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Abstract

Current and future broadband cellular systems have to employ efficient techniques for

the transmission and reception of high speed data. Equipping transmitters and re-

ceivers with multiple-antennas is a major step in this direction as it has the potential

of providing a substantial spatial multiplexing gain. Unfortunately, interference from

adjacent cells is an impediment to the spatial multiplexing gain promised by MIMO

techniques. There exist solutions to mitigate the inter-cell interference in MIMO

cellular systems, the most promising being coordinated multi-point (CoMP) trans-

mission/reception (also known as network MIMO) and large-scale MIMO (also known

as massive MIMO). The focus of this thesis is on multi-user MIMO techniques in-

cluding precoding and user scheduling for large-scale and cooperative MIMO wireless

systems.

In this study, we design and analyze a near capacity-achieving non-linear precod-

ing technique relying on vector perturbation (VP) along with a fair user scheduling

algorithm for joint transmission network MIMO (usually operating in the frequency

division duplex (FDD) mode). We consider practical conditions such as imperfect

channel state information (CSI) due to the backhaul delay and per-base station (per-

BS) power constraints. In addition, we propose an optimal VP technique minimizing

the mean square error (MSE) of the received signal subject to per-BS power con-

straints. Although the array virtualization of network MIMO reduces the inter-cell

interference to some extent (depending on the cluster size of coordinated BSs), the in-

crease in transmit antenna array size is limited by the fading block length (coherence

time of the radio channel).

In the time division duplex (TDD) mode, the story is different thanks to the

channel reciprocity. Massive MIMO or large-scale MIMO is a transmission/reception

scheme for multi-cell MIMO, which works in the TDD mode and involves BSs, each
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with a large number of antennas, much larger than the number of users per cell. In

this study, we design and analyze a non-linear precoding technique employing time-

domain VP (TDVP) for a large-scale (massive) MIMO system. To analyze the system

we employ random matrix methods to avoid time-consuming Monte-Carlo simulations

and get better insight into the problem. In addition, we propose a practical approach

to mitigating pilot contamination for massive MIMO through a joint clustering and

pilot reuse scheme. We propose pilot contamination precoding (PCP) as outer linear

precoding prior to conventional precoding through a cooperative transmission scheme

with three BSs involved in the coordination cluster.
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Ṽk,0 The null space basis of the rows of H̃k

Wc The channel coherence bandwidth

wk The noise vector after processing at user k

x the transmitted signal vector from all the BSs or antenna groups

xm The transmitted signal vector at BS m

xvi



yk The received signal vector at user k

Z[j] The set of Gaussian (complex) integers

zk Nois vector for the equivalent system

xvii



List of Abbreviations

AWGN Additive white Gaussian noise

BC Broadcast channel

BD Block diagonalization

BS Base station

CCDF Complementary cumulative distribution function

CoMP Coordinated multipoint

CSI Channel state information

DoA Direction of arrival

DPC Dirty paper coding

FDD Frequency division duplex

FLOP Floating point operation

GRM Greedy rate maximization

JSDM Joint spatial division and multiplexing

MAC Multiple access channel

MIMO Multiple-input multiple-output

MMSE Minimum mean square error

MU-MIMO Multi-user multiple-input multiple-output

PCP Pilot contamination precoding

xviii



PDF Probability density function

PF Proportionally fair

SINR Signal-to-interference plus noise ratio

SISO Single-input single-output

SNR Signal-to-noise ratio

SU-MIMO Single-user multiple-input multiple-output

SUS Semi-orthogonal user selection

SVD Singular value decomposition

SZF Successive zero forcing

TDD Time division duplex

TDVP Time domain vector perturbation

TOP Transmit outage precoding

VP Vector perturbation

ZF-DPC Zero-forcing dirty paper coding

xix



Chapter 1

Introduction

Communications theorists and engineers have long faced the challenge of using RF

spectrum and power in a more efficient way. As these resources are expensive and

scarce, the need to utilize advanced techniques, which can introduce more degrees of

freedom in data transmission, is essential. Equipping transmitters and receivers with

multiple antennas is a major step in this direction. Multiple-input multiple-output

(MIMO) techniques exploit rich scattering in the radio channel to provide diversity

and spatial multiplexing gain. MIMO introduces spatial degrees of freedom imply-

ing that a communications resource of spatial type other than spectrum and power

becomes available. Roughly speaking, for a single-user MIMO (SU-MIMO), where

the transmitter and receiver are equipped with Nt and Nr antennas, respectively,

min(Nt, Nr)-fold increase in capacity (bits/channel use) is possible over the single-in-

put single-output (SISO) case. However, this capacity increase is reachable on the

conditions that signal-to-noise ratio (SNR) is high and the radio propagation environ-

ment is richly scattering. Richly scattering environment results in the channel matrix

H ∈ CNr×Nt becoming full rank [1].

Multi-user MIMO (MU-MIMO), where the transmitter (or base station (BS)) is

equipped with Nt antennas and there are for example Nr autonomous single-antenna

users in each cell, exhibits the same behavior as SU-MIMO in terms of capacity in-

crease, but under somewhat different circumstances. First of all, the requirement to

have a richly scattering environment is not that strict as long as the users are well-

separated. Secondly, in the usual case where no cooperation among mobile users can

be assumed, to separate the data streams of users on the downlink the transmitter has

to be aware of the channel state information (CSI) through some mechanisms such

as channel estimation and feedback, while in SU-MIMO case, the receiver knowledge

of CSI is sufficient to achieve the spatial multiplexing gain of min(Nt, Nr). With the

CSI available at the MU-MIMO downlink transmitter, the transmitter precodes the
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data streams such that the inter-user interference is mitigated or removed completely.

Thirdly, usually there are many users requesting service in the system such that the

available spatial resources are not sufficient to serve them simultaneously. As a result,

user scheduling (selection) techniques have to be considered in MU-MIMO systems.

After satisfying these requirements the spatial multiplexing gain of min(Nt, Nr) be-

comes achievable on the condition that signal-to-interference plus noise ratio (SINR)

is relatively high [1, 2].

There is a further complication to the spatial multiplexing gain promised by

MIMO techniques. This complication stems from the fact that knowing the CSI for

either SU-MIMO or MU-MIMO comes at an expense. Several channel uses have to

be assigned for channel estimation, thus the spatial multiplexing gain of min(Nt, Nr)

is clearly not achievable in practice. It has been demonstrated in the literature [3, 4]

that the spatial multiplexing gain is limited by min(Nt, Nr, T/2), where T is the fad-

ing coherence block length in channel uses in the time-frequency domain, over which

the channel is constant (to be more precise, the fading coherence block length T is

proportional to the product WcTc, where Tc represents the channel coherence time,

and Wc represents the channel coherence bandwidth [5]). Therefore, increasing the

number of antennas does not always result in an increase in capacity as it is limited

by T/2 log(SNR) +O(1) [3, 4].

Shifting from SU-MIMO to multi-cell MU-MIMO has witnessed many attempts to

find solutions to mitigating inter-cell interference and increasing spatial multiplexing

gain. These attempts include quite many areas from employing advanced signal

processing techniques for resource allocation and user scheduling strategies to making

use of coordination among the transmitter nodes through backhaul networks. For

example, coordinated multipoint (CoMP) transmission/reception, which is also called

network MIMO, is a transmission/reception scheme where multiple BS transmissions

are coordinated on the downlink to create a super BS sharing either the data, CSI of

users or both [6–10].

Although this array virtualization reduces the inter-cell interference to some ex-

tent (depending on the cluster size of coordinated BSs), as mentioned previously the

capacity is limited by the fading block length. More precisely, the high-SINR spatial

multiplexing gain of network MIMO per cell is limited by 1

B min(BNt, BNr, T/2),

where B is the number of coordinated BSs (or the coordination cluster size). In ad-

dition, in the frequency division duplex mode (cellular networks usually work in this

mode) the number of channel uses on the downlink, which are assigned for channel

estimation, linearly depends on the total number of transmit antennas, i.e. BNt. As

the fading coherence block length T over which the channel is essentially constant is
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finite, it implies that the frequency division duplex (FDD) mode cannot easily fulfill

“more antennas, higher spatial multiplexing gain” promise [11, 12].

In the time division duplex mode, the story is different thanks to the RF channel

reciprocity. It is theoretically possible to train the channel estimation circuitry of

each BS equipped with an infinite number of antennas on the uplink. Massive MIMO

or large-scale MIMO is a transmission/reception scheme for MU-MIMO, which works

in the time division duplex (TDD) mode and includes BSs , each with a large number

of antennas, much larger than the number of users per cell [13–15]. The number of

users per cell is limited by the fading coherence block length, since the pilot sequences

sent by users in each cell for channel estimation need to be mutually orthogonal and

need to fit inside the fading block (which limits their length, and hence the number).

Massive MIMO originally has not considered any kind of BS coordination, al-

though the coordination may help cell-edge users to be served at a higher through-

put [16]. It is interesting to note that the spatial multiplexing gain of massive MIMO

is still upper bounded by min(Nr, T/2) (Nt � Nr), and this upper bound is very

tight compared to FDD-mode schemes. The reason is that the large size of transmit

antenna array forces the channel vectors of users to become orthogonal to each other.

It consequently implies that precoding can be simplified such that even the matched-

filter beamforming becomes optimal in terms of capacity (sum rate). Additionally,

the effects of independent fading and noise vanish as they are averaged out due to

the large size of channel vectors.

Another reason for the capacity boost of massive MIMO is due to the fact that

the large number of antennas at the transmitter brings more diversity and power gain

to the system. The only capacity limiting factor is the pilot contamination due to the

reuse of pilot sequences in all the cells. This causes the user’s channel estimate to be

contaminated by the channel vectors of the users in other cells using the same pilot

sequence. Massive MIMO also has other problems. For example, reducing the antenna

spacing and compacting antenna elements to achieve a limited array size increase

antenna coupling. Moreover, the uplink and downlink paths including RF chains and

baseband components have to be calibrated periodically to assure that downlink and

uplink channels (including Tx/Rx components) are truly reciprocal [14, 15].

The focus of this work is on the design and analysis of transmission/reception

techniques for cooperative and large-scale MIMO systems under variety of conditions

such as specific user scheduling, imperfect CSI and per-BS power constraints. This

work particularly considers a sub-optimal non-linear precoding technique, vector per-

turbation (VP), which is capable of enabling higher sum rate than linear precoding

techniques at much lower complexity than dirty paper coding (DPC), which is opti-

3



mal for Gaussian MIMO broadcast channels (MIMO-BCs). In the following, we give

a more detailed presentation of the MIMO techniques as we review the literature.

Later on, our contributions and the objectives and organization of the thesis will be

presented.

1.1 Literature Review

1.1.1 SU-MIMO

Foschini [17] through an initial analysis found that the capacity of SU-MIMO of

dimension n × n approached n times the capacity of SISO asymptotically at high

SNRs. This capacity increase is achievable when only the receiver is aware of the CSI.

This scheme used a successive interference cancellation approach at the receiver, called

V-BLAST or layered space-time processing, to decode the transmitted signal. The

follow-up analysis in [18] gave a physical insight into this observation from information

theory perspective. Telatar [19] derived the capacity of a general Gaussian SU-MIMO

channel of dimension Nr ×Nt and expressed it in the following form:

C = max
tr(Θ)≤P

log det
(
I+

1

σ2
n

HΘHH
)
, (1.1)

where H is the channel matrix and P is the average transmit power. The optimization

is over the transmit covariance matrix Θ. In addition, σ2
n represents the noise power

at each receiver path.

Telatar demonstrated the numerical optimization of the above problem and how

the singular value decomposition (SVD) of the channel matrix H can be used to

parallelize the channel into a number of subchannels whose gains are eigenvalues of

HHH. The optimization (1.1) is performed through water-filling power allocation.

The optimal SVD-based approach relies on the fact that the transmitter knows the

CSI. However, linear processing techniques such as zero-forcing successive interference

cancellation (ZF-SIC) and minimum mean square error successive interference cancel-

lation (MMSE-SIC), which assume that only the receiver tracks the channel, perform

quite well in terms of throughput. Particulary the latter, MMSE-SIC, provides almost

the same sum rate as the optimal one for all SNRs from low to high.

[3] and [4] addressed the non-coherent MIMO transmission where neither the

transmitter nor the receiver know the channel. They concluded that the spatial

multiplexing gain is upper bounded by min(Nt, Nr, T/2) in the presence of a block

fading channel of the fading coherence block length T .
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1.1.2 MU-MIMO

Two techniques are the essential parts of a MU-MIMO system: precoding and user

scheduling [2]. Firstly, as the users can not cooperate and they are autonomous, data

streams separation has to be done with the help of the transmitter. The transmitter

has to know to some extent the CSI in order to separate data streams intended

for the users. Thus the transmitter precodes the data such that after sending data

through the physical medium each user can decode its data with minimum possible

interference from other users. Secondly, typically the number of users in the system

requesting service is larger than the available resources (e.g. time, frequency and

space). Thus user scheduling needs be performed to guarantee that all the users can

get their requested data, preferably in some optimized fashion.

In information theory language the MIMO dowlink channel from the BS to the

users is called a broadcast channel (BC) and the uplink channel from the users to the

BS is called a multiple access channel (MAC). Finding the capacity of the MIMO-BC

is much more challenging than that of the MAC, because it is a non-degraded channel.

Goldsmith et al. [20] provided an overview of the available research results by that

time on the MIMO channel capacity for ergodic and outage channels.

The challenge of finding the capacity region of the MIMO-BC drew the attention

of researchers for several years. It was first Caire and Shamai [21, 22] who found

that throughput-wise (in terms of sum-rate) successive interference cancellation in

the form of DPC can be optimal. An encoding technique for writing on a dirty paper

introduced by Costa [23] as a capacity-achieving technique for a Gaussian channel

with interference when the interference is known non-causally at the transmitter.

He proved that the transmitter can encode the data accounting for the interference

without any power penalty, as if there were no interference. Caire and Shamai used

this technique for precoding the MIMO-BC.

DPC considers a user ordering map and assumes that the data of first user is

encoded based on a capacity achieving code. As the interference introduced by this

user is known, the transmitter encodes the data of second user employing the writing

on dirty paper technique such that it does not receive any interference from the first

user. The same approach is applied to the subsequent users, and hence the user at

the step i does not receive any interference from any user j < i. After encoding all

the users, the transmitter needs to optimize the covariance matrices of the encoded

data vectors subject to the sum or per-antenna power constraints.

Caire and Shamai also introduced the DPC region as an achievable rate region for

the Gaussian MIMO-BC. However, finding the capacity region remained unsolved.
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Vishwanath et al. [24] showed that there is a duality, called uplink-downlink duality,

between the DPC region (or Caire-Shamai achievable rate region and the capacity

region of the dual MAC channel). Through this one to one correspondence, they

demonstrated that DPC can deliver the maximum possible sum rate of the MIMO-

BC. Jindal et al. [25] used this uplink-downlink duality to obtain a power allocation

scheme, called iterative water filling, which delivers the optimal covariance matrices

maximizing the sum rate of MIMO-BC subject to a sum power constraint. They

transformed the non-convex optimization of MIMO-BC into a dual MIMO-MAC op-

timization problem, which is convex. Finally Weingarten et al. [26] proved that DPC

region coincides with the capacity region of the MIMO-BC.

Yu [27] generalized the uplink-downlink duality to a Lagrangian duality, called

minimax duality, which enables solving the sum rate maximization problem subject

to more general conditions such as linear constraints on the power of the antenna

elements. Yu showed that minimax duality breaks down for an arbitrary convex

constraint on the antenna power. However, this technique gives a complete numerical

solution for the sum-rate maximization under per-antenna power constrains, while

uplink-downlink duality fails to do that.

Although DPC is the optimal precoding technique, it is highly complex. Gener-

ally, there exist two types of precoding techniques: non-linear and linear precoding.

For example DPC, zero-forcing DPC (ZF-DPC) [28], Tomlinson-Harashima [29, 30]

and vector perturbation precoding [31] belong to the non-linear precoding category

and zero-forcing (or its generalization for multiple-antenna users, called block diag-

onalization (BD)) [32], minimum mean square error (MMSE) and successive zero

forcing (SZF) [28] are linear precoding techniques. A zero-forcing technique, which

uses channel inverse as the the precoder or beamformer, is the simplest form of pre-

coding. However, in the case that the channel is ill-conditioned (i.e. the ratio of the

largest singular value to the smallest singular value is large) it does not perform well

in terms of the sum rate as it enhances the noise power [33].

Hochwald et al. [31] introduced a non-linear precoding technique, which avoids

noise enhancement due to channel inversion by perturbing the data. Perturbation is

performed in a way (e.g. by adding an integer vector) such that it can be undone at

the receiver (e.g. applying modulo function). Typically finding the perturbing vector

leads to a search over an infinite lattice in order to find the closest lattice point

to a given point. This lattice search is generally formulated in order to optimize a

metric such as power minimization. In next subsection we take a closer look at vector

perturbation precoding as a near-optimal capacity-achieving precoding technique.

User scheduling is another important issue in MU-MIMO, which is usually con-
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sidered along with precoding. Roughly speaking, user scheduling aims to select users

such that a metric is maximized, while satisfying or considering some constraints.

One metric maximization can be sum rate maximization subject to a power con-

straint and its corresponding optimal user scheduling involves an exhaustive search,

whose complexity is of exponential order with the number of users. There exist other

user scheduling techniques of different performance and complexity such as round-

robin, random scheduling and greedy user scheduling. Sub-optimal techniques are of

significant interest particulary when the number of users in the system is large. An-

other concern in user scheduling in MU-MIMO is that sum rate maximization favors

users with stronger channels such as users at the cell centers. Thus, users at the cell

edges are subject to throughput starvation, if sum-rate maximization is used as the

performance metric.

There exist techniques such as max-min fair and proportionally fair user schedul-

ing, which introduce the notion of fairness to scheduling. Max-min fair user scheduling

attempts to maximize the minimum rate implying that better channel users give up

some their throughput in favor of poorer channel users. Proportionally fair schedul-

ing [34, 35] attempts to maximize the weighted sum rate at each scheduling unit,

where each weight represents the inverse of the average throughput of the user ob-

tained so far. Proportionally fair scheduling implies that if a user is selected at the

current time slot its chance to be selected in the next scheduling slot is reduced. User

scheduling algorithms assume that the CSI is available at the transmitter in order to

make decisions which users to serve.

One multi-antenna technique which doest not require full CSI at the transmit-

ter is opportunistic beamforming introduced by Viswanath et al. [36]. Opportunistic

beamforming uses random beamforming to focus the energy to a user which is located

at the beam span by chance. In other words, opportunistic beamforming creates fad-

ing to exploit multi-user diversity and schedules users for transmission which happen

to have a good channel match with current beamforming coefficients. The trans-

mitter does not need to know the full CSI and only the channel quality indicators

are reported to the transmitter by users for the purpose of scheduling. Yoo and

Goldsmith [37] used proportional fair scheduling with zero-forcing beamforming and

proposed a semi-orthogonal user selection, which approached asymptotically the per-

formance of the optimal precoding for MU-MIMO, while the number of users was

large.
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1.1.3 Non-Linear Precoding: Vector Perturbation

Hochwald et al. introduced vector perturbation precoding [31] to balance singular

values of the channel. To explain the matter in more detail, consider data of K

users a ∈ CK , whose elements are mutually independent. In addition, the real and

imaginary parts of the data vector independently lie in a hypercube of dimension

|cmax|K . The idea behind vector perturbation is to relax the data alphabet a into an

extended alphabet such that the transmitted power is minimized. This relaxation or

perturbation should be performed such that it can be undone at the receiver. One

technique can be adding the data by an integer vector, which leads to having infinite

replicas of the data a in the space CK . One can easily observe that applying modulo

function can undo this perturbation at the receiver.

After perturbing the data, it is applied to the conventional beamformer, e.g. im-

plementing channel inversion. A perturbation strategy can be formulated as

p = argmin
q∈Z[j]K

‖H+(a+ τq)‖2, (1.2)

where τ is selected such that the translated constellations do not overlap each other.

One selection for τ can be

τ = 2(|cmax|+Δ/2), (1.3)

where Δ is the minimum distance between the constellation points in the modulation

carrying the data.

This minimization leads to the closest point search over an infinite lattice. The

lattice is characterized by its generator matrix. In (1.2), the generator matrix of the

lattice is H+ and the objective of lattice search is to find the closest lattice point

(which is expressed as H+q, where q ∈ Z[j]K) to the given point − 1
τ
H+a. For

example, Fig. 1.1 shows a two-dimensional lattice and a Frobenius-norm ball for

it. The objective here is to find the closest lattice point to the given point marked

by the blue triangle in the figure. Lattice search is an NP-hard problem. However

there exist fast algorithms to find the closest point employing one of the following

techniques: Fincke-Pohst [38, 39], Schnorr-Euchner [40] or Kannan [41]. In addition,

pre–processing the lattice generator matrix through a basis reduction technique (e.g.

LLL [42] or KZ [43] lattice basis reduction) can significantly increase the convergence

rate of the algorithm. [44] and [45] give a comprehensive overview of the sphere

encoding/decoding techniques and their complexity analysis.

