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ABSTRACT

We study the problem of visualizing large networks and de-
velop techniques for effectively abstracting a network and
reducing the size to a level that can be clearly viewed. Our
size reduction techniques are based on sampling, where only
a sample instead of the full network is visualized. We pro-
pose a randomized notion of “focus” that specifies a part of
the network and the degree to which it needs to be magni-
fied. Visualizing a sample allows our method overcome the
scalability issues inherent in traditional visualization meth-
ods. We report some characteristics that frequently occur in
large networks and the conditions under which they are pre-
served when sampling from a network. This can be useful
in selecting a proper sampling scheme that yields a sam-
ple with similar characteristics as the original network. Our
method is built on top of a relational database, thus it can
be easily and efficiently implemented using any off-the-shelf
database software. As a proof of concept, we implement our
methods within a system called ALVIN and report some of
our experiments over the movie database and the connectiv-
ity graph of the Web with 178 million nodes and over 800
million edges.

Categories and Subject Descriptors

1.3.6 [Computer Graphics]: Methodology and Techniques—

Interaction techniques; H3.3 [Information Storage and
Retrieval]: Information Search and Retrieval

Keywords

visualizing the Web, large network visualization, network
sampling, searching a network

1. INTRODUCTION

The extensive growth of the Internet within the past few
years has led to a proliferation of very large networks; exam-
ples include bibliographic collections, biological networks,
market basket data, the Internet (both in the router and the
inter-domain layers), and the World Wide Web. Although
the collection and the storage of such data has become rela-
tively straightforward, effectively analyzing data has proven
to be more difficult. Visual display of networks, in partic-
ular, can lead to both better understanding and clear pre-
sentation of patterns that can often be hidden [20]. Alfred
Crosby, the historian, lists “visualization” as one of the two
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processes that has led to the explosive growth of modern
science; the other process is “measurement” [9]. Visualizing
“large” networks, however, can be quite challenging if not
impossible. This is due to the limitations of the screen, the
complexity of layout algorithms and the limitations of hu-
man visual perception. A good layout algorithm (eg. Spring
layout) can easily take quadratic time assuming that the
network fits in memory. The graph structure of the Web,
for instance, is far too large to hold in the memory of most
desktops let alone visualize it.

To gain insight into the complexity of the problem, con-
sider the graph structure of the Web at the domain level as
shown in Figure 1-a. This network is relatively small, having
only 224 nodes, but it is still not easy to find any interesting
patterns. Colouring the largest Strongly Connected Compo-
nent *(SCC), as is shown in Figure 1-b, singles out some of
the domains that are not in the SCC. One such domain, for
instance, is Vatican City (va), linked by a large number of
domains in the SCC but is not linking back to any domain in
the SCC. Even in this graph, it is not easy to see the connec-
tivity structure of many of the domains in the SCC. Scaling
up the visualization to a graph of the Web with millions of
nodes at the site level or hundreds of millions of nodes at
the page level is quite challenging if not impossible.

Our proposed alternative in this paper is to refrain from
visualizing the entire network. At the core of our methods
is sampling. We sample the network and only visualize the
sample. Even though the network can be quite large, the size
of the sample can be adjusted to match the limitations of the
visualization environment. We study some of the topological
properties of a network that are preserved in a sample and
show that a relatively small sample, if collected carefully,
can still show some of the patterns that are inherent in the
entire network.

As our second contribution, we develop a notion of “fo-
cus”, one can set, to bring into focus only part of the net-
work that needs to be explored in greater detail. This is
done in the context of the full network. If no focal point
is set, the network is sampled uniformly. In the presence
of a focal point, the sampling is biased toward that focal
point, thus the visualization emphasizes the focal point and
its neighbourhood in the network.

In this paper, we propose several sampling-based schemes
for both focusing the search and visualizing networks which
are too big to be fully visualized. We formalize a notion of

LA strongly connected component of a graph is a set of nodes
such that for any pair of nodes u and v in the set, there is a
path from u to v.



Figure 1: (a) The connectivity network of the World Wide Web at the domain level, and (b) the same network with the SCC

coloured red.

focus for both networks with directed and undirected graph
structures. We further extend this formulation to the case
where edges in the underlying graph structure are weighted.
Anecdotal evidence is provided to show that these schemes
can be quite useful.

