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Abstract 
 

After decades of research, gestural interfaces are becoming increasingly commonplace in our 

interactions with modern devices. They promise natural and efficient interaction, but suffer from 

a lack of affordances and thus require learning on the part of the user. 

This thesis examines the declarative and procedural components of learning gestural interaction, 

and how designers can best support gesture learning within their interfaces. First, we show that 

user-defined gestures are not always consistent, even when the same user is defining a gesture 

for the same task, indicating that even when the user is able to select their own gestures some 

amount of gesture learning still may be necessary. Next, we present two studies that help us 

better understand the role of visual feedback, finding that it has a dramatic effect on the degree to 

which gestures are learned. Next, we examine the procedural component of gesture learning by 

varying the scale, location, and animation of visual feedback presented during training. We also 

show that evaluation using a retention and transfer paradigm is more appropriate for evaluating 

gestures than the other methodologies used previously. Lastly, we present YouMove, a full-body 

gesture training system that incorporates the lessons learned from the present work on stroke-

based gestures. 
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Chapter 1  

 

Introduction  

Mobile devices and interactive surfaces are the primary driver of recent developments in gestural 

interfaces. Mobile phones have become ubiquitous, with approximately six billion mobile phones 

in use worldwide, one billion of which are smart phones (Kafka, 2012). These devices have the 

processing capabilities of general-purpose computers, but their input is often constrained to 2D 

finger input on a touch screen. Tablets, touch screens, and interactive surfaces have also found 

increased adoption among consumers. Many of these devices have severely constrained input, 

sensed only through touch or pen-based interaction with the display surface. For these devices, 

gestures offer a promising alternative to traditional input with on -screen buttons and widgets. 

They allow users to provide input to the device without having to select a number of small on-

screen targets, navigate through hierarchies of menus, or interact directly with the on-screen 

content. 

Despite their potential for use on an increasing number of devices, gestures have remained 

relatively primitive. This is due, in part, to the difficulty with gestural interfaces lacking clear 

affordances, and their largely hidden functionality. The gesture-action mapping that is necessary 

for interacting with an application is often hidden and users must expend considerable effort to 

learn which gestures are available as well as learning how to perform the gestures. There are 

several existing research efforts that address various aspects of this problem (e.g., making them 

more approachable (Bragdon et al., 2010), or making it more convenient to access the guide (Bau 

and MacKay, 2009)), but there lacks a systematic analysis of gesture learning and an identification 

of the various components that affect how well a user learns the gestures. 

This thesis examines how users learn gestures, and how we can best support that learning with 

the design of our interfaces. The thesis contributes a novel framework which identifies the factors 

that designers can leverage in their interfaces ÔÏ ÅÎÈÁÎÃÅ ÕÓÅÒÓȭ ÇÅÓÔÕÒÅ ÒÅÃÁÌÌ ÁÎd execution. 

Specifically, it identifies ÔÈÅ ÕÓÅÒȭÓ ÐÒÅ-ÅØÉÓÔÉÎÇ ËÎÏ×ÌÅÄÇÅȟ ÔÈÅ ÉÎÔÅÒÆÁÃÅȭÓ ÓÕÐÐÏÒÔ ÆÏÒ ÄÅÃÌÁÒÁÔÉÖÅ 

learning, ÁÎÄ ÔÈÅ ÉÎÔÅÒÆÁÃÅȭÓ ÓÕÐÐÏÒÔ ÆÏÒ ÐÒÏÃÅÄÕÒÁÌ ÌÅÁÒÎÉÎÇ ÁÓ ÂÅÉÎÇ ÃÅÎÔÒÁÌ ÔÏ affecting gesture 

recall and execution. This thesis samples problems from each of these three top-level components 

and attempts to provide answers to open questions. With respect to pre-existing knowledge, the 



 

2 

thesis examines how reliable usersȭ self-defined gestures are when the context of use changes. 

Next, the thesis examines the declarative component of gesture learning by analyzing the 

cognitive advantage that gestures have when encoding sequences and investigating whether that 

advantage is due to a visual or motor process. With regards to procedural learning, the thesis 

examines appropriate ways to train and evaluate gestural guides to ensure that the user 

maximizes learning. Lastly, the thesis presents a full-body movement training system that extends 

what is known about two dimensional stroke gestures to a more complex scenario to understand 

the generalizability of the presented principles. 

1.1. BACKGROUND 

1.1.1. EFFICIENCY BENEFITS 

Gestural interaction also offers efficiency benefits over other input modalities. Marking menus, for 

example, allow users to execute commands using the physical actions associated with accessing 

menus, without visually searching for the target items (Kurtenbach, Sellen, & Buxton, 1993; 

Kurtenbach, Moran, & Buxton, 1994; Kurtenbach & Buxton, 1993; Figure 1a). With proper design, 

gestural interfaces allow for chunking and phrasing (Buxton, 1986), which provides cognitive 

benefits and increased input bandwidth. One such system is FlowMenu (Guimbretiere & 

Winograd, 2000), which allows for the simultaneous specification of command and parameter. 

Scriboli implements chunking and phrasing by allowing selection and action to be specified using 

a single, fluid movement (Hinckley, Baudisch, & Ramos, 2005; Figure 1b). SimpleFlow pushes 

efficiency benefits even further and allows users to input partial gestural commands, enabling the 

ÓÙÓÔÅÍ ÔÏ ȬÁÕÔÏ-ÃÏÍÐÌÅÔÅȭ a gesture when it has been sufficiently distinguished (Bennett et al., 

2011). While these systems have not matured into widespread commercial offerings, they 

demonstrate the potential for effective gestural input.  

The efficiency benefits provided by gestures and the widespread use of interactive displays have 

driven the development of gesture interfaces for a wide variety of tasks. Text entry, for example, 

can be accomplished using Graffiti (Fleetwood et al., 2002), Unistroke (Mackensize & Soukoreff, 

2002), EdgeWrite (Wobbrock, Morris, & Wilson, 2003) or SHARK (Zhai & Kristensson, 2003) 

gestures. The Android and Windows 8 operating systems provide support for gesture-based 

passwords for fast and safe logins (Microsoft, 2012; Niu & Chen, 2012). Mozilla Firefox also has 

several add-ons that allow users to navigate webpages using mouse gestures (Gomita, 2012). 

7ÉÇÄÏÒ ÅÔ ÁÌȢȭÓ ɉςπρρɊ 2ÏÃË ÁÎÄ 2ÁÉÌÓ ÍÕÌÔÉ-touch gestures enable precise and efficient 
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manipulation of content on large interactive surfaces. Gestural interaction can also be used to 

navigate interfaces in video games and entertainment systems (Segen, 1998). Autodesk Maya and 

3DSmax use gesture shortcuts to allow designers to change tools, navigate, and select options 

quickly (Autodesk, 2014; Kurtenbach, 1993). Several diagram editors have also been developed 

with gestural support to allow natural specification of visual elements (Sutherland, 1964; 

Zeleznik et al., 2008). 

a) 

 

b) 

 

Figure 1.1. a) Example of a marking menu, in which users implicitly learn gestures associated with menu items 
Kurthenbach & Buxton (1993). b) Scriboli gestural interface in which selection and action are combined into a single, 
fluid movement. Images from Hinckley, Baudisch, & Ramos (2005). 

 

1.1.2. TYPES OF GESTURES 

4ÈÅ ÔÅÒÍ ȬÇÅÓÔÕÒÅȭ ÉÓ ÖÅÒÙ ÂÒÏÁÄȟ ÄÅÓÃÒÉÂing many interactions with devices today. Some 

designers consider ÓÍÁÌÌ ÕÎÉÔ ÏÐÅÒÁÔÉÏÎÓ ÌÉËÅ ȰÔÁÐȱ ÏÒ ȰÐÒÅÓÓ ÁÎÄ ÈÏÌÄȱ ÔÏ ÂÅ ÇÅÓÔÕÒes. However, 

these actions are of little interest as they are simple to perform but have very low input 

bandwidth. More complex gestures, such as stroke gestures or 3D free-space gestures are able to 

convey much more information, but are not as user-friendly as the more primitive gestures. 

Stroke gestures have attracted substantial attention in both research and commercial scenarios. 

Such gestures are composed of a single contact event (e.g., a finger or pen contact), movement of 

that point in 2D space, and are terminated when the finger or pen is lifted from the surface. These 

gestures are particularly interesting, as many properties (gesture form, user interface support, 

etc.) generalize across input modalities (e.g., pen, mouse, touch; Tu, Ren, & Zhai, 2012), and they 

are a very expressive method for specifying input on touchscreen devices. 
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Many of the more complex modes of gestural interaction (e.g., 3D free-space, multi-touch, etc.) 

have gained acceptance due to the development of new sensing hardware and the emergence of 

new applications for interactive technology. These gestures allow interaction with devices from a 

distance, provide high input bandwidth, and allow for more natural methods to specify actions. 

Many of the more complex gestures share similarities with complex movements found in 

everyday life, such as dancing or sports. As such, much of the knowledge learned from those 

domains can benefit gestural interaction, just as developments in gestural training have the 

potential to benefit those domains in return.  

The composition of a gesture set varies widely depending on the task. Many gesture sets are 

designed to be symbolic analogues to the actions or items they are mapped to. For instance, many 

text entry gestures resemble corresponding letters (Figure 1.2; Fleetwood et al., 2002; Wobbrock, 

Myers, & Kembel, 2003). Other applications use gestures that resemble the first letter of the 

ÉÎÔÅÎÄÅÄ ÁÃÔÉÏÎȟ ÅȢÇȢȟ ÁÎ Ȭ3ȭ ÓÈÁÐÅ ÔÏ ÃÒÅÁÔÅ Á 3ÔÒÉÎÇ ÏÂÊÅÃÔ (Zhai et al., 1995; Chatty & Lecoanet, 

1996). However, the number of possible commands quickly exceeds the available letter-based 

gestures, restricting the adoption of this technique. Other symbolic gestures include those that 

exploit prior knowledge or those are an iconic representation of an action, such as a scribbling 

gesture to delete or using a lasso to select multiple objects (Bragdon et al., 2008). The use of 

symbolic gestures is also limiting, as users often disagree on what gesture is representative of a 

given action (Wobbrock, Morris, & Wilson, 2003), especially when it comes to more abstract 

actions such as Ȭ)ÎÓÅÒÔ 0ÈÒÁÓÅȭ (Wolf & Morrel-Samuels, 1987). To avoid these issues, many 

systems and researchers use abstract gestures (Figure 1.3) with no obvious symbolic mapping 

(Bau & Mackay, 2008; Freeman et al., 2009). While this removes any bias users may have to a 

particular gesture, each study tends to devise their own set of gestures, making it difficult to 

compare results across studies. 
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Figure 1.2. Examples of the Graffiti (top) and EdgeWrite (bottom), in which each symbolic gesture bears a 
resemblance to the letter it represents. Images from Castellucci and Mackenzie (2008) and Wobbrock, Myers, & 
Kembel (2003). 

 

 

Figure 1.3. Examples of abstract gestures in which each gesture has a recognizable form, but does not correspond 
to a particular stimulus or action. Image from Zhai et al. (2010). 

 

1.1.3. NECESSITY OF GESTURE LEARNING 

The difficulty with gestural interfaces, and one of the primary reasons behind their slow adoption, 

is that gestural interfaces are not ȬÓÅÌÆ-ÒÅÖÅÁÌÉÎÇȭ (Baudel & Beaudouin-Lafon, 1993; Bragdon et 

al., 2008). Users are required to learn and practice each gesture to become efficient enough to use 

it in place of other input. This problem has yet to be solved, and many current gestural interfaces 

rely on a small set of simple gestures (i.e., swipes, taps, and pinches) to avoid the problem of 

learning gestures. With these interactions, it is sufficient to write instructions for end-users in the 

ÍÁÎÕÁÌ ÏÒ ÏÎ ÓÃÒÅÅÎ ɉÅȢÇȢȟ ȬÓ×ÉÐÅ ÔÏ ÕÎÌÏÃËȭɊ ÁÓ ÕÓÅÒÓ ×ÉÌÌ ÂÅ ÁÂÌÅ ÔÏ ÅØÅÃÕÔÅ ÔÈÅ ÓÉÍÐÌÅ ÁÃÔÉÏÎÓ 
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with little training. To achieve effective interaction with gestural devices, however, such simple 

interactions are not sufficient. A rich gesture vocabulary requires gesture languages that must be 

learned by users, either implicitly or explicitly (Norman, 2010). 

Learnability of gesture sets involves two factors. The first is the cognitive mapping between the 

desired task or command and the required gesture. This declarative component of learning is 

typically studied in human computer interaction (HCI)-focused research. It is easy to measure 

with recall tasks (using proportion correct) and it is intuitively important (users must know 

which gesture to execute before they perform it). The second, equally important aspect of 

gestural interactions is the procedural component of gesture learning, which involves the ability 

to perform a gesture accurately. Bau and MacKay (2008) recognize the importance of gesture 

ÅØÅÃÕÔÉÏÎȟ ÓÔÁÔÉÎÇ ÔÈÁÔ ÕÓÅÒÓ ÍÕÓÔ ȰÍÁÓÔÅÒ ÔÈÅ ÄÅÔÁÉÌÓ ÏÆ ÄÒÁ×ÉÎÇ ÔÈÅ ÓÈÁÐÅ ÔÏ ÉÍÐÒÏÖÅ ÒÅÃÏÇÎÉÚÅÒ 

ÁÃÃÕÒÁÃÙȱȢ 4ÈÉÓ ÃÏÍÐÏÎÅÎÔ ÏÆ ÇÅÓÔÕÒÁÌ ÉÎÔÅÒÁÃÔÉÏÎ ÂÅÃÏÍÅÓ increasingly important as the use of 

gestural interfaces continues to grow and devices rely solely on gestural input. In the case of 

experts, many of their input sequences are largely automatic, relying primarily on responses from 

the motor system. Motor performance is important for novices as well. As the size of gesture sets 

is increasing (e.g., to 40 targets (Ouyang & Li, 2012)), both novices and experts have to perform 

gestures with increasing accuracy for the recognizer to distinguish them from other, potentially 

similar gestures. It is also foreseeable that future interfaces will allow users to modify parameters 

of commands by producing variations on gestures, which again would require substantial skill to 

perform. 