Sum rate analysis of VP is very complicated as the perturbing vector is data-

dependent and its elements are highly correlated. However, there exist several ap-

proaches to characterize VP achievable rates and precoding gain. Barrenechea et
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Frobenius-norm ball

Figure 1.1: The closest point search over an infinite lattice (sphere encoding) for
vector perturbation.

al. [46] determine a couple of upper bounds on VP at high SNRs. Razi et al. [47] find

the sum rate of VP with the assumption of uniformly distributed input and perfect

CSI, and propose a low-complexity user scheduling, which does not need any prede-

fined thresholds as opposed to the semi-orthogonal user selection (SUS) of [37]. The

follow-up work in [48] delivers the sum rate of regularized vector perturbation. Muller

et al. [49] use a heuristic approach based on statistical mechanics to give insight into

the sum rate analysis of VP. Yao et al. [50] employs a heuristic approach based on

particle swarm optimization, which attempts to find the perturbing vectors in order

to maximize BER .

In addition, there exist some improvements and modification to VP. For example,

Schmidt et al. [51] have introduced MMSE-VP, which targets minimizing the mean

square error (MSE) of the received signal while perturbing the data. [52] et al. consider

a simple precoding involving VP, called transmit outage precoding (TOP), which

does not require feed forwarding any parameter to users. TOP simply turns off

the transmitter when the power of the perturbed signal is larger than a predefined

threshold.

Boccardi and Caire [53] introduced p-sphere encoding, where the p-norm of the

transmitted signal is minimized rather than the Frobenius-norm. p-sphere encoding

was originally proposed to reduce the peak to average power ratio of the transmitted

signal. Naturally, the ∞-sphere encoding involves minimizing the ∞-norm, which

implies minimizing the maximum magnitude per element of the transmitted signal

vector. Thus, ∞-sphere encoding can be used in the case of per-antenna-group power

constraints. In [52], Maurer et al. also mention the relation between the per-antenna

power-constrained vector perturbation and the p-sphere encoder. In [53], Boccardi
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and Caire proposed an indirect algorithm for p-sphere encoding. The idea is to enclose

the p-norm ball in the smallest Frobenius-norm ball. The Frobenius-norm ball shrinks

until the perturbing vector minimizing the p-norm is found.

Avner et al. [54] proposed a VP technique acting in time domain, called time

domain VP (TDVP), where the data vector for each user is perturbed in time domain

instead of user domain. In other words, the whole data of a user in a fading block

is perturbed before the process moves to the next user, while in the user-domain

approach the data of all users is perturbed in each channel use before moving to the

next channel use.

1.1.4 Network MIMO

Coordinated downlink transmission from multiple BSs, also known as network MIMO

or coordinated multi-point (CoMP) transmission, is one possible approach to mitigate

inter-cell interference and consequently enable MIMO spatial multiplexing gain in

cellular systems [6–8]. CoMP can be implemented using two different general types

of approaches differing in their effectiveness and complexity: joint processing and

coordinated beamforming/coordinated scheduling [9, 10].

In the joint processing approach the channel state information (CSI) and data

for all users within each coordinated cluster of base stations (BSs) are available to

all BSs in the cluster. Joint processing can be implemented as joint transmission

or dynamic cell selection (also known as transmission point selection). In the joint

transmission technique data to every scheduled user within the cluster is transmitted

simultaneously from all BSs in the cluster and hence all base station (BS) antennas

in the cluster act as one large transmit antenna array.

On the other hand, in dynamic cell selection transmission from only one BS oc-

curs to a given scheduled user within the cluster, but the BS within the cluster can

be selected from one time slot (subframe) to the next, depending on dynamically

changing propagation conditions. In coordinated beamforming/coordinated schedul-

ing, only the CSI of the users inside the cluster is shared among the cluster’s BSs and

the data for users within a given cell/sector are available only at the BS serving that

cell/sector.

Since joint transmission effectively creates a super array of transmit antennas, it

can be seen as an extension of single-cell MIMO transmission to the multi-cell case,

and the precoding and user scheduling algorithms available for single-cell MIMO

transmission are applicable to it. However, some modifications to the optimization

problem concerning precoding for network MIMO should be considered . One is to
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consider per-BS or per-antenna power constraints as each BS or antenna has its own

limit on the transmitted power.

[55] introduces a framework for optimization problems subject to per-antenna

power constraints through minimax optimization. [56] considers some sub-optimal

solutions for sum-rate maximization of BD precoding subject to per-BS power con-

straints. [57, 58] look at the optimal solution for BD precoding with per-BS power

constraint and propose optimal solutions using sub-gradient methods. Reduced-

complexity user scheduling techniques for network-MIMO are essential. [6, 59, 60]

look at this problem and propose reduced-complexity scheduling techniques along

with several precoding methods.

Despite the promise of network MIMO to enable spatial multiplexing gain in

cellular networks, there is a complication. With FDD network MIMO, increasing

the number of coordinated antennas requires assigning more channel uses for channel

estimation. This is not possible in a practical situation where the fading block length

is limited. [11] investigates this problem and concludes that equipping each BS with

many antennas without coordination among BSs results in higher performance gain

in terms of throughput compared to network MIMO. Rigorous analysis using random

matrix theory [12] confirms this observation.

1.1.5 Massive MIMO

[13] has introduced a high-performance time division duplex (TDD) multi-user MIMO

system, called massive MIMO, where each BS is equipped with infinite number of

antennas. This scheme uses the conjugate of the channel matrix for precoding, thus

simplifying the transmitter/receiver structures. In the massive MIMO regime the

effect of small-scale fading and uncorrelated noise vanish and only the interference

caused by reusing orthogonal pilots in different cells remains.

There are techniques available to mitigate the interference due to pilot contamina-

tion, such as an advanced multi-cell MMSE based precoding [61] and a time-shifted

pilot scheme [62]. However, these techniques do not completely remove this inter-

ference. Recently [63] proposed a brilliant technique, called pilot contamination pre-

coding (PCP), to completely remove the interference caused by pilot contamination.

PCP works as outer linear precoding prior to conventional beamforming and only re-

quires the second-order statistics of channel vectors. PCP allows coordination among

BSs by sharing the user data and these statistics.

[64] and [65] recently proposed another approach to mitigate pilot contamina-

tion without BS coordination. They have demonstrated that pilot contamination is
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not a fundamental limitation for massive MIMO, if a non-linear channel estimation

technique relying on signal subspace projection is employed. In addition to pilot

contamination, there are other problems which can degrade the performance of mas-

sive MIMO such as antenna coupling and non-ideal hardware particularly at the user

terminals [14, 15, 66].

In practice, it is not possible to have a very large number of antennas at the BS due

to the limit on the physical size, the number of RF chains, etc. Therefore, analyzing

massive MIMO in presence of limited number of transmit antennas is essential to

observe the gap to the ideal case of infinite number of antennas. [67] attempts to

quantify this gap. [68] considers the massive MIMO approach in the FDD mode and

demonstrates that it is possible to benefit from equipping BS with many antennas in

the FDD mode. It proposes a joint spatial division and multiplexing (JSDM), which

exploits the channel correlation to sectorize users and then perform conventional

precoding in each sector.

With JSDM, the transmitter only needs the second order statistics of the user

channels to sectorize the users through an outer precoding. For the case of linear

antenna arrays, these second order statistics can be simplified to the estimation of

the direction of arrival (DoA) of user signals impinging on the BS transmit array.

After sectorization, the channel of each sector is of reduced rank and the conventional

spatial multiplexing is performed through an inner precoding for each sector.

1.2 Thesis Objectives and Organization

The objectives of this thesis are four-fold: 1) comprehensive analysis of non-linear pre-

coding of vector perturbation type under practical conditions in network and massive

MIMO systems, and derivation of its achievable rates; 2) a joint design of VP and

proportionally fair user scheduling; 3) an optimal design of VP with per-antenna

power constraints, which can be applied to network MIMO; 4) pilot contamination

mitigation in massive MIMO.

In this section, the organization of the thesis is discussed and we outline the con-

tributions of each chapter. In general, Chapters 2 and 3 consider a network MIMO

system working in the FDD mode and using vector perturbation to precode the data

of users. The motivation behind using VP is that it is a near capacity-achieving pre-

coding technique and we want to design VP-aided precoding techniques and analyze

their performance under practical conditions. In Chapters 2 and 3 we use Monte-

Carlo simulations to collect the corresponding statistics. Chapters 4 and 5 consider

a massive MIMO system working in the TDD mode. To do a comprehensive analysis
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and have a better insight into the problem, in these two chapters we employ random

matrix methods. In Chapter 4, we consider a non-linear precoding technique of VP

type and in Chapter 5 we focus on the mitigation of pilot contamination and consider

linear processing at the transmitter and receiver. Now we discuss each chapter and

its contents in more detail.

In Chapter 2 we consider multiple-antenna users and in Chapters 3, 4 and 5 we

consider single-antenna users for the sake of simplicity. The extension of the design

and analysis techniques in Chapters 3, 4 and 5 to include multiple-antenna users is

straightforward. In addition, from a system perspective, throughput of the system is

almost the same in both cases. In other words, when we have multiple-antenna users,

fewer users can be scheduled, but each user receives a higher data rate.

Chapter 2 discusses the performance of a multi-cell vector-perturbation (VP)

precoding technique in a network multiple-input multiple-output (MIMO) system

employing joint transmission under practical conditions. These practical conditions

include per-BS power constraints and the backhaul delay. In Chapter 2 we pro-

pose a multi-cell VP for network MIMO employing joint transmission to multiple-

antenna users and investigate its performance under different user scheduling algo-

rithms [69, 70]. Since we consider multiple-antenna users, multi-cell BD is used as

the linear front-end precoding of multi-cell VP. In other words, first the data to

be transmitted to all users is perturbed by a Gaussian integer vector and then the

perturbed data is precoded by multi-cell BD. We consider per-BS power constraints

and introduce a common power scaling factor, with which the power constraints are

enforced. We extend the approach of [47] to the case of network MIMO employing

joint transmission to multiple-antenna users and obtain the sum rate for the analyzed

system.

Exhaustive search is the optimal approach for user scheduling, but its complexity

is very high, when there is a large number of users in the system and it becomes

even higher when non-linear precoding like VP is performed. Therefore, a reduced-

complexity user scheduling algorithm is essential. Greedy algorithms represent one

well-known approach to reduced-complexity user scheduling [71]. In addition, the

scheduling algorithm should consider fairness because without fairness consideration,

users close to the cell or cluster boundary that are subject to low SINRs will only

rarely (if at all) be served (will be subject to throughput starvation). Consequently, in

Chapter 2 we consider fairness and propose a proportionally fair greedy user schedul-

ing algorithm of relatively low complexity, which tries to maximize the weighted sum

rate.

In Chapter 2 we also study the performance of multi-cell VP in the presence of
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imperfect CSI as a consequence of backhaul delay. In a practical system, BSs transmit

reference symbols to enable channel estimation by mobile users [11]. The estimated

CSI is sent over a feedback channel and received by BSs with delay, which is more

significant when BSs are coordinated via a backhaul network. This stale CSI can

significantly affect the performance of precoding/scheduling techniques, which use

the available CSI as if it were perfect. Since deriving the sum rate explicitly in the

case of imperfect CSI is not analytically tractable for multi-cell VP, we derive an

upper bound on the sum rate assuming genie-aided CSI feedback. We perform the

same analysis for BD and derive lower and upper bounds on the sum rate to gain a

better insight into the effects of backhaul delay by comparing them for the VP and

BD cases.

As we mentioned earlier, in practice each antenna or more generally each antenna

group has its own limit on the transmitted power, which makes per-antenna-group

power constraints more meaningful than the sum power constraint. Network MIMO

is an example of a system where base stations (BSs) as antenna groups with individual

power constraints are coordinated for downlink transmission [6]. Chapter 3 considers

this problem in more detail and introduces a novel optimization technique for vector

perturbation employing the minimum mean-square error (MMSE) criterion with per-

antenna-group power constraints [72, 73]. This optimization technique employs the

idea of the p-sphere encoding [53]. We show that similarly to the p-norm ball, the

MSE metric can also be enclosed in a proper Frobenius-norm ball, which paves the

way for using conventional sphere encoding algorithms for this complicated MSE

minimization problem over an infinite lattice. In Chapter 3 we also present detailed

optimality analysis of the proposed precoding algorithm. Furthermore, we discuss the

complexity of the proposed algorithm in terms of floating point operations (FLOPs)

for visited nodes per channel use during lattice search. We also investigate a couple

of simplified precoding techniques employing MMSE criterion, which perform almost

as well as the proposed technique.

In Chapter 4 we address the question if it is worth using non-linear precoding in a

massive-MIMO system. If so, to what extent and under which conditions it results in

higher data rates than linear precoding techniques. We analyze time domain vector

perturbation in a large-system limit when channel state information (CSI) is imperfect

due to pilot contamination and we derive the corresponding achievable rates. We

also consider the impact of user scheduling on performance. We use random matrix

theory to avoid time-consuming Monte-Carlo simulations and analyze the system

comprehensively [74].

In Chapter 5 we consider the pilot contamination precoding for massive MIMO.
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Pilot contamination precoding works as outer linear precoding prior to conventional

precoding and only requires the second-order statistics of channel vectors. Pilot

contamination precoding allows coordination among BSs by sharing the user data

and these statistics. However, synchronization among all the BSs in the system is

not possible as the cyclic prefix has limited length. Pilot contamination precoding

is practically viable only for cell clusters of size up to 3. The main contribution of

Chapter 5 is to design a joint clustering and pilot reuse scheme for practically viable

pilot contamination precoding with cell clusters of size 3. Moreover, power scaling is

introduced to enforce per-BS power constraints [75]. This power adjustment is not

employed in [63] as it considers an ideal case of full coordination among all BSs for

pilot contamination precoding.

Finally, in Chapter 6 we summarize the contributions of the thesis and give direc-

tions for possible future work.
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Chapter 2

Network MIMO with Non-Linear
Precoding

The objective of this chapter is to study the performance of a multi-cell vector-

perturbation (VP) precoding technique under practical conditions in a network multiple-

input multiple-output (MIMO) scheme employing joint transmission. The conven-

tional perturbation strategy which minimizes the total transmitted power is consid-

ered and the power at each BS is scaled properly in order to enforce per-BS power

constraints. We consider multiple-antenna users and use block-diagonalization (BD)

as the linear front-end precoder for VP.

The sum rate for the multi-cell VP in the case of uniformly distributed input and

an asymptotic upper bound on the sum rate at high signal-to-noise ratios (SNRs)

are derived. Also, using the asymptotic upper bound on the individual user rates we

propose a proportionally fair (PF) user scheduling algorithm of lower complexity and

better performance than the benchmark fair semi-orthogonal user selection (SUS)

algorithm. As opposed to the fair SUS, the proposed PF scheduling algorithm does

not require any predefined correlation threshold. Furthermore, we study the impact

of backhaul delay on the performance of both VP and BD by deriving bounds on the

sum rate.

The numerical results show that multi-cell VP in the case of perfect channel state

information (CSI) outperforms multi-cell BD. In the presence of a backhaul delay the

performance of multi-cell VP degrades significantly, but the upper bound on the sum

rate for multi-cell VP is still higher than for multi-cell BD [69, 70].

Section 2.1 introduces the system model based on a network MIMO system em-

ploying joint transmission. The multi-cell VP is discussed in Section 2.2 and its sum

rate and an upper bound on the sum rate are derived in Section 2.3. Section 2.4

presents a reduced-complexity fair user scheduling algorithm. Section 2.5 discusses
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the impact of backhaul delay on the performance. The simulation results are provided

in Section 2.6 and finally Section 2.7 concludes this chapter.

2.1 System Model

We consider a multi-cell multi-user MIMO system with M BSs and U users. Each

BS is equipped with Nt transmit antennas and each user is equipped with nr receive

antennas. Let αm,kHm,k ∈ Cnr×Nt be the channel matrix from BS m to user k.

The term αm,k is the distance-dependent channel gain (square root of the distance-

dependent power gain of the channel, or square root of the inverse of the path loss)

and the elements of Hm,k are i.i.d. zero-mean complex Gaussian random variables

with unity variance, which implies small-scale flat Rayleigh fading. We assume that

the channel is constant during each fading block interval (channel coherence time),

which consists of T channel uses. We assume that T � 1 which is a reasonable

assumption for a typical slow-fading system. Let xm ∈ CNt×1 denote the transmitted

signal vector at BS m, which is subject to the average power constraint given as

E tr(xmx
H

m) ≤ Pm.

All BSs in the system are partitioned into clusters, and within each of the clusters

full coordination is assumed. With L clusters in the system, let {M1,M2, · · · ,ML}
denote the partition of the BSs, whereM� is the subset of BSs in cluster 	. Similarly,

let {K1,K2, · · · ,KL} denote a partition of all users, where K� is the subset of users

in cluster 	. The received signal vector yk ∈ Cnr×1 at user k in cluster 	 can then be

expressed as

yk =
∑

m∈M�

αm,kHm,kxm +
∑

m/∈M�

αm,kHm,kxm + nk, (2.1)

where nk ∈ Cnr×1 is the zero-mean additive white Gaussian noise (AWGN) at user

k with unity variance, i.e. nk ∼ CN (0, Inr
). The second term in (2.1) is the other-

cluster interference, which depends on the instantaneous transmitted signal vectors

at the other clusters.

The reason that we adopt clustering is that full coordination among all the BSs in

the system is not feasible. Therefore, the clustering of adjacent cells is adopted for the

purpose of mitigating the inter-cell interference within the cluster. However, inter-

cluster interference still exists. After BS clustering, users which are in the coverage

area of a cluster are assigned to that cluster. There exist adaptive clustering strategies,

which attempt to improve the channel quality for cell-edge users by changing the

pattern of clustering. This time-variant clustering pattern is designed so that each
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user on average spends approximately the same amount of time in all areas of the

time-variant cluster (cluster edge, cluster centre, etc.) [16,76]. In chapter 5 we outline

some aspects of this adaptive clustering strategy.

Obtaining the statistics of this interference vector is not straightforward, particu-

larly in the presence of a non-linear precoding technique. [56] uses the whitening filter

to whiten the colored other-cluster interference plus noise at each user in a network

MIMO with Gaussian input data and linear precoding. After whitening the inter-

ference, each cluster (which is now subject to only white Gaussian interference plus

noise) can be considered separately and the power allocation within a cluster to max-

imize the sum rate can be performed using the well-known interior-point techniques

due to the concavity of the objective function, the sum rate. To obtain the whitening

filter, each user needs to estimate the interference covariance matrix, which involves

a considerable amount of channel estimation. [12] has introduced an approach which

employs the concept of Nash equilibrium from game theory in order to model the

other-cluster interference in network MIMO. In this approach each cluster only con-

siders itself and does not care about the other clusters, implying a selfish strategy.

With this strategy, BSs transmit signals at the maximum available power and each

cluster tries to maximize its objective function without knowing the instantaneous

interference.

As in this chapter we focus on the overall performance analysis of a multi-cell

vector perturbation technique in practical situations, we also follow the approach

of [12] for the sake of simplicity. Hence, we approximate the power of the other-

cluster interference plus noise at user k in cluster 	 as

σ2
k = 1 +

∑
m/∈M�

α2
m,kPm. (2.2)

The reason that equation (2.2) does not account for the fading components of

users’ channels is that we treat the inter-cluster interference as noise and we only

consider its average power expressed by (2.2).

Now we can express the equivalent received signal vector at user k in cluster 	 as

yk =

|M�|∑
m=1

αm,kHm,kxm + zk, (2.3)

where zk ∼ CN (0, Inr
) and αm,k =

αm,k

σk
. Note that zk is the noise of the equivalent

system (after the normalization of the path loss parameters by σk) and it is different

from the noise of the original system as given in (2.1). In the rest of chapter, we

consider the cluster 	 as the reference cluster. Let B denote the number of BSs and A
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denote the number of users in this cluster, i.e. B = |M�| and A = |K�| (the number

of BSs and users is the same in each cluster). We can also express the received signal

in the following compact form

yk = Hkx + zk, (2.4)

where Hk ∈ Cnr×BNt is the aggregate channel matrix of user k given by

Hk = [α1,kH1,k, α2,kH2,k, · · · , αB,kHB,k], (2.5)

and x ∈ CBNt×1 is the transmitted signal vector from all the BSs given by

x = [x1
T,xT

2 , · · · ,xT

B]
T. (2.6)

2.2 Multi-Cell Vector Perturbation

A vector perturbation technique typically uses a linear front-end precoder. Pertur-

bation strategies take into account this precoder in order to obtain the perturbing

vector. Let Fk ∈ CBNt×nr denote the front-end precoder for user k. Due to the

joint transmission, this matrix is partitioned into submatrices, each representing the

front-end precoder for the corresponding BS, i.e. Fk can be represented by

Fk = [FT

1,k,F
T

2,k, · · · ,FT

B,k]
T, (2.7)

where Fm,k ∈ CNt×nr denotes the front-end precoder of user k at BS m. With these

assumptions, the transmitted signal vector x can be written as

x =

K∑
k=1

Fksk, (2.8)

where K ≤ A is the number of users which receive service at the same frequency and

time slot. sk ∈ Cnr×1 is the sphere-encoded signal vector of user k. Consequently,

the transmitted signal vector of BS m becomes

xm =
K∑
k=1

Fm,ksk. (2.9)

In this chapter we consider BD as the linear front-end precoding. With BD, the

matrix Fk is constructed such that it lies in the null space of the channels of the other

users. Let H̃k denote the aggregate interference channel for user k given by

H̃k = [HT

1 · · ·HT

k−1H
T

k+1 · · ·HT

K ]
T. (2.10)

19



Let us write the singular value decomposition (SVD) of H̃k as

H̃k = ŨkΛ̃k[Ṽk,1Ṽk,0]
H, (2.11)

where Ṽk,0 consists of BNt − rank(H̃k) vectors, which form the null space basis of

H̃k. Thus, we can choose nr orthonormal columns of Ṽk,0 to construct the precoding

matrix Fk with the following properties: HjFk = 0 ∀j, j �= k and FH

kFk = Inr
. To

satisfy the rank condition for BD, the total number of receive antennas has to be

less than that of transmit antennas, i.e. K ≤ �BNt

nr
� [56]. Now with this choice of

front-end precoding, the received signal becomes

yk = HkFksk + zk. (2.12)

Let us define the effective channel for user k as Heff,k = HkFk. With SVD of

this effective channel we can split it into parallel channels with gains equal to its

eigenvalues. SVD of Heff,k gives us the following expression

Heff,k = UkΛkVk
H, (2.13)

where Uk and Vk are the nr × nr left unitary and nr × nr right unitary matrices,

respectively. Λk = diag(λk,1, · · · , λk,nr
) is the nr × nr matrix of singular values. By

using Vk at the transmitter, the aggregate precoding matrix for all users becomes

F = [F1V1,F2V2 · · · ,FKVK ] (2.14)

and the sphere-encoded signal can be written as sk = 1√
γ
Vk(ak + pk), where ak =

[ak,1, · · · , ak,nr
] is the data vector for user k and pk = [pk,1, · · · , pk,nr

] is the perturbing

vector for user k. The aggregate data vector for all users can be defined as

a = [aT

1 , a
T

2 , · · · , aT

K ]
T, (2.15)

and the aggregate perturbing vector can be defined as

p = [pT

1 ,p
T

2 , · · · ,pT

K ]
T. (2.16)

We assume that a is an i.i.d. random vector with probability density function

(PDF) p(a) = �
CUBIC

K×nr (a), where �(.) is the indicator function and

CUBIC =

{
x ∈ C | |Re(x)| < 1

2
, |Im(x)| < 1

2

}
. (2.17)

The perturbing vector is obtained such that the unscaled total power is minimized.