We have built a prototype, named ALVIN 2, that im-
plements the ideas described in this paper. As a proof of
concept, we run ALVIN over the movie database and the
connectivity graph of the Web. We abstract the Web graph
into three layers: domain, site and page, and demonstrate
some of our experiments over these layers.

The rest of the paper is organized as follows. After mo-
tivating our work in Section 2, we discuss issues related to
sampling a network in Section 3. Our proposed scheme for
visualizing and expanding a network is discussed in Sec-
tion 4, and our notion of focus is presented in Section 5.
Section 6 presents some implementation details and our ex-
perimental results. Section 7 reviews the related work, and
Section 8 concludes the paper.

2. AMOTIVATING EXAMPLE

Consider the connectivity network of the Web with each
node describing a Web page and each edge describing a hy-
perlink. Due to the huge size of the network, there is no
hope visualizing the entire network. However, the prob-
lem becomes simpler if we can turn our focus on a few
specific Web pages. Suppose we are interested in all Web
pages in a particular site such as the CS Department home
page at the University of Alberta > (CS@QUofA). There can
be already too many pages after focusing on a single site.
Figure 9 shows 800 edges selected randomly from the Web
graph with the condition that one endpoint of each edge is
a page from our desired site. For clarity, we remove single-
ton edges that are not connected to any other components.
The resulting network emphasizes the connections between
our desired pages and the rest of the network, highlighting

2The name ALVIN stands for Alberta system for Visualizing
Large Networks.
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some of the local pages with large interconnections to the
rest of the Web. In particular, it shows some of the pages
at CSQUofA such as the department home page, the home
page of the Graduate Student Association and the system
support pages * all with strong ties to the rest of the pages
in the CS@QUofA site. It also shows other Web pages such
as the university home page with large link connections to
many of the pages in CSQUofA.

Suppose we also want to visualize the Web graph as a
whole without emphasizing a specific site, perhaps identify-
ing some of the general patterns. To reduce the size of the
network, we may want to visualize the Web graph at the
site level, with each node describing a site and each edge
denoting a link from a page in one site to a page in another
site. Figure 10 shows the result of randomly selecting 2000
edges from the set of edges between sites and removing un-
connected singleton edges. The graph clearly shows some of
the authorities such as Netscape, Microsoft, Adobe and Ya-
hoo and some of the sites with large link collections, referred
to as hubs, such as Yahoo Directory and Fisher-Rosemount
Companies (frco). Some sites such as AOL members and
geocities enjoy a large number of both incoming and outgo-
ing links. There is also a dense irregular connection between
sites that do a link exchange such as Infospace and Link Ez-
change. A strongly connected component (coloured red in
the picture) is formed between some local sites of Infospace.

3. SIMPLERANDOM SAMPLING OF ANET-
WORK

In this section, we discuss several ways of sampling a net-
work and some of the characteristics of the original network
that can be observed in the sample. In the next section,
we formalize these sampling schemes in the form of some
growth processes and develop a general model for visualiz-
ing a network.

Given a network G(Vg, E¢), any subgraph of G can be
treated as a sample of the network. Clearly, there are dif-
ferent ways of taking a subgraph and as a result there are

*www.cs.ualberta.ca/operations



many different sampling strategies. We use the following
three methods for obtaining a simple random sample of a
network. Independent of the strategy used for sampling, we
let S(Vs, Es) denote a simple random sample of G.

SRS:: Take a simple random sample of the nodes, Vs, and
let S(Vs, Es) be a subgraph of G induced by Vs.

SRS>: Take a simple random sample of the edges, Es, and
let Vs C Vi be the set of nodes incident to at least one edge
in Fs.

SRS3: Take a simple random sample S’ (V3, E) using SRS>
and let S be a subgraph of G induced by V3.

There is a caveat when sampling from nodes; unless the
network is very “well-connected,” the resulting sample would
be quite sparse. This is not hard to verify; given a network
with IV nodes and k edges per node on average, if we pick
only n nodes randomly, each node in the sample will be
connected to only k% other nodes on average. This number
is expected to be almost zero unless the sample includes a
large fraction of the nodes, k is large or both.