Recently, several researchers have proposed that users should be able to define their own 

gestures for interaction rather than using a designer-defined set (Nacenta et al., 2013). Studies 

have shown that there can be high agreement on the gesture-to-action mapping between users, 

especially for actions that are more concrete (Wobbrock et al., 2009). Other systems have 

leveraged crowd-based definitions of gestures, enabling users to input gestures without defining 

them, relying on the similarity of their gesture to other usersȭ gestures to determine the intended 

action (Ouyang & Li, 2012). While these approaches offer learning-free gestural input, it is not 

clear whether they scale to more abstract actions (Ruiz, Li & Lank, 2011). Additionally, no studies 

have examined the self-consistency of usÅÒÓȭ ÃÈÏÉÃÅ ÏÆ ÇÅÓture under different conditions, that is, 

the degree to which the same user generates the same gesture for the same task. If users vary 

their chosen gesture, then they may need support for learning the appropriate gesture to use 

within th e given context. 
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1.2. THESIS OBJECTIVES 

Though there is existing research that analyzes various aspects of the learnability of gestures, 

ÔÈÅÒÅ ÉÓ ÎÏ ÆÏÃÕÓÅÄ ÃÏÎÔÒÉÂÕÔÉÏÎ ÔÈÁÔ ÉÄÅÎÔÉÆÉÅÓ ÔÈÅ ÃÏÎÓÔÉÔÕÅÎÔ ÅÌÅÍÅÎÔÓ ÔÈÁÔ ÁÆÆÅÃÔ Á ÕÓÅÒÓȭ ÁÂÉÌÉÔÙ 

to learn and perform gestures. Thus, this thesis seeks to provide a novel framework for gestural 

interaction, as well as work towards answers to several important questions within gestural 

interaction. In the subsequent chapters, the following questions are addressed: 

 Chapter 3: To what degree is gesture learning necessary? Can gesture learning be avoided by 

implementing user-defined gestures? 

 Chapter 4: Does gesturing offer a learning advantage over traditional input methods? If so, are 

these advantages due to the motor or visual component of gesturing? 

 Chapter 5: How can users be trained to gesture efficiently, and how should we evaluate such 

learning? 

 Chapter 6: How well does knowledge of 2D stroke gestures extend to movement scenarios 

that are more complex? 

1.3. A FRAMEWORK FOR GESTURE LEARNING 

Although there has been much focus and attention devoted to the learning of gestures, and many 

novel techniques have been developed to aid in gesture learning, there has yet to be a clear 

understanding of how and when to support the learning of gestural interaction. This thesis 

presents an examination of gesture learning, detailing the factors that affect gesture learning. 

While some of these factors have been leveraged previously in gestural interaction, we identify 

many new factors and provide a categorization from which other work can build upon. Thus, we 

make the novel contribution of the gesture-learning framework, depicted in Figure 1.4. 
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Figure 1.4: Framing of gestural interaction which outline the effects of pre-existing knowledge and the various 
mechanisms that provide support for procedural and declarative learning. The combined effect of these components 
ÍÁÎÉÆÅÓÔÓ ÉÔÓÅÌÆ ÉÎ ÕÓÅÒÓȭ recall and execution of gestures. 

 

If gestures are supported within the interface, then the gestures must be selected in a way that 

minimizes their need for learning by leveraging existing knowledge. If a gesture set must be 

learned, then appropriate support for learning the declarative component of the gesture (i.e., the 

recall of the correct gesture) as well as support for learning the procedural component of the 

gesture (i.e., the articulation of the gesture) must be provided. Figure 1.4 illustrates how this 

framework relates to the resultant recall and execution of the gestures within the user interface. 

1.3.1. LEVERAGING EXISTING KNOWLEDGE 

Once gestural interaction has been identified as an input mechanism, the designer must consider 

the form of the gestures themselves and how they can be designed to minimize the need for 

learning. The degree to which gestural support is required is dependent on whether gestures are 

previously known, user-defined, or completely novel. 

Some gestures may be previously known and thus require little or no training. A select group of 

gestures is culturally engrained through marketing campaigns and product dominance such that 

they have become widely known (e.g., swipes). Alternatively, gestures may be mapped to physical 
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affordances (e.g., pinches, or rotations); in these instances, little learning support is likely 

required as users rely on known metaphors.  

If the functionality of the interface is primarily rooted in operations that are concrete in nature, 

then user-defined gestures may provide users with the ability to choose memorable gestures that 

do not require extensive training to recall and perform. Prior work has shown that user-defined 

gestures are easier to remember (Nacenta et al. 2013), and may thus require minimal training. It 

is still unknown, however, if users consistently choose the same gestures for the same actions 

performed in different contexts. If this is the case, then the amount of training required may be 

more than previously expected.  

If a gesture-based user interface has a large number of functions, operations based on abstract 

commands, or a high degree of command parameterization, then it is likely that the system will 

need to leverage novel gestures. In this case, it will need to provide infrastructure for instructing 

users on the proper selection and execution of the gestures. When possible, completely novel 

gesture sets should be avoided. If, however, they must be used, a number of strategies (as 

outlined in the following sections) can help ease learning and reduce the burden on the user. 

It is also important to consider what aspects of the gesture the user may already know. The 

declarative component may be well known, for example, if you are using gestures that represent 

alphanumeric characters. In this case, the user may still  need to learn how to execute the gesture 

accurately enough for the system to recognize it.  

When deciding on the degree and form of the gesture learning support it is important to consider 

the resulting usability of your system. If the user must undergo extensive training before using 

the system then they may be discouraged from using the product. If too little support is provided 

then users may struggle to achieve proficiency and can become frustrated during interaction. An 

ideal support system would scaffold novice users, allowing them to focus on their primary task 

while simultaneously implicitly teaching them the declarative and procedural components of 

their gestural interactions. 

1.3.2. SUPPORT FOR DECLARATIVE LEARNING 

Interfaces may support the declarative component of gesture learning by structuring the gestures 

effectively, modifying the rendering of gestures, or by providing explicit training. As gestural 
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interfaces do not have visible affordances, users must be informed of the available gesture set in 

some other manner.  

Consideration for learning the declarative component could also be achieved through careful 

structuring of the gestures themselves ɉÅȢÇȢȟ ÔÈÅ ÈÉÅÒÁÒÃÈÉÃÁÌ ÓÔÒÕÃÔÕÒÅ ÏÆ !ÕÔÏÄÅÓËȭÓ -ÁÙÁ 

software (2014)). By structuring the menu in a logical manner and grouping related items, the 

interface can take advantage of the hierarchy to aid in the recall of actions. Other structures can 

be possible depending on the nature of the interface, and could potentially rely on abstract 

categorization or spatial mapping, for example. 

Systems may also modify the rendering of gestures to make them more unique and easily 

remembered. This can be achieved by changing the form (e.g., the visual appearance) of the 

gesture or by rendering the gestures using additional modalities (e.g., haptic, colour mapping, or 

audio pairing) to provide some of the benefits seen in dual coding studies (Paivio & Kalman, 

1973).  

Support for the declarative component can also be achieved through an explicit training phase 

(e.g., the training sandbox of Bragdon et al. (2010)). With this approach, users get the benefits of 

repeated rehearsals without the worry of unintended consequences on their work environment. 

The training system could be designed to take advantages of many of the factors known to affect 

learning ɉÅȢÇȢȟ ÄÉÓÔÒÉÂÕÔÉÎÇ ÐÒÁÃÔÉÃÅȟ ÄÒÁ×ÉÎÇ ÁÔÔÅÎÔÉÏÎ ÔÏ ÔÈÅ ÐÁÉÒÉÎÇ ÉÔÓÅÌÆȟ ÅÔÃȢɊȢ 7ÉÔÈÉÎ Á ȬÌÉÖÅȭ ÕÓÅÒ 

interface, many of these approaches would not be available, as they would interfere with the 

operation of the system itself. 

1.3.3. SUPPORT FOR PROCEDURAL LEARNING 

Interfaces can support the learning of the procedural component of a gesture using appropriate 

feedback or explicit training. This is necessary so that users can perform the gesture accurately 

enough for recognition by the system. For example, with handwriting recognition software, the 

user invariably knows which letters they intend to convey but their  writing is often not precise 

ÅÎÏÕÇÈ ÆÏÒ ÔÈÅ ÓÙÓÔÅÍȭÓ ÁÌÇÏÒÉÔÈÍÓ ÔÏ ÒÅÃÏÇÎÉÚÅ ÔÈÅ ÉÎÔÅÎÄÅÄ ÃÈÁÒÁÃÔÅÒȢ 4ÈÉÓ ÐÒÏÂÌÅÍ ÉÓ 

compounded with gestural interfaces, as gestural interfaces become more complex, allowing for a 

multitude of commands and parameters to be expressed in a single stroke.  

The designers of gestural interfaces thus need to provide feedback ÏÎ ÔÈÅ ÕÓÅÒÓȭ ÐÅÒÆÏÒÍÁÎÃÅȟ ÎÏÔ 

only by relaying the recognized action, but also by supplying useful information to improve future 
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performances of the gesture and improve the communication between the user and gesture 

recognizer. Such feedback could be provided by many mechanisms and at various points 

throughout thÅ ÉÎÔÅÒÁÃÔÉÏÎȢ "ÅÆÏÒÅ ÁÎÄ ÄÕÒÉÎÇ ÔÈÅ ÉÎÔÅÒÁÃÔÉÏÎȟ ȰÆÅÅÄÆÏÒ×ÁÒÄȱ ɉ"ÁÕ ÁÎÄ -ÁÃËÁÙȟ 

2009) can provide users with a guide that informs them of the correct actions. Following 

interaction, a system can provide feedback regarding which gesture was recognized. This 

information allows the user to compare their input to what the system was expecting.  

There are many considerations to the type of feedback and guidance provided. The location, 

content, appearance, and timing of the feedback are of prime consideration. Excess feedback can 

hinder learning, and poorly designed feedback may go unnoticed. The motor learning literature 

has examined some of these issues, but it is not immediately evident how to adapt their findings 

to the specific needs of gestural interaction that must also consider usability. 

As with declarative learning, users can perform explicit training prior to using the interface to 

improve their ability to perform gestures. With an explicit training phase, the system could 

leverage methods or modalities of feedback that may be too intrusive to leverage within a live 

system (e.g., summary feedback after a number of gesture attempts). 

1.4. THESIS ORGANIZATION 

This thesis presents several contributions in the area of gestural learning with the goal of better 

understanding how users learn gestures and how to better enrich their training . With the 

increase in complexity and the adoption of gestural interfaces for a variety of tasks, it is critical to 

have methods and systems that scaffold users as they begin to use new gesture-based systems. 

Chapter 2 outlines relevant work from the human-computer interaction and motor learning 

domains to frame our understanding of how movements are learned and the applicability  of 

various learning methods to gestural interaction. 

In Chapter 3, we analyze gesture learning within the context of user-defined gestures. The 

purpose of these studies is to establish whether user-defined gestures may be a viable alternative 

to learned gestures, mitigating the need for gesture training. With two experiments, the 

consistency of gesture creation was observed, as high-level tasks and environmental context was 

manipulated. The studies use gesture-passwords as a testing sandbox and provide insights into 

the strategies that users employ when defining secure passwords for gesture based 

authentication on mobile devices. This chapter addresses how pre-existing knowledge can be 
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leveraged in the design of gestural interfaces, and whether or not user-defined gestures are 

consistent across various contexts. 

In Chapter 4, we analyze whether the use of gestural input or ÔÒÁÄÉÔÉÏÎÁÌ ȬÐÏÉÎÔÉÎÇȭ ÉÎÐÕÔ ÁÉÄÓ in 

the encoding of information and declarative memory. If gestures are proven to encode 

information more readily, then it will likely be easier for novice users to learn the association 

between a gesture and a command than it would be for them to navigate a traditional button-

based interface. Following this, we analyze the respective roles of the visual and motor 

component within gesture learning. Prior work wi thin HCI has typically ignored the distinction, 

but the respective roles of each modality are important to consider when designing gesture-based 

user interfaces. This chapter provides insight into how the visual system contributes to the 

learning of the declarative component of gesture learning. 

Chapter 5 explores how the form of the visual feedback used during training impacts the learning 

of the procedural component of gestural interaction. Using a retention and transfer paradigm 

from the motor learning literature, three guides from the existing literature,  and a novel, adaptive 

guide were evaluated. The use of the retention and transfer paradigm revealed properties of 

gesture guides often overlooked in previous works. This chapter analyzes how gestural interfaces 

can be designed and evaluated to best support the procedural learning of gesture execution 

outlined in the previous section. 

In Chapter 6, we present YouMove, a training system for complex, full-body gestures. By 

integrating findings from previous studies, the system uses an augmented-reality mirror  to 

ÏÖÅÒÌÁÙ ÖÉÓÕÁÌ ÆÅÅÄÂÁÃË ÄÉÒÅÃÔÌÙ ÏÖÅÒ ÔÏÐ ÏÆ ÔÈÅ ÕÓÅÒȭÓ ÒÅÆÌÅÃÔÉÏÎ ÐÒÏÖÉÄÉÎÇ ÁÎ ÉÎÔÕÉÔÉÖÅ ÁÎÄ ÎÁÔÕÒÁÌ 

guide. The system supported a wide variety of movement domains and abstract movements, as 

well as more concrete movements from the dance domain. YouMove demonstrated the 

applicability of the results found in Chapters 3, 4, and 5 to more complex, higher-dimensional 

gestures. 

Lastly, we conclude with a review of how the presented work fits within the gesture learning 

framework, and outline directions for future avenues of research. 
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Chapter 2  

 

Related Work 

Human memory involves a complex set of interconnected processes, the details of which are 

beyond the scope of this thesis. However, there are several fundamental concepts that are 

important with respect to gesture learning. Of particular relevance are a basic understanding of 

long term and working memory, the distinction between procedural and declarative memories, 

and the factors affecting learning, as well as how learning is evaluated for each of these 

components. We also examine relevant work within the HCI literature on existing systems and 

methods that support gesture learning. 

2.1. TYPES OF MEMORY 

Long term memory can be categorized along a number of dimensions according to the length of 

the memory (short or long term), and the characteristics of the memory (procedural or 

declarative, and implicit or explicit ).  

2.1.1. SHORT AND LONG TERM MEMORY 

Memory can be logically divided into short term memory (i.e., working memory) and long term 

memory (i.e., permanent storage). The capacity of working memory is relatively small, with room 

for approximately seven unique items at a time (Baddeley, 1994). Items in working memory are 

thus available for less than a minute (Luck & Vogel, 1997). This capacity can however be 

expanded through the use of chunking (Chase & Simon, 1973), in which distinct, logical objects 

ÃÁÎ ÂÅ ÇÒÏÕÐÅÄ ÉÎÔÏ Á ÓÉÎÇÌÅȟ ÃÏÈÅÒÅÎÔ ÇÒÏÕÐȢ &ÏÒ ÅØÁÍÐÌÅȟ ÔÈÅ ÓÔÒÉÎÇ ȬÏÇÄȭ ÉÓ ÕÎÌÉËÅÌÙ ÔÏ ÈÁÖÅ 

meaning to a person, whereÁÓ ÏÎÅ ÃÁÎ ÒÅÍÅÍÂÅÒ ÔÈÅ ÓÉÎÇÌÅ ×ÏÒÄ ȬÄÏÇȭ ÑÕÉÔÅ ÅÁÓÉÌÙȢ  #ÏÍÂÉÎÉÎÇ 

the letters into a logical whole allows for one item, instead of three separate items, being encoded. 

