Hyperparameter Optimization for SLAM: An Approach For Enhancing
ORB-SLAM2’s Performance

by

Eduardo Ismael Montemayor Castillo

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science
University of Alberta

© Eduardo Ismael Montemayor Castillo, 2022

Abstract

Simultaneous Location and Mapping (SLAM) has been a well-pursued research area
for computer vision and robotics. Robustness and performance are fields that address
the efficiency of SLAM solutions. Hyperparameter Optimization (HPO) promises to
find a hyperparameter set that displays the lowest error within a validation set. This
thesis aims to devise a methodology that applies HPO to SLAM to reduce the absolute
trajectory error produced and to increase performance by building a more accurate
map. Specifically, it investigates whether the proposed methodology impacts error
reduction on ORB-SLAM2. We train model-free, population-based algorithms in a
modified KITTI benchmark to obtain an initial set of possible configurations and test
them against model-free, search-based baseline algorithms. We used a combination
of 20 modified and unaltered sequences for performance evaluation. Four evaluation
metrics (optimality, proximity, under-performance, and success rates) determine the
efficacy of each candidate configuration. The proposed methodology outperformed a
default configuration execution with an 80 % success rate. The results promise case-
specific executions. However, we could not find a universal hyperparameter set to
reduce error in all test cases. The proposed methodology has a simple implementation,

is cost-effective, does not need an expert tuner, and shows up to 60 % error reduction.

i

Preface

This thesis and its methodology (Chapter 3) collaborate with Dr. Hong Zhang.
Shortened sequence training and testing described in Chapter 3 and Chapter 4 are
designed by the author with the assistance of Dr. Zhang. The background information
and literature review commentary (Chapter 2), experiments and results (Chapter 3),

and conclusions (Chapter 5) are original works.

il

“There are no secrets to success. It is the result of preparation, hard work, and
learning from failure”

- Colin Powell, former U.S. Defense Secretary

v

To my parents and grandparents:
For believing in my hard work and life-changing decisions.

Thank you for your never-ending support.

Acknowledgements

First and foremost, I want to thank my supervisor Dr. Hong Zhang for his guidance
throughout my studies. He has been very patient, understanding, and encouraging.
His mentorship has taught me to research, think out of the box, and question the
literature.

I want to thank the Robotics and Vision lab members, especially Islam Ali, Moein
Shakeri, Shing-Yan, Ehsan Ahmadi, and Ali Jahani, for their help, support, and
friendship throughout this journey. I would reach out for guidance and opinions
whenever [hit a roadblock. There was always someone who would question my
research and push me to polish my work.

I want to thank my friend Junaid Ahmad for sticking around despite the 2020
pandemic. Another important person is my partner, who has shown endless support
throughout my studies. Without her, I would not have known about the country’s
beauty. She also helped improve my writing and presentation skills. I would not have
believed that I would find her amidst a pandemic by a coincidental idea.

Another important person I am grateful to meet is Dr. Ioanis Nikolaidis. He
was patient during the coursework studies and taught that literature is not flawless.
It has assumptions and hidden messages leading to limitations within the presented
information.

Finally, I would like to thank my parents and grandparents back in Mexico, who
have provided endless support. They have been worried sick during the 2020 crisis
and have never stopped looking out for me. I would not have arrived at my current

position without their teachings. I am very fortunate to have the privilege to study

vi

abroad and expand my future. They believed in me, and I will not let them down.

My only wish is to give society the knowledge and gifts I have acquired.

vil

Table of Contents

1 Introduction 1
1.1 Motivationo 2
1.2 Limitations 3
1.3 Contributions 3
1.4 Outline. 4

2 Background 5
2.1 Simultaneous Location and Mapping 5

2.1.1 ORB-SLAM2 10
2.2 Absolute Trajectory Error L. 13
2.3 Hyperparameter Optimization 14
2.4 Brute-Force Approach, 16

2.4.1 Brute-force approach in SLAM 17
2.5 Search-based Approach 18

2.5.1 Grid Search 18

2.5.2 Random Search 19

2.5.3 Search-based approaches in SLAM 21
2.6 Model-based Approach 22

2.6.1 Black-Box Optimization 23

2.6.2 Bayesian Optimization 23

2.6.3 Hybrid Algorithms 26

2.6.4 Model-based approaches in SLAM 28

viii

2.7 Learning-based Approach 28

2.7.1 Learning-based approach in SLAM 29

2.8 Population-based Approach L. 30
2.8.1 Evolutionary Algorithms 30

2.8.2 Simulated Annealing L. 33
2.8.3 Multi-Fidelity Optimization 34
2.8.4 Model Learning Curve 35

2.8.5 Successive Halving 35
2.8.6 Hyperband 36
2.8.7 Population-based approaches in SLAM 37

2.9 Chapter Summary 38
3 Methodology 40
3.1 Environmental Setup and Constraints 40
3.1.1 Environmental Setup L. 40
3.1.2 Modified SLAM System L. 41
3.1.3 Performance Metric Evaluation 42
3.1.4 Constraints 43

3.2 Parameter Selectiono 43
3.2.1 ORB-SLAMZ2’s Parameters 43
3.2.2 Computational Cost Reduction 44
3.2.3 Parameter Influence 45
3.2.4 Spearman’s Correlation Calculation 47
3.2.5 Spearman’s Correlation Results 51

3.3 Benchmark Selection 0L 53
3.3.1 Confidence Interval 54

3.4 Model-free Algorithms o 57
341 Grid Search L 58

X

3.4.2 Random Search, 60

3.4.3 Genetic Algorithm oL 61

3.4.4 Hyperband Lo 65

3.5 Chapter Summary 67
3.5.1 Environmental Setup 67

3.5.2 Parameter Selection. 67

3.5.3 Benchmark Selection 67

3.5.4 Optimization Algorithms 68

4 Experiments and Results 69
4.1 Experimental Setup 69
4.1.1 Training Evaluation 70

4.1.2 Testing Evaluation 72

4.2 Sequence Training Results 73
421 Grid Search oL 74

4.2.2 Random Search 74

4.2.3 Genetic Algorithm L. 75

424 Hyperband oo 5

4.2.5 Configuration Candidates 75

4.3 Testing Results 76
4.3.1 Shortened Sequence Testing 7

4.3.2 Full Sequence Testing 79

4.3.3 Final Results oL 83

5 Conclusions 84
5.1 Future Worko 86
Bibliography 88
Appendix A: ORB-SLAM2 Parameters and Values 102

Appendix B: Spearman Correlation Full Results 106

Appendix C: Algorithm Training: Configuration Results 110

Appendix D: Selected Trained Configurations 124

Appendix E: Shortened Sequence Test Results: ATE evaluation per

testing sequence 138

Appendix F: Calculated rates of Optimality, Proximity and Under-
performance for each configuration candidate tested on shortened

sequences 151

Appendix G: Full Sequence Test Results: ATE evaluation per testing

sequence 165

Appendix H: Configurations’ Performance on each of the KITTI Se-

quences 167

x1

List of Tables

3.1

3.2

3.3

3.4

3.5
3.6

4.1

4.2

4.3

4.4

4.5

ORB-SLAM2’s parameters separated by role
ORBextractor.nFeatures ATE result changes by modifying the param-
eter value within the delimited parameter space and computing the
average for each variation. L.
Calculation of ORBextractor.nFeature’s parameter and average ATE
ranks, and their respective difference between ranks
ORB-SLAM2 parameters with the highest Spearman Correlation Co-
efficient
KITTTI sequences, number of frames in the sequence and its runtime .

KITTTI sequences and the .yaml file used in each configuration

Default configuration mean ATE results and the upper and lower bound
values, calculated with a 95 % confidence level, for 100 executions of
each training and testing sequences
Number of configurations found by each training algorithm
Configuration candidates, tested on the modified sequences, that dis-
play the highest optimality rate
Configuration candidates, tested on the unmodified sequences, that
display the highest optimality rate
Error reduction for each configuration candidate on each of the testing

SEQUENCES. . v v v v e e e e e e e e e e e e e e

xil

49

50

52

55
56

71
76

78

80

G.1 ATE calculated for each configuration candidate on each of the testing

SEQUEIICES. o o o oo e e e e e e e e e e e e e e e e e e

xiil

List of Figures

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8
2.9

Representation of the front-end and back-end of a SLAM system. The
back-end can provide feedback for loop closure to the front-end. Adapted
from (Cadena, et al., 2016).
An example of a sparse map produced by ORB-SLAM2 by executing
a KITTI sequence.
An example of a dense map and trajectory estimation produced by
RTAB-MAP on the TUM Freiburg dataset.
A visual representation of the ORB-SLAM?2 algorithm. Adapted from
(Andersson & Baerveldt, 2018) oo oL
A visual representation of image input and pre-processing in ORB-
SLAM2. Adapted from (Mur-Artal & Tardés, Orb-slam2: An open-
source slam system for monocular, stereo, and rgbh-d cameras, 2017) .
A visualization of ORB-SLAM?2 during execution of a Stereo sequence.
The green circles represent the ORB features that are being created
and matched.
Visualization of the Absolute Trajectory Error (ATE) on the “KITTI
sequence 09”.

A taxonomy for the Hyperparameter Optimization techniques.

A visual representation of grid search’s operation. Adapted from (Bergstra

& Bengio, 2012)o

2.10 A visual representation of random search’s operation. Adapted from

(Bergstra & Bengio, 2012)

Xiv

10

11

13

2.11 The Bayesian Optimization algorithm. Adapted from (Brochu, Cora,
& De Freitas, 2010) oL
2.12 This is an example of Bayesian optimization that plots the number of
support vectors as a function of the iteration number and graphs the
number of support vectors for the best parameters found. Each blue
dot represents an observed point obtained from optimizing the SVM.
The black dot depicts the following observation in the model, and the
red dot is the feasible model minimum. The red mesh represents the
model mean.

2.13 The BEA algorithm. Adapted from (Lan, Tomczak, Roijers, & Eiben,

2.14 The BOHB algorithm. Adapted from (Falkner, Klein, & Hutter, 2018)

2.15 Classification and branching of Evolutionary Algorithm [112].

2.16 The Genetic Algorithm.

2.17 A graphic representation of the simulated annealing algorithm [125]. .

2.18 The Successive Halving algorithm. Adapted from (Jamieson & Tal-
walkar, Non-stochastic best arm identification and hyperparameter op-
timization, 2016)

2.19 The Hyperband Algorithm [97, 130].

2.20 Algorithm that shows the combination of a GA with the LIMO VO

system. Adapted from (Sehgal, Singandhupe, La, Tavakkoli, & Louis,

3.1 Dell Latitude E5570 used as setup and running an ORB-SLAM?2 sim-
ulationo L
3.2 Relationship between influential, structural, and practical identifiable
parameters [139].o
3.3 Model-based versus Model-free approaches [150].

XV

24

25

27
27
31
32
34

3.4 A roulette-wheel marked for five individuals according to their fitness
values. The fitter individuals have the higher chance of being selected. 62

3.5 A double-point crossover overview. 63

4.1 The performance obtained from the configurations run on the unaltered
KITTI sequences. The black dot represents the mean ATE value and
the green and red lines, the upper and lower bounds, respectively. a)
Sequence 03 shows a case where all the configurations had an increased
ATE concerning the default execution (labeled as D). b) Sequence 00
is an example where most configurations showed no error reduction.
The values obtained were within the confidence interval of the default

execution (labeled as D) oo L 82

XVl

Abbreviations

ATE - Absolute Trajectory Error.

BO - Bayesian Optimization.
BOHB - Bayesian Optimization and HyperBand.

BRIEF - Binary Robust Independent Elementary Features.
CI - Confidence Interval.

EA - Evolutionary Algorithm.

FAST - Features from Accelerated Segment Test.

GA - Genetic Algorithm.

HB - HyperBand.
HPO - Hyperparameter Optimization.

HPT - Hyperparameter Tuning.
ML - Machine Learning.
ORB - Oriented FAST and rotated BRIEF.

PSO - Particle Swarm Optimization.

xXvii

RMSE - Root-Mean Square Error.

RING - Random Number Generator.

SA - Simulated Annealing.
SH - Successive Halving.

SLAM - Simultaneous Location and Mapping.

SVM - Support Vector Machine.

VO - Visual Odometry.

VSLAM - Visual Simultaneous Location and Mapping.

Xviil

Chapter 1

Introduction

Simultaneous Location and Mapping (SLAM) and Visual Odometry (VO) are the
fundamental constituents of emerging modern-day technologies for robotics research.
Many applications use SLAM and VO, such as the navigation of crewless vehicles
and the boom of virtual and augmented reality. In recent years, the study of SLAM
and visual SLAM (VSLAM) solutions have progressed towards real-time applications.
These use either feature-based (indirect), direct, sparse, or dense approaches. The
SLAM problem [1-4] has many potential solutions. Two state-of-the-art approaches
are Oriented FAST (Features from Accelerated Segment Test) and Rotated BRIEF
(Binary Robust Independent Elementary Features) feature detector, ORB-SLAM, [2]
and its more robust version, ORB-SLAM2 [3].

Autonomous navigation is a well-pursued research area for mobile robotics. Many
factors, environments, and situations affect a robot’s performance, including: disas-
ter scenes, maritime exploration, air surveillance, rescue, or GPS-denied locations.
Hence, there is a critical need for accurate maps and pose estimation. A significant
amount of research on map densification and SLAM robustness [4-9] exists, but far
fewer studies on the impact of a VSLAM algorithm’s hyperparameters and their effect
on mapping performance have been made.

ORB-SLAM, as an example, has a default set of commonly-used hyperparame-

ters. These hyperparameters are seldom modified when mapping due to their high

performance. Default parameters are preferred because parameter tuning is a time-
consuming process. The computational costs of a parameter space exploration can be
exponential and, therefore, counterproductive to the overall tuning results. Also, it
can be a complex procedure. Nonetheless, there are studies done regarding parameter
tuning to increase SLAM performance [10-12].

All existent approaches (at the time of this work) share the goal of solving the
SLAM problem with different robustness, pre-processing, and accuracy levels. How-
ever, they all possess the same fundamental shortcoming: they are optimizable. We
present a methodology based on hyperparameter optimization as an approach to
increase SLAM performance through the use of model-free, population-based algo-
rithms. It is independent of the SLAM solution chosen and focuses on the influence

of SLAM parameters on the trajectory error produced.

1.1 Motivation

In recent years, studies have presented solutions that increase the robustness and
efficiency of SLAM [13]. The research is divided into map densification [6, 7, 9,
14], pose estimation [15-18], sensor fusion [7, 19], and visual odometry [3, 13, 20].
SLAM performance is dependent on trajectory estimation. Most open-source SLAM
solutions available run with default parameter values. These are generally effective
(i.e., produce an adequate trajectory estimation) but are not optimal for case-specific
situations.

Research done in SLAM parameter tuning shows an increase in a given algorithm’s
performance if proper parameter values are applied [10, 12, 21-23]. Furthermore, op-
timization techniques are adaptable and compatible with SLAM [12, 23]. Applying
these hyperparameter optimization algorithms in SLAM alludes to a significant per-

formance increment.

1.2 Limitations

There are many different methods to execute SLAM. The most popular use either
monocular, RGB-D, or stereo cameras. In this thesis, we will be focusing on apply-
ing model-free, population-based hyperparameter optimization algorithms in Stereo
SLAM [24]. That is, the execution of SLAM using stereo cameras. Stereo cameras
provide a better depth estimation than monocular ones, but do not have a complete
depth map like the RGB-D option.

Although there are several other state-of-the-art SLAM solutions, we selected ORB-
SLAM?2 as the forerunner of SLAM optimization. Despite having slow initialization,
tracking recovery issues, and point loss, it has a simpler standalone implementation
compared to others. Due to the computational costs, we optimize a select number of

parameters for a delimited! parameter space.

1.3 Contributions
The contributions of this thesis are as follows:

1. We propose a methodology that combines model-free, population-based hyper-
parameter optimization algorithms and SLAM. It is designed in such a way that

it can be exported and used in any SLAM solution available?.

2. We study the influence of a SLAM solution’s parameters on the resulting per-
formance. We apply a simple method for discerning which parameters have a

higher correlation concerning the trajectory error.

3. We provide an implementation of different search-based and population-based

optimization algorithms for obtaining SLAM parameter configurations.

!Having fixed boundaries or limits.
2Some adaptations may be needed.

1.4 Outline

The organization of the rest of this thesis is as follows.
Chapter 2 defines the concepts used throughout this thesis. It also presents a

literature review on relevant research on Hyperparameter Optimization in SLAM.

Chapter 3 describes a methodology for optimizing visual SLAM solutions, con-
sisting of an environmental setup, optimization constraints and assumptions, and a
parameter selection criterion. It presents the selected population-based algorithms,

the baseline search-based algorithms, and the training and testing benchmark.

Chapter 4 presents the experimental setup used. It proposes a three-step process for
better-performing configuration® determination. The chapter shows the experimental

results for each test suite.

Chapter 5 concludes this thesis and discusses future work.

3A comparison of the performance of these configurations and the default parameter execution
determines if a hyperparameter set is more efficient than a default run.

4

Chapter 2

Background

This chapter aims to present the concepts of simultaneous location and mapping,
absolute trajectory error, and hyperparameter optimization. Section 2.1 covers a
general definition of SLAM, some existing algorithms in addition to ORB-SLAM2
(Section 2.1.1), and general applications. Section 2.2 focuses on a performance met-
ric for evaluating SLAM solutions. Section 2.3 and subsequent subsections cover
hyperparameter optimization, the five main branching categories, and popular algo-
rithms. Section 2.9 presents a brief chapter summary of the concepts and research

applicable to this thesis.

2.1 Simultaneous Location and Mapping

SLAM is vital for autonomous systems and navigation. It comprises the simultaneous
estimation of a robot system with onboard sensors and constructing a model of the
perceived environment [13, 15]. In simple terms, the robot’s pose, which consists of
direction, orientation, calibration parameters, and any other helpful sensor readings,
describes its state. The model or map produced represents the environmental descrip-
tors of the operation area. Maps produced by SLAM are essential. The maps serve
as crucial information for the robot during path planning and function as a limiter
for the error obtained during state estimation [13].

There are several different SLAM solutions, some of which do not involve a camera.

Visual SLAM (VSLAM) refers to a specific type of SLAM that leverages 3-D vision
to perform location and mapping functions when neither the environment nor the
sensor’s location are known [25]. This approach is crucial for autonomous navigation;
it captures information with a camera (monocular [26], stereo [27], omnidirectional
28], time of flight [29], RGB-D! [30]) to determine important landmarks that aid in
the mapping [31]. Then, the SLAM solutions use models to correlate images taken at
different times to create 3-D information about the landmarks’ features and localize
the robot [15].

SLAM solutions are mainly composed of the sensor-dependent front-end and the
back-end. The former refers to a module that pre-processes data by extracting rel-
evant features from the sensor data, by pixel extraction from images, and by data
association from the landmarks observed [13]. The latter focuses on map estimation
by treating the localization as a series of robot states, map optimization, keyframe
estimation, maintenance, and global drift reduction by loop closure [6, 13]. The ac-
curacy of a solution is dependent on the accuracy of its localization [32]. Figure 2.1

shows a representation of a typical SLAM system.

Front-end Back-end

SLAM
estimation

Sensor
Information

Feature extraction

Map
Feature tracking estimation $

Loop closure
Bundle adjustment

B

Figure 2.1: Representation of the front-end and back-end of a SLAM system. The
back-end can provide feedback for loop closure to the front-end. Adapted from (Ca-
dena, et al., 2016).

SLAM solutions can be divided depending on the type of approach used within
the system. Regardless, the algorithms employ a probabilistic model that takes noisy

measurements and computes an estimator (typically a maximum likelihood approach)

L'Combined color and depth

for the unknown [5]. Solutions are usually a combination of two categories: indirect or
direct and sparse or dense. The former refers to using sensor data in the probabilistic
model. The latter uses the pixels in the images to construct a map.

Indirect methods are feature-based approaches that take raw sensor measure-
ments and pre-process them to generate an intermediate representation. Then, those
computed values are interpreted as noisy measurements in a probabilistic model to es-
timate the scene geometry? and camera motion [5]. Generally, indirect methods focus
on minimizing the feature reprojection error [3]. ORB-SLAM [2-4] and RTAB-MAP
[7] are example solutions implementing this method.

Direct methods jointly estimate motion and correspondences by minimizing the
photometric error in direct image alignment [6]. This enables the use all the informa-
tion from the input data [5]. These methods have higher accuracy and robustness,
particularly in environments with little keypoints [14]. Additionally, this provides sub-
stantially more information about the geometry of the surroundings. Direct Sparse
Odometry (DSO) [14] and Direct Sparse Odometry with Loop Closure (LDSO) [6]
are example solutions implementing this method.

Sparse methods use and reconstruct only a selected number of points in 3-D.
They contain information about geometry, but not about the semantics of the scene
[33]. Spare methods typically focus on the corners of images. This formulation has
no notion of a neighborhood and keypoint positions are intrinsic and conditionally
independent of camera poses [14]. ORB-SLAM [2, 3] (Figure 2.2) is an example
solution that creates sparse maps.

Dense methods attempt to use and reconstruct all pixels contained within a 2-D
image. They exploit the connectedness of the used image region to formulate geometry
priors and favor smoothness [14]. These priors allow passive vision to observe the
dense world without computational aid. DSO [14], LDSO [6], and RTAB-MAP [7]

(Figure 2.3) are example dense solutions.

2The representation of the -D environment

Figure 2.2: An example of a sparse map produced by ORB-SLAM2 by executing a
KITTI sequence.

Figure 2.3: An example of a dense map and trajectory estimation produced by RTAB-
MAP on the TUM Freiburg dataset.

Navigation has been a field of interest in SLAM for the last decade. SLAM relies
either on feature matching [7] or visual odometry [2] to estimate robot poses and
generate accurate maps. Estimating motion dynamics and triangulation from known
landmarks are the basis for constructing these maps [34]. The map information
is updated as new observations are acquired. Recent pose estimation studies have
relied heavily on stereo cameras for depth perception [18], while others use different

cameras to produce better maps (polarization [9, 19], monocular [2, 5, 35], or sensor

fusion [36-39]). Indirect methods are computationally favorable to address navigation
because optimization happens over the features and poses. These methods have
reasonable pose estimations but produce sparse maps due to their dependence on
selected features. Direct methods match the corresponding frames without rejecting
any points and optimize the robot poses, which leads to dense maps with less accuracy.

There are many different graph-based solutions for SLAM. RTAB-Map? [7, 40] uses
depth and RGB images to construct maps. Using the corresponding odometric poses
embedded in the depth images and the transformations between each node of the
graph created, RTAB-Map compares the images, performs a loop closure analysis,
and optimizes the chart. The depth images generate a point cloud for each node and
transform it using the poses. LSD-SLAM [5] is a direct feature-less monocular SLAM
algorithm that allows building a large-scale, consistent map of the environment with
highly accurate pose estimations based on direct image alignment. It reconstructs
the landmarks in real-time as a pose-graph of keyframes with associated semi-dense
depth maps obtained by filtering over many pixel-wise small-baseline stereo com-
parisons. DSO [14] and LDSO [6] are visual odometry-based systems that combine
a straightforward probabilistic model with parameter optimization. These methods
do not depend on keypoint detectors or descriptors, thereby allowing pixel sampling
across all image regions that present intensity gradients. Thus, they achieve denser
maps than those obtained from other SLAM solutions.

Although there are several other state-of-the-art SLAM solutions, we will focus
exclusively on ORB-SLAM?2 [2]. Despite having some flaws (e.g., slow initialization,
tracking recovery issues, and point loss), its compatibility with the popular available
datasets and its potential makes it our choice of a research subject. The following

section will present a more thorough overview of the algorithm.

3Real Time Appearance Based Mapping.

2.1.1 ORB-SLAM2

ORB-SLAM2 is a SLAM solution that operates in real-time. It is compatible with
monocular, stereo, and RGB-D cameras. It builds on its predecessor ORB-SLAM
(2, 13, 15] by adding loop closing, map recycling, and relocalization capabilities [2].
The structure consists of three main threads that work in parallel: tracking, local
mapping, and loop closure (which triggers a fourth thread that performs a full bundle

adjustment after loop closure) [2, 15]. Figure 2.4 depicts the structure of ORB-

SLAM2.
Tracking Thread
‘ Pre- | .POS? Local map New keyframe
SHEED TS | iy > ‘ processing |‘ - RZ‘TSZE;Z;;ﬂ > tracking | -> determination | |~ :
L :
1
\ 4
Keyframe
Local Mapping Thread ;
:
= K Ltf)cal Local bundle Create new Recent map Keyframe €---=-=- :
1 ey r?me adjustment map point point culling insertion
1 culling
1
1
1
!
1
: Loop Closing Thread Full Bundle Adjustment
:
: Datab c t Essential Essential Essential
->» atabase c)smp; € Loop fusion Graph - == Graph Graph
query m Optimization Optimization Optimization

Figure 2.4: A visual representation of the ORB-SLAM2 algorithm. Adapted from
(Andersson & Baerveldt, 2018)

For monocular cameras, the input extracts ORB features from a set of images.
The FAST feature extraction finds edge features in the input frame. Then, the
BRIEF, which represents the features as a string of binary numbers evaluated based
on different pixel intensities between them, creates a descriptor [15, 41]. In the

case of stereo cameras (used in this research), there is an ORB feature extraction

10

from the left and right images. The system treats the left image as the reference
for feature matching [15]. These ORB features, coupled with depth information,
enable 3-D mapping without any triangulation [3]. Then, the different threads use
the information provided. Figure 2.5 is a representation of image pre-processing for

ORB-SLAM2.

Stereo

Rectified Stereo input Keypoints

Left E> Extract Stereo
Image ORB Matching
Mono

Keypoints
Right I:> Extract

Image ORB

Stereo

RGB-D input registered Keypoints

Image E> Extract Generate Stereo
ORB Coordinate

Mono
Keypoints
Depth

Map

Figure 2.5: A visual representation of image input and pre-processing in ORB-
SLAM2. Adapted from (Mur-Artal & Tardds, Orb-slam2: An open-source slam
system for monocular, stereo, and rgbh-d cameras, 2017)

The tracking thread consists of matching the local map with extracted features for
every frame and minimizing the reprojection error to localize the camera by applying
motion-only bundle adjustment [3]. It uses each frame for camera localization [15] and
keyframe selection to construct a map. The thread finds the initial pose estimation
by matching features between the current keyframe and the previous one. Then, it
optimizes the current pose with a motion model to predict the corresponding map
points on the keyframe and obtain an optimal 3-D reconstruction [2, 15]. If tracking is
lost, the system triggers the place recognition module to perform global relocalization.
The module compares a new keyframe with the current frame to find a map fit with

the largest inliers [15].

11

The local mapping thread manages and optimizes the local map by performing a
local bundle adjustment [3]. It uses the acquired keyframes and map points to build
a map. These keyframes are placed in a covisibility graph as nodes while treating
common map points as edges [15]. Culling takes place if keyframes share many
similarities with others and remove map points if too few keyframes observe them at
a given time. This culling prevents unbounded growth of the covisibility graph and
control keyframe redundancy.

The loop closing thread detects large loops and corrects the accumulated drift by
performing pose graph optimization [2] using g20? [42]. G20 achieves optimization by
looking at the covisibility graph and the similarity between keyframes. It computes a
score by examining the binary bag-of-words representation of the keyframe [15]. If a
new keyframe shares more similarities with an existing keyframe than its neighbors,
it is considered a loop candidate. The thread finds a loop if three of these candidates
are connected. Then, the covisibility graph is updated accordingly [3, 15]. After
the pose-graph optimization, ORB-SLAM?2 performs a full bundle adjustment,
computing an optimal and consistent environment reconstruction.

ORB-SLAM2 has an embedded place recognition module based on bag-of-words,
which reinitializes if the robot is in a known mapped scene. It also allows for relocal-
ization if there is a tracking failure and loop detection. A net of neighboring keyframes
created by the module enables the mapping and tracking to operate locally [2, 15].
Figure 2.6 depicts a visualization of ORB-SLAM?2 during execution.

ORB-SLAM2 has many perks over its predecessor. The ORB features are robust to
rotation and scale, present a good invariance to camera auto-gain and auto-exposure,
and respond to illumination changes [2]. ORB-SLAM2’s proposed localization capa-
bility allows zero-drift [3, 43] and lightweight localization for known environments. As
it is an open-source algorithm, it provides versatility to enhancements and additions

such as neural networks [44], autonomous navigation [15], or sensor fusion. Finally,

4A type of pose-graph optimization.

12

ORB-SLAM2: Current Frame

Figure 2.6: A visualization of ORB-SLAM2 during execution of a Stereo sequence.
The green circles represent the ORB features that are being created and matched.

ORB-SLAM2 has a feature to save and load a map for localization. It also provides
accurate trajectory and odometry estimations. This distance measurement is better

when compared to RTAB-MAP [43].

2.2 Absolute Trajectory Error

Autonomous navigation is an important research topic for SLAM. There are several
developed algorithms and practical implementations to approach the problem. Per-
formance evaluation, that is the map quality and the robot’s localization accuracy
[45], becomes a critical point during the development and deployment. There is diffi-
culty directly evaluating the map quality as there is a need to create a ground-truth
map. Instead, a simplified evaluation process consists of analyzing the accuracy of
the trajectory estimations [46, 47].

A benchmark and dataset® exist to address this performance evaluation problem.
It has widespread use [3, 12, 20, 23, 48] for evaluating SLAM solutions and proposes
two metrics: relative pose error (RPE) and absolute trajectory error (ATE) [46]. This
thesis uses the latter for performance evaluation. ATE seeks the global consistency
of an estimated course by comparing the available ground truth with the estimated

trajectory. It evaluates the root mean square error (RMSE) over all the time indices

5These, together with executable scripts, can be found in TUM’s Department of Informatics
webpage at https://vision.in.tum.de/data/datasets/rghd-dataset

13

https://vision.in.tum.de/data/datasets/rgbd-dataset

of the translational components of a pose in each time instant (Equation (2.1)) [46].

RMSE(Fy,) := Z” trans(F;) ||?)2 (2.1)

The rotational errors can typically manlfest themselves in wrong translations.
Therefore, the selected performance metric (Equation (2.1)) indirectly captures the
rotational components. Furthermore, ATE permits visual inspection (Figure 2.7) due

to its practical and intuitive visualization [49].

—— ground truth

500 1 —— estimated
—— original
400 A
300 A
E
-
200 A
100 A

-100 0 100 200 300
x [m]

Figure 2.7: Visualization of the Absolute Trajectory Error (ATE) on the “KITTI
sequence 09”.

2.3 Hyperparameter Optimization

Hyperparameter optimization (HPO) aims to find the set of hyperparameters in a
given model that returns the best performance when measured in a validation set
[50]. To understand the optimization process, we must first differentiate parameters
from hyperparameters. The former refers to the inputs that a model uses to make

predictions, such as the weight coefficients in a regression model. Usually, model

14

training learns these parameters [51, 52]. Hyperparameters solely depend upon the
conduct of the algorithms when it is in the learning phase [52]. The user arbitrarily
sets them before training the model [51]. In SLAM, they refer to the internal pa-
rameters of an algorithm, such as the number of RANSACS iterations, the number of
ORB features created for each image, or the minimum number of matched features to
determine the culling of a keyframe. Essentially, parameters define how to use input
data to get the desired output, and hyperparameters determine the structure of a
model. For ORB-SLAM2’s case, they affect the precision and functionality of each of
its threads’.

Hyperparameter Tuning (HPT) refers to the automatic optimization of the hy-
perparameters of a given model [53-55]. In addition to model learning, tuning is
considered an extra step to find the set of hyperparameters that lead to the lowest
error on a given validation set. This type of optimization results in a very costly
function evaluation® and contains a generalized inaccuracy acquired through the val-
idation [53]. Furthermore, a search space needs to be defined beforehand to apply
HPT in SLAM?®.

HPO and HPT can be considered machine learning (ML) problems. Hyperpa-
rameters are important for ML since they directly control the behavior of training
algorithms. HPO has a significant effect on the performance of machine learning
models [57, 58]. Similarly, if a SLAM system is treated as a black-box function to op-
timize, it can use model-based or model-free algorithms to train it [59]. That is, HPO
can modify the SLAM system’s internal parameters to affect the computed ATE.

Model-based optimization algorithms construct a regression model'® that predicts

performance and optimizes the target function [60]. Contrarily, model-free optimiza-

6Random sample consensus is an outlier detection method for mathematical models.

“In Section 2.1.1, we defined them as tracking, mapping,loop-closing, and full-bundle adjustment.

8Due to the optimization entailing a model, the computation and performance evaluation can
take hours or even days, which can be unscalable to more significant problems [56]

9This search space needs to set the limits for the hyperparameters and can benefit for using prior
knowledge on the definition.

10 Also known as a response or surrogate model.

15

tion algorithms do not use the model of the environment. Since the latter optimization
approach relies on first-hand experience, the selected algorithm must search a param-
eter space to find a configuration that best minimizes the validation loss. Tuners can
also use prior knowledge to delimit the parameter space and increase the efficiency of
the obtained values.

Tuners often set default parameters with a general application context [54]. Case-
specific parameter tuning will have increased performance when compared to the
default settings. Empirically, having a set of fine-tuned parameters will minimize the
generalized error. However, changing the default parameters often needs an expert
with a good understanding of the system [61]. The cost of hyperparameter tuning
increases exponentially as the number of parameters increases [50]. This exponential
cost increment makes tuning time-consuming, which is its main disadvantage.

Several HPO algorithms are based on or borrow ideas from traditional optimization
techniques and statistical model selection [62-66]. Figure 2.8 depicts a taxonomy for
the hyperparameter optimization approaches. Five significant categories divide the

algorithms based on the type of approach used:

e Brute-force approach

Search-based approach

Model-based approach

Learning-based approach

Population-based approach

2.4 Brute-Force Approach

Brute-force approaches are manual tuning strategies that rely on generating a set of

parameter configurations based on the design of experiments (DOE) or full factorial

16

- _
B E B =

V—I—& L2
. Black-box Evolutionary
Grid Search Random Search Optimization Algorithms

)

—

Ba_ye_s|af1 Hybrid Algorithms Genetic Algorithms S|mulat.ed
Optimization Annealing

Multi-fidelity Model-learning
Optimization Curve

[Successive HalvingJ [Hyperband]

Figure 2.8: A taxonomy for the Hyperparameter Optimization techniques.

design (FFD) [54]. These candidate configurations are run the same number of times
in each training instance!'. Then, the best performance estimated is considered an op-
timal setting. This optimization approach is simple and easy to implement. However,
the tuner must distribute the computational resources equally to all configurations
[67, 68]. This distribution leads to a thorough exploration of poor-performing candi-
dates. Furthermore, there are no existing criteria to determine the number of runs per
configuration needed to handle the stochasticity derived from the target algorithm
[54, 69]. Thus, manual tuning and brute-force approaches tend to be inefficient [70]

and heavily biased by human actions and thoughts [71].

2.4.1 Brute-force approach in SLAM

Nevertheless, research shows that algorithm performance can increase via optimiza-
tion if the parameter behavior is studied and there is a proper parameter space
exploration and delimitation. For example, by tuning the selected parameters for
SLAM, it is possible to reduce the navigation time of a Turtlebot [22]. Another
case is the behavioral research of an odometer’s parameters for underwater operation
in Autonomous Underwater Vehicles (AUVs) [10]. They focused on two different

odometers, with 10 and 16 parameters each, and identified the key parameters'? to

1 Based on the experiment design, the number of training instances may vary.
12Those are parameters that showed the most significant influence on the odometer.

17

reduce the optimization cost'®. After brute-forcing an iteration over the determined
parameter space, the study identifies the influence of each parameter on the search
space concerning the translational and rotational errors. This research is relevant
since there is a need for parameter selection to reduce optimization costs in cases

where a large set of hyperparameters exist.

2.5 Search-based Approach

A type of approach for the optimization problem is search-based algorithms (e.g., grid
search and random search). These are popular due to the algorithm simplicity, early-
stopping capability [72], and easy implementation (Section 2.5.1 and Section 2.5.2).
Search-based approaches (used as baselines in this thesis) are competitive due to their

low computational costs and compatibility with SLAM.

2.5.1 Grid Search

Grid search is a simple basic solution for HPO. It consists of an exhaustive search and
evaluation of all possible combinations within a parameter space [73-75]. Grid search
can be computationally expensive as it may suffer from the curse of dimensionality'*
[1, 53, 74-76]. Figure 2.9 shows a representation of how grid search works. Despite the
development of more specific and complex algorithms over the last decades, several

reasons why it is still relevant as a state-of-the-art solution [77] exist:

e Simple implementation and trivial parallelization
e Global optimum convergence given enough time
e Reliability on low dimensional spaces (e.g., 1-D, 2-D)

e Low implementation complexity'®

I3A higher number of parameters increases the number of combinations exponentially, affecting
computation costs.

14This means that the number of combinations grows exponentially with respect to the number
of hyperparameters input.

15This means that the algorithm is easy to implement.

18

e Adaptability

Tz1+ @@ @ ©
®

=

TSy +— @@ @ ©
S

Zx1 @

® x ® O
o

N L

Hyperparameter 1

Figure 2.9: A visual representation of grid search’s operation. Adapted from (Bergstra
& Bengio, 2012)

2.5.2 Random Search

Random search is a variation of the previous algorithm. It randomly samples con-
figurations in the parameter space instead of a Cartesian grid [53]. This algorithm
requires that a budget be specified [1, 74, 75, 77]. The random search algorithm uses a

given budget'® constraint and tends to produce better solutions than grid search. Due

I6Number of trials, time, etc.

19

to the parameter space exploration capability, random search increases the chances

of converging into local optima [1, 70, 75, 78]. The main trade-off is computational

effort [9]. Figure 2.10 depicts a general behavior of random search algorithms.

Z 19)owelediadAH

N

-<

b

09

08¢

07

0.6

0.5

04

03 F

0.2

L " L . -
-08 06 04 -02] 0.2 0.4 06 08 1

a

°
I
b

|
|
c

Hyperparameter 1

Figure 2.10: A visual representation of random search’s operation. Adapted from
(Bergstra & Bengio, 2012)

Random search algorithms are helpful for ill-structured global optimization prob-

lems, where the objective function may be non-convex, non-differentiable, and pos-

sibly discontinuous over a continuous, discrete, or mixed continuous-discrete domain

[78]. This algorithm, like grid search, may suffer from the curse of dimensionality.

Despite the limitation, it has many advantages that make it a relevant solution:

20

e Adaptability and customization to different cases (e.g., neural networks, SLAM,

specific optimization problems, etc.) [79, 80]
e Simple implementation [70, 77, 78]
e Reliability in non-cubic parameter spaces [53]
e Trivial parallelization [53, 70, 77]
e Fast convergence to a local optimum [78]
e Asynchronous parallel execution [77]
e Early-stopping [77]

2.5.3 Search-based approaches in SLAM

Research has applied grid search to a feature-based SLAM solution to produce sets
of hyperparameters that enhance trajectory estimation. The study focused on the
visual odometry component and used ATE as the performance metric to determine
the best-performing configuration [17]. One of the critical keynotes for tuning visual
odometry in a feature-based SLAM system is the number of parameters to optimize.
Additionally, studies used grid search to adjust model parameters for classification
problems [73, 81]. As stated in previous sections, the computation cost increases
exponentially as the number of combinations increases. Therefore, having a few
optimizable parameters makes the problem computationally feasible.

Random search is another search-based approach used for optimization. Support
Vector Machines (SVMs), like SLAM, use hyperparameters for their induced predic-
tive models, affecting performance. A study suggests that random search can find
a good-performing!” set of parameters with similar results to grid search and meta-

heuristics (e.g., GAs, Particle Swarm Optimization, and Estimation of Distribution),

17Good-performing is referred to as having a lower ATE value than the ATE produced by a default
value execution.

21

but with a lower computational cost [82]. These optimization heuristics were tested
on 70 different low-dimensionality datasets from the UCI*® repository and proved that
a simpler algorithm could provide competitive results.

However, both grid and random search possess some detrimental characteristics.
They are heuristic, which ensues highly stochastic results. Furthermore, they have
no defined execution time. Thus, they heavily rely on a termination criterion to
avoid indefinite iterations. Additionally, these algorithms are fully explorative, having
equally-distributed computational resources, which increase the execution time'? [67,

68], and have a random convergence to a local optimum?’.

Therefore, search-based
algorithms are simple strategies to implement with a SLAM solution but might not

be optimal in obtaining good-performing configurations.

2.6 Model-based Approach

Model-based optimization approaches build a surface or surrogate model that de-
scribes the relation between parameter configurations and algorithm performance
[54]. Then, they use these models to evaluate configuration candidates and guide
the sampling process of new possible sets. That is, these models help find suitable
parameter configurations for the target algorithm. These approaches favor complex
optimization problems and clarify an algorithm’s performance dependence on its pa-
rameter settings.

