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Abstract

Ultrafast terahertz (THz) microscopy is an emerging field of research that leverages the imaging

of picosecond electric field transients to explore free carrier responses from a near-field per-

spective. This thesis presents the first effort made to use an electro-optic imaging system to

probe the subpicosecond changes in electron conductivity that can be induced by the intervalley

scattering of conduction band electrons. Intervalley scattering will lower the overall conduc-

tivity in n-doped In0.53Ga0.47As thin films. The lowering of conductivity (and the subsequent

enhancement of transmission) is herein referred to absorption bleaching. A near-field approach

is necessary to properly understand intervalley scattering, since subpicosecond modulations in

material conductivity give rise to a rectified THz pulse. Imaging in the near-field enables us to

capture the rectified components of the transmitted electric fields before diffraction occurs. The

presence of the rectified components is emphasized by looking to the time-domain evolution of

the total electric field transmitted electric fields.

We use a standard open aperture z-scan to characterize absorption bleaching in n-doped

In0.53Ga0.47As thin films. This is the baseline from which a near-field electro-optic imaging

z-scan is compared. Contrasting the baseline measurements to the results of the imaging

z-scan, we find that the energies calculated from the ultrafast imaging z-scan follow nearly the
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same trend as the benchmark measurements. This marks the first evidence that a near-field

electro-optic measurement of a transmitted THz electric field contains signatures which indicate

THz-induced intervalley scattering is occurring in In0.53Ga0.47As thin films.

In previous work, it was shown that the rectification of THz pulses can produce an asym-

metric waveform, which, when integrated does not converge to zero. For the first time, we

experimentally measure this on sub-picosecond time-scales by using a near-field electro-optic

sampling system to measure THz waveforms in the near-field. Intense THz pulses passing

through only a semi-insulating InP wafer are shown to possess no net asymmetry, whereas in-

tense THz pulses passing through a negatively doped In0.53Ga0.47As epilayer grown on a lattice

matched InP substrate are shown to diverge significantly. To interpret this result, we invoke

a dynamic Drude model of conductivity that can be used to simulate nonlinear transmission.

We find that the simulation is able to generate integrated THz electric fields that share similar

features to those from experiment. This indicates that intervalley scattering is a material process

that is capable of inducing subpicosecond changes in the transmitted electric field of intense

THz pulses.
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Chapter 1

Introduction

The imaging of spatio-temporal characteristics of physical phenomena has origins dating back

to the Sallie Gardner experiment conducted by Eadweard Muybridge in 1878 [1]. In this

experiment, the mechanics of a galloping horse were demonstrated by putting together a series

of still-frame images taken as a horse galloped along a track. This provided irrefutable proof

that horses do not gallop with both front hoofs outstretched. The connection between the

Muybridge experiment and the thesis at hand, is that time-domain imaging is still being used

today, albeit in different bands of the electromagnetic spectrum. In this thesis, we will restrict

our discussion to time-resolving the electric fields of intense pulses of light within the terahertz

(THz) band of the electromagnetic spectrum. These pulses typically have frequencies between

0.1 and 3 THz, as shown in Fig. 1.1.

Nearly 100 years after the Muybridge experiment, the first images in the THz region of the

electromagnetic spectrum were taken [2]. The utility of imaging in this regime was recognized

for applications in measuring the spectral fingerprints of gases with permanent dipole moments,

contrasting bone from fatty tissue, and uncovering dangerous objects that would be otherwise

concealed at optical wavelengths [2]. In 1995, coherent time-domain detection of pulsed THz

radiation was used to measure the spatio-temporal evolution of THz pulses, as they transmitted

through a semiconductor integrated circuit, and a leaf at various stages of drying [3]. By raster
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Fig. 1.1 The electromagnetic spectrum, with emphasis on the THz and visible spectral bands. A
standard THz pulse is shown on the bottom left, alongside it’s Fourier amplitude spectrum.
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Fig. 1.2 Key results from Ref. [3]. (a) Diagram of the raster scanning method used by Hu and
Nuss to create THz images. (b) THz image of an integrated circuit. (c) THz images of a drying
leaf. The left image of (c) was taken close to the time that the leaf was picked, and the right
image was taken 48 hours later. (Adapted from [3])

scanning samples across the focus of a THz pulse (Fig. 1.2 (a)), the time-domain transmission

waveforms could be measured pixel-by-pixel. Thus, a movie of THz transmission through

a sample could be reconstructed. By Fourier transforming the time-domain waveforms, the

spectral images could be easily calculated, and are used to highlight regions of high reflectivity

(Fig. 1.2 (b)), as well as regions of high absorption (Fig. 1.2 (c)).

In recent years, THz researchers are taking advantage of electro-optic techniques to perform

time-domain imaging on sub-picosecond time scales [4, 5], far surpassing the millisecond

time scales of Sallie Gardner’s day. The spatial resolution of THz imaging systems have also

improved, as near-field microscopes are able to achieve λ/600 at 0.1 THz using electro-optic

methods [6], λ/1000 by coupling THz pulses to atomic force microscopes [7], and even atomic

resolution by coupling THz pulses to scanning tunneling microscope tips [8, 9]. In the present

work, we are interested in using an electro-optic THz imaging system to capture the spatial and

temporal profiles of a THz pulse as it emerges through various semiconductors. Our reason for

doing so is to extend the work on near-field THz imaging into the realm of high-field electron

transport in n-doped In0.53Ga0.47As , which, to our knowledge, no one has done before. Doing

this we hope to identify intervalley scattering of conduction band electrons as the physical
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origin of the near-field dipole radiation patterns seen in previous work [10].

In June of 2009 it was demonstrated that a transient enhancement of transmission (absorption

bleaching) occurs when an intense few-cycle THz pulse passes through photoexcited GaAs

[11]. The mechanism driving absorption bleaching was found to be intervalley scattering of

conduction band electrons, which built on the work done by Razzari et al. [12]. Razzari et al.

showed that n-doped InGaAs samples exhibit a similar transient absorption bleaching induced

solely by the presence of intense THz pulses [12]. Expanding on these results near the surface

of the sample, Ayesheshim K. Ayesheshim used a microwave coaxial probe to measure the THz

waveforms near the surface of a sample identical to the one used by Razzari et al. [10]. Although

bandwidth limited by the electronic probe, Ayesheshim measured transmitted THz waveforms,

and through simulations, he was able to connect intervalley scattering to the rectification of

THz pulses that traversed n-doped In0.53Ga0.47As thin-films. Using an electro-optic imaging

system to chieve subpicosecond time resolution of the transmission of intense THz pulses,

we hope to overcome the bandwidth limitation of the microwave coaxial probe. Furthermore,

the rectification of intense THz pulses was not seen in the far-field THz waveforms since

low-frequency components diffract very quickly from the surface of transmission [10]. This

makes a near-field approach absolutely necessary in our present effort to capture the rectified

components of an intense THz pulse passing through an n-doped In0.53Ga0.47As epilayer on

subpicosecond timescales.

In Chapter 2 of this thesis, we discuss the principles behind generating and detecting THz

radiation. Chapter 3 connects the theoretical framework from Chapter 2 to the electro-optic

imaging system. Chapter 4 builds the dynamic Drude model of the intervalley scattering of

conduction band electrons, establishing the connection between material conductivity and

transmissivity. In Chapter 5 we present the results of benchmark open-aperture z-scans, and

use these as a comparison for the results of an ultrafast imaging z-scan. This is the first

demonstration that an electro-optic imaging system can be a novel method for characterizing the

4



field-dependent behavior of nonlinear transmission. In chapter 5 we also use a near-field electro-

optic sampling system to observe the subpicosecond rectification of an intense THz pulse.

We then present the results of a first attempt to use a dynamic Drude model of conductivity

to explain the rectification of intense THz pulses. In Chapter 6 conclusions and outlook are

presented.
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Chapter 2

Generation and detection of intense THz

pulses

2.1 Generating THz pulses

2.1.1 Generation Principle: Optical rectification

Maxwell’s equations can be combined in such a way as to provide the classical description

of light and its propagation through matter. The derivation of the following wave equation is

relegated to Appendix B.4. For now, let’s proceed with analyzing the nonlinear wave equation

in order to get a feel for the components that are responsible for the generation of intense THz

pulses.

In general, the wave equation presented in eqn. 2.1 encompasses the linear ( P(1)) and

nonlinear effects of a macroscopic polarization (PNL) induced by an external electric field (E)

that is propagating at the speed of light (c)

∇2E− 1
c2

∂ 2E
∂ t2

= μo
∂ 2P(1)

∂ t2︸ ︷︷ ︸
Linear term

+μo
∂ 2PNL

∂ t2︸ ︷︷ ︸
Nonlin. term

. (2.1)
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2.1 Generating THz pulses

By bringing over the linear term onto the left hand side, and noting that (1+χ(1)) = ε(1) and

P(1) = εoχ(1)E, we arrive at the nonlinear wave equation for an electric field in matter

∇2E− ε(1)

c2
∂ 2E
∂ t2

= μo
∂ 2PNL

∂ t2
. (2.2)

On the left hand side, the only alteration that occurs is the coefficient 1/c2 becoming ε(1)/c2.

This signifies that to first order the presence of matter slows down the propagation of light by a

factor c→ c/
√

ε(1) = c/n. Furthermore, the right hand side behaves mathematically as a source

term that is characterized by the nonlinear polarization effects induced by the applied electric

field. At weak fields, only the linear term is important, and the right hand side is effectively

zero. In the high field limit we can expand the nonlinear terms into higher order polynomials of

ever increasing electric field order

PNL =
1
2

εoχ(2)E(r, t)E(r, t)+
1
6

εoχ(3)E(r, t)E(r, t)E(r, t)+ ... (2.3)

where, χ(n) is the nth-order susceptibility tensor. In a noncentrosymmetric material, the lowest-

order contribution to the polarization is second order in electric field strength (E2 term in

eqn. 2.3) [13]. Optical rectification is a second order nonlinearity, and so noncentrosymmetric

materials like ZnTe and stoichiometric LiNbO3 (sLN) are used to generate THz pulses. Since

the second order term is the dominating term in the nonlinear expansion of eqn. 2.3, the

nonlinear polarization can be approximated as as

PNL ≈ 12εoχ(2)|E(r, t)|2. (2.4)

Equation 2.4 will be used as the source term in eqn. 2.2. Considering the case of a noncen-

trosymmetric material experiencing a pulsed electric field having a carrier frequency ωo, and a

Gaussian envelope characterized by the duration τ ,

E(t) = Eoe−t2/τ2 cos(ωot) (2.5)
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2.1 Generating THz pulses

the nonlinear polarization takes the form of a rectified field [13, 14]. Another way to phrase this

is that there exist amplitudes centered on zero frequency, which is easily seen by substituting

eqn. 2.5 into eqn. 2.4, as,

PNL =
E2o εoχ(2)

4

⎛⎜⎝ e−2t
2/τ2︸ ︷︷ ︸

Zero centered

+e−2t
2/τ2 cos(2ωot)︸ ︷︷ ︸
Freq. doubled

⎞⎟⎠ . (2.6)

Therefore in noncentrosymmetric media, there is a transient, rectified polarization that occurs.

This is a key element in generating radiation through optical rectification, as it can be shown

that far away from the transient polarization, an electric field can be detected with the form

[14–16]

E ∝
∂ 2PNL

∂ t2
(2.7)

and the THz electro-magnetic radiation comes from the rectified component of this

ETHz ∝
∂ 2PZero centered

∂ t2
∝
[
16t2

τ4
− 4

τ2

]
e−2t

2/τ2 . (2.8)

Figure 2.1 shows the progression from optical stimulus, to THz pulse. Note that in eqn. 2.8 the

coefficient is a quadratic polynomial, and that it contains roots at ±τ/2. Between these roots,

the function is negative, giving rise to the negative electric fields seen in Fig. 2.1 (d).

2.1.2 Phase matching with tilted-pulse fronts

MgO doped (0.6%mol) stoichiometric lithium niobate (sLN) is used as the THz generation

medium for three main reasons: a large band gap, a high optical damage threshold and a large

electro-optic coefficient. The large band gap of sLN ensures that there is a low occurrence

of multi-photon absorption during the THz generation process, which helps to minimize the

excitation of free charge carriers and the subsequent THz absorption [17]. sLN also possesses a

large electro-optic coefficient which serves to boost the efficiency of converting optical pulses
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2.1 Generating THz pulses

Fig. 2.1 Highlighting the progression from optical stimulus to THz pulse. (a) An optical stimulus
with the gaussian profile and center frequency ωo. (b) The components of the second order
polarization from eqn. 2.4 in the time-domain. (c) Showing the frequency domain polarization
function of eqn. 2.4. d) The time-domain THz waveform described by eqn. 2.8.
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2.1 Generating THz pulses

into THz radiation [5, 17, 18]. Finally, the introduction of MgO doping enhances the optical

damage threshold [10].

The primary concern in using sLN to generate THz pulses is the mismatch in velocity

between the optical stimulus group velocity (vgr
vis) and the generated THz phase velocity (v

ph
T Hz),

ie, vgr
vis �= vph

T Hz. Consequently, when an optical pulse is tightly focused onto a sLN crystal, THz

generation is restricted to the case that the beam waist of the focused optical pulse is smaller

than the distance it travels in one optical pulse duration, ie,

w < vgr
visτ (2.9)

where w is the optical beam waist, and vgr
vis is the group velocity of the optical pulse, and τ is

the optical pulse duration [19]. As the pulse moves forward, and optical rectification occurs, a

Cherenkov-like cone of THz radiation is emitted [20, 21], which proves to be suboptimal for

efficient generation of THz pulses in a collinear geometry [19]. In Fig. 2.2 (a), a diagram of

the Cherenkov-like cone is shown, highlighting the relationship between the phase velocity of

the THz pulse and the optical group velocity. vgr
vis is larger than vph

T Hz, and with some simple

geometry, it’s easy to show that

cos(θC) =
vph

T Hz

vgr
vis

(2.10)

The velocity mismatch causes the generated THz pulse to slowly propagate behind the optical

stimulus, and therefore constructive interference only occurs along a Cherenkov-like cone.

Hebling et al. were the first to overcome the velocity mismatch problem in 2002, through use

of a tilted pulse-front scheme [19]. The main idea of a tilted-pulse front is shown in Fig. 2.2 (b),

where the aim is to avoid focusing the optical stimulus, and instead achieve velocity-matching

by adding a slope to the pulse front. THz generation is optimized this way, since tilting the

optical pulse front creates an extended surface of THz generation, so long as the new pulse

front is tilted to the Cherenkov angle θC [19]. Fig. 2.3 demonstrates how we create tilted
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2.1 Generating THz pulses

(a) (b)

Fig. 2.2 THz generation from focused pulse and tilted pulse front. (a) Tightly focused optical
pulse creating a THz Cherenkov cone, resulting from the velocity mismatch between optical
and THz wavelengths. (b) Schematic of a tilted-pulse front slanted at the optimal angle for THz
generation. Each point on the tilted-pulse front acts as a source similar to (a).

optical pulse fronts of optical excitation in sLN. Light pulses are directed onto a diffraction

grating, and the pulse front is tilted according to the path length difference of the first diffraction

maximum (m = 1), which depends on the angle of incidence (α), the diffraction angle (β ) and

the diffraction grating period (d)

sin(α)+ sin(β ) =
mλ
d

. (2.11)

Let us label the diffracted spot size d2. Doing so allows us to write the pulse-front-tilt-angle as

tan(γ2) =
d (sin(α)+ sin(β ))

d2
. (2.12)

After the pulse has been tilted, it then passes through a lens. The lens serves to collect the

diffracted pulse front, and image it onto the sLN

tan(γ3) =
d2
d3
tan(γ2), (2.13)

where d3 is the pulse width on the sLN, and γ3 is the new pulse-front tilt angle. The demagnifi-

cation ratio is defined as d2/d3. Finally, this pulse front arrives at the sLN. since the pulse is
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2.1 Generating THz pulses

Fig. 2.3 Schematic of the tilted pulse-front scheme used to generate intense THz pulses. The
red beam indicates a 50fs pulse of light with wavelength components centered around 800nm.
The blue crystal is LiNbO3, and the black arrow indicates the direction of THz propagation.

tilted, one side of the pulse front arrives sooner than the other. This means that the index of

refraction for sLN will retard the progression of the early arriving side first, compressing the

pulse front by a factor of 1/nO. The tilt angle (γ4) inside the sLN crystal is thus given by

tan(γ4) =
tanγ3

nO
(2.14)

where, nO is the index of refraction for sLN at 800nm (≈ 2.26).

Now, working back from what we know, the cut angle of the sLN is made to match the

Cherenkov angle, θC = 63o meaning that γ4 = 63o, from which it is possible to work out the

incident angle required for the optimal tilted pulse front [10].
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2.2 Principles of single channel detection

Fig. 2.4 Picture of the THz generation path. 50fs pulses (red beam path) are directed towards
a 1100mm−1 difraction grating. The pulse front is tilted, by the grating and imaged onto the
LiNbO3 crystal. A half wave plate (HWP) is used to rotate the electric field polarization from
horizonal to vertical. Inset is a typical THz pulse generated by optical rectification in the
LiNbO3. The time-domain waveform is accompanied by the frequency spectrum, centered near
0.5 THz. A typical thermal profile of a THz pulse is show. This image is captured using a
pyroelectric array, and demonstrates a typical 1/e2 diameter of 2 mm.

