
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and continuing

from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

U n iv e rs ity o f A lb e rta

P h a s e T r a n s i t i o n s a n d T y p i c a l - c a s e C o m p l e x i t y : E a s y (H a r d)
A s p e c t s o f H a r d (E a s y) P r o b l e m s

by

Yong G ao (f t)(CJ

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of D o c to r o f P h ilosophy .

Department of Computing Science

Edmonton, Alberta
Fall 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 * 1 Library and
A rchives C a n a d a

Published H eritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
A rchives C an ad a

Direction du
Patrim oine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

0-494-08642-4

Your file Votre reference
ISBN:
O ur file Noire reference
ISBN:

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L’auteur a accorde une licence non. exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

■*i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A bstract

In this thesis, we study theoretically and empirically the typical-case hardness

of randomly-generated instances of several algorithmic problems tha t are of

interest in artificial intelligence research. For randomly-generated instances

of constraint satisfaction problems (CSP), we identified a new class of al­

gorithmically exploitable structures and proved that under certain instance

distributions, random instances contain such structures with high probability

(Chapter 4). In an effort to find a way to eliminate these structures from

randomly-generated CSP instances, we established an interesting connection

between the notion of constraint consistency in the literature and the resolu­

tion complexity of random CSP instances. By embedding a recursive structure

called consistency core into random CSP models, we proposed a novel scheme

to generate random CSP instances with theoretically guaranteed resolution

complexity and empirically confirmed hardness (Chapter 5). Our proposal re­

solved the long-standing problem of generating hard random CSP instances

with bounded domain size that has troubled the society for several years.

While all of the results in Chapters 4 and 5 are aimed at backtracking

search algorithms, we investigated in Chapter 6 the typical-case behavior of

random instances in terms of the dynamic programming algorithms whose

time and space complexities are exponential in the treewidth of the under­

lying structures. This type of algorithm has been widely used in the study

of Bayesian network inference and CSPs. We established an improved lower

bound on the threshold for a random graph to have a treewidth linear in the

graph size. Similar techniques were then applied to random CSPs, random

Bayesian networks, and fitness landscape models in computational biology

and evolutionary computation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgem ents

First of all, I would like to thank my supervisor, Dr. Joseph Culberson, for his

advice, inspiration, and encouragement over the years. I thank his patience

while I was a t a loss in my first year as an international student in 1998,

his understanding when I decided to graduate with an MSc in 2000, and in

particularly his encouragement when I was exploring the idea of “going back

to school” to do a PhD in 2002. It is no exaggeration to say tha t without him,

this thesis would never have been written, or even have been started.

I also want to thank my other committee members, Toby Walsh, Moham­

mad R. Salavatipour, Lorna Stewart, Yau Shu Wong, and Russell Greiner,

for reading my proposal and thesis draft. Their suggestions and criticisms

during my candidacy exam are an invaluable source of inspiration during the

preparation of this thesis.

I am grateful to many people with this department, in particularly to Dr.

Peter van Beek (now with Univ. of Waterloo), Dr. Lorna Stewart, Dr. Guohui

Lin, Dr. Kui Wu (now with Univ. of Victoria), and (soon to be) Dr. Calin

Anton and Yuxi Li. Studying and working with them gives me an opportunity

to know a variety of research fields and research perspectives which otherwise

will take forever for me to learn by myself. Thanks are also devoted to Dr.

David G. Mitchell of Simon Fraser University who kindly provided me a copy

of his thesis.

Finally, I appreciate my family and parents for their patience and support

through good times as well as bad times.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 Introduction 1

2 Preliminaries 5

2.1 The Probabilistic M e th o d .. 6

2.2 Theory of Random G rap h s.. S

2.3 Decision Problems, Computational Complexity, and Proof Com­

plexity ... 10

2.3.1 Resolution Proof S y s te m .. 11

2.3.2 Hard Formulas for R eso lu tio n .. 12

2.3.3 DPLL Procedure and Resolution C om plexity.................. 15

2.4 Phase Transitions and Typical-case C o m p le x ity 17

2.4.1 S A T .. IS

2.4.2 Graph C o lo rin g .. 22

2.4.3 Hamiltonian C y c l e .. 23

2.4.4 Number P a rti tio n in g .. 24

2.5 Generating Hard In stan ces ... 27

3 Constraint Satisfaction Problem and its Random Models 31

3.1 Constraint Satisfaction P ro b lem ... 31

3.2 Random Models of Constraint Satisfaction Problems 34

3.2.1 Classical Random CSP Models... 36

3.2.2 Improved Random CSP M o d e ls 37

3.3 Phase Transitions of Random C S P s ... 38

3.3.1 Flawed Variables, Flawed Constraints, and Well-behaved

C S P s.. 38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.2 Sharpness of CSP Phase Transitions 41

3.3.3 Random CSPs with (Slowly) Increasing Domain Size . 41

4 Random CSPs with Polynom ial Resolution Com plexity 43

4.1 In troduction ... 43

4.2 Main R e s u l t s .. 44

4.3 Proofs of the R e s u l ts .. 46

4.3.1 Proof of Theorem 4 .2 .1 .. 46

4.3.2 Proof of Theorem 4 .2 .3 .. 55

4.4 Discussions ... 56

5 Consistency and Better Random CSP Models 57

5.1 In troduction .. 57

5.2 Consistency and Resolution Complexity of Random CSPs . . . 58

5.2.1 CNF Encoding of CSPs .. 59

5.2.2 Consistency and Resolution Complexity of Random CSPs 61

5.3 Consistency Core and Harder Random CSP Model with High

Constraint T ig h tn e s s ... 61

5.3.1 Flawless Random C S P s... 62

5.3.2 Generalized Flawless Model and Consistency Core . . . 63

5.4 Experim ents.. 66

5.4.1 Effect of an Increase in Constraint T igh tness 66

5.4.2 Comparisons between Three Random CSP Models . . 70

5.5 Proof of the T h e o re m s .. 76

5.5.1 Theorem 5 .3 .1 .. 76

5.5.2 Theorems 5.2.1 and 5 .2 .2 .. 79

6 Easy Random Problem s Are Sometimes Hard 85

6.1 In troduction .. 85

6.2 Notation and D efin itions... 86

6.3 Threshold of Linear Treewidth in Random G rap h s 88

6.4 Treewidth of Random Models in AI and Computational Biology 95

6.4.1 Treewidth of Random C S P s .. 95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4.2 Treewidth of Random Bayesian Networks......................... 96

6.4.3 Treewidth of NK Landscapes and Other Additive Fit­

ness Functions 100

7 Conclusions 103

Bibliography 107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Tables

5.1 Maximum Median Number of Branches of zChaff on random

instances of three random CSP models , over all —. Domain’ 71
size d = 4 and K, is 2-regular..

5.2 Median Number of Branches of zChaff on random instances of

three random CSP models at the smallest & where the solution

probability is less than 0.1. Domain size d = 4 and K is 2-

regular...

5.3 Median Number of Branches of zChaff on random instances of

three random CSP models at the largest — where the solution° 71
probability is greater than 0.9. Domain size d = 4 and /C is

2-regular...

5.4 Median number of branches (median time in seconds) of ZChaff

and Satz on two random CSP models with n = 500, d = 4, and

t = 6. 100 instances for each parameter..

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Figures

4.1 The upper bound u(t) for the threshold c3(t) as a function of

tightness t. Left figure: the function itself. Right figure the

derivative of the function.. 46

4.2 An illustration of a k-cc-loop. Only the cyclic variables Vi, 1 <

i < 3p, are shown. Each hyper-edge E z contains two cyclic

variables from V and (k — 2) variables from X \ V 47

4.3 An illustration of a set of q = 6 shared hyper-edges that form a

hyper-tree containing three hyper-path branches. The variable

v appears in 3 hyper-edges. There are 4 fixed cyclic variables,

3 limited cyclic variables... 53

•5.1 A special type of consistency core with the domain size 9 . . . 66

5.2 Thresholds for the solution probability in the model with

n = 250. The z-axis is the solution probability. The axis with

the range 1—2 is for the parameter 1 + a and the axis with the

range 1—6 is for the clause density m /n 6S

5.3 Effects of an increase in the constraint tightness on the instance

hardness for with n = 250. The z-axis is the median

number of branches in log-scale. The axis with the range 1.2—

1.8 is for the parameter 1+a and the axis with the range 2.5—5.5

is for the clause density mjn,... 69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

•5.4 Solution probability thresholds for the three random CSP mod­

els with 77, = 500, t = 6. For the generalized flawless model, JC

is set to be 2-regular. The y-axis is solution probability and

x-axis is the constraints-variables ratio m /n . Sample size for

each data point is 100.. 72

5.5 Hardness for the three random CSP models with n = 500, t = 6.

For the generalized flawless model, K. is set to be 2-regular. The

y-axis is the median number of branches used by zChaff and x-

axis is the constraints-variables ratio m /n . Sample size for each

data point is 100... 73

5.6 A closeup a t the region m /n = 1 .8 ------- 2.5 for the generalized

flawless model with n = 500, t = 6 and K. being 2-regular.

Sample size for each data point is 200. Two curves are plotted.

One is the median number of branches for satisfiable sample

instances only, another is the average number of branches for

all the sample instances... 74

7.1 These curves are all supposed to drop to zero in the limit. . . 106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

In physics, the notion of a phase transition refers to the abrupt change of states
(phases) of compounds a t some values of the system parameters such as the
pressure and the temperature. Popular examples of phase transitions in the
physical world are the liquid-to-gas transition of water, and the conductor-
superconductor transition of electrical resistance of some materials.

Similar phenomena have also been observed in computational and artificial
intelligence (AI) systems. For example, consider a random graph on n vertices
generated by selecting each of the n (n — l) /2 potential edges independently
with edge probability p = p(n). It is well-known that the random graph
experiences several abrupt changes in its combinatorial properties when the
edge probability p(n) increases from o (l/n) to 0(1) [30, 59]. For many NP-
complete problems such as the Boolean Satisfiability problem (SAT) and the
graph coloring problem, the probability for a randomly-generated instance
to have a solution also has a phase transition from zero to one at a certain
value of the parameter that controls the “density” of the randomly-generated
instances [35, 41, 101]. In their seminal work [35], Cheeseman a t al. showed
that for many NP-complete problems and some standard search algorithms,
the typical hardness of randomly-generated instances is closely related to the
critical point, called the threshold, where the phase transition occurs.

There are several reasons why a study of phase transitions in NP-complete
problems is interesting. First, while many algorithmic problems of great im­
portance in AI and other practical fields are NP-complete, it is not necessarily
true tha t instances of these problems are equally hard. People are particu­
larly interested in a theory tha t addresses the “typical-case” complexity of
these problems and helps determine the regions in the problem space where
instances are relatively easy to solve. Second, in the empirical analysis of
algorithms, the selection of reasonable benchmarks is an im portant factor.
In addition to real-world benchmarks, random problem instances are widely
used. However, generating really hard random instances is not a trivial task.
A classical example is a random SAT model used in early 19S0s tha t has been
shown to have an extremely strong bias towards generating, sometimes triv-

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ially, easy instances [78, 62]. A more recent example is a widely used model for
the constraint satisfaction problem (CSP) which has been proved to be triv­
ially unsatisfiable asymptotically with probability one [8]. An analysis of the
typical-case complexity of randomly-generated instances of NP-complete prob­
lems may thus provide a valuable guidance to the design of random instance
generators [6, 74].

Recent studies on the phase transitions in NP-complete problems have
given us much insight into the typical-case complexity of these problems and
help in tackling questions such as “where are the really hard problems?” and
“why do these hardest problems seem to resist any intelligent algorithms?”
[39. 44, 63, 114]. Answers to these questions have already stimulated research
on designing efficient algorithms and appropriate benchmarks [6, 109. 118].
See also [85, 86, 87, 118] for a series of popular science articles for the history
and recent development.

A lesson learned from the study of the phase transition in NP-complete
problems is the central importance of the structural information in a combina­
torial search problem. We now have a clearer view regarding why really hard
problems “are well out of reach of any intelligent algorithms”—there is sim­
ply no small structural signatures in these hard problems for any foreseeable
intelligent algorithms to exploit [44]; Random models with richer structures
have been proposed to avoid the triviality in existing random CSP models
and to generate better testing instances in the study of search algorithms
[6, 8, 74, 79]; Combinatorial search problems have also been investigated on
some non-classical models of random graphs such as the power-law graphs and
the small-world graphs [136, 137]. These graphs have unique structural char­
acteristics and have been found to be ubiquitous in communication networks,
biological systems, and human natural languages [13].

It is commonly believed tha t the easy-hard complexity pattern associated
with the phase transition of the solution probability is algorithm-independent.
While this is true for the class of backtracking search algorithms, there has
been evidence showing tha t algorithms making use of different structural in­
formation may have very different behaviors [38].

This thesis, as its title suggests, contributes to the ongoing research on the
phase transitions and typical-case complexity by investigating easy aspects in
the region of the problem space where random instances have been expected
to be difficult to solve, and hard aspects for some type of search algorithms in
the region of the problem space where random instances have been proven to
be typically easy for backtracking algorithms.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contributions

Polynomial Resolution Complexity of Random CSPs

For some popular random CSP models, we identify a new class of subproblem
structures whose appearance makes randomly-generated CSP instances triv­
ially easy. We prove that this type of subproblem appears asymptotically with
probability one in a region of the problem space where instances are free of the
triviality demonstrated by Achlioptas et al. [8]. This result partly answers an
open question regarding the (resolution) complexitv of random CSPs posed in
[113]-

Consistency, Resolution Complexity, and Better Random M odels of
CSPs

Since the work of Achlioptas et al. [8] on the triviality of random CSP mod­
els, there has been much effort in designing better random CSP models tha t
exhibit non-trivial threshold behaviors and have guaranteed hard instances at
phase transitions [8, 42, 75, 113, 115, 129, 140]. One of the most significant
problems with these random CSP models is tha t as a model parameter, the
constraint tightness has to be very low for bounded domain size. We establish
an interesting connection between the notion of constraint consistency in the
literature and the resolution complexity of random CSP instances. By embed­
ding a recursive structure called consistency core into random CSP models, we
propose a novel scheme to generate random CSP instances with theoretically
guaranteed resolution complexity and empirically confirmed hardness.

Typical Size o f Treewidth of Random Graphs and Other Random
Structures

We study the typical size of the treewidth of random graphs and graph struc­
tures of some randomly-generated problem instances. The significance of the
typical size of the treewidth lies in the fact tha t the time and space complex­
ities of many popular non-backtracking search algorithms are exponential in
the treewidth of the underlying graph structures of the problems, including
the tree-decomposition-based algorithms for CSPs, some exact inference algo­
rithms for Bayesian networks, and the estimation of distribution algorithms in
evolutionary computation.

We establish an improved lower bound on the threshold for a random graph
to have a linear treewidth. Using the same analytical technique, we further
show that the graph structures associated with randomly-generated instances
of CSPs, Bayesian networks, and fitness landscapes all have a treewidth linear
in the problem size, even in the region of the problem space where backtracking
algorithms have been shown to be very efficient.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 introduces the no­
tation, concepts, and techniques from the probabilistic method, the theory of
random graphs, and the theory of computational complexity. Some of them
will be used in the remaining chapters of the thesis. The last two sections
of this chapter overview the study of the phase transitions and typical-case
complexity, including the phase transitions of four typical NP-complete prob­
lems (Section 2.4), and previous studies on generating hard random instances
(Section 2.5). In Chapter 3, we introduce the constraint satisfaction problem,
its random models, and existing work on its phase transitions.

In Chapter 4, we establish a set of lower bounds on the constraint tightness,
an important parameter of random CSP models. Above these lower bounds,
randomly-generated CSP instances have a polynomial resolution complexity
asymptotically with probability one.

In Chapter 5, we prove some theoretical results on the connections between
constraint consistency, another important concept intensively discussed in the
CSP literature, and the resolution complexity of randomly-generated CSP
instances. Based on these connections, we propose a novel scheme that can
be used to design new random CSP models to overcome the difficulties with
the classical random models. A series of empirical results are also reported on
the relation between the constraint consistency and the resolution complexity
as well as on the comparison between our proposed random CSP model and
previous models.

Chapter 6 is devoted to a discussion on the hard aspect of (typically) easy
ensemble of problem instances. First, we establish an improved lower bound on
the threshold for a random graph to have a linear treewidth. Then using simi­
lar analytical techniques, we show that the typical size of the treewidth of the
underlying graph structures is also large in random CSPs, random Bayesian
networks, and some other models in computational biology and evolutionary
computation. The obtained results indicate tha t several algorithms developed
in the CSP and Bayesian network communities have a typically exponential be­
havior in the region of the problem space where randomly-generated instances
can be solved easily by backtracking algorithms. Chapter 7 is the conclusion.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Prelim inaries

Let V = (Q. A , Pr) be a probability space where Q is a sample space. .A is a
a-field. and Pr is a probability measure. Throughout the thesis, we will use
the following notations:

£p [X] : the expectation of a random variable X-,
o%[X] : the variance of a random variable X:
I a ■ the indicator function of an event A £ A.

When the probability space is clear from the context, we will suppress the
subscripts and simply write S[X], <r2[X], and IA.

Let {'Pn = (fin, A n, P rn) ,n > 1} be a sequence of probability spaces and
let {A n £ A n, n > 1} be a sequence of events. We say that {An £ A n, n > 1}
occur with high probability (whp) if lim P rn{.4n} = 1.

n

A random variable X has the Bernoulli distribution with parameter p £
[0,1] if P r { X = a } = pa{ 1 — p)1-“, a £ {0,1}. The sum of a sequence of n
independent Bernoulli random variables has the binomial distribution b(n,p)
with parameters n and p. The following Stirling’s formula and related inequal­
ities for the binomial coefficients are also frequently used:

n ! = (“) \/27rne0, 0 < 9 < 1 (2.1)

< c 2V^ i , , 2)

where 5, C\, and Co are fixed constants.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 The Probabilistic M ethod

The 'probabilistic method, initiated by Erdos and Renyi in their work on ran­
dom graphs [59], is a powerful technique tha t uses probabilistic arguments
to tackle problems of combinatorial nature. Over the years, the probabilistic
method has found various applications in many branches of theoretical com­
puter science and discrete mathematics. Probabilistic tools crucial to the use
of the probabilistic method include basic inequalities such as M arkovs inequal­
ity and Chebyshov’s inequality, as well as more advanced results on Poisson
approximations and large deviation bounds of random variables [14, 30, 131].

T h e F ir s t M om en t M eth o d

In the first moment method, the probability of some event of interest is bounded
by the expectation of the corresponding random variable. Markov’s inequality
provides a convenient way to establish such a bound.

L em m a 2.1.1. Let X be a random variable, k > 1 be an integer. Then, for
any t > 0,

P r { p f | > t } < £ [|* lT (2.3)

Proof.

s[\x\k] = s[\x\ki{[x̂ y]+s[\x\ki{m>t}]
> f [l x l * / { w > t }] > 5 [i * / { w > l }]
= thPr { |X | > t }.

□
C o ro lla ry 2.1.1 (M arkov’s In e q u a lity) . Let X be a positive random vari­
able. Then, for any t > 0;

P r { X > t £ [X] } < ^ . (2.4)

In particularly, for any positive integer-valued random variable X ,

P r { X > 0 } < £ [X] . (2.5)

T h e Second M om ent M eth o d

The second moment method is typically used to bound the probability of the
event tha t a random variable is within a specific interval around its expec­
tation. The bound is based on inequalities that involve the variance of the
random variable.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lemma 2.1.2 (Chebyshov’s Inequality). Let X be a random variable. For
any t > 0.

P T { \ X - £ { X] \ > t S { X] } < ^ L (2.6)

In particular, i f S [X } > 07 we have

p r { X = ° } < § H (2.7)

Another way to bound the probability Pr{X = 0} is to use the Cauchy-
Schwarz inequality

£ 2[X Y] < £[X2\£[Y2)

for two random variables X and Y .

Lemma 2.1.3. Let X be a random variable. We have

P r { X = 0 } < l - | S . (OS)

Proof.

£ 2[X] = £ 2[X I{ x m] < £ [X 2]£[I{Xt o}]
= (l - P r { X = 0})£[X 2].

□

The Bounded Differences M ethod

Sometimes it is desirable to have sharper bounds on the tail probability of
random variables, i.e., bounds tha t decreases exponentially fast. The bounded
differences method provide such exponential bounds for “smooth” functions of
random variables.

The classic exponential bounds on large deviations is the Chernoff bound
for binomial random variables, i.e., the sum of independent and identically
distributed Bernoulli random variables.

Lemma 2.1.4 (Chernoff Bound [110]). Let (X l, . . . , X n} be a sequence
of independent and identically distributed Bernoulli random variables with
Pr{Xi = 1} = p for each 1 < i < n . Then for any t > 0,

i

np > t
2 1 -

< 2e ~ (2.9)
t=i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proof. Let X = Y X{. Formula (2.9) can be derived from the observation
i=l

tha t for any s > 0,

Pr { X > n p + t } = £[I {x-{np+a)> 0}] < £ [es[X~{np+t))}
= e - * (n p + t) £ [e »X] = e-,(nP+t)(pe« + (1 _ p)) » .

□
The Chernoff bound has been generalized to the cases where {X i, 1 <

n
i < n} are (not necessarily Bernoulli) random variables and the sum Y is

i=i
replaced by a function / of the variables that satisfies the so-called “bounded
differences” condition.

Lemma 2.1.5 (M cDiarmid [110]). Let {A'i,. . . ,X n} be a sequence of inde­
pendent random variables with each X i defined on a probability space (Qi, A , Pr*)

n
Let f : Y[Lli -+ R be a function such that

t=l

I / M - / M) | < a

n
whenever oj.u' G J][Lli differ only in the i-th coordinate. Then for any t > 0.

2 = 1

2

Pr { | f (X u . . . , X n) ~ 5 [/(X ls . . . , * „)] | > * } < 2e"s7?. (2.10)

The Chernoff bound can also be generalized to the cases where the sequence
of random variables {Xi, 1 < i < n} are dependent. The most famous result
is Hoeffding-Azuma’s inequality for martingale-differences sequences [14, 131].
It is worth noting tha t the exponent in McDiarmid’s bound in (2.10) is better
by a factor of 4 than those obtained from Hoeffding-Azuma’s inequality [30].
See [91, 135] for more recent progress on dependent variables and functions
tha t violate the “bounded differences” condition.

2.2 Theory of Random Graphs

The theory of random graphs, founded by Erdos and Renyi [59], is at the core
of the probabilistic method. It deals with various structural graph properties
in random models of graphs. Popular random models of graphs include the
original Erdos-Renyi random graph [30, 120], the random regular graph [100,
139], and the more recent scale-free random graph [13, 56]. In the following, the
term “random graph” will always refer to Erdos-Renyi random graph model.

Definition 2.2.1 (M odels of Random Graphs). Let V be a set of vertices
with \V\ = n.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. C onstant-Probability M odel G (n,p). In this model, each of the (")
potential edges appears in the graph independently with probability p.

2. Uniform M odel G (n ,m). In this model, the graph contains a set of
m edges selected uniformly at random without replacement.

It is not hard to see tha t for a given graph G = G(V, E) with |i?| = m,

Pr {G{n,p) = G} =

and

P r {(?(n,m) = G} =
\ m

A graph property is a subset of graphs. A graph property Q is said to be
monotone increasing if for any two graphs G and H such that if G £ Q and
G C H, we have H € Q. For a monotone increasing graph property Q, the
following result is straightforward:

P r { G(n, m i) € Q } < P r { G(n, m2) € Q } if mi < m2. (2.11)

To see this, let A \ C Q be the set of graphs with mi edges and A C Q be
the set of graphs with m2 edges. Each graph in A \ corresponds to (^.I™ 1)
graphs in Ao, while each graph in Ao corresponds to at most (m2) graphs in

A . Thus, | A I (® : “ -) < I A I ® .
For many problems, it is much easier to work with the constant-probability

model than with the uniform model. Fortunately for monotone increasing
properties and under very mild conditions on p and m, the two models are
probabilistically equivalent. See [30, 120] for a detailed discussion.

In the study of (constraint) satisfiability problems, hypergraphs are also
widely used. Random models of hypergraphs can be defined in a similar way.

Definition 2.2.2 (Random Hypergraphs).

1. A hypergraph Q = G{V, E) is a pair (V', E) where V is the set of vertices
and E is a collection of subsets o f V, called hyperedges. A hypergraph is
k-homogenous1 i f its hyperedges are all o f cardinality k.

2. Constant-Probability M odel Qk{n,p). In this model, each of the (£)
potential edges appears in the graph independently with probability p.

3. Uniform M odel Qk(n , m). Qk{n, m) is a random hypergraph consisting
of m hyperedges chosen uniformly at random without replacement from
the collection of all the (£) potential hyperedges.

Rn the literature, the corresponding concept is called A:-uniform.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Note that the random graph G (n .m) is just the random 2-homogenous
hypergraph G2(n ,m).

A main theme in the study of random graphs is the threshold phenomenon
and phase transitions tha t characterize the abrupt change of monotone graph
properties when some parameter of the random model crosses a critical value
(or function). A detailed account can be found in [30, 120] and the references
therein.

One of the most interesting results on the phase transitions of random
graphs is the abrupt change of the component structure of the random graph
G {n ,m) at the threshold ~ = £• It is well-known that for ^ G {n,m)
consists of small-sized tree and unicyclic components whp , while for ^ > 1,
G (n,m) has a “giant” component of size O(n) whp [30, 59, 120]. A similar
result also holds for the random /c-homogenous hypergraph Qk(n,m).

The excess of a ^-homogenous hypergraph Q = Q{V,E) is defined as

ex{G) = (k - l) \ E \ - \V\. (2.12)

A connected hypergraph Q is called a hypertree if ex(G) = — 1 and a unicycle
if ex(Q) = 0.

Lemma 2.2.1 ([97]). I f ^ then whp the random k-homogenous
hypergraph Qk(n ,m) consists of only hypertrees and unicyclic components.

2.3 D ecision Problem s, Com putational Com ­
plexity, and Proof C om plexity

A decision problem consists of a pair (E, C) where E is a set of problem instances
and L, called a property or a language, is a subset of E. The question is to
decide the membership of a given problem instance in the language L. The
set of problem instances of size n is denoted by En. A decision problem (E, £)
together with a partial order -< on E is said to be monotone (with respect to
-<) if one of the following conditions is satisfied:

1. V/i, Jo G E, if Ii -< I2 and £ G C, then I2 G £ ; or

2. V /x , Jo G E, if I i -< I 2 and Io G C , then £ G C.

The graph coloring problem and the Hamiltonian cycle problem are famous
examples of decision problems that are monotone with respect to the partial
order defined by the inclusion of edge sets, while SAT and CSP are monotone
decision problems with respect to the partial order defined by the inclusion
relation of subsets of clauses or constraints.

A witness, or a proof, for a problem instance is a piece of properly encoded
information concerning the membership of the instance. A decision problem

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(=., £), or more precisely the language £ , is in NP if there is an polynomial-time
procedure A such that

£ = { I € E : there exists a witness y such that A accepts (/, y)}.

The notion of NP-completeness was first formulated by S. Cook and L. Levin
in early 1970s, and has since then played a very important role in the study
of computational complexity and in the analysis of algorithms. A decision
problem is NP-complete if it is in NP and any decision problem in NP can be
reduced to it polynomially.

A central task in the study of computational complexity is to provide a
classification of various decision problems in terms of the required computing
resources. The subclass P of the NP decision problems is a class of problems
tha t can be solved in polynomial time. Understanding the relation between
the classes P and NP is one of the main driving forces in the theory of com­
putational complexity.

The theory of proof complexity, on the other hand, deals with the size of
the proofs or witnesses of a decision problem. The class co-NP is the set of
decision problems tha t are the complement of some NP decision problem. A
proof system for a language (E, C) in co-NP is a polynomial-time computable
procedure 5(x, tt) : E x E* —► {0,1} satisfying the following properties

1. Soundness: 3it € £* such tha t S(x , ~) = 1 =>• x € £:

2. Completeness: x € £ => 3?r such th a t S (x , tt) = 1.

We call 7T € S* a proof and denote its size by |tt|. The central question in
the theory of proof complexity is tha t of “NP versus co-NP” , i.e., “Does every
co-NP problem have a polynomial size proof?” A line of research aimed at
resolving the NP versus co-NP problem is to establish lower bounds on the
proof size for proof systems of increasing strength.

2.3.1 Resolution Proof System

Proof systems for the propositional satisfiability problem (SAT) in preposi­
tional logic are of special theoretical and practical interest.

Definition 2.3.1 (Literals, Clauses, and Formulas). In propositional
logic, variables take two possible values 0 (false) and 1 (true). A literal is
either a variable x or its negation x.

