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Abstract 
 

After decades of research, gestural interfaces are becoming increasingly commonplace in our 

interactions with modern devices. They promise natural and efficient interaction, but suffer from 

a lack of affordances and thus require learning on the part of the user. 

This thesis examines the declarative and procedural components of learning gestural interaction, 

and how designers can best support gesture learning within their interfaces. First, we show that 

user-defined gestures are not always consistent, even when the same user is defining a gesture 

for the same task, indicating that even when the user is able to select their own gestures some 

amount of gesture learning still may be necessary. Next, we present two studies that help us 

better understand the role of visual feedback, finding that it has a dramatic effect on the degree to 

which gestures are learned. Next, we examine the procedural component of gesture learning by 

varying the scale, location, and animation of visual feedback presented during training. We also 

show that evaluation using a retention and transfer paradigm is more appropriate for evaluating 

gestures than the other methodologies used previously. Lastly, we present YouMove, a full-body 

gesture training system that incorporates the lessons learned from the present work on stroke-

based gestures. 
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Chapter 1  

 

Introduction 

Mobile devices and interactive surfaces are the primary driver of recent developments in gestural 

interfaces. Mobile phones have become ubiquitous, with approximately six billion mobile phones 

in use worldwide, one billion of which are smart phones (Kafka, 2012). These devices have the 

processing capabilities of general-purpose computers, but their input is often constrained to 2D 

finger input on a touch screen. Tablets, touch screens, and interactive surfaces have also found 

increased adoption among consumers. Many of these devices have severely constrained input, 

sensed only through touch or pen-based interaction with the display surface. For these devices, 

gestures offer a promising alternative to traditional input with on-screen buttons and widgets. 

They allow users to provide input to the device without having to select a number of small on-

screen targets, navigate through hierarchies of menus, or interact directly with the on-screen 

content. 

Despite their potential for use on an increasing number of devices, gestures have remained 

relatively primitive. This is due, in part, to the difficulty with gestural interfaces lacking clear 

affordances, and their largely hidden functionality. The gesture-action mapping that is necessary 

for interacting with an application is often hidden and users must expend considerable effort to 

learn which gestures are available as well as learning how to perform the gestures. There are 

several existing research efforts that address various aspects of this problem (e.g., making them 

more approachable (Bragdon et al., 2010), or making it more convenient to access the guide (Bau 

and MacKay, 2009)), but there lacks a systematic analysis of gesture learning and an identification 

of the various components that affect how well a user learns the gestures. 

This thesis examines how users learn gestures, and how we can best support that learning with 

the design of our interfaces. The thesis contributes a novel framework which identifies the factors 

that designers can leverage in their interfaces to enhance users’ gesture recall and execution. 

Specifically, it identifies the user’s pre-existing knowledge, the interface’s support for declarative 

learning, and the interface’s support for procedural learning as being central to affecting gesture 

recall and execution. This thesis samples problems from each of these three top-level components 

and attempts to provide answers to open questions. With respect to pre-existing knowledge, the 
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thesis examines how reliable users’ self-defined gestures are when the context of use changes. 

Next, the thesis examines the declarative component of gesture learning by analyzing the 

cognitive advantage that gestures have when encoding sequences and investigating whether that 

advantage is due to a visual or motor process. With regards to procedural learning, the thesis 

examines appropriate ways to train and evaluate gestural guides to ensure that the user 

maximizes learning. Lastly, the thesis presents a full-body movement training system that extends 

what is known about two dimensional stroke gestures to a more complex scenario to understand 

the generalizability of the presented principles. 

1.1. BACKGROUND 

1.1.1. EFFICIENCY BENEFITS 

Gestural interaction also offers efficiency benefits over other input modalities. Marking menus, for 

example, allow users to execute commands using the physical actions associated with accessing 

menus, without visually searching for the target items (Kurtenbach, Sellen, & Buxton, 1993; 

Kurtenbach, Moran, & Buxton, 1994; Kurtenbach & Buxton, 1993; Figure 1a). With proper design, 

gestural interfaces allow for chunking and phrasing (Buxton, 1986), which provides cognitive 

benefits and increased input bandwidth. One such system is FlowMenu (Guimbretiere & 

Winograd, 2000), which allows for the simultaneous specification of command and parameter. 

Scriboli implements chunking and phrasing by allowing selection and action to be specified using 

a single, fluid movement (Hinckley, Baudisch, & Ramos, 2005; Figure 1b). SimpleFlow pushes 

efficiency benefits even further and allows users to input partial gestural commands, enabling the 

system to ‘auto-complete’ a gesture when it has been sufficiently distinguished (Bennett et al., 

2011). While these systems have not matured into widespread commercial offerings, they 

demonstrate the potential for effective gestural input. 