Chunking can be can be an extremely useful method of learning large amounts of information, but 

requires that the information have some structure or meaning (Gobet & Simon, 1998).  

Baddeley and Hitch (1947), described a useful conceptual model of working memory in 1947. 

This model consists of a central executive, phonological loop, and the visuo-spatial sketchpad. The 

central executive is responsible for allocating attention, processing information, and accesses 

information stored in long-term memory (as well as the other components of working memory). 
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The phonological loop is the short-term memory store responsible for processing auditory and 

verbal information, such as speech, music, and the rehearsal of words. The visuo-spatial 

sketchpad is the component of working memory that is responsible for processing images, color, 

and spatial information. Within gestural interaction, this type of memory is typically used only 

when referencing the guide or other learning material (e.g., consulting a crib sheet).  

While items in short term memory are typically forgotten after a minute, items in long term 

memory can be remembered for a much longer period, potentially years (Rohrer et al., 2005). 

Long term memory acts as a relatively permanent, limitless, store of memory, whereby memories 

are stored via consolidation. Sleep is believed to play a large role in consolidation, with memories 

ÂÅÉÎÇ ȬÓÔÒÅÎÇÔÈÅÎÅÄȭ ÄÕÒÉÎÇ ÓÌÅÅÐ ɉ3ÔÉÃËÇÏÌÄȟ ςππυɊȢ 

2.1.2. PROCEDURAL AND IMPLICIT MEMORY 

Remembering a particular sequence of actions, or steps to achieve a goal, is accomplished using 

procedural memory. In general, procedural (or non-declarative) memories are memories that are 

difficult to describe (Squire, 1992). The ability to tie shoelaces or ride a bicycle are due to stored 

procedural memories. Procedural memories that relate to motor movements are of particular 

interest to gestural interfaces, which require movements that can be somewhat complex and 

occasionally unnatural. 

Many procedural memories are learned implicitly, i.e., memories are generated without the 

conscious awareness of the learner (Roediger, 1990). This type of memory is believed to operate 

using an entirely separate process from explicit memory (Cohen et al., 1985). Implicit learning is 

important to gestural interfaces, as the form of a gesture is rarely the focus of the interaction, yet 

it must be learned for efficient gestural interaction. 

2.1.3. DECLARATIVE AND EXPLICIT MEMORY 

Remembering the pairing between a desired action and corresponding gesture falls within the 

scope of declarative memory. That is, it relates to a memory that can be described (Tulving & 

Markowitsch, 1998). The work verbal associate learning is of most relevance to gesture learning. 

In this type of learning, participants associate pairs of words, or a word with a corresponding 

action (Bower, 1970). Uses of declarative memory are common in everyday life, for example, 

remembering telephone numbers, or remembering that the alphorn and yodeling are icons of 

Swiss music. 
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Declarative memories are commonly learned explicitly, i.e., the learner is aware that they are 

being learned (Berry and Broadbent, 1988). Explicit learning requires active and conscious 

involvement on the part of the learner. Studying for a test or researching the history of the clock 

are common examples of explicit learning.  

2.2. FACTORS IN LEARNING 

2.2.1. FACTORS IN LEARNING PROCEDURAL MEMORIES 

Several factors affect the learning and performance of a movement. Unsurprisingly, the amount of 

practice has been shown to improve learning and performance. For many complex movements it 

is generally accepted that the practice must be deliberate, and not simply repetition of learned 

movement (Ericsson, Krampe, & Tesch-Romer, 1993). The distribution of practice over time has 

also been shown to affect the amount of learning, with increased learning when practice is 

distributed over time (Donovan & Radosevic, 1999). While these factors are important to skill 

learning, they are not as relevant to gesture learning as the feedback given via knowledge of 

results and knowledge of performance. 

Wulf and Shea (2004) provide an excellent summary of many of the known effects of augmented 

feedback. For example, they outline how the delay between performance and feedback can affect 

learning, what type of feedback (qualitative or quantitative) should be presented based on the 

ÕÓÅÒȭÓ ÐÅÒÆÏÒÍÁÎÃÅȟ ÁÎÄ ÈÏ× ÓÕÍÍÁÒÉÚÉÎÇ ÁÎÄ ÁÇgregating feedback can improve learning. While 

all of these elements are relevant to gestural learning, a full examination is beyond the scope of 

this thesis. However, this, along with other work (Wulf and Shea, 2004), provides an excellent 

review of the various parameters known to influence the learning of movements. A few key 

factors directly relevant to the work in this thesis are presented next 

Knowledge of results (KR) is information regarding the success or failure of a movement. The 

presence and frequency of KR has substantial consequences on the amount of learning that occurs 

during practice. When KR is too frequent, it hinders learning, as users become dependent on it to 

ÍÁËÅ ÓÍÁÌÌ ȬÃÏÒÒÅÃÔÉÖÅȭ ÍÏÖÅÍÅÎÔÓ ɉ3ÁÌÍÏÎÉȟ 3ÃÈÍÉÄÔȟ Ǫ 7ÁÌÔÅÒȟ ρωψτȠ 3ÃÈÍÉÄÔȟ ρ991). With 

respect to gestural interaction, KR can detail the gesture form that was recognized, or include the 

similarity of the performed gesture to other gestures. 

Knowledge of performance (KP) is information regarding how the performed movement differed 

from the target movement. As with KR, the presence and frequency of the target movement can 
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affect the degree to which the movement is learned (Park, Shea, & Wright, 2000). Within the 

context of gestural interaction, KP can be presented by displaying the ÕÓÅÒȭÓ ÔÒÁÊÅÃÔÏÒÙ ×ÉÔÈ ÔÈÅ 

target trajectory, potentially highlighting discrepancies between the trajectories. Within gesture 

ÇÕÉÄÅÓȟ ÔÈÉÓ ÔÙÐÅ ÏÆ ÉÎÆÏÒÍÁÔÉÏÎ ÈÁÓ ÂÅÅÎ ÒÅÃÏÇÎÉÚÅÄ ÁÓ ÉÍÐÏÒÔÁÎÔ ɉÅȢÇȢȟ ÔÈÅ ÕÓÅ ÏÆ ȬÆÅÅÄÆÏÒ×ÁÒÄȭ 

ÁÎÄ ȬÆÅÅÄÂÁÃËȭ ÂÙ "ÁÕ Ǫ -ÁÃËÁÙ ɉ2008)), but the existing research from the motor learning 

literature has been largely ignored. 

Though the field of motor learning studied many fundamental issues such as how movements are 

learned and performed, it is not clear which research is directly applicable to gestural interaction. 

Research in motor learning typically makes no consideration for the usability of systems, so 

directly implementing their findings could result in systems that are not user-friendly and 

unpredictable. In addition, many studies within motor learning used simple, static one-

dimensional positioning tasks that do not reflect the complex nature of gestures or the dynamic 

environment that modern devices support. 

2.2.2. FACTORS IN LEARNING DECLARATIVE MEMORIES 

Several factors determine the degree to which something is learned and remembered. As with 

procedural learning, repetition plays a large role, with more repetitions aiding in learning. 

Similarly, the structure of practice has an impact, with distributed practice resulting in better 

learning than massed practice (Pashler et al., 2007). These two factors alone do not regulate the 

degree to which items are learned; when designing gestural interactions, there are several factors 

that affect the rate of learning. It is therefore important to understand the potential impacts these 

factors have on the usability and learnability of gestural interfaces. 

One factor that influences the memorability of items is the degree to which items are elaborated 

on (Cohen & Aphek, 1980). Rather than simply rehearsing each item, elaboration involves 

constructing mental associations between the new item and existing knowledge. By situating new 

information within  Á ÐÅÒÓÏÎȭÓ ÅØÉÓÔÉÎÇ ÍÅÎÔÁÌ ÓÃÈÅÍÁȟ ÉÎÆÏÒÍÁÔÉÏÎ ÂÅÃÏÍÅÓ ÍÏÒÅ ÓÔÒÏÎÇÌÙ 

encoded and memorable. Related ÔÏ ÔÈÅ ÉÄÅÁ ÏÆ ÅÌÁÂÏÒÁÔÉÏÎ ÉÓ #ÒÁÉË ÁÎÄ ,ÏÃËÈÁÒÔȭÓ ɉρωχςɊ ÌÅÖÅÌÓ-

of-processing effect. Craik and Lockhart observed that items that were processed superficially 

(e.g., based on their sensory components) were not remembered as well as when more semantic 

processing was involved (e.g., when participants thought about the meaning of the items). Within 

gestural interaction, the gestures could be designed such that they relate to some symbolic 

meaning associated with the action. 



 

17 

Another factor that influences the strength of a memory is the generation of an item. When 

subjects are able to generate their own stimuli, or portions of the stimuli, they remember them 

better than when the stimuli are given to them (Slackmecka & Graf, 1978). This generation effect 

has been shown to extend beyond improving memory for the stimuli itself. For example, Marsh, 

Edelman and Bower (2001), had participants either read or generate a list of 30 words, and those 

words were presented either on paper or on a computer monitor. Not only did participants 

remember the generated words better than the read words, but they were also better able to 

remember the context in which the generated words were presented. 

The organization of information also affects its memorability. If items can be structured into a 

logical order, e.g., a hierarchy, this tends to aid learning (Bower, 1970). For instance, Dowling 

(1973) found that participants were better able to recognize melodies derived from a single, 

previously heard group than melodies that spanned two previously heard groups. This provides 

evidence for organizational chunking in long-term memory, allowing for more efficient storage 

when items have structure. Within gesture learning, marking menus take advantage of this type of 

organization by structuring the commands in a hierarchy, and associating directional strokes with 

each level of the hierarchy. 

Interference can also play a large role in how items are remembered or forgotten. Retroactive 

interference occurs when previously learned information cannot be recalled due to new 

information being learned (Baddley & Dale, 1966). Conversely, proactive interference occurs 

when old information prevents new information from being learned (Kane & Engle, 2000). 

Associative interference may also lead to problems during recall, as it occurs when multiple, 

similar items are trying to be remembered. A large number of similar items results in greater 

interference and decreased learning (Ellenbogen, 2006). In all types of interference, the similarity 

between the pieces of information regulates the amount of interference that occurs, with more 

similarity resulting in more interference and difficulty during recall. Increasing the 

distinctiveness of each piece of information can reduce the interference, though in some cases this 

is at odds with constructing a meaningful organization of the material. Within gestural interfaces, 

interference can result from different contexts requiring the same gesture, or by having similarly 

formed gestures mapped to distinct actions. Designers should attempt to separate the gesture 

forms as much as possible, not only to decrease cognitive interference but to increase the 

accuracy of the gesture recognizer. 
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2.3. MEASURING LEARNING 

Due to differences in how memories are processed in the brain and the different contexts they are 

used in, procedural and declarative memories are studied using different paradigms. Procedural 

memory is often studied within the context of motor skills, involving the physical practice of a 

particular skill. Following practice, performance for that skill is measured using retention and 

transfer tests to assess learning. While studying declarative memory, a number of methods can be 

used. Recall tasks following training are common, but are sometimes not sensitive enough to 

small effects or are not applicable in some scenarios. As such, evaluations using mental 

chronometry or recognition tasks are common. 

2.3.1. MEASURING LEARNING FOR PROCEDURAL MEMORIES 

The field of motor learning has established methods for assessing the ability to learn and execute 

movements, ranging from simple pointing and grasping movements (Chapman et al., 2010) to 

complex skills such as surgical movements (Brydges et al., 2007) or sports (Helsen et al., 2000). 

The motor learning literature acknowledges a critical difference between performance and 

learning (Schmidt & Lee, 2011). Performance is the production of a specific action, whereas 

learning is the relatively permanent acquired capabilities that facilitate improved performance of 

that action. Within gestural interfaces, performance would refer to the production of a gesture, 

whereas learning would refer to ÏÎÅȭÓ increased ability to recall a gesture and perform it more 

efficiently.  

Empirical studies that separate performance from learning commonly involve a training  phase 

followed by a retention and then transfer component. In the retention component, participants 

perform the task at a common level of the independent variable, typically 24 to 48 hours after 

training (Shea & Morgan, 1979). In the transfer component, participants perform a novel 

variation on the task they were trained on, e.g., performing the task with the other limb.  

The use of retention tests is standard in the motor learning literature, as they allow the 

researcher to separate the effects of the performance factors from the learning factors. 

Performance factors have an effect only for a short time, whereas learning factors have an effect 

much longer after training. Tests are frequently performed after at least one full night of sleep 

(e.g., 24 hours), as sleep has been shown to play an important role in the consolidation of motor 

skills (Savion-Lemieux & Penhune, 2005). The task performed during retention tests is usually 
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similar to the task performed during training, but all participants are moved to the same level of 

the independent variable, which is often the removal of feedback (Schmidt & Lee, 2011).  

In the transfer component, participants perform a novel variation on the task they were trained 

on, e.g., performing the task with the other limb. For instance, participants might perform a 

learned skill at a different scale or angle (Albaret & Thon, 1998). There has also been substantial 

work within the motor learning field on bilateral transfer, i.e., the degree to which a skill learned 

wi th one hand transfers to the other (Annett and Bischof, 2013; Panzer et al., 2010; Sainburg & 

Wang, 2002). These studies show that transfer takes place even when participants are not 

ambidextrous. Transfer tests are another way to assess learning, as the mental changes associated 

with learning one skill are frequently generalizable to another, very similar skill. These tests can 

also show how well a learned skill generalizes to a new context (Shea & Morgan, 1979). Though 

previous research in the gesture learning literature does not use retention and transfer 

paradigms, we use them to examine the effects of the guidance hypothesis within the context of 

gesture learning (Chapter 5). 

2.3.2. MEASURING LEARNING FOR DECLARATIVE MEMORIES 

Various methods of testing memory and learning have been employed to understand the 

cognitive component of memory. An obvious method of testing memories is using free recall, 

wherein participants recall as much information as they can remember (Squire, 1992). A variant 

on this method is cued recall, wherein participants are given a cue and are asked to recall specific 

information related to that cue (Ellenbogen et al., 2006). This method is most relevant to gesture 

learning, as gestures are often paired with specific commands and those commands can be used 

as cues. 