2.1.3 Table-top diagram

At peak performance, using a grating with a groove density of 1100mm−1, this system is capable

of producing free space THz pulses with a 1.78ps duration with frequencies centered at 0.5THz.

With pulse energies of 1.2μJ, the peak electric fields can be as high as 100kV/cm (c.f. eqn.

B.3).

2.2 Principles of single channel detection

Single channel detection is the mechanism we employ to resolve the time evolution of an

electric field in a near-field fashion. Whether it is through electro-optic imaging, or single
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2.2 Principles of single channel detection

channel lock-in detection, the principles remain the same. In general what we’re attempting to

do is turn the electric field of a THz pulse - which changes on picosecond (ps) timescales - into

the intensity variation of an optical pulse that photodetectors can measure (such as photodiodes

or CCD arrays).

To begin, let’s start off with the more familiar touchstone of Malus’ law. Malus’ law informs

us of the intensity of light that exits linear polarizers, having an angle between their transmission

axes of θ . The output intensity is given by

Iout = Iin cos2 (θ) (2.15)

where Iout is the exiting intensity and Iin is the intensity incident to the first polarizer. Crossed

polarizers (θ = π/2) do not allow any intensity to pass through, while uncrossed polarizers

(θ = 0o) will permit all incident intensity to pass through. In single channel detection, the

polarizers are crossed. The input polarizer has its transmission axis oriented vertically, allowing

vertically polarized light to pass through. The output polarizer (analyzer) is oriented with its

transmission axis in the horizontal orientation, allowing only horizontally polarized light to pass

through. Theoretically, no light should exit this assembly. However, by inserting an electro-

optic crystal such as GaP or ZnTe between the crossed polarizers, an electric-field-dependent

modification to eqn. 2.15 arises (remember, θ = π/2)

Iout = Iin cos2
(

π
2
+

ΔΦ
2

)
= Iin sin2

(
ΔΦ
2

)
, (2.16)

where, ΔΦ = φint+φext is the total phase shift induced by the birefringence of the electro-optic

crystal. In practice we use the electric field-dependent nature of the phase change ΔΦ to control

the amount of light exiting the cell. Turn up the electric field applied to the electro-optic crystal

in Fig 2.5, and you increase the output intensity.

The property of electro-optic crystals that is sensitive to the applied electric field is the index of
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2.2 Principles of single channel detection

Fig. 2.5 A schematic of a Pockel cell. A voltage is applied to the electro-optic crystal between
2 crossed polarizers. The electric field changes the birefringent properties of the electro-optic
crystal, providing control over how much light leaves the cell. With the quarter wave plate
absent, the arrangement is in E2-mode. With the quarter wave plate present, the assembly is in
E-mode.

refraction along one axis. The birefringence of a crystal comes from the sum of two parts: the

intrinsic birefringence associated with the structure of the crystal (φint), and the birefringence

induced by an external electric field (φext) which comes from the linear electro-optic effect. For

crystals like ZnTe, there is little-to-no intrinsic birefringence, and so φint = 0. Typically ZnTe is

oriented so that the [110] axis is aligned to the direction of the THz propagation, and so the

externally induced phase shift is proportional to the applied electric field. This can be expressed

as [16, 22]

φext =
πdn3or41

λ
Eext. (2.17)

where d is the crystal thickness, no is the crystal index of refraction for an optical pulse, Eext is

an applied external electric field, λ is the vacuum wavelength of the sampling pulse and r41 is

an electro-optic coefficient (represented using compressed notation [13]) that comes from the

electro-optic tensor.

The nature of the phase changes mentioned above is heavily dependent on the orientation of the

electro-optic crystal chosen, and the strength of the applied electric field (Eext). For example,

15



2.2 Principles of single channel detection

choosing a [110] oriented ZnTe crystal, eqn. 2.16 becomes

Iout = Iin cos2
(

π
2
+

πdn3or41
2λ

Eext

)
, (2.18)

which, for small electric fields gives an output intensity that is proportional to the square of the

external electric field

Iout ≈ Iin

(
πdn3or41
2λ

Eext

)2
−O

(
E4ext
)
. (2.19)

Given the quadratic sensitivity to the presence of an electric field, we refer to this assembly as

E2-mode. Figure 2.6 (a) shows how the quadratic approximation results in an E2 transmission

function for small electric fields. The strong dependence on the applied electric field makes

E2-mode an excellent choice for overlapping a THz pulse with a near infrared sampling pulse.

However, the added contrast comes with a price - insensitivity to the positive or negative nature

of the applied electric field. We will need an additional optical element in order to produce

intensity modulations that are proportional to the external electric field.

If we could introduce a phase shift in eqn. 2.18 that moves the ouput intensity function

to either the left or right by π/4, we could shift the output intensity function towards a linear

detection regime. A quarter wave plate does the trick if we insert it between the electro-optic

crystal and the analyzer. This results in an extra π/4 term appearing in eqn. 2.18, as

Iout = Iin cos2
(

π
2
+

π
4
+

πdn3or41
2λ

Eext

)
. (2.20)

Thus, when expanded into its Taylor series, eqn. 2.20 has the form

Iout = Iin

(
1
2
+

πdn3or41
2λ

Eext+O
(
E3ext
))

(2.21)

which demonstrates a linear dependence on the external electric field. Fig. 2.6 (b) shows the

linear regime of detection, stemming from eqn. 2.20 and eqn. 2.21.
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Fig. 2.6 E2-mode and E-mode intensity modulation comparison. (a) The modulated intensity
of the same system in E2 mode. Constants used are from a ZnTe electro-optic crystal, where,
r41 = 4×10−12m/V , no = 2.85, λ = 800nm and d = 500μm [16]. (b) The modulated intensity
from a single-channel electro-optic detector in the E-mode configuration, using the same optical
constants as in (a). The only difference between E-mode and E2-mode is the insertion of a
quarter wave plate.

The linear form of eqn. 2.21 allows for sensitivity to the positive and negative nature of an

external electric field. Taking the linear terms, and assuming that the electro-optic crystal is

experiencing an instantaneous electric field brought about by a THz pulse of light ETHz, we can

see that the intensity exiting the polarizer system is given by

Iout = Iin

(
1
2
+

πdn3or41
2λ

ETHz

)
. (2.22)

Some simple rearranging gives us

Iout− Iin
2

Iin
=

(
πdn3or41
2λ

)
ETHz. (2.23)

which is an important equation that we will use to calculate calibrated electric fields in later

chapters. The left hand side is telling us that by comparing the input sampling beam intensity to

the output intensity, we can measure a quantity proportional to a THz electric field. Experimen-

tally we can measure these intensities by either using a gated intensified imaging system such
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2.2 Principles of single channel detection

as the PicoStarHR, or 2 photodiodes (one measuring Iin, and another measuring Iout).

There are two reasons for why we can sample different parts of a THz electric field. The

first is that each THz pulse is a facsimile of all other THz pulses coming from a source. Another

way to say this is that optical rectification produces phase-stable pulses of light, which allows

us to sample the electric field of many pulses. The second reason is that near-infrared pulses

can have durations on the order of 50fs, which is very short in comparison to the 1ps duration

of THz pulses. Therefore, by delaying the arrival time between a near-infrared pulse and a THz

pulse, we can change the electric field that surrounds the near-infrared pulse. Figure 2.7 shows

how this works in a step-by-step series of images. A digitally controlled delay stage is used to

vary the image pulse arrival time. With these stages, we can introduce delays on the scale of

1μm, which corresponds to timescales on the order of 7 f s. We can then iterate the sampling

scheme (step, measure, step, measure... etc.), and stitch together the time-domain electric field

of a THz pulse of light.
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2.2 Principles of single channel detection

Fig. 2.7 Sketch of how the near-infrared pulse (red) can be delayed to sample different parts of
synchronized, phase-stable THz pulses (green) using a single-channel electro-optic detector
in E-mode. The figure starts at the top where the near-infrared sampling beam arrives before
the THz pulse. Proceeding downwards, the THz pulse is sampled at later and later times, until
eventually there is no THz pulse to sample. The functions plotted on the right show how eqn.
2.20 modulates the output intensity proportional to the incident THz electric field. This is seen
as the circle moving along the blue curve.
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Chapter 3

Ultrafast imaging

3.1 Ultrafast imaging system

This section is dedicated to explaining how we use the PicoStar HR imaging system to perform

ultrafast imaging of intense THz pulses. It will draw on the theory presented in the previous

chapters, focusing on how we obtain the intensities required to perform near-field single channel

electro-optic imaging . We begin by introducing the layout of the system, and follow that up

with the physical properties of the imaging system. This paves the way for the discussion of

time-domain imaging, and the efforts made to optimize the setup.

3.1.1 Tabletop diagram

Fig. 3.1 shows the key components of the electro-optic imaging system. The blue line represents

an 800nm, 50fs pulse coming from the Legend amplification system. This line is called the

imaging line because these are the pulses that are destined to arrive at the intensified imaging

system. The imaging line is attenuated by a polarizer-half wave plate-polarizer combination,

which can attenuate the imaging line from powers of 650mW down to less than 1mW . This is

useful, because it minimizes the effects of exciting charge carriers in the samples we aim to

probe (Appendix B.3).
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3.1 Ultrafast imaging system

Fig. 3.1 Picture and diagram of electro-optic imaging system. (a) Picture of the electro-optic
imaging system, with an overlay of some key components. The blue line represents the imaging
beam path, and the red line is the THz generation path. (b) Schematic of the electro-optic
imaging system.

The red line in Fig. 3.1 indicates the path that another 800nm 50fs pulse follows (this time,

powers on the order of 2W ), which we will refer to as the generation path. This path is dedicated

to generation of THz pulses through optical rectification in lithium niobate (Chapter 2.1).

The overall picture for this setup is to have the imaging path fall parallel to the THz

propagation direction. As the imaging beam is reflected off of the sample surface, it passes

through an electro-optic crystal twice: once on entry, and again upon reflection from the sample

surface. At the precise moment of reflection, the THz pulse should encompass the imaging

beam, much like Fig. 2.7. Reflecting off of the surface, and then passing through the quarter

wave-plate and the linear polarizer, the intensified imaging system can record the modulated

imaging beam.
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3.1 Ultrafast imaging system

Fig. 3.2 Sketch of key components within an ICCD system. The system has a photo cathode that
launches electrons into a micro channel plate (MCP). The large number of secondary electrons
generated in the MCP are deposited onto a phosphor, which illuminates the coupling optics of a
CCD array.

3.1.2 Properties of the intensified imaging system

To perform ultrafast imaging of intense THz pulses, we use an intensified charged coupled

device (ICCD) camera system. Figure 3.2 shows the basic construction of an ICCD system.

The PicoStar HR ICCD is specially designed for use in systems operating at repetition rates

near 110 MHz, fundamentally limited by the open/close frequency of a photo cathode [23]. The

photo cathode is sensitive to photons near the infrared band of the electromagnetic spectrum.

Figure 3.3 shows this in plots of the quantum efficiency and the photo sensitivity. The quantum

efficiency is simply the percentage of photons that are converted into photo electrons, ie,

QE=
#Photo electrons generated

#Photons incident
. (3.1)

From Fig 3.3 we can see that for 800nm light, the photo cathode has a quantum efficiency of

nearly 6%. The photo cathode acts much like a shutter, when a large voltage is applied (Ucathode).

Ucathode quickly accelerates the photoelectrons from the cathode into a micro channel plate

(MCP). The MCP creates secondary electrons when a primary electron collides with the walls

of the micro channel. The number of secondary electrons generated (and hence, the Gain) is

dependent on the number of collisions that occur. The Gain is controlled by the voltage placed

across the MCP (UMCP), this voltage drives electrons into further collisions with the micro
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3.1 Ultrafast imaging system

(a) (b)

Fig. 3.3 (a) Quantum efficiency and (b) sensitivity of the ICCD photocathode in the visible
spectrum. This data is provided by the Picostar HR Camera Test Certificate.

channels. Once the signal has been amplified by this gain process, the electrons are pulled onto

a phosphor, which illuminates the CCD through coupling optics.

The photo cathode is synchronized to the Legend amplifier, such that photoelectrons are

only accelerated into the micro channels when the optical pulse arrives at the photo cathode.

Fig. 3.4 shows a diagram of the timing sequence for the triggering of the photo cathode. For

reference, we trigger the cathode off of the exit Pockel cell from within the Legend amplifier.

With this reference in time, a picosecond delay unit is used to delay the shutter according to

the path length required to travel from the Legend to the ICCD. Looking again to Fig. 3.4, the

“1000ps gate" signal is shifted by delay time introduced by the picosecond delay unit. Once

the photo cathode is synchronized to the legend amplifier, the ICCD then integrates over a

predetermined number of pulses (“CCD exposure" in Fig. 3.4). After the CCD is finished

integrating, the CCD is read into the DaVis software, where images can be saved in ASCII

format.

Recall the step-by-step concept in Fig. 2.7. If we delay the imaging beam, in order to sample

different parts of a THz waveform, there is a chance that we may delay the pulse so much that
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3.1 Ultrafast imaging system

Fig. 3.4 Schematic of the image acquisition process. 50fs pulses are captured within a 1000ps
wide gate that is triggered by the rising edge of an 8.5μs TTL signal synchronized to the fs
pulses. A controllable delay allows us to center the window on the fs pulses. Once the 50fs
pulse is captured, the ICCD system converts that intensity into an accumulated charge on a
CCD, which is integrated over the CCD exposure time. After the exposure is over, the CCD
readout begins. This image is not to scale, as the time between fs pulses is 1ms.

the imaging pulse is no longer synchronized to the imaging system. To look into the possibility

of this, we measured the window over which imaging is possible. Starting off at times before

the optical pulse arrives, and stepping through many delay times, we could visualize the onset

of the imaging pulse. By integrating these images, we can measure the total intensity, which

allows us to plot Fig. 3.5. Figure 3.5 shows that there is roughly a 1ns window over which we

can safely introduce an optical delay. This corresponds to approximately 6 inches of mechanical

delay, which is large compared to the 0.15mm required to sample a THz pulse. Therefore, we

should not expect the imaging delay line to compromise the synchronization of the imaging

system and the Legend amplifier.
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3.1 Ultrafast imaging system

Fig. 3.5 Gate window at two different intensifier voltages (red line and blue circles). The green
line is the range of delay we need to sample a THz pulse. For such small delays, the window
will be approximately flat.

3.1.3 Image analysis

Using everything presented thus far, we can now perform ultrafast imaging of intense THz

pulses. We accomplish this by bringing together the Picostar ICCD system and the Pockel-cell

configuration from Chapter 2.2. Recall eqn. 2.23, where we saw that in order to acquire an

image of a THz pulse we need a background image with no THz present ( Iin) and a signal

image with the THz modulation present (Iout).

Normally, to accommodate the fact that a CCD can’t read negative counts, an offset is

applied to the signal images . This transforms the signal intensities Iout→ Iout+Offset, which

implies the need to subtract off this offset manually [24], changing eqn. 2.23 to read

(Iout+Offset)− Iin−Offset
Iin

=

(
πdn3or41
2λ

)
ETHz. (3.2)

In an effort to reduce the time between capturing a signal image and the corresponding

background image, a Thorlabs SH05 beam shutter was used to block the THz source. Using a

TTL communication system controlled by a National Instruments DAQ board, the background
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3.1 Ultrafast imaging system

image is taken, the shutter is opened, and the signal image is taken. Once the images are taken,

a delay line is moved and the process begins anew. The problem with this scheme is that there

isn’t any control over which images get an offset, and which ones don’t. We are forced to

let all images acquire an offset, which sends Iout→ Iout+Offset and Iin→ Iin+Offset. In the

numerator of eqn. 2.23, we can see that the offsets will cancel, while in the denominator we

need to a priori subtract off the offset, giving us the new reduction equation

(Iout+Offset)− (Iin+Offset)
(Iin+Offset)−Offset =

(
πdn3or41
2λ

)
ETHz (3.3)

For clarity, whenever an “Offset" is added to an image during image acquisition, it is contained

within brackets. Whenever an offset is subtracted during the data analysis, the “Offset" term

has been left outside of brackets.

An example of image analysis using eqn. 3.2 is shown in Fig. 3.6. Figure 3.6 (a) shows

an image taken when the THz pulse overlaps the optical pulse. (Iout+Offset). Figure 3.6 (b)

shows an image of the background image (Iin). Using eqn. 3.2 on Fig. 3.6 (a) and Fig. 3.6

(b), the modulation ratio image is calculated, and shown in Fig. 3.6 (c). Figure 3.6 (d) shows

how a cross section of an image evolves during image analysis. Equation 3.3 from now on

will be referred to as the modulation ratio. It is important to recall Fig. 2.6 when discussing

the modulation ratio, as an electric field strength greater than ∼ 100kV/cm will correspond to

electric fields that put the electro-optic detector into a regime where the modulation ratio will

decrease as the electric field is increased - defeating the purpose of the detector.

Now, by performing pixel-by-pixel subtraction of the background image (Iin) and the signal

image (Iout), we can calculate a THz-induced modulation for a given time step. Doing this for

many time steps, we can produce an entire movie. The Matlab code used to perform these

calculations is in Appendix A. The code generates a 3-D array of images that is ordered in time.

