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Abstract

After decades of research, gestural interfaces are becoming increasingly commonplace in our
interactions with modern devices They promise natural and efficient interaction, but suffer from

a lack of affordances and thus ragjre learning on the part of the user.

This thesis examines the declarative and procedural components lgiarning gestural interaction,
and how designers can best support gesture learning within their interfaced~irst, we show that
user-defined gestures ae not always consistent, even when the same user is defining a gesture
for the same taskindicating that even when the user is able to select their own gesturesome
amount of gesture learningstill may be necessaryNext, we present two studies that hed us
better understand the role of visual feedbackfinding that it has a dramatic effect on the degree to
which gestures are learned Next we examine the procedural component of gesture learningy
varying the scale,location, and animation ofvisual feedback presented during training. We also
show that evaluation using a retention and transfer paradigm is more appropriatéor evaluating
gestures thanthe other methodologies used peviously. Lastly, we present YouMove, a fdtlody
gesture training system that incorporates the lessonslearned from the present work on stroke-

based gestures.
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Chapter 1

Introduction

Mobile devices and interactive surfaceare the primary driver of recent developments in gestural
interfaces. Mobile phones have become ubiquitous, with approximately six billion mobile phones
in use worldwide, one billion of which are smart phonegKafka, 2012). These devices have the
processingcapabilities of generatpurpose computers, but their input isoften constrained to 2D
finger input on a touch screenTablets, touch screensand interactive surfaceshave also found
increased adoption among consumers. Many of these devices have sevemmystrained input,
sensed only through touch or perbased interactionwith the display surface. For these devices,
gestures offer a promising alternative to traditional input with on -screen buttons and widgets.
They allow users to provide input to the dewvie without having to select a number of small on
screen targets, navigate through hierarchies of menugyr interact directly with the on-screen

content.

Despite their potential for use on an increasing number of devices, gestures have remained
relatively primitive. This is due, in part, to the difficulty with gestural interfaces lacking clear
affordances, and theirargely hidden functionality. The gestureaction mapping that is necessary
for interacting with an application is often hidden and users must exend considerable effort to
learn which gestures are available as well as learning how to perform the gestures. There are
several existing research efforts that address various aspects of this problem (e.g., making them
more approachable (Bragdon et al.,@L0), or making it more convenient to access the guide (Bau
and MacKay, 2009)), but there lacks a systematic analysis of gesture learning and an identification

of the various components that affect how well a user learns the gestures.

This thesis examineshow users learn gestures, and how we can best support that learning with

the design of our interfaces. The thesisontributes a novel framework which identifies the factors

that designers can leveragen their interfaces OT AT EAT AA OOAO@&@xedithrOOOOA O
Specifically, it identifiesOEA OOA@EOOBOALR ET T xI AACAh OEA ET OAOZAA
learning, AT A OEA ET OAOZEAAAGO OODDI 00 A affedityigdsdrd OOAT 1
recall and execution This thesis samplas problemsfrom each of these thredop-level components

and attempts to provide answers to open questionsWith respect to preexisting knowledge, the



thesis examines how reliable usebself-defined gestures are when the context of use changes.
Next, the thesis examines the declarative component of gesture learning by analyzing the
cognitive advantage that gestures have when encoding sequences and investigating whether that
advantage is due to a visual or motor procesdVith regards to procedural learning the thesis
examines appropriate ways to train and evaluate gestural guides to ensure that the user
maximizes learning.Lastly, the thesis presents a fulbody movement training system that extends
what is known about two dimensional stroke gestures to anore complex scaario to understand

the generalizability of thepresentedprinciples.

1.1. BACKGROUND
1.1.1. EFFICIENCBENEFITS

Gestural interaction also offers efficiency benefits over other input modalities. Marking menus, for
example, allow users to execute commais using the physical actions associated with accessing
menus, without visually searching for the target items(Kurtenbach, Sellen, & Buxton, 1993;
Kurtenbach, Moran, & Buxton, 1994; Kurtenbach & Buxton, 1993igure 1a). With proper design,
gestural interfaces allow for chunking and phrasing(Buxton, 1986), which provides cognitive
benefits and increased input bandwidth. One such system iElowMenu (Guimbretiere &
Winograd, 2000), which allows for the simultaneous specification of command and parameter.
Saiboli implements chunking and phrasing by allowing selection and action to be specifiatsing

a single, fluid movement(Hinckley, Baudisch, & Ramos, 200%igure 1b). SimpleHow pushes
efficiency benefits even further andallows users to input partial gesural commands,enabling the
OUOOAT -Bi I BIALHEGAR whenit has beensufficiently distinguished (Bennett et al,
2011). While these systems have not matured into widespread commercial offerings, they

demonstrate the potential for effective getural input.

The efficiency benefits provided by gestures and the widespread use of interactive displays have
driven the development of gesture interfaces for a wide variety of tasks. Text entry, for example,

can be accomplished using Graffiti (Fleetwoodtel., 2002), Unistroke (Mackensize & Soukoreff,
2002), EdgeWrite (Wobbrock, Morris, & Wilson, 2003) or SHARK (Zhai & Kristensson, 2003)
gestures. The Android and Windows 8 operating systems provide support for gestutmsed
passwords for fast and safe ldgs (Microsoft, 2012; Niu & Chen, 2012). Mozilla Firefox also has
several addons that allow users to navigate webpages using mouse gestures (Gomita, 2012).
7TECAT O AO A1 860 | ¢ mpqolch gebtkds enAbileApred@sd BddCefficie®] OE



manipulation of content on large interactive surfaces. Gestural interaction can also be used to
navigate interfaces in video games and entertainment systems (Segen, 1998). Autodesk Maya and
3DSmax use gesture shortcuts to allow designers to change tools, navigated @elect options
quickly (Autodesk, 2014; Kurtenbach, 1993). Several diagram editors have also been developed
with gestural support to allow natural specification of visual elements (Sutherland, 1964;
Zeleznik et al., 2008).

b)

[cing |

[a] [b)

Figure 1.1. a) Example of a marking menu, in which users implicitly learn gestures associated with meriiems
Kurthenbach & Buxton (1993). b) Scriboli gestural interface in which selection and action are combined into a single
fluid movement. Images fromHinckley, Baudisch, 8&Ramos(2005).

1.1.2. TYPES OKESTURES

4EA OAOI OCAOOOO0OAG ing GanyiAt@attiond WithAdeices Aolla). ASDIEEA
designers considerOi A1 1 OT EO 1T PAOAOGEI T O 1 EEA (&&A&wever] O
these actions are of little interest as they are simple to perform but have very low input
bandwidth. More complex gestures, such as stroke gestures or 3D frepace gestures are able to

convey much more information, but are not as usefriendly as the more primitive gestures.

Stroke gestures have attracted substantial attentioiin both research and commerciakcenarios.
Suchgestures are composed of a single contact event (eafinger or pen contact), movemenif

that point in 2D space, andre terminated when the finger or penis lifted from the surface. These
gestures are particularly interesting, as many propertieggesture form, user interface support,
etc.) generalize across input modalities (e.g., pen, mouse, toydhu, Ren & Zhai, 2AL2), and they

are a very expressive method for spegifng input on touchscreen devices.

OPOA



Many of the more complex modes of gestural interaction (e.g., 3ee-space, multitouch, etc)
have gained acceptance due to the development of new sensing hardwareddghe emergence of
new applications for interactive technology These gesturesallow interaction with devicesfrom a
distance, provide high input bandwidth,and allow for more natural methods to spedfy actions.
Many of the more complexgestures share simarities with complex movements found in
everyday life, such as dancing or sports. As such, much of the knowledge learned from those
domains can benefit gestural interaction, just as developments in gestural training have the

potential to benefit those donains in return.

The composition ofa gesture set varies widely depending on the task. Many gesture sets are
designed to be symbolic analogues to the actions or items thaye mappedto. For instance, many
text entry gestures resemblecorresponding letters (Figure 1.2; Fleetwood et al, 2002; Wobbrock,
Myers, & Kembel, 2003) Other applications use gestures that resemble the first letter of the
ET OAT AAA AAOGEI T h A8C8h Al (ZOeBdi al. 01895 ;Dhhtty & ilecoAndtA A O A
1996). However, the number of possible commands quickly exceeds the available lettsrsed
gestures, restricting the adoption of this technique. Other symbolic gestures include those that
exploit prior knowledge or those are an iconic representatin of an action, such as a scribbling
gesture to delete or using a lasso to select multiple objec{8ragdon et al, 2008). The use of
symbolic gestures isalso limiting, asusers often disagree on what gesture is representative of a
given action (Wobbrock, Morris, & Wilson, 2003) especially when it comes to more abstract
actions such asO) 1T O A O O(WafE8sOModek-Samuels, 1987) To avoid these issues, many
systems and researchers use abstract gestureg&igure 1.3) with no obvious symbolic mapping
(Bau & Mackay, 20®; Freeman et al.2009). While this removes any bias users may have to a
particular gesture, each study tends to devise their own set of gestures, making it difficult to

compare results across studies.

A
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Figure 1.2. Examples of the Graffiti (top) andEdgeWrite (bottom), in which each symbolic gestue bears a

resemblance to the letter it represents. Images fronCastellucci and Mackenzie (2008) and Wobbrock, Myers, .
Kembel (2003).
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Figure 1.3. Examples of abstract gestures in whickachgesture has a recognizable form, but does not correspon
to a particular stimulus or action. Image fromzhaiet al. (2010).

1.1.3. NECESSITOFGESTURH.EARNING

The difficulty with gestural interfaces, and one of the primary reasons behind their slow adoption,
is that gestural interfaces arenot O O- R @A A(Baldel@B8BeaudouinLafon, 1993; Bragdon et
al., 2008) Usersare required to learnand practice eachgestureto become efficientenough to use

it in place of other input This problem has yet to be solved, and margrrent gestural interfaces
rely on a small set of simple gesturesi.g., swipes, taps, and pinches) to avoid the problemfo
learning gestures. With these interactions, it is sufficient to write instructions for endisers in the

i ATOAT T0O0 11 OAOAAT jAscsh OOxEDPA O1 O111TAE
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with little training. To achieve effective interaction with gestural devices, howeversuch simple
interactions are not sufficient. A rich gesture vocabularyrequires gesture languages that must be

learned by userseither implicitly or explicitly (Norman, 2010).

Learnability of gesture sets involves two fators. The first is the cognitive mapping between the

desired task or commandand the required gesture. This declarative component of learning is

typically studied in human computer interaction (HCl)}focusedresearch It is easy to measure

with recall tasks (using proportion correct) and it is intuitively important (users must know

which gesture to execute before they perform it). The second, equally important aspect of

gestural interactions is theprocedural component of gesture learning, which involves taability

to perform a gesture accurately. Bau andMacKay (2008) recognize the importance of gesture
AGAAOOETI T h OOAOETI ¢ OEAO OOAOO |1 6OO Oi AGOAO OEA Af
AAAOOAAUG8 4EEO ATI BT T AT O increasiagh Orpdtends the isOK OAAOET
gestural interfaces continues to grow and devices rely solely on gestural input. In the case of

experts, many of their input sequences are largely automatic, relying primarily on responses from

the motor system. Motorperformance is important for novices as well. As the size of gesture sets

is increasing (e.g., ta40 targets (Ouyang & Li, 2012), both novices and experts have to perform

gestures with increasing accuracy for the recognizer to distinguish them from othepotentially

similar gestures. It is also foreseeable that future interfaces will allow users to modify parameters

of commands by producing variations on gestures, which agaimould require substantial skill to

perform.

