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Introduction

This section provides a brief overview of the Syncrude oilsands process, followed by a def­

inition of the problem that will be considered in this thesis.

Oilsands are a non-conventional source of crude oil, whereby shallow deposits of 

bitumen-laden sands are usually mined, then processed to produce synthetic crude oil. The 

oil separation process entails efficiently liberating and then aerating bitumen droplets from 

the sand, using water and process chemicals. The process is based on the Clark Hot Water 

Extraction (CHWE) process, which operates at around 75°C, and uses caustic to increase 

separation performance [33]. Although there is a shift to more energy efficient processing 

using lower temperatures, the method behind the extraction process remains essentially the 

same. This chapter begins by describing the oilsand production and upgrading process, 

with emphasis on the extraction of bitumen from the oilsand. The chapter continues with a 

discussion of the EXP2000 Syncrude extraction pilot plant, and concludes with an overview 

of the thesis, scope and objectives.

1
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Sec. 1.1 Syncrude Oilsands Process 2
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Figure 1.1: Oilsands Extraction Process Schematic [33]

1.1 Syncrude Oilsands Process

Oilsand requires a number of processing steps before the finished synthetic crude oil 

product can be sold and sent off to other refining facilities. The section begins by 

introducing the methods behind oilsands processing, with emphasis on the process units 

of relevance to this work.

1.1.1 Overall Process

A simplified schematic for oilsand processing is shown in Figure 1.1. The process shown 

here is a generalized schematic, where minor differences are employed throughout industry. 

Initially the bitumen-rich sand must be found and mined. Current practices for mining 

oilsands is fragmentation and loading by shovels, and haulage by truck for crushing and 

slurry preparation. Orebodies are heterogeneous, and so oilsands composition is quite a 

variable mixture of bitumen, clay fines, sand and water. Oilsand grade, a term used to 

describe the concentration of bitumen, is also highly dependent on where in the orebody 

the oilsands originate. The truck and shovel method employed results in continual changes 

in grade being fed to the process.

Previous mining methods used parallel process trains with considerable blending of dry
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Sec. 1.1 Syncrude Oilsands Process 3

ore. A conditioning step was added to liberate the bitumen from the oilsand, which was 

delivered using conveyers. The oilsand was fed into tumblers, along with water, steam 

and additional chemical agents. The rotation o f the tumbler helped to break up the ore 

and aerate the liberated bitumen, which was then fed to screens to remove any oversized 

material. The slurry stream was then sent by pipeline for separation.

A second and more efficient method uses a hydrotransport pipeline to transport the 

ore from the mine. The extent of stock piling is reduced, where only a small surge pile 

develops. Ore ageing is found to have detrimental effects on oilsands processing, and so 

smaller stock piles are desired [26].

Oilsand is first passed through a crusher and fed using conveyers to a mixing box which 

combines the oilsand with water, air, surfactant and caustic (or other process additives). 

Hydrotransport has the added benefit of performing the conditioning step while the slurry 

is pumped. The turbulent flow within the pipeline aids in lump digestion, bitumen liberation 

and air attachment. Once the material arrives at the plant, it is fed directly to separation.

The liberation step separates bitumen from the sand and aeration creates a density 

difference between aerated bitumen and water. The difference in density amongst the three 

main species is then exploited using gravity separation. Bitumen and sand are separated 

from process water and fine solids using a number of gravity separation vessels. The 

oilsand is fed into the middle of the first and largest vessel, the primary separation vessel 

(PSV), which performs the majority of the separation. A bitumen rich stream (froth) floats 

off the top o f the vessel; solids drop to the bottom (tailings); and a mixture containing 

mostly water resides in the middle of the vessel (middlings). The middlings and in some 

processes the tailings streams are combined and fed to additional separation units, referred 

to as secondary separation, which are vessels or mechanical flotation cells. In general, the 

bitumen rich streams from both primary and secondary separation are combined and sent 

downstream.

The mixture of sand and water, with fine solids, produced by the separation processes 

is then pumped to a settling pond, where the water and sand separate, again using gravity 

separation. The clarified water from the top of the pond is recycled back to the process. 

Fines concentrate at the bottom of the pond, and are treated for eventual final deposition
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Figure 1.2: Upgrading schematic [26]

and reclamation.

At Syncrude, the bitumen rich streams are combined and diluted using naphtha, to ease 

in pumping the highly viscous bitumen to downstream processes. The diluted bitumen is 

then fed to a series of inclined plate settlers and centrifuges to remove any remaining water 

and fine solids. The bitumen/naphtha mixture is then sent to the diluent recovery unit to 

remove the naphtha. Any remaining impurities in the naphtha are removed, and the naphtha 

recycled. The bitumen is then sent to upgrading.

Figure 1.2 shows the upgrading processes. The LC-Finer processes a mixture ofbitumen 

from the diluent recovery unit, by hydrocracking it and sending it to the hydrotreaters.

The vacuum distillation unit takes off some of the high quality sweet oil, and then breaks 

the hydrocarbon mixture up, feeding the quality hydrocarbons to the hydrotreaters. Heavier 

hydrocarbons are sent to Fluid Cokers. In the fluid cokers, bitumen is cracked into synthetic 

crude oils, fuel gas and coke. The synthetic crude oils are sent to the hydrotreaters and the 

off-gases are sent for further processing. The coke is burnt as fuel and any leftover coke is 

stockpiled.

The off-gases produced during fluid coking are stripped of hydrogen sulphide in the 

amine plant. The resulting sweet gas is sent to storage and blending, and is eventually 

put into the pipeline. Natural gas and steam are combined and fed to a reformer, which
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Sec. 1.1 Syncrude Oilsands Process 5

produces hydrogen and carbon dioxide. The carbon dioxide is removed and the hydrogen 

sent to the hydrotreaters.

The hydrotreaters convert the feed into higher value products, using heat, pressure and 

hydrogen. Any impurities are stripped using naphtha, and the now sweet gas is sent to 

tankage and sent by pipeline for refining, primarily into transportation fuels.

All sulphur produced in upgrading is stored in solid blocks near the mine, until sold as a 

co-product.

1.1.2 Extraction

Primary separation is the first step in processing the mined oilsands. Slurry feed to the 

vessel generally has a density of about 1450kg/m3 with an average composition of 7% 

aerated bitumen, 43% water and 50% solids by weight. The vessel is cylindrical in shape 

with the exception o f the conical section near the bottom. A PSV has an approximate 

residence time of 45 minutes. Many factors affect the separability of the bitumen from the 

oilsands, including [33]:

a ore grade

• percent fines

• particle size distribution (of bitumen droplets)

•  clay mineralogy and surface activity 

a bitumen chemistry

® surfactant concentration (natural and synthetic) 

a temperature

a conditioning time (with respect to completeness of bitumen liberation and aeration) 

a process water chemistry (pH, bicarbonates, monovalent & divalent ions) 

a connate water chemistry
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a bulk fluid characteristics (viscosity, density)

• hydrodynamics within the PSV

In this work, emphasis is placed on the first three factors: ore grade, percent fines and 

particle size distribution. There are a number of theories as to how ore grade and percent 

fines effect the particle size distribution o f the bitumen particles [33]. In general, lower 

grade and a high concentration of fines result in lower recovery.

Figure 1.3 shows a simple schematic of the PSV, with three layers of well mixed 

components. The layers are referred to as the froth (top), middlings and tailings 

(bottom) layers. The bitumen rich froth layer generally contains a froth quality ratio of 

approximately 60% bitumen, 10% solids and 30% water by weight, but these are highly 

dependent on the ore feed and process performance. In this layer it is desirable to keep 

the concentration of water as close to 30% as possible. A water concentration of 35% 

is considered the maximum, as higher water content increases the load on downstream 

separation processes. The froth is removed from the vessel into a weir, from which the 

froth is sent downstream for further processing.

Middlings are withdrawn from the vessel for further processing to recover those bitumen 

particles that did not report to the froth layer. For poor ores, the rate of the middlings
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Sec. 1.1 Syncrude Oilsands Process 7

withdrawal must be increased to account for the increase in fines. This is a control on 

viscosity, where more flood water is added and a greater load is placed on secondary 

flotation. It is desirable to have as high a density as possible within the middlings layer 

to facilitate separation; however, with higher densities comes higher viscosities. Increases 

in viscosity of the layer can result in actual gelling of the vessel, when thixotropic clays 

create such a high viscosity that buoyant forces are insufficient to overcome viscous forces. 

As a result operation is carried out at lower densities.

The middlings withdrawal stream is further processed in secondary separation vessels. 

The froth recovered from these cells contains roughly 24% bitumen, 59% water and 17% 

solids by weight. The froth streams are combined with that from primary separation and 

are sent for further processing downstream. The high concentrations of solids and water 

in the secondary recovery froth increase the load on the downstream inclined plate settlers 

and centrifuges. Therefore, it is desirable to maximize the amount of bitumen recovered 

through primary separation.

A high concentration of solids, mixed with water and small amounts of bitumen, are 

removed from the bottom of the conical section of the PSV to be pumped into tailings 

ponds. In the tailings ponds, the solids are allowed to settle out and the clarified water 

is recycled. The high concentration of solids within the tailings withdrawal pipeline 

introduces another operational constraint. The velocity of the slurry in the tailings pipeline 

must be chosen such that it is greater than the minimum deposition velocity, which is the 

minimum flow rate that prevents sand from settling out in the pipeline. Settling of sands 

within the pipeline will eventually lead to a blockage, resulting in a process upset.

1.1.3 EXP2000 Pilot Plant

The EXP2000 pilot, located at the Syncrude Research Centre, is a scaled down version 

o f the oilsand extraction processes. Pilot plant studies provide alternative means of 

performing otherwise costly experiments on the large scale process. A schematic of the 

Syncrude extraction pilot is shown in Figure 1.4. This thesis focuses on the development 

of optimal control strategies for the PSV of the EXP2000. For the remainder of this work, 

references to the PSV pertain to the pilot plant separation circuit shown in Figure 1.4. This,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 1.2 Problem Definition and Motivation 8

Flotation Lean Froth Recycle
Tumbler
Screen
Water

NaOH
Underwash

PSV
Froth

Tumbler
Water

TUMBLER
PSV PSVO ilSand Z D

MiddlingsReject FLOTATION Flotation 
Underflow 
to Tails

MIX
TANK Flotation

Underflow
RecyclePSV

Underflow
Collector / Frother 
( if  needed) Air

ChillerFlood
Water

Gland
Water PIPELINE LOOP, 

4 inch pipe

Figure 1.4: EXP2000 Process Schematic [25]

however, in no way limits the application of the results of this work.

1.2 Problem Definition and Motivation

The liberation and separation of bitumen from the solids can be argued to be the most 

important step in oilsands processing. Currently the control strategy employed does not use 

any sort of automated control structure, with control action being taken by the operators to 

ensure stable operation. By using information about important process parameters before 

or during process upsets, the operator can be assisted to make the appropriate control 

interventions.

The implementation of an optimal control strategy could increase the amount ofbitumen 

that is recovered in primary separation, and overall recovery of the process. Furthermore 

it is desirable to maximize primary froth recovery, as the streams from secondary recovery 

contain greater amounts of solids and water. Maximizing PSV froth recovery will reduce 

the load placed on the downstream separation processes, as the high quality froth from 

primary separation requires less processing and energy to remove remaining solids and 

water. This will be of great importance for low grade ores where the presence of fines 

greatly hinders the amount of bitumen reporting to the froth, increasing the load to
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Sec. 1.3 Scope and Objectives 9

secondary separation.

The PSV is described as being in constant flux, never reaching steady state 

operation [33], For this reason dynamic modelling is expected to provide a more realistic 

representation than steady-state modelling.

Optimization of a dynamic model ( i.e. a model involving differential or integral 

equations) using standard dynamic optimization techniques produces trajectories that 

are highly erratic. For many industrial processes, these input trajectories cannot be 

implemented using existing control structures, and so they go unused. Implementing these 

trajectories for processes where operator intervention alone is the method of process control 

may be undesirable or impossible. This work will investigate methods for developing input 

trajectories which are easily implemented.

1.3 Scope and Objectives

This work begins by developing a model for a gravity separation process, using the 

framework presented by Masliyah et al. [32], and the constitutive relationships used by 

Forbes [28]. Optimal trajectories are then found for changes in the feed ore grade. Due to 

the plug flow nature of the feed, step changes in ore grade are considered. The step changes 

are chosen to resemble those that are found to frequently occur in practice.

Simulations are conducted to verify that the model behaves as expected in practice; 

however, further model validation is required and is outside the scope of this work‘. The 

model is then used to develop optimal input trajectories using dynamic optimization.

The open-loop control practices currently used to control the PSV require that the input 

trajectories generated using dynamic optimization techniques be easily implemented. For 

this reason a new optimization approach is proposed, where the trajectories generated are 

limited to paths, that operations personnel can easily implement either manually or within 

existing automation systems. In this thesis, trajectories are limited to combinations of step 

and ramp functions, which are easily programmed into existing distributed control systems 

(DCS).

Input restriction will also provide a means of comparing existing control structures 

with higher performance controllers. Sufficient differences between the restricted and
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unrestricted problems may provide insight into how much may be gained, by changing 

control practices.

The method is first applied to a few benchmark problems, examined frequently 

throughout literature, and then applied to the PSV model. The development of these 

restricted input trajectories are the first step to providing optimal operating guidelines for 

operations personnel.

The comparison of the restricted and unrestricted input trajectories are also used 

to analyze the benefits of adopting some sort of closed loop operation. Whether a 

sophisticated controller structure should be adopted depends on the relative gains for each 

of the input trajectories. The method is applied in numerical experiments of both common 

and problematic grade transitions.
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PSV Modelling and Simulation

This section looks at the development of the dynamic model for the PSV. The model is then 

prepared for simulation, and fit to experimental data from Syncrude pilot plant transient ex­

periments.

The modelling of the PSV follows that of the model developed by Masliyah et al. [32], 

which was the basis of the work by Forbes [28], The model proposed here uses the same 

physical modelling practices as those used by Masliyah; however, the simplicity of Forbes 

model is desirable for this work. Dynamic models for use in dynamic optimizations should 

contain the smallest number of equations, while still accurately describing the process 

phenomena.

In this model the PSV is broken up into three different, distinguishable levels: froth, 

middlings and tailings. Each layer is modelled as if  it comprises of a continuous 

medium, with interactions between the ffoth/middlings and middlings/tailings. Particles 

are modelled using steady-state settling relationships (Stokes law), in combination 

with hindered settling models for suspensions of particles. The model consists of 

material balances and constitutive relationships, which can be written as a system of

11
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differential/algebraic equations (DAE). Such DAE systems require specialized methods for 

simulation. The model equations contain hybrid dynamics (continuous/discrete behaviour), 

requiring further special handling.

This chapter presents the PSV model, followed by the approach and relevant material 

that is pertinent for accurate simulation. The chapter concludes by conducting simulations 

of the process, and provides a verification o f the model.

2.1 Process Model

Before discussion of the mathematical modelling, the following assumptions are stated. 

Each layer is well mixed, where the froth/middlings interface is dynamically modelled, and 

the middlings/tailings interface is assumed to be stationary as is generally found in practice. 

Throughout the entire vessel one-dimensional flow is assumed. Particle flow across the 

middlings/tailings interface is limited to the downward direction, assuming that once a 

particle moves to the tailings it is trapped in this layer until removed by the underflow. At 

the froth/middlings interface particles are allowed to flow from the middlings to the froth, 

and vice versa, to account for the dynamic interface. Hindered settling correlations are used 

within the middlings layer to describe the movement of particles.

The use of steady-state settling equations is a large assumption; however, this is the only 

current means of describing particle movement. This model does not include the effects 

of caustic addition, temperature, and vessel geometry which are not expected to effect the 

results appreciably, as temperature and chemical concerns mainly affect the PSD of the 

feed.

Three species are present within the vessel: aerated bitumen, solids (including fines) 

and water. The particle size distributions for the aerated bitumen and solids are represented 

using three particle sizes. Aerated bitumen and coarse solid particles are assumed to be 

spherical; whereas, the fine solids are comprised o f clay platelets. The aerated bitumen 

droplets and solids entering the vessel are assumed to have constant density and dimension. 