!ÎÏÔÈÅÒ ÍÅÔÈÏÄ ÔÏ ÅÖÁÌÕÁÔÅ ÔÈÅ ÄÅÇÒÅÅ ÏÆ ÌÅÁÒÎÉÎÇ ÉÓ ÔÈÅ ÕÓÅ ÏÆ ȬÆÏÒÇÅÔÔÉÎÇ ÃÕÒÖÅÓȭ (Haist, 

Shimamura, & Shea, 1992). Measuring the ability to remember information in the days following 

the learning of the information allows researchers to measure how quickly the information is 

forgotten, which correlates negatively with the strength of learning. Shallower curves reflect 

information that was initially learned to a greater degree. In cases of overlearning, people are 

unlikely to forget the information, as it is deeply encoded with strong memory traces (Walker, 

1986)Ȣ 2ÅÌÁÔÅÄ ÔÏ ÔÈÉÓȟ ÒÅÓÅÁÒÃÈÅÒÓ ÃÁÎ ÁÌÓÏ ÍÅÁÓÕÒÅ ÍÅÍÏÒÙ ȬÓÁÖÉÎÇÓȭȟ ×ÈÉÃÈ ÒÅÐÒÅÓÅÎÔ ÔÈÅ ÃÏÓÔ 

to re-learn items which have previously been learned but forgotten. When items have been 
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previously learned, they will become remembered more quickly with re-training than unseen 

items (Roediger, 1990). 

Finally, mental chronometry can assess the degree to which something has been learned. Mental 

chronometry is the use of response times to assess how quickly something can be retrieved from 

memory (Squire & Zola, 1996). Faster response times are indicative of a memory that has a 

simpler trace, or stronger connections to other memories, indicating a greater learning. Mental 

chronometry can be a powerful tool to measure learning, as it removes many potential sources of 

variability, including the verbalization or motor performance used to express learned 

information. Mental chronometry is often used in conjunction with forced choice paradigms, 

where participants must select whether an item has been seen before, or if it is a new, unseen 

item (Dudukovic & Wagner, 2007). While mental chronometry has not been previously used in 

the gesture learning literature, we adapt it and use it to measure the efficiency of encoding in the 

recognition of gestures (Chapter 4). 

2.4. LEARNING AND MEMORY IN GESTURAL INTERACTION 

Within the context of human computer interaction, gestures have been seen as particularly suited 

for niche applications, for example, where input is otherwise constrained. These types of 

interfaces rely on both declarative and procedural memory, and typically require substantial 

amounts of training to master. There have not been studies on how the fundamental aspects of 

memory influence gesture learning, but there have been a number of systems and methods 

developed to improve the learnability and usability of gestural input. These systems often 

incorporate many features aimed at improving learning, making it difficult to establish the 

contributio n of each relevant factor. 

2.4.1. APPROACHES TO TRAINING 

Researchers in human computer interaction have tended to view gesture learning as a problem to 

be solved rather than studied, with most research focusing on the development and evaluation of 

new systems rather than a systematic evaluation of the constituent factors.  

2.4.1.1. IMPLICIT MEMORY IN GESTURAL INTERACTION 

Several gestural systems are designed such that the guide is always available and the user 

implicitly learn s the gestures that correspond to frequently used actions. Examples of this can be 

found with marking menus (Kurtenbach, 1993), where the user performs directional strokes on a 
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radial menu to indicate selections. The availability of the menu allows users to perform a visual 

search for the desired menu item if they are not able to recall it. Several extensions of this idea 

have been proposed to increase the bandwidth or ability to phrase commands while still 

maintaining the learning benefits of the structured menu (Bailly, Lecolinet, & Nigay, 2008; Zhao & 

Balakrishnan, 2004). A similar concept can also be found with gesture keyboards (Figure 2.1a), 

e.g., SHARK (Kristensson & Zhai, 2004), or Swype for the Android operating system. With these 

keyboards, users draw strokes directly over top of the desired letters to input text on touch-

screen devices. In both systems, it is assumed that users will perform the same command 

repeatedly, i.e., access the same menu items or input the same words, thus implicitly learn ing the 

corresponding gestures. While these systems may be effective for their specific use case, they do 

not generalize across applications, e.g., a marking menu system does not function well on a small 

touch screen due to the limited input space and high occlusion, and Swype-based interactions 

require substantial screen real-estate and only provide alpha-numeric input. 

a) 

 

b) 

 

 

Figure 2.1. a) Swype keyboard, in which users trace over the keys using a single fluid gesture. With enough iterations, 
users should implicitly learn the motor patterns required for frequent words. Image from wirelesszone.com. b) 
Octopocus is a dynamic guide that allows the user to directly trace out gestures and updates dynamically as the user 
completes the stroke. As the cursor moves from the position on the left to that on the right, the guide is updated to 
ÒÅÆÌÅÃÔ ÔÈÅ ÉÍÐÒÏÂÁÂÉÌÉÔÙ ÏÆ ÔÈÅ ȬÐÁÓÔÅȭ ÃÏÍÍÁÎÄ ÂÅÉÎÇ ÔÈÅ ÔÁÒÇÅÔ ÁÃÔÉÏÎȢ )ÍÁÇÅ ÆÒÏÍ Bau & Mackay (2008). 

 

Recently, systems offering dynamic, real-time guidance have been proposed (Bau & Mackay, 

2008; Bennett et al., 2011; Freeman et al., 2009; Kristensson & Denby, 2011). These systems 

provide the user with information to guide the execution of a gesture, such as a traceable 

depiction of the gesture (Figure 2.1b). These guides are believed to improve performance, as 

ȰÆÅÅÄÆÏÒ×ÁÒÄ ÁÎÄ ÆÅÅÄÂÁÃË ÆÁÃÉÌÉÔÁÔÅÓ ÌÅÁÒÎÉÎÇ ÁÎÄ ÅØÅÃÕÔÉÏÎ ÏÆ ÃÏÍÐÌÅØ ÇÅÓÔÕÒÅ ÓÅÔÓȱ (Bau & 

Mackay, 2008). The guide reflects the current state of the recognizer, allowing users to receive 
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immediate feedback as they are performing the gesture to help them complete the remainder of 

the gesture. 

2.4.1.2. EXPLICIT MEMORY IN GESTURAL INTERACTION 

The simplest method for teaching gestures is to present the user with a list (e.g., crib notes, Figure 

2.2a) of potential actions and a depiction of the corresponding gestures (Bau & Mackay, 2009; 

Brandl et al., 2008). These depictions can be simple trajectories that should be copied by the user, 

or complex pictograms describing hand configuration and movement (Baudel & Beaudouin-Lafon, 

1993). Kurtenbach, Moran, and Buxton (1994) developed animated crib notes to assist users in 

learning to perform gestures. While crib notes alone would be sufficient to aid users in the recall 

of gestures, the addition of in-context animations provide extra cues that help users learn the 

dynamics of a movement. Extending this concept is the use of video demonstrations, where the 

required movement is pre-recorded and played on-demand for the user (Freeman et al., 2009; 

Vogel & Balakrishnan, 2004). In each of these cases, the guide is separated from the input, leading 

to a less cohesive interaction and task-interruption when the user accesses the guide. These types 

of guides are thought to be less user-friendly and less effective at training gestures (Bau & 

Mackay, 2009; Bragdon et al., 2008; Freeman et al., 2009). 

a) 

 

b) 

 

Figure 2.2. a) Example of a type of crib note, in which each gesture is depicted next to the corresponding command. 
Image from Brandl et al. (2008) b) Gestural interface providing interactive help in which users can retrieve hints and 
practice gestures in the menu bar of the program. Image from Bragdon et al. (2010). 
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Bragdon et al. (2008) designed an explicit method for teaching gestures, aimed at making gestural 

ÉÎÔÅÒÆÁÃÅÓ ÍÏÒÅ ÁÐÐÒÏÁÃÈÁÂÌÅȢ )Î ÔÈÅÉÒ ȬGestureBÁÒȭ (Figure 2.2b), users practice and explore 

gestures within the menu bar before using them within an application. While GestureBar was 

more effective than traditional help menus, it requires additional training time prior to use and 

distracts the user from their primary task. A similar concept is found within ÔÈÅ Ȭ'ÅÓÔÕÒÅ 0ÌÁÙȭ 

system (Bragdon et al. 2010), where users perform multi-touch gestures that mimic physical 

actions in a separate sandbox before using them.  

While each of these techniques proposed and evaluated ways to improve the learnability of 

gestural systems, none evaluated the underlying mechanisms that influence the degree of 

learning. While each system may be better than traditional approaches, it is impossible to know 

how much each of the constituent features influenced the resultant learning. 

2.5. EVALUATION METHODS 

There is currently no standard method for evaluating the learning of gestural interaction. One 

common approach is to analyze behavior while participants are using the gesture system. In such 

studies, researchers analyze the frequency with which the gestures are used, the rate of gesture 

input, or user preference with the gesture system (Bragdon et al., 2010; Lepinski, Grossman, & 

Fitzmaurice, 2010). Appert and Zhai (2009) analyzed preference and memorability for keyboard 

shortcuts and gestures after training. They found that users did not have to consult the help menu 

system as often with gestures, and the use of gestures resulted in faster and more accurate recall 

of menu commands. To evaluate their menu-based gestural learning system, GestureBar, Bragdon 

et al. (2008) analyzed the number of correct gestures and the number of attempted gestures as 

participants used a gestural diagram editor. Kurtenbach et al. evaluated performance 

improvements over time as participants learned to use marking menus (1993). With each of these 

systems, user behavior was evaluated while users were actively engaged with the system, and did 

not separate performance from learning. 

Another common approach to evaluate gesture systems is to measure ÐÁÒÔÉÃÉÐÁÎÔȭÓ ability to 

recall specific gestures after training (Bradgon et al., 2010). To evaluate their dynamic and 

traceable gestural guide, Octopocus, Bau and Mackay (2008) ÃÏÍÐÁÒÅÄ ÐÁÒÔÉÃÉÐÁÎÔÓȭ ÁÂÉÌÉÔÙ ÔÏ 

recall gestures before and after training with a gesture system and with a traditional help 

window. In the evaluation of a multi-touch gestural guide system, ShadowGuides, participants 

recalled gestures immediately following a training phase with ShadowGuides or a video-based 
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guide (Freeman et al., 2009). Zhai and Kristensson (2003) extended this evaluated the ability of 

participants to recall 100 gestures over a period of days. Though the aim of some of these systems 

is to assist users in the performance or execution of the gesture, they tend to focus on the 

cognitive component of gesture learning as measured using recall. While recall is a useful 

measure to assess the degree to which the action-gesture pairing was learned, these studies did 

not analyze the motor component of the gesture and were not able to isolate performance from 

learning. 

Due to the lack of standards in gestural interaction and the ad-hoc nature of many empirical 

studies, it is difficult to characterize the rate of gesture learning. For instance, Appert and Zhai 

(2009) found that participants could accurately recall approximately 80% of a 14-gesture set 

after 10 exposures to each gesture. Freeman et al. (2009) found participants could recall 67% of a 

16-gesture set after 8 exposures. When testing Gesture Play, Bragdon et al. (2010) found 

approximately 88% recall of a set of 16 gestures. Bau and Mackay (2008) compared video guides 

and their dynamic guide and found between 57 and 73% recall on a 16-gesture set after 9 

exposures to each gesture. From the wide variance in findings and number of gestures used, it is 

clear that standardized, generalizable evaluation methods need to be developed if the field is to 

move forward. 
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Chapter 3  

 

Self-Consistency of User-Defined Gestures1 

Within the framework defined in Section 1.3, it is important to identify the degree to which 

gesture learning is required, and the degree to which the system can leverage userÓȭ ÅØÉÓÔÉÎÇ 

knowledge. It is widely believed that if users select their own gestures, then this dramatically 

decreases the need for gesture learning. In this chapter, we examine the degree to which user-

defined gestures can lessen the need for gesture learning by probing the consistency of user-

defined gestures.  

As our study employs a gesture-password creation paradigm, we contribute descriptions of 

common gesture-choice strategies, as well as a method to compute similarity between two 

gesture password sequences. An understanding of how users create gestures passwords can help 

to recognize insecure gestures, can provide guidelines on the types of instructions provided 

during the gesture creation phase, and inform the design of gesture password input interfaces. 

3.1. USER DEFINED GESTURES 

User choice in gestural interfaces has been studied extensively in the context of command-based 

gestures. Wobbrock, Morris, and Wilson (2009) ÓÔÕÄÉÅÄ ÕÓÅÒÓȭ ÃÈÏÉÃe of gestures for 27 separate 

commands on a multi-touch tabletop. They found that users produced similar gestures for 

ȬÃÏÎÃÒÅÔÅȭ ÃÏÍÍÁÎÄÓȟ ÂÕÔ ÁÇÒÅÅÍÅÎÔ ÄÅÃÒÅÁÓÅÄ ÆÏÒ commands that were more abstract. Further 

investigation by Morris, Wobbrock, and Wilson (2010) showed that users preferred gestures 

designed by end-user consensus to those developed by experts, indicating that there is a common 

basis for gesture design. In the context of mobile devices, Kray et al. (2010) examined how users 

chose gestures when their phone was interacting with different devices. They found that gestures 

                                                             

 

1 The majority of this chapter is currently under review at the Journal of Experimental Psychology: Applied 
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involving two phones were associated with greater movement than those involving a phone and a 

fixed display, demonstrating an interaction between environmental context and movement. Ruiz, 

Li, and Lank (2011) performed a gesture elicitation study using mobile devices to determine how 

users design motion gestures on mobile phones. Their results demonstrated that users preferred 

natural gestures, real-world metaphors, and direct manipulation. These research efforts indicate 

that users may choose natural and simple gestures, but as there is no concrete command or action 

on which to map the gesture, it is not obvious what a natural or simple gesture password may be. 

While commands that are more abstract are not consistent between users, there is still hope that 

a majority of functionality can be accessed through user-defined gestures. Recently, researchers 

have proposed systems that support user-defined gestures by querying a crowd-sourced 

database of gestures (Ouyang & Li, 2012). With such a system, users input  what they believe is a 

natural gesture to accomplish an action and the system finds the nearest match based on other 

ÕÓÅÒÓȭ ÇÅÓÔÕÒÅÓȢ )Æ ÅÆÆÅÃÔÉÖÅȟ ÔÈÉÓ ÃÏÕÌÄ ÍÅÁÎ ÔÈÁÔ ÕÓÅÒÓ ÎÅÅÄ not learn gestures at all. However, for 

commands that have no match in the crowd-sourced database, the user must learn or define the 

appropriate action. Research by Nacenta et al. (2013) supports the adoption of user-defined 

gestures, and shows that they are more memorable than pre-defined and randomly assigned 

gestures. However, even this study includes a training phase where users had the gestures 

reinforced prior to being tested. 