Model-based tuning algorithms use the obtained response models from their candi-
date configuration tests to provide desirable information to address the exploration-
exploitation trade-off. These are sometimes considered an extension of the efficient
global optimization (EGO) [83], which combines a predictive model with sequential

sampling strategies such as the expected improvement criterion (EIC) [84] to identify

18Machine Learning repository at http://archive.ics.uci.edu/ml

19Meaning that time will be used in evaluating poor-performing configurations.

20This means that a good-performing solution can only be found after a certain amount of time
and iterations have been done (i.e., this strategy finds a good-performing solution by chance).

22

http://archive.ics.uci. edu/ml

promising good points [54]. Some of the most used model-based approaches include
Sequential Kriging Optimization (SKO) [58, 85-87], Bayesian Optimization (BO) [21,
66, 88-90], and the state-of-the-art Bayesian Optimization Hyperband (BOHB) [91,
92].

2.6.1 Black-Box Optimization

Black-Box Optimization is the study and analysis of optimization problems and algo-
rithms that assumes the objective function behaves like a black box [93]. A black box
refers to an inaccessible function (i.e., no analytic description is available with ob-
servable outputs given some inputs [93])?'. In HPT, this type of optimization refers
to either blindly searching a parameter space or building an educated guess for a
configuration that minimizes the validation loss [53].

Model-based approaches and many non-multi-fidelity optimization (Section 2.8.3)
algorithms applied to SLAM for HPT do not exploit the detailed knowledge of the
system but rather treat it as a black box [59, 86, 94]. This black box represents
the state estimation results of vision navigation [28, 95, 96]. The objective of SLAM
HPT is to optimize the results obtained from evaluating the map produced without

considering the internal processes within the SLAM system.

2.6.2 Bayesian Optimization

Bayesian Optimization (BO) is a state-of-the-art algorithm that optimizes expensive
objective functions [74, 75, 83, 90]. The central idea of this algorithm is to build a
probabilistic model that can be updated and queried to drive optimization decisions,
as shown in Figure 2.11 [66]. This approach is best applicable to non-convex problems
with a non-closed-form expression for the objective function. BO produces noisy
observations of the sampled values [88]. It is considered a highly effective optimization

technique. This effectivity stems from its ability to incorporate prior knowledge

21We can define these functions as unknown or not having a closed-form solution.

23

about the problem to help direct the sampling, resulting in an exploration-exploitation
trade-off in the search space [88]. BO takes its name from the Bayes’ Theorem, which
states that the posterior probability of a model, M, given some knowledge, F, is
proportional to the likelihood of E given M multiplied by the prior probability of M
(Equation (2.2)) [88]. The prior refers to the information that we know about the
objective function. In contrast, the posterior is the captured information about the

unknown objective function.

P(M|E) < P(E|M) x P(M) (2.2)

Algorithm 1 Bayesian Optimization
1: fori=1,2,... do
2: Find x; by optimizing the acquisition function over the GP: x; = argmax, u(x|D1.t—1).

3: Sample the objective function: y: = f(x:) + &¢.
4: Augment the data D1t = {D1.t—1, (Xt,y:)} and update the GP.

5: end for

Figure 2.11: The Bayesian Optimization algorithm. Adapted from (Brochu, Cora, &
De Freitas, 2010)

Bayesian optimization consists of mainly two components: the surrogate model
and the acquisition function. The former component models the objective function,
and the acquisition function measures the value generated by evaluating the objective
function at a given point [1]. There are different options for surrogate models in BO:
Random Forests, Gaussian Processes, or Tree-structured Parzen Estimators [1, 53].
Each has its advantages and disadvantages, but the standard for modeling the sur-
rogate objective functions is Gaussian processes [1, 53]. When sampled on k£ random
points, these are stochastic functions that follow a multivariate Gaussian distribution
[53].

Gaussian process regression?? is the process of adding additional information of the

sampled points to the prior [53]. That is, fitting a response surface by a Gaussian

22This is also known as the concept of kriging.

24

process with a prior covariance. The mean provides an approximate response, but
the predicted variance also produces valuable information. Then, a chosen acqui-
sition function selects the following sample point within the parameter space [53].
Figure 2.12 depicts an example of the use of BO to find the parameters of a Support

Vector Machine (SVM) classification that minimizes the cross-validated loss.

Objective function model Number of support vectors at each iteration

200

&
o

@® Observed points
[Model mean

@ Next point

* Model minimum feasible

N
o]
o

Current iteration
Best objective

=
(2]

=
D
o

e
IS
N
>
o
T

120 |

e
w

100 [

Estimated objective function value
o
(N

Number of support vectors

o

10° E————
0 S 40 . ‘ . ‘ .
10 5
100 e 0 5 10 15 20 25 30
sigma Iteration number

Figure 2.12: This is an example of Bayesian optimization that plots the number of
support vectors as a function of the iteration number and graphs the number of sup-
port vectors for the best parameters found. Each blue dot represents an observed
point obtained from optimizing the SVM. The black dot depicts the following obser-
vation in the model, and the red dot is the feasible model minimum. The red mesh
represents the model mean.

BO is efficient for tuning a small number of hyperparameters. Its efficiency de-
creases as the search dimension increases®® [53]. If the parameter space is too large,
BO’s behavior becomes par with random search [97]. One major drawback is the
lack of parallelization of the algorithm compared to other baseline algorithms. The
learning process needs to finish before a new one can be launched, as the Gaussian
process and the acquisition function need to be updated to find a maximum [53].
Other drawbacks include the limitation on the types of hyperparameters that BO can
work with (continuous and discrete, but not categorical). Computational costs and

runtime can also be problematic. These can increase as the number of hyperparam-

23Bayesian optimization has a cubic complexity.

25

eters or the parameter search space increases. However, BO is a robust solution for

finding a local optimum [92].

2.6.3 Hybrid Algorithms

More recent studies have shown that fusing optimization algorithms can increase
performance, reduce execution time or obtain better results when compared to the
uncombined components. These combinations may include members of the same op-
timization type (i.e., black-box optimization or multi-fidelity optimization) or a fusion
of both. Since many combined optimization techniques exist, we will focus on the
Bayesian-Evolutionary Algorithm (BEA) [98] and Bayesian Optimization Hyperband
(BOHB) [92].

The Bayesian-Evolutionary Algorithm is an optimization algorithm that combines
BO’s data efficiency with the heuristic time-saving from an evolutionary algorithm
(EA). It focuses on time efficiency, distinguishing BO or EA, and switching them
accordingly. Figure 2.13 shows that the algorithm consists of three stages. The first?*
employs BO due to the low computation time [98]. When the time efficiency of the EA
surpasses that of BO, the valuable knowledge transfers from the BO to the EA (i.e.,
the second stage). This stage employs the gains per time-interval approach to decide
the switch point on when to transfer the information. In the last step, the search
continues by an EA?® with a hybrid adaptive and self-adaptive mutation strategy to
balance exploration and exploitation [98]. Overall, BEA outperforms BO and EA
regarding time efficiency and objective value [98].

On the other hand, BOHB (Figure 2.14) aims to combine BO and Hyperband
(HB) to obtain strong anytime performance with a fast convergence rate to optimal
configurations [75, 92]. Instead of using HB’s blind repetition on top of successive
halving (SH) [101], BOHB uses a BO approach [91]. BOHB relies on HB to determine

how many configurations to evaluate within a budget. It replaces the random selection

24This stage refers to the early iterations of the algorithm.
2°In principle any EA can be used for the third stage [99, 100]

26

Algorithm 1: BEA
Init: N7 initial samples Xicq.a73 (21, 22,00 2y,), @ S
iteration number; totally iterations A; switch point
iteration Ny:
Result: solutions X,;ci.a1y (21, 22, ..., 2,,) and f;

1 while i <= N do

2 if i < N, then

3 ‘ run Bayesian optimization ; > st stage
4 else

5 if i = N, then

6 | transfer knowledge ; > 2nd stage
7 run gain-aware EA ; > 3th stage

Figure 2.13: The BEA algorithm. Adapted from (Lan, Tomczak, Roijers, & FEiben,
2020)

of models at the beginning of each HB iteration with a model-based search [92]. The
standard SH executes once it reaches the desired number of configurations at the

beginning of each HB iteration.

Algorithm 2: Pseudocode for sampling in BOHB

input :observations D, fraction of random runs p,
percentile g, number of samples N,
minimum number of points N,,;, to build a
model, and bandwidth factor b,,

output :next configuration to evaluate

if rand() < p then return random configuration

b=argmax{Dy : |Dy| > Nyin + 2}

if b = () then return random configuration

fit KDEs according to Egs. (2) and (3)

draw N, samples according to I'(x) (see text)

return sample with highest ratio [(x)/g(x)

(= 7 B S R S

Figure 2.14: The BOHB algorithm. Adapted from (Falkner, Klein, & Hutter, 2018)

Besides the combined advantages of BO and HB, BOHB also allows parallelization.
It is an anytime algorithm that keeps track of the configuration that achieved the best

validation performance; the algorithm can also be given a maximum budget of SH

26

runs [92]. In summary, BOHB is an open-source®®, scalable, robust, and flexible

26The implementation can be found at https://github.com/automl/HpBandSter

27

https://github.com/automl/HpBandSter

algorithm that achieves both excellent final and anytime performances.

2.6.4 Model-based approaches in SLAM

The most popular algorithm used for VSLAM and multi-objective HPT is BO. One
reason is that it provides an efficient solution to optimize the parameters for a visual-
inertial SLAM system [48]. Furthermore, its compatibility with other algorithms
(e.g., hybrid algorithms) positions model-based approaches relevant. One example is
that a model-agnostic approach fused filter ensembles with BO for feature selection
and fine-tuning the hyperparameters of an image classifier [102]. The main concern
in VSLAM is the absence of a formal black-box function. Instead, we must consider
the whole system for optimization, which leads to a problematic implementation of
model-based algorithms.

Despite its heavy reliance on a fixed model, model-based approaches have many
benefits as optimization algorithms (Section 2.3). They can adequate to different
types of functions. Also, the surrogate model created for the target VSLAM system

can produce highly efficient solutions.

2.7 Learning-based Approach

General performance and overall results select the default parameters in an established
system. Tuning firmly assumes that a single set of parameters will work on average on
every region of a complex problem [103]. Moreover, modifying the parameters requires
an expert that has a keen understanding of the inner workings of the system used
[61]. Because of these reasons and ease of use, teleoperation has been the solution for
navigation and SLAM. Nevertheless, two learning-based approaches exist that erases
the need for a human operator and make HPT feasible: reinforcement learning (RL)
and learning from demonstration.

The former refers to learning a map from situations and actions to maximize a

scalar reward for a given model [104, 105]. Tt consists of a learning agent that can

28

sense the environment’s state and take appropriate steps to maximize the rewards
(instead of finding a generalized hidden structure from a function [106]) and the
value function. Like BO [10, 53] and other model-based approaches, it focuses on
the exploration-exploitation trade-off in search of the best optimization for a given
function. The agent must try many actions and progressively favor those to appear
to have the best rewards [106, 107]. Another feature is that the robot’s navigation
explicitly considers the whole problem of a goal-directed agent interacting with an
uncertain environment [107].

Learning from demonstration alludes to seeking a good set of parameters that
mimic the behavior of a teleoperated human demonstration of the desired naviga-
tion?”. Because a human demonstration can behave differently at different points of
the environment, a single set of parameters cannot closely resemble the execution in
all its states. Thus, the problem divides into pieces that include consistent sensory
observation and navigation commands, which lead to a relatively cohesive navigation

behavior [61].

2.7.1 Learning-based approach in SLAM

It is common to pair learning-based, and reinforcement learning approaches. Both use
the previously-obtained information to exploit the hyperparameter values and direct
them towards better-performing configurations. Examples of this type of approach
include using of an iterative Q-fitting algorithm to configure the parameters of a
workstation to increase its capacity [108] and the application of RL for mapping in
SLAM [105]. However, mimicking human operation is another way an algorithm
can learn the best-suited parameters for a specific execution. APPLD?* employs
behavioral cloning to minimize the difference between the demonstrated actions and

the actions that the robot would produce.

2"This new set of parameters can be applied to a completely new environment by simply providing
a teleoperated demonstration.
28 Adaptive Planner Parameter Learning from Demonstration.

29

Learning-based approaches can lead to very positive results, but they are heavily bi-
ased. Since they need a human demonstration to start this process, an knowledgeable
expert needs to set the initial example. Furthermore, the configuration combinations
tend to become highly exploitative with no further perturbations to explore other
solutions. This exploitation converges into a configuration that can produce better
results for a specific environment. Learning-based approaches are suitable for adap-
tive parameter tuning but not for finding a set that shows an overall performance

increase in the SLAM solution.

2.8 Population-based Approach

These approaches (Section 2.8.1) depend on particles or individuals to choose a suit-
able function to fit an environment [12, 109]. Each represents a potential solution
(i.e., a data point), spread throughout the search space, to an optimization problem.
The distribution of solutions finds the landscape of a problem [110].
Population-based algorithms (used in this thesis) are stochastic in nature. They
favor an early exploration that becomes exploitative as more iterations occur. Hy-
perparameters in SLAM systems do not seem to have an established behavior (i.e.,
a change in one value in a configuration can produce unpredictable results). Hence
the reason why population-based approaches are favorable for tuning is due to their

fanning? and exploitation capabilities.

2.8.1 Evolutionary Algorithms

Evolutionary algorithms (EA) are a series of stochastic and heuristic optimization
algorithms that mimic a natural biological behavior that follows the theory of evo-
lution [16, 100, 110-113]. They share the same principle of incrementally improving
the quality of a set of solutions over time [16, 114]. EAs rely on the concept of a

population that undergo probabilistic operators such as mutations, recombination,

29The ability to spread out in the parameter space when defining the initial population.

30

and selection to evolve into better fitness values for individuals [100]. In other words,
they follow the Darwinist theory of survival-of-the-fittest to explore the parameter
space and converge to better fitness values by exploiting the most suitable traits. One
significant property of EA heuristics is exploring the search space by a whole popula-
tion of solutions. This search adds the flexibility of finding different local optima (in
a process akin to random search) and resistance to premature convergence towards a
single local optimum in multi-modal search spaces [112].

There are many different algorithms born from the concept of EA (Figure 2.15).
Some are strict branching from the original evolutionary algorithm idea like genetic
algorithms (GA) [75], genetic programming [113], evolutionary strategies [113], evo-
lutionary programming [113], or learning classifier systems [112, 115]. Others are
related search heuristics such as Tabu Search [113, 116, 117]. Most of these heuristics
formulate from a concept found in nature, such as mimicking metallurgy through
simulated annealing [65, 113], climbing a hill [118, 119], exploring an ant colony orga-
nization [113, 120], or the propagation and spread of birds in flight during migration

(64, 75, 113]. In this thesis, we are primarily interested in GAs.

Evolutionary
Algorithms (EA)

Evolutionary
Computation (EC)

Genetic Algorithms Genetic Evolutionary Evolutionary Learning Classifier Related Search
(GA) Programming (GP) Programming (EP) Strategies (ES) Systems (LCS) Heuristics

v v v v v

Particle Swarms (PS) S'm“'at‘?gﬁ;‘"ea"”g Tabu Search (TS) Ant Systems (AS) Hill Climbing (HC)

Figure 2.15: Classification and branching of Evolutionary Algorithm [112].

As their name suggests, genetic algorithms attempt to mimic the process of bio-
logical evolution and competition found in nature [62, 99, 121, 122]. The main idea

of genetic-based optimization techniques is applying multiple genetic operations to

31

a population of configurations (i.e., mutation, crossover) [1]. The algorithm consists
of three main steps: selecting and pairing, mating, and mutating (Figure 2.16) [80,
114, 123]. These steps are then iterated over a set amount of time until they meet a

termination criterion.

Initial population
No
il pld >
| Selection
1 Y -
. 1
Enzlgigtehnr:nc € Termination criteria €——— Fitness Calculation : Selection
Pl 1 bias
1 1
1 T 1
1
| e ;0 mmmemmmm———-- Pairing
\ 4

New Generation \ 4 Pairing
bias
Mutation (—l_

Mating

Figure 2.16: The Genetic Algorithm.

GAs follow the natural selection approach in biology, which means that the algo-
rithm opts to eliminate the solutions with lower fitness values [99]. Selection and,
subsequently, the pairing are the first vital operators in a GA. They refer to choosing
a certain number of individuals within a population® and pairing them, using some
bias (e.g., assigning weights depending on the fitness value [62], selecting the fittest
results) as the basis for creating new individuals. The next step is mating3!. Mating
symbolizes the exchange of elements of each parent solution to produce two unique
individuals that slightly differ from the originals. In theory, this swapping reflects
the DNA combinations in sexual reproduction [99]. The last step is mutation. As
the name suggests, this means that the algorithm chooses a random individual from

the population and modifies its hyperparameter value(s) to create an entirely new

30Tt usually is the top half of the population, but the choice is dependent on the programmer.
31This step is also known as crossover.

32

solution??

. Mutation helps the highly exploitative algorithm encourage exploration
and escape local optima. Finally, this evaluation, reproduction, and mutation pattern
repeats until a sufficiently satisfactory®® solution appears to dominate the rest of the
population [99].

GAs, and EAs in general, seem to perform well in a wide variety of optimization
problems. Tuners consider them as general-purpose problem solvers [99]. Due to
this, they tend to be outperformed by specialized algorithms. Nevertheless, GAs and
EAs apply to spaces where no search heuristics are known [112]. These algorithms
can be extended to complex problems [63, 112] (i.e., many-objective, distributed, and
multi-objective algorithms, robotics) and are easy to implement [92], are adaptable
[62], and can be applied to different hyperparameter tuning solutions [11, 12, 102,
104, 120, 121, 124].

Although GAs are considered simple, relevant state-of-the-art research still regards
their practicality despite specialized algorithms. Its convenient exploitation of high-
performing solutions combined with the stimulating exploration, given enough time,
produces equally good results when compared with a model-based algorithm. They
also exhibit compatibility with SLAM solutions. Hence, the use of these optimization

algorithms for state-of-the-art SLAM HPO and HPT.

2.8.2 Simulated Annealing

Simulated annealing (SA) is a hyperparameter optimization algorithm inspired by
metallurgy [65, 99, 100, 113], which simulates the heating and cooling of materials
[100, 113, 125, 126]. It is a complex algorithm with several steps. It first selects
a single starting value applied to all hyperparameters and evaluates the model per-
formance [1, 65]. This initial parameter is supposed to be high enough to allow an
aggressive random search over the parameter space [126]. Next, it will randomly

update the value of one hyperparameter by selecting one contained within the neigh-

32Mutation is done rarely and just over a few individuals within the population.
33Low cost.

33

boring states. At first, it allows uphill movements readily, but as time passes, those
perturbations tend to decrease until the hyperparameter value reaches its final form3*
[125, 126]. Finally, it compares the current model performance with that of the
neighboring states [1]. The user then can reject or accept the neighboring state as
the current one by using some deterministic criteria. Figure 2.17 shows a graphic

representation of SA’s behavior.

4.3 starting
configuration

4.2 4
=
= 41
.0 .
= perturbation
=} . .
® via Hill
> R
W o404 climbing

global
3.9 1 minimum
local minimum
0 2 L 6 8 10 12

Improvement Number

Figure 2.17: A graphic representation of the simulated annealing algorithm [125].

2.8.3 Multi-Fidelity Optimization

Multi-fidelity optimization refers to any optimization technique that focuses on de-
creasing the evaluation cost by combining many low-fidelity evaluations and a small
number of expensive high-fidelity evaluations [1, 75]. This type of optimization is
essential when working with large datasets. The training time, which can take days,
can be reduced substantially by using cheap low-fidelity evaluations on a data subset.
Although the high-fidelity evaluation can produce precise and accurate results for the

whole dataset, the low-fidelity evaluations reduce the total evaluation cost. Thus,

34This type of algorithm closely resembles a standard downhill-only iterative improvement [89)].

34

it can achieve a significant speed-up by trading the overall performance [1]. Usu-
ally, that increased approximation error can be negligible compared to the total time
reduction achieved. We will present an overview of the most popular multi-fidelity

optimization algorithms in the following subsections.

2.8.4 Model Learning Curve

Modeling a learning curve is an optimization technique that, during hyperparameter
optimization, determines whether to allocate more resources or terminate the training
for a particular configuration [1] given a learning curve. This algorithm may serve to
model the performance of a given hyperparameter within a subset of a dataset. There
are many ways to implement a termination procedure if the model performs poorly for
a particular configuration. One method is learning curve extrapolation [1, 83], which
terminates the execution if the performance of the predicted set is lower than that of
the best model trained so far in the optimization process. Furthermore, a fusion of
this optimization technique with other algorithms (e.g., Bayesian optimization) can

reduce error and execution time models.

2.8.5 Successive Halving

Successive Halving (SH) is a bandit-based approach for optimization. It can provide
accurate results within a relatively short execution time by allocating more resources
to promising hyperparameter configurations [74, 75, 101, 127]. This algorithm (Fig-
ure 2.18) assigns a budget to evaluate all the hyperparameter sets. Next, they are
ranked based on their performance [1]. Half of these configurations are culled based
on their rank® values. Finally, the budget of the previous executions is doubled and
repeated until one set remains [1, 54]. This algorithm outperforms the uniform bud-
get allocation techniques regarding computation time and the number of iterations

required [54]. However, it suffers from an exploration-exploitation stopgap. That

35The bottom half of the configurations are considered unnecessary and removed.

35

means that the user needs to determine if they need to allocate a large portion of

the budget on exploring a vast number of configurations and a smaller budget tuning

them or vice versa3.

Successive Halving Algorithm

input: Budget B3, n arms where £; ;. denotes the kth loss from
the 7th arm

Initialize: Sy = [n].

Fork=0,1,...,[logy(n)] — 1

Pull each arm in Sy for 7.)]J additional

= |2

[SklTlosg (n
times and set Ry, = Z?:o rj.

Let o, be a bijection on Sj such that 7, (1) r, <
Cop2),ry, =0 < Lo (5.1

Sir1 = {0 € Skt log iy < Loy (Uisil/2)) i |-
output : Singleton element of Sﬂogz(n)7

Figure 2.18: The Successive Halving algorithm. Adapted from (Jamieson & Tal-
walkar, Non-stochastic best arm identification and hyperparameter optimization,
2016)

2.8.6 Hyperband

Hyperband (HB) is a parameter-free, bandit-based optimization technique that max-
imizes exploration and optimizes the search space when selecting from randomly
sampled configurations [1, 74, 75]. The algorithm consists of two components: a) the
successive halving subroutine and b) the iteration over different models with the par-
titioned resource [128, 129]. Like SH, Hyperband requires a budget as an input. Then,
it partitions the budget into several configurations and assigns a limited resource to
each group of hyperparameters. That is, it frequently performs the SH algorithm
with different budgets to find the best sets of hyperparameters [91]). Within each
execution of the SH, a pruning factor (n) determines the number of sets to keep until

it finds the best combinations of hyperparameters.

36Spending a small amount of the budget for exploration and the rest of it for tuning.

36

Algorithm 1: HYPERBAND algorithm for hyperparameter optimization.
input : R, n (default n = 3)
initialization: s, = [logn(R)J, B = (smax +)R

1 for s € {Smax, Smax — 1,-..,0} do
B 1 —s
2 n= [_R 37+1 -|7 T:Rn s

// begin SUCCESSIVEHALVING with (n,7) inner loop
3
4
5
6 Inner
7 L = {run_then return val loss(t,r;) : t € T’} loop
8 T =topk(T, L,
9 end
10 end

11 return Configuration with the smallest intermediate loss seen so far.

Figure 2.19: The Hyperband Algorithm [97, 130].

In Figure 2.19, we can observe the HB algorithm. The blue section in the figure
represents the integer number of hyperparameter sets considered at each loop itera-
tion. The red portion refers to the rounded number of groups examined within the
SH inner loop. Finally, the green part indicates the round number of configurations
kept at the end of a given iteration [130]. In summary, HB is a robust, scalable,
flexible, parameter-free, fast-converging, bandit-based algorithm that possesses the
benefits from SH plus high implementation adaptability. It can also outperform BO

given specific situations [98].

2.8.7 Population-based approaches in SLAM

Population-based algorithms have been used for years in VO and VSLAM to tune
the hyperparameters, increase algorithm performance, and reduce an error metric.
Particle Swarm Optimization (PSO) and GA were used to adjust the parameters of
an RGB-D Visual Odometry solution [12]. Their results suggest that the procedure
can replace baseline search-based approaches, execution speed is improved®”, and

parameters can generalize to other sequences (while they share camera intrinsic values

37The execution time dropped from days to hours [12].

37

and a similar execution environment) [12].

Similarly, a study coupled a GA with a Lidar-Monocular (LIMO) VO solution [23]
for parameter optimization. Their algorithm®® (Figure 2.20) was run on the KITTI
sequences and demonstrated that they could achieve better performance and a re-
duced translational error [46] across various tests [23]. Genetic Algorithms are also
used for multi-objective solutions (MOGA), for example optimizing ROS*® packages’
parameters to enhance RTAB-MAP [121]. However, studies found that fine-tuned
parameters may not outperform default value executions in all scenarios. This un-
derperformance is critical for SLAM optimization. The objective is to find a set of
fine-tuned hyperparameters that generally fit nicely on an anytime execution.

Like model-based approaches, tuners can combine population-based algorithms
with other optimization methods or algorithms. A study combined a filter ensemble
with a GA for image feature selection [102]. Another research coupled an EA with an
adaptive constraint-handling technique for constrained optimization problems [104].
Furthermore, an EA applied to deep neural networks (DNN) can increase their perfor-
mance [124]. All three previous cases demonstrate that population-based approaches
are flexible, combinable, easy to implement, and produce good results when applied

correctly.

2.9 Chapter Summary

Localization is estimating the robot’s position within a known map [131] (Section 2.1).
ORB-SLAM2 (used in this thesis) is a state-of-the-art solution for the SLAM problem
(Section 2.1.1). HPO is the problem of choosing a set of optimal hyperparameters for
a learning algorithm. These algorithms divide into five categories (Section 2.3): brute-
force (Section 2.4), search-based (Section 2.5), model-based (Section 2.6), learning-

based (Section 2.7), and population-based (Section 2.8).

381t is an open-source algorithm found at https://github.com/aralab-unr/LIMOWithGA
39Robot Operating System. A software found at https://www.ros.org/

38

https://github.com/aralab-unr/LIMOWithGA
https://www.ros.org/

Algorithm 1 GA-LIMO

1
2
3
4
5

6:

: Choose population of n chromosomes

. Set the values of parameters into the chromosome
: Run LIMO with the GA selected parameter values
: for all chromosome values do

Run LIMO on KITTI odometry data set sequence 01
Compare LIMO estimated poses with ground truth
Translation error oy is found

Run LIMO on KITTI odometry data set sequence 04
Compare LIMO estimated poses with ground truth
Translation error o4 is found

Average error g, = %

return 1/0,,,

: end for

Perform Uniform Crossover

. Perform Flip Mutation at rate 0.1

: Repeat for required number of generations for optimal
solution

Figure 2.20: Algorithm that shows the combination of a GA with the LIMO VO
system. Adapted from (Sehgal, Singandhupe, La, Tavakkoli, & Louis, 2019)

HPO can apply to different SLAM algorithms if treated as a black-box function
(Section 2.6.1) in a machine learning problem. Among the different approaches,
population-based algorithms seem to have a fair implementation for SLAM opti-
mization solutions. This thesis uses model-free, population-based algorithms to train
ORB-SLAM?2 to produce a set of hyperparameters with lower error output than a de-

fault configuration execution. We use the proposed metric (absolute trajectory error)

to evaluate the performance of the SLAM optimization.

39

Chapter 3

Methodology

This chapter discusses the proposed methodology for SLAM optimization. Section 3.1
explains the environmental setup used and the constraints considered for the experi-
ments. Section 3.2 focuses on ORB-SLAMZ2’s parameters, defining a parameter space
and determining the influence of said parameters on the SLAM solution. Section 3.3
and Section 3.4 cover the chosen training and testing data sequences and the model-

free algorithms chosen for optimizing SLAM.

3.1 Environmental Setup and Constraints

This section defines the equipment and environment used to execute the experiments
found in Chapter 3 and Chapter 4. It details the modifications done to the ORB-
SLAMZ2’s source code to implement optimization approaches. Furthermore, it speci-
fies the script used for performance evaluation and the constraints considered for the

experiments.

3.1.1 Environmental Setup

One of the research objectives is the ease of reproduction of all simulations and
experiments. We selected a Dell Latitude E5570 with an Intel Core i7-6820HQ CPU
@ 2.70 GHz x 8 processors, 16GB RAM, and a 250 GB HDD capacity to fulfill that
purpose (Figure 3.1). Additionally, we installed an Ubuntu 18.04.5 LTS! Operating

'Downloaded from https://releases.ubuntu.com/18.04/

40

System (OS) due to its stability and compatibility with ORB-SLAM2 simulations.

LE
O
.v
o
®
g i
LR
B
|
s

Figure 3.1: Dell Latitude E5570 used as setup and running an ORB-SLAM?2 simula-
tion

3.1.2 Modified SLAM System

Typically, a SLAM solution’s source code contains hard-coded? values. It is necessary
to alter the system’s source code to create a modified version that accepts these fixed
values as external inputs through a file. The modification of the SLAM system allows
for the implementation of optimization algorithms without affecting the code itself.
The optimization process can iterate throughout the external configuration file that
the system reads. Then the process modifies the target parameters without affecting
the functionality.

In this thesis, we altered the .cpp? files of ORB-SLAM2 to remove these fixed num-

bers. This way, we created an adaptable version of ORB-SLAM2. The hard-coded

2Fixed data that cannot be altered without modifying the program.
3These are the files produced by programming in a C+4+ environment.

41

data becomes external parameters read from the specific .yaml* file ORB-SLAM?2
uses during execution. These adjusted files can accommodate the new variables®, be
modified and later optimized. The new parameters, the VO settings, and camera
intrinsics® form an extensive repertoire of variables that control the behavior of the
solution.

Similarly, other SLAM solutions might suffer from the same programmer’s ap-
proach (hard-coded values). Therefore, a modification to their source code is nec-
essary for optimization purposes. Removing the hard-coded values is not only a
good programming practice but is also imperative for analyzing the influence of the

variables on the SLAM solution.

3.1.3 Performance Metric Evaluation

Chapter 2 discussed ATE as one of the performance metrics [46] used for evaluating
SLAM’s performance. SLAM optimization must compare the trajectory estimated
and the ground truth data to calculate the drift and error in the maps. We propose
the usage of an available script” for the evaluation of SLAM HPO.

The Evaluate ATE Scale® script is modified from the RGB-D benchmark? to mea-
sure the Absolute Trajectory RMSE for the TUM [49] RGB-D dataset using ORB-
SLAM2. Incidentally, this script is not compatible with the KITTI dataset. The
ground truth format for the KITTI benchmark is different from the quaternion (TUM)
format generated by the monocular ORB poses!®. We use a modified version of the
FEvaluate ATE Scale script [132] to evaluate the ATE obtained from the experiments

in Chapter 4.

4A type of text file, which ORB-SLAM2 uses to read all parametric values used in its execution.
>This modified version can be found at https://github.com/eimontecast/UOFA_Master_Thesis
6These should never be modified unless the camera settings change.

"Evaluate ATE

8Downloaded from https://github.com/raulmur /evaluate_ate_scale

9 Available at https://vision.in.tum.de/data/datasets/rgbd-dataset /tools

10As seen on this issue https://github.com/raulmur/evaluate_ate_scale/issues/1

42

https://github.com/eimontecast/UOFA_Master_Thesis
https://github.com/raulmur/evaluate_ate_scale
https://vision.in.tum.de/data/datasets/rgbd-dataset/tools
https://github.com/raulmur/evaluate_ate_scale/issues/1

3.1.4 Constraints

Optimizing a SLAM solution is not simple. Several factors may hinder proper exe-
cution. These are some of the constraints considered during the parameter tuning

process.

e HPO treats the behavior of SLAM as a black-box function [11, 121].
e The optimization process is to be considered a one-armed bandit problem!!.

e There is a consideration for the stochasticity of the ATE values produced by

the performance evaluation script [132] during evaluation.

3.2 Parameter Selection

Chapter 2 defined the optimization process as an NP-hard problem'? [133]. Sec-
tion 2.5.1 disclosed that as the number of parameters increases, the complexity and
computational costs for optimization also increase [1, 53, 76]. This section identi-
fies the underlining parameters within a SLAM algorithm’s source code, chooses an
adequate parameter space to explore, and determines which variables influence the

system the most. This research focuses on ORB-SLAM2 as our optimization target.

3.2.1 ORB-SLAMZ2’s Parameters

ORB-SLAM2, similar to other SLAM solutions, has a certain number of parameters
dedicated to specific functions. A spreadsheet!® that identifies ORB-SLAM?2’s param-
eters was used and modified to include an additional number of hard-coded values

found in the source code!* (Appendix A)'.

1Tt is a statistical learning model to make a sequential choice between several actions based on
the rewards they generate.

12Tf anyone can translate an algorithm into one for solving any non-deterministic polynomial-time
problem, it is NP-hard.

13This file was created by Sean Scheideman [45].

1A total of 112 values were hard-coded.

15Tt can be downloaded from https://github.com/eimontecast/ UOFA_Master_Thesis

43

https://github.com/eimontecast/UOFA_Master_Thesis

Table 3.1: ORB-SLAM2’s parameters separated by role

Parameter Role Number of Parameters
Intrinsic Camera Parameters 14

Viewer Parameters 7

ORB Parameters 5

Tracking 62

Loop Closing and Optimizing 23

Local Mapping 21
Miscellaneous 6

Total 138

Table 3.1 depicts the number of parameters considered for optimization and their
specific role on the SLAM solution. The roles shown divide the parameters by the
type of function regulated: viewer!®, loop closing and optimizing, local mapping,

17

visual odometry (ORB-related parameters)'”, camera intrinsics'®, tracking, and mis-

9

cellaneous'®. From the 138 parameters found either within the source code or the

.yaml files, only 117 are optimizable®°.

3.2.2 Computational Cost Reduction

The number of parameters optimized is directly proportional to the computational
complexity for a given SLAM solution. Several studies on HPO approaches for SLAM
dictate that only a few parameters are optimized [10, 17, 22, 23, 121]. That is to keep
the computational costs feasible. We followed the examples of research where HPO
fine-tuned SLAM and selected five parameters to optimize.

Parameter space size also affects the computational cost and complexity of opti-

16These are related to the camera viewpoints, the keyframe specifications, and linked to the
camera’s position.

1"These link to the Visual Odometry portion of the SLAM solution.

B These parameters link to the camera’s specifications, calibration and distortion parameters

19Parameters that could not fit in any other category.

20Both the intrinsic parameters and viewer parameters are immutable and unaltered for the sake
of the algorithm’s correct execution.

44

mization. A way to manage the curse of dimensionality is to limit the search space
[17, 134]. A small number of parameters with a well-defined search space mitigates
the exponential increase in complexity. It also reduces the runtime of algorithm
training?!.

P,(min) = (3.1)

Do | >

Pi(max) = 2\ (3.2)

We delimited the search space for the experiments by using the default values
as a starting point [17, 135] (Equation (3.1) and Equation (3.2)). The idea behind
parameter space selection is to explore the area surrounding the manually chosen
optimal parameters. In the defined bounded search space, A equals the default value
given to the parameter. Then, we select a step size?? to increase the number of
parameter values within the search space. It results in 21 different value options per
parameter. Combining the parameter search space for the given number of chosen

parameters, we obtain 21° possible combinations?® for the parameter space.

3.2.3 Parameter Influence

Section 3.2.2 discussed the need for a well-defined parameter search space and a small
number of parameters to reduce the computational costs. Now that the number of
parameters is defined, we must choose which to optimize. One approach used in HPO
for VO [10] is to use Spearman’s correlation coefficient [137, 138]. It is a distribution-
free®*, non-parametric approach of the Pearson correlation coefficient. It measures

5

the monotonic? association between two variables based on their ranks [138].

21Tn case it is not delimited by a timer for each given execution.

22Tn HPT, the step size influences to what extent newly acquired information override old infor-
mation, it metaphorically represents the speed at which a model learns [136].

23These are a total of 4,084,101 different parameter combinations.

24 A distribution-free test does not assume the shape of the distribution for the drawn data samples
[137].

25The variables also tend to change together in a monotonic relationship, but not necessarily at a
constant rate.

45

Parameters in SLAM do not have a linear behavior. For example, a slight modifi-
cation of a value would result in a different ATE result than the previous execution.
Additionally, the loss of tracking in SLAM and the stochasticity of the results can
result in significant outliers. We use Spearman’s approach for SLAM because it fails

to meet the underlying assumptions of Pearson’s correlation [137, 138]:

e The data is not normally distributed or has a non-linear relationship.

e There is an ordinal value?®. Not applied to SLAM, but is one of Pearson’s

correlation ordinances.

e The data exhibits significant outliers®”.

The objective of Spearman’s correlation analysis is to identify®® the most influen-
tial®® parameters within an algorithm’s structure (Figure 3.2). Sensitivity refers to
the effect of subtle changes within a parameter’s values on the algorithm’s output.
Namely, how much a difference in the parameter affects the error metric after an
execution. The higher the sensitivity of the parameter is, the higher its effect on the
ATE in ORB-SLAM2. That is, changes to the parameter values will significantly
increase or decrease the error obtained.

The rank correlation coefficient obtained, represented by the letter p3°, measures
the strength and direction of the relationship between the ranks [138]. It can take

any value ranging from —1 to 1. The closer the absolute value of the coefficient is to

1, the stronger the relationship they possess:

e 1 represents a perfect correlation

261f values can be placed into first, second, or third order, then it is considered ordinal data.

2TUnlike Pearson’s correlation coefficient, Spearman’s approach calculates the ranks. Thus, it is
insensitive to outliers [138].

28]dentifiability refers to the relationship between parameters [139]. A parameter is structurally
identifiable if it estimates its value by observing the model output. Identifiability is not in the scope
of this research.

29Also known as sensitivity.

30 Also known as Spearman’s p [138].

46

Structural
identifiability

Influential Parameters

Practical
Identifiability

Figure 3.2: Relationship between influential, structural, and practical identifiable
parameters [139].

e —1 signifies a negative correlation

e () means no correlation

Spearman’s correlation formula changes depending on the existence of tied ranked
values®!. The application of Equation (3.3) happens when there are no draws within
the ranks, where d; represents the difference between ranks and n is the number of
observations. Otherwise, Equation (3.4) implements a modified version of Pearson’s

approach, where R(z) and R(y) are the ranks of the x and y variables and R(x) and

R(y) are the mean ranks.

(3.3)

(3.4)

3.2.4 Spearman’s Correlation Calculation

We apply Spearman’s correlation formula to analyze the relationship between a given

parameter and the resulting ATE from running ORB-SLAM2. We executed the

31The same rank assigned to two or more observations.

47

SLAM solution once per value defined in the parameter space and considered the
step size chosen in Section 3.2.2 for each candidate parameter (Section 3.2.1)%2. Each
individual run produces an ATE result, whose value can take any number within a
range.

As mentioned in Section 3.1.3, consideration of the stochasticity in the results from
an ORB-SLAM2 execution is a must. Thus, we repeated the previous implementation
(running each parameter value once per parameter and recording their output ATE)
five times. Then, we obtain an average for each group of resulting fitness values®.
Table 3.2 displays an example of the variation of parameter values. It shows the
ATE results and the computed mean for each case for the ORBextractor.nFeatures
parameter.

The implementation of Spearman’s correlation coefficient formula requires ranking
the two sets (Parameter Values and Average ATE) and calculating the difference
between ranks (defined as d). It defines ranking as assigning a numerical value to an
individual compared to a list of other numeric values. If a list contains duplicated
values, it gives an average to each set of duplicates®*. Table 3.3 exhibits the ranking
of each parameter value, average ATE, and the calculation of the difference between
ranks (d) for the ORBextractor.nFeatures parameter.

Spearman’s formula (Equation (3.5)) requires the summation of all the squared
rank differences (e.g., the total calculated in Table 3.3). The total amount of ele-
ments evaluated (n) is substituted in the equation and used to calculate the resulting
coefficient (Equation (3.6)). Equation (3.7) displays the result of calculating the

coefficient for the Orbextractor.nFeatures example in Table 3.2 and Table 3.3.

_63di (3.5)

32The list of parameters can be found in Appendix A.