The density of the water is assumed to be constant. The viscosity of the the middlings layer 

is assumed to be that of water, for the purposes of the settling models.

The material balance of a species can be found by using this general form of a mass
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balance.

(Accum.of M  aterial) =  (M aterialln) — (M  aterialOut) + (M  aterialGenerated)

In this case there is no material generation, as there are no chemical reactions occurring in 

this system.

The inputs (manipulated variables), to the process model include the middlings, tailings 

and flood water flow rates. Outputs variables include the bitumen, water and solid mass 

compositions in the froth, middlings and tailings outlet streams. The measurement of these 

outputs online is currently not possible, and these must be inferred.

Downward movement of a species is taken as the positive direction. Additional 

equations are added to account for the non-plug flow behaviour o f the EXP2000 extraction 

circuit. The froth layer is considered first. All equations presented below were taken from 

the model developed by Masliyah et al. [32], unless otherwise stated.

2.1.1 Froth Layer

The volume of the froth can be described using the following differential equation.

The volume of the froth, Vf, depends solely on the velocity of the interface, assuming that 

the top of the froth is fixed. The mass balance for particle j  in the froth layer is described

entering from the middlings layer. The flux from the middlings to the froth is described 

by Sj where two different expressions in equation 2.4 describe the flow. If the interfacial

(2.1)

(2.2)

by:

(2.3)

There are only two flows within the froth layer, that leaving the top of the vessel and that

velocity is found to be greater than the particle velocities, then flux occurs from the froth 

to the middlings, and vice versa.
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Applying the chain rule to equation 2.3 and using equation 2.2 while assuming constant 

density, the material balance can be converted into the following volume balance equation.

Where the j th particle stands for either bitumen or solid particles.

The equation for the carrier fluid volumetric fraction is developed in the same fashion as 

above. Here the following algebraic relationship is used to describe the motion.

where the set { j} ,  again represents all the particles present within the vessel. The 

introduction of the dynamic interface results in a model that contains discrete events and in 

its present form is described as a hybrid system. Hybrid systems exhibit both continuous 

and discrete behaviour. Here the continuous time nature of the differential equations is 

combined with that of discrete changes in the flux across the froth/middlings interface 

(i.e. S j ) .  During numerical solution of these equations it becomes necessary to find 

exact instances where discrete changes occur, to remove errors incurred by overstepping. 

Methods for dealing with these types of equations will be discussed in section 2.2.2.

2.1.2 Middlings Layer

The equation for the volume of the middlings is characterized in the same manner as 

above, in the opposite direction. An increase in the froth layer has an equal decrease in 

the middlings layer. Like the froth volume, the middlings volume depends solely on the 

movement of the froth/middlings interface.

(2.5)

(2 .6)

(2.7)

(2.8)
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The volume balances for the middlings are found in the same manner as above with 

additional terms included for the feed, middlings withdrawal and tailings layer interactions.

da m 1 / \

= fd^ d ~ XjQma? ~ a^ A + Sj) (2'9)
g  _  I  v'?aTA, v™ -  vi <  0

j yv^a^A  +  viA(aJl — a j) ,  v j1 — iy >  0

In the above equation there are terms describing both motion into and out of the layer. 

Feed is injected into the middlings layer, and a term for the removal o f material from the 

middlings is included as well (Qm). The remaining two terms are the fluxes to the froth 

and tailings layers. Middlings correction factors Aj  in both the Masliyah and Forbes models

account for differences between concentrations found in the layer and those found in the

middlings withdrawal stream.

The presence of the middlings correction factors A j for the bitumen and solids particles 

requires an additional equation to ensure volume continuity in the middlings outlet stream.

< A W +  a ? \ b + a ?XT  -  1 (2.10)

Development of the dynamic water balance proceeds in the same manner as for the 

particles; however, the following algebraic relationship will be used.

(2 .11)

Again we see a set of hybrid dynamical equations that must be addressed before simulation 

can proceed.

2.13 Tailings Layer

The equations for the tailings layer are greatly simplified compared to those o f the froth 

and middlings layer due to the static interface. The boundary of this layer is assumed to 

be fixed, therefore no dynamic relationship is required for the volume o f this layer. The 

particle balance for this layer is shown in equation 2.12.

^  -  <?<“ $-) <2-12)
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The algebraic water balance is:

o4 =  l - (2-13)

The above equations both contain the dynamic material balance and volume balance 

equations used in each layer. Figure 1.4 shows there is mixing of the feed prior to the 

PSV. The assumption that the feed is plug flow does not hold for the EXP2000 and so feed 

equations must also be added to the model.

2.1.4 Feed Equations

Simple first order filters were applied to the feed. The tumbler is found to exhibit plug 

flow; however, the mixing tank behaves as a continuous stirred tank (CST). The following 

equations were added for the feed.

d a f  Qfdfd/ ore
dtt VmAx

O '• —  CXU )  (2.14)

The parameter 1fmix may be taken from literature; however, here an effective volume 

for both the tumbler and mixer is estimated using the parameter identification procedure 

described in Appendix A.

2.1.5 Constitutive Relationships

Settling models are used to discuss the movement of particles across their respective 

interfaces. In the above dynamic equations settling velocities of the particles were 

converted to volumetric fluxes using equation 2.15.

u) =  a™(v} +  v lw) (2.15)

where i represents the interface and j  the species. The above equation shows that the flux 

is a function of both the relative velocities of the species, as well as the bulk flow. Fluxes 

moving from the middlings to the tailings are constrained to be positive, or zero, to satisfy 

the assumption that once a particle moves to the tailings layer it remains there until removed 

from the vessel. The opposite is true for particle movement to the froth, where fluxes are 

constrained to be negative values.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 2.1 Process Model 17

The relative velocities of the particles are determined using the hindered settling model 

of Forbes [28], which includes various models that take into account particle shapes 

and interactions. The relative settling equation (2.16), developed by Swanson [45] [46], 

includes factors for different shaped particles within the suspension.

y u n h in d e r e d    ________ *7? (4/3gd2i{pj -  pm)) (2 16,
e ^ d ^ g p j p j z y / z  + v /4 8 /^ )

The parameters 9 and (3 are correction factors in the settling relationship defined by 

Swanson, which correct for the non-spherical shapes of particles.

Concha’s correlation (equation 2.17) for hindered settling in a suspension was used to 

account for the interaction between the different species [19].

yCorrected ^   ̂ v\~' ^ particles^

yU nh in d ered  1  -j- 0  7 5 ^ / ^
(2.17)

An additional relationship is added to the Concha correlation to account for the increased 

hindering effects o f the fines (equation 2.18) [28].

I (  rym \ 2 ( \  2\particles I , . I ^ fin e s  \ . I u:coarsefines \ I particles , o \
^apparent =  | 1 +  7 l   + 7 2    J (2+ 8)

\  2—j  particles J  \  particles J

Equation 2.18 must satisfy 0 < <  1. Methods for enforcing these constraints

during simulation are considered in the following section.

Densities of a layer are calculated using the following linear combination of the particle 

mass fractions: W'sp
P i ^ Y ^ x )Pi (2-19)

i
where i represents the layer and j  the species.

Water velocities through the interfaces are defined using overall material balances on 

both the middlings and tailings layers.

= d fA  ( Qfi ~ Qm ~ Q<+ £  J P '2°)

vi,
a; P -21)
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An overall volume balance is also used to determine the volumetric flow coming off the top 

of the PSV.

Q f d  ~  Q f  ~  Q m  — Q t  =  0 (2 .22)

By using three overall material balances, the following is inherently stated for each of the 

three layers:
d d

£  i t a ’ +  = 0 (Z23)
j

Consequently evaluation of the dynamic water balances combined with the material 

balances on the particles produces a set of equations that is no longer linearly independent. 

The algebraic relationships are used to remove the linear dependence.

The movement of the interface is modelled as a one-dimensional shockwave, as outlined 

in Wallis [50],
Flux Received — Flux Removed

Wave Velocity = .................-...... ............. ............. ............. ............. - .  -----
Volume Fraction Difference

Mathematically stated the Wallis shockwave equation for a first order of approximation 

gives:
V^ n b m m  _  Y ^ b  /  /

Vl =  J~1 bJ hj (2.24)

Before the above equations can be simulated, the discrete nature of the froth and

middlings differential equations, i.e. the hybrid dynamics, must be addressed. Also the 

presence of sign changing restrictions on the fluxes, as well as that in equation 2.18 must 

be considered. The model is a set of DAEs which presents challenges for simulation.

2.2 Process Simulation

Before proceeding with the simulation of the model presented in the previous section, it 

is necessary to recast the equations into a form that can be numerically integrated. The 

set of equations contains both differential and algebraic equations that must be integrated 

using only certain types of numerical integration routines. Furthermore, the presence of 

both continuous and discrete behaviour, and the sign change restrictions on some of the 

variables each requires further consideration.
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2.2.1 Sign Change Restriction

Equation 2.18 and the bounds on the fluxes between layers require that a variable be

either positive or negative, but not both. Two methods of managing these sign change

restrictions were examined at the cost of adding discontinuities to the model equations. 

Absolute value relationships like those used in Forbes [28] can be used to achieve the 

desired result. Equations 2.25 and 2.26 show the absolute value method of constraining the 

settling velocities to be above and below zero, respectively.

v m = (22S)

«5 =  ^  P - * )

Enforcement of the constraints can also be done through the use of max/min functions. The 

ease of programming these functions makes this the method of choice; however, neither 

method was found to affect accuracy, as the two methods make an equivalent discontinuity 

in the equations.

2.2.2 Discrete Event Handling

Before it is possible to perform the simulation, it is necessary to determine how the discrete 

events found in the middlings and froth equations will be handled. The combination of 

continuous equations with discrete events, i.e. at certain points in time the set of equations 

changes. Models that contain a mixture of both continuous and discrete behaviour are 

termed hybrid systems. Many models can be modelled in this fashion and within the last 

decade many researchers have begun to focus in this area.

Two of the possible methods include using a hybrid system simulator to perform the 

simulation, or using some sort of approximation to the true system using either smoothing 

or discontinuous functions.

Hybrid system simulators use existing numerical integration routines, combined with 

root solvers to determine where a discrete change in states occurs. The solution method 

works by integrating the ordinary differential equation (ODE) or DAE system, while 

monitoring for discrete events [47]. If the occurrence of a discrete event is found, the
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integrator backs up until the root is found. Once found the necessary changes to the model 

are made and the states are reset as necessary. The process of locating when a discrete 

event occurs can greatly add to the simulation time. There is also the risk that the simulator 

may fail in finding the correct root, if the governing dynamics o f the equations are fast, or 

the equations are stiff.

Hybrid systems do not have a rich optimization history, and this is the underlying reason 

why this method was not adopted for the purposes of this thesis. The use of mathematical 

programs with equilibrium constraints (MPECs) are beginning to receive some attention in 

the area of chemical engineering, as a possible means of hybrid system optimization [42].

A Sigmoidal function may be used to approximate discontinuities, without losing 

differentiability of the equation. The addition of the sigmoidal function also removes the 

necessity o f finding the exact instance where a discrete event may occur in the analogous 

hybrid system. This reduces the simulation time, as well as allows integration using existing 

algorithms. Sigmoidal functions are an approximation, and certain systems may not be 

accurately modelled using this manner. For the case of the PSV, the use of a sigmoidal

function for the transition between different events is considered to be appropriate, as

the system being described here has slow dynamics. The sigmoidal function takes the 

following forms; 2.27 and 2.28, and were taken from Yin et al. [53],

= 1 + a (e U ) ) .  <2-27>

r W  =  1 ^  l  +  a ( e t - . » ) -  (2'28)

where n  and a are tuning parameters which can be used to change the shape of sigmoid 

function. Equation 2.27 is an increasing sigmoid, whereas equation 2.28 is a decreasing 

sigmoid. Figure 2.1(a) and 2.1(b) shows these sigmoidal functions for different values o f n  

and a.

For some types of problems it may be possible to use max/mtn functions to exploit 

discrete events of a certain form. These functions add discontinuity to the problem, but 

they are much simpler to implement than sigmoidal functions. For the dynamic equations 

listed above, only discontinuity in the derivatives occurs, as both expressions are equivalent 

during a discrete change in the model equations. The equivalence during a discrete event
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n=1

 n=10
0.4

-10

a=0.1

—  a=100.6

-10 105-5 0

(a) Response of Sigmoidal Function to (b) Response of Sigmoidal Function to 
Changes in n  Changes in a

Figure 2.1: Dependence of Sigmoid Curve on Design Parameters

makes the use of max/min functions possible. The addition of discontinuous functions 

(max/min) can result in inaccuracies in the solution, as they incur errors due to overshooting 

the discrete changes, which a hybrid simulator would locate. To minimize the error, high 

simulation tolerances can be used, at the expense of smaller step sizes and longer solution 

times.

Either max/min functions or sigmoid functions can be used in the PSV model equations. 

Max/min functions are adopted for their ease of use. As well, the solution times for 

numerical integration are small and the use of high tolerances is not a problem for a well- 

behaved dynamical model.

2.2.3 Systems of Differential/Algebraic Equations

With the set of equations presented above, it is not possible to formulate the problem as 

a set of ordinary differential equations (ODE). This set of ODEs and algebraic equations 

results in what is referred to as a set of differential/algebraic equations (DAE). The section 

begins by discussing the types of DAEs, followed by their numerical solution.

DAEs are difficult to solve, as the presence of equality constraints may relate different 

states together, reducing the degrees of freedom. Numerical integration of DAEs requires 

that consistent initial guesses to the problem be found prior to solution. For some cases the 

number of initial conditions is less than that of a similar ODE problem, as a result o f the 

relationships between variables. The problems become harder to solve as the relationships
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between variables become more complicated. The presence of the algebraic relationships 

may cause variables to move in directions different than those predicted using conventional 

numerical methods. Not all sets of DAEs suffer from this problem, and some problems can 

easily be solved using common numerical methods.

The index of the DAE is a measure to predict how difficult solution will be [13]. This 

index is defined as the number of differentiations that are necessary to reduce the DAE to 

an ODE. For high index DAEs, taking the derivatives of the algebraic equations may be 

an error prone task, and not necessarily the best way of solving the problem. Research is 

continuing to efficiently integrate DAE problems. Methods for dealing with higher index

DAE systems become dependent on the structure o f the equations that need to be solved.

There are different methods being proposed for handling higher index DAEs, such as the 

method of dummy derivatives, sequential regularization methods, and index reduction 

using automatic differentiation ([40] [2] [16]). The need for one of these alternative 

solution methods is dependent on the set of DAEs.

The method of index reduction is the most common method used to reduce high index 

DAE problems to a set of equations that can be solved using conventional numerical 

techniques. Beginning with an explicit DAE:

x =  f(x,z , t) (2.29)

0 =  g (x ,z ,t)

and differentiating g with respect to the dependent variable t gives:

1 =  f(x, z ,t)  (2.30)

i  = gx(A y, +  gy(x, y, t) y +  gt (x, y, t)

where gi is the Jacobian of the vector of equations g with respect to the vector of variables

i.

If the Jacobian gz is non-singular, meaning the set of equations is now a set of ODEs, 

then the original DAE system is index one; however, if the gz is singular, then the equations 

are rearranged and put back into 2.29 and differentiation continues. Index reduction is 

generally a method of last resort.
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Hessenberg forms are the most common class of DAEs. The Hessenberg index-1 form 

is shown in equation 2.31.

For this case the above form is described as a semi-explicit DAE system of index 1. The 

above problem is the simplest of the different types of DAEs as they are very closely related 

to implicit ODEs. In most cases it is possible to first solve for the algebraic variables, 

and then substitute into the ODE subsystem. This results in a general ODE system to be 

solved. This method is not recommended for numerical simulation [1], as the process can 

be complicated and erroneous.

Further forms include the Hessenberg Index-2 and -3, shown in equations 2.32 and 2.33.

These problems become harder to solve, as these forms contain hidden constraints on the 

states, as well as have the effect of reducing the expected number of initial conditions 

necessary. Due to the increased complexity ofhigher index DAE’s it may become necessary 

to use those techniques referenced earlier, or an index reduction technique.