Additionally, it is not clear if users are consistent with themselves when producing a gesture for 

an action multiple times. In typical desktop environments, the display, input devices, and visual 

feedback remain relatively constant from operation to operation. However, as technology moves 

to mobile, wearable, and ubiquitous interfaces, the environments are in a constant state of flux. It 

is unknown whether the desired action is the only factor influencing gesture choice in these 

scenarios, or if the screen location, orientation or other factors may also affect the usersȭ choice.  

Research into embodied cognition has found evidence that the environment impacts high-level 

cognitive processes and gestural choice may be influenced by the current context of the device. 

Embodied cognition theory posits that cognition is situated in the environment (Wilson, 2002). 

That is, high-level thoughts are grounded in the physical world. Thus, contextual and spatial 

factors may become particularly important when users cannot anchor gestures with personal or 

task-based meanings. For instance, pushing movements are more closely associated to negative 

judgments, and pulling movements are more closely associated to positive judgments (Markman 
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& Brendl, 2005). In this theory, we may expect users to create spatially anchored gestures, but the 

gestures may be more prone to influence by external factors.  

To examine the consistency of user-defined gestures when high-level instruction and 

environmental context were manipulated, we conducted two studies using a gesture-password 

generation paradigm. Gesture passwords provide a test-bed that allows for simple manipulations 

of the independent variables of interest while providing results that are relevant to emerging 

issues in security and authentication techniques for mobile devices. We examine two external 

factors that may influence the creation of gesture passwords: high-level instructions and device 

orientation .  

3.2. GESTURE PASSWORDS 

Gesture passwords provide an efficient method of authentication for mobile phones and tablets 

(Niu & Chen, 2012). To authenticate with a gesture password, users must slide their finger 

through a grid of buttons in a pre-set sequence. Such passwords are memorable, quick to perform, 

and require little cognitive overhead. In contrast to traditional numerical PIN authentication 

schemes, gesture passwords leverage motor and visual memory to provide memorability and 

high input speed. Gesture passwords have been popularized by the Android operating system, 

which uses them as the default authentication method. These experiments not only gave us 

insight into how the environment affects the choice of gestures, but it also enlightens us as to how 

users construct secure and memorable passwords in the absence of alphanumeric anchors. 

The types of gesture passwords users create may be related to their practices with other 

authentication mechanisms. Bonneau (2012) analyzed over 70 million passwords from Yahoo! 

users, finding that most passwords effectively provide fewer than 10 bits of security, despite the 

password space being much larger. Extracting 4 and 5 digit numeric passwords from the database 

allowed Bonneau to analyze PINs in-the-wild, though it is not clear if the use of numeric 

passwords in an alpha-numeric context represents real-world usage of PINs. Stanekova and 

Stanek (2013) analyzed numeric passwords and provided methods for users to remember PINs 

from randomly generated sequences easily. An analysis of leaked in-the-wild PINs revealed that 

users tend to use very simple, non-unique sequences when defining PINs (DataGenetics, 2012). 

This analysis found that more than 10% of the PINs they analyzed were Ȭρςστȭȟ ÁÎÄ ÔÈÅ Ô×ÅÎÔÙ 

most popular PINs (0.2% of the password space) represented more than 25% of the PINs used by 

users. A survey by Bonneau, Preibusch, and Anderson (2012) found that 7% of users chose PINs 
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based on their birthdays. This desire for convenience in authentication has been repeatedly 

identified in several studies (Clarke et al., 2002; De Luca, Langheinrich, & Haussmann, 2010). 

While the existing work on PIN choice uses in-the-wi ld data and provides thorough analyses, it is 

not clear if any of the results transfer to gesture passwords.  

While the common gesture password input space is spatially similar to a PIN pad, the numerical 

labels are not present so users will likely employ different strategies in their password design. 

Gesture passwords lack the content or meaning that users can rely on for PINs (e.g. Birthdays). It 

remains to be seen how users select passwords when there are no alphanumeric values or 

metaphors available to anchor their selections.  

3.3. EXPERIMENT 1: INFLUENCE OF INSTRUCTION 

The ÆÉÒÓÔ ÅØÐÅÒÉÍÅÎÔ ×ÁÓ ÁÉÍÅÄ ÁÔ ÕÎÄÅÒÓÔÁÎÄÉÎÇ ÔÈÅ ÉÎÆÌÕÅÎÃÅ ÏÆ ÁÎ ÉÎÓÔÒÕÃÔÉÏÎ ÏÎ ÐÁÒÔÉÃÉÐÁÎÔÓȭ 

gesture password creation. Prior research on gesture instruction has found that the modality of 

instruction can influence the accuracy of the gesture performed by the user being trained 

(Fothergill et al., 2012). We were specifically interested in how the form and design of a password 

changed when participants were encouraged to design passwords motivated by internal goals 

(memorability) versus external demands (security from attackers). To explore this issue, 

participants created gestures for three scenarios: easy for them to remember, hard for someone 

to guess, and hard for someone steal by watching. These three scenarios parallel the change in 

task that commonly used with gesture elicitation studies. We hypothesized that participants 

would create simpler passwords when only the internal motivation of memorability was a factor. 

When external factors, such as hypothetical attackers were introduced, we hypothesized that 

participants would vary their passwords more and make them more complex.  

3.3.1. PARTICIPANTS 

Thirty university students (M = 19.9 years, SD = 2.3 years, range = 18 - 27 years) were recruited 

for the experiment. Twenty-three participants were female and 14 had experience with gesture 

passwords. Participants were naive to the purpose of the study. All participants had normal or 

corrected-to-normal vision and were treated according to the APA ethical guidelines. The 

experiment lasted 30 minutes. 
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3.3.2. EQUIPMENT AND APPLICATION 

0ÁÒÔÉÃÉÐÁÎÔÓ ×ÅÒÅ ÓÅÁÔÅÄ ÉÎ ÁÎ ÁÄÊÕÓÔÁÂÌÅ ÃÏÍÐÕÔÅÒ ÃÈÁÉÒ ÉÎ ÆÒÏÎÔ ÏÆ Á $ÅÌÌ 38ςςρπ4 ςρȢυȱ 

touchscreen monitor with a resolution of 1920 x 1080 pixels and a refresh rate of 60 Hz. The 

monitor was oriented in an upright, vertical position, approximately 30 cm from the participant, 

within their comfortable reaching range (Figure 3.1).  

The monitor was connected to a PC that ran a custom WPF application that displayed the stimuli 

and recorded each gesture. The application divided the screen into thirds, with the top third 

reserved for the instruction, and the bottom two thirds used to display a grid of 3 x 3 targets. 

3.3.3. PROCEDURE 

At the beginning of the experiment, participants were seated in front of the touch screen and were 

informed that they had to create a number of gesture passwords, like those used on some tablets 

and mobile phones today. To create a password, participants had to draw a stroke through at 

least ÆÏÕÒ ÇÒÉÄ ÔÁÒÇÅÔÓȢ 7ÈÅÎÅÖÅÒ ÔÈÅ ÐÁÒÔÉÃÉÐÁÎÔȭÓ ÆÉÎÇÅÒ ÃÒÏÓÓÅÄ ÔÈÒÏÕÇÈ Á ÔÁÒÇÅÔȟ ÔÈÅ ÔÁÒÇÅÔ 

changed color to indicate a selection. As the finger moved towards the next target, an elastic line 

was rendered from the last target location to the current finger location. Once the finger was lifted 

from the screen, the stroke disappeared and the targets returned to their original color. 

   

Figure 3.1. Experimental setup with the touch-screen placed vertically (left) and horizontally (right)  in front of the 
participant. Note that the horizontal condition was only used in Experiment 2. 

 

After participants created a password, they were asked to enter it again for validation. If the two 

passwords did not match, a tone sounded, indicating that the password was not valid and that 

they would need to enter it again. If participants made a mistake during the first two or three 

target selections, they were instructed to lift their finger, thereby erasing the stroke, and playing a 

tone that indicated the gesture was not accepted. 
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Participants were told to pay attention to the instruction on the screen before making each 

password, as the instructions changed during the experiment. Three different instructions were 

provided. In ÔÈÅ ÅÁÓÙ ÃÏÎÄÉÔÉÏÎȟ ÐÁÒÔÉÃÉÐÁÎÔÓ ×ÅÒÅ ÐÒÏÍÐÔÅÄ ÔÏ ȰEnter a gesture that you can 

remember easilyȱȢ &ÏÒ ÔÈÅ ÈÁÒÄ ÔÏ ÇÕÅÓÓ ÃÏÎÄÉÔÉÏÎȟ ÐÁÒÔÉÃÉÐÁÎÔÓ were asked to ȰEnter a gesture that 

would be very difficult for someone else to guess, but you can remember easilyȱȢ ,ÁÓÔÌÙȟ ÉÎ ÔÈÅ ÈÁÒÄ 

to steal condition, participants were asked ÔÏ ȰEnter a gesture that you would remember easily, but 

would be secure if someone was watching you enter itȱȢ 4ÈÅÓÅ ÉÎÓÔÒÕÃÔÉÏÎÓ ÐÒÏÂÅd how internal 

versus external motivation and task influenced the gestures created. 

Participants were instructed to create seven different gestures for each condition, resulting in 

twenty-one unique gesture passwords. The presentation order of the three conditions was 

counterbalanced across participants. 

3.3.4. MEASURES 

To quantify the influence of motivation and instruction on the gestures, several measures were 

computed from the recorded touch data. Gesture length serves as a simple method to measure 

complexity of gesture, with longer gestures generally representing passwords that are more 

intricateȢ 4ÈÅ ÓÔÁÒÔÉÎÇ ÌÏÃÁÔÉÏÎ ÐÒÏÖÉÄÅÓ ÑÕÁÎÔÉÆÉÃÁÔÉÏÎ ÏÆ ÐÁÒÔÉÃÉÐÁÎÔÓȭ ÓÔÒÁÔÅÇÙȟ ÁÓ ×ÅÌÌ ÁÓ 

examining how the spatial layout affects gesture choice. Finally, gesture similarity provides a 

method to measure how much participants vary their passwords, as well as measuring how 

ÕÎÉÑÕÅ Á ÐÁÒÔÉÃÉÐÁÎÔȭÓ ÇÅÓÔÕÒÅÓ ÁÒÅ ÉÎ ÃÏÍÐÁÒÉÓÏÎ ÔÏ ÏÔÈÅÒ ÐÁÒÔÉÃÉÐÁÎÔÓȢ 

3.3.4.1. GESTURE LENGTH 

To quantify the complexity of gestures, the length or number of targets that composed each 

gesture was computed. While other measures could have been used, such as the size of resulting 

ÂÏÕÎÄÉÎÇ ÂÏØȟ ÎÕÍÂÅÒ ÏÆ ȬÃÏÒÎÅÒÓȭ ÉÎ ÔÈÅ ÇÅÓÔÕÒÅȟ ÏÒ ÎÕÍÂÅÒ ÏÆ ÕÎÉÑÕÅ ÐÏÉÎÔÓȟ ÔÈÅ ÔÏÔÁÌ ÎÕÍÂÅÒ ÏÆ 

points provides a simple, direct measure of gesture complexity. While it is possible to make long 

gestures that are simple, and short gestures that are complex, such a measure accurately reflected 

the complexity of the majority of gestures produced by participants. 

3.3.4.2. STARTING LOCATION 

The starting location was chosen to understand the strategies participants used when creating 

gestures. We hypothesized that the starting location would be influenced by the complexity of the 
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gesture, as well as the strategy used to define the gesture. The starting location was defined as the 

first target used in the creation of each gesture. 

3.3.4.3. GESTURE SIMILARITY 

While there are several algorithms to compute the similarity of stroke gestures (e.g., $1 

(Wobbrock, Wilson, & Li, 2007)ȟ 2ÕÂÉÎÅȭÓ (1991), ,ÉȭÓ Protractor (2010), etc.), there are no 

published methods for computing the similarity of gesture passwords defined on a discrete grid. 

This is because, for grid-based gestures, similarity is often irrelevant, as the application is only 

interested if the input sequence matches the template sequence exactly. In contrast to this, we are 

interested in the relative similarity of non-identical gestures. Such a measure should accurately 

reflect minor variations in shape, as well as being translation invariant and robust to mirroring 

operations.  

The gesture similarity of two sequences was computed by first simplifying the gesture such that 

one of three possible states represented each directional change in the sequence: horizontal, 

vertical or diagonal. Thus, a four-ÐÏÉÎÔ ÇÅÓÔÕÒÅ ÉÎ ÔÈÅ ÓÈÁÐÅ ÏÆ ÁÎ Ȭ,ȭ ×ÏÕÌÄ ÂÅ ÒÅÐÒÅÓÅÎÔÅÄ ÁÓ ÔÈÅ 

sequence: vertical, vertical, horizontal. To convert this representation into a numerical value of 

similarity, the Levenshtein (1966), or edit distance, was computed between the two simplified 

sequences. The gesture similarity measure Gs was computed as: 

 

Where DL(A,B) is the Levenshtein distance of the simplified gesture sequences A and B. When 

gestures are identical, Gs=1; as gestures become less similar, Gs tends towards zero. Thus, Gs is 

bounded in the interval (0, 1].  

In the analysis of gesture similarity, two variants were considered: self-similarity and group-

similarity. Self-similarity averaged ÔÈÅ ÓÉÍÉÌÁÒÉÔÙ ÏÆ ÅÁÃÈ ÐÁÒÔÉÃÉÐÁÎÔȭÓ ÇÅÓÔÕÒÅÓ ÔÏ ÔÈÅ ÏÔÈÅÒ 

gestures they created for the same experimental phase. This provided a measure of how each 

parti cipant varied his or her own gestures. Group-similarity averaged the similarity of each 

ÐÁÒÔÉÃÉÐÁÎÔȭÓ ÇÅÓÔÕÒÅÓ ×ÉÔÈ ÔÈÅ ÇÅÓÔÕÒÅÓ ÔÈÁÔ ÁÌÌ ÏÔÈÅÒ ÐÁÒÔÉÃÉÐÁÎÔÓ ÃÒÅÁÔÅÄ ÆÏÒ ÔÈÅ ÓÁÍÅ 

experimental phase. This represented ÔÈÅ ÕÎÉÑÕÅÎÅÓÓ ÏÆ ÔÈÅ ÐÁÒÔÉÃÉÐÁÎÔÓȭ ÇÅÓÔÕres amongst the 

set of gestures collected from all participants. 
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3.3.5. RESULTS 

Each of the measures was analyzed separately and is presented independently below. 