Sampling from edges instead may be more desirable be-
cause the sampled network is no longer sparse. This sam-
pling is unbiased toward edges but not toward nodes. Nodes
with large in- or out-degrees are more likely to be in the
sample, and paths of length greater than one are likely to
form between them. This is not as problematic as it may
look since those nodes are likely to form the backbone of the
network and it is good to have them in the sample.

There are other strategies for sampling a network. Some
of those can be found elsewhere [21].

3.1 UsingSamplingtoVisualizeNetwor k Topol-
ogy

There are a number of traits which are found in every
network, and can be useful in describing the general topol-
ogy of a network. These include the degree distribution,
connected component size distribution, characteristic path
length, clustering coefficient, etc. Some of these traits can
be preserved when sampling from a network. We study the
degree distribution and the connected component size dis-
tribution, two of the properties that appear to be important
in visualizing network topologies. The degree distribution
of the Web graph, for instance, provides stratified counts of
the degrees, differentiating hubs and authorities from other
pages [7]. This property in turn can be useful in a visual-
ization, as evidenced in our motivating example. The com-
ponent size distribution is another important visual feature
that can be representative of a network (e.g. see the results
reported for the Web graph [10]), and we often want it to
be preserved in a sample. We discuss these two features in
the context of the movie database from IMDb ®, where each
actor is represented by a vertex and there is an undirected
edge between two actors if the actors are cast together in
the same movie.

For average path length and clustering coefficient (defi-
nitions can be found in Watts [31]), it is not clear if these
features can be preserved in a sample. Consider G; as a
complete graph and G as a complete bipartite graph. The
clustering coefficients of G is 1 and G2 is 0. A small sample

SIMDb - Internet Movie Database (www.imdb.com)

of both graphs taken using SRS> can give a clustering coeffi-
cient of 1 for both graphs if, for instance, the selected edges
are not connected. Increasing the sample size is expected
to decrease the clustering coefficient of G» but this decrease
is not monotonic. However, increasing the sample size is
expected to decrease and then increase the clustering coeffi-
cient of G;. Therefore, for relatively small to medium-sized
samples, the clustering coefficient is more dependent on the
sampling strategy and size than the structure of the original
network. Similarly, the average path length in a sample is
also non-deterministic and can largely vary from one sample
to the next. Next, we report results obtained by sampling
the movie database and analyzing the samples.

3.1.1 DegreeDistribution
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Figure 2: Degree distribution using SRS1 for sampling.
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Figure 3: Degree distribution using SRS> for sampling.

Figure 2 shows the degree distributions of the movie database
with the sampling strategy fixed to SRS and the sample size
varied from 5% to 100%. The degree distribution remains
relatively close to the entire network, even for a small sam-
ple. The same trend can be observed when we change the
sampling strategy to SRS2, as shown in Figure 3.

3.1.2 Component Sze Distribution

Figures 4 and 5 show the component size distributions of
the movie database, taken using strategies SRS: and SRS>
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Figure 4: Connected component distribution using SRS1
for sampling.
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Figure 5: Connected component distribution using SRS
for sampling.

respectively. The sample size in both graphs is varied from
5% to 100%. The component size distribution remains rela-
tively close to the entire network, regardless of the sampling
method. SRS> seems to preserve the component size distri-
bution, closely resembling the original data.

Finding a relationship between the distribution of com-
ponent sizes in a sample and the number of components in
the entire network is not new. For transitive graphs °, in
particular, Frank has shown that if we sample the network
using SRS, the resulting network can be used to find an
unbiased estimate of the number of connected components
of the entire network [12].

Theorem 1. Let the parent graph be transitive, and suppose
S(Vs, Es), a simple random sample taken using SRS1. Let
v =|Vs|. If K,(S) denotes the number of connected compo-
nents of size r in the sample, then an unbiased estimate of
the number of connected components in the parent graph is
given by

> (- C)K.(S)

cmrr () ()

N is the number of nodes in the parent graph, M < v is a
constant and the parent graph has no connected component
of size larger than M.

where

Both the proof and the variance of this estimate is given
by Frank [12]. Abusing the theorem, we tried using SRS>
with Frank’s estimate on synthetic data. Our synthetic data
included graphs consisting of both complete connected and
complete bipartite components. The component sizes were
generated randomly and varied from 4 to 80. The results
showed that Frank’s estimate used with SRS>, sampling only
25% of the edges, could accurately estimate the number of
components with an average error of less than 8%.