For index-1 and Hessenberg index-2 DAEs the methods found effective include 

backwards differentiation formulae (BDF) [29], and implicit Runge-Kutta. The BDF are 

the favoured method due to their ease of implementation. The general method can be stated 

as follows.

X =  £(f,x,z) 

§ =  g(f,x, z) 

det(gz) ^  0

(2.31)

i  =  £(x, z, t ) 

0 =  g(x,f)

(2.32)

i  =  f(x, y, z, t)

y = g(x,y, t) 

0 =  h(y,t)

(2.33)

k
(2.34)
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where k represents the number o f past values that are to be used. A table o f coefficients for 

the different orders can be found in any numerical methods text.

The PSV model presented above (Eq. 2.2:2.24) is of type Hessenberg Index-1 form. It 

should be noted that the Jacobian for the algebraic constraints with respect to the algebraic 

variables was found to be invertible.

For the solution of DAEs, a consistent initial guess is required before the numerical 

solution can proceed. The following section deals with this problem.

2.2.4 The Consistent Initial Guess Problem

For semi-explicit index-1 DAE’s, it is not the numerical integration which is the major 

computational effort, as a fifth-order BDF formula is generally used for this problem. Major 

computational effort must be used to determine the consistent initial conditions, which can 

be done by solving the set of equations. To simplify the problem, steady-state conditions 

are imposed and all derivative terms are set to zero. The resultant model takes the following 

form.

0 =  F(x)

Applying this method to the PSV model equations, we have a set of nonlinear equations 

(i.e. F(x)), with the presence of discontinuities due to the max/min functions.

The presence of these discontinuous elements added to the difficulty of solving these 

equations, and solution of the original set of equations was difficult. To simplify the 

problem, operating regimes were chosen away from those areas prone to discontinuities. 

To solve this problem the Newton-Raphson method was employed:

VF(xj)Xi+1 =  —F(xj) +  V F fc )*  (2.35)

where VF(xj) is the Jacobian of F(x) at iteration i. The problem can be solved using a 

variety of methods including Gauss elimination or other decomposition techniques [17].

Once a consistent initial guess is found, numerical solution of the equations can be 

conducted using thpse methods presented in the previous section.
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2.3 Simulation Verification

The model presented above contains physical and empirical parameters which must be 

identified. Identification of these parameters can be done either through literature or using 

plant data. Experimental parameter identification involves two steps: 1) develop a set of 

experiments and 2) evaluate the parameters such that they optimize a desired objective, 

with repetition if  necessary.

Appendix A discusses the second step o f the parameter identification problem, where 

the parameters are determined to minimize the square of the residuals. Parameter 

identification of the PSV model equations with transient EXP2000 data was found to 

be poor. The experimental procedure was found to have insufficient excitation for 

identification purposes, as a single pulse function was used. Most compositions showed no 

response to the step in feed ore. The errors associated with the composition and recovery 

measurements made many compositions appear constant. Measurements made using the 

EXP2000 have approximately a 5% relative error. These errors are a result of a number 

of contributing factors; however, analysis errors associated with the samples are the major 

contributor. Trends were found to occur only in the middlings and tailings layers. For 

parameter identification to be successful, more definite changes in the outputs will be 

necessary to adequately fit the model.

The use of recycle streams from secondary flotation units, not included in the model, 

are expected to have effects on the results. The presence of the recycle stream affects the 

particle size distributions, but those are not considered in this work.

The parameters identified using the method of Appendix A will be used, for lack of 

better values. In current literature, the parameter estimates were derived for the Syncrude 

PSV, and deemed not useful for the EXP2000. For this work, bringing the outputs close 

to that in the actual EXP2000 is sufficient, where additional work is needed to validate the 

model.

The model is simulated using steps in commonly found feed ores. The ore recipes 

are tabulated in Appendix C in Tables C.1:C.3, where particle size distributions were 

determined using the method in Forbes [28].

To verify that the model behaved properly the PSV model was then simulated starting
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Parameter Magnitude units Comments
?b 0.3273 Bitumen Middlings Withdrawal Factor [28]
As 1.257 Solid Middlings Withdrawal Factor [28]

4 0.4925 Bitumen Froth/Middlings Settling Factor

4 0.3006 Bitumen Middlings/Tailings Settling Factor
4 0.0 Solids Froth/Middlings Settling Factor
4 0.0, 0.0, 1.0 Solids Middlings/Tailings Settling Factor
Pb 0.8, 0.75,0.7 g j  cm? Density of Aerated Bitumen
db 0 .0 2 8 , 0.058, 0.07 m m Diameter o f Bitumen Bubbles
ds 7.8, 13.11, 125.0 fim Diameter of Solid Particles

Qm 0.3685 dm? Js Middlings Withdrawal Rate
Qt 0.4227 dm? j s Tailings Withdrawal Rate
Qfi 205 g/s Flood Flow Rate
v  ■1 mix 415.0 dm3 Effective Tumbler and Mixing Tank Volume

Table 2.1: Simulation Parameters

with a high grade ore and stepping down in ore grade every 50 minutes. Flood, underflow 

and middlings withdrawal were kept at their respective levels as listed in Table 2.1. The 

compositions of the froth, middlings and tailings are shown in Figure 2.2. The froth and 

middlings trajectories were as expected, where the trajectories o f all species followed a first 

order system, with expected decreases in bitumen and increases in solid concentrations 

observed. The bitumen tailings trajectories were found to follow a unique path, where 

during a medium feed ore the equations were dominated by density effects, and for low 

grade ores the large amount of poorly aerated bitumen droplets resulted in an increased 

composition. High grade ores were found to have comparable bitumen concentrations in 

the tailings with low grade ore; a consequence of the higher concentration of bitumen in 

the feed.

2.4 Summary

A model for the PSV for oilsand processing was developed from a steady-state formulation. 

The use of dynamic equations (i.e. material balances), combined with steady-state 

relationships to describe the movement of particles is currently the only method used. 

The independence of the model on temperature, caustic and other chemical additions may 

affect the separation; however, temperature and chemical effects likely have more effect on
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Figure 2.2: Simulation of PSV Model with Steps in Feed Grade

the particle size distributions formed during the conditioning process, than during gravity 

separation. Overall the model captures many of the important occurring phenomena in the 

vessel, and remains simple enough for dynamic optimization practices.
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Optimal Trajectory Planning

This chapter introduces the different methods used for dynamic optimization and begins 

by providing a discussion of the trajectory optimization problem, as well as providing 

an overview of the three main areas by which these problems are solved: 1) Calculus of 

Variations, 2) embedded simulation and 3) discretization methods.

The input trajectories produced using available methods may be highly complex; 

consequently, implementing these trajectories in process industries, which operate using 

open-loop control practices, is usually not possible. In this work a restricted form approach 

to trajectory optimization problems is introduced, where input trajectories are limited to 

sets of step and ramp functions. Input trajectories of this form are easily implemented 

using existing Distributed Control Systems (DCS), and can provide immediate results.

Both restricted and unrestricted trajectory optimizations are then applied to three 

benchmark examples drawn from the dynamic optimization literature, and the effectiveness 

of the methods is compared.

28
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3.1 Optimal Trajectory Problem

Developing optimal operating policies is of great interest to the process industries. To 

develop optimal operating policies it is necessary to have a dynamic model o f the process. 

The optimal trajectory problem for a set of DAE can be stated as follows:

min
u(f)

S . t .

f(i(f) ,x (f) ,z (t) ,u (f) ,f)  =  0 

g(x(t) ,z( t) ,u(t) , t )  =  0

fa(x(i),z(i),u (i),f) < 0 (3.1)

x(t)L <  x(f) <  x(t)u 

z (t)L <  z(f) <  z (t)u 

u (t)L < u(t) < u (t)u

Where L  and U represent lower and upper bounds on the differential/algebraic states and 

control variables. Here $  represents the desired objective to be minimized. The modelled 

differential equations are contained in f, which can arise from material and energy balances. 

The equality constraints, g, contain any process constraints or constitutive relationships, 

such as those describing the motion of particles in a suspension as in Chapter 2. The 

inequalities, h are process constraints. The lower and upper bounds on the variables can 

also be included in h; however, by convention, the bounds are written explicitly in the 

problem formulation.

Certain inequalities can cause index increases during the optimization process, and care 

should be taken to minimize the number. In this case, where active inequalities do increase 

the index, points where the inequalities become active or inactive must be found to improve 

accuracy. Work by Feehery and Barton [27] discusses the use of dummy derivatives to 

reduce equality constrained high index DAE problems to index-one form. As well Feehery 

and Barton propose a method for the dynamic optimization of systems o f equations with 

inequalities which increase the index [27],

Using a method comparable to that of constrained NLPs, the following augmented
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objective function (Lagrangian) is used.

(3-2)
Jtj

Where the function $  is the objective function in equation 3.1, and H  is referred to as the 

Hamiltonian, which is defined as:

where A(f), n(t)  and S(t) are the Lagrange multipliers and are functions of time.

Solution of the above continuous time optimization problem can be accomplished via 

optimality conditions. This is known as the Calculus of Variations. Differentiation of the 

Lagrangian can prove to be a difficult task, and the presence o f equality and inequality 

constraints usually makes using Calculus of Variations intractable.

For these reasons most trajectory optimization problems cannot be solved in this form. 

Methods have been developed that use an approximation to the above problem. There are 

two main methods, those which employ an embedded simulation within the optimization, 

and those which transform the infinite dimensional problem into a finite one and use 

collocation methods to approximate solutions of the dynamic variables.

This section explores those dynamic optimization methods that use embedded simulation. 

The optimizer and simulator operate separately where information is passed between the 

two when necessary. Dynamic programming, iterative dynamic programming and control 

vector parametrization are the three main dynamic optimization methods of this type. 

For all three of these methods, repetitive numerical solution of the equations is required, 

resulting in the majority of the computational expense.

3.2.1 Dynamic Programming

In Dynamic Programming the overall optimization problem is broken down into similar 

subproblems. The subproblems are then solved and combined to represent the overall 

solution. For optimal control these subproblems are derived by breaking the desired time

H  = X(t)Tf  + g +  5(t)Th (3.3)

3.2 Embedded Simulation
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Figure 3.1: Dynamic Programming Flow Sheet

interval up into sections. The optimal inputs for each of the subproblems are then combined 

to yield the overall optimal operating policy. The method must also link the state values at 

the subproblem boundaries, termed defect constraints. A visual representation is provided 

in Figure 3.1 The method begins by supplying an initial guess for the inputs, which is 

given to the optimizer. The optimizer calls on the simulator to solve the model equations 

for each of the subproblems, and evaluates the defects £ between the states, which are 

equality constraints in the optimization problem. The exchange between the optimizer and 

simulator occurs until the optimal set of inputs, U* is found, that satisfy the defect equality 

constraints.

Dynamic Programming cannot directly handle problems with path constraints, which 

limits the number of problems that can be solved using this method. This issue led to 

the development of many other dynamic optimization techniques, one of the more recent 

methods is Iterative Dynamic Programming.

3.2.2 Iterative Dynamic Programming

Iterative Dynamic Programming (IDP) developed by Luus [37], builds on the original 

method of Dynamic Programming. IDP follows an identical structure to that shown in 

Figure 3.1, where modifications are made only in the logic performed within the optimizer.

The desired time interval is broken down into m  sub-intervals as done for Dynamic 

Programming. At the beginning and end of the intervals, termed grid points, each state is 

allowed to take on AT values within a range jq. The same is done for the controls, where
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P  values for each input are chosen at each grid point within a range Wj. Clipping is used 

to enforce path constraints on the controls if necessary. The optimization then begins by 

using the initial guess to determine the center points for the states and controls. The N  

and P  points for each of the states and controls, as well as their respective ranges, are then 

chosen at each grid point.

Beginning with the last interval [M M  + 1] each state grid point is simulated using each 

of the inputs values in u, and the objective is then evaluated for each. The best control 

policy is then chosen which gives the best objective value.

Stepping backwards to the interval [M  — 1 M], again each of the states are evaluated 

using all the controls. Once the optimal policy for this interval is determined it is unlikely 

that the states calculated through simulation at M th grid point will exactly match with those 

chosen. So the state closest to that found using the simulation is chosen and the optimal 

policy from this state is used to continue the simulation to the final time.

The procedure continues for the remaining time intervals in the backwards direction 

until the first time interval is reached, ending the first iteration. Successive iterations are 

done in the same fashion, with the optimal states and inputs at the previous intervals used 

as the center points and a reduction in the size of the regions for u and x to remove the 

discontinuity in the states between intervals to a desired tolerance.

The method presented above is able to handle path constraints, but does not scale well 

with problem size. Large scale industrial problems generally have large numbers o f states 

and inputs associated with them, greatly increasing the computational load, resulting in 

large solution times, and reducing the range of applicability of the method.

323 Control Vector Parametrization

Control Vector Parametrization (CVP) is another embedded simulation technique which 

can be used to solve dynamic optimization problems. The method is different from 

both Dynamic and Iterative Dynamic Programming. This method has been used to solve 

various dynamic optimization problems in the literature [51] [3 8]. The method works by
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parameterizing the control trajectory
k

Ui(t) = ^ 2  ~  Uj)  (3.4)
j=1

where here i represents the ith control variable, cj)  ̂ the j th function and are the

amplitude and switching times of the function, respectively. The parameters p is the vector 

set [a, t], where a is the vector containing all o f the weights (a*) and t is the set of all 

switching times.

The overall method of CVP is similar to that depicted above for Dynamic Programming, 

but the control vector u is replaced by the parameter vector p. The simulation is carried 

out by converting the vector of parameters into an input trajectory. Along with the model 

equations, simulation of the adjoint equations (sensitivity) equations with respect to the 

control parameters may be done to decrease solution times. Termination occurs when the 

optimal set of parameters p* is found by the optimizer. Here the variable £ relates to path 

constraint violations, and again is set to zero as equality constraints in the optimization 

problem.

A few general points are made about control vector parametrization: 1) one function 

is used during an interval; 2) the method handles singular sets of equations, as the model 

equations are used for simulation only and 3) evaluation of the adjoint equations can be 

difficult.

3.3 Discretization Techniques

Discretization techniques are those methods where the continuous time problem is reduced 

to a finite dimensional optimization problem, by discretizing the time horizon using a set 

of points. The methods differ only in the approach to the discretization and handling of 

the approximations to the dynamic states. The two methods discussed here are Direct 

Transcription and Orthogonal Collocation on Finite Elements.

3.3.1 Orthogonal Collocation on Finite Elements

Orthogonal Collocation on Finite Elements, proposed by Cuthrell and Biegler [21], 

approximates the continuous time problem by using discrete points in time, termed mesh
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or grid points. The resulting finite optimization problem still contains differential states, 

which must be removed before the dynamic optimization can proceed. This method takes 

the differential/algebraic states and control variables and approximates their solution using 

orthogonal polynomial approximations. In their work, Cuthrell and Biegler, used Lagrange 

interpolating polynomials, which take the following form:

Where k +  1 and k represent the orders of the state and control variable Lagrange 

polynomials, where the roots of these polynomials tj lie on the mesh points. The Lagrange

To simplify the upcoming substitutions, the product term in each of equations 3.5 through 

3.7 is replaced by £(i), r ( t)  and tp(t) for the state, algebraic and control variables, 

respectively.

Substitution of the Lagrange polynomials into the optimal trajectory problem gives the 

following optimization problem.

Xk n (3.5)

(3.7)

polynomials have the property that at the mesh points the polynomial reduces to x f +1 — x*.

u(t)

S.t.

min $  [xk,zk,iik, t k\

g (xk,Zk,uk, t k) =  0 

h(xk,Zk,Uk,tk) < 0 (3.8)

Xfe <  Xfc < Xfc

Zfc <  Zfc <  Zfc

Ufc <  Ufc <  uuk

k =  1,...,M+1
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Using the orthogonality of the Lagrange polynomials it is possible to remove the time 

dependent terms from the problem as £(ffe) = r ( t k) =  (p(tfc) =  1 at the kth grid point. 

The problem then reduces to finding the roots of the approximating Lagrange polynomials, 

or equivalently the values of the states and control variables at the grid points k. The term 

£(f) requires the differentiation of a Lagrange polynomial [49].