This makes it very easy to Fourier transform the time axis, resulting in the ability to construct

frequency domain images.
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3.1 Ultrafast imaging system

Fig. 3.6 Analysis of imaging data. (a) Image of un-modulated intensity captured by the ultrafast
imaging system (Iout) in the E-mode configuration. (b) A picture of the THz-modulated intensity
(Iout). (c) A still-frame image of the modulation ratio calculated using eqn. 3.3, the images in
(a) and (b), and an offset of 400 counts. (d) A cross section of the calculation performed in
panels (a)-(c). The modulation ratio is scaled by a factor of 2000 so as to make it visible on
these scales.
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3.1 Ultrafast imaging system

Fig. 3.7 Diagram of frequency domain images. (a) A 3D matrix containing time-ordered images
of a THz pulse emerging through a 0.5mm thick, semi-insulating Si wafer using the E-mode
configuration. From the time-ordered data set, we can extract a vector (yellow bar), and perform
a fast Fourier transform (FFT) of this vector. (b) The spectral amplitudes are calculated from
the FFT, and deposited into a new 3D matrix, maintaining the (x,y) coordinate of the vector.

The concept behind frequency domain imaging is expressed in Fig. 3.7. Frequency domain

imaging is performed by extracting time-ordered vector from a time-domain 3-D matrix, and

fast Fourier transform it. Keeping track of the row/column from which the time vector came, it

is then possible to construct a 3-D, frequency ordered array of the amplitude spectrum. Having

access to this ability is extremely useful in performing sub-wavelength imaging of intense THz-

pulses [5, 6, 25, 26], but is not the main focus of the present work. In the next two pages, space

is given to clearly present a time-domain series of images and the respective frequency-domain

images. Fig. 3.8 shows a series of time-domain images, capturing snapshots of the electric field

of a THz pulse (red-to-blue color) as it emerges through an In0.53Ga0.47As thin film doped to a

concentration of nc = 2×1017cm−3. Here we only show steps of 1ps, but the complete image

set uses 100fs time-steps. Each image is analyzed according to eqn. 3.3, since the data was

acquired using a mechanical shutter. The color bars of Fig. 3.8 demonstrate the modulation
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ratio of each image. The system is set up in the E-mode configuration, which provides the

ability to distinguish positive electric fields from negative electric fields. From the THz images

we can extract a 1-D time-domain waveform by averaging over a small area in each time step,

indicated by the green circle shown at 0ps in Fig. 3.8. By Fourier transforming the time-axis,

the image set shown in Fig. 3.9 is constructed. The 1-D amplitude spectrum is gathered by

means identical to the waveform extraction, except this time applying the averaging to the 3-D

matrix of Fourier amplitudes. The red circle overlaid on the 0.2THz image highlights the area

averaged to acquire the spectrum shown in the bottom right of Fig. 3.9.

So far we have outlined the mechanism that allows us to measure the spatial characteristics

of the electric field of an intense THz pulse. It is now appropriate to compare the peak electric

fields of an electro-optically imaged THz pulse, with those attained using a pyroelectric array,

and conventional two-channel EOS.
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Fig. 3.8 Time-series of THz images taken in E-mode. A THz pulse is transiting an n-doped
InGaAs epilayer in this time-series. The green circle at time 0ps indicates the region from
which the waveform of the bottom right panel was extracted. The actual data set has 134 of
such images, spaced at 100fs time-steps.
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Fig. 3.9 Fourier amplitudes of the THz movie from Fig. 3.8. The red circle indicates the region
from which the amplitudes of the bottom right panel were extracted. This area is identical to
the area inside the green circle in Fig. 3.8.
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3.2 THz electric field calibration

3.2 THz electric field calibration

Having the ICCD system in place, and the data processing laid out, we can now measure

waveforms using the electro-optic imaging system. There are two alternative methods of

characterizing the peak electric field of a THz pulse. The first method of calibration uses

a two-channel electro-optic sampling (EOS) system. In a two-channel system, the intensity

difference between horizontal and vertical polarizations is used to calculate a modulation ratio

that is proportional to the THz electric field. The modulation ratio of this system is given by

[18]
Ix− Iy

Ix + Iy
=
2πn3or41tGaPL

λo
ETHz (3.4)

where, Ix and Iy are the intensities of the x and y components of the sampling beam, no = 3.2

is the index of refraction of the electro-optic crystal at the sampling wavelength λo = 800nm,

L = 300μm is the thickness of the electro-optic crystal, r41 = 0.88pm/V is the electro-optic

coefficient of the electro-optic crystal, tGaP = 0.46 is the Fresnel transmission coefficient for

the electro-optic crystal at 1T Hz, and ETHz is the THz electric field strength. Equation 3.4 has

been derived for an arbitrary electro-optic crystal in Appendix B.2 [22]. Figure 3.10 contains a

plot of a THz electric field calibrated using the two-channel technique, having been transmitted

through an n-doped In0.53Ga0.47As thin film with a carrier concentration of nc = 2×1017cm−1.

The many peaks of the amplitude spectrum shown in Fig. 3.10 are the result of multiple beam

interference that occurs as the primary transmitted beam interferes with the first reflection from

within a sample. The peak modulation ratio is measured to be 0.074, indicating a peak electric

field of 23.7kV/cm.
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3.2 THz electric field calibration

Fig. 3.10 Time and frequency domain plots of THz pulse calibrated to eqn. 3.4. (a) A THz
waveform measured using two-channel EOS, and calibrated using eqn. 3.4. This calibration
measures a peak electric field of 23.7kV/cm. (b) The normalized amplitude spectrum of the
THz pulse shown in a.

Alternatively, one may opt to measure a waveform using two-channel EOS, and scale it to

the peak electric field calculated from the THz intensity profile, which can measured using a

pyroelectric array. The peak THz field in this case is given by

|E peak
T Hz |=

√
4E

π3/2cεow2τ
(3.5)

where E is the pulse energy measured from a pyroelectric detector, w is a width parameter that

comes from fitting the THz intensity profile to the Gaussian in Appendix B.1, τ = 1ps is the

pulse duration, c is the speed of light in vacuum, and εo is the free space electric permittivity.

On the same day the waveform above was taken, the THz pulse energy was measured to be

1μJ, and an image was taken of the THz intensity profile using pyroelectric array (Fig. 3.11).

A Gaussian surface was fit to this intensity profile, and shows a 1/e2 diameter of 2.1218mm.

This indicates that w = 0.1.06mm, and reveals a peak electric field of 155kV/cm.
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3.2 THz electric field calibration

Fig. 3.11 Normalized thermal profile of THz pulse. The best-fit 1/e2 diameter for this image
was 2.12 mm, as shown by the red circle. With energy of 1μJ, the peak electric field from this
is 155kV/cm.

We used the electro-optic imaging system to measure the THz peak electric field under the

same circumstances above. Shown in Fig. 3.12, we average the THz modulation ratio from

a small circle of only 16px (150μm) diameter on each movie frame. From this modulation

ratio, we can use eqn. 3.3 to convert the modulation ratio into an electric field, giving us a

peak electric field of 149kV/cm. In Fig.3.13 we show the calibrated electric fields alongside

one another. What is clear is that the two-channel EOS system is much lower than the electric

fields read by the electro-optic imaging system and the THz intensity profile. A possible reason

for this discrepancy is a misalignment between the sampling beam and the THz pulse in the

two-channel EOS system. From Fig. 3.11, we can see that the intensity profile of the THz pulse

is Gaussian. As a result, the peak electric field measured by the two-channel EOS system will

fall off exponentially with misalignment.
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3.3 Exploring linearity of imaging system

Fig. 3.12 The THz waveform from a movie of THz transmission through an nc = 2×1017cm−3
In0.53Ga0.47As :Si thin film, grown on a lattice matched InP:Fe substrate in E-mode using a
3.3mm thick GaP imaging crystal, with an active layer 300μm thick. Using eqn. 3.3 the peak
modulation ratio of 0.15 corresponds to an electric field of 149 kV/cm.

3.3 Exploring linearity of imaging system

In regards to Fig. 3.1, the THz pulses are focused directly onto samples, and hence straight onto

the electro-optic crystal. Since high field strengths are needed to explore nonlinear dynamics,

and the electro-optic crystal is in close proximity to these high fields, it is possible for an

increase in applied electric field to produce a decrease in signal (recall Fig. 2.6b). Electric

field strengths exceeding roughly 100kV/cm may cause modulation ratios to decrease with

increasing field strength. Let us refer to this effect as over rotation. Over rotation has been seen

to happen in 1mm thick ZnTe, where the peak recorded electric field decreases significantly

with increased THz field strength [27], occurring at electric fields as low as 45kV/cm. In-turn

the over rotation described above has the ability to obscure the true detection of a nonlinear

process.

To explore this possibility, a 500 μm thick [110] oriented ZnTe crystal was mounted on an

n-doped In0.53Ga0.47As thin film with a carrier concentration of nc = 2×1017cm−3. THz pulses

are focused onto the sample by an off-axis parabolic mirror, having a focal length of 3in. The

sample was placed on the focal point of this mirror. Movies were made of the THz transmission

through this sample at various field strengths, attenuating with the aid of semi-insulating (SI)
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3.3 Exploring linearity of imaging system

Fig. 3.13 Comparison of electric fields calibrated to using different methods. EOS waveform
(red), the EOS waveform scaled to the Peak field from the pyroelectric array (blue), and the
calibrated peak field from EOI (green) in E-mode on 300μm thick GaP crystal.
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3.3 Exploring linearity of imaging system

silicon wafers.

The peak modulation ratio in the unattenuated movie is near 0.4 (shown in Fig. 3.14 (a) and

(c)), which, using eqn. 2.23, yields an incident electric field of 125kV/cm. The central regions

of the peak electric fields appear to have a depression. This can be explained in reference to Fig.

2.6. At an electric field near 125kV/cm, the modulation is opposite to that in a linear regime,

and so the highest electric fields will appear to be lower than expected.

After attenuating the source with 2 SI silicon wafers the maximum modulation ratio became

0.25, which equates to an electric field of 78kV/cm. Although this is still quite far from the

linear detection regime, we can see a drastic difference in the peak electric-field images in

Fig. 3.14 (b) and (d), since the depression within the center of the image has receded. The

intensity profiles of the waveforms in Fig. 3.14 are shown in Fig. 3.15 so as to highlight

the difference between the waveform measured in an extreme electric field regime, against

waveform measured in the more moderate regime. To obtain an intensity profile, every image

is squared, and the images are then integrated in time. The intensity profile for the THz pulse

seems to have a donut-like profile in the high-field regime that is not present in the low field

regime. Although a donut-like intensity has been seen to radiate from two-color plasma sources

[28], the ring that we are seeing comes about from a THz pulse having electric field strengths

that far surpass a linear regime of detection.

One possible explanation for the behavior seen in the spatial profile of the THz pulse is that the

electro-optic crystal is fairly thick. Recalling eqn. 2.23, it can be seen that the thickness of the

electro-optic crystal is directly proportional to the modulation ratio. Another explanation is that

ZnTe may has a relatively large electro-optic coefficient compared to that of GaP. Therefore,

by changing the electro-optic crystal of the imaging system, we should be able to remove the

donut-like features.
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3.3 Exploring linearity of imaging system

Fig. 3.14 Comparing spatial characteristics of the peak pulse-front shape before and after
attenuation with silicon wafers. (a) The peak electric field image, obtained when the imaging
crystal sampling outside of the linear regime, on a 0.5mm thick ZnTe imaging crystal affixed to
an nc = 2×1017cm−3 low doped In0.53Ga0.47As thin film, grow on a lattice matched InP:Fe
substrate. (b) The same peak-electric field, however this time the THz source has been attenuated
using two semi-insulating silicon wafers. What we see is the remission of the over-rotated
central regions. Panels (c) and (d) demonstrate remission of over rotation for the negative peak
electric field as well.
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3.3 Exploring linearity of imaging system

Fig. 3.15 Comparing the intensity profile of THz pulse before and after attenuation with silicon.
(a) Near-field THz intensity profile when the THz is left unattenuated. (b) The donut-like
feature disappears when the source is attenuated with two semi-insulating silicon wafers. (c)
The horizontal profiles of both the attenuated and unattenuated images are shown, while in (d)
the vertical profiles are shown.
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3.3 Exploring linearity of imaging system

We chose to use a 300μm thick [110] GaP crystal mounted to 2mm of [100] Gap, in order

to perform electro-optic imaging free from over rotation. The 2mm thick [100] GaP layer

elongates the time between reflections within the electro-optic crystal, while maintaining a

constant index of refraction. The electro-optic coefficient of GaP (0.88pm/V ) [18] is smaller

than that of ZnTe (4pm/V ) [16] by roughly a factor of 4, and the thickness is reduced by almost

half. Since GaP and ZnTe both have a 4̄3m point group [13, 29], the phase induced in eqn. 2.17

by an external electric field maintains the same form [18]

φext =
πdn2or41

λ
Eext. (3.6)

The benefit seen in the equation above this is that for a thinner crystal having a lower electro-

optic coefficient, we can expect more than 75% reduction of the modulation ratio. This is

non-ideal for scenarios where signals are weak, but given the over-rotation witnessed in ZnTe,

changing from ZnTe to GaP should place us well within the linear detection regime.

Fig. 3.16 shows the results of imaging on the same sample as before, with the only difference

being the 300μm GaP imaging crystal. The Fig. 3.16 (a) shows the peak electric field acquired

from a time-domain scan. The green lines represent the lines from which the vertical and

horizontal cross-sections were taken. Both Fig. 3.16 (b) and Fig. 3.16 (c) show the vertical and

horizontal cross sections of the peak electric field image (respectively). Fig. 3.16 (d) shows

the time-domain waveform extracted from a 0.3mm square surrounding the intersection of the

horizontal/vertical cross-sections. By changing the electro-optic imaging crystal from ZnTe to

GaP, we have removed the donut-like features from the THz pulse.
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3.3 Exploring linearity of imaging system

Fig. 3.16 Image of peak negative THz pulse front taken using GaP as an electro-optic crystal. (a)
Peak negative THz electric field acquired using a 300 μm thick GaP imaging crystal. Imaging
was performed on an In0.53Ga0.47As thin film having nc = 2×1017cm−3, and we see that there
is no indication of over-rotation happening with a peak modulation ratio of 0.1 (). (b) A vertical
cross section of the peak field, and the corresponding Gaussian fit. The fit indicates a 1/e2

diameter of 1.95mm. (c) Horizontal cross-section is shown, demonstrating a 1/e2 diameter
of 2.22mm. (d) Time-domain waveform extracted by averaging a 0.3mm square surrounding
center of the panel (a) for the entire time-series.
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Chapter 4

High-field dynamic Drude model of

conductivity

4.1 Using light to measure conductivity

Before diving into the details about macroscopic conductivity in thin films, let us first take a

minute to talk about circuit theory.

Transmission line theory bridges a very important cross-over region in electrodynamics,

connecting field analysis to circuit phenomena [30]. Amazingly, one can derive a series of

wave equations for voltage pulses in a transmission line that bear a stunning resemblance to

the telegrapher’s equations [30, 31]. These equations make it easy to transfer familiar ideas

such as index of refraction into circuit theory, provided one can understand some unfamiliar

terminology. Let’s start off with the Impedance (Z), which is just the ratio of a magnetic field

and an electric field:

Z =
E

B
=

√
ε(1)εo

μo
=

n
c

(4.1)

In a non-magnetic medium, the impedance is only dependent on the electrical permitivity (ε),

the vacuum permittivity (εo), and the vacuum magnetic permeability (μo) . The Admittance (Y )
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4.1 Using light to measure conductivity

is simply the inverse of the impedance

Y =
1
Z
. (4.2)

The admittance of free space is given by

Yo =
1
377

Ω−1 (4.3)

and so the impedance of free space is

Zo = 377Ω. (4.4)

When a voltage pulse propagates along a transmission line, reflections can occur if there is

an impedance mismatch. Letting Z1 be the impedance before the mismatch, and Z2 be the

impedance after the mismatch, the reflection coefficient is given by

r′ =
Z2−Z1
Z2+Z1

=
Y1−Y2
Y1+Y2

(4.5)

which bears a striking resemblance to the electric field reflection coefficient

r =
Er

Ei
=

n1−n2
n1+n2

. (4.6)

where, n1 is the incident index of refraction and n2 is the transmitted index of refraction. The

voltage transmission coefficient is given by

t ′ =
2Z2

Z1+Z2
=

2Y1
Y1+Y2

(4.7)
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4.1 Using light to measure conductivity

which, again, should look familiar, since

t =
Et

Ei
=

2n1
n1+n2

. (4.8)

The impedance of a thin film is related to the material conductivity and the thickness as

Zfilm =
1

σ̃d
(4.9)

where d is the thickness of the film, and σ̃ = σ1+ iσ2 is the bulk complex conductivity. We will

now shift the discussion towards addressing the problem of optical transmission at an air-thin

film interface, as shown in Fig. 4.1.

In the top image of Fig. 4.1 we show a THz pulse shining onto a conducting film. Let the

film have a complex conductivity σ̃ , thickness d and impedance Z f . The substrate (brownish

region) will be quite large compared to the thin film, and will have an impedance that is related

to its index of refraction Zs = Zo/n, where we assume that the substrate has a real index of n.