Recently, several researchers haverpposed that users should be able todefine their own
gestures for interaction rather than using adesigner-defined set (Nacentaet al, 2013). Studies
have shown that there can be high agreememn the gestureto-action mapping between users,
especially br actions that are more concrete(Wobbrock et al, 2009). Other systems have
leveraged crowdbased definitions of gesturesenabling users to input gestures without defining
them, relying on the similarity of their gesture to other userggesturesto determine the intended
action (Ouyangé& Li, 2012). While these approaches offer learnindree gestural input, it is not
clear whether they scale to more abstract action§Ruiz, Li & Lank,2011). Additionally, no studies
have examined the selfconsistencyof usA O 08 A E TtufeAuAderidifierem Aodditions, that is,
the degree to which the same user generates the same gesture for the same tésksers vary
their chosen gesture, then they may need support for learning the appropriate gesture to use

within th e given context.



1.2. THESISOBJECTIVES

Though there is existing research that analyzes various aspects of the learnability of gestures,
OEAOA EO 11 & AOOAA Ai1 OOEAOOEIT OEAO EAAT OEEEAO
to learn and perform gestures. Thus, this thesis seeks to provide a novel framework for gestural
interaction, as well as work towards answers to several important questions wiin gestural

interaction. In the subsequenthapters,the following questionsare addressed

Chapter 3: To what degree is gesture learning necessaPyCan gesture learnindpe avoided by

implementing user-defined gestures?

Chapter 4: Does gesturingoffer alearning advantageover traditional input methods? Ifso,are

these advantagesiue to the motor or visual component of gesturing?

Chapter 5: How can users be trained to gesture efficiently, and how should we evaluatach

learning?

Chapter 6: How well doesknowledge of 2D stroke gestures extend tanovement scenarios

that are more comple®

1.3. AFRAMEWORK-ORGESTURH_EARNING

Although there has been much focus and attention deted to the learning of gestures, and many
novel techniques have been developed to aid in gesture learninthere has yet to bea clear
understanding d how and when to support the learning of gestural interaction. This thesis
presents an examination of gesture learning, detailingthe factors that affect gesture learning
While some of these factors have been leveragguieviously in gestural interaction, we identify
many new factors andprovide a categorization from which other work can build uponThus, we

make the novel contribution of thegesture-learning framework, depicted inFigure 1.4.
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Figure 1.4: Framing of gestural interaction which outline the effects of pre-existing knowledge and the varios
mechanisms thatprovide support for procedural and declarative learning The combined effect of these components
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If gesturesare supported within the interface, then the gestures must be selected in a way that
minimizes their need for learning by leveraging existing knowledgelf a gesture set must be
learned, then appropriate support for learning thedeclarative componenof the gesture (i.e., the
recall of the correct gesture) as well asupport for learning the procedural componentof the
gesture (i.e., the articlation of the gesture) must be provided Figure 1.4 illustrates how this

framework relates to the resultant recalland execution of the gestures within the user interface.

1.3.1. LEVERAGINEXISTINGKNOWLEDGE

Once gestural interaction has been identified as an input mechanism, the designer must consider
the form of the gestures themselves and how they can be designed to minige the need for
learning. The degree to which gestural support isequired is dependent on whether gestures are

previously known, usedefined or completely novel

Somegestures may bepreviouslyknown and thus require little or no training. A select graip of
gestures isculturally engrainedthrough marketing campaigns and product dominance such that

they have become widely known(e.g.,swipes). Alternatively, gesturesmay be mapped to physical



affordances (e.g. pinches, or rotationg; in these instances little learning support is likely

required as users rely on known metaphors

If the functionality of the interface is primarily rooted in operations thatare concretein nature,
then userdefined gestures may provide uses with the ability to choosememorable gestures that
do not require extensive training to recall and performPrior work has shown that userdefined
gestures are easier to remember (Nacenta et al. 2013), and may thus require minimal training. It
is still unknown, however, if users consigently choose the same gestures for theame actions
performed in different contexts. If this is the case, then the amount of training required may be

more than previously expected.

If a gesturebased user interface has a large number of functions, operans based on abstract
commands, or a high degree of command parameterization, then it is likely thdte systemwill
need toleveragenovelgestures. In this case, it will needio provide infrastructure for instructing
users on the proper selection and escution of the gestures When possible, completely novel
gesture sets should be avoidedIf, however,they must be used,a number of strategies(as

outlined in the following sections) can help ease learning and reduce the burden on the user.

It is also important to consider what aspecs of the gesturethe user may already know The
declarative conponent may be well known, for example, if you are usingestures that represent
alphanumeric characters. In this casgthe user maystill need to learn how to exeate the gesture

accurately enough for the system to recognize it.

When deciding on the degree and form of the gesture learning support it is important to consider
the resulting usability of your system. If the user must undergo extensive training beforesing
the system then they may be discouraged from using the produdt.too little support is provided
then users may struggle to achieve proficiency andan become frustrated during interaction. An
ideal support system would scaffold novice users, allowipthem to focus on their primary task
while simultaneously implicitly teaching them the declarative and procedural components of

their gestural interactions.

1.3.2. SUPPORT FORECLARATIVE.EARNING

Interfaces may support he declarative componentof gesture learnng by structuring the gestures

effectively, modifying the rendering of gestures or by providing explicit training. As gestural



interfaces do not have isible affordances users must be informed of the available gesture set in

some othermanner.

Considemtion for learning the declarative componentcould also be achieved through careful

structuring of the gestures themselvesj A8 C8h OEA EEAOAOAEEAAI OOOOAC(C
software (2014)). By structuring the menu in a logical manner and grouping relad items, the

interface can take advantage athe hierarchy to aid in the recall of actionsOther structures can

be possible depending on the nature of the interface, and could potentially rely on abstract

categorization or spatial mapping, for example.

Systems may alsomodify the rendering of gestures to make them more unique and easily
remembered. This can beachieved by changing the form (e.g., the visual appearance) of the
gesture or by rendering the gesturesusing additional modalities (e.g.,haptic, colour mapping, or
audio pairing) to provide some of the benefits seen in dual coding studies (Paivio & Kalman,
1973).

Support for the declarative component camalso be achieved through an explicit training phase

(e.g., the training sandbox of Bragdon etl. (2010)). With this approach, users get the benefits of

repeated rehearsals without the worry of unintended consequences on their work environment

The training systemcould bedesigned to take advantages of many of the factors known to affect

learningj] A8c8h AEOOOEAOOEI C POAAOEAAR AOAxEIT C AOOAT OE
interface, many of these approaches would not bavailable, as they would interfere with the

operation of the system itself.

1.3.3. SUPPORT FORROCEDURALEARNING

Interfaces can support the learning of the procedural componentof a gesture using appropriate

feedbackor explicit training. This is necessary so that usersan perform the gesture accurately

enough for recognition by the system For example, with handwriing recognition software, the

user invariably knows which letters they intend to convey but thé@ writing is often not precise

AT T OCE &£ O OEA OUOOAI 60 Al Ci OEOEI O O OAAICI EUZ
compoundedwith gestural interfaces,asgestural interfaces become more complex, allowing for a

multitude of commands and parameters to be expressed in a single stroke.

The designers of gestural interfaceshus need to providefeedback T OEA OOAO0OO8 PAOAI O

only by relaying the recognked action,but alsoby supplying useful information to improve future

10



performances of the gesture and improve the communication betweethe user and gesture
recognizer. Such feedback could be provided by many mechanisms and at various points
throughout thA ET OAOAAQOET 18 " A& OA AT A AOOET C OEA
2009) can provide users with a guide that informs them of the correct actions. Following
interaction, a system can provide feedbackregarding which gesture was recognized This

information allows the user to compare their input to what the system was expecting.

There are many considerations to the type of feedback and guidance provided. Tleation,
content, appearance andtiming of the feedback are of prime considerationExcess feedback can
hinder learning, and poorly designed feedback may go unnoticed. The motor learning literature
has examined some of these issues, but it is not immediately evident how to adapt their findings

to the specific needs of gesturdhteraction that must also consider usability.

As with declarative learning, userscan perform explicit training prior to using the interface to
improve their ability to perform gestures. With an explicit training phase, the system could
leverage methods or modalitiesof feedback that may be too intrusive to leverage within a live

system (e.g., summary feedbackfter a number of gesture attempts.

1.4. THESISORGANIZATION

This thesis presents several contributions in the area of gesturatarning with the goal of better
understanding how users learn gesturesand how to better enrich their training. With the
increase in complexity and the adoption of gestural interfaces for a variety of tasksjs critical to

have methods andsystems thatscaffold uses as they begin to usenew gesture-based systems.

Chapter 2 outlines relevant work from the human-computer interaction and motor learning
domains to frame our understanding of how movements are learned andthe applicability of

various learning methodsto gestural interaction.

In Chapter 3 we analyzegesture learning within the context of user-defined gestures. The
purpose of these studiess to establish whether userdefined gestures may be a viable alternative
to learned gestures, mitigating the need for gesture training. With two experiments, the
consistency of gesture creatiorwas observed as high-level tasks and environmental context was
manipulated. The studies use gesturepasswords as a testing sandboxand provide insights into
the strategies that users employ when definhg secure passwords for gesture based

authentication on mobile devices This chapter addresses how preexisting knowledge can be

11
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leveraged in the design of gestural interfaces, and whether or not usdefined gestures are

consistent across various contexts

In Chapter 4,we analyzewhether the use of gestural inputor OOAAEOET 1 Al Obih ET OET CE&
the encoding of information and declarative memory. If gestures are proven to encode

information more readily, then it will likely be easier for novice uses to learn the association

between a gesture and a command than it would be for them to navigate a traditional button

based interface. Following this, we analyze the respective roles of the visual and motor
component within gesture learning.Prior work within HCI has typically ignored the distinction,

but the respective roles of each modality are important to consider when designing gestulmased

user interfaces. This chapter provides insight into how the visual system contributes to the

learning of the declarative component of gesture learning.

Chapter 5 explores how the form of the visual feedback used during training impaahe learning

of the procedural componentof gestural interaction. Using a retention and transfer paradigm
from the motor learning literature, three guides from the existingliterature, and a novel, adaptive
guide were evaluated. The use of the retention and transfer paradigmevealed properties of
gesture guidesoften overlooked in previous works. This chapter analyzes how gestural iterfaces
can be designed and evaluated to best support the procedural learning of gesture execution

outlined in the previous section.

In Chapter 6, we presentYouMove, a training system for complex, fullbody gestures By
integrating findings from previous studies, the system usesan augmentedreality mirror to
I OAOI AU OEOOAT EAAAAAAE AEOAAOI U 1T OAO OI P 1T &£ OEA
guide. The system supported a wide variety of movement domains and abstract movemenés
well as more concrete movements from the dance domainYouMove demonstrated the
applicability of the results found in Chapters 3, 4, and ® more complex, higherdimensional

gestures

Lastly, we conclude with a review of how the presented work fits within the g&ure learning

framework, and outline directions for future avenues of research.
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Chapter 2

Related Work

Human memory involves a complex set of interconnected processes, the details of which are
beyond the scope of thisthesis. However, there are several fundamemal concepts that are
important with respect to gesture learning. Of particular relevancere a basic understanding of
long term and working memory, the distinction between procedural and declarative memories
and the factors affecting learning as well as how learning is evaluated for each of these
components We also examine relevant work within the HCI literature on existing systems and

methods that support gesture learning.

2.1. TYPESOFMEMORY

Long term memory can be categorizedalong a number of dimensionsaccording to the length of
the memory (short or long term), and the characteristics of the memory (procedural or

declarative, andimplicit or explicit ).