The above formulation as stated is referred to as the “Global Collocation Method”. The 

method behaves poorly for systems of equations where there are sections of fast and slow 

dynamics. For high-order polynomial terms, the fast dynamics may be captured adequately; 

however, the overshoot caused by these higher order polynomials introduces error, and 

does not approximate the regions of slow dynamics well. The opposite is true for low 

order polynomials where large approximation errors will accumulate in nodes where the 

dynamics are fast. For this reason the method is further extended on finite elements.

The problem as stated above is broken up into smaller intervals, where in each interval 

the Global Collocation method is used. Equality constraints are added to ensure continuity 

o f the states and control variables between finite elements. The solution is therefore 

composed of a set of polynomial approximations to the solution. The reader is referred 

to [21] for an complete discussion of the method.

Discretization of the method above depends on the order of the approximating 

polynomials used. This inflexibility in the number of grid points makes input restriction 

difficult, and is not used.

3.3.2 Direct Transcription

The Direct Transcription method, as discussed in Betts [10], takes the desired time interval 

\tHF) and breaks it up into M  different intervals, or M  +  1 points in time (not necessarily 

equi-spaced). The equations for the optimal trajectory problem are then solved at each o f 

the desired time points (mesh points). The optimal trajectory problem can then be stated
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as:

min <f> [xk, z k,u k, t k] 

s.t.

f(xfc, Xfo, Zfc, life, ifc) 0

g(xfc,z fe,u fc,tfe) =  0

h(xfc, Zfe, Ufe, tfc) <  0 (3.9)

4  < * k <  4

Zfc < Zfc <  Zfc

4  < u k < 4

k =  1,...,M+1

The system of equations shown in the above formulation still contains derivative and/or 

integral terms, and cannot be solved in the present form. It is possible to use numerical 

techniques to evaluate integral terms, and collocation methods to replace the differential 

variables, where the methods used depend on the equations to be solved and the desired 

accuracy. The problem is then in a format which can be solved using appropriate 

optimization solvers. The method can be described by the following steps.

1. Break up time interval [titF\ into M  intervals or, M  + 1 discrete points, which will 

be referred to as a mesh or grid.

2. Discretize the differential variables and integral equations on the grid.

3. Reformulate and solve using the appropriate optimization technique.

4. Repeat steps 1-3 refining the grid points to obtain an acceptable accuracy.

Mesh refinement is done to improve the accuracy by either using an increased number 

of grid points, or moving existing grid points to an area where more points are required to 

effectively capture the dynamics. Increasing the number of grid points increases the size 

of the optimization problem, thereby increasing the solution time. Improved accuracy may 

also be obtained by increasing the order of the numerical method used to discretize the
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differential variables. Increases in the order corresponds to increases in the computational 

load (i.e. larger number of function evaluations) and again the improved accuracy results 

in larger solution times.

For problems with discontinuities in the decision variables, or state space changes due 

to different constraints at different periods of time, the problem can be broken up into 

individual stages or phases. Additional equality constraints may be necessary to ensure 

continuity in the certain state or control variables; however this is dependent on the 

problem.

The optimization problems which result from discretization methods are highly sparse, 

and this sparsity can be exploited. Calculation o f the Jacobian or the Hessian for sparse 

systems of equations can be done so in a more efficient manner by grouping variables into 

indexed sets [44].

3.4 Restricted Form

Optimization of transient operations (e.g. batch processing, grade transitions, etc.), is 

crucial to the success of many manufacturers. There is considerable literature on solving 

these dynamic optimization problems as open-loop control problems. The resulting optimal 

transition policies are often very irregular and as a result, difficult to implement; and so 

most operating plants are forced to treat transients in a sub-optimal fashion. A key difficulty 

with the existing approaches to solving the grade transition problem is that optimal policies 

are not restricted to take on forms that are readily implementable within the plant. Any 

general approach to the problem of determining optimal grade transitions must consider 

the restrictions placed on the allowable form of the input trajectories by the functionality 

of the plant automation system or operating procedures.

Optimization of industrial operations is characterized by a few to a few hundred degrees 

of freedom, constraints on the inputs and outputs, and restrictions on the forms that the 

optimal transition policy can take. Most often, the trajectories to be optimized are the 

setpoints for the process controllers. These setpoint trajectories must be implemented via 

a plant automation system, or manually by an operator. Plant automation systems (e.g. 

distributed control systems) easily allow the input of simple steps and ramp changes to the
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setpoints. Thus, restricting the inputs to steps and ramp functions gives input policies that 

are easily implemented on existing control systems.

In this section the method of input restriction is proposed which builds on the ideas of 

Dabros et al. [22] wherein optimal input trajectories were restricted to take on the form 

o f a small number of steps. The previous work of Dabros et al. treated the dynamic 

optimization problem by discretizing in time and treating the resulting problem as a quasi­

steady state, algebraic optimization problem using conventional nonlinear programming 

solvers. Results are similar to those generated using CVP by Wang et al. and Mangesh and 

Gudi desired [51] [38]; however, here the limitations of CVP to a single function during a 

time interval are improved upon.

Two cases are considered for input restriction: firstly, the generalized problem where the 

set of inputs is allowed to be any number o f any set of functions {i.e. linear, polynomial, 

exponential); and secondly, the reduced and simplified case, where the input trajectories 

are limited to sets of steps and ramps.

Mathematical programs with equilibrium constraints (MPECs) are necessary for the 

generalized problem. MPECs are just beginning to gain attention in the area of chemical 

engineering, with the development of new solvers [42]. The presence o f equilibrium 

constraints, or complementarity conditions, such as:

X\ X 2 =  0

enforces that either x\  and/or x 2 be zero. Equilibrium constraints, for input restriction, are 

included to enforce that only one input trajectory function is chosen during a time interval.

Beginning with the dynamic optimization problem (3.1), additional constraints are added 

to constrain the inputs to a set of functions u(tj) € U, where U is a set of n  input functions,
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occurring at m  different intervals in time. The following dynamic optimization results:

min $  [x(t),z(t),u (t),t]
a.tj

s.t.

f ( i(f) ,x (t) ,z ( t) ,ii( t) ,t)  =  0 

g (x (f),z (t),« (f),t) =  0 

h (x (f),z (t),u (i),f)  <  0

x(t)L < x(t) < x(t)u (3.10)

z(t)L <  z(i) <  z(t)u 

u (t)L <  u (t) <  u (t)u 

t f  < tj <
n

U(^j) =  ' y  1 a i j u i j
i= 1

(Xij Cif;j 0

i =  l , . . ,n  j  = 0 , . . ,m  k =  0, ,.,i — l,z  +  1, ..n 

to <  ti < < tm

where the complementarity conditions in 3.10 are the equilibrium constraints in the MPEC 

problem.

Solving programs with equilibrium constraints is an iterative process, where the 

equilibrium constraints are relaxed using inequalities. The complementarity condition 

takes the form:

—e <  X1 X2 < e

where e is a tuning parameter. MPECs are solved by allowing e to first be large, followed 

by decreases in e until the equilibrium constraint is enforced to within a sufficient tolerance.

For most cases the above formulation is too complicated and a simplified method is 

developed. For the case where open loop control strategies are used, it may be only possible 

to implement simple inputs such as steps and ramps. By limiting the input function space to 

steps and ramps, the complexity of the problem is greatly reduced due to the removal of the 

need for the complementarity conditions in the dynamic optimization problem. Limitation
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Figure 3.2: Time Grid Development-2 Inputs

of the input trajectories to these simple input functions results in a formulation that can be 

easily solved using existing optimization solvers, and follows that provided by Betts [10], 

In this approach changes in x ,  z, u, f, g and h  are allowed at discrete points in time, termed 

input switching times (1ST). The 1ST are decided using the prescribed switching intervals, 

defined as the input interval TUi. Each input has associated with it a set of 1ST T), where 

more than one input can use the same 1ST. Figure 3.2 shows a simple grid of 1ST for a two 

input system, with input intervals of TUl and TU2. Here the sets of 1ST are

T i  =  { t o , U , t f }

T2 =  {to, h ,  t2, to, t 5, f6, £7, t f }

where Ti and T2 are the sets of input switching times for u\{t) and u2(t), respectively. 

At any given 1ST, the switching set of inputs, {i.e. those with the current 1ST within 

their set of 1ST), are allowed to implement another step or ramp function. Any input not 

in the switching set remains unchanged in its present interval. States are assumed to be 

continuous across all 1ST, with continuity enforced using equality constraints. Discretizing 

Problem (3.1) using the 1ST grid, and applying the necessary constraints, the following
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continuous version of the restricted input optimal trajectory (RIOT) problem results;

min $  [xfc(t ) ,z fc( i) ,u fe( t) , t fc] 
a£,a i

s.t.

f(±k(t),xk( t) ,zk(t ) ,uk(t ) , tk) = 0 

g(xk(t) ,zk( t l n k( t \ t k) = Q 

h{xk(t) , zk(t) ,uk(t ) , tk) < 0 

uk =  ak0j +  a\.t t k e  Tj

uk = uk~~l t k i  Tj (3.11)

x^T1 = x k k =  1,.., h

Zp-1 =  Zj k — 1,.., h

x(t)L < x k(t) <  x(t)u 

z (t)L <  zk(t) <  z(t)c/ 

u (t)L <  uk(t) < u (t)u 

j  = l..p

where a0 and aj are vectors of time independent parameters for the step and ramp 

formalization, and are the decision variables of interest in this problem. Here the objective 

function, differential, equality and inequality constraints remain unchanged. Following 

these equations the input restriction and continuity equations are included. Other possible 

constraints that may be included are smoothness of the input trajectory, as well as rate limits 

on inputs.

The above form of the RIOT problem allows both step and ramp functions; however, 

reformulating the problem to include either function is trivial, where step functions alone 

can be achieved simply by setting a i =  0. Ramp functions only require ao =  0, with the 

addition o f continuity constraints between 1ST.

As stated, problem (3.11) cannot generally be solved using dynamic programming 

techniques, and discretization must be used to reduce the problem to an algebraic 

optimization problem. Discretizing time into q mesh points in each input interval, the
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RIOT problem reduces to the following form

min $ [ x f , z f , u  k, t k]
* 5**1

s.t.

g(Xlfc,z*,u*,tf) =  0 

K ^ z f . i i ^ H o  

u* =  ak_ +  a* i ,  4  G Tj, Vi

uk = ukf \  tk 3 J j ,  Vi (3.12)

xL <  x f  <  x 77

z L <  z?  <  z 77

uL <  u* <  u77

AfL < A ifc <  A t77

xfc- 7 =  xfc

z k~l =  zk

i =  1,.., g j  =  l..p  fc =  1,.., h

where q ^  2, a requirement that must be met to satisfy the presence of 1ST bounds and

to ensure input restrictions. In this form the RIOT problem still may contain functions 

o f derivatives and integrals in the state variables. The method of direct transcription [10] 

is well suited for solving RIOT problems, where differential/integrals terms are directly 

transcribed using common numerical methods. After transcription, algebraic optimization 

techniques can then be used to solve problem (3.12).

The RIOT problem is solved using the following steps:

1. Formulate problem as a dynamic optimization problem of the form given in (3.1).

2. Determine the 1ST grid using the predefined values of the input intervals for all 

inputs.

3. Restrict inputs using equality constraints, treating those inputs which are switching 

and not switching appropriately.
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4. Introduce continuity constraints at the 1ST for all states, the problem is now in the 

form of Problem (3.11).

5. Discretize the continuous problem into a grid of mesh points, and use Direct 

Transcription to remove any derivative and integral terms.

6. Solve using appropriate algebraic optimization techniques.

7. If error tolerances are not met, refine mesh and/or increase order of numerical 

approximation, then go back to step 6.

Mesh refinement can be accomplished by using some sort of refinement rules, such as those 

given in Betts and Huffman [11], which are adopted in this work.

3.5 Case Studies

The method presented above will be illustrated using three commonly studied problems: 

1) the single integrator system 2) the consecutive reaction problem; and 3) the parallel 

reaction problem.

The problems were solved using Boeing’s®  Sparse Optimal Control Software (SOCS), 

using sequential quadratic programming, and exploiting problem sparsity to efficiently 

solve optimal control problems. All problems were solved to meet SOCS minimum 

allowable objective and ODE tolerances, using the trapezoidal rule or a higher order 

method. Mesh refinement and numerical methods were allowed to change freely as mesh 

refinement continued. Optimizations were done using a dual AMD 2400+ with 1 Gb RAM.

3.5.1 Single Integrator Problem

The single integrator problem examined by Goh and Teo [30], Guay et al. [31] and 

Luus [36] was solved using unrestricted and restricted forms. An analytical solution for 

the single integrator has been solved via linear least squares optimal control theory [14].
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Figure 3.3: Optimal Trajectories for the Single Integrator Problem

The single integrator problem can be stated as:

min x 2(tf ), t f  = 1
u(t)

S.t.

X\{t) — u(t)

x 2(t) =  x\ (t) + u2(t)

Xx(0) =  1 (3.

x2(0) = 0
Xi(l) =  1
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Restricting the inputs of the integrator system to be step functions, and using Direct 

Transcription, the RIOT optimization problem can be reformulated to give

min Xiitf),  t f  ~  1 

s.t.

x\{t)  =  uk(t)

x k(t) = (xk1)2(t) + (ukf ( t )  

uk(t) = {3k

x i ! 1 = x klF (3.14)

r k+1 _  k 1 ~  X2f

Xl(0) =  1

2:2(0) =  0

Xi(l )  =  1

k  =  1, ..,ra

Figure 3.3 shows the optimal trajectories of both the restricted and unrestricted problems. 

For the unrestricted problem, the optimal value of the objective function, x 2(tf), was found 

to agree to within 6 significant figures o f the analytical solution to the problem, and was 

deemed sufficient for the purposes of this work. Table 3.1 shows the optimal objectives for 

the restricted and unrestricted problems. All RIOT problem solutions were found to have

Case x*2(tf )
Unrestricted 

1 -Step 
2-Step 
4-Step
8-Step
16-Step

0.924234
1.000000
0.942308
0.928705
0.925349
0.924513

Table 3.1: Optimal Objective for Single Integrator Reaction Problem: Restricted and 
Unrestricted

objectives function values greater than the unrestricted form. For the case where only one 

step function is allowed the degrees of freedom become zero and the solution reduces to 

u(t) =  0. For this case the problem can be solved analytically.
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3.5.2 Consecutive Reaction Problem

The consecutive reaction problem, first examined by Ray [43], McAuley and Dadebo [23], 

and Guay et al. [31] follows the following reaction

A -^ B ^ C
ki &2

It is desired to maximize the recovery of the middle product by manipulation of the reactor 

temperature. The problem can be stated mathematically as

m ax x 2{tf ), t f  =  1
u(t)

S.t.

CA(t) = -u{ t )C \{ t )

CB(t) = —0.03875u2 (t)CB(t) + u(t)Cg(t)

CU(0) =  1 (3.15)

C'b (O) =  0

0.9092 <  u{t) <  7.4831

where the input u(t) is defined as u = 4 0 0 0 e _25OO//T. Restricting the input u(t) to take on 

n  steps, the problem then becomes the following

max 22 {tf), t f  =  1 

s.t.

Ca\ t )  =  - u { t ) \ C kaf { t )

Ch\ t )  =  - 0 .0 3 8 7 5 ( n fe)2 ( t ) C 6fe( t)  +  uk(t)(Cka)2(t) 

uh{t) =  Pk

/ofc+1 _
UAt "" UAf

C kB+ 1 =  C kBp (3 .1 6 )

CA{ 0) = 1 
^ ( 0 )  =  0

0.9092 < uk(t) < 7.4831 

k — 1, n
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Figure 3.4: Optimal Trajectories for the Consecutive Reaction Problem

where I  and F  refer to the beginning and end of the current input interval. The optimal 

trajectories for both the restricted and unrestricted problems are shown in Figure 3.4. 