33ATE

34See https://support.microsoft.com/en-us/office /rank-avg-function-bd406a6f-eb38-4d73-aae-
6d1c3c72e83a

48

https://support.microsoft.com/en-us/office/rank-avg-function-bd406a6f-eb38-4d73-aa8e-6d1c3c72e83a
https://support.microsoft.com/en-us/office/rank-avg-function-bd406a6f-eb38-4d73-aa8e-6d1c3c72e83a

J9jowreaed auo A[UO JO suoljeLIeA 97} s3o1dap |[qe?} SIYJ,

€E6T°0 FLIZ 0 6L8T°0 9991°0 67610 86610 000€
G670 80020 G0LZ 0 10920 52920 9€5°0 0062
91620 GL6T0 69820 76620 9LG€°0 991€°0 0082
GL9Z°0 1€02°0 755370 €10€°0 98920 060€°0 00LZ
21020 €98T°0 01120 16220 65T 0 €020 0097
Z88T°0 €TLT 0 ZZ8T°0 €Z8T°0 FOPT 0 07920 004
62610 GG8T'0 8E6T0 9€8T°0 FS02°0 £961°0 0077
10020 08610 89610 LEST'0 GS6T°0 29220 00£2
GGTZ0 FLET 0 IARY PGS0 95120 L0920 0027
LG8T'0 0L02°0 6£6T°0 ZZ61°0 0910 6VLT0 0012
66610 20120 0L1Z°0 67120 €69T°0 Z88T'0 0002
ZE8T0 €010 168170 €ELT0 L0ST'0 6991°0 0061
GPST0 STST'0 6SST°0 GT1Z°0 T19LT°0 ZroT°0 0081
Z9LT0 0S8T°0 €69T°0 0LLT'0 1991°0 GEST'0 00LT
98810 L98T 0 PLST0 FE6T0 €L6T0 FSLT0 0091
29610 €T12°0 FOLT 0 82120 62610 SIST'0 00T
60£2°0 €6£2°0 6££C°0 €812°0 F952°0 L90Z°0 0071
50120 872 0 LLTT0 L12T0 L1020 L9ST'0 00€T
ST61°0 61020 06020 008T°0 18810 LSLT0 0021
98120 06920 90120 G861°0 8G12°0 66170 0011
69610 L9020 PLET 0 92020 56020 G891°0 0001
ALV GIMSOY P IMSOY g IMSOY g ImSoy T Iusoy onrep
oe10Ay ALV ALV ALV ALV ALV 10jueIRd

"UOIJRLIRA DD 10} a8eIoAw o1} Surnduod pue
oords 10jotreIRd POYIWI[AP 1) UIY)IM oNfeA Iojourered o) SUIAJIpoul AQ SoSURYD NSl H] [y SOINJea, U 1030IIXg¥ () ¢ € 8L

49

syued UooMI9(q 9I2U3IHIP 9yl muﬂ@m@.ﬁn—mh Px

(4! P 18I0L
44! cl- el I €e61'0 000€
I I- e ¢ v61¢0 0066
4 ¢ I € 916¢°0 008¢
4 ¢ ¢ 14 ¥.9¢°0 00L¢
6 e 8 G G100 009¢
1ct I1- LT 9 ¢881°0 00<¢
6¥ L- Vi L 6¢61°0 00¥¢
I I- 6 8 100¢°0 00€¢
6 € 9 6 Ga1c o 00¢¢
79 8- 8T 0T 948T°0 00T¢c
I I 0T IT 6661°0 000¢
79 8- 0¢ ¢l ¢E8T0 006T
9¢ 9- 61 €l Gr81°0 008T
6V L- X4 7I 19LT°0 00LT
I I- 91 a1 988T°0 009T
91 14 ¢l 91 ¢S61°0 00T
691 €l i L1 60€c’0 00¥T
Icl IT L 8T G0Tc0 00€T
91 14 ar 61 G161°0 00CT
Gce a1 G 0¢ 981¢°0 00TT
00T 0T 1T e 6961°0 000T
Juey oneA
P «P uey 41V IojowRIeJ IV 98rIoAy IojomRIeJ

sy[uel

U02M)9(QOUSIDYIP dAI300dSal 18T} pue ‘syuel 5[y oSelare pue Iojourered s oInjes{u 1030eI1IXag¥ () JO UOIIRINOR)) ¢'¢ d[qR],

50

6-1204

le—m (3.6)

p = 0.2181818 (3.7)

Similar to the previous examples, these equations are executed once for every
parameter within the list (Appendix A). The higher the resulting coefficient is, the
more influence it has on the system. Section 3.2.5 discusses the results obtained from

using the correlation formula.

3.2.5 Spearman’s Correlation Results

Table 3.4 displays and ranks the top-performing results obtained from using Equa-
tion (3.5). We define top-performing as having a correlation value closer to a value
of 1 (as specified in Section 3.2.3). This thesis assumes that all parameters are in-
dependent and exhibit no covariance with each other. Independence means that the
top-most parameter in the table has the most significant influence on the output
error metric. We selected the top five results from Table 3.4 as the optimization
parameters.

We ran tests to verify the robustness to parameter change of ORB-SLAM2. We
randomly modified®> parameter values and executed SLAM. We discovered that the
parameter HISTO_LENGTH was underperforming. This underperformance resulted
from ORB-SLAM2 freezing and, subsequently, crashing when the parameter took
specific values. Since there was no apparent behavior on which particular value range
of HISTO_LENGTH would cause the system to be unresponsive, and EraseObserva-
tion.minObservations was the closest most influential parameter3®, we decided that
the latter was to be optimized instead.

Therefore, the parameters chosen as optimization candidates for this research were:

35Similar to a random search algorithm.
36 Assuming no covariance exists between parameters.

51

yse1d 03 ZINVIS-dHO Pesned HLONAT OLSIH JO SUOIJELIEA on[eA

poziurjdo usaym sonssi sururiojrodiopun pey rsjouwrered SIU T, 4

9[qe) 93 1J O} POULIIOYS U8 SARY SOUWIRU Jojounered,

L300 0919)G T IOLIZIYD Juamsnlpyo[pungeoor] 0%
Sagall RIP[PUI I IONH SOOI Juau)sSpya[pungreqor 61
67920 ourre[odidiyIsIOYD) WYIRINGIO 8T
€882°0) TRIUSUIRPUN,] PUL " I9ZI[RIIIU] LT
¢e63°0 01} RYSIMOT TINPIRIN IO 91
eeze 0 uusyuro Jde Mo NoeaI) GT
9Fze 0 Idi M UMW) UTU S8 PIPUR) UOIFRZI[RIO[9Y19939(] idl
PIEE0) uoroalorJAguoIesg €1
0G€€°0 SOIY T PYRINOA YR, 4!
SIPE 0 MOT HL ®U21RNGI0 T
06070 uofisdosIojomrrIR JORSURY10G IOA[0OSJUJ 01
V0 WIANMN], TOT)RMBURLL 10D 18IS 6
01970 SIST[UTUI\[RTITUL TOTYRZI[RI0[OY 8
GL9%°0 SINOQUSIO N PUOIOGUU SINO(USId N U IedS)
96970 SUOT)RAIISq () U UOTIRAIISC ()ISCIH 9
79040 +x HLONHT OLSTH #U21RINGI0 g
¥61S°0 Xe[[ere Uit [IONIISU0IY ¥
78GS°0 suoreIo] LSNPy o[pungreqory ¢
€6%9°0 S[PADTU" I0JRIIXOH O ¢
ceLL'0 LSVAULIUT I010RTX0g O I
JUSIDIJO0)) UOIIR[ALIO)) UeuLIreadg £OUWRN IojourereJ UOISOJ

JULIOJO0)) UOTR[OLIO)) UeuLIeadg 10131y o) M siojotrered gINYVIS-GHO F°¢ 9[qR],

52

ORBextractor.iniThFAST

ORBextractor.nLevels

GlobalBundleAdjustment.Iterations

ReconstructH.minParallax

EraseObservation.minObservations

ORBextractor.iniThFAST refers to the images. The images divide into a grid,
and at each cell, extract FAST, imposing a minimum response. First, it assesses
the iniThFast parameter. Otherwise, it sets a lower value in the absence of image
corners. ORBextractor.nLevels specifies the number of levels in the scale pyramid.
GlobalBundle Adjustment.Iterations defines the number of iterations executed during
global bundle adjustment. ReconstructH.minParallax designates the determination
of the minimum amount of parallax®” to accept homography®. Finally, EraseObser-
vation.minObservations establishes the minimum number of observations needed to

keep a map point.

3.3 Benchmark Selection

Section 3.1 discussed the hardware and software used for experimentation. This sec-
tion presents the selected dataset used by the model-free algorithms. Ground truth
data is essential for the evaluation of the effectiveness of training. In SLAM opti-
mization (assuming a black box behavior), a dataset requires comparing the training
output with the empirical trajectory evidence. Thus, we propose the usage of the

KITTI benchmark for SLAM HPO.

37The effect whereby the position or direction of an object appears to differ when viewed from
different positions, e.g., through the viewfinder and the lens of a camera.

38 An invertible transformation from a projective space to itself that maps straight lines to straight
lines.

53

ORB-SLAM2 has in-built stereo example modules that implement the KITTT [116],
TUM [49], and EuroC [140] benchmarks. The KITTI dataset®, a large-scale outdoor
environment stereo dataset that includes translations, rotations, and loop-closures
consist of 22 sequences, saved in lossless PNG format, and freely available ground
truth data. Also, the benchmark has widespread use in state-of-the-art research [15,
17, 23, 43, 86, 94].

ORB-SLAM2 has one of the best SLAM solutions that present high accuracy for
the KITTI benchmark using stereo cameras [2, 3]. Moreover, the dataset provides
sequences exploring open areas and residential districts; the amount of ORB features
found, and the resulting ATE varies because they depend on the test environment
(e.g., landmarks, number of orb features). Additionally, training an algorithm in one
sequence does not directly impact the test executions.

The KITTI benchmark contains 11 sequences that have ground truth trajectories
available®. We also modified some of them to increase the testing of the candidate
configurations (Table 3.5). We did not change®! sequences 08 and 09. They are our
control tests during experimentation. That is, we use those two sequences to analyze
the fidelity of the ATE obtained from the configurations (Section 4.3).

Sequences 04 and 04m present a residential environment with open areas and
tight quarters. They have an average duration of 39 and 21 seconds per execution,
respectively (Table 3.5), and share the configuration (.yaml) file with a few other
sequences in the benchmark (Table 3.6). The shared file means some tests have the

same intrinsic camera parameters and can be grouped by the .yaml file when testing.

3.3.1 Confidence Interval

A confidence interval (CI) is a statistical measure to determine the probability that

a parameter will fall between a set of values [141-143]. It provides a range of pop-

39Found at http://www.cvlibs.net/datasets/kitti/index.php
40Sequences 00-10
4IModified sequences in Table 3.5 have a letter m next to the sequence number.

o4

http://www.cvlibs.net/datasets/kitti/index.php

Table 3.5: KITTI sequences, number of frames in the sequence and its runtime

Sequence Number of Length (min)
Number Image Frames
00 4540 8.98
01 1100 2.22
02 4660 9.07
03 800 1.64
04 270 0.64
05 2760 5.66
06 1100 2.24
07 1100 2.27
08 4070 8.14
09 1590 3.20
10 1200 2.47
00m 3124 6.19
0lm 945 1.91
02m 2414 4.72
03m 512 1.05
04m 149 0.35
05m 622 1.31
06m 842 1.72
07m 520 1.07
10m 1066 2.20

ulation values, bounded above and below the statistic’s mean, in which a sample is

t12 at a given level of confidence®® [141-145]. The CI provides information

consisten
on sample variability (precision) and accuracy, or certainty that the randomly drawn

element is within the actual population [141-145].

42The likelihood that the bound area contains an unknown population parameter.
43For CI, 95 % or 99 % of confidence are the most used levels.

55

Table 3.6: KITTI sequences and the .yaml file used in each configuration

Sequence Number .YAML File Name
00/00m KITTIO00-02.yaml
01/01m KITTI00-02.yaml
02/02m KITTIO00-02.yaml
03/03m KITTIO3.yaml
04/04m KITTI04-12.yaml
05/05m KITTIO4-12.yaml
06/06m KITTIO4-12.yaml
07/07m KITTIO4-12.yaml

08 KITTIO4-12.yaml
09 KITTIO4-12.yaml
10/10m KITTIO4-12.yaml

The CI provides more information than mere point estimation [141]. A confidence
level can be established through the sample’s mean and standard deviation while as-
suming a normal distribution as represented by a bell curve [141, 144, 145]. This level
represents the probability that the sample’s true mean is between the calculated up-
per (Equation (3.8)) and lower (Equation (3.9)) bounds [138, 142, 143]. For example,
a confidence level of 95 % suggests that the average is located between the delimited

area 95 % of the time [141].

Uy =X+ C; (3.8)
Ly=X—C; (3.9)

The performance evaluation of the model-free algorithms used in the KITTI bench-
mark (Section 3.4) found in Chapter 4 (Section 4.2 and Section 4.3) focuses on using

confidence intervals to determine the effectiveness of the HPO. That is, if the con-

56

figuration candidate shares an approximate mean with the default sequence**, then
the optimization produces no overall enhancement for the given test. If the upper
bound value of the candidate’s ATE is smaller than the lower bound value of the
default ATE, then a performance increment is present. Otherwise, the candidate is

detrimental to the solution’s performance for the given test.

3.4 Model-free Algorithms

Model-free approaches, generally, are those that do not store or use previously-
obtained information [107, 146-148]. It is sometimes difficult to define the differ-
ence between model-based and model-free algorithms?® [147] as there is a spectrum
between them [147, 149]. The clear distinction (Figure 3.3) is that model-based al-
gorithms build a model and plan the following action based on the environment’s
transition function [106, 107, 147, 150]. Model-free algorithms rely on first-hand ex-
perience to obtain a value function. That is, model-free algorithms use experienced
information with minimal prospection?® at decision time [147]. The effectiveness of an
approach [151], either model-based or model-free, depends on the capacity to adapt
to the function’s behavior. In SLAM, an unknown number of local minima coupled
with a non-linear behavior of the black box (i.e., the system itself) makes model-free
algorithms easier and faster to implement than the model-based counterparts.

The effect on the output error given small perturbations or changes in the inter-
nal parameter values is unknown. Minor modifications in a parameter value (e.g.,
changing a set value from 2.15 to 2.16) can result in significant ATE outcome vari-
ations. Because there is a non-definitive, non-linear behavior of the SLAM output
regarding parameter changes, we propose using model-free HPO algorithms, precisely
a population-based approach.

The following sections describe the model-free algorithms, configuration, and run-

44The full sequence
45Model-free algorithms are those identified under a model-free approach classification.
46In psychology, the generation and evaluation of mental representations of possible futures.

57

model-based approach

- ~
— Model
Build a Make a
model plan
v V
Learn from » Value function

experience

>

model-free approach

Figure 3.3: Model-based versus Model-free approaches [150].

time. Section 3.4.1 and Section 3.4.2 are the baseline algorithms chosen for evalu-
ation and comparison with the selected optimization algorithms. Section 3.4.3 and
Section 3.4.4 discuss the population-based algorithms (Genetic algorithm and Hyper-

band) chosen for SLAM optimization.

3.4.1 Grid Search

A baseline algorithm can produce the minimum expected performance on a given
dataset [152]. Baselines are known for their simplicity and straightforward imple-
mentation. Section 2.5.1 defines grid search as an exhaustive search that trades
execution time?” to evaluate all the candidates in the parameter space thoroughly.
State-of-the-art research widely uses this search-based algorithm. Thus, we selected
it as one of our baseline model-free algorithms.

Typically, the computational budget [77] or the size of the parameter space deter-

47 An exponential increase in execution time is dependent on the number of parameters and the
size of the parameter space

58

mines the extent of a local search algorithm. Section 3.2.2 defines it as five parameters
with 21 possible values; there are a total of 21° possible combinations within our search
space. The chosen training sequence (KITTI 04), modified to have a reduced length
execution, has a runtime of 0.35 minutes (Table 3.5). Equation (3.10) proves that a
complete implementation of the grid search, even on the shortest testing sequence, is

time-consuming.

timeoq = 21° - 0.35 = 2.72 years (3.10)

Nevertheless, local search heuristics can be subject to criteria to reduce runtime.
A stopping rule, based on multi-start local search, can be applied to grid search if
there is a moderately large number of local optima [153]. Additionally, a criterion
could be used to an iterating search [154] to terminate if it meets a condition. Other
options for minimizing time consumption are limiting the training times [155] or early
termination [72]. In the latter case, the procedure can discontinue the experiments

whose output is declining [72].

Algorithm 1 Grid Search Implementation

Require: Defined Search Space [%, 2], End Time
Ensure: .Yaml File has Default Values
Create a Configuration Object
while (timecyrrent < timeepq) do
Run ORB-SLAM2
Execute ATE Value Evaluation
Append ATE to the Results Array
Update Parameter Values
end while

Export Results to Excel

Algorithm 1 displays the implementation used for applying grid search to ORB-
SLAM2. It requires having a defined parameter space and default values in the con-
figuration (.yaml) file. We implemented an early-stopping strategy [72] since the ATE

perturbations produced by the parameter changes are not predictable (Section 3.4),

59

and the entire exploration is time-consuming. While the execution time elapsed is
less than or equal to 14.2148 hours, the program®® executes SLAM, evaluates the ATE
performance, and updates the parameter values for the subsequent execution. The

outputs of the evaluation are exported into a readable format to facilitate analysis.

3.4.2 Random Search

Random Search is another simple algorithm used as a baseline for state-of-the-art re-
search. Typically, it sacrifices a guarantee for optimality for swiftly finding a solution
with convergence results in probability [78]. Several augmentations and modifications
have enhanced the convergence time [153, 156-158]. It can achieve results faster than
grid search but requires a stopping condition®® [70, 77, 158].

Moreover, randomized algorithms can successfully obtain approximate optimal so-
lutions [153, 159, 160]. That is, the randomization of parameter values extends the
search space arbitrarily, allowing local optima to converge faster. Additionally, this
heuristic has proven to obtain state-of-the-art efficiency [79, 97, 156] and competitive

results on HPO [82, 161].

Algorithm 2 Random Search Implementation

Require: Defined Search Space [%, 2], End Time
Ensure: . Yaml File has Default Values
Create a Configuration Object
while (timecyrrent < timeepq) do
Run ORB-SLAM?2
Execute ATE Value Evaluation
Append ATE to the Results Array
Randomly Change Parameter Values
end while

Export Results to Excel

Algorithm 2 is the random search implementation modified for its use in ORB-

48The time selected is the time taken for a complete execution of the Genetic Algorithm (Sec-
tion 3.4.3).

49Coded in python and found at https://github.com/eimontecast/UOFA_Master_Thesis

50Tf no stopping condition is set, the algorithm will iterate infinitely.

60

https://github.com/eimontecast/UOFA_Master_Thesis

SLAM2. Similar to Algorithm 1, it requires having a defined parameter space and
a default configuration (.yaml) file. As long as the time elapsed has not surpassed
the stopping condition®!, the program executes and evaluates the randomly produced
configurations. Their values must be within the delimited search space. The resulting

ATE outputs are then stored and exported to a readable file.

3.4.3 Genetic Algorithm

GAs are helpful for modeling solutions [75, 99] because they construct better strings
or configurations from the best partial solutions of previous generations [11, 122].
These approaches make few assumptions about the underlying problem [11] and rely
only on the consistency in the fitness function. The function acts as a measure of
goodness to be maximized [123]. That is, individuals with a higher fitness value (lower
ATE) are more likely to be selected as reproduction candidates.

Selection is a crucial step for a genetic algorithm. Some approaches for selection
are roulette (Figure 3.4), fittest half, and random selection [62, 80, 123]. Roulette
wheel selection can choose each individual based on the fitness value. Higher fitness
values result in increased probabilities of being selected [80]. The fittest half approach
sets the candidate solutions with higher fitness values, whereas the random method
chooses arbitrary candidates for the next generation. We implemented the fittest half
strategy on our GA.

Pairing and mating are a single operation in most genetic algorithm applications
[80]. Pairing is the method where individuals chosen from the current population
become the parents of the next generations [114]. There are many options for selecting
individuals for crossover [80]: random, fittest, or weighted random. The first one refers
to pairing two individuals arbitrarily. Fittest pairing is a method where individuals
are paired, starting from the best individual [80]. It matches the most qualified

individuals together, and the least suitable individuals are coupled to each other,

5114.21 hours (Section 3.4.1)

61

Population] Fitness

1 5.0

2 40.0
3 20.0
4 25.0
5 30.0

Figure 3.4: A roulette-wheel marked for five individuals according to their fitness
values. The fitter individuals have the higher chance of being selected.

which results in an easier culling. There are random sets of individuals in the weighted
random selection, but fitter individuals are more likely to be paired [80]. Algorithm 3
uses the fittest pairing approach to ensure the exploitation of better candidates.

Reproduction or crossover is the operator that allows two chromosomes to exchange
their genes for producing new offspring mutually [123]. Traditionally, the resulting
offspring would substitute their parents if they proved to be fitter. Otherwise, the
original individuals would survive in the population. Bisezual reproduction [62], also
known as elitism [80, 114}, was implemented because it resembles a natural process.
The population consists of parents and offspring. When it reaches a maximum num-
ber, they compete for survival. Elitism ensures a natural evolution of the species [62]
and diversity [114, 162]. In other words, a diverse population has a higher exploratory
capability, which is essential at the start of the search process [114].

There are two options for gene crossover: single point and double point [80]. Single
point selects a crossover point on the parent organism string and swaps all data,
between the two parent organisms, beyond that point [80]. There is an exchange of

genes between the two designated points in the double point crossover (Figure 3.5).

62

Both options result in the creation of two offspring. We implemented a double point

crossover in Algorithm 3.

- Parents

-/
Gene
swapping
-

- Offspring

-

Figure 3.5: A double-point crossover overview.

The population size and the number of generations in a GA are vital factors to
consider. The runtime needed for one generation of an EA is proportional to the
population size [163]. If the population size exhausts the computational budget of
the optimization process during the first generation, the algorithm will have a random
sampling behavior [163, 164]. Larger population sizes have a minor effect on memory
space than many generations [20, 103]. The bigger the population size, the greater the
chance that the initial state of the population will contain a chromosome representing
the optimal solution [20]; the number of generations also needed increases. Due to
the size of our parameter search space and the number of parameters, we needed a
relatively large population and few generations to reduce the computational cost and
memory usage [20]. Similar to other research, we selected a maximum size of 200
individuals [165-169] and 15 generations for the implementation.

Algorithm 3 requires a defined parameter space and a default .yaml file. The
implementation of the GA starts by creating an initial population of random config-

urations. Each configuration is set into the file, run in ORB-SLAM2, and evaluated.

63

Algorithm 3 Genetic Algorithm Implementation

Require: Defined Search Space [5, 2]
Ensure: .Yaml File has Default Values
population = 200, generations,q, = 15
Create Population of size population with Random Configurations
for (individual € population) do
Execute ORB-SLAM2
Evaluate ATE
end for
Sort Population by ATE
Cull Half of the Population with Lowest ATE
Pair Individuals with Highest ATE
Reproduce
Mutate 10% of the Total Population
Export Generation Results to Excel File
while (generation < generations,,) do
Execute ORB-SLAM2
Evaluate ATE
Sort Population by ATE
Pair Individuals with Highest ATE
Reproduce
Mutate 10% of the Total Population
Sort Population by ATE
Export Generation Results to Excel File
end while

64

The pseudocode proceeds to sort the population by ATE performance®® and remove
the lower half. The process continues by pairing the fittest [80] potential mates and
reproducing them using a double crossover approach [80, 129]. This approach ensures
a broader parameter space exploration than a single crossover. A random mutation
is applied to 10 % of the population to procure a better chance of escaping a local
optimum. This process repeats until it reaches the maximum number of generations,
where at every generational gap, it exports the results for a more straightforward

analysis.

3.4.4 Hyperband

HB is a model and parameter-free algorithm chosen as a candidate for SLAM opti-
mization. It has a fast runtime, and its results follow an exploitative and intuitive
approach with a solid theoretical guarantee of correctness and sample complexity [97].
It prunes the configurations with higher ATE and re-evaluates the better-performing
ones until a small number are left. A total of 3300 maximum epochs per configuration
(97, 130] was defined with a pruning factor (n) of 3 [97, 126, 128, 130] to produce nine
results after the last iteration of the algorithm.

Algorithm 4 displays the pseudocode for programming HB for SLAM. Similar to
previous algorithms (Algorithm 1, Algorithm 2, and Algorithm 3), a defined parame-
ter space and a default .yaml file are required. The program establishes the number
of resources and the pruning factor () [130]. Then, it calculates the number of
unique executions of SH (s,,q,) and the total number of iterations (without reuse)
per execution of SH (Budget) [97]. It executes HB’s finite horizon outer loop, where
n is the number of configurations and r is the initial number of iterations run. After
creating an initial population of random individuals, it executes the finite horizon of
SH (n,r) for r; iterations. The SLAM solution is run and evaluated. It averages the

ATE obtained per configuration and keeps the best || for the next iteration. In the

52Lowest ATE to highest

65

Algorithm 4 Hyperband Implementation

Require: Defined Search Space [%, 2]
Ensure: .Yaml File has Default Values
resource = 3300, n = 30
Start Hyperband Algorithm
Smaz = [log, (resource)]
Budget = (Spmar + 1) - resource

for s € (Smaz, Smaz — 1, ...,0) do

_ Budget
n= |Vresou?cai—‘

r = resource frn*S
Create Population with Random Configurations
for i € (0,...,s) do
n;,=mn- eta_l,m =r-eta
while (i <r;) do
Run ORB-SLAM2
Calculate ATE
Sum ATE to the variable fitness
it + -+
end while
fitnessg,, = m
if (i =s) then '
Save the [] Top Configurations
end if
end for
end for
Return the Top Configurations
Export Results to Excel

66

end, we export the results to a spreadsheet for analysis

3.5 Chapter Summary
This chapter proposes a methodology for the implementation of HPO in SLAM.

3.5.1 Environmental Setup

The preparation of the SLAM system (environment) is necessary to implement
an optimization algorithm. The process consists of modifying the source code of
the SLAM solution to remove the hard-coded values. These become parameters
inserted into a configuration file that the modified system accepts and reads during
its execution. In the case of ORB-SLAM2, we added these values to the .yaml file

that the system already uses as new parameters.

3.5.2 Parameter Selection

The parameter selection requires information on the influence of a given parameter
on the SLAM system. Since SLAM can be subject to location tracking failure, the
ATE results can become stochastic in nature, resulting in significant outliers. We
propose using Spearman’s correlation coefficient to estimate the effect of each param-
eter on the ATE produced. For ORB-SLAM?2, the most influential parameters were

calculated and tested in this section.

3.5.3 Benchmark Selection

The benchmark selection requires a dataset that has ground truth available. Com-
paring the output from running the benchmark on SLAM with the empirical evidence
of the trajectory provides information on the accuracy and efficacy of a given config-
uration compared to a default run. We propose the usage of the KITTI benchmark
for SLAM HPO.

67

3.5.4 Optimization Algorithms

The selection of optimization algorithms depends on the amount of information
available for the optimization algorithm to use. The behavior of SLAM systems is
complex and non-linear. That is, it is hard to make a prospection of the results
of a given configuration. Therefore, model-free algorithms rely only on experience
to obtain value functions, and are easier and faster to implement than model-based
algorithms.

The optimization of a SLAM algorithm assumes that it is a black-box function.
We propose using population-based algorithms (a genetic algorithm and Hyperband)
to optimize SLAM’s parameters. We will compare the results of these model-free
approaches with those of two baseline search-based algorithms: grid and random
search. The baseline algorithms have a time constraint linked to the runtime of the
genetic algorithm to ensure a similar time execution.

The genetic algorithm has a reasonably large population of 200 individuals to
induce exploration during its early stages. It is executed for 15 generations to achieve
an optimal result (local minimum). We ran Hyperband with a resource®® modification.

It was changed to produce more results per execution of the algorithm.

530ne of the two inputs needed for the algorithm.

68

Chapter 4

Experiments and Results

This chapter presents the results obtained from training and testing the model-free
algorithms. Section 4.1 discusses the setup used for the experiments and the per-
formance evaluation metric to determine the effectiveness of the configurations. We
analyze the results obtained from training the algorithms in Section 4.2. Section 4.3

focuses on re-testing the resulting hyperparameter sets.

4.1 Experimental Setup

The KITTI benchmark was selected for training and testing the model-free algo-
rithms. We shortened some sequences (Table 3.5) to increase the number of exper-
iments done to the trained configurations. A modified version of sequence 04, 04m,
was used for training due to the decreased runtime per execution (0.35 min). We
used the shortened sequences (00m - 03m, 05m - 07m, & 10m) to analyze the trained
configurations’ effectiveness. The remaining unchanged sequences! act as a secondary
test to re-evaluate the promising configuration candidates that succeeded in reduc-
ing the SLAM runtime error in the previous trials. Since sequence 04 shares many
similarities with its modified counterpart, we discarded it.

Section 3.4 discussed the algorithms selected for training our HPO approach for

SLAM. We chose five influential parameters (Section 3.2.3) with a defined search space

ISequences 00 - 03 and 05 - 10

69

(Section 3.2.2) for optimization. Each algorithm, coded in Python, had conditions
and constraints applied for its execution (Section 3.4).

Table 4.1 displays the mean ATE obtained from executing each sequence 100 times
with a default configuration. We used a confidence level of 95 % to calculate a con-
fidence value that established the upper and lower ATE bounds for each sequence
execution. We subjected the hyperparameter sets obtained from training to per-
formance criteria (Section 4.1.1) to select candidates that outperformed a default
execution.

We ran the trained configurations once on the shortened testing set. Section 4.1.2
provides the evaluation metrics used on the hyperparameter sets. Testing done on the
unaltered sequences result in a group of elite candidates. We averaged 50 executions
per configuration to obtain an ATE value with a smaller confidence window. Then,
we apply the performance metrics (Section 4.1.2) to determine if a given configuration
outperformed the default in all test cases.

The following subsections explain the performance evaluation metrics used in train-

ing and testing.
4.1.1 Training Evaluation

We evaluated the configurations obtained from training through a simple mathe-
matical statement. Equation (4.1) defines the selection criteria for a configuration
(Cselectea) s a double conditional statement. That is, the ATE output of the trained
configuration (cyqi) is required to be below the lower bound threshold of the default
execution? (Table 4.1) and not be equal to zero. The lower bound threshold (l) is
the subtraction of the confidence value (Cy), calculated with a 95 % confidence level,

from the mean ATE (77). A value of zero would indicate an execution malfunction

within ORB-SLAM?23.

2A value of 0.1392
3A crash due to the configuration or initialization failure

70

Table 4.1: Default configuration mean ATE results and the upper and lower bound
values, calculated with a 95 % confidence level, for 100 executions of each training
and testing sequences

Sequence | Upper Bound ATE (l;) | Mean ATE (7;) | Lower Bound ATE (ug)
00 0.9659 0.9483 0.9307
01 6.7018 6.1590 5.6163
02 6.0005 5.8309 5.6614
03 0.2630 0.2556 0.2482
05 0.4126 0.3914 0.3702
06 0.6554 0.6134 0.5715
07 0.5025 0.4786 0.4548
08 3.4916 3.4030 3.3144
09 2.7480 2.4309 2.1137
10 1.0140 0.9724 0.9308

00m 0.9874 0.9665 0.9456
0lm 6.1256 5.6833 5.2410
02m 6.2436 6.0591 0.8745
03m 0.2623 0.2581 0.2539
04m 0.2209 0.2131 0.2053
05m 0.4276 0.4186 0.4097
06m 0.6760 0.6372 0.5983
07m 0.4814 0.4703 0.4592
10m 1.0083 0.9576 0.9070
Csetected == [(Ctrain < la) A (Crain # 0)] D la =Tq — Cy (4.1)

Equation (4.1) culls the configurations that do not show a performance increase
or are underperforming®. The culling is a measure to prevent spending the compu-

tational budget on ineffective sets of hyperparameters. That is, the resources fur-

4Equations whose ATE value is higher than the lower bound threshold.

71

ther explore the better-performing configurations; this simulates SH’s (Section 2.8.5)

greedy approach [101].

4.1.2 Testing Evaluation

There are many evaluation metrics available for SLAM. Common quantitative ones
are efficiency [170], average ranking [171], consistency [172], and accumulated error
2, 5, 172]. The success rate [173] is an evaluation metric that determines whether
an objective function’s result is equal or lower than the best possible value. Passing
[13, 174, 175] and failure [13, 175] rates are performance metrics that determine the
percentage of times a test succeeded or failed.

We modified the passing rate performance metric to fit our specific condition to
determine if a tested configuration has a performance increment (an error reduction)
[13, 174, 175]. The optimality rate (Ao) is the sum over all test cases where the
configuration’s upper bound ATE (s) is lower than the default error’s lower bound
value ({z). The upper bound is the summation of the mean ATE and the confidence
values®. This rate (Equation (4.2)) represents the percentage of successful tests with

an increase in performance per configuration.

100
Ao = T Z Loctysiy =21 — 0y (4-2)
s3S

There are cases where the resulting ATE is neither optimal nor detrimental. The
proximity rate (Ap) is the sum over all test cases where either the upper bound, lower
bound, or mean ATE value of the tested configuration (s) is within the confidence
interval of the default execution (Table 4.1). This performance metric is adapted from
the success rate [173] only to consider equality, which means that the value is between
the upper (ug4) and lower (I;) ATE bounds of the default execution. Equation (4.3)

represents the percentage of tests with neither an error reduction nor increment; the

5The mean and confidence value change depending on the configuration tested. The default
values are static.

72

configuration is similar to a default execution.

100
Ap - T Z 1(s>ld/\sgud)aldzﬁfc’d;udZTdJer (43)
s3S

The underperformance rate (Au) is the opposite of the optimality rate. The base
of this equation is the failure rate [13, 175]. It is the sum over all test cases where the
configuration’s lower bound ATE (s) is higher than the default error’s upper bound
value (uq). Equation (4.4) displays the percentage of tests in which the optimization

produced worse ATE results when compared to a default execution.

Au = % Z Lssugsuq =77 + Cy (4.4)
538

Equation (4.2), Equation (4.3), and Equation (4.4) provide helpful information
about the configurations’ performance across different scenarios. The proposed met-
rics offer more information than a simple pass®. They provide qualitative data on how
the ATE obtained compares to the default error’s confidence interval. In other words,
they can determine if a configuration has better, worse, or overall similar results than
a default execution.

Theoretically, a high optimality rate equates to showing a promising substitute for
the default configuration. Nevertheless, that is not the case. We considered all three
rates when analyzing the effectiveness of a hyperparameter set. For example, high
rates in optimality and underperformance are not better than high rates in proximity

with no underperformance. We will use these performance metrics to analyze the

configuration candidates (Section 4.3).

4.2 Sequence Training Results

This section focuses on the products obtained from training the selected population-

based and the baseline search-based algorithms. We organized the results into sub-

6Passing and failure rates

73

sections depending on the training algorithm used. Section 4.2.5 summarizes the
findings from training the algorithms. It also discusses the possible causes that lead

to the results.

4.2.1 Grid Search

We executed the grid search algorithm for a total of 14.21 hours. The exhaustive
search of the parameter space produced 2163 results” over the defined time. We
analyzed each candidate configuration before comparing the specified metric (Equa-
tion (4.1)). The analysis proved that a total of 1623 configurations were unusable.
That is, the fitness metric provided was zero. The causes of this nil value can be
plenty (e.g., initialization failure, tracking failure, program crash, script failure) but
are not relevant for this research.

We applied the performance metric to the remaining 540 candidates (24.97% of the
population tested). The blue-colored rows, found in Appendix C, display the resulting
configurations. The candidate culling resulted in 14.24 % (308) of the obtained initial

hyperparameter sets showing an error reduction in ORB-SLAM?2 (Appendix D).

4.2.2 Random Search

We used the random search algorithm to train SLAM similarly to grid search. We
altered the Python implementation of the algorithm to only record the configura-
tions whose ATE fulfilled the performance metric (Equation (4.1)). The aleatory
sampling of the parameter space produced 105 results that matched the condition®.
Since random search has the same execution time as grid search, we estimated 2163
configurations analyzed during the runtime.

We applied the performance metric to the 105 configurations (4.85 % of the es-

timated population tested). The gray-colored rows, found in Appendix C, display

"We explored a total of 0.002 % of the parameter space.
8The ATE needed to be a value other than zero and less than the default lower bound ATE.

74

the random sampling approach’s results. We discovered that only 1.25 % (27) of the

configurations increased the performance of ORB-SLAM2 for sequence 04m.

4.2.3 Genetic Algorithm

The algorithm, initialized with a population of 200 and 15 generations (Section 3.4.3),
was trained for a total runtime of 14.21 hours. The population was subjected to
our performance metric (Equation (4.1)) to obtain 92.5 % (185) configurations that
matched the stipulated condition. The green-colored rows, found in Appendix C,
display the results from using this training algorithm.

We expected that the genetic algorithm produced a higher percentage of config-
urations that outperformed the default execution of sequence 04m than the other
algorithms. GAs use a greedy approach to exploit the excellent parameter values and
discard the underperforming ones. Hence, this model-free optimization approach is

expected to surpass both the baseline algorithms and HB.

4.2.4 Hyperband

We set the resource and pruning factor parameters of HB to produce nine configu-
rations per execution of the algorithm (Section 3.4.4). The runtime of this training
algorithm was swift?. Hence, we executed HB five times to increase the number of
candidates produced. We applied the performance metric (Equation (4.1)) to the 45
resulting configurations. 28.89 % (13) of the found configurations exhibited an error
reduction. The yellow-colored rows, found in Appendix C, display the configurations

and the fitness values calculated.

4.2.5 Configuration Candidates

Table 4.2 summarizes the number of configurations found per training algorithm

(Appendix D). Grid search, Random Search, Genetic Algorithm, and Hyperband

92.71 hours

5

produced 308, 27, 185, and 13 candidates, respectively. This information indicates
that a heuristic search has more results (given a temporal budget) than combined ran-
dom sampling and greedy approaches. Nevertheless, exploitation-oriented algorithms

might produce configurations that exhibit error reduction in more test cases'®.

Table 4.2: Number of configurations found by each training algorithm

Training Algorithm Number of
Configurations

Grid Search 308

Random Search 27

Genetic Algorithm 185

Hyperband 13

Total 533

There are many reasons why grid search might have found more configurations
than the other approaches. The parameter space might have been too large for
random sampling to find appropriate solutions given the time budget. Similarly,
HB’s design is such that it only produces a limited number of optimal hyperparameter
sets. An increase in the number of resources or the pruning factor might result in a
behavior akin to a random search. The population size of the GA limits the number
of configurations it can produce. However, increasing the measure would require
increasing the number of generations to converge to better-performing sets. Thus,

increasing the computation costs.

4.3 Testing Results

This section discusses testing the trained configurations obtained from the model-free
algorithms (Section 4.2). Section 4.3.1 evaluates the trained hyperparameter sets on

modified!! KITTI sequences. As mentioned in Section 3.3, we did not alter sequences

10This is similar to the quantity vs. quality problem.
1 Shortened

76

08 and 09 to have a subset of trials shared in both test sets: a control group. It also
adds a lax metric, success rate (Ao + Ap), to determine the number of candidates
tested further. Section 4.3.2 assesses the collection of configurations that displayed

the highest Ao'? (Equation (4.2)) on the assortment of unaltered sequences.

4.3.1 Shortened Sequence Testing

We subjected the 533 configurations obtained through training the model-free algo-
rithms to performance tests. That is, we analyzed the effectiveness'® of the parameter
values on different execution environments. We ran each set once for each unaltered
sequence from the test set, in addition to sequences 08 and 09. Appendix E displays
a table containing all the ATE values calculated for each parameter configuration per
testing sequence.

We designated each candidate with a key name that indicates the training algo-
rithm used to obtain the configuration. Section 3.1.3 proposed performance metrics
to evaluate each contending configuration’s efficacy. Appendix F displays the Ao,
Ap, and Au computed per configuration candidate.

Table 4.3 contains the highest-ranking contenders based on the optimality rate.
That is, the hyperparameter sets that reduced the ATE of test sequences the most
times. The top-ranked configurations had an optimality rate of 80 % or higher. Nev-
ertheless, the number of candidates with a result of 90 % was meager. To increase
the number of configurations to re-test, we introduced a metric, success rate [173]
(defined as As in Equation (4.5)), that combines the rates of optimality and prox-
imity (Ao + Ap). This metric indicates that a given configuration had a lower error
than a default execution (Table 4.1) or remained within its confidence interval** (i.e.,
no increase or decrease in performance). This lax metric increased the number of

selected configurations to test.

12Defined previously as optimality rate.
BComputed ATE
4 Confidence intervals are always calculated with a 95% confidence level.