2.1.1. SHORT ANOLONGTERMMEMORY

Memory can be logically divided into short term memory (i.e., working mema) and long term

memory (i.e., permanent storage). The capacity of working memory is relatively small, with room

for approximately seven unique items at a time (Badgey, 1994). Items in working memory are

thus available for less than a minute (Luck & Vo$e1997). This capacity can however be

expanded through the use of chunking (Chase & Simon, 1973), in which distinct, logical objects

AAT AA coOi OPAA ET O A OEITCi Ah AT EAOAT O cCcoOi O6P8 &I
meaning to a person, wherd O T 1T A AAT OAI Ai AARO OEA OET CI A xI1 OA
the letters into a logical whole allows for one item, instead of three separate items, being encoded.

Chunking can be can be an extremely useful method of learning large amounts of inforiaf but

requires that the information have some structure or meaning (Gobet & Simon, 1998).

Baddeley and Hitch (1947) described a useful conceptual model of working memory in 1947.
This model consists of aentral executivephonological loop andthe visuo-spatial sketchpad The
central executive is responsible for allocating attention, processing information, and accesses

information stored in long-term memory (as well as the other components of working memory).
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The phonological loop is the shorterm memory store responsible for processing auditory and
verbal information, such as speech, music, and the rehearsal of words. The vispatial
sketchpad is the component of working memory that is responsible for processing images, color,
and spatial information. Within gestural interaction, this type of memory is typically used only

when referencing the guide or other learning material (e.g., consulting a crib sheet).

While items in short term memory are typically forgotten after a minute, items in long ten
memory can be remembered for a much longer period, potentially years (Rohrer et al., 2005).
Long term memory acts as a relatively permanent, limitlesstore of menory, whereby memories

are stored via consolidation. Sleep is believed to play a large role consolidation, with memories

AAET ¢ OOOOAT COEAT AAG AOOEIT ¢ O1I AADP j30EAECI 1 Ah

2.1.2. PROCEDURAL ANDMPLICITMEMORY

Remembering a particular sequence of actions, or steps tchievea goal is accomplishedusing
procedural memory. In general, procedural ¢r non-declarative) memories arememories that are
difficult to describe (Squire, 1992). The ability to tie shoelace®r ride a bicycleare due tostored
procedural memories. Procedural memorieghat relate to motor movements are of particular
interest to gestural interfaces which require movements that can be somewhat complex and

occasionally unnatural.

Many procedural memories are learned implicitly i.e.,memories are generated withoutthe
conscious awarenes®f the learner (Roediger, 1990) This type d memory is believedto operate
using an entirely separate process from explicit memoryCohen et al., 1985) Implicit learning is
important to gestural interfaces, as the form of gesture is rarely the focus of the interaction, yet

it must be learnedfor efficient gesturalinteraction.

2.1.3. DECLARATIVE ANIEXPLICITMEMORY

Remembering the pairing between a desired action and corresponding gesture falls within the
scope of declarative memory. That is, it relates to a memory that can be describ@dilving &
Markowitsch, 1998). The work verbal associate learnings of most relevance to gesture learning
In this type of learning, participants associate pairs of words, or a word with a corresponding
action (Bower, 1970). Uses of declarative memory are common in eveagy life, for example,
remembering telephone numbers, or remembering that the alphorn and yodeling are icons of

Swiss music.
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Declarative memories arecommonly learned explicitly, i.e., thelearner is aware that they are
being learned (Berry and Broadbent 1988). Explicit learning requires active and conscious
involvement on the part ofthe learner. Studying for a test or researchinghe history of the clock

are common examples of explicit learning.

2.2. FACTORS IN LEARNING
2.2.1. FACTORS INEARNINGPROCEDURAMEMORIB

Several factorsaffect the learning and performance of a movement. Unsurprisingly, the amount of
practice has been shown to improve learning and performance. For many complex movements it
is generally accepted that the practice must be deliberate, and hsimply repetition of learned
movement (Ericsson, Krampe, & TeseRomer, 1993). The distributon of practice over time has
also been shown to affect the amount of learning, with increased learning when practice is
distributed over time (Donovan & Radosew, 1999). While these factors are important to skill
learning, they are not as relevant to gesture learning athe feedback given viaknowledge of

results and knowledge of performance.

Wulf and Shea (2004) provide an excellent summary ohany ofthe known effects of augmented
feedback. For example, they outline how the delay between performance and feedback can affect

learning, what type of feedback (qualitative or quantitative) should be presented based on the

OOA0B8 O PAOA O AT AAh Algrgatihg feedb@dR tah ingrével IBanipg. Whildh A C

all of these elements are relevant to gestural learning, a full examination is beyond the scope of
this thesis. However, this along with other work (Wulf and Shea, 2004)provides an excellent
review of the various parameters known to influence the learning of movementsA few key

factors directly relevant to the work in this thesisare presented next

Knowledge of results (KR is information regarding the success or failure of a movement. The
presenceand frequency of KR has substantial consequences on the amount of learning that occurs
during practice. When KR is too frequent, it hinders learning, as users become dependent on it to
i AEA Oi A1 OAT OOAAOCEOAS 11 OAT AT 6O j 3 Ad1) WithEh
respect to gestural interaction, KRcan detail the gestureform that was recognized, or include the

similarity of the performed gesture to other gestures.

Knowledge of performance (KP) is information regarding how the performed movement differed

from the target movement. As with KRthe presenceand frequency of the target movement can
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affect the degree to which the movement is learned (Park, Shea, & Wright, 2000). Within the

context of gestural interaction, KP can be presented by displaying ttte OA 06 O OOAEAAOI OU

target trajectory, potentially highlighting discrepancies between the trajectories. Within gesture

COEAAOh OEEO OUPA T &£ ET & Oi AGETT EAO AAAT OAAT CI

AT A OEAAAAAAES B2008)), bAtGhe existingArAséakct from the motor learning

literature has been largely ignored.

Though the field of motor learning studied many fundamental issuesuch ashow movements are
learned and performed, it is not cleawhich research is directly applicable to gestural interaction.
Research in motor learningtypically makes no consideration for the usability of systems, so
directly implementing their findings could result in systems that are not uer-friendly and
unpredictable. In addition, many studes within motor learning used simple, static one
dimensional positioning tasks that do not reflect the complex nature of gestures or the dynamic

environment that modern devices support.

2.2.2. FACTORS INNEARNINGDECLARATIVEMEMORIES

Several factors determine tle degree to which something is learned and remembered. As with
procedural learning, repetition plays a large role, with more repetitions aiding in learning.
Similarly, the structure of practice has an impact, with distributed practice resulting in better
learning than massed practice (Pashler et al., 2007). These two factors alone do not regulate the
degree to which items are learnedywhen designing gestural interactionsthere are several factors
that affect the rate of learning. It is therefore importantto understand the potential impacts these

factors have on the usability and learnability of gestural interfaces.

One factor thatinfluencesthe memorability of items is the degree to which items are elaborated
on (Cohen & Aphek, 1980). Rather than simplyehearsing each item, elaboration involves
constructing mental associations between the new item and existing knowledge. By situating new
information within A DAOOI 160 AQGEOOET ¢ 1 AT OAI OAEAI Anh
encoded and memorable. Relate®i OEA EAAA 1T &£ Al AAT OAQGEI 1T -EO
of-processing effect. Craik and Lockharbbserved that items that were processed superficially
(e.g., based on their sensory components) were not remembered as well as when more semantic
processing was involved (e.g., when participants thought about the meaning of the itemgyjithin
gestural interaction, the gestures could be designed such that theglate to some symbolic

meaning associated with the action.
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Another factor that influences the strength of a memory is the generation of an item. When
subjects are able to generate their own stimuli, or portions of the stimuli, they remember them
better than when the stimuli are given to them (Slackmecka & Graf, 1978). This generation effect
has bea shown to extend beyond improving memory for the stimuli itself. For example, Marsh,
Edelman and Bower (2001), had participants either read or generate a list of 30 words, and those
words were presented either on paper or on a computer monitor. Not only id participants
remember the generated words better than the read words, but they were also better able to

remember the context in which the generated words were presented.

The organization of information also affects its memorability. If items can be stotured into a
logical order, e.g., a hierarchy, this tends to aid learning (Bower, 1970). For instance, Dowling
(1973) found that participants were better able to recognize melodies derived from a single,
previously heard group than melodies that spannedwo previously heard groups. This provides
evidence for organizational chunking inlong-term memory, allowing for more efficient storage
when items have structure. Within gesture learning, marking menus take advantage of this type of
organization by structuring the commands in a hierarchy, and associating directional strokes with

each level of the hierarchy.

Interference can also play a large role in how items are remembered or forgotten. Retroactive
interference occurs when previously learned information canot be recalled due to new
information being learned (Baddley & Dale, 1966). Conversely, proactive interference occurs
when old information prevents new information from being learned (Kane & Engle, 2000).
Associative interference may also lead to problesduring recall, as it occurs when multiple,
similar items are trying to be remembered. A large number of similar items results in greater
interference and decreased learning (Ellenbogen, 2006). In all types of interference, the similarity
between the piees of information regulates the amount of interference that occurs, with more
similarity resulting in more interference and difficulty during recall. Increasing the
distinctiveness of each piece of information can reduce the interference, though in somesea this

is at odds with constructing a meaningful organization of the materialWVithin gestural interfaces,
interference can result from different contexts requiring the same gesture, or by having similarly
formed gestures mapped to distinct actions. Deghers should attempt to separate the gesture
forms as much as possible, not only to decrease cognitive interference but to increase the

accuracy of the gesture recognizer.
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2.3. MEASURINGALEARNING

Due to differences in howmemories are processed in the brain andhe different contexts they are
used in, procedural and declarative memories are studied using different paradigms. Procedural
memory is often studied within the context of motor skills, involvingthe physical practice of a
particular skill. Following practice, performancefor that skill is measured using retention and
transfer tests to assess learningihile studying declarative memory, a number of methodsan be
used Recall tasks following training are common, but are sometimes not sensitive enough to
small effects or are not applicable in some scenarios. As such, evaluations using mental

chronometry or recognition tasksare common

2.3.1. MEASURINGEARNING FORROCEDURAMEMORIES

The field of motor learning has established methods for assessing the ability fearn and execute
movements, ranging from simple pointing and grasping movements (Chapman et al., 2010}o0
complex skills such as surgical movementBrydges et al., 2007)or sports (Helsen et al., 2000)
The motor learning literature acknowledges a crittal difference between performance and
learning (Schmidt & Lee, 201}). Performance is the production of a specific action, whereas
learning is the relatively permanent acquired capabilities that facilitate improved performanceof
that action. Within gestural interfaces, performancewould refer to the production of a gesture,
whereas learningwould refer to T T Airici@®ased ability to recall a gesture and perform it more

efficiently.

Empirical studies that separate performance from learningcommonly involve a training phase
followed by aretention and then transfer component. In the retention component, participants
perform the task at a common level of the independent variable, typically 24 to 48 hours after
training (Shea & Morgan, 1979) In the transfer conponent, participants perform a novel

variation on the task they were trained on, e.g., performing the task with the other limb.

The use of retention tests is standard inthe motor learning literature, as they allow the
researcher to separate the effectsof the performance factors from the learning factors.
Performance factors havean effect only for a short time, whereas learning factors havan effect
much longer after training. Tests are frequently performed after at least one full night of sleep
(e.g.,24 hours), as sleep has been shown to play an important role in the consolidation of motor

skills (Savion-Lemieux & Penhune, 2005) The task performed during retention tests is usually
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similar to the task performed during training, but all participantsare moved to the same level of

the independent variable, which is often the removal of feedbadlSchmidt & Lee, 2011)

In the transfer component, participants perform a novel variation on the task they were trained
on, e.g., performing the task with the otér limb. For instance, participants might perform a
learned skill at a different scale or angle (Albaret & Thon, 1998). There has also been substantial
work within the motor learning field on bilateral transfer, i.e., the degree to which a skill learned
with one hand transfers to the other Annett and Bischof, 2013 Panzer et al., 2010; Sainburg &
Wang, 2002). These studies show that transfer takes place even when participants are not
ambidextrous. Transfer tests are another way to assess learning, as theental changes associated
with learning one skill are frequently generalizable to another, very similar skill. These tests can
also show how well a learned skill generalizes to a new conteghea & Morgan, 1979)Though
previous research in the gesture leming literature does not use retention and transfer
paradigms, we use them to examine the effects of the guidance hypothesis within the comtek

gesture learning (Chapter $.