The optimal conversion C£(t/) for the unrestricted trajectory problem was found to 

be 0.610803, in good agreement with those published in the literature. The restricted 

and unrestricted optimal objective function values are shown in Table 3.2. All RIOT

Case X*2( t j )
Unrestricted 0.610803

1-Step 0.605947
2-Step 0.607827
4-Step 0.609101
8-Step 0.609893
16-Step 0.610354

Table 3.2: Optimal Objective for Consecutive Reaction Problem: Restricted and
Unrestricted

formalizations had optimal solutions less than the unrestricted problem, however the loss 

in performance associated with this problem was quite small. Even for a one-step input 

restriction, a loss of less than one percent occurs. This consecutive reaction problem is

3

0.50

0.6

*  0.4
O

0.2
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therefore insensitive to input restriction.

3.5.3 Parallel Reaction Problem

The parallel reaction problem presented here has been examined thoroughly in the literature 

by Beigler [12], Ray [43] and others [34] [35] [23]. Here two reactions are taking place 

within a tubular reactor, which are stated as

A ^ B
ki

A—>C
&2

Defining the dimensionless concentrations of species A and B in the reactor as x\  =  

Ca IC a0 and Cb / C a0 where Ca0 is defined as the initial concentration of A, the following 

maximization problem results

max x 2(tf ), t f  =  1
u(t)

S.t.

x'l(t) = -u ( t ) x i ( t )  -  ^ u 2(f)xi(t) 

x 2(t) =  u(t)xi(t)

Xi(0) =  1 (3.17)

x2(0) =  0 

0 <  u{t) < 5
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where u(t) =  k \L / v ,  L is the reactor length, and v is the spacial velocity. Dividing the 

problem into np input intervals, and recasting in continuous RIOT form

max x-2 (tf), t f  = 1 

s.t.

* * (()  =  - « ( 0 ‘x*(t) -  f(t)

x 2k{t) =  u{t)kx\(t) 

uk(t) =  pk

"1/ 
„fc+l

If

“°2f 

Xi(0) =  1 

x2(0) =  0 

0 < < 5

k 1,.., Tip

(3.18)

Both problems (3.17) and (3.18) were then discretized and Direct Transcription was 

used to convert to a NLP. The optimal value of x ^ t f )  — 0.573545, corresponding well 

with those presented in literature. The optimal trajectories for the unrestricted, 1-step and 

4—step restricted cases are shown in Figure 3.5. Table 3.3 shows the optimal values of the 

objective for the unrestricted and restricted input problems.

Case x*2(t f )
Unrestricted

1-Step
2-Step 
4-Step 
8-Step 
16-Step

0.573545
0.535112
0.556178
0.566406
0.571294
0.573233

Table 3.3: Optimal Objective for Parallel Reaction Problem: Restricted and Unrestricted

All restricted solutions were less then their unrestricted counterpart. Here the difference 

between the restricted and unrestricted solutions have a greater sensitivity to the number
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Figure 3.5: Optimal Trajectories for the Parallel Reaction Problem

of steps allowed, with approximately a 6% difference in the one step restricted and 

unrestricted solutions.

3.5.4 Results and Discussion

As stated above, all RIOT problem solutions to the integrator, consecutive, and parallel 

reaction problems were found to have objectives that were larger for the integrator problem 

and smaller for the reaction problems than their unrestricted counterparts. Comparison 

of the objectives for both the unrestricted and restricted inputs are given in Figure 3.6 

for all three case studies. It appears that, as the number of steps are increased, the 

RIOT formulation approaches the optimal value of the unrestricted case asymptotically. 

The RIOT problems with two allowable steps show approximately 1-3% difference when 

compared to the unrestricted solutions, with the loss becoming negligible for both the 8 and 

16 step cases.

Restriction of the inputs was found to affect the computational efficiency of the problem. 

Figure 3.7 shows the effects of input restriction on the computation time. All problems are 

found to have an approximately linearly increasing relationship between the computational
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Figure 3.6: Unrestricted and Restricted Input: Objective and Error Comparison

time and the number of steps. Interestingly for highly restricted systems (low number of 

steps), the computational costs were below that of the unrestricted problem. This suggests 

that it may be possible to reduce optimization costs by reformulation of a problem in RIOT 

form. For highly restrictive problems the degrees of freedom are lowered and the number 

of additional constraints added to the system are minimal, which is expected to give rise 

to shorter solution times. As the number of allowable steps is increased, the problem 

gains more degrees of freedom and an increasing number of equality constraints, which 

leads to large solution times. For the parallel reaction problem, even the 16-step restricted 

input computational costs were below that of the unrestricted case. The number of mesh 

refinement iterations necessary was found to increase with increasing number of steps, and 

for both problems the number of mesh refinements became larger than that necessary for
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Figure 3.7: Unrestricted and Restricted Input: Solution Times

the unrestricted case. Decreasing the input restriction also led to an increase in the overall 

number of mesh points.

Input saturation was found to occur on both the unrestricted cases for the consecutive 

and parallel reactions; however, restriction of the inputs for these two cases was found to 

remove input saturation. In the restricted input case, the range of values which the inputs 

were found to take on shrank for all three problems studied. This suggests that the RIOT 

formalization has a natural back off on the magnitude of the inputs.

The RIOT problem also provides a useful tool in benefits analysis for determining 

whether implementation of advanced control policies would result in large gains to a 

process. When combined with cost analysis, comparison of the unrestricted and restricted 

optima may provide useful information into whether substantial gains exist for more 

sophisticated controllers structures.

In the above case studies, only step functions were allowed in the input trajectories. The 

problem could have easily been extended to include ramp functions as well. The addition 

of ramp functions to the input trajectories can greatly reduced the number oflST  necessary 

to approach the unrestricted optimum. In the integrator problem, a single ramp function 

would give a result comparable to the unrestricted optimum. In the consecutive and parallel 

reaction problems the use of three step and ramp functions would bring the result close 

to their unrestricted optimums. The number of parameters necessary for both step and 

ramp functions doubles and the solutions are not as simple to implement in practice. The
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simplicity of the step functions is considered desirable in this work and will be used in 

case studies for the PSV grade transitions of the next chapter.
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ana
Trajectory Optimization of the Syncrude 

Primary Separation Vessel

In this chapter, trajectory generation cases are examined for the PSV of the EXP2000 pi­

lot plant at Syncrude Research. Prior to optimization studies, a model reformulation was 

required to ensure it was amenable to the investigations. Pre-processing was then done to 

scale the problem to ensure well-posedness. The section concludes by examining various 

case studies.

4.1 Modelling Under the Optimization Framework

Before optimization could take place the model equations presented in Chapter 2 were 

modified. The original set of differential/algebraic equations had a number of linear 

dependencies that were removed to eliminate singularities in the Jacobian. To determine 

which equations were linearly dependent, degree of freedom analysis was performed on 

the model. For this analysis, all external flow rates were held constant (degrees of freedom 

= 0). The number of variables and equations is stated as follows:

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 4.1 Modelling Under the Optimization Framework 55

•  bitumen volume fractions (3 variables/layer)

•  solid volume fractions (3 variables/layer)

• fluid volume balance (1 variable/layer)

• bitumen settling velocities-froth/middlings interface (3 variables)

® solid settling velocities-froth/middlings interface (3 variables)

•  fluid flow-ffoth/middlings interface (1 variable)

• bitumen settling velocities-middlings/tailings interface (3 variables)

•  solid settling velocities-middlings/tailings interface (3 variables)

•  fluid flow-middlings/tailings interface (1 variable)

® external flows, feed, froth, middlings and tailings withdrawal (4 variables)

• froth/middlings interfacial movement (1 variable)

•  feed composition (7 variables)

There are a total of 47 variables describing the process. Looking at the number o f equations:

•  bitumen particle volume balances (3 equations/layer)

• solid particle volume balances (3 equations/layer)

® fluid volume balances (1 equations/layer)

•  bitumen settling relationship-froth/middlings interface (3 equations)

• solid settling relationship-froth/middlings interface (3 equations)

• bitumen settling relationship-middlings/tailings interface (3 equations)

•  solid settling relationship-middlings/tailings interface (3 equations)

•  overall volume balances (1 equations/layer)
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•  Specified feed, middlings and tailings withdrawal (3 equations)

•  Specified feed composition (7 equations)

• Wallis Shockwave Equation (1 equation)

There is a total of 47 equations, leaving zero degrees of freedom; however, as specified not 

all of these equations are linearly independent.

The linear dependence is introduced through the Wallis shockwave equation. The Wallis 

shockwave equation (4.1), which describes the motion of the interface between the froth 

and middlings layers, is restated here:

E j = i  _  a i vibi

i aL

Simplifying equation (4.1) for the case where only one bitumen particle is used gives the 

following result.

v, =  (4.2)
a f - a {

Under steady state conditions, there is no interfacial movement giving vT = 0:

0 =  «  -  a M  (4.3)

Equation (4.3) is equivalent to that of the bitumen froth volume balance equation (2.5) 

under steady state conditions. Increasing the number of particles from one to three has no 

effect on the linear dependence of the Wallis shockwave equation.

The effects of the dynamic interface between the froth and middlings layer was 

examined. Figure 4.1 shows the data collected during the Syncrude Research transient 

studies using the EXP2000 pilot plant on the level of the froth/middlings interface. The 

step in feed ore occurs at a time of 75 minutes. For a step in feed ore, there does not appear 

to be a large effect on the position of the interface. Operator experience agrees that the 

interface level changes little in the EXP2000 and may be a result of the small resonance 

time in this vessel, with short periods of time for mass accumulation in each layer. For 

this reason, modelling the froth/middlings interface as static in this case is not expected to 

affect the results of the study, appreciably. Numerical comparisons of the PSV model for
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simulation, and optimization is located in Appendix B. Removing the dynamic interface 

was not found to greatly effect the state trajectories. Discussion with operating personnel 

provided further confidence that this simplification was reasonable [24].

50.5

rO)
|  49.5 

*

48.5

150100 
Time (min.)

200

Figure 4.1: EXP2000 Transient Data: % Level Froth/Middlings Interface

Ill-conditioning of the Jacobian was also found to result from the presence of variables 

which had zero range. Through simulation it was found that the largest diameter solid 

particles reported solely to the tailings layer, with none o f these particles reporting to 

the froth. Similarly none o f the lowest density bitumen particles reported to the tailings. 

Both the aforementioned solid and bitumen particles have zero ranges in the froth and 

tailings, respectively. This resulted in ill-conditioning of the Jacobian. The model equations 

were then modified further to remove these variables, assuming that both were zero in 

their respective layers, by removing their corresponding particle balances and constitutive 

relationships. The studies performed in Appendix B showed that removing these equations 

had no appreciable effect on the state trajectories.
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4.2 Optimization Pre-Processing

Removing linear dependencies in the set of differential/algebraic equations may result in 

a Jacobian which is no longer singular; however, the Jacobian can still be ill-conditioned, 

if  the variables are poorly scaled. A poorly scaled Jacobian can result in poorly generated 

search directions, where some variables have a large associated gain in objective compared 

to others. This may result in infeasibility during optimization iterations, as well as increased 

solution times. Therefore the Jacobian is scaled such that the elements are as close to the 

same order of magnitude as possible.

For transient models, scaling may become a problem as some variables may take on 

wide ranges o f values, while others remain close to a steady value. It may be beneficial to 

remove those variables that die off with time, as was done in the previous section for the 

large bitumen and solid particles. If  this approximation is poor, exponential scaling factors 

may be used to remove this problem, so that the scaling factor increases with time, as the 

variable decreases. It is important to pick a exponential function that grows at a rate similar 

to the decay of the variable. Exponential scaling factors were not used in this case.

The relative velocities of the particles were found to be a few orders o f magnitude 

different than other variable ranges. To account for this each relative velocity term was 

multiplied by the area of the vessel to help to alleviate this difference. Units were chosen 

to bring all the variables as close together as possible. For example, the relative settling 

velocities of the particles where computed using units o f centimeters, as specified in 

the literature; however, when placed into the model the values were then converted to 

decimeters. After scaling the variables, the model was ready for optimization.

4.3 Case Studies

A number of case studies are now discussed. Two regular occurring steps in feed grade 

are examined followed by an investigation of steps between two extreme ore grades. The 

ore grades and recipes shown in Tables C. 1 :C.3 are used here. The first study investigates 

a step from a high to medium grade ore. The second study examines another commonly 

occurring step from a medium to low grade ore. The remaining case studies investigate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 4.3 Case Studies 59

extreme ore transitions, including both steps from high to low and low to high grade ores. 

The steady-state optima for each o f the three ore recipes were found first.

The steady-state optimal operating conditions were found by setting all derivative terms to 

zero and solving using NLP to maximize the recovery of bitumen feed to the vessel. The 

resulting problem takes the following form:

nL < u < m u

where f contains all of the PSV modelling equations as developed for optimization with 

derivatives set to zero, and h contains the set of inequality constraints on the model. Here 

the inequalities dictate that the mass fraction of water in the froth layer be less than 35%,

include the volume fractions of each layer, the relative and bulk flow velocities, etc. and the 

vector u represents the vector of inputs, i.e., the middlings and tailings withdrawals and the 

flood flow rate. The problem was solved using sequential quadratic programming (SQP), 

with objective, projected gradient and constraint tolerances of 10-7 ,10~5, and 1.69 x 1CT8, 

respectively.

For the objective tolerance, the norm of the difference between the projected and current 

objective function is used. For both the projected gradient and the constraint tolerances the 

infinity norm is used to ensure that the maximum element satisfies the tolerance.

Table 4.1 shows the optimal values of the recovery and inputs. The optimal results 

presented above are not guaranteed to be a global optima, since NLP is used to determine 

their values. At best the results are said to be local optimal. A number of initial guesses

4.3.1 Steady State

maxU E ?  ofdQfi
s.t.

f(x. u) =  0 

h(x, u) <  0 

xL < x < x u

(4.4)

and that tailings density be less than 1.65g/cm3. The vector x contains the states, which
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Grade Recovery Qm(L/s) Qt( L/s) Qfi{ L/s) x* Pt (g /cm )
High 94% 0.0 0.8449 0.4652 0.35 1.65

Medium 81% 0.3115 0.6641 0.5663 0.35 1.65
Low 57% 0.7460 0.4631 0.7658 0.35 1.65

Table 4.1: Optimal Steady State Values

were used, and all solutions were equivalent to those in Table 4.1. This increased the 

confidence in the solution, where no additional local optima were found.

As in practice, the high grade ore is found to produce the highest primary recovery 

of bitumen, decreasing for poorer ores. For high grade ores the middlings withdrawal is 

completely turned off, as the feed ore contains mostly large bitumen and solid particles 

which report solely to the froth and tailings, respectively. High grade ores require the least 

amount o f flood water. For a medium grade ore, the presence of more fines and a higher 

concentration of less aerated bitumen particles requires the middlings withdrawal to turn 

on. Increases in the flood water are also necessary to help remove the additional fines from 

the middlings. The tailings flow rate begins to decrease as the percentage of large solid 

particles begins to drop, as less water is needed to satisfy the tailings density constraint. 

The trend continues for the lowest grade ore where larger middlings and flood flow rates 

are necessary, with the tailings withdrawal taking on its lowest value.

Table 4.1 shows that for each case the inequalities for the froth water fraction and tailings 

density are active, as expected. Pushing as much water up into the froth has the added effect 

of dragging along as much bitumen as possible, maximizing the recovery. This phenomena 

results in the activation of the froth quality constraint.

Keeping the tailings flow rate at its minimum allowable level corresponds to the smallest 

amount o f bitumen reporting to the tailings, minimizing the loss out o f the underflow. This 

phenomenon pushes to activate the tailings density constraint.

Simple sensitivity studies examine how the optimal recovery changes for deviations in 

the inequality limits. The inequality constraints are relaxed and the results are shown in 

tables 4.2 to 4.4. For all ores the objective function was found to be insensitive to variations 

in the froth water mass fraction. The optimal values o f the middlings, tailings and flood 

water flow rates were also found to be insensitive. The changes in the inputs and recovery
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were found to be several orders of magnitude larger than the convergence tolerances, and 

is not an artifact of the computation.