1. A clause is a disjunction of a set of literals. A clause that contains k
(distinct) literals is called a k-clause.

2. A conjunctive normal form. (CNF) formula is the conjunction of a set
of clauses. A CNF formula that contains only k-clauses is called a k-
CNF formula. It is also common and convenient to simply regard, a CNF
formula, as a collection of clauses.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The resolution proof system is a special proof system for the language
of unsatisfiable CNF formulas, co-CNF. In this system, a resolution proof ir
consists of a sequence of clauses ,C S} where the last clause Cs is
empty (i.e., a contradiction) and each Ci, 1 < i < s, is either a clause from
the original formula or a clause derived from two precedent clauses by the
following derivation rule:

1. Resolution Rule: Derive C V D from a pair of clauses { C V i , D V 5 }
where x is a literal.

2. Weakening Rule: Derive C v D from C for any pair of clauses {C .D } 2.

A resolution proof can be represented as a directed acyclic graph (DAG) where
the vertices are the clauses in the proof and each vertex has two in-edges from
the two premise clauses. A proof is said to be tree-like if its associated DAG
is a tree.

D efin itio n 2.3.2. The size |tt| of a resolution proo fs is the number of clauses
in it. The resolution complexity RES(Jr) of a CNF formula T is the minimum
size o f a resolution proof o f T ,

The minimum size of a tree-like resolution proof o f a formula T is denoted by
RES t {F).

2.3.2 Hard Formulas for Resolution

The study of the resolution proof system has a long history. Over the past 30
years, there has been much effort in constructing hard examples of CNF for­
mulas that have exponential resolution complexity. Earlier work includes lower
bounds on specially-constructed CNF formulas such as the Tseitin formulas,
the pigeonhole principle, and the clique principle [24, 31, 26, S3].

E x am p le 2.3.1 (T he P ig eo n h o le P rin c ip le) . The pigeonhole principle
states that it is impossible to put n + 1 pigeons into n holes so that each
pigeon is in a distinct hole. The pigeonhole principle can be encoded as an
unsatisfiable CNF formula as follows:

where for pair of (i . j). Xij = 1 means that the pigeon i is in the hole j . Haken
[S3] established an exponential lower bound on the resolution complexity of

RES(Jr) = min{|7r| : n is a resolution proof }

P H P n =
Xu V • • • V x in, fo r 1 < i. < n +
XikVxjk, for 1 < i . j < n

2The weakening rule is only for the purpose of convenience and is not essential.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This result has been later generalized to the case where the number of pigeons
is any number larger than the number of holes (see. e.g.. [26]).

Example 2.3.2 (Tseitin formula). The Tseitin formula encodes the basic
fact in graph theory that the sum of the vertex degrees of a graph cannot be
odd. Let G = G(V, E) be a graph and a : V(G) —>■ {0.1} a weight defined on
each vertex. To construct the Tseitin formula, we associate a variable xe with
each edge e € E and define for each vertex v the following boolean expression

P A R IT Y V : (^) x e = cr(v)(mod2).
e€E:v 6e

Let Tv be the set of clauses that is equivalent to P A R IT Y V. The Tseitin for­
mula T(G, a) is defined to be the set of clauses

T(G, a) = \ j T v.
V

Urquhart [133] proved that

1. ^fcr(v) is odd => T(G,cr) is unsatisfiable; and
V

2. I f G is connected, then T(G, a) is unsatisfiable => J^cr(u) is odd.
V

The resolution complexity RES(T(G, a)) has an exponential lower bound if the
connected graph G satisfies some expanding property [133, 26].

Example 2.3.3 (The Clique Principle). It is obvious that a k-clique cannot
be subgraph-isomorphic to any graph that is (k — 1) colorable. The clique
principle states the even more obvious fact that it is impossible for a k-clique
to be subgraph-isomorphic to a maximally (k — I)-colorable graph. It has been
proved that the CNF encoding of the clique principle requires an exponential
size of small-weight Cutting Planes proof, a restricted Cutting Planes proof
that still includes the resolution proof as its special case [31].

Another source of hard instances for resolution is randomly-generated CNF
formulas. Let be a fc-CNF formula on n variables consisting of m ran­
domly generated /c-clauses. In their seminal paper, Chvatal and Szemeredi
[37] proved that for any fixed ^ = c and k > 3, there is a constant k > 0 such
tha t

l im P r { R E S (^ J > 2 K” } = l.

Recently, upper bounds as well as improved lower bounds with an explicit
estimation of the dependency of k on the ratio ^ were established in [22. 26].
In particular, the improved lower bounds imply that the typical resolution
complexity of is still super-polynomial for some m that increases as a
polynomial function of n:

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T h eo rem 2.3.1 ([2 2 , 26]). For k > 3 and e > 0, there is a constant 7 > 0
such that

l i m P r j RES(.F*) > 2 " 7 } = 1 , i f m < n ^ ~ c.
n k ’ J

This is in contrast to the results that RES(^-^ „) is polynomial if m = Q(nfc-1)
[60].

In [4], the resolution complexity of a class of mixed random CNF formulas
J-n,m is studied tha t contains m = cn random 3-clauses and (1 + e)n 2-clauses.
It was shown that as long as e < 0. i.e., there are less than n 2-clauses, the
random CNF formula m has an exponential resolution complexity w hp .
On the other hand, for e > 0, lF fm has a polynomial resolution complexity
w h p since the set of (1 + e)n 2 -clauses alone makes the formula unsatisfiable.
Also in [4] are some lower bounds on the running time of backtracking search
algorithms for satisfiable random CNF formulas. These lower bounds are based
on the observation tha t backtracking algorithms on random CNF formulas will
create certain types of mixed random CNF formulas during their execution.

Most of the work on establishing exponential lower bounds exploits the
relation between the minimum proof size and the minimum of the maximum
clause length of all the resolution proofs. The idea has been formalized by
E. Ben-Sasson [27, 26] as the so-called width-method which we briefly discuss
below.

D efin ition 2.3.3 ([27, 26]). 1. A clause mentions a variable x i f it con­
tains either x or its negation x. The length \C\ of a clause C is the
number of variables that C mentions. The width of a set of clauses is
the maximum length of a clause in the set. In particular, we use w{ftF)
to denote the width of the CNF formula IF.

2. The width of deriving a clause C from a CNF formula IF, denoted as
w(J- h C), is the minimum width o f all the possible derivations.

3. The width of deriving the empty clause w(J- h (ft) is called the refutation
width of T .

T h eo rem 2.3.2 ([27, 26]). For any CNF formula T , we have

R es(^) = en(s \ (2.14)

and
Res t {T) = 2 bû 1-®)-^ » . (2.15)

Theorem 2.3.2 reduces the task of establishing exponential lower bounds to
that of proving the existence of a clause of width linear in n in any refutation
proof. For many random decision problems, this latter task amounts to show­
ing tha t (1) the minimum unsatisfiable subproblem has a “large sizev w hp ,
and (2) satisfiable subproblems with a “medium size” are typically “sparse”
and thus have a high degree of local consistency, resulting in some long clauses
in any resolution proof.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3.3 DPLL Procedure and Resolution Complexity

The Davis-Putnam procedure (DP procedure) proposed by Davis and Putnam
[49] is a dynamic-programming algorithm to generate a special type of reso­
lution proof. Given a CNF formula and an ordering of the variables, the DP
procedure eliminates the current variable by performing all the possible reso­
lutions on the variable, adding all the resolvents to the formula, and removing
all the clauses tha t mention the current variable, until the empty clause is
produced or no more resolvents can be formed. The basic DP-procedure is
described in Algorithm 2.1.

A lg o rith m 2.1 Davis-Putnam procedure (DP procedure)
In p u t: A CNF formula P on {xi, • • • ,x„}

fo r (i = 1; i < n; i + +) do
Resolve each pair of clauses of the form C V x* and D V x , in P . and add
the resolvent C U D to P:
Remove all the clauses tha t mention xy,
if (P contains the empty clause) th e n

return UNSATISFIABLE;
en d if

en d for
return SATISFIABLE;

The DP procedure is sound and complete, but its time and space complex­
ities is exponential in the “tree-width" of the underlying graph structure of
the CNF formula under consideration [53].

T h eo rem 2 .3 .3 . D P procedure is sound and complete.

Proof. The soundness follows directly from the soundness of the resolution
rule. To see the completeness, let P be the original formula and P i+1 be the
CNF formula after Step i of the DP procedure where variable x { is eliminated.
We will show tha t if the DP procedure (Algorithm 2.1) does not create an
empty clause, then P is satisfiable.

Assume tha t the DP procedure returns SATISFIABLE after the variable
x m, 1 < m < n — 1 has been eliminated. Then, all the literals in Pm+i must be
pure, i.e., each variable mentioned in P m+i appears as either a positive literal
or a negative literal in all the clauses of P m+\. Thus, P m+\ is satisfiable.
Since Pi+\ contains all the resolvents C v D where C U { x ,} and D U {x,}
are two clauses in P l , we know that any assignment A(i + 1) to the variables
{xk .k > * + 1} tha t satisfying P t+\ can be extended to an assignment A(i)
to the variables {x^, k > 1} to satisfy P x. Otherwise, there must be a pair of
clauses C V {x i} ,D V {xi} such that A(i + 1) does not satisfies C V D. By
induction on i. P is satisfiable. □

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Closely related to the DP procedure is the Davis-Putnam-Logemann-Loveland
(DPLL) algorithm implemented in [48]. DPLL has been the basis of most of
the modern high-performance solvers for the propositional satisfiability prob­
lem.

Although being a typical backtracking search algorithm, DPLL can be
viewed as an algorithm that constructs a refutation proof of the given CNF
formula. The execution of DPLL can be represented as a rooted binary tree in
which each internal node corresponds to a recursion call and is labelled by the
branch variable. The two out-edges of an internal node correspond to the two
possible assignments (0 or 1) to the branch variable. Each path from the root
to a leaf defines a (partial) assignment to the variables. For an unsatisfiable
CNF formula, every leaf is a “failure leaf’, i.e., at least one of the clauses in the
formula is falsified by the corresponding assignment. A refutation proof can
be constructed from the execution of the DPLL algorithm as follows. First, we
label each leaf with a clause falsified by the corresponding assignment. Then,
recursively we label each node with the resolvent of the two clauses tha t label
the two children of the node. The root will be labelled by the empty clause.

The above discussion implies that the time complexity of the DPLL algo­
rithm is lower bounded by the (tree-like) resolution complexity of the CNF
formula. Nonetheless, there has been much effort to improve the efficiency of
the DPLL-like algorithm by using more clever data structures, devising bet­
ter heuristics, and incorporating more powerful reasoning mechanisms. The
payoff of these efforts can be observed from the yearly SAT-solver competition
and success stories of various industrial applications [82],

The basic structure of modern DPLL-based SAT-solvers is presented in
Algorithm 2.2. The performance of a specific solver depends on the im­
plementation of the three procedures UNIT-PROPAGATION, CONFLICT-
ANALYSIS, and BRANCHING.

UNIT-PROPAGATION prunes the search space by propagating the con­
sequences of assigning a truth-value to a variable x. It employs a basic form
of look-ahead strategy similar to that of maintaining arc-consistency in con­
straint satisfaction solving techniques. First, clauses that mention x are pro­
cessed to record the effect of such an assignment. Then, unit clauses—clauses
tha t under the current partial assignment have no satisfied literal but exactly
one unvalued literal—are detected and relevant unassigned variables are as­
signed to make these clauses satisfied. This step is repeated until a clause
becomes falsified or there are no more unit clauses under the current par­
tial assignment. It turns out tha t UNIT-PROPAGATION, though a powerful
mechanism for pruning the search space, accounts for a large fraction of the
overall running time of a SAT solver [55]. This is mainly because UNIT-
PROPAGATION needs to maintain the status of all the clauses after each
variable assignment. Several clever data structures have been proposed to
speed up UNIT-PROPAGATION, and the most effective one is the so-called
watched-literals [142],

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CONFLICT-ANALYSIS, also known as clause-learning or nogood-learning,
is invoked when the current partial assignment results in a contradiction and
the algorithm needs to backtrack [18, 20, 141]. By analyzing the implication
relationships among the variable assignments, represented as an implication
graph [141], new clauses that explain the cause of the current failure are added
to the original CNF formula. These new clauses, though redundant in terms of
the satisfiability of the original formula, prune a subspace that might otherwise
be searched repeatedly by the algorithm. It can be shown that algorithms with
clause-learning mechanism are exponentially stronger than tree-like resolution
algorithms such as DPLL [23]. Of course, from a more practical perspective,
the time and memory overhead of clause-learning also have a significant impact
on the overall performance of a solver.

In BRANCHING, also known as splitting, various heuristics can be used
to select the next variable to assign a tru th value. A variable selected in
BRANCHING is called a branch variable or decision variable while variables
tha t are assigned values as a result of UNIT-PROPAGATION are called im­
plied variables. Over the years, many heuristics have been proposed and most
of them have been summarized in [82, 55].

A lg o rith m 2.2 DPLL Algorithm: D P L L (^r, A)
/ / Input: T . a formula on {xi, • • • , xn}; A . a list of partial assignment.

A *- UNIT-PROPAGATION;
if A falsifies a clause th en

CONFLICT-ANALYSIS;
return FAILURE;

else if all the clauses are satisfied th e n
return SUCCESS;

e n d if
x «- BRANCHING;
if D P L L (.F ,A u { i= l}) = SUCCESS th e n

return SUCCESS;
else

return DPLL(JF,AU {x = 0});
en d if

2.4 Phase Transitions and Typical-case Com­
plexity

The significance of the notion of NP-completeness lies in the fact that unless P
= NP, no polynomial time algorithm exists for NP-complete problems. Thus,
a proof of NP-completeness of a decision problem is a strong evidence that

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the problem is hard. There are several approaches to NP-complete problems.
One may try (1) to identify subclasses of the problem for which polynomial
algorithms exist; (2) to design efficient heuristics to solve the problems; (3) to
develop approximation algorithms with a performance guarantee for NP-hard
problems; and (4) to understand the typical-case/average-case complexity of
the problem instances under some probability distribution. The study of phase
transitions and typical-case complexity belongs to the fourth approach, but is
also related to the second approach.

A random model of a decision problem (E, £) is a triple (E, C. V-=) where
V s is a probability measure on E. When the decision problem is clear from
the context, we will simply call the probability measure V= & random decision
problem.

Studying properties of random problems and designing efficient (random­
ized) algorithms to solve hard problems w h p (or on average) have long been
a topic of great interest in discrete mathematics and theoretical computer
science. See, for example, [37, 61, 66, 6S, 104, 107, 131] and the references
therein. While being elegant and interesting in its own right, the study did
not a ttract wide attention from the public of computer science in general
and AI community in particular, until the work of Cheeseman et al. [35]
in early 1990’s that pointed out an explicit connection between the pattern
of typical-case complexity and the phase transition of the solution probabil­
ity of randomly-generated instances of NP-complete problems. Over the past
decade, we have gained much insight into both the nature of the phase tran­
sition of NP-complete problems and the question of where the really hard
problems are and why they are hard. Computer scientists, mathematicians,
and theoretical physicists all have contributed to this progress. In the rest
of this section, we give a brief overview of the study of the phase transitions
in several NP-complete problems, including SAT, Graph Coloring, Hamilto­
nian Cycle, and Number Partitioning (See, Problem 2.1). For each of the four
problems, the specific topics and results selected to discuss is based on my own
interest and is perhaps subjective.

2.4.1 SAT

SAT is one of the most popular and im portant NP-complete problems in com­
putational complexity and AI [S2]. I t is the first problem that was shown to
be NP-complete and has been the focus of the study of phase transitions and
typical-case complexity of NP-complete problems.

An instance of SAT is a CNF formula and the question is to decide whether
there is a truth assignment that satisfies the formula. When the instances are
restricted to k-CNF formulas, we call the problem A:-SAT. It is well-known that
k-SAT is NP-complete for k > 3 and can be solved in linear time for k = 2.
One of the well-studied random models for fc-SAT is on n variables which
consists of m clauses selected uniformly at random from the set of all 2*(£)

IS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P ro b le m 2.1 NP-complete Problems

S a tisfiab ility (SAT)
IN STA N CE: F € E = { All the CNF formulas}
Q U E ST IO N : Is F £ L = { All the satisfiable formulas}?

G ra p h k -C o lo rab ility
IN STA N C E: A graph G{V,E) and an integer k > 1.
Q U EST IO N : Is there a coloring c : V —► (1 .2 ,- -- ,k } such that c(vi) ^

c(v2) if (v i,v 2) G E l

H am ilto n ia n C ycle
IN ST A N C E : A graph G (V,E).
Q U E ST IO N : Does G have a Hamiltonian cycle?

N u m b e r P a r t i t io n
IN STA N CE: A set of integers I.
Q U EST IO N : Is there a partition A, I2 of I such th a t i = J ^ i l

possible fc-clauses. The ratio r = ~ is called the clause-variable ratio or the
clause density of F^ m.

Intuitively, formulas with a large clause-variable ratio are hard to be sat­
isfied, while formulas with a small clause-variable ratio could have many sat­
isfying solutions. Experimental studies in [114, 101] indicated that at r 4.2
there is an abrupt change of the probability th a t has a solution—the
probability is asymptotically one for r < 4.2 and zero for r > 4.2. This leads
to the following famous conjecture:

SA T T h re sh o ld C o n jectu re : There is a constant r^, called the satisfiability
threshold, such tha t

After more than ten years of work, the above conjecture is far from being
settled. However, much insight into the hardness pattern and its algorithmic
impact has been gained from the effort to try to understand the behavior
around the threshold and to improve the upper and lower bounds on the
threshold.

i eh i€k

lim Pr { is satisfiablen ’

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Upper and Lower Bounds

Upper bounds on the SAT threshold can be established by Markov's inequality.
For example, Va e {0.1}" let Ia denote the indicator function of the event that
the assignment a satisfies and let I = ^ Ia. We have

a

Pr{ />0}<£[/] = 5>[/.] = 2”(jr.
a

Thus, ^Fn,m is unsatisfiable w hp if m /n > log8/-2 = 5.191. This gives an
upper bound for the SAT threshold. By taking into consideration the intrinsic
structure of the solution space, better upper bounds can be obtained. See [57]
for an account on a series of hard work that improves the upper bound from
5.191 to 4.596.

Lower bounds on the threshold are usually obtained by analyzing polynomial­
time algorithms based on the unit clause heuristic: (1) If there are any clauses
containing only one literal, then pick one of them and satisfy it. Otherwise,
randomly pick an unset variable and assign it to TRUE (or FALSE) randomly
and uniformly. By analyzing conditions under which these algorithms succeed,
lower bounds can be established [3].

Lower bounds can also be established by the second moment method. The
difficulty in using the second moment method lies in the fact tha t the random
variable under consideration is usually a sum of a set of random variables
tha t are only “close” to being independent. To bound the variance of such a
random variable, combinatorial structures intrinsic to the problem should be
utilized in a smart way [12, 14].

Sharpness of the Phase Transition

In addition to the location of the critical point of the phase transition, the
sharpness of the phase transition is also interesting. Roughly speaking, a phase
transition for a combinatorial property is sharp if the length of the transition
interval tends to zero faster than the critical parameter itself. A sufficient
condition for a combinatorial property to have a sharp phase transition has
been established [65]. The condition basically indicates that in order to have
a sharp transition, there should not exist small signatures (properties tha t can
be determined locally) th a t can probabilistically approximate the property
under consideration.

Backbones and Complexity

In the statistical mechanics approach to the random SAT phase transition, a
Boolean variable is identified with a binary variable, called a spin, th a t takes
its values on {—1,1} (-1 for FALSE and 1 for TRUE). A CNF formula T

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is associated with an energy function Ef.77, 5], 5 6 {—l , l } n, defined on the
possible assignments to the binary variables, indicating the number of clauses
not satisfied by the assignment.

To investigate the behavior of the optimum of the energy function and
the structure of the space of the optimal solutions, statistical physicists treat
the SAT problem as a system of spins whose configuration is governed by the
Boltzmann distribution

P (S) =

and its low temperature limit as T tends to zero. Note that this distribution
is just a vehicle to carry out statistical mechanics analysis and has n oth ing
to do with the randomness in the random SAT formula, which is called the
quenched disorder in physics.

Analytical techniques from statistical mechanics can be used to analyze the
deep relations among the minimum of the energy function EfJA 5], the Boltz­
mann distribution of the SAT system, and the probability distribution of the
random SAT. These analyses have revealed interesting structural properties of
the space of the optimal solutions and help explain why problem instances are
hard a t phase transitions. Most notably is the notion of backbone variables
[109, 117].

For each variable Xi, let m* be the average value of the corresponding spin
over all the optimal assignments. Note that |m;| = 1 implies that the variable
Xi is fully constrained, i.e., it has to be assigned to the same value in every
optimal solution. In this case, the variable is called a backbone variable or a
frozen variable [44, 109].

For a random SAT, mi is a random variable in [— 1,1]. Statistical mechanics
analysis shows tha t the asymptotic behavior of the fraction of backbone vari­
ables is quite different at 2-SAT phase transition and 3-SAT phase transition.
For random 2-SAT, it changes smoothly across the threshold, while for random
3-SAT, the fraction of backbone variables jumps discontinuously from zero to a
positive constant at the phase transition. That is to say, right above the clause
density threshold, a constant fraction of the variables suddenly become fully
constrained. There is also theoretical and empirical evidence showing that a
close relation exists between the behavior of the backbone and backtracking-
style search algorithms as well as random local search algorithms. See, for
example, the work on the behavior of backbones in the 2 + p-SAT problem
where an instance of the problem consists of a mixture of 2-CNF clauses and
3-CNF clauses [117].

Analysis also reveals interesting characteristics about the structure of the
space of the optimal solutions in the satisfiable region

1. When the clause density is well below the phase transition threshold,
the optimal solutions form a single cluster and these solutions are all
characterized by a common distribution;

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. When the clause density is close to the phase transition threshold, the
single cluster of optimal solutions break up into exponentially many
smaller clusters. While the distances between solutions in different clus­
ters remains constant, solutions in a single cluster become more and
more similar to each other as the clause density increases.

2.4.2 Graph Coloring

The study of the phase transition of the graph coloring problem is based on
the standard random graphs G (n ,p) or G(n, m) as defined in Section 2.2.
Similar to random SAT, the phase transition of k-colorability is sharp [5].
Currently known upper and lower bounds on the threshold are summarized in
the following theorem 3:

T h eo rem 2.4.1 ([2, 10, 124]). (1) For the 3-colorability problem.

A lg o rith m 2.3 Greedy k-Coloring
In p u t: A graph G(V, E) and a set of available colors represented as integers.

Find a vertex order {vi,vo, • • • ,v n}.
for (i = 1; i < n; i++) do

Assign to Vi the smallest color that is consistent with the colors already
assigned to the vertices • • • , u,_i.

en d for__

The k-colorability can be decided in constant expected time for random
graphs with a constant edge probability [104], largely because of the appear­
ance of (k + l)-cliques. As the edge probability becomes smaller, the hardness
of the k-colorability problem increases significantly.

In the analysis of the typical behavior of the random k-colorability problem
below the colorability threshold, variants of the greedy coloring algorithm
(Algorithm 2.3) have been widely used. Given a vertex ordering, the greedy
coloring algorithm iteratively assigns to the next vertex the first available
color. Different vertex orderings give rise to different heuristics which are
used to analyze the typical behavior of the k-colorability problem on random
graphs. Let G (n ,^) be the random graph with the edge probability p = we
have the following cases.

3See [11] for the more recent progress

lim P r { G (n,p = c/n) is 3-colorable} = 1, i f c < 4.03
0, if c > 5 .0 5

(2) For any k > 3,

lim P r {G (n ,p = c/n) is k-colorable} =
n

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. (Arbitrary Vertex Ordering) Algorithm 2.3 with an arbitrary vertex
ordering can find a k-coloring (k > 3) w hp if c < 1. This is because
the random graph with c < 1 consists of only trees and unicycles w hp
so th a t the number of the colors used by Algorithm 2.3 never exceeds
3. Algorithm 2.3 has also been shown to be effective on dense random
graphs [104].

2. (k-Core Heuristic) Earlier lower bounds on the k-colorability thresh­
old were obtained by analyzing the threshold of the existence of a k-
core in random graphs. A k-core is defined to be the unique maximal
induced subgraph with minimum vertex degree at least k [124]. The k-
core heuristic determines a vertex ordering {ui, v2, ■ ■ - , un} such th a t for
any i, the vertex degree of u, in the subgraph induced on the vertex set
V \ {x i+i , • • • , vn} is less than k. If a graph does not contain a k-core,
such an ordering exists and can be found in polynomial time. It follows
tha t greedy coloring with the k-core heuristic finds a coloring whp in
polynomial time for any c below the threshold of the appearance of the
k-core. In the case of k = 3, the k-core threshold is approximately 3.35
[124].

3. (Brelaz’s Heuristic) In Brelaz’s heuristic, the vertex ordering is con­
structed dynamically. At each step, a vertex with the most distinctly
colored neighbors is selected and is assigned the smallest available color.
Variants of Greedy k-Coloring with Brelaz’s heuristic has been analyzed
in [2, 10], resulting in the best known lower bound c > 4.03 on the
k-colorability threshold of random graphs.

When the edge probability is close to the colorability threshold, the k-
colorability problem becomes exponentially hard. The typical-case behavior
of backtracking algorithms has been extensively studied. Bender and Wilf
proved tha t the running time of a simple backtracking algorithm is 2®0/p).
In [21, 112], exponential lower bounds are established for the resolution com­
plexity of the k-colorability problem, indicating that most backtracking graph
coloring algorithms have an exponential running time for non-colorable graph
instances. Upper bounds for the resolution complexity can also be established
by analyzing some typical backtracking heuristics [21], For edge probabil­
ity p = - with c sufficiently large, an expected polynomial-time algorithm
has been proposed. The algorithm is based a polynomial-time approximation
scheme for the vector chromatic number of a graph [104].

2.4.3 Hamiltonian Cycle

The threshold behavior of the Hamiltonian cycle problem in random graphs is
well understood and can be summarized as follows.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T h e o re m 2.4.2 (See [30]). Let G (n,p) be a random.graph withp = ^(logn-i-
log log n + Cn). Then,

lim Pr{G (n,p) is Hamiltonian } = limPr{<J(G(n.p)) > 2}
n n '

where 5{G{n,p)) is the minimum vertex degree.

The first breakthrough in the study was made by Posa in 1976 (see, e.g.,
[30]) who proved that the random graph G(n,p) is Hamiltonian whp if p >
— and K > 16. A key concept in Posa’s proof is the path rotation. Given
a path P = {vQ, ■ - - ,ufc}, a path rotation R O T A T E {P ,vk,Vi) is a new path
{u0, • • • ,Vi,Vk,vk- i , • • • , Ui_i} provided that (vk, is an edge. Let X ' be the
set of vertices each of which is an endpoint of a path obtained by a sequence
of path rotations starting from P and using vQ as the fixed endpoint. A key
step in Posa;s proof is to show th a t for any longest path P in a random graph
G (n,p), the size of the subset X ' must be “large". This is possible because of
the facts that (1) the size of the open neighborhood of X ' is less than 2\X'[.
and (2) whp G{n,p) does not contain any small-sized vertex subset S whose
open-neighborhood has a size less than 2|S|. Insight obtained in the analysis of
the threshold behavior of the Hamiltonian cycle problem has motivated several
average or whp polynomial-time algorithms [30].

The typical-case complexity of backtracking algorithms for the Hamiltonian
cycle problem was studied in [134]. Unlike random SAT and random graph
k-colorability that have a typical-case complexity peak at the phase transi­
tion, it is shown in [134] that the probability of generating hard Hamiltonian
cycle instances at phase transitions is extremely low. In fact, backtracking
algorithms equipped with pruning techniques specially designed to exploit the
unique characteristics of the Hamiltonian cycle problem typically have a linear
running time [134].

2.4.4 Number Partitioning

The number partitioning problem described in Problem 2.1 asks whether a
given set of integers has a perfect partitioning, i.e., a partitioning in which the
sums of the two subsets are equal. A more general problem is to ask whether
the absolute difference between the sums of the two subsets, called the discrep­
ancy, is less than a given value. The so-called constrained number partitioning
problem is also of interest that imposes a constraint on the difference between
the cardinalities of the two subsets in a partitioning [32].

a constant c

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Random Models and Control Parameters

To come up with a random model for the number partitioning problem is
straightforward—a random instance is simply a set of n integers drawn ran­
domly from a specified range. It is, however, not so obvious what parameter
one should look at in order to identify a phase transition of the solution prob­
ability. The lack of an understanding of the nature of the control parameters
has led to an incorrect conclusion tha t the random number partitioning prob­
lem has “no phase transition of any kind” until the work of Gent and Walsh
[76] who identified the correct control parameter. A random instance of the
number partitioning problem is a pair (X, M) where X is a set of integers
{Xi, • • • , X n} chosen independently and uniformly from the set of all the inte­
gers less than or equal to a given integer M. The parameter proposed in [76]
is the ratio k defined as

_ log, M
AC — 1 .

n
Notice tha t |"log2 M] is the maximum number of bits required to represent an
integer in the instance. Another way to describe the random number partition
problem is to consider a set of n real-valued numbers chosen independently and
uniformly from (0,1) and to use as the control parameter the ratio between n
and the maximum effective number of digits.