The efficiency benefits provided by gestures and the widespread use of interactive displays have 

driven the development of gesture interfaces for a wide variety of tasks. Text entry, for example, 

can be accomplished using Graffiti (Fleetwood et al., 2002), Unistroke (Mackensize & Soukoreff, 

2002), EdgeWrite (Wobbrock, Morris, & Wilson, 2003) or SHARK (Zhai & Kristensson, 2003) 

gestures. The Android and Windows 8 operating systems provide support for gesture-based 

passwords for fast and safe logins (Microsoft, 2012; Niu & Chen, 2012). Mozilla Firefox also has 

several add-ons that allow users to navigate webpages using mouse gestures (Gomita, 2012). 

Wigdor et al.’s (2011) Rock and Rails multi-touch gestures enable precise and efficient 
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manipulation of content on large interactive surfaces. Gestural interaction can also be used to 

navigate interfaces in video games and entertainment systems (Segen, 1998). Autodesk Maya and 

3DSmax use gesture shortcuts to allow designers to change tools, navigate, and select options 

quickly (Autodesk, 2014; Kurtenbach, 1993). Several diagram editors have also been developed 

with gestural support to allow natural specification of visual elements (Sutherland, 1964; 

Zeleznik et al., 2008). 

a) 

 

b) 

 

Figure 1.1. a) Example of a marking menu, in which users implicitly learn gestures associated with menu items 
Kurthenbach & Buxton (1993). b) Scriboli gestural interface in which selection and action are combined into a single, 
fluid movement. Images from Hinckley, Baudisch, & Ramos (2005). 

 

1.1.2. TYPES OF GESTURES 

The term ‘gesture’ is very broad, describing many interactions with devices today. Some 

designers consider small unit operations like “tap” or “press and hold” to be gestures. However, 

these actions are of little interest as they are simple to perform but have very low input 

bandwidth. More complex gestures, such as stroke gestures or 3D free-space gestures are able to 

convey much more information, but are not as user-friendly as the more primitive gestures. 

Stroke gestures have attracted substantial attention in both research and commercial scenarios. 

Such gestures are composed of a single contact event (e.g., a finger or pen contact), movement of 

that point in 2D space, and are terminated when the finger or pen is lifted from the surface. These 

gestures are particularly interesting, as many properties (gesture form, user interface support, 

etc.) generalize across input modalities (e.g., pen, mouse, touch; Tu, Ren, & Zhai, 2012), and they 

are a very expressive method for specifying input on touchscreen devices. 
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Many of the more complex modes of gestural interaction (e.g., 3D free-space, multi-touch, etc.) 

have gained acceptance due to the development of new sensing hardware and the emergence of 

new applications for interactive technology. These gestures allow interaction with devices from a 

distance, provide high input bandwidth, and allow for more natural methods to specify actions. 

Many of the more complex gestures share similarities with complex movements found in 

everyday life, such as dancing or sports. As such, much of the knowledge learned from those 

domains can benefit gestural interaction, just as developments in gestural training have the 

potential to benefit those domains in return.  

The composition of a gesture set varies widely depending on the task. Many gesture sets are 

designed to be symbolic analogues to the actions or items they are mapped to. For instance, many 

text entry gestures resemble corresponding letters (Figure 1.2; Fleetwood et al., 2002; Wobbrock, 

Myers, & Kembel, 2003). Other applications use gestures that resemble the first letter of the 

intended action, e.g., an ‘S’ shape to create a String object (Zhai et al., 1995; Chatty & Lecoanet, 

1996). However, the number of possible commands quickly exceeds the available letter-based 

gestures, restricting the adoption of this technique. Other symbolic gestures include those that 

exploit prior knowledge or those are an iconic representation of an action, such as a scribbling 

gesture to delete or using a lasso to select multiple objects (Bragdon et al., 2008). The use of 

symbolic gestures is also limiting, as users often disagree on what gesture is representative of a 

given action (Wobbrock, Morris, & Wilson, 2003), especially when it comes to more abstract 

actions such as ‘Insert Phrase’ (Wolf & Morrel-Samuels, 1987). To avoid these issues, many 

systems and researchers use abstract gestures (Figure 1.3) with no obvious symbolic mapping 

(Bau & Mackay, 2008; Freeman et al., 2009). While this removes any bias users may have to a 

particular gesture, each study tends to devise their own set of gestures, making it difficult to 

compare results across studies. 
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Figure 1.2. Examples of the Graffiti (top) and EdgeWrite (bottom), in which each symbolic gesture bears a 
resemblance to the letter it represents. Images from Castellucci and Mackenzie (2008) and Wobbrock, Myers, & 
Kembel (2003). 