2.3.2. MEASURINGEARNINGFORDECLARATIVEMEMORIES

Various methods of testing memoryand learning have been employedo understand the
cognitive component of memory. An obvious method of testing memories is using free recall,
wherein participants recall as much information as they can remembeSquire, 1992). A variant
on this method is cwed recall, wherén participants are given a cue and are asked to recall specific
information related to that cue (Ellenbogen et al., 2006) This method ismost relevant to gesture
learning, as gestures areoften paired with specific commands and those comands can be used

as cues.

'TT OEAO [ AOCET A O AOAI OAOA OEA AACOAA (HaigE 1 AAOT E
Shimamura, & Shea, 1992)Measuring the ability to remember information in the days following

the learning of the information allows reseachers to measure how quickly the information is

forgotten, which correlates negatively with the strength of learning. Shallower curves reflect

information that was initially learned to a greater degree In cases of overlearning, people are

unlikely to forget the information, as it is deeply encoded with strong memory trace@/Nalker,

1986)8 2 A1l AOAA OI OEEOh OAOAAOAEAOO AAT A1 O1 1 AAOOC

to re-learn items which have previously been learned but forgotten. When itemsalie been
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previously learned, they will become remembered more quickly with rdraining than unseen
items (Roediger, 1990)

Finally, mental chronometry can assess the degree to which something has been learned. Mental
chronometry is the use ofresponsetimes to assess how quickly something can be retrieved from
memory (Squire & Zola, 1996) Fasterresponse times are indicative of a memory that has a
simpler trace, or stronger connections to other memories, indicating a greater learning. Mental
chronometry can be a powerful tool to measure learning, as it removes many potential sources of
variability, including the verbalization or motor performance used to express learned
information. Mental chronometry is often used in conjunction with forced choice paradigs)
where participants must select whether an item has been seen before, or if it is a new, unseen
item (Dudukovic & Wagner, 2007) While mental chronometry has not been previously used in
the gesture learning literature, we adapt it and use it to measuréé efficiency of encoding irthe

recognition of gestures(Chapter 4).

2.4. LEARNING ANIMEMORY INGESTURALUNTERACTION

Within the context of human computer interaction, gestures have been seen as particularly suited
for niche applications for example, where input is otherwise constrained. These typs of
interfaces rely on both declarative and procedural memory, and typically require substantial
amounts of training to master.There have not been studies on how the fundamental aspects of
memory influence gesture learning, but there have been a number of systems and methods
developed to improve the learnability and usability of gestural input. These systems often
incorporate many features aimed at improving learning, making it difficult to establish the

contributio n of eachrelevant factor.

2.4.1. APPROACHES TORAINING

Researchers irhuman computer interaction have tended to view gesture learning as a problem to
be solved rather than studied, with most research focusing on the development and evaluation of

new systemsrather than a systematic evaluation of the constituent factors

2.4.1.1.IMPLICITMEMORYIN GESTURALNTERACTION

Several gestural systems are designed such that the guide is always available and the user
implicitly learn s the gestures that correspond to frequently ued actions. Examples of thisan be

found with marking menus(Kurtenbach, 1993) where the user performs directional strokeson a
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radial menu to indicate selections. The availability of the menu allows users to perform a visual
search for the desired menutem if they are not able to recall it. Several extensions of this idea
have been proposedto increase the bandwidth or ability to phrase commands while still
maintaining the learning benefits of the structured menuBailly, Lecolinet, & Nigay, 2008; Zhaé
Balakrishnan, 2004) A similar conceptcan also be found with gesture keyboards Figure 2.1a),
e.g., SHARKKristensson & Zhai, 2004) or Swype for theAndroid operating system. With these
keyboards, users draw strokes directly overtop of the desired letters to input texton touch-
screen devices. In both systems, it is assumed that usewsll perform the same command
repeatedly,i.e., access the same mantems or input the same wordsthus implicitly learn ing the
corresponding gestires. While these systems may be effective for the@ipecific use case, they do
not generalize across applicationse.g., a marking menu system does not function well on a small
touch screen due to the limited input space and high occlusion, and Swypased interactions

require substantial screen realestate and only provide alphanumeric input.

a) b)
s Ya D
-
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Figure 2.1. a) Swype keyboard, in which users trace over the keys using a single fluid gesture. With agb iterations,
users should implicitly learn the motor patterns required for frequent words. Image from wirelesszone.conb)
Octopocus is a dynamic guide that allows the user to directly trace out gestures and updates dynamically as the L
completes thestroke. As the cursor moves from the position on the left to that on the right, the guide is updated
OAxEI AAO OEA EIi BOI AAAEI EOU | £ OEA ObAExDA&HRacky (2oDsAT A AA

Recently, systemsoffering dynamic, reattime guidance have been proposedBau & Mackay,

2008; Bennett et al., 2011; Freeman et al., 2009; Kristensson & Denby, 201These systems

provide the user with information to guide the execution of a gesture, such as a traceable
depiction of the gesture Figure 2.1b). These guides are believed to improve performance, as
OFAAAE OxAOA EFARE] EAAAAAAEAAOTI ETI ¢ AT A A@BAROOEI 1

Mackay, 20@). The guide reflects the current state of theecognizer, allowing uses to receive
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immediate feedback as they are performing the gesture to help them complete the remainder of

the gesture.

2.4.1.2 EXPLICITMEMORY IN GESTURANTERACTION

The simplest methodfor teaching gestures ido present the user with alist (e.g., crib notesFigure
2.2a) of potential actions and a depiction of the corresponding gesturg®Bau & Mackay, 2009;
Brandl et al., 2008) These depictions can be simple trajectoriethat should be copied by the user
or complex pictograms describing hand configuration and movemer{Baudel & BeaudouirtLafon,
1993). Kurtenbach,Moran, and Buxton (1994) developed animated crib notes toassistusersin
learning to perform gestures. While crib notes alone would be sufficient to aidsers in the recall
of gestures, the addition of ircontext animations provide extra cues that help usergearn the
dynamics of a movement Extending thisconceptis the use of video demonstrationswhere the
required movement is prerecorded and played m-demand for the user(Freeman et al., 2009;
Vogel & Balakrishnan, 2004) In each of these casethe guide is separated from the input, leading
to a less cohesive interaction and taskiterruption when the user accesses the guide. These types
of guides ae thought to be less userfriendly and less effective at training gesturesBau &
Mackay, 2009; Bragdon et gl2008; Freeman et al., 2009)

a) b)
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mascow O< toronto scribbling them out.

Figure 2.2. a) Example of a type of crib note, in whickeach gesture is depicted next to the corresponding commanc
Image from Brand| et al. (2008) b) Gestural interface providing interactive help in which users can retrieve hints anc
practice gestures in the menu bar of the program. Image froBragdon et al. 2010).
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Bragdon et al.(2008) designedan explicit methodfor teaching gestures, aimed at making gestural

ET OAOEAAAO 11 OA A poastuieBAOBidURe 22189, udels prédticd and exflore

gestures within the menu bar befoe using them within an application. While GestureBarwas

more effective than traditional help menus, it requires additional training time prior to use and

distracts the user from their primary task. A similar concept is foundvithin OEA &' AOOOOA 01
system (Bragdon et al.2010), where users perform multi-touch gestures that mimic physical

actions in a separate sandbox before using them.

While each of thesetechniques proposed and evaluated ways to improve the learnability of
gestural systems, none evakted the underlying mechanisms that influence the degree of
learning. While each system may be better than traditional approaels, it is impossible to know

how much each of the constituent featuresfluenced the resultant learning.

2.5. EVALUATIONMETHODS

There is currently no standard methodfor evaluating the learning of gestural interaction. One
common approach is to analyze behavior while participants are using the gesture system.duach
studies, researchers analyze the frequency with which the gestureseaused, the rate of gesture
input, or user preference with the gesture systen{Bragdon et al., 2010; Lepinski, Grossman, &
Fitzmaurice, 2010). Appert and Zhai(2009) analyzed preference and memorability for keyboard
shortcuts and gestures after training They foundthat users did not have to consult the help menu
system as often with gestures, and the use of gestures resulted in faster and more accurate recall
of menu commands. To evaluate their menbased gestural learning systemGestureBar, Bragdon

et al. (2008) analyzed the number of correct gestures and the number of attempted gestures as
participants used a gestural diagram editor. Kurtenbach et alevaluated performance
improvements over time as participants learned to use marking menud993). With each of these
systems user behavior was evaluated while users were actively engaged with the system, and did

not separate performance from learning.

recall specific gestures after training (Bradgon et al., 2010) To evaluate their dynamic and
traceable gestural guide,Octopocus Bau andMackay (2008) AT | PAOAA DPAOOEAEDAT OO
recall gestures before and after training with a gesture system andith a traditional help
window. In the evaluation of a multitouch gestural guide systemShadow@iides, participants

recalled gestures immediately following a training phase withShadow@iides or a video-based
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guide (Freemanet al, 2009). Zhai and Kristensson2003) extended this evaluated the ability of
participants to recall 100 gestures over a period of days Though the aim of some of these systems
is to assist users in the performance or execution of the gesture, they tend to focus on the
cognitive component of gesturelearning as measured usingrecall. While recall is a useful
measure to assess the degree to which the actigesture pairing was learned, these studiedid
not analyze the motor component of the gesture andiere not able to isolate performance from

learning.

Due to the lack of standards in gestural interaction and the adoc nature of many empirical
studies, it is difficult to characterize the rate of gesture learning. For instance, Appert and Zhai
(2009) found that participants could accurately recall appoximately 80% of a 14gesture set
after 10 exposures to each gesture. Freeman et @009) found participants could recall67% of a
16-gesture set after 8 exposures. When testing Gesture Play, Bragdon et (2010) found
approximately 88% recallof a setof 16 gestures Bau and Mackay2008) compared video guides
and their dynamic guide and found between 57 and 73% recall on a dfesture set after 9
exposures to each gesture. From the wide variance in findings and number of gestures used, it is
clear that standardized, generalizableevaluation methods need to be developed the field is to

move forward.
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Chapter 3

SelfConsistencyof User-Defined Gesture$

Within the framework defined in Sectionl1.3, it is important to identify the degree to which

gesture learning is required, and the degree to which the system can leverage uée® A GEOOET C

knowledge. It is widely believed that if users select their own gestures, then thidramatically
decreasesthe need for gesture learningln this chapter, we examine the degre¢o which user-
defined gestures canlessenthe need for gesture learning by probing the consistency of user

defined gestures.

As our study employs a gesturepassword creation paradigm, wecontribute descriptions of
common gesturechoice strategies, as wellas a method to compute similarity between two
gesture password sequencesAn understanding of how users creatgesturespasswords can help
to recognize insecure gestures,can provide guidelines on the types oinstructions provided

during the gesture credion phase, and inform the design of gesture password input interfaces

3.1. UseERDEFINEDGESTURES

User choice in gestural interfaces has been studied exteingly in the context of commandbased
commands o a multi-touch tabletop. They found that users produced similar gestures for
OAT T AOAOAG AT 11 AT AOh A @dnméngsQnhhtdvérédrhofe abstlad Gukthed A A
investigation by Morris, Wobbrock and Wilson (2010) showed that users preferred gestures
designed by enduser consensus to those developed by experiadicating that there is a common
basis for gesture design. In theontext of mobile devices,Kray et al.(2010) examined how users

chose gestures whertheir phone was interacting with different devices. They found that gestures

1 The majority of this chapter is currently under review at the Journal of Experimental Psychology: Applied
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involving two phones were associated with greater movement than those involving a phone and a
fixed display, demonstrating an interaction between environmatal context and movemaet. Ruiz,
Li, and Lank(2011) performed a gesture elicitation study using mobile devices to determine how
users design motion gestures on mobile phones. Their resulteemonstrated that users preferred
natural gestures, realworld metaphors, and direct manipulation. These research efforts indicate
that users may choose natural and simple gestures, but as there iseancrete commandor action

on which to map the gestureit is not obvious what a natural or simple gesture password may be.