7

Table 4.3: Configuration candidates, tested on the modified sequences, that display
the highest optimality rate

Configuration Name Ao (%) Ap (%) Au (%) As (%)
Gen21 90 0 10 90
Grd80 90 0 10 90
Genb1 80 10 10 90
Gen68 80 10 10 90
Gen123 80 0 20 80
Genl60 80 0 20 80
Grd130 80 0 20 80
Grd192* 80 0 20 80
Grd213 80 0 20 80
Grd223 80 10 10 90
Grd224* 80 0 20 80
Grd234 80 0 20 80
Grd235* 80 0 20 80
Grd270 80 0 20 80

HB5 80 10 10 90

*Configuration randomly selected for further evaluation

100 100
AS = AO"‘AP = T Z 1S<ld9ld =Tq — Cd+T Z 1(8>ld/\5<ud)9ld =7Tq — Cgqy;uqg =g + Cy

5358 s38
(4.5)
Additionally, to further increase the number of configurations tested in Section 4.3.2,
we randomly evaluated 30 % of the remaining top-performing candidates (Table 4.3).
Adding new candidates increases the chances of finding a set of parameters that

outperform the default execution on all test cases without raising the computation

resources and memory of the hardware. It also serves to identify the difference gap

78

in optimization performance between candidate!® and selected!® configurations. The

parameters tested on the remaining unmodified sequences are:

e Gen21 and Grd80 due to the 90% of Ao achieved.
e Genb51, Gen68, Grd223, and HB5, because of the 90% success rate achieved.

e Grd192, Grd224, and Grd235 as configurations with a Ao of 80% that were

randomly selected from the options in Table 4.3

4.3.2 Full Sequence Testing

Due to their high optimality and proximity rates (Table 4.3), we subjected the can-
didate configurations to the second batch of performance trials on the unaltered
sequences. We ran 50 times per test to calculate a mean ATE with a lower confidence
interval. Sequences 08 and 09 were used as a control experiment to verify the results
obtained from the sequence executions. Appendix E contains a table that includes
the mean ATE computed for each configuration per test.

Similar to Section 4.3.1, the efficacy of the selected configurations was analyzed
using the proposed performance metrics (Section 3.1.3). Additionally, we used the
combined metric!” defined (Table 4.3) to determine the success rate for each candi-
date. Table 4.4 displays the results of calculating the performance metrics for the
sequence tests.

We can identify in Table 4.4 that the best-performing configurations from the pre-
vious tests'® do not exhibit a high success rate. We notice that the randomly chosen
promising'® candidates display high rates of optimality and proximity. Addition-
ally, they have a low underperformance rate. One of the leading causes for these

results is the behavior of the confidence intervals of each configuration (Appendix H).

5High Ao

16High Ao+ Ap

Ao+ Ap

18Gen21 and Grd80

19Configurations that had a success rate of 80 % on the modified sequence tests.

79

Table 4.4: Configuration candidates, tested on the unmodified sequences, that display
the highest optimality rate

Configuration Name Ao (%) Ap (%) Au (%) As (%)

Gen21 40 20 40 60

Grd80 30 30 40 60

Genbl 30 30 40 60

Gen68 20 50 30 70

Grd223 30 30 40 60

HB5 20 40 40 60

Grd192 40 30 30 70
Grd224 40 40 20 80
Grd235 40 40 20 80

Figure 4.1a exhibits one of the cases where the candidates failed to outperform the
default execution; Figure 4.1b displays one case most of the candidates had very close
proximity to the predetermined configuration.

We theorize that the leading cause for the lackluster performance from the selected
configurations could hint at overfitting the training sequence’s ATE. Overfitting may
be why most of the tests that share the same .yaml file (Table 3.6) with the training
sequences showed either an error reduction or proximity with the default’s confidence
interval. Other possible causes for this behavior may be the execution environment,
the number of ORB features detected, tracking failures, or the configurations that
were not adequate for the testing cases. Nevertheless, Table 4.4 confirms that the
maximum success rate achieved is 80 %.

Table 4.4 summarizes the information from Appendix G to facilitate the visual-
ization of the performance obtained. Table G.1 displays the actual percentages in
which each configuration’s error changed concerning the default run. We gave a value
of 0.00 to each case where the computed ATE was within the confidence interval of

the default configuration. Even though the top-performing candidates (Grd224 and

80

‘[BAI2JUI 9OUSPYUOD S, UOIINDIIXS }[NEJOP 9Y) UIYIIM PUNOJ SemM 3 NSad oY) sueaw QQ'Q JO anfea y

80°¢ |9€°G8I-| €¢'¢ [8T'T | 000 | 000 |698T-| 000 |¥80S| 000 geETPID
GI'ET | 8O'86T- | 9¢°0 | Tg€ | 000 | 000 | §9°81- | 000 | €&'19 | 000 (44420
000 | 6C°I8T-| 98°C | 99T | 000 |000|c00c | ¥I'G | V6V | GO€EP- G6TPID
9€Te- | 9€°LSG | L8 | 000 | G9°1¢- | 00°0 | 9€'8%- | PP ¥I-| 000 | 000 GdH
000 | L¥P¢9T- | 1€9 | 290 | L&0¥- | 000 | €9°€C-| 000 | 9T'TS | 9LV~ ecePId
96°'T¢-| 91°09 | €L4F1 | 00°0 | 16°9¢- | 00°0 | 9T°¢¥y- | 00°0 | 00°0 | 000 89U9Y)
9G°LT- | G9°8C | 6V'ET | LEO | ¢L'T1C- | 000 | ¢€FE- | T 9T-| 000 | 000 [¢ueH
000 | 87691~ | LG0T | L9°T | §9°9¢- | 00°0 | L6°€C-| 000 | 08°6V | 99°6€- 08PID
09T~ | T1'8¢ | 8LCI | 9T°0 | TO'LG- | 00°0 | 98°FF~ | GL°GT- | TI'T | 00°0 1D
0TS 60S 80S | L0S | 90S | G0S | €0S ¢0S 10S 00S oueN
(%) e@ouenbes 1ad uoronpaa 1oy uoryeInsyuo))

"soouenbos Fur)se) o1} JO Yoro UO 9JRPIPURD UONRINSGUOD DR I0J UOIIONPDI IOLIH :GF S[qR],

81

Configurations' Performance on Sequence 03
0.38
0.36
0.34 M . -

0.32 M
— Lower bound

Ie
e

0.3

ATE value

+ Mean ATE

Ie

0.28 - Upper bound

0.26
.

0.24
D Gn21 Gr80 Gn51 Gn68 Gr223 HB5 Grl92 Gr224 Gr235

Configuration

(a)

Configurations' Performance on Sequence 00

— Lower bound

ATE Value
(=
[
~
*

1.12 * Mean ATE
1.07 Upper bound

@
©
~
*
le

- * *

le

* *

D Gn2l Gr80 Gn51 Gn68 Gr223 HB5 Grl92 Gr224 Gr235

Configuration

(b)

Figure 4.1: The performance obtained from the configurations run on the unaltered
KITTI sequences. The black dot represents the mean ATE value and the green and
red lines, the upper and lower bounds, respectively. a) Sequence 03 shows a case
where all the configurations had an increased ATE concerning the default execution
(labeled as D). b) Sequence 00 is an example where most configurations showed no
error reduction. The values obtained were within the confidence interval of the default
execution (labeled as D)

Grd235) have an error reduction of over 50 % for sequence 01, there is a consider-

ably significant ATE increment for sequence 09 (over 180 %). Additionally, the error

reduction for sequences 07 and 08 is minimal?.

20T ess than 10 %

82

4.3.3 Final Results

Due to the results obtained in Section 4.3.1 and the capacity of the genetic algorithms
to exploit the better-fitted results, we expected that a genetic approach would outper-
form other training algorithms during testing. However, the success rate (Table 4.4)
demonstrates that a grid search provided the best solution given our constraints. We
hypothesize that we need to increase the initial population of the genetic algorithm
to obtain a higher success rate.

Some of the error reduction results (Table G.1) are so small that they could be
considered proximal to the default execution’s confidence interval. Additionally, the
percentage of error increment for the cases where the configurations underperformed
is higher than those where there was an error reduction. This increment means that
the configurations candidates are ill-suited for general optimization.

Despite not finding a universal configuration that outperforms the default param-
eters, the results from testing indicate that when using grid search for a limited
amount of time, there is an 80 % chance of either reducing the error or staying within
a default configuration’s confidence interval. Also, with the initialization parameters
given, the genetic algorithm produced a 70 % chance of reducing the overall system’s
error. Nevertheless, there is also a considerably high chance that decreasing the error
for a particular sequence might increase the ATE on another. Therefore, it might be
better to use HPO to tune the SLAM’s parameters for specific cases rather than a

universal solution.

83

Chapter 5

Conclusions

In this work, we propose a methodology for implementing model-free, population-
based hyperparameter optimization as a means to enhance SLAM and increase its per-
formance. It has four components: environmental setup, parameter selection, bench-
mark selection, and algorithm selection. The environmental setup refers to the defini-
tion of constraints and modification of the SLAM system (in our case ORB-SLAM?2).
Tuners will be able to change all internal and hard-coded parameters through an
external configuration file. The parameter selection requires a search space to be de-
limited. It also studies the influence of each parameter on the SLAM solution using
Spearman’s correlation coefficient to determine which parameters to select. For ORB-
SLAM2, the ideal parameters to optimize are ORBextractor.iniThFAST, ORBex-
tractor.nLevels, GlobalBundleAdjustment.lterations, ReconstructH.minParallax, and
EraseObservation.minObservations. Population-based algorithms were selected to op-
timize the SLAM system on an outdoor benchmark with available ground truth, such
as the KITTI sequences. We designed the methodology so that anyone can export it
to any other SLAM solution.

We adapted three existing performance evaluation metrics: optimality (Ao), un-
derperformance (Au), and success (As) rates to consider the information provided
by the confidence intervals. We introduced a new performance metric, proximity rate

(Ap). These metrics consider the information provided by the confidence intervals

84

and offer qualitative data on the behavior of computed ATE compared to a default
execution. The optimality rate determines the percentage for outperforming the de-
fault configuration. The underperformance rate is the percentage for exceeding the
error computed for the default execution. The proximity rate signals the percentage
for comparable performance concerning the ATE obtained from a default run. The
information provided by these metrics is a percentile of the total tests. The success
rate is the combined metric of optimality and proximity that evaluates the efficacy
of a configuration. Together, these evaluation metrics provide information about the
overall configuration performance on the SLAM solution.

ORB-SLAM2 was treated as a black-box function and trained with the selected
algorithms in a modified sequence. Then, we evaluated the results on two different
sets of test cases. We used the performance metrics proposed in the methodology
to analyze the obtained configurations and compare them with the results from a
default execution. We found that some of the population-based candidates tested
on ORB-SLAM2 had a 70 % success rate in outperforming the default configuration,
while the baseline algorithms showed an 80 % success rate. Despite not finding a set
of hyperparameters that excels over the default parameters, applying HPO on SLAM
is effective for case-specific executions.

We propose that our methodology for optimizing ORB-SLAM?2 can effectively in-
crease SLAM performance. We can see the performance increment throughout each
tested configuration’s success rates and error reduction (up to 60 % in a sequence).
While parameter tuning is often a complicated and time-consuming process, this
methodology optimizes a few parameters practically, removes the need for an ex-
pert tuner, and has a simple implementation. Theoretically, the methodology can
be universal and is a viable approach for increasing the performance of any SLAM

application.

85

5.1 Future Work

HPO is a rich study field that offers opportunities for future work. We have adapted
an HPO approach for its use on ORB-SLAM2. It shows promise in enhancing SLAM
performance via parameter optimization, but there are still many open questions to

answer.
Parameter Space

Parameter space definition is critical for SLAM enhancement. The parameter space
determines the limits of the parameter values. HPO algorithms need a defined search
space to explore the possible parameter configurations efficiently. Section 3.2.2 defined
a parameter search space that resulted in thousands of possible parameter combina-
tions. Those combinations lead to computationally expensive algorithms that rely on
factors to reduce runtime.

We plan to establish a stricter space definition metric to reduce the possible number
of executions for the baseline algorithms. Increasing the quality of the search space
also benefits the other training algorithms by augmenting the rate of finding local
optima (i.e., a value that minimizes the error), which, in return, produces more

precise results faster.
Parameter Relationships

In Section 3.2.3, we determined that the computational cost of optimization exponen-
tially increases as the number of parameters increases. We used Spearman’s correla-
tion coefficient to find the parameters that had the most influence on the resulting
ATE. Nevertheless, we assumed that all parameters were independent and presented
no covariance with each other.

We also plan to add a metric to our methodology to study the covariance between
parameters. This metric can change the parameter selection process as the influence

of parameters affects the ATE produced and the performance of other parameters.

86

This way, the methodology introduced can become more accurate. We can hone the
approach to produce more reliable results as we limit the number of parameters to

optimize considering the covarying parameters.
Optimization Algorithms

Section 3.4, proposed using model-free algorithms to train our chosen SLAM solution.
The methodology proposed resulted in the need for certain factors to aid the execution
of some of the algorithms. For example, the parameter space made the grid search
algorithm need a stopping criterion. We plan to produce enhancements to fine-tune
the model-free algorithms for their application in SLAM. Some examples are tweaking
the resource and budget parameters in HB, increasing the population size in the GA,
or setting a better stopping criterion for random search.

Similarly, we plan to introduce model-based algorithms to our methodology. Using
the information from previous executions to produce a surrogate model may help
direct the search for more accurate configurations. That way, we could have a higher

convergence rate into optimal solutions that enhance SLAM performance.

Other SLAM Solutions

We explored the application of the methodology on ORB-SLAM?2. Theoretically, the
optimization process relies on the training sequences and not the SLAM solution.
Therefore, we assumed that the HPO approach for SLAM is viable and effective on
other SLAM solutions. In the future, we plan to replicate and test this methodology

to compare the effectiveness of HPO optimization in different SLAM approaches (e.g.,
DSO, LDSO) with the results obtained in this research.

87

Bibliography

[1] R. Elshawi, M. Maher, and S. Sakr, Automated machine learning: State-of-
the-art and open challenges, 2019. arXiv: 1906.02287 [cs.LG].

[2] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam: A versatile
and accurate monocular slam system,” IEEFE transactions on robotics, vol. 31,
no. 5, pp. 1147-1163, 2015.

[3] R. Mur-Artal and J. D. Tardés, “Orb-slam2: An open-source slam system
for monocular, stereo, and rgb-d cameras,” IEEE Transactions on Robotics,
vol. 33, no. 5, pp. 1255-1262, 2017.

[4] J. Ni, T. Gong, Y. Gu, J. Zhu, and X. Fan, “An improved deep residual
network-based semantic simultaneous localization and mapping method for

monocular vision robot,” Computational intelligence and neuroscience, vol. 2020,
2020.

[5] J. Engel, T. Schops, and D. Cremers, “Lsd-slam: Large-scale direct monocular
slam,” in FEuropean conference on computer vision, Springer, 2014, pp. 834—

849.

[6] X.Gao, R. Wang, N. Demmel, and D. Cremers, “Ldso: Direct sparse odometry
with loop closure,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), IEEE, 2018, pp. 2198-2204.

[7] M. Labbé and F. Michaud, “Rtab-map as an open-source lidar and visual
simultaneous localization and mapping library for large-scale and long-term
online operation,” Journal of Field Robotics, vol. 36, no. 2, pp. 416446, 2019.

[8] R. Storn, “On the usage of differential evolution for function optimization,”
in Proceedings of North American Fuzzy Information Processing, IEEE, 1996,
pp. 519-523.

9] L. Yang, F. Tan, A. Li, Z. Cui, Y. Furukawa, and P. Tan, “Polarimetric dense
monocular slam,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 3857-3866.

[10] P. L. N. Carrasco and G. O. Codina, “Visual odometry parameters optimiza-
tion for autonomous underwater vehicles,” Instrumentation viewpoint, vol. 15,

2013.
[11] T. Duckett et al., “A genetic algorithm for simultaneous localization and map-
ping,” 2003.

88

https://arxiv.org/abs/1906.02287

[12] A. Kostusiak and P. Skrzypezyniski, “On the efficiency of population-based
optimization in finding best parameters for rgb-d visual odometry,” Journal
of Automation Mobile Robotics and Intelligent Systems, vol. 13, 2019.

[13] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, 1. Reid,
and J. J. Leonard, “Past, present, and future of simultaneous localization and
mapping: Toward the robust-perception age,” IEFEFE Transactions on Robotics,
vol. 32, no. 6, 1309-1332, Dec. 2016, 1sSN: 1941-0468. por: 10.1109/tro.2016.
2624754. [Online]. Available: http://dx.doi.org/10.1109/TRO.2016.2624754.

[14] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE trans-
actions on pattern analysis and machine intelligence, vol. 40, no. 3, pp. 611-
625, 2017.

[15] M. Andersson and M. Baerveldt, “Simultaneous localization and mapping for
vehicles using orb-slam2,” Master’s thesis, 2018.

[16] S. K. Smit and A. E. Eiben, “Comparing parameter tuning methods for evo-
lutionary algorithms,” in 2009 IEEE congress on evolutionary computation,
IEEE, 2009, pp. 399-406.

[17] Z. Zheng, “Feature based monocular visual odometry for autonomous driving
and hyperparameter tuning to improve trajectory estimation,” in Journal of
Physics: Conference Series, IOP Publishing, vol. 1453, 2020, p. 012 067.

[18] C. Zimmermann, T. Welschehold, C. Dornhege, W. Burgard, and T. Brox,
“3d human pose estimation in rghd images for robotic task learning,” in 2018
IEEE International Conference on Robotics and Automation (ICRA), IEEE,
2018, pp. 1986-1992.

[19] Z. Xian, X. He, J. Lian, X. Hu, and L. Zhang, “A bionic autonomous nav-
igation system by using polarization navigation sensor and stereo camera,”
Autonomous Robots, vol. 41, no. 5, pp. 1107-1118, 2017.

[20] S. G. B. Rylander and B Gotshall, “Optimal population size and the genetic
algorithm,” Population, vol. 100, no. 400, p. 900, 2002.

[21] F. Berkenkamp, A. Krause, and A. P. Schoellig, “Bayesian optimization with
safety constraints: Safe and automatic parameter tuning in robotics,” arXiv
preprint arXiv:1602.04450, 2016.

[22] 1. A. Putra and P. Prajitno, “Parameter tuning of g-mapping slam (simulta-
neous localization and mapping) on mobile robot with laser-range finder 360°

sensor,” in 2019 International Seminar on Research of Information Technology
and Intelligent Systems (ISRITI), IEEE, 2019, pp. 148-153.

[23] A. Sehgal, A. Singandhupe, H. M. La, A. Tavakkoli, and S. J. Louis, “Lidar-
monocular visual odometry with genetic algorithm for parameter optimiza-
tion,” in International Symposium on Visual Computing, Springer, 2019, pp. 358
370.

89

https://doi.org/10.1109/tro.2016.2624754
https://doi.org/10.1109/tro.2016.2624754
http://dx.doi.org/10.1109/TRO.2016.2624754

[24]

[25]

[26]

[35]

[36]

T. N. Thanh, Y. Sakaguchi, H. Nagahara, and M. Yachida, “Stereo slam us-
ing two estimators,” in 2006 IEEE International Conference on Robotics and
Biomimetics, 2006, pp. 19-24. po1: 10.1109/ROBI0.2006.340253.

A. Association for Advancing Automation, What is visual slam technology and
what is it used for? May 2015. [Online|. Available: https://www.automate.
org/blogs/what-is-visual-slam-technology-and-what-is-it-used-for.

A. J. Davison, “Real-time simultaneous localisation and mapping with a sin-
gle camera,” in Computer Vision, IEEE International Conference on, IEEE
Computer Society, vol. 3, 2003, pp. 1403-1403.

[. Mahon, S. B. Williams, O. Pizarro, and M. Johnson-Roberson, “Efficient
view-based slam using visual loop closures,” IEEFE Transactions on Robotics,
vol. 24, no. 5, pp. 1002-1014, 2008.

S. Kim and S.-Y. Oh, “Slam in indoor environments using omni-directional
vertical and horizontal line features,” Journal of Intelligent and Robotic Sys-
tems, vol. 51, no. 1, pp. 31-43, 2008.

J. Shi et al., “Good features to track,” in 1994 Proceedings of IEEE conference
on computer vision and pattern recognition, IEEE, 1994, pp. 593-600.

P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “Rgb-d mapping: Using
kinect-style depth cameras for dense 3d modeling of indoor environments,”
The International Journal of Robotics Research, vol. 31, no. 5, pp. 647-663,
2012.

K. Yousif, A. Bab-Hadiashar, and R. Hoseinnezhad, “An overview to visual
odometry and visual slam: Applications to mobile robotics,” Intelligent Indus-
trial Systems, vol. 1, no. 4, pp. 289-311, 2015.

C. A. C. Coello, Learning and Intelligent Optimization. Springer, 2011.

M. Hosseinzadeh, K. Li, Y. Latif, and I. Reid, “Real-time monocular object-
model aware sparse slam,” in 2019 International Conference on Robotics and
Automation (ICRA), IEEE, 2019, pp. 7123-7129.

S. Ishida, How robots make maps- an intro to slam (simultaneous localisation
and mapping), Aug. 2020. [Online|. Available: https://medium.com /swlh/
how - robots- make- maps- an- intro- to- slam- simultaneous- localisation - and -
mapping-37370c3e7dfe.

K. Tateno, F. Tombari, I. Laina, and N. Navab, “Cnn-slam: Real-time dense
monocular slam with learned depth prediction,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 6243-6252.

S. Ahn, J. Choi, N. L. Doh, and W. K. Chung, “A practical approach for ekf-
slam in an indoor environment: Fusing ultrasonic sensors and stereo camera,”
Autonomous robots, vol. 24, no. 3, pp. 315-335, 2008.

L. Mu, P. Yao, Y. Zheng, K. Chen, F. Wang, and N. Qi, “Research on slam
algorithm of mobile robot based on the fusion of 2d lidar and depth camera,”
IEEFE Access, vol. 8, pp. 157 628-157 642, 2020.

90

https://doi.org/10.1109/ROBIO.2006.340253
https://www.automate.org/blogs/what-is-visual-slam-technology-and-what-is-it-used-for
https://www.automate.org/blogs/what-is-visual-slam-technology-and-what-is-it-used-for
https://medium.com/swlh/how-robots-make-maps-an-intro-to-slam-simultaneous-localisation-and-mapping-37370c3e7dfe
https://medium.com/swlh/how-robots-make-maps-an-intro-to-slam-simultaneous-localisation-and-mapping-37370c3e7dfe
https://medium.com/swlh/how-robots-make-maps-an-intro-to-slam-simultaneous-localisation-and-mapping-37370c3e7dfe

[38] S. Garcia, M. E. Lépez, R. Barea, L. M. Bergasa, A. Gémez, and E. J. Molinos,
“Indoor slam for micro aerial vehicles control using monocular camera and
sensor fusion,” in 2016 international conference on autonomous robot systems
and competitions (ICARSC), IEEE, 2016, pp. 205-210.

[39] S. Jo, H. Choi, and E. Kim, “Ceiling vision based slam approach using sensor
fusion of sonar sensor and monocular camera,” in 2012 12th International
Conference on Control, Automation and Systems, IEEE, 2012, pp. 1461-1464.

9

[40] S. Das, “Simultaneous localization and mapping (slam) using rtab-map,” arXiv

preprint arXiv:1809.02989, 2018.
[41] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient alter-

native to sift or surf,” in 2011 International conference on computer vision,
Ieee, 2011, pp. 2564-2571.

[42] G. Grisetti, R. Kiimmerle, H. Strasdat, and K. Konolige, “G20: A general
framework for (hyper) graph optimization,” in Proceedings of the IEEE Inter-
national Conference on Robotics and Automation (ICRA), Shanghai, China,
2011, pp. 9-13.

[43] N. Ragot, R. Khemmar, A. Pokala, R. Rossi, and J. Ertaud, “Benchmark of
visual slam algorithms: Orb-slam2 vs rtab-map*,” in 2019 Eighth International
Conference on Emerging Security Technologies (EST), 2019, pp. 1-6.

[44] A. M. Webb, G. Brown, and M. Lujan, “Orb-slam-cnn: Lessons in adding
semantic map construction to feature-based slam,” in Annual Conference To-
wards Autonomous Robotic Systems, Springer, 2019, pp. 221-235.

[45] S. Scheideman, N. Ray, and H. Zhang, “A flexible method for performance
evaluation of robot localization,” in 2020 IEEE International Conference on
Robotics and Automation (ICRA), IEEE, 2020, pp. 8302-8308.

[46] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A bench-
mark for the evaluation of rgbh-d slam systems,” in 2012 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, IEEE, 2012, pp. 573—
580.

[47) O. Wulf, A. Nuchter, J. Hertzberg, and B. Wagner, “Ground truth evalua-
tion of large urban 6d slam,” in 2007 IEEE/RSJ International Conference on
Intelligent Robots and Systems, IEEE, 2007, pp. 650-657.

[48] Z. Chen, “Visual-inertial slam extrinsic parameter calibration based on bayesian
optimization,” 2018.

[49] J. Sturm, Rgb-d slam dataset and benchmark, 2012.

[50] R. Andonie, “Hyperparameter optimization in learning systems,” Journal of
Membrane Computing, vol. 1, no. 4, pp. 279-291, 2019.

[51] P. P. Ippolito, Hyperparameters optimization, Sep. 2019. [Online|. Available:
fromhttps://towardsdatascience.com/hyperparameters-optimization-526348bb8e2d.

91

from https://towardsdatascience.com/hyperparameters-optimization-526348bb8e2d

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

R. Dwivedi, Introduction to model hyperparameter and tuning in machine
learning, May 2020. [Online]. Available: https://www.analyticssteps.com /
blogs/introduction-model-hyperparameter-and-tuning-machine-learning.

A. Bissuel, Hyperparameter optimization algorithms: A short review, Apr. 2019.
[Online]. Available: https://medium.com/criteo-engineering/hyper-parameter-
optimization-algorithms-2fe447525903.

C. Huang, Y. Li, and X. Yao, “A survey of automatic parameter tuning
methods for metaheuristics,” IFEE transactions on evolutionary computation,
vol. 24, no. 2, pp. 201-216, 2019.

W. Koehrsen, Hyperparameter tuning the random forest in python, Jan. 2018.
[Online]. Available: https://towardsdatascience.com/hyperparameter-tuning-
the-random-forest-in-python-using-scikit-learn-28d2aa77dd74.

L. Li, Why does no one use advanced hyperparameter tuning? Oct. 2020. [On-
line|. Available: https://www.determined.ai/blog/why-does-no-one- use-
advanced-hp-tuning.

J. Wu, X.-Y. Chen, H. Zhang, L.-D. Xiong, H. Lei, and S.-H. Deng, “Hyperpa-
rameter optimization for machine learning models based on bayesian optimiza-
tion,” Journal of Electronic Science and Technology, vol. 17, no. 1, pp. 2640,
2019.

F. Hutter, “Automated configuration of algorithms for solving hard computa-
tional problems,” PhD thesis, University of British Columbia, 2009.

Y. Kim, H. Son, Y. J. Lee, and S. Sung, “Integrated navigation algorithm using
velocity incremental vector approach with orb-slam and inertial measurement,”
The Transactions of the Korean Institute of Electrical Engineers, vol. 68, no. 1,
pp. 189-198, 2019.

F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based opti-
mization for general algorithm configuration,” in International conference on
learning and intelligent optimization, Springer, 2011, pp. 507-523.

X. Xiao, B. Liu, G. Warnell, J. Fink, and P. Stone, “Appld: Adaptive planner
parameter learning from demonstration,” arXiv preprint arXiv:2004.00116,
2020.

M. Annunziato and S. Pizzuti, “Adaptive parameterization of evolutionary al-
gorithms driven by reproduction and competition,” in Proceedings of the Eu-
ropean Symposium on Intelligent Techniques (ESIT 2000), Aachen, Germany,
2000, pp. 31-35.

J. Cheng, G. G. Yen, and G. Zhang, “A many-objective evolutionary algorithm
with enhanced mating and environmental selections,” IFEE Transactions on
Evolutionary Computation, vol. 19, no. 4, pp. 592-605, 2015.

R. Eberhart and J. Kennedy, “A new optimizer using particle swarm the-
ory,” in MHS’95. Proceedings of the Sixth International Symposium on Micro
Machine and Human Science, leee, 1995, pp. 39-43.

92

https://www.analyticssteps.com/blogs/introduction-model-hyperparameter-and-tuning-machine-learning
https://www.analyticssteps.com/blogs/introduction-model-hyperparameter-and-tuning-machine-learning
https://medium.com/criteo-engineering/hyper-parameter-optimization-algorithms-2fe447525903
https://medium.com/criteo-engineering/hyper-parameter-optimization-algorithms-2fe447525903
https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74
https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74
https://www.determined.ai/blog/why-does-no-one-use-advanced-hp-tuning
https://www.determined.ai/blog/why-does-no-one-use-advanced-hp-tuning

R. Rutenbar, “Simulated annealing algorithms: An overview,” IEEE Circuits
and Devices Magazine, vol. 5, no. 1, pp. 19-26, 1989. por: 10.1109/101.17235.

B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas, “Taking
the human out of the loop: A review of bayesian optimization,” Proceedings of
the IEEE, vol. 104, no. 1, pp. 148-175, 2015.

M. Birattari and J. Kacprzyk, Tuning metaheuristics: a machine learning per-
spective. Springer, 2009, vol. 197.

E.-G. Talbi, Metaheuristics: from design to implementation. John Wiley &
Sons, 2009, vol. 74.

M. Birattari, T. Stiitzle, L. Paquete, K. Varrentrapp, et al., “A racing algo-
rithm for configuring metaheuristics.,” in Gecco, vol. 2, 2002.

J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-
parameter optimization,” in Advances in neural information processing sys-
tems, 2011, pp. 2546-2554.

P. T. Sivaprasad, F. Mai, T. Vogels, M. Jaggi, and F. Fleuret, “Optimizer
benchmarking needs to account for hyperparameter tuning,” in International
Conference on Machine Learning, PMLR, 2020, pp. 9036-9045.

P. Y. Kuo, H. Du, L. A. Corkan, K. Yang, and J. S. Lindsey, “A planning
module for performing grid search, factorial design, and related combinatorial
studies on an automated chemistry workstation,” Chemometrics and intelli-
gent laboratory systems, vol. 48, no. 2, pp. 219-234, 1999.

I. Syarif, A. Prugel-Bennett, and G. Wills, “Svm parameter optimization us-
ing grid search and genetic algorithm to improve classification performance,”
Telkomnika, vol. 14, no. 4, p. 1502, 2016.

D. S. Soper, “Greed is good: Rapid hyperparameter optimization and model
selection using greedy k-fold cross validation,” FElectronics, vol. 10, no. 16,
p. 1973, 2021.

L. Yang and A. Shami, “On hyperparameter optimization of machine learn-
ing algorithms: Theory and practice,” Neurocomputing, vol. 415, pp. 295-316,
2020.

C. Sun, D. Liu, and C. Yang, “Model-free unsupervised learning for opti-
mization problems with constraints,” in 2019 25th Asia-Pacific Conference on
Communications (APCC), IEEE, 2019, pp. 392-397.

J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimiza-
tion,” The Journal of Machine Learning Research, vol. 13, no. 1, pp. 281-305,
2012.

Z. B. Zabinsky, “Random search algorithms,” Wiley encyclopedia of operations
research and management science, 2010.

H. Mania, A. Guy, and B. Recht, Simple random search provides a competitive
approach to reinforcement learning, 2018. arXiv: 1803.07055 [cs.LG].

93

https://doi.org/10.1109/101.17235
https://arxiv.org/abs/1803.07055

[30]

[81]

[82]

[83]

[84]

[85]

[30]

C. B. Yazici, Continuous genetic algorithm from scratch with python, Oct.
2019. [Online]. Available: https://towardsdatascience.com/continuous-genetic-
algorithm-from-scratch-with-python-ff29deedd099.

B. Shekar and G. Dagnew, “Grid search-based hyperparameter tuning and
classification of microarray cancer data,” in 2019 Second International Confer-
ence on Advanced Computational and Communication Paradigms (ICACCP),
IEEE, 2019, pp. 1-8.

R. G. Mantovani, A. L. D. Rossi, J. Vanschoren, B. Bischl, and A. C. P. L. F.
de Carvalho, “Effectiveness of random search in svm hyper-parameter tuning,”
in 2015 International Joint Conference on Neural Networks (IJCNN), 2015,
pp. 1-8. por1: 10.1109/1JCNN.2015.7280664.

D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimization of
expensive black-box functions,” Journal of Global optimization, vol. 13, no. 4,
pp. 455-492, 1998.

W. Ponweiser, T. Wagner, and M. Vincze, “Clustered multiple generalized
expected improvement: A novel infill sampling criterion for surrogate models,”
in 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress
on Computational Intelligence), IEEE, 2008, pp. 3515-3522.

D. Huang, T. T. Allen, W. I. Notz, and N. Zeng, “Global optimization of
stochastic black-box systems via sequential kriging meta-models,” Journal of
global optimization, vol. 34, no. 3, pp. 441-466, 2006.

K. Koide, M. Yokozuka, S. Oishi, and A. Banno, “Automatic hyperparameter
tuning for black-box lidar odometry,” in IEFEE International Conference on
Robotics and Automation. IEEFE, 2021.

F. Hutter, H. H. Hoos, K. Leyton-Brown, and K. P. Murphy, “An experimen-
tal investigation of model-based parameter optimisation: Spo and beyond,” in

Proceedings of the 11th Annual conference on Genetic and evolutionary com-
putation, 2009, pp. 271-278.

E. Brochu, V. M. Cora, and N. De Freitas, “A tutorial on bayesian optimiza-
tion of expensive cost functions, with application to active user modeling and
hierarchical reinforcement learning,” arXiv preprint arXiv:1012.2599, 2010.

M. D. Hoffman, E. Brochu, and N. de Freitas, “Portfolio allocation for bayesian
optimization.,” in UAI, Citeseer, 2011, pp. 327-336.

J. Mockus, V. Tiesis, and A. Zilinskas, “The application of bayesian methods
for seeking the extremum,” Towards global optimization, vol. 2, no. 117-129,
p. 2, 1978.

M. Bahmani, Hyperband and bohb: Understanding state of the art hyperparam-
eter optimization algorithms, May 2021. [Online]. Available: https://neptune.
ai/blog/hyperband-and-bohb-understanding-state-of-the-art-hyperparameter-
optimization-algorithms.

94

https://towardsdatascience.com/continuous-genetic-algorithm-from-scratch-with-python-ff29deedd099
https://towardsdatascience.com/continuous-genetic-algorithm-from-scratch-with-python-ff29deedd099
https://doi.org/10.1109/IJCNN.2015.7280664
https://neptune.ai/blog/hyperband-and-bohb-understanding-state-of-the-art-hyperparameter-optimization-algorithms
https://neptune.ai/blog/hyperband-and-bohb-understanding-state-of-the-art-hyperparameter-optimization-algorithms
https://neptune.ai/blog/hyperband-and-bohb-understanding-state-of-the-art-hyperparameter-optimization-algorithms

[92] S. Falkner, A. Klein, and F. Hutter, “Bohb: Robust and efficient hyperparam-
eter optimization at scale,” arXiv preprint arXiv:1807.01774, 2018.

93] C. Audet and W. Hare, “Derivative-free and blackbox optimization,” 2017.

[94] K. Koide, M. Yokozuka, S. Oishi, and A. Banno, “Adaptive hyperparameter
tuning for black-box lidar odometry,” arXiv preprint arXiv:2107.00275, 2021.

[95] H. Juan-Rou and W. Zhan-Qing, “The implementation of imu/stereo vision
slam system for mobile robot,” in 2020 27th Saint Petersburg International
Conference on Integrated Navigation Systems (ICINS), IEEE, 2020, pp. 1-4.

[96] D. Belter, M. Nowicki, and P. Skrzypczyniski, “Modeling spatial uncertainty of
point features in feature-based rgh-d slam,” Machine Vision and Applications,
vol. 29, no. 5, pp. 827-844, 2018.

[97] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar, “Hyper-
band: A novel bandit-based approach to hyperparameter optimization,” The
Journal of Machine Learning Research, vol. 18, no. 1, pp. 6765-6816, 2017.

[98] G. Lan, J. M. Tomczak, D. M. Roijers, and A. Eiben, “Time efficiency in opti-
mization with a bayesian-evolutionary algorithm,” arXiv preprint arXiv:2005.04166,
2020.

[99] J. Carnahan and R. Sinha, “Nature’s algorithms [genetic algorithms|,” IEEE
Potentials, vol. 20, no. 2, pp. 21-24, 2001. por: 10.1109/45.954644.

[100] F. J. Rodriguez, C. Garcia-Martinez, and M. Lozano, “Hybrid metaheuristics
based on evolutionary algorithms and simulated annealing: Taxonomy, com-

parison, and synergy test,” IEEE Transactions on Evolutionary Computation,
vol. 16, no. 6, pp. 787-800, 2012. por: 10.1109/TEVC.2012.2182773.

[101] K. Jamieson and A. Talwalkar, “Non-stochastic best arm identification and
hyperparameter optimization,” in Artificial Intelligence and Statistics, 2016,
pp. 240-248.

[102] M. Binder, J. Moosbauer, J. Thomas, and B. Bischl, “Multi-objective hyper-
parameter tuning and feature selection using filter ensembles,” in Proceedings
of the 2020 Genetic and FEvolutionary Computation Conference, 2020, pp. 471
479.

[103] D. Vrajitoru, “Large population or many generations for genetic algorithms?
implications in information retrieval,” in Soft Computing in Information Re-
trieval, Springer, 2000, pp. 199-222.

[104] Y. Wang, Z. Cai, Y. Zhou, and Z. Fan, “Constrained optimization based on
hybrid evolutionary algorithm and adaptive constraint-handling technique,”
Structural and Multidisciplinary Optimization, vol. 37, no. 4, pp. 395413,
2009.

[105] N Botteghi, B. Sirmacek, R Schulte, M Poel, and C Brune, “Reinforcement
learning helps slam: Learning to build maps,” The International Archives of

Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 43,
pp. 329-335, 2020.

95

https://doi.org/10.1109/45.954644
https://doi.org/10.1109/TEVC.2012.2182773

[106]
107]

[108]

109]

[110]

[111]
[112]
[113]
[114]
[115]

[116]

[117)
[118]

[119]

[120]

[121]

R. S. Sutton, “A special issue of machine learning on reinforcement learning,”
Machine learning, vol. 8, 1992.

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

A. Bar-Hillel, A. Di-Nur, L. Ein-Dor, R. Gilad-Bachrach, and Y. Ittach, “Work-
station capacity tuning using reinforcement learning,” in Proceedings of the
2007 ACM/IEEE Conference on Supercomputing, 2007, pp. 1-11.

A. Chaurasia, Comparing modern scalable hyperparameter tuning methods,
Sep. 2020. [Online]. Available: https://towardsdatascience.com /comparing-
modern-scalable-hyperparameter-tuning-methods-dfe9661e947f.

S. Cheng, B. Liu, T. Ting, Q. Qin, Y. Shi, and K. Huang, “Survey on data
science with population-based algorithms,” Big Data Analytics, vol. 1, no. 1,
pp- 1-20, 2016.

K. De Jong, “Learning with genetic algorithms: An overview,” Machine learn-
ing, vol. 3, no. 2-3, pp. 121-138, 1988.

F. Streichert, “Introduction to evolutionary algorithms,” paper to be presented
Apr, vol. 4, 2002.

I. BoussaiD, J. Lepagnot, and P. Siarry, “A survey on optimization meta-
heuristics,” Information sciences, vol. 237, pp. 82-117, 2013.

A. N. Sloss and S. Gustafson, “2019 evolutionary algorithms review,” Genetic
Programming Theory and Practice XVII, pp. 307-344, 2020.

T. Selund, “Towards plug-n-play robot guidance: Advanced 3d estimation and
pose estimation in robotic applications,” 2017.

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The
kitti dataset,” The International Journal of Robotics Research, vol. 32, no. 11,
pp. 1231-1237, 2013.

F. Glover and M. Laguna, “Tabu search,” in Handbook of combinatorial opti-
mization, Springer, 1998, pp. 2093-2229.

D. Whitley, “A genetic algorithm tutorial,” Statistics and computing, vol. 4,
no. 2, pp. 65-85, 1994.

B. Xi, Z. Liu, M. Raghavachari, C. H. Xia, and L. Zhang, “A smart hill-
climbing algorithm for application server configuration,” in Proceedings of the
13th international conference on World Wide Web, 2004, pp. 287-296.

Y. Hajizadeh, V. Demyanov, L. Mohamed, and M. Christie, “Comparison of
evolutionary and swarm intelligence methods for history matching and uncer-
tainty quantification in petroleum reservoir models,” in Intelligent Computa-
tional Optimization in Engineering, Springer, 2011, pp. 209-240.

N. Nagarajan, “Multi-objective optimisation of rtab-map parameters using
genetic algorithm for indoor 2d slam,” PhD thesis, 2020.

96

https://towardsdatascience.com/comparing-modern-scalable-hyperparameter-tuning-methods-dfe9661e947f
https://towardsdatascience.com/comparing-modern-scalable-hyperparameter-tuning-methods-dfe9661e947f

[122]

[123]
[124]

[125]

126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]
137]

D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine learning,”
1988.