The reasoning for the insensitivity arises from the differences in the relative settling 

velocities o f the bitumen particles and that of the bulk flow. The relative velocities for 

the bitumen are much larger than that o f the bulk flow to the froth, so slight increases or 

decreases in the bulk flow have no meaningful effect on the recovery.

x i Pt (g/cm 3) Recovery Qm( L/s) Qt( L/s) Q d  L/s)
34% 1.65 94.03888% 0.0 0.844918 0.465201
36% 1.65 94.13627% 0.0 0.844553 0.467145
35% 1.7 95.87190% 0.0 0.765972 0.389778
35% 1.6 92.12833% 0.0 0.936289 0.552818

Table 4.2: Steady-State Inequality Sensitivities for a High Grade Ore

x? Pt (g/cm 3) Recovery Qm(h/®) Qt(L/s) Qfi( L/s)
34% 1.65 81.51035% 0.313280 0.663371 0.565663
36% 1.65 81.65300% 0.309688 0.663371 0.567013
35% 1.7 84.021811% 0.337118 0.574744 0.506144
35% 1.6 79.049879% 0.256165 0.786532 0.629720

Table 4.3: Steady-State Inequality Sensitivities for a Medium Grade Ore

TfXV Pt (g/cm3) Recovery Qm(L/s) Qt(L/s) Q d  L/s)
34% 1.65 56.94704% 0.746751 0.462962 0.765537
36% 1.65 57.07971% 0.745272 0.463338 0.766128
35% 1.7 59.04627% 0.624436 0.441857 0.625172
35% 1.6 54.63166% 0.900421 0.482583 0.937228

Table 4.4: Steady-State Inequality Sensitivities for a Low Grade Ore

The opposite is true for changes to the tailings density, where bulk flow dominates. The 

above sensitivity study shows that the recovery, as well as the middlings, tailings and flood 

flow rates show sensitivity to changes in tailings density. Since bulk flow is the dominant 

movement of bitumen into this layer, any change will result in substantially more bitumen 

being withdrawn from the tailings.

Now that the steady state optima have been evaluated, focus is placed on determining the 

optimal input trajectories for steps in feed grade. Common transitions will be considered
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first.

4.3.2 Dynamic Optimization

Optimal trajectories for the grade transitions are discussed in the following sections. Four 

ore transitions are considered for dynamic optimization. They include two common and 

two extreme grade transitions. Optimal trajectories for these steps are determined while 

maximizing the integral of the recovery over time.

Preliminaries

Maximizing the recovery of bitumen over the transition time was found to give results that 

behaved in a highly irregular manner, and the optimizer was found to exploit the constant 

volume nature of the model. Figure 4.2 shows a typical set o f optimal input trajectories. 

The input trajectories are highly irregular, and not a good representation of how the process

E0

CO
Ij

a

i  2
c f 1

100 200 300 400 500
Time (s)

Figure 4.2: Optimal Input for PSV Model-Unrestricted

should be controlled. Also the model does not appear to reach a new steady state. For a 

better understanding of the underlying problem; Figure 4.3 shows the recovery and water 

mass fractions during the time interval. The recovery shows two distinct peaks where the
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Figure 4.3: Recovery and Water Mass Fraction Trajectories for Integral of Recovery 
Objective

recovery reaches approximately 800% during the first and 7000% during the latter. In 

general, recoveries larger than 100% were not expected; however, the constant volume 

balance around the vessel allows these increases to occur. Essentially it is possible to 

achieve recoveries greater than 100% by looking at the froth mass fractions. Bitumen is 

stored in the froth over time, which can be seen in Figure 4.3.2 as increases in the froth 

quality. Once enough bitumen was stored, the process was then hit with large amounts 

of flood to recover the stored bitumen. During this time more bitumen is leaving the 

vessel than entering and so a recovery greater than 100% results. The low sensitivity of the 

recovery to perturbations in the froth quality constraint from the previous section supports 

this conjecture. Storing the bitumen in the froth does not reduce recovery considerably, 

as during this time relative velocity terms dominate. Once enough bitumen was stored the 

bulk flow term was made to dominate.

The first peak represents a cycle in the optimal recovery that occurs around one time 

constant, where the water is increased to remove the stored bitumen. The second peak, 

which is much larger, is a result of the fixed time interval. Although at the end there is 

no constraint violation, extension of the time interval under final operating practices would 

result in violation of the froth quality constraint. Increasing the time horizon would only 

affect the number o f small peaks, followed by the final large peak at the end o f the interval.
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In attempting to eliminate the oscillatory nature of the problem, flow bounds and steady 

state constraints at the interval bounds were used; however, no method provided sufficient 

dampening. To remove the oscillatory nature as well as to ensure that the process eventually 

reach an optimal steady state, penalty functions were used in the objective function to 

penalize deviations from the froth quality as well as from the final steady state.

The new objective function takes the following form:

r t f  \  Q  j.
$ [x (t),z (i),u (i),t]  =  /   -j £ ~ dt +  «(t)(<ft [x(f),z(t), u(t),t] -  g0)2 (4.5)

J o  a j  Q f d

where /t(t) is a tuning parameter which can be adjusted to penalize deviations from the 

desired values and 4> is the set of relationships which are to be penalized. The variable £0 

is the desired value for the function <j> to equal.

Penalty functions were preferred over changing the inequalities to equalities, for ease 

of adapting the problem to the restricted form approach. The assumption that the 

optimum was located where the inequalities become equalities was expected to be valid as 

maximizing the total flow out of the froth and minimizing the total flow out o f the tailings 

should have been optimal, as the steady state solutions suggested.

The optimal trajectory problem using the reduced model and modified objective function 

takes the following form:

r t f  y - n b a f- Q f
max / J f d _ dt +  «(*)(<£ [x(f),z(t),u(t), t] -  £0)2

“ (*) J o  L j  s  Q f d

s.t.

f(i(t) , x(t), z(t), = 0 (4.6)

g (x (f),z (t),u (t),t) =  0 

h(x(f),z(t),u(t),t) <  0 

x(0) =  x0

where xG is the vector of initial conditions for the differential equations, and has dimension 

nx since the DAE is of index-1, and f  and g are the set of differential and algebraic 

equations, respectively, from the PSV model. The vector 4> contains the set of inequalities 

for both the tailings density and froth quality, as well as steady-state relationships.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 4.3 Case Studies 65

Equation 4.6 is the infinite dimensional form of the unrestricted trajectory optimization

forthePSV.

The penalty functions focused either on inequality, or steady-state concerns during 

different time intervals. Within approximately an interval of 2 time constants, focus was 

placed on operating close to the operating constraints. For the remaining time focus was 

put on driving the problem to steady state.

Extending equation 4.6 to restricted inputs gives the following infinite dimensional 

problem, where only steps will be considered.

Both unrestricted and restricted formulations, i.e. problems 4.6 and 4.7 are used to solve 

trajectory optimization problems for both common and extreme changes in feed ore.

High to Medium Ore

Using problem 4.6 the trajectories for a step from a high to medium grade ore were 

determined and are shown below in Figure 4.4. The mass fraction of water in the froth 

was found to have an irregular shape, but remained at the constrained value o f 35% by 

mass, with the exception of numerical noise. The presence of the froth quality constraint 

resulted in the decreasing bitumen mass fraction being replaced by an increasing solids

mi
a

S,t.

& (ik(t), x k(t), zk(t), uk(t), t k) =  0 

gk(xk(t) , zk( t) ,nk(t) , tk) — 0 

h (x (t) ,z (t) ,u (t) ,t)  <  0

u>j =  aOj +  a\ t  tk G Tj

uk =  u}"1 tk <£ Tj

x k - i  _  k 
X F  —  X I

(4 .7 )

x(0) =  x0

j  = l.:nh k = I. .ni st
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Figure 4.4: Optimal Trajectories: High to Medium Grade Ore Transition

content of exact magnitude. Only small disturbances in froth bitumen content were seen 

and were a result o f the increased fines in the feed, as well as the decrease in large/less 

dense bitumen particles.

The input trajectories generated were also first order in nature and through the use of the 

penalty objective 4.5 the oscillatory nature of the solution was completely removed. Both 

the middlings and flood water flow rates exhibited an initial jump from their steady-state 

values to account for the instantaneous change in the feed ore. The underflow rate changed 

slowly over time as the amount of solids reporting to the tailings changed.

The optimal recovery for this grade change is shown in Figure 4.5, with an initial
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recovery > 100%. The greater than 100% recovery was attributed to the same reason

130
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» 110

100 200 300 400 500
Time (s)

Figure 4.5: Optimal Recovery: High to Medium Grade Ore Transition

for oscillations that occured in the non-penalized problem. Initial conditions for a high 

quality ore were originally present within the vessel, and represented stored bitumen when 

compared to that operation under medium quality ore conditions. The instantaneous change 

in feed grade then produced a high recovery as this stored bitumen was recovered. Simply 

stated, the step down in the percentage of bitumen fed to the vessel resulted in increased 

recovery. Towards the end of the interval the recovery was found to approach that of the 

steady-state optimum found in section 4.3.1.

Sensitivity studies, like those performed in section 4.3.1, were then performed to 

evaluate the costs associated with the froth quality and tailings density constraints. 

Figure 4.6 shows the input and recovery trajectories for a step up and down of 

approximately 3% in the froth quality constraint. Both the input and recovery trajectories 

were found to be insensitive to changes in the froth quality, where only slight differences 

were seen. The insensitivity of the froth quality constraint was attributed to the bitumen 

flux across the froth/middlings interface being dominated by the large magnitude of the 

relative flow o f the bitumen particles. Table 4.5 shows the magnitudes of the average 

relative particle velocities as well as the bulk flow across the froth interface. For the 

froth/middlings the relative velocities of the particles was one/two orders of magnitude 

larger than the bulk flow. Only large changes in the bulk flow would be expected to increase 

recovery substantially.
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Figure 4.6: Froth Quality Sensitivity: High to Medium Grade Ore Transition

Froth/Middlings Middlings Tailings
Species Settling Velocity Species Velocity

<
%
vi

f

0.5743
1.1038
1.3895
0.0574

<
<
<  
v1w

0.5243
0.2012

n/a
0.8398

Table 4.5: Average Species Settling Velocities

Figure 4.7 shows the sensitivity of the recovery and inputs to approximately 3% changes 

in the tailings density constraint. There was significant sensitivity in the recovery for a 

3% decrease in the tailings density. This was expected, as flood water and underflow must 

be increased to pull more water into the tailings. The additional flux of water, shown 

in Table 4.5 was the same order of magnitude as the relative velocities of the particles. 

Increases in the bulk flow to the tailings causes significant changes on the amount of 

bitumen being dragged down. The opposite was true for perturbations to higher tailings 

densities.

The trajectories generated using problem 4.6 were smooth; however, tracking these 

trajectories manually would not be a simple task. The problem was then recast into the 

RIOT form of problem 4.7 and was solved using Direct Transcription. An additional 

five minutes before the step was given for preventative action by the operator (possible 

in practice).
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Figure 4.7: Tailings Density Sensitivity: High to Medium Grade Ore Transition

The following optimal input trajectories were found for input switching times o f 150 

and 100 seconds. The trajectories produced using the RIOT formulation produced state 

trajectories that had non-smooth properties. For many of the states a change in the inputs 

produced instantaneous change, causing the irregular curves.

Unlike in section 3.5, the input trajectories, which appeared to follow the unrestricted 

trajectories, differed in overall shape when compared to the unrestricted problem. The 

initial step in the middlings and flood water flow rates was removed and replaced with a 

more modest step. The differences in shape for this problem arose because of continuous 

operation at both the froth quality and tailings density constraints in the unrestricted form. 

The inability of the restricted input form to continuously react, resulted in a back off in 

input aggressiveness during operation. Figure 4.9 shows that only at certain instances in 

time were the operating constraints active. The small deviations from the tailings density 

and froth quality bounds, coupled with the sensitivity studies, suggested that the effects on 

the recovery were expected to be minimal.

The additional five minutes before the step in feed grade was introduced to provide 

the operator time to begin adjusting inputs prior to the step reaching the PSV. Only slight 

preventative actions in all the inputs were needed to achieve feasible operation, with no 

significant deviation from their respective optimal steady state values. Without the slight 

adjustments before the grade change, the RIOT formulation was found to be infeasible. The
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Figure 4.8: Restricted Input Optimal Trajectories: High to Medium Grade Ore Transitition

addition of time for the preventative action is possible when operators have prior knowledge 

of what ore grades are coming into the pipeline.

Integrals of the recovery for the unrestricted and restricted forms are tabulated in 

Table 4.6. For both restricted and unrestricted forms the integrals of the recovery were 

relatively the same. The restricted versions were found to provide a higher solution; 

however, the difference was insignificant. The insensitivity of the primary bitumen 

recovery to input restriction was believed to be a result of the insensitivity o f the froth 

quality constraint. Bulk flow of water to the froth was minimal and so the recovery was 

driven by density concerns in the middlings. The slight increase in the primary recovery
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Figure 4.9: Unrestricted/Restricted Inequality Comparison

Case Froth
Unrestricted

100s
150s

88.1%
88.2%
88.2%

Table 4.6: Restricted and Unrestricted Optimal Objectives: High to Medium Grade Ore 
Transition

for the restricted case was a result of increased middlings density. For the unrestricted 

problem the penalty functions were found to over-power this effect, as it results in only 

slight increases in recovery. The changes in middlings density are suspected of partly 

adding to the oscillation in the non-penalized problem.

Restricting the inputs in this case was found to be slightly beneficial, but the differences 

were insignificant.

Input restriction for this grade transition has shown that operator intervention alone will 

provide sufficient recovery. Adjustments are made only to maintain the desired froth quality 

and tailings density.

Medium to Low Ore

A step from a medium grade ore to a low grade ore was considered, using the formulation 

of problem 4.6. The optimal trajectories are presented in Figure 4.10. The trajectories 

generated are similar to those produced for the previous case. The water concentration in
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Figure 4.10: Optimal Trajectories: Medium to Low Grade Ore Transition

the froth was found to show first-order dynamics; however, the value was at the constrained 

value of 0.35, and was an artifact of the computation. The optimal input trajectories 

generated here initially required steps in the middlings and flood water flow rates, after 

which they follow monotonic trajectories. The tailings withdrawal did not require an initial 

step and monotonically decreased to its optimal steady state value for a low grade ore.

The optimal recovery for the step from medium to low grade ore is shown in Figure 4.11. 

Initially a recovery of greater then 100% occurs and is attributed to the process initial steady 

state starting at a higher grade ore. Like the input trajectories the recovery follows a similar 

monotonic trajectory, until reaching its optimal steady-state value for a low grade ore.
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Figure 4.11: Optimal Recovery: Medium to Low Grade Ore Transition

Sensitivity of the inequality constraint values for the froth quality and tailings density 

were then examined using approximately a 3% perturbation in their nominal values. 

Figure 4.12 shows the results for the perturbations in the froth quality constraint. The
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Figure 4.12: Froth Quality Sensitivity: Medium to Low Grade Ore Transition

results are similar to those found for the previous step from a high to medium grade ore. 

Again the insensitivity of the recovery and input trajectories to changes in the froth quality 

is attributed to large differences in the relative velocities o f the particles compared to the 

bulk flow.

The effect of the tailings density on the recovery and input trajectories is shown in 

Figure 4.13. The tailings density, like in the previous study, shows greater sensitivity to
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Figure 4.13: Tailings Density Sensitivity: Medium to Low Grade Ore Transition

both the input and recovery trajectories. The bulk flow into the tailings layer was found 

to be similar in magnitude to that of the relative velocities of the bitumen particles. The 

shape of the perturbed trajectories were found to be almost identical for both the inputs and 

recovery, with generally a shift up or down. For a tailings density of 1.6g/cm3, tailings and 

flood water were both increased to accommodate the change. There was an unexpected 

reduction in the middlings withdrawal required for a lower density in the tailings, but can 

be attributed to the increase in the removal of material from the underflow.

The problem was then recast in RIOT form and the following trajectories for 1ST of 

100s and 150s were generated. The restricted and unrestricted trajectories are compared in 

Figure 4.14. Only slight modifications to the inputs were necessary to satisfy the inequality 

constraints in the 300 seconds prior to the grade change. Input restriction removed the large 

initial steps present in the unrestricted case, at the grade transition time. The inputs showed 

reduced aggressiveness in the control, and followed gradually changing trajectories.