P h a se T ran sitio n o f S o lu tion P ro b ab ility

The phase transition of the solution probability of the random number par­
titioning problem is well characterized. Let Zn,i be the number of partitions
with discrepancy I and write Zn = Zn,o for the number of perfect partitions.
Based on estimations of the first and second moments of Z n,i, the following
threshold kc = 1 was established [33]

lim P r{ Z n > 0 } = <|
1, if leszK < 1
0, if > i

In fact, a simple induction on n shows that the following representation of Zn,i
is correct:

7 - o n T x / 1; i f 1 = 0Z n,l - I n,I X j 2) . f / > Q

where
i r n

In,l = 7p cos(Zx) J J cos(z X X j)dx.
“ -7 T j =1

It follows from the independence of {Xi, 1 < i < n} and the Fubini theorem
that

£[Au} = J cos(hr)£n[cos(x x X))dx

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where X is a random variable uniformly distributed on the set of integers
{1,2, • - • , M }. And therefore, £"[cos(x x A)] has an explicit expression. Ex­
plicit formulas for o [/„,/,/n,(2] can be derived similarly. A detailed analysis can
be found in [33]. The phase transition of the constrained number partitioning-
problem was analyzed in [32].

A lg o rith m s a n d T ypical-case C o m plex ity

The number partitioning problem has a pseudo-polynomial time algorithm
based on standard dynamic programming techniques. In fact, the algorithm’s
running time is polynomial if the sum of the numbers to be partitioned is
polynomial in n—the cardinality of the set of the numbers to be partitioned.

In [76], several heuristic algorithms were empirically analyzed in terms of
the phase transition behavior of the random number partitioning problem, in­
cluding K o rf’s greedy heuristic, the set-difference heuristic, and a backtracking
algorithm called the CKK algorithm. In Korf’s greedy heuristic, numbers are
iteratively put into one of the two subsets. In each iteration, the largest re­
maining number is selected and added to the subset with the smaller sum. The
set-difference heuristic recursively replaces two numbers by their difference. In
effect, this is equivalent to asserting tha t the two numbers should be in dif­
ferent subsets; The Karmarkar and Karp heuristic (KK heuristic) is a special
set-difference heuristic tha t always chooses the two largest numbers to replace;
The CKK algorithm is a backtracking algorithm that uses the KK heuristic
to branch. The pseudo-code of the CKK algorithm is given in Algorithm 2.4.

A lg o rith m 2.4 CKK algorithm for number partitioning
CKK(X)
In p u t: A set X of integers,
if (|X | < 4) th e n

return SUCCESS/FAIL accordingly
en d if
Let x, y be the two largest numbers in X and assume x > y
Let a <— (x — y) and b <— (x + y)
if (CKK((X \ {x,y}) U {a}) = = SUCCESS) th e n

return SUCCESS
else

return CKK((JA \ {x, y }) U {&}))
en d if

Another interesting empirical work is a study on the relation between the
phase transition and the shape of the energy landscape of the optimal number
partition problem [130]. The statistics of the shape of the landscape, such as
the number of local minima and the height of the barriers, are summarized by
a so-called barrier tree. The conclusion drawn in [130] is that except for the

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

maximum barrier height, almost all of the other features considered remain
constant across the threshold and thus, are insensitive to the phase transition.

2.5 G enerating Hard Instances

Analytical approaches, while being rigorous, often fail to tell “the full story
about real-world algorithmic performance” [93] because of the worst-case na­
ture of the results or the over-simplified assumptions made in order to make
mathematical treatment amenable. As a result, empirical study remains an
im portant approach to the analysis of algorithms [93].

In empirical studies, a specific set of problem instances is used as test in­
stances to gain insight on the strengths and weaknesses of the algorithms under
consideration and/or to reveal some intrinsic characteristics of the algorithmic
problems under investigation. In addition to benchmarks manually compiled
from real-world applications, random problem instances are also widely used.
However, generating (hard) random instances with controlled characteristics
is not a trivial task. A classical example is a random SAT model used in
1980s [78] that has been shown to have an extremely strong bias towards gen­
erating, sometimes trivially, easy instances [62], A more recent example is a
class of widely-used CSP models which have been proved to be trivially un­
satisfiable asymptotically with probability one [8], In fact, the existence of a
non-deterministic polynomial-time program to construct all the instance and
optimal solution pairs of an NP-hard optimization problem with some specified
characteristics will imply tha t NP = co-NP [126].

Selman, et al. [127] were perhaps the first to recognize the potential and
importance of using (hard) instances generated at phase transitions as bench­
mark problems. The study of phase transitions and typical-case complexity
of random models of NP and co-NP problems provide a valuable guidance to
the design of random instance generators. Even though randomly-generated
instances can be easily criticized for their lack of the structures that frequently
appear in real-world problems, they are in fact one of the driving forces behind
the recent dramatic performance improvement of SAT solvers. Nonetheless,
there have been several proposals that generate test instances for satisfiability
by encoding random problem instances from other domains such as the quasi­
group completion problem [79] and the subgraph-isomorphism problem, or by
“morphing” random instances from several different domains [74].

As has been discussed previously, random instances generated from above
the phase transition threshold typically have an exponential resolution com­
plexity and thus, are hard for many complete algorithms such as backtracking.
The generating of hard satisfiable random instances is, however, a challenging
task. A straightforward but not very efficient method is to first generate ran­
dom instances at the phase transition and then filter out those unsatisfiable
instances by some complete search algorithm. In the past decade, efforts have

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

been focused on generating satisfiable instances by embedding (or hiding) a
pre-specified solution.

Forced-formula in SAT

A forced-formula [15] is a random CNF formula satisfying a pre-specified as­
signment. A plain forced-formula is generated as follows:

1. Randomly generate a tru th assignment T;

2. Randomly generate a clause. Add the clause to the formula only if it is
satisfied by T ;

3. Repeat Step 2 until the formula contains the required number of clauses.

A drawback of the plain forced-formula is tha t in addition to the pre-specified
solution, they usually have many “by-product” solutions that create a strong
enough statistical bias for randomized local search algorithms to exploit. The
generator AIM developed in [15] can generate not only plain forced-formulas
but also forced-formulas with a unique or a small number of solutions. The idea
used in the plain forced-formula scheme has been extended in [19, 7], Instead
of hiding one solution, the authors in [19, 7] proposed to hide two comple­
mentary solutions. This can be implemented as follows. Let T = {fy, ■ ■ ■ ,£„}
be an assignment and T = {1 — fy, • • - . 1 — £„} be the complement. To gen­
erate a random clause of size k, we first randomly select a set of k variables
{.Tij, • • • , Xik}. Then, we select according to some distribution a clause from
the set of 2* — 2 possible clauses on - • • , x ik} that are satisfied by both
T and T . In [7], each of the 2k — 2 potential clauses is selected with equal
probability, while in [19], the distribution is defined by two parameters tha t
relate the probability of selecting a potential clause to its Hamming distance
to the pair of pre-specified complementary assignments on {x^, • • • ,

Hidden-color in Graph Coloring

The basic idea behind generating random k-colorable graphs is as follows.
First, the set of vertices V is partitioned into k color-classes C = { V ; , l < f <
k}. Then edges are selected according to some distribution from the set of
potential edges {(u,u) e V 2 : u € V{,v € V j,i t j i ­

l t is easy to see that a graph generated in this way is guaranteed to have
at least one valid k-coloring. Variants of random models of k-colorable graphs
can be defined by specifying how the color-classes are formed and how the
edges are selected. These models can be classified into two categories, the
random k-colorable graph and the semi-random k-colora.ble graph.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Random k-Colorable Graphs G(n,p,k)

In G {n,p.k), after the partitioning C = {Vi, 1 < i < k} is specified, each
pair of vertices in {(u,u) G V 2 : u € Vi:v G Vj.i ^ j } is selected as an
edge independently and with probability p. Below are several widely used
partitioning schemes:

1. Equi-Partite [104], In this scheme, the vertex set is partitioned into
color-classes of equal size.

2. Uniform-Partite. In this scheme, each vertex is assigned to one of the
k color-classes uniformly and independently.

3. 5-Partite [43]. The variation of the size of the color-classes can be
controlled by some parameter S in several different ways.

Semi-Random k-Colorable Graphs

In the semi-random model, additional structures and restrictions are used
when selecting edges of the graph.

1. Gs(n, fc.p)[132]. In this model, for each pair of vertices (u,v) from dif­
ferent color-classes, an adversary picks a value puv G [p, 1] and includes
(u:v) as an edge with probability puv.

2. Flat Graph [43]. In the flat graph, the color-classes are of equal size,
but the edges are selected in such way that for each pair of color classes V]
and Vj, the maximum vertex degree of the bipartite subgraph on (Vt . Vj)
is upper bounded by a pre-specified constant.

Quasigroup with Holes [6]

A quasigroup is a pair (Q, *) where Q is a finite set of symbols and * : Q x Q
Q is a binary operation such tha t equations of the form

a* x = b, and y *a = b

have a unique solution. The multiplication table of a quasigroup defines a
Latin square, i.e., a |Q| x |Q| table of symbols from Q such tha t no orthogonal
row or column contains the same symbol from Q twice. |Q| is called the order
of the quasigroup.

In the quasigroup completion problem (QCP), an instance is a partially-
filled multiplication table and the question is to decide whether the unfilled
entries of this table can be filled to obtain a Latin square. The quasigroup
completion problem has recently been used to generate structured random test
instances for CSP and SAT search algorithms [SO, 74]. In an effort to design

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

better satisfiable random instance generators, Achlioptas, et al. [6] proposed
the quasigroup with holes (QWH) problem. A random instance of QWH is
generated in two steps: (1) using the Markov Chain Monte Carlo algorithm to
generate a uniformly-distributed Latin square; and (2) deleting a fraction of
entries of the table (“punching some holes in the table”)- The resulting table
is an instance of QWH. In fact, the instance is a satisfiable instance of QCP.

Experiments conducted in [6] showed that random QWH has interesting
phase transitions and associated easy-hard-easy complexity patterns for both
complete and incomplete search algorithms.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Constraint Satisfaction Problem
and its Random M odels

This chapter is an overview of the constraint satisfaction problem, its random
models, and previous work on the phase transitions in these models.

3.1 Constraint Satisfaction Problem

The study of constraint satisfaction problems was initiated by Montanari in
his work on problems in image processing [119, 106]. It turns out tha t the idea
of constraint satisfaction can be used to model a large variety of problems.

In a constraint satisfaction problem, we are given a set of variables and
a collection of constraints. Each constraint is defined over a fixed subset of
variables and specifies a set of value-tuples tha t these variables can simulta­
neously take. The task is to find an assignment to the variables to satisfy all
the constraints.

D efin ition 3.1.1 (V ariab les, dom ains, a n d p ro jec tio n s). Consider a set
of variables X = {xx; • • • , x n} where each variable x , takes its value on a finite
set fli, called its domain. We use

Ct = fix x x • • • x

to denote the space of all the n-tuples that X can take. I f all the variables have
the same domain CL, we will simply write f2 = CLX = fin. Alternatively, each
variable x, can be viewed as a projection function Xi(co) : Cl —* defined as

Xi(u) = Ui, where u; = (a?x, • • • , cjn) € fi.

D efin ition 3.1.2 (C o n s tra in ts , re s tr ic tio n s , nogoods, a n d su p p o rt) .
A constraint C is a relation defined on the product space of the domains
of a subset of variables. The subset of variables is called the scope of the
constraint and is denoted by var(C). The arity o f the constraint is the number

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of variables in its scope. In particular, a constraint of arity 2 is called a
binary constraint.

The constraint relation of a constraint C can be identified as a subset

{uj e : c (uj) = 0 }

of the product space of the domains of its scope variables. Without causing
confusion, we will view a constraint as a relation or a subset on the product
space of domains interchangeably.

A value-tuple ■■ ■ , u ik) is said to be incompatible i f C(cjn , • • • ,u!ik) =
0. Otherwise it is said to be compatible. An incompatible value-tuple is also
called a restric tion or a nogood of the constraint. The tightness of a
constraint C is defined to be the number of nogoods of C.

Let x be a variable and ujx be a domain value o fx . A support for ujx from
another variable y is a domain value u y of y such that (ux,ujy) is compatible.
I f there is no constraint between x and y, then any domain value of y is a
support o f any domain value o fx .

Definition 3.1.3 (Constraint Satisfaction Problem). A constraint satis­
faction problem can be formally stated as follows.

C onstrain t Satisfaction Problem (C SP)
IN STA N CE: A set of variables, their domains, and a collection C
of constraints.
Q U ESTIO N : Is the set f) C -1 (l) non-empty?

cec
Definition 3.1.4 (Flawed constraint and flawed variable). A constraint
is said to be flawed if every value-tuple of the scope variables is incompatible.
A variable x in a CSP instance is said to be flawed if for each domain value S
of x , there exists a variable y such that 6 has no support from y.

Definition 3.1.5 (Arc-consistent, path-consistent, and generalized
arc-consistent). A constraint C with scope {rr^.rr;,. ■ ■ • , x ik} is generalized
arc-consistent i f for any domain value u of any variable x ij} there is a compat­
ible value-tuple (w ^ ,^ ,, • • • .cjij;) with cjj . = w. In particularly, a generalized
arc-consistent binary constraint is simply called an arc-consistent constraint.

A CSP instance is said to be generalized arc-consistent i f each of its con­
straints is generalized arc-consistent.

A binary CSP instance is said to be path-consistent i f fo r 2 variables
{xii : Xi2}, any compatible value-tuple of { x ^ . x a n d for any other
variable x;3, there is a dom.ain value uiiz o f x lz such that (^ . u ^) is a com­
patible value-tuple of {x i l . x iz} and is a compatible value-tuple of
(3: j2, X{3 }•.

Associated with a CSP instance are several graphs that describe the inter­
action structure of the variables.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D efin ition 3.1.6 (C o n s tra in t (H y p e r)G ra p h an d C o n s tra in t P r im a l
G ra p h) . Let (X ,C) be a CSP instance where X = {xi; I < i < n} is a set of
variables and C is a collection of constraints.

1. The prim al graph of the CSP instance is a graph G = G {V.E) where
V corresponds to the set of variables X and (Vi.Vj) 6 E i f and only if
the corresponding variables Xi and Xj both appear in a constraint in C.

2. The constrain t (hyper)graph is a (hyper)graph Q(V.E) where V cor­
responds to the set of variables X and E contains all the subsets of
variables that correspond to the scope var(C) of a constraint C £ C.

Many specific problems can be formulated as a CSP by specifying a set
of c o n s tra in t te m p la te s—canonical constraints defined on a set of generic
variables. From now on. we will assume that all the variables have the same
domain fI. A k-ary constraint template is a boolean function T : PLk —>• {0,1}.
The set of all the possible fc-ary constraint templates is denoted by Tfc. This is
exactly the set of all the Boolean-valued functions defined on Qk, and therefore
if |Q| = d, we have |Tfc| = 2d\ We denote by

TT = (j T fc
fc>i

the set of all the constraint templates.
Given a fc-ary constraint template T 6 Ij,.. a constraint C with the scope

var(C) = {x il} ■ • - , xifc} can be derived as follows:

C(u) = T (x iwll)(w), ■ ■ ■ ,x iMk)(w)), u 6 n n:

where tt is a permutation over (1 ,2 , • • • . k}.

D efin ition 3 .1 .7 (Space o f C S P In stan ces). Let n be the number o f vari­
ables, T be a constraint template, and C C T* be a set of constraint templates.
We define the following spaces of CSP instances.

1. C (n ,T): the collection of constraints that can be derived from T .

2. C (n,C): the collection of constraints that can be derived from C.

3. CSP„(C): the collection of the CSP instances whose constraints are from
C (n ,C).

4. CSP„,m(C): the subset o f CSP„(C) that have exactly m constraints.

CSP„(C) can also be identified with the product space {0 ,1}C(”’C) since
each vector (L c ,C € C(n,C)) € {0, l} c(n’C) defines a set of constraints {C 6
C(n. C) : L c = 1}.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The following are some examples of subsets of constraint templates tha t
define some special spaces of CSP instances each of which corresponds to a
specific NP-complete decision problem.

E x am p le 3 .1 .1 . Consider a set o f Boolean variables X = {r i , - - - ,x n}. Let
C C Tk be the set of k-ary constraint templates.

1. I f C = {Ti € Tfc,0 < i < k} where Ti(u>) = 0 iff u = P0fc_I, then
CSP„(C) = k-SAT. This is because each T{ is equivalent to the k-clause
X i V • - - V Xi V V X i + i - - - V Xf. .

2. I f C — {Ti € Tfc, 0 < i < k} where Tiuj) = 0 iffw = 0l l fc_l o ru = l*0fc-i.
then CSPn(C) is equivalent to the Not-All-Equal-SAT problem (NAE-
SAT).

3. I f C = {Ti G Tfc, 0 < i < k} where Ti(ui) = 0 iff (1 — u,’i) -i 1- (1 —
u>i) + uii+ 1 + • • • + cjk = 1. then CSPn(C) is the 1-in-k-SAT problem.

4■ I f C = {Ti.To} whereTiipj) = u ;1©---©u;fc andTo{u) = o^©-• -©u;fc©l.
then CSPn(C) is the k-XO R-SAT problem.

E x am p le 3.1.2. Consider a set of variables X = {^i, • • • , rrn}.

1. Assume that each Xi has the domain {1,2, - - - .k}. Let C = {T} C
T2 such that T{w) = 1 iff wi ujo. Then. CSPn(C) is the graph k-
colorability problem.

3.2 Random M odels o f Constraint Satisfaction
Problem s

Generally speaking, a random model of CSPs can be viewed as a probability
distribution defined on a space of CSP instances.

D efin ition 3.2.1 (R an d o m C S P M odels). Given a set o f constraint tem­
plates C, a random, CSP model is a (discrete) probability space {CSP„(C),P}
where V is a probability distribution on CSP„(C).

One way to define a random CSP model is to work directly with the product
space CSPn(C). For example, we can have the following random models for
CSPs.

D efin ition 3 .2 .2 (M odel d— dom ain size, p—-probability,
k— c o n stra in t a rity , n— n u m b e r o f variab les). In this model, each con­
straint in C(n,Tfc) is selected independently with probability p. This is exactly
the random CSP model (CSP„(Tfc), V) where V is the independent product
Bernoulli distribution on CSP„(Tfc) such th a f iL = CSP„(Tfc).

w l) = n pLcn - p) ' - ' - c -
C e C (r , . 7k)

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Definition 3.2.3 (Model M ^) . In this model, a random instance contains
exactly m constraints selected uniformly without replacement from C(n, T*,).

A potential problem with the above random models is that a random in­
stance may contain two constraints with the same scope. However, it can be
proved tha t for parameters tha t are in the range of interest, whp such events
do not occur except for the case of k = 2.

Lemma 3.2.1. Let A n be the event that M.k'* (or M?fdm) contains two con­
straints with the same scope variables. Then, we have for p = f (respec­
tively, m = Q(n)),

Proof. We only consider the model M kf dp. Let a = |Tfc| (a constant). For a
fixed set S of variables, the number of constraints with the scope S follows
the binomial distribution b(a,p). Thus, the probability ps that M .k,d contains
more than one constraint with the scope S is

ps=i2 (f)^1 - ̂ a_i=o(j>2̂
The number of subsets of variables on which M k'd contains more than oneJliF
constraint has a binomial distribution b(n ,ps). Therefore, we have

P r { A ,} = l —(1 —ps)"‘ ,

and the lemma follows. □

A more intuitive way to specify random models of CSPs is as follows. First,
a random graph (or random hypergraph) is used as the constraint graph. Then,
for each edge of the constraint (hyper)graph, randomly select a constraint tha t
uses the constraint edge as its scope. This approach in its most general form
is summarized in [115].

Definition 3.2.4 (The m odel C SV d*{G ,P) = {CSPn(T*),P}). In this
model, the distribution V is specified by a pair (G , P) where G is a k-homogeneous
random hypergraph and P is a probability distribution on the Tfc.

We use CSP^jTiiP) (0T) t° denote the corresponding model in
which the constraint hypergraph is the k-homogeneous uniform random hyper­
graph Qk(n ,m) (respectively, the k-homogeneous constant-probability random
hypergrapg Qk{n,p)).

A random instance of C S V ^k is generated as follows. First, a random
hypergraph is generated. Then for each hyperedge, a constraint on the hyper­
edge is derived from a constraint template T E TV where T is selected from
Tk according to the distribution P.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.1 Classical Random CSP Models

All of the classical random CSP models are a special case of CSPf;k(G, P).
In these models the constraint hypergraph is either the constant-probability
random hypergraph Qk{n,p) or the uniform random hypergraph Qk(n, m). The
nogoods of a constraint are determined by either (1) uniformly selecting a
subset of value-tuples from all the possible value-tuples of the given arity; or (2)
choosing each value-tuple with a fixed probability. Four different combinations
give us four classical random CSP models known as Models A, B. C, and D
[75],

Definition 3.2.5 (M odel J\£k,q).

Parameters: n —number o f variables; p — edge probability; d—domain size;
k —constraint arity; q— nogood probability.

Distribution: The same distribution as C SP ^k(¥) where the probability dis­
tribution P is defined on the set of all the possible constraint templates of
arity k such that for any T € Tfc with tightness 0 < t < dk.

P(T) = , ‘(1 - g f ~ ‘.

Comments: It is obvious that with non-zero probability, there is a constraint
in Model A that excludes all the possible value-tuples, resulting in a trivially
unsatisfiable instance.

Definition 3.2.6 (M odel

Parameters: n —number of variables; m —number of constraints; d — domain size
k —constraint arity; t —tightness.

Distribution. The same distribution as C S P ^ ^ iP) where P is the uniform dis­
tribution on

T[. = {T € Tfc : The tightness o fT is t]

Definition 3.2.7 (M odel Cik,t).

Parameters: n —number of variables; p — edge probability; d—domain size;
k —constraint arity; t —tightness.

Distribution. The same distribution as C SP ^k(P) where P is the uniform dis­
tribution on

T[. = {T € Tfc : The tightness o fT is t}

Definition 3.2.8 (M odel ©Jjj’*).

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Parameters: n —number o f variables: m —number of constraints: d—domain size
k — constraint arity; q—nogood 'probability.

Distribution. The same distribution as C S V ^ m iw h e r e the probability dis­
tribution IP is defined on the set of all the possible constraint templates of
arity k such that for any T € T t with tightness 0 < t < dk,

P(T) = q \ l - q f - t.

3.2.2 Improved Random CSP Models

CSP is one of the NP-complete problems whose phase transition has been stud­
ied since the early 90’s. Stimulated by the work of Achlioptas et al [S] showing
the flawedness of the classical random CSP models, there has been growing
interest in designing appropriate random models with non-trivial phase tran­
sitions and studying the typical-case complexity of these random models.

Achlioptas et al [8] proposed the model E as an alternative to the classical
random CSP models.

D efin ition 3.2.9 (M o d e l E).

Parameters: n —number of variables; d—domain size;
k — constraint arity; m —number of nogoods.

Distribution: For each set o f variables of size k. there are dk possible nogoods.
In model E , we selects independently and uniformly with replacement m no­
goods from the (£) dk possible nogoods of all the possible subsets of variables
of size k. Once the m nogoods are determined, we form a CSP instance by
merging nogoods on the same set o f variables into a single constraint.
Comments: It has been proved that model E with m = 0 (n) has interesting
threshold behaviors. However, as we are going to show, model E with m =
0 (n) is not without problem—the constraint tightness of an instance is w hp
less than 2. This indicates that model E is simply a “multi-valued” version of
the Boolean SA T model, and thus, short of many features that we expect to see
in CSPs.

L em m a 3.2.2. Assume that m = 0 (n) and let A n be the event that all the
constraints in a random instance of model E have a constraint tightness less
than 2. Then, we have

lim P r { An } = 1, for any k > 3 .
TI

Proof. Let A xn be the event that the first i nogoods are on different subsets of
variables, and B ln be the event that the i-th nogood is on a subset of variables

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

different from those of the previous (i — 1) nogoods. We have

Pr{A ,} =

>

The lemma follows.

Gent, et al [75] proposed the flawless model to overcome the triviality of
the classical random CSP models. A key observation is that the existence of
the flawed variables might be a direct result of the fact that classical random
CSPs are not arc-consistent. A more detailed discuss on the flawless model
will be given in Chapter 5 where a random CSP model generalizing this idea
will be developed.

Another viable approach to overcoming the triviality is to allow a slowly
increasing domain size in the classical random CSP models. Threshold behav­
iors and typical-case complexity of such a CSP models have been discussed in
[58, 129, 140].

3.3 Phase Transitions of Random C SPs

As we have discussed in Chapter 2, there is a phase transition of the solution
probability in random models of several NP-complete problems such as k-SAT
and graph fc-colorability. In these problems, the threshold behavior is largely
determined by a sing le parameter that summarizes the “constraintedness" of
the random models. For random &-SAT, the parameter is the clause density
of the formula, while for graph /c-colorability, it is the edge density of the
random graph. This is, however, far from true for general CSPs. In fact, local
properties specifying how the nogoods of the constraints are selected play a
significant role in the threshold behavior of general random CSPs.

3.3.1 Flawed Variables, Flawed Constraints, and Well-
behaved CSPs

Achlioptas, et al [8] were the first to notice the difference between general CSPs
and other special problems such as fc-SAT. It was shown in [8] th a t in most
regions of the parameter space, the four classical random CSP models A-D are
trivially unsatisfiable in the sense that w hp they all contain liflawed variables''
(variables whose domain values are all incompatible with some other variables)
or '‘‘flawed constraints" (constraints that contain all the possible value-tuples

3S

W W ' } x P r{ S " -1 |.4” - 2} • • ■ P r{ B ;|4 ,}
m—1

i=l

l -

m — 1
771— 1

G)
□

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as its nogoods). As a consequence, there is in fact no phase transition in these
models at all. Results related to the phenomena of trivially unsatisfiability in
random CSPs can be summarized in the following theorem.

T h eo rem 3.3.1 ([8, 75]). Let q > 0 and c> 0 be fixed constants.

1. For any m and n s.t. ^ = c and p = p£rr.

lim Pr {A '^k’q(orT>nm) îas a flawed constraint} = 1.
n J

2. For any m and n s.t. ^ = c. p = ^=r, and t G [dfc_1, dfc],

lim P r { (or Cd'k,t) has a flawed variable } = 1.
n y J

3. For any m and n s.t. ^ , p = and t G [0,dfc_1) ;

lim Pr { B ^ (or C^k,t) satisfiable) = 1.
n J

Proof. (1) In A ^ q and the number of nogoods of a constraint has the
binomial distribution b{dk,q). The probability for a constraint to have all
the dk possible tuples as its nogoods is thus qdk. Since the nogoods of the m
constraints are determined independently, the probability that there is a t least
one flawed constraint is

1 - (1 - <^)m.

(2) We only consider C%k,t with k = 2. Let G be the constraint graph of
C ^ . Fixing a variable ordering {xi, - • ■ ,x n} and let V' = {^i, • • • ,x n}, 1 <
i < n. Consider a procedure that at each step 1 < i < checks to see if the
variable x* is flawed in the sub-instance induced by V*. Let Pi be the probability
that at step i , the procedure finds tha t X{ is flawed in the sub-instance induced
by Vi. Let Ai be the event that the vertex degree of X{ in the induced graph
Gvi on Vi is exactly d, and let p j be the probability that a variable with d
incident constraints is flawed. Then, we have that p j > 0. Since p = A it is
also true that

P r{ Aj } > P r{ Aa } > 0 .

Since the sequence of events {A,-, 1 < i < §} are independent, the probability
that Cd,k,t has a flawed variable is a t least71,

n/2
1 “ 1 1 ^ - Pr { At }) > 1 - (p ,(l - Pr { Aa })) * -> 1.

i=l

(3) If t G [0, dfc_1), a randomly-generated instance is always arc-consistent.
This, together with the fact that for ^ , p = , the random
hypergraphs Q(n,m) and Q{n,p) w h p contains only hypertrees and unicycle
components, finishes the proof. □

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Theorem 3.3.1(3) indicates that for t € [0, dfc_1), B^jff and C7f ^ are still
interesting. The models and 'D ^ q, however, remain trivial even if
q = q(n) = o(l). In fact, an argument similar to those in [70] can be used
to show tha t if q(n) decreases too slowly, the two models are still trivially
unsatisfiable, but if q(n) decreases too fast, randomly-generated instances of
these two models can be decomposed into subproblems of fixed sizes.

Molloy introduced in [115] the random CSP model CSV%Km(F) (see Def­
inition 3.2.4). Several general conditions on the support supp(P) C T&, i.e.
the set of constraint templates T such tha t P(T’) > 0, were identified for
CSVn^niP) to have interesting threshold behaviors.