T. V. Mathew, “Genetic algorithm,” Report submitted at IIT Bombay, 2012.

S. R. Young, D. C. Rose, T. P. Karnowski, S.-H. Lim, and R. M. Patton, “Op-
timizing deep learning hyper-parameters through an evolutionary algorithm,”
in Proceedings of the Workshop on Machine Learning in High-Performance
Computing Environments, 2015, pp. 1-5.

O. Ghasemalizadeh, M. Khaleghian, and S. Taheri, “A review of optimization
techniques in artificial networks,” International Journal of Advanced Research,
vol. 4, pp. 1668-1686, Sep. 2016. por: 10.21474/1JAR01/1627.

K. Jamieson and B. Recht, Embracing the random, Jun. 2016. [Online|. Avail-
able: https://www.argmin.net/2016,/06/23/hyperband /.

L. Li, K. Jamieson, A. Rostamizadeh, E. Gonina, M. Hardt, B. Recht, and
A. Talwalkar, “A system for massively parallel hyperparameter tuning,” arXiv
preprint arXiw:1810.05934, 2018.

L. H. Franc, The hyperband algorithm, May 2018. [Online|. Available: https:
//louishenrifranc.github.io/mathblog/2017/05/08 /hyperband/.

A. Gad, Genetic algorithm implementation in python, Jul. 2018. [Online].
Available: https: / /towardsdatascience.com/genetic-algorithm-implementation-
in-python-5ab67bb124a6.

A. Abraham, A (slightly) better budget allocation for hyperband, Apr. 2020.
[Online]. Available: https://medium.com/data-from-the-trenches/a-slightly-
better-budget-allocation-for-hyperband-bbd45af14481.

S. Scheideman, “Estimating robot localization error using visual marker pose
estimation,” 2019.

S. Y. Loo, A. J. Amiri, S. Mashohor, S. H. Tang, and H. Zhang, “Cnn-svo: Im-
proving the mapping in semi-direct visual odometry using single-image depth
prediction,” in 2019 International Conference on Robotics and Automation
(ICRA), IEEE, 2019, pp. 5218-5223.

D. P. Bovet, P. Crescenzi, and D Bovet, Introduction to the Theory of Com-
plexity. Prentice Hall London, 1994.

P. Liashchynskyi and P. Liashchynskyi, “Grid search, random search, genetic
algorithm: A big comparison for nas,” arXiv preprint arXiv:1912.06059, 2019.

J. Freyberger and M. A. Masten, “A practical guide to compact infinite dimen-
sional parameter spaces,” Fconometric Reviews, vol. 38, no. 9, pp. 979-1006,
2019.

K. P. Murphy, Machine learning: a probabilistic perspective. MIT press, 2012.

A. Lehman, N. O'Rourke, L. Hatcher, and E. Stepanski, JMP for basic univari-
ate and multivariate statistics: methods for researchers and social scientists.
Sas Institute, 2013.

97

https://doi.org/10.21474/IJAR01/1627
https://www.argmin.net/2016/06/23/hyperband/
https://louishenrifranc.github.io/mathblog/2017/05/08/hyperband/
https://louishenrifranc.github.io/mathblog/2017/05/08/hyperband/
https://towardsdatascience.com/genetic-algorithm-implementation-in-python-5ab67bb124a6
https://towardsdatascience.com/genetic-algorithm-implementation-in-python-5ab67bb124a6
https://medium.com/data-from-the-trenches/a-slightly-better-budget-allocation-for-hyperband-bbd45af14481
https://medium.com/data-from-the-trenches/a-slightly-better-budget-allocation-for-hyperband-bbd45af14481

[138] S. Cheusheva, How to do spearman correlation in excel, Mar. 2021. [Online].
Available: https://www .ablebits.com / office - addins - blog /2019 /01 /30 /

spearman-rank-correlation-excel/.

[139] C. H. Olsen, J. T. Ottesen, R. C. Smith, and M. S. Olufsen, “Parameter
subset selection techniques for problems in mathematical biology,” Biological
cybernetics, vol. 113, no. 1, pp. 121-138, 2019.

[140] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W. Achte-
lik, and R. Siegwart, “The euroc micro aerial vehicle datasets,” The Interna-
tional Journal of Robotics Research, vol. 35, no. 10, pp. 1157-1163, 2016.

[141] A. Hayes, G. Scott, Ed., Oct. 2021. [Online|. Available: https://www.investopedia.
com/terms/c/confidenceinterval.asp.

[142] S. F. O’Brien and Q. L. Yi, “How do i interpret a confidence interval?” Trans-
fusion, vol. 56, no. 7, pp. 1680-1683, 2016.

[143] J. Di Stefano, “A confidence interval approach to data analysis,” Forest Ecology
and Management, vol. 187, no. 2-3, pp. 173-183, 2004.

[144] N. Pandis, “Statistical inference with confidence intervals,” American journal
of orthodontics and dentofacial orthopedics, vol. 147, no. 5, pp. 632-634, 2015.

[145] J. Sim and N. Reid, “Statistical inference by confidence intervals: Issues of
interpretation and utilization,” Physical Therapy, vol. 79, no. 2, pp. 186-195,
1999.

[146] D. Selvi, D. Piga, and A. Bemporad, “Towards direct data-driven model-free
design of optimal controllers,” in 2018 European Control Conference (ECC),
IEEE, 2018, pp. 2836-2841.

[147] A. Morris and F. Cushman, “Model-free rl or action sequences?” Frontiers in
Psychology, vol. 10, p. 2892, 2019, 1sSN: 1664-1078. po1: 10.3389/fpsyg.2019.
02892. [Online]. Available: https://www.frontiersin.org/article/10.3389 /fpsyg.
2019.02892.

[148] Z. Hou and S. Jin, Model free adaptive control: theory and applications. CRC
press, 2019.

[149] K. J. Miller, A. Shenhav, and E. A. Ludvig, “Habits without values.,” Psy-
chological review, vol. 126, no. 2, p. 292, 2019.

[150] N. Gireesh, Model-based offline reinforcement learning (morel), Jun. 2020. [On-
line]. Available: https://medium.com /analytics-vidhya /model-based-offline-
reinforcement-learning-morel-f5cd991d9fd5.

[151] K. Asadi, “Strengths, weaknesses, and combinations of model-based and model-

free reinforcement learning,” Department of Computing Science University of
Alberta, 2015.

[152] “Baseline algorithm,” in Encyclopedia of Biometrics, S. Z. 1i and A. Jain,
Eds. Boston, MA: Springer US, 2009, pp. 60-60, 1SBN: 978-0-387-73003-5. DOTI:
10.1007/978-0-387-73003-5_538. [Online|. Available: https://doi.org/10.1007/
978-0-387-73003-5_538.

98

https://www.ablebits.com/office-addins-blog/2019/01/30/spearman-rank-correlation-excel/
https://www.ablebits.com/office-addins-blog/2019/01/30/spearman-rank-correlation-excel/
https://www.investopedia.com/terms/c/confidenceinterval.asp
https://www.investopedia.com/terms/c/confidenceinterval.asp
https://doi.org/10.3389/fpsyg.2019.02892
https://doi.org/10.3389/fpsyg.2019.02892
https://www.frontiersin.org/article/10.3389/fpsyg.2019.02892
https://www.frontiersin.org/article/10.3389/fpsyg.2019.02892
https://medium.com/analytics-vidhya/model-based-offline-reinforcement-learning-morel-f5cd991d9fd5
https://medium.com/analytics-vidhya/model-based-offline-reinforcement-learning-morel-f5cd991d9fd5
https://doi.org/10.1007/978-0-387-73003-5_538
https://doi.org/10.1007/978-0-387-73003-5_538
https://doi.org/10.1007/978-0-387-73003-5_538

[153] M. Ohsaki and M. Yamakawa, “Stopping rule of multi-start local search for
structural optimization,” Structural and Multidisciplinary Optimization, vol. 57,
no. 2, pp. 595-603, 2018.

[154] K. Vo, T. Pham, D. N. Nguyen, H. H. Kha, and E. Dutkiewicz, “Subject-
independent erp-based brain—computer interfaces,” IEEE Transactions on Neu-
ral Systems and Rehabilitation Engineering, vol. 26, no. 4, pp. 719-728, 2018.

[155] A. Demircioglu, D. Horn, T. Glasmachers, B. Bischl, and C. Weihs, “Fast
model selection by limiting svm training times,” arXiv preprint arXiv:1602.03368,
2016.

[156] M. Appel, R Labarre, and D Radulovic, “On accelerated random search,”
SIAM Journal on Optimization, vol. 14, no. 3, pp. 708-731, 2004.

[157] N. Maheswaranathan, L. Metz, G. Tucker, D. Choi, and J. Sohl-Dickstein,
“Guided evolutionary strategies: Augmenting random search with surrogate
gradients,” in Proceedings of the 36th International Conference on Machine
Learning, K. Chaudhuri and R. Salakhutdinov, Eds., ser. Proceedings of Ma-
chine Learning Research, vol. 97, PMLR, Jun. 2019, pp. 4264-4273. [Online].
Available: https://proceedings.mlr.press/v97/maheswaranathanl9a.html.

[158] A. C. Florea and R. Andonie, “A dynamic early stopping criterion for random
search in svm hyperparameter optimization,” in Artificial Intelligence Appli-
cations and Innovations, L. lliadis, . Maglogiannis, and V. Plagianakos, Eds.,
Cham: Springer International Publishing, 2018, pp. 168-180, 1SBN: 978-3-319-
92007-8.

[159] M. Ohsaki, “Random search method based on exact reanalysis for topology op-
timization of trusses with discrete cross-sectional areas,” Computers € Struc-
tures, vol. 79, no. 6, pp. 673—679, 2001.

[160] M. Ohsaki and M. Katsura, “A random sampling approach to worst-case design
of structures,” Structural and Multidisciplinary Optimization, vol. 46, no. 1,
pp. 27-39, 2012.

[161] J. Feng and W. Z. Shen, “Solving the wind farm layout optimization prob-
lem using random search algorithm,” Renewable Energy, vol. 78, pp. 182-192,
2015, 18SN: 0960-1481. DOTI: https://doi.org/10.1016 /j.renene.2015.01.005.
[Online]. Available: https://www.sciencedirect . com / science / article / pii /
S0960148115000129.

[162] D. Simon, Evolutionary optimization algorithms. John Wiley & Sons, 2013.

[163] T. Weise, Y. Wu, R. Chiong, K. Tang, and J. Lassig, “Global versus lo-
cal search: The impact of population sizes on evolutionary algorithm perfor-
mance,” Journal of Global Optimization, vol. 66, no. 3, pp. 511-534, 2016.

[164] G. Minetti and H. Alfonso, “Variable size population in parallel evolutionary
algorithms,” in 5th International Conference on Intelligent Systems Design
and Applications (ISDA’05), 2005, pp. 350-355. por: 10.1109/ISDA.2005.99.

99

https://proceedings.mlr.press/v97/maheswaranathan19a.html
https://doi.org/https://doi.org/10.1016/j.renene.2015.01.005
https://www.sciencedirect.com/science/article/pii/S0960148115000129
https://www.sciencedirect.com/science/article/pii/S0960148115000129
https://doi.org/10.1109/ISDA.2005.99

[165]

[166]

[167]

[168]

[169]

[170]

171]

[172]

173]

[174]

[175]

[176]
[177]

[178]
[179]

A. Simoes and E. Costa, “On biologically inspired genetic operators: Transfor-
mation in the standard genetic algorithm,” in Proceedings of the Genetic and
Evolutionary Computation Conference, 2001, pp. 584-591.

G. Alvarez, “Can we make genetic algorithms work in high-dimensionality
problems,” SEP-112, pp. 195-212, 2002.

C. Mihail-Bogdan, I. Constantin, and N. Horia, “The influence of genetic al-
gorithm parameters over the efficiency of the energy consumption estimation
in a low—energy building,” Energy Procedia, vol. 85, pp. 99-108, 2016.

G. Mosetti, C. Poloni, and B. Diviacco, “Optimization of wind turbine posi-
tioning in large windfarms by means of a genetic algorithm,” Journal of Wind
Engineering and Industrial Aerodynamics, vol. 51, no. 1, pp. 105-116, 1994.

D. Akdemir, J. I. Sanchez, and J.-L. Jannink, “Optimization of genomic selec-
tion training populations with a genetic algorithm,” Genetics Selection Fvo-
lution, vol. 47, no. 1, pp. 1-10, 2015.

M. Bhargava, R. Mehta, C. D. Adhikari, and K Sivanathan, “Towards devel-
opment of performance metrics for benchmarking slam algorithms,” in Journal
of Physics: Conference Series, IOP Publishing, vol. 1964, 2021, p. 062 115.

M. Wistuba, N. Schilling, and L. Schmidt-Thieme, “Hyperparameter search
space pruning—a new component for sequential model-based hyperparameter
optimization,” in Joint Furopean Conference on Machine Learning and Knowl-
edge Discovery in Databases, Springer, 2015, pp. 104-119.

J. Klippenstein and H. Zhang, “Performance evaluation of visual slam using
several feature extractors,” in 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems, IEEE, 2009, pp. 1574-1581.

G. Hu, K. Khosoussi, and S. Huang, “Towards a reliable slam back-end,” in
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems,
IEEE, 2013, pp. 37-43.

G. Jiang, L. Yin, S. Jin, C. Tian, X. Ma, and Y. Ou, “A simultaneous localiza-
tion and mapping (slam) framework for 2.5 d map building based on low-cost
lidar and vision fusion,” Applied Sciences, vol. 9, no. 10, p. 2105, 2019.

M. F. Fallon, H. Johannsson, M. Kaess, J. Folkesson, H. McClelland, B. J.
Englot, F. S. Hover, and J. J. Leonard, “Simultaneous localization and map-
ping in marine environments,” in Marine Robot Autonomy, Springer, 2013,
pp. 329-372.

D. H. Jones, Statistical methods, 1994.

G. Polya, How to solve it: A new aspect of mathematical method. Princeton
university press, 2004, vol. 85.

G. Polya, Mathematical Discovery, 1962. John Wiley & Sons, 1962.

S. H. Zanakis and J. R. Evans, “Heuristic “optimization”: Why, when, and
how to use it,” Interfaces, vol. 11, no. 5, pp. 84-91, 1981.

100

[180]

[181]

T. Domhan, J. T. Springenberg, and F. Hutter, “Speeding up automatic hyper-
parameter optimization of deep neural networks by extrapolation of learning
curves,” in Twenty-fourth international joint conference on artificial intelli-
gence, 2015.

F. Ramsey and D. Schafer, The statistical sleuth: a course in methods of data
analysis. Cengage Learning, 2012.

101

Appendix A: ORB-SLAM2
Parameters and Values

102

|Name Value
Tracking

ORBextractor.nFeatures 2000
ORBextractor.scaleFactor 1.2
ORBextractor.nLevels 8
ORBextractor.iniThFAST 20
ORBextractor.minThFAST 7
Tracking.Monocularlnitialization.minTrackedPoints 100
Tracking.Monocularlnitialization. Initializer. mMaxlterations 200
Tracking.MonocularlInitialization.Initializer.mSigma 1
Tracking.Monocularlnitialization.OrbMatcher.LowesRatio 0.9
Tracking.MonocularInitialization.OrbMatcher.SearchForlnitialization.windowSize 100
Tracking.Monocularlnitialization.minMatchesBetweenFrames 100
Tracking.MonocularlInitialization.Initializer.FindHomography.th 5.991
Tracking.Monocularlnitialization. Initializer.FindFundamental.th 3.841
Tracking.Monocularlnitialization.Initializer.FindFundamental.thScore 5.991
Tracking.Monocularlnitialization. Initializer.Initialize.RH 0.4
Tracking.Monocularlnitialization. Initializer.ReconstructH.minTriagulated 50
Tracking.Monocularlnitialization. Initializer.ReconstructH.minParallax 1
Tracking.Monocularlnitialization.Initializer.ReconstructH.checkRT.th 4
Tracking.Monocularlnitialization. Initializer.ReconstructH.countinliersTh1 0.75
Tracking.Monocularlnitialization. Initializer.ReconstructH.countinliersTh2 0.9
Tracking.Monocularlnitialization.Initializer.ReconstructF.minTriagulated 50
Tracking.Monocularlnitialization.Initializer.ReconstructF.minParallax 1
Tracking.Monocularlnitialization. Initializer.ReconstructF.checkRT.th 4
Tracking.Monocularlnitialization. Initializer.ReconstructF.countinliersTh1 0.7
Tracking.Monocularlnitialization. Initializer.ReconstructF.countinliersTh2 0.9
Tracking.Monocularlnitialization. Initializer.ReconstructF.nSimilarTh 1
Tracking.CreatelnitialMapMonocular.GlobalBundleAdjustment.Iterations 20
Tracking.CreatelnitialMapMonocular.MinTrackedMapPoints 100
Tracking.CreatelnitialMapMonocular.TrackedMapPoints.minObs 1
Tracking.Track.TrackReferenceKeyFrame.OrbMatcher.LowesRatio 0.7
Tracking.Track.TrackReferenceKeyFrame.nnmatches 15
Tracking.Track.TrackReferenceKeyFrame.PoseOptimization.minInitialCorrespondences 3
Tracking.Track.TrackReferenceKeyFrame.PoseOptimization.robustHuberKernalDelta 5.991
Tracking.Track.TrackReferenceKeyFrame.PoseOptimization.minNumberOfEdges 10
Tracking.Track.TrackReferenceKeyFrame.optminMatches 10
Tracking.Track.TrackWithMotionModel.OrbMatcher.LowesRatio 0.9
Tracking.Track.TrackWithMotionModel.SearchByProjection.th 7
Tracking.Track.TrackWithMotionModel.MinMatches 20
Tracking.Track.TrackWithMotionModel.SearchByProjection.th2 15
Tracking.Track.TrackWithMotionModel.MinMapMatches 10
Tracking.Track.Relocalization.KeyframeDatabase.DetectRelocalizationCandidates.minCommonh 0.8
Tracking.Track.Relocalization.OrbMatcherl.LowesRatio 0.75
Tracking.Track.Relocalization.MinMatches 15
Tracking.Track.Relocalization.PnPSolver.SetRansacParameters.probablity 0.99

103

Tracking.Track.Relocalization.PnPSolver.SetRansacParameters.mininliers 10

Tracking.Track.Relocalization.PnPSolver.SetRansacParameters.maxlterations 300
Tracking.Track.Relocalization.PnPSolver.SetRansacParameters.minSet 4
Tracking.Track.Relocalization.PnPSolver.SetRansacParameters.epsilon 0.5
Tracking.Track.Relocalization.PnPSolver.SetRansacParameters.th2 5.991
Tracking.Track.Relocalization.OrbMatcher2.LowesRatio 0.9
Tracking.Track.Relocalization.ransaclterations 5
Tracking.Track.Relocalization.initialMinInliers 10
Tracking.Track.Relocalization.secondMinlinliers 50
Tracking.Track.Relocalization.SearchByProjection1.th 10
Tracking.Track.Relocalization.SearchByProjectionl.orbdist 100
Tracking.Track.Relocalization.SearchByProjection2.th 3
Tracking.Track.Relocalization.SearchByProjection2.orbdist 64
Tracking.Track.UpdateLocalMap.UpdateLocalKeyFrames.maxLocal 80
Tracking.Track.UpdateLocalMap.UpdateLocalKeyFrames.covisibility 10
Tracking.Track.TrackLocalMap.inlierThres 30
Tracking.Track.TrackLocalMap.inlierThresReloc 50
Tracking.Track.voMatchThres 1
Tracking.Track.NeedNewFrame.nMaxFrames 20
Tracking.Track.NeedNewFrame.referenceKeyFrameNminObs 3
Tracking.Track.NeedNewFrame.thRefRatio 0.9
Tracking.Track.NeedNewFrame.thCurrentFameTracks 15
Tracking.Track.thLostToFast 5
LoopClosing

LoopClosing.DetectLoops.KeyframesPast 10
LoopClosing.KeyFrameDatabase.minCommonWordsRatio 0.8
LoopClosing.KeyFrameDatabase.minScoreToRetainRatio 0.75
LoopClosing.KeyFrameDatabase.numBestCovisbility 10
LoopClosing.ComputeSim3.0rbMatcher.LowesRatio 0.75
LoopClosing.ComputeSim3.0rbMatcher.SearchByBoWMinMatches 20
LoopClosing.ComputeSim3.0rbMatcher.SearchBySim3.threshold 7.5
LoopClosing.ComputeSim3.0rbMatcher.SearchByProjection.threshold 10
LoopClosing.ComputeSim3.Sim3Solver.RansacProbability 0.99
LoopClosing.ComputeSim3.Sim3Solver.RansacMininliers 20
LoopClosing.ComputeSim3.Sim3Solver.RansacMaxlterations 300
LoopClosing.ComputeSim3.Ransaclteration 5
Optimizer.OptimizeSim3.th2 10
Optimizer.OptimizeSima3.iterations 5
Optimizer.OptimizeSim3.robustHuberKernelDelta sqrt(th2)
LoopClosing.ComputeSim3.0OptimizeSim3Numberinliers 20
LoopClosing.ComputeSim3.nTotalMatchTh 40
LoopClosing.CorrectLoop.SearchAndFuse.OrbMatcher.LowesRatio 0.8
LoopClosing.CorrectLoop.SearchAndFuse.OrbMatcher.Fuse.threshod 4
Optimizer.OptimizeEssentialGraph.minFeat 100
Optimizer.OptimizeEssentialGraph.iterations 20

104

Optimizer.GlobalBundleAdjustment.iterations 10
Optimizer.GlobalBundleAdjustment.robustHuberKernelDelta 2.449286
LocalMapping

LocalMapping.MapPointCulling.foundPercentCorrect 25
LocalMapping.MapPointCulling.cnThObs 3
LocalMapping.MapPointCulling.safeFromCullingCount 2
LocalMapping.MapPointCulling.recentlyAddedCount 3
LocalMapping.MapPointCulling.cullinGeneral 2
LocalMapping.CreateNewMapPoints.OrbMatcher 0.6
LocalMapping.CreateNewMapPoints.OrbMatcher.SearchForTriangulation. ThMultiplier 100
LocalMapping.CreateNewMapPoints.OrbMatcher.CheckDistEpipolarLine 3.84
LocalMapping.CreateNewMapPoints.nn 20
LocalMapping.CreateNewMapPoints.ratioFactorMultiplier 15
LocalMapping.CreateNewMapPoints.sigmaSquared2Multiplier 5.991
LocalMapping.SearchinNeighbours.nn 20
LocalMapping.SearchinNeighbours.nnSecondNeighbours 5
LocalMapping.SearchinNeighbours.OrbMatcher 0.6
LocalMapping.LocalBundleAdjustment.iterationsWithOutliers 5
LocalMapping.LocalBundleAdjustment.iterationsWithoutOutliers 10
LocalMapping.LocalBundleAdjustment.numberFramesTh 3
LocalMapping.LocalBundleAdjustment.thHuberMono 5.991
LocalMapping.LocalBundleAdjustment.chi2ErrorTh 5.991
LocalMapping.KeyFrameCulling.nObsTh 3
LocalMapping.KeyFrameCulling.redundantTh 0.9
Misc

Keyframe.UpdateConnections.threshold 15
Keyframe.ComputeBow 4
OrbMatcher.TH_HIGH 100
OrbMatcher.TH_LOW 50
OrbMatcher.HISTO_LENGTH 30
MapPoint.EraseObservation.minObservations 3

105

Appendix B: Spearman
Correlation Full Results

106

Parameter Spearman Value

ORBextractor.iniThFAST 0.753246753
ORBextractor.nLevels 0.649350649
Tracking.CreatelnitialMapMonocular.GlobalBundleAdjustment.lterations 0.558441558
Tracking.Monocularlnitialization.Initializer.ReconstructH.minParallax 0.519480519
OrbMatcher.HISTO_LENGTH 0.506493506
MapPoint.EraseObservation.minObservations 0.469622332
LocalMapping.SearchinNeighbours.nnSecondNeighbours 0.467532468
Tracking.Track.Relocalization.initialMinInliers 0.461038961
LocalMapping.CreateNewMapPoints.OrbMatcher.SearchForTriangulation.ThMultiplier 0.444155844
Tracking.Track.Relocalization.PnPSolver.SetRansacParameters.epsilon 0.409090909
OrbMatcher.TH_LOW 0.341558442
Tracking.Track.voMatchThres 0.335064935
Tracking.Track.TrackWithMotionModel.SearchByProjection.th 0.331451158
Tracking.Track.Relocalization.KeyframeDatabase.DetectRelocalizationCandidates.minCommonMultiplier 0.324675325
LocalMapping.CreateNewMapPoints.nn 0.323376623
Tracking.Track.Relocalization.OrbMatcherl.LowesRatio 0.292207792
Tracking.Monocularlnitialization.Initializer.FindFundamental.th 0.288311688
LocalMapping.CreateNewMapPoints.OrbMatcher.CheckDistEpipolarLine 0.264935065
Optimizer.GlobalBundleAdjustment.robustHuberKernelDelta 0.242857143
LocalMapping.LocalBundleAdjustment.chi2ErrorThStereo 0.227272727
ORBextractor.nFeatures 0.218181818
Track.Relocalization.narrowedinliers 0.218181818
Tracking.Monocularlnitialization.Initializer.ReconstructF.nSimilarTh 0.207792208
Tracking.Monocularlnitialization.Initializer.ReconstructH.countInliersTh2 0.192546584
LocalMapping.LocalBundleAdjustment.iterationsWithOutliers 0.177922078
LoopClosing.CorrectLoop.SearchAndFuse.OrbMatcher.LowesRatio 0.164935065
Tracking.Monocularlnitialization.Initializer.mMaxIterations 0.161038961
LoopClosing.CorrectLoop.SearchAndFuse.OrbMatcher.Fuse.threshod 0.15974026
Tracking.Track.TrackReferenceKeyFrame.PoseOptimization.robustHuberKernalDeltaStereo 0.155844156
Tracking.Track.TrackReferenceKeyFrame.OrbMatcher.LowesRatio 0.153246753
LocalMapping.KeyFrameCulling.redundantTh 0.153020892
Track.NeedNewFrame.thRefRatioMono 0.141727837
LoopClosing.ComputeSim3.0rbMatcher.SearchBySim3.threshold 0.141558442
LocalMapping.CreateNewMapPoints.sigmaSquared2MultiplierStereo 0.136363636
LoopClosing.KeyFrameDatabase.minScoreToRetainRatio 0.136363636
Tracking.Monocularlnitialization.Initializer.ReconstructH.minTriagulated 0.114285714
Track.NeedNewFrame.thRefRatioStereo 0.11038961
Tracking.Track.Relocalization.PnPSolver.SetRansacParameters.minSet 0.102597403
Tracking.Monocularlnitialization.Initializer.ReconstructF.countinliersTh1 0.087012987
Tracking.Track.NeedNewFrame.nMaxFrames 0.085714286
Tracking.Track.Relocalization.PnPSolver.SetRansacParameters.th2 0.084415584
Tracking.Track.TrackWithMotionModel.MinMatches 0.077922078
Tracking.Track.TrackReferenceKeyFrame.PoseOptimization.robustHuberKernalDeltaMono 0.076623377
LocalMapping.MapPointCulling.recentlyAddedCount 0.069452287
LoopClosing.DetectLoops.KeyframesPast 0.063636364
LocalMapping.MapPointCulling.cullinGeneral 0.062337662
Tracking.Track.thLostToFast 0.062337662
Tracking.Track.Relocalization.MinMatches 0.055844156
Tracking.Track.Relocalization.secondMinlnliers 0.050649351

107

LocalMapping.CreateNewMapPoints.ratioFactorMultiplier
LocalMapping.LocalBundleAdjustment.thHuberMono
LocalMapping.CreateNewMapPoints.OrbMatcher
LoopClosing.ComputeSim3.0rbMatcher.SearchByBoWMinMatches
LocalMapping.LocalBundleAdjustment.chi2ErrorThMono
LoopClosing.KeyFrameDatabase.numBestCovisbility
Tracking.Monocularlnitialization.Initializer.Initialize.RH
Tracking.Track.TrackLocalMap.inlierThres
Tracking.Track.Relocalization.PnPSolver.SetRansacParameters.maxlterations
Tracking.Monocularlnitialization.Initializer.ReconstructH.countinliersTh1
LocalMapping.LocalBundleAdjustment.thHuberStereo
Tracking.Monocularlnitialization.OrbMatcher.LowesRatio
Tracking.Monocularlnitialization.Initializer.ReconstructF.minParallax
LoopClosing.ComputeSim3.0rbMatcher.SearchByProjection.threshold
LoopClosing.KeyFrameDatabase.minCommonWordsRatio
Optimizer.OptimizeSim3.iterations
Tracking.Track.TrackReferenceKeyFrame.PoseOptimization.minlnitialCorrespondences
LocalMapping.MapPointCulling.safeFromCullingCount
LoopClosing.ComputeSim3.0ptimizeSim3Numberinliers
ORBextractor.scaleFactor
Tracking.Track.Relocalization.PnPSolver.SetRansacParameters.minlinliers
Tracking.Monocularinitialization.Initializer.ReconstructF.countInliersTh2
Tracking.Track.TrackReferenceKeyFrame.optminMatches
Optimizer.OptimizeEssentialGraph.iterations
LoopClosing.ComputeSim3.Sim3Solver.RansacMaxlterations
Tracking.Track.TrackLocalMap.inlierThresReloc
Tracking.Track.Relocalization.SearchByProjection1.orbdist
LoopClosing.ComputeSim3.Sim3Solver.RansacProbability
Tracking.Monocularlnitialization.Initializer.ReconstructF.checkRT.th
Tracking.Track.TrackWithMotionModel.SearchByProjection.th2
Tracking.Track.NeedNewFrame.thCurrentFameTracks
LoopClosing.ComputeSim3.nTotalMatchTh
Optimizer.GlobalBundleAdjustment.iterations
Tracking.Track.Relocalization.PnPSolver.SetRansacParameters.probablity
Tracking.Monocularlnitialization.Initializer.FindFundamental.thScore
ORBextractor.minThFAST

OrbMatcher.TH_HIGH
LocalMapping.MapPointCulling.foundPercentCorrect
Tracking.Monocularlnitialization.minMatchesBetweenFrames
Tracking.Monocularlnitialization.Initializer.ReconstructF.minTriagulated
Tracking.Monocularlnitialization.Initializer.mSigma
LocalMapping.CreateNewMapPoints.sigmaSquared2MultiplierMono
Optimizer.OptimizeEssentialGraph.minFeat
Tracking.CreatelnitialMapMonocular.TrackedMapPoints.minObs
Tracking.Track.TrackReferenceKeyFrame.nnmatches
LocalMapping.KeyFrameCulling.nObsTh
Tracking.Track.TrackWithMotionModel.OrbMatcher.LowesRatio
Tracking.Track.Relocalization.SearchByProjection2.th
Tracking.Monocularlnitialization.Initializer.FindHomography.th
Tracking.Monocularinitialization.minTrackedPoints

0.049350649
0.038961039
0.035064935
0.033766234
0.027272727
0.020779221
0.006493506
-0.001298701
-0.003896104
-0.006493506
-0.01038961
-0.014116318
-0.015584416
-0.022077922
-0.023376623
-0.028571429
-0.02879729
-0.035064935
-0.054545455
-0.058441558
-0.058441558
-0.063805759
-0.064935065
-0.075324675
-0.076623377
-0.076623377
-0.081818182
-0.084415584
-0.087012987
-0.088311688
-0.090909091
-0.098701299
-0.1
-0.125974026
-0.12987013
-0.133549879
-0.136363636
-0.148051948
-0.150649351
-0.155844156
-0.162337662
-0.167532468
-0.183116883
-0.192207792
-0.192207792
-0.216261999
-0.217391304
-0.220779221
-0.223376623
-0.232467532

108

LoopClosing.ComputeSim3.0rbMatcher.LowesRatio
LoopClosing.ComputeSim3.Ransaclteration
Optimizer.OptimizeSim3.th2
Tracking.CreatelnitialMapMonocular.MinTrackedMapPoints
Tracking.Track.Relocalization.SearchByProjection1.th
Tracking.Track.NeedNewFrame.referenceKeyFrameNminObs
Tracking.Track.Relocalization.OrbMatcher2.LowesRatio
Tracking.Monocularlnitialization.Initializer.ReconstructH.checkRT.th
LocalMapping.SearchinNeighbours.nn
Tracking.Track.TrackReferenceKeyFrame.PoseOptimization.minNumberOfEdges
LoopClosing.ComputeSim3.Sim3Solver.RansacMinlnliers
Tracking.Track.Relocalization.SearchByProjection2.orbdist
LocalMapping.SearchinNeighbours.OrbMatcher
Tracking.Monocularlnitialization.OrbMatcher.SearchForlnitialization.windowSize
Tracking.Track.TrackWithMotionModel.MinMapMatches
Tracking.Track.UpdateLocalMap.UpdateLocalKeyFrames.maxLocal
Tracking.Track.UpdateLocalMap.UpdateLocalKeyFrames.covisibility
Tracking.Track.Relocalization.ransaclterations
LocalMapping.LocalBundleAdjustment.iterationsWithoutOutliers
LocalMapping.MapPointCulling.cnThObs
Keyframe.UpdateConnections.threshold

-0.244155844
-0.248051948
-0.255844156
-0.261038961
-0.280519481
-0.281761717
-0.297571993

-0.3

-0.3
-0.348051948
-0.406493506
-0.409090909
-0.423376623
-0.428571429
-0.438961039
-0.442857143

-0.5
-0.532467532
-0.576623377
-0.602484472
-0.785714286

109

Appendix C: Algorithm Training:
Configuration Results

110

iniThFAST nLevels GBA.lterations MinParallax minObservations Fitness Value

24 4 12 1.42 2 0.112039
21 4 22 1.28 2 0.112971
13 12 34 1.22 6 0.113001 Genetic
7 13 30 1.35 5 0.115626 Grid
7 9 20 0.81 6 0.115714 Hyperband
7 9 34 1.6 5 0.116214 Random
21 4 19 1.42 2 0.117535
13 12 34 1.22 6 0.118296
7 13 12 1.39 5 0.118304
21 4 34 1.42 2 0.118989
13 12 22 0.93 6 0.119063
7 13 34 1.22 6 0.119124
23 4 30 1.6 6 0.119314
20 4 20 0.81 3 0.119518
7 9 20 0.81 6 0.119526
13 12 20 1.01 5 0.119607
21 4 34 1.42 2 0.119696
7 9 20 1.39 6 0.1201
13 12 17 0.75 5 0.12029
13 12 30 1.35 5 0.120603
7 13 30 1.6 5 0.120703
7 9 34 1.22 6 0.120871
7 9 20 1.01 5 0.12094
7 13 30 1.35 6 0.121025
7 13 30 0.59 3 0.121183
7 9 20 1.01 5 0.121453
13 12 17 0.81 6 0.121606
7 13 34 1.42 5 0.121628
23 4 19 0.59 3 0.121652
7 13 30 1.22 6 0.121734
21 4 34 1.42 2 0.12175
7 12 34 1.22 6 0.121782
21 4 21 1.28 2 0.121848
7 13 34 1.22 6 0.122094
7 9 34 1.22 6 0.122132
21 4 34 1.42 2 0.12214
13 12 34 1.22 6 0.122173
7 13 30 1.22 5 0.122194
21 4 22 1.01 5 0.12229
21 4 22 0.93 5 0.122291
7 9 20 1.01 5 0.122311
21 4 34 1.42 2 0.122374
21 4 34 1.42 2 0.122432
7 13 30 1.39 6 0.122443
23 4 19 0.81 6 0.122465
7 13 30 1.35 5 0.122472
24 4 36 1.01 5 0.122496
7 4 22 1.28 2 0.122532
7 12 17 0.75 6 0.122624
21 4 34 1.22 5 0.122646
7 13 30 1.35 5 0.122707

111

19
34
30
34
22
36
34
34
17
12
34
22
12
30
22
22
34
36
22
22
34
34
12
30
20
22
34
30
34
22
17
21
34
36
22
22
22
17
22
34
22
22
12
30
20
36
22
34
17
34
20
30

0.59
1.39
1.6
1.42
0.93
1.34
1.42
1.42
1.42
1.42
1.42
1.28
1.6
0.81
1.42
1.28
1.22
0.93
0.93

1.34
1.42
1.42
1.6
1.01
1.39
0.93
0.81
1.6
1.28
0.81
1.28
1.34
1.42
1.42
0.93
1.28
0.81

1.22
1.28
0.84
1.42
1.35
1.01
1.34
1.28
1.34
1.42
1.22
1.01
1.42

O o1 A~ 01 OO O1O1LOTN O O 01O O NDNNDNDNOONNDNO OO U ULNNOUITO OO O NDNO ONNDNDOONDNDOUONOO O W

112

0.122757
0.122834
0.123059
0.12314
0.123243
0.12332
0.123352
0.123393
0.123409
0.123468
0.123469
0.123699
0.123745
0.123755
0.123772
0.123834
0.123939
0.124052
0.124061
0.124116
0.124241
0.124307
0.124331
0.12436
0.124465
0.124481
0.12449
0.124513
0.124545
0.124596
0.124628
0.1247
0.124715
0.124773
0.124792
0.124869
0.124923
0.124946
0.124956
0.124973
0.124975
0.124987
0.12502
0.125026
0.125041
0.125087
0.125099
0.125105
0.125142
0.125146
0.125152
0.125311

A A DDA DdMO

=
Sl V)

20
34
19
20
22
34
34
30
34
21
34
34
20
34
12
34
30
34
34
20
30
20
17
36
30
34
19
19
12
30
34
19
34
21
30
22
30
30
19
20
30
20
22
34
34
19
30
30
20
30
20
22

0.93
1.35
1.6
1.01
1.28
1.42
1.42
1.6
1.22
1.28
1.28
1.39
1.39
1.42
1.39
1.42
1.22
1.22
1.22
0.81
1.35
0.81
0.81
1.28
1.6
1.42
1.39
1.42
1.42
1.35
1.6
0.59
1.22
1.22
1.35
1.01
0.59
0.81
0.59
0.81
1.6
1.01
0.93
1.01
1.42
0.81
1.35
0.59
1.01
0.59
1.01
0.93

01O 01 01O NI OO 0l W WwWwWwNONOO WO 0NN O1ToONO OO OO 0 OO0 O O NDNDNDOO OONOG O NDNDDNO ool o

113

0.125323
0.125324
0.125326
0.125361
0.125432
0.126172
0.126182
0.126713
0.127177
0.127856
0.127881
0.128136
0.128221
0.128954
0.128995
0.129314
0.13013
0.130294
0.130396
0.130543
0.130604
0.130636
0.130721
0.130906
0.131054
0.131603
0.132103
0.132443
0.132746
0.133362
0.133486
0.133673
0.134031
0.134435
0.135179
0.135554
0.136207
0.136437
0.13647
0.136493
0.13653
0.137076
0.137108
0.137201
0.137446
0.13832
0.138763
0.138824
0.138859
0.138866
0.139275
0.14036

(o RN RN RN R R RN Ric R R R R R Moo R R Moo RerRie> R o) REN RN RN

- (RN (. P (RN I N [(RN (. [-
weP PN wPwPrPoPowww PPN PRPORrpPo P

A A DDA DMBAAEMAMAEDAEDDSAEDdMMAPMMO

30
34
34
17
30
19
20
19
20
30
17
34
34
34
30
34
30
30
30
30
22
34
22
36
22
30
19
20
30
20
10
10
10.75
10.75
10
10.75
10
10
10
10
10
10
10.75
10
10
10
10.75
10
10
10
10.75
10

1.35
1.42
1.22
0.59
1.6
1.39
0.81
1.35
1.6
1.35
0.75
1.28
1.42
1.42
1.35
1.39
1.42
1.35
1.22
1.22
1.28
1.22
0.93
1.01
1.22
0.81
0.81
0.81
1.42
1.22
0.9875
1.55
0.9125
0.575
0.8
0.9125
0.9125
1.325
0.9875
1.8125
1.1375
1.325
0.5
1.2875
0.7625
11
0.725
1.4
1.7375
0.5375
0.9125
0.65

DN OO O 01 Oo1Oo1l 01 N0 01T WO O DN OO O WOo 01 oTw o N o

0.140423
0.140538
0.140661
0.14083
0.140836
0.141291
0.141376
0.141603
0.142018
0.142668
0.142853
0.143048
0.143206
0.143446
0.143805
0.144088
0.144749
0.145167
0.145174
0.145213
0.145256
0.145625
0.146802
0.146976
0.147115
0.147519
0.147674
0.148419
0.149713
0.150687
0.121416
0.121999
0.122367
0.122899
0.122966
0.124493
0.124681
0.125122
0.125414
0.126661
0.126791
0.127336
0.12765
0.127734
0.128179
0.128221
0.128429
0.128616
0.128787
0.128916
0.128995
0.12911