By the nature of these two surfaces being connected, a circuit can be drawn ( Fig. 4.1 (b)),

where the film impedance and the substrate impedance are added in parallel to form the load

impedance ZL:
1

ZL
=
1
Zs

+
1

Z f
. (4.10)
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4.1 Using light to measure conductivity

Fig. 4.1 Transmission line diagram of a THz pulse incident to a thin conducting film. Subscripts
i, t and r represent the incident, transmitted, and reflected electric fields, while Z f ,Zo,Zs
represent the impedance of the thin film, free space and the substrate respectively.
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4.2 Low field conductivity: The Drude model

In this equivalent circuit, the transmission coefficient is hence given by the thin film equation

[32]

t ′ =
2ZL

ZL +Zo

=
2

1+Zo/ZL

=
2

1+Zoσ̃d +n

=
2Yo

Yo +nYo + σ̃d

(4.11)

Therefore, an electric field that passes through a thin film, and a substrate will have the form

Et =
2Yo

Yo +nYo + σ̃d
Ei =

2
1+n+Zoσ̃d

Ei = t ′Ei (4.12)

which is sensitive to the conductive properties of the thin film. Alternatively, by noting that

J = σ̃Et , we can recast eqn. 4.12 into the form

Et =
2YoEi−dJ

Yo +nYo
(4.13)

The next two sections will discuss the microscopic origins of conductivity, explaining exactly

where σ comes from in the context of the Drude model. The Drude model is a free-carrier

model, and can provide a microscopic origin for the material conductivity.

4.2 Low field conductivity: The Drude model

Considering the n-type nature of the samples that are discussed later in Chapter 5, it is worth

framing the discussion of the Drude model in the context of n-doped, direct-gap semiconductors

(see Fig. 4.2). In these semiconductors, the equilibrium electron population is located in the
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4.2 Low field conductivity: The Drude model

Fig. 4.2 Band diagram of direct-gap semiconductor. As one starts at the green ball and moves
along 3D axes of a Brillouin zone in�k-space (red-arrows), one can reproduce a band diagram by
noting the stack of energy states at each location in�k-space. Electrons in equilibrium rest in the
global band minimum, which has a nearly quadratic shape. Eg,EL,EX represent the Γ-valley,
L-valley and X-valley band gap energies respectively.

global band minimum (around k = 0). This results in the carrier population experiencing a

nearly parabolic dispersion, similar to that of free electrons. In turn these conduction electrons

behave qualitatively like free electrons, with the slight modification of an effective mass defined

by

m∗ = h̄2
(

∂ 2E(k)
∂k2

)−1
, (4.14)

which is inversely proportional to the band curvature, and proportional to the square of the

reduced planck constant (h̄). In the effective mass approximation, conduction band electrons

embedded in an electric field (E) are accelerated according to

F = m∗
dv
dt

= h̄
dk
dt

= qE =−eE, (4.15)

where e denotes the magnitude of the fundamental electric charge. With real semicondcutors

this equation of motion is not complete since a crystal lattice is abound with phonons, impurities,

lattice defects, and even surface boundaries from which electrons may scatter. To encapsulate
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4.2 Low field conductivity: The Drude model

these scattering processes, we introduce a velocity dependent force to eqn. 4.15, resulting in the

new equation of motion

m∗
dv
dt

=−eE− 1
τ

m∗v. (4.16)

Affixed to the velocity dependent (friction-like [33]) term is the collisional dampening rate

(1/τ), which is defined by the mean scattering time τ .

4.2.1 DC Conductivity

If a constant electric field (Eo) is applied to the system for a long enough time for an equilibrium

to be reached, the electron velocity becomes time-independent, and so dv/dt = 0, reducing eqn.

4.16 to the much simpler form as follows.

v(t) =− eτ
m∗

Eo (4.17)

eqn. 4.17 allows us to extract the DC conductivity by noting that the current density has the

form J =−nev = σE

σDC =
J

E
=

ne2τ
m∗

= ω2pεoτ (4.18)

where we have defined the plasma frequency as ωp =
√

ne2/εom∗, and the density of carriers is

denoted by n. The ratio of the average drift velocity of carriers to the DC electric field strength

can tell us about the mobility of electrons in a material, and is defined as follows

μ ≡ v

E
=

eτ
m∗

=
σDC
ne

. (4.19)
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4.2 Low field conductivity: The Drude model

4.2.2 AC-conductivity

In the presence of an AC driving field of frequency ω , ie,

E(t) = Eo (cos(ωt)+ isin(ωt)) (4.20)

eqn. 4.16 can be solved analytically by noting a homogeneous solution of the form

vhom(t) = voe−t/τ (4.21)

and a particular solution of the form

vpart(t) = Aeiωt . (4.22)

After solving for A, we can write the total current density as

nev(t) = nevoe−t/τ︸ ︷︷ ︸
Impulse

−

⎡⎢⎢⎢⎣ne2τ
m∗

1
1+ω2τ2︸ ︷︷ ︸
Re{σ̃}

Eo + i
ωτ2ne2

m∗
1

1+ω2τ2︸ ︷︷ ︸
Im{σ̃}

Eo

⎤⎥⎥⎥⎦eiωt (4.23)

Usually at initial times the electron velocity is zero, and so the “impulse" term of eqn. 4.23

vanishes. Looking to the oscillating components of eqn. 4.23, we see the sum of the real and

imaginary contributions of the driving field. Furthermore, since

J = σ̃E =−nev (4.24)
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4.2 Low field conductivity: The Drude model

we can read out the real and complex parts of the conductivity (σ1 and σ2 respectively) as

σ1 =
σDC

1+ω2τ2

σ2 =
ωτσDC
1+ω2τ2

(4.25)

In summary, we have shown that a free electron experiencing an alternating electric field has

a characteristic current density related to the Drude conductivity. Connecting this idea to the

previous section, the conductivity shown in eqn. 4.12 appears in the transmission coefficient of

material as follows:

Et =
2Yo

Yo +nYo + σ̃Druded
Ei (4.26)

where Yo is the admittance of free space, σ̃Drude is the Drude conductivity, d is the epilayer

thickness, Et and Ei are the incident and transmitted electric fields respectively. Experimentally

we can measure incident and transmitted waveforms quite easily. So, having a thin-film sample

mounted on a substrate, and a plain substrate sample, we can perform time-domain spectroscopy

by calculating the ratio of the thin-film electric field transmission to the substrate transmission.

Et,sub

Et,film
=

Ei× (tsub)× (tsub)× eikL

Ei× (tsub)× (tfilm)× eikL

=
Zodσ̃Drude+n+1

n+1

=

[
1+

Zodσ1
n+1

]
+ i
[

Zodσ2
n+1

]
(4.27)

Measuring the waveforms above in discrete intervals, we can perform a fast Fourier transform

of the time-domain THz waveforms to obtain an array of complex numbers for the substrate

data and the thin film data. Dividing the complex numbers element-by-element in the array

(according to eqn. 4.27), we obtain a complex array of numbers of the form x(ω)+ iy(ω). This
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4.2 Low field conductivity: The Drude model

array is related to the real and imaginary parts of eqn. 4.27 through

x(ω)+ iy(ω) =

[
1+

Zodnee2τ
m∗(1+n)(1+ω2τ2)

]
+ i
[

Zodωτ2nee2

m∗(n+1)(1+ω2τ2)

]
, (4.28)

where we have denoted the electron density ne so as to avoid confusion with the substrate

index of refraction n. This is just one example of how THz time-domain spectroscopy can be

used to compare theoretical conductivity to experimental results, as the choice of a model for

conductivity is going to be relevant to the system at hand. In n-doped semiconductors, electrons

are mostly free, and so a Drude model would be a natural choice. Figure 4.3 highlights the

results of performing THz time-domain spectroscopy on heavily doped In0.53Ga0.47As thin films.

The curve fitting algorithm is given in Appendix A.2.3. The fit indicates a DC conductivity of

σDC = (1.03±0.07)×105Ω−1m−1, and a mean scattering time of τ = (170±5) f s, matching

very closely to those reported by Ayesheshim K. Ayesheshim (σDC = 1.04×105Ω−1m−1 and
τ = 131 f s) [10]. The mean absolute error associated with the above fit is calculated by

MAE =

N
∑

i=1
|ymeas,i− y f it,i|

N
, (4.29)

where N is the number of experimental data points, ymeas,i is the ith measured data point, y f it,i is

the fitted data point corresponding to ymeas,i, and N is the number of data points. The reported

mean average error for this fit is 7.7×103Ω−1m−1. The reduced χ2 is defined as

χ̃2 =
1
N

N

∑
i=1

(
(yi− y(xi))

αi

)2
, (4.30)

where yi and y(xi) are the observed and fit y-values respectively, N is the number of degrees

of freedom, and αi are the errors for the y-coordinate y(xi). For the fit shown in Fig. 4.3, a χ̃2

value of 1.85 is reported, indicating a good fit.

A brief note on curve fitting, since both the real and imaginary conductivities are coupled
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4.2 Low field conductivity: The Drude model

Fig. 4.3 THz time-domain spectroscopy of an n-doped In0.53Ga0.47As thin-film. (a) The time-
resolved THz waveforms. The blue waveform corresponds transmission through a reference
substrate, while the red waveform is the measurement from transmission through a substrate
with an n-doped InGaAs epilayer. (b) Amplitudes of fourier transformed waveforms from
(a). (c) Fit using eqn. 4.28. Blue squares (red line) correspond to the real conductivity from
measurement (theory). Green squares (black line) correspond to the imaginary conductivity
from measurement (theory)

through the variable τ , σ1 and σ2 must be fit simultaneously, in order to guarantee a shared

value of τ in the fitting process. The fast Fourier transform is used to transform the THz

waveforms shown in Fig. 4.3 (b). Due to reflections from within the electro-optic crystal and

the sample of interest, the time-domain waveforms are shortened, which has direct implications

on the frequency resolution of our data through

tmax− tmin =
1
2Δ f

, (4.31)

where tmax− tmin is the time window over which we sample the THz electric field, and Δ f is the

subsequent frequency resolution. Because the fast fourier transform uses a base-2 bit reversal

algorithm [34], the fast fourier transform algorithm automatically pads the input data with zeros

so that the waveforms have a length that is divisible by 2.
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4.3 High field conductivity: Dynamic Drude model

4.3 High field conductivity: Dynamic Drude model

Continuing our discussion of conduction band electrons, we need to address a looming issue.

We’ve been ignoring the presence of nearby satellite valleys (Fig. 4.2), which does a disservice

to their importance in the presence of strong electric fields.

In InGaAs there are two satellite valleys in the conduction band (X and L valleys) that

surround the global minimum (Γ-valley), and they have curvatures that differ from the curvature

of the Γ-valley. This has direct implications on the effective mass of electrons that populate

these valleys. Intervalley scattering is a process whereby a strong electric field accelerates free

electrons into high into the conduction band, where phonon scattering relocates a portion of

the electron population into these satellite valleys. Because of the effective mass difference,

the mobility of electrons decreases [11, 12]. Consequently, eqn. 4.12 shows that the reduced

conductivity is going to result in an increased transmittance.

In this section we aim to physically describe Fig. 4.4. Let us consider a two-band model,

using only the Γ and L-valleys, where the effective masses of electrons in these valleys are

written as m∗Γ and m∗L respectively. The total number of free electrons doesn’t change in this

simulation, and so the number of electrons in the Γ-valley (nΓ) is related to the number of

electrons in the L-valley (nL) by

nΓ(t) = no−nL(t) (4.32)

where no is the total number of free electrons. When a THz pulse is incident on a sample, the

current density excited by this electric field is given by

J(t) =−nΓ(t)evΓ(t)−nL(t)evL(t) (4.33)
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4.3 High field conductivity: Dynamic Drude model

where e is the elementary charge, vΓ and vL are the electron velocities of the respective valleys

at time t. The electric field transmitted through a sample with electrons in both valleys is given

by eqn. 4.13 [10]

Et =
2YoEi(t)−dJ

Yn +nYo
(4.34)

where Ei is the incident electric field, d is the thickness of the substrate, n is the substrate index

of refraction and Yo is the familiar admittance of free space. Et accelerates electrons in each of

the satellite valleys according to the two equations of motion

dpΓ
dt

=−eEt(t)− pΓ
τΓ

dpL

dt
=−eEt(t)− pL

τL

(4.35)

Electrons in these valleys are accelerated into energy states associated with the momentum

gained from the above equations of motion. The Γ and L-valley electron energies are given by

the kinetic energy of the accelerated electrons, and the average thermal electron energies

EΓ =
p2Γ
2m∗Γ

+
3
2

kBT

EL =
p2L
2m∗L

+
3
2

kBT

(4.36)

The rate that electrons scatter from the Γ-valley to the L-valley (τ−1Γ→L) is given by a piecewise

continuous function, and the reverse scattering rate is assumed to be constant (τ−1L→Γ), since the

density of energy states in the central minimum is much lower than the density of states in the
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4.3 High field conductivity: Dynamic Drude model

satellite valley [35]. τ−1Γ→L is given by

τ−1Γ→L(EΓ, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 EΓ < Eth−Δ

τ−1Γ→L,0 EΓ ≥ Eth +Δ

smooth function Eth−Δ < EΓ < Eth +Δ

(4.37)

where Eth is a threshold energy that governs electron scattering, τ−1Γ→L,0 is the maximum Γ→ L

scattering rate and smooth function is a seventh order polynomial that is continuous up to its

third derivative [10, 11, 36, 37]. This polynomial serves as a continuous connection between

an intervalley scattering rate of zero, and τ−1Γ→L,0. Δ is a width parameter that sets the region

over which the smooth function is active. Now that the intervalley scattering rates are known, it

is possible to update the number of electrons in each of these valleys. The rate of change of

electrons in the Γ-valley is the number of electrons that arrive, minus the number of electrons

that have left
dnΓ
dt

=
nL

τL→Γ
− nΓ

τΓ→L
(4.38)

This can be rewritten using eqn. 4.32

dnΓ
dt

=
no−nΓ
τL→Γ

− nΓ
τΓ→L

, (4.39)

which shows that a new Γ-valley electron population can be calculated for the next time-step,

i.e,

nΓ(t +Δt) = nΓ(t)+
dnΓ
dt

Δt. (4.40)

Let us now take some time to frame these equations in the context of Fig. 4.4. An incident

THz electric field is attenuated by the presence of electrons in the thin film, according to the

instantaneous material conductivity given by equations 4.33 and 4.34. This attenuated electric

field accelerates electrons within the Γ and L-valleys according to their equations of motion,

eqn. 4.35. From this acceleration, a Γ-valley energy can be calculated using eqn. 4.36, which is
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4.3 High field conductivity: Dynamic Drude model

in turn used to calculate the Γ→ L electron scattering rate (eqn. 4.37). Assuming the L→ Γ

scattering rate is constant, we can update the electron population for each valley using eqn. 4.40.

Thus a new electric field is incident, and the cycle will continue over and over until the THz

pulse has transmitted through the sample. This cycle is shown in Fig. 4.5, where an incident

electric field is converted into a transmitted field, by running it through the algorithm outlined

above.

Experimentally, we can measure the time-domain waveforms for incident and transmitted

THz pulses to very good accuracy. The presence of intervalley scattering in the sample can

thus be detected by looking at how intervalley scattering reshapes the THz electric field on

sub-cycle timescales. A key signature of the subpicosecond reshaping is the rectification of

the THz pulse in the near-field. In this sense, a THz pulse that was originally a symmetric

function will acquire asymmetry as the transmissivity of the sample changes on subpicosecond

time scales, giving the THz pulse a net directionality. The net directionality of a transmitted

pulse is the primary motivation for studying intervalley scattering in the near-field, since the

rectified components of the transmitted electric field will diffract rapidly away from the surface

of transmission. Figure 4.6 shows an example of the rectification of an input electric field, by

running it through the intervalley simulation located in Appendix A.2.1. Figure 4.6 (a) is a

selection of waveforms calculated using eqn. 2.8, and scaled to peak electric fields between

15kV/cm and 75kV/cm. As the peak electric field is increased, the integrated waveforms in

Fig. 4.6 (c) always converge on zero. The simulation requires an input maximum electric

field, and a normalized waveform. Running the waveforms from Fig. 4.6 (a) through the

intervalley scattering simulation, the waveforms in Fig. 4.6 are generated. They are attenuated

by reflections from the sample surface, and when fields are strong (75kV/cm waveform) the

sample can be seen to undergo a subpicosecond boost in transmission at the onset of the peak

electric field. This subpicosecond reshaping of THz pulses is what gives rise to a net integral in

Fig. 4.6 (d). The material parameters used in this simulation can be found in Appendix A.2.1.
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4.3 High field conductivity: Dynamic Drude model

Fig. 4.4 Diagram of the intervalley scattering process. (a)Conduction band electrons in equi-
librium. (b) Conduction band electrons are accelerated into high energy states, where phonon
scattering scatters electrons to a nearby satellite valley. (c) The thin-film conductivity has
lowered before the THz pulse has left the film, resulting in a boost in transmittance. (d) The
THz pulse leaves the sample, encoded with the sub-cycle asymmetry in transmittance.
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4.3 High field conductivity: Dynamic Drude model

Fig. 4.5 Dynamic Drude model used to simulate nonlinear transmission induced by intervalley
scattering. The simulation takes in an array of electric field values and time steps Einc(t).
It numerically solves the momentum of an electron population, and uses this to update the
population of electrons in the Γ and L-valleys. Using the updated populations, the transmission
coefficient for each step is calculated. The simulation computes an array of electric field values
for a THz pulse that exits a sample undergoing intervalley scattering (Etrans(t)). The loop ends
once a transmitted electric field has been calculated for each element of the input array Ein.
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4.3 High field conductivity: Dynamic Drude model

Fig. 4.6 Comparing the THz waveforms input to the intervalley scattering simulation and output
from the simulation. (a) Ideal THz waveforms input to the simulation from eqn. 2.8, scaled to a
variety of peak fields. (b) The THz pulses that have undergone simulated transmission trough
a system undergoing intervalley scattering. Notice that in the high field waveforms, there is
the presence of enhanced transmission (dent appears around t = 0ps), and that the waveforms
are no longer symmetric. (c) Integrals of input THz pulses. The integrals converge on zero for
late times, indicating that the total electric field is zero. This integral serves as an indicator
for intervalley scattering, as seen in (d). (d) Integrals of the waveforms shown in (b). Notice
that the integrals do not converge to zero. This is the result of the subpicosecond changes in
conductivity that reshape the transmitted electric field. Also notice that in the low electric field
limit, the waveforms integrate to zero, indicating that intervalley scattering has not occurred.
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Chapter 5

Ultrafast imaging of intervalley electron

dynamics in n-doped InGaAs epilayers

5.1 Open Aperture Z-scan experiment

5.1.1 Samples

Absorption bleaching is the result of a physical process inducing an ehnanced transmissivity of

a material. The transmittance is seen to increase nonlinearly with incident field strength.