4. NETWORK GROWTH

Despite the encouraging results of our sampling methods,
the original network can be large, and visualizing a small
sample that can preserve some of the desired topological
properties of the network may not be feasible. To address
this problem and to provide a navigation scheme, we develop
several growth processes, collectively referred to as network
growth, that allows one to interactively visualize a network.

In an interactive fashion to some degree similar to Web
browsers, our visualization starts with a small subset of the
network which may include a set of hand-picked nodes and
edges or the result of a query. The visualization may pro-
ceed towards the goal by iteratively growing the initial set.
This is useful for narrowing down the visualization to some
of the interesting elements when the network is too large to
be fully visualized. A novelty of our method is the way the
network, currently displayed on canvas, is expanded. Our
method uses user-controllable parameters to describe how
and to what degree the network must be expanded. The
expanded network often has more detail about the elements

6A graph is transitive if there is an edge between every con-
nected pair of vertices.



being studied yet is small enough to be visualized and inter-
nalized. After a few layers of extension, the network may be-
come too large; this may be an indication that the browsing
should switch to another small subset before it can continue.

Let G(Va, Eg) be the network that needs to be visualized
and C(Ve, Ec), a subgraph of G, be the network that is
currently displayed on canvas. Our model iteratively picks
nodes from Vg — Ve and edges from Eg — Ec and adds them
to C, thus expanding the network on canvas with respect
to G. We discuss several ways of expanding a sample of
a network, formalize these sampling schemes in the form
of some growth processes and develop a general model for
visualizing a network.
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Figure 6: A network instance.

4.1 Global Growth

Sometimes we want to gain some insight into the general
connectivity structure of the network without specifying a
pivotal point; or we might be interested in only part of the
network but want to browse this part in the context of the
entire network. We may achieve this by taking a simple ran-
dom sample of the network and visualize the sample. One
such sample can provide the general connectivity structure
of the network and maybe some common patterns without
emphasizing one specific part. Clearly, the larger the sam-
ple, the more accurate the estimates and also the more de-
tailed the visualized network; though a detailed sample may
not always be clearly visualized.

Definition 1. Let C' be a subgraph of a parent network
G. A global growth of C' with respect to G adds to C a
simple random sample of G taken using one of the sampling
strategies from Section 3.
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Figure 7: (a) a global growth, (b) a local growth with initial
edges (al,a5), (b1,b10) and (c) a local growth with initial
edge (c83,c9).

Example 4.1. Figure 6 shows an instance of a network with
45 nodes and 55 edges. A simple random sample obtained
using SRS>, with only six edges picked from the random

ordering shown in the appendixis displayed in Figure 7-a.
This sample, consisting of 11% of the edges, shows some
of the components of the parent network; it has the same
number of connected components as the parent network even
though the components are not necessarily the same.

4.2 Local Growth

We often know some of the nodes and maybe some of the
edges of a network and wish to find more related nodes and
edges somehow related to our starting set, or we may like to
find out how our starting set fits within the building blocks
of the entire network. This can be done through sampling
from the network surrounding C' and adding the sample to
the canvas. The sample includes some of the edges that glue
C to the rest of the network G.

Definition 2. Let C be a subgraph of a parent network G,
and let I(Vz, E1) be the subgraph of G such that Er is the
set of edges with one endpoint in V¢ and the other endpoint
in Vg — Vo and V7 is the set of nodes incident to any edge
in Er. A local growth of C with respect to G adds to C a
simple random sample of I taken using one of the strategies
from Section 3.

Our local growth generalizes a sampling method, often
referred to as smowball sampling, which is typical of a link-
tracing design where a simple random sample or stratified
random sample of units is selected and all other units linked
to the initial sample are included or observed [30]. The ini-
tial set in a local growth is not necessarily picked randomly;
instead, it can be the result of a user query. Furthermore, a
local growth does not necessarily include all edges linked to
the initial set since this can be too large.