(RN RN R R R Moo RMoRMoRMeoMoMeoRMeoRMeoMeoRMeo Mo Moo Moo Mo Moo oMol RoRMoleo Mool loRMolMo oMo oo Reo oMo Moo Re R o) Rie))

A A DDA DdMAEDMADMAMAEMAMAEDMAEDMAMAMAMAMAADDAMAAMAEAEMAAADADAAEAEAMAEAAADEAEAEAEAEMAAADEDEAEAEN

10
10
10
10.75
10
10
10
10
10
10
10.75
10
10
10.75
10
10
10
10
10
10
10.75
10
10
10
10
10
10
10
10
10
10
10
10.75
10
10
10
10
10.75
10
10
10
10
10
10
10.75
10.75
10
10
10.75
10.75
10
10

1.6625
1.6625
1.3625
0.875
1.25
1.325
1.5875
1.55
0.9875
1.25
0.5375
0.7625
1.6625
0.8375
0.8
1.55
1.1375
1.3625
0.95
1.025
0.8375
0.6125
0.5
1.85
1.85
0.5
0.5375
1.85
1.175
1.925
0.9125
1.7
0.5375
1.6625
1.55
1.5875
0.5
0.575
0.575
1.5875
1.85
1.175
1.25
0.95
0.725
0.6875
0.5375
1.5125
0.5375
0.8
1.4375
0.95

5.2125
1.8375
2.9625
2.0625
2.9625
1.8375
2.4
1.8375
2.175
2.85
1.95
2.175
4.0875
3.75
1.6125
2.625
2.2875
3.1875
15
1.95
3.525
1.6125
4.3125
2.2875
5.55
3.075
1.8375
5.6625
5.1
1.725
1.8375
1.6125
3.75
2.2875
2.0625
1.8375
4.0875
2.0625
3.8625
1.6125
15
3.525
5.775
2.0625
1.8375
15
5.2125
1.725
2.7375
2.4
4.2
2.9625

115

0.129188
0.129199
0.129225
0.129255
0.129432
0.129475
0.129636
0.130026
0.13003
0.130047
0.130126
0.130169
0.130212
0.130219
0.13048
0.130491
0.130609
0.130749
0.130826
0.130831
0.130923
0.13093
0.131059
0.131068
0.131224
0.131309
0.131432
0.131446
0.131451
0.131466
0.131526
0.131771
0.131938
0.132079
0.1321
0.132176
0.132246
0.132305
0.132371
0.132384
0.132427
0.132429
0.132463
0.132492
0.132501
0.132561
0.132655
0.132707
0.132707
0.132823
0.13297
0.133021

(RN RN R R R Moo RMoRMoRMeoMoMeoRMeoRMeoMeoRMeo Mo Moo Moo Mo Moo oMol RoRMoleo Mool loRMolMo oMo oo Reo oMo Moo Re R o) Rie))

A A DDA DdMAEDMADMAMAEMAMAEDMAEDMAMAMAMAMAADDAMAAMAEAEMAAADADAAEAEAMAEAAADEAEAEAEAEMAAADEDEAEAEN

10.75
10.75
10
10
10
10
10.75
10
10
10.75
10
10
10
10
10
10
10
10
10
10
10.75
10
10
10.75
10
10.75
10
10
10
10.75
10
10
10
10
10
10
10.75
10.75
10
10.75
10
10
10
10
10
10
10.75
10.75
10
10.75
10
10

0.8
0.575
1.6625
1.85
0.7625
1.925
0.725
0.5375
0.7625
0.5
1.8875
0.6125
1.3625
0.8
1.9625
1.775
0.725
1.55
1.7375
1.7375
0.5375
0.65
1.2125
0.8
1.9625
0.7625
0.5375
0.7625
1.6625
0.7625
0.5
1.475
1.9625
1.2125
1.0625
1.7375
0.6875
0.725
1.25
0.7625
0.5
1.1375
1.925
1.7
0.875
1.3625
0.875
0.8375
1.0625
0.5
1.3625
0.9875

2.85
2.175
3.6375
2.0625
5.1
4.425
3.075
1.6125
2.625
2.2875
2.7375
2.9625
3.75
1.95
4.7625
1.6125
15
5.4375
2.625
3.3
5.8875
15
1.95
1.95
1.95
1.8375
2.9625
1.8375
2.0625
3.4125
2.625
3.3
2.2875
5.4375
2.2875
2.9625
3.075
1.725
4.875
3.1875
1.6125
5.55
3.6375
15
2.2875
5.775
5.4375
1.725
4.3125
3.8625
3.525
6.1125

116

0.13311
0.133152
0.133163
0.133303
0.133341
0.133391
0.133409

0.13347
0.133498
0.133548
0.133572
0.133594
0.133696

0.13373
0.133759

0.13393
0.133975
0.133983
0.134086
0.134086
0.134294

0.1343

0.1343

0.1343
0.134345
0.134411
0.134429
0.134435
0.134464
0.134467
0.134483
0.134545
0.134549
0.134578
0.134582
0.134668
0.134685
0.134735
0.134773
0.134774
0.134803
0.134876
0.134894
0.134944
0.134989
0.134999
0.135071
0.135079
0.135096
0.135191
0.135241
0.135247

(RN RN R R R Moo RMoRMoRMeoMoMeoRMeoRMeoMeoRMeo Mo Moo Moo Mo Moo oMol RoRMoleo Mool loRMolMo oMo oo Reo oMo Moo Re R o) Rie))

A A DDA DdMAEDMADMAMAEMAMAEDMAEDMAMAMAMAMAADDAMAAMAEAEMAAADADAAEAEAMAEAAADEAEAEAEAEMAAADEDEAEAEN

10
10
10
10
10.75
10.75
10
10.75
10
10.75
10.75
10
10
10
10
10
10
10
10
10
10
10
10.75
10
10
10
10
10
10
10.75
10
10
10
10.75
10
10
10.75
10
10.75
10.75
10
10
10.75
10
10
10
10.75
10
10
10
10
10.75

11
1.85
0.725
1.8125
0.8
0.5375
1.7
0.8
0.8
0.65
0.8375
0.9875
0.6125
0.8
0.575
1.775
0.7625
1.5125
1.325
1.5875
1.2875
0.875
0.9125
0.9125
1.2125
1.55
1.4
0.65
1.8125
0.5
1.4375
0.575
1.2875
0.6875
0.725
0.65
0.7625
1.325
0.5375
0.65
0.95
0.9125
0.875
0.575
1.6625
1.175
0.8375
1.475
1.2125
0.65
1.925
0.6125

2.625
2.625
3.075
5.6625
5.325
2.5125

3.4125
1.725
1.8375
2.7375
2.5125
4.7625
5.4375
5.775
3.1875
2.9625
4.0875
4.5375
2.5125
3.75
2.0625
2.5125
3.3
5.325
3.975
2.175
2.2875
4.65
1.95
3.075
4.875
2.7375
3.1875
2.0625
2.175
2.625
1.6125
5.775
2.7375
5.775
2.625
2.625
1.725
4.65
3.4125
2.85
4.0875
4.0875
2.5125
2.9625
3.6375

117

0.135249
0.135249
0.135332
0.135336
0.135356
0.135359
0.1354
0.135417
0.135577
0.135582
0.135687
0.135739
0.135791
0.135839
0.135948
0.135955
0.135967
0.136007
0.136026
0.136088
0.136117
0.136307
0.136337
0.136384
0.136384
0.136387
0.136401
0.136482
0.136534
0.136542
0.136549
0.136615
0.136644
0.136689
0.136736
0.136795
0.136795
0.136844
0.13685
0.136899
0.137021
0.137043
0.137075
0.137106
0.137116
0.137122
0.137167
0.137168
0.137178
0.137202
0.137203
0.137289

(RN RN R R R Moo RMoRMoRMeoMoMeoRMeoRMeoMeoRMeo Mo Moo Moo Mo Moo oMol RoRMoleo Mool loRMolMo oMo oo Reo oMo Moo Re R o) Rie))

A A DDA DdMAEDMADMAMAEMAMAEDMAEDMAMAMAMAMAADDAMAAMAEAEMAAADADAAEAEAMAEAAADEAEAEAEAEMAAADEDEAEAEN

10
10
10
10
10
10
10
10
10
10
10
10.75
10
10.75
10
10
10
10
10.75
10
10.75
10
10
10
10
10
10
10
10
10.75
10
10
10
10
10
10
10
10
10
10.75
10
10
10
10
10.75
10.75
10.75
10
10
10
10
10

1.775
1.1375
1.8875
1.5125
1.8875
0.7625

1.175
1.9625
0.7625
0.8375

1.25
0.875
0.5
0.6125
1.8125
1.5125
1.7
1.0625
0.8375
1.8125
0.6875
1.0625
1.1375

1.925

1.925
0.8375
1.8125

0.575
0.6125
0.9125

0.95
1.3625
1.85
1.8125

1.175

1.5875
0.5
1.7

1.1375

0.6875

1.25

1.55
1.7

0.95

0.575

0.575
0.7625

1.325
1.4375

11

1.925

1.7375

2.9625

3.8625

2.5125
5.1

5.6625
3.6375
5.2125
4.2
4.3125
15
5.8875
5.2125
2.625
2.625
3.4125
2.4
6.1125
4.425
4.2
2.175
3.6375
3.1875
3.3
2.0625
1.6125
4.0875
3.6375
5.55
15
4.0875
5.1
2.85
2.9625
5.55
15
2.0625
5.1
4.425
4.9875
3.4125
3.075
3.1875
2.625

2.85
4.3125

3.6375
3.4125
15
1.95

118

0.137291
0.137335
0.13736
0.137394
0.137419
0.13742
0.137447
0.137482
0.137485
0.137504
0.137525
0.137545
0.137593
0.137596
0.137615
0.137672
0.137696
0.13775
0.137755
0.13781
0.137845
0.137886
0.137886
0.137897
0.137913
0.13792
0.137938
0.13804
0.138047
0.138053
0.138054
0.138136
0.138165
0.138201
0.138215
0.138222
0.138264
0.138361
0.13838
0.138396
0.138403
0.138405
0.138408
0.138416
0.13846
0.138476
0.138501
0.138514
0.138524
0.138581
0.138588
0.138591

(RN RN R R R Moo RMoRMoRMeoMoMeoRMeoRMeoMeoRMeo Mo Moo Moo Mo Moo oMol RoRMoleo Mool loRMolMo oMo oo Reo oMo Moo Re R o) Rie))

A A DDA DdMAEDMADMAMAEMAMAEDMAEDMAMAMAMAMAADDAMAAMAEAEMAAADADAAEAEAMAEAAADEAEAEAEAEMAAADEDEAEAEN

10
10
10
10
10
10
10
10.75
10
10
10
10
10
10.75
10
10
10
10.75
10
10
10
10.75
10
10
10
10
10
10.75
10
10
10
10
10.75
10.75
10
10
10
10
10
10
10
10.75
10.75
10.75
10
10.75
10
10
10
10
10
10

1.7
0.8
1.5125
1.5125
1.2125
1.475
1.2125
0.875
0.6125
1.2125
1.1375
0.7625
1.2125
0.5
1.925
1.0625
1.3625
0.6875
1.7375
1.025
0.8
0.9125
0.6125
1.2125
1.775
1.7375
1.7
0.65
0.725
0.9875
1.55
1.1375
0.5
0.875
0.875
0.8375
0.95
1.325
0.8375
1.2875
0.5
0.6125
0.5
0.875
1.175
0.8375
1.6625
1.3625
1.9625
0.9875
0.6875
0.6125

2.175
4.0875
4.425
2.625
2.9625
4.5375
5.6625
5.55
2.7375
2.7375
2.4
6.1125
3.525
3.975
2.2875
4.425
5.325
3.8625

1.8375
24
1.725
2.5125
3.3
5.55
4.65
5.2125
2.2875
5.2125
5.1
5.2125
4.0875
4.2
1.8375
5.775
3.6375
1.8375
4.65
2.4
4.7625

5.8875
4.65
1.95

1.6125

4.3125

5.1
2.4
5.6625
3.525
1.95
3.8625

119

0.138596
0.138615
0.138627
0.138681
0.138699
0.13874
0.138767
0.1388
0.138825
0.13883
0.138834
0.138844
0.138854
0.138854
0.138878
0.138897
0.138898
0.13893
0.138979
0.139
0.139101
0.139105
0.139118
0.139136
0.139226
0.139288
0.139298
0.13935
0.139351
0.139389
0.13939
0.139402
0.139411
0.139447
0.139486
0.139503
0.139551
0.139584
0.139596
0.1396
0.139614
0.139665
0.139787
0.13983
0.139875
0.139891
0.13992
0.139943
0.139968
0.140021
0.140088
0.1401

(e RN RN R e>Rie>RiN o) Rie) R e >R o) Rie) R e RN o> Rl e)Rl e) RN o> R e)R e)R o> Rl e)R e)R e > R o) Rl e)Rl o> Rl o) i @)

PR ERNMNGRERNMEPNERNERRERRRERRRE R NERR
O R No o w gk alwNn o woloo hso Mo gk Wk

0o DA, DDA DMMAEDMMBAEDMMMAMDMMMMAEEDMMAEDMAEDEESE®AAEDdMAD

= [= =
AN NN O|R|P R

10
10
10.75
10
10
10
10.75
10
10.75
10
10
10
10
10
10
10
10
10.75
10.75
10
10
10
10
10
10.75
10.75
26
30
23
24
35
19
34
18
30
16
37
25
22
38
32
21
16
25
15
31
39
31
17
38
24
22

0.6875
1.025
0.7625
11
11
0.95
0.6875
0.875
0.8
0.5
0.8
1.625
0.5
1.5125
11
1.6625
1.85
0.875
0.65
0.9875
1.625
0.95
1.925
1.2875
0.7625
0.65
1.61
0.95
1.18
1.97
1.99
1.36
1.85
1.91
1.24
0.74
0.6
1.94
1.18
0.82
1.29
1.29
1.48
1.58
1.2
0.78
1.62
1.27
0.61
1.88
1.42
1.08

5.2125
2.175
5.8875
3.075
2.85
2.5125
2.625
5.8875
1.725
2.2875
3.4125
5.775
5.325
3.1875
6.1125
5.6625
2.4
2.175
6.1125
4.3125
15
2.7375
3.075
6.1125
3.6375
4.5375

w

WWo OlwwanNnNBENOOONWNWWNWWMOOOO O A~

120

0.14012
0.140151
0.140228
0.140242
0.140284
0.140323

0.14037
0.140384
0.140414
0.140428
0.140502
0.140504
0.140511
0.140538
0.140585
0.140678
0.140697
0.140839
0.140845

0.14087
0.140889
0.140891
0.140896

0.14092
0.140939
0.140953

0.134472375
0.1358375
0.137905
0.1389325
0.126316
0.134312
0.136593
0.138604
0.140022
0.1405048
0.1350195
0.137673875
0.137691
0.126949
0.128273

0.12978
0.131693
0.133144
0.133446
0.133577
0.133881
0.134104
0.134834
0.134846
0.134952

0.13515

18
20
14
10
10
15

10

14
13
10
13
19

19
11
13
12

23
21
13
20
13

12
22
14
24
13
23

13
21
17
12
11
10

10
13

10
12

19
20

22
32
26
39
31
39
36
16
29
24
16
37
10
12
40
39
36
10
35
15
18
15
24
28
40
19
17
38
21
21
34
29
31
38
20
22
37
28
22
36
15
18
30
31
13
15
20
25
30
18
28
14

1.36
0.82
1.59
0.89
1.28
1.65
1.52
1.62
1.07
1.37
0.55
1.27
1.25
1.02
1.93
1.72
0.53
1.06
1.8
1.8
1.24

1.35
1.81
1.26
1.46
15
0.57
0.71
1.49
0.83
1.13
1.02
0.78
1.54
1.19
0.75
1.2
0.79
1.73
1.08
0.69
0.77
1.2
1.23
0.87
1.37
1.57
1.33
1.23
1.95
1.39

OB OO NDNNOOWNNBAENBAENO WO AWWOOAONNDNO OWO WOONOOWWNWO WNWNDNDNNDNWWNWNWWOO

121

0.136214
0.136646
0.137087
0.137257
0.137308
0.137542
0.137602
0.137993
0.138196
0.138556
0.138677
0.138737
0.138785
0.139117
0.139388
0.139512
0.139559
0.139761
0.139812
0.139837
0.139928
0.139974
0.140094
0.140158
0.140261
0.141052
0.141152
0.141766
0.141841
0.142348
0.142408
0.142784
0.143101
0.143163
0.143484
0.143545
0.143558
0.143628
0.143728
0.143795
0.143921
0.144021
0.144141
0.144777
0.145086
0.145408
0.145536
0.14572
0.146268
0.146273
0.146352
0.146739

11

10
12
16
12

13
15
20
11
15

20
20

16
10
21
18
20

13
10
14

10

16
21
15
23
14
13
14
14
20
19

10
10
32
14
35
22
35
13
26
30
31
21
19
38
33
28
13
26
38
37
15
36
15
36
29
12
30
10
34
17
39
32
22
26
24
24
36
11
32
21

1.82
0.87
0.52
0.97
0.78
1.13
1.64
0.73
1.89
1.52
0.71
1.93
1.98
1.45
1.71
1.38
1.21
1.47
0.93
1.7
1.79
0.56
1.32
0.55
1.9
1.26
1.41
1.9
1.14
1.74
0.61
0.77
1.67
1.13
0.88
0.68
0.51
1.25
1.19
1.68

WA WO OO WO OO WNNOIAOBRERDNOWOOWNNOWWWOANNDNDDRARDNDOOOOOPADNDNDDNDDNOODNO M

122

0.146756
0.146772
0.146803
0.147034
0.147389
0.147427
0.147492
0.147559
0.147658
0.147686
0.147777
0.147813
0.148114
0.148194
0.148291
0.148945
0.14924
0.149281
0.149301
0.149697
0.150471
0.150545
0.150664
0.150726
0.150974
0.151107
0.151109
0.151125
0.152231
0.152378
0.153063
0.153205
0.153231
0.153275
0.153333
0.153404
0.153413
0.153581
0.153818
0.153843

123

Appendix D: Selected Trained
Configurations

124

iniThFAST nLevels GBA.lterations MinParallax minObservations

24 4 12 1.42 2
21 4 22 1.28 2 Genetic
13 12 34 1.22 6 Grid
7 13 30 1.35 5 Hyperband
7 9 20 0.81 6 Random
7 9 34 1.6 5
21 4 19 1.42 2
13 12 34 1.22 6
7 13 12 1.39 5
21 4 34 1.42 2
13 12 22 0.93 6
7 13 34 1.22 6
23 4 30 1.6 6
20 4 20 0.81 3
7 9 20 0.81 6
13 12 20 1.01 5
21 4 34 1.42 2
7 9 20 1.39 6
13 12 17 0.75 5
13 12 30 1.35 5
7 13 30 1.6 5
7 9 34 1.22 6
7 9 20 1.01 5
7 13 30 1.35 6
7 13 30 0.59 3
7 9 20 1.01 5
13 12 17 0.81 6
7 13 34 1.42 5
23 4 19 0.59 3
7 13 30 1.22 6
21 4 34 1.42 2
7 12 34 1.22 6
21 4 21 1.28 2
7 13 34 1.22 6
7 9 34 1.22 6
21 4 34 1.42 2
13 12 34 1.22 6
7 13 30 1.22 5
21 4 22 1.01 5
21 4 22 0.93 5
7 9 20 1.01 5
21 4 34 1.42 2
21 4 34 1.42 2

125

126

127

128

D OO OO OO OO OO OO OO OO O OO OO OO OO O OO OO OO OO OO OO OO OO OO OO O OO OO O OO O OO O N N N

[[[[
W Oe9pNnNwPwP o+

A DdSADASAEAMMBAMAAAMAAAAAAEAEAAAAAEAAEEAAAEEAAEAEMAAEEMSMMMO

22
34
22
36
22
30
19
20
30
20
10
10
10.75
10.75
10
10.75
10
10
10
10
10
10
10.75
10
10
10
10.75
10
10
10
10.75
10
10
10
10
10.75
10
10
10
10
10
10
10.75
10

1.28
1.22
0.93
1.01
1.22
0.81
0.81
0.81
1.42
1.22
0.9875
1.55
0.9125
0.575
0.8
0.9125
0.9125
1.325
0.9875
1.8125
1.1375
1.325
0.5
1.2875
0.7625
11
0.725
1.4
1.7375
0.5375
0.9125
0.65
1.6625
1.6625
1.3625
0.875
1.25
1.325
1.5875
1.55
0.9875
1.25
0.5375
0.7625

DN OO O O o1o1 O N

3D OO OO OO OO OO OO O OO OO OO OO O OO O OO OO OO OO O O

Apr DA PAAAAAAAAEAAAAEAAAAEAAAEMAAAEMAAEAEEMAAEAAEAMAEEAAEMAAEAEAEAEEESED

10
10.75
10
10
10
10
10
10
10.75
10
10
10
10
10
10
10
10
10
10
10
10.75
10
10
10
10
10.75
10
10
10
10
10
10
10.75
10.75
10
10
10.75
10.75
10
10
10.75
10.75
10
10

1.6625
0.8375
0.8
1.55
1.1375
1.3625
0.95
1.025
0.8375
0.6125
0.5
1.85
1.85
0.5
0.5375
1.85
1.175
1.925
0.9125
1.7
0.5375
1.6625
1.55
1.5875
0.5
0.575
0.575
1.5875
1.85
1.175
1.25
0.95
0.725
0.6875
0.5375
1.5125
0.5375
0.8
1.4375
0.95
0.8
0.575
1.6625
1.85

4.0875
3.75
1.6125
2.625
2.2875
3.1875
15
1.95
3.525
1.6125
4.3125
2.2875
5.55
3.075
1.8375
5.6625
5.1
1.725
1.8375
1.6125
3.75
2.2875
2.0625
1.8375
4.0875
2.0625
3.8625
1.6125
1.5
3.525
5.775
2.0625
1.8375
15
5.2125
1.725
2.7375
2.4
4.2
2.9625
2.85
2.175
3.6375
2.0625

130

3D OO OO OO OO OO OO O OO OO OO OO O OO O OO OO OO OO O O

Apr DA PAAAAAAAAEAAAAEAAAAEAAAEMAAAEMAAEAEEMAAEAAEAMAEEAAEMAAEAEAEAEEESED

10
10
10.75
10
10
10.75
10
10
10
10
10
10
10
10
10
10
10.75
10
10
10.75
10
10.75
10
10
10
10.75
10
10
10
10
10
10
10.75
10.75
10
10.75
10
10
10
10
10
10
10.75
10.75

0.7625
1.925
0.725

0.5375

0.7625

0.5

1.8875

0.6125

1.3625

0.8

1.9625
1.775
0.725

1.55

1.7375

1.7375

0.5375

0.65

1.2125

0.8

1.9625

0.7625

0.5375

0.7625

1.6625

0.7625

0.5
1.475

1.9625

1.2125

1.0625

1.7375

0.6875
0.725

1.25

0.7625

0.5

1.1375

1.925
1.7
0.875

1.3625
0.875

0.8375

5.1
4.425
3.075

1.6125
2.625
2.2875
2.7375
2.9625
3.75
1.95
4.7625
1.6125
15
5.4375
2.625
3.3
5.8875
15
1.95
1.95
1.95
1.8375
2.9625
1.8375
2.0625
3.4125
2.625
3.3
2.2875
5.4375
2.2875
2.9625
3.075
1.725
4.875
3.1875
1.6125
5.55
3.6375
15
2.2875
5.775
5.4375
1.725

131

3D OO OO OO OO OO OO O OO OO OO OO O OO O OO OO OO OO O O

Apr DA PAAAAAAAAEAAAAEAAAAEAAAEMAAAEMAAEAEEMAAEAAEAMAEEAAEMAAEAEAEAEEESED

10
10.75
10
10
10
10
10
10
10.75
10.75
10
10.75
10
10.75
10.75
10
10
10
10
10
10
10
10
10
10
10
10.75
10
10
10
10
10
10
10.75
10
10
10
10.75
10
10
10.75
10
10.75
10.75

1.0625
0.5
1.3625
0.9875
1.1
1.85
0.725
1.8125
0.8
0.5375
1.7
0.8
0.8
0.65
0.8375
0.9875
0.6125
0.8
0.575
1.775
0.7625
1.5125
1.325
1.5875
1.2875
0.875
0.9125
0.9125
1.2125
1.55
14
0.65
1.8125
0.5
1.4375
0.575
1.2875
0.6875
0.725
0.65
0.7625
1.325
0.5375
0.65

4.3125
3.8625
3.525
6.1125
2.625
2.625
3.075
5.6625
5.325
2.5125

3.4125
1.725
1.8375
2.7375
2.5125
4.7625
5.4375
5.775
3.1875
2.9625
4.0875
4.5375
2.5125
3.75
2.0625
2.5125
3.3
5.325
3.975
2.175
2.2875
4.65
1.95
3.075
4.875
2.7375
3.1875
2.0625
2.175
2.625
1.6125
5.775
2.7375

132

3D OO OO OO OO OO OO O OO OO OO OO O OO O OO OO OO OO O O

Apr DA PAAAAAAAAEAAAAEAAAAEAAAEMAAAEMAAEAEEMAAEAAEAMAEEAAEMAAEAEAEAEEESED

10
10
10.75
10
10
10
10.75
10
10
10
10
10.75
10
10
10
10
10
10
10
10
10
10
10
10.75
10
10.75
10
10
10
10
10.75
10
10.75
10
10
10
10
10
10
10
10
10.75
10
10

0.95
0.9125
0.875
0.575
1.6625
1.175
0.8375
1.475
1.2125
0.65
1.925
0.6125
1.775
1.1375
1.8875
1.5125
1.8875
0.7625
1.175
1.9625
0.7625
0.8375
1.25
0.875
0.5
0.6125
1.8125
1.5125
1.7
1.0625
0.8375
1.8125
0.6875
1.0625
1.1375
1.925
1.925
0.8375
1.8125
0.575
0.6125
0.9125
0.95
1.3625

5.775
2.625
2.625
1.725
4.65
3.4125
2.85
4.0875
4.0875
2.5125
2.9625
3.6375
2.9625
3.8625
2.5125
5.1

5.6625
3.6375
5.2125
4.2
4.3125
15
5.8875
5.2125
2.625
2.625
3.4125
2.4
6.1125
4.425
4.2
2.175
3.6375
3.1875
3.3
2.0625
1.6125
4.0875
3.6375
5.55
15
4.0875
5.1

133

3D OO OO OO OO OO OO O OO OO OO OO O OO O OO OO OO OO O O

Apr DA PAAAAAAAAEAAAAEAAAAEAAAEMAAAEMAAEAEEMAAEAAEAMAEEAAEMAAEAEAEAEEESED

10
10
10
10
10
10
10
10.75
10
10
10
10
10.75
10.75
10.75
10
10
10
10
10
10
10
10
10
10
10
10
10.75
10
10
10
10
10
10.75
10
10
10
10.75
10
10
10
10.75
10
10

1.85
1.8125
1.175
1.5875
0.5
1.7
1.1375
0.6875
1.25
1.55
1.7
0.95
0.575
0.575
0.7625
1.325
1.4375
11
1.925
1.7375
1.7
0.8
1.5125
1.5125
1.2125
1.475
1.2125
0.875
0.6125
1.2125
1.1375
0.7625
1.2125
0.5
1.925
1.0625
1.3625
0.6875
1.7375
1.025
0.8
0.9125
0.6125
1.2125

2.85
2.9625
5.55
15
2.0625
5.1
4.425
4.9875
3.4125
3.075
3.1875
2.625

2.85
4.3125

3.6375
3.4125
15
1.95
2.175
4.0875
4.425
2.625
2.9625
4.5375
5.6625
5.55
2.7375
2.7375
2.4
6.1125
3.525
3.975
2.2875
4.425
5.325
3.8625

1.8375
2.4
1.725
2.5125
3.3

134

3D OO OO OO OO OO OO O OO OO OO OO O OO O OO OO OO OO O O

Apr DA PAAAAAAAAEAAAAEAAAAEAAAEMAAAEMAAEAEEMAAEAAEAMAEEAAEMAAEAEAEAEEESED

10
10
10
10.75
10
10
10
10
10.75
10.75
10
10
10
10
10
10
10
10.75
10.75
10.75
10
10.75
10
10
10
10
10
10
10
10
10.75
10
10
10
10.75
10
10.75
10
10
10
10
10
10
10

1.775
1.7375
1.7
0.65
0.725
0.9875
1.55
1.1375
0.5
0.875
0.875
0.8375
0.95
1.325
0.8375
1.2875
0.5
0.6125
0.5
0.875
1.175
0.8375
1.6625
1.3625
1.9625
0.9875
0.6875
0.6125
0.6875
1.025
0.7625
1.1
11
0.95
0.6875
0.875
0.8
0.5
0.8
1.625
0.5
1.5125
11
1.6625

5.55
4.65
5.2125
2.2875
5.2125
5.1
5.2125
4.0875
4.2
1.8375
5.775
3.6375
1.8375
4.65
2.4
4.7625

5.8875
4.65
1.95

1.6125

4.3125

5.1
2.4
5.6625
3.525
1.95
3.8625
5.2125
2.175
5.8875
3.075
2.85
2.5125
2.625
5.8875
1.725
2.2875
3.4125
5.775
5.325

3.1875

6.1125

5.6625

135

3D OO OO OO OO OO O OO OO O

olP P ERIRNE R RERERPERNMNGEINENERNRERERRERRE oRINE R
o O O~ O O Pr N O O W Ol R Ol W N O wWouo o b~ o b o g RLr W -

[eoRiNep NN S N - S S N

[N [N iy Y [N
YN NN KN oO|lRIPR

10
10.75
10.75

10

10

10

10

10
10.75
10.75

26

30

23

24

35

19

34

18

30

16

37

25

22

38

32

21

16

25

15

31

39

31

17

38

24

22

22

32

26

39

31

39

36

16

1.85
0.875
0.65
0.9875
1.625
0.95
1.925
1.2875
0.7625
0.65
1.61
0.95
1.18
1.97
1.99
1.36
1.85
1.91
1.24
0.74
0.6
1.94
1.18
0.82
1.29
1.29
1.48
1.58
1.2
0.78
1.62
1.27
0.61
1.88
1.42
1.08
1.36
0.82
1.59
0.89
1.28
1.65
1.52
1.62

2.4
2.175
6.1125
4.3125
15
2.7375
3.075
6.1125
3.6375
4.5375

W WIN WNWWOOO WWOoO O1TWw W OITNBADNOODO DN WINWWINWW RO OO O

136

137

Appendix E: Shortened Sequence
Test Results: ATE evaluation per
testing sequence

138

Configuration Name KITTI Sequence

00m 01lm 02m 03m 05m 06m 07m 08 09 10m
Genl 0.8999 3.5947 4.7502 0.2572 0.4234 0.5789 0.4203 4.0381 4.7562 1.1644
Gen2 1.2519 4.0831 5.1117 0.2346 0.4974 0.8558 0.3716 3.9386 4.1466 0.5595
Gen3 1.0755 0.0000 3.8339 0.2495 0.3397 0.7361 0.4845 0.0000 1.5736 1.0084
Gend 0.9779 4.5977 4.2080 0.2476 0.3831 0.7716 0.4596 3.0455 1.4884 1.1004
Gen5 0.9505 4.1742 4.4417 0.2453 0.3724 0.7893 0.4013 3.1199 1.4948 0.9529
Gen6 0.9802 6.0234 4.0457 0.0000 0.3853 0.7746 0.4386 3.1709 1.5114 1.0852
Gen7 0.8883 4.1988 4.5948 0.2581 0.4576 1.0311 0.3005 3.4581 3.9998 0.6311
Gen8 1.0198 4.5316 3.8826 0.2390 0.3653 0.7214 0.4691 29561 1.5013 0.9955
Gen9 1.0607 3.2427 4.4622 0.2505 0.3626 0.7238 0.4347 3.2461 1.5604 1.2179
Genl0 1.0203 3.3488 4.4106 0.2554 0.4270 0.9801 0.4316 4.2856 4.2812 0.7228
Genll 0.9698 8.0076 3.9657 0.2331 0.3826 0.8136 0.4775 3.0807 1.4773 0.9845
Genl2 0.9666 3.4525 4.6159 0.2414 0.3685 1.4295 0.4446 3.0949 1.4935 0.9085
Genl3 1.0563 1.4469 3.9760 0.2665 0.0000 0.7607 0.4665 3.5285 3.7477 1.6062
Genl4 0.8906 3.4928 3.9385 0.2564 0.4237 0.6576 0.4338 3.6338 4.2466 0.6162
Gen1l5 0.9587 3.2292 4.2209 0.2466 0.3827 0.7268 0.4266 0.0000 1.4629 1.0505
Genlb6 0.9474 4.2513 3.7547 0.2560 0.3685 0.6845 0.4590 2.9748 1.4661 1.0447
Genl7 1.1219 1.6016 4.3122 0.2333 0.5270 0.8073 0.4257 3.4473 4.0724 0.7087
Gen1l8 0.9856 4.8574 3.9162 0.2513 0.3577 1.3334 0.3976 3.1692 1.5633 1.1027
Genl9 0.9718 7.3836 4.1437 0.2585 0.4099 0.7141 0.4574 3.3300 1.3983 0.9864
Gen20 1.0907 4.7155 4.3216 0.0000 0.4105 0.8310 0.4955 3.1615 1.5091 1.2641
Gen21 0.9369 3.0545 4.5332 0.2427 0.3663 0.7134 0.4413 3.2061 1.5154 0.8510
Gen22 1.0025 4.3145 3.9041 0.2271 0.3784 0.7809 0.4500 3.0636 1.5976 1.0891
Gen23 0.9533 4.9531 3.8465 0.2486 0.3789 0.8182 0.4605 3.2414 1.5336 1.0946
Gen24 0.9910 4.2064 3.8321 0.2450 0.3937 0.7137 0.4467 3.2297 1.5672 1.0176
Gen25 0.9609 5.2168 4.5491 0.2424 0.3965 0.4437 0.5225 3.0934 1.4999 1.2143
Gen26 1.0164 4.8534 3.8296 0.2343 0.4121 0.7399 0.4710 3.0892 1.5770 1.1128
Gen27 0.9851 4.1362 3.9910 0.2268 0.3682 0.7767 0.4356 2.9514 1.4675 1.2266
Gen28 0.9571 4.1704 4.1540 0.2467 0.4116 0.7250 0.4321 2.9718 1.5374 0.9456
Gen29 0.9660 1.8560 3.8460 0.2473 0.4553 0.8216 0.4796 3.2561 3.7701 0.2690
Gen30 1.0294 4.5032 4.3058 0.2621 0.3853 0.9830 0.4484 3.2371 1.5418 0.8891
Gen31 1.1095 4.5302 5.0135 0.2356 0.4380 0.9162 0.4365 3.9102 4.3431 1.9484
Gen32 1.0978 3.4088 4.1840 0.2536 0.3700 0.7514 0.4563 3.2268 1.4923 1.0312
Gen33 0.9031 3.6246 3.6415 0.2471 0.4842 0.0000 0.4327 3.6825 4.3716 0.6712
Gen34 0.9155 0.0000 4.1851 0.2634 0.3960 0.7603 0.4590 2.8948 2.6731 1.0578
Gen35 1.0288 4.0374 4.0715 0.2525 0.3805 0.7446 0.4462 3.3381 1.5869 1.0381
Gen36 0.9010 5.2018 4.7587 0.2344 0.4609 0.9768 0.3641 3.4537 3.6917 0.7341
Gen37 0.9533 3.5940 4.0139 0.2434 0.4228 0.8648 0.4234 3.3605 1.4776 1.0069
Gen38 0.9861 4.0464 3.9584 0.2578 0.4144 0.7800 0.4813 3.2609 1.5372 1.0456
Gen39 1.0000 2.2627 4.2479 0.2450 0.3677 0.7010 0.4520 3.5687 3.7338 0.7722
Gen40 1.2481 5.3331 4.0322 0.2555 0.4356 0.7334 0.4727 3.2943 3.9108 1.8404
Gen41l 0.9943 4.5386 4.4172 0.2406 0.3815 0.9576 0.4490 0.0000 1.5180 0.9772
Gen42 1.5646 3.4013 4.9450 0.2419 0.0000 0.8856 0.4638 3.7365 4.1467 0.9509
Gen43 0.9682 3.0979 0.0000 0.2501 0.4942 0.6600 0.3422 3.5180 4.7583 0.6824

139

Gen44 0.9703 0.0000 4.3019 0.2461 0.4103 0.7316 0.4585 2.8963 0.0000 1.0750
Gen45 1.0357 2.2727 4.1748 0.2485 0.4271 0.7612 0.4446 0.0000 3.2351 0.7595
Gen46 0.9636 4.2413 4.1739 0.0000 0.3810 0.8101 0.4399 3.3788 1.5095 1.2798
Gen47 1.0200 3.2230 4.0526 0.2549 0.4087 0.7567 0.4738 3.2846 3.5258 0.8534
Gen48 1.3528 1.3539 0.0000 0.2360 0.5615 0.8556 0.6046 3.3728 3.3322 0.6936
Gen49 0.9702 2.5124 4.1222 0.2531 0.0000 0.7199 0.4087 3.2677 1.5298 1.0070
Gen50 0.9607 4.7609 3.8485 0.0000 0.4003 0.7343 0.4796 3.1387 3.4928 0.7761
Gen51 0.9361 3.7379 4.0460 0.2436 0.3648 0.6668 0.4422 3.2165 1.5647 1.1493
Gen52 0.9341 1.7422 3.9773 0.2351 0.4336 0.8545 0.3997 3.7236 3.9345 1.3095
Gen53 1.2218 5.1906 4.0267 0.2550 0.3736 0.6138 0.4633 3.0582 3.6966 0.2861
Gen54 1.0092 4.2481 4.3980 0.2632 0.3888 0.7617 0.4599 3.0639 1.5166 0.9888
Gen55 1.1165 2.6262 0.0000 0.2323 0.4705 0.7028 0.3505 3.6914 4.0251 0.6621
Gen56 1.1771 2.1334 4.1429 0.2526 0.4052 0.7433 0.4671 3.2730 3.9230 0.8991
Gen57 1.0450 2.3820 3.5538 0.2552 0.4413 0.7235 0.4561 3.1764 3.3708 0.8299
Gen58 0.9361 4.1045 5.4133 0.2613 0.4907 0.8869 0.4457 3.7130 4.6624 1.1873
Gen59 1.3341 4.0666 4.0120 0.2382 0.4916 1.1684 0.3998 3.9786 4.5638 0.6238
Gen60 1.0007 6.5335 4.2735 0.2641 0.4002 0.8312 0.4700 3.3454 1.5718 1.1460
Gené6l 1.2649 4.6248 5.2696 0.2484 0.4442 0.8255 0.4821 4.2092 4.6000 0.8213
Gen62 0.8912 1.5184 5.0916 0.2167 0.4677 0.8925 0.3590 3.5885 3.9740 0.3078
Gen63 1.3305 2.2626 4.9486 0.2262 0.4955 0.9833 0.3769 3.8077 4.4011 0.2938
Genb64 0.9468 2.6607 4.1757 0.2588 0.3821 0.6331 0.4266 3.1646 1.6207 1.1000
Gen65 1.0761 5.3101 4.2171 0.2474 0.3994 0.7092 0.4899 3.3375 1.4301 1.0396
Gen66 0.9219 1.1925 4.6890 0.2305 0.4601 0.6977 0.3548 4.1000 4.3204 0.8314
Gené67 1.0013 2.8535 5.5591 0.2249 0.0000 0.7875 0.4311 3.7436 3.7429 0.6291
Gen68 0.8913 3.3705 4.3080 0.2509 0.3496 0.6589 0.4448 3.1650 1.5606 1.1816
Gen69 1.1010 4.6303 3.7123 0.2514 0.4074 0.7262 0.4463 3.6024 3.8620 0.0000
Gen70 0.0000 5.6859 3.9306 0.2709 0.4156 0.7173 0.4618 3.3521 3.9906 0.8426
Gen71 1.0131 3.5586 4.2204 0.2384 0.3720 0.0000 0.4303 3.2795 1.5239 1.0080
Gen72 0.0000 2.6880 4.1644 0.2509 0.4057 0.7214 0.4619 3.1480 4.2114 1.3764
Gen73 0.9507 3.1270 4.1112 0.2098 0.4861 0.5400 0.3627 4.1505 4.9157 0.7027
Gen74 1.0173 2.3004 5.0450 0.2645 0.0000 0.6665 0.5019 3.8328 4.2246 0.5307
Gen75 0.9165 4.5734 3.9447 0.2567 0.3633 0.7383 0.4466 3.3288 3.1662 1.0727
Gen76 0.9556 4.1013 4.1798 0.2406 0.3689 0.7366 0.4305 3.4728 1.4947 0.8722
Gen77 0.9289 4.0797 3.9452 0.2632 0.3819 0.7476 0.4618 3.3882 3.6314 1.0061
Gen78 1.5788 7.4256 4.1269 0.2511 0.3740 0.7113 0.4341 2.8387 1.5449 1.2328
Gen79 1.0481 2.9664 4.1835 0.0000 0.4014 0.7571 0.4246 3.2467 1.5353 1.0737
Gen80 0.9338 1.9770 4.5736 0.2534 0.4767 0.8635 0.3890 3.8030 4.3527 0.5892
Gen81 0.9311 3.7031 4.0290 0.2389 0.4474 1.1502 0.3943 3.4443 4.5072 0.5859
Gen82 0.0000 6.8699 4.1677 0.0000 0.3736 0.7305 0.4739 3.2870 1.4636 1.1497
Gen83 0.9040 3.2886 0.0000 0.2439 0.5069 0.8451 0.5213 4.1568 4.2176 0.5685
Gen84 0.9086 2.9544 4.1468 0.2604 0.4250 0.9906 0.3377 3.8067 4.3172 0.6201
Gen85 1.3162 2.0389 4.9205 0.2465 0.4575 0.9362 0.3939 3.3754 4.7088 0.6530
Gen86 1.0282 3.4686 5.5376 0.2320 0.4783 0.7189 0.4033 4.4201 4.4431 1.0609
Gen87 1.0330 4.2841 4.1255 0.2649 0.3991 0.6947 0.0000 3.1659 3.5942 0.0000
Gen88 1.0124 5.0222 3.6473 0.2453 0.3927 0.7094 0.4666 3.2754 3.2816 0.2802