While commands thatare more abstractare not consistent between users, there is still hope that

a majority of functionality can be accessed through usetefined gestures.Recently, researchers

have proposed systems thatsupport user-defined gestures by querying a crowesourced

database of gesturegOuyang& Li, 2012). With such a system, usexinput what they believe is a

natural gesture to accomplish an action and the system finds the nearest match based on other
OOAOOGE CAOOOOAOGS ) £ A EAEAA OEtlelrh gesiueE 4 allAHowkeveh foi AAT  OF
commands that have no match in the crowdourced database, the user must learar define the

appropriate action. Research by Nacenta et a(2013) supports the adoption of user-defined

gestures, and shows that theyare more memorable than predefined and randomly assigned

gestures. However, even this study includes a training phase where users had the gestures

reinforced prior to being tested.

Additionally, it is not clear if users are consistent with themselves wheproducing a gesture for
an action multiple times.In typical desktop environments, the display, inputdevices,and visual
feedback remain relatively constant from operation to operation. However, as technology moves
to mobile, wearable,and ubiquitous interfaces the environments are in a constant state of flux. It
is unknown whether the desired action is the onlyfactor influencing gesture choice in these

scenarios, or if the screen location, orientation or other factors may also affect the uséehoice.

Research into embodied cognition has found evidence th#te environment impacts highlevel
cognitive processesand gestural choice maybe influenced by the current context of the device.
Embodied cognition theory posits that cognition is situated in theenvironment (Wilson, 2002).
That is, high-level thoughts are grounded in the physical world. Thus, contextual and spatial
factors may become particularly important when users cannot anchor gestures with personal or
task-based meanings. Foimstance, pushing movements are more closely associated to negative

judgments, and pulling movements are more closely associated to positive judgments (Markman
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& Brendl, 2005). In this theory, we may expect users to create spatially anchored gestures, but the

gestures mg be more prone to influence by external factors.

To examine the consistency of usedefined gestures when high-level instruction and
environmental context were manipulated, we conducted two studies usinga gesturepassword
generation paradigm.Gesture paswords provide a testbed that allows for simple manipulations
of the independent variables of interestwhile providing results that are relevant to emerging
issues in security and authentication techniques for mobile device§Ve examine two external
factors that may influence the creation of gesture passwordsigh-level instructions and device

orientation.

3.2. GESTURHEPASSWORDS

Gesture passwords provide an efficient method of authentication for mobile phones and tablets
(Niu & Chen, 2012).To authenticate with a gesture password, uses must slide their finger
through a grid of buttons in a preset sequence. Such passwords are memorable, quick to perform,
and require little cognitive overhead. In contrast to traditional numerical PIN authentication
schemes, gsture passwords leverage motor and visual memory to provide memorability and
high input speed. Gesture passworg have been popularized by the #droid operating system,
which uses them as the default authentication method. These experiments not only gave u
insight into how the environment affects the choice of gestures, but it also enlightens us as toaho

users construct secure and memorable passwords in the absence of alphanumeric anchors.

The types of gesture passwords users create may be related to thegiractices with other
authentication mechanisms.Bonneau (2012) analyzed over 70million passwords from Yahoo!
users, finding that most passwords effectively provide fewer than 10 bits of security, despite the
password space being much largeExtracting 4 and 5 digit numeric passwords from the database
allowed Bonneau to analyzePINs in-the-wild, though it is not clear if the use of numeric
passwords in an alphanumeric context represents reaiworld usage of PINs. Stanekova and
Stanek(2013) analyzed numeic passwords and provided methods for users to rememberPINs
from randomly generated sequenceseasily. An analysis of leaked ithe-wild PINs revealed that
users tend to use very simple, nounique sequences when definind®’INs (DataGenetics, 2012)
This analysis found that more than 10% of thePINs they analyzed werelODp ¢ ot 86 h AT A OEA
most popular PINs (0.2% of the password space) represented more than 25% of tidNs used by

users. A survey by BonnealPreibusch, and Anderson (2012¥ound that 7% ofusers chosePINs
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based on their birthdays. This desire for convenience in authentication has been repeatedly
identified in several studies (Clarke et al., 2002; De Luca, Langheinrich, & Haussmann, 2010)
While the existing work on PIN choice uses ithe-wild data and provides thorough analyses, it is

not clear if any of the results transfer to gesture passwords.

While the common gesture password input space is spatially similar to a PIN pad, the numerical
labels are not present so users will likely employifferent strategies in their password design.
Gesture passwords lack the content or meaning that users can rely on f0iNs (e.g. Birthdays). It
remains to be seen how users select passwords when thegre no alphanumeric values or

metaphors available toanchor their selections.

3.3. EXPERIMENTL: INFLUENCE ORNSTRUCTION

The EEOOO A@PAOEI AT O xAO AEIi AA AO O1 AAOOOAT AET ¢ OE/
gesture password creation. Prior research on gesture instruction has found that the modalityf o
instruction can influence the accuracy of the gesture performed by the user being trained
(Fothergill et al.,2012). We were specifically interested in how the form and design of a password
changed when participants were encouraged to design passwords mivated by internal goals
(memorability) versus external demands (security from attackers). To explore this issue,
participants created gestures for three scenarios: easy for them to remember, hard for someone
to guess, and hard for someone steal by watefy. These three scenarios parallel the change in
task that commonly used with gesture elicitation studies.We hypothesized that participants
would create simpler passwords when only the internal motivation of memorability was a factor.
When external factoss, such as hypothetical attackers were introduced, whypothesized that

participants would vary their passwords more and make them more complex.

3.3.1. PARTICIPANTS

Thirty university students (M = 19.9 years, SD = 2.3 years, range = 4187 years) were recruited
for the experiment. Twenty-three participants were female and 14 had experience with gesture
passwords. Participants were naive to the purpose of the study. All participants had normal or
corrected-to-normal vision and were treated according to the APA hical guidelines. The

experiment lasted 30 minutes.
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3.3.2. EQUIPMENT ANDAPPLICATION

0OAOOCEAEDPAT OO xAOA OAAOAA EI Al AAEOOOAAT A ATibBO
touchscreen monitor with a resolution of 1920 x 1080 pixels and a refresh rate of 60 HZhe
monitor was oriented in an upright, vertical position, approximately 30 cm from the participant,

within their comfortable reaching range Figure 3.1).

The monitor was connected to a PC that ran a custom WPF application thatplés/ed the stimuli
and recorded each gesture. The application divided the screen into thirds, with the top third

reserved for the instruction, and the bottom two thirds used to display a grid of 3 x 3 targets.

3.3.3. PROCEDURE

At the beginning of the experimentparticipants were seated in front of the touch screen and were

informed that they had to create a number of gesture passwords, like those used on some tablets

and mobile phones today. To create a password, participants had to draw a stroke through at

least £ OO COEA OAOCAOO8 7EAT AGAO OEA DPAOOGEAEDPAT 080
changedcolor to indicate a selection. As the finger moved towards the next target, an elastic line

was rendered from the last target location to the current fingetocation. Once the finger was lifted

from the screen, the stroke disappeared and the targets returned to their originablor.

Figure 3.1. Experimental setup with the touchscreen placed vertically(left) and horizontally (right) in front of the
participant. Note that the horizontal condition was only used in Experiment 2.

After participants created a password, they wer@askedto enter it again for validation. If the two
passwords did not match, a tonesounded, indicating that the password was not valid and that
they would need to enter it again. If participants made a mistake during the first two or three
target selections, they were instructed to lift their finger, thereby erasing the stroke, and playg a

tone that indicated the gesture was not accepted.
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Participants were told to pay attention to the instruction on the screen before making each

password, as the instructions changed during the experiment. Three different instructions were

provided. nOEA AAOU AT 1T AEOQEI T h bA Ofbterlabgbsiuie @hat youkahA DO |
remembereasilp 8 &I O OEA EAOA O1 Cwele@skedAolEntdr B Gektird that PAOOE A
would be very difficult for someone else to guess, but you can remembdy@asi , AOOI Uh ET OF
to steal condition, participants wereaskedO 1 Enté) a gesture thatyouwould remember easily, but

would besecure if someone was watching yemter it6 8 4 EAOA ET Gdhoiddddal T O DOl

versus external motivation andtask influenced the gestures created.

Participants were instructed to create seven different gestures for each condition, resulting in
twenty-one unigue gesture passwords. The presentation order of the three conditions was

counterbalanced across participants.

3.3.4. MEASURES

To quantify the influence of motivation and instruction on the gestures, several measures were

computed from the recorded touch data. Gesture length serves as a simple method to measure
complexity of gesture, with longer gestures generally represeimg passwords that are more

intricate8 4 EA OOAOOET C 11 AAQGEIT bDPOi OEAAO NOAT OEAEAAC
examining how the spatial layout affects gesture choice. Finally, gesture similarity provides a

method to measure how much participats vary their passwords, as well as measuring how

OT ENOA A PAOOEAEDPAT 060 CAOOOOAO AOA ET Al I PAOEOI T
3.3.4.1.GESTURH_ENGTH

To quantify the complexity of gestures, the length or number of targets that composed each

gesture was computed. Whilether measures could have been used, such as the size of resulting

AT 01T AET ¢ Al @gh 1001 AAO T &£ OAT O1 A0OG8 ET OEA CAOOOOANR
points provides a simple, direct measure of gesture complexity. While it is possible to kelong

gestures that are simpleand short gestures that are complexsuch ameasure accurately reflectd

the complexity of the majority of gestures produced by participants.

3.3.4.2.STARTINGLOCATION

The starting location was chosen to understand the strategigsarticipants used when creating

gestures. We hypothesized that the starting location would be influenced by the complexity of the
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gesture, as well as the strategy used to define the gesture. The starting location was defined as the

first target used in thecreation of each gesture.

3.3.4.3.CESTURESMILARITY

While there are several algorithms to compute the similarity of stroke gestures (e.g., $1
(Wobbrock, Wilson, & Li, 2007h 2 O A(9P1A § & Br@ractor (2010), etc), there are no
published methods for compuing the similarity of gesture passwords defined on a discrete grid.
This is becausefor grid-based gesturessimilarity is often irrelevant, as the application is only
interested if the input sequence matches the template sequence exactly. In contrasthis, we are
interested in the relative similarity of non-identical gestures. Such a measure should accurately
reflect minor variations in shape, as well as being translation invariant and robust to mirroring

operations.

The gesture similarity of two seqiences was computed by first simplifying the gesture such that

one of three possible states represented each directional change in the sequenberizontal,

vertical or diagonal. Thus, afoud| ET O CAOOOOA ET OEA OEADPA T &£ AT O
sequence: vertical, vertical, horizontal. To convert this representation into a numerical value of

similarity, the Levenshtein (1966), or edit distance, was computed between the two simplified

sequences. e gesture similarity measure @was computed as:

1

G.=——
* T 1+D,(4B)

Where D (A,B) is the Levenshtein distance of the simplified gesture sequences A aBd When
gestures are identical,G=1; as gestures become less similaG tends towards zero. ThusG is
bounded in the interval (0, 1].