Example 4.2. Figure 7-b shows the result of a local growth
after hand-picking the edges (al,a5) and (b1,510) from the
network in Fig 6 and adding 6 more edges selected using
SRS> through a local growth. For our edge selection, we
again use the random ordering in the appendixbut only add
edges with one endpoint in {al,a5,b1,b10}. As another ex-
ample, Figure 7-c shows the result after hand-picking (c3, ¢9),
doing a local growth using SRS3 which adds 6 more edges
(these edges are coloured blue) and further extending the
graph to include edges with both endpoints already selected
(these edges are coloured black). Compared to a global
growth that shows more of the structure of the entire net-
work with less resolution, a local growth depicts a specific
part of the network in greater detail but with less informa-
tion about the network as a whole.

4.3 Mixed Growth

A local growth can be combined with a global growth at a
user-specified rate to provide a more balanced mixture of the
two. Under this scheme, called a mized growth, the network
is sampled as follows: with some probability we perform a
local growth and with the remaining probability we perform
a global growth. A mixed growth provides a spectrum of
sampling schemes with local and global growths as the two
ends of the spectrum.

4.4 Wiring

Sometimes we have our desired nodes on canvas but wish
to visualize the interconnections between them in greater
detail. A solution is to add more edges between the nodes



on canvas. We call this process wiring. In the extreme case,
a wiring can add all the edges between nodes on canvas.
However, this may clutter the visualization, obscuring the
details. Therefore, a user-specified parameter may control
the degree of wiring.

45 Rewiring

Since selecting edges is a random event, there are many
possible wirings, and we may wish to view more than one
possible wiring of the nodes on canvas. Through the pro-
cess of rewiring, all edges on canvas can be removed and
the nodes on canvas can be wired again. This may reveal
properties that may not have been displayed by the original
wiring.

5. FOCUSEDBROWSING: AGENERAL MODEL G

The local growth provides a method to focus on a specific
part of the network, but the part of the network we want
to focus on may not fit on canvas. Furthermore, we may
not want to display the area we wish to focus on and rather
use it to direct the growth. We introduce a more general
notion of focus, independent from the network on canvas,
that can be used to narrow the visualization to a desired part
of the network, reducing both the size and the complexity
of the visualized network. Our notion of “focus”, referred
to here as focal point, formulates to some extent our interest
at browsing. For instance, if we are only interested in a few
nodes, then these nodes can form our focal point; or the
focal point may be set to the network currently on canvas
or only part of it where further details are needed. Without
loss of generality, our browsing goal is to visualize the focal
point in the context of the entire network.

The following scenario shows how this model can be use-
ful. Consider the connectivity graph of the Web where nodes
represent Web pages and edges describe the hyperlinks be-
tween pages. Suppose we are interested in the connectivity
of pages on a specific topic say surfing. We can set the focal
point to include all pages that mention the term ‘surfing’
in their contents. There can be many more pages on this
topic than what we can fit on canvas, thus we may visualize
only a subset of these pages. If we expand the visualized set
by adding pages that either link to a page in the initial set
or are linked by a page in the initial set, the resulting set
is shown to include the most prominent sources of primary
content known as authorities and high-quality guides and
resource lists known as hubs on the search topic[19].

It is not hard to integrate this notion of “focus” into our
visualization scheme. Since our visualization is based on
sampling, the network is sampled and only the sample is
visualized. In the presence of a focal point, the sampling is
biased toward this focal point.

5.1 Formal Modd

Given a network G(V, E), a focal point is formally a sub-
graph F(Vy, Ef) where Vy CV and Ey C E. In the absence
of a focal point, F' is naturally G, meaning that we are in-
terested in the entire network.

A transition from one step of the browsing to the next step
is described using a growth process. A growth describes how
the network on canvas must be expanded using a sample
of the parent network and with respect to a focal point F.
A growth more formally is a mapping from the set of sub-
graphs of G to the set of subgraphs of G. The mapping

takes two real number parameters that control the degree of
bias towards the focal point.

Definition 3. Let C' and F' be subgraphs of a parent net-
work G, and let I(V7, Er) be the subgraph of G such that
E; is the set of edges with one endpoint in VF and the other
endpoint in Vi —Vr and V7 is the set of nodes incident to any
edgein Er. A focused growth at rate (r, s), where r, s € [0, 1],
of C with respect to the focal point F' and the parent graph
G adds to C simple random samples of I, G and F with
sample sizes respectively proportional to s(1—7)+7r(1 —s),
(1 —r)(1 — s) and rs, each sample taken using one of the
strategies from Section 3.