D efin ition 3.3.1 ([115]). The model C S V ^km{P) is said to have a partial
phase transition i f there are constants C\ , c2 > 0 such that

lim P r { C S V it iF) is satisfiable } { > %m < Cl” ;n 1 n'mK ' (= 0, i f m > c 2n

CSVn^ f P) is said to have a phase transition i f there are constants ci, c2 > 0
such that

lim Pr { C SV ^m iP) is satisfiable } = (! ’ < ^n 1 n'mK ’ J J [0, i fm > c2n

Let C C T* be a set of constraint templates. We say tha t C is symmetric
with respect to the domain Bl [115] if for any two domain values 5 and 7 € 12,
there is a bijection (j): Q —► Cl such that for any constraint C, we have C 6 C
if and only if the constraint 4>{C) is in C, where o(C) is the composition of
the relation C and the mapping <f>. The following conditions are due to Molloy
[115], where the case of asymmetric subsets of constraint templates is also
discussed.

D efin ition 3.3.2 ([115]). Let C C T* be a set of constraint templates. We
say that C is well-behaved i f it satisfies the following two conditions:

1. Any constraint template C £ C is generalized arc-consistent.

2. 'id € there is at least one C € C s.t. (6, 6) is a nogood of C.

C is said to be very well-behaved i f in addition, we have

3. a CSP instance is always satisfiable i f its constraints are all derived from
C and its constraint hypergraph is a cycle.

Notice tha t condition 3 in the above definition is stronger than arc-consistency,
but weaker than path-consistency. The following is a generalization of Theo­
rem 3.3.1.

T h eo rem 3.3.2 ([115]). CS‘P ^km{P) has a partial phase transition (or phase
transition) i f and only i f the support supp{P) of the probability distribution P
is well-behaved (respectively very well-behaved).

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.2 Sharpness of CSP Phase Transitions

The beauty of phase transitions in NP-complete problems lies in the sudden
and dramatic jump of the solution probability at a threshold of the model
parameter. However, determining the existence and the exact value of such
a threshold remains a challenging open problem for some of the NP-complete
problems including random fc-SAT and fc-colorability in random graphs. A
breakthrough is Friedgut’s work [65] showing that we can study the sharpness
of the transition without knowing the existence of the threshold. Random
Ar-SAT. random graph A;-colorability, and many other NP-complete problems
have been shown to have a sharp phase transition [5, 65, 105].

After the introduction of the general random CSP model C S V ^ fP) in
[115], and independently in [42] in the case of domain size 2, several efforts
have been made to identify conditions under which random CSPs have a sharp
phase transition [42, 90, 115]. We summarize below the conditions that have
been established so far.

D e fin itio n 3.3.3 (S h arp T h resh o ld o f R an d o m C S P s). Assume that
C S V ikrn{T) has a phase transition. I f there is a function c{n) > 0 s.t. for any
e > 0 ,.’

It turns out that the notion of a “very well-behaved” collection of constraint
templates (Definition 3.3.2) captures much propotion of the conditions for
random CSPs to have a sharp threshold. But at least for binary' CSPs, it is
far from sufficient [84, 115]. Below are some of the currently-known sufficient
conditions.

T h e o re m 3.3.3. 1. [84] Model has a sharp threshold for any d .k > 2
and t such that 1 < t < dk~l .

2. [42, 90] Model C SV ^m iP) has a sharp threshold when d = 2, supp(P) is
very well-behaved, and P is uniform on supp(P).

3.3.3 Random CSPs with (Slowly) Increasing Domain
Size

Interestingly, random CSP models with (slowly) increasing domain size behave
quite differently from those with bounded domain size. A series of studies

lim Pr { C .S 'P ^(P) is satisfiable } = |

we say that CS’P ^ (P) has a sharp threshold at the phase transition. Other­
wise, C S V ^ fP) has a coarse threshold.

showed that for d = d(n) ranging from log1/ 2 n to n 1, 7 > 0, the classical CSP
models do exhibit interesting threshold behaviors [67, 129, 140].

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Rather than citing conditions in these works on the necessary growth rate
of the domain size (all of which are complicated and messy), we would like
to provide a more intuitive account of why an increasing domain size helps
avoid the triviality. Take, for example, the model V ^ q where d = d(n) is
the domain size and 0 < q < 1 is the nogood probability. Consider a given
constraint edge (xi,Xj). The probability tha t a value § of has no support
domain values from Xj is qd. The probability tha t all the domain values of
has support from Xj is at least 1 — dqd. Thus, the probability that no variable
is flawed is at least

(1 - dqd)m

which, assuming m = o (rr), tends to 1 as long as, say, d = 31og1//(?(n). As a
m atter of fact, large deviation bounds for the binomial distribution can even
guarantee tha t with probability exponentially close to 1 , any domain value of
any variable has a fixed fraction of supports in any constraint.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Random CSPs w ith Polynom ial
R esolution Com plexity

4.1 Introduction

In this chapter, we study the resolution complexity of the classical random
CSP model B (Definition 3.2.6) with domain size d = 2, constraint arity
k , and constraint tightness t. We also assume that the constraint density ^ is
independent of n. In fact, we will be considering a slightly generalized version
of B2' ^ that allows for a non-integer tightness t:

1 . For an integer t. the constraints are constructed as usual.

2. For a non-integer t = tQ + a, where t 0 is an integer and 0 < a < 1 , a
constraint is constructed by selecting a random set of to nogoods with
probability 1 - a or a random set of to + 1 nogoods with probability a.

This generalized model is still denoted by B%^ with the understanding that
the parameter t can now take any real value in the interval (0 , 2 fc].

Since the domain size is 2 , each constraint with a constraint tightness t
corresponds in a straightforward way to a set of t clauses defined on the same
set of variables. Consequently, an instance of Bg%£ is equivalent to a k-CNF
formula. Thus, we define the resolution complexity of B 2-^1 to be the resolution
complexity of the equivalent CNF formula.

In [S], it is shown that for any t £ [2fc-1 ,2fc], B2' ^ is whp unsatisfiable
because of the existence of the flawed-variables. An immediate consequence
of this result is tha t for any t £ [2 fe-1, 2 *], the resolution complexity of B2'k̂
is almost surely 0 (1). On the other hand, Mitchell [113] shows that for any
t £ (0 , k — 1], the resolution complexity of Bt££ is whp exponential.

The main result of this chapter is that for t £ (2k~2 — 1 , 2fc_1), the resolution
complexity of B 2’̂ is whp polynomial if the constraint density ^ is high.
Specifically, we establish for each t £ (2k~2 — l ,2 fc_1), an upper bound on

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the constraint density ^ for B fkf to have an exponential complexity. These
upper bounds partly answer the open problem regarding the CSP resolution
complexity when the constraint tightness is between k — 1 and 2fc_1 [113]. In
Section 4.4, we will discuss some more recent and independent work since the
publication of the result presented in this chapter [72],

4.2 M ain R esults

T h eo rem 4.2.1. Let B2,̂ f be a random CSP. We have

lim Pr { B2' ^ is satisfiable } = 0

if c = and t satisfy one of the following

1. For t = 2k~2 — 1 + a with 0 < a < 1,

e > . (* --) (41)
2 k (k - l) a [}

2. For t = 2k~2 + j + a with 0 < a < 1 and 0 < j < 2fc_1 — 2k~2 — 1 ,

c > 2k(k - 1) (1 + C' J + T)_1 (4'2)

The theorem is proved by showing tha t for any constraint tightness t and
constraint density c satisfying (4.1) or (4.2), a random instance of B2'^f asymp­
totically almost surely implies an unsatisfiable 2-SAT subproblem. The intu­
ition is that a constraint C with t nogoods is equivalent to a fc-CNF formula
with t clauses defined on the same set of k variables. If t > 2k~2, there is a
non-zero probability that these t clauses imply a 2-clause. As a result, if there
are enough constraints, we will get enough implied 2-clauses to form an unsat­
isfiable 2-CNF formula called the criss-cross loop 1. In fact, this situation has
been shown to be true in a different context where the so-called NK landscape
model is analyzed ([70]). An NK landscape defined on a set of n variables
can be viewed as a special random CSP consisting of exactly n constraints
{ C i,. . . , Cn} such that for each 1 < i < n, the constraint Ci is defined on the
variable Xi and (k — 1) other randomly selected variables.

Consider a constraint Ci of B2-kf Let C with |Cj| = i be the set of k-
clauses equivalent to Ci and let J) be the set of all the 2 -clauses th a t can be
derived from C*. The proof of Theorem 4.2.1 indicates that the set of 2-clauses
{fFi, 1 < i < M = 0 (m)} is unsatisfiable. Since the resolution complexity of
an unsatisfiable 2-SAT problem is polynomial, we have

JIt should be noted that the implied 2-CNF clauses are not uniformly distributed and the
resulting 2-CNF formula is not equivalent to a standard random 2-SAT. Consequently, the
current result does not follow from the proof of the satisfiability threshold of the standard
random 2-SAT [36, 77].

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T h e o re m 4.2.2. For any t and c = ™ satisfying the conditions in Theorem
4 -2 .1, the resolution complexity of is almost surely linear, and a linear
refutation can be obtained in linear time.

Proof. The set of 2-clauses T x can be derived from the set of k-clauses C, as
follows:

1. Let V = Ci;

2. Resolve all the pairs of clauses of the form {A, a:} and {A, x} in V, where
A is a clause of size larger than 2. Insert all the resolvents into T> and
repeat this step until there are no more pairs of clauses in V tha t can be
resolved in this way.

3. Let Ti be the set of all the 2-clauses in V.

Since the number of constraints is m — cn , it takes linear time to run the above
procedure for all the constraints, and the length of the resulting sequence of
clauses is also linear in n. □

From Theorems 4.2.1 and 4.2.2, we can see that for a given tightness
t € (2k~2 — 1,2*-1), the resolution complexity of the random CSP B2̂ is
polynomial if the constraint density is larger than a certain value. This partly
answers the open problem regarding the resolution complexity of random CSP
inside the constraint tightness interval k — 2 < t < 2k~ 1 ([113]). For k = 3,
fixed c > j , and integer tightness t, our results actually show tha t t = 2 is
the exact tightness threshold for the exponential resolution complexity since
Bnjn t = 1 is simply random 3-SAT and has an exponential resolution
complexity [37].

The existence of upper bounds characterized by unsatisfiable 2-SAT sub­
problems raises concerns tha t B ^ ff might be still flawed even if the tightness
t is less than 2fc_1. However, this is not the case. Using a random hypergraph
argument and the fact that a cycle of 2 -clauses is satisfiable, it can be shown
that for any fixed t < 2k~l — 1 , B f f f does have a phase transition with a
threshold lower bounded by k^ _ y) ■

T h e o re m 4.2.3. For any fixed t < 2k~l — 1 and c = ^ B2'$f is
asymptotically almost surely satisfiable.

Having established that B 2,*ff has a phase transition, it is obvious that the
tightness t serves almost the same role as the parameter p in the (2+p)-SAT
[9] to model the gradual changing from the first order transition to the second
order transition. For each fixed constraint tightness 1 < t < 2fc_1 — 1, let
Cfc(i) be the threshold of the constraint density of the satisfiability transition.
When t = 1 , we get the k-SAT model, and hence, Cjt(l) is exactly the k-SAT
threshold. As the tightness t gradually increases. Ck(t) decreases to a limit

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o

• «

■a

T O

12

Figure 4.1: The upper bound u(t) for the threshold c3(t) as a function of
tightness t. Left figure: the function itself. Right figure the derivative of the
function.

value larger than or equal to continuously or discontinuously. Theorems
1 and 2 indicate that for random CSPs, it is possible to have different types of
easy-hard complexity pattern if we can pick an appropriate relation between
constraint tightness and constraint density. The property of the threshold as
a function of the constraint tightness and constraint density deserves further
investigation, and the behavior of the upper bounds in Theorem 4.2.1, as
depicted in Figure 4.1, is suggestive. Some empirical results related to these
issues will be reported in Chapter 5.

4.3 Proofs of the R esults

4.3.1 Proof of Theorem 4.2.1

First, we give some definitions to be used to characterize CSP subproblems
tha t imply unsatisfiable 2-SAT problems.

Definition 4.3.1 (k-Criss-Cross Loop). Let p > 0 be an integer and V =
{u0, v i , . . . , u3p} C X = { x ! ,... ,a :n} be a subset of variables. A k-criss-
cross loop (k-cc-loop) C(V, E) is a k-uniform. hypergraph on X whose hyper­
edges E = { E i , . . . , Ezp+o] form, two cycles Si = { E i , . . . , Ep+1} and So =
{Ep+o, . . . , Ezp+o} such that

1. Ei n Ep+i n Ep+o c Eojp+o = {Vo}

2. Ei fl Ei+i = {vi},Vl < i < p;

3. Ei fl Ei+i = {ut-i}, Vp + 2 < i < 3p + 1; and

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. VI < i < Zp + 2 ,1 Ei \ V\ = k - 2, and {Ei \ V, 1 < i < 3p + 2} are
mutually disjoint.

We call the variables in V the cyclic variables (or cyclic vertices) of the k-cc-
loop. The variable vq is called the special variable o f the k-cc-loop.

V .-i

V l vj+i
"Ep+S

Vprt

Ei

V
/V*

Ej+i E*+2

■3p+l

V*P

Figure 4.2: An illustration of a k-cc-loop. Only the cyclic variables 1 < i <
3p. are shown. Each hyper-edge Ei contains two cyclic variables from V and
{k — 2) variables from X \ V.

In a k-cc-loop, there are exactly two cycles tha t touch at the special vertex
V q . This type of construct was first proposed by Franco in [60] and can be
viewed as a generalization of the notion of simple cycles used in the study of
the phase transition of random 2-SAT [36, 77]. The difference between the
k-cc-loop defined in Definition 4.3.1 and those used in [36, 60, 77] is that the
former is defined on variables while the latter are defined on literals.

Definition 4.3.2 (Reducible k-cc-loop). Let C {V ,E) be a k-cc-loop where
V = { Vq . V i , . . . , V3 p} and E = { E i , . . . , £ 3^+2}- A sequence of constraints
C = { C i,. . . , C3P+2} is said to be a reducible k-cc-loop on £(V, E) if

1. Each Ci has Ei as its constraint scope;

2. Each Ci implies a 2-CNF clause defined on two cyclic variables in Ei
such that the resulting set of 2-CNF clauses is o f the form

Uq V u i . U i V u o , u f V Us, ■■■, Up- 1 V Up, u f V u o ;

U q V U p j - 1 , t i - p ^ - i V U p + 2 , U p — 2 V V p J - S , , V. Sp—1 V U s p , U s p V U q ,

where U i is a literal of the variable vt .

We call the above 2-CNF formula a contradictory bi-cycle on the k-cc-loop
£{V. E).

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the following, we assume that I = 3 p + 2 = o(y/n).

L em m a 4.3.1. Let B ^ , c = be a random CSP. Let C (V .E) be a k-cc-
loop where V = {uo,^’i ---- ; u3p} is the sequence of cyclic variables and E =

is the sequence of hyperedges. The probability that contains
a reducible k-cc-loop on C(V, E) is

(») « > •
where r is such that

1 . For t = 2k~2 — 1 + a with 0 < a < 1,

r = - 4 - (l + 2k- 2Q),
V2fc-2J

2. For t = 2k~2 + j + a with 0 < a < 1 and 0 < j < 2fc_1 — 2k~2 — 1,
a k~2+j\ 0k- 2

r = V ^ 1 + a TTT>-
(*-») 3 + 1

Proof. Let N = (£) be the number of possible hyperedges. Let

C = { C u C2, . . . , Q }

be a sequence of constraints where each constraint Ci has the hyperedge Ei
as its scope. Then, the probability that contains the constraints
C = {C i,C 2, . . . ,C i} is

1 f N — l \ (Ĉ 1 V ~ , x

o U - iH *) 0(1)=(;?=Oe(1)' (43)
Let C be a constraint that has Vi and Vj as two of its scope variables. Given

a literal u{ of the variable Vi and a literal Uj of the variable vj. we calculate
the probability that C implies the clause Ui V uj. Here we give the details for
the case of t = 2k~2 + j + a with 0 < a < 1 and 0 < j < 2fc_1 — 2k~2 — 1. The
case of t = 2k~2 — 1 + a can be handled similarly.

Recall that a constraint contains a nogood set of size t = 2k~2 + j with
probability 1 — a and of size t — 2k~2 + j + 1 with probability a. As we
are dealing with constraints over Boolean variables, it is easy to see that the
constraint C implies the clause U{ V Uj if and only if the set of nogoods contains
the set of 2k~2 binary vectors (ui,Uj,*) with * being any binary vector in
{0, l } fc-2. Therefore, the probability that C implies the clause m V uj is

(2 k —2k ~ 2\ f 2 k —2k~ 2\
' 3 K i \ , V 3 + 1 /

T - , oA: N (+ / 2“ \ Q
V2 k ~ 2 + j) \ 2 * - 2 + j + l)

r - k ~ 2+ j \ 9 fc- 2

= T ^ (1 + a ^ r r)- (4-4)(2j - s) j + 1

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As the constraint relations of the constraints are determined independently,
the probability tha t the sequence of constraints C = {C\, Cz,. . . , C/} implies
the 2-CNF contradictory bicycle defined by a literal sequence (u0. Ui,--- , u/_2)
is r l.

Since both of the positive and negative literals of the special variable v0
have to appear in a 2-CNF contradictory bicycle, there are 2l~2 ways to select
the literal sequences to form the contradictory bi-cycle. Since the constraint
tightness t is less than 2k~1. the events th a t the sequence of constraints C
implies 2-CNF contradictory bi-cycles formed by different literal sequences are
pair-wise disjoint. It follows that the probability for the sequence of constraints
C to be a reducible k-cc-loop is

rl2l~2. (4.5)

The lemma is proved by combining (4.3). (4.4). and (4.5). □

L em m a 4.3.2. For any 2k~2 — 1 < t < 2k~1. the expected number of k-cc-loops
on which the random CSP # 2’j^ .c = (y, contains a reducible k-cc-loop is

4 (2rck(k - 1))'©(1)

where r is the same as in Lemma 4-3.1.

Proof. Let V = {v0,v i ,- - - ,V3P} be a sequence of variables and C (V .E) be
the k-cc-loop defined on V. From lemma 4.3.1, the probability that the CSP
contains a reducible k-cc-loop on the k-cc-loop C(V, E) is

m h "
The total number of k-cc-loops is

i- i

' i= 0

n - I + 1 — (k - 2)i
k - 2

U V —1)!— 1 ^ 1 + 1
I - 1 / {{k — 2)!)1 (n — I -h 1 — l(k — 2))!

1= n«k~V
((fe - 2)!)I©(1)

/-i
where the term n (" 2 number of ways to choose the

i=0
variables for Ei \ V for each hyperedge Et in E. □

P ro o f o f T h eo rem 4.2.1. Assume that t € (2fc~2 — 1,2*—1) and c = ^
satisfy one of the two conditions in Theorem 4.2.1. Let p = In2 n so that

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I = 0(1) ln2n. Let A[be the number of k-cc-loops on which contains a
reducible k-cc-loop. To prove the theorem, it suffices to show that

lim Pr{ Ai > 0} = 1.
71

(4.6)

Lemma 4.3.2 tells us that the expectation S[Aj\ of Ai satisfies

lim £[Ai] = oo.

In order to use the second-moment method to establish (4.6), we claim
tha t the variance var{A{) of Ai satisfies

For a k-cc-loop C{V, E) defined on V, let Ic be the indicator function of
the event tha t 13%** contains a reducible k-cc-loop on £(V, E). Then, Ai =
52 Ic where the sum is over all the possible k-cc-loops. Given two k-cc-loops
c

L and M , we write £ ~ M if £ and M. share some hyperedges. Since
£[IcIm] ~ £[Ic]£[Im] = 0 whenever the two k-cc-loops £ and M do not share
any hyperedges, we have

Assume that L \ and £ 2 share q hyper-edges. Similar to the proof of lemma
4.3.1, we have

var{A t) = o{S[Aif).

var(Ai) = J > a r (l £) + J 2 W cIm] ~ S[IcW m \)-
C C ~ M

By the proof of lemma 4.3.2,

C ~ M

= (i (2 r c k(k - 1))‘)20(1).

Since
^ ~ 2 va r{Ic) = ^ £ [I £](1 - S [I c]) = o (£ 2[A/]),
c

it is enough to show that
c

£ S[IcIM\ = o(£2[^]). (4.7)

W cAIc*] < (4.8)

(4.9)

Therefore,

•50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To prove (4.7), we need to count the number of pairs of fc-cc-loops sharing
q hyper-edges. The counting technique is similar to those used in [60]. The
following concepts about the cyclic variables in a k-cc-loop are required. Let
£ be a k-cc-loop and S be a set of hyper-edges in L. We call a cyclic variable
appearing in L

1. fixed if it belongs to at least two hyper-edges in S:

2. limited if it belongs to one hyper-edge in 5; and

3. free if it does not appear in any edges in S.

Write A q for the total number of pairs of k-cc-loops sharing q hyperedges
and A q(S) for the total number of pairs of k-cc-loops sharing a given set S
of q hyperedges. We need to consider two different cases depending on the
structure of the set of shared hyperedges S: (1) S is connected; and (2) S has
h > 2 connected components. In each of the cases, we also need to distinguish
how many of the 4 special hyperedges, i.e., the hyperedges tha t contain the
special variable v q , are shared.

C ase 1: (T h e se t of sh ared hyperedges S is connected) Let q — |S|.
We consider three situations:

1. (Each variable that appears in S is incident to at most two hyperedges
of S .) In this case, S' is a hyper-path, and consequently any k-cc-loop
tha t contains S will have q — 1 fixed cyclic variables, 2 limited cyclic
variables, and (I — 1 — (q — 1) — 2) free cyclic variables. Therefore, the
total number of pairs of k-cc-loops containing S is

- 0 (1)

(*-W -9)0(l). (4.11)

where the term I is for the number of possible positions of 5 in a k-cc-
loop. As the number of possible hyper-paths with q hyper-edges is less
than

the total number of pairs of k-cc-loops sharing q hvperedges that form a
hyper-path is less than

^ (5) • H - ^ t - P2) !) ^ nW ~1)' n ' lt' 1>' 0 (1)- (4' 12)

51

Aq(S) <

zv?~2*(*~2)(i_,))
{{k - 2)!)2(i-<?)

12t o
n4((k - 2)!)26-<?)

n~

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. (One variable v appears in three or four hyper-edges in S: The other
variables are incident to at most two hyper-edges o f S.; And a = |5I <
p+ 2). In this case. 5 is a hyper-tree consisting of three or four hyper-path
branches that join at the special variable v, as shown in Figure 4.3. If the
degree of v in S is 3, then any k-cc-loop that contains S will have q — 2
fixed cyclic variables, 3 limited cyclic variables, and I — 1 — (q — 2) — 3 free
cyclic variables. Since the special variable v appears in S. the position
of S in a k-cc-loop containing S is fixed. It follows th a t the number of
pairs of k-cc-loops tha t share S is

l-q \ 2

n 4 ((/c _2)!)2 (i-< 7) n ' ^ 1)a (4 -13)

The total number of such S. hyper-trees consisting of 3 hyper-path
branches that join a t special variables, is at most

- -

Then, the total number of pairs of k-cc-loops whose shared hyper-edges
form a hyper-tree consisting of three hyper-path branches tha t join at
the special variable is at most

1), 0 (1) (414)

Similar calculations show that the total number of pairs of k-cc-loops
whose shared hyper-edges form a hyper-tree of four hyper-path branches
that join at a special variable is less than (4.14).

3. (One variable v appears in three or m,ore hyper-edges in S; The other
variables are incident to at most two hyper-edges of S ; And q = |S| >
p + 3). In this case, in addition to the cases where the shared hyperedges
form a hyper-path or a hyper-tree consisting of hyper-path branches,
we need to consider the situation where S forms a unicycle. If 5 forms
a unicycle, then any k-cc-loop that contains S should have q — 1 fixed
cyclic variables and a t least 1 limited cyclic variable. The total number
of k-cc-loop pairs sharing a set S of hyper-edges tha t form a unicycle is
at most

1
n2((k - 2)!)2i-?

•52

nW -W ri

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.3: An illustration of a set of q = 6 shared hyper-edges that form a
hyper-tree containing three hyper-path branches. The variable v appears in 3
hyper-edges. There are 4 fixed cyclic variables, 3 limited cyclic variables.

C ase 2: (T he s e t S o f sh a re d hypered g es form h > 2 connec ted
com ponen ts)

In this case, the total number of sets of shared hyperedges is more than
tha t in Case 1. But this is compensated for by the decreasing number of of
free cyclic variables. In the following, we discuss in detail the case where these
h components are all hyper-paths. Other cases can be handled similarly. Let
hi be the number of components in S th a t are isolated hyper-edges, ho be the
number of components in S tha t contain 2 hyper-edges, and h3 = h — hi — ho
be the number of components in S tha t are hyper-paths of length greater than
2. There are 2hx + 2ho + 2h3 limited cyclic variables, ho + ((q — h x — 2ho) — h3)
fixed cyclic variables, and consequently l — l — q — h free cyclic variables. Thus,
the number of pairs of k-cc-loops tha t share S is at most

A q(S) = ^ lhk2hn l~1~q~k ^

= / T ^ y _ L n2(*-i)(f-*) l 0(1) (4 16)
[n 2 J n2 { (k - 2)\)2̂ [) ' 1 '

For the total number H of hyper-edge sets that form h hyper-path compo­
nents, note that there are (h2 + ((q—hx — 2ho)—h3)) = q—h cyclic variables that
are non-endpoints of the hyper-path components. Once these q — h variables
are fixed, there are at most nkhl ways to choose the single-edge components,
n2(k-i)ho ways to choose the hyper-edges for the hyper-path components whose
length is 2, and n2̂ fc_1̂ 3(fc”0) q hl ~h2~~h3 ways to choose the interior hyper­
edges for the hyper-paths whose length is greater than 2. Therefore, the total
number of hyper-edge sets of size q that form h hyper-path components is at
most

na-hrikhi+2(k-l)(h2+h3)-k(h1+2h2+2h3)+2(hi+2h11+2h3)+(k-2)q *

_ y l ' J - h r) 2 (f n + h 2 + h 3) + (k — 2) q

= 7l''T,{k- X)q

((fc - 2)')* -h

((k - 2)!)*-fc'

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It follows tha t the total number of pairs of k-cc-loops sharing q hyper-edges
tha t form h hyper-path components is a t most

((.k — 2)!)2l~v'

Since h > 2 and I = 0(Zn2(«)), we conclude th a t the total number of pairs
of k-cc-loops sharing q hyper-edges that form h hyper-path components is less
than Case 1, formula (4.12).

In summary, the number of pairs of k-cc-loops sharing a set of hyper-edges
tha t form h ,h > 1, components is dominated by the case of h = 1. Therefore,
the total number of pairs of k-cc-loops sharing a set of q hyper-edges can be
bounded as follows:

’ j if 5 > P + 2. (4' ! '>

where the term “0(Z)” is a result of summing over all the ways in which the q
hyper-edges are shared, i.e., the number of components and the structures of
the components. Based on formulas (4.10) and (4.17), we have

<-rr t t V"' f 2r c k \ \2l~q
5Z t £ = 55 (nk-1)

C ~ M g = l ' '

p+ i

= 0 {l3) \ (2rck(k - l))21 J2(2rcfc(fc - I))-9
71 9 = 1

1 ^
+0 (l)— (2rck{k - I)) 21 ^ (2rcfc(fc - l)) -9

n-
9 = P + 2

r \ (]Z \ P+1 1
= 5 2 (2rcMk - l)) -9 + £2(A i) ° (l) 5 2 (2rcfe(fc - I))"9

9 = 1 9 = p + 2

= £2(Ai) + 0(l)(2rck(k - l))-(p+2)^

= o(£2(Al)):

where the last two equations are because of the assumptions that 2rck(k — 1) >
1 and Z = 3p+2 = 0(Zn2n). This establishes the formula (4.7) and thus, proves
the theorem. □

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.2 Proof of Theorem 4.2.3

The proof of Theorem 4.2.3 is based on the concepts of and the results on
hyper-trees and unicycles in random hypergraphs.

Consider the random k-homogenous constraint hypergraph Qk(n,m) of
Bn’!m ■ From [97] (see Lemma 2.2.1). we have for any c < f.-̂ y Qk(n, m) w hp
consists of hyper-trees and unicyclic components. In this case, an instance of
the random CSP is satisfiable if and only if the subproblems corresponding to
the components of the constraint hypergraph are all satisfiable. A subproblem
corresponding to a hyper-tree is satisfiable [115]. In the following, we prove
tha t a subproblem corresponding to a unicyclic component is also satisfiable
if the tightness of the constraint is less than 2k~1. We break up the task into
three lemmas.

Lemma 4.3.3. For any uncyclic k-homogenous hypergraph Q with the edge
set E = (Ei, - ■ ■ , Et), we have

\E in E j\ < 2, VI < i , j < t.

Proof. Assume that a = \E, D Ej\ > 2 and let

G '= (V ,E - { E i}) .