In other words the following sphere encoding gives us the perturbing vector

p = argmin
q∈Z[j]Knr

‖F(a+ q)‖2. (2.18)
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The minimization problem in (2.18), which is performed over the Knr-ary Carte-

sian product of the set of Gaussian integers Z[j], is a problem of sphere encoding,

which involves a search of the closest point to the point −Fa in a lattice with the gen-

erator matrix F. In our simulations, we employed the algorithm proposed in [44] along

with the Lenstra–Lenstra–Lovász (LLL) lattice basis reduction algorithm [42, 77] in

order to reduce the complexity of the search process. The power scaling factor γ is

given by

γ = max
m

Ψm

Pm

, (2.19)

where Ψm is the unscaled average power at BS m, i.e.

Ψm = E

[
‖

K∑
k=1

Fm,kVk(ak + pk)‖2
]
. (2.20)

The unscaled total power over all BSs can be written as

Ψtotal = E

[
‖F(a+ p)‖2

]
. (2.21)

It is obvious that Ψtotal =
∑B

m=1Ψm. Thus, we can say γ ≥ Ψtotal

BPmax
, where Pmax =

max
m
Pm. Using Uk as the equalizer at the receiver of user k, the received signal

becomes

rk = UH

kyk =
1√
γ
Λk(ak + pk) +wk, (2.22)

where wk = [wk,1, · · · , wk,nr
]T ∼ CN (0, Inr

). Thus, the ith stream of user k is decoded

as [31]

âk,i = [λ−1
k,i

√
γrk,i]mod CUBIC

= [ak,i + pk,i + λ−1
k,i

√
γwk,i]mod CUBIC

= [ak,i + ηk,i]mod CUBIC, (2.23)

where ηk,i � λ−1
k,i

√
γwk,i is the effective noise for ith stream of user k with variance

E[|ηk,i|2] = λ−2
k,iγ. The function [.]mod CUBIC indicates a modulo function, i.e. for an

arbitrary complex number ψ, [ψ]mod CUBIC = ψ − �ψ	. The modulo function which is

applied to the real and imaginary parts separately returns a number inside the set

CUBIC, if the number is outside the set CUBIC [47]. Fig. 2.1 shows the block diagram

of the system.
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Figure 2.1: Block diagram of transmitter at base station b and receiver at user k.

2.3 Sum Rate with Multi-Cell Vector Perturba-

tion

In this section, we discuss the sum rate of multi-cell VP. [47] has shown that the

maximum mutual information I(âk,i; ak,i) for restricted data input is obtained by

uniformly distributed input and is expressed as

I(âk,i; ak,i) = − log(2πeϕk,i) + 2Ω(ϕk,i), (2.24)

where

ϕk,i =
1

2
E[|ηk,i|2] = 1

2
λ−2
k,iγ, (2.25)

and Ω(.) is a function which is defined as

Ω(ϕ)=
1

2
+

∫ 1
2

− 1
2

∞∑
s=−∞

1√
2πϕ

e−
−|Ψ−s|2

2ϕ

[
log

∞∑
t=−∞

e−
−|Ψ−t|2

2ϕ

]
dΨ. (2.26)

Ω(.) captures the non-linearity effect of the modulo-function on the sum rate. Now

we can conclude that the sum rate of multi-cell VP with uniformly distributed input

given aggregate channel matrix H = [HT

1 ,H
T

2 , · · · ,HT

K ]
T and aggregate precoding

matrix F is

RVP(H,F)=

K∑
k=1

nr∑
i=1

I(âk,i; ak,i)

=

K∑
k=1

nr∑
i=1

− log(2πeϕk,i) + 2Ω(ϕk,i). (2.27)
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Ω(ϕ) is an increasing function in ϕ with the following property [47]

lim
ϕ→0

Ω(ϕ) = 0. (2.28)

As Pm increases to infinity for all m, ϕk,i decreases to zero and we can neglect

Ω(ϕk,i) in (2.27). By substituting ϕk,i from (2.25) into (2.27) we obtain the following

lower bound on the sum rate, which becomes tighter as Pm increases to infinity for

all m.

RVP,LB � −Knr log(πeγ)−
K∑
k=1

nr∑
i=1

log(λk,i)
−2. (2.29)

The lower bound on Ψtotal introduced in [78] will give us an asymptotic upper

bound on the sum rate. Before deriving this upper bound, we state a useful property

through the next lemma.

Lemma 2.1

det(F
H

F) ≥ det(HHH)−1
K∏
k=1

nr∏
i=1

λ2k,i, (2.30)

where H is the aggregate channel matrix.

Proof. See Appendix A.

Now we derive the asymptotic upper bound on the sum rate.

Lemma 2.2 As Pm increases to infinity for all m, the sum rate RVP is bounded by

the following upper bound

lim
Pm→∞
1≤m≤B

RVP < Knr log
BPmax(Knr + 1) det(HHH)1/Knr

KnrΓ(Knr + 1)1/Knre
, (2.31)

where H is the aggregate channel matrix.

Proof. See Appendix B.

In [47] it has been shown via simulation that this asymptotic upper bound is very

tight particularly for SNRs larger than 10 dB.

2.4 Fair User Scheduling

As we discussed in Section 2.2, BD is used as the front-end linear precoding in VP. To

satisfy the rank condition for BD, we needK ≤ K0, whereK0 = �BNt

nr
�. Consequently,
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the objective is to select up toK0 users from the total A users in the cluster, belonging

to the set U = {1, 2, · · · , A} (full user pool).

Exhaustive search among all possible combinations of users is the optimal solu-

tion for user scheduling, but it is computationally prohibitive. Greedy algorithms

are sub-optimal algorithms which add users greedily to the set of already selected

users in order to maximize the sum rate. As we see from (2.25) and (2.27) the sum

rate is dependent on the power scaling factor γ and the eigenvalues of the effective

channels. Calculation of γ is difficult since it requires obtaining precoding matrices to

construct the generator matrix of the lattice and then finding the perturbing vector

in the relatively high-dimensional lattice (of dimension KNr). So applying greedy

algorithms to find the best set of users which maximizes the sum rate is highly com-

plex. [47] uses the asymptotic upper bound on the sum rate and proposes a greedy

rate maximization (GRM) algorithm of reduced complexity, which tries to maximize

the upper bound.

We use the approach of [47] and extend it to network MIMO with multiple-antenna

users. We denote our proposed algorithm for multi-cell VP as GRM-MVP (greedy

rate maximization for multi-cell VP). We select users one by one maximizing in each

step the upper bound (2.31) on the sum rate with already selected users. In the

shedding process of the algorithm (removing some users from the remaining pool of

users), users which decrease the upper bound on the sum rate with already selected

users are removed.

Let S and H(S) denote the set of selected users and the aggregate channel matrix

of the selected users up to the current user selection step of the algorithm, respectively.

Let Θ(S) = H(S)H(S)H. For the current selection step, we consider a user s with

channel matrix Hs from the set of unselected users that maximizes det(Θ(S ∪ {s})),
which consequently maximizes the asymptotic upper bound (2.31) with already se-

lected users. We have

det(Θ(S ∪ {s}))=det
([

H(S)H(S)H H(S)HH

s

HsH(S)H HsH
H
s

])
=det(Θ(S)) det(Hs(I−P(S))HH

s )

=det(Θ(S)) det(GsG
H

s ), (2.32)

where P(S) = H(S)H(H(S)H(S)H)−1H(S) and

Gs = Hs(I−P(S)). (2.33)

Gs is a component ofHs, which is orthogonal toH(S). We can obtain this component

from previous iterations. Let V̄(S) denote the row space of matrix H(S) obtained
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by Gram-Schmidt orthonormalization process. Gs is obtained by

Gs � Hs(I− V̄(S)HV̄(S)). (2.34)

As a result, in each iteration, the algorithm adds a user with the greatest det(GsG
H

s )

and removes users such that if they were added the upper bound on sum rate would

decrease. The algorithm can be summarized as follows.

GRM−MVPAlgorithm:

1. i = 1; K = 1; U0 = {1, 2, · · · , A}; S = ∅;

2. Let s1 = argmaxk∈U0
‖Hk‖2. Let V̄ = V̄s1 where V̄s1 is the row space of Hs1.

Let U1 = U0 − {s1} and S = S + {s1}.

3. For all users k ∈ Ui, let Gk = Hk − HkV̄
HV̄. Select a user such that si =

argmax
k∈Ui

det(GkG
H

k ).

4. Calculate Ui+1

Ui+1 =

{
k ∈ Ui, det(GkG

H

k ) >
(Knr + nr)!

(Knr)!
×

(
e(Knr + 1)K(Knr + nr)

K+1

PmaxB(Knr)K(Knr + nr + 1)K+1

)nr
}
.

5. If Ui+1 is not empty, then S = S + {si}, Ui+1 = Ui+1 − {si}, Let V̄ = [V̄HV̄H

si
]H

where V̄si is the row space of Gsi. Let i← i+ 1 and K ← K + 1.

Otherwise, terminate the algorithm.

6. If K < K0, then go to step 3). Otherwise, terminate the algorithm.

GRM-MVP works as follows. In step 1) we specify initial parameters and the

set of users. In step 2) the first user which has the greatest Frobenius norm of its

channel matrix Hk is added. In step 3) the orthogonal component of the candidate

user channel matrix to the space of already selected user channels is obtained and

we consider the user with the greatest det(GkG
H

k ) as the best option to add to the

set S. Step 4) is the shedding step, in which we remove users such that if they were

added the upper bound would decrease. We repeat the step 3) and 4) until we still

have users to add to the set S or we reach the maximum number of supported users

K0. As we see in GRM-MVP we use a determinant criterion for user selection and

user shedding instead of a norm criterion used in the GRM algorithm of [47], thus

extending the algorithm proposed in [47].
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SUS with multiple-antenna users as an extension of SUS for single-antenna users

proposed in [37], adds to the set a user with the channel matrix Hk, which has the

greatest orthogonal component Gk to the space of selected user channels, i.e. si =

argmaxk∈Ui
‖Gk‖2 and removes a user with the channel matrix Hk, if its correlation

with the row space of the currently selected user si is larger than a predefined threshold

θ, i.e.
‖HkV̄si

‖
‖Hk‖‖V̄si

‖ > θ . The optimal threshold θ depends on channel statistics and is

determined through simulation. Similarly to [47], the proposed GRM-MVP algorithm

involves simpler user shedding than SUS.

Now, we propose fair user scheduling, which considers both fairness and sum rate

maximization. Proportionally fair (PF) algorithm is a well-known approach to ensure

fairness and multi-user diversity [36]. The PF algorithm aims to maximize weighted

sum rate as follows [79]:

max
S⊆U

∑
k∈S

μk(t)Rk(S, t), (2.35)

where μk(t) = 1/R̄k(t) and Rk(S, t) are the priority weight and the supported rate

for user k at time slot t. Setting μk(t) = 1 represents the sum rate maximization

discussed at the beginning of this section. R̄k(t) is the average rate of user k achieved

up to time slot t, which is updated as in [79].

R̄k(t+ 1) = δR̄k(t) + (1− δ)Rk(S, t), k ∈ S (2.36)

R̄k(t+ 1) = δR̄k(t), k /∈ S (2.37)

where δ = 1 − 1/tc is the forgetting factor and tc is the averaging window size over

which the rate of user k is averaged (we used δ = 0.99 in our simulations). For users

which are selected at time slot t, the weights are updated by (2.36) and for the other

users, the weights are updated by (2.37). The supported rate of users only can be

computed once the user scheduling is completed. Consequently, in the user scheduling

phase we need to approximate the supported rate. The individual user rates obtained

from (2.24) are dependent on the power scaling factor γ. So, before completing the

scheduling process it is not possible to calculate γ and consequently the supported

user rates.

Again we consider the asymptotic upper bound, but at this time on the individual

rate. Similarly to the discussion on deriving the asymptotic upper bound on the sum

rate in Section 2.3 we can obtain the following asymptotic upper bound on the rate
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of user k.

lim
P→∞

Rk<nr log
BPmax(Knr + 1)

KnrΓ(Knr + 1)1/Knre
−

1

K
log det(F

H

F) + log det(Hk,eH
H

k,e). (2.38)

We used the fact that
∑nr

i=1 log(λk,i)
2 = log det(Hk,eH

H

k,e). The approach of [37, 80]

approximates the supported rate based on the equivalent single-user channel. If we

consider to select orthogonal user channels, which can be achieved approximately

by SUS-based algorithms such as the GRM-MVP and the GRM algorithm of [47],

the term log det(F
H

F) becomes 0 and det(Hk,eH
H

k,e) = det(HkH
H

k ) = det(GkG
H

k ).

Consequently, we have the equivalent single-user channel and the approximate sup-

ported rate R̃k becomes as follows with the assumption that the maximum number

of supported users K0 are selected,

R̃k(S, t) = nr log
BPmax(K0nr + 1) det(GkG

H

k )
1/nr

K0nrΓ(K0nr + 1)1/K0nre
. (2.39)

As we see, the approximate supported rate for each candidate user can be easily

calculated in each iteration. It is sufficient only to modify the selection step in GRM-

MVP algorithm to improve fairness by choosing the user with the greatest weighted

supported rate, i.e. si = argmaxk∈Ui
μk(t)R̃k(S, t). The fair US-MVP algorithm can

be summarized as follows.

FairUS−MVPAlgorithm:

Apply GRM-MVP with the following modifications in step 2) and 3) to obtain S
2) Let

s1 =

argmax
k∈U0

μk(t)

[
nr log

BPmax(K0nr + 1) det(HkH
H

k )
1/nr

K0nrΓ(K0nr + 1)1/K0nre

]

3) Let

si =

argmax
k∈Ui

μk(t)

[
nr log

BPmax(K0nr + 1) det(GkG
H

k )
1/nr

K0nrΓ(K0nr + 1)1/K0nre

]
.

Then apply multi-cell VP to the set of selected users S to obtain the actual supported

rate Rk(S, t) =
∑nr

i=1 I(âk,i; ak,i), where I(âk,i; ak,i) is obtained by (2.24) and finally

update the weights by (2.36) and (2.37).
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Proportionally fair SUS adds to the set a user with the greatest weighted sup-

ported rate. The supported rate is approximated based on the equivalent single-user

channel with the assumption that user channels are orthogonal to each other. Also the

approximate user rate is obtained with the assumption of Gaussian input and equal

power allocation, which is a close approximation to the optimal power allocation at

high SNRs [37, 80]. So, if the orthogonal component of a candidate user channel to

the space of already selected user channels is Gk, then the selection step in fair SUS

is

si = argmax
k∈Ui

μk(t) log det

(
Inr

+
PmaxB

K0nr
GkG

H

k

)
(2.40)

and its shedding step is the same as that used in SUS.

2.5 Impact of Backhaul Delay

In previous sections, we assumed that perfect CSI is available at BSs. In this section

we take into account the imperfect CSI and study the impact of backhaul delay

(which is one of the key factors causing performance degradation in network MIMO)

on the sum rates of both multi-cell VP and BD. Let Tp = �BNt denote the number

of channel uses over which the pilot symbols are transmitted. As we have T channel

uses in each time slot (subframe), so we have to multiply the expressions for the sum

rate by 1− Tp

T
to obtain the effective sum rate when some channel uses are assigned to

channel estimation (in this chapter, we assume that T � Tp, and hence this scaling

is not required).

Let Φ ∈ CBNt×Tp denote the orthogonal pilot matrix. The received signal at time

slot t becomes

Yk(t) = Hk(t)Φ+ Zk(t). (2.41)

Based on the power budget at BSs, we assume that pilot symbols are transmitted

with the maximum power, thus the pilot matrix satisfies ΦΦH = �
∑B

m=1 PmIBNt
.

Multiplying both sides of (2.41) by ΦH we have

Rk(t) = Yk(t)Φ
H = �

B∑
m=1

PmHk(t) + Zk(t)Φ
H

= �

B∑
m=1

PmHk(t) +Wk(t), (2.42)

where Wk(t) is the zero-mean white Gaussian noise matrix, whose elements have

variance
∑B

m=1 Pm.
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For the sake of simplicity, we assume that the channel Hk(t) is estimated based

on the observation of Rk(t − td), where td is the delay (time is expressed in slot in-

tervals). Naturally, more advanced prediction algorithms (like Wiener-Kolmogorov

filtering), which take into account more observations of the channel, perform bet-

ter [81]. Let hi,jm,k(t) denote the (i, j) element of matrix Hm,k(t) with classical (bath-

tub-shaped) Doppler power spectral density, resulting from the Clarke’s 2-D isotropic

scattering model [82]. Thus, the autocorrelation of the complex channel gain is

E[hi,jm,k(t)h
i,j
m,k

H

(t − td)] = J0(2πfdtd), where fd = vfTf/c is the normalized Doppler

frequency, v is the mobile velocity in m/s, f is the carrier frequency in Hz, Tf is the

slot (subframe) duration in seconds and c is the speed of light. Based on the MMSE

estimation, the predicted channel becomes

Ĥk(t) = J0(2πfdtd)Rk(t− td)(I+ �
B∑

m=1

PmJk)
−1Jk, (2.43)

where Jk = blockdiag(α2
1,kINt

, · · · , α2
B,KINt

). The channel matrix can be written as

the sum of its estimate and the channel error matrix, formulated as

Hk(t) = Ĥk(t) + Êk(t), (2.44)

where both Ĥk(t) and Êk(t) are i.i.d. zero-mean Gaussian matrices, which are inde-

pendent from each other. The matrix Ĥk(t) is in the following form

Ĥk(t) =
[
α̂1,kH1,k(t), α̂2,kH2,k(t), · · · , α̂B,kHB,k(t)

]
, (2.45)

where Hm,k(t) ∈ Cnr×Nt is a random matrix, whose elements are i.i.d. zero-mean

Gaussian random variables with unity variance and

α̂m,k =
J0(2πfdtd)α

2
m,K√

1

�
∑B

n=1 Pn
+ α2

m,k

, (2.46)

Similarly, the channel error matrix is in the following form

Êk(t) =
[
α̃1,kE1,k(t), α̃2,kE2,k(t), · · · , α̃B,kEB,k(t)

]
, (2.47)

where Em,k(t) ∈ Cnr×Nt is a random matrix, whose elements are i.i.d. zero-mean

Gaussian random variables with unity variance and

α̃m,k =

√√√√1 + (1− J2
0 (2πfdtd))�α

2
m,K

∑B
n=1 Pn

1 + �α2
m,K

∑B
n=1 Pn

αm,K . (2.48)
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2.5.1 Vector perturbation

In this subsection, we consider multi-cell VP and study the impact of backhaul delay

on its performance. In the presence of imperfect CSI, the received signal given by

(2.4) can be expressed as

yk = Hk

K∑
j=1

F̂jsj + zk

= (Ĥk + Êk)
K∑
j=1

F̂jsj + zk

= ĤkF̂ksk + Êk

K∑
j=1

F̂jsj + zk, (2.49)

where the precoding matrices {F̂j}j=K
j=1 are obtained from the estimated channels

{Ĥj}j=K
j=1 based on BD, similarly to what is discussed in Section 2.2. The effective

channel of user k is decomposed by SVD to yield ĤkF̂k = ÛkΛ̂kV̂
H

k . Again, using

{V̂k}k=K
k=1 and {ÛH

k }k=K
k=1 at the BSs and users, respectively, the equalized signal vector

at user k rk = ÛH

kyk becomes

rk =
1√
γ̂
Λ̂k(ak + pk) + ÛH

k Êkx̂ +wk. (2.50)

where x̂ =
∑K

j=1 F̂jsj and wk = ÛH

k zk. Consequently, the ith stream of user k is

decoded as

âk,i = [λ̂−1
k,i

√
γ̂rk,i]mod CUBIC

= [ak,i + λ̂−1
k,i

√
γ̂wk,i + λ̂−1

k,i

√
γ̂[ÛH

k ]iÊkx̂]mod CUBIC, (2.51)

where [ÛH

k ]i is the ith row of ÛH

k .