 

 

Figure 1.3. Examples of abstract gestures in which each gesture has a recognizable form, but does not correspond 
to a particular stimulus or action. Image from Zhai et al. (2010). 

 

1.1.3. NECESSITY OF GESTURE LEARNING 

The difficulty with gestural interfaces, and one of the primary reasons behind their slow adoption, 

is that gestural interfaces are not ‘self-revealing’ (Baudel & Beaudouin-Lafon, 1993; Bragdon et 

al., 2008). Users are required to learn and practice each gesture to become efficient enough to use 

it in place of other input. This problem has yet to be solved, and many current gestural interfaces 

rely on a small set of simple gestures (i.e., swipes, taps, and pinches) to avoid the problem of 

learning gestures. With these interactions, it is sufficient to write instructions for end-users in the 

manual or on screen (e.g., ‘swipe to unlock’) as users will be able to execute the simple actions 
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with little training. To achieve effective interaction with gestural devices, however, such simple 

interactions are not sufficient. A rich gesture vocabulary requires gesture languages that must be 

learned by users, either implicitly or explicitly (Norman, 2010). 

Learnability of gesture sets involves two factors. The first is the cognitive mapping between the 

desired task or command and the required gesture. This declarative component of learning is 

typically studied in human computer interaction (HCI)-focused research. It is easy to measure 

with recall tasks (using proportion correct) and it is intuitively important (users must know 

which gesture to execute before they perform it). The second, equally important aspect of 

gestural interactions is the procedural component of gesture learning, which involves the ability 

to perform a gesture accurately. Bau and MacKay (2008) recognize the importance of gesture 

execution, stating that users must “master the details of drawing the shape to improve recognizer 

accuracy”. This component of gestural interaction becomes increasingly important as the use of 

gestural interfaces continues to grow and devices rely solely on gestural input. In the case of 

experts, many of their input sequences are largely automatic, relying primarily on responses from 

the motor system. Motor performance is important for novices as well. As the size of gesture sets 

is increasing (e.g., to 40 targets (Ouyang & Li, 2012)), both novices and experts have to perform 

gestures with increasing accuracy for the recognizer to distinguish them from other, potentially 

similar gestures. It is also foreseeable that future interfaces will allow users to modify parameters 

of commands by producing variations on gestures, which again would require substantial skill to 

perform. 

Recently, several researchers have proposed that users should be able to define their own 

gestures for interaction rather than using a designer-defined set (Nacenta et al., 2013). Studies 

have shown that there can be high agreement on the gesture-to-action mapping between users, 

especially for actions that are more concrete (Wobbrock et al., 2009). Other systems have 

leveraged crowd-based definitions of gestures, enabling users to input gestures without defining 

them, relying on the similarity of their gesture to other users’ gestures to determine the intended 

action (Ouyang & Li, 2012). While these approaches offer learning-free gestural input, it is not 

clear whether they scale to more abstract actions (Ruiz, Li & Lank, 2011). Additionally, no studies 

have examined the self-consistency of users’ choice of gesture under different conditions, that is, 

the degree to which the same user generates the same gesture for the same task. If users vary 

their chosen gesture, then they may need support for learning the appropriate gesture to use 

within the given context. 
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1.2. THESIS OBJECTIVES 

Though there is existing research that analyzes various aspects of the learnability of gestures, 

there is no focused contribution that identifies the constituent elements that affect a users’ ability 

to learn and perform gestures. Thus, this thesis seeks to provide a novel framework for gestural 

interaction, as well as work towards answers to several important questions within gestural 

interaction. In the subsequent chapters, the following questions are addressed: 

 Chapter 3: To what degree is gesture learning necessary? Can gesture learning be avoided by 

implementing user-defined gestures? 

 Chapter 4: Does gesturing offer a learning advantage over traditional input methods? If so, are 

these advantages due to the motor or visual component of gesturing? 

 Chapter 5: How can users be trained to gesture efficiently, and how should we evaluate such 

learning? 

 Chapter 6: How well does knowledge of 2D stroke gestures extend to movement scenarios 

that are more complex? 

1.3. A FRAMEWORK FOR GESTURE LEARNING 

Although there has been much focus and attention devoted to the learning of gestures, and many 

novel techniques have been developed to aid in gesture learning, there has yet to be a clear 

understanding of how and when to support the learning of gestural interaction. This thesis 

presents an examination of gesture learning, detailing the factors that affect gesture learning. 