This section will discuss the open-aperture z-scans performed on three semiconductor

wafers. The first wafer is a d = 350μm thick, semi-insulating InP:Fe wafer oriented to the [100]

direction. There are two more InP wafers, but these have In0.53Ga0.47As epilayers grown on

one side. The ratio of Ga/In is specifically chosen to encourage lattice matching between the

In0.53Ga0.47As epilayers and their InP substrates. The In0.53Ga0.47As epilayers have a thickness

of 500nm, and are doped with Si to produce an excess of free charge carriers. There are two

doping densities, nc = 2× 1017cm−3, which we refer to as the low doped sample (LD), and

nc = 2×1018cm−3 which we refer to as the highly doped sample (HD). As a control sample,

semi-insulating GaAs was also used to verify the insulating nature of the substrate. Samples
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5.1 Open Aperture Z-scan experiment

have two possible orientations. The first orientation is shown in Fig. 5.1 (a), where the THz

pulse is first incident to the In0.53Ga0.47As thin film. The second orientation is shown in Fig.

5.1, where the THz pusle is first incident to the substrate side of the sample. This sample

asymmetry will be important in Section 5.1.3.

5.1.2 Details

To characterize a saturable absorption process, such as intervalley scattering, one has the option

to use an open aperture z-scan approach, whereby the transmitted energy is monitored as a

sample is moved through the focus of an intense light pulse. Previously, z-scans of various

forms been used to measure cubic nonlinearities in semiconductors [38, 39], demonstrate the

strong presence of homogeneous broadening in side-chain azobenzene polymers [40], excited

state nonlinearity in polythiophene thin films [41] and intervalley scattering [12] in n-doped

InGaAs epilayers. Some key features to look for are a doping-dependent broadening of the

nonlinear transmission, as well as a diode-like behavior as the sample is inverted in the sample

holder. The primary feature of interest is the large boost in transmission seen at the focus (z = 0)

of a THz pulse. This is expected because as the sample approaches the focus of a THz pulse

(well approximated by a Gaussian optics), the peak electric field increases according to [42]

EpeakTHz =
Eo√
1+ z2

z2R

. (5.1)

where Eo is the THz peak field and zR = πw2o/λ is the Rayleigh range, characterized by the

THz wavelength (λ ) and beam waist (wo) [10, 42]. As the sample approaches the focus, an

increasing amount electrons are accelerated high into the conduction band (eqn. 4.35), and

so more electrons scatter into nearby sattelite valleys of the conduction band. The displaced

population lowers the net conductivity, and in turn the transmissivity of the sample increases

until a saturation of absorption occurs near the focus.
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5.1 Open Aperture Z-scan experiment

Fig. 5.1 Two orientations of samples used in open aperture z-scans. (a) THz pulse first incident
to n-doped In0.53Ga0.47As epilayer. (b) THz pulse first incident to InP substrate.
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5.1 Open Aperture Z-scan experiment

In order to perform these measurements, a pyroelectric detector (SPJ-D-8: Spectrum

Detector Inc.) is used to measure the energy of THz pulses. The pyroelectric detector is attached

to a lock-in amplifier, and is read out by a National Instruments DAQ board, and recorded

by a LabView program. The LabView program also controls a motorized stage (Thorlabs

MTS50A-Z8) that can move the sample through the focus.

Figure 5.2 is a schematic of an open-aperture z-scan experiment. As the sample is moved

across the focus, the transmissivity of the sample increases. After the sample passes through

the focus, the transmissivity decreases.
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5.1 Open Aperture Z-scan experiment

Fig. 5.2 Schematic of an open-aperture z-scan experiment, where a sample moves through the
focus of a THz pulse. By measuring the transmitted energy at each step, we can get a measure
of the location where the peak absorption bleaching occurs. For the highly doped sample, we
see a very short onset of the absorption bleaching, whereas in the low doping sample shows
shallower onset of absorption bleaching.
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5.1 Open Aperture Z-scan experiment

(a) (b)

Fig. 5.3 Experimental results of an open aperture z-scan experiment, as measured by a pyro-
electric detector. (a) Transmitted energy measured along THz propagation axis, normalized to
the far-field values. The THz pulse is first incident to the substrate. The blue curve is an open
aperture z-scan of the InP substrate. (b) The same measurement as in (a), however THz pulses
are now first incident to the n-doped epilayer. The cyan curve is an open aperture z-scan of a
semi-insulating (SI) GaAs wafer. The SI GaAs exhibits transmissive behavior similar to the InP
substrate.

5.1.3 Diode-like behavior

By measuring the transmitted energy, and dividing by the far-field energy value, we can retrieve

the normalized transmission. The normalized transmission data for open-aperture z-scans

performed on various samples is plotted in Fig. 5.3. The dark blue curve demonstrates the

results for a piece of semi-insulating InP:Fe, while the green/red curves show the z-scans of

high/low doped InGaAs grown on semi-insulating InP:Fe. A wafer of semi-insulating GaAs is

z-scanned to verify the nonlinearity of the substrate z-scan (cyan curve).

Recall Fig. 5.1. Samples are z-scanned according to the two orientations in this figure. In

the first orientation, THz pulses fall directly on the In0.53Ga0.47As thin film. THz pulses exit

this arrangement with electric field denoted by Et,1. Flipping the sample around, the samples

are now in the second orientation, where THz pulses are incident to the substrate, and transmit

with peak field Et,2. In both instances we see that as a sample moves through the focus of a

THz pulse, the normalized transmission peaks at the focus. We can gather that there are no
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5.1 Open Aperture Z-scan experiment

nonlinearities in the substrate, since both the InP substrate and the semi-insulating GaAs sample

behave identically. The slight rise near z = 45mm is the result of a slight misalignment in the

optics collecting the transmitted THz pulses.

When the In0.53Ga0.47As samples are scanned in the second orientation, we can see that

the peak normalized transmission is larger in the first orientation. This gives rise to an optical

diode, where nonlinear transmission is preferred in one direction of travel, over the other. The

physical origins of this preference can be traced back to the transmission coefficients of the

system. In the first orientation, we have already shown that the transmitted electric field has the

form (recall eqn. 4.12)

Et,1 =
2

1+n+Zoσ̃d
Ei. (5.2)

It can be shown that when the sample is flipped around, the transmitted electric field has the

form [10]

Et,2 =

(
2n
1+n

)
2

1+n+Zoσ̃d
Ei (5.3)

demonstrating that
Et,2

Et,1
=

2n
1+n

. (5.4)

From eqn. 5.4 we fully expect that the sample should demonstrate preferential transmission in

the Et,2 orientation, since 2n/(1+n)≥ 1 for n > 1.

The index of refraction (n) for our InP substrate was measured using THz time-domain

spectroscopy. The results are plotted in Fig. 5.4, where we can see that the real index is

approximately 4.1 in the range from 0.5 to 2 THz. As such, the transmitted electric field in the

second orientation is approximately 1.6 times larger than the first orientation (Et,2 = 1.6Et,1).

Since so much more electric field arrives at the thin film for the second orientation, more

electrons are excited high into the conduction band of the In0.53Ga0.47As epilayer. This results

in more intervalley scattering, a lower electron mobility and a higher overall transmissivity near

the focus.
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5.2 Ultrafast imaging Z-scan

(a) (b)

Fig. 5.4 Using THz-TDS to measure InP substrate index of refraction. (a) Experimental values of
the real and imaginary index of refraction for the InP substrate by THz-TDS. (b) Demonstrating
the time shifted peak electric field induced by placing the InP onto the focus of the THz beam.
Given that the time separation is 4ps, and the substrate has a thickness of 350μm, we can expect
an index near 4.

5.2 Ultrafast imaging Z-scan

5.2.1 Details

Delving into a little bit of signal analysis here, the energy of a signal is given by

E =
1
Z

∞̂

−∞

|V (t)|2 dt (5.5)

where Z is the characteristic impedance of the transmission line through which the signal

propagates. We can relate the voltage signal to an electric field through the definition of a

voltage ˆ
E(t) ·d�= ΔV (t) (5.6)

which implies that over small distances Δx, an electric field that is slowly varying in space will

have the form

E(t)Δx = ΔV (t) =V (t) (5.7)
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5.2 Ultrafast imaging Z-scan

where the final identity occurs by setting the reference voltage to zero. The electric field will be

approximately constant for elctro-optic imaging data, since for a small area (ie, a circle with a 5

pixel radius) the electric field is pretty much constant. As such, eqn. 5.5 becomes

E =
1
Z
(2πr)2

∞̂

−∞

|E(t)|2 dt (5.8)

If a pulse is propagating in free space, then the characteristic impedance is just Z = Zo = 377Ω,

so that

E =
4π×π (r)2

Zo

∞̂

−∞

|E(t)|2 dt ∝
∞̂

−∞

|E(t)|2 dt. (5.9)

Equation 5.9 allows us to measure a time-domain waveform over a small area, and calculate a

quantity proportional to the energy contained within a pulsed electric field.

With the above demonstration, we should be able to measure the energy of THz pulses

directly from their time-domain waveforms. Therefore, we should expect to be able to take the

ideas from the previous section and apply them here. To clarify, it should be possible to make a

movie at a series of z locations on either side of a THz focus (z = 0). From these movies, we

can extract an electric field from a small area of dimension (πr2). Integrating the square of

this electric field, we will obtain a quantity proportional to the energy at each z-position. Thus,

using the time-domain waveforms, we should be able to repeat the measurements made in the

previous section, only this time we use the electro-optic imaging system.

Movies were made using 75fs time steps and 100 counts of offset. With the full THz-energy

recorded to be 1μJ, a standard z-scan was performed to find the maximum transmission at

z = 34mm, as well as establish a baseline measurement. Maximum absorption bleaching (trans-

mission enhancement) for the HD sample was found to be at z = 34mm. With respect to this

maximum, movies were made at 1mm spacing starting from +6mm and going to −9mm. Since

we are using a camera system, the ICCD will have to be moved in tandem with the sample,
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5.2 Ultrafast imaging Z-scan

so that the ICCD is focusing on the sample at every step. This brought in an unforeseen issue

with the camera translation stage; the ICCD camera began pointing away from the THz pulse at

large z-values. Five signal images and five backgrounds were taken for every time step in order

to enhance the signal to noise ratio in each movie. Waveforms were then extracted from a circle

with a radius of 4px(26μm), encompassing an area of approximately 50px2(2,234μm2). The

waveforms were then integrated according to eqn. 5.9.

As an additional measure of nonlinear transmission, we should be able to see a subpicosec-

ond change in transmission when the peak electric field arrives at the sample. If intervalley

scattering is happening on subpicosecond timescales, causing a boost in transmission near the

peak electric field, then we should be able to see a z-dependent change in the peak-to-peak

electric field symmetry. This will comprise a second measure of the nonlinearity experienced in

a sample. The z-dependent pyroelectric energy measurement will serve as a benchmark for the

results from the z-dependent peak-to-peak electric field differences and waveform energies.

5.2.2 Comparing results to baseline measurement

The results of the open-aperture imaging z-scan are plotted in Fig. 5.5, where the peak

transmitted electric field seems to drift from the center of the image. This happens because the

stage that supports the camera fails to maintain a collinear alignment at these positions. In the

future, we will need a stronger stage in order to obtain even better results. For now, we find

the approximate maximum (black circle) of each image and extract a waveform from the area

around this maximum (blue curves).

The normalized integrated waveforms (blue circles), peak-to-peak electric fields (red circles)

and the pyroelectric energies (green line) are plotted in Fig. 5.6. What we see is a boost in

transmission at the focus of the THz pulse (z = 34mm). Integrating the squared waveform seems

to under appreciate the transmitted energy, likely because in Fig. 5.5, the main pulse is barely

in the time-window. This diminishes the integrated square because the area under the curve
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5.2 Ultrafast imaging Z-scan

Fig. 5.5 Selection of waveforms from the imaging z-scan. Each of the peak electric field
images are shown alongside their respective waveforms. Time-domain waveforms extracted
by averaging the electric field within the area enclosed by black circles. As the sample moved
through the focus of the THz pulse, the THz spot drifted out of frame. The drift stems from the
camera stage not traveling perfectly collinear to the THz propagation axis. From the horizontal
drift of 0.5mm over 9mm of travel, the camera stage is 6 degrees from the horizontal alignment.
A similar calculation shows a vertical tilt of 10 degrees.
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5.3 Near-field electro-optic sampling

Fig. 5.6 Characterizing nonlinearity using three different techniques. The green line is a standard
pyroelectric z-scan. The blue dots come from integrating the electric fields of the imaging
z-scan, and the red dots come from the peak-to-peak electric field difference at each step of the
imaging z-scan. With a pulse energy of 1μJ, the electric field was found to be 126kV/cm.

for early times is simply not present. Repeating this experiment would thus require a better

centered time window over which we integrate. Overall the peak-to-peak difference seems to

be a more appropriate measure of transmission nonlinearity, since it is not sensitive to the time

window we choose to work with (insofar as the minimum and maximum electric fields are in

the camera frame).

5.3 Near-field electro-optic sampling

In order to remove the presence of pulse-to-pulse differences, we installed a single-channel

near-field EOS system, shown in Fig. 5.7. This system introduces a Thorlabs BP145b1 (45%

Transmission) pellicle beam splitter (PBS), to split the imaging beam into 2 paths. One track is

dedicated to measuring the background intensity Iout using a Thorlabs PDA100A photodiode

(PD1). A variable density filter (VDF) is used to attenuate Iout so that non-modulated difference

can be zeroed (Iin− Iout = 0) with lock-in sensitivity.
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5.3 Near-field electro-optic sampling

Fig. 5.7 Diagram of near-field electro-optic sampling system. PD denotes a photodiode, VDF
is a variable density filter, PBS is a pellicle beam splitter, QWP is a quarter wavelplate, EOC
is an electro-optic crystal, BS is a non-polarized beam splitter, P is a linear polarizer, with a
horizontal transmission axis.

The alternate path shines the remaining light onto the sample by use of a non-polarizing

beamsplitter (BS). This redirects 50% of the incident light onto the sample, where it is reflected

back onto a quarter waveplate (QWP), and through a horizontally aligned nanoparticle linear

polarizer (P). Finally, this pulse is incident to the other photodiode (same model as above, PD2).

With the above arrangement, we use an amplifier locked-in to a 500 a Hz chopping frequency

to measure Iout, Iin and Iin−Iout to great accuracy. Finally, the ICCD camera hasn’t been removed

from the system, and so we have the ability to use an iris to spatially isolate the signal to only
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5.4 Experimental details and preliminary results

those areas modulated by THz radiation.

Before finishing this section, we should devote some time to determining if this system is

sensitive to the near-field phenomena we are interested in. The distance for which diffractive

behavior can be considered near-field (R) is related to the wavelength of light diffracting (λ )

and the largest physical dimension of the object upon which diffraction occurs (D) when

R <
D2

λ
. (5.10)

Ayesheshim measured a transient picosecond dipole induced by intervalley scattering that had

dimensions on the order of D = 1mm [10]. Thus, for a center wavelength of f = 0.5T Hz,

λo = 0.6mm. When propagating in the electro-optic crystal, λ = λo/n. The index of refraction

at THz wavelengths for is 2.8 for ZnTe [16] and 3.2 for GaP [43]. Thus, λ ≈ λo/3, implying

that

R <
(1mm)2

0.6mm/3
=
3mm
0.6

= 5mm. (5.11)

So long as the THz pulses do not travel for longer than 5mm within the electro-optic crystal, the

near-field signatures of nonlinear transmission will be present in the time-domain waveforms.