Based on the fact that âk,i is inside the restricted set CUBIC, from properties of

conditional entropy we have the following upper bound on the rate of the ith stream

of user k

I(âk,i; ak,i|Ĥ)

= H(âk,i|Ĥ)−H(âk,i|ak,i, Ĥ)

≤ 0−H(âk,i|ak,i, Ĥ) ≤ −H(âk,i|ak,i, Ĥ, x̂)

≤ −E
[
log(πeλ̂−2

k,i γ̂ + πeλ̂−2
k,i γ̂

B∑
m=1

α̃
2

m,k‖x̂m‖2)
]

+ E

[
2Ω
( λ̂−2

k,i γ̂ + λ̂−2
k,i γ̂

∑B
m=1 α̃

2

m,k‖x̂m‖2
2

)]
. (2.52)
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2.5.2 Block diagonalization

In this subsection we consider BD and investigate the impact of backhaul delay on

its performance. There are two differences in this case compared to VP. First of

all, the data is not perturbed, i.e. sj = aj . Secondly, the data input has Gaussian

distribution and its value is not restricted. For the sake of simplicity, we assume equal

power allocation is performed, which is a reasonable assumption at high SNRs. Thus,

the data vector satisfies E[aja
H

j ] = QInr
for all j. It is straightforward to show the

power of each stream Q satisfies the following equality

Q = min
m

Pm

tr(
∑K

k=1 F̂m,kF̂H

m,k)
. (2.53)

The received signal vector at user k is written as

yk = Hk

K∑
j=1

F̂jaj + zk

= (Ĥk + Êk)

K∑
j=1

F̂jaj + zk

= ĤkF̂kak + Êk

K∑
j=1

F̂jaj + zk, (2.54)

Again, with SVD of the effective channel and transformation into parallel channels,

the equalized signal vector at user k becomes

rk = Λ̂kak + ÛH

k Êkx̂+wk. (2.55)

Consequently, the ith stream of user k is detected as

âk,i = λ̂−1
k,irk,i

= ak,i + λ̂−1
k,iwk,i + λ̂−1

k,i [Û
H

k ]iÊkx̂. (2.56)

Based on the properties of the conditional entropy and the fact that Gaussian dis-

tribution has the maximum entropy among all the distributions of the same variance,

we can obtain the following lower bound on the rate of stream i of user k after some
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algebra

I(âk,i; ak,i|Ĥ) = H(ak,i|Ĥ)−H(ak,i|âk,i, Ĥ)

= log(πeQ)−H(ak,i −Υâk,i|âk,i, Ĥ)

≥ log(πeQ)−H(ak,i −Υâk,i|Ĥ)

≥ log(πeQ)− log(πe var(ak,i −Υâk,i)|Ĥ)

≥ log

(
1 +

λ̂2k,iQ

1 + E[
∑B

m=1 α̃
2

m,k‖x̂m‖2]

)
, (2.57)

where Υ is obtained by the MMSE estimation of ak,i from the observation of âk,i,

which delivers the minimum var(ak,i − Υâk,i) (Υ can be obtained easily through a

simple algebraic derivation omitted here for the sake of brevity). Note that the

average power of the transmitted signal vector at BS m is given by

E[‖x̂m‖2] = Q tr(

K∑
k=1

F̂m,kF̂
H

m,k). (2.58)

We can also obtain the following upper bound, similarly to what is done for VP

in (2.52).

I(âk,i; ak,i|Ĥ)

= H(âk,i|Ĥ)−H(âk,i|ak,i, Ĥ)

≤ log(πe+ πeλ̂2k,iQ + πeE[
B∑

m=1

α̃
2

m,k‖x̂m‖2])

−H(âk,i|ak,i, Ĥ, x̂)

≤ log(πeλ̂2k,iQ+ πe + πeE[
B∑

m=1

α̃
2

m,k‖x̂m‖2])

− E

[
log(πe + πe

B∑
m=1

α̃
2

m,k‖x̂m‖2)
]

≤ E

[
log

(
1 + λ̂2k,iQ + E[

∑B
m=1 α̃

2

m,k‖x̂m‖2]
1 +

∑B
m=1 α̃

2

m,k‖x̂m‖2
)]
. (2.59)

2.6 Simulation Results

In the first part of the simulation results we consider perfect CSI and focus on fairness

of the mentioned algorithms. In our simulations, we assume the channel model which

includes path loss with path loss exponent 3.7 and small scale Rayleigh block fading.
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Figure 2.2: Average sum rates per cell of multi-cell VP with fair SUS and fair US-
MVP versus shedding threshold θ; perfect CSI is assumed; Nt = 4, nr = 2, B = 7.
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Figure 2.3: Complexity of fair SUS and fair US-MVP versus shedding threshold θ;
perfect CSI is assumed; Nt = 4, nr = 2, B = 7.

We consider the reference cluster of size 7 BSs (i.e. B = 7) in a honeycomb layout

surrounded by 30 cells with radius of 500 m each. We also assume that Nt = 4 and

nr = 2. We define SNRd as the signal to noise ratio of a user at the cell edge subject

to only path loss. For this part we set SNRd = 20 dB. The users are distributed

uniformly over the cells and there are 10 users in each cell (A = 70). The results are

gathered from 100 user drops, and simulations for each drop are run over 1000 time

slots (subframes).

Fig. 2.2 shows the average sum rate of multi-cell VP with fair SUS versus shedding

threshold θ ranging from 0.2 to 0.8. As θ increases the average sum rate also increases
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Figure 2.4: CDF of mean user rates for multi-cell VP with GRM-MVP, SUS, proposed
fair US (fair US-MVP) and fair SUS user scheduling; perfect CSI is assumed; Nt = 4,
nr = 2, B = 7.

in this scenario. θ close to 1 implies that almost all the remaining users are allowed

to take part in the selection step. Also by setting θ close to 1 we increase the chance

of selecting users with higher Frobenius norm channels. As the sum rate depends

on the eigenvalues of the effective channel and higher eigenvalues imply a higher

channel norm, we can infer that channel norm or channel gain are more important

than correlation among user channels in this scenario, where there are users with

different SNRs in the system. However, selecting a higher shedding threshold results

in higher complexity because users are unlikely to be shed and we have to search over

a larger set at each iteration. Fig. 2.2 suggests that θ = 0.5 is a good choice. We

also observe that fair US-MVP is better than fair SUS in terms of sum rate.

Fig. 2.3 compares the complexity of fair US-MVP and fair SUS in terms of

millions of floating point operations (MFLOPs) per channel use [83]. Figs. 2.2 and

2.3 demonstrate that at the values of θ, in which fair SUS gets its maximum average

sum rate, its complexity is higher than that of fair US-MVP. Also note that the

best value of the shedding threshold for fair SUS is highly dependent on the channel

statistics and its determination requires extensive simulations. Hence, in general the

proposed fair US-MVP is a better choice than fair SUS.

Fig. 2.4 shows the CDF of mean user rates and we observe that VP with GRM-

MVP and SUS scheduling algorithms can not provide service for about 60% of users,

while the distribution of mean rates among users is much fairer for fair scheduling

algorithms (the CDF curves are closer to a unit-step CDF curve of mean rates that

corresponds to perfect fairness). Fig. 2.5 shows another comparison of the fairness of
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Figure 2.5: Fairness comparison of GRM-MVP, proposed fair US-MVP, SUS, fair
SUS; 10 users in each cell with distances from the closest serving BS ranging from 50
(group 1) to 500 m (group 10); perfect CSI is assumed; Nt = 4, nr = 2, B = 7.

the algorithms. We consider 10 users in each cell distributed over distances from 50

m to 500 m from their closest serving BS in 50 m increments. As we see, GRM-MVP

and VP-SUS do not support any users at distances larger than 150 m. Fair US-MVP

supports users in all groups at different mean rates, ranging from 0.4 to 5.2 bit/s/Hz.

Next, we consider the backhaul delay and observe the effect of imperfect CSI

on the sum rate. We make comprehensive comparisons between multi-cell VP and

multi-cell BD, and also between coordinated and uncoordinated transmissions. We

assume the mobile velocity v = 10 km/h, the carrier frequency f = 2 GHz, the slot

(subframe) duration Tf = 1 ms and � = 10. We consider two values for delay: td = 0,

representing the case where imperfect CSI is only due to the channel estimation error,

and td = 2, representing the case where imperfect CSI is due to the channel estimation

and prediction errors under backhaul delay. Fair SUS is considered for BD and fair

US-MVP is considered for VP.

Fig. 2.6 depicts the average sum rate per cell for multi-cell VP and BD, and

also the corresponding bounds on the sum rate for VP and BD. B = 1 represents

uncoordinated transmission. As we observe from Fig. 2.6, multi-cell VP is superior

to multi-cell BD for the perfect CSI case and exhibits a higher upper bound than

that for multi-cell BD in the imperfect CSI case. Also it is seen that backhaul delay

significantly degrades performance. An interesting observation is that multi-cell VP

outperforms uncoordinated VP in both perfect and imperfect CSI cases, while multi-

cell BD performs worse than uncoordinated BD when it is subject to backhaul delay

and imperfect CSI. It can also be seen in Fig. 2.6 that the lower and upper bound
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Figure 2.6: Average sum rates per cell versus cell-edge user’s SNR for multi-cell VP
and BD (B = 7) and uncoordinated VP and BD (B = 1) in the presence of perfect
and imperfect CSI and backhaul delay, corresponding upper bounds and lower bounds
on the sum rates for coordinated and uncoordinated VP and BD in the presence of
imperfect CSI (td = 0: imperfect CSI due to the channel estimation error) and
backhaul delay (td = 2: imperfect CSI due to the channel estimation and prediction
errors); Nt = 4, nr = 2, v = 10 km/h, f = 2 GHz, Tf = 1 ms and � = 10.

curves for BD are quite close, and for the cases with no delay they actually overlap.

2.7 Conclusions

We have proposed a multi-cell vector perturbation (VP) precoding approach for net-

work MIMO downlink joint transmission with multiple-antenna users and investigated

its performance with different user scheduling algorithms. We have used BD as the

front-end linear precoding with multi-cell VP and derived the sum rate, as well as the

asymptotic upper bounds on the sum rate and on the individual user rates. Using

these upper bounds we have proposed a reduced-complexity fair user scheduling al-

gorithm, which achieves better performance than the benchmark proportionally fair

semi-orthogonal user selection (PF-SUS) algorithms at lower complexity, and also

with the advantage that it does not need any optimized threshold of correlation be-

tween user channels.

Additionally, we have investigated the impact of backhaul delay on performance

and derived bounds on the sum rate with multi-cell VP and BD. The numerical results

show that precoding/scheduling schemes, which utilize the available CSI as if it were

perfect, are very sensitive to the backhaul delay. One key observation is that the

performance of multi-cell VP is better than that of multi-cell BD in the perfect CSI
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case and its upper bound on sum rate is higher than that for multi-cell BD in the

presence of backhaul delay.
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Chapter 3

Vector Perturbation with
Per-Antenna Power Constraints

In practice, each antenna or more generally each antenna group has its own limit

on the transmitted power, which makes per-antenna-group power constraints more

meaningful than the sum power constraint. In this chapter, we introduce an op-

timization technique for vector perturbation employing the minimum mean-square

error (MMSE) criterion with per-antenna-group power constraints. This technique is

inspired by the p-sphere encoding in a sense that it involves finding the node with

the lowest mean-square error (MSE) over a lattice. We demonstrate that the MSE

metric, as well as the p-norm one, can be enclosed in a proper Frobenius-norm ball.

This Frobenius-norm ball shrinks until it captures the perturbing vector minimizing

the MSE.

Numerical results show that the proposed algorithm outperforms conventional

vector perturbation and the p-sphere encoding, but at higher complexity. Conse-

quently, we investigate a couple of simplified techniques employing the MMSE crite-

rion, which perform almost as well as the proposed precoding technique, but are less

complex [72, 73].

The system model is provided in Section 3.1 and the proposed precoding technique

is introduced in Section 3.2. Section 3.3 presents the simulation results and Section

3.4 summarizes this chapter.

3.1 System Model

We consider a MIMO broadcast channel (MIMO-BC) with a transmitter equipped

with BNt antennas and K single-antenna users. BNt antennas at the transmitter

side are partitioned into B groups and each group has Nt antennas. Without loss of
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Figure 3.1: Block diagram of the system.

generality, we assume that all the antenna groups are co-located at the transmitter

(base station) and they are fully coordinated.

Let hk ∈ C1×BNt denote the channel vector of user k whose elements are i.i.d zero-

mean complex Gaussian random variables with unit variance, i.e. hk ∼ CN (0, IBNt
).

The composite downlink channel matrix H ∈ CK×BNt of the MIMO-BC is defined

as H = [hT
1 , · · · ,hT

K ]
T. Let x ∈ CBNt×1 denote the continuous-valued transmitted

signal vector. Consequently, this vector is partitioned into B vectors, each rep-

resenting the transmitted signal vector for the corresponding antenna group, i.e.

x = [xT
1 ,x

T
2 , · · · ,xT

B]
T, where xr ∈ CNt×1 stands for the transmitted signal vector

of group r for r = 1, · · · , B. We assume peak (instantaneous) power constraint at

group r given as

‖xr‖2 ≤ Pr, (3.1)

where Pr denotes the power budget for group r.

The received signal vector y = [y1, y2, · · · , yK ]T ∈ CK×1 is given as

y = Hx+ n, (3.2)

where n ∈ CK×1 is the zero-mean white Gaussian noise vector with variance σ2
n,

i.e. n = [n1, n2, · · · , nK ]
T ∼ CN (0, σ2

nIK). We define the nominal signal-to-noise

ratio (SNR) as ρ = P/σ2
n, where P =

∑B
r=1 Pr is the sum power available at the

transmitter.
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3.1.1 Perturbation, linear front-end precoding and detection

We consider a framework for vector perturbation precoding, of which perturbation

followed by linear front-end precoding and detection involving modulo-arithmetic op-

eration are ingredients. This framework helps us discuss different vector perturbation

techniques in a consistent fashion.

Let a ∈ CK×1 and p ∈ CK×1 denote the data vector and the perturbing vector,

respectively. The elements of a come from a zero-mean constellation A such as QAM.

For data vector we have E[aaH] = IK . The perturbing vector p, which is a Gaussian

(complex) integer vector, is selected based on a strategy such as minimizing the

unscaled power or mean square error (MSE) of the received signal. After perturbation,

the perturbed data is precoded by a linear precoder F ∈ CBNt×K , which we call the

front end precoder.

The received signal is multiplied by the scaling factor β and then fed to the modulo

function. In Section 3.2 we show how the value of β is optimized. This optimization

is performed at the BS and the optimal β is fed forward to users. We assume that all

user receivers know the value of β. This can be accomplished for example by sending

β over a common downlink control channel prior to the transmission of data. As we

consider instantaneous (peak) power constraints, the value of β changes from symbol

to symbol. One strategy to reduce the overhead due to the transmission of β is to

send the scaling factor β only once for the whole fading block, over which the channel

is constant. This value of β can be calculated for example for the worst-case symbol

(in terms of the MSE) of the fading block. We can also take advantage of the fact that

the value of β is the same for all the mobile user receivers and broadcast it to them.

We defer the comprehensive study of the strategies for feeding forward the value of β

to future work and throughout this chapter we assume the receivers know the value

of β from symbol to symbol. Fig. 3.1 shows the block diagram of the system.

3.1.2 Conventional vector perturbation with per-antenna-group
power constraints

Let p1 denote the perturbing vector for conventional vector perturbation, so we can

write

p1 = argmin
q∈Z[j]K

‖H+(a+ τq)‖2, (3.3)

where τ is selected such that these translated constellations do not overlap each other.

The problem in (3.3) is finding the closest point to the point −H+a/τ in the lattice

Λ(H+) [44].
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Let us partition the matrix H+ into B submatrices as follows

H+ =
[
H̄

T

1 , H̄
T

2 , · · · , H̄T

B

]T
, (3.4)

where H̄r ∈ CNt×K denotes the rth submatrix corresponding to the rth antenna

group. The linear front-end precoder F is the scaled channel inverter, i.e. F =
1√
γ1
H+, where γ1 is the power scaling factor, by which the per-antenna-group power

constraints are enforced. It is straightforward to show that γ1 is given by

γ1 = max
r

‖H̄r(a+ τp1)‖2
Pr

. (3.5)

Setting β =
√
γ1, the received signal vector after scaling becomes

r =
√
γ1y = a+ τp1 +

√
γ1n. (3.6)

3.1.3 Scaled MMSE vector perturbation precoding

In [51, 84], Schmidt et al. proposed a vector perturbation technique with sum power

constraint which minimizes the MSE of the received signal. To incorporate per-

antenna-group power constraints, we scale the transmit power. The perturbing vector

p2 of the scaled MMSE vector perturbation is expressed as

p2 = argmin
q∈Z[j]K

‖L(a+ τq)‖2, (3.7)

where L is obtained through Cholesky factorization of the following matrix

(HHH +
K

ρ
IK)

−1 = LHL. (3.8)

The front-end precoding in this case is given as F = 1√
γ2
HH(HHH + K

ρ
IK)

−1. γ2 is

the power scaling factor to enforce per-antenna-group power constraints.

3.1.4 p-sphere encoder with per-antenna-group power con-
straints

Another approach for vector perturbation with per-antenna-group power constraints

can be minimizing the maximum power per antenna group. Assume that channel

inversion is used as the front-end precoder. Thus, this min-max optimization can be

formulated as

p3 = argmin
q∈Z[j]K

max
r

‖H̄r(a+ τq)‖2
Pr

. (3.9)
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Table 3.1: ∞-sphere encoder algorithm
1: Start with p3 = p1 and R = 1

τ

√
BPmaxγ1

2: Examine another node p̃ of the lattice Λ(H+) in the sphere with radius R and
center −H+a/τ

3: if max
r

‖H̄r(a+τ p̃)‖2
Pr

< max
r

‖H̄r(a+τp3)‖2
Pr

then
4: p3 = p̃

5: t = max
r

‖H̄r(a+τp3)‖2
Pr

6: R = 1
τ

√
BPmaxt

7: end if
8: goto step 2
9: return p3

Now p3 can be used as the perturbing vector. Similar to the conventional vector

perturbation, the front-end precoder F in this case becomes F = 1√
γ3
H+, where γ3 is

the power scaling factor is given by

γ3 = max
r

‖H̄r(a+ τp3)‖2
Pr

. (3.10)

The min-max problem in (3.9) is similar to the p-sphere encoding proposed in [53]

with p = ∞. In [53], Boccardi and Caire have proposed the p-sphere encoding for

peak-to-average power ratio reduction of vector perturbation, which minimizes the

p-norm of the unscaled transmitted signal instead of the Frobenius norm typically

used for conventional vector perturbation.

Finding the perturbing vector p3 in problem (3.9) is more complicated than finding

the perturbing vector p1 for conventional vector perturbation in problem (3.3). Recall

that sphere encoding, which is the core of conventional vector perturbation, works

based on the minimization of the Frobenius norm on an infinite lattice. For this

purpose, it rotates the lattice with the help of QR decomposition to obtain an upper-

triangular matrix, which enables simpler encoding and also preserves the Euclidean

distance properties of the original lattice. This QR decomposition is not applicable

to the p-sphere encoding [53]. The technique proposed in [53] solves the problem of

the ∞-sphere encoding still on the conventional lattice with Frobenius norm. The

idea is that for an ∞-norm ball with radius 	 in a n-dimensional space, i.e. B∞(	) =

{v ∈ Cn×1|‖v‖∞ ≤ 	}, the smallest Frobenius-norm ball, which contains B∞(	), is of

radius
√
n	.

Therefore, to find the node with the smallest ∞-norm on a lattice, the following

procedure needs to be implemented, whenever we visit a node whose ∞-norm is

smaller than those of previously visited nodes, the radius of a Frobenius-norm ball

can be reduced accordingly in order to capture all the nodes, which may have smaller
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∞-norm than that of the most recently visited node. We continue this procedure until

we reach the node with the smallest∞-norm. Applying this idea to our problem leads

to the following inequalities

‖H+(a+ τp3)‖2 ≤ BPmaxγ3 ≤ BPmaxγ1. (3.11)

The ∞-sphere encoder algorithm is summarized in the Table 3.1. This algorithm

can be obtained by modifying the sphere encoding algorithm of [44]. We also use

the Lenstra–Lenstra–Lovász (LLL) lattice basis reduction [42] in order to reduce the

complexity of the encoding process.

