used 
as a  prototype and benchmark in the analysis of different genetic operators 
and the effects of different encoding methods on the performance of genetic 
algorithms [88, 94].

There are basically two classes of NK landscapes: N K  landscapes with adja­
cent neighborhood and N K  landscapes with random neighborhood. As an opti­
mization problem, it is known that NK landscapes with adjacent neighborhood 
can be solved polynomially and NK landscapes with random neighborhood are 
usually NP-hard. On the other hand, the two classes of NK landscapes share 
almost identical statistical characteristics such as the average number of local 
minima and the average height of the local minima [138]. This has puzzled 
researchers in this field for a while. In fact, Weinberger speculated in the 
conclusion section of [138] that this might be related to the treewidth. In 
this section, we confirm Weinberger’s speculation by proving that w h p  NK 
landscapes with random neighborhood have linear treewidth.

D efin ition  6 .4 .4 . An N K  landscape
n

f i x ) =  Xi! 7r(a;0 ) ! (6 ~)
i = 1

is a real-valued function defined on binary strings of fixed length, where n > 0 
is a positive integer and x  =  (xi, ■ • ■ ,x n) € {0,1}". It is the sum of n  local 
fitness functions fi, 1 <  i < n. Each local fitness function f l{xl. ~(xt)) depends 
on the main variable X; and a set 7r(x?-) o fk  other variables called the neighbors
Of X i .

1 . NK landscapes with random neighborhood. In this type of NK landscapes,
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7T(xi) consists o fk  variables randomly chosen from the set {aq, • • • ,xn} \
{ X i } .

2. NK landscapes with adjacent neighborhood. In this type of NK  land­
scapes, 7~(xi) consists of the k variables with indices nearest to i (modulo 
n). To simplify the discussion, we assume in this paper that for each i,

In addition to NK landscapes, the following additive fitness functions are 
also widely used. It should be noticed these concepts are simply real-valued 
versions of some concepts related to random CSP instances.

D efin ition  6.4.5. A function f  : X  = {0,1}" —► [0, oo) is additive if it can 
be represented as a sum o f lower dimensional functions

where C is a collection of subsets of {rzq, ■ ■ ■ ,x n}. For each C  € C, fc{x) only 
depends on the variables in c, and is thus called a local function. The order 
k of an additive function f  is the size of the largest variable set in C. Since 
we can always make the variable sets the same size by merging and/or adding 
dummy variables, we can assume that C consists of variable sets of size k.

The interaction graph of the additive function is a graph Gj =  G /iV .E )  
where the vertex set V  = {aq,. . .  , x n} corresponds to the set of variables, and 
(xi, Xj) € E  i f  and only i f  there is a subset C  G C such that aq € C and Xj £ C.

The treewidth tw( f )  o f f  is defined to be the treewidth o f its interaction

For NK landscapes with adjacent neighborhood, we have the following 
result.

T h eo rem  6.4.4. Let f(x) be an N K  landscape with adjacent neighborhood. 
Then, we have k < t w { f ) <  2k.

Proof. Since the interaction graph /  contains cliques of size k + 1, its treewidth 
should be no less than k. We prove that tw( f )  < 2k by constructing a tree 
decomposition with a treewidth 2k. Let V  = {sq, • • • , x n} be the set of ver­
tices, and let V0 =  {^ i; ■ • • We construct S  = {Xi , i  > 1}, a collection of

^ ( ^ i )  — > Xi - 1 )  x i + l ; ' ' ' ; ;CT n i T i ( n , i + ( 6 - 8 )

graph.
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subsets of the variables, as follows:

X i  =  {s! , - --  ,Xfc+i}uVo,
Xo = {xo, • • • , Xfc+2 } U Vo,

X n—k {%n—f c :  • X n }  h J  Vq.