Figure 8: Focus set in the contezt of network G.

Figure 8 shows a graphical picture of the sets F, G and I.
A focused growth combines two simple random samples with
a snowball sample at a user-specified rate. An interpretation
of the parameters r and s is that if  denotes the probability
of picking an endpoint from Vg, then 1 —r is the probability
of picking the same endpoint from V. Similarly, if s de-
notes the probability of picking the other endpoint from Vz,
then (1 — s) is the probability of picking it from Vg. If we
set the focal point to the network on canvas and » = 1 and
s = 0, a focused growth simulates the local growth of Sec-
tion 4.2. A focused growth also simulates the global growth
of Section 4.1 if we set the focal point again to the network
on canvas and r = 0 and s = 0. Varying the values of
the parameters r and s, we can obtain other variations of a
network growth.

5.2 Directed and Weighted Networks

It is not hard to extend our proposed schemes to both
directed and weighted networks. For a directed network, we
may fix in advance the fractions at which a source and a
destination must be selected from Vz. One simple setting,
for instance, is to set the ratios to 50/50 or some other
constant. An alternative is to allow the ratios to be set
at the time of the browsing using additional parameters.

In a weighted network, often the weight of an edge de-
scribes the strength of the relationship between the two end-
points. In a commuting network, for instance, each edge
may be weighted to indicate the frequency of travels made
in a day. If the network consists of more than one level of
abstraction, each node or each edge in a more general layer
may be weighted and the weight may aggregate multiple
nodes or edges from a more specific layer. For instance, the
connectivity graphs of the Web on the domain and site levels
can be seen as aggregations of the Web graph on the page
level. If the weight of a node or an edge is treated as an



indication of its importance, we want to bias the visualiza-
tion towards highly-weighted edges. This is again possible
within our sampling framework by replacing a simple ran-
dom sample with a weighted sample.

6. EXPERIMENTS

ALVIN, our current prototype implementing these ideas,
has the following highlights:

o It uses the DB2 relational database as its back-end
data storage and querying engine. It makes no as-
sumption on the size of the network and the back-end
relational database can efficiently handle very large
data sets.

e It provides an interface for both focusing and expand-
ing the network on canvas. It allows the user to inter-
actively expand the graph on canvas using parameters
r, s and the size of the sample. Requests that arise
from user interactions are mapped to SQL statements
and are directed to the back-end SQL engine for an
efficient evaluation.

o It is developed in C++ using the LEDA class library
[22] and makes use of the layout and graph algorithms
that are available in this library.

o Network abstraction and hierarchical views are sup-
ported by creating tables and views in the relational
database.

We ran ALVIN over two data sets: (1) the movie database
from IMDb and (2) the linkage structure of a snapshot of the
Web from Internet Archive *. In the movie network, each
actor was represented by a vertex and there was an undi-
rected edge between two actors if they were cast together
in the same movie. In the Web connectivity data set, each
vertex denoted a Web page and each directed edge denoted
a hyperlink. Both networks were stored as relational tables.
For the Web graph, we also constructed two hierarchical
views of the data in the site and the domain levels. These
graphs were weighted with the weight of an edge represent-
ing the number of links from one site (domain) to another.
For efficiency reasons, these views were pre-computed and
physically stored. Next, we report some of our results with
these two data sets.

6.1 Web Graph

As our first experiment, we placed all sites in the .org
domain in our focus set, implemented as a relational ta-
ble, and did a focused growth of the network at rate (1,0),
selecting 3000 edges. Figure 11 shows the result after re-
moving all connected components consisting of four or less
nodes. Some sites from the .org domain such as w3.ory,
pbs.org, eff.org and unicef.org can be easily identified be-
cause of their dense connections with the rest of the net-
work. The figure also shows sites from .com domain such
as members.aol.com, geocities.com and adobe.com that have
dense connections with sites in the .org domain.