Table 3.2: AG-MMSE-VP algorithm
1: Start with p̃ = p1. Let j = 0,MSEmin =∞
2: s = a+ τ p̃
3: MeanSquareError(s)
4: j ← j + 1

5: MSE(j) = M̃SE, x(j) = x̃ and β(j) = β̃
6: if MSE(j) ≤ MSEmin then
7: p4 = p̃

8: R = 1
τ

√
ρ
K
M̃SE

9: MSEmin = MSE(j), xopt = x(j) and βopt = β(j)
10: end if
11: Examine another node p̃ of the lattice Λ(L) in the sphere with radius R and

center −La/τ
12: goto step 2
13: return p4, xopt and βopt

14: function MeanSquareError(s)

15: i = 0; x̂(0) = 1√
γ
H+s, where γ = max

r

‖H̄rs‖2
Pr

16: repeat
17: i← i+ 1
18: β̂(i) = Re(sHHx̂(i−1))

x̂H(i−1)HHHx̂(i−1)+Kσ2
n

19: Solve the convex problem P̃(s, β̂(i)) to obtain x̂(i)
20: until ‖x̂(i)− x̂(i− 1)‖2 ≤ ε
21: x̃ = x̂(i)

22: β̃ = Re(sHHx̃)
x̃HHHHx̃+Kσ2

n

23: M̃SE = sHs− Re(2β̃sHHx̃) + β̃2x̃HHHHx̃+Kβ̃2σ2
n

24: return M̃SE, x̃, β̃
25: end function
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3.2 MMSE Vector Perturbation Precoding with

Per-Antenna-Group Power Constraints

In Section 3.1 we investigated a couple of existing techniques which do not attend

any optimization dealing with per-antenna-group power constraints. In this section

we attempt to optimize the system from the scratch in terms of minimizing the MSE

of the received signal. Let us express the MSE as [51, 84]

MSE = En

[‖r− s‖2]
= sHs− Re(2βsHHx)

+ β2xHHHHx+Kβ2σ2
n. (3.12)

The objective is to find the optimal x, s and β (without loss of generality we

assume that β is a positive real number) subject to the per-antenna-group power

constraints through the following optimization.

P =

{
min
x;s;β

MSE
s.t. ‖xr‖2 ≤ Pr ∀r. (3.13)

The optimization problem (3.13) is not convex. However, we show that it can be

effectively solved through a combination of convex optimization and lattice search.

We call the minimizers of the above problem xopt, sopt = a + τp4 and βopt, and the

minimum value of MSE as MSEmin. Suppose that s is given, so we have the following

intermediate problem

P̃(s) =
{

min
x;β

MSE
s.t. ‖xr‖2 ≤ Pr ∀r. (3.14)

Although this problem is still not convex with respect to both β and x, when x and

s are given, it is convex with respect to β. In this case, the optimal β = β̃ can be

easily obtained by taking a derivative of the MSE in (3.12) with respect to β to yield

β̃ =
Re(sHHx)

xHHHHx+Kσ2
n

. (3.15)

The problem (3.14) is also convex with respect to x for a given β. The following

lemma states Karush-Kuhn-Tucker (KKT) conditions for this case.

Lemma 3.1 The optimization problem (3.14) for a given β is convex and from KKT

conditions we have

x̃ = β
(
β2HHH+

B∑
r=1

ν̃rJr

)−1
HHs, (3.16)

where x̃ and ν̃ = [ν̃1, · · · , ν̃B]T � 0 are primal and dual optimal points, respectively,

and Jr = diag[0T

(r−1)Nt
1T

Nt
0T

(B−r)Nt
]T.
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Proof. See Appendix C.

Now the problem (3.14) can be effectively solved by an iterative convex optimiza-

tion with CVX software [85]. We start from a positive β and solve the problem with

respect to x. Then we substitute the resulting x, which is in the form of (3.16), into

(3.15) to obtain the corresponding β (note that this substitution always leads to a

positive β because the denominator in (3.15) is positive and the numerator in (3.15)

after plugging x from (3.16) into (3.15) is also positive). We repeat this process until

a stopping criterion is satisfied. We adopt a stopping criterion such that the norm

of the difference between the currently obtained transmitted vector and the previous

one in the iterative algorithm falls below a small pre-defined threshold. To be more

precise, the stopping criterion is characterized by ‖x̂(i)− x̂(i− 1)‖2 ≤ ε, where x̂(i)

and x̂(i− 1) are the transmitted vectors at the iterations i and i− 1 in the iterative

algorithm, respectively. Each iteration of this optimization yields a lower MSE than

in the previous iteration and from the fact that MSE is positive we can conclude that

this iterative optimization converges to a local minimum.

We show that this local minimum is the global minimum of problem (3.14). To

do so, for given x and s, substituting β > 0 (i.e. Re(sHHx) > 0) from (3.15) into

(3.12) will give us the following objective function.

f(x) = sHs− Re2(sHHx)

xHHHHx+Kσ2
n

. (3.17)

Lemma 3.2 The objective function (3.17) is pseudo-convex in domain D = {x|Re(sHHx) >

0}.
Proof. See Appendix D.

Since the objective function given by (3.17) is pseudo-convex and the functions

stating the per-antenna-group power constraints are convex, the local minimum in

(3.14), which is found by the iterative convex optimization, becomes the global min-

imum [86]. Up to now, we can find the optimal values for x and β for a given s.

To find the optimal s we exploit an approach similar to the ∞-sphere encoding. In

other words, we try to minimize MSE over a lattice applying the following procedure.

Whenever we visit a node with a lower MSE, we should be able to reduce the radius

of a Frobenius-norm ball to capture all the nodes with lower MSE than that of the

most recently visited node. To do so, we need a lattice over which we could seek the

optimal perturbing vector.

Let us denote the minimum value for MSE in problem (3.14) as M̃SE(s) for given

s. The following inequality suggests the way of finding sopt.
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Lemma 3.3

sH
(
HHH +

K

ρ
IK
)−1

s ≤ ρ

K
M̃SE(s). (3.18)

Proof. See Appendix E.

Consider the following decomposition [51, 84]

(HHH +
K

ρ
IK)

−1 = LHL, (3.19)

which can be achieved for example by Cholesky factorization. Substituting sopt into

(3.18) , we have the following result.

‖L(a+ τp4)‖2 ≤ ρ

K
MSEmin. (3.20)

Hence, the interpretation of the inequality (3.18) is that the nodes with M̃SE(s)

are inside the ball centered at −La/τ and of the radius 1
τ

√
ρ
K
M̃SE(s). Thus, the

above results confirm that we can enclose the MSE metric in a Frobenius-norm ball,

similarly to the∞-sphere encoding. More precisely, to find the vector p4 we consider

the lattice Λ(L) and nodes in a sphere with the center at −La/τ and the radius R.

Whenever the M̃SE(s) of the currently visited node is less than the best one so far,

we reduce the radius of the sphere accordingly
(
R = 1

τ

√
ρ
K
M̃SE(s)

)
. We repeat this

process until we reach the optimal vector p4.

The per-antenna-group MMSE VP (AG-MMSE-VP) algorithm is summarized in

Table 3.2 (we have used ε = 0.001 in the algorithm’s stopping criterion). Again

we modify the closest point search algorithm of [44] to perform the AG-MMSE-VP.

We also use LLL lattice basis reduction to reduce complexity of the search process.

To be more precise, we use the Decode algorithm of [44] as the main part of our

search algorithm. The instant a new node is visited within the current search ball is

determined by line 20 of the Decode algorithm. Whenever a new node is visited, its

MSE is calculated with the function MeanSquareError in Table 3.2. Finally, the

termination of the lattice search is determined by line 28 of the Decode algorithm.

For the sake of completeness, the Decode algorithm of [44] is presented in Appendix

F.

Simplified AG-MMSE-VP

The AG-MMSE-VP discussed above involves quite a large number of iterations to

generate the optimal values. One simpler approach is to find the perturbing vec-

tor from the scaled MMSE vector perturbation (i.e. from (3.7)) and then plug the
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resulting perturbing vector into the function MeanSquareError in Table 3.2 to

generate the values of x and β. In the next section we provide the numerical results

of this algorithm.
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Figure 3.2: BER for channel inversion, regularized channel inversion, ∞-sphere en-
coder, conventional vector perturbation (VP), scaled MMSE VP, per-antenna-group
MMSE VP (AG-MMSE-VP) and simplified AG-MMSE-VP; B = 3, Nt = 2, K = 6.
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Figure 3.3: BER of channel inversion, regularized channel inversion, ∞-sphere en-
coder, conventional vector perturbation (VP), scaled MMSE VP, per-antenna-group
MMSE VP (AG-MMSE-VP) and simplified AG-MMSE-VP; B = 6, Nt = 1, K = 6.
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3.3 Simulation Results

We consider two scenarios in our simulations; In the first scenario, a MIMO-BC with

B = 3, Nt = 2 and 6 single-antenna users, and in the second scenario, a MIMO-BC

with B = 6, Nt = 1 and 6 single-antenna users. The second scenario is actually

the case of per-antenna power constraints. The performance metric is bit error rate

(BER) versus nominal SNR ρ for the discussed precoding algorithms. We assume

that the total power P = 1 and the powers available to all groups are the same, i.e.

P1 = P2 = · · · = PB = 1/B. The QPSK constellation is used for data input and for

this constellation we assume that τ = 2
√
2 (recall that τ is a scaling factor which

avoids the constellation overlap due to the perturbation). The results are obtained

by averaging over 200000 channel realizations.

Fig. 3.2 depicts the BER for the case of B = 3 and Nt = 2 and Fig. 3.3 depicts the

BER for the case of B = 6 and Nt = 1. We observe that AG-MMSE-VP outperforms

conventional vector perturbation and the ∞-sphere encoder significantly, as it takes

into account the noise in the optimization process. For example, for the case of

B = 3 and Nt = 2, proposed method achieves about 3dB power gain over the ∞-

sphere encoding at BER=10−2. We also include the simulation results for two linear

precoding techniques: channel inversion and the regularized channel inversion [33].

Note that the BER for B = 3 and Nt = 2 is less than that for B = 6 and Nt = 1

due to its more relaxed constraints on the power. Both ∞-sphere encoding and

conventional vector perturbation employ channel inversion as the front-end precoding.

When considering MMSE-based vector perturbation techniques like scaled MMSE

vector perturbation, AG-MMSE-VP and its simplified version, we observe that they

exhibit better performance than vector perturbation techniques employing channel

inversion as the front-end precoder. Simplified AG-MMSE-VP for low SNRs behaves

almost similarly to its complete version (AG-MMSE-VP) and as SNR increases the

gap between their performance increases. It turns out that AG-MMSE-VP at high

SNRs comes up with a node of lower MSE.

Fig. 3.4(a) and Fig. 3.4(b) depict the complementary cumulative distribution

function (CCDF) of the relative additional complexity of the discussed algorithms

with respective to conventional vector perturbation. We express complexity in terms

of floating point operations (FLOPs) per channel use. In each channel use and during

the lattice search, whenever we visit a node we count FLOPs required for calculat-

ing the corresponding metric, such as the MSE-metric or ∞-norm. As the discussed

algorithms start with the initial lattice node obtained by conventional vector pertur-

bation, we define the relative additional complexity as the ratio of the complexity of a
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Figure 3.4: CCDF of relative additional complexity w.r.t. conventional vector pertur-
bation (VP) for (a)∞-sphere encoder, scaled MMSE VP and simplified per-antenna-
group MMSE VP (simplified AG-MMSE-VP) (b) per-antenna-group MMSE VP (AG-
MMSE-VP).

given precoding algorithm to the complexity of the conventional vector perturbation.

The complexity of AG-MMSE-VP is much higher than that of the other algorithms

because of its optimality and more specifically because it calculates the MSE metric

via an iterative convex optimization with quite high complexity for each node.

We observe from Fig. 3.4(a) and Fig. 3.4(b) that for smaller number of groups

the complexity is lower. That happens because in this case we have fewer constraints

on the peak power, which allows a lower MSE and consequently smaller initial search

radius. In other words, when we have a smaller number of antenna groups, the algo-

rithms are likely to visit fewer nodes during lattice search, which reduces complexity.

Note that the complexity of the scaled MMSE vector perturbation for both cases of

B = 3 and B = 6 is the same as it considers the sum power constraint. As the

MeanSquareError function in Table 3.2 has almost the same complexity for both

cases, the complexity of the simplified AG-MMSE-VP is also approximately the same

for both cases.

3.4 Conclusions

In this chapter we have studied the optimized vector perturbation precoding with

per-antenna-group power constraints employing the MMSE criterion resulting from

iterative convex optimization and a lattice search. We have demonstrated that the

proposed precoding (AG-MMSE-VP) and the ∞-sphere encoding use the same ap-
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proach, with the difference that the proposed precoding seeks the node with the lowest

MSE instead of ∞-norm over a lattice with the help of a Frobenius-norm ball, whose

radius becomes smaller and smaller until it captures the optimal node.

The simulation results have shown that the proposed algorithm outperforms the

conventional vector perturbation and the ∞-sphere encoding significantly. Further-

more, the complexity of the proposed algorithm has been compared to that of the

∞-sphere encoding and it has been shown that AG-MMSE-VP is more complex due

to its optimality in the sense of minimizing MSE over a lattice. We have also investi-

gated a couple of simplified vector perturbation techniques of reasonable complexity

employing the MMSE criterion.
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Chapter 4

Massive MIMO with Non-Linear
Precoding

In this chapter we consider a massive MIMO system working in the TDD mode and

analyze time domain vector perturbation in a large-system limit when channel state

information (CSI) is imperfect due to pilot contamination. We also consider the im-

pact of user scheduling on performance. We use random matrix methods to avoid

time-consuming Monte-Carlo simulations and get better insight into the problem. We

develop a novel framework for large-system analysis of non-linear precoding and de-

rive the corresponding achievable rates. Furthermore, by employing this framework

we compare non-linear precoding with linear precoding in terms of sum rate under

imperfect CSI. Numerical results show that for moderate number of transmit anten-

nas, time domain vector perturbation outperforms linear precoding in the case of

proportionally fair user scheduling. In the case of fairness enforced by max-min user

scheduling, zero forcing is superior to time domain vector perturbation regardless of

the number of transmit antennas. In addition, time domain vector perturbation pre-

coding results in higher data rates for cell-center users than linear precoding, while

users at the cell edge are better served by linear precoding than by time domain

vector perturbation [74].

The system model is explained in Section 4.1 and TDVP algorithm is discussed in

Section 4.2. The developed large-system analysis of TDVP and its achievable rates

are presented in Section 4.3. Section 4.4 provides the numerical results and Section

4.5 concludes this chapter.
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Figure 4.1: The topology of the system. BS locations are marked by the red triangles;
B = 19 BSs, which are the points of lattice Λbs, are inside the hexagon with the black
boundaries (the coverage area of the system); The cell radius is 1.6 km.

4.1 System Model

The system model in [16] is used as the main framework, into which we incorporate

non-linear precoding. We briefly highlight the main assumptions of this system model.

We consider a multi-cell multi-user MIMO homogeneous network layout of frequency

reuse factor 1 with B base stations working in the TDD mode. Each BS is located

at the center of a hexagonal cell of radius r, which serves single-antenna users. BS

locations are the points of a two-dimensional lattice Λbs = L1Z
2. The coverage area

of the whole system is determined by the Voronoi region V of the lattice Λ = L1L2Z
2,

where Λ ⊆ Λbs and L1L2 is the generator matrix of the lattice Λ with:

L1 =

√
3r

2

[ √
3 0
1 2

]
and L2 =

[
5 −3
−2 5

]
.

To remove border effects at the edge of the coverage region, all distances and coor-

dinates are expressed modulo Λ [16]. Let B = {0, b1, · · · , bB−1} denote the set of BS

locations, where bj ∈ Λbs∩V, ∀j. Fig. 4.1 shows the topology of the system including

the BS locations and the coverage area of the whole system.

We assume that at each time-frequency scheduling unit, users at the spatially

symmetrical locations with respect to the center of cells are being served. Let X =

{x0, x1, · · · , xm−1} define a set of m symmetrical locations with respect to the BS

b = 0. The users at these locations are seen as equivalent-class users as they exhibit

the same condition in terms of path loss. We define a user bin v(X ) as the collection

of user location sets, which is expressed as

v(X ) =
{{X + b|b ∈ B}}. (4.1)
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Figure 4.2: The distribution of user bins over the cell area; The cell radius is 1.6 km.

In other words, the user bin v(X ) encompasses the locations X and their translations

by the BS locations. Fig. 4.2 shows 16 user bins, each consisting ofm = 3 symmetrical

locations.

The users at different user bins are scheduled in different time-frequency scheduling

units such that a fairness criterion like proportional fairness or max-min fairness is

satisfied. The users of the same user bin are scheduled in a round-robin fashion as

they are of equivalent class.

We assume that each user location contains UN users, each BS is equipped with

NtN transmit antennas and each fading block contains TN channel uses, over which

the channel is constant. In our large-system analysis we call N the system size and

let N → ∞. We later observe that to satisfy the rank condition due to employing

the channel inversion as the front-end precoder, the number of scheduled users has

to be less than the number of transmit antennas per BS. In practice, the number of

users at each location set is larger than the number of transmit antennas per BS,

i.e. mUN ≥ NtN , implying that a user scheduling scheme is required. In addition,

we assume that the scheduler selects SN/m users out of UN users at each location

in a round-robin fashion and provides simultaneous service over the same resources

through spatial multiplexing to them. Therefore, to satisfy the rank condition, the

following inequality holds: SN ≤ NtN (or S ≤ Nt. S ∈ [0, Nt] is the loading factor,

which is a real number and can be selected so that a performance metric such as

achievable rate would be optimized. For channel estimation, each user sends pilot

signals on the uplink over TpN channel uses. On the downlink, the BS sends data to

users over TdN = (T − Tp)N channel uses.
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4.1.1 Channel statistics and estimation

The channel model accounts for small-scale Rayleigh fading and path loss. Let g(x, b)

denote the average received power at location x from BS b, which is a polynomial

in the modulo distance dΛ(x, b) between location x and BS b, i.e. g(x, b) = G0/(1 +

(dΛ(x, b)/ϕ)
αpl

), where αpl is the path loss exponent, ϕ is a reference distance at

which the average receive power is G0/2, and G0 is a constant depending on the

transmit power, antenna gains, etc. The channel vector between BS b and user

k ∈ {1, · · · , SN/m} at location x + b′ : x ∈ X is hk,b′,b(x) ∈ CNtN×1, and its entries

are zero-mean i.i.d. complex Gaussian random variables. To have a meaningful large-

system analysis, we assume that the variance of these entries is 1/N . We consider

equal power allocation to the scheduled equivalent-class users and assume that the

assigned power to each user is equal to 1/S. Therefore, the scaled covariance matrix

for the channel between BS b and user k at location x+ b′ : x ∈ X is given by

Gb′,b(x) = NE[hk,b′,b(x)h
H

k,b′,b(x)], (4.2)

where Gb′,b(x) = g(x+ b′, b)INtN ∈ CNtN×1.

Let Φ ∈ CTpN×SN denote the pilot matrix, whose orthonormal columns are pilot

sequences of the scheduled users. To have these SN orthogonal sequences in the space

of dimension TpN , we must have S ≤ Tp. Together with the rank condition discussed

before, we can write S ≤ min(Nt, Tp).

The matrix Φ is reused in all cells. Received signal matrix at BS b during the

channel estimation phase is written as

Yb =
∑
b′

ΦHH

b′,b(X ) +Nb, (4.3)

where Hb′,b(X ) ∈ CNtN×SN is the aggregate channel matrix between BS b and the

users at cell b′ and Nb ∈ CTpN×NtN is the white Gaussian noise matrix. By projecting

the received signal onto the pilot signal space, the projected signal for user k at

location x+ b : x ∈ X becomes

rk,b(x) =
∑
b′

hk,b′,b(x) + nk,b(x). (4.4)

Equation (4.4) shows that the estimate of the channel hk,b,b(x) from the projected

signal rk,b(x) is contaminated by the channel vectors of the users with the same pilot

sequence at other cells. This effect is called pilot contamination. The MMSE estimate

of the channel hk,b′,b(x) at BS b is given by

ĥk,b′,b(x) = Gb′,b(x)
[
(ρulS)−1INtN +

∑
b′′∈B

Gb′′,b(x)
]−1

rk,b(x), (4.5)
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where ρul is the signal-to-noise ratio of the received signal during the channel estima-

tion phase. The actual channel vector is written as the sum of the estimated channel

vector and the estimation error vector, i.e.

hk,b′,b(x) = ĥk,b′,b(x) + ek,b′,b(x), (4.6)

where ĥk,b′,b(x) and ek,b′,b(x) are both complex Gaussian random vectors and are

mutually independent. The covariance matrices of these vectors are

Ξb′,b(x) = NE[ĥk,b′,b(x)ĥ
H

k,b′,b(x)], (4.7)

and

Σb′,b(x) = NE[ek,b′,b(x)e
H

k,b′,b(x)]. (4.8)

where Ξb′,b(x) = ξb′,b(x)INtN and Σb′,b(x) = σb′,b(x)INtN . It can be easily shown that

ξb′,b(x) and σb′,b(x) are related to the average channel power gains as

σb′,b(x) =
g(x+ b′, b)
1 + γb′,b(x)

(4.9)

and

ξb′,b(x) = g(x+ b′, b)− σb′,b(x) =
g(x+ b′, b)

1 + γb′,b(x)−1
, (4.10)

where

γb′,b(x) =
g(x+ b′, b)

(αulQS)−1 +
∑

b′′∈B\b′ g(x+ b′′, b)
. (4.11)

Following the discussion in [16], useful properties which relate the channel vector

hk,b′,b(x) to the estimate ĥk,b,b(x) can be obtained in the following forms

ĥk,b′,b(x) = Gb′,b(x)G
−1
b,b (x)ĥk,b,b(x) (4.12)

and

hk,b′,b(x) = Gb′,b(x)G
−1
b,b (x)ĥk,b,b(x) + ek,b′,b(x), (4.13)

where ĥk,b,b(x) and ek,b′,b(x) are mutually independent. We make use of Equations

(4.12) and (4.13) to derive the achievable rate of TDVP.
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4.1.2 User scheduling

Let {v(X0), · · · , v(XK−1)} denote the set ofK user bins, which uniformly partition the

coverage region V [16]. Suppose the spectral efficiency in bit/s/Hz for each bin v(Xk)

with the given load factor 0 ≤ S ≤ min(Nt, Tp) is represented by rk,S. Therefore [16]

the maximum bin spectral efficiency for bin v(Xk), taking into account the overhead

of pilot sequences, can be written as

r�k = max
S

max{1− S/T, 0}rk,S. (4.14)

Note that in Equation (4.14) we use the fact that the number of channel uses for

sending pilot sequences is less than the number of channel uses over which the channel

is constant, i.e. Tp ≤ T .