5.4 Experimental details and preliminary results

The experiment this time is quite simple. We measured the transmitted THz electric field

through a control sample (substrate of InP) and a LD sample. By integrating the time-domain

electric field, we can expose the presence of any subpicosecond nonlinearity, ie,

Offset(t) =
ˆ t

−∞
E(t ′)dt ′. (5.12)

Fig. 5.8 shows the results of the measurements described above. Given the subpicosecond

nature of intervalley scattering, we expect to see the presence of a subpicosecond reshaping of
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(a) (b)

Fig. 5.8 Results from near-field electro-optic sampling. (a) The full time-domain window of the
THz waveforms measured. The blue curve comes from a transmission through the substrate,
and the red curve comes from nonlinear transmission through the LD sample. (b) Running
integrals of the waveforms from (a). The green curve is the integral of a noise data set.

the THz pulse, induced by intervalley scattering. This reshaping of the transmission waveforms

will be prominent in the time-integral of a THz waveform, bearing the form of a net integral.

This integral is presented in Fig. 5.8, which shows a distinct offset in the LD transmission

waveform that isn’t present in either the control sample or the noise.

This result agrees with the expectation from Fig. 4.6 (b), where the dynamic Drude model

shows the non-zero nature of the integrated waveforms should diverge from zero. Further

optimization and testing must be done to solidify these results, by exploring the field-dependent

nature of this nonlinearity. Furthermore, as the temperature of the conducting film is lowered,

we expect to see the duration of the intervalley scattering process increase, since the phonon

scattering rate that drives this nonlinearity will be reduced. Replicating these results with an

electro-optic imaging scheme may yield valuable insight to the use of intervalley scattering

to generate a picosecond transient current, since a local radiating dipole on the surface of the

conducting thin film could be an indication that heavier electrons moving alongside lighter

electrons creates a local transient current [10]. In the future, this ultrafast voltage transient can

be used to create unbiased photodetectors that work at THz frequencies.
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5.5 Fitting to dynamic drude model

5.5 Fitting to dynamic drude model

In Appendix A, the algorithm that is used to fit data to the dynamic Drude model is provided.

Using the near-field EOS system, we can measure a THz waveform upon transmission through

the InP substrate. Furthermore, we can take this waveform and run it through the algorithm

outlined in Chapter 4, and compare it to the waveform we measure upon transmission through a

doped epilayer.

The results of a preliminary measurements are shown in Fig. 5.9. By plotting the normalized

waveforms, we can see any asymmetry that develops in the waveforms passing through the

LD sample. Looking at times just after the peak electric field arrives, we can see that the THz

minimum is much deeper when a THz pulse passes through the LD sample. This is an indication

that intervalley scattering is enhancing the transmissivity of the LD thin film before the THz

pulse has fully left the sample.

The actual curve fitting process results are shown in Fig. 5.10, where the simulation was

run for an electric field range from 40 to 160kV/cm. The algorithm seeks the electric field

that minimizes the difference between the simulated and measured integrated waveforms, over

the range of electric fields specified by the user. Doing this, we can see the first evidence of

non-zero integration of a near-field waveform.

The waveforms taken in Fig. 5.10 were acquired as a proof of concept, and as a result the

source wasn’t optimized, nor was the THz pulse properly characterized before the measurement

was taken. By optimizing the source to generate pulses of 1.1μJ, and doing an open aperture

energy z-scan of the LD sample, the sample was exposed to a peak electric field of 133kV/cm.

Figure 5.11 shows the results of the open-aperture z-scan and the thermal profile of the THz

pulse, and Fig. 5.12 shows the data retrieved through near-field EOS. In Fig. 5.12 (a) the

emitted waveforms for the substrate (blue) and LD sample (red) are shown. By taking the

substrate waveform and running it through the intervalley scattering algorithm, we generate
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5.5 Fitting to dynamic drude model

Fig. 5.9 Preliminary input data for fitting to dynamic Drude model. (a) Full time-domain
window of the THz pulses measured after transmission through the substrate (blue) and LD
sample (Red). The substrate waveform from this data set will be entered into the dynamic
Drude simulation shown in Fig. 4.5.

Fig. 5.10 Demonstrating the results of fitting to a dynamic Drude model. (a) Measured (red) and
simulated (green) time-domain waveforms. The peak electric field of the simulated waveform
was estimated to be 72kV/cm. (b) Fourier transforms of the time-domain waveforms. (c)
The integrated waveforms from (a). The integrated waveform from the measured nonlinear
transmission diverges at late delay times because of a misalignment between the imaging line
and the iris used to isolate the THz waveforms.
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5.5 Fitting to dynamic drude model

a simulated waveform (green). A zoom in of these waveforms is shown in Fig. 5.12 (c) for

clarity. Integrating the waveforms from panel (a), we construct Fig. 5.12 (b), where we see

that the integrated waveforms have very different behavior. The LD integral converges on a

non-zero value, while the substrate integral clearly converges on zero at later times. Panel (d)

shows the results of panel (b), zoomed in to the same region as panel (c). It appears as though

the simulation is not able to incorporate the effects of reflected THz pulses, since it converges

quite well with the measured nonlinear transmission at for times less than 25ps, and flattens out

afterwards. The simulation requires the user to input a peak electric field value, as well as a

normalized waveform that is to undergo intervalley scattering. In order to find an optimal peak

electric field, the algorithm in Appendix A.2.2 was used. It attempts to find the peak electric

field that minimized the difference between the simulated output and the measured waveform.

It works by running two simulations. One simulation occurs at an upper bound electric field,

while the other simulation occurs at a lower peak electric field. The electric field that produces

a waveform with the best fit is selected as the new upper bound. For the fitting shown in Fig.

5.11, a peak electric field of 65kV/cm (roughly half of the measured peak electric field) was

reported from the minimization algorithm. This explains why the later time intervals do not

agree with early times, since subsequent reflections would have smaller peak electric fields that

are not strong enough to drive further intervalley scattering. In the future, it should be possible

to take this one-dimensional simulation and apply it to the imaging system in a pixel-by-pixel

fashion. This could provide insight on the physical origins of the current responsible for the

near-field radiation pattern seen in previous work [10].

For the simulation, it was assumed that the sample thickness was 500μm, the effective electron

masses for the Γ and L-valleys are 0.04me and 0.26me respectively. The threshold energy of

eqn. 4.37 was given as Eth = 0.13eV , with a half-window of 0.06eV . The carrier density was

given as ne = 3.5×1023m−3, along side τL→Γ = 4ps, τΓ→Γ = 0.1ps,τL→L = 0.06ps. The initial

momentum of the electrons in the system is zero, and the L-valley population is assumed to

begin at zero as well. All of the remaining parameters are given in Appendix A.2.1.
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5.5 Fitting to dynamic drude model

Fig. 5.11 Characterizing THz source before measuring near-field waveforms. (a) Open-aperture
z-scan of LD sample, showing the location of the peak nonlinearity at 48mm. Due to the
installation of a new sample holder, the entire baseline could not be measured. (b) Thermal
image of the THz intensity profile. The THz spot has a 1/e2 diameter of 2.6mm (red circle).
The energy of the THz pulse is measured to be 1.1μJ, corresponding to a peak electric field of
133kV/cm. (c) The vertical and horizontal cross sections extracted from the green lines in (b).
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5.5 Fitting to dynamic drude model

Fig. 5.12 Fitting near-field waveforms using dynamic Drude model. (a) Normalized THz
waveforms from simulation and measurement. Peak THz electric field incident to sample is
133kV/cm. (b) Integrated waveforms from (a). (c) Zoomed in view of the waveforms from (a).
(d) Integrals of waveforms shown in (c).
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Chapter 6

Conclusions and Outlook

THz electro-optic imaging is a tool capable of capturing the near-field, subpicosecond evolution

of intense THz electric fields as they transmit through doped semiconductors. In this thesis we

have explored the principles of electro-optic imaging, and showed that over-rotation can occur

if the imaging electro-optic crystal is not carefully selected. We have seen that choosing an

electro-optic crystal with a low electro-optic coefficient, as well as having a reduced thickness,

results in a more gaussian electric field profile, accompanied by a modulation ratio well within

the linear regime of detection.

We have performed the first ultrafast imaging z-scan of intense THz pulses, in order to

explore the near-field behavior of the transmission of intense THz pulses through In0.53Ga0.47As

thin films. It was shown that integrating the modulus square of near-field waveforms can be an

effective measure of THz-pulse-induced absorption bleaching in n-doped In0.53Ga0.47As thin

films, by comparing our measurements to benchmark pyroelectric z-scans. From the imaging

z-scan, it was also shown that the z-dependent peak-to-peak electric field difference can indicate

the presence of absorption bleaching through comparison to the same pyroelectric benchmark.

In the future, it may be possible to use an intervalley scattering simulation to interpret local

electron velocities that give rise to dipole radiation patterns seen in previous work [10].
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We installed a single-channel electro-optic sampling system within the existing electro-optic

imaging setup in order to measure the ultrafast near-field evolution of subpicosecond changes in

the conductivity of In0.53Ga0.47As thin films. From this, we have seen evidence of a rectification

process occurring in a heavily doped In0.53Ga0.47As epilayer that gives rise to a non-zero

integrated THz electric field. We then attempted to use a dynamic Drude simulation to generate

THz electric fields that share similar features to those seen in experiment. More work needs to

be done in order to properly demonstrate agreement between simulation and measurements, as

the work presented here stands as a preliminary attempt.

Looking forward, the electro-optic imaging system has great potential. One route that

can be explored is taking the In0.53Ga0.47As samples to low temperatures. We can lower the

temperature of our samples, perform an ultrafast imaging z-scan, and measure the absorption

bleaching induced by THz pulses. As the temperature is lowered, the increase in electron

mobility will lower the electric field threshold for intervalley scattering, enabling intervalley

scattering at lower electric field strengths than room temperature values quoted in literature [12].

By achieving a lower threshold fields, it may be possible to make an efficient saturable absorber

for ultrafast terahertz signals, similar in principle to those presented in previous work [44].

Using only a reflection coated wafer of GaP, one could presumably measure the spatial

characteristics of THz electric fields undergoing a Gouy phase transition without the need for

elaborate detection schemes [45]. Experimentally, this measurement can be done easily using

the ultrafast imaging z-scan presented in this thesis. In doing so, we can easily reconstruct a

three-dimensional map of a THz carrier envelope undergoing a Gouy phase transition.
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A.1 Image Processing in ������

A.1.1 Reducing images

1 function [Reduced_images,Reduced_matrix ] = Reduce_mean_shutter(

Num_images,Offset,N)

2 % REDUCE_MEAN_SHUTTER

3 % This function is designed to upload 2 data sets and process them side

by side.

4 % 1.) Load in Data image

5 % 2.) Load in Background image

6 % 3.) (Image − Bkgrd)./Bkgrd = Signal (single channel)

7

8 %% Input Variables

9 % Num_images = Number of images per data set

10 % eg, = 256;

11 %

12 % Offset = Counts of offset used in LaVision

13 % eg, = 500;

14 %

15 % N = Number of data sets to average over

16 % eg, = 5

17 %

18 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

19

20 %% Output Variables

21 % Reduced_images = Output cell array;

22 % = 1xN cell;

23 % Reduced_matrix = 3−D matrix of output values;

24 % eg, = 520x688x256;
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A.1 Image Processing in ������

25 %

26 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

27

28

29 %% This is the preamble information

30

31

32

33

34 tic;

35

36 Temp_image = zeros(520,688,N);

37 Temp_Bkgrd = zeros(520,688,N);

38 file_dir = cell(N,Num_images/2);

39

40

41 for j = 1:N

42 file_dir{j} = fullfile(uigetdir('',sprintf('Please select %i data

directory',j)));

43 end

44

45

46

47

48

49 %% Making a list of strings with file directories

50
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A.1 Image Processing in ������

51

52 fprintf('Please wait while images are processed.\n')

53 %Making a cell array of strings of image locations

54 Image_cell_string = cell(N,Num_images/2);

55 Bkgrd_cell_string = cell(N,Num_images/2);

56 for j = 1:N

57 Image_cell_string{j,1} = fullfile(file_dir{j},'Image\\

B00001.txt');

58 Bkgrd_cell_string{j,1} = fullfile(file_dir{j},'Image_01\\

B00001.txt');

59 for i= 2:2:8

60 Image_cell_string{j,i/2 +1} = fullfile(file_dir{j},

sprintf('Image_0%i\\B00001.txt',i));

61 Bkgrd_cell_string{j,i/2 +1} = fullfile(file_dir{j},

sprintf('Image_0%i\\B00001.txt',i+1));

62 end

63 for i = 10:2:Num_images−2
64 Image_cell_string{j,i/2 +1} = fullfile(file_dir{j},

sprintf('Image_%i\\B00001.txt',i));

65 Bkgrd_cell_string{j,i/2 +1} = fullfile(file_dir{j},

sprintf('Image_%i\\B00001.txt',i+1));

66 end

67 end

68

69

70 %% Using the list of strings to open one image at a time

71
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A.1 Image Processing in ������

72 Reduced_matrix = zeros(520,688,Num_images/2);

73 Reduced_images = cell(1,Num_images/2);

74 %Generating the data cell array and matrix

75 for i = 1:Num_images/2

76 for j = 1:N

77 Temp_image(:,:,j) = single(importimage(

Image_cell_string{j,i}));

78 Temp_Bkgrd(:,:,j) = single(importimage(

Bkgrd_cell_string{j,i}));

79 end

80 Mean_image = mean(Temp_image,3);

81 Mean_Bkgrd = mean(Temp_Bkgrd,3);

82 Reduced_images{i} = (Mean_image−Mean_Bkgrd)./(
Mean_Bkgrd−Offset);

83 Reduced_matrix(:,:,i) = Reduced_images{i};

84 end

85 toc;

86

87 end
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A.1 Image Processing in ������

A.1.2 3D fast fourier transform

1 function [Amplitudes, Frequencies,FFT] = FFT_three_d(wave,

Sampling_Frequency)

2 %% Description:

3 %

4 % FFT.m is designed to take an 3D matrix, and perform a standard single

5 % sided FFT. It outputs a frequency spectrum and an amplitude matrix.

6 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7 %% Variables:

8 %

9 % wave = vector of values to be transformed

10 % eg, = Waveform

11 %

12 % Sampling_Frequency = 1/(time between data points)

13 % eg, = Output_frequencies

14 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

15 tic;

16 %% Calculate frequency spectrum

17 % fftlength

18 NFFT=2^nextpow2(length(wave(1,1,:)));

19 % Get the sampling frequency

20 Fs=Sampling_Frequency;

21 % FFT actual information goes from DC to Nyquist Frequency
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A.1 Image Processing in ������

22 Frequencies=Fs/2*linspace(0,1,NFFT/2+1);

23

24 %% Generate amplitudes

25 FFT = fft(wave,NFFT,3);

26 Amplitudes = abs(fft(wave,NFFT,3));

27 Amplitudes = Amplitudes(:,:,1:NFFT/2+1);

28 FFT = FFT(:,:,1:NFFT/2 +1);

29 toc;

30 end
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A.1 Image Processing in ������

A.1.3 Converting Lock-in Signal to Electric Field

1 function [ E_THz ] = Electric_field(Waveform,N,Modulation_ratio,

EO_Crystal)

2 %% Description:

3 %Electric_field takes in an EOS wave form and spits out the equivalent

4 %Out put E_THz is a vector in kV/cm using Hiriori,Tanaka,Blanchard,Doi

2011

5 %APL: Single−cycle terahertz pulses with amplitudes exceeding

6 %1 MV/cm generated by optical rectification in LiNbO3

7 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8 %% Variables:

9 %

10 % Waveform = Normalized output Va−Vb from lock in amplifier.

11 % eg, = [vector]

12 %

13 % N = number of silicon attenuation wafers.

14 % eg, = 3

15 %

16 % Modulation_ratio = A−B/A+B from Oscilloscope

17 % eg, = 34 mV/1000mV

18 %

19 % EO_Crystal = What type of crystal are you using? (GaP or ZnTe)

20 % eg, = 'ZnTe'
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21 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

22

23 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

24 %% Outputs:

25 %

26 % E_THz = Electric field [kV/cm]

27 % eg, = [Vector]

28 %

29 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

30

31

32 %% Preamble

33 Waveform = Waveform./max(Waveform);

34

35 switch EO_Crystal

36 case 'ZnTe'

37 % ZnTe Properties

38 lambda_o = 805E−9; %[m]

39 n_o = 2.8529; %Li. 1984

40 eo_coeff = 4.04E−12;%Yun−Shik Lee pg. 93 [m/V]

41 t_si = 0.7; % Hiriori,Doi,Blanchard,Tanaka 2011
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A.1 Image Processing in ������

42 t_znte = 0.479;

43 % http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791559/

44 % Says t_ZnTe = 2/(n_thz+1) where n_thz is the index of

refraction of

45 % 1THz light in ZnTe

46 L = 0.5E−3; %Thicnkness = 500 micrometers

47

48 E_THz = asin((Modulation_ratio))*((lambda_o.*Waveform)./(2*pi*(n_o^3)

*eo_coeff*t_znte*(t_si.^N)*L)).*(1E−5);
49

50 case 'GaP'

51 % GaP Properties

52 lambda_o = 800E−9;
53 t_GaP = 0.46; % Hiriori,Doi,Blanchard,Tanaka 2011

54 t_si = 0.7;

55 n_o = 3.2; % Hiriori,Doi,Blanchard,Tanaka 2011

56 eo_coeff = .88E−12; % Hiriori,Doi,Blanchard,Tanaka 2011

57 L = 200E−6;
58

59 E_THz = asin((Modulation_ratio))*((lambda_o.*Waveform)./(2*pi*(n_o^3)

*eo_coeff*t_GaP*(t_si.^N)*L)).*(1E−5);
60 end

61

62

63 %% Output vector

64 E_THz;

65
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66

67 end
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A.2 Dynamic Drude model

A.2 Dynamic Drude model

A.2.1 Model

1 function [Output] = thin_film_1D(E_max,E_noise)

2 % disp('Start')

3 % disp(' ')

4 %% −− Description −−
5 % This script takes in THz waveform data and models the field

6 % transmitted through a sheet of doped InGaAs. A thin film

7 % approximation is used and carrier momemtum is calculated using

RK4.