In the analysis of gesture simarity, two variants were considered: selfsimilarity and group-

similarity. Self-similarity averaged OEA OEI EIl AOEOU 1T £# AAAE DPAOOEAEDA
gestures they created for the same experimental phase. This providle@ measure of howeach
participant varied his or her own gestures. Groupsimilarity averagedthe similarity of each
DAOOEAEDAT 060 CAOOOOAO xEOE OEA CAOOOOAO OEAO |

experimental phase. Thisrepresented OEA O1 ENOAT AOO 1 £ r&BEAongBth®©® OEAED A

set of gestures collected from all participants.
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3.3.5. RESULTS

Each of the measures was analyzed separately and is presented independently below.

3.3.5.1.GESTURB_LENGTH

A one-way repeated measuresANOVAcompared the effect ofInstruction (i.e., easy, hat to guess,
and hard to steal)on the gesture length participants used The analysis revealed that there was a
significant effect ofInstruction (R, ss= 10.21,p < .005 Figure 3.2). Posthoc comparisons using
Bonferroni-corrected paired ttests indicated that the meangesture length for the easy condition
(M =5.82 points, SEM = 0.1points) was significantly lower than the difficult to guessinstruction
(M =7.02 points, SEM = 0.20p < .001) and difficult to stealinstruction (M =7.03 points, SEM =
0.19 points, p < .001). No significant difference was found between the gesture length used with
the hard to guess andhard to steal instructions (p = .96). The results thus suggest that the
instruction or prompt influences the compexity of the created gestures. Instructions that
encourage memorability alone result in shorter gesture passwords, whereas instructions that
suggest the need for increased security or privacy result in longer, more complex gesture

passwords.

[=a]

w

Number of Points
w =

[

=

Easy Hard to Guess Hard to Steal

Figure 3.2. Mean gesture length by instructionError bars represent the standard error of the mean.

3.3.5.2.STARTINGLOCATION

I 0 A A OObquaded test & hdependence examirethe relation between Starting Location

(i.e., 1-9) and Instruction (i.e., easy, hard to guess, hard to stealfhe analysisfound that
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Instruction significantly influenced the starting location of the gesture passwords #2(16) = 33.47,
p < .01; Figure 3.3). @asydgestures started in the topcenter location more frequently (31
compared to 16 and 15)x EAOAAO OEA OEAOA OI COAOOG6 CAOOOOAOD

bottom-right location (19 compared to 6 and 9).

Figure 3.3. Frequency of starting location for eachnistruction. a) Easy;b) Hard to guess; cHard to steal.

3.3.5.3.CESTURESIMILARITY

A repeatedmeasures ANOVA with Instruction (i.e., easy, hard to guess, hard to stéaland
ComparisonType (.e., self, group) AAOAOI ET AA ET x OEI EI AO .BHOOEAEDPA
analysis found a main effect oflnstruction (F, 2s= 20.7, p < .001),and Comparison-Type (F1, 20=
19.8, p < .001; Figure 3.4). Posthoc comparisons using Bonferronicorrected pairedt tests
indicated that the easyinstruction resulted in significantly more similar gestures (M = 0.27; SEM
= 0.011) than the hard to guess (M = 0.22; SEM = 0.0@8; .001) and hard to steal (M = 0.22; SEM
= 0010; p< .001)instructions. There was no significant differencebetweenthe hard to guess and
hard to steal instructions (p = 0.74). The main effect of Comparison-Type additionally
demonstrated that self-similarity measures (M = 0.26; SEM = 0.012) were giificantly greater
than the group-similarity measures (M = 0.22; SEM = 0.005 < .001). This suggeststhat even
when participants were instructed to generatehard gestures, they still produced a set of gestures
that were more similar to each other, tharthey were to gestures created by other participantaNo

interaction was found betweenlinstruction and ComparisonType (p = 0.98).
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Figure 3.4. Gesturesimilarity by instruction and comparisontype. NotetheET AOAAOAA OEI EI AOEOGU &I O1 A

condition, and that selfsimilarity is consistently higher than groupsimilarity. Error bars represent the standard error
of the mean.

The results indicate that participants were creatinggestures that were less selfsimilar when

ET OOOOAGAA O1 AOAAOA -siifarkyCladieasgiloéniiedrOtdeeasy doiditiod E A OA |
and the two hard conditions. The length of the gestures increased from the easy to the hard
conditions, which may account for some of thelecrease in seHsimilarity. While this may be

addressed by a lengthnormalized similarity measure, such a normalization may artificially

discount the difference between gestures of vastly different lengthslote that the seltsimilarity is

higher than group-similarity in all cases (i.e., there is no significant interaction between the

instruction factor and the comparisontype factor, p =0.61). Thus, even when participants are

trying to create difficult to steal gestures, they tended to reise the same ptterns.

3.4. EXPERIMENT2: INFLUENCE OENVIRONMENT

Given that instructions influenced the creation of gestures, we sought to identify other factors
affecting gesture choice. The second experiment explordtbw device orientation affected the
choice of gesturepasswords. In this experiment, the orientation of the touch screen waaither

vertical or horizontal.

Due to the similaries found in Experiment 1 between the hard-to-guess and hard-to-steal

instructions, the hardto-stealinstruction condition was omitted from Experiment 2.
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3.4.1. PARTICIPANTS

Twenty-eight university students were recruited (M = 22 years SD = 3.2, range %5 - 27), 17 of
which were female.All participants had normal or correctedto-normal vision and were treated
according to the APA ethicalguidelines. Eleven had experience with gesture passwords. The
experiment lasted 30 minute. Participants were divided into a vertical condition, where the
touchscreen was vertically upright as in Experiment 1 Kigure 3.1), and ahorizontal condition,

where the touchscreen was placed horizontally on the table in front of the participant.

3.4.2. EQUIPMENT ANDAPPARATUS

The experimental setup was the same as in Experiment 1, except that the touchscreen plased

horizontally for half of the participants.

3.4.3. PROCEDURE

Participants were asked to generate a password suitable for use on a mobile device. Each
participant generated seven uniquepasswords forthe two instruction conditions: easy- O %1 OA O A
gesture that you can remembek A OBridhaed - O %1 OAO A CAOOOOA OEAO x1 01 A
Ol i ATTA Al OA O1 CcOAOON .TAOGsulted D14 Andglie gesliresiciedtd O AAOE
by each participant. Each participant completé each instruction condition when the touchsreen

was either vertical or horizontal, as device orientation was a betweenubjects factor. The

presentation order of instructions and orientationswere counterbalanced across participants.

3.4.4. MEASURES

The same measures used in Experimentvere also usedm the analysis of Experiment 2

3.4.5. RESULTS

As in Experiment 1, each measun&as analyzed independently ands presented separately.

3.4.5.1.GESTURELENGTH

A mixed-design ANOVA was conducted using a 2nétruction: easy, hard; withinsubjects) x 2
(Crientation: horizontal, vertical; betweensubjects) design. The analysis revealed a significant
effect of Instruction on the length of thegesture generated by participantyFi, 6= 27.6,p < .001,
with the gestures created when the easy instruction was provide(M = 5.42 SEM = 0.32) being
shorter than those generated when thehard instruction was provided (M = 7.06, SEM = 0.18).
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Orientation was not found to influencethe length of gestures createdR:, 26= 2.14,p = 0.16)), nor

was there aninteraction between Instruction andOrientation (p = 0.08).

0 II II

Horizontal Vertical

Number of Points
LS} w =Y wu [=a] ~

=

M Easy MHard

Figure 3.5. Length of resulting gestures across the four condition&rror bars represent the standard error of the mean.

3.4.5.2.STARTINGLOCATION

A0 A A O @hibgBiaded test analyed the influence of Instruction (i.e., easy, hard) on the Starting
Location (i.e., 19) of each gesture that was created. The analysis determined that gestures
generated when the hardnstruction was provided started in the bottom right corner more often
than those generated when theeasy instruction was given (?2(8) = 25.14,p < .01; Figure 3.6).
With both instructions, gestures started in the top left hand corner three times more often than
any other location. With the hard instruction however, gestures started in the top leftorner less
often than with the easyinstruction (i.e.,73 to 89) and more often in the bottom right corner than
with the easyinstruction (p < .05, 9 to (. The top-center location was alsaused more often in the

creation of easygestures corroborating the findings of Experiment 1.

Figure 3.6. Frequency of each starting location by instruction, collapsed across orientatiom). Easy,and b) Hard.
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ScreenCrientation alsosignificantly influenced starting position (?2(8) = 18.2,p < .05,Figure 3.7).
With both instructions, the top left was the most popular starting location, with gestures irthe
vertical condition starting in the top left significantly more often than in the horizontal condition
(i.e.,99to 63, p < .05. Similarly, gestures created in the vertical condition started less often in the
bottom left and bottom right corner than in the horizontal condition (i.e.,5 to 13 and 2 to 7,

respectively). These valuesvere marginally significant due to the small cell frequencies.

Figure 3.7. Frequency of each starting location by @ntation, collapsed across instruction.a) Horizontal and b)
Vertical.

3.4.5.3.CESTURESIMILARITY

A three factor (Orientation: vertical, horizontal; Instruction: easy, hard;Comparison-Type: self,
group), mixed designANOVA was conductedb understand how similar the participant generated
gestures were (Figure 3.8). The analysis revealed a significant effect dhstruction on the
uniqueness of the gesturesH, 6= 12.1, p < .005. Posthoc comparisons showed that the mean
similarity for t he easyinstruction (M = 0.29, SEM = 0.009) was significantly higher than the hard
instruction (M = 0.23, SEM = 0.04, p < .001).ComparisonType was found to be significant Fi, 2
= 6.26, p < .05), with selfsimilarity (M = 0.28, SEM = 0.016xignificantly higher than group-
similarity (M = 0.24, SEM = 0.08, p < .05).Orientation also significantly affected the similarity of
gestures 1, 26 = 5.29, p < .05, with gestures created in the horizontal condition having
significantly higher similarity (M = 0.268, SEM = 0.009) than those in the vertical condition (M =
0.239; SEM = 0.009). There was no significant interaction between any of the factops>(0.50 in

all cases).
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Figure 3.8. Similarity (self and group) between the gestures created under all four conditions. Note the consistently
high similarity in the easy condition and the higher similarity in the horizontal conditions. Error bars represent the
standard error of the mean

3.5. DiIscuUssION

The instruction AT AAOT U ET £ OAT AAO PAOOEAEDAT 006 AET EAA 1 A
OAT AT AR08 CAOOOOAR DAOOEAEDAT OO OUDPEAAIT U AOAAOGA
AoOAOT Al ZEAAOT OO0 xAOA EIT 001 AOAAA articipadtsigngthebet A ET OOC
their gestures and generated more complegestures The impact of instruction is clearly visible in

the gesture length, which demonstrated a significant difference between the easy and two hard

conditions.

7EAT  AOGEAA OI101AOCARADOAI 60EBROAOXxT OAOh DAOOEAEDAT OO |
Al i1 Pl AGEOGU ET 1100 AAOAOR AOG xEOE OEA OEAOA O ¢
AEEEAOAT AAO AAOxAAT OEA OEAOA O OOAAI &8 AT A OEAC
gestures created and the strategies used. Three strategies were observed when participants were

designing gestureghat were difficult to steal: crossovergFigure 3.9a), repetition of points(Figure

3.9b) and minimization of space(Figure 3.9c). When using crossovers, participantgenerated

gestures passwordghat were long, and contained many overlaping strokes (sometimes using a

arcing motion to skip over pointsdeliberately). The example shown irFigure 3.9b is an extreme

example ofrepetition of points, in which participants included a single point multiple times in the

same gesture, ikely so that the imagined attacker could not simply memorize the sequence

I TAAOGET 108 , A0Oi Uh 1T ATU DPAOOEAEDAT 6O ADPDPOI AAEAA
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producing smaller gestures which could be completed quickly without making large, overt

movements, making them harder for an attacker to observe.

a) b) C)

<

o v 4

>

Figure 3.9. Variations used in constructing hard to steal gesturesa) Qossovers, b) Repetition of points, andc).
Minimization of space.