X n —k+1 “{*£71—k-rl ? * * * ? ^71: X \ } OJ Vq.
Xn—k+2 fc+2: : Xl, xffr tJ Vq ,

x n =  { x n, X i , x 2, - - -  , x fc}UVo,

and define a tree structure on S  by assigning an edge between each of the 
pairs ( X i , X i+i ) , l  < i <  n — 1. It is easy to verify that the collection of 
subsets of variables and the tree structure specified in the above form a tree

On the other hand, the following theorem states that NK landscapes with 
random neighborhood w h p  have linear treewidth.

T h eo rem  6.4.5. Let f(x) be an N K  landscape with random neighborhood. 
Then, for k >  2, there is a fixed constant 5 > 0 such that

Proof. The proof of the case ^  >  c* is based on the same technique as th a t in 
the proof of Theorem 6.3.1. The only difference is that the interaction graph 
of /  is neither the standard uniform random graph nor the “graph of random 
cliques”. Instead, it consists of a set of n  cliques {Ci}l < i < n}  where 
each Ci contains the vertex Vi and two other vertices uniformly selected from

decomposition with a width 2k. □

lim Pr { tw ( f )  > £n} =  1.
71

(6.9)

\  {Xi}. □
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Chapter 7 

Conclusions

In this thesis, we have explored several different aspects of the theoretical and 
empirical hardness of randomly-generated problem instances. For randomly- 
generated instances of constraint satisfaction problems, we identified a new 
class of algorithmically exploitable structures and proved that under certain 
distributions, random instances contain such structures with high probability 
(Chapter 4). In an effort to find a way to eliminate these structures from 
randomly-generated CSP instances, we established a connection between the 
famous notion of constraint consistency in the literature and the resolution 
complexity of random CSP instances. By embedding a recursive structure— 
the consistency core—into the distribution of the random CSP models, we 
proposed a novel scheme to generate random CSP instances with theoretically 
guaranteed resolution complexity and empirically confirmed hardness (Chap­
ter 5). Our proposal resolved the long-standing problem of generating hard 
random CSP instances with bounded domain size that has troubled the society 
for several years.

While all of the results in Chapters 4 and 5 are aimed at backtracking 
search algorithms, we investigated in Chapter 6 the typical-case behavior of 
random instances in terms of search algorithms with a different flavor—those 
dynamic programming based algorithms whose time and space complexities 
are exponential in the treewidth of the underlying structures. We established 
an improved lower bound on the threshold for a graph to have a treewidth 
linear to the graph size. Similar techniques were then applied to random 
CSPs and Bayesian networks in AI and random fitness landscape models in 
computational biology and evolutionary computation. It was concluded that 
these dynamic programming based algorithms all have exponential behavior 
even on problem instances randomly-generated under a distribution that has 
been shown theoretically and/or empirically to be easy for backtracking search 
algorithms.

As for the implications of the current study to practice and the lessons 
learned from this study, I will try  to discuss below several issues that have 
kept “puzzling" me throughout this research.
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It is the Structure Plus the Algorithm

An important lesson learned from the study of the phase transition in NP- 
complete problems is the central importance of the structural information in 
a combinatorial search problem. It is now clearer why really hard problems 
“are well out of reach of any intelligent algorithms” —there is simply no small 
structural signature in these hard problems for any foreseeable intelligent algo­
rithms to exploit [44], This point of view is enhanced by the study in this thesis 
on the embedded easy subproblems and on the connection between constraint 
consistency and resolution complexity of randomly-generated CSP instances.

The enthusiasm in the phase transition of NP-complete problems stems 
from the close connection between the instance hardness and the phase transi­
tion of the solution probability. The study on the typical-case size of treewidth 
in Chapter 6 indicates that such a connection is indeed algorithm-dependent 
and is far from universal. For dynamic programming based algorithms that 
exploit quite different structural information, our study shows that contrary 
to some previous expectation, there is no hope to establish any kind of con­
nections between the instance hardness and the solution probability phase 
transition—it is the phase transition of the size of the treewidth tha t plays 
the dominating role, and this phase transition occurs well before the solution 
probability transition.

Hard Instances as Benchmarks for Testing What?