8 % Scattering rate is chosen using a smooth, monotomic threshhold

9 % function.

10 % Original Author: Ayesheshim Kebie Ayesheshim

11 % Improved and added onto by Kameron Palmer and Charles Jensen

12

13 %% −− Inputs −−
14 % o (Normalized, single column) THz waveform data file

15 % o physical parameters adjusted in a following section

16

17 %% −− Outputs −−
18 % o Calculates and plots emmitted (emt) and incidental (inc)

fields

19 % o Integral of emt and inc

20 % o Writes out select values of interest

21

22 %% −− Physical Constants −−
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A.2 Dynamic Drude model

23 e0 = 1.60217653e−19; %electron charge [C]

24 me = 9.109389e−31; %electron mass [Kg]

25 kb = 1.380658e−23; %boltzmann constant [J/K]

26 T0 = 300; %temperature [K]

27 Y0 = 1/377; %admittance of free space

[1/Ohm]

28

29 %% −− System Parameters −−
30 % Values related to the THz beam

31 [t,THz] = import_waveform('C:\Charles\Video bin\Movies and data

\2017\31_May_017\31\Substrate');%uigetfile('*.*','Please select a

THz waveform'))); %THz waveform data file

32 THz = flipud(THz);

33 THz = THz(1:end − 1);

34 THz = THz −mean(THz(530:760));
35 THz = Waveform_smooth(t,THz./max(THz),E_noise,2.5); %

Smoothing waveform with Tukey window

36 t = t.*1e−12;
37 %E_max = 60e+5; %Max value of THz pulse, [V/m].

1e5 V/m = 1kV/cm

38 E_inc = E_max.*THz; %Create array of incident pulse,

[V/m]

39 t_run = (t(end)−t(1)); %Time interval of pulse, [

s]

40

41 %% −− Sample Parameters −−
42 % Values of constants related to the sample
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A.2 Dynamic Drude model

43 n_elec = 3.5e23; %number density of electrons,

[1/m^3]

44 d_thick = 0.5e−6; %thickness of the sample, [m]

45 n = 3.001; %index of material, [1]

46 mG = 0.04*me; %effective mass in G−valley, [Kg]

47 mL = 0.26*me; %effective mass in L−valley, [Kg]

48 aG = 1.33/e0; %parabolicity of the G−valley,
[1/eV]

49 aL = 0.59/e0; %parabolicity of the L−valley,
[1/eV]

50

51 %% −− Scattering Parameters −−
52 % Intervalley scattering is handled by assuming the rate is 0 for

low

53 % energy, a set constant for high energy, and a smooth intermediate

54 % function over a set window with a chosen width and center

55 enth = 0.13*e0; %center of the smooth function

window, [eV]

56 de = (0.12−0.06)*e0; %half width of window, [eV

]

57 tGL = 0.030e−12; %G −> L max scattering rate, [s]

58 tLG = 4.000e−12; %L −> G scattering time, [s]

59 tGG = 0.100e−12; %G −> G scattering time, [s]

60 tLL = 0.060e−12; %L −> L scattering time, [s]

61

62 %% −− Run Parameters −−
63 format long
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A.2 Dynamic Drude model

64 N = length(E_inc); %number of data points

65 t = linspace(0,t_run,N); %time array, [s]

66 dt = t(2) − t(1); %time step value, [s]

67 E_emt = zeros(size(t)); %Field that leaves, [V/m]

68 J = zeros(size(t)); %current density, [A/m^2]

69 nG = ones(size(t)); %fraction of electrons in

G−valley, [1]

70 vG = zeros(size(t)); %average vel. of

electrons in G−valley, [m/s]

71 vL = zeros(size(t)); %average vel. of

electrons in L−valley, [m/s]

72 MG = ones(size(t))*mG; %effective mass in G−
valley, [Kg]

73 ML = ones(size(t))*mL; %effective mass in L−
valley, [Kg]

74 en0 = 1.5*kb*T0; %thermal component of

energy, [J]

75 enG = ones(size(t))*en0; %energy of an electron in

the G−valley, [J]

76 enL = ones(size(t))*en0; %energy of an electron in

the L−valley, [J]

77 pG = vG.*sqrt(2*mG*enG.*(1 + aG*enG)); %momentum of an electron

in the G−valley, [Kgm/s]

78 pL = vL.*sqrt(2*mL*enL.*(1 + aL*enL)); %momentum of an electron

in the L−valley, [Kgm/s]

79 rGL = zeros(size(t)); %scatter rate from G−
valley to L−valley, [1/s]
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80 diff_pG = pG; %force on electron in G−
valley, [N]

81 diff_pL = pL; %force on electron in L−
valley, [N]

82 I_emt = zeros(size(t)); %integral of emitted

field w.r.t time, [Vs/m]

83 I_inc = zeros(size(t)); %integral of emitted

field w.r.t time, [Vs/m]

84

85 %% −− Begin Calculation −−
86

87 for j = 1:N

88 % calculate current and emitted field

89 J(j) = −e0*n_elec*(nG(j)*vG(j) + (1−nG(j))*vL(j));
90 E_emt(j) = (2*Y0*E_inc(j) − d_thick*J(j))/(Y0 + n*Y0);

91

92 % calculate mass/energy

93 MG(j) = mG*(1 + aG*(enG(j) − 1.5*kb*T0));

94 ML(j) = mL*(1 + aL*(enL(j) − 1.5*kb*T0));

95 enG(j) = ((sqrt(1+2*aG*pG(j)^2/MG(j))−1)/(2*aG))+1.5*kb*T0;
96 enL(j) = ((sqrt(1+2*aL*pL(j)^2/ML(j))−1)/(2*aL))+1.5*kb*T0;
97

98 %update momentum of G−valley (using RK4)

99 rGL(j) = inter_scattering(enG(j),enth,de,tGL);

100 tG = rGL(j);

101 diff_pG(j) = −e0*E_emt(j)−pG(j)*(1/tGG + tG);

102 k1 = dt*diff_pG(j);
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103 k2 = dt*(−e0*E_emt(j)−(pG(j)+1/2*k1)*(1/tGG + tG));

104 k3 = dt*(−e0*E_emt(j)−(pG(j)+1/2*k2)*(1/tGG + tG));

105 k4 = dt*(−e0*E_emt(j)−(pG(j)+ k3)*(1/tGG + tG));

106 pG(j+1) = pG(j)+(1/6)*(k1+2*(k2+k3)+k4);

107

108 %update momentum of L−valley (using RK4)

109 tL = 1/tLG;

110 diff_pL(j) = −e0*E_emt(j)−pL(j)*(1/tLL + tL);

111 c1 = dt*diff_pL(j);

112 c2 = dt*(−e0*E_emt(j)−(pL(j)+1/2*c1)*(1/tLL + tL));

113 c3 = dt*(−e0*E_emt(j)−(pL(j)+1/2*c2)*(1/tLL + tL));

114 c4 = dt*(−e0*E_emt(j)−(pL(j)+ c3)*(1/tLL + tL));

115 pL(j+1) = pL(j)+(1/6)*(c1+2*(c2+c3)+c4);

116

117 %calculate velocties and fraction in G−valley
118 vG(j+1) = pG(j)/(mG*sqrt(1+(2*aG*pG(j)^2)/mG));

119 vL(j+1) = pL(j)/(mL*sqrt(1+(2*aL*pL(j)^2)/mL));

120 vd(j) = vG(j)*nG(j) + vL(j)*(1−nG(j));
121 nG(j+1) = nG(j)+dt/tLG−nG(j)*dt*(rGL(j)+1/tLG);
122

123 %calculate integrals

124 % if(j > 1)

125 % I_inc(j) = trapz(E_inc(1:j));

126 % I_emt(j) = trapz(E_emt(1:j));

127 % end

128 end

129 %% Linear fits to remove noise term
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130 [I_inc] = running_integral(E_inc);

131 [I_emt] = running_integral(E_emt);

132

133

134 %% remove the extra value in each of these

135 pG = pG(1:end−1);
136 pL = pL(1:end−1);
137 vG = vG(1:end−1);
138 vL = vL(1:end−1);
139 nG = nG(1:end−1);
140

141 %% −− Generate Output structure −−
142 Output.pG = pG;

143 Output.pL = pL;

144 Output.vG = vG;

145 Output.vL = vL;

146 Output.nG = nG;

147 Output.nL = 1−nG;
148 Output.E_emt = E_emt;

149 Output.I_inc = I_inc;

150 Output.I_emt = I_emt;

151 Output.enG = enG;

152 Output.enL = enL;

153

154 %% −− Plot −−
155 % Fields

156 % figure(1)
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157 % plot(t*1e12,(E_inc./max(E_inc)), t*1e12, (E_emt./max(E_emt)),'

LineWidth',1.5)

158 % legend('E_{inc}','E_{emt}')

159 % title('Emitted and Incidental Fields')

160 % xlabel('Time [ps]')

161 % ylabel('Field Strength [kV/cm]')

162 % %Integrals

163 % figure(2)

164 % plot(t*1e12,(I_inc./max(I_inc)),t*1e12,(I_emt./max(I_emt)),'

LineWidth',1.5)

165 % legend('I_{inc}','I_{emt}')

166 % title('Integral of Emitted and Incidental Fields w.r.t time')

167 % xlabel('Time [ps]')

168 % ylabel('Integral up to current time [kV ps/cm]')

169 % %valley occupancy

170 % figure(3)

171 % plot(t*1e12,nG,t*1e12,1−nG,'LineWidth',1.5)
172 % xlim([−t_run*1e12 *0.05,t_run*1e12])

173 % legend('\Gamma − Valley','L −Valley','Location','northoutside
','orientation','horizontal')

174 % title('Valley occupancy')

175 % xlabel('Time [ps]')

176 % ylabel('Occupancy fraction')

177 % %velocities

178 % figure(4)

179 % plot(t*1e12,vG,t*1e12,vL,'LineWidth',1.5)

180 % legend('\Gamma − Valley','L − Valley')
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181 % title('Valley velocities')

182 % xlabel('Time [ps]')

183 % ylabel('Velocity [m/s]')

184 % %energies

185 % figure(5)

186 % plot(t*1e12,enG/e0,t*1e12,enL/e0,'LineWidth',1.5)

187 % legend('\Gamma − Valley','L − Valley')

188 % title('Valley energies')

189 % xlabel('Time [ps]')

190 % ylabel('Energy [eV]')

191 %

192

193 %% −− Fun Facts −−
194 % disp(strcat({'Max. of emitted field: '},{num2str(max(E_emt)*1e−5)},

{' kV/cm'}))

195 % disp(strcat({'Max. of vG: '}, {num2str(max(vG))}, {' m/s'}))

196 % disp(strcat({'Max. of vL: '}, {num2str(max(vL))}, {' m/s'}))

197 % disp(strcat({'Integral of Einc: '},{num2str(I_inc(end))}))

198 % disp(strcat({'Integral of Eemt: '},{num2str(I_emt(end))}))

199 %% −− Finish −−
200 % clear all

201 % disp(' ')

202 % disp('Done')

203

204 end

205 function y = inter_scattering(en,enth,b,tn120)

206 e0 = 1.60217653e−19;
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207 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

208 %smooth function:

209 %r12=A1(en1−enth)(en1−2b−enth)(en1+2b−enth)(en1−enth+b1)(en1−enth−b1)
(en1−enth−b2)(en1−enth+b2)+r120/2

210 b1 = 0.1*e0;

211 b2 = 0.1*e0;

212 BB1 = (0.5/tn120)/((−3*b^3)*(−b−2*b1)*(3*b+2*b1)*(−b−2*b1−2*b2)*(3*b
+2*b1+2*b2));

213 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

214 if en <= (enth−b); %b=0.57e0

215 y = 0;

216 else

217 if en >= (enth+b);

218 y = 1/tn120;

219 else

220 y = BB1*(en−enth)*(en−enth−2*b)*(en−enth+2*b)*(en−enth−2*b−2*
b1)*(en−enth+2*b+2*b1)*(en−enth−2*b−2*b1−2*b2)*(en−enth+2*b
+2*b1+2*b2)+0.5/tn120;

221 end

222 end

223 end
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A.2.2 Fitting to dynamic Drude model

1 diff = 1;

2 Data_norm = E_LD./max(E_LD);

3 E_max = 160E+5;

4 E_min= 40E+5;

5 count = 0;

6

7 while diff>0.00005 && count<100

8 count = count+1;

9 Max_output = thin_film_1D(E_max,E_noise);

10 E_emt_norm_max = Max_output.E_emt./max(Max_output.E_emt);

11 I_max = Max_output.I_emt./max(Max_output.I_emt);

12 Min_output = thin_film_1D(E_min,E_noise);

13 E_emt_norm_min = Min_output.E_emt./max(Min_output.E_emt);

14 I_min = Min_output.I_emt./max(Min_output.I_emt);

15 diff_max = abs(min(Data_norm) − min(I_max));

16 diff_min = abs(min(Data_norm) − min(I_min));

17 if diff_max < diff_min

18 E_min = abs(E_max+E_min)./2;

19 else

20 E_max = abs(E_max+E_min)/2;

21 end

22 diff = abs(diff_max−diff_min);
23 end

24

25

26 E_out = [E_emt_norm_max' E_emt_norm_min'];
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27 E_out = mean(E_out,2);

28 E_out = E_out./max(E_out);

29 E_out = E_out(1:end);

30

31 I_out = [Max_output.I_emt Min_output.I_emt];

32 I_out = mean(I_out,2);

33 I_out = I_out./max(I_out);

34 I_out = I_out(1:end);

35

36 Mean.nG = mean([Max_output.nG' Min_output.nG'],2);

37 Mean.nL = mean([Max_output.nL' Min_output.nL'],2);

38 Mean.pG = mean([Max_output.pG' Min_output.pG'],2);

39 Mean.pL = mean([Max_output.pL' Min_output.pL'],2);

40 Mean.vG = mean([Max_output.vG' Min_output.vG'],2);

41 Mean.vL = mean([Max_output.vL' Min_output.vL'],2);

42 Mean.enG = mean([Max_output.enG' Min_output.enG'],2);

43 Mean.enL = mean([Max_output.enL' Min_output.enL'],2);

44

45 clear Max_output

46 clear Min_output

47 clear Output

48 clear E_min

49 clear I_max

50 clear I_min

51 clear Data_norm

52 clear diff_max

53 clear diff_min
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54 clear diff
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A.2.3 Drude fitting

1 function [Freq_fit_out,Sigma_one_fit_out,Sigma_two_fit_out,sigma_dc,tau]

= Drude_fitter(sigma_one,sigma_two,freq)

2 %DRUDE_FITTER Summary of this function goes here

3 % Detailed explanation goes here

4

5 %% Preamble setup

6

7 % Frequency vector: first half is for sigma_one, second half is for

8 % sigma_two

9

10 freq = [freq freq];

11 omega = freq.*2.*pi;

12

13 % Creating a single vector for sigma_one and sigma_two

14 y = [sigma_one sigma_two];

15 n1 = length(sigma_one);

16 n2 = length(sigma_two);

17 n = n1+n2;

18

19 %% Defining fun as the residual function between theory and measurement (

y)

20

21 fun = @(fit_params)[fit_params(1).*fit_params(2)./(1+((omega(1:n1)).*

fit_params(2)).^2) fit_params(1).*fit_params(2).*(omega(n1+1:n).*

fit_params(2))./(1+((omega(n1+1:n)).*fit_params(2)).^2)]−y;
22
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23 %% Fitting the function

24

25 % Initial guess

26 [max_y] = max(sigma_one);

27 initial_guess = zeros(1,2);

28 initial_guess(1) = 1.5.*max_y;

29 initial_guess(2) = 1./(0.85E+12);

30

31 % Fitting the function

32 fit_out = lsqnonlin(fun,initial_guess);

33

34 % Extracting the paramaters

35 sigma_dc = fit_out(1).*fit_out(2);

36

37 % since we do everything with f and not omega, tau −> tau/2pi which means

we have to correct that

38 % We also correct for f −> f/1E+12 meaning tau−> tau/(2*pi*1E+12)

39 tau = fit_out(2);

40

41 % Creating the fit we want to export

42 Freq_fit_out = linspace(0,max(max(freq)),1000);

43 Sigma_one_fit_out = fit_out(1)./(1+((Freq_fit_out).*fit_out(2)).^2);

44 Sigma_two_fit_out = fit_out(1).*(Freq_fit_out.*fit_out(2))./(1+((

Freq_fit_out).*fit_out(2)).^2);

45

46 % Quickly plotting the results just to be sure
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47 Plotter(freq(1:n1),y(1:n1),Freq_fit_out,Sigma_one_fit_out,freq(n1+1:n

),y(n1+1:n),Freq_fit_out,Sigma_two_fit_out);

48

49

50 end
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Appendix B

In-depth calculations

B.1 Intensity profile to electric field

Through use of a thermal imaging system, it is possible to characterise the intensity profile of a

THz pulse.This characterisation can actually be quite useful in estimating the peak electric field

of a THz pulse. The derivation is quite simple, and begins with the assumption that a THz pulse

has an intensity profile of the form

I(r, t) = Ioe−2r
2/w2e−t2/τ2 . (B.1)

Where τ is a measure of the temporal width of a pulse. A THz pulse is typically around the 1ps

time scale. Now the instantaneous power of this pulse can be found by integrating over the area
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of the intensity profile in cylindrical coordinates.