As our next experiment, we used the same focus set but
this time did a focused growth at rate (1,1), selecting 1000

"The Internet Archive is a public nonprofit organization that
offers access to historical collections that exist in digital for-
mat, including the entire Web. (www.archive.org)

edges. Figure 12 shows the result again after removing (un-
connected) singleton edges. Despite using the same focus
set, we obtained a different set of nodes with another inter-
esting pattern between them. The result included sites such
as AMC Cancer Research Center , American Academy of
Allergy Asthma & Immunology ° and American Academy of
Pediatrics 19, all in the .org domain, with a relatively dense
connections between them.

6.2 Movie Database

Experiments were also conducted using the movie database.
One interesting experiment was to add a number of “fa-
mous” actors to the canvas and explore their relationships
with the rest of the actors. We hand-picked 38 actors and
added to the focus set along with all the inter-connecting
edges between them. We did a focused growth at rate (1,1),
randomly selecting 400 edges, and added them to the can-
vas. A few of the actors from the focus set, highlighted in
the green rectangles, are shown in Figure 13. We then did a
focused growth at rate (1,0), randomly selecting 500 edges,
and added them to the canvas. Some “famous” actors such
as George Clooney and David Arquette who were not in
the focus set were identified by this growth process. These
actors are shown in Figure 13 with blue ovals.

7. RELATED WORK

It has been noted that layout, abstraction, focus and inter-
action form the basis of visualizing large networks [23]. Our
work addresses the issues of focus, interaction and partly
abstraction; for the layout, we use standard force-directed
layout algorithms [11].

There has been past work on layout and encoding schemes
that can scale-up to large trees or more specific graphs. In
particular, Munzner [24] constructs spanning trees to rep-
resent the structure of a class of graphs with more tree-like
structures, referred to as quasi-hierarchical graphs. The re-
sulting tree is drawn inside a ball with fisheye distortion used
to provide a focus-context view. Abello et al. [1] propose a
hierarchical partitioning of the nodes based on characteris-
tics such as the geographical locations that the nodes may
represent. Using these partitions, different navigation and
visualization schemes can be constructed [3]. Our work is
different from these in that we don’t make any assumption
on the structure of the network or the characteristics of the
nodes. When such information is present, it is easy to in-
tegrate other abstraction techniques (e.g. graph slices [2])
within our framework, using relational tables and views.

The work on general multiscale abstraction methods al-
lows one to visualize either the global structure or the smaller
components of a large network (e.g. [5, 18]). These methods
usually do a clustering of the network and provide a coarser
visualization between the clusters and a finer visualization
within each cluster but not both at the same time. Gansner
et al. [14] propose a notion of a hybrid graph which allows
the region of interest to be viewed in a finer level and within
the coarser graph. Other abstraction techniques include, but
are not limited to, the work of Noik [25], Plaisant et al. [29]
and Herman et al. [17]. Our work is orthogonal to all these
abstraction methods; our methods are applicable to coarser
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views of a network when the coarser view is still too large
to be fully visualized. Our use of sampling for distortion
makes our work different from standard fisheye distortion
techniques [13]. Our design decisions allow an easy integra-
tion of our method with other abstraction techniques and
focusing methods.

Related to sampling from a large database, a number of
algorithms have been proposed for efficiently sampling from
a single table and also from the results of set union, inter-
section and join [26, 8]. A survey of these techniques before
1994 is given by Olken [27]. Sampling is now supported in
major commercial databases and is also part of the recent
SQL standard [15].

Related to our work is also the more general work on
analyzing social networks (e.g. [31], [4]), mining graphs [28],
URL sampling [16, 6] and analyzing the graph structure of
the Web [7].

8. CONCLUSIONS

A new probabilistic approach for effectively searching and
visualizing large networks is proposed, where only a sample
instead of the entire network is visualized. There is no con-
cept of a unique visualization of a network in this scheme;
instead there are many possible visualizations, each corre-
sponding to some random sample of the network. The ef-
fectiveness of a sample and, as a result, a visualization that
is based on that sample depends on the presence of some of
the desirable patterns of the parent network in the sample.
We have provided some evidence to show that indeed such
patterns are preserved in a sample. Given the limitations
of the screen and the size of a sample, our proposed scheme
allows the search to be localized, thus increasing the ratio of
sample size to the size of the desired network and removing
possible biases due to the sample size.