140

Gen89 1.0363 4.0620 4.0763 0.2388 0.3881 0.7992 0.4698 2.9589 1.5799 1.0150
Gen90 0.9569 3.5095 4.2437 0.2603 0.4110 0.7846 0.4801 3.2269 3.2302 0.2931
Gen91l 0.9889 4.2742 3.9468 0.2486 0.3860 0.8414 0.4680 3.0225 1.5189 1.1666
Gen92 1.3133 3.4756 5.6966 0.2682 0.4063 0.9403 0.3709 4.1162 3.6178 0.7129
Gen93 0.9901 2.8498 3.7072 0.2560 0.3959 0.7251 0.4528 3.0172 3.5128 0.9093
Gen9%4 1.3865 3.0936 4.7071 0.2418 0.4935 0.8192 0.4216 4.0612 4.7520 0.0000
Gen95 1.0206 4.0242 4.4162 0.2342 0.4160 0.8130 0.4338 3.2755 1.4836 0.9436
Gen96 0.9549 2.0507 4.2202 0.2458 0.3836 0.7234 0.4622 0.0000 1.5606 1.1501
Gen97 0.9714 3.5947 4.0488 0.2672 0.3812 0.7047 0.4692 0.0000 3.8808 0.2768
Gen98 0.9265 4.5597 4.0656 0.2446 0.0000 0.6908 0.4090 3.1295 3.9165 0.8314
Gen99 1.0640 2.1306 3.7964 0.2392 0.3828 0.7454 0.4652 3.2043 3.7966 0.5651
Genl00 0.9385 4.8142 4.3828 0.2607 0.3958 0.6532 0.4209 3.1526 1.4780 1.0621
Genl01 0.9768 3.6725 3.9136 0.2513 0.3918 0.7566 0.4902 3.1867 4.0014 0.9400
Genl102 0.9887 4.6488 3.8551 0.2406 0.0000 0.7642 0.4499 3.0162 1.4849 1.1144
Genl03 0.9977 2.5026 3.9177 0.2654 0.3768 0.7333 0.4974 3.0311 1.6245 0.9288
Genl04 1.0443 7.3668 4.1219 0.2392 0.3847 0.8496 0.4281 3.1464 1.5205 1.0204
Genl05 0.9340 2.8499 3.9319 0.2321 0.4245 0.7299 0.4615 2.9590 3.7102 0.8901
Genl106 0.9094 3.3380 3.8540 0.2476 0.0000 0.7539 0.4458 3.2086 3.7564 0.7350
Genl107 1.0634 4.2725 3.4966 0.2589 0.4202 0.6982 0.4775 3.1761 4.0676 0.2929
Gen108 1.1440 2.5415 4.7788 0.2331 0.4789 0.9393 0.4503 4.0168 4.3328 0.6456
Genl109 1.1685 3.4255 5.1775 0.2736 0.5164 0.6371 0.0000 3.8711 4.9920 0.3467
Genl10 0.9896 2.5729 4.9024 0.2295 0.4668 0.9608 0.3811 3.6692 4.3714 0.6506
Genlll 0.9889 2.6227 3.6380 0.2463 0.3921 0.6679 0.4667 3.4367 3.5843 0.2950
Genll2 0.9741 3.3063 4.2391 0.2352 0.3598 0.7761 0.4722 3.2162 1.6132 1.1183
Genl13 0.9981 3.0376 4.5754 0.2543 0.3990 1.0126 0.4991 3.9105 3.8961 0.3277
Genll4 1.0165 4.4076 4.2226 0.2554 0.3698 0.8011 0.4386 0.0000 1.5951 1.0691
Genl15 2.0785 5.1316 4.0795 0.2542 0.4128 0.7340 0.0000 3.3585 1.4784 1.0497
Genll6 0.9103 6.2186 3.8195 0.2505 0.3706 0.7394 0.0000 3.0318 1.4849 1.1958
Genll7 1.1729 2.3484 4.5293 0.2356 0.4580 0.8385 0.3576 4.1574 4.5598 0.6027
Genll8 0.8927 0.0000 4.0961 0.2644 0.4874 0.7022 0.4702 4.0060 4.3891 0.6154
Genl1l9 0.0000 0.0000 4.7930 0.2456 0.4488 0.6938 0.3425 4.1117 4.4647 0.8704
Genl20 0.9418 6.5712 3.8690 0.2327 0.3710 0.8252 0.4566 3.1844 1.5178 1.1038
Genl21 1.0831 2.0488 4.3990 0.2326 0.3966 0.8278 0.4769 3.2299 0.0000 0.2908
Genl22 1.1154 2.5230 4.0517 0.2482 0.4079 1.9424 0.4127 3.2649 1.5726 1.2117
Genl23 0.9278 3.8246 4.3994 0.2281 0.3772 0.7807 0.4271 3.1213 1.5272 1.0834
Genl24 1.2883 5.3519 4.1158 0.2558 0.3728 0.7580 0.4918 2.8981 1.5045 1.2775
Genl25 1.0078 5.7212 4.0900 0.2366 0.3724 0.7716 0.4243 3.1486 2.9027 1.1612
Genl26 1.0113 3.1975 4.1091 0.2673 0.3987 0.6987 0.4288 3.0067 1.3999 1.0666
Genl27 1.1659 1.6794 4.1848 0.2527 0.0000 0.7515 0.5150 3.3700 3.8774 0.8333
Genl28 0.9072 3.7631 4.1948 0.2529 0.4358 0.7378 0.4478 3.4554 3.7353 0.2722
Genl129 1.1654 2.2862 0.0000 0.2222 0.4442 1.1714 0.4432 4.4188 4.1925 0.7083
Gen130 1.0788 2.0737 3.7244 0.2386 0.4049 0.7142 0.4857 0.0000 3.6613 0.7726
Genl3l 1.0269 4.3483 3.9740 0.2505 0.3756 0.9705 0.4679 3.0817 1.5235 1.0025
Gen132 0.9380 4.6714 4.2441 0.2476 0.4631 0.7924 0.4560 3.7626 4.1469 0.5989
Genl33 0.9695 5.8385 4.0578 0.2480 0.3767 0.7725 0.4636 3.3102 1.5915 0.9943

141

Genl34 1.0532 2.7136 4.2411 0.2503 0.3715 1.0749 0.4278 3.2168 1.5773 1.1717
Gen135 1.0638 3.7096 4.0883 0.2350 0.4174 0.6817 0.3429 3.5025 4.0785 0.6156
Genl36 1.2556 3.1614 4.0725 0.2523 0.3912 0.7257 0.4394 2.9507 1.4648 1.3503
Genl137 1.1727 3.4103 4.7768 0.2300 0.0000 1.1311 0.4080 0.0000 4.0122 0.6313
Gen138 0.0000 1.7633 4.0775 0.2678 0.3931 0.7206 0.4896 3.4229 3.4382 0.3068
Genl39 1.3851 1.3853 5.5078 0.2291 0.5705 1.0141 0.6178 3.2862 4.4933 0.7431
Genl40 0.9191 4.7315 4.1623 0.2547 0.0000 0.5944 0.4362 3.5204 3.3072 0.9581
Genl4l 0.8968 1.4401 4.2331 0.2530 0.4435 0.6214 0.4395 3.1793 4.1384 0.2889
Genl42 1.0514 1.3372 4.3422 0.2275 0.4344 0.7337 0.4754 3.1754 3.7994 0.5817
Genl43 0.9116 2.9455 4.1021 0.2331 0.4558 0.6089 0.4227 3.4011 3.8091 0.8246
Genl44 0.9780 3.7692 4.3791 0.2389 0.3882 0.7033 0.4344 3.3447 1.5328 1.2035
Genl45 0.9673 2.7683 3.8991 0.2409 0.3923 0.6441 0.4135 3.0325 1.4255 1.2176
Genl46 1.1198 4.1717 4.2671 0.2363 0.4104 0.7650 0.4673 3.2261 1.5102 0.3118
Genl147 1.0002 4.2901 3.9987 0.2400 0.3809 0.7163 0.4562 3.2454 1.4941 1.1538
Gen148 0.8771 3.9477 4.8579 0.2403 0.4374 1.0202 0.4379 4.0912 0.0000 0.7702
Genl149 1.8659 1.9935 4.1804 0.2565 0.4071 0.6814 0.4584 3.1963 3.9037 0.2920
Gen150 0.9575 3.5574 4.2911 0.2386 0.4135 0.8942 0.4233 3.0934 1.5912 1.0363
Genl51 0.9889 0.0000 4.3118 0.2515 0.3791 0.7627 0.4316 2.9993 1.6375 1.1561
Genl52 1.0477 3.5487 3.7168 0.2301 0.3755 0.9786 0.4560 3.2742 1.5297 0.9360
Gen153 0.9768 5.2458 4.3975 0.2581 0.3894 0.7148 0.4118 3.3314 1.6138 1.1381
Genl54 1.0137 2.4929 4.0943 0.2196 0.3492 0.7416 0.4047 3.1601 1.5482 1.1145
Gen155 0.9003 4.3482 4.0851 0.2460 0.4013 0.7483 0.4891 2.7282 1.4731 1.1268
Gen156 0.9532 0.0000 4.2343 0.2284 0.3747 0.7673 0.4310 3.2153 3.6587 0.0000
Genl157 1.1580 1.6535 0.0000 0.2547 0.4519 0.9146 0.3947 4.2185 4.4228 0.8554
Gen158 0.9563 0.0000 4.3413 0.2570 0.3902 0.7336 0.4300 3.1708 1.6468 1.0348
Gen159 1.0370 3.3692 4.0540 0.2442 0.4350 0.7592 0.4956 3.6344 0.0000 0.5602
Genl60 0.8661 3.6479 4.5947 0.2297 0.3961 0.7199 0.4495 3.0366 1.4613 1.1962
Genlb6l 0.0000 2.3401 4.0240 0.0000 0.3899 0.6966 0.4597 3.2503 1.6423 0.7915
Genl62 0.9673 5.5556 4.0848 0.2451 0.4050 0.9346 0.4617 2.8543 1.5129 0.9842
Genl63 0.9446 1.9656 3.9026 0.0000 0.4514 0.7417 0.4923 3.3686 3.6057 0.6697
Genl64 1.0391 4.9746 4.0665 0.2562 0.4405 0.7371 0.4533 3.2359 3.8855 0.7149
Genl65 0.9681 3.5366 4.3467 0.2336 0.3715 0.7519 0.4625 3.4804 1.5479 1.0740
Genl66 0.9408 3.0139 4.2160 0.2439 0.3967 0.7335 0.4800 2.9278 1.5580 1.0839
Genl67 1.0135 1.7272 4.6346 0.2428 0.5460 1.0388 0.6838 3.5741 4.4828 0.7855
Gen168 1.1744 5.2755 4.2919 0.3262 0.5948 0.5926 0.4577 3.6477 3.2636 1.5496
Genl169 0.9483 2.4945 3.7426 0.2418 0.4125 0.8838 0.4385 3.1845 3.8940 0.7775
Genl70 1.3958 2.9582 3.7617 0.2430 0.4078 0.6850 0.4504 3.1312 0.0000 0.8060
Genl71 0.9600 3.3894 3.5634 0.2557 0.3709 0.7512 0.0000 3.3168 3.6747 0.5767
Genl72 1.2932 4.4752 4.2035 0.2879 0.3613 0.5895 0.4407 3.3189 3.8132 1.2241
Genl73 0.9629 2.8206 5.0237 0.2506 0.4162 0.5361 0.4636 3.6869 3.0380 1.2579
Genl74 1.0441 3.8477 4.3117 0.2487 0.3919 0.6710 0.4500 3.0432 1.5296 1.0848
Genl75 0.9953 7.3804 3.9545 0.2418 0.3677 0.8276 0.4752 3.1556 1.5102 1.1569
Genl76 0.0000 2.3969 4.4861 0.2502 0.5279 1.0183 0.5846 3.6598 4.9269 0.2988
Genl77 0.9261 4.6818 3.8218 0.2544 0.3642 0.8486 0.5057 3.1559 0.0000 1.1573
Genl78 1.1794 1.4356 3.5525 0.2381 0.3940 0.8591 0.4642 3.3041 3.5162 0.6496

142

Genl79 0.9806 6.1883 3.8745 0.2521 0.3895 0.7646 0.4712 3.1075 3.3206 1.0164
Gen180 1.0107 4.2396 4.0896 0.2601 0.3561 0.7096 0.4525 3.0613 3.9319 0.7754
Genl81 1.0075 2.5443 4.0785 0.2481 0.3780 0.7092 0.4478 3.5404 1.5356 1.1460
Gen182 0.9766 5.3014 3.6239 0.2369 0.4044 0.8064 0.4298 2.9694 1.4522 1.0152
Gen183 0.8598 3.3221 4.3206 0.2580 0.3987 0.8881 0.4375 3.1884 1.6435 1.1405
Genl84 1.0491 2.8725 5.8213 0.2805 0.4178 0.0000 0.5898 4.1977 4.2490 1.3822
Gen185 1.1391 4.5132 3.6882 0.2399 0.4048 0.8534 0.4795 3.0340 1.5994 1.0794
Grdl 0.9648 1.9527 4.3619 0.2634 0.5534 1.1288 0.5893 3.2891 4.3231 0.5660
Grd2 0.9778 2.8030 4.0604 0.2595 0.4988 1.1057 0.5095 3.6369 4.4790 0.6549
Grd3 13736 4.2460 3.9314 0.2234 0.4513 0.6074 0.4122 29713 4.0153 0.6151
Grd4 1.0416 2.9815 3.3189 0.2501 0.0000 0.0000 0.4132 3.2528 3.7410 0.7910
Grd5 0.7974 1.3477 0.0000 0.2664 0.5086 0.0000 0.5302 3.7349 4.4666 0.5510
Grdé6 0.9479 1.3433 3.6272 0.2971 0.4771 1.0601 0.5537 3.8821 4.2742 0.7716
Grd7 0.9329 1.5339 4.0803 0.2458 0.4412 1.1412 0.5074 3.4498 4.5824 0.7654
Grd8 0.9270 1.3336 3.5516 0.2458 0.4656 1.1083 0.5422 3.0054 3.9680 0.6634
Grd9 1.0075 1.3210 3.8030 0.2519 0.5909 0.8900 0.5032 3.4432 4.7294 0.6472
Grd10 1.0100 1.3576 5.2567 0.2742 0.4992 1.0482 0.5224 3.6755 3.5734 0.6775
Grd11 0.9076 2.8716 3.5737 0.2727 0.4994 0.8325 0.5163 3.5413 5.0321 0.6160
Grd12 1.3403 1.2842 3.3706 0.2310 0.4038 0.6163 0.4273 3.2081 3.9440 0.7462
Grd13 1.0452 2.0791 3.8914 0.2698 0.5581 1.1309 0.5170 3.6216 4.0409 0.7249
Grd14 1.5144 1.3436 3.5279 0.2539 0.5130 0.9650 0.5405 3.2545 3.8019 0.6938
Grd15 0.9562 1.9545 4.0856 0.3046 0.4963 0.7947 0.5041 4.4104 4.5556 0.5556
Grd16 1.1997 3.0078 3.6024 0.2489 0.4077 0.8417 0.4170 3.0190 3.2948 0.8073
Grd17 0.9427 2.2157 3.5969 0.2573 0.5059 1.0378 0.5401 3.3949 5.2751 0.7540
Grd18 0.9816 2.7093 0.0000 0.2642 0.3992 0.7229 0.4450 3.4240 3.6948 0.2857
Grd19 1.3455 3.8179 4.6147 0.2470 0.5087 0.7204 0.5204 3.9760 5.1755 0.6525
Grd20 0.9614 3.4070 3.4916 0.2651 0.4647 0.6616 0.6513 3.6980 4.4844 0.5607
Grd21 0.9284 1.1744 4.5524 0.2672 0.5358 0.9865 0.4816 3.8157 3.8585 0.7227
Grd22 1.0784 3.0608 4.7073 0.2768 0.5169 0.9811 0.5784 3.4415 4.8811 0.7572
Grd23 14069 1.3192 3.5650 0.2510 0.4039 0.8803 0.4205 3.2036 3.4717 0.9861
Grd24 0.8773 1.4366 3.6564 0.2523 0.4676 1.1179 0.4844 3.6704 4.6520 0.6743
Grd25 0.8972 1.1785 3.9645 0.2607 0.4467 0.6159 0.4329 3.1264 3.9649 0.6366
Grd26 0.9370 4.7869 4.0438 0.2572 0.5360 0.9829 0.5751 3.7407 4.0339 0.6055
Grd27 0.9416 1.4766 3.5341 0.2507 0.4564 1.4718 0.4461 3.3428 3.6562 1.4943
Grd28 0.9674 3.8037 4.4970 0.2652 0.5375 0.7975 0.4639 3.4315 4.0513 0.3021
Grd29 0.9142 1.9191 4.1860 0.2512 0.4406 0.9027 0.0000 3.2307 4.5550 0.6661
Grd30 1.0524 1.1369 4.1615 0.3015 0.5471 0.9120 0.5402 3.3475 4.0113 0.6472
Grd31 0.0000 4.5195 4.2720 0.2522 0.5256 0.9255 0.5558 3.3334 4.5830 0.6293
Grd32 0.9557 2.4688 4.0049 0.2533 0.4072 0.6007 0.4940 3.2242 3.8259 0.6434
Grd33 1.2695 2.3402 0.0000 0.2465 0.4894 0.9939 0.5004 3.3823 4.5268 0.6864
Grd34 0.9806 3.3007 3.5692 0.2805 0.5550 0.9010 0.4350 3.6688 4.6288 0.2820
Grd35 0.9671 1.5367 3.6347 0.2371 0.4013 0.7714 0.4388 3.3474 3.4363 0.2969
Grd36 0.9473 1.4529 3.5559 0.2441 0.4039 0.7630 0.4661 3.1419 3.6534 1.2040
Grd37 1.1980 1.2742 3.8071 0.2667 0.4938 1.0233 0.5724 3.2522 4.7742 0.5890
Grd38 1.0003 1.3278 3.1170 0.2544 0.4625 0.5574 0.4692 3.1775 3.9646 0.6945

143

Grd39 0.9481 1.4783 5.0270 0.2482 0.4931 0.8480 0.6096 3.7372 4.1654 0.6206
Grd40 0.9389 1.1597 3.2392 0.2477 0.4424 0.5425 0.4713 3.0793 3.8067 0.6733
Grd41l 1.0263 3.4165 3.9112 0.2603 0.5639 1.0676 0.4696 3.2643 4.8147 0.7019
Grd42 0.9582 1.8296 4.5733 0.2624 0.5412 0.9550 0.6370 3.6792 4.5439 0.2989
Grd43 0.9451 2.0922 3.9259 0.2458 0.4184 0.7448 0.4822 3.1480 3.7623 1.4517
Grd44 1.0648 1.2787 3.9030 0.2640 0.5122 0.8111 0.5560 3.0209 4.4315 0.6172
Grd45 0.9182 1.5789 3.7836 0.2513 0.4424 0.7198 0.4578 3.1444 3.7000 0.9409
Grd46 0.9453 1.2666 3.7784 0.2539 0.4202 0.8925 0.5438 3.4083 4.2738 0.6644
Grd47 1.1080 2.3060 3.8123 0.2472 0.4008 0.8371 0.4542 3.1262 3.6537 0.8211
Grd48 0.9453 1.6194 4.0232 0.2528 0.4481 0.6521 0.4578 3.2390 3.8511 0.6919
Grd49 1.0185 1.3157 4.2369 0.2631 0.5160 0.9498 0.4579 3.3764 0.0000 0.6618
Grd50 1.4008 1.5362 3.6278 0.2565 0.3851 0.7990 0.0000 3.1630 3.7733 0.8303
Grd51 1.3267 1.5057 3.6136 0.2622 0.3915 1.4273 0.4313 3.1058 0.0000 0.7794
Grd52 0.9649 3.3119 3.5642 0.2525 0.5257 0.8909 0.4746 3.2970 0.0000 0.6777
Grd53 1.0624 2.2887 4.4808 0.2881 0.5623 1.0160 0.5302 3.4923 3.8512 0.6853
Grd54 1.0816 1.5149 4.0343 0.2636 0.5187 1.0127 0.0000 3.7184 5.2080 0.7092
Grd55 14462 1.8171 3.8087 0.2594 0.4315 0.7560 0.4469 3.4125 3.6270 0.7091
Grd56 1.3505 2.2683 5.1007 0.2533 0.4660 0.9312 0.4815 3.3548 4.4414 0.6425
Grd57 0.9640 2.4808 3.1503 0.2627 0.5640 1.2397 0.5302 3.1303 4.2128 0.7330
Grd58 1.1900 2.1634 4.1536 0.2402 0.5361 0.9153 0.4633 3.5375 4.5571 0.7673
Grd59 1.4169 1.2739 3.7452 0.2450 0.4099 0.7382 0.4427 3.2275 4.0452 1.0740
Grd60 0.9288 2.3910 3.6417 0.2648 0.5447 1.0943 0.6085 3.4491 4.6391 0.5792
Grd61 0.9724 4.9992 3.7377 0.2546 0.4305 0.7600 0.4428 3.1627 3.7034 0.8194
Grd62 1.2363 1.3766 4.6682 0.2928 0.5620 0.8308 0.4251 3.6933 4.4843 0.6515
Grd63 0.9266 1.3048 5.2183 0.2834 0.4756 1.1079 0.5654 3.6087 4.1877 0.5503
Grd64 1.3724 1.7759 3.9089 0.2493 0.4097 0.7509 0.4427 3.2305 3.8355 0.7893
Grd65 1.1093 1.5651 3.6933 0.2575 0.3966 0.7325 0.4396 3.4129 3.4382 0.7669
Grd66 1.1953 2.6275 4.2015 0.2288 0.4813 0.8558 0.5128 3.5232 3.6241 0.7309
Grd67 1.3867 2.2877 3.3884 0.2728 0.0000 1.0461 0.4083 3.6154 4.4842 0.6998
Grd68 0.9837 1.8435 4.0505 0.2515 0.4925 1.4220 0.5438 3.3426 4.4625 0.6194
Grd69 0.9886 3.2682 3.4630 0.2485 0.3911 0.9433 0.4246 3.3235 4.0095 0.6934
Grd70 0.9358 1.7901 4.3738 0.2363 0.4924 0.8524 0.4643 3.9334 3.8337 0.6941
Grd71 0.9558 1.2097 4.2614 0.2394 0.4350 0.5147 0.4606 3.1175 3.8145 0.6597
Grd72 1.1386 1.5226 4.5168 0.2691 0.5160 1.1106 0.6096 3.5371 4.6164 0.6356
Grd73 0.9824 1.4648 3.9241 0.0000 0.4354 0.7396 0.4477 3.1519 3.7323 1.2065
Grd74 1.0269 2.8861 3.4119 0.2340 0.4641 0.8498 0.4674 3.2469 3.9350 0.6318
Grd75 1.2818 2.8714 3.8973 0.2495 0.4258 0.6339 0.4166 2.9771 3.8363 0.6636
Grd76 1.1589 1.4275 4.5997 0.2346 0.5892 0.9479 0.4825 0.0000 4.3190 0.6799
Grd77 0.9404 1.2890 3.8718 0.2459 0.4153 0.7816 0.4702 3.3168 3.3890 0.7882
Grd78 1.6670 4.1445 3.9309 0.2692 0.5182 1.0525 0.5433 3.6560 4.7498 0.7229
Grd79 1.3704 2.0833 3.7782 0.2514 0.4128 0.7023 0.4809 3.1283 3.6215 0.8755
Grd80 0.9330 1.8646 3.6563 0.2501 0.3968 0.7539 0.4463 3.1282 1.5906 0.7755
Grd81 0.9282 1.5545 3.8296 0.2559 0.4401 1.0205 0.4763 3.3330 4.2151 0.7059
Grd82 0.9441 1.1474 4.7840 0.2687 0.4923 0.0000 0.5420 3.3703 4.0892 0.5746
Grd83 1.0326 1.8204 3.1664 0.2337 0.4780 0.6528 0.4170 3.3170 3.8659 0.5851

144

Grd84 1.0117 1.8870 3.3174 0.2565 0.5117 1.1450 0.5266 3.2757 4.5346 0.6162
Grd85 0.9054 0.0000 3.3548 0.2359 0.4354 0.5929 0.4789 3.1862 3.7138 0.7379
Grd86 1.0966 1.3213 3.6266 0.2290 0.4543 0.5918 0.4370 3.2508 4.0000 1.4710
Grd87 1.2094 1.1344 3.3556 0.2485 0.3971 0.7329 0.4560 3.2687 3.6708 0.2798
Grd88 0.9224 2.3539 4.9810 0.2574 0.5300 1.1352 0.5913 3.5796 4.3759 0.3180
Grd89 1.0460 1.2667 3.5987 0.2290 0.4109 0.7929 0.4569 3.1962 3.7948 1.8706
Grd90 1.3880 1.2476 4.3825 0.2609 0.5160 1.0274 0.4903 3.2776 4.4268 0.6593
Grdo1l 1.0278 1.8894 3.3474 0.2795 0.5654 1.0833 0.5498 3.8057 4.3096 0.6978
Grd92 0.9726 1.7472 3.6044 0.2440 0.3793 0.7175 0.4786 3.2309 3.6445 0.7479
Grd93 1.0170 1.2042 3.8391 0.2456 0.4328 0.7719 0.3546 3.2093 3.4978 0.2816
Grd94 0.9123 1.2999 3.6485 0.2423 0.4250 0.6132 0.4563 3.3647 4.1663 0.7407
Grd95 0.9134 1.6766 3.6456 0.2477 0.3912 1.6708 0.4670 3.1287 3.7110 0.7981
Grd96 0.9492 2.8462 4.1426 0.2412 0.4769 0.9912 0.5145 3.4601 4.5323 0.3209
Grd97 0.9388 1.8571 3.4155 0.2629 0.5007 0.9156 0.5628 3.6120 4.7372 0.6291
Grd9o8 0.9322 1.6919 4.0290 0.2695 0.5475 0.9935 0.6257 3.2321 4.6041 0.6054
Grd99 1.4406 4.6660 3.9136 0.2443 0.5562 1.0743 0.4572 3.6107 4.7995 0.6055
Grd100 0.9615 2.2190 4.3036 0.2531 0.4734 0.8721 0.4890 0.0000 4.1440 0.5948
Grd101 1.2338 1.2857 4.0083 0.2381 0.4633 0.5904 0.4290 3.1355 3.8791 0.2950
Grd102 1.1626 2.5046 3.6194 0.2730 0.5358 1.0053 0.5586 3.6940 4.5048 0.6873
Grd103 1.0916 1.3226 3.9671 0.2508 0.5650 0.7626 0.5749 3.5674 4.3864 0.7437
Grd104 0.9305 1.6896 3.7531 0.2314 0.4642 0.7860 0.4433 3.1452 3.8870 0.6708
Grd105 1.0938 0.0000 3.6679 0.2383 0.4000 0.6012 0.4251 3.0137 3.6790 0.0000
Grd106 1.2410 1.8710 3.9506 0.2591 0.4662 1.1952 0.4027 3.1175 3.6027 0.7556
Grd107 0.0000 1.8158 4.0273 0.2511 0.0000 0.8842 0.5301 3.5252 4.2950 0.8043
Grd108 1.5325 1.3680 0.0000 0.2427 0.3853 0.7904 0.4306 3.1215 3.6647 2.6634
Grd109 1.4577 3.8977 4.6541 0.2739 0.4886 1.1955 0.4781 3.5749 4.0641 0.6995
Grd110 0.9276 1.7076 3.6558 0.2433 0.4221 0.7173 0.0000 3.4668 4.3130 0.5880
Grd111 0.9569 2.7668 3.4813 0.2215 0.4861 0.6378 0.4340 0.0000 3.5878 0.6546
Grd112 1.2885 1.4080 3.4483 0.2637 0.5265 1.0460 0.5727 3.3235 4.4451 0.7315
Grd113 1.0326 1.6132 3.2985 0.2621 0.4019 0.7568 0.4451 3.3277 3.5355 0.7611
Grd114 1.0208 1.6662 3.7580 0.2457 0.4277 0.6183 0.3906 3.1612 3.6765 1.4532
Grd115 0.9291 3.9572 3.7400 0.2900 0.5197 0.9517 0.5651 3.5151 4.8781 0.6464
Grd116 0.9631 1.8807 3.4792 0.2489 0.3891 0.8507 0.4334 3.4354 3.8348 0.7657
Grd117 0.8828 5.4071 3.6010 0.2545 0.4078 0.7543 0.4230 3.3963 3.8579 0.2881
Grd118 0.8739 2.2408 3.5588 0.2396 0.5266 0.7472 0.5819 3.3090 4.5507 0.6689
Grd119 0.8810 1.9339 5.1215 0.2427 0.5355 0.8488 0.5366 3.5002 4.2387 0.6086
Grd120 1.2218 2.1131 3.5075 0.2368 0.4072 1.7417 0.4656 3.0138 3.3141 0.7797
Grd121 0.0000 1.2675 3.3327 0.2479 0.3681 0.8183 0.4637 3.4874 3.3378 0.8667
Grd122 0.9502 2.2956 4.0957 0.2431 0.4573 0.8233 0.5902 3.1622 3.6065 0.5411
Grd123 0.9645 2.4810 3.6324 0.2519 0.4035 0.8391 0.4344 3.4147 3.4314 1.4818
Grd124 0.9706 1.3403 4.0198 0.2458 0.4204 0.6061 0.4656 3.2943 3.4341 0.7977
Grd125 0.9759 2.5703 4.0417 0.2485 0.4117 0.7381 0.4493 3.2289 3.3617 2.0602
Grd126 14098 1.4381 3.5652 0.2486 0.3705 0.8215 0.4275 3.2907 3.5538 0.7889
Grd127 0.8743 1.3772 3.5621 0.2353 0.4166 0.6859 0.4373 3.0382 1.6096 0.0000
Grd128 1.2466 1.9843 3.5883 0.2383 0.3834 0.6379 0.4129 3.0207 3.9657 0.0000

145

Grd129 0.0000 1.4883 3.8011 0.2488 0.4617 0.6723 0.4734 2.9641 3.7374 0.0000
Grd130 0.8379 1.3197 3.5630 0.2516 0.3840 1.6927 0.4301 3.2173 3.3098 0.7157
Grd131 0.8804 1.9504 3.4048 0.2555 0.3993 0.7693 0.4446 3.4570 3.6174 0.2770
Grd132 0.9650 2.0383 3.5197 0.2519 0.4664 0.6140 0.4438 3.1666 4.0078 0.7914
Grd133 1.3715 1.9765 3.3937 0.2274 0.4182 0.7975 0.4625 3.2629 3.9408 0.2884
Grd134 1.0214 2.9634 3.8439 0.2516 0.4561 0.6571 0.4617 2.9222 3.5754 0.6561
Grd135 0.8844 2.1587 3.7978 0.2867 0.5159 0.8405 0.6406 3.1755 4.3216 0.6192
Grd136 0.9616 1.5849 3.7177 0.0000 0.4940 1.0421 0.5702 3.5059 4.9706 0.8099
Grd137 1.0182 3.8662 3.8398 0.2358 0.4444 0.5674 0.4978 3.4366 3.7726 0.7082
Grd138 0.9173 2.5200 4.2576 0.2341 0.4456 0.7167 0.4645 3.1987 3.7645 0.8081
Grd139 1.3316 1.5329 3.7678 0.2566 0.0000 0.7324 0.4765 3.0424 3.6712 0.2916
Grd140 0.9934 2.9393 3.8191 0.2562 0.3928 2.2644 0.4367 3.1493 3.5912 0.7996
Grd141 1.1123 2.1988 3.5256 0.2488 0.3889 0.8661 0.4801 3.4123 3.4210 0.8738
Grd142 1.0500 2.2217 3.9277 0.2591 0.4392 0.5616 0.4283 3.4017 4.0567 0.7792
Grd143 0.9685 1.2371 4.0985 0.2395 0.4498 0.5699 0.4444 3.0126 3.6486 0.2803
Grd144 1.0530 2.8573 3.8674 0.2670 0.4342 0.7241 0.4472 3.1410 3.3143 1.0003
Grd145 1.4720 2.3342 3.3555 0.2455 0.0000 0.7543 0.4796 3.2625 3.5767 0.0000
Grd146 13012 1.4338 3.4335 0.2234 0.4561 0.5935 0.4665 3.1993 1.4895 0.6453
Grd147 0.9075 1.8319 3.6118 0.2511 0.4224 0.7771 0.4312 3.2465 3.8108 1.0114
Grd148 1.1755 1.7878 0.0000 0.2563 0.4816 0.9442 0.0000 3.4088 0.0000 0.6536
Grd149 0.9719 1.4464 3.5763 0.2467 0.4316 0.5518 0.4593 3.2779 3.5920 0.6346
Grd150 0.9045 2.5359 3.3696 0.2192 0.4634 0.5709 0.4064 3.0176 3.8318 0.9590
Grd151 1.1158 1.5557 3.5426 0.2514 0.3961 0.7933 0.4366 3.2834 3.4993 0.8835
Grd152 0.9766 1.8563 3.8468 0.2544 0.4072 0.8145 0.4606 3.1715 3.7661 1.6936
Grd153 1.0752 1.5546 4.0339 0.2680 0.4360 0.9166 0.4537 3.2799 3.9268 0.6814
Grd154 1.3079 1.2877 4.5394 0.2284 0.0000 0.8076 0.5085 3.3698 4.8111 0.6814
Grd155 0.9725 1.2460 3.5186 0.2729 0.3912 0.6912 0.4478 0.0000 3.7275 0.7988
Grd156 1.0595 1.6541 4.5591 0.2689 0.5105 1.0953 0.4943 3.5460 3.9082 0.6575
Grd157 1.2543 2.3259 3.7119 0.2314 0.4643 0.9722 0.4333 3.1563 3.6739 0.6428
Grd158 1.3520 1.6421 3.6188 0.2367 0.4228 0.8365 0.4179 3.2623 3.2345 0.2880
Grd159 1.3426 1.1816 3.4727 0.2508 0.4397 0.6165 0.4547 3.0995 3.6954 0.6817
Grd160 1.1054 2.5113 4.1687 0.2389 0.4588 0.5816 0.4477 3.2553 3.7936 1.7094
Grdl61 1.2392 1.4684 3.5237 0.2799 0.4530 1.3003 0.5893 3.6014 4.2818 0.8048
Grd162 0.9138 2.0306 3.8209 0.2602 0.4852 1.1037 0.5449 3.5813 4.8433 0.5784
Grd163 0.0000 1.5806 3.5070 0.2212 0.4613 0.8303 0.4658 3.2026 3.5755 0.6600
Grd164 0.9240 1.3056 3.0968 0.2612 0.5042 0.9420 0.5730 3.4368 4.3961 0.6899
Grd165 1.1987 2.5434 3.6911 0.2337 0.4131 0.6109 0.4555 3.3034 3.6335 0.7491
Grd166 1.0606 1.3878 3.5702 0.2546 0.4010 0.5967 0.4134 0.0000 4.2694 0.7119
Grd167 0.9467 1.3330 3.3336 0.2467 0.0000 0.8407 0.4499 3.3943 3.5131 0.2918
Grd168 1.0395 1.9737 3.8819 0.2607 0.4330 0.5309 0.4305 3.0184 3.8513 0.9792
Grd169 0.9064 1.3255 3.6432 0.2257 0.4545 0.6843 0.4455 3.0875 3.8649 0.5710
Grd170 0.9984 1.4981 4.1431 0.2681 0.4668 0.8573 0.4962 3.1312 4.2102 0.7854
Grd171 0.9426 1.6345 3.5730 0.2489 0.0000 0.7893 0.4517 3.2675 3.5768 0.2864
Grd172 0.9997 1.7403 3.3653 0.2479 0.4558 0.6304 0.4265 2.9900 4.0816 0.6994
Grd173 1.1249 1.8809 3.4724 0.2582 0.0000 0.6861 0.4410 3.4576 4.3432 0.6376

146

Grd174 0.9952 2.9240 3.8687 0.2607 0.4031 0.7841 0.0000 3.3464 3.8150 1.1947
Grd175 0.9373 1.6309 3.8475 0.2460 0.4228 0.7460 0.4948 3.2494 3.7877 0.8182
Grd176 1.0818 1.5333 3.7883 0.2440 0.4163 1.4108 0.4637 3.0093 4.0076 0.2722
Grd177 0.9577 2.3720 3.7841 0.2541 0.4076 1.0196 0.4671 3.2322 3.7181 0.5216
Grd178 0.9216 2.4984 3.7708 0.2516 0.4302 0.6942 0.4553 3.2573 4.0435 0.3132
Grd179 0.8918 1.5073 0.0000 0.2499 0.4457 0.6464 0.4368 3.0996 3.8668 1.3424
Grd180 0.9798 2.2096 3.8016 0.2491 0.4014 0.7409 0.4189 3.2669 3.6320 0.2916
Grd181 1.1057 1.5781 3.6758 0.2346 0.4137 0.7285 0.4195 3.1518 4.0305 0.6525
Grd182 1.1074 1.4035 3.7808 0.2465 0.0000 0.8487 0.4715 3.0290 0.0000 1.0580
Grd183 1.2869 2.1577 3.5015 0.2492 0.3666 0.9675 0.4937 3.1588 3.6168 0.7478
Grd184 1.0291 2.6145 3.5700 0.2365 0.3897 0.6992 0.4515 3.1775 3.5009 0.7295
Grd185 1.2797 5.3775 0.0000 0.2594 0.3961 2.1285 0.4752 2.9409 3.4815 0.2883
Grd186 0.9805 2.2508 3.4148 0.2532 0.3912 1.6559 0.4467 3.3985 3.7155 0.8714
Grd187 1.0332 1.4002 3.5806 0.2517 0.4016 0.7229 0.4624 3.1703 3.6933 0.7362
Grd188 1.0676 2.3795 3.8243 0.2556 0.3926 0.7259 0.4873 3.1451 3.5319 0.7904
Grd189 0.9517 1.4196 4.3436 0.2653 0.5181 0.9621 0.5155 3.3551 5.0591 0.5887
Grd190 1.0261 3.4513 3.6258 0.2564 0.4100 0.7343 0.4791 3.2661 3.6478 0.7454
Grd191 0.9309 1.3973 3.4228 0.2456 0.3969 0.0000 0.4752 3.4587 3.4745 0.8464
Grd192 0.9012 1.2567 3.5352 0.2389 0.4455 0.5873 0.4509 3.2039 3.6145 0.7619
Grd193 0.9178 2.0525 3.8618 0.2434 0.4400 0.6837 0.4522 3.3819 3.7472 0.6304
Grd194 1.3398 1.3492 3.3216 0.2248 0.4678 0.5603 0.4525 3.2793 3.9330 0.5657
Grd195 1.0896 2.0958 3.5304 0.2805 0.4757 0.9795 0.5987 3.3773 4.0857 0.7344
Grd196 0.9863 1.5879 3.3512 0.2520 0.4215 0.7689 0.4653 3.4097 3.6216 0.8007
Grd197 1.0981 2.3950 3.9630 0.2482 0.4124 0.7241 0.4525 3.3403 1.5578 0.7878
Grd198 0.8950 1.6392 3.7996 0.2528 0.4151 0.7761 0.4569 3.1585 3.5581 0.8002
Grd199 0.9541 1.7154 3.7664 0.2825 0.4717 0.7895 0.4825 3.6861 4.2609 0.5923
Grd200 0.9276 2.5915 3.7113 0.2510 0.4339 1.2713 0.4410 3.3191 3.7205 0.9803
Grd201 0.9529 1.1600 3.3406 0.2566 0.4288 0.6088 0.4339 3.3263 3.8152 0.5870
Grd202 1.2940 1.1883 3.3286 0.2413 0.4459 0.6870 0.4536 3.3114 3.9879 0.2799
Grd203 1.0100 2.2636 3.9279 0.2570 0.5154 1.0138 0.5190 3.3461 4.4104 0.7466
Grd204 0.8854 1.9522 3.8777 0.2655 0.5691 1.1363 0.5399 3.2287 4.4588 0.3101
Grd205 0.9319 1.6336 3.6327 0.2559 0.4226 0.7238 0.4819 3.0591 3.5373 0.0000
Grd206 0.9017 1.8755 3.8140 0.2434 0.3910 0.7499 0.4587 3.3260 3.7561 0.2978
Grd207 0.9449 2.2712 3.6584 0.2348 0.3722 0.7755 0.4687 3.2266 3.8316 0.7750
Grd208 1.4538 3.0206 4.0592 0.2839 0.4708 0.9874 0.5513 3.6427 4.5943 0.7304
Grd209 13086 1.4261 3.9163 0.2567 0.4080 0.7680 0.4582 3.0124 3.5412 0.7262
Grd210 0.9856 1.4301 3.5747 0.0000 0.4096 0.8763 0.4576 3.0634 0.0000 0.7494
Grd211 1.3168 2.3650 3.7048 0.2720 0.4373 0.6015 0.4748 3.2465 3.9079 0.6210
Grd212 0.8936 2.1543 3.1523 0.0000 0.4433 0.8375 0.4651 0.0000 3.8338 0.5957
Grd213 1.0305 1.5871 3.5399 0.2323 0.3813 0.7781 0.4485 2.9702 1.5786 0.7541
Grd214 1.0362 1.5687 4.3680 0.2691 0.5663 0.8506 0.6308 3.1526 5.1100 0.3235
Grd215 0.9109 1.2316 3.2378 0.2703 0.5633 0.9330 0.5048 4.0862 3.9735 1.0161
Grd216 1.0728 2.8146 3.4508 0.2505 0.3969 1.0570 0.4705 3.1753 3.6764 1.0998
Grd217 0.9873 1.2981 3.8374 0.2521 0.3977 0.7765 0.4561 3.2586 3.6111 1.8130
Grd218 1.0114 1.2722 3.4805 0.2209 0.3993 0.8101 0.4589 3.2856 3.6622 0.8782