Notice that G' has at most k — a + 1 connected components {Gj, • • • , Gfc_a+i}.
Since a connected hypergraph has at least an excess of -1, we have

ex(Q) = ex(Gj) + • • • + ex(G k-ajr\) + (k — 1) > a — 2 > 0.

A contradiction to the unicyclicness of Q. □

Due to Lemma 4.3.3, we only need to consider unicycles in which edges
have intersections of cardinality of at most 2.

Lemma 4.3.4. Let C be a CSP such that

1. Its constraint graph Q(V. E) is unicyclic ;

2. The tightness t is less than 2k~1; and

3. There are a pair of hyper-edges Ei and Ej with \Ei fl Ej\ = 2 .

Then, C is satisfiable.

Proof. Let G' = (V, E —{Ei}). Since \EiC\Ej\ = 2, there should be exactly k — 1
connected components in G' such that (1) one of the components contains the
intersection EiC\Ej, and each of the rest of the components contains exactly one
vertex from Ei — Ej; and (2)each of the connected components has an excess
of -1. Otherwise, Q would have an excess larger than 0. The satisfiability of
the CSP can be shown by first satisfying the constraint corresponding to the
hyper-edge Ei and then satisfy other constraints. This is possible because for
the tightness t < 2k~l . there is always a t least one assignment that satisfies E,
and E; simultaneously. □J *

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Now, we axe in a position to deal with the situation where hyper-edges
have an intersection of size at most 1.

L em m a 4.3.5. Let C be a CSP such that

1. Its constraint graph G(V. E) is unicyclic ;

2. The tightness t is less than 2k~l ; and

3. For any pair of hyper-edges Ei and Ej; we have with] Ei Pi Ej | < 1.

Then. C is satisfiable.

Proof. In this case, the constraint hypergraph Q(V. E) contains one cycle F =
(Fi, • • • , Fi) of the form

IF n F +1| = l, l < i < i - 1 , |F n F | = l.

and some additional hyper-tree branches attached to the cycle. If there is a
partial assignment satisfying the constraints in the cycle, then we can always
extend it to satisfy the constraints in the hyper-tree branches. To see there
exists such a partial assignment, let y{ = F n F + i and yn = Fn r\F\. Consider
the two possible assignments 0 and 1 to yx. If we assign yx = 0 or 1, we can
find assignments to yi: 2 < i < n — 1 to satisfy F l , • • • , Fn- X. Assume tha t yn is
forced to take the value a0 for the assignment yx = 0 and ai for the assignment
2/i = l. Since there are at most 2fc_1 — 1 restrictions to the variables in E x,
we know- at least one of the pairs (yx = 0, yn = ao) and (yx = 1 ,yn = ai)
will satisfy the constraint corresponding to F l. This shows the existence of
a partial assignment tha t satisfies the set of the constraints corresponding to
the cycle F = {Fl, - • • , F } . □

4.4 D iscussions

After the results in this chapter first appeared in [72], Molloy and Salavatipour
published their independent work in which the resolution complexity of B f^ f
for the general case of d > 2 is investigated [116]. For the case of d = 2,
their results lead to the same bounds as those presented in this chapter. More
importantly, their work shows that for t € (2fc-2,2fc_1], these bounds are in fact
the exact thresholds, i.e., when the constraint density ^ is below these bounds,

almost surely has an exponential resolution complexity. Their work also
proves that B f^ f almost surely has an exponential resolution complexity for
t e (f c - l , 2 fe- 2).

In summary, the resolution complexity of the model B f f l has now been
fully characterized.

•56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

C onsistency and B etter
Random CSP M odels

5.1 Introduction

One of the significant problems with existing random CSP models with bounded
domain size, including those that have been proposed recently, is tha t as a
model parameter, the constraint tightness has to be very low in order to have
non-trivial threshold behaviors and guaranteed hard instances at phase tran­
sitions. For random CSPs with increasing domain size, there is still a certain
degree of restriction on the possible value of the constraint tightness.

As we have discussed in Section 3.3.1, except for a small range of the
constraint tightness, all of the four classical random CSP models are trivially
unsatisfiable with high probability due to the existence of flawed variables.
For the case of binary CSPs, the constraint tightness has to be less than the
domain size in order to avoid flawed variables. Furthermore, the results in
Chapter 4 and in [116] show that even for a moderate constraint tightness, it
is still possible for these classical models to have a polynomial complexity due
to the appearance of embedded easy subproblems.

Several new models have been proposed to overcome the trivial unsatisfi­
ability. Gent et al. [75] proposed the flawless random model for binary CSPs
based on the notion of a flawless conflict matrix. Instances of the flawless ran­
dom CSP model are guaranteed to be arc-consistent, and thus do not suffer
asymptotically from the problem of flawed variables. Achlioptas et al. [S],
proposed a nogood-based CSP model, the model E, and showed tha t it has
non-trivial asymptotic behaviors. Random CSP models with a (slowly) in­
creasing domain size have also been shown to be free from the problem of
flawed variables and have interesting threshold behaviors [140, 129]. How­
ever, none of these models has specifically addressed the fundamental cause
and requirement of a low constraint tightness in order to have a guaranteed
exponential complexity. The flawless random CSP does have a true phase

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

transition of the solution probability at a high constraint tightness, but as
we will show later, it still suffers from the embedded easy unsatisfiable sub­
problems at a moderate constraint tightness. In CSP models with increasing
domain size, there is still an obvious restriction on the possible values of the
constraint tightness. In model E. it is impossible to have a high constraint
tightness without making the constraint (hyper)graph very dense (see Lemma
3.2.2).

In this chapter, we study the possibility of designing non-trivial random
CSP models that allow a much higher constraint tightness. This chapter is
based on [73] published in 2004. We prove that there are strong connections
between the resolution complexity of (randomly-generated) CSP instances and
the constraint consistency, a notion th a t has been developed to improve the
efficiency of CSP algorithms. These connections are somewhat surprising since
almost all of the existing CSP algorithms exploit, in one way or another, the
constraint consistency to improve their performance. We propose a scheme to
generate consistent random CSP instances that can potentially have a high
constraint tightness. Detailed experimental results are also reported to illus­
tra te the sensitivity of instance hardness to the constraint tightness in classical
CSP models and to show that instances generated by our model are indeed
much harder at phase transitions than previous CSP models.

5.2 C onsistency and R esolution Com plexity of
Random CSPs

Throughout this chapter, we consider binary CSPs defined on a domain D =
(1 ,2 ,- •• , d} such tha t |D| = d. Elements in D will usually be denoted by
lower-case Greek letters, a, (3, etc.

Constraint consistency is perhaps one of the most important concepts in the
constraint programming literature [108]. Almost all of the (complete) CSP al­
gorithms exploit, in one way or another, constraint consistency to improve their
performance. Much effort has been spent to design efficient data structures
and algorithms to achieve and maintain a certain level of constraint consistency
before or during the backtracking search. For example, over seven algorithms
with increasing efficiency have been proposed to maintain arc-consistency—
the lowest level of non-trivial constraint consistency. For some special type of
constraints, one has to solve a maximum bipartite graph matching problem to
achieve constraint consistency.

D efin ition 5.2.1. Let (X = {xi, • • • , x n},C, D) be a binary CSP instance and
k > 1 be an integer. We say that the instance is k-consisten t i f for any set
of (k — 1) variables X k -i = {xjj, • • • , any assignment {<5̂ , - • • 5ik_, } E
Dk~l to X k -i satisfying the sub-instance induced on X k - i, cmd for any other

5S

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

variable Xik 6 l \ X k_i, there is an assignment 5ik to x ik such that

{<5jj. • • • 5ik_ j .

satisfies the sub-instance induced on X ^ -i U
A CSP instance is called s tro n g ly k -co n s is ten t i f and only i f it is j-

consistent fo r each j < k. Of special interest are strong k-consistency for k =
1,2,3, also known as node-consistency, arc-consistency, and path-consistency.

5.2.1 CNF Encoding of CSPs

Mitchell [113] developed a framework in which the notion of resolution com­
plexity is generalized to CSPs and the resolution complexity of randomly-
generated CSP instances can be studied. In this framework, the resolution
complexity of a CSP instance is defined to be the resolution complexity of a
natural CNF encoding which we give below.

Following [113], we call an expression of the form x : a a literal for a
CSP. A literal x : a evaluates to TRUE at an assignment if the variable x is
assigned the value a. W ith this notation, a nogood of a CSP can be viewed
as a disjunction of the negations of a set of literals x; : a i: 1 < i < I, and will
be denoted by rj(xi : a*. • • • ,x i : <Zi).

Definition 5.2.2 (CNF Encoding and Resolution Complexity of CSPs).
Given an instance T of a CSP on a set of variables {mj, - * - ,x n} with the
domain D = {1,2, - • • , d}, its CNF encoding CNF(T) is a CNF formula con­
structed as follows:

1. For every CSP variable Xi, there are d Boolean variables {xt : 1 , x, :
2, . . . , X i : d} each o f which indicates whether or not Xi takes on the
corresponding domain value.

2. For every CSP variable Xi, there is a clause

X{ : 1 V Xi : 2 V • • • V X{ : d

on the d Boolean variables making sure that Xi takes at least one of the
domain values;

3. For every nogood (5i, • • • , 5k) E D k of each constraint C with the scope
var(C) = {a:*!, • • • ,Xik}, there is a clause

x h : 8i V • • • V x ik : 5k

to respect the nogood.

The resolution complexity o f T i s defined to be the resolution complexity of its
CNF encoding CNF(T).

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It is not hard to see tha t a CSP instance T is satisfiable if and only if its
CNF encoding CNF(T) is satisfiable:

1. If (a i, • • • ,a„) € I?" is a satisfying assignment, then the CNF encoding
CNF(T) can be satisfied by the tru th assignment X; : ai = T R U E and
xi : f3 = F A L S E for every fi ^ ai.

2. For any truth assignment that satisfies the CNF encoding CNF(T), the
CSP instance can be satisfied by assigning Xi to any domain value a for
which Xi : a = T R U E .

In [113. 116], upper bounds on the constraint tightness t were established
for the random CSPs to have an exponential resolution complexity. For ran­
dom binary CSP the bound is (1) t < d — 1; or (2) t < d and ^ is
sufficiently small. For a moderate constraint tightness, as has been shown
in Chapter 4 (see also [116]), it is still possible for these classical models to
have an asymptotically polynomial complexity due to the existence of embed­
ded easy subproblems. The primary reason for the existence of embedded
easy subproblems is tha t with a moderate constraint tightness, constraints
frequently imply constraints which force a pair of involved variables to take a
single value-tuple.

Definition 5.2.3 (Forcers [116]). A constraint C j with var(Cf) = {x^ x2}
is called an (a, fi)-forcer i f its nogood set is

NG(Cf) = {^(xi : a , x 2 : 7) ;7 # fi}-

We say that a constraint C contains an (a, fi)-forcer C f defined on the same
set of variables as C z/N G (C/) C NG(C).

Definition 5.2.4 (Forbidding cycles and flowers [116]). An a-forbidding
cycle for a variable Xq is a set o f constraints

"(C1 (x0, Xi), Cofyi, X2) , . . . , CV_ 1 (xr_2 , Xr—\), Cr(xr_ i, X0)}

such that C i(xo.xi) is an (a, Cki)-forcer. Cr (xr_i,xo) is an (ar_i, a T)-forcer
(a r 7 ̂ a), and Ci(xj_i,Xj) is an (a ,^ .a f)-fo rcer (2 < i < r — 1). We call x0

the center variable of the a-forbidding cycle.
An r-flower R = ,Cd} consists o f d (the domain size) forbidding

cycles each of which has the length r such that

1 . Ci. 1 < i < d, have the same center variable x;

2 . each Ci is an oti-forbidding cycle of the center variable x; and

3. these forbidding cycles do not share any other variables.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.2 Consistency and Resolution Complexity of Ran­
dom CSPs

In the following, we show that it is not necessary to put restrictions on the con­
straint tightness in order to have a guaranteed exponential resolution complex­
ity. Based on similar techniques as those used in the literature [113, 116, 21],
we will show that if in B ^ f , each constraint is chosen in such a way tha t the
resulting instances are always strongly ^-consistent (k > 3), then has an
exponential resolution complexity no m atter how large the constraint tightness
is.

T h e o re m 5.2.1. Let B%^[SC] be a random CSP such that

1. its constraint graph is the standard random graph G(n, m); and

2 . for each edge, the constraint relation is such that any instance of B^'lf[SC]
is strongly k-consistent for any given k > 3.

Then, the resolution complexity of B ^ f [S C] is w h p exponential.

Proof. See Section 5.5. □

Using the tool developed in [116], the requirement of strong k-consistency
for CSP instances to have an exponential resolution complexity can be further
relaxed.

D efin ition 5.2.5. A CSP instance is called weakly path-consistent i f it is arc-
consistent and satisfies the conditions of path-consistency for paths of length 3

or more.

T h e o re m 5.2.2. Let B ^ f\W C \ be a random CSP such that

1 . its constraint graph is the random graph G(n, m); and

2 . for each edge, the constraint relation is such that any instance of B' f ff [W C]
is weakly path-consistent and contains no forcer.

Then, the resolution complexity of B%%£[WC] is almost surely exponential.

Proof See Section 5.5. □

5.3 Consistency Core and Harder Random CSP
M odel w ith High Constraint Tightness

Having established that random CSPs with a certain level of consistency have
an exponential resolution complexity, the question remaining to be answered

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is whether or not there are natural random CSP models that are guaranteed to
be strongly ^-consistent or weakly path-consistent. In fact, the CSP-encoding
of the graph k-coloring problem is strongly ^-consistent. Another example
is the flawless random binary CSP proposed in [75] that is guaranteed to be
arc-consistent, i.e., strongly 2-consistent. In this section, we discuss how to
generate random CSPs with high tightness tha t are strongly 3-consistent or
weakly path-consistent.

5.3.1 Flawless Random CSPs

Gent, et al [75] proposed the flawless CSP model to overcome the triviality
of the classical random CSP models. A key observation is that the existence
of flawed variables might be a direct result of the fact that classical random
CSPs are not arc-consistent.

Definition 5.3.1 (B ^ [1], Flawless Random Binary CSP). In the flaw­
less random binary CSP [I], the constraint graph is defined in the same
way as that in For each constraint edge, the constraint relation is spec­
ified in two steps:

1 . Choosing a random permutation tt of D = {!,-■■ d}; and

2. Selecting a set of t value-tuples uniformly at random from D x D \
{ (z , 7r (f)) , 1 < i < n) } as the nogood set.

For reasons tha t will become clear later in this section, we have used a
suffix “[1]” in the symbol B ^ f [1] to indicate the fact that in the flawless
random CSP, each value of each variable in any constraint is guaranteed to have
one support value from the other variable. Consequently, a flawless random
CSP is always arc-consistent and does not have flawed variables. However,
even though the flawless random binary CSP B^~f [1] does not suffer from the
problem of trivial unsatisfiability, it can be shown tha t B ^ [1] asymptotically
has embedded easy subproblems for t > d — 1 in the same way as the random
binary CSP model B ^ .

Theorem 5.3.1. For t > d — 1, there is a constant c* > 0 such that for any
^ > c*, whp B ^ f \ 1] is unsatisfiable and can be solved in polynomial time.

A detailed proof of Theorem 5.3.1 can be found in Section -5.5. The idea
is to show that for ^ > c*, the flawless random CSP 1] contains whp
an unsatisfiable subproblem called an r-flower. Furthermore, if a binary CSP
instance contains an r-flower, then any path-consistency algorithm (see, e.g.,
[108]) will produce a new CSP instance in which the center variable of the
r-flower has an empty domain.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3.2 Generalized Flawless Model and Consistency Core

We are now in a position to introduce our new CSP model, the generalized
flawless random CSP. which enforces a higher level consistency and is guaran­
teed to have an exponential resolution complexity.

Definition 5.3.2 (23^£[/C], Generalized Flawless Random Binary CSP).
In the generalized flawless random binary CSP B f f f [/C], K is a random bipar­
tite graph with each part being the domain D of a variable. The constraint
graph is defined in the same way as that in B ffif . For each constraint edge,
the constraint relation is specified as follows:

1 . Generate the bipartite graph JC = (D2, E(IC)) satisfying certain proper­
ties; and

2. Select a set o f t value-tuples wniformly at random from (D x D) \ E{JC)
as the nogood set.

The idea behind the generalized flawless random binary CSP is tha t by
enforcing a subset of value-tuples (specified by the edges of the bipartite graph
JC) to be always compatible, it is possible that the generated CSP instances
will always satisfy a certain level of consistency. If we define JC to be a 1-
regular bipartite graph, then B ffif [Af] reduces to the flawless random binary
CSP model 1].

The following result shows tha t a connected and /-regular bipartite graph
JC with sufficiently large I can be used to generate strongly 3-consistent random
CSPs or weakly path-consistent random CSPs.

Theorem 5.3.2. Let JC be an l-regular connected random bipartite graph.
Then, B^f[JC\ is always

1. strongly 3-consistent i f and only i f I > and

2 . weakly path-consistent i f and only i f I >

Proof. We only prove the case for the weak path-consistency and the case for
the strong 3-consistency is similar.

Consider a path xi — x 2 — x 3 — x 4 and any assignment x 4 = i and x 4 = j .
There are I values of xo tha t are compatible to xi = i and there are I values
of xz tha t are compatible to x 4 = j . Since the bipartite graph is connected,
there are at least / + 1 values of x 3 tha t are compatible to x x = i. Therefore
if I > (d — l) /2 , there must be a value of x 3 that is compatible to both x\ = i
and x 4 = j.

To see the “only if’ part, we will show that there is a connected bipar­
tite graph K {V ,U) on two sets of vertices V = {uj,uo,• • • ,ud} and U =
{vi .uz, • • • , Ud} such that the neighbors of the first I vertices in V are the first

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I + 1 vertices in U. First, we construct a complete bipartite graph on the ver­
tex sets {v i,v2., • • • , vi} and { u i , u 2, • • • , u/}; second, we construct an /-regular
connected bipartite graph on the vertex sets {'^+1. - • • . Vd} and {ni+1. • • - . Ud}
such that (u/+i,u/+i) is an edge. We then replace the two edges (vi.u i) and
{vi+i, ui+i) with two new edges (vL,ut+1) and (vi+i,ui). This gives the bipartite
graph K(V.U). The existence of such a bipartite graph K(V,U) shows that
when I < it is possible to have a constraint relation such that a constraint
path of length 3 is not consistent. □

The generalized random CSP model Bff2̂ [/C] with a connected regular bi­
partite graph K allows a constraint tightness up to (d̂ d- The above theorem
also indicates that this is the best possible constraint tightness when using an
arbitrary connected bipartite graph fC. To achieve higher constraint tightness,
we propose a recursive scheme to generate a bipartite graph /C that is more
efficient in its use of edges.

To facilitate the presentation, we call an /-regular connected bipartite graph
K { V:V) a strong kernel (or a weak kernel) on V if I > ^ (respectively.

D efin ition 5.3.3 (C o n sisten cy C ore). Let D x = Do be the domains of two
variables with |D i| = \D2\ = d. The consistency core for the domains D\ and
Do is a bipartite graph Qcorc{D\, Do) on D x and Do. and is defined recursively
as follows.

1. I f there are integers s , c > 3 such that d = s x c, then

(a) partition D i,i — 1,2, into s blocks { A j, 1 < j < s} of equal size c;

(b) build a strong (or weak) kernel K(S, S) on the set S = {1,2, • • • ,s};
and

(c) let the edge set of QCOTC{I)\,D 2) be

U{the edge set of G crdD u, D2j) :
(■i , j) are adjacent in the kernel K{S.S)} .

2. Otherwise. GCore{Dx. Do) is defined to be the strong (or weak) kernel on
D\ and Do.

It should be noted tha t in the above definition, if the domain size d (or
d /2) is prime, the recursive steps will not happen and thus, the consistency
core is simply a strong or weak kernel on D\ and Do. One way to make it
work for prime numbers is to consider a fixed subset D' of the domain D such
tha t \D'\ can be factorized. Once a consistency core has been built on D '. a
consistency core on D can be obtained by padding each element in D \ D ' to
some block of the A -partition and making it adjacent to every element in any
other adjacent block.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T h eo rem 5.3.3. I f a consistency core is used for K, then £>^[/C] is

1. strongly 3-consistent i f and only i f I > f ; and

2 . weakly path-consistent i f and only i f I >

Proof. By induction on the domain size and using the previous theorem. □

Using the consistency core, we can define random CSP models with con­
straint tightness well above ^ 7 ^ . For example, if the domain size d is 12,
the random generalized random CSP model B ^ [K] with a consistency core
K. allow a constraint tightness up to 144 — 6 * 8 = 96.

Generally, if {.sx, s2, sg} is the sequence of partition sizes used in the re­
cursive steps when constructing a consistency core /C, then the highest achiev­
able constraint tightness in the corresponding CSP is

k= 1

We can therefore formulate the problem of finding an optimal sequence of
partitions as the following optimization problem:

Given an integer d > 0, find a factorization

d = f [s k
fc= 1

<?
such that I"] is minimized.

k= 1

In our generator, we have implemented a dynamic programming algorithm
to generate such an optimal partition sequence.

E x am p le 5.3.1. Consider the consistency core JC depicted in Figure 5.1 where
the domain size is |D | = 9. The domain of a variable is partitioned into
3 blocks of size 3. The dashed lines are the edges of a strong kernel on the
blocks. For each pair of blocks connected by a dashed line (e.g.. the pair circled
by the grey line), we build a 3 by 3 consistency core as depicted at the bottom
of the figure. The edge set of the consistency core K. consists of all the edges
of all the 3 by 3 consistency core. In fact, there are in total 36 edges in K,.
An instance of this CSP model can be viewed as a generalized 3-colorability
problem.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o o o o o o o o o

o o o o o o o o o

Figure 5.1: A special type of consistency core with the domain size 9

5.4 Experim ents

In this section, we report results of two sets of experiments designed (1) to
study the effect of an increase in the constraint tightness on the typical-case
complexity; and (2) to compare the typical-case instance hardness between the
classical random CSPs, the flawless random CSPs, and the generalized flawless
random CSPs.

5.4.1 Effect of an Increase in Constraint Tightness

Upper bounds on the constraint tightness have been established for random
CSPs to have an exponential resolution complexity for any constant constraint
density ^ [72, 116]. It was further shown in [116] that for the constraint
tightness above the upper bound, the existence of forcers can be compensated
for by sufficiently low constraint-to-variable ratio so that one can still have
typical instances with exponential resolution complexity.

We have conducted the following experiments to gain further understanding
of the effect of an increase in the constraint tightness (and hence an increase
in the likelihood of the existence of a forcer in a constraint) on the typical-
case hardness of random CSPs. The experiments also help understand the
behavior of CSP models, such as the flawless CSP model, that onlv enforce
arc-consistency (strong 2-consistency).

In the experiments, we start with a random 3-CNF formula whose clauses
are treated as constraints. We then incrementally increase the tightness of
each constraint by adding more clauses defined over the same set of variables.
There are two reasons why we have based our experiments on random SAT
models. First, the typical-case complexity of the random SAT model is well-
understood and therefore, experiments based on the random SAT model will

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

enable us to have an objective comparison on the impact of an increase in
the constraint tightness. Secondly, the complexity of Boolean-valued random
CSPs obtained by increasing the tightness of the random 3-CNF formula has
been characterized in great detail. We have a clear picture regarding the
appearance of embedded easy subproblems in these Boolean-valued random
CSPs [72],

Let m be a random 3-CNF formula with n variables and m clauses. We
construct a new random 3-CNF formula . F ^ as follows:

1. contains all the clauses in

2. For each clause C in F ^ m. we generate a random clause on the same set
of variables of C, and add this new clause to with probability a.

In fact. 3-^% is the random Boolean CSP model with a real-valued con­
straint tightness 1 -i- a and has been discussed in [72], For a > 0, it is easy to
see tha t is always strongly 2-consistent, but is not 3-consistent asymp­
totically with probability 1.

Figure -5.3 shows the median of the number of branches used by the SAT
solver zChaff on 100 instances of J F ^ with n = 250. Figure 5.2 shows the
solution probability of the same model.

As expected, an increase in the tightness results in a shift of the location
of the hardness peak toward smaller m /n . More significant is the magnitude
of the decrease of the hardness as a result of a small increase in the constraint
tightness. For example, we know [72] tha t the upper bounds on m /n for
to have an exponential resolution complexity are respectively 23.3 if a = 0.1
and 11.7 if a = 0.2. Since the constraint-to-variable ratios m /n considered
in the experiment are well below' these bounds above which embedded 2SAT
subproblems appear with high probability, it seems that the impact of forcers
on the instance hardness goes beyond simply producing embedded easy sub­
problems. As forcers can appear a t a relatively low constraint tightness even
in CSP models such as the flawless model, approaches that are solely based
on restricting constraint tightness to generate interesting and typically hard
instances cannot be as effective as has been previously believed.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.8

0.6

0 . 4

0.2

1.2

1.6
1.8

1 2

Figure 5.2: Thresholds for the solution probability in the model with
n = 250. The z-axis is the solution probability. The axis with the range 1—2
is for the parameter 1 + a and the axis with the range 1—6 is for the clause
density m /n .

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.3: Effects of an increase in the constraint tightness on the instance
hardness for with n = 250. The z-axis is the median number of branches
in log-scale. The axis with the range 1.2— 1.8 is for the parameter 1 + a and
the axis with the range 2.5—5.5 is for the clause density m /n.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4.2 Comparisons between Three Random CSP Mod­
els

This set of experiments is designed to investigate the effectiveness of the gen­
eralized flawless random CSP model. We generate random instances of the
classical random models B ^ m, the flawless random model £>^[1], and the
generalized random model B ^ m[K) with domain size d = 4. For B ^ lm{K}. we
use a 2-regular connected bipartite graph as 1C. These instances are then en­
coded as CNF formulas and solved by the SAT solvers zChaff [141] and Satz. It
looks unnatural th a t we have tested random CSP instances by converting them
to SAT instances and using a SAT solver. This is justified by the following
considerations. First, all of the existing research on the resolution complexity
of random CSPs has been carried out by studying the resolution complexity of
a SAT encoding of CSPs as described in Section 5.2. We have used the same
encoding in the experiments. Secondly, it has been shown that as far as the
complexity of solving unsatisfiable CSP instances is concerned, many of the
existing CSP algorithms can be efficiently simulated by the resolution system
of the corresponding SAT encodings of the CSPs [112].

ZChaff

As Figure 5.4 shows, the threshold of the solution probability of the generalized
random CSP model B ^ m[K] is much sharper than those of B ^m and B%*m[1].
More importantly, instances of Bi*m{K] at the phase transition are much harder
than those of B ^m and B ^ m[1], as shown in Tables 5.1-5.3 where the median of
the number of branches of zChaff for 100 instances of each of the three random
CSP models is listed a t different stages of the solubility phase transition: Table
5.1 is for the constraint density ^ where the maximum median of the number
of branches is observed; Table 5.2 is for the constraint density ^ where the
solubility probability is less than 0.1; and Table 5.3 is for the constraint density
~ where the solubility probability is greater than 0.9.

It can be seen th a t while the classical random CSP model and flawless
matrix CSP model have little difference, the proposed random CSP model
Bf^m[lC\ with 1C being a connected 2-regular bipartite graph is significantly
harder in all of the cases except row 1 in Table 5.3. It is also interesting to
notice tha t the most significant difference in the hardness among the three
models is at the phase where instances of the random CSP models are almost
always unsatisfiable. A plausible explanation for this phenomenon is that
consistency is a property tha t may also help improve the efficiency of search
algorithms in solving satisfiable instances.

The big differences between the proposed model and the other two models
(the standard model and the flawless model) can be seen in Figure 5.5 where
we plot the median number of branches of zChaff on 100 sample instances as
a function of the constraints-variables ratio.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Number of Branches
[n.t) Bdx7 1 .777,

(100,6) 235 228 391
(300,6) 2050 2017 5337
(500,6) 7655 8123 93649
(300,8) 843 1010 2785

Table 5.1: Maximum Median Number of Branches of zChaff on random in­
stances of three random CSP models , over all Domain size d = 4 and /C
is 2-regular.

Number of Branches
(n ,t) Bd'1^ n j n Bd<t 11 B £ n [l C \

(100,6) 128 178 312
(300,6) 840 1305 5311
(500,6) 2266 2553 52638
(300,8) 204 269 1118

Table 5.2: Median Number of Branches of zChaff on random instances of three
random CSP models at the smallest ^ where the solution probability is less
than 0.1. Domain size d = 4 and JC is 2-regular.