The scheduler assigns the fraction ρk of time-frequency slots to bin v(Xk). With

proportionally fair user scheduling, we attempt to maximize the sum of the logarithm

of the average rates given by

max
{ρk}

∑K−1
k=0 log(ρkr

�
k)

s.t.
∑K−1

k=0 ρk = 1.

(4.15)

With max-min fairness we attempt to maximize the minimum average rate given by

max
{ρk}

mink(ρkr
�
k)

s.t.
∑K−1

k=0 ρk = 1.
(4.16)

Consequently, with the proportionally fair user scheduling ρk = 1/K and with the

max-min fair scheduling ρk =
1
r�
k∑K−1

j=0
1
r�
j

[16].

4.2 TDVP Precoding and Received Signal Model

In this section, we explain TDVP precoding. Let ak,b(x) ∈ CTdN×1 denote the data

vector intended for user k at location x+ b : x ∈ X . According to the power budget

for the scheduled users, the average power of the user data signal is less than or equal

to 1/S, i.e.

1

TdN

TdN∑
i=1

|uik,b(x)|2 ≤
1

S
, ∀k, b, x (4.17)

where superscript i denotes the time index. Let us define the lattice Λu of dimension

TdN with the Voronoi region Vu. We assume that the second moment σ2(Vu) of this

56



lattice is 1/S, i.e.

σ2(Vu) =
1

(TdN)V

∫
Vu

‖x‖2 dx =
1

S
, (4.18)

where V is the volume of Vu. Accordingly, the normalized second moment is defined

as

G(Λu) �
σ2(Vu)

V 1/(TdN)
. (4.19)

Normalized second moment of a lattice is always lower bounded by 1
πe
, the normalized

second moment of an infinite-dimensional sphere. There exist lattices whose Voronoi

region approaches a sphere in a sense that its normalized second moment goes to
1
πe

as the lattice dimension goes to infinity [87]. We say that such lattices are good

lattices for quantization. We assume that the lattice Λu is a good lattice and the user

data vectors {ak,b(x)} are independent and uniformly distributed over Vu.

The main idea behind TDVP [54] is to relax the user data vectors {ak,b(x)} into

the lattice Λu by adding a lattice point to them such that the average total power is

minimized at each transmitter in a sequential fashion. Let fk,b(x) denote the beam-

forming vector employed at BS b for user k at location x+b : x ∈ X . The minimization

of the average total power at BS b is formulated as

min
{s̃k,b(x)}

s̃k,b(x)∈{ak,b(x)+Λu}

1

TdN
tr

(∑
x′∈X

SN/m∑
k′=1

s̃k′,b(x
′)fHk′,b(x

′)fk′,b(x′)̃s H

k′,b(x
′)

)
. (4.20)

The minimization (4.20) seeks the perturbed data vectors {s̃k,b(x)} yielding the min-

imum transmit power at BS b. As mentioned, this perturbation is done by adding a

point from lattice Λu to data vectors, formulated as s̃k,b(x) = ak,b(x) +pk,b(x), where

pk,b(x) ∈ Λu. Let the vectors {sk,b(x) = ak,b(x) + p�
k,b(x) ∀k, x} denote the minimiz-

ers of the power minimization problem (4.20) at BS b, where p�
k,b(x) ∈ Λu ∀k, b, x.

In other words the vector sk,b(x) is the perturbed data vector for user k at location

x+ b : x ∈ X .

4.2.1 TDVP precoding

TDVP algorithm sequentially obtains the perturbed data vectors, implying that user

ordering should be performed in advance. Let π(k, x) = j represent an ordering, which

says that the position of user k at location x+ b : x ∈ X ∀b is j in the ordering π(., .).

Note that without loss of generality we assume that all cells use the same mapping

for user ordering. According to the ordering π(., .), we stack the user channel vectors,
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beamforming vectors and transmit vectors into to the columns of matrices Ĥ
(π)

b,b , F
(π)
b

and S
(π)
b , respectively. Rewriting (4.20) in terms of these aggregate matrices yields

min
S̃
(π)
b

[S̃
(π)
b

]j∈{[A(π)
b

]j+Λu}

1

TdN
tr
(
S̃
(π)
b

[
F

(π)
b

]H
F

(π)
b

[
S̃
(π)
b

]H)
, (4.21)

where [X]j is the jth column of an arbitrary matrix X.

QR decomposition of the channel matrix plays a key role in the sequential algo-

rithm of TDVP. Applying QR decomposition to the channel matrix yields

Ĥ
(π)

b,b = Q
(π)
b D

(π)
b , (4.22)

where Q
(π)
b has orthonormal columns and D

(π)
b is upper triangular. We assume that

the beamforming matrix is a normalized version of pseudo-inverse of the channel

matrix. This normalization results in assigning equal power to all users. Thus we

have

F
(π)
b = Q

(π)
b

[
D

(π)
b

]−H
diag(D

(π)
b ). (4.23)

The minimization problem (4.21) now becomes

min
S̃
(π)
b

[S̃
(π)
b

]j∈{[A(π)
b

]j+Λu}

1

TdN
‖S̃(π)

b diag(D
(π)
b )
[
D

(π)
b

]−1‖2. (4.24)

In the following, we attempt to solve (4.24) in a sequential fashion. To simplify the

notation, we drop the subscript for the BS and the superscript for user ordering. Let

D̆ = diag(D
(π)
b )
[
D

(π)
b

]−1
. Therefore D̆ is upper triangular with the entries {D̆i,j}. In

addition, let S̃ = S̃
(π)
b , T = S̃

(π)
b D̆ and A = A

(π)
b . The jth column of S̃, T and A is

represented by s̃j, tj and aj , respectively. Thus we have

tj =

j∑
i=1

D̆ij s̃i. (4.25)

According to (4.24), our objective is to minimize the norm of matrix T, such

that the data vector would be perturbed over the lattice Λu. In a naive approach,

suppose we have already found the optimal vectors s1, s2, · · · , sj−1 and we would like

now to obtain the optimal vector sj . We force the column tj to become zero in

order to minimize the norm of T. Therefore, setting tj = 0 results in the following

intermediate vector s̃j

s̃j = − 1

D̆jj

j−1∑
i=1

D̆ijsi = aj + γ
�
j . (4.26)
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However, γ�
j may not lie in the lattice Λu. To force γ

�
j into the lattice, the quantization

over the lattice is employed as follows

p�
j = QVu

(γ�
j) = QVu

(−aj − 1

D̆jj

j−1∑
i=1

D̆ijsi). (4.27)

Now the actual perturbed data vector sj is expressed as

sj = aj + p�
j

= − 1

D̆jj

j−1∑
i=1

D̆ijsi + [−aj − 1

D̆jj

j−1∑
i=1

D̆ijsi] mod Λu

= − 1

D̆jj

j−1∑
i=1

D̆ijsi + ãj , (4.28)

where we introduced the intermediate vector ãj as

ãj = [−aj − 1

D̆jj

j−1∑
i=1

D̆ijsi] mod Λu. (4.29)

From the following lemma we can conclude that the intermediate vector ãj ∀j is

uniformly distributed over the Voronoi region of Λu. Additionally, ãi and ãj are

mutually independent ∀ i, j, i �= j.

Lemma 4.1 [87, Lemma 1] Suppose X is a random vector and A is an independent

random vector, which is uniformly distributed over the Voronoi region of a lattice Λ.

Then Y = [X + A] mod Λ is uniformly distributed over the Voronoi region and is

independent from X.

Proof. See the proof of [87, Lemma 1] .

Let us rewrite (4.28) in the following form:

ãj =
1

D̆jj

j∑
i=1

D̆ijsi,

or

Ã = SD̆ diag(D̆−1). (4.30)

where Ã = [ã1 · · · ãSN ]. We also have

S = Ã diag(D̆)D̆−1. (4.31)
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Ã contains auxiliary vectors {ãj} as its columns, which are only useful to simplify the

analysis. We need to relate these auxiliary vectors to the actual data vectors {aj}.
To do so, we apply the modulo operation to (4.28) yielding

aj = [sj ] mod Λu = [− 1

D̆jj

j−1∑
i=1

D̆ijsi − ãj ] mod Λu. (4.32)

Similarly, from Lemma 4.1 we can observe that aj is independent from ãi ∀i, j, i �= j.

Note that aj is not necessarily independent from ãj . Applying the corresponding

scripts for the BS and user ordering, we have

S
(π)
b = Ã

(π)
b D

(π)
b diag(

[
D

(π)
b

]−1
), (4.33)

and thus from (4.33) and (4.23) we can write

S
(π)
b

[
F

(π)
b

]H
= Ã

(π)
b

[
Q

(π)
b

]H
. (4.34)

4.2.2 Received signal model

Now we move forward to express the received signals at users. In particular, the

received signal at user k at location x ∈ X of cell b = 0 is written as

y
k,0
(x) = sk,0(x)f

H

k,0(x)hk,0,0(x)

+
∑
j 
=k

sj,0(x)f
H

j,0(x)hk,0,0(x) +
∑

x′∈X\x

∑
j

sj,0(x
′)fHj,0(x

′)hk,0,0(x)

+
∑
b′ 
=0

∑
x′∈X

∑
j

sj,b′(x
′)fHj,b′(x

′)hk,0,b′(x) + nk,0(x), (4.35)

where nk,0(x) is the white noise vector. From (4.34), we can also write the received

signal as

y
k,0
(x) = ãk,0(x)q

H

π(k,x),0hk,0,0(x)

+
∑
j 
=k

ãj,0(x)q
H

π(j,x),0hk,0,0(x) +
∑

x′∈X\x

∑
j

ãj,0(x
′)qH

π(j,x′),0hk,0,0(x)

+
∑
b′ 
=0

∑
x′∈X

∑
j

ãj,b′(x
′)qH

π(j,x′),b′hk,0,b′(x) + nk,0(x). (4.36)

The signal representation in (4.36) suffers from the fact it is written in terms of

the auxiliary vector ãk,0(x) and not the actual data vectors ak,0(x). To address this,

we apply modulo operation to both sides of (4.36). After some algebra, particularly
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Figure 4.3: (a) Block diagram of BS b including TDVP precoding of the actual data;
QV(.) acts on the columns of its input matrix. (b) Equivalent block diagram of BS b
for the transmission of the auxiliary data.

using (4.32) and (4.6), we have

[ 1

D
(π,0)
π(k,x),π(k,x)

y
k,0
(x)
]
mod Λu =

[ useful signal︷ ︸︸ ︷
ak,0(x) +

intra-cell interference︷ ︸︸ ︷
1

D
(π,0)
π(k,x),π(k,x)

∑
x′∈X

∑
j

ãj,0(x
′)qH

π(j,x′),0ek,0,0(x)

+
1

D
(π,0)
π(k,x),π(k,x)

∑
b′ 
=0

∑
x′∈X

∑
j

ãj,b′(x
′)qH

π(j,x′),b′hk,0,b′(x)︸ ︷︷ ︸
inter-cell interference

+
1

D
(π,0)
π(k,x),π(k,x)

nk,0(x)︸ ︷︷ ︸
noise

]
mod Λu,

(4.37)

where D
(π,b)
i,j is the element (i, j) of the matrix D

(π)
b . Equation (4.37) is the fundamen-

tal stage in deriving achievable rate as discussed in the next section. To have a clear

picture of how TDVP precoding works, the block diagram of BS b is shown in Fig.

4.3(a). Fig. 4.3(b) shows the equivalent block diagram of BS b for the transmission

of the auxiliary Ã
(π)
b .

4.3 Achievable Rates

This section considers the achievable rates resulting from the precoding scheme dis-

cussed before in the massive MIMO regime. The starting point to derive the achiev-
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able rates is the input-output relation (4.37). The following lemma helps explain how

the achievable rate can be reached.

Lemma 4.2 [54] Suppose x with the average power Px is uniformly distributed over

the lattice Λ of dimension n, which is a good lattice for quantization and n is an

independent noise vector with the average power Pn. If we have the following input-

output relation

y = [x+ n] mod Λ, (4.38)

then the following rate is achievable

r =

{
Px log(e)

ePn
if Px

Pn
≥ e

log
(
Px

Pn

)
if Px

Pn
< e

(4.39)

Proof. [54] has outlined the proof. For the sake of completeness and consistency, see

Appendix G.

We next derive an expression for the signal to interference-plus-noise ratio (SINR)

for the k-th user with order π(k, x), given by equation (4.40), and then substitute it

in (4.39) from Lemma 4.2 to obtain the corresponding achievable rate for the k-th

user with order π(k, x).

Px

Pn
=

E(|useful sig.|2 | fHk,0(x), ĥk,0,0(x))

E(|interfer. plus noise|2 | fHk,0(x), ĥk,0,0(x))
. (4.40)

We know that Px = 1/S. From (4.37) we observe that the interference includes intra-

cell interference and inter-cell interference. Intra-cell interference can be expressed

as
1

TdN
[
D

(π,0)
π(k,x),π(k,x)

]2E[ tr(Ã0

[
Q

(π)
0

]H
ek,0,0(x)e

H

k,0,0(x)Q
(π)
0 ÃH

0

)]
=

σ0,0(x)

[D
(π,0)
π(k,x),π(k,x)

]2 . (4.41)

The following useful property can be used to simplify the inter-cell interference

qH

π(k,x),bĤ
(π)

b,b = qH

π(k,x),bQ
(π)
b D

(π)
b

= [0, 0, 0, · · · , D(π,b)
π(k,x),π(k,x), D

(π,b)
π(k,x),π(k,x)+1, · · · , DSN,SN ]. (4.42)

For the inter-cell interference, using (4.42) and (4.13), we have

1

D
(π,0)
π(k,x),π(k,x)

∑
b′ 
=0

∑
x′∈X

∑
j

ãj,b′(x
′)qH

π(j,x′),b′hk,0,b′(x) + nk,0(x)

=
1

D
(π,0)
π(k,x),π(k,x)

∑
b′ 
=0

∑
x′∈X

∑
j

ãj,b′(x
′)qH

π(j,x′),b′

[
G0,b′(x)G

−1
b′,b′(x)ĥk,b′,b′(x) + ek,0,b′(x)

]
.

(4.43)
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After some algebra, the power of inter-cell interference can be expressed as

1

S
[
D

(π,0)
π(k,x),π(k,x)

]2E
[∑

b′ 
=0

∑
π(j,x′)≤π(k,x)

[ g(x, b′)
g(x+ b′, b′)

]2[
D

(π,b′)
π(j,x′),π(k,x)

]2]

+
∑
b′ 
=0

σ0,b′(x)

[D
(π,0)
π(k,x),π(k,x)

]2 . (4.44)

The following lemma states how to simplify the expression for the power of inter-cell

interference.

Lemma 4.3 For the channel matrix which consists of equivalent users, i.e. g(x +

b, b) = g(x, 0) = Ḡ ∀x ∈ X with the following QR decomposition, in the case that

N →∞

Ĥ
(π)

b,b = Q
(π)
b D

(π)
b , (4.45)

we have

D
(π,b)
j,i ∼ CN

(
0,
Ḡ

N

)
, j < i (4.46)

and [
D

(π,b)
i,i

]2 ∼ N(Ḡ(Nt − i/N + 1/N), Ḡ2(Nt − i/N + 1/N)/N
)
. (4.47)

Proof. See Appendix H.

Therefore, from Lemma 4.3 we can write∑
π(j,x′)≤π(k,x)

E
[
D

(π,b′)
π(j,x′),π(k,x)

]2
=
Ḡ(NtN − i+ 1)

N
+ (i− 1)

Ḡ

N
= ḠNt. (4.48)

Now the power of inter-cell interference in (4.44) can be simplified to

ḠNt

S
[
D

(π,0)
π(k,x),π(k,x)

]2 ∑
b′ 
=0

[g(x, b′)
Ḡ

]2
+
∑
b′ 
=0

σ0,b′(x)

[D
(π,0)
π(k,x),π(k,x)

]2 . (4.49)

Finally by plugging the derived power of useful signal and interference plus noise

signal into (4.40), the SINR for user k at location x with ordering π(k, x) is written

as

Px

Pn

=

[
D

(π,0)
π(k,x),π(k,x)

]2
/S

1 + α + βḠNt/S
, (4.50)

where

α =
∑
b′∈B

σ0,b′(x) (4.51)
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and

β =
∑
b′ 
=0

[g(x, b′)
Ḡ

]2
. (4.52)

Finally, according to Lemma 4.2, the achievable rate for a user with ordering i at the

reference cell b = 0 is given by

ri =

⎧⎨⎩
D2

i,i log(e)

eS(1+α+βḠNt/S)
if D2

i,i ≥ eS(1 + α + βḠNt/S),

log
( D2

i,i

S(1+α+βḠNt/S)

)
if D2

i,i < eS(1 + α + βḠNt/S).
(4.53)

Taking into account that D2
i,i is a Gaussian random variable with the statistics

given by (4.47), the expectation of ri in (4.53) becomes

E[ri] =

∫ eS(1+α+βḠNt/S)

−∞

x log(e)

eS(1 + α + βḠNt/S)
fi(x) dx

+

∫ +∞

eS(1+α+βḠNt/S)

log
( x

S(1 + α + βḠNt/S)

)
fi(x) dx, (4.54)

where fi(x) is the probability density function of D2
i,i given by

fi(x) =
1√
2πσ2

i

e
−(x−μi)

2

2σ2
i , (4.55)

where the average and variance of D2
i,i are represented by

μi = Ḡ(Nt − i/N + 1/N) (4.56)

and

σ2
i = Ḡ2(Nt − i/N + 1/N)/N, (4.57)

respectively.

The following lemma gives a useful property related to the probability density

function fi(x).

Lemma 4.4

1

N

SN∑
i=1

fi(x) = f(x) =
1

Ḡ

[
U(x− Ḡ(Nt − S))− U(x− ḠNt)

]
, (4.58)

where U(.) is the unit step function.
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Proof. See Appendix I.

Using (4.54) and (4.58) of Lemma 4.4, the average achievable sum rate per cell

for all scheduled users is given by

r =
1

N

SN∑
i=1

E[ri] =

∫ eS(1+α+βḠNt/S)

−∞

x log(e)

eS(1 + α + βḠNt/S)

1

N

SN∑
i=1

fi(x) dx

+

∫ +∞

eS(1+α+βḠNt/S)

log
( x

S(1 + α + βḠNt/S)

) 1
N

SN∑
i=1

fi(x) dx

=

∫ eS(1+α+βḠNt/S)

−∞

x log(e)

eS(1 + α + βḠNt/S)
f(x) dx

+

∫ +∞

eS(1+α+βḠNt/S)

log
( x

S(1 + α + βḠNt/S)

)
f(x) dx. (4.59)

After some algebra, (4.59) can be simplified as

r =

⎧⎨⎩
ψ(S) if eS(1 + α + βḠNt/S) > ḠNt

ϕ(S) if Ḡ(Nt − S) < eS(1 + α + βḠNt/S) ≤ ḠNt

ω(S) if eS(1 + α + βḠNt/S) ≤ Ḡ(Nt − S),
(4.60)

where

ψ(S) =
Ḡ(2Nt − S) log(e)

2e(1 + α + βḠNt/S)
, (4.61)

ϕ(S) =
log(e)

2ḠeS(1 + α + βḠNt/S)

[
e2S2(1 + α + βḠNt/S)

2 − Ḡ2(Nt − S)2
]
, (4.62)

+
1

Ḡ

[
− (ḠNt − eS(1 + α + βḠNt/S) log(S(1 + α+ βḠNt/S))

+ ḠNt(log(ḠNt)− 1)− eS(1 + α + βḠNt/S)(log(eS(1 + α + βḠNt/S))− 1)
]

ω(S) = −S + S log(Ḡ) +Nt log(Nt)− (Nt − S) log(Nt − S)− S log(S(1 + α + βḠNt/S)).
(4.63)

From (4.60) asymptotic results when Nt → ∞ (the number of BS antennas per

user increases to infinity) can be given by

lim
Nt→∞

r =

{
S log(e)

eβ
if 1

β
< e,

S log( 1
β
) if 1

β
≥ e.

(4.64)

For matched filter (MF) and zero forcing (ZF) precoding we have limNt→∞ r =

S log(1 + 1
β
).