3.3.5.1. GESTURE LENGTH 

A one-way repeated measures ANOVA compared the effect of Instruction (i.e., easy, hard to guess, 

and hard to steal) on the gesture length participants used. The analysis revealed that there was a 

significant effect of Instruction (F2, 58 = 10.21, p < .005; Figure 3.2). Post-hoc comparisons using 

Bonferroni-corrected paired t-tests indicated that the mean gesture length for the easy condition 

(M = 5.82 points, SEM = 0.12 points) was significantly lower than the difficult to guess instruction 

(M = 7.02 points, SEM = 0.20, p < .001) and difficult to steal instruction  (M = 7.03 points, SEM = 

0.19 points, p < .001). No significant difference was found between the gesture length used with 

the hard to guess and hard to steal instructions (p = .96). The results thus suggest that the 

instruction or prompt influences the complexity of the created gestures. Instructions that 

encourage memorability alone result in shorter gesture passwords, whereas instructions that 

suggest the need for increased security or privacy result in longer, more complex gesture 

passwords. 

 

Figure 3.2. Mean gesture length by instruction. Error bars represent the standard error of the mean. 

 

3.3.5.2. STARTING LOCATION 

! 0ÅÁÒÓÏÎȭÓ #ÈÉ-squared test of independence examined the relation between Starting Location 

(i.e., 1-9) and Instruction (i.e., easy, hard to guess, hard to steal). The analysis found that 
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Instruction significantly influenced the starting location of the gesture passwords (ʔ2(16) = 33.47, 

p < .01; Figure 3.3). ȬEasyȭ gestures started in the top-center location more frequently (31 

compared to 16 and 15), ×ÈÅÒÅÁÓ ÔÈÅ ȬÈÁÒÄ ÔÏ ÇÕÅÓÓȭ ÇÅÓÔÕÒÅÓ ÓÔÁÒÔÅÄ ÍÏÒÅ ÆÒÅÑÕÅÎÔÌÙ ÉÎ ÔÈÅ 

bottom-right location (19 compared to 6 and 9). 

a) b) c) 

   

Figure 3.3. Frequency of starting location for each instruction. a) Easy; b) Hard to guess; c) Hard to steal. 

 

3.3.5.3. GESTURE SIMILARITY 

A repeated-measures ANOVA with Instruction (i.e., easy, hard to guess, hard to steal) and 

Comparison-Type (i.e., self, group) ÄÅÔÅÒÍÉÎÅÄ ÈÏ× ÓÉÍÉÌÁÒ ÐÁÒÔÉÃÉÐÁÎÔȭÓ ÇÅÓÔÕÒÅÓ ×ÅÒÅ. The 

analysis found a main effect of Instruction  (F2, 28 = 20.7, p < .001), and Comparison-Type (F1, 29 = 

19.8, p < .001; Figure 3.4). Post-hoc comparisons using Bonferroni-corrected paired-t tests 

indicated that the easy instruction resulted in significantly more similar gestures (M = 0.27; SEM 

= 0.011) than the hard to guess (M = 0.22; SEM = 0.008; p < .001) and hard to steal (M = 0.22; SEM 

= 0.010; p < .001) instructions. There was no significant difference between the hard to guess and 

hard to steal instructions (p = 0.74). The main effect of Comparison-Type additionally 

demonstrated that self-similarity measures (M = 0.26; SEM = 0.012) were significantly greater 

than the group-similarity measures (M = 0.22; SEM = 0.005; p < .001). This suggests that even 

when participants were instructed to generate hard gestures, they still produced a set of gestures 

that were more similar to each other, than they were to gestures created by other participants. No 

interaction was found between Instruction and Comparison-Type (p = 0.98).  
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Figure 3.4. Gesture similarity by instruction  and comparison-type. Note the ÉÎÃÒÅÁÓÅÄ ÓÉÍÉÌÁÒÉÔÙ ÆÏÕÎÄ ×ÉÔÈÉÎ ÔÈÅ ȬÅÁÓÙȭ 
condition, and that self-similarity is  consistently higher than group-similarity.  Error bars represent the standard error 
of the mean. 

 

The results indicate that participants were creating gestures that were less self-similar when 

ÉÎÓÔÒÕÃÔÅÄ ÔÏ ÃÒÅÁÔÅ ȬÈÁÒÄȭ ÇÅÓÔÕÒÅÓȟ ÁÓ ÔÈÅ ÓÅÌÆ-similarity decreased between the easy condition 

and the two hard conditions. The length of the gestures increased from the easy to the hard 

conditions, which may account for some of the decrease in self-similarity. While this may be 

addressed by a length-normalized similarity measure, such a normalization may artificially 

discount the difference between gestures of vastly different lengths. Note that the self-similarity is 

higher than group-similarity in all cases (i.e., there is no significant interaction between the 

instruction factor and the comparison-type factor, p = 0.61). Thus, even when participants are 

trying to create difficult to steal gestures, they tended to re-use the same patterns. 

3.4. EXPERIMENT 2: INFLUENCE OF ENVIRONMENT 

Given that instructions influenced the creation of gestures, we sought to identify other factors 

affecting gesture choice. The second experiment explored how device orientation affected the 

choice of gesture passwords. In this experiment, the orientation of the touch screen was either 

vertical or horizontal.  

Due to the similarities found in Experiment 1 between the hard-to-guess and hard-to-steal 

instructions, the hard-to-steal instruction condition was omitted from Experiment 2. 
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3.4.1. PARTICIPANTS 

Twenty-eight university students were recruited (M = 22 years, SD = 3.2, range = 15 - 27), 17 of 

which were female. All participants had normal or corrected-to-normal vision and were treated 

according to the APA ethical guidelines. Eleven had experience with gesture passwords. The 

experiment lasted 30 minute. Participants were divided into a vertical condition, where the 

touchscreen was vertically upright as in Experiment 1 (Figure 3.1), and a horizontal condition, 

where the touchscreen was placed horizontally on the table in front of the participant. 

3.4.2. EQUIPMENT AND APPARATUS 

The experimental setup was the same as in Experiment 1, except that the touchscreen was placed 

horizontally for half of the participants. 

3.4.3. PROCEDURE 

Participants were asked to generate a password suitable for use on a mobile device. Each 

participant generated seven unique passwords for the two instruction conditions: easy - Ȱ%ÎÔÅÒ Á 

gesture that you can remember ÅÁÓÉÌÙȱ and hard - Ȱ%ÎÔÅÒ Á ÇÅÓÔÕÒÅ ÔÈÁÔ ×ÏÕÌÄ ÂÅ ÖÅÒÙ ÄÉÆÆÉÃÕÌÔ ÆÏÒ 

ÓÏÍÅÏÎÅ ÅÌÓÅ ÔÏ ÇÕÅÓÓȟ ÂÕÔ ÙÏÕ ÃÁÎ ÒÅÍÅÍÂÅÒ ÅÁÓÉÌÙȱ. This resulted in 14 unique gestures created 

by each participant. Each participant completed each instruction condition when the touchscreen 

was either vertical or horizontal, as device orientation was a between-subjects factor. The 

presentation order of instructions and orientations were counterbalanced across participants. 

3.4.4. MEASURES 

The same measures used in Experiment 1 were also used in the analysis of Experiment 2.  

3.4.5. RESULTS 

As in Experiment 1, each measure was analyzed independently and is presented separately. 

3.4.5.1. GESTURE LENGTH 

A mixed-design ANOVA was conducted using a 2 (Instruction: easy, hard; within-subjects) x 2 

(Orientation: horiz ontal, vertical; between-subjects) design. The analysis revealed a significant 

effect of Instruction on the length of the gesture generated by participants (F1, 26 = 27.6, p < .001, 

with the gestures created when the easy instruction was provided (M = 5.42, SEM = 0.32) being 

shorter than those generated when the hard instruction was provided (M = 7.06, SEM = 0.18). 
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Orientation was not found to influence the length of gestures created (F1, 26 = 2.14, p = 0.16)), nor 

was there an interaction between Instructi on and Orientation ( p = 0.08). 

 

Figure 3.5. Length of resulting gestures across the four conditions. Error bars represent the standard error of the mean. 

 

3.4.5.2. STARTING LOCATION 

A 0ÅÁÒÓÏÎȭÓ Chi-squared test analyzed the influence of Instruction (i.e., easy, hard) on the Starting 

Location (i.e., 1-9) of each gesture that was created. The analysis determined that gestures 

generated when the hard instruction  was provided started in the bottom right corner more often 

than those generated when the easy instruction was given (ʔ2(8) = 25.14, p < .01; Figure 3.6). 

With both instructions, gestures started in the top left hand corner three times more often than 

any other location. With the hard instruction however, gestures started in the top left corner less 

often than with the easy instruction  (i.e., 73 to 89) and more often in the bottom right corner than 

with the easy instruction  (p < .05, 9 to 0). The top-center location was also used more often in the 

creation of easy gestures, corroborating the findings of Experiment 1. 

a) 

 

b) 

 

Figure 3.6. Frequency of each starting location by instruction, collapsed across orientation. a) Easy, and b) Hard. 



 

37 

Screen Orientation also significantly influenced starting position (ʔ 2(8) = 18.2, p < .05, Figure 3.7). 

With both instructions, the top left was the most popular starting location, with gestures in the 

vertical condition starting in the top left significantly more often than in the horizontal condition 

(i.e., 99 to 63, p < .05). Similarly, gestures created in the vertical condition started less often in the 

bottom left and bottom right corner than in the horizontal condition (i.e., 5 to 13 and 2 to 7, 

respectively). These values were marginally significant due to the small cell frequencies. 

a) 

 

b) 

 

Figure 3.7. Frequency of each starting location by orientation, collapsed across instruction. a) Horizontal and b) 
Vertical. 

3.4.5.3. GESTURE SIMILARITY  

A three factor (Orientation: vertical, horizontal; Instruction:  easy, hard; Comparison-Type: self, 

group), mixed design ANOVA was conducted to understand how similar the participant generated 

gestures were (Figure 3.8). The analysis revealed a significant effect of Instruction on the 

uniqueness of the gestures (F1, 26 = 12.1, p < .005). Post-hoc comparisons showed that the mean 

similarity for t he easy instruction  (M = 0.29, SEM = 0.009) was significantly higher than the hard 

instruction  (M = 0.23, SEM = 0.015, p < .001). Comparison-Type was found to be significant (F1, 26 

= 6.26, p < .05), with self-similarity (M = 0.28, SEM = 0.016) significantly higher than group-

similarity (M = 0.24, SEM = 0.004, p < .05). Orientation also significantly affected the similarity of 

gestures (F1, 26 = 5.29, p < .05), with gestures created in the horizontal condition having 

significantly higher similarity (M = 0.268, SEM = 0.009) than those in the vertical condition (M = 

0.239; SEM = 0.009). There was no significant interaction between any of the factors (p > 0.50 in 

all cases). 
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Figure 3.8. Similarity (self and group) between the gestures created under all four conditions. Note the consistently 
high similarity in the easy condition and the higher similarity in the horizontal conditions. Error bars represent the 
standard error of the mean. 

 

3.5. DISCUSSION 

The instruction ÃÌÅÁÒÌÙ ÉÎÆÌÕÅÎÃÅÓ ÐÁÒÔÉÃÉÐÁÎÔÓȭ ÃÈÏÉÃÅ ÏÆ ÇÅÓÔÕÒÅÓȢ 7ÈÅÎ ÔÏÌÄ ÔÏ ÃÒÅÁÔÅ ÁÎ ȬÅÁÓÙ ÔÏ 

ÒÅÍÅÍÂÅÒȭ ÇÅÓÔÕÒÅȟ ÐÁÒÔÉÃÉÐÁÎÔÓ ÔÙÐÉÃÁÌÌÙ ÃÒÅÁÔÅÄ ÓÉÍÐÌÅ ÓÐÁÔÉÁÌ ÐÁÔÔÅÒÎÓȢ (Ï×ÅÖÅÒȟ ×ÈÅÎ ÔÈÅ 

ÅØÔÅÒÎÁÌ ÆÁÃÔÏÒÓ ×ÅÒÅ ÉÎÔÒÏÄÕÃÅÄȟ ÅȢÇȢȟ ÔÈÅ ÉÎÓÔÒÕÃÔÉÏÎ ×ÁÓ ȬÈÁÒÄ ÔÏ ÇÕÅÓÓȭȟ Ðarticipants lengthened 

their gestures and generated more complex gestures. The impact of instruction is clearly visible in 

the gesture length, which demonstrated a significant difference between the easy and two hard 

conditions. 

7ÈÅÎ ÁÓËÅÄ ÔÏ ÃÒÅÁÔÅ ȬÈÁÒÄ ÔÏ ÓÔÅÁÌȭ ÐÁÓÓ×ÏÒÄÓȟ ÐÁÒÔÉÃÉÐÁÎÔÓ ÌÅÎÇÔÈÅÎÅÄ ÁÎÄ ÉÎÃÒÅÁÓÅÄ ÔÈÅ 

ÃÏÍÐÌÅØÉÔÙ ÉÎ ÍÏÓÔ ÃÁÓÅÓȟ ÁÓ ×ÉÔÈ ÔÈÅ ȬÈÁÒÄ ÔÏ ÇÕÅÓÓȭ ÃÏÎÄÉÔÉÏÎȢ 7Å ÎÏÔÉÃÅÄȟ ÈÏ×ÅÖÅÒȟ ÑÕÁÌÉÔÁÔÉÖÅ 

ÄÉÆÆÅÒÅÎÃÅÓ ÂÅÔ×ÅÅÎ ÔÈÅ ȬÈÁÒÄ ÔÏ ÓÔÅÁÌȭ ÁÎÄ ȬÈÁÒÄ ÔÏ ÇÕÅÓÓȭ ÃÏÎÄÉÔÉÏÎÓ ÉÎ ÔÅÒÍÓ ÏÆ ÔÈÅ ÔÙÐÅÓ ÏÆ 

gestures created and the strategies used. Three strategies were observed when participants were 

designing gestures that were difficult to steal: crossovers (Figure 3.9a), repetition of points (Figure 

3.9b) and minimization of space (Figure 3.9c). When using crossovers, participants generated 

gestures passwords that were long, and contained many overlapping strokes (sometimes using an 

arcing motion to skip over points deliberately). The example shown in Figure 3.9b is an extreme 

example of repetition of points, in which participants included a single point multiple times in the 

same gesture, likely so that the imagined attacker could not simply memorize the sequence 

ÌÏÃÁÔÉÏÎÓȢ ,ÁÓÔÌÙȟ ÍÁÎÙ ÐÁÒÔÉÃÉÐÁÎÔÓ ÁÐÐÒÏÁÃÈÅÄ ÔÈÅ ÃÒÅÁÔÉÏÎ ÏÆ ȬÈÁÒÄ ÔÏ ÓÔÅÁÌȭ ÇÅÓÔÕÒÅÓ ÂÙ 
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producing smaller gestures which could be completed quickly without making large, overt 

movements, making them harder for an attacker to observe. 

a) 

 

b) 

 

c) 

 

Figure 3.9. Variations used in constructing hard to steal gestures: a) Crossovers, b) Repetition of points, and c). 
Minimization of space. 