While some of these factors have been leveraged previously in gestural interaction, we identify 

many new factors and provide a categorization from which other work can build upon. Thus, we 

make the novel contribution of the gesture-learning framework, depicted in Figure 1.4. 
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Figure 1.4: Framing of gestural interaction which outline the effects of pre-existing knowledge and the various 
mechanisms that provide support for procedural and declarative learning. The combined effect of these components 
manifests itself in users’ recall and execution of gestures. 

 

If gestures are supported within the interface, then the gestures must be selected in a way that 

minimizes their need for learning by leveraging existing knowledge. If a gesture set must be 

learned, then appropriate support for learning the declarative component of the gesture (i.e., the 

recall of the correct gesture) as well as support for learning the procedural component of the 

gesture (i.e., the articulation of the gesture) must be provided. Figure 1.4 illustrates how this 

framework relates to the resultant recall and execution of the gestures within the user interface. 

1.3.1. LEVERAGING EXISTING KNOWLEDGE 

Once gestural interaction has been identified as an input mechanism, the designer must consider 

the form of the gestures themselves and how they can be designed to minimize the need for 

learning. The degree to which gestural support is required is dependent on whether gestures are 

previously known, user-defined, or completely novel. 

Some gestures may be previously known and thus require little or no training. A select group of 

gestures is culturally engrained through marketing campaigns and product dominance such that 

they have become widely known (e.g., swipes). Alternatively, gestures may be mapped to physical 
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affordances (e.g., pinches, or rotations); in these instances, little learning support is likely 

required as users rely on known metaphors.  

If the functionality of the interface is primarily rooted in operations that are concrete in nature, 

then user-defined gestures may provide users with the ability to choose memorable gestures that 

do not require extensive training to recall and perform. Prior work has shown that user-defined 

gestures are easier to remember (Nacenta et al. 2013), and may thus require minimal training. It 

is still unknown, however, if users consistently choose the same gestures for the same actions 

performed in different contexts. If this is the case, then the amount of training required may be 

more than previously expected.  

If a gesture-based user interface has a large number of functions, operations based on abstract 

commands, or a high degree of command parameterization, then it is likely that the system will 

need to leverage novel gestures. In this case, it will need to provide infrastructure for instructing 

users on the proper selection and execution of the gestures. When possible, completely novel 

gesture sets should be avoided. If, however, they must be used, a number of strategies (as 

outlined in the following sections) can help ease learning and reduce the burden on the user. 

It is also important to consider what aspects of the gesture the user may already know. The 

declarative component may be well known, for example, if you are using gestures that represent 

alphanumeric characters. In this case, the user may still need to learn how to execute the gesture 

accurately enough for the system to recognize it.  

When deciding on the degree and form of the gesture learning support it is important to consider 

the resulting usability of your system. If the user must undergo extensive training before using 

the system then they may be discouraged from using the product. If too little support is provided 

then users may struggle to achieve proficiency and can become frustrated during interaction. An 

ideal support system would scaffold novice users, allowing them to focus on their primary task 

while simultaneously implicitly teaching them the declarative and procedural components of 

their gestural interactions. 

1.3.2. SUPPORT FOR DECLARATIVE LEARNING 

Interfaces may support the declarative component of gesture learning by structuring the gestures 

effectively, modifying the rendering of gestures, or by providing explicit training. As gestural 
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interfaces do not have visible affordances, users must be informed of the available gesture set in 

some other manner.  

Consideration for learning the declarative component could also be achieved through careful 

structuring of the gestures themselves (e.g., the hierarchical structure of Autodesk’s Maya 

software (2014)). By structuring the menu in a logical manner and grouping related items, the 

interface can take advantage of the hierarchy to aid in the recall of actions. Other structures can 

be possible depending on the nature of the interface, and could potentially rely on abstract 

categorization or spatial mapping, for example. 

Systems may also modify the rendering of gestures to make them more unique and easily 

remembered. This can be achieved by changing the form (e.g., the visual appearance) of the 

gesture or by rendering the gestures using additional modalities (e.g., haptic, colour mapping, or 

audio pairing) to provide some of the benefits seen in dual coding studies (Paivio & Kalman, 

1973).  

Support for the declarative component can also be achieved through an explicit training phase 

(e.g., the training sandbox of Bragdon et al. (2010)). With this approach, users get the benefits of 

repeated rehearsals without the worry of unintended consequences on their work environment. 

The training system could be designed to take advantages of many of the factors known to affect 

learning (e.g., distributing practice, drawing attention to the pairing itself, etc.). Within a ‘live’ user 

interface, many of these approaches would not be available, as they would interfere with the 

operation of the system itself. 