Let us distinguish between two asymptotic results, which we derived in this Chap-

ter. The achievable sum rate in (4.60) is obtained when N → ∞. The physical
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meaning of this asymptotic result is that we increase the size of the system to sim-

plify the analysis. In other words, this mathematical manipulation of the system

makes possible the use of random matrix methods. Although we analyze the system

in the large limit, still the results are applicable to a limited-size system due to the

fast convergence of the eigenvalues of random matrices. Additional asymptotic result

given by (4.64) when Nt → ∞ applies to the massive MIMO regime when only the

interference due to pilot contamination exists.

4.4 Numerical Results

We assume that there are B = 19 BSs in the system. Each cell contains K = 16 user

bins and each user bin contains m = 3 symmetric user locations. Therefore, there are

48 user locations per cell, which are uniformly distributed over the cell area as shown

in Fig. 4.2. The parameters for the channel model are as follows: G0 = 106, ϕ = 0.1

km and αpl = 3.8. We set the coherence block length factor T = 84.

Fig. 4.4(a) shows the asymptotic achievable rate resulting from (4.64) divided

by loading factor S for TDVP and ZF as Nt → ∞. In other words, Fig. 4.4(a)

depicts the asymptotic achievable rate per user versus 1/β. Fig. 4.4(b) demonstrates

the distribution of 1/β for all 48 user locations. 1/β is SINR when Nt → ∞. Fig.

4.4(a) demonstrates that at large SINR there is no difference between TDVP and

ZF. However, at low SINRs ZF can outperform TDVP and that is because of the

shaping loss of the lattice used in TDVP. It is interesting to observe that most of user

locations lie in an SINR interval, where ZF performs better than TDVP in the case

of Nt →∞.

In the following results concerning achievable rate we use (4.14), implying that

the derived achievable rates are optimized over the loading factor S. Now we consider

cases where the array size factor Nt is limited. Fig. 4.5 shows the achievable rate

of TDVP normalized by that of ZF when Nt = 10 for all 16 user bins. For users

at the center of the cell, TDVP achieves higher rates and for users at the cell edge

ZF is superior. We can observe the same trend in Figs. 4.6 and 4.7, which show

the normalized achievable rates for Nt = 200 and Nt = 10000, respectively. As Nt

increases the center users get almost the same rates from both TDVP and ZF, while

the edge users will be allocated higher rates from ZF than TDVP, confirming the

results of Fig. 4.4(a).

Fig. 4.8 shows the cell throughput of TDVP, ZF and MF with proportionally

fair (PF) user scheduling versus antenna array size factor Nt. We assume that the

bandwidth of the system is 20 MHz. For small and moderate antenna array size
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factors, TDVP provides higher rates because it serves center users better. However,

for large antenna array size factors TDVP is inferior to ZF because both of them

treat the center users almost equally, but ZF serves cell edge users much better than

TDVP.

Fig. 4.9 shows the cell throughput of TDVP, ZF and MF with max-min fair user

scheduling versus antenna array size factor Nt. Max-min user scheduling increases the

rates of users under poor channel conditions at a cost of reducing rates of users ex-

periencing better channels. Consequently, ZF performs better than TDVP regardless

of the antenna array size factor Nt in the case of max-min fair user scheduling.

4.5 Conclusions

We have presented an analytic framework to characterize the performance of a non-

linear precoding technique relying on time-domain vector perturbation in a massive

MIMO system. We have considered the impact of imperfect CSI on performance. In

addition, we have taken into account the role of user scheduling and how it affects

the performance of linear and non-linear precoding techniques.

Numerical results show that for a moderate number of transmit antennas and in

the presence of proportionally fair user scheduling, time domain vector perturbation

outperforms linear precoding. Under the max-min fair user scheduling zero forcing

becomes superior regardless of the number of transmit antennas.
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Figure 4.4: (a) Asymptotic achievable rate per user for zero forcing (ZF)/matched
filtering (MF) and TDVP precoding techniques as Nt → ∞. (b) Histogram of 1/β
for all user locations.
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Figure 4.5: The achievable rate of TDVP normalized by that of ZF for Nt = 10.

Figure 4.6: The achievable rate of TDVP normalized by that of ZF for Nt = 200.

Figure 4.7: The achievable rate of TDVP normalized by that of ZF for Nt = 10000.
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Figure 4.8: Cell throughput under proportionally fair scheduling.
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Figure 4.9: Cell throughput under max-min fair scheduling.
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Chapter 5

Massive MIMO with Clustered
Pilot Contamination Precoding

In this chapter, a practical approach to pilot contamination precoding (PCP) for

massive MIMO is proposed using a joint clustering and pilot reuse approach. We

also introduce power scaling to enforce per-base station (BS) power constraints. We

consider a massive MIMO system, where uncoordinated conventional beamforming is

implemented in each cell. PCP acts as outer linear precoding prior to conventional

beamforming through a cooperative transmission scheme with 3 base stations (BSs)

involved. We partition each cell into 3 sectors and assign pilot sequences in a suitable

way in order to perform PCP.

In order to characterize performance without time-consuming simulations, we em-

ploy large system analysis and random matrix theory. Numerical results show that

the superiority of the clustered PCP is marginal for the moderate number of transmit

antennas, but it becomes more significant in a massive MIMO mode. Depending on

user location, some users may experience a two-fold increase in spectral efficiency

after applying clustered PCP in the massive MIMO mode [75].

Section 5.1 presents the system model and topology. Section 5.2 introduces the

proposed joint clustering and pilot reuse approach and Section 5.3 discuses the achiev-

able rates. The numerical results are provided in Section 5.4 and the conclusion of

this chapter is presented in Section 5.5.

5.1 System Model

5.1.1 Topology and pilot assignment

We follow the system model of [16] and apply our new clustering and pilot reuse

scheme for PCP to it. The system model of [16] incorporates a family of TDD
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Figure 5.1: Pilot assignment to PCP cluster b = 0.

network MIMO schemes, characterized by the size of a cluster of coordinated BSs

B (B BSs are fully coordinated through joint transmission on the downlink), pilot

reuse Q and frequency reuse factor F . We assume that there are M = 19 BSs in the

system whose locations are the nodes of the lattice Λbs = L1Z
2 with the generator

matrix L1. The coverage area is determined by the Voronoi region V of the lattice

Λ = L1L2Z
2. The set of BS locations is defined by B = {b|b ∈ Λbs∩V}. All distances

and coordinates are expressed modulo Λ to remove the border effects [16].

A set of m symmetric locations at each cluster is defined as a user bin. These

symmetric locations exhibit the same conditions in terms of path loss and contain

equivalent-class users. At each time-frequency slot, a subset of users located at the

same user bin is selected to be served through a bin-optimized transmission scheme.

Different user bins are scheduled over time-frequency slots such that a fairness cri-

terion (e.g. proportional fairness) is satisfied. The users of the same user bin are

scheduled in a round-robin fashion. Moreover, we assume that each user bin consists

of mUN users, each BS is equipped with NtN transmit antennas and each fading

block has TN degrees of freedom. In our large-system analysis we call N the system

size and let N →∞.

Our joint clustering and pilot reuse scheme for PCP is only applicable to a system

with B = F = Q = 1. The m locations at the cell b = 0 (forming a set X ) are

partitioned into 3 subsets X0,X1 and X2, where Xi = {xi,0, · · · , xi,m/3−1}. The user

locations at a cell b then become {X0 ∪ X1 ∪ X2}+ b.

Let Φ ∈ CTpN×SN denote the pilot signal matrix reused across all cells with

the properties that ΦHΦ = ISN and Tp = QS. We partition this matrix into 3
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submatrices of the same size as Φ = [Φ0,Φ1,Φ2]. Our main contribution is to assign

each sector Xi at cell b a suitable submatrix Φj in order to perform PCP. We denote

this assignment as j = qi(b). We consider the cluster for performing PCP with base

pattern C = {b0, b1, b2}, where b0 = 0, b1 = L1[ 0 1 ]T and b2 = L1[ −1 1 ]T.

u(C) = {C + b, ∀b ∈ B} shows all the clusters of this type (C + b represents the PCP

cluster b). The key point is that an identical pilot submatrix is reused across the PCP

cluster. As we consider the size of cluster for joint transmission B = 1, for the sake of

simplicity in the rest of this chapter we use the term PCP cluster for the set of BSs

of size 3, which cooperate to perform PCP and we use the term cell for a region with

single BS at the center. Now the PCP cluster b contains the users at the location

X ′
b = X0 + b+ b0 ∪ X1 + b+ b1 ∪ X2 + b+ b2. Assume we want to send data to a user

at location xi,n + b : xi,n ∈ Xi of cell b. Around this user, we consider 3 BSs at the

locations {b − bi, b − bi + b1, b − bi + b2} to create the corresponding PCP cluster in

order to remove the interference due to the pilot reuse across this cluster. To be more

precise, the users at the locations of {x0,n + b− bi, x1,n + b− bi + b1, x2,n + b− bi + b2}
utilize an identical pilot submatrix.

Fig. 5.1 shows the assignment of a pilot submatrix to the PCP cluster b = 0

delineated by magenta borders. It is straightforward to observe that the index of the

pilot submatrix assigned to the sector i of cell b satisfies the following equalities:

qi(b) = q0(b− bi) = q1(b− bi + b1) = q2(b− bi + b2). (5.1)

Fig. 5.2 shows all the cells and PCP clusters in the system. The PCP clusters of the

same color use the same pilot submatrix.

5.1.2 Channel model

Let hk,b′,b(x) ∈ CNtN×1 denote the channel vector between user k at location x + b′ :

x ∈ X of cell b′ and BS b. We assume that this channel vector is a zero-mean complex

Gaussian random vector with the following covariance matrix:

Gb′,b(x) = NE[hk,b′,b(x)h
H

k,b′,b(x)], (5.2)

where Gb′,b(x) = g(x+ b′, b)INtN , and g(x+ b′, b) represents the path loss coefficient.

For channel estimation, each user assigns TpN channel uses on the uplink to train its

serving BS. It can be easily shown that the decoded pilot signal of the kth user at

location xi,n + b : xi,n ∈ Xi at BS b is

rk,b(xi,n) =
∑

b′∈P(q0(b−bi))

2∑
j=0

hk,b′+bj ,b
(xj,n) + nk,b(xi,n), (5.3)
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pilot submatrix.

where P(q) = {b ∈ B|q0(b) = q} and nk,b(xi,n) is the noise vector, whose elements are

i.i.d. complex Gaussian random variables with zero mean and unity variance.

Applying MMSE estimation leads to the following estimated channels vectors for

the users at the same PCP cluster

ĥk,b′+bj ,b
(xj,n) = Gb′+bj ,b(xj,n)

[
(ρulQS)−1INtN+∑

b′′∈P(q0(b−bi))

2∑
l=0

Gb′′+bl,b(xl,n)
]−1

rk,b(xi,n), (5.4)

where ρul is the power of the pilot signal. Based on MMSE estimation, we have

hk,b′+bj ,b
(xj,n) = ĥk,b′+bj ,b

(xj,n) + ek,b′+bj ,b
(xj,n). (5.5)

The covariance matrices of the estimated channel and the estimation error vectors

are defined by

Ξb′+bj ,b(xj,n) = NE[ĥk,b′+bj ,b
(xj,n)ĥ

H

k,b′+bj ,b
(xj,n)] (5.6)

and

Σb′+bj ,b(xj,n) = NE[ek,b′+bj ,b
(xj,n)e

H

k,b′+bj ,b
(xj,n)], (5.7)

respectively, where Ξb′+bj ,b(xj,n) = ξb′+bj ,b(xj,n)INtN andΣb′+bj ,b(xj,n) = σb′+bj ,b(xj,n)INtN .
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5.1.3 Beamforming

Let Fb denote the beamforming matrix used at the bth BS for spatial multiplexing.

We assume that each active user imposes J ≥ 0 zero forcing (ZF) constraints to its

J closest BSs including its serving BS. We consider two cases:

• J = 0: There is no ZF constraint and the beamforming matrix in this case is

expressed as

Fb = UNorm{Ĥb,b(X )}, (5.8)

where UNorm represents scaling of the matrix argument to enforce unity norm

[16].

• J = 1: The active user imposes ZF constraint only on its serving BS, which

results in the following beamforming matrix:

Fb = UNorm{Ĥ+
b,b(X )}, (5.9)

where M+ = M[MHM]−1 (Moore-Penrose pseudoinverse).

5.2 Clustered Pilot Contamination Precoding

The main idea for clustered PCP is to create a cluster of BSs of size 3 around the

adjacent co-pilot users. In this PCP cluster, the data and the second-order statistics

of channel vectors are shared among the 3 BSs. The PCP cluster controller calcu-

lates a suitable PCP matrix as the outer linear precoding matrix and distributes the

corresponding PCP vectors to the BSs.

First, the user data is multiplied by these PCP vectors and then it is applied to

beamformers for spatial multiplexing. Let ak(b, x) denote the data intended to user

k at location x + b : x ∈ X of cell b. Following the discussion in [63], for the case of

J = 0 (matched filter beamforming), the PCP matrix is defined by Tb,n, where

Tb,n =
√
NtTb,n�(1T

3⊗

⎛⎜⎝
1

g(x0,n,b0)

√
ξb−bi+b0,b−bi+b0(x0,n)

1
g(x1,n,b0)

√
ξb−bi+b1,b−bi+b1(x1,n)

1
g(x2,n,b0)

√
ξb−bi+b2,b−bi+b2(x2,n)

⎞⎟⎠) (5.10)

and

Tb,n =

⎛⎝ g(x0,n, b0) g(x1,n + b1, b0) g(x2,n + b2, b0)
g(x0,n, b1) g(x1,n, b0) g(x2,n + b2, b1)
g(x0,n, b2) g(x1,n + b1, b2) g(x2,n, b0)

⎞⎠ (5.11)
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Note that the estimation of the entries of this matrix, which are related to the

large-scale fading, is straightforward as they change slowly with time and are almost

constant over many time slots. They can be estimated by assigning a few pre-defined

OFDM tones to users [63].

Let tb(xi,n) = [T−1
b,n]i, where [.]i is the ith column of the matrix argument. Now

the processed data of user k at location xi,n + b : xi,n ∈ Xi of cell b after PCP when

using matched filter beamforming (J = 0) is given by

a′k,b(xi,n) =[ak,b−bi(x0,n) ak,b−bi+b1(x1,n)

ak,b−bi+b2(x2,n)]tb(xi,n). (5.12)

For the case of J = 1 (ZF beamforming), the PCP matrix is defined by T̃b,n =√
Nt−S
Nt

Tb,n. Similarly, the processed data after PCP when using ZF beamforming

(J = 1) becomes

a′k,b(xi,n) =[ak,b−bi(x0,n) ak,b−bi+b1(x1,n)

ak,b−bi+b2(x2,n)]̃tb(xi,n), (5.13)

where t̃b(xi,n) = [T̃−1
b,n]i. The conventional beamforming at each BS treats these

processed data as they were the actual data intended to the user in the corresponding

cell.

5.3 Achievable Group Spectral Efficiency

Let R
(N)
k,c (f ; x) denote the spectral efficiency in subband f , f = 0, · · · , F − 1 (in

bit/s/Hz) of user k at location x + c : x ∈ X . Consequently, the group spectral

efficiency for a given set of user locations X is given by

RX ,C(F,B, J) =
1

FMN

F−1∑
f=0

∑
c∈Λbs∩V

∑
x∈X

SN/m∑
k=1

R
(N)
k,c (f ; x). (5.14)

Now the achievable group spectral efficiency for the discussed clustered PCP

schemes is formulated through the following theorems. We omit the proofs of these

theorems for the sake of brevity and refer the reader to [16,88] for a detailed large sys-

tem analysis. The proofs employ random matrix theory. In Appendix J, we provide

a general outline of the proofs.

Lemma 5.1 For a given set X and F = Q = B = 1, as N → ∞, the following

spectral efficiency is achievable with matched filter beamforming J = 0 along with
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clustered PCP:

RX ,PCP(1, 1, 0) =

S

m

∑
i

∑
n

log

(
1 +

γ(xi,n)

1 + η(xi,n) + ζ(xi,n)

)
, (5.15)

where

γ(xi,n) =
m

3Smaxj
∑m/3−1

n′=0 ‖tbj−bi(xj,n′)‖2
, (5.16)

η(xi,n) =
∑
b′∈B

S

m
g(xi,n, b

′)
2∑

j=0

pb′,j

m/3−1∑
n′=0

‖tb′(xj,n′)‖2, (5.17)

and

ζ(xi,n) = Nt

∑
b′∈P(q0(−bi))\−bi

∑
j

(
g(xi,n, b

′ + bj)

g(xj,n, 0)

)2

pb′+bj ,j‖tb′+bj (xj,n)‖2ξb′+bj ,b′+bj (xj,n). (5.18)

γ(xi,n) captures the useful signal power and also involves power scaling to satisfy

per-BS power constraints. η(xi,n) represents the power of interference consisting of

intra-cell interference and the interference of users at other cells using different pilot

sequences. ζ(xi,n) represents the interference caused by users, which use the same

pilot sequences.

Lemma 5.2 For a given set X and F = Q = B = 1, as N → ∞, the following

spectral efficiency is achievable with ZF beamforming J = 1 along with clustered

PCP:

RX ,PCP(1, 1, 1) =

S

m

∑
i

∑
n

log

(
1 +

β(xi,n)

1 + ψ(xi,n) + ξ(xi,n)

)
, (5.19)

where

β(xi,n) =
m

3Smaxj
∑m/3−1

n′=0 ‖f̃bj−bi(xj,n′)‖2
, (5.20)

ψ(xi,n) =
∑
b′∈B

S

m
σ0,b′(xi,n)

2∑
j=0

pb′,j

m/3−1∑
n′=0

‖f̃b′(xj,n′)‖2, (5.21)
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Figure 5.3: The distribution of user bins over the cell area.

and

ξ(xi,n) = (Nt − S)
∑

b′∈P(q0(−bi))\−bi

∑
j

(
g(xi,n, b

′ + bj)

g(xj,n, 0)

)2

pb′+bj ,j‖f̃b′+bj (xj,n)‖2ξb′+bj ,b′+bj (xj,n). (5.22)

Similarly, β(xi,n), ψ(xi,n) and ξ(xi,n) represent the useful signal power, intra-cell in-

terference plus the interference of other-cell users with different pilot sequences and

the interference of co-pilot users, respectively.

5.4 Numerical Results

We consider a system with K = 16 user bins X (i), i = 1, · · · , 16, each user bin with

m = 3 symmetric locations. Fig. 5.3 shows the distribution of these user bins over

the cell area. The scheduler at each time-frequency slot selects a subset of users in

a round-robin fashion with the constraint JS ≤ BNt. The bin spectral efficiency for

user bin X (k) and a given transmission scheme is given by [16]

max{1−QS/T, 0} × RX (k)(F,B, J). (5.23)

The bin-optimized transmission scheme achieves the maximum of the spectral

efficiency over all the discrete values of F , B and J and the continuous values of S.

Let R�(X (k)) denote this maximum. Different user bins are scheduled over frequency-

time slots. The proportionally fair user scheduling allocates equal number of slots

to each user bin, and hence the bin-optimized spectral efficiency of user bin X (k)

becomes Rk = R�(X (k))/K.

78



101 102 103 1040

500

1000

1500

2000

2500

3000

3500

4000

Antenna  array size factor Nt

C
el

l/c
lu

st
er

 th
ro

ug
hp

ut
 (M

bp
s)

(1,1,3), Q=3, W/O PCP

(3,1,1), Q=1, W/O PCP

(3,3,1), Q=1, W/O cluster switching, W/O PCP

(1,1,1), Q=1, W/O PCP

(1,1,1), Q=1, W/ PCP

(1,1,0), Q=1, W/ PCP

(1,1,0), Q=1, W/O PCP

(3,3,1), Q=1, W/ cluster switching, W/O PCP

Bin optimized W/ PCP

Figure 5.4: Cell/cluster throughput for different transmission schemes {(F,B, J), Q}
including those with and without PCP.

We assume the path loss coefficients are defined by g(x, b) = G0/(1+(dΛ(x, b)/ϕ)
αpl

),

where G0 = 106, αpl = 3.8 and ϕ = 0.1 km. We assume that cell radius, fading block

length factor and pilot signal power take the following values, respectively: r = 1.6

km, T = 84 and ρul = 10 dB.

Fig. 5.4 depicts the cell/cluster throughput for different transmission schemes

including those with and without PCP with the assumption of 20 MHz bandwidth. As

we observe the (1, 1, 1), Q = 1 case with PCP outperforms other transmission schemes

and its gain over the (1, 1, 1), Q = 1 case without PCP (the scheme proposed in [16])

becomes more significant in the massive MIMO mode. Moreover, its performance is

very close to the bin-optimized scheme, implying that (1, 1, 1), Q = 1 with PCP (a

system with ZF beamforming and clustered PCP) performs quite well in terms of cell

spectral efficiency.