Our work touches some of the problems related to visual-
izing a sample of a network. There are a number of issues
that are open to further research:

e Even though sampling has been largely used to approx-
imately answer aggregation queries on large data sets,
there is not much work on finding sampling strategies
that can preserve either the local or global properties
of a network. Further studies on the subject can lead
to more effective visualization schemes.

Our work treats visualization as an incremental pro-

cess that may lead to the goal after a number of growths.

After each growth, a layout algorithm must be invoked
to properly place the network on the canvas. A new
layout may not be coherent with the old one and the
elements in both layouts can be placed in different lo-
cations of the screen. Further research may look into
algorithms that can preserve the locality of the nodes
and still generate an effective layout after each growth.
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APPENDIX

A. ARANDOM ORDERING OF THEEDGES
IN THE RUNNING EXAMPLE OF SEC-
TION 4

Our examples in Section 4 use the following random or-
dering of the edges shown in Figure 6: (b1,b10), (al,ab),
(c1,¢3), (b1,b9), (d1,d2), (d3,d4), (a7,b11), (c2,c6), (c11,c7),
(c11,c6), (al,a?), (ab,ald), (c3,c8), (b1,b7), (ab,ald), (c3,c7),
(ab,al2), (a7,al6), (a2,a9), (cl,c4), (c2,c9), (c4,c9), (d4,d1),
(a2,a10), (c2,c8), (b1,b4), (c1,c5), (al,ad), (b1,b3), (ad,all),
(b1,b5), (c3,c6), (al,a2), (d2,d3), (c1,c2), (b1,b6), (c2,c7),
(c11,c9), (c5,c9), (al,a3d), (bl,bll), (a7,alh), (c11,c10), (al,a6),
(b1,b8), (c4,c6), (e2,e3), (el,e2), (c4,c8), (b1,b2), (cll,c8),
(cb,c10), (a2,a8), (c4,c7), (c3,c9).
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Figure 9: Interconnections of pages at www.cs.ualberta.ca with the rest of the Web.
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mindsp(ing cam

wabring.sr.org ,3,3{. ansmre org 050 org
libartynet.org i E,_%Q gndpiocg
adminnet.org e QP,Z%J %ﬂ sil.g X&%(D
(?%nge w% ° - webring.org
-giam.org

Vh-OI'Q%::;O 0% # f&nym}w;@ror\g % 'co 0}"»’
n ok,
¥ 3@ sama_ong
I i,
travelorg nagane.olympic.org = %

w v erols.com
leamer.org

A
O_(é %’}em.or\g ﬁi eanwnod om
un.org }%g i)

d.: yahoo.com

arrl.org
census vz hOmB WDBGO"" 0:0)

yahoc co Souk

Zy@ ,ggcwrnfn Fi\anonica

o s-erraclub org hwg.org. % o
kidlink.org wcélbmm org iﬁ W
%%3 congumenwo
0%,} seasky.org w

yahoo.ca deoxy.on SWa.org

;f:hadd org ,,gvnmr. ra
2 Uia.mg-\;b k‘:{ %i D‘%‘; o gestorg

acm.org

speakeasy.org ‘apc.ige.org

afn.org
jobsmart.org

cumputar org

O % ianeat.
apache.org a%? fj awasomal.bany org 9 '-}Sa SCEA nav NvaIG arg
freebsd.on
A{}E ) 90, -“me oom - cr X‘éw . iabates. or%; ’Ega
rLorg )
uB

b
<£. R cail.org ml.org:; arwumdmk .org nﬂws'@'-% %yam::wm
Jmambers tripad.com a, | p ~
: z- geocities.com membars. xo0m.com g2
. .org hhmi.o ,_...—"}é
Y utfpeint.linkéxchange,com 3?\0“
i.org =5 fd.compuserv, %—v
microsait.com 3‘9 0 o c"g j! ‘8&0@%& ~moma.org
scientology.org ;f"‘ C"i members.aol.com, W cr‘%.a
nnfn.

-pos.org

~info.acm.org

powerad by LEDA

nodes: 1092 edoes: 372 undo: 14/0

—744.3%_ 601,21

Figure 11: A focused growth at rate (1,0) of sites in the “org” domain.
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Figure 13: A mized growth of the movie database.