P(t) =
ˆ

I(r, t)dA

= Ioe−t2/τ2
2πˆ

0

∞̂

0

e−2r
2/w2drdφ

=
πw2Io

2
e−t2/τ2

From this, an average power can be found, all that one needs to do is integrate over a symmetric

time interval of length T .

P̄ =
πw2Io

2
1
T

T/2ˆ

−T/2

e−t2/τ2dt

This isn’t generally integrable in terms of elementary functions, and so we make an assumption

that the temporal profile of the pulse is extremely small compared to the time between pulses.

This means that T >> τ and so T seems like an eternity compared to τ .1

P̄≈ πw2Io

2
1
T

∞̂

−∞

e−t2/τ2dt

=
π3/2w2Ioτ
2T

Now, given that Io is defined as

Io =
1
2

cεo|Eo|2,
1This is a good assumption, since a THz pulse has an envelope on the order of 1ps, and the repetition time of

the Legend amplifier is 1ms. The 9 orders of magnitude is what solidifies this assumption.
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it is quite simple to show that the peak electric field is given by

|Eo|=
√

4T P̄
π3/2cεow2τ

(B.2)

but P̄T = E, where E is the measured pulse energy, meaning that

|Eo|=
√

4E
π3/2cεow2τ

(B.3)

B.2 Electro-optic sampling of THz electric fields

Jones calculus is a method that can be used to describe the changes in the polarization of light

as it traverses a number of optical elements. The goal of this appendix is to use Jones calculus

to develop a practical understanding of electro-optic sampling. We will be borrowing notation

from [31], chapter 8.13.

Let us begin by envisioning a system where light is linearly polarized at a +45 degree angle

between the x-y planes, and propagates in the z-direction. This light will travel with wave vector

k, and has angular frequency ω such that the electric field components can be expressed as

E =

⎡⎣Ex

Ey

⎤⎦=

⎡⎣1
1

⎤⎦Eoeikz−iωt

As far as the present situation is concerned, we need only worry about the relative phases

induced by optical elements we are about to introduce. As such, we choose to normalize the

intensity to unity, sacrificing information, but gaining simple expressions. Normalizing eqn.

B.2 we obtain

EJones =

⎡⎣1
1

⎤⎦ Eo√
2
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In Jones calculus, one applies a transformation matrix to a Jones vector (through basic matrix

multiplication) in order to determine the output electric field. I.e.

EOut =MEJones (B.4)

In this formalism,M is a transformation matrix known as a Jones matrix. Every optical element

will have its own Jones matrix.

If the linearly polarized light above is incident upon a horizontal polarizer, the output electric

field can be readily calculated, provided that we know what the Jones matrix is for a linear

polarizer. Some example Jones matrices are listed in table B.1 for reference. Thus, the output

electric field would then be

EOut =

⎡⎣1 0

0 0

⎤⎦⎡⎣1
1

⎤⎦ Eo√
2

=

⎡⎣1
0

⎤⎦ Eo√
2
.

With this, we can see that the output light is horizontally polarized - as expected. The mathe-

matics is exactly the same if we introduce media that shift the phase of incident light, such as a

quarter wave plate, half wave plate or a Kerr medium.

To handle the transmission through multiple optical elements, one needs only to left multi-

ply the matrices for each optical element. For example, if we desired to find the transmission

through 10 optical elements, we could simply write

EOut =M10M9...M2M1EJones (B.5)

WhereM10 is the last element that interacts with the incident light, andM1 is the first.
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Table B.1 A table of Jones Matrices

Optical element Jones Matrix

Horizontal Linear Polarizer
[
1 0
0 0

]
Vertical Linear Polarizer

[
0 0
0 1

]
Electro-optic crystal (Vert. fast axis)

[
1 0
0 e−iΔφ

]
Quarter wave plate (Horiz. fast axis)

[
eiπ/4 0
0 ei3π/4

]

Using this method, it is possible to obtain a relation for the intensity of the emitted light. The

intensity of emitted light is proportional to the complex square of the Jones vector.

IOut ∝ E∗OutEOut (B.6)

Using only the facts from above, we are able to gain describe electro-optic sampling. The

goal of the following work is to come up with a formula that relates intensities that can be

measured by balanced photodiodes, to the electric field experienced by an electro-optic crystal

(ETHz).

To begin analyzing electro-optic sampling, we must determine the Jones matrix for a Pockel

cell. A Pockel cell has 3 main components: an input polarizer (aligned to x or y) followed

by an electro-optic crystal, which is filled by a final analyzer polarizer. The fast-axis of the

electro-optic crystal will lie in the vertical direction, the transmission axis of the input polarizer

is oriented at +45o with respect to the x-axis, and the analyzer polarizer rests at −45o. In

electro-optic sampling, we modify the Pockel cell by adding a quarter wave plate between the

analyzer and the electro-optic crystal (fast axis is also vertical). light is linearly polarized and
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incident at +45o with respect to the horizontal, and so the Jones vector for this system is

EIn =

⎡⎣1
1

⎤⎦ Eo√
2

and the output electric field can be written as

EOut = (M−45o)(MQWP)(ME.O)(M+45o)EIn.

The Jones matrices can be multiplied out as follows

MTot = (M−45o)(MQWP)(ME.O)(M+45o)

=

⎛⎝1
2

⎡⎣ 1 −1
−1 1

⎤⎦⎞⎠⎛⎝⎡⎣eiπ/4 0

0 ei3π/4

⎤⎦⎞⎠⎛⎝⎡⎣1 0

0 e−iΔφ

⎤⎦⎞⎠⎛⎝1
2

⎡⎣1 1

1 1

⎤⎦⎞⎠

=
1
4

⎡⎣ 1 −1
−1 1

⎤⎦⎡⎣eiπ/4 0

0 ei3π/4

⎤⎦⎡⎣ 1 1

e−iΔφ e−iΔφ

⎤⎦

=
1
4

⎡⎣ 1 −1
−1 1

⎤⎦⎡⎣ eiπ/4 eiπ/4

ei(3π/4−Δφ) ei(3π/4−Δφ)

⎤⎦

=
1
4

⎡⎣ eiπ/4− ei(3π/4−Δφ) eiπ/4− ei(3π/4−Δφ)

−(eiπ/4− ei(3π/4−Δφ)) −(eiπ/4− ei(3π/4−Δφ))

⎤⎦

=
eiπ/4− ei(3π/4−Δφ)

4

⎡⎣ 1 1

−1 −1

⎤⎦
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where Δφ is a phase induced by an electro-optic crystal. Therefore, EOut is

EOut =
eiπ/4− ei(3π/4−Δφ)

4

⎡⎣ 1 1

−1 −1

⎤⎦⎡⎣1
1

⎤⎦ Eo√
2

=
Eo√
2

(
eiπ/4− ei(3π/4−Δφ)

4

)⎡⎣ 2
−2

⎤⎦
(B.7)

Referring to eqn. B.6, we can calculate the output intensity to be

I ∝
E2o
2

(
(eiπ/4− ei(3π/4−Δφ))(e−iπ/4− e−i(3π/4−Δφ))

16

)
×4×2

=
E2o
4
(1− eiΔφ−iπ/2− e−iΔφ+iπ/2+1)

=
E2o
2
× 2−2cos(Δφ −π/2)

2

= E2o ×
1− cos(Δφ −π/2)

2

=
Io

2
× [1− sin(Δφ)]

More succinctly, the output intensity of the above described system is dependent on the phase

induced by the electro-optic crystal as follows

I(Δφ) =
Io

2
× [1− sin(Δφ)] . (B.8)

If one were to remove the quarter wave plate from the above set up, the intensity observed after

the final analyzer would be

I(Δφ) =
Io

2
[1− cos(Δφ)] = Io sin2

(
Δφ
2

)
.
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Therefore, introducing a quarter wave plate has shifted the output intensity function by π/2.

The smallest Δφ that is expected from a phase change induced by an electro-optic crystal is

Δφ = 0. We can therefore use a Taylor series to approximate the intensity functions around the

origin.

With a quarter wave plate present, we obtain the expansion

I(Δφ)≈ Io

(
1
2
+Δφ −O(Δφ3)

)
≈ Io

(
1
2
+Δφ

)
(B.9)

and without the quarter wave plate we have

I(Δφ)≈ Io
(
Δφ2−O(Δφ4)

)≈ IoΔφ2. (B.10)

When using the system with the quarter wave plate, a photodiode would detect an intensity

variation that is proportional to the phase induced by the electro-optic crystal. In the lab, it

is commonly referred as “E-mode", since the output modulations are proportional to a phase

induced by the electro-optic crystal (more on this later). Removing the quarter wave plate, the

output intensity is dependent on the square of the phase induced by the electro-optic crystal,

and hence this system is commonly referred to as “E2 mode".

If the analyzer polarizer is aligned vertically, one can show (through the same analysis as above)

that the output intensity is then given by

I(Δφ) =
Io

2
[1+ sin(Δφ)] . (B.11)

In experiment, a Wollaston prism can be used to separate the components of the light that exits

the quarter wave plate. Doing so allows us to measure both the horizontal intensity (Ix) and the
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vertical intensity (Iy) at the same time. To summarize,⎧⎪⎪⎨⎪⎪⎩
Ix =

Io
2 (1− sin(Δφ))

Iy =
Io
2 (1+ sin(Δφ)).

(B.12)

Under the small angle approximation, these become⎧⎪⎪⎨⎪⎪⎩
Ix ≈ Io

2 (1−Δφ)

Iy ≈ Io
2 (1+Δφ).

Therefore, by subtracting the two intensities above, we obtain a signal intensity Isig that is

directly proportional to the phase induced by an electro-optic crystal

ISig =
Io

2
(1+Δφ)− Io

2
(1−Δφ) = IoΔφ . (B.13)

In the laboratory, eqn. B.13 is referred to as the modulation ratio for a two-channel electro-optic

sampling system. This is called two-channel because photodiodes are measuring Ix and Iy.

In an electro-optic crystal, the change in phase Δφ induced by transmission is related to an

external electric field through a second order nonlinear polarization effect, called the Pockels

effect [16]. In an electro-optic crystal such as ZnTe, it is possible to relate the change in phase

(Δφ ) to the external field (E) as follows [13, 16]

Δφ =
ωL
c

n3Or41E, (B.14)

where L is the crystal thickness, ω is the frequency of the light passing through the system

(usually 800nm in our laboratory), c is the speed of light in vacuum, nO is the index of refraction

for ZnTe at 800nm, r41 is the electro-optic coefficient for ZnTe, and E is the applied external

121



B.2 Electro-optic sampling of THz electric fields

electric field. Therefore, eqn. B.12 can be rewritten to include the external electric field⎧⎪⎪⎨⎪⎪⎩
Ix =

Io
2

(
1− sin(ωL

c n3Or41
))

Iy =
Io
2

(
1+ sin

(ωL
c n3Or41

))
.

(B.15)

Under the small angle approximation, we have⎧⎪⎪⎨⎪⎪⎩
Ix ≈ Io

2

(
1− ωL

c n3Or41E
)

Iy ≈ Io
2

(
1+ ωL

c n3Or41E
)
.

From this, it is simple to show that

Ix− Iy

Io
=

ωL
c

n3Or41E. (B.16)

Light is an electromagnetic wave. The electric field component of this wave can be used

to induce phase modulations in the configuration described above. As such, by carefully

synchronizing the arrival of two pulses of light, the electric field of one pulse (in this context

a THz pulse) can modulate the phase of another pulse (usually 800nm, 50fs pulses). This

produces a non-zero difference in Ix− Iy, which we can attribute to the instantaneous electric

field of a THz pulse. By using a chopper, we can measure Io = Ix + Iy when no THz pulse

is present, and Ix− Iy when a THz pulse is present. We can now conclude by rewriting the

equation above in terms of the electric field of a THz pulse ETHz

Ix− Iy

Ix + Iy
=

ωL
c

n3Or41ETHz. (B.17)
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B.3 Excited charge carriers

It is important to verify that the nonlinearity we seek is coming from intervalley scattering, and

not from a the photoexcitation of free charge carriers. For example, the imaging beam typically

has a power of

Pimg < 10mW (B.18)

In the strongest case, a maximum of 10mW illuminates our sample. From this we can estimate

the number of charge carriers that are excited across the band gap, assuming that each photon

in this bundle excites an electron-hole pair. If this number is reasonably small compared to the

number of dopants (around 1018cm−3), then we can conclude that these charge carriers will

impose a negligible effect on the transient conductivity of the sample.

The number of photons in a pulse of light can be calculated from the power of the pulse

through

NPhot =
Power×Rep. time
Photon Energy

=
10mW ×1ms

1.55eV ×1.6×10−19eV/J
= 4.03×1013 Photons (B.19)

Since energy must be conserved, and photons carry finite amounts of energy, the number of

photons that pass the interface is just the transmittance times the initial amount,

Ninside = T ×NPhot

= 0.67×4.03×1013

= 2.70×1013 Photons

(B.20)

where, the transmittance is given by

T =
nInGaAs

nair

[
nair+nair

nair+nInGaAs

]2
, (B.21)
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and nInGaAs = 3.2. Imagine now that these photons occupy a cylinder within the sample, having

dimensions of 1.5cm diameter (measured from the beam), and 500nm height (thickness of

sample). This results in a photon density of

ninside =
2.70×1013

π(0.75cm)2(500nm)

= 3.06×1023Photons
m3

= 3.06×1017Photons
cm3

(B.22)

If every one of these photons was to excite a charge carrier, then the total density of excited

carriers is given by

ne = 3.06×1017cm−3 (B.23)

B.4 Nonlinear wave equation

This section is devoted to providing a focused discussion around optical rectification in a

non-centrosymmetric medium. To begin, Maxwell’s equations provide the foundation of the

propagation of light in the presence of matter. Maxwell’s equations are as follows.

�∇ ·E =
ρ
εo

(B.24)

�∇ ·B = 0 (B.25)

�∇×E =−∂B

∂ t
(B.26)

124



B.4 Nonlinear wave equation

�∇×H = Jf +
∂D

∂ t
(B.27)

Where the electric field strength E and the magnetic field strength H change in the presence

of a material that has some charge density ρ . The presence of this charge density forces us to

define two new quantities, the electric displacement D and the magnetic induction B, which are

related to their free space counterparts by

B = μo (H+M)

D = εoE+P.
(B.28)

These equations come together to form the wave equation in matter. To begin, we note that the

curl of Eq(B.26) gives

�∇×
(
�∇×E

)
=−�∇× ∂B

∂ t
(B.29)

Given Eq(B.28), the time derivative of B can be defined as

∂B

∂ t
= μo

(
∂H

∂ t
+

∂M

∂ t

)
. (B.30)

The curl of Eq(B.30) thus results in (noting thatM = 0 in a material with no initial magnetic

field)

�∇× ∂B

∂ t
= μo�∇×

(
∂H

∂ t

)
.

Rearranging the order of differentiation yields

�∇× ∂B

∂ t
= μo

∂
∂ t

(
�∇×H

)
. (B.31)
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B.4 Nonlinear wave equation

Assuming that there are no sinks or sources of current in the material through which the light

propagates, we can assume that Jf = 0 since ρ f = 0. This means that Eq(B.27) has the form

�∇×H =
∂D

∂ t
,

so that Eq(B.31) becomes

�∇× ∂B

∂ t
= μo

∂ 2D
∂ t2

.

Up to a minus sign, this is the right hand side of Eq(B.29). Using a vector identity

�∇×
(
�∇×A

)
= �∇

(
�∇ ·A

)
−∇2A,

Eq(B.29) has the form

�∇
(
�∇ ·E

)
−∇2E =−μo

∂ 2D
∂ t2

, (B.32)

Since there are no free charge carriers, ρ = 0, meaning that [13],

∇(�∇ ·E) = 0

so that Eq(B.32) becomes

−∇2E =−μo
∂ 2D
∂ t2

,

Using the electric displacement equation of Eq(B.28), we can see that the second order time

derivative is

−μo
∂ 2D
∂ t2

=−μoεo
∂ 2E
∂ t2

−μo
∂ 2P
∂ t2

so that we arrive at the final equation of an electromagnetic wave propagating through matter

∇2E− 1
c2

∂ 2E
∂ t2

= μo
∂ 2P
∂ t2

(B.33)

126



B.4 Nonlinear wave equation

where c = 1/
√εoμo is the speed of light in free space. The right hand side of eqn. (B.33)

behaves as a source term in the wave equation. Let’s expand the polarization into linear and

nonlinear terms as follows,

∇2E− 1
c2

∂ 2E
∂ t2

= μo
∂ 2P(1)

∂ t2︸ ︷︷ ︸
Linear term

+μo
∂ 2PNL

∂ t2︸ ︷︷ ︸
Nonlin. term

(B.34)

This is the nonlinear wave equation. Its constituents are discussed in more detail in Chapter 2,

with emphasis on the THz generation through optical rectification.
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