Fig. 5.5 depicts the bin-optimized spectral efficiency of different user bins with

PCP normalized to that without PCP. As we observe, some user bins experience a

two-fold increase in spectral efficacy in the massive MIMO mode by using PCP.
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5.5 Conclusions

A joint clustering and pilot reuse scheme has been proposed for massive MIMO to

mitigate the interference due to pilot contamination. The cell area has been par-

titioned into 3 sectors with each sector assigned a suitable pilot sequence. Pilot

contamination precoding is used as outer precoding and zero forcing is used for inner

precoding/beamforming. Numerical results show the superiority of this scheme over

other existing massive MIMO schemes.
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Chapter 6

Summary of Contributions and
Future Work

This chapter summarizes major contributions of the thesis and gives directions for

possible future work. The focus of this work has been to design and analyze transmis-

sion and reception schemes for large-scale and cooperative MIMO wireless systems,

where BS coordination or massive MIMO is incorporated into the system. Partic-

ularly, we have focused on non-linear precoding relying on vector perturbation and

have tried to answer several questions concerning precoding design and performance

in this context.

6.1 Summary of Contributions

6.1.1 Multi-cell VP for network MIMO with multiple-antenna

users

In Chapter 2, we have proposed multi-cell VP for network MIMO employing joint

transmission to multiple-antenna users. [47] considers single-cell VP without any co-

ordination among BSs where there exist single-antenna users. We have extended the

approach of [47] to network MIMO with multiple-antenna users. We have also de-

rived multi-cell VP sum rate and an upper bound on it. We have shown by simulation

that the performance of the proposed precoding method is better than that of the

multi-cell BD, which does not employ any kind of perturbation.

6.1.2 Reduced-complexity fair user scheduling algorithm for

multi-cell VP

In Chapter 2, we have proposed a reduced-complexity fair user scheduling algorithm

for multi-cell VP, which attempts to maximize the weighted upper bound on the sum
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rate in a greedy fashion.

For multi-cell VP with multiple-antenna users at each iteration of greedy algo-

rithms one has to perform a search in a high-dimensional lattice to perturb data.

After this complex processing one needs to find the sum rate of a candidate user with

already selected users and decide whether or not to add this user to the set of selected

users.

Hence, the use of greedy algorithms to maximize sum rate is quite complex when

multi-cell VP is employed. [47] applies a greedy rate maximization (GRM) algo-

rithm to maximize the upper bound on the sum rate and proposes a novel reduced-

complexity version of algorithm. Each iteration of the algorithm only requires the

orthogonal component of the candidate user’s channel to the space of channels of

already selected users to make the decision on adding the user. It turns out that the

algorithm is similar to semi-orthogonal user selection (SUS), but with a difference

that it does not require optimization of the correlation threshold for shedding users

whose channels are correlated with those of already selected users. Determining the

correlation threshold for the SUS-type algorithms is not straightforward as it depends

on the channel statistics and configuration of the system, such as the number of active

users and the number of transmit antennas [37, 80].

The work in [47] did not consider fairness. Without fairness consideration, users

close to the cell or cluster boundary will be subject to throughput starvation. Con-

sequently, in Chapter 2 we have considered fairness and proposed a proportionally

fair (PF) type of user scheduling algorithm of relatively low complexity. Using the

asymptotic upper bound on the individual user rates at high SNRs we have approxi-

mated the individual user rates under the PF algorithm and selected the user, which

has the greatest weighted individual rate at each iteration. We have shown that this

approximate rate is dependent on the orthogonal component of the candidate user’s

channel to the space of already selected users’ channels and as a result the proposed

PF algorithm is developed by modifying the GRM algorithm of [47], which results in

a relatively low-complexity fair user scheduling algorithm for multi-cell VP. Simula-

tion results have shown that the proposed fair user scheduling for multi-cell VP (fair

US-MVP) outperforms the benchmark fair SUS in terms of fairness and sum rate.

Furthermore, the fair US-MVP algorithm has the advantage that it does not require

any optimized correlation threshold.
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6.1.3 The impact of backhaul delay on multi-cell VP sum
rate

As backhaul delay is a major source of channel estimation error in network MIMO, in

Chapter 2 we have analyzed its impact on multi-cell VP sum rate. Numerical results

have indicated that the performance of multi-cell VP significantly degrades in the

presence of imperfect CSI due to backhaul delay, but the upper bound on the sum

rate for multi-cell VP is still higher than for multi-cell BD.

6.1.4 MMSE-VP with per-antenna power constraints

As in practice per-antenna or per-BS power constraints are more meaningful for net-

work MIMO, Chapter 3 has focused on VP precoding design in the presence of per-

antenna-group power constraints. We have proposed a novel optimal VP technique

minimizing the mean square error of the received signal subject to these power con-

straints. We have demonstrated that this minimization can be performed over an

infinite lattice sequentially. In particular, it has been shown that the MSE metric,

as well as the p-norm one, can be enclosed in a proper Frobenius-norm ball. This

Frobenius-norm ball shrinks until it captures the perturbing vector minimizing the

MSE. We have observed that MMSE-VP with per-antenna-group constraints outper-

forms its linear counterparts, but at much higher complexity. We have investigated

several design approaches for MMSE-VP of lower complexity.

6.1.5 Large-system analysis of TDVP in a massive MIMO
system

One shortcoming of the earlier performance analysis approaches is that they require

time-consuming simulations. In Chapter 4 we have developed a novel framework em-

ploying random matrix theory for performance analysis of VP precoding in a large-

scale-MIMO setting. We have also considered massive MIMO in TDD mode to benefit

from a significant spatial multiplexing gain. We have analyzed time domain vector

perturbation in a large-system limit when channel state information (CSI) is imperfect

due to pilot contamination. We have also considered the impact of user scheduling

on performance. Numerical results have shown that for a moderate number of trans-

mit antennas, time domain vector perturbation outperforms linear precoding in the

case of proportionally fair user scheduling. In the case of fairness enforced by max-

min scheduling criterion, zero forcing is superior to time domain vector perturbation

regardless of the number of transmit antennas.
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6.1.6 Practical approach for pilot contamination precoding
in a massive MIMO system

In Chapter 5, we have considered coordinated linear precoding in a massive MIMO

setting to mitigate pilot contamination. We have proposed a joint pilot reuse and clus-

tering scheme where 3 BSs are coordinated to perform pilot contamination precoding.

Pilot contamination precoding acts as an outer precoding prior to conventional pre-

coding and its structure only depends on the second order statistics of the users’

channels, which can be easily estimated. Numerical results show the superiority of

the clustered PCP over other existing massive MIMO schemes.

6.2 Future Work

6.2.1 Robust precoding design

As we have observed throughout this thesis, CSI imperfections degrade system perfor-

mance. There exist many sources causing CSI imperfections such as backhaul delay,

noise, interference, quantization and pilot contamination. Therefore, a precoding

design which is robust to CSI imperfections can be a subject of future work.

6.2.2 Sum rate analysis of MMSE-VP with per-antenna power
constraints

We have conducted BER measurements for MMSE-VP with per-antenna power con-

straints. [89] investigates the sum-rate of p-sphere encoding, but the sum rate analysis

of MMSE-VP with per-antenna power constraints is more involved, thus we leave it

for future study.

6.2.3 Cellular interference alignment

Interference alignment [90,91] is a capacity-achieving approach for interference chan-

nels. As cellular systems are inherently similar to interference channels, designing

and developing reduced-complexity interference alignment techniques for MU-MIMO

wireless systems can be an interesting topic for future study.

6.2.4 Joint spatial division multiplexing and 3D beamform-

ing

Joint spatial division multiplexing and 3D beamforming [68] are techniques, which

can achieve massive MIMO gain in the FDD mode by exploiting antenna correlation.
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They generalize sectorization by employing an outer precoding, which is dependent

on the second order statistics of the channel. In some antenna structures, this sec-

torization can be simplified and achieved by direction of arrival (DoA) estimation

techniques. Investigation of efficient DoA estimation techniques for sectorization in

MU-MIMO systems can be an interesting subject for future work. In addition, apply-

ing these techniques may also help to mitigate pilot contamination in massive MIMO

systems by spatially separating users.

6.2.5 Blind pilot decontamination

Blind pilot decontamination and sub-space projection methods [64,65] are non-linear

estimation techniques, which detect the data and channel simultaneously and avoid

pilot contamination. Investigating these technique in the practical case of limited

number of transmit antennas can be a direction for future study.

6.2.6 Heterogeneous Networks (HetNets) with Massive MIMO

Incorporating massive MIMO into HetNets can potentially significantly improve sys-

tem throughput. With massive MIMO, the structure of transceivers simplifies, be-

cause of linear processing they use. In addition massive MIMO can be seen as a

technique to remove the interference of different network nodes in HetNets. Never-

theless, full understanding of the impact of massive MIMO on HetNets requires a

considerable future research effort.
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[59] S. Sigdel and W. A. Krzymień, “User scheduling for network MIMO systems with
successive zero-forcing precoding,” in Proc. IEEE Vehicular Technology Confer-
ence (VTC’10-Fall), Ottawa, Canada, Sept. 2010, pp. 1–6.
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coding for MIMO broadcast channels with per-antenna-group power con-
straints,” IEEE Trans. Signal Process., vol. 61, no. 15, pp. 3745–3751, 2013.

[73] M. Mazrouei-Sebdani and W. A. Krzymień, “On MMSE vector-perturbation
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MIMO broadcast channels with reduced peak power,” in Proc. 75th IEEE Ve-
hicular Technology Conference (VTC’12-Spring), Yokohama, Japan, May 2012,
5 IEEE-format pages.

[90] V. Cadambe and S. Jafar, “Interference alignment and degrees of freedom of
the K-user interference channel,” IEEE Trans. Inf. Theory, vol. 54, no. 8, pp.
3425–3441, Aug. 2008.

[91] M. Maddah-Ali, A. Motahari, and A. Khandani, “Communication over MIMO
X channels: Interference alignment, decomposition, and performance analysis,”
IEEE Trans. Inf. Theory, vol. 54, no. 8, pp. 3457–3470, Aug. 2008.

[92] R. A. Horn and C. R. Johnson, Matrix Analysis. New York: Cambridge Univ.
Press, 1985.
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Appendix A

Proof of Lemma 2.1

From (2.14) we can write F as

F = FV, (A.1)

where F = [F1,F2, · · · ,FK ] and V = blockdiag(V1,V2, · · · ,VK). Because matrix F
is obtained through BD precoding, we have the following property

HF = blockdiag(H1F1,H2F2, · · · ,HKFK)

= blockdiag(U1Λ1,U2Λ2, · · · ,UKΛK)V
H. (A.2)

Multiplying both sides of (A.2) by unitary matrix V, we get

HF = blockdiag(U1Λ1,U2Λ2, · · · ,UKΛK), (A.3)

and consequently

F
H

HHHF = Λ2, (A.4)

where Λ = blockdiag(Λ1,Λ2, · · · ,ΛK). The following matrix is positive definite[
F

H

F F
H

HH

HF HHH

]
,

and hence from [92, Ch. 7] we have

det(F
H

F) det(HHH) ≥ det(F
H

HH) det(HF)

= det(F
H

HHHF)

= det(Λ2)

=

K∏
k=1

nr∏
i=1

λ2k,i. (A.5)

93



Appendix B

Proof of Lemma 2.2

From [78] we have the following lower bound on Ψtotal

Ψtotal ≥ KnrΓ(Knr + 1)1/Knr

(Knr + 1)π
det(F

H

F)1/Knr , (B.1)

and as a result we have the following lower bound on γ

γ ≥ KnrΓ(Knr + 1)1/Knr

BPmax(Knr + 1)π
det(F

H

F)1/Knr , (B.2)

where Γ(.) is the gamma function. Now we substitute the lower bound on γ into
(2.29). Thus,

lim
Pm→∞
1≤m≤B

RVP<Knr log
BPmax(Knr + 1)

KnrΓ(Knr + 1)1/Knre
−

log det(F
H

F)−
K∑
k=1

nr∑
i=1

log(λk,i)
−2, (B.3)

and finally from Lemma 2.1 the upper bound (2.31) is obtained.
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Appendix C

Proof of Lemma 3.1

Suppose both β and s are given in (3.14). We can write the power constraint
for antenna group r ‖xr‖2 ≤ Pr also in the form of xHJrx ≤ Pr, where Jr =
diag[0T

(r−1)Nt
1T

Nt
0T

(B−r)Nt
]T. Let us express the the Lagrangian of the problem (3.14)

as

L(x,ν) = sHs− Re(2βsHHx) + β2xHHHHx+Kβ2σ2
n

+
B∑
i=1

νr(x
HJrx− Pr), (C.1)

where x and ν = [ν1, · · · , νB]T � 0 are primal and dual variables, respectively. From
KKT conditions we know that the optimal primal and dual points satisfy∇xL(x,ν) =
0. Consequently, (3.16) results.
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Appendix D

Proof of Lemma 3.2

By some matrix manipulations we can express the objective function in (3.17) in
terms of real-valued vectors and matrices as

f(v) = c1 − (vTb)2

c2 + ‖vTD‖2 , (D.1)

where c1 = sHs and c2 = Kσ2
n, both positive real numbers. Also v = [Re(x)T -Im(x)T]T

and b = [Re(sHH) Im(sHH)]T, both real vectors and

D =

(
Re(HH) Im(HH)
-Im(HH) Re(HH)

)
. (D.2)

Since we assumed that β > 0, from (3.15) we have Re(sHHx) > 0, which means
vTb > 0. Let us define the domain D = {v|vTb > 0}. Now let us assume v,u ∈ D
and f(v) > f(u). Then, we have

∇f(v)T(u− v)

=
2

c2 + ‖vTD‖2
[
(bTv)2(vTD)(D

T

u) + c2(b
Tv)2

− c2v
TbbTu− ‖vTD‖2vTbbTu

]
≤ 2

c2 + ‖vTD‖2
[
(bTv)2‖vTD‖‖uTD‖+ c2(b

Tv)2

− c2v
TbbTu− ‖vTD‖2vTbbTu

]
(a)
<

2(bTv)2

c2 + ‖vTD‖2
[
(c2 + ‖vTD‖‖uTD‖)

−
√

(c2 + ‖uTD‖2)(c2 + ‖vTD‖2)
]

<
2(bTv)2

c2 + ‖vTD‖2
[
(c2 + ‖vTD‖‖uTD‖)

−
√

(c2+‖vTD‖‖uTD‖)2 + c2(‖vTD‖−‖uTD‖)2
]
< 0. (D.3)
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Therefore, f(v) is pseudo-convex ((a) is obtained from the assumption that f(v) >
f(u)).
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Appendix E

Proof of Lemma 3.3

Consider the following problem with sum-power constraint.

P̃sp(s) =

{
min
x;β

MSE
s.t. xHx ≤ P.

(E.1)

The optimal value of the above objective function is sH( ρ
K
HHH + IK)

−1s [51, 84].
The optimal x of problem (3.14) is a solution based on per-antenna-group power
constraints. The optimal solution of (3.14) is a feasible point of problem (E.1), but
not necessarily the optimal solution of (E.1). Consequently we have

sH(
ρ

K
HHH + IK)

−1s ≤ M̃SE(s). (E.2)
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Appendix F

Decoding Algorithm for the
Closest Lattice Point Search

Algorithm Decode(H, x) [44]
Input: an n× n lower-triangular matrix H with positive diagonal elements, and

an n-dimensional vector x ∈ Rn to decode in the lattice Λ(H−1).
Output: an n-dimensional vector û ∈ Zn such that ûH−1 is a lattice point that

is closest to x.
1: n := the size of H /*dimension*/
2: bestdist :=∞ /*current distance record*/
3: k := n /*dimension of examined layer*/
4: distk := 0 /*distance of examined layer*/
5: ek := xH /*used to compute ûn*/
6: uk := �ekk	 /*examined lattice point*/
7: y := ekk−uk

hkk

8: stepk := sgn ∗ (y) /*offset to next layer*/
9: < loop >
10: newdist := distk + y2

11: if newdist < bestdist then {
12: if k �= 1 then {
13: ek−1,i := eki − yhki for i = 1, · · · , k − 1
14: k := k − 1 /*move down*/
15: distk := newdist
16: uk := �ekk	 /*closest layer*/
17: y := ekk−uk

hkk

18: stepk := sgn ∗ (y)
19: }else{
20: û := u /*best lattice point so far*/
21: bestdist := newdist /*update record*/
22: k := k + 1 /*move up*/
23: uk := uk + stepk /*next layer*/
24: y := ekk−uk

hkk

25: stepk := −stepk − sgn ∗ (stepk)
26: }
27: }else{
28: if k = n then return û (and exit)
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29: else{
30: k := k + 1 /*move up*/
31: uk := uk + stepk /*next layer*/
32: y := ekk−uk

hkk

33: stepk := −stepk − sgn ∗ (stepk)
34: }
35: }
36: goto < loop >
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Appendix G

Proof of Lemma 4.1

The input-output channel is in the following form

y = [x+ n] mod Λ, (G.1)

and the normalized second moment of the lattice is as follows

G(Λ) �
σ2(Ω)

V 1/n
=

1

n

∫
V ‖x2‖2dx
V 1−1/n

. (G.2)

Using the definition of mutual information, we have

1

n
I(x;y) =

1

n
H(y)− 1

n
H(y|x)

=
1

n
log V − 1

n
H(n)

= log
Px

G(Λ)
− 1

n
H(n)

≥ log
Px

G(Λ)
− log(πePn)

≥ log
Px

Pn

− log(πeG(Λ)). (G.3)

Since the lattice Λ is assumed to be a good lattice for quantization, we can say

lim
n→∞

log(πeG(Λ))→ 0, (G.4)

therefore the rate log Px

Pn
is achievable. Using time sharing, we can achieve other rates.

Suppose β ≤ 1 fraction of n channel uses is used for data transmission. Therefore the
rate β log Px

βPn
is also achievable. Optimizing over β, the following rate is achievable

r =

{
Px log(e)

ePn
if Px

Pn
≥ e,

log
(
Px

Pn

)
if Px

Pn
< e.

(G.5)
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Appendix H

Proof of Lemma 4.2

Let us write the QR decomposition of the Gaussian matrix H as H = QD. From [93],
the statistics of the entries of D is given by

H = QD =⇒2N

Ḡ
D2

i,i ∼ χ2
(
2(NtN − i+ 1)

)
, (H.1)

Dj,i ∼ CN
(
0,
Ḡ

N

)
, j < i. (H.2)

From central limit theorem we can say that D2
i,i converges to a Gaussian random

variable with the following parameters

D2
i,i ∼ N

(
Ḡ(Nt − i/N + 1/N), Ḡ2(Nt − i/N + 1/N)/N

)
. (H.3)
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Appendix I

Proof of Lemma 4.3

f(x) is given by

f(x) =
1

N

SN∑
i=1

fi(x) =
1

N

SN∑
i=1

1√
2πσ2

i

e
−(x−μi)

2

2σ2
i . (I.1)

The Laplace transform of f(x) is written as

F (t) =

∫ +∞

−∞
f(x)e−tx dx =

1

N

SN∑
i=1

E
[
e−tD2

i,i

]
(I.2)

=
1

N

SN∑
i=1

e−tμiet
2σ2

i /2 =
1

N

SN∑
i=1

e−tḠ(Nt−i/N+1/N)O
(
1 +

t2(Ḡ2(Nt − i/N + 1/N))

2N

)
=

∫ S

0

e−tḠ(Nt−x) dx+O
(t2Ḡ2

2N

∫ S

0

e−tḠ(Nt−x)(Nt − x) dx
)

=
1

Ḡt

[
e−tḠ(Nt−S) − e−tḠNt

]
+O

((κ1 + κ2t)e
−κ3t

N

)
≈ 1

Ḡt

[
e−tḠ(Nt−S) − e−tḠNt

]
.

Therefore, f(x) is obtained by applying inverse Laplace transform to F (t). We have

f(x) = L−1(F (t)) =
1

Ḡ

[
U(x − Ḡ(Nt − S))− U(x− ḠNt)

]
. (I.3)
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Appendix J

General Outline of the Proofs of
Lemmas 5.1 and 5.2

Without loss of generality, we consider cell b = 0 and express the received signal at
user k at location xi,n : xi,n ∈ Xi as

yk,0(xi,n) = a′k,0(xi,n)f
H

k,0(xi,n)hk,0,0(xi,n)

+
∑
k′ 
=k

a′k′,0(xi,n)f
H

k′,0(xi,n)hk,0,0(xi,n)

+
∑

x′∈X\xi,n

∑
k′

a′k′,0(x
′)fHk′,0(x

′)hk,0,0(xi,n)

+
∑
b′ 
=0

∑
x′∈X

∑
k′

a′k′,b′(x
′)fHk′,b′(x

′)hk,0,b′(xi,n), (J.1)

where fk,b(x) is the corresponding column of beamforming matrix Fb for user k at
location x + b : x ∈ X of cell b. Using PCP, the useful signal is embedded in the
following term:

a′k,0−bi
(x0,n)f

H

k,0−bi
(x0,n)hk,0,0(xi,n)

+ a′k,0−bi+b1(x1,n)f
H

k,0−bi+b1(x1,n)hk,0,0(xi,n)

+ a′k,0−bi+b2
(x2,n)f

H

k,0−bi+b2
(x2,n)hk,0,0(xi,n). (J.2)

Based on MMSE estimation, we can write the channel vectors as the summation
of their estimated vectors and the estimation error vectors. The following rate is
achievable using a Gaussian codebook [16]:

R
(N)
k,0 (x) =

E

[
log

(
1 +

E
[|useful sig.|2 | fk,0(x), ĥk,0,0(x)

]
E
[|interf. + noise|2 | fk,0(x), ĥk,0,0(x)

])]. (J.3)

Now, by obtaining the limits of the numerator and denominator in (J.3) as N →∞,
the Lemmas 5.1 and 5.2 can be proved (see [16, 88] for more details).
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