Regarding the starting location, there was a shift away from the tepenter location when creating

OEAOA8 CAOOOOAOh ETAEAAOET ¢ OEAO O1T 1T A DAOOGEAEDAIT C
ET OEEO Oi AOGET 008 11 AAO&indrease i Ehe (se of £h® boomBighA OE U A A

Al OT A0 xEAT AOAAGEI ¢ OEAOA OI CcOAOO8 ET OOOOAOGEIT I

minor in comparison to the drastic change in gesture length.

Gesture similarity provides further evidence that instrudion caninfluence the design of gestures.
Gestures createdwith the easy instruction were more selfsimilar than those with the hard
instruction, indicating that participants varied their gestures morewith the hard instruction.
However, evenwith the hard instruction, participants still generated variations of their own
gestures, resulting in seKsimilarity that was consistently higher than groupsimilarity. This
suggests that an instruction to create hard gestures may not be enough to get users to
appropriately vary their gesture passwords. Rather, when changing passwords, it may be
beneficial for the system to compute the similarity of the new password to previous passwords

and suggest a change if it is too similar.

With respect to the effects of instretion, the results of the second experiment mirror the first.
Easy gestures tended to be shorter and simpler than hard gestures. Likewise, sgithilarity was
consistently higher than groupsimilarity, even when the hard instruction was provided. The
orientation of the device did not have a significant effect on the measured complexity of the

gestures.

With respect to the starting location, participants created more gestures starting at the bottom of

the screen, which was physically closer to participantshis is evident in the increase in gestures
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starting in the bottom row more often for the horizontal condition, and the decrease in gestures
that start in the top-left. This result emphasizes the interplay between motor movements and
cognitive goals. The gstures used in the horizontal condition tended to minimize movements and
could be completed using efficient maneuvers. Extending this reasoning to a mobile scenario, we
would expect to find qualitative differences in gesture passwords generated when thalilet was

flat on a surface or held at an angle. Likewise, passwords generated while using a device with one
hand are likely to be qualitatively different from those definedthe device is supported by one

hand and the other hand isnteracting, due to thesubstantial differences in movements required.

The higher similarity values (both self and groupsimilarity) in the horizontal condition re -iterate

the influence of the physical input space. Further studies are needed to confirm the cause of the
increasedOET E1 AOEOUh AOO xA OOOPAAO OEAO PAOOEAEDAT O
they were familiar with due to prior experience with writing and sketching. As most writing and

sketching is performed on a horizontal surface, familiar symbols and shas (and variants on

these patterns) may be more natural for users. Conversely, the vertical touslereen is a relatively

novel environment that may illicit patterns that are more novel

3.5.1. ANALYSIS OEESTURH-ORM

From the data collected from both experimentswe inspected the gestures to determine the types

of strategies used by participantsAcross both experiments,1022 gestureswere recorded.

The uniqueness of gestures was analyzed by examining how many times each of the gesturas
repeated across partigpants. There were 800 different gestures generated across participants
with distribution shown in Figure 3.10. Of those, 708 were unique and onlysed once. On the
other end of the spectrum, the most frequently usd gesture,an O, 6 Crigdrd3X1), was
independently generated by 20 participants.

The nine most popular gestures are depicted ifrigure 3.11 and represent 13% of allgenerated
gestures. From these samples, as well as a manual inspection of the rest of the generated gestures,
it is clear that the overwhelming majority of easyto-remember passwords were based on simple
spatial arrangements. Simple shapes starting in th@p-left corner were frequent, as were spatial

variations on these patterns (e.g., translatiorrotation, and mirroring).
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Figure 3.10. Frequency of use of gestures. Note that the first bar is truncatedrfolarity, the true value is 708, indicating
that 708 gestures were totally unique and generated only once across both experiments.

Another common observation was the limited use of directional changes, i.e., participants often
produced two subsequentstrokes in the same direction (e.g.Figure 3.11, top row). This has a
cognitive and motor advantage for users, as they can chunk a series of three points as a single,
ballistic stroke. Consequently this reduces theeffective space of possible passwords and results

in overall less secure passwords.

Participants did not appear to map numeric values onto the gesture positions (as in a PIN
keypad), but rather treated them as a simple twalimensional grid on which to draw shapes. This
supports with our theory that gesture passwords may be anchored spatially when there is a lack

of meaning associated with the input space.
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Figure 3.11. Most popular gesures generated by participants, with the top left being the most frequently used
gesture, with frequency decreasingo the right, then down.

3.5.2. IMPLICATIONS FORESTUREPASSWORDS

For designers of gesture password interfaces, the results of this study canide future

implementations in several ways.

Designers should leverage the fact that the instructions given to the user can affect the strength or

Al i pIl AGEOU T &£ OEA OOAO6O DPAOOxI OAO8 $AOECI AOO OE
security to users when they are prompting the user for their password. After a user enters a

password, the system could run simple tests to validate the strength of the password. First, it

could compare against a database of simple shapes (and spatial transforms of thebapes). Next,

it could count the number of directional changes in the password (rather than just the length of

the password) and warn if the userhas only one directional change. Lastly, the interface could

PDOil OEAA OEDO 11 AOAAGESugh advaning Ané staRtiAgOdddlidh AraisBigh O O x |

points, and including numerous directional changes.

The similarity measure could prevent end-users from re-using variants on old passwords. This
can reduce the chances that usersould bere-exploited following a breach of their password. The
OEi E1 AOEOU | AAOGOOA AT OI A A1 01 Al i PAOA A OOAOBO ¢
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password if it is too similar to others.
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3.5.3. IMPLICATIONS FORESTURH_EARNING

The results of this study demonstrate thatthe high-level task can affect the types of gestures
users choose. The results presented here with gesture passwords parallel the existing work on
user-defined gestures thatmap to commands(Morris et al, 2006). What is novel, however, is the
examination of the effects of manipulating the screen orientation in gesture definition. With the
same highlevel task, a change in the performance context catffectthe resultant gesturesfor the

same users.

The increasing adoption of wearable and ubiquitous interfacebas resulted in a highly dynamic
computing environment. The location of interfaces, the pose of the body, and the required actions
to perform a gesture will vary in this emvironment. If the system relies on usedefined gestures,
there may be substantial confusion as users migrate from one gesture to another within the same
task. Thus, it is clear that userdefined gestures are not a panacea for the lack of affordances
presented by gestural interaction, and gesture sets the foreseeable future will require learning

on the part of the end user.

3.5.4. FUTUREWORK

This study was conducted on a touciscreen monitor, and the results reflect what users may do
on a tablet rather than a nobile phone or wearable interface We suspect that passwords
generated on a mobile phone are qualitatively different due to the different movement cost
associated with entering them. Future work will test this hypothesis and examine if there are

other aspects thatchange when enteing gestures on a variety of mobile devices

Building on the spatial nature of the observed gestures, we plan to analyze hakanges to the
appearance of the input grid affectesulting passwords. Modifying the layout of the poird with
non-uniform spacing, or a circular layout mayinfluence how users view and interact with the
input space.In addition, by providing numerical or alphabetical anchors on the input grid we can
examine how the presence of cognitive landmarks interactaith the spatial nature of gesture
passwords, and how users generate memorable sequences when both mnemonic devices are

available.

3.6. SUMMARY

The results of the second experiment indicate that usedefined gestures are not a panacea for the

problem of gesturelearning. Simple changes, such as the orientation of the device, can affect how
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users create mappings between command and action. Therefoliaterfaces that support user

defined mappings of gestureshould provide support to scaffold learning.

3.6.1. RELEVANCE DGESTURH_EARNING

This chapter has provided evidence that users are not always consistent with the gestures that
they produce, even when thdask is held consistent The metaphorsthat participants relied on
changedasorientation changed, despitepartici pants having similar intentions. Within the context

of gestural interaction, these results pointto a need to emphasize gestural learning even when
users are able to select theipwn gestures. In particular, it demonstrateshe need tosupport the
declarative component of gesture learningvithin these scenarios Users have to remember which
action they intend to executeeven if thelearning or performance context has changed. Systems
must address the transfer of gesture learning across environmental condins and minimize the
cognitive interference that occurs when learning a variety of gestures in similar conditions.
Systems may alsaneed to integrate cues to prime theappropriate gesture to be recalled, or

provide other mechanisms to help the users recagze or recall the appropriate action.

With respect to the framework outlined in Chapter 1, this study provides evidence that pre

existing knowledge may need to be supplemented by additional information. In cases where
contextual interference is likely tooccur (e.g., similar interfaces with different operations, or the

OAi A ET OAOEAAA OOAA ET AEAZAOAT O AT OGEOITI1 AT 60Qh

reinforced by interface cues or other learning support.

3.6.2. LIMITATIONS

While this study wasconductedin a lab with desktop hardware that was reconfigured, emerging

interaction paradigms, such as wearable and ubiquitous computing, will have similar dynamic

AT 6Ol 11 AT OA1T AEAT CAOh xEEAE [ AU Al OAdditiodadyd OOA OB ¢
the use of gesture passwordsas a test bed within this chapterhas provided insights into the

practical application of gestural interfaces. Thepreceding results can influence the design of

future authentication mechanisms and improve security for mobile deices.
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Chapter 4

The Cognitive Advantage of Gesturés

Camplex gestural interfaces must support the usein learning the declarative mapping between
their intent and the movements required to convey their intent to the system.ldentified in

Section 1.3, one methoaf providing this support is to modify how a gesture is renderedin terms

of the modality and the form within the modality. As identified in Chapter 2many modalities and
forms of feedback can be leveraged to support this learningdowever, it is currertly not clear
how to best supportsuchmappings.

In this chapter, we attempt to answer the question of whether or not gestures have a cognitive
advantage over traditional input mechanisms, and why that may be the case. We exploestres
and traditional input using an ecologically focused experimentand examine the relative
importance of visual and motoric actions when learning gestures. With a better understanding of
how gestures are encoded, designers can build better training systemshich enable uses to

understand the gesture vocabulary of the system they are usirgiickly.

4.1. LEARNING THECOMMANBACTIONMAPPING

Some researchers have believed that gestures are relatively eawylearn as they leverage the
picture superiority effect as well as motor memoy (Weiss and De Luca, 2008) The picture
superiority effect suggeststhat information is learned more readily if it is presented in picture
form. As gestures are often displayed graphically as strokes, one could reason that it may benefit
due to this effect. The belief that motor memory may facilitate improved retention of gestures
likely stems from the familiar long-term and robust nature oflearned motor skills. It may also
arise from the dual encoding(Paivio & Kalman, 1973)of actions as visual and disnct motoric
patterns. Or, it could beexplained by the information packaging hypothesis (Kita, 2000Wwhich

predicts that gestures aid in the conceptualizatiorof ideas Similar work has shown gesturing

1 The majority of this chapter is currently under review for publicatioheafiournal of Applied Cognitive Psychology.
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while learning new information aids in the retention of that information (Cook, et al., 2008). This
effect has been demonstrated in a number of domaing) particular the acquisition of language

and mathematic skills(Goldin-Meadow et al. 2009jverson and GoldirMeadow 2005).