The restricted and unrestricted integral of the recovery during the grade transition are 

tabulated in Table 4.7. For the transition from a medium to low grade ore there was no 

difference between the recoveries for the unrestricted and restricted inputs. Again the large 

differences in magnitudes of the bitumen relative velocities and the bulk flow into the froth 

result in the insensitivity of the process to input restriction.

The lack of difference between the restricted and unrestricted forms suggests that the
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Figure 4.14: Restricted Input Optimal Trajectories: Medium to Low Grade Ore Transition

for this grade transition the adoption of a restricted input form is no better or worse then 

using a controller which can track the unrestricted trajectories. For this case only operator 

intervention is necessary to maintain the process within operating constraints.

4.3.3 Extreme Transitions

Two grade transitions found to be problematic in practice are considered. First a step from 

a high to low grade ore was considered, followed by a step from low to high grade ore. 

Sensitivity studies on the inequality constraints were considered, followed by the solution 

of the RIOT problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 4.3 Case Studies 76

Case Froth
Unrestricted

100s
150s

74.0%
74.0%
74.0%

Table 4.7: Restricted and Unrestricted Optimal Objectives: Medium to Low Grade 
Transition

High to Low Ore

The optimal trajectories for a high to low grade ore are shown in Figure 4.15. The input 

trajectories of Figure 4.3.3 are similar to those generated in the previous studies. Initial 

steps in both the middlings withdrawal and the flood water occur, after which each input 

approaches the optimal steady state values, monotonically. Froth quality is maintained 

at the constrained value of 0.35, and the tailings density also remained at its constrained 

bound throughout. The spike in froth quality is a result of the changing penalty functions at 

300 seconds; however, the jump is insignificant. The optimal recovery during the interval 

is depicted in Figure 4.16. Greater than 100% recovery was found to occur initially, as 

was seen in the previous case studies, for this grade transition. As before, the high initial 

recovery is attributed to the initial operating conditions from a higher grade ore.

Sensitivity of the froth quality and tailings density constraints were performed with 

approximately a 3% increase and decrease in each of the constraints bounds. Examining 

the effects of froth quality, Figure 4.17 shows the recovery and input trajectories. As 

before, both the recovery and input trajectories are insensitive to changes in the froth quality 

constraint. There is essentially no visible difference for this grade transition, and again the 

bulk flow is found to be in the range of one to two orders of magnitude smaller than that 

o f the bitumen particle relative velocities. The insensitive nature of the froth quality was 

believed to be a result of this difference.

The sensitivity of the recovery and input trajectories for changes in the tailings density 

is shown in Figure 4.18. The recovery and the input trajectories were found to be sensitive 

to changes in the tailings density constraint. The sensitivity of the middlings and flood 

water to changes in tailings density is much greater than the tailings withdrawal. The large 

change in the flood flow rate and middlings withdrawal rates suggests that increased load
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Figure 4.15: Optimal Trajectories: High to Low Grade Ore Transition

will be placed on secondary recovery. The feed entering the vessel is high in fines and 

smaller bitumen particles, which have much lower relative velocity than coarse sands and 

large bitumen particles prominent in the original high grade ore.

Figure 4.3.3 shows that there is a relatively low sensitivity to the recovery for a period 

of 75-100 seconds after the grade transition. As the process approaches steady-state the 

effects of the change in tailings density are more profound.

The sensitivity of the recovery to perturbations in the tailings density was a result of 

the similarities between the magnitudes of the relative velocities of the bitumen particles 

and the bulk flow of fluid into the tailings. Increases in tailings density will require less
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Figure 4.17: Froth Quality Sensitivity: High to Low Grade Ore Transition

water reporting to the tailings, decreasing the bulk flow, and thereby decreasing the flux of 

bitumen.

The problem is then recast into RIOT form and solved using Direct Transcription. The 

resulting state and input trajectories are shown in Figure 4.19. Only slight modifications to 

the inputs are necessary to satisfy the inequality constraints in the 300 seconds prior to the 

grade change. Input restriction removes the large initial steps present in the unrestricted 

case, at the grade transition time. The inputs show a back off in aggressiveness of the 

control, and follow gradually changing trajectories.

The restricted and unrestricted overall recoveries during the grade transition are tabulated
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Figure 4.18; Tailings Density Sensitivity: High to Low Grade Ore Transition 

in Table 4.8. For a low to high grade ore again the insensitivity of adapting the problem

Case Froth
Unrestricted

150s
100s

81.2%
81.6%
81.6%

Table 4.8; Restricted and Unrestricted Optimal Objective; High to Low Grade Transition

to a restricted form again holds. Only minor differences in the integral of recovery are 

observed. The insensitivity of the froth quality, combined with the relative insensitivity of 

the tailings density constraint close to the transition, may lead to this result.

For a grade transition from a low to medium grade ore, the use of operator intervention 

alone is found to be adequate. The comparison between restricted and unrestricted results 

provides no push to adapt a more sophisticated control scheme.

Low to High Ore

The final case study will look into the transition from a low to high grade ore. The problem 

is first cast into the unrestricted form o f problem 4.6 and solved using Direct Transcription. 

The optimal trajectories for the states and inputs are provided in Figure 4.20. The optimal 

input trajectories are similar in shape to all previous case studies, where initial steps are 

necessary in the flood water and middlings withdrawal. All flow rates then approach their
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Figure 4.19: Restricted Input Optimal Trajectories: High to Low Grade Ore Transition

optimal steady-state values for the high grade ore. Discontinuities in Figure 4.20 are a 

result of middlings withdrawal being identically zero. The mass fraction of water in the 

froth is seen to remain around its constrained value of 0.35, with numerical noise. A slight 

spike in froth quality results near changes in the penalty functions; however, the change is 

an artifact of the computation.

The optimal recovery during the interval for a step from low to high grade ore is shown 

in Figure 4.21. Since the grade change starts from a low grade ore to a higher grade ore 

there are no recoveries greater than 100%. The initial recovery is lower than that for a low 

grade ore at steady state. The vessel is initially at steady-state conditions for a low grade
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Figure 4.20: Optimal Trajectories: Low to High Grade Ore Tranisition

ore, when the instantaneous change in the ore grade occurs. The high quality feed pumps 

more bitumen in than is initially being recovered from the froth, resulting in the appearance 

of poor recovery. As the process reaches steady-state, the recovery is found to level out at 

the optimal value for the high grade ore.

Sensitivity studies were then done to evaluate the effects of changing both the froth 

quality and tailings density constraints on the vessel. Both the froth quality and tailings 

density were allowed to step up and down approximately 3% in their nominal values.

Figure 4.22 shows the responses of the recovery and input trajectories for changes in the 

froth quality levels. The froth quality constraint when varied was found, like in all previous
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Figure 4.22: Froth Quality Sensitivity: Low to High Grade Ore Transition

case studies, to have an insignificant effect on the recovery and input trajectories. Again 

the insensitivity is attributed to the one to two orders of magnitude difference between the 

bitumen particle relative settling velocities and the bulk flow to the froth.

The optimal recovery and input trajectories, as in the previous studies were found to be 

sensitive to perturbations in the tailings density constraint. Figure 4.23 shows the effects 

of these perturbations. Unlike in the previous case study where there was high sensitivity 

in the flood and middlings flow rates, the input trajectories show decreased sensitivity. The 

middlings flow rate trajectory shows only slight deviations from the nominal trajectory, 

which is a result of the reduction of fines fed to the vessel. Additionally, the insensitivity
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Figure 4.23: Tailings Density Sensitivity: Low to High Grade Ore Transition

of the steady-state middlings withdrawal rate for a high grade ore results in all middlings 

trajectories approaching zero.

The same reduction in sensitivity in the flood water flow rate is seen; however, it is not 

as dramatic as that seen in the middlings flow rate. The reduction in fines also leads to 

a decrease in the amount of flood water necessary to meet the tailings constraint. Water 

however, must still be added to account for the increase in coarse fines reporting to the 

tailings to maintain the tailings density constraint.

The recovery shows increased sensitivity only after approximately 1 time constant. The 

insensitivity after the grade change is suspected to occur after the time constant of the 

vessel. Only after sufficient time has passed will substantial changes in flux to the froth 

occur.

The optimal trajectory problem was then recast into the RIOT form, of problem 4.7, and 

was solved for 1ST of 100s and 150s. The resultant trajectories of the states and inputs 

are shown in Figure 4.24. The addition of step functions removes the smooth nature of the 

curves found in the unrestricted form. During the initial 300s of preventive action there is 

a slight shift in the flood water flow rate, to allow for a reduction in the mass fraction of 

water in the froth. The preventative action is necessary for a step from a low to high grade 

ore, as the shift to reduce the middlings withdrawal forces more water into the froth, while 

minimizing the flux into the tailings.
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Figure 4.24: Restricted Input Optimal Trajectories: Low to High Grade Ore Transition

The objective for each of the unrestricted and restricted cases are listed in Table 4.9. The 

objective values are found to have a slight advantage to the unrestricted form; however, the 

difference is still negligible. Again for this grade change, the slight change in the objective 

is a fact of the process being insensitive to changes in the bulk flow. Manipulation of 

the inputs is found to have little effect on bitumen reporting to the froth. The use o f input 

restriction for grade transitions from a low to high grade ore is found to be practical, with no 

need to adopt a sophisticated control structure to track the unrestricted optimal trajectories.
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Case Froth
Unrestricted

100s
150s

80.58%
79.65%
80.19%

Table 4.9: Restricted and Unrestricted Optimal Objectives: Low to High Grade Transition

4.4 Chapter Summary

A great deal of similarity was found between each of the case studies performed above. 

Firstly, all case studies were found to be oscillatory when the integral of the recovery was 

used as the objective function. Additional penalty constraints were necessary to force the 

inputs to follow realistic trajectories, as well as eventually settle towards an optimal steady- 

state.

The unrestricted optimal trajectories were found to be insensitive to changes in the froth 

quality constraint, as relative particle velocities for the bitumen particles were found to 

be on the order of one to two magnitudes in difference. The tailings density constraint 

was found to have a greater impact on the recovery and input trajectories; however, the 

sensitivity was found to occur approximately 1 time constant after the grade transition.

In all cases the restriction of inputs to step functions was performed and the results for all 

grade transitions suggested that there is no difference in recoveries between the restricted 

and unrestricted approaches. The lack of sensitivity towards the effects of bitumen flux 

to the froth with regards to the inputs confirms this result, as the bitumen reporting to the 

froth remains approximately constant for both restricted and unrestricted inputs. For some 

grade transitions the restricted form was found to show slight improvements in recovery, 

which was attributed to higher densities in the middlings. This higher density had the 

benefit o f increasing the flux to the froth; however these effects were slight and so were 

removed by the penalty objective functions of the unrestricted case. The aforementioned 

density effects were also expected to add to the oscillation in the original non-penalized, 

unrestricted optimal trajectory cases.

For all grade transitions considered, input restriction was found to be insignificantly 

different from the unrestricted problem. Input restriction also had the benefit of reducing 

the aggressiveness o f the control. In all cases the use of restricted inputs was found to be
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acceptable and the addition of controllers, capable of tracking the unrestricted trajectories, 

was deemed not necessary. As well, large number of steps during a grade transition were 

found to produce minimal changes in recovery.

The proposed dynamic model for an oilsand gravity separation vessel could still be 

improved upon. The approximation of a particle size distribution for bitumen particles, 

which is broad in practice, was necessary to keep the problem to a reasonable size, such 

that timely solutions to the dynamic optimization problems were possible. The addition of 

more particles to the distribution may improve accuracy; however, each additional particle 

adds more equations, and increases the computational load.

The effects of using a steady state hindered settling relationship to describe a dynamic 

system will affect the range of applicability of the solution; however, further study 

must be done to evaluate this. Additionally, not considering the solution chemistry, and 

mixing issues removes certain degrees of freedom from the problem which may provide 

further differences in the objective of the process. Middlings density/viscosity was not 

considered in this model, where the increases in middlings viscosity above a certain limit 

can be detrimental to the process. The introduction of a middlings viscosity constraint 

may provide changes in the recovery; however, due to a lack of a good mathematical 

relationship, viscosity was not considered in this investigation.
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Recommendations and Conclusions

5.1 Conclusions

In this work, existing dynamic models for gravity separation of bitumen from an oilsand 

slurry were taken from literature; and optimal input trajectories were determined using 

existing dynamic optimization theory. Additionally, the method of restricted inputs was 

proposed, where optimal trajectories were limited to step and ramp functions. This 

approach was applied to numerous grade transition case studies for the primary separation 

vessel (PSV). The conclusions are broken up into two sections: 1) input restriction and 2) 

PSV trajectory optimization.

5.1.1 Restricted Inputs

The method of restricted inputs was found to reduce the solution time of trajectory 

optimization problems, when a small number of step and ramp functions were used. The 

shortening in solution times was attributed to the reduction in the degrees of freedom 

associated with the problem. However, as the number of step and ramp functions 

are increased, the solution time was found to become greater than that of the original 

unrestricted problem. The increase in solution time is a combination of both increased
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degrees of freedom, as well as the addition of more equality constraints. In all the case 

studies considered, the restricted input approach was found to generate input trajectories 

that were less aggressive. Large steps that occur in the unrestricted case studies were 

removed, and the overall range of values for the inputs decreased.

In general, input restriction was found to have losses in performance when compared 

to the unrestricted solutions. The sensitivity of the performance loss, with respect to input 

restriction, was found to vary depending on the problem and the number of steps and ramps 

used. The difference between the unrestricted and restricted objectives was found to be 

a useful control benefits evaluation tool. The large difference between unrestricted and 

restricted objectives provides incentives towards adopting more sophisticated controllers, 

which can track the unrestricted input trajectories.

5.1.2 Prim ary Separation Vessel Trajectory Optimization

The model for the primary separation vessel of an oilsands process was taken from 

literature. Additional changes were necessary to remove linear dependence from the 

modelling equations, for dynamic optimization.

Trajectory optimization of the Syncrude PSV provided similar results for all grade 

transitions considered. Initial trajectory optimizations of the PSV dynamic model were 

found to be oscillatory in nature and penalty terms in the objective function were necessary 

to dampen the input trajectories.

Two types of penalty functions were necessary: 1) those which dampen out the 

oscillation due to storage of bitumen in the froth and increased middlings density, and 

2) those which bring the overall process to steady-state.

The first type o f penalty function assumed that the process operated at the froth quality 

and tailings density constraints, which were the dominating phenomena during steady- 

state. The second set of penalty functions were designed to bring the process to the optimal 

steady-state operating conditions of the transitional ore. Initially, large penalization was 

placed on the removing the oscillation. After a period of approximately two time constants, 

emphasis was then placed on achieving steady-state. In all cases the switch between the 

two different penalty regimes was nearly smooth.
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The resultant optimal state and input trajectories generated using the penalty objective 

function were found to be smooth, moving towards a new steady state. State and input 

trajectories were found to be insensitive to the froth quality constraint; whereas greater 

sensitivity was seen for the tailings density constraint. The insensitivity exhibited by 

the froth quality constraint was a result of the large difference between the relative 

bitumen particle velocities and bulk flow terms across the froth/middlings interface. The 

insensitivity is one of the contributors to the aforementioned oscillations in the input 

trajectories. The recovery was found to be sensitive to changes in the tailings density. This 

is a result of the similar magnitudes between the relative particle settling velocities and the 

bulk flow terms. Generally, the sensitivity in tailings density was insignificant, right after a 

grade change.

Comparison of the unrestricted and restricted optimal trajectory problems for all of the 

grade transitions were found to produce the same result. The recovery was insensitive to 

the restriction of the inputs. In some cases input restriction was found to cause slight, 

however insignificant increases in the objective. These slight increases were attributed 

to increased middlings density during the transition. These effects were removed by the 

penalty objective function in the unrestricted cases, and are suspected of adding to the 

oscillatory nature of the problem. The insignificant differences between the restricted and 

unrestricted solutions, shows that there is little incentive in adopting some sort of closed 

loop control strategy.

5.2 Recommendations

Further evaluation of the model, as well as improving parameters estimates, is necessary 

to improve the confidence in the physical and empirical parameters. Many o f the output 

trajectories showed no significant transients within the range of experimental error. The 

development of more transient experiments, with some form of persistent excitation, would 

help to better fit the model to the actual process. As well, the experimental data was 

taken with recycle from secondary flotation recycle, not included in the PSV model. 