147

Grd219 0.0000 1.2332 3.7432 0.2453 0.4352 0.4910 0.4655 3.1490 3.9674 0.6900
Grd220 0.8903 1.4684 3.9219 0.2314 0.4621 0.6241 0.4246 2.9054 3.5574 0.6687
Grd221 1.2550 1.3286 3.7127 0.2568 0.3888 0.6005 0.4125 3.1903 4.0665 0.6680
Grd222 0.9337 1.3069 3.6523 0.2349 0.4526 0.8829 0.4466 3.0296 4.0186 0.6549
Grd223 0.9873 3.6229 3.6585 0.2313 0.3799 0.7861 0.4561 3.2095 1.5121 0.6600
Grd224 0.9427 2.0733 3.5995 0.2444 0.0000 0.4696 0.4496 3.3046 3.8382 0.5805
Grd225 1.0267 2.2444 3.7619 0.2449 0.4090 0.6396 0.4608 3.3216 3.5935 0.7577
Grd226 0.8663 1.7848 3.8327 0.2482 0.3951 0.6835 0.0000 3.1411 3.6948 0.8821
Grd227 1.0095 1.6806 3.6593 0.2407 0.4069 1.1062 0.4663 3.2481 3.9715 1.5698
Grd228 0.9942 1.2708 3.5245 0.2598 0.4437 0.4664 0.4358 3.1557 3.7334 0.6650
Grd229 0.9876 1.9942 3.7339 0.2565 0.0000 0.8808 0.4666 3.3232 4.4235 0.5475
Grd230 1.0192 2.7734 4.1767 0.2707 0.5805 0.0000 0.4875 3.5260 4.4137 0.6433
Grd231 0.9594 1.5515 4.3249 0.2417 0.4945 0.7410 0.4729 3.1034 4.5225 0.6019
Grd232 0.9260 1.3906 3.7329 0.2476 0.3983 0.6090 0.4543 3.0733 3.8884 0.9483
Grd233 0.9269 1.1966 3.7557 0.2557 0.4091 0.6130 0.4771 3.2504 3.7263 1.1918
Grd234 0.9307 1.8035 3.7296 0.2511 0.4358 0.5618 0.4444 3.1920 3.8235 0.6941
Grd235 0.9159 1.5394 3.8077 0.2342 0.4713 0.5447 0.4415 3.2667 4.0743 0.6529
Grd236 0.9988 2.5288 3.5211 0.2324 0.4006 0.7078 0.4582 3.2194 3.5688 0.7910
Grd237 1.0475 1.5293 3.5066 0.0000 0.3920 0.8683 0.4536 3.0134 3.5674 0.2666
Grd238 0.9624 2.2677 3.7759 0.2462 0.4055 0.7196 0.4638 3.4865 4.0306 0.7545
Grd239 1.2551 1.2109 3.5599 0.2541 0.4312 0.6016 0.4442 3.0575 3.5530 0.6746
Grd240 1.3291 1.7226 3.8348 0.2697 0.4532 0.5980 0.4021 3.2376 3.7985 0.7132
Grd241 1.3831 1.3639 3.8664 0.2664 0.5320 0.0000 0.5237 3.1721 4.3526 0.7326
Grd242 1.0263 2.0717 3.4221 0.2571 0.3906 0.8850 0.4496 3.4369 3.4909 0.2725
Grd243 0.9258 1.8266 3.6216 0.2394 0.4040 0.7415 0.4474 0.0000 3.7385 1.6469
Grd244 0.9169 1.4003 3.8807 0.2489 0.4173 0.7564 0.4230 3.1186 3.7180 0.7972
Grd245 0.9365 1.1378 3.5986 0.2682 0.0000 1.2631 0.5179 3.2613 4.1006 0.7267
Grd246 0.9015 1.7019 3.8369 0.2562 0.4022 0.9223 0.4441 3.2799 3.5622 1.1178
Grd247 1.3654 1.9961 3.4206 0.2476 0.3977 0.8068 0.4766 3.1052 3.4051 0.7192
Grd248 1.1509 3.5823 3.4951 0.2517 0.4131 0.7686 0.4512 3.2555 3.6273 1.0773
Grd249 0.9247 2.4811 3.3639 0.2585 0.3877 0.8122 0.4476 3.0347 3.6856 0.7288
Grd250 1.3881 1.7870 3.6482 0.2529 0.5613 0.7915 0.5252 3.8259 0.0000 0.0000
Grd251 1.0162 1.5317 4.1748 0.2740 0.5567 0.0000 0.5241 3.3786 4.0856 0.7682
Grd252 0.9548 3.0605 4.2118 0.2705 0.5111 0.9997 0.4926 3.6109 4.6699 0.8329
Grd253 0.9241 1.6589 3.3866 0.2567 0.4054 0.6896 0.4718 3.1861 3.9892 0.8079
Grd254 0.9220 1.2297 3.5282 0.2465 0.4404 0.7417 0.3956 3.2799 0.0000 0.6497
Grd255 1.1738 1.3676 3.6335 0.2599 0.3871 0.7276 0.4320 3.3175 3.5876 0.7877
Grd256 1.0815 1.5521 3.6229 0.2449 0.3796 0.8352 0.4615 3.0589 3.7033 0.9581
Grd257 1.0203 1.4950 3.4629 0.2346 0.4230 0.8156 0.4454 3.3512 3.6125 0.8219
Grd258 0.9924 1.8617 3.6819 0.2673 0.4856 0.9388 0.6059 3.5462 4.1591 0.6599
Grd259 0.9115 3.9937 3.6154 0.2423 0.4177 0.9061 0.4504 0.0000 3.2042 1.6930
Grd260 1.2827 1.5969 3.6910 0.2505 0.4062 0.7167 0.4563 3.2005 3.5098 0.8032
Grd261 1.3011 1.4447 3.6055 0.2624 0.4251 0.7345 0.4233 3.3619 3.4549 0.2725
Grd262 0.9531 1.1692 3.6392 0.2602 0.4069 0.7975 0.4235 0.0000 1.5684 0.2903
Grd263 0.9719 3.0566 3.8350 0.2535 0.4114 0.7686 0.4375 3.0916 0.0000 0.8461

148

Grd264 0.8850 1.2311 4.6537 0.3033 0.4788 1.0327 0.6746 3.1939 4.3856 0.5758
Grd265 1.1017 1.4006 3.4437 0.2609 0.3971 0.7585 0.4823 3.2679 3.9902 0.2879
Grd266 1.3723 2.0982 3.7034 0.2444 0.4210 0.7576 0.4623 3.1778 3.8633 1.0323
Grd267 0.9005 1.3111 3.5302 0.2967 0.5129 0.9225 0.5511 3.1152 3.9936 0.8421
Grd268 0.9943 1.6786 3.5423 0.2414 0.4248 0.8878 0.4596 3.3401 3.8716 0.7123
Grd269 1.4105 1.3812 4.4631 0.2595 0.4888 1.0573 0.6237 3.6528 4.2717 0.7105
Grd270 0.9246 1.1848 3.4859 0.2518 0.3695 1.5245 0.4386 3.2602 3.9613 0.8191
Grd271 0.9562 2.0671 3.7790 0.2498 0.3993 0.7262 0.4330 3.1408 3.8540 0.7798
Grd272 1.3816 2.3325 3.5041 0.2481 0.3893 0.7373 0.4624 3.3289 3.5502 0.8290
Grd273 1.0738 1.3266 3.4330 0.2577 0.4029 0.7419 0.4581 3.4594 3.8040 0.8326
Grd274 1.5223 1.7042 4.3337 0.2677 0.5301 0.9575 0.5251 3.1629 4.5473 0.6690
Grd275 1.3273 2.6196 3.8578 0.2675 0.5133 0.9270 0.5550 3.3345 4.5010 0.7493
Grd276 0.9584 1.0669 4.0142 0.2591 0.4139 0.7719 0.4900 3.4429 4.1989 0.2998
Grd277 1.0575 2.0105 3.6598 0.2617 0.3896 1.5316 0.4476 3.4100 3.6509 0.8663
Grd278 0.9233 0.0000 3.2108 0.2436 0.5079 0.9847 0.4766 3.3441 3.6714 0.7610
Grd279 1.0049 1.3245 3.4371 0.0000 0.3895 0.8293 0.4623 3.1601 3.8164 0.8372
Grd280 1.0288 1.4920 3.6133 0.2494 0.4071 0.7929 0.4263 2.9451 3.9210 0.8284
Grd281 14614 2.6651 4.1524 0.2461 0.5242 0.9022 0.5955 3.6482 0.0000 0.7238
Grd282 0.9119 1.8995 3.9533 0.2646 0.4217 0.7436 0.4441 3.3117 3.7817 0.6958
Grd283 1.8988 2.1427 3.7097 0.2435 0.3891 1.8906 0.4477 3.3327 3.4205 0.7914
Grd284 0.8896 2.8861 3.8537 0.2452 0.5308 0.8674 0.4454 3.1562 4.7198 0.8072
Grd285 0.9604 1.7335 3.6383 0.2441 0.3910 1.1625 0.4634 3.2310 3.6586 0.8229
Grd286 0.8872 3.0381 3.7999 0.2596 0.4379 0.6035 0.4405 3.1734 3.8136 0.7183
Grd287 1.2915 2.1138 3.4829 0.2537 0.4621 0.6303 0.4452 3.3005 4.0055 0.7282
Grd288 0.9287 1.4893 3.6644 0.2550 0.4394 0.6661 0.4425 3.3044 3.9252 0.7458
Grd289 0.9138 1.4647 3.9657 0.2569 0.4270 0.6364 0.4405 0.0000 4.2543 0.6260
Grd290 0.9784 2.5169 3.6086 0.2521 0.4285 0.8671 0.4497 3.0834 3.8967 0.6525
Grd291 1.0391 2.5302 4.4298 0.2508 0.5699 1.0082 0.4976 3.4648 4.0656 0.5866
Grd292 0.9113 2.4117 3.6850 0.2764 0.5166 0.9435 0.5173 3.3503 3.9781 0.8731
Grd293 0.9969 1.3725 3.4578 0.2269 0.4348 0.7128 0.4340 3.2910 4.0734 0.7161
Grd294 1.2158 2.2635 3.6015 0.2459 0.3922 0.7798 0.4355 3.4980 3.4263 0.7704
Grd295 1.0853 1.8665 3.6433 0.2629 0.3803 0.7312 0.4742 3.3130 0.0000 0.8488
Grd296 0.9150 2.3572 4.2421 0.2493 0.4285 0.7200 0.4391 3.2843 3.6281 1.0242
Grd297 1.3563 1.2692 3.3694 0.2589 0.3976 1.3665 0.4661 3.3743 3.5733 0.8260
Grd298 1.3478 1.8375 3.3871 0.2639 0.4339 0.8687 0.4559 3.2969 3.8000 0.2789
Grd299 0.9969 1.5832 4.9118 0.2411 0.5298 0.9203 0.5379 3.3601 4.7663 0.7726
Grd300 0.8722 2.8065 3.6641 0.2342 0.4673 0.9324 0.5117 3.5533 3.8924 0.7633
Grd301 0.0000 1.8215 3.5969 0.2381 0.3850 0.7652 0.4336 3.3376 3.4900 1.6742
Grd302 1.0065 1.4016 3.6099 0.2522 0.0000 1.1595 0.4528 3.5814 3.7855 0.9266
Grd303 1.0293 2.0701 4.4658 0.2545 0.5279 1.2069 0.6490 3.7617 4.6356 0.7169
Grd304 0.9809 1.2462 3.5817 0.2425 0.4443 0.6340 0.3818 3.2691 3.7493 0.7282
Grd305 1.1045 1.4106 3.6995 0.2618 0.0000 0.6919 0.4613 3.1942 3.9739 0.7514
Grd306 1.0140 1.6669 3.4635 0.2648 0.4018 1.8332 0.4903 3.1471 3.8572 0.8495
Grd307 0.9432 2.0345 3.5785 0.2335 0.4052 0.7064 0.4285 3.4113 3.9906 0.2962
Grd308 1.1681 1.3857 3.6397 0.2290 0.4129 0.0000 0.4578 3.1259 3.7092 0.7161

149

HB1 0.9138 4.4024 4.3968 0.2521 0.4344 0.8911 0.4491 3.2972 2.9117 0.9280
HB2 1.1320 3.5612 4.4811 0.2432 0.3580 0.8450 0.4506 3.0419 3.3527 0.9555
HB3 0.9269 7.4568 4.3252 0.2659 0.3820 0.7071 0.4799 3.0799 1.5691 1.2550
HB4 0.9877 3.3876 3.7512 0.2536 0.3964 0.6685 0.4406 3.1936 3.7442 0.7699
HB5 0.8962 4.7641 4.1804 0.2342 0.3925 0.9697 0.4195 2.8018 1.5313 0.9658
HB6 0.9267 4.8024 3.9612 0.2482 0.3889 0.6206 0.5134 3.3241 1.5329 1.1554
HB7 0.9553 5.4053 3.8898 0.2487 0.3913 0.5693 0.4670 3.0825 1.4739 1.1050
HBS8 0.9659 2.5799 4.2665 0.2489 0.4004 0.6212 0.4671 3.1099 3.0722 0.7928
HB9 1.0791 3.2337 4.7668 0.2912 0.4563 0.5400 0.4645 4.5554 3.3096 1.1491
HB10 0.9238 2.9086 4.4039 0.2552 0.4665 0.4883 0.4659 3.1362 3.2510 0.6673
HB11 0.9797 4.2323 4.3227 0.2705 0.3700 0.7300 0.4841 3.1629 2.9863 1.2692
HB12 1.2509 6.9374 4.1049 0.3295 0.4695 0.6656 0.4028 3.2743 3.7238 1.0926
HB13 0.9812 9.4351 4.8708 0.2524 0.3899 0.6933 0.4701 3.1465 1.4287 1.0723
Rdm1 0.9725 4.4966 5.5431 0.2511 0.5273 0.5056 0.4873 3.8525 3.5568 0.9342
Rdm?2 0.9701 4.5530 4.2698 0.2401 0.3547 0.7003 0.0000 3.0369 1.5721 1.0173
Rdm3 1.1570 2.6678 3.9518 0.2323 0.4150 0.6927 0.4693 3.1344 3.4488 0.6482
Rdm4 0.9585 5.7842 3.9735 0.2435 0.5241 0.8948 0.5110 3.4552 4.1994 1.0062
Rdm5 0.9311 2.2299 4.1145 0.2430 0.3983 0.6585 0.4476 3.2836 3.8519 0.9444
Rdm6 0.9582 5.5148 5.0571 0.2303 0.5562 0.7381 0.4627 3.6327 4.1251 1.1523
Rdm7 1.0870 3.1483 3.9239 0.2493 0.4038 0.6926 0.4591 3.1880 3.2150 1.0158
Rdm8 0.8800 5.4025 4.4105 0.2205 0.4068 0.4014 0.5119 3.5652 3.3674 0.9953
Rdm9 0.9240 5.8709 3.7288 0.2362 0.4340 0.5822 0.4554 3.2185 3.9133 0.9320
Rdm10 1.0146 4.8588 3.6053 0.2761 0.3635 0.8039 0.0000 2.7166 1.4745 1.0444
Rdm11 1.1585 5.8920 4.1040 0.2318 0.3751 0.7231 0.4775 2.8996 1.5532 1.0229
Rdm12 0.8538 4.1575 3.7503 0.2370 0.4664 0.6035 0.3870 3.4936 3.6947 0.6889
Rdm13 0.9555 2.8956 4.0682 0.2465 0.4198 0.6850 0.4695 3.9547 3.1886 1.0074
Rdm14 1.0500 4.7672 3.9847 0.2363 0.3772 0.6923 0.4512 3.2646 1.5835 1.0063
Rdm15 0.9545 4.0243 4.4469 0.2454 0.3649 0.6069 0.5003 3.5582 3.1538 0.8600
Rdm16 0.9521 5.8499 4.6452 0.2346 0.4693 0.5187 0.4777 3.5779 3.1333 0.8835
Rdm17 0.9029 3.7426 5.6012 0.2447 0.5504 0.8722 0.0000 3.4209 4.6992 0.3305
Rdm18 0.9650 3.6309 3.3873 0.2721 0.4085 0.7009 0.4689 3.1634 1.4632 1.0878
Rdm19 1.0796 2.4110 4.3663 0.2850 0.4439 0.6849 0.4821 4.0998 3.5179 1.1074
Rdm20 0.9940 3.3759 4.8715 0.2620 0.4329 0.6688 0.4755 3.3817 2.8790 1.0061
Rdm21 0.9547 3.1324 5.0580 0.2451 0.4354 0.6482 0.0000 2.7107 3.5358 1.0484
Rdm22 0.8964 2.0151 4.5181 0.2567 0.5550 0.5865 0.6745 3.5707 4.0700 1.1622
Rdm23 1.0923 3.2968 5.3857 0.2649 0.4374 0.6869 0.4177 3.5464 3.3779 1.4526
Rdm24 1.0303 5.2761 3.4944 0.3234 0.4665 0.6866 0.5604 3.6836 3.7740 1.2108
Rdm25 1.0288 4.8328 5.3079 0.2835 0.4930 0.6245 0.5824 3.5518 4.2185 1.2377
Rdm26 0.9427 3.5963 4.1387 0.2415 0.4419 0.6195 0.4350 3.6188 3.2960 1.0031
Rdm27 0.0000 3.4623 4.4650 0.0000 0.4509 0.5182 0.3980 4.0016 3.9599 1.0729

150

Appendix F: Calculated rates of
Optimality, Proximity and
Under-performance for each
configuration candidate tested on
shortened sequences

151

Configuration Name Ao (%) Ap (%) Au (%)

Genl 50 20 30
Gen2 50 0 50
Gen3 40 0 40
Gen4 60 20 20
Gen5 70 20 10
Gen6 50 20 20
Gen7 50 20 30
Gen8 60 20 20
Gen9 70 0 30
Genl0 40 20 40
Genll 50 30 20
Genl2 70 20 10
Genl3 20 10 60
Genl4 50 30 20
Genl5 60 10 20
Genl6 60 20 20
Genl7 50 10 40
Genl8 70 10 20
Genl9 30 50 20
Gen20 40 10 40
Gen21 90 0 10
Gen22 70 0 30
Gen23 60 20 20
Gen24 70 0 30
Gen25 70 10 20
Gen26 50 20 30
Gen27 70 10 20
Gen28 60 30 10
Gen29 50 20 30
Gen30 70 10 20
Gen31 40 0 60
Gen32 70 0 30
Gen33 60 0 30
Gen34 50 10 30
Gen35 60 10 30
Gen36 60 10 30
Gen37 50 40 10
Gen38 40 40 20
Gen39 60 0 40
Gen40 20 30 50
Gen41l 60 10 20
Gen42 30 20 40
Gen43 40 20 30

152

Gen44
Gen45
Gen46
Gen4d7
Gen48
Gen49
Gen50
Gen51
Gen52
Gen53
Gen54
Gen55
Gen56
Gen57
Gen58
Gen59
Gen60
Gen6l
Gen62
Gen63
Gen64
Gen65
Gen66
Gen67
Gen68
Gen69
Gen70
Gen71
Gen72
Gen73
Gen74
Gen75
Gen76
Gen77
Gen78
Gen79
Gen80
Gen81
Gen82
Gen83
Geng4
Gen85
Gen86
Gen87

40
50
50
50
30
60
50
80
50
50
50
40
60
50
40
50
30
40
60
50
60
40
60
50
80
50
20
70
50
60
30
50
70
40
60
60
60
60
40
40
50
50
40
40

20
10
20
20
10
20
20
10

30
20

10
10
10

20

o

30
20

10

40
10
10
10
10
20
20
30

o

10
10

20
10

20
30
20
30
50
10
20
10
50
20
30
50
30
40
50
50
50
60
40
50
10
40
40
40
10
40
30
10
30
30
50
30
10
30
40
30
40
30
30
50
30
40
60
40

153

Gen88

Gen89

Gen90

Gen91l

Gen92

Gen93

Gen94

Gen95

Gen96

Gen97

Gen98

Gen99

Genl00
Genl01
Genl102
Genl03
Genl04
Genl05
Genl06
Genl107
Genl08
Genl109
Genll0
Genlll
Genll2
Genll3
Genll4
Genll5
Genll6
Genll7
Genll8
Genl19
Genl20
Genl21
Genl22
Genl23
Genl24
Genl125
Genl26
Genl27
Genl28
Genl129
Genl130
Genl31

60
60
40
60
50
50
40
60
50
40
70
60
70
50
60
50
60
60
70
40
50
30
50
50
60
40
50
30
60
50
30
40
70
60
70
80
40
50
60
40
60
40
50
60

30
30
20
30
50
30
50
20
20
30
20
30
10
30
30
40
40
20
20
30
50
50
50
20
20
50
30
30
30
50
50
40
30
20
30
20
40
40
40
40
30
50
40
20

154

Genl132
Genl133
Genl34
Genl135
Genl136
Genl37
Genl138
Genl39
Genl40
Genl4dl
Genl42
Genl43
Genl44
Genl145
Genl46
Genl47
Genl148
Genl49
Genl50
Genl51
Genl152
Genl153
Genl54
Genl155
Genl56
Genl57
Genl158
Genl59
Genl60
Genl6l
Genl62
Genl63
Genl64
Genl65
Genl66
Genl67
Genl68
Genl69
Genl70
Genl71
Genl72
Genl73
Genl74
Genl75

60
50
70
50
70
50
40
50
50
70
50
60
60
70
60
70
60
60
60
60
70
40
70
70
50
30
50
40
80
60
50
40
50
50
70
40
30
60
70
40
50
40
70
50

40

10

10

20
10
10
20
20
20
20

10
20

10
40

10
10
20

10
40
10
10
30
10

10
20

30
10
30
10
10

40
10
30
40
30
30
40
50
20
20
40
20
20
10
20
30
30
30
20
30
20
20
30
30
20
50
20
50
20
10
10
40
40
20
20
60
60
20
20
20
40
30
20
40

155

Genl76
Genl77
Genl78
Genl79
Genl180
Genl81
Genl182
Genl83
Genl84
Gen185
Grdl
Grd2
Grd3
Grd4
Grd5
Grd6
Grd7
Grd8
Grd9
Grd10
Grdl1l
Grd12
Grd13
Grd14
Grd15
Grd16
Grd17
Grd18
Grd19
Grd20
Grd21
Grd22
Grd23
Grd24
Grd25
Grd26
Grd27
Grd28
Grd29
Grd30
Grd31
Grd32
Grd33
Grd34

40
50
60
40
60
60
60
70
20
60
40
30
60
60
30
30
50
60
40
30
40
70
30
40
30
70
40
40
40
30
40
30
60
50
60
40
50
30
60
30
40
60
30
40

10
10
20
10

20
10
10
10
10
20
10

10
10

10

10

10
10

20
20

20

10
10

20
10
10
30

10
10
20
10
10

50
30
30
40
30
40
20
20
60
30
50
50
30
20
50
60
40
40
50
70
60
20
70
50
60
30
40
30
60
50
60
60
30
50
20
50
40
40
30
60
40
20
50
50

156

Grd35
Grd36
Grd37
Grd38
Grd39
Grd40
Grd41l
Grd42
Grd43
Grd44
Grd45
Grd46
Grd47
Grd48
Grd49
Grd50
Grd51
Grd52
Grd53
Grd54
Grd55
Grd56
Grd57
Grd58
Grd59
Grd60
Grd6l
Grd62
Grd63
Grd64
Grd65
Grd66
Grd67
Grd68
Grd69
Grd70
Grd71
Grd72
Grd73
Grd74
Grd75
Grd76
Grd77
Grd78

60
50
40
50
40
70
40
30
50
40
60
40
70
70
40
50
60
50
30
30
40
40
40
40
50
40
50
40
40
60
50
40
40
40
60
50
60
30
40
50
60
40
50
30

20
20

20
10
10
20
10
10

10
30

10
10
10
10
20

20
10
10
10
10
10
20

10
20

20
10
10
20

10
10
20

30

20
30
60
30
50
20
40
60
40
60
30
30
30
20
40
30
20
20
70
60
40
50
50
50
40
50
30
60
60
30
30
60
50
40
30
40
20
70
40
40
20
50
20
70

157

Grd79
Grd80
Grd81
Grd82
Grd83
Grdg4
Grd85
Grd86
Grd87
Grd88
Grd89
Grdo0
Grdol
Grd92
Grd9o3
Grdo4
Grd95
Grdo6
Grd97
Grd9s8
Grd99
Grd100
Grd101
Grd102
Grd103
Grd104
Grd105
Grd106
Grd107
Grd108
Grd109
Grd110
Grd111
Grd112
Grd113
Grd114
Grd115
Grd116
Grd117
Grd118
Grd119
Grd120
Grd121
Grd122

50
90
40
40
50
40
60
60
70
40
50
40
30
60
60
60
70
40
40
50
50
40
70
30
40
70
50
50
40
50
30
50
50
30
50
50
40
60
50
60
50
60
50
50

20

30
10
20
10
10

10
10
10

20

30

10
20

o

10

oo

10
10

10
20
20
10
20
10

20
30

10
20
10

30
10
30
40
30
50
20
40
30
50
40
50
70
20
40
10
20
40
60
50
50
40
30
70
60
30
20
40
40
40
60
20
20
60
30
40
60
20
20
40
50
30
20
40

158

Grd123
Grd124
Grd125
Grd126
Grd127
Grd128
Grd129
Grd130
Grd131
Grd132
Grd133
Grd134
Grd135
Grd136
Grd137
Grd138
Grd139
Grd140
Grd141
Grd142
Grd143
Grd144
Grd145
Grd146
Grd147
Grd148
Grd149
Grd150
Grd151
Grd152
Grd153
Grd154
Grd155
Grd156
Grd157
Grd158
Grd159
Grd160
Grdl161
Grd162
Grd163
Grd164
Grd165
Grd166

50
50
50
70
70
60
40
80
60
60
50
50
50
30
50
60
40
60
50
50
70
40
40
70
60
20
60
70
70
40
50
40
50
30
60
60
60
60
30
40
50
40
60
60

20
40
20

10
10
20

20
20
20
20

10
10
10
20
10
20
20
10
10
10
10
10
20
20
10

30

10
10

10
10

10
10
20
20
10

30
10
30
30
10
20
20
20
20
20
30
30
50
50
40
30
30
30
30
30
20
50
30
20
30
30
20
20
30
30
50
40
30
70
40
30
30
40
70
50
30
40
20
20

159

Grd167
Grd168
Grd169
Grd170
Grd171
Grd172
Grd173
Grd174
Grd175
Grd176
Grd177
Grd178
Grd179
Grd180
Grd181
Grd182
Grd183
Grd184
Grd185
Grd186
Grd187
Grd188
Grd189
Grd190
Grd191
Grd192
Grd193
Grd194
Grd195
Grd196
Grd197
Grd198
Grd199
Grd200
Grd201
Grd202
Grd203
Grd204
Grd205
Grd206
Grd207
Grd208
Grd209
Grd210

50
50
70
40
70
60
40
30
60
50
50
70
50
70
60
40
60
70
30
60
60
50
30
40
60
80
60
70
30
40
60
70
30
50
40
60
30
50
40
70
70
30
60
60

20
20

o

10
20
20
10
20
30

10
10
10
10

30
20
10
10
20
30
20

10

10
40
20
10
10
20
40

20

20

10

10

10
10

20
30
30
60
20
30
30
40
30
30
20
30
30
20
30
30
40
30
30
20
30
40
50
30
10
20
30
30
60
20
20
20
60
30
20
40
50
50
30
20
20
70
30
10

160

Grd211
Grd212
Grd213
Grd214
Grd215
Grd216
Grd217
Grd218
Grd219
Grd220
Grd221
Grd222
Grd223
Grd224
Grd225
Grd226
Grd227
Grd228
Grd229
Grd230
Grd231
Grd232
Grd233
Grd234
Grd235
Grd236
Grd237
Grd238
Grd239
Grd240
Grd241
Grd242
Grd243
Grd244
Grd245
Grd246
Grd247
Grd248
Grd249
Grd250
Grd251
Grd252
Grd253
Grd254

40
40
80
40
30
50
60
70
60
70
60
70
80
80
50
70
50
60
30
30
50
70
50
80
80
70
60
50
50
60
40
50
60
70
50
60
60
50
70
30
30
30
60
70

40
30
20
60
70
40
30
30
20
20
20
30
10
10
20
20
40
30
30
60
30
10
20
20
20
30
30
20
30
40
50
30
30
20
40
30
30
40
20
50
50
60
20
20

161

Grd255
Grd256
Grd257
Grd258
Grd259
Grd260
Grd261
Grd262
Grd263
Grd264
Grd265
Grd266
Grd267
Grd268
Grd269
Grd270
Grd271
Grd272
Grd273
Grd274
Grd275
Grd276
Grd277
Grd278
Grd279
Grd280
Grd281
Grd282
Grd283
Grd284
Grd285
Grd286
Grd287
Grd288
Grd289
Grd290
Grd291
Grd292
Grd293
Grd294
Grd295
Grd296
Grd297
Grd298

50
50
50
30
50
70
40
60
60
50
50
40
50
40
30
80
70
50
50
40
30
30
50
40
50
70
40
60
60
70
60
60
60
60
50
60
40
40
60
60
50
60
40
50

20
20
20

10

20
20
20

10
20

30
10

10
20
20

10
40
20
20
10

10
10

20
20
10
20
30
10
10
10

10

30

30
30
30
70
30
30
40
10
10
50
40
40
50
30
60
20
20
30
30
60
60
30
30
30
30
30
50
30
30
30
20
20
30
20
10
30
50
50
40
40
30
40
30
50

162

Grd299
Grd300
Grd301
Grd302
Grd303
Grd304
Grd305
Grd306
Grd307
Grd308
HB1
HB2
HB3
HB4
HB5
HB6
HB7
HB8
HB9
HB10
HB11
HB12
HB13
Rdm1
Rdm2
Rdm3
Rdm4
Rdm5
Rdm6
Rdm?7
Rdm8
Rdm9
Rdm10
Rdm11
Rdm12
Rdm13
Rdm14
Rdm15
Rdm16
Rdm17
Rdm18
Rdm19
Rdm20
Rdm21

40
50
50
40
30
60
40
50
70
60
60
60
50
70
80
60
60
60
30
60
40
30
50
40
60
50
20
70
20
60
50
60
50
50
60
30
70
50
40
50
50
20
20
40

10

10
10
10
20
20

10
10
10
10
10
10
10
20
30
30
10
20
10
10
20
20
10
20
40
20
30

20
20

20
10
40
10
20
30
10
20

50
20

50
50
30
40
60
20
30
50
20
20
30
30
40
20
10
20
10
10
60
20
50
60
30
40
20
30
40
10
50
40
30
20
40
30
30
30
20
30
30
30
30
80
30
30

163

Rdm22
Rdm23
Rdm24
Rdm25
Rdm26
Rdm27

40
30
10
20
50
40

10

10
10
20

50
70
80
70
30
40

164

Appendix G: Full Sequence Test
Results: ATE evaluation per
testing sequence

165

LG8L0
00c¢L0
99180
1G0T°T
46080
900T'T
L990°T
€4L6°0
6940°T
0TS

€809°¢ | LECC'E | G8CY'0 | GECR0 | 0L8E°0 | G68¢°0 | ¥1GL'G | SOVCC | 687670 GecPId
906L°€ | Lc9¢°€ | O8TV0 | SVELO | L68E0 | 8O6C'0 | GEEL™G | STECC | 905670 Veepr)
GR9G°E | 19€T°E | €EVEV'0 | 9L¥8°0 | ¢48€°0 | OV6C°0 | 9TGC'G | 8V9EC | G8IC'T ¢oTPLD
P8YG'T | LG80'€ | 94G¥°0 | FOGL'0 | 6€TF°0 | 9G9€°0 | 699€°9 | 069C°G | 0LL6°0 GdH
68¢Y°€ | 87V0¢°€ | YOPYP'0 | T998°0 | GTLEO | PEOE0 | 7¢94°G | €60€°¢C | 06CC T A4
8VCS'T | ¢80T°€ | I8LY'0 | L&BLO | 61EV0 | ¢6€€0 | 68Y9°G | L669°G | 65670 89U9H)
TERY'T | L8ET'C | G¥PP 0 | 0T9L°0 | €507°0 | 9¢CC0 | TSPY9 | I88E°S | ¥196°0 [REREND)
LLOGE | 9LLTE | LEEV'O | TI8L'0 | 889€°0 | 9€0€°0 | 8689°G | ¥IVEC | TGLT'T 08PID
G691 | ¥9CT°E | LVPP'0 | 68LL°0 | 868€°0 | ¢E€VE0 | 66¢V9 | TIOT'S | 9LL6°0 Teuo)
605 805 L0S 905 G0S €0S ¢0S 10S 00S oueN
oouanbes 1ad pojernores v uo1)RINSYuo))

"soouenbos Fur)se) o) JO Yord UO 9)RPIPURD UOIRINSHUOD ORI I0J Paje[nuofed IV 1Y) 9[qR]

166

Appendix H: Configurations’
Performance on each of the KITTI
Sequences

167

ATE value

ATE Value

142

1.37

132

127

122

1.17

112

1.07

1.02

0.97

0.92

6.9

5.9

4.9

3.9

2.9

1.9

I+

Configurations' Performance on Sequence 00

* *
*. = | ower bound
+ Mean ATE
- - = Upper bound
: L : .

Gn21 Gr80 Gn51 Gn68 Gr223 HBS Grl92 Gr224 Gr235

Configuration

Configurations' Performance on Sequence 01

= Lower bound
¢ Mean ATE

= Upper bound

.
lel

*

*
*

Gn21 Gr80 Gn51 Gn68 Gr223 HB5 Grl92 Gr224 Gr235

Configuration

168

ATE Value

ATE value

6.7

6.5

6.3

6.1

5.9

5.7

55

53

51

0.38

0.36

0.34

0.32

03

0.28

0.26

0.24

*

Configurations' Performance on Sequence 02

* *
*
- = - = Lower bound
. . . U ¢ o Mean ATE
- . = Upper bound
.

Gn21 Gr80 Gn51 Gn68 Gr223 HBS Gr192 Gr224 Gr235

Configuration

Configurations' Performance on Sequence 03

= Lower bound

I+
.|

+ Mean ATE

BN

[EX
1+

= Upper bound

Gn2l Gr80 Gn51 Gn68 Gr223 HB5 Grl92 Gr224 Gr235

Configuration

169

ATE Value

ATE Value

0.49

0.47

0.45

0.43

0.41

0.39

0.37

0.35

1.05

0.95

0.85

0.75

0.65

0.55

D

Configurations' Performance on Sequence 05

= Lower bound
. - * Mean ATE

. . Upper bound

*

Gn21 Gr80 Gn51 Gn68 Gr223 HB5 Grl92 Gr224 Gr235

Configuration

Configurations' Performance on Sequence 06

i = Lower bound

¢ Mean ATE

leo
*

Upper bound

Gn21 Gr80 Gn51 Gn68 Gr223 HB5 Gr192 Gr224 Gr235

Configuration

170

0.52

0.5

0.48

0.46

ATE Value

0.44

0.42

0.4

3.55

3.45

3.35

3.25

ATE Value

3.15

3.05

2.95

D

D

Configurations' Performance on Sequence 07

*

= Lower bound
¢ Mean ATE

Upper bound

.

Gn21 Gr80 Gn51 Gn68 Gr223 HB5 Grl92 Gr224 Gr235

Configuration

Configurations' Performance on Sequence 08

Gn21 Gr80 Gn51 Gn68 Gr223 HBS

Configuration

171

= Lower bound
- ¢ Mean ATE

Upper bound

Gr192 Gr224 Gr235

ATE Value

ATE Value

4.4

3.9

3.4

2.9

2.4

1.9

1.4

1.2

1.1

0.9

0.8

0.7

0.6

D

D

Configurations' Performance on Sequence 09

*

L 4

= Lower bound
¢ Mean ATE
Upper bound

Gn21 Gr80 Gn51 Gn68 Gn223 HB5 Gnl92 Gn224 Gn235

Configuration

Configurations' Performace on Sequence 10

*

Gr21

Gn80 Gr51

= Lower bound
° ¢ Mean ATE

Upper bound

Gr68 Gr223 HB5 Grl92 Gr224 Gr235

Configuration

172

	Introduction
	Motivation
	Limitations
	Contributions
	Outline

	Background
	Simultaneous Location and Mapping
	ORB-SLAM2

	Absolute Trajectory Error
	Hyperparameter Optimization
	Brute-Force Approach
	Brute-force approach in SLAM

	Search-based Approach
	Grid Search
	Random Search
	Search-based approaches in SLAM

	Model-based Approach
	Black-Box Optimization
	Bayesian Optimization
	Hybrid Algorithms
	Model-based approaches in SLAM

	Learning-based Approach
	Learning-based approach in SLAM

	Population-based Approach
	Evolutionary Algorithms
	Simulated Annealing
	Multi-Fidelity Optimization
	Model Learning Curve
	Successive Halving
	Hyperband
	Population-based approaches in SLAM

	Chapter Summary

	Methodology
	Environmental Setup and Constraints
	Environmental Setup
	Modified SLAM System
	Performance Metric Evaluation
	Constraints

	Parameter Selection
	ORB-SLAM2's Parameters
	Computational Cost Reduction
	Parameter Influence
	Spearman's Correlation Calculation
	Spearman's Correlation Results

	Benchmark Selection
	Confidence Interval

	Model-free Algorithms
	Grid Search
	Random Search
	Genetic Algorithm
	Hyperband

	Chapter Summary
	Environmental Setup
	Parameter Selection
	Benchmark Selection
	Optimization Algorithms

	Experiments and Results
	Experimental Setup
	Training Evaluation
	Testing Evaluation

	Sequence Training Results
	Grid Search
	Random Search
	Genetic Algorithm
	Hyperband
	Configuration Candidates

	Testing Results
	Shortened Sequence Testing
	Full Sequence Testing
	Final Results

	Conclusions
	Future Work

	Bibliography
	Appendix A: ORB-SLAM2 Parameters and Values
	Appendix B: Spearman Correlation Full Results
	Appendix C: Algorithm Training: Configuration Results
	Appendix D: Selected Trained Configurations
	Appendix E: Shortened Sequence Test Results: ATE evaluation per testing sequence
	Appendix F: Calculated rates of Optimality, Proximity and Under-performance for each configuration candidate tested on shortened sequences
	Appendix G: Full Sequence Test Results: ATE evaluation per testing sequence
	Appendix H: Configurations' Performance on each of the KITTI Sequences