Number of Branches
(n , t) Bdx^ r u n B & J 1]

(100,6) 221 204 169
(300,6) 2050 1572 295S
(500,6) 7655 6457 10632
(300,8) 843(0.67) 709 2785

Table 5.3: Median Number of Branches of zChaff on random instances of three
random CSP models at the largest ^ where the solution probability is greater
than 0.9. Domain size d = 4 and K is 2-regular.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Model BdnU m
m/n 1.2 1.6 2.2 2.4 2.6
Satz 170 (0.06) 139 (0.06) 68 (0.08) 47103 (44.47) 19230 (20.51)
ZChaff 1249 (0.01) 1839 (0.02) 8845 (0.44) 93649 (180.91) 18212 (10.85)

Model Egm[1]
m/n 1.2 1.6 2.0 2.2 2.4
Satz 126 (0.05) 99 (0.05) 71 (0.07) 916 (0.76) 128 (0.17)
ZChaff 1384 (0.01) 2113 (0.02) 6457 (0.14) 5019 (0.43) 2123 (0.16)

Table 5.4: Median number of branches (median time in seconds) of ZChaff
and Satz on two random CSP models with n = 500, d = 4, and t = 6. 100
instances for each parameter.

0.9 -

o .a •

-*•- binary csp
- - flawless csp
—— generalized flawless

S
a 0.5

I
b A

0.3

1.5 2 2.5
Corrstraints-Variables Ratio

Figure 5.4: Solution probability thresholds for the three random CSP models
with n = 500, t = 6. For the generalized flawless model, }C is set to be 2-regular.
The y-axis is solution probability and x-axis is the constraints-variables ratio
m /n . Sample size for each data point is 100.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o 10

C onstraints'V ari ab les R atio

Figure 5.5: Hardness for the three random CSP models with n = 500, t — 6.
For the generalized flawless model, K is set to be 2-regular. The y-axis is
the median number of branches used by zChaff and x-axis is the constraints-
variables ratio m jn . Sample size for each data point is 100.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

~*j- m e d ia n , s a t is f ib le in s ta n c e s
a v e r a g e . aB in s ta n c e s

V*4>JCo
a

a>
E3z

2 .3 2 .4 2 .5

Figure 5.6: A closeup at the region m /n = 1 .8--------2.5 for the generalized
flawless model with n = 500, t = 6 and K being 2-regular. Sample size for
each data point is 200. Two curves are plotted. One is the median number of
branches for satisfiable sample instances only, another is the average number
of branches for all the sample instances.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S atz

Experimental comparison using another SAT solver. Satz. shows similar hard­
ness patterns, and is summarized in Table 5.4. For both solvers, randomly-
generated instances at the phase transition of model are almost always
much harder than those of the flawless model £>̂ ’£m[l] in terms of both the
number of branches and the running time. It should be noticed that while the
running time of the two solvers is comparable, the number of branches of Satz
is much less. We believe this is a combined result of the different branching
heuristics used by the two solvers as well as zChaff’s excessive clause-caching
overhead and memory usage.

D o u b le p eak s in in s tan ce h a rd n ess?

As has been depicted in Figure 5.5, in part of the satisfiable region of the gen­
eralized flawless model, the search cost, measured by the number of branches,
has a small but not insignificant secondary peak. Initially, we had assumed
tha t this is either a solver-specific behavior or a result of the finite sampling
size (100 instances) we used when collecting the statistics. To our surprise, this
secondary- hardness peak persists in another set of experiments using zChaff
where 200 instances were generated at each constraint density. See Figure 5.6
for a closeup view of the behavior of zChaff in this region. Experiments on
both deterministic and randomized version of Satz also show a similar sec­
ondary peak. As we have measured the search cost by the median number of
branches, the use of randomized version is not really necessary.

This leads us to speculate tha t the generalized flawless model might be
the first model that shows solid evidence of the existence of double peaks in
instance hardness. Recall tha t in the experiment, we used the generalized
flawless model with d = 4, t = 6 and a 2-regular connected consis­
tency core. For smaller m /n , the consistency core in the generalized flawless
model makes randomly-generated instances even easier. As m /n increases,
perhaps right beyond 1.65—the threshold for the appearance of a 3-core 1 in
the underlying random graph of the model, should be such that any
assignment that is compatible with the consistency core of each constraint
cannot be a satisfying solution. Put another way, for any satisfying assign­
ment (<*!, • • • , a n), there must be a t least one constraint C with a consistency
core K c such that the value-tuple (a*,ocj) is not an edge in I\c- On the other
hand, for any constraint in with t = 6 , the majority of the compatible
value-tuples (S out of 10) are specified by the consistency core. As a result,
most search algorithms, if not all, will be misled to explore the consistency
core part of the solution space in a certain degree to find out tha t any solution
has to include at least one value-tuple outside of the consistency core. As m /n
increases further, this becomes more and more obvious, resulting in a decreas­

*A 3-core of a graph is a maximum subgraph of the graph with minimum degree 3.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ing number of branches. Though there are several assumptions in the above
speculation that need to be verified theoretically or empirically, we believe it
provides a plausible explanation on the secondary peak.

5.5 P roof of the Theorem s

In this section, we present more concepts related to the resolution complexity
results stated in this paper and prove Theorems 5.3.1, 5.2.1, and 5.2.2.

5.5.1 Theorem 5.3.1

This subsection is devoted to Theorem 5.3.1. The following facts are straight­
forward to establish:

1. An r-flower consists of s = d{r — 1) + I = dr — d + 1 variables and dr
constraints;

2 . The total number of r-flowers is

3. A constraint in the flawless CSP model contains an (a,/3)-forcer only if
the pair (a, (3) is one of the pre-selected tuples in the flawless constraint

In the following, we assume tha t r = o(yfn). The probability for a constraint
to contain a forcer and the probability for the flawless random CSP to contain
an r-flower are given in the following lemma.

L em m a 5.5.1. Consider the flawless random CSP and define f e =

1. The probability that a given constraint C {x \ , xf) contains an (a, (3)-forcer

matrix.

d2-d-d+1\
. t - d + 1 .)

IS

(5.1)

2. Let R be an r-flower and let c = m jn ,

P r { R appears in 1] } = 0 (l)(2 c /c)rfr̂ ^ . (5.2)

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proof. Equation (5.1) follows from the following two observations: (a)~ is the
probability for (a, /3) to be one of the pre-selected tuples in the flawless conflict
matrix; and (b) f e is the probability for the d — 1 tuples, (a, 7), 7 =4 /?, to be
in the set of t restrictions selected uniformly at random from df — d tuples.

To calculate the probability that a given r-flower R appears in
notice tha t the probability of selecting all the constraint edges in R is

il-%) cn(<™ - 1) ■ • • (01 - d r + 1) o m / T f ' *
© N (N - l) - - - (N - d r + l) U W \ n

where N = (”). Since for each fixed choice of dr constraint edges in the
r-flower, the probability for these constraints to contain the r-flower (^ /e)dr,
Equation (5.2) follows. □

P ro o f o f T h e o re m 5.3.1. Let c* = 7̂-. We will show that if c = — > c*.~Jc n
then

lim P r { } contains an r-flower } = 1 . (5 .3)

Let I r be the indicator function of the event that the r-flower R appears in
1] and let X = J ^ I r where the sum is over all the possible r-flowers.

R
Then, B%*m[1] contains an r-flower if and only if X > 0.

By Lemma 5.5.1 and the fact that s — dr — d + 1 , we have

E[X] = £ £ [/ *]
R

= e (l) n (n - l) - - - (n - s +

= © (l)n 1- <i(2c/e)dr.

Therefore, if c > c* and r = A log n with A sufficiently large, we have lim E[X] =
n

OO.

If we can show that £[X2] < £2 [X] (1 + o(l)), then an application of the
Chebyshev inequality will establish that lim P r { X = 0 } = 0. To get an upper

71
bound on £ [X 2], we need a counting argument to upper bound the number
of r-flowers sharing a given number of edges. This is done by considering how
the shared edges form connected components [116, 72, 60]. Here, we follow
the way that is used by Molloy and Salavatipour [116], from which we have

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s
d r —i

£ [x 2] - 5 Z £ [IaIb] + ^ 2 ia X ^ 5 ^ - /vy('pu)
A A B :B n A = 0 .4 \ i = l j = 1

= Y 1 £ [I a \ Z { I b]
A B:BC\A=<2

/ 9

+ E '* E E w dr—i
A \ i = l j = l /

< £2w + x ; ^ f E E iV«(F«) * ^ ') (w)
A \ i = l j = 1 /

where (1) iVy is the number of the r-flowers tha t share exactly i constraint
edges with A and these i constraints forms j connected components in the
constraint graph of A; and (2) (P i j) d r~ 1 is the probability that conditional on
I a, the random CSP contains the dr — i constraints of a specific r-flower as
described in Lemma (5.5.1). In [116], iVy is upper bounded by

((2 + r 2)d(dr2)J- 1) 2j!n s- i- J'ds- i-^+d- 1!

where ((2 + r2)d(dr2)J'_1)2j! upper bounds the number of ways to choose and
arrange the j shared connected components for two r-flowers; upper
bounds the number of ways of choosing the remaining non-shared variables—
—the number of variables in each of the j shared connected component is at
least one plus the number of edges in that shared component; and ds~i~j+d~1
upper bounds the number of ways of choosing the forcing values in these non­
sharing variables. The shared variables have to take the same forcing values
as those in A due to the assumption tha t t < d made in [116].

Since in our case d — 1 < t < dr — d, it is possible for shared variables to
take different forcing values in different r-flowers. Thus, an upper bound for
N i j is

((2 + r ^ i d r 1)’- 1)2
But in our case, the probability corresponding to (P i j) d r~ l is

/ N - d r - (d r - i) \ .
V c n —i —(d r —i)) 1 1 * \ d r —i _ _ G if '] ^ 2 \ d r —i r 1 r \ d r - i

f N —d r \ t / e j ~ N - dr*
\ c n —i)

= Q (l)(2cfe)dr~i 1 1
TVd r - i r f d r - i '

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Therefore, with c* = we have

' £ ' £ N lj(2c fcr - ‘ 1 1
2=1 j = 1

s

i = l

n d r - i (Jdr—i

(2 + £ (^
J = 1

< ^ 0 (r 4d' 4)n1"d(2 c fe)dr^ ^ O (^)
i = i

U i = l “ CJ e
r 4d

< S [X \ 0 (—),

where the last inequality is because c > From this and formula (-5.4), the
proof is completed. ' □

R e m a rk 5.5.1. The relatively loose upper bound c* = ^~ hr the above proof
may be improved by a factor of d by making a further distinction among the
r-flowers that share forcing values at different number of shared variables. But
fo r the purpose of showing that the flawless random CSP also has potential
embedded easy sub-problems, our upper bound for the constraint-variable ratio
c is sufficient since the domain size d is a constant.

5.5.2 Theorems 5.2.1 and 5.2.2

Let T be a CSP instance and let CNF(T) be the CNF encoding of T . Mitchell
[113] provided a framework within which one can investigate the resolution
complexity of T , i.e., the resolution complexity of the CNF formula CNF(T)
tha t encodes T , by working directly on the structural properties of T . A
sub-instance J of T is a CSP instance such that var[J) C var(T) and J
contains all the constraints of T whose scope variables are in var(v7). The
following crucial concepts make it possible to work directly on the structural
properties of the CSP instance when investigating the resolution complexity
of the encoding CNF formula.

D efin itio n 5.5.1 (Im plies. D efined in [113]). For any assignment a to
the variables in the CSP instance T , we write ct fo r the truth assignment to
the variables in CNF(T) that assigns to a variable x : a the value TRUE if
and only if a{x) = a.

Let C be a clause over the variables o /C N F(T). We say that a sub-instance
J of P implies C, denoted as J [= C , if and only i f for each assignment a
satisfying J , the corresponding a satisfies C.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Definition 5.5.2 (Clause Com plexity [113]). Let T be a CSP instance.
For each clause C defined over the Boolean variables in var(CNF(T)). define

/j.(C.T) = min{|var(v7)|; J is a sub-instance and implies C}.

The following two concepts slightly generalize those used in [113. 116] and
enable us to have a uniform treatm ent when establishing resolution complexity
lower bounds.

Definition 5.5.3 (Boundary). The boundary B (J) of a sub-instance J is
defined to be the set of CSP variables such that x G B {J) if and only if
the following is true: I f J minimally implies a clause C defined on some
Boolean variables in var(CN F(T)), then C contains at least one of the Boolean
variables, x : a, a G D, that encode the CSP variable x.

Definition 5.5.4 (Sub-critical Expansion [113]). Let T be a CSP in­
stance. The sub-critical expansion o f T is defined as

e(T) = max min \B {J)\ (5.5)
O<s< m(0 ,T) s /2 < |v a r (y) |< s V V '

where the minimum is taken over all the sub-instances of T such that s/2 <
|v a r(J) | < s.

The following theorem relates the resolution complexity of the CNF encod­
ing of a CSP instance to the sub-critical expansion of the CSP instance.

Theorem 5.5.1. [U S] For any CSP instance T , we have

w(CNF(T) h 0) > e(T) (5.6)

Proof. For any resolution refutation tt of CNF(T) and s < ji{%, T), Lemma 1
of [113] shows tha t n must contain a clause C with

s /2 < p (C ,T) < s.

Let J be a sub-instance such tha t |var(J) \ = /i(C. T) and J minimally implies
C. Since J minimally implies C, according to the definition of the boundary,
w{C) > \B (J)\. (5.6) follows. □

To establish an asymptotically exponential lower bound on the resolution
complexity of a random CSP C, it is enough to show that there is a constant
P* > 0 that does not depend on n such that

lim Pr{ e(C) > P’n } = 1. (5.7)
n

For any a > 0, let A„,(a) be the event {/x(0,C) > an} and A ^ o ./T) be the
event

min B (J) > p*nIir<|var(y)|<arl -

SO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Notice that

P r { e(C) > ft*n } > Pr { A n(a) n ,8m) }

> 1 - Pr j.A m(a)] - P r | A s{a ,0 m) } . (5.8)

We only need to find appropriate a * and 0* such tha t

lim Pr | A m(am) j = 0 (5.9)

and _________
lix n P rj A (a*,/3*)} = 0. (5.10)

The event A m(a*) is about the size of minimally unsatisfiable sub-instances.
For the event A s(a* ,0*), a common practice is to identify a special subset
of the boundary and show that the size of this subset is large. For different
random CSP models and under different assumptions on the model parameters,
there are different ways to achieve this. Following [21], we say a graph G is
(r, g)-dense if there is a subset of r vertices that induces a t least q edges of G.

P ro o f o f T h e o re m 5.2.1. Recall that the constraint graph of B ^ [S C] is
the standard random graph G(n,rn). Since each instance of B ^ [S C] is
strongly k-consistent, variables in a minimal unsatisfiable sub-instance J with
jvar(J')! = r must have a vertex degree greater than or equal to k, and con­
sequently, the constraint sub-graph H (J) must contains a t least ^ edges.
Thus,

P r { 7 ^ j } = P r { /1(0 ,S ;y S C]) < a -n }

< P r | [^J {G (n,m) is (r, rfc/2)-dense } 1 .
I r=fc+1 J

Let Bk(J) be the set of variables in var(J) whose vertex degrees are less than
k. Again, since instances of B^^[SC] are always strongly k-consistent, we
have Bk{J) C B (J) and thus, 15(^7)! > \Bk(J)\. Therefore, the probability
Pr | -As(a*, /3*) | can be bounded as

P r | A s(a*,p*) J < Pr j A k{a.*:(3*) J
where A k(a*,3*) is the event

min Bk{J) > P * n \ .
Q *7i/2<|var(^7')|<a"n J

Random graph arguments (see, e.g. [21]) show that there exist constants a*
and 0* such that Pr j -4m(a:*) j and Pr j A k(a*,Pm) j both tend to 0. Indeed,

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

let /3* be such that (1 - 3 ') k > 1, c = a and N =- __ n (n - l) . We have
[a n

Pr | A n(a*) | < P r s U {G(n. m) is (r, rfc/2)-dense }
r=fc-j-1

< ^ P r < G(n. m) is (r, —)-dense
r= fc + l ^

a *n / \ / r [r —1)

r=A :+l

a " n

JV - //v
m — ^ I \m

- l

< E
r= fc + l

a * n

- E
r= & + 1 L

a ' n

= E
r=f c+l

LlognJ

S E
r=fc+l

en 2ec(r — 1). k
r kn

. k . k k~2 k . r . fc-z1 T
() 2 e 2 c s () 2

I n

,k .k k~2 k ,\0g n .k -2
(_) 2 e 2 C 2 (_) —

a n

+ E J ; * k± 2 * fc_5
(-) ^ e ̂ C2(a*) 2

log n

(5.11)
r = [lognJ

Similarly, we have for [3 = =^r.

P r |^ '(a * ,^ *) |

{ a" nU {3 a size-r sub-instance J s.t. \Bk(J) \ < P*n}

r = ^

< Pr < |^J {G (n , m) is (r, —* ^ ^)-dense} >

£ E 2c

(l - P) k

(l-0)k+2 (1 -P)k-2
e 2 (o;) 2 (5.12)

wThere the second inequality is because of the fact that for a sub-instance J
with size r and \& {J)\ < P"n, its constraint graph contains at least r — ft’n =
r — ^-/3n > r — /3r vertices whose degree is at least k.

There exist a ’ and /?* be such that (1) ^ < 1; (2) (1~f > 1; and (3)
the right hand side of formula (5.11) and the right hand side of formula (5.12)
both tend to zero. This completes the proof of Theorem 5.3.1. □

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We now prove Theorem 5.2.2. First from the definition of B ^m[WC\. we
have the following

L em m a 5.5.2. For the random CSP B(̂ im\WC}. we have

1. Every sub-instance whose constraint graph is a cycle is satisfiable:

2. For any path of length > 3, any compatible assignments to the two vari­
ables at the ends of the path can be extended to assignments that satisfy
the whole path.

In an effort to establish exponential lower bounds on the resolution com­
plexity for a classical random CSP models with a tightness higher than those in
[113], Molloy and Salavatipour [116] introduced a collection of sub-instances,
denoted here as Bm { J) , and used its size to give a lower bound on the size
of the boundary. For binary CSPs whose constraints are arc-consistent and
contain no forcer, Bm { J) consists of two parts: B \j{ J) and ErM{J). defined
respectively as follows:

1. B ^ J) contains the set of single-edge sub-instances X , i.e., var(T) = 2,
such tha t at least one of the variables has a degree one vertex in the
original constraint graph;

2. B 2m (J) contains the set of sub-instances X whose induced constraint
graph is a pendant path of length 4, i.e., a path of length 4 such that
no vertex other than the endpoints has a vertex degree greater than 2 in
the original constraint graph.

It can be shown that

L em m a 5.5.3 ([116]). For any weakly path-consistent CSP sub-instance J ,
we have

Proof. The variable with degree one in any sub-instance in B lM(J) has to be
in B {J)\ At least one internal variable in any pendant path B2M{J) has to be
in B (J) . It is possible that several pendant paths of length 4 share a common
internal variable that is in B {J), e.g., in a very long pendant path. But a
variable can only appear in at most three pendant paths of length 4. □

W ith the above preparations, the proof provided for Theorem 1 of [116]
readily applies to our case. To make this thesis self-contained, we give the
proof below.

P ro o f o f T h eo rem 5.2.2. By Lemma 5.5.2, any minimally unsatisfiable sub­
instance J is such tha t (1) its constraint graph cannot be a single cycle; and
(2) B \i(J) is empty since \B \j{J)\ = 0 and \B \j{J) \ = 0 for a minimally

S3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

unsatisfiable sub-instance. According to Lemma 11 of [116], the constraint
graph of J has at least (1 + dj)var(J') edges. Therefore, due to the locally
sparse property of random graphs (e.g.. Lemma 10 in [116]), there is a constant
a* > 0 such that formula (5.9) holds, i.e.,

Now suppose on the contrary that there is a sub-instance J with a*n/2 <
|var(j7’)| < a* such that \BlM{J)\ + < Qn. Then, from Lemmas 10
and 11 of [116], the constraint graph of J contains only cycle components------
Lemma 11 of [116] asserts that the edges-to-vertices ratio of the constraint
graph of J has to be bigger than one. If we remove all the cycle components
from the constraint graph of J ”, the edges-to-vertices ratio of the remaining
graph becomes even bigger. But this is impossible from Lemma 10 of [116]
because the constraint graph of J , and hence the remaining graph, has less
than a 'n vertices.

It is well-known that w hp a random graph has fewer than log n cycle com­
ponents of length at most 4 for the random graph G{m,n) with m /n = c
being constant, the number of cycle components with a fixed length has asymp­
totically Poisson distribution [30]. Thus, the number of variables that are in
cycle components of length 4 is at most 4 log n. Since any cycle component
of length I > 4 contain I pendant paths of length 4, the total number of vari­
ables in cycle components of length greater than 4 is at most \B2M{ J) \ < £n.
Therefore, we have var(J) < (n + 41ogn < a*n/2 < var(j7) for sufficiently
small Q. a contradiction.

We, therefore, conclude that there is a 3* such tha t w.h.p, for any sub­
instance J with a*n/2 < |var(j7’)| < a*, > 0*n. i.e., formula (5.10)
holds. □

lim Pr = 0.
n

To establish formula (5.10), due to Lemma 5.5.3 we have

P r { ^ (a L /T) } > P r { A , m (W ,/T) }

where -4s.a/ (q;*, ,5’) is the event

mm
a* n /2 < |var(,7) |<ct" n

S4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Easy Random Problem s Are
Som etim es Hard

6.1 Introduction

It is well known that many NP-complete problems have tractable subclasses
characterized by certain structural parameters. Treewidth is one such param­
eter and has drawn much attention in algorithmic graph theory [29, 103] and
artificial intelligence [51].

In the study of the constraint satisfaction problem and the inference prob­
lems in Bayesian networks, there has been much effort in designing efficient
algorithms that make best use of the property of having a bounded treewidth.
The notion of tractable classes of CSPs parameterized by treewidth can be
traced back to the work of [64] and since then, has remained an interesting
topic [51,52,46, 81]. CSPs with bounded treewidth can be solved polynomially
using dynamic programming techniques. Recently, treewidth has been shown
to have a close connection with the complexity of some CSP proof systems
[16].

In the study of model checking and planning, ordered binary decision di­
agram (OBDD) based propositional reasoning techniques have been widely
used. OBDD-based satisfiability algorithms have been proposed and proved
to have time complexity exponential in the treewidth of the underlying graph
structures [121].

For Bayesian networks with a tree structure, the famous message-passing
algorithm solves the inference problem in linear time [123]. For Bayesian
networks with arbitrary structures, the most widely used method is the algo­
rithm join-tree which transforms the original inference problem into the one
on a tree of subsets of variables. The transformation is based on triangulation
and tree-decomposition on the given network. As the size of the subsets in
the tree-decomposition is directly related to the time and space complexities
of the join-tree algorithm, there has been much work on finding the optimal

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tree-decomposition, a problem th a t is also NP-hard [25. 92, 102]. Another
recently proposed approach is to make sure that the Bayesain networks have
a controlled treewidth when constructing/learning them from data[17, 96].

In the literature, there have been some attempts trying to relate the hard­
ness of some of the above mentioned algorithms to the phase transition of the
solution probability. In [111], Bayesian networks converted from randomly-
generated CNF formulas were studied. In [121, 38], the complexity of OBDD-
based satisfiability algorithms on randomly-generated CNF formulas were in­
vestigated. The initial intention of both of the studies seems to be a connection
between the efficiency of these algorithms and the phase transition of the so­
lution probability. However, in both cases, the authors concluded from their
experimental results that the instance hardness for these algorithms has a dra­
matic change well below the phase transition threshold and keeps increasing
beyond the threshold. The results presented in this chapter provide a the­
oretical justification for these experimental observations: Since the instance
hardness for these dynamic programming algorithms is largely exponential in
the treewidth of the problems, it is the phase transition of having a small
treewidth tha t determines the behavior of these algorithms. As we will show
in this chapter, the treewidth of the underlying structures of these problems
has a phase transition from bounded-size to linear-size which occurs well below
the solution probability threshold, and keeps increasing afterwards.

In Section 6.3, we establish an improved lower bound on the threshold
for a random graph to have a linear treewidth. In Section 6.4, using similar
analytical techniques, we show th a t the typical size of the treewidth of the
underlying graph structures is also large in random CSPs, random Bayesian
networks, and some other models in computational biology and evolutionary
computation. These results, initially reported in our work [71, 69], indicate
th a t several algorithms developed in the CSP and Bayesian network commu­
nities have a typically exponential behavior in the region of the problem space
where randomly-generated instances can be solved easily by backtracking al­
gorithms.

6.2 N otation and Definitions

The concepts of treewidth and tree-decomposition generalize tha t of a tree and
characterize the degree to which a graph has a tree-like structure [103]. These
concepts provide a viable way to characterize the degree of interaction in com­
binatorial structures and optimization problems. We discuss these concepts
briefly and refer the interested reader to [29, 103, 34] for more details.

Treewidth can be defined in several equivalent ways. The one tha t is the
easiest to state is via the k-tree.

D efin itio n 6.2.1 (/c-Tree[103]). k-Trees are defined recursively as follows:

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. A clique with k+1 vertices is a k-tree;

2. Given a k-tree Tn with n vertices, a k-tree with n-1-1 vertices is constructed
by adding to Tn a new vertex and connecting it to a k-clique o fT n.

Definition 6.2.2 (Partial k-Trees and Treewidth[103j). A graph is called
a partial k-tree i f it is a subgraph of a k-tree. The treewidth tw(G) of a graph
G is the minimum value k for which G is a partial k-tree.

Treewidth has an equivalent definition based on tree-decomposition.

Definition 6.2.3 (Tree-decomposition [103]). A tree-decomposition of a
graph G = (V. E) is a pair V = (S , T) where S = {S i,i & 1} is a collection
of subsets o f vertices of G and T = (I, F) is a tree with one node for each
element in S , such that

1- U = / Si = v ,

2. \/(v,w) € E there exists a subset Si € S such that both v and w are in
Si, and

3. Vu € V , the set of nodes {i € J; v € 5,} forms a subtree o fT .

The width of the tree-decomposition V = (<S, T) is m ax(|5;| —1). The treewidth
i£l

of a graph is the minimum width over all the tree-decompositions o f the graph.

Treewidth has yet another equivalent definition based on the minimum
width of a graph and the vertex elimination in a graph. It is also called the
induced width in AI literature (see, for example, [50]).

Definition 6.2.4. Let G — (V ,E) be a graph and tr = {x i,--- , x„) be an
ordering of the vertices.

1. The width w (x , tr) of a vertex x under the ordering tr is the number
o f its preceding neighbors. The width w (t t) of the ordering ir is the
maximum width of all the vertices under the ordering, i.e.,

w[tt) = maxw(x,7r).
x6V

2. The w-induced graph G(tt) of G under the ordering tt is obtained by
processing the vertices recursively according to ir from x„ to x i . At each
step i, all the neighbors of Xi that precede X{ according to tt are made
adjacent and then X{ is marked as processed. This process is called the
vertex elimination.

3. The induced w idth w * (G , t t) of G under the ordering tt is the width of
tt in the tt-induced graph G(r) of G. The induced width w*(G) of G is
the minimum induced width over all the vertex orderings.

87

with permission of the copyright owner. Further reproduction prohibited without permission.

Given a graph G and a vertex ordering t t . one can obtain a tree decomposi­
tion by (1) forming the induced graph G(tt); (2) identifying all the (maximum)
cliques of G(tt): and (3) building a tree of this set of cliques in linear time tha t
satisfies all the requirements of a tree decomposition.

In many applications, it is desirable to find a tree decomposition with a
minimum width. This problem is NP-hard and has been an interesting topic
in graph theory and artificial intelligence [29, 103, 34, 25].

6.3 Threshold of Linear Treewidth in Random
Graphs

In [103], Kloks proved tha t w hp a random graph G (n .m) with ^ > 1.18 has
a treewidth linear in n. Kloks commented tha t it was not known whether his
lower bound 1.18 can be further improved and tha t the treewidth of a random
graph G {n,m) with \ < f < 1 is unknown [103]. To my best knowledge,
no further result has been obtained regarding the treewidth of G(n, m) since
Kloks’ work.

In this section, we establish an improved lower bound on the threshold of
having a linear treewidth. The improvement comes from two factors: (1) the
use of a new combinatorial construct to make better use of the first moment
method; and (2) the use of a random graph equivalent to G (n,m) that makes
it possible to have a more accurate estimation of some quantity.

T h eo rem 6.3.1. For any ^ = c > 1.081, there is a constant 5 > 0 such that

We will be working on a random graph model G(n, m) that is slightly
different from G (n ,m) in that the m edges are selected independently and
uniformly with replacement. It turns out tha t as far as the property of having
a linear treewidth is concerned, the two random graph models are equivalent.
This is due to the following observations:

1. There are only o(n) duplicated edges in G(n. m). In fact, let / e be
the indicator function of the event that the potential edge e e V 2 is
duplicated and write I = ^2 Ic. We have

eeV2

And thus, £ [I] = 0(1). On the other hand, we have for any pair of
potential edges e\ and eo,

l im P r{tw (G (n ,m)) > 5n} = 1.71 (6.1)

. where N =

[I c J c 2] < £ [I e i] S [I e s]

8S

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

since and / e, are negatively correlated. It follows that the variance
of I is also 0(1), and therefore w hp I = o(n).