Further experimental studies without recycle from secondary separation may provide better 

correlation between the model and data.
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A look into different model formulations may be beneficial. While the removal of the 

interface for the EXP2000 was a fairly safe assumption, this may not be true for a full size 

oilsands gravity separation vessel. Further studies may be required to evaluate the validity 

of the assumption of a static interface between the froth and middlings layers.

The development of viscosity relationships for mixtures of bitumen, water and sand 

would allow for additional constraints to protect against vessel gelling or other upset 

conditions. Furthermore, the use of the actual middlings viscosity, as opposed to that of 

water, in determining the settling velocities o f the particles is expected to give a more 

accurate result.

Additional studies into determining an appropriate set of particles, which would 

produce an accurate representation of the bitumen particle size distribution, would be 

beneficial. The effects of chemistry and mixing on the particle size distribution within the 

hydrodynamic pipeline, and the characterization of this relationship between the particle 

size distribution and ore grade will increase overall understanding of the process. A well 

characterized feed ore will help the operator to understand exactly what type of ore is 

approaching, and what corrective action will be necessary.

Actual implementation of these optimal trajectories requires that the PSV operators have 

advanced knowledge of the ore coming from the mine. The need for online data for fines 

and grade of the ore within the pipeline, combined with a reliable empirical relationship 

for the particle size distribution, are the main inputs necessary before actual determination 

and implementation of these optimal trajectories can be accomplished.

In the studies conducted, five minutes were given for preventative action; however, 

additional studies may be performed to determine the smallest amount of time required. 

Operation guidelines may then be developed, through the use o f studies like those transition 

studies in Chapter 4.

Expansion of the model to include secondary separation, as well as the centrifuges 

and inclined plate settlers, could provide a understanding of how the PSV and secondary 

recovery should be operated to minimize the load placed on the downstream separation 

of water and solids. The insensitivity of the froth quality found in the studies performed, 

suggests that including the centrifuges and inclined plate settlers into the solution process
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will find different operating conditions for the PSV. Currently the constitutive relationships 

are not well know for these units. Either well-identified phenomenological or empirical 

models employing black box system identification approaches is required before any 

overall cost optimization could be done.

Work is still required before well informed control interventions can be used to control 

an oilsand gravity separation vessel. This thesis provides the framework for determining 

optimal input trajectories for different ore grade transitions. The open-loop control 

practices associated with the these vessels made it desirable to limit these optimal input 

trajectories to easily implementable sets of step and ramp functions. This work further 

suggests that sufficient control of this vessel can be done manually, while still maximizing 

the amount of bitumen recovered from the PSV. The eventual result of these studies, 

combined with the recommendations above, is a set of operating guidelines for operations 

personnel.
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PSV Physical Parameters and Parameter 
Estimation

The following appendix defines the physical parameters associated with the PSV model 

defined in Chapters 2 and 4. The physical parameters here are fit to those for the EXP2000 

pilot plant located at Syncmde Research centre. This appendix also outlines a method for 

parameter identification for dynamic models, and uses this method to determine certain 

physical, as well as empirical parameters.

A.l Physical Parameters

Those physical parameters which are not included in the parameter estimation problem are 

tabulated in Tables A. 1 and A.2

All remaining parameters were determined using the parameter estimation problem in 

the next section.
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Parameter Magnitude Units Comments
A 0.085 n/a Normalized Area
vf 0.1998 n/a Normalized Volume of Froth
vm 0.6445 n/a Normalized Volume of Middlings
Vt 0.1557 n/a Normalized Volume of Tailings

T 7

V vessel 1 n/a Normalized Volume o f PSV
9 980.6 c m /s 2 Gravitation Constant

Ps 2.650 g j  cm? Density of Solid
Pw 0.9718 g/crn:3 Density of Water
V 0.00325 g j c m s Viscosity of Water

Table A. 1: Physical Parameters

Parameter Magnitude Comments
71
72

@ sphere 

@platelet 

? sphere 

flplatelet

0.6
1.6

0.942
2.43
3.03
5.7

Hindering Factor 1 [28] 
Hindering Factor 2 [28] 
Spherical Settling Factor 
Platelet Settling Factor 

Spherical Settling Factor 
Platelet Settling Factor

Table A.2: Settling Factors

A.2 Parameter Estimation

First the parameter identification of dynamic systems is introduced, using Direct 

Transcription to solve the dynamic optimization problem, with the objective of minimizing 

the residuals. The method is then applied to EXP2000 transient experimental data, and the 

results are discussed.

A.2.1 Parameter Estimation of Dynamic Systems

The method of optimal experimental design and parameter identification has received 

attention in recent literature. A sequential process of optimal experimental design and 

parameter identification is used to achieve the desired parameters to some statistical degree 

of significance. For the current work, the data for analysis has been collected and so 

experimental design will be neglected in this case. The reader is referred to the following 

work ([8], [7], [3]) for optimal experimental design.

The method of parameter optimization for dynamical systems can be taken from any of
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the above references; however, the method presented by Betts [44] is discussed. Chapter 3 

reviews dynamic optimization and Direct Transcription.

The optimal parameter optimization problem can be stated as follows:

■ 1 Tmm - r  r
p  2

s.t.

f(x(t),x(t),z(f),u(f),p,t) =  0 

g(x(f),z(f),u(t),p,f) =  0

h(x(t),z(f),u(t),p,t) < 0 (A.l)

x(t)L < x(f) < x(t)u 

z(t)L < z ( f )  < z (t)u 

u (t)L <  u (t) < u ( t f  

PL <  p < pu

Where r represents the residuals, which can be stated as:

rk =  Wij [xi(6i:j) -  Xij} (A.2)

rk IXij (A.3)

rk =  Wij [ui(%) -  Uij] (A.4)

where i represents the calculated state, or input variable of interest, at time 6 -̂, where x, z, 

and u represent the measured value. The constants w are added weights.

The above problem is then discretized and Direct Transcription is used to give an 

underlying optimization problem (Ch. 3.3.2). Additional considerations must be taken 

into account to calculate the states and inputs at times 9 j ,  which are not necessarily the 

same as the mesh points from discretization. To account for differences in the values of the 

states and inputs, interpolating polynomials are used. SOCS uses a Hermite interpolating 

polynomials for the dynamic variables.

x i(@d) ~  (^—<iS2+283)xijk+(352—28s)xi_k+i+(hj5—2hj52+hj5s) f i !k+ (—hjS2+hj8:i) f i tk+i

(A.5)
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Where i represents the index o f the desired state, j the data evaluation time and k the relevant 

discretization point given by tk < 9j <  tk+i, where hk — tk+1 — tk is the length of the 

discretization interval and S = (Oij — ffc)/hk, which describes the location of the data point.

For non-dynamic variables u and z, the method of interpolation used depends on the 

numerical method used to approximate the derivative and integral terms. For higher order 

methods, the increased number of function evaluations during a discretization interval can 

be used for interpolation. SOCS uses a quadratic interpolant when the Hermite-Simpson 

method is used, and linear interpolation when using the trapezoidal method.

The above method can then be solved using the correct algebraic optimizer. 

Discretization and numerical approximation errors are still evaluated and mesh refinements 

and order manipulation is done as required.

A.2.2 PSV Parameter Identification

There are a number of time independent parameters, both physical and empirical, which 

must be fit to the process. The parameter optimization problem follows that presented 

above, where phases [44] are introduced to reproduce the experimental design of the
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transient data. The problem can be stated as follows:

■ 1 Xm m - r krk 
p k I

s.t.

ffe (x'fc (t),xk(t),zk(t),uk(t),pk, tk) = 0

gfc(xfc(t), zfc(t), ufc(t), pfe, tfe) =  0

hfc(xfc(t ) ,zfc(t ) ,Ufc(t),pfe, ^ )  <  0 (A.6)

¥>i(xi,ZiX,p{,t{) =  0

0 f- l (xf_l, zf_l, uf_i, pf_!, ff_j) =  0 j(x j, zj, uj, pj, )

Xfe(t)L <  Xfe(t) <  X/^t)17

ZfcW£ <  Zfc(t) <  zk(t)u

uk(t)L < Ufc(t) <  u fe(t)t/

Pfe <  Pfc <  Pfe

k=l,..,3, j=2,3

where 3 intervals (fc) are used to capture the experimental design of a step up and down in 

the feed ore. In the first interval a regular ore is used, followed by a step to a lower grade 

ore in the second interval and then a step back to the regular ore in the last interval. Here 

(p is used to constrain derivatives to zero during the initial interval, and 0  is used to ensure 

state continuity at the phase bounds.

Additional algebraic relationships were also added to convert the volume fractions 

to mass fractions. The concentrations from the EXP 2000 transient tests were then 

approximated using the model. The parameters and their optimal values are shown below 

in Table A.3. Figure A .l shows the composition trajectories of the model using the above 

parameters.

The Figure A .l show that the model does not fit the experimental data with great 

confidence. Many of the concentrations of the species show no movement after the step 

down in feed ore. Two main problems are associated with using this data for parameter 

identification purposes; 1) there is insufficient excitation o f the disturbance for evaluation 

of the parameters; and 2) the experimental design used here included a recycle loop from
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Parameter Magnitude units Comments
Ab 0.327355 Bitumen Middlings Withdrawal Factor [28]
\ s 1.25704 Solid Middlings Withdrawal Factor [28]

0.492595 Bitumen Froth/Middlings Settling Factor
0.300630 Bitumen Middlings/Tailings Settling Factor

0.0 Solids Froth/Middlings Settling Factor
0.0, 0.0, 1.0 Solids Middlings/Tailings Settling Factor

pb 0.8, 0.75, 0.7 g j  cm? Density of Aerated Bitumen
db 0.028, 0.058, 0.07 m m Diameter of Bitumen Bubbles
ds 7.8, 13.1124, 125.0 /,im Diameter of Solid Particles

Qrn 0.3685 dm?/s Middlings Withdrawal Rate
Qt 0.42275 dm? j  s Tailings Withdrawal Rate

V  ■v m ix 415.035 dm? Effective Tumbler and Mixing Tank Volume

Table A.3: Estimated Parameters

the secondary flotation unit. The use o f a single step does not provide enough insight into 

the actual process, especially for parameter identification purposes. The magnitude o f the 

step in feed ore was found to be insufficient as many of the outputs which were expected 

to vary were found to remain constant. The measurement errors associated with recovery 

and composition are large in nature, approximately 5% of the measured value. A sufficient 

step in feed ore should be used to overcome this problem. Those variables that did show 

transient behaviour also did so in an unexpected fashion. The sluggishness of the data also 

suggests that the recycle also effectively increases the time constant o f the process, and the 

use of only primary recovery is expected to give better results.

In the future for parameter identification for this model it is recommended that 

sufficient excitation of substantial magnitude be used for disturbance trajectories. For the 

experimental design, either the model must be updated to include secondary flotation, or 

secondary flotation be turned off. Improved sampling and analysis techniques should be 

considered to reduce measurement errors as much as possible.

Some results can still be drawn from the above analysis, the effective volume of the 

mixer and tumbler found here provides a useful result and will be used. Also there is a 

definite trend for fines to be described using an entrainment model alone, which has become 

commonly accepted [33]. The above results show that it may be necessary to include 

entrainment factors for the fines trapped in bitumen to more accurately describes solids
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Figure A .l: Parameter Identification Trajectory Comparison

in the froth. The parameters identified above will be used as they provide a reasonable 

reflection o f normal operating compositions.
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'ini
PSV Optimization and Simulation Model 

Comparison

As stated in Chapter 4 the presence of linear dependence and variables with zero range was 

found to cause the Jacobian to be singular, or ill-conditioned. This appendix examines the 

effect of the assumptions made to formulate the PSV modelling equations in a form usable 

for optimization. The assumptions are first restated.

The material balances for water were removed in all layers, where the appearance of 

these variables in the bulk flow equations 2.20 and 2.21 are replaced with the expression:

np

(x w i   ̂ot j
i=i

where i is either the froth, middlings or tailings layers.

The use o f the Wallis shockwave equation was found to introduce linear dependency in 

the modelling equations.

3  __  \ ~ ' ' 3Zj=1a%vZ~Zj =1 %%v = ............ ..^ u, v, (B.l)
E ,3.!

At steady-state, the equation is equivalent to the sum of the bitumen material balances in 

the froth layer. This equation, and the equations describing the dynamic interface between

104
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the froth/middlings layer were removed. The removal of the dynamic nature of the froth 

middlings interface removed many of the discontinuities discussed in the chapter 2.

Lastly, certain variables were generally found to have zero range in the original model. 

The largest less dense bitumen particles were not found to report to the tailings layer; 

similarly the largest and heaviest solid particles were not found to report to the froth. 

For this reason, the variables were zero throughout the entire solution, resulting in ill- 

conditioning of the Jacobian. Equations and terms in the layer material balances, as well 

as the relevant constitutive relationships, were removed, as discussed in Chapter 4.

Numerical integrations of the two different models were conducted to determine the 

effects of the optimization assumptions. Two studies were conducted, including both 

extreme conditions from a low to high grade ore and from a high to low grade ore. The 

extreme grade transitions were chosen as these two exhibit the largest difference between 

solutions.

Inputs were held constant at their respective steady-state values for the disturbance ore. 

From here on the model developed in Chapter 2 and the model developed for optimization 

will be referred to as the original and reduced models, respectively.

Figure B.l shows the state trajectories for both the original and reduced PSV models, for 

a step from a high to low grade ore. The only visible differences between the two models 

occurs in the froth layer mass fractions; however, the difference is quite small. There is no 

deviation between initial and final steady-state values for all layers.

The differences in the froth mass fractions during the transition between steady-states is 

possibly the result o f the change in the froth volume, which affects the time constant of this 

layer. Another possible explanation is the two-way flow of materials across the froth layer, 

not modelled in the reduced model.

The removal of both the water material balances, and variables with zero range were not 

found to have any effect on the solution. In these cases, the equations provided no new 

information in the model.

The transition from a low to high grade ore is considered next, where the input values 

are held at the steady-state optimum for a high grade ore. Figure B.2 shows the state 

trajectories. The lack of middlings compositions is a result of Qm = 0.
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Figure B .l: Comparison of Optimization and Reduced PSV Models: High to Low Grade 
Transition

In this case the froth and tailings compositions show no significant difference. The 

results of this section support the conjecture that it is not the change in the time constants 

in each layer, due to volume change, that causes the deviation in the previous case, but the 

two-way mixing between froth/middlings layer in the original model.

The reduced model shows only slight differences when compared to the original model 

of Chapter 2. From a simulation standpoint, the removal of the dynamic froth/middlings 

interface, the water material balances and the variables with zero range do not appear 

to affect the state variables of the model and solution to the optimization case studies in 

Chapter 4.
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Figure B.2: Comparison o f Optimization and Reduced PSV Models: Low to High Grade 
Transition
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Ore Recipes and Particle Size Distributions

This appendix lists the mass fractions of bitumen, water and solids for the ore grades used 

in the case studies. The particle size distributions were then determined using the method 

outline in Forbes [28].

Species Mass Fraction
Total Bitumen 

Small 
Medium 

Large 
Total Sands 

Clay/Fines/Silts 
Coarse Fines 
Coarse Sands 

Water

15%
0 

0.06 
0.09 

0.81 (0.15 fines) 
0.081 
0.0405 
0.6885 

0.04

Table C .l: High Grade Ore
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Species Mass Fraction
Total Bitumen 

Small 
Medium 

Large 
Total Sands 

Clay/Fines/Silts 
Coarse Fines 
Coarse Sands 

Water

12%
0.021 
0.048 
0.051 

0.84 (0.25 fines) 
0.168 
0.042 
0.63 
0.04

Table C.2: Medium Grade Ore

Species Mass Fraction
Total Bitumen 

Small 
Medium 

Large 
Total Sands 

Clay/Fines/Silts 
Coarse Fines 
Coarse Sands 

Water

9% 
0.03825 

0.036 
0.01575 

0.87 (0.35 fines) 
0.261 

0.0435 
0.5655 

0.04

Table C.3: Low Grade Ore
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