 

Regarding the starting location, there was a shift away from the top-center location when creating 

ȬÈÁÒÄȭ ÇÅÓÔÕÒÅÓȟ ÉÎÄÉÃÁÔÉÎÇ ÔÈÁÔ ÓÏÍÅ ÐÁÒÔÉÃÉÐÁÎÔÓ ×ÅÒÅ ÐÅÒÈÁÐÓ ÃÏÎÓÃÉÏÕÓ ÁÂÏÕÔ ÓÔÁÒÔÉÎÇ ÇÅÓÔÕÒÅÓ 

ÉÎ ÔÈÉÓ ȬÏÂÖÉÏÕÓȭ ÌÏÃÁÔÉÏÎȢ 4ÈÉÓ ×ÁÓ ÅÍÐÈÁÓÉÚÅÄ ÉÎ ÔÈe increase in the use of the bottom right 

ÃÏÒÎÅÒ ×ÈÅÎ ÃÒÅÁÔÉÎÇ ȬÈÁÒÄ ÔÏ ÇÕÅÓÓȭ ÉÎÓÔÒÕÃÔÉÏÎÓȢ (Ï×ÅÖÅÒȟ ÔÈÅ ÅÆÆÅÃÔ ÏÆ ÓÔÁÒÔÉÎÇ ÌÏÃÁÔÉÏÎ ×ÁÓ 

minor in comparison to the drastic change in gesture length. 

Gesture similarity provides further evidence that instruction can influence the design of gestures. 

Gestures created with the easy instruction were more self-similar than those with the hard 

instruction , indicating that participants varied their gestures more with the hard instruction . 

However, even with the hard instruction , participants still generated variations of their own 

gestures, resulting in self-similarity that was consistently higher than group-similarity. This 

suggests that an instruction to create hard gestures may not be enough to get users to 

appropriately vary their gesture passwords. Rather, when changing passwords, it may be 

beneficial for the system to compute the similarity of the new password to previous passwords 

and suggest a change if it is too similar. 

With respect to the effects of instruction, the results of the second experiment mirror the first. 

Easy gestures tended to be shorter and simpler than hard gestures. Likewise, self-similarity was 

consistently higher than group-similarity, even when the hard instruction was provided. The 

orientation of the device did not have a significant effect on the measured complexity of the 

gestures. 

With respect to the starting location, participants created more gestures starting at the bottom of 

the screen, which was physically closer to participants. This is evident in the increase in gestures 
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starting in the bottom row more often for the horizontal condition, and the decrease in gestures 

that start in the top-left. This result emphasizes the interplay between motor movements and 

cognitive goals. The gestures used in the horizontal condition tended to minimize movements and 

could be completed using efficient maneuvers. Extending this reasoning to a mobile scenario, we 

would expect to find qualitative differences in gesture passwords generated when the tablet was 

flat on a surface or held at an angle. Likewise, passwords generated while using a device with one 

hand are likely to be qualitatively different from those defined the device is supported by one 

hand and the other hand is interacting, due to the substantial differences in movements required. 

The higher similarity values (both self and group-similarity) in the horizontal condition re -iterate 

the influence of the physical input space. Further studies are needed to confirm the cause of the 

increased ÓÉÍÉÌÁÒÉÔÙȟ ÂÕÔ ×Å ÓÕÓÐÅÃÔ ÔÈÁÔ ÐÁÒÔÉÃÉÐÁÎÔÓ ȬÆÅÌÌ ÂÁÃËȭ ÏÎÔÏ ÓÙÍÂÏÌÓ ÁÎÄ ÁÃÔÉÏÎÓ ÔÈÁÔ 

they were familiar with due to prior experience with writing and sketching. As most writing and 

sketching is performed on a horizontal surface, familiar symbols and shapes (and variants on 

these patterns) may be more natural for users. Conversely, the vertical touch-screen is a relatively 

novel environment that may illicit patterns that are more novel. 

3.5.1. ANALYSIS OF GESTURE FORM 

From the data collected from both experiments, we inspected the gestures to determine the types 

of strategies used by participants. Across both experiments, 1022 gestures were recorded. 

The uniqueness of gestures was analyzed by examining how many times each of the gestures was 

repeated across participants. There were 800 different gestures generated across participants 

with distribution shown in Figure 3.10. Of those, 708 were unique and only used once. On the 

other end of the spectrum, the most frequently used gesture, an Ȭ,ȭ ÓÈÁÐÅ (Figure 3.11), was 

independently generated by 20 participants. 

The nine most popular gestures are depicted in Figure 3.11 and represent 13% of all generated 

gestures. From these samples, as well as a manual inspection of the rest of the generated gestures, 

it is clear that the overwhelming majority of easy-to-remember passwords were based on simple 

spatial arrangements. Simple shapes starting in the top-left corner were frequent, as were spatial 

variations on these patterns (e.g., translation, rotation, and mirroring).  
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Figure 3.10. Frequency of use of gestures. Note that the first bar is truncated for clarity, the true value is 708, indicating 
that 708 gestures were totally unique and generated only once across both experiments. 

 

Another common observation was the limited use of directional changes, i.e., participants often 

produced two subsequent strokes in the same direction (e.g., Figure 3.11, top row). This has a 

cognitive and motor advantage for users, as they can chunk a series of three points as a single, 

ballistic stroke. Consequently, this reduces the effective space of possible passwords and results 

in overall less secure passwords.  

Participants did not appear to map numeric values onto the gesture positions (as in a PIN 

keypad), but rather treated them as a simple two-dimensional grid on which to draw shapes. This 

supports with our theory that gesture passwords may be anchored spatially when there is a lack 

of meaning associated with the input space. 
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Figure 3.11. Most popular gestures generated by participants, with the top left being the most frequently used 
gesture, with frequency decreasing to the right, then down. 

 

3.5.2. IMPLICATIONS FOR GESTURE PASSWORDS 

For designers of gesture password interfaces, the results of this study can guide future 

implementations in several ways.  

Designers should leverage the fact that the instructions given to the user can affect the strength or 

ÃÏÍÐÌÅØÉÔÙ ÏÆ ÔÈÅ ÕÓÅÒȭÓ ÐÁÓÓ×ÏÒÄÓȢ $ÅÓÉÇÎÅÒÓ ÓÈÏÕÌÄ ÓÅÅË ÔÏ ÃÏÎÖÅÙ ÔÈÅ ÉÍÐÏÒÔÁÎÃÅ ÏÆ ÇÅÓÔÕÒÅ 

security to users when they are prompting the user for their password. After a user enters a 

password, the system could run simple tests to validate the strength of the password. First, it 

could compare against a database of simple shapes (and spatial transforms of these shapes). Next, 

it could count the number of directional changes in the password (rather than just the length of 

the password) and warn if the user has only one directional change. Lastly, the interface could 

ÐÒÏÖÉÄÅ ÔÉÐÓ ÏÎ ÃÒÅÁÔÉÎÇ ȬÈÁÒÄȭ ÇÅÓÔÕÒÅ ÐÁÓÓ×Ïrds, such as varying the starting location, re-using 

points, and including numerous directional changes. 

The similarity measure could prevent end-users from re-using variants on old passwords. This 

can reduce the chances that users could be re-exploited following a breach of their password. The 

ÓÉÍÉÌÁÒÉÔÙ ÍÅÁÓÕÒÅ ÃÏÕÌÄ ÁÌÓÏ ÃÏÍÐÁÒÅ Á ÕÓÅÒȭÓ ÐÁÓÓ×ÏÒÄ ÔÏ ÄÁÔÁÂÁÓÅ ÏÆ ËÎÏ×Î ÐÁÓÓ×ÏÒÄÓ ÔÏ 

ÄÅÔÅÒÍÉÎÅ Á ÐÁÓÓ×ÏÒÄȭÓ ÕÎÉÑÕÅÎÅÓÓȟ ÁÎÄ ÔÏ ÅÎÃÏÕÒÁÇÅ ÔÈÅ ÕÓÅÒ ÔÏ ÃÒÅÁÔÅ Á ÍÏÒÅ ÃÏÍÐÌÅØ 

password if it is too similar to others. 
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3.5.3. IMPLICATIONS FOR GESTURE LEARNING 

The results of this study demonstrate that the high-level task can affect the types of gestures 

users choose. The results presented here with gesture passwords parallel the existing work on 

user-defined gestures that map to commands (Morris  et al., 2006). What is novel, however, is the 

examination of the effects of manipulating the screen orientation in gesture definition. With the 

same high-level task, a change in the performance context can affect the resultant gestures for the 

same users.  

The increasing adoption of wearable and ubiquitous interfaces has resulted in a highly dynamic 

computing environment. The location of interfaces, the pose of the body, and the required actions 

to perform a gesture will vary in this environment. If the system relies on user-defined gestures, 

there may be substantial confusion as users migrate from one gesture to another within the same 

task. Thus, it is clear that user-defined gestures are not a panacea for the lack of affordances 

presented by gestural interaction, and gesture sets in the foreseeable future will require learning 

on the part of the end user. 

3.5.4. FUTURE WORK 

This study was conducted on a touch-screen monitor, and the results reflect what users may do 

on a tablet rather than a mobile phone or wearable interface. We suspect that passwords 

generated on a mobile phone are qualitatively different due to the different movement cost 

associated with entering them. Future work will test this hypothesis and examine if there are 

other aspects that change when entering gestures on a variety of mobile devices. 

Building on the spatial nature of the observed gestures, we plan to analyze how changes to the 

appearance of the input grid affect resulting passwords. Modifying the layout of the points with 

non-uniform spacing, or a circular layout may influence how users view and interact with the 

input space. In addition, by providing numerical or alphabetical anchors on the input grid we can 

examine how the presence of cognitive landmarks interacts with the spatial nature of gesture 

passwords, and how users generate memorable sequences when both mnemonic devices are 

available. 

3.6. SUMMARY 

The results of the second experiment indicate that user-defined gestures are not a panacea for the 

problem of gesture learning. Simple changes, such as the orientation of the device, can affect how 
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users create mappings between command and action. Therefore, interfaces that support user-

defined mappings of gestures should provide support to scaffold learning. 

3.6.1. RELEVANCE TO GESTURE LEARNING 

This chapter has provided evidence that users are not always consistent with the gestures that 

they produce, even when the task is held consistent. The metaphors that participants relied on 

changed as orientation changed, despite partici pants having similar intentions. Within the context 

of gestural interaction, these results point to a need to emphasize gestural learning even when 

users are able to select their own gestures. In particular, it demonstrates the need to support the 

declarative component of gesture learning within these scenarios. Users have to remember which 

action they intend to execute, even if the learning or performance context has changed. Systems 

must address the transfer of gesture learning across environmental conditions and minimize the 

cognitive interference that occurs when learning a variety of gestures in similar conditions. 

Systems may also need to integrate cues to prime the appropriate gesture to be recalled, or 

provide other mechanisms to help the users recognize or recall the appropriate action. 

With respect to the framework outlined in Chapter 1, this study provides evidence that pre-

existing knowledge may need to be supplemented by additional information. In cases where 

contextual interference is likely to occur (e.g., similar interfaces with different operations, or the 

ÓÁÍÅ ÉÎÔÅÒÆÁÃÅ ÕÓÅÄ ÉÎ ÄÉÆÆÅÒÅÎÔ ÅÎÖÉÒÏÎÍÅÎÔÓɊȟ ÔÈÅ ÕÓÅÒȭÓ ÃÈÏÉÃÅ ÏÆ ÇÅÓÔÕÒÅ ÍÁÙ ÎÅÅÄ ÔÏ ÂÅ 

reinforced by interface cues or other learning support. 

3.6.2. LIMITATIONS 

While this study was conducted in a lab with desktop hardware that was reconfigured, emerging 

interaction paradigms, such as wearable and ubiquitous computing, will have similar dynamic 

ÅÎÖÉÒÏÎÍÅÎÔÁÌ ÃÈÁÎÇÅÓȟ ×ÈÉÃÈ ÍÁÙ ÁÌÔÅÒ ÔÈÅ ÕÓÅÒȭÓ ÐÅÒÃÅÐÔÉÏÎ ÏÆ ÔÈÅÉÒ ÆÕÎÃÔÉÏÎÁÌÉÔÙȢ Additionally, 

the use of gesture passwords as a test bed within this chapter has provided insights into the 

practical application of gestural interfaces. The preceding results can influence the design of 

future authentication mechanisms and improve security for mobile devices. 
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Chapter 4  

 

The Cognitive Advantage of Gestures1 

Complex gestural interfaces must support the user in learning the declarative mapping between 

their  intent and the movements required to convey their intent  to the system. Identified in 

Section 1.3, one method of providing this support is to modify how a gesture is rendered, in terms 

of the modality and the form within the modality. As identified in Chapter 2, many modalities and 

forms of feedback can be leveraged to support this learning. However, it is currently not clear 

how to best support such mappings.  

In this chapter, we attempt to answer the question of whether or not gestures have a cognitive 

advantage over traditional input mechanisms, and why that may be the case. We explore gestures 

and traditional input using an ecologically focused experiment and examine the relative 

importance of visual and motoric actions when learning gestures. With a better understanding of 

how gestures are encoded, designers can build better training systems, which enable users to 

understand the gesture vocabulary of the system they are using quickly. 

4.1. LEARNING THE COMMAND-ACTION MAPPING 

Some researchers have believed that gestures are relatively easy to learn as they leverage the 

picture superiority effect as well as motor memory (Weiss and De Luca, 2008). The picture 

superiority effect suggests that information is learned more readily if it is presented in picture 

form. As gestures are often displayed graphically as strokes, one could reason that it may benefit 

due to this effect. The belief that motor memory may facilitate improved retention of gestures 

likely stems from the familiar long-term and robust nature of learned motor skills. It may also 

arise from the dual encoding (Paivio & Kalman, 1973) of actions as visual and distinct motoric 

patterns. Or, it could be explained by the information packaging hypothesis (Kita, 2000) which 

predicts that gestures aid in the conceptualization of ideas. Similar work has shown gesturing 

                                                             

 

1 The majority of this chapter is currently under review for publication at the Journal of Applied Cognitive Psychology. 
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while learning new information aids in the retention of that information (Cook, et al., 2008). This 

effect has been demonstrated in a number of domains, in particular  the acquisition of language 

and mathematic skills (Goldin-Meadow et al. 2009; Iverson and Goldin-Meadow 2005). 