2. Due to the symmetry of the sampling space, a graph consisting of the
first m — o{n) non-duplicated edges of G(n, m) has the same distribution
as G(n, m — o(n)).

3. For any graph G and its super-graph G' such that G' has o(n) more
edges than G, we have

tw(G') = tw (G) + o(n).

This is because adding one edge to a graph increases the treewidth of
the graph at most by one.

Based on these observations, we will continue to use the notation G (n ,m)
instead of G(n, m) throughout this section, but with the understanding that
the m edges are selected independently and uniformly with replacement.

As the first step to prove theorem 6.3.1, we introduce the following concept
which will be used to provide a necessary condition for a graph to have a
treewidth of certain size:

D efin itio n 6.3.1. Let G (V,E) be a graph with |V| = n. A partition W =
(S ,A ,B) of V is said to be a rigid and balanced I-partition i f the following
conditions are satisfied:

1. | S | = Z + 1 ;

2. | (n — I — 1) < |A|, \B\ < §(n — I — 1); and

3. S separates A and B , i.e., there are no edges between vertices of A and
vertices o f B ; and

4- > |A|, then any vertexv in B is not isolated in B , i.e., there exists
at least another vertex in B that is adjacent to v.

A partition tha t satisfies the first three conditions in the above definition
is called a balanced partition and was used by Kloks in his proof of the 1.18
lower bound. The rigid and balanced partition generalizes Kloks’s balanced
partition by requiring tha t any vertex in the larger subset of a partition cannot
be moved to the other subset of the partition, and hence the word “rigid” .

L em m a 6.3.1. Any graph with a treewidth I > 4 must have a rigid and bal­
anced I—partition.

Proof. From [103], any graph with a treewidth I > 4 must have a partition,
say W = (S ,A , B), tha t satisfies the first three conditions in definition 6.3.1.
If this partition does not satisfy the fourth condition, then we can move the
vertices tha t are isolated in B one by one to A until either |£ | = \A\ or there
is no more isolated vertex in B. □

S9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The following lemma gives an upper bound on the conditional probability
for a partition W = (S, A. B) to be rigid given that the partition is balanced.

L em m a 6.3.2. Let G (n ,m), c = be a random graph and let W = (S. A, B)
be a partition such that |5 | = I + 1, jA| = a. and |B| = b. Assume that b = tn
and b > a. Then for n sufficiently large,

\ r (t) n

P r { W is rigid | W is balanced } < I - j (6.2)

where

r (t) = To (l)
£ / 1 \ 1 —2t(l—t)

Proof. Conditional on that W is a balanced partition of G (n,m), each of the
m edges can only be selected from the set of edges

Ew = V 2 \ {(w, v) : u E A, v € B}.

Notice that

._ . n(n — 1) , n(n — 1)
s = \Ew\ = --------------ba = --------------- tn(n — t n — (Z + 1)).

Let Iv be the indicator function of the event tha t the vertex v € B is isolated
in B and m ite I = I v. Then, the random variable I is a function of the

v^B
m outcomes when selecting the m edges of the random graph G(n. m). For
any two sets of outcome (uy, • • ■ ,w m) and (uJj. - • • ,w m) that only differ at
the f-th coordinate, i.e., the edges of two corresponding graphs are the same
except for the z-th edge, we have

|J(wi,-•• ,wm) - - ,«Jm)| <2 .

This is because changing one edge either increases or decreases the number
of isolated vertices a t most by two. Thus, applying McDiarmid’s inequality
(Lemma 2.1.5) gives us

Pr { W is rigid | W is balanced } = P r { / = 0 | W i s balanced }
< P r { / - £ [/ l < - £ (/] }

2 £ 2 U]

< 4cn

By the definition of the random variable I , the term £[/] is

s J V n {n ~ l) /2 — tn (n — tn — I — 1)

Formula (6.2) follows. □

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We need two more lemmas on the behavior of some functions that will be
used in the proof of Theorem 6.3.1.

L em m a 6.3.3. For any c > 1, the function r(i) in Lemma 6.3.2 is monotone-
decreasing on [1. |] .

Proof. Taking the derivative of the function

log(r(i)) = 21og(i) - i ^ ,

we have

1 2(1 — 2i 4- 2t2)2 — 4c(i — 2t2 + 2i3) — 4c(—2i2 4- 4i3)
r (t) r ~ i (l — 2t + 2t2)2

Now consider the numerator of the right-hand-side of the above, i.e.. the func­
tion

h{t) = 2(1 - 2 i 4- 2i2)2 - 4c{t - 2i2 + 213) - 4 c (-2 i2 + At3).

The monotonicity of the function r(i) can be established if we can show that
h(t) < 0,Vi 6 [|,§]. Since we have h (|) = \ —c < O an d h (|) = < 0, it
is enough to show that h(t) itself is monotone. The first and second derivatives
of the function h(t) are respectively

h'{t) = 4(—2 + Si - 12i2 + Si3) - 4c(l - Si + 18i2)

and
h"(t) = 4[(S - 24i + 24i2) - c (-S + 36i)].

Notice tha t as a quadratic polynomial, h"(t) = 4(24i2 — (24 + 36c)i + 8(14- c))
can be shown to be always less than 0 for any i G [|. |] . Since h '(\) =
—4c(l + |) < 0, it follows tha t h!{t) < 0, Vi 6 [|, |] . Therefore h(t) is monotone
as required. □

L em m a 6.3.4. Let g(t) be a function defined as

_ (l - 2 t + 2t* + 26ty
g(l ~ (i(l - () i- i , l)

where c > 1 and S > 0 are constants. Then, for small enough 5. g{t) is
monotone-increasing on [^ ,|] .

Proof. Consider the function h(t) = log^(i)

h(t) = clog(l — 2i + 2i2 + 25t) — i logi — (1 - f) log(l — i).

We have
_2 + 4i + 26

h 'it) = c- -----— — — logt 4- logil - t)
w 1 - 2i 4 2 i2 4 - 25i

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and h \ \) > 0. The second-order derivative of h(t) is

= (1 - 2 t + 2t2 + - t) X z ^ ’ ^

where

z{t,5) = A (\ -2 t+ 2 t2+ 2 d t) (l - t) t - { A t-2 + 2 5)2(l - t) t - (l - 2 t + 2t2 + 26t)2.

First, assume that 5 = 0. On the interval [iy, §]. we have

(4 t - 2 + 2{)2 < (4 x | - 2) 2 = j ,

2 1 1 1
= - < t (l - t) < ^ (1 - =r) = - 9 — 2 2 4

and
^ < (1 - 2t + 2t2 + 26t)2 < (1 - 2 x ^ + 2 x (|) 2)2 = |

It follows that

Since the family of functions z(t.S),S > 0 are uniformly continuous on
we have tha t for small enough 6. z(t.S) > 0. Therefore, the second-order
derivative h"(t) is always larger than zero. And so is h'(t) (recall tha t h'{\) >
0). It follows that h(t) is monotone-increasing, and so is g(t). □

Proof of Theorem 6.3.1

Proof. Let W = (S ,A ,B) be a partition of the vertices of G (n ,m) such that
|S| = I + 1 = fin, |i?| > |A|, \B\ = b = tn, with | < t < Let Jw be the
indicator function of the event that W is a rigid and balanced /-partition of
G (n,m). We have

E\ Iw] = P r { W is rigid and balanced }
= Pr { W is balanced } P r { W is rigid | W is balanced } (6.4)

From Lemma 6.3.2, we know that

P r { W is rigid | W is balanced } < (-
\ e

By the definition of a balanced partition,

tn(n — tn — f3n)

j \ ' (t) n

Pr { W is balanced } = I 1 —
n(n — l) /2

= [l - 2 t + 2t2 + 2t0 + O (l/n)}cn. (6.5)

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This is because in order for W to be a balanced partition of G {n,m). each of
the m independent trials can only select an edge from the set of vertex pairs
V 2 \ {(u ,v) : u £ A ,v £ B}. Write

M t) = [l — 2 f + 2 f2 + 2tfi + 0 (l /n)] c ,

0 2 (t) =

and

so that we have

l V rW
e

0(t) = 0 l(/)02(t)

£[/w] = [0(i)]n.

Let I = be the number of rigid and balanced /-partitions of the
w

random graph G(n, m) where the sum is taken over all such possible partitions.
For a partition (S ,A ,B), there are (^ J ways to choose the vertex set S with
|S'! = fin. For a fixed vertex set S. there are (n~/3n) ways (~n < b < |n) to
choose the pair (A, B) such tha t one of them has the size b. Therefore.

S[I] = £ £ [/ w]
w

< n
fin

n

. S . t S ' K *
i n < 6 < | n

< f i n) , E (» •
r;Tl<b<*n

By Stirling’s formula, we have for n large enough

m <

By Lemma 6.3.3,

fi0 (i - p y - 0 j t E 0l(£)02(£)
in/1 6̂ 1 —, „ \ b n f l b \ l - S .

hn<b<ln \ n I1 “ n) n

02 () < 02 (x) —71 o
c“ V c /

By Lemma 6.3.4,

0i(S) <
b\i - A

0 i (l)

(§)»(£)*
_ (| + |0)

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Therefore,

71

From the above, it can be shown tha t for sufficiently small @ and c > 1.081,

with 0 < 7 < 1. The theorem then follows from Markov’s inequality and
Lemma 6.3.1:

Discussion: W hy do I believe the threshold is less than
one?

My conjecture tha t the threshold of having a linear treewidth is less than one
(actually close to 1 / 2) is based on the size of the “giant” component in a
random graph. Recall tha t Lemma 6.3.1 says tha t in order for a graph to have
a treewidth <1 — 1, the graph must have a balanced partition W = (S , A, B)
such that |Sj = I and | (n — l) < \A\, \B\ < | (n — I).

Consider the random graph G {n,m) with 1/2 < ^ < 1 on the set V of
vertices. Let S C V be a subset of vertices and assume that |S| = fin with
P small enough. Then, the induced subgraph GV\s(n,m) is a random graph
with the edges-vertices ratio c slightly less than m /n . Let

and 1 — ps(n) be the probability tha t the size of the largest component of

giant component in a random graph, see e.g. [30], indicates that ps(n) tends
to zero. It is also true tha t (1 — t(c)) is larger than 2/3 even for c well below
1 . Notice that the probability for G (n,m) to have a balanced partition of the
form (S , A, B) is less than ps{n) the existence of such a balanced partition
implies tha t the components of the induced subgraph G v\s{n ,m) are all of
size less than | n. Since there are (//) such S, we could have shown that the
threshold of having a linear treewidth is less than one if the probability ps(n)
is exponentially small. Unfortunately, we currently do not know yet if such an
exponential upper bound for ps(n) exists.

£ [I] < 0 { n)

lim Pr { tw(G(n, m)) < fin } < lim P r { I > 0 } < lim £[I] = 0.
n n n

□

l

G y\s(n, m) is in the order of (1 — t(c))n. The famous result on the size of the

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4 Treewidth o f Random M odels in A I and
Com putational Biology

In this section, we study the treewidth of the underlying graphs of several
random models in AI and computational biology. As has been discussed at
the beginning of this chapter (Section 6.1), the size of the treewidth character­
izes the time and space complexities of several algorithms for these problems.
A general conclusion to be drawn from the results of this section is th a t all
of these algorithms will have an exponential behavior even for instances ran­
domly generated well below the threshold of the solution-probability phase
transition. It should be noted th a t instances randomly generated far from the
phase transition have been known theoretically and/or empirically to be easy
for backtracking algorithms.

6.4.1 Treewidth of Random CSPs

We consider the random CSP model B i.e., model B defined in Definition
3.2.6. Similar results hold for other random CSP models.

Recall th a t the primal graph of a CSP instance is a graph G = G{V:E)
where V corresponds to the set of variables X and (V{,Vj) 6 E if and only if
the corresponding variables x* and x j appear in some constraint a t the same
time. The correspondence between the primal graph of a CSP instance and the
constraint hypergraph of the CSP instance is as follows: For each hyperedge
(i.e. each constraint), make a clique on the set of vertices in the hyperedge.
The primal graph is a graph of cliques whose edge set is the union of the edges
of the cliques.

T h eo rem 6.4.1. Let G s(n, m) be the primal graph of the random CSP
and let c* = fclog3l°-| (1+2fc) - Then, we have

i i f ™ < — I—

lim P r{tw (G s(n ,m)) < k + 1} = 1.
Tl

2 . i f — > c*. there is a constant 5 > 0 such thatJ n

lim Pr{tw (G B(n,m)) > 5n} = 1.
n

Proof. For the case of ^ > the constraint hypergraph B ^ ff contains
only hypertrees and unicycles w h p (Lemma 2.2.1). It can be shown that
the graph of cliques obtained from a /c-homogenous hypergraph with only
hypertrees and unicycles has a treewidth of at most k + 1.

The proof of the case ^ > c* is based on the same technique as tha t in the
proof of Theorem 6.3.1. The only difference is that the primal graph Gs{n,m .)

9-5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is not the standard uniform random graph. Rather, Gs(n, m) is a “graph of
random cliques”—its edges are the union of the edges of m randomly selected
cliques of size k. □

6.4.2 Treewidth of Random Bayesian Networks

Given a set of random variables X = {A^, - - - , X n}, a Bayesian network is a
pair B(G, P) where G is a directed acyclic graph over X and P defines a set
of conditional probabilities Pi = P r{X i\pa(X i)} with pa(X{) being the parent
of the node X t. A Bayesian network provides a concise representation of the
joint probability distribution of the random vector X . The moral graph of
a Bayesian network is an undirected graph obtained by first connecting the
parents of each node, and then changing all the directed edges into undirected
ones.

One of the most important problems in Bayesian networks is inference,
i.e., the problem of calculating the (conditional) probability for a subset of
variables. There are three types of inference problems:

1. probabilistic inference, also called belief updating. The object is to com­
pute the posterior probability of a subset of variables, given a subset of
observed evidence variables;

2. most probable explanation (MPE). The task is to find a maximum prob­
ability instantiation consistent with a given set of observed evidence.

3. maximum a posteriori (MAP). The task is to find an instantiation to
a subset of variables with maximum a posteriori probability conditional
on a set of given evidence.

All of the three types of inference problems are NP-hard in general [40, 128],
and hard to approximate up to a constant ratio [1, 45, 125].

For the class of singly-connected Bayesian networks, a polynomial propaga­
tion algorithm, called message passing, has been developed [123]. For general
Bayesian networks, there are several algorithms for exact inference, including
the tree-decomposition-based algorithm called the tree-clustering or junction-
tree [123], the cycle-cutset (also called conditioning) algorithm [123], and the
more general variable-elimination scheme called bucket elimination [50]. Sim­
ilar algorithms have also been used in practical applications of CSPs [52, 81].
These algorithms’ running times are exponential in the maximum size of the
subsets in the tree-decomposition used by the algorithms [50, 51], which in
turn is lower bounded by the treewidth of the underlying structures. The
task of finding a tree-decomposition whose maximum subset size achieves the
treewidth is known to be NP-hard [103], and many heuristics and approxi­
mation algorithms have been proposed in the literature of algorithmic graph
theory and Bayesian networks [25, 28, 102, 103]. However, finding the best

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tree-decomposition is far from resolving the fundamental complexity issues in
these inference algorithms. It has been found that Bayesian networks usually
have large treewidth [95]. Several heuristics have been proposed to achieve
the time-space tradeoff, resulting in so-called any-space inference algorithms
[47. 54],

As there has been growing interest in using randomly-generated instances
to evaluate tree-decomposition based algorithms [98, 122], it is important to
understand the typical behavior of the treewidth in random models of these
problems so that experimental results can be properly interpreted. Unfor­
tunately, there has been no generally accepted random models for Bayesain
networks. In [111], random Bayesian networks are generated by converting
random SAT instances in a way similar to the reduction in the NP-hardness
proof [40]. In [89], random Bayesian networks are generated by using Markov
chain Monte Carlo method to make sure the network is uniformly distributed.
In [98, 122], random Bayesian networks are generated in a way similar to the
classical random graphs with a restriction on the variable ordering so that the
resulting networks are acyclic.

We define two random Bayesain network models and consider the typical
size of the treewidth of their moral graphs.

D efin ition 6.4.1 (R an d o m B ayesian N etw orks). Given a set of random
variables X = (Xi , ■ ■ ■ ,X n), a random Bayesian network Bin) is specified by
selecting the parents of each node randomly and independently. I f we assume
that the node X i chooses as its parent each of the rest of the nodes randomly
and independently with the probability pi, we use B(n.pi, 1 < i < n) to denote
the corresponding random model.

Of course, the above random model is not guaranteed to generate directed
acyclic graphs. To generate directed acyclic networks, we may consider a
modified version of the model that first chooses a random order of the variables,
and then let each variable select their parents only from the precedent variables
according to the order. The idea of our analysis can be extended to this
restricted model with some complication.

The second model that we will consider is simpler. It is defined on the set
of directed acyclic bipartite graphs. A typical example of this type of Bayesian
networks is the QMR-DT database where the upper layer has about 600 nodes
representing diseases and the lower layer has about 4000 nodes representing
the symptoms [95]. Even with such a simple structure, the exact inference
generally remains intractable. See [95] for empirical evidence and [40] for an
idea of an NP-complete proof.

D efin ition 6.4.2 (R an d o m B ip a r tite B ayesian N etw orks). A random,
bipartite Bayesian network B(Vi, Vo, k) is a Bayesian network in which Vj and
Vo are respectively the sets o f nodes of upper and lower layers, and each node
x 6 Vo randomly chooses a set o f k nodes in V\ as its parents.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For random bipartite Bayesian networks, we have the following

T h eo rem 6.4.2. Let B(Vi, Vo, k) be a random bipartite Bayesian network with
|Vi| = n, \V2\ = m. Let tw(B(V \ , V2, &)) denote the treewidth of the moral graph
o fB (y 1:V2,k) and define c* = k^ 3^ 1+oky Then, we have

IT < k(k-1)-

lim Pr { tw(B(Vy, V2, k)) < k + 1} = 1.
71

S. i f — > c*, there is a constant 6 > 0 suc/i that

lim P r { tw(B(Vlt V2, k)) > Sn } = 1 .
71

Proof. Let G(V\,V2) be the moral graph of the Bayesian network and Gi(V'i)
be the induced graph of G{Vi ,V2) on Vi. By the definition of the treewidth
and the fact that G(V1, V2) is bipartite, it can be shown that the treewidth of
G{V\, V2) is the maximum of k + 1 and the treewidth of Gi(Vi). The theorem is
proved by applying Theorem 6.4.1 to the graph of random cliques Gi(Vi). □

For general Bayesian networks, if we want to use theorem 6.4.1, then the
cliques in their moral graph have to be added randomly and independently.
This is however not an appropriate assumption in the context of Bayesian
networks because (1) the generated networks are not guaranteed to be acyclic
and (2) there is no reason to assume that each variable has the same constant
number of parents. The random model introduced in Definition 6.4.1 is a first
step toward a more realistic random model for Bayesian networks, where we
assume that each node selects its parents randomly and independently. It
should be noted that this model can still generate cyclic networks. However,
the idea of the analysis on this model can be extended to more elaborated
models with some complication.

T h eo rem 6.4.3. Let B (n ,p i, 1 < i < n) be a random Bayesian network on
n variables and tw(n) the treewidth of its moral graph. Then, there exists a

0 < 5 < 1 such that lim P r{tw (n) < 5n} = 0 if (£1(1 — P*))^ < b-
" i= 1

Proof. Similar to the proof of theorem 6.4.1, let V be the set of all the
k —partitions of the vertex set of the moral graph of the Bayesian network
tha t satisfies the first two conditions of the definition of balanced partition.
For a given P = (S , A , B) G V, let E be the event tha t P is a balanced parti­
tion, i.e., the event that there is no edge between vertices of A and vertices of
B.

For each 1 < i < n with X i E A (or X { E B), let E{ be the event that all
of its parents are in u4(JS (or in B (J S respectively). For X i E S, let E{ be
the event that all of its parents are in A (J S or in B (J S. We have

e = n
l < i < n

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since by assumption, each node selects its parents independently from the
others, we have

n

P r{E } = Y [P r { E i}. (6 .6)
i = i

For & A (or X{ G B). we have

P r{E i}< (l - Pi) ^ n- k-V

and for X i e S, we have

P r{E i} < 2(1 - Pi) f r - k~» - (1 - Pi)k.

The rest of proof is similar to that of theorem 6.4.1. □

Discussions

In the study of Bayesian network inference, randomly-generated networks have
been used to evaluate and compare various inference algorithms [98, 122]. Our
results show that the treewidth of the random instances is asymptotically in the
order of the size of the networks even if the random model itself is quite sparse.
This implies that purely random Bayesian networks are not adequate at least
for the evaluation of tree-decomposition based exact inference algorithms. A
natural question then is how to devise a random model tha t has a controlled
treewidth. Motivated by the k-tree based definition of treewidth, we propose
the following random model. Starting from a clique of k nodes, we add new
nodes one at a time. The new node is then connected to the nodes of a
randomly selected k-clique in the old graph. We illustrate the idea by giving
the following random Bayesian network model.

D efin ition 6.4.3. Let X = (X i,X o,--- ,X n) be a random vector. A random
Bayesian network with bounded treewidth(RBNBT) is a Bayesian network con­
structed using the following procedure

1. Randomly select k random variables and make the first (k — 1) of them
parents of the kth variable;

2. Randomly select a variable X i from the rest of the variables and a k-clique
from the moral graph of the Bayesian network in the previous step. Make
each variable of the selected, k-clique a parent of X i;

3. Repeat previous step until all the variables have been considered;

4. For each variable, randomly remove some variables from its parent set.

It is easy to see that the moral graph of the RBNBT has a treewidth at
most k with probability one for any problem size. It might be interesting to
see how many parent variables we have to remove before the treewidth of the
generated Bayesian network is strictly less than k.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4.3 Treewidth of NK Landscapes and Other Additive
Fitness Functions

NK landscape, proposed by Kauffman [99], is a versatile model for the study
of biological evolution and networks of biological molecules. An NK land­
scape consists of n variables {X i: 1 < i < n} and a set of control functions
{fit 1 < i < n}. These variables represent the states of a set of genes, mR-
NAs, or proteins. In the context of biological networks, the control function
fi determines the next state of Xi, while in the context of biological evolution,
fi represents the fitness contribution of X i to the overall fitness / = ^ fi of
the whole genotype. In an NK landscape, the control function fi depends on
Xi and k other variables selected according to some rules.

In the study of gene networks, topics of current interest are (1) the be­
havior of the NK landscape as a dynamic system and (2) efficient methods to
reconstruct the control functions that represent the interaction among genes.
As a model for biological evolution, one of the major tasks is to characterize
the relation between the degree of gene interactions, the shape of the fitness
landscape, and the complexity of searching and exploring the landscapes to
find genotypes with higher fitness. NK landscapes have also been widely used
as a prototype and benchmark in the analysis of different genetic operators
and the effects of different encoding methods on the performance of genetic
algorithms [88, 94].

There are basically two classes of NK landscapes: N K landscapes with adja­
cent neighborhood and N K landscapes with random neighborhood. As an opti­
mization problem, it is known that NK landscapes with adjacent neighborhood
can be solved polynomially and NK landscapes with random neighborhood are
usually NP-hard. On the other hand, the two classes of NK landscapes share
almost identical statistical characteristics such as the average number of local
minima and the average height of the local minima [138]. This has puzzled
researchers in this field for a while. In fact, Weinberger speculated in the
conclusion section of [138] that this might be related to the treewidth. In
this section, we confirm Weinberger’s speculation by proving that w h p NK
landscapes with random neighborhood have linear treewidth.

D efin ition 6 .4 .4 . An N K landscape
n

f i x) = Xi! 7r(a;0) ! (6 ~)
i = 1

is a real-valued function defined on binary strings of fixed length, where n > 0
is a positive integer and x = (xi, ■ • ■ ,x n) € {0,1}". It is the sum of n local
fitness functions fi, 1 < i < n. Each local fitness function f l{xl. ~(xt)) depends
on the main variable X; and a set 7r(x?-) o fk other variables called the neighbors
Of X i .

1 . NK landscapes with random neighborhood. In this type of NK landscapes,

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7T(xi) consists o fk variables randomly chosen from the set {aq, • • • ,xn} \
{ X i } .

2. NK landscapes with adjacent neighborhood. In this type of NK land­
scapes, 7~(xi) consists of the k variables with indices nearest to i (modulo
n). To simplify the discussion, we assume in this paper that for each i,

In addition to NK landscapes, the following additive fitness functions are
also widely used. It should be noticed these concepts are simply real-valued
versions of some concepts related to random CSP instances.

D efin ition 6.4.5. A function f : X = {0,1}" —► [0, oo) is additive if it can
be represented as a sum o f lower dimensional functions

where C is a collection of subsets of {rzq, ■ ■ ■ ,x n}. For each C € C, fc{x) only
depends on the variables in c, and is thus called a local function. The order
k of an additive function f is the size of the largest variable set in C. Since
we can always make the variable sets the same size by merging and/or adding
dummy variables, we can assume that C consists of variable sets of size k.

The interaction graph of the additive function is a graph Gj = G /iV .E)
where the vertex set V = {aq,. . . , x n} corresponds to the set of variables, and
(xi, Xj) € E i f and only i f there is a subset C G C such that aq € C and Xj £ C.

The treewidth tw(f) o f f is defined to be the treewidth o f its interaction

For NK landscapes with adjacent neighborhood, we have the following
result.

T h eo rem 6.4.4. Let f(x) be an N K landscape with adjacent neighborhood.
Then, we have k < t w { f) < 2k.

Proof. Since the interaction graph / contains cliques of size k + 1, its treewidth
should be no less than k. We prove that tw(f) < 2k by constructing a tree
decomposition with a treewidth 2k. Let V = {sq, • • • , x n} be the set of ver­
tices, and let V0 = {^ i; ■ • • We construct S = {Xi , i > 1}, a collection of

^ (^ i) — > Xi - 1) x i + l ; ' ' ' ; ;CT n i T i (n , i + (6 - 8)

graph.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

subsets of the variables, as follows:

X i = {s! , - -- ,Xfc+i}uVo,
Xo = {xo, • • • , Xfc+2 } U Vo,

X n—k {%n—f c : • X n } h J Vq.

X n —k+1 “{*£71—k-rl ? * * * ? ^71: X \ } OJ Vq.
Xn—k+2 fc+2: : Xl, xffr tJ Vq ,

x n = { x n, X i , x 2, - - - , x fc}UVo,

and define a tree structure on S by assigning an edge between each of the
pairs (X i , X i+i) , l < i < n — 1. It is easy to verify that the collection of
subsets of variables and the tree structure specified in the above form a tree

On the other hand, the following theorem states that NK landscapes with
random neighborhood w h p have linear treewidth.

T h eo rem 6.4.5. Let f(x) be an N K landscape with random neighborhood.
Then, for k > 2, there is a fixed constant 5 > 0 such that

Proof. The proof of the case ^ > c* is based on the same technique as th a t in
the proof of Theorem 6.3.1. The only difference is that the interaction graph
of / is neither the standard uniform random graph nor the “graph of random
cliques”. Instead, it consists of a set of n cliques {Ci}l < i < n} where
each Ci contains the vertex Vi and two other vertices uniformly selected from

decomposition with a width 2k. □

lim Pr { tw (f) > £n} = 1.
71

(6.9)

\ {Xi}. □

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Conclusions

In this thesis, we have explored several different aspects of the theoretical and
empirical hardness of randomly-generated problem instances. For randomly-
generated instances of constraint satisfaction problems, we identified a new
class of algorithmically exploitable structures and proved that under certain
distributions, random instances contain such structures with high probability
(Chapter 4). In an effort to find a way to eliminate these structures from
randomly-generated CSP instances, we established a connection between the
famous notion of constraint consistency in the literature and the resolution
complexity of random CSP instances. By embedding a recursive structure—
the consistency core—into the distribution of the random CSP models, we
proposed a novel scheme to generate random CSP instances with theoretically
guaranteed resolution complexity and empirically confirmed hardness (Chap­
ter 5). Our proposal resolved the long-standing problem of generating hard
random CSP instances with bounded domain size that has troubled the society
for several years.

While all of the results in Chapters 4 and 5 are aimed at backtracking
search algorithms, we investigated in Chapter 6 the typical-case behavior of
random instances in terms of search algorithms with a different flavor—those
dynamic programming based algorithms whose time and space complexities
are exponential in the treewidth of the underlying structures. We established
an improved lower bound on the threshold for a graph to have a treewidth
linear to the graph size. Similar techniques were then applied to random
CSPs and Bayesian networks in AI and random fitness landscape models in
computational biology and evolutionary computation. It was concluded that
these dynamic programming based algorithms all have exponential behavior
even on problem instances randomly-generated under a distribution that has
been shown theoretically and/or empirically to be easy for backtracking search
algorithms.