Regardless of the explanationboth the visual and motor componensg are considered important

aspects of gestural interfaces. Some of the earliest gesil interfaces, marking menus

(Kurtenbach, 1993), were designed such that invoking the same menu command would require

the same motormi OAT AT 68 | AAEOET 1T Al 1 Uh OEA AAOECT ET Al OAA
redundant as the menu selections provided visual feedback. However, the mark was considered

important to the design and itis believed to be an integral part 6 the success ofmarking menus

(Kurtenbach, personal communication, Mag2, 2014).

Despite the prevalence of gestural interfacesnd the body of literature surrounding their design,
there is no work confirming that gestures have a cognitive advantagever traditional input
methods. There isalso no work evaluaing the relative effects ofthese components on gesture
learning. To fully understand and be able to exploit the full potential of gestural interaction, it is
essential that we determine what benefits gesture input &ers, and what the causes of these

benefits are.

In this chapter, we present two experiments that further our understanding of gesture learning.
In the first experiment, participants learned sequences usingither gesturing or pointing. This
experiment was ecologically focused with gesture input leveraging both of the hypothesized
visual and motor advantages. In the second p&riment, the visual component wa fixed and

participants learned sequences of varying length using gesturing or pointing.

4.2. EXPERIMET 1: COMPARINAGESTURES ANPOINTING

The purpose of the first experimentwas to determine if gestures offer a cognitive advantage over
traditional pointing methods with respect to the encoding and recall of predefined sequences.
The study focused onaddresdng whether or not gestural interaction, as implemented in many
interfaces, truly offers the advantage that many researchers claim. To that end, it was designed to
be ecologically valid with the two conditions differing in both the visuals presented awell as the
movements required. This experimental design is unable to assess the relative contribution of

eachaspect
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If the gesture condition is more efficient, it may be because fewer movements are required to
articulate the sequencewhich results in reduced movement complexity. Prior work has shown
that movements that are more complexresult in a longer response time when recalling the
movement (Henry & Rogers, 1960) An alternative explanation may come from prior work
spanning several domains that shas improvements in learning while gesturing (Kita, 2000;
Goldin-Meadow et al. 2009).Lastly, gesture input may have an advantage due to the pictoral
superiority effect (Paivio & Kalman, 1973), which would allow users to chunkthe gestures into
visually simpler shapes which are easier to encode and recallAlternatively, the use ofpointing to
enter sequences shouldesult in movements that are more complex and hava longermovement
OEi A8 4EEO ET AOAAOGAO OEA OOAO0G60 A @ymaidnGeardingOl
Additionally, it requires the user to expend more effort during the learnig phase andhas been
shown to be afactor in learning (Cockburn et al, 2007) Thus, it is important to assess which of

these input modalities has an advantageaia realworld scenario.

4.2.1. PARTICIPANTS

Twenty university students (M = 20.1,SD= 2.2, range= 1827 years; 16 female) were recruited to
participate in 30 minute session All participants had normal or correctedto-normal vision and

were treated according tothe APA ethichguidelines.

4.2.2. EQUIPMENT ANDAPPARATUS

A ¢ p 8DelbSX2210Ttouch monitor (Figure 4.1) which was set in the upright positionand used
for the experiment. The monitor had aresolution of 1920 x 1080 pixels and a refresh rate of 60
Hz.The software was written in C# andWPF, and ran on a Windows 7 PC. The custom software
was responsible for loading the current trial information, presenting the appropriate stimuli, and

recording all touch events with their associated metalata (e.g.time, position,and so on).

4.2.3. PROCEDURE

Each participant performed a training phase where they learned pairings between sequences of
dots and different background colours. After a break, participants performed a twalternative
forced choice taskwhere they responded as quickly as possible to whether or not the presented
color and sequence matched one that they had learned in the training phase. While this approach

does not require the user to perform the learned gesture, response time is typicalljore
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sensitive to smaller effects providing a better understanding of the relative advardges of

stroking and pointing.

Figure 4.1. Experimental ®tup showing a participant learning a sequence in thepointing condition. The dots
illuminated in sequence (in the top portion of the screen) and participants would touch them in the same sequence on
the bottom portion of the screen.

Participants completed a learning phase, followed by a-Binute distractor task, and finally the
recognition phase. Participants were randomy assigned to one ofwo conditions, either pointing
or stroking. The gesturegrid for the learning and test phases consisted of a 3 x 3 grid of dofhis

gesture grid was shown on a bekground of one of seven distinct colors.

Figure 4.2. (Left) The learning phase in the stroking condition displagd lines connecting the dots in the sequence
during the demonstration as well as during user input (Right) The screen presented to participants during the
recognition task required participants to hold the bottommost button until the probe gesture appeared. Then
participants quickly touched the Yes or No button to indicate their response
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In the leaming phaseof the pointing condition (Figure 4.1), the sevensequencesto be learned
were shown by illuminating dots one at a time at an interval o200 milliseconds. The full
sequenceremained visible until the end of the trial. Participants then had to repeat thatsequence
on a separate input grid underneath the instruction grid bypointing to each of the dots in
sequenceone at a time using four separate movements. As participants touched each of the dots,
they illuminated and remained illuminated until the end of the trial. If the participant did not
repeat the sequencecorrectly, a tone sounded to indicate an incorrect response. The screen was
cleared and the participant moved to the next trial.The stroking condition was simibr to the
pointing condition, but in addition to the dots being illuminated, a line between each of the dots
was animated to connect the dots in the sequence providing the visual feedback of typical
gestural interfaces (Figure 4.2). Further, participants in the stroking condition specified the
sequence using a single continuous stroke through the dots rather than individual pointing

movements.

Each participant performed both the pointing and stroking conditions, with the order
counterbalanced across participants. Unique sequences and colours were used for each
participant, but the same sequences and colours were used between participants and
counterbalanced between the pointing and stroking condition. Each participant learnedeven
sequences during thdearning phase. The learning phase consisted of three training blocks, each
consisting of two sequential presentations of each gesture, resulting in six exposures to each of

the seven gestures.

Once the learning phase was completed, e distractor task consisting of a personality
guestionnaire followed by mathematical questionswas administered. Paricipants were timed

with a stopwatch, and after 5 minutes were told to stop.

Finally, in the test phase, participants had 42rials in which a gesture and background colour

were shown, along withOEA ET OOOOAOETT O(AOGA Ui & OAAT OEEO
AAZE OAed mbOOGAITI O AIGAAAT T AA O09AOGe AT A O.16 AT A A |
i AOEAA (Bduieh’2 ParticipantsresedOEAEO A£ET CAO 11 OEA O(11 A6 A

new gesture and background colour would be shown after a random intervdletween 500 to
3500 milli seconds Participants were instructedto respond as quickly and acurately as possible
AEOAO OEA CAOOOOA xAO OEI xi h AT A OAOPITAAA AU DPOA

trials, half were pairings that were learned during the training phase, and half were unseen
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pairings. Of the unseen pairings, half weraovel, unseen sequences, and half were learned
sequences paired with the incorrect colour. No novel colours were shown during the testing
phase. Accuracy as well as response tingee., the time that the gesture was shown eacreen to

the time when a buttan was pressed)was recorded.

4.2.4. MEASURES

Three measures were used to evaluate the degree of learning of each of the sequenesponse
time, accuracy, andefficiency The response time was measured as thaterval between the time
when the gesture appearedon the screenand the time the finger touched down on either the
O ésd or O 06 buttons. Accuracy was measured as the proportion of correct responses to the
recognition task. Efficiencywas computed as the response time divided by the proportion of

correct responses.

4.2.5. RESULTS

A two-sample paired t-test compared the influence of stroking andpointing on response time,

accuracy, and efficiency

4.2.5.1.RESPONSE TIME

Input condition was found to marginally influence response timét(18) = 1.9,p = 0.072,d = 0.85),
with stroking resulting in faster responses M = 1914 milliseconds, SEM= 465.6 milliseconds)
than pointing (M = 2672 milliseconds, SEM= 1163 milliseconds). This indicates that gesturing

while learning sequences may result imetrieval that is more efficient.
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Figure 4.3. Response time by condition. Error bars show standard error of the mean.
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4.2.5.2. ACCURACY

Input condition was not found to significantly influence a&curacy ¢(18) = 1.41,p = 0.176,d =
0.81). While stroking, participants were slightly moreaccurate (M = 0.84,SEM= 0.135) than while
pointing (M = 0.73,SEM= 0.138). This suggests that there may be& possible effect of stroking

resulting in more memorable sequences than pointig.

0.9
0.8
0.7 I
0.6
0.5
0.4
0.3
0.2
0.1

Accuracy

Stroking Pointing

Figure 4.4. Accuracyby condition. Error bars show standard error of the mean.

4.2.5.3.EFFICIENCY

Input condition was found to significantly influence efficiency(t(18) = 2.42,p = 0.027;d = 1.08).
The use of strokingresulted in more efficient responses M = 2493 milliseconds, SD= 1175
milliseconds) than the use ofpointing (M = 3865 milliseconds, SD= 1626 milliseconds). Combined
with the accuracy and response timeresults, stroking shows a significant advantage over

pointing. This indicates that gestures may be more readily learnable tharaditional input .

4.2.6. DISCUSSION

The results demonstrate a substantial advantage for gestural input in the ability to encode and
retrieve gestures. Participants in the stroking condition had more accurate and faster responses
than those in the pointing condition. This resulted in significantly better efficiency for the

participants in the stroking condition.

While gestural input has an advantaget iis not clear what component of the gestural input is
causing the advantage. The two conditions tested in this experiment differed in the movements

required as well as the visual aspect so it is not possible to identify their relative contributions.
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Gesturing Pointing

Figure 4 5. Efficiency by condition. Error bars show standard error of the mean.

4.3. EXPERIMENTIWO: EFFECTS ONWISUAL ANOVIOTORCOMPONENTS

Experiment one demonstrated that gestures havan advantage over pointing, though it is not

clear whether that advantage is due to the visual or motor components of gestural interfaces.

In this experiment, we sought to identify the contribution of the motor aspect to gesture learning.
To that end, thevisuals in both conditions were identical with visual strokes being rendered for
both pointing and groking conditions. The experiment was simplified by removing the colour
pairing, and participants learned sequences of different lengths so that we couldeasure the
OA1 0068 1 &£ AAAET ¢ DT ET OO OI OANOGAT AAOG 1 AAOT AA

4.3.1. PARTICIPANTS

Twenty-four university students (M = 20.5 SD= 2.4, range= 1825; 18 female)were recruited to
participate in a 60-minute session. All participants had normal or rrected-to-normal vision and

were treated according to the APA ethidaguidelines.

4.3.2. EQUIPMENT ANDAPPARATUS

The same apparatus and distractor tasks as used in Experimentnkere used again in Experiment
2. The software used in the experiment was modified igihtly to account for the minor change in

experimental paradigm.
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Figure 4.6. Participant demonstrating the learning phase during the pointing conditiorjust prior to touching the final
target.

4.3.3. PROCEDURE

Participants performed a learning phase, followed by a distractor task, and finally a test phase,

similar to Experiment 1.

During the learning phase,each participant learneda set of eightsequencesof length 4, 5 or 6
depending on the condition Learningwas structured into three blocks of training trials, with
participants being exposed to each sequence twice per block, resulting $ix exposures toeach
sequence during the learning phase. Each sequence was displayed with a stroke animating
through them, as in the stroking condition in Experiment 1Participants then had to either stroke

through the sequence or point at eaclot in the sequenceusing discrete movements

Following the learning phase, &-minute distractor task consisting of a personality gestionnaire

followed by mathematical questions was administered.

Following the distractor task, the test phase was completed. Participants were shown 32
sequences, each on a grey backgrounaind determined if they had seen the gesture during the
learning phase or not Thesame responsetime paradigm from Experiment 1 was used Eight of
the sequences presented during the test phase were trained sequences, eight were novel

sequencesand each sequence was presented twice.
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