The motivation to generate testing instances for algorithms and solvers in 
practice is, among others, to carry out one of the following tasks:

1. To find bugs in our implementation;

2. To study a random instance distribution itself of a given problem;

3. To identify the limitations of a specific class of algorithms; and

4. To look for principles regarding the design and the use of heuristics for 
tackling algorithmic problems.

Task 1 is the most basic and practical one, and has been an important topic 
in software engineering and software industry as exemplified by the adoption 
of the so-called unit-testing paradigm in the software development process. 
Interestingly, the theory of computation tells us that this is in fact a computa­
tionally unsovable task, and thus could not have been the original motivation 
of the study on the phase transition of NP-complete problems.

Task 2 is interesting and fun as it satisfies our curiosity about the unknown. 
But such practice should be avoided as much as possible in conducting empir­
ical study of algorithms [93]. I have found out, however, that at least for me 
myself it is very tempting to do so.
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It is thus clear tha t the whole purpose of generating hard instances is for 
the third and the fourth tasks—to study the limitations of specific class of 
algorithms and to draw guidance to the design of algorithms.

One of the original interests in the study of phase transitions in NP- 
complete problems is tha t by varying some distribution parameter, one can 
generate instances with a desired degree of hardness (for some specific class of 
algorithms). Unfortunately, perhaps largely motivated by the various solver 
competitions, there has been enthusiasm for generating various “hard” in­
stances to blindly beat those solvers and algorithms. We can easily generate 
instances with a large number of cycles in their underlying graphs to fool the 
famous survey-propagation algorithm; we may come up with a random model 
whose instances are “hard” for any type of backtracking algorithms simply 
because no heuristic is going to work; or we can generate random CSPs or 
Bayesian networks based on standard random graphs in a straightforward way 
to evaluate (and easily beat) dynamic programming algorithms; and finally, 
there is the needle-in-the-haystack function which has no local minimum at 
all, but is surely extremely hard to optimize by any local search algorithms. 
W hat is difficult and non-trivial, however, is to devise random instances that 
reveal intrinsic connections between structures and the efficiency of algorithms 
and heuristics.

W h ere  does th e o ry  m ee t p rac tice?

A common criticism to theoretical analysis is tha t it is not practical. This is 
in some sense true because most of the theoretical results we can expect to 
get from current analytical techniques are hopelessly  on the limiting behavior 
(See Figure 7.1 to find out how hopeless a  theory could be). W hat scientists in 
practical fields really want is a theory that can explain phenomena occurring 
a t a finite problem size, say n =  20, 100, or 1000.

On the other hand, we have theoretical physicists who use sophisticated 
mathematics, those tha t sometimes scare real mathematicians and theoretical 
computer scientists, to derive limiting results and to use these limiting behav­
iors to explain real-world phenomena. This methodology turns out to be very 
powerful and has been used for many years by physicists.

In the field of computer science, my impression is tha t the two tasks similar 
to those carried out by physicists are sometimes conducted separately by two 
groups of people. We have theoretical computer scientists and discrete math­
ematicians who have been publishing deep and elegant results but do not care 
much about interpreting real-world phenomena. On the other hand, we have 
computer scientists who have done excellent work in dealing with problems of 
practical size but do not have much belief in the potential intuitions that a 
theory on the limit behavior can provide.

I hope that this thesis helps in illustrating what a theory on the limit 
behavior can offer in practice. My experience in this study tells me that it
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is not about the specific numbers or sizes that a theory can match—what 
really matters is the message and observation conveyed during the process 
of the theoretical analysis and the corresponding results. In the experiments 
carried out in Chapter 5, I never tried to find out how many flawed variables 
or embedded subproblems there could be in the instances generated from the 
two CSP models, the model B and the flawless model—the chance of finding 
one in problems of size n =  500 is not decently high. But still, it turns out 
tha t our proposed new model motivated by the theoretical analysis does make 
a real difference in terms of the instance hardness.

600

500

400

300

200

100

Figure 7.1: These curves are all supposed to drop to zero in the limit.
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