As for the implications of the current study to practice and the lessons
learned from this study, I will try to discuss below several issues that have
kept “puzzling" me throughout this research.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It is the Structure Plus the Algorithm

An important lesson learned from the study of the phase transition in NP-
complete problems is the central importance of the structural information in
a combinatorial search problem. It is now clearer why really hard problems
“are well out of reach of any intelligent algorithms” —there is simply no small
structural signature in these hard problems for any foreseeable intelligent algo­
rithms to exploit [44], This point of view is enhanced by the study in this thesis
on the embedded easy subproblems and on the connection between constraint
consistency and resolution complexity of randomly-generated CSP instances.

The enthusiasm in the phase transition of NP-complete problems stems
from the close connection between the instance hardness and the phase transi­
tion of the solution probability. The study on the typical-case size of treewidth
in Chapter 6 indicates that such a connection is indeed algorithm-dependent
and is far from universal. For dynamic programming based algorithms that
exploit quite different structural information, our study shows that contrary
to some previous expectation, there is no hope to establish any kind of con­
nections between the instance hardness and the solution probability phase
transition—it is the phase transition of the size of the treewidth tha t plays
the dominating role, and this phase transition occurs well before the solution
probability transition.

Hard Instances as Benchmarks for Testing What?

The motivation to generate testing instances for algorithms and solvers in
practice is, among others, to carry out one of the following tasks:

1. To find bugs in our implementation;

2. To study a random instance distribution itself of a given problem;

3. To identify the limitations of a specific class of algorithms; and

4. To look for principles regarding the design and the use of heuristics for
tackling algorithmic problems.

Task 1 is the most basic and practical one, and has been an important topic
in software engineering and software industry as exemplified by the adoption
of the so-called unit-testing paradigm in the software development process.
Interestingly, the theory of computation tells us that this is in fact a computa­
tionally unsovable task, and thus could not have been the original motivation
of the study on the phase transition of NP-complete problems.

Task 2 is interesting and fun as it satisfies our curiosity about the unknown.
But such practice should be avoided as much as possible in conducting empir­
ical study of algorithms [93]. I have found out, however, that at least for me
myself it is very tempting to do so.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It is thus clear tha t the whole purpose of generating hard instances is for
the third and the fourth tasks—to study the limitations of specific class of
algorithms and to draw guidance to the design of algorithms.

One of the original interests in the study of phase transitions in NP-
complete problems is tha t by varying some distribution parameter, one can
generate instances with a desired degree of hardness (for some specific class of
algorithms). Unfortunately, perhaps largely motivated by the various solver
competitions, there has been enthusiasm for generating various “hard” in­
stances to blindly beat those solvers and algorithms. We can easily generate
instances with a large number of cycles in their underlying graphs to fool the
famous survey-propagation algorithm; we may come up with a random model
whose instances are “hard” for any type of backtracking algorithms simply
because no heuristic is going to work; or we can generate random CSPs or
Bayesian networks based on standard random graphs in a straightforward way
to evaluate (and easily beat) dynamic programming algorithms; and finally,
there is the needle-in-the-haystack function which has no local minimum at
all, but is surely extremely hard to optimize by any local search algorithms.
W hat is difficult and non-trivial, however, is to devise random instances that
reveal intrinsic connections between structures and the efficiency of algorithms
and heuristics.

W h ere does th e o ry m ee t p rac tice?

A common criticism to theoretical analysis is tha t it is not practical. This is
in some sense true because most of the theoretical results we can expect to
get from current analytical techniques are hopelessly on the limiting behavior
(See Figure 7.1 to find out how hopeless a theory could be). W hat scientists in
practical fields really want is a theory that can explain phenomena occurring
a t a finite problem size, say n = 20, 100, or 1000.

On the other hand, we have theoretical physicists who use sophisticated
mathematics, those tha t sometimes scare real mathematicians and theoretical
computer scientists, to derive limiting results and to use these limiting behav­
iors to explain real-world phenomena. This methodology turns out to be very
powerful and has been used for many years by physicists.

In the field of computer science, my impression is tha t the two tasks similar
to those carried out by physicists are sometimes conducted separately by two
groups of people. We have theoretical computer scientists and discrete math­
ematicians who have been publishing deep and elegant results but do not care
much about interpreting real-world phenomena. On the other hand, we have
computer scientists who have done excellent work in dealing with problems of
practical size but do not have much belief in the potential intuitions that a
theory on the limit behavior can provide.

I hope that this thesis helps in illustrating what a theory on the limit
behavior can offer in practice. My experience in this study tells me that it

10-5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is not about the specific numbers or sizes that a theory can match—what
really matters is the message and observation conveyed during the process
of the theoretical analysis and the corresponding results. In the experiments
carried out in Chapter 5, I never tried to find out how many flawed variables
or embedded subproblems there could be in the instances generated from the
two CSP models, the model B and the flawless model—the chance of finding
one in problems of size n = 500 is not decently high. But still, it turns out
tha t our proposed new model motivated by the theoretical analysis does make
a real difference in terms of the instance hardness.

600

500

400

300

200

100

Figure 7.1: These curves are all supposed to drop to zero in the limit.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] A. Abdelbar and S. Hedetniemi. Approximating MAPs for belief net­
works is NP-hard and other theorems. Artificial Inteliqence. 102:21-38.
1998.

[2] D. Achlioptas. Threshold Phenomena in Random Graph Colouring and
Satisfiability. PhD thesis, Department of Computer Science, University
of Toronto, Toronton, Canada, 1999.

[3] D. Achlioptas. A survey of lower bounds for random 3-SAT via differen­
tial equations. Theoretical Computer Science. 265(1-2):159-185, 2001.

[4] D. Achlioptas, P. Beame, and M. Molloy. A sharp threshold in proof
complexity. In ACM Symposium on Theory of Computing, pages 337-
346, 2001.

[5] D. Achlioptas and E. Friedgut. A sharp threshold for k-colorability.
Random Structures and Algorithms, 14(l):63-70, 1999.

[6] D. Achlioptas, C. Gomes, H. Kautz, and B. Selman. Generating satisfi-
able problem instances. In Seventeenth National Conference on Artificial
Intelligence (A A A I’00), pages 256-261, 2000.

[7] D. Achlioptas, H. Jia, and C. Moore. Hiding satisfying assignments:
Two are better than one. In A A A I 2004, pages 131-136.

[8] D. Achlioptas, L. Kirousis, E. Kranakis, D. Krizanc, M. Molloy, and
Y. Stamation. Random constraint satisfaction: A more accurate picture.
In Proceedings of CP91, pages 107-120. Springer, 1997.

[9] D. Achlioptas, L. Kirousis, E. Kranakis, and D. Krizane. Rigorous results
for random (2+p)-SAT. Theoretical Computer Science, 265(1-2):109-
129, 2001.

[10] D. Achlioptas and C. Moore. Almost all graphs with average degree 4 are
3-colorable. Journal of Computer and System Sciences, 67(2):441-471,
2003.

[11] D. Achlioptas and A. Naor. The two possible values of the chromatic
number of a random graph. Annals of Mathematics, to appear.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[12] D. Achlioptas and Y. Peres. The random k-SAT threshold is 2klog2 —
o(k). In Proceedings of the 35th Annual Symposium on Theory of Com­
puting. STOC03, pages 223-231. 2003.

[13] R. Albert and A. Barabasi. Statistical mechanics of complex networks.
Reviews of Modem Physics, 74(47), 2002.

[14] N. Alon, J. H. Spencer, and P. Erdos. The Probabilistic Method. Wiley,
1992.

[15] Y. Asahiro, K. Iwama, and E. Miyano. Random generation of test in­
stances with controlled attributes. In D. Johnson and M. Trick, editors,
Cliques, Colorings, and Satisfiability: DIM ACS Series in Discrete Math­
ematics and Theoretical Computer Science, pages 377-393. American
Mathematical Society, 1996.

[16] A. Atserias, P. Kolaitis, and M. Vardi. Constraint propagation as a proof
system. In Proceedings of the 1 Oth International Conference on Principle
and Practice of Constraint Programming (C P’04), pages 77-91, 2004.

[17] F. R. Bach and M. I. Jordan. Thin junction trees. In T. Dietterich,
S. Becker, and Z. Ghahramani, editors, Advances in Neural Information
Processing Systems I f , 2002.

[IS] A. Baker. Intelligent Backtracking on Constraint Satisfaction Problems:
Experimental and Theoretical Results. PhD thesis, University of Oregon,
1995.

[19] W. Barthel, A. Hartmann, M. Leone, F. Ricci-Tersenghi, M. Weigt,
and R. Zecchina. Hiding solutions in random satisfiability problems: A
statistical mechanics approach. Phys. Rev. Lett., 88, 2002.

[20] R. Bayardo and R. Schrag. Using CSP look-back techniques to solve real
world sat instances. In Proc. of the 14th National Conf. on Artificial
Intelligence, pages 203-208, 1997.

[21] P. Beame, J. Culberosn, D. Mitchell, and C. Moore. The resolution
complexity of random graph k-colorability. Electronic Colloquium on
Computational Complexity, TR04-012, 2004.

[22] P. Beame, R. Karp, T. Pitassi, and M. Saks. The efficiency of res­
olution and Davis-Putnam procedures. SIAM Journal on Computing,
31(4):1048-1075, 2002.

[23] P. Beame, H. Kautz, and A. Sabharwal. On the power of clause learning.
In Proceedings of the 18th International Joint Conference in Artificial
Intelligence (IJCAI), pages 94-99 , 2003.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[24] P. Beame and T. Pitassi. Prepositional proof complexity: Past, present,
and future. Bulletin of the European Association for Theoretical Com­
puter Science, 65:66—S9, 1998.

[25

[26

[27

[29

[30

[31

[32

[33

[34

[35

[36

A. Becker and D. Geiger. A sufficiently fast algorithm for finding close
to optimal junction trees. In Proceedings of the Twelfth Conference on
Uncertainty in Artificial Intelligence, pages 81-89. Morgan Kaufmann.
1996.

E. Ben-Sasson. Expansion in Proof Complexity. PhD thesis, Depart­
ment of Computer Science and Electrical Engineering, Hebrew Univer­
sity, 2001.

E. Ben-Sasson and A. Wigderson. Short proofs are narrow - resolution
made simple. Journal of ACM, 49(2), 2001.

H. L. Bodlaender. A tourist guide through treewidth. Technical re­
port, Technical Report RUU-CS-92-12, Department of Computer Sci­
ence, Utrecht University, 1992.

H. L. Bodlaender. Treewidth: algorithmic techniques and results. In
Lectures Notes in Computer Science 1295, pages 19-36. Springer, 1997.

B. Bollobas. Random Graphs. Cambridge University Press, 2001.

M. Bonet, T. Pitassi, and R. Raz. Lower bounds for cutting planes
proofs with small coefficients. Journal of Symbolic Logic, 62(3):708-728,
1997.

C. Borgs, J. Chayes, S. Mertens, and B. Pittel. Phase diagram for
the constrained integer partitioning problem. Random Structures and
Algorithms, pages 315-380, 2004.

C. Borgs, J. Chayes, and B. Pittel. Phase transition and finite-size
scaling for the integer partitioning problem. Random Structures and
Algorithms, pages 247-288, 2001.

V. Bouchitt and I. Todinca. Treewidth and minimum fill-in: Grouping
the minimal separators. SIA M Journal on Computing, 31(1):212—232,
2001 .

P. Cheeseman, B. Kanefsky, and W. Taylor. Where the really hard
problems are. In Proceedings of the 12th International Joint Conference
on Artificial Intelligence, pages 331-337. Morgan Kaufmann, 1991.

M. Chvatal and B. Reed. Mick gets some (the odds are on his side).
In Proceedings of 33rd Annual Symposium on Foundations of Computer
Science, pages 620-627. IEEE, 1992.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[37] V. Chvatal and E. Szemeredi. Many hard examples for resolution. Jour­
nal o f the Association for Computing Machinery, 35(4):759-768, 1988.

[38] C. Coarfa, D. Demopoulos, Alfonso San Miguel Aguirre. D. Subrama-
nian, and M. Vardi. Random 3-SAT: The plot thickens. In Proceedings
of the International Conference on Constraint Programming, 2000.

[39] S. Cook and D. Mitchell. Finding hard instances of the satisfiability
problem: A survey. In Du. Gu. and Pardalos, editors, Satisfiability Prob­
lem: Theory and Applications, volume 35 of DIMA CS Series in Discrete
Mathematics and Theoretical Computer Science. American Mathemati­
cal Society, 1997.

[40] G. F. Cooper. The computational complexity of probabilistic inference
using bayesian belief networks. Artificial Intelligence, 42:393-405, 1990.

[41] J. Crawford and L. Auton. Experimental results on the crossover point in
satisfiability problems. In Proceedings of the 11th National Conference
on Artificial Intelligence (AAAI-93), pages 21-27. AAAI Press / The
MIT Press, 1993.

[42] N. Creignou and H. Daud. Random generalized satisfiability problems.
In Fifth International Symposium on the Theory and Applications of
Satisfiability Testing, S A T ’02, pages 17-26, 2002.

[43] J. Culberson, A. Beacham, and D. Papp. Hiding our colors. In C P’95
Workshop, Studying and Solving Really Hard Problems, pages 31-42,
21995.

[44] J. Culberson and I. Gent. Well out of reach: Why hard problems are
hard. Technical Report APES-13-1999, APES Research Report, 1999.

[45] P. Dagum and M. Luby. Approximation probabilistic inference in
bayesian belief networks is NP-hard. Artificial Inteligence, 60:141-153,
1993.

[46] V. Dalmau, P. Kolaitis, and M. Y. Vardi. Constraint satisfaction,
bounded treewidth, and finite-variable logics. In Proceedings Principles
and Practices o f Constraint Programming (CP-2002), pages 310-326.
Springer, 2002.

[47] A. Darwiche. Recursive conditioning. Artificial Intelligence, 125:5-41,
2001 .

[48] M. Davis, G. Logemann, and D. Loveland. A machine program for
theorem proving. Communications of the ACM, 5:394-397, 1962.

[49] M. Davis and H. Putnam. A computing procedure for quantification.
Joum.al of the ACM, 7:201-215, 1960.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[50] R. Dechter. Bucket elimination: A unifying framework for reasoning.
Artificial Intelligence. 113:41-85, 1999.

[51] R. Dechter and Y. Fattah. Topological parameters for time-space trade­
off. Artificial Intelligence. 125(l-2):93—11S. 2001.

[52] R. Dechter and J. Pearl. Tree clustering for constraint networks. Artifi­
cial Intelligence, 38:353-366, 1989.

[53] R. Dechter and I. Rish. Directional resolution: the davis-putnam proce­
dure, revisited. In Proc. of the 4 th International Conference on Knowl­
edge Representation and Reasoning (K R ’94), pages 134-145, 1994.

[54] R. Dechter and I. Rish. Mini-buckets: A general scheme for bounded
inference. Journal of ACM, 50:107-153, 2003.

[55] H. Dixon, M. Ginsberg, and A. Parkes. Generalizing boolean satisfia­
bility I: Background and survey of existing work. Journal of Artificial
Intelligence Research, 21:193-243, 2004.

[56] S. Dorogovtsev and J. Mendes. Evolution of networks. Advances in
Physics, 51:1079-1187, 2002.

[57] O. Dubois and Y. Boufkhad. A general upper bound for the satisfiability
threshold of random r-SAT formulae. J. o f Algorithms, 24:395-420,1997.

[58] M. Dyer, A. Frieze, and M. Molloy. A probabilistic analysis of randomly
generated binary constraint satisfaction problems. Theoretical Computer
Science, 290:1815-1828, 2003.

[59] P. Erdos and A. Renyi. On the evolution of random graphs. Publ. Math.
Inst. Hungar. Acad. Sci., 5:17-61, 1960.

[60] J. Franco and A. Gelder. A perspective on certain polynomial-time
solvable classes of satisfiability. Discrete Applied Mathematics, 125(2-
3) :177-214, 2003.

[61] J. Franco and M. Paul. Probabilistic analysis of the Davis-Putnam pro­
cedure for solving satisfiability. Discrete Applied Mathematics, 5:77-87,
1983.

[62] J. Franco and R. Swaminathan. Average case results for satisfiability
algorithms under the random clause model. Annals of Mathematics and
Artificial Intelligence, 20:357-391, 1997.

[63] J. Freeman. Hard random 3-sat problems and the davis-putman proce­
dure. Artificial Intelligence, SI: 183—19S, 1996.

[64] E. C. Freuder. A sufficient condition for backtrack-free search. Journal
of the ACM. 29(l):24-32. 19S2.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[65] E. Friedgut. Sharp thresholds of graph properties, and the k-SAT prob­
lem. J. Amer. Math. Soc., 12:1017-1054, 1999.

[66] A. Frieze and C. McDiarmid. Algorithmic theory of random graphs.
Random Structures and Algorithms. 10:5-42, 1997.

[67] A. Frieze and M. Molloy. The satisfiability threshold for randomly gener­
ated binary constraint satisfaction problems. In 7th International Work­
shop on Randomization and Approximation Techniques in Computer Sci­
ence, RANDOM 2003, pages 275-289, 2003.

[68] A. Frieze and B. Reed. Probabilistic analysis of algorithms. In H. Habib,
C. McDiarmid, J. Ramirez, and B. Reed, editors, Probabilistic Meth­
ods for Algorithmic Discrete Mathematics, pages 36-92. Springer-Verlag,
1998.

[69] Y. Gao. Phase transition of tractability in constraint satisfaction and
Bayesian network inference. In Proceedings of the Nineteenth Confer­
ence on Uncertainty in Artificial Intelligence (UAI-2003), pages 265—
271. Morgan Kaufmann, 2003.

[70] Y. Gao and J. Culberson. An analysis of phase transition in NK land­
scapes. Journal of Artificial Intelligence Research, 17:309-332, 2002.

[71] Y. Gao and J. Culberson. On the treewidth of NK landscapes. In Genetic
and Evolutionary Computation Conference (GECCO-03), LNCS 2723,
pages 848-954. Springer-Verlag, 2003.

[72] Y. Gao and J. Culberson. Resolution complexity of random constraint
satisfaction problems: Another half of the story. In LIC S’03 Workshop
on Typical Case Complexity and Phase Transitions, 2003.

[73] Y. Gao and J. Culberson. Consistency and random constraint satis­
faction models with a high constraint tightness. In Proceedings of the
Tenth International Conference on Principles and Practice of Constraint
Programming (CP-2004), pages 17-31, 2004.

[74] I. Gent, H. Hoos, P. Prosser, and T. Walsh. Morphing: Combining
structure and randomness. In Proceedings of the Sixteenth National Con­
ference on Artificial Intelligence (A A A I’99), pages 654-660, Orlando,
Florida, 1999.

[75] I. Gent, E. MacIntyre, P. Prosser, B. Smith, and T. Walsh. Random
constraint satisfaction: Flaws and structure. Constraints, 6(4):345-372,
2001 .

[76] I. Gent and T. Walsh. Analysis of heuristics for number partitioning.
Computational Intelligence, 14(3):430-451, 1998.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[77

[78

[79

[80

[81

[82

[83

[84

[85

[86

[87

[88

[89

[90

[91

A. Goerdt. A threshold for unsatisfiability. .Journal of Computer and
System Sciences 33 (1996) 469-486, 53(3):469—486, 1996.

A. Goldberg, P. Purdom, and C. Brown. Average time analysis of simpli­
fied Davis-Putname procedures. Information Processing Letter, 15:72—
75, 1982.

C. Gomes and B. Selman. Algorithm portfolios. Artificial Intelligence,
126:43-62, 2001.

C. Gomes and D. Shmoys. Completing quasigroups or latin squares: A
structured graph coloring problem. In Proceedings of the Computational
Symposium on Graph Coloring and Extensions, 2002.

G. Gottlob, N. Leone, and F. Scarcello. A comparison of structural csp
decomposition methods. Articial Intelligence, 124(2):243-282, 2000.

J. Gu, P. Purdom, J. Franco, and B. Wah. Algorithms for satisfiability
(sat) problem: A survey. In Discrete Mathematics and Theoretical Com­
puter Science: Satisfiability (SAT) Problem, pages 19-152. American
Mathematical Society, 1997.

A. Haken. The intractability of resolution. Theoretical Computer Sci­
ence, 39:297-308, 1985.

H. Hatami and M. Molloy. Sharp thresholds for constraint satisfaction
problems and homomorphisms. submitted, 2004.

Brian Hayes. Can’t get no satisfaction. American Scientist, 85(2):108-
112, 1997.

Brian Hayes. The easiest hard problem. American Scientist, 90(2)TIS­
H A 2002.

Brian Hayes. On the threshold. American Scientist, 91(1):12—17, 2003.

W. Hordijk. A measure of landscapes. Evolutionary Computation,
4(4):335-360, 1997.

J. IDE and F. Cozman. Generating random bayesian networks. In
Brazilian Symposium on Artificial Intelligence. MIT Press, 2002.

G. Istrate. Phase transitions and all that. Technical report, 2002.

S. Janson. Large deviations for sums of partly dependent random vari­
ables. Random Structures and Algorithms, 24(3):234-248, 2004.

F. V. Jensen and F. Jensen. Optimal junction trees. In R.L. de Mantaras
and D. Poole, editors, Proceedings of the 10 th conference on uncertainty
in artificial intelligence, pages 360-366. Morgan Kaufmann, 1994.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[93] D. S. Johnson. A theoretician's guide to the experimental analysis of
algorithms. In Data Structures. Near Neighbor Searches, and Methodol­
ogy: Fifth and Sixth DIM AC S Implementation Challenges, pages 215—
250. American Mathematical Society. 2002.

[94] T. C. Jones. Evolutionary Algorithms, Fitness Landscapes and Search.
PhD thesis, University of New Mexico, Albuquerque, NM, 1995.

[95] M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. An introduction to
variational methods for graphical models. Machine Learning, 37(2):183-
233, 1999.

[96] D. Karger and N. Srebro. Learning markov networks: Maximum
bounded tree-width graphs. In Proc. 12th ACM-SIAM Symp. on Dis­
crete Algorithms, pages 392-401, 2001.

[97] M. Karonski and T. Luczak. The phase transition in a random hyper­
graph. J. Comput. Appl. Math., 142:125-135, 2002.

[98] K. Kask and R. Dechter. Stochastic local search for bayesian networks.
In Workshop on A I and Statistics (AI-STAT-99), pages 113-122, 1999.

[99] S. Kauffman. The Origins of Order: Self-organization and Selection in
Evolution. Oxford University Press, Inc., 1993.

1001 J- H. Kim and V. H. Wu. Sandwiching random graphs. Advances in
Mathematics, to appear, 2002.

1011 S. Kirkpatrick and B. Selman. Critical behavior in the satisfiability of
random boolean expressions. Science, 264:1297-1301, 1994.

102] U. Kjaerulff. Optimal decomposition of probabilistic networks by simu­
lated annealing. Statistics and Computing, 2:7-17, 1991.

1031 T. Kloks. Treewidth: Computations and Approximations. Springer-
Verlag, 1994.

1041 M. Krivelevich. Coloring random graphs - an algorithmic perspective.
In Proceedings of the 2nd Colloquium on Mathematics and Computer
Science (Mathlnfo:2002), pages 175-195, 2002.

1051 M. Krivelevich, B. Sudakov, and V. H. Vu. A sharp threshold for network
reliability. Combinatorics, Probability and Computing, 11:465-474, 2002.

1061 V. Kumar. Algorithms for constraint satisfaction: A survey. A I Maga­
zine, 13(1):32—44, 1992.

1071 Leonid A. Levin. Average case complete problems. SIAM J. Comput.,
15(1):285-2S6, 1986.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[10S] A. K. Mackworth. Consistency in networks of relations. Artificial Intel­
ligence. 8:99-118, 1977.

[109] 0 . Martin, R. Monasson, and R. Zecchina. Statistical mechanics meth­
ods and phase transition in optimization problems. Theoretical Computer
Science, 265:3-67, 2001.

[110] C. McDiarmid. On the method of bounded differences. In Surveys in
Combinatorics, London Mathematical Society Lecture Note Series, vol.
141, pages 148-188. Cambridge Univ. Press, 1989.

[111] O. J. Mengshoel, D. Roth, and D. C. Wilkins. Hard and easy Bayesian
networks for computing the most probable explanation. Technical report,
UIUCDCS-R-2000-2147, 2000.

[112] D. Mitchell. The Resolution Complexity o f Constraint Satisfaction. PhD
thesis, Department of Computer Science, University of Toronto, Canada,
2002 .

[113] D. Mitchell. Resolution complexity of random constraints. In Proceedings
Principles and Practices of Constraint Programming (CP-2002), pages
295-309. Springer, 2002.

[114] D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions
of SAT problems. In Proceedings of the 10 th Natl. Conf on Artificial
Intelligence, pages 459-465. AAAI Press, 1992.

[115] M. Molloy. Models and thresholds for random constraint satisfaction
problems. In Proceedings of the 3f th ACM Symposium on Theory of
Computing, pages 209 - 217. ACM Press, 2002.

[116] M. Molloy and M. Salavatipour. The resolution complexity of random
constraint satisfaction problems. In Proceedings of FOCS 2003, 2003.

[117] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyansky.
2+p-sat: Relation of typical-case complexity to the nature of the phase
transition. Random Structure and Algorithms, 15:414, 1999.

[118] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyan­
sky. Determining computational complexity from characteristic ‘phase
transitions’. Nature, 400, 1999.

[119] U. Montanari. Networks of constraints: Fundamental properties and
applications to picture processing. Information Science, 7:95-132, 1974.

[120] E. M. Palmer. Graphical Evolution. John Wiley Sons. 1985.

[121] G. Pan and M. Vardi. Search vs. symbolic techniques in satisfiability
solving. In The Seventh International Conference on Theory and Appli­
cations of Satisfiability Testing (SA T 2004), 2004.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[122] J. Park and A. Darwiche. Approximating MAP using stochastic local
search. In UAI01, 2001.

[123] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kauffmann, 1988.

[124] B. Pittel, J. Spencer, and N. Wormald. Sudden emergence of a giant
k-core in a random graph. Journal o f Combinatorial Theory (B), pages
111-151, 1996.

[125] D. Roth. On the hardness of approximate reasoning. Artificial Intelli­
gence, 82(1-2) :273—302, 1996.

[126] L. Sanchis. Generating hard and diverse test sets for NP-hard graph
problems. Discrete Applied Mathematics, 58:35-66, 1995.

[127] B. Selman, D. Mitchell, and H. Levesque. Generating hard satisfiability
problems. Artificial Intelligence, Sl(l-2):17—29, 1996.

[128] S. Shimony. Finding MAPs for belief networks is NP-hard. Artificial
Inteligence, 68:399-410, 1994.

[129] B. Smith. Constructing an asymptotic phase transition in random binary
constraint satisfaction problems. Theoretical Computer Science, 265(1-
2)-.265-283, 2001.

[130] P. Stadler, W. Hordijk, and J. Fontanari. Phase transition and landscape
statistics of the number partitioning problem. Technical Report SFI
working paper 03-02-006, Santa Fe Institute, 2003.

[131] J. M. Steele. Probability Theory and Combinatorial Optimization. NSF-
CBMS Volume 69, Society for Industrial and Applied Mathematics,
1997.

[132] C. Subramanian, M. Furer, and C. Madhavan. Algorithms for coloring
semi-random graphs. Random Structures and Algorithms, pages 125-
158, 1998.

[133] A. Urquhart. The complexity of propositional proofs. The Bulletin of
Symbolic Logic, l(4):425-467, 1995.

[134] B. Vandegriend and J. Culberson. The Gn<m phase transition is not hard
for the Hamiltonian Cycle problem. Journal of Artificial Intelligence
Research, 9:219-245, 1998.

[135] V. H. Vu. Concentration of non-lipschitz functions and applications.
Random. Structures and Algorithms, 20(3):262—316, 2002.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[136] T. Walsh. Search in a small world. In Proceedings of the 16th Inter­
national Joint Conference on Artificial Intelligence (IJCAI-99). pages
1172-1177, 1999.

[137] T. Walsh. Search on high degree graphs. In Proceedings o f IJCAI-2001,
2001 .

[138] E. D. Weinberger. NP completeness of Kauffman’s NK model, a tunable
rugged fitness landscape. Technical Report Working Papers 96-02-003,
Santa Fe Institute, Santa Fe, 1996.

[139] N. C. Wormald. Models of random regular graphs. In Surveys in Com­
binatorics, London Mathematical Society Lecture Note Series, vol. 276,
pages 239-298. Cambridge Univ. Press, 1999.

[140] K. Xu and W. Li. Exact phase transitions in random constraint satis­
faction problems. Journal of Artificial Intelligence Research, 12:93-103,
2000 .

[141] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient conflict
driven learning in a boolean satisfiability solver. In Proceedings of Inter­
national Conference on Computer Aided Design (ICCAD2001), 2001.

[142] L. Zhang and S. Malik. The quest for efficient boolean satisfiability
solvers. In Proceedings of 8th International Conference on Computer
Aided Deduction(CADE 2002), 2002.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