Regardless of the explanation, both the visual and motor components are considered important 

aspects of gestural interfaces. Some of the earliest gestural interfaces, marking menus 

(Kurtenbach, 1993), were designed such that invoking the same menu command would require 

the same motor mÏÖÅÍÅÎÔȢ !ÄÄÉÔÉÏÎÁÌÌÙȟ ÔÈÅ ÄÅÓÉÇÎ ÉÎÃÌÕÄÅÄ Á ÖÉÓÕÁÌ ȬÍÁÒËȭȟ ×ÈÉÃÈ ×ÁÓ ÉÎ ÔÈÅÏÒÙ 

redundant as the menu selections provided visual feedback. However, the mark was considered 

important to the design and it is believed to be an integral part of the success of marking menus 

(Kurtenbach, personal communication, May 22, 2014). 

Despite the prevalence of gestural interfaces, and the body of literature surrounding their design, 

there is no work confirm ing that gestures have a cognitive advantage over traditional inpu t 

methods. There is also no work evaluating the relative effects of these components on gesture 

learning. To fully understand and be able to exploit the full potential of gestural interaction, it is 

essential that we determine what benefits gesture input offers, and what the causes of these 

benefits are. 

In this chapter, we present two experiments that further our understanding of gesture learning. 

In the first experiment, participants learned sequences using either gesturing or pointing. This 

experiment was ecologically focused, with gesture input leveraging both of the hypothesized 

visual and motor advantages. In the second experiment, the visual component was fixed and 

participants learned sequences of varying length using gesturing or pointing.  

4.2. EXPERIMENT 1: COMPARING GESTURES AND POINTING 

The purpose of the first experiment was to determine if gestures offer a cognitive advantage over 

traditional pointing methods with respect to the encoding and recall of pre-defined sequences. 

The study focused on addressing whether or not gestural interaction, as implemented in many 

interfaces, truly offers the advantage that many researchers claim. To that end, it was designed to 

be ecologically valid with the two conditions differing in both the visuals presented as well as the 

movements required. This experimental design is unable to assess the relative contribution of 

each aspect. 
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If the gesture condition is more efficient, it may be because fewer movements are required to 

articulate the sequence, which results in reduced movement complexity. Prior work has shown 

that movements that are more complex result in a longer response time when recalling the 

movement (Henry & Rogers, 1960). An alternative explanation may come from prior work 

spanning several domains that shows improvements in learning while gesturing (Kita, 2000; 

Goldin-Meadow et al. 2009). Lastly, gesture input may have an advantage due to the pictoral 

superiority effect (Paivio & Kalman, 1973), which would allow users to chunk the gestures into 

visually simpler shapes, which are easier to encode and recall. Alternatively, the use of pointing to 

enter sequences should result in movements that are more complex and have a longer movement 

ÔÉÍÅȢ 4ÈÉÓ ÉÎÃÒÅÁÓÅÓ ÔÈÅ ÕÓÅÒȭÓ ÅØÐÏÓÕÒÅ ÔÏ ÔÈÅ ÓÅÑÕÅÎÃÅ ÁÎÄ ÍÁÙ ÓÕÂÓÅÑÕÅÎtly aid in learning. 

Additionally, it requires the user to expend more effort during the learning phase and has been 

shown to be a factor in learning (Cockburn et al, 2007). Thus, it is important to assess which of 

these input modalities has an advantage in a real-world scenario. 

4.2.1. PARTICIPANTS 

Twenty university students (M = 20.1, SD = 2.2, range= 18-27 years; 16 female) were recruited to 

participate in 30 minute session. All participants had normal or corrected-to-normal vision and 

were treated according to the APA ethical guidelines. 

4.2.2. EQUIPMENT AND APPARATUS 

A ςρȢυȱ Dell SX2210T touch monitor (Figure 4.1) which was set in the upright position and used 

for the experiment. The monitor had a resolution of 1920 x 1080 pixels and a refresh rate of 60 

Hz. The software was written in C# and WPF, and ran on a Windows 7 PC. The custom software 

was responsible for loading the current trial information, presenting the appropriate stimuli, and 

recording all touch events with their associated meta-data (e.g., time, position, and so on.). 

4.2.3. PROCEDURE 

Each participant performed a training phase where they learned pairings between sequences of 

dots and different background colours. After a break, participants performed a two-alternative 

forced choice task where they responded as quickly as possible to whether or not the presented 

color and sequence matched one that they had learned in the training phase. While this approach 

does not require the user to perform the learned gesture, response time is typically more 
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sensitive to smaller effects, providing a better understanding of the relative advantages of 

stroking and pointing.  

 

Figure 4.1. Experimental setup showing a participant learning a sequence in the pointing condition. The dots 
illuminated in sequence (in the top portion of the screen) and participants would touch them in the same sequence on 
the bottom portion of the screen. 

 

Participants completed a learning phase, followed by a 5-minute distractor task, and finally the 

recognition phase. Participants were randomly assigned to one of two conditions, either pointing 

or stroking. The gesture grid for the learning and test phases consisted of a 3 x 3 grid of dots. This 

gesture grid was shown on a background of one of seven distinct colors. 

  

Figure 4.2. (Left) The learning phase in the stroking condition displayed lines connecting the dots in the sequence 
during the demonstration as well as during user input. (Right) The screen presented to participants during the 
recognition task required participants to hold the bottom-most button until the probe gesture appeared. Then 
participants quickly touched the Yes or No button to indicate their response. 
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In the learning phase of the pointing condition (Figure 4.1), the seven sequences to be learned 

were shown by illuminating dots one at a time at an interval of 200 milliseconds. The full 

sequence remained visible until the end of the trial. Participants then had to repeat that sequence 

on a separate input grid underneath the instruction grid by point ing to each of the dots in 

sequence one at a time using four separate movements. As participants touched each of the dots, 

they illuminated and remained illuminated until the end of the trial. If the participant did not 

repeat the sequence correctly, a tone sounded to indicate an incorrect response. The screen was 

cleared and the participant moved to the next trial. The stroking condition was similar to the 

pointing condition, but in addition to the dots being illuminated, a line between each of the dots 

was animated to connect the dots in the sequence providing the visual feedback of typical 

gestural interfaces (Figure 4.2). Further, participants in the stroking condition specified the 

sequence using a single continuous stroke through the dots rather than individual pointing 

movements.  

Each participant performed both the pointing and stroking conditions, with the order 

counterbalanced across participants. Unique sequences and colours were used for each 

participant, but the same sequences and colours were used between participants and 

counterbalanced between the pointing and stroking condition. Each participant learned seven 

sequences during the learning phase. The learning phase consisted of three training blocks, each 

consisting of two sequential presentations of each gesture, resulting in six exposures to each of 

the seven gestures. 

Once the learning phase was completed, the distractor task consisting of a personality 

questionnaire followed by mathematical questions was administered. Participants were timed 

with a stopwatch, and after 5 minutes were told to stop. 

Finally, in the test phase, participants had 42 trials in whi ch a gesture and background colour 

were shown, along with ÔÈÅ ÉÎÓÔÒÕÃÔÉÏÎ Ȱ(ÁÖÅ ÙÏÕ ÓÅÅÎ ÔÈÉÓ ÇÅÓÔÕÒÅ ÐÁÉÒÅÄ ×ÉÔÈ ÔÈÉÓ ÃÏÌÏÕÒ 

ÂÅÆÏÒÅȩȱ ÁÓ ×ÅÌÌ ÁÓ two bÕÔÔÏÎÓ ÌÁÂÅÌÌÅÄ Ȱ9ÅÓȱ ÁÎÄ Ȱ.Ïȱ ÁÎÄ Á ÂÕÔÔÏÎ ÁÔ ÔÈÅ ÂÏÔÔÏÍ ÏÆ ÔÈÅ ÓÃÒÅÅÎ 

ÍÁÒËÅÄ Ȱ(ÏÌÄȱ (Figure 4.2). Participants rested ÔÈÅÉÒ ÆÉÎÇÅÒ ÏÎ ÔÈÅ Ȱ(ÏÌÄȱ ÂÕÔÔÏÎ ÁÔ ×ÈÉÃÈ ÐÏÉÎÔ Á 

new gesture and background colour would be shown after a random interval between 500 to 

3500 milli seconds. Participants were instructed to respond as quickly and accurately as possible 

ÁÆÔÅÒ ÔÈÅ ÇÅÓÔÕÒÅ ×ÁÓ ÓÈÏ×Îȟ ÁÎÄ ÒÅÓÐÏÎÄÅÄ ÂÙ ÐÒÅÓÓÉÎÇ ÅÉÔÈÅÒ ÔÈÅ Ȱ9ÅÓȱ ÏÒ Ȱ.Ïȱ ÂÕÔÔÏÎȢ /Æ ÔÈÅ τς 

trials, half were pairings that were learned during the training phase, and half were unseen 
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pairings. Of the unseen pairings, half were novel, unseen sequences, and half were learned 

sequences paired with the incorrect colour. No novel colours were shown during the testing 

phase. Accuracy as well as response time (i.e., the time that the gesture was shown on-screen to 

the time when a button was pressed) was recorded. 

4.2.4. MEASURES 

Three measures were used to evaluate the degree of learning of each of the sequences, response 

time, accuracy, and efficiency. The response time was measured as the interval between the time 

when the gesture appeared on the screen and the time the finger touched down on either the 

Ȱ9esȱ or Ȱ.oȱ buttons. Accuracy was measured as the proportion of correct responses to the 

recognition task. Efficiency was computed as the response time divided by the proportion of 

correct responses. 

4.2.5. RESULTS 

A two-sample paired t-test compared the influence of stroking and pointing on response time, 

accuracy, and efficiency. 

4.2.5.1. RESPONSE TIME 

Input condition was found to marginally influence response time (t (18) = 1.9, p = 0.072, d = 0.85), 

with stroking resulting in faster responses (M = 1914 milliseconds, SEM = 465.6 milliseconds) 

than pointing (M = 2672 milliseconds, SEM = 1163 milliseconds). This indicates that gesturing 

while learning sequences may result in retrieval that is more efficient. 

  

Figure 4.3. Response time by condition. Error bars show standard error of the mean. 
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4.2.5.2. ACCURACY 

Input condition was not found to significantly influence accuracy (t(18) = 1.41, p = 0.176, d = 

0.81). While stroking, participants were slightly more accurate (M = 0.84, SEM = 0.135) than while 

pointing (M = 0.73, SEM = 0.138). This suggests that there may be a possible effect of stroking 

resulting in more memorable sequences than pointing. 

 

Figure 4.4. Accuracy by condition. Error bars show standard error of the mean. 

 

4.2.5.3. EFFICIENCY 

Input condition was found to significantly influence efficiency, (t(18) = 2.42, p = 0.027; d = 1.08). 

The use of stroking resulted in more efficient responses (M = 2493 milliseconds, SD = 1175 

milliseconds) than the use of pointing (M = 3865 milliseconds, SD = 1626 milliseconds). Combined 

with the accuracy and response time results, stroking shows a significant advantage over 

pointing. This indicates that gestures may be more readily learnable than traditional input .  

4.2.6. DISCUSSION 

The results demonstrate a substantial advantage for gestural input in the ability to encode and 

retrieve gestures. Participants in the stroking condition had more accurate and faster responses 

than those in the pointing condition. This resulted in significantly better efficiency for the 

participants in the stroking condition. 

While gestural input has an advantage, it is not clear what component of the gestural input is 

causing the advantage. The two conditions tested in this experiment differed in the movements 

required as well as the visual aspect so it is not possible to identify their relative contributions. 
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Figure 4.5. Efficiency by condition. Error bars show standard error of the mean. 

 

4.3. EXPERIMENT TWO: EFFECTS OF VISUAL AND MOTOR COMPONENTS 

Experiment one demonstrated that gestures have an advantage over pointing, though it is not 

clear whether that advantage is due to the visual or motor components of gestural interfaces. 

In this experiment, we sought to identify the contribution of the motor aspect to gesture learning. 

To that end, the visuals in both conditions were identical with  visual strokes being rendered for 

both pointing and stroking conditions. The experiment was simplified by removing the colour 

pairing, and participants learned sequences of different lengths so that we could measure the 

ȬÃÏÓÔȭ ÏÆ ÁÄÄÉÎÇ ÐÏÉÎÔÓ ÔÏ ÓÅÑÕÅÎÃÅÓ ÌÅÁÒÎÅÄ ÕÎÄÅÒ ÂÏÔÈ ÃÏÎÄÉÔÉÏÎÓȢ 

4.3.1. PARTICIPANTS 

Twenty-four university students (M = 20.5, SD = 2.4, range= 18-25; 18 female) were recruited to 

participate in a 60-minute session. All participants had normal or corrected-to-normal vision and 

were treated according to the APA ethical guidelines. 

4.3.2. EQUIPMENT AND APPARATUS 

The same apparatus and distractor tasks as used in Experiment 1 were used again in Experiment 

2. The software used in the experiment was modified slightly to account for the minor change in 

experimental paradigm.  
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Figure 4.6. Participant demonstrating the learning phase during the pointing condition just prior to touching the final 
target. 

 

4.3.3. PROCEDURE 

Participants performed a learning phase, followed by a distractor task, and finally a test phase, 

similar to Experiment 1. 

During the learning phase, each participant learned a set of eight sequences of length 4, 5 or 6 

depending on the condition. Learning was structured into three blocks of training trials, with 

participants being exposed to each sequence twice per block, resulting in six exposures to each 

sequence during the learning phase. Each sequence was displayed with a stroke animating 

through them, as in the stroking condition in Experiment 1. Participants then had to either stroke 

through the sequence or point at each dot in the sequence using discrete movements. 

Following the learning phase, a 5-minute distractor task consisting of a personality questionnaire 

followed by mathematical questions was administered. 

Following the distractor task, the test phase was completed. Participants were shown 32 

sequences, each on a grey background, and determined if they had seen the gesture during the 

learning phase or not. The same response-time paradigm from Experiment 1 was used. Eight of 

the sequences presented during the test phase were trained sequences, eight were novel 

sequences, and each sequence was presented twice.  












































































