1.3.3. SUPPORT FOR PROCEDURAL LEARNING 

Interfaces can support the learning of the procedural component of a gesture using appropriate 

feedback or explicit training. This is necessary so that users can perform the gesture accurately 

enough for recognition by the system. For example, with handwriting recognition software, the 

user invariably knows which letters they intend to convey but their writing is often not precise 

enough for the system’s algorithms to recognize the intended character. This problem is 

compounded with gestural interfaces, as gestural interfaces become more complex, allowing for a 

multitude of commands and parameters to be expressed in a single stroke.  

The designers of gestural interfaces thus need to provide feedback on the users’ performance, not 

only by relaying the recognized action, but also by supplying useful information to improve future 
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performances of the gesture and improve the communication between the user and gesture 

recognizer. Such feedback could be provided by many mechanisms and at various points 

throughout the interaction. Before and during the interaction, “feedforward” (Bau and Mackay, 

2009) can provide users with a guide that informs them of the correct actions. Following 

interaction, a system can provide feedback regarding which gesture was recognized. This 

information allows the user to compare their input to what the system was expecting.  

There are many considerations to the type of feedback and guidance provided. The location, 

content, appearance, and timing of the feedback are of prime consideration. Excess feedback can 

hinder learning, and poorly designed feedback may go unnoticed. The motor learning literature 

has examined some of these issues, but it is not immediately evident how to adapt their findings 

to the specific needs of gestural interaction that must also consider usability. 

As with declarative learning, users can perform explicit training prior to using the interface to 

improve their ability to perform gestures. With an explicit training phase, the system could 

leverage methods or modalities of feedback that may be too intrusive to leverage within a live 

system (e.g., summary feedback after a number of gesture attempts). 

1.4. THESIS ORGANIZATION 

This thesis presents several contributions in the area of gestural learning with the goal of better 

understanding how users learn gestures and how to better enrich their training. With the 

increase in complexity and the adoption of gestural interfaces for a variety of tasks, it is critical to 

have methods and systems that scaffold users as they begin to use new gesture-based systems. 

Chapter 2 outlines relevant work from the human-computer interaction and motor learning 

domains to frame our understanding of how movements are learned and the applicability of 

various learning methods to gestural interaction. 

In Chapter 3, we analyze gesture learning within the context of user-defined gestures. The 

purpose of these studies is to establish whether user-defined gestures may be a viable alternative 

to learned gestures, mitigating the need for gesture training. With two experiments, the 

consistency of gesture creation was observed, as high-level tasks and environmental context was 

manipulated. The studies use gesture-passwords as a testing sandbox and provide insights into 

the strategies that users employ when defining secure passwords for gesture based 

authentication on mobile devices. This chapter addresses how pre-existing knowledge can be 
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leveraged in the design of gestural interfaces, and whether or not user-defined gestures are 

consistent across various contexts. 

In Chapter 4, we analyze whether the use of gestural input or traditional ‘pointing’ input aids in 

the encoding of information and declarative memory. If gestures are proven to encode 

information more readily, then it will likely be easier for novice users to learn the association 

between a gesture and a command than it would be for them to navigate a traditional button-

based interface. Following this, we analyze the respective roles of the visual and motor 

component within gesture learning. Prior work within HCI has typically ignored the distinction, 

but the respective roles of each modality are important to consider when designing gesture-based 

user interfaces. This chapter provides insight into how the visual system contributes to the 

learning of the declarative component of gesture learning. 

Chapter 5 explores how the form of the visual feedback used during training impacts the learning 

of the procedural component of gestural interaction. Using a retention and transfer paradigm 

from the motor learning literature, three guides from the existing literature, and a novel, adaptive 

guide were evaluated. The use of the retention and transfer paradigm revealed properties of 

gesture guides often overlooked in previous works. This chapter analyzes how gestural interfaces 

can be designed and evaluated to best support the procedural learning of gesture execution 

outlined in the previous section. 

In Chapter 6, we present YouMove, a training system for complex, full-body gestures. By 

integrating findings from previous studies, the system uses an augmented-reality mirror to 

overlay visual feedback directly over top of the user’s reflection providing an intuitive and natural 

guide. The system supported a wide variety of movement domains and abstract movements, as 

well as more concrete movements from the dance domain. YouMove demonstrated the 

applicability of the results found in Chapters 3, 4, and 5 to more complex, higher-dimensional 

gestures. 

Lastly, we conclude with a review of how the presented work fits within the gesture learning 

framework, and outline directions for future avenues of research. 
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Chapter 2  

 

Related Work 

Human memory involves a complex set of interconnected processes, the details of which are 

beyond the scope of this thesis. However, there are several fundamental concepts that are 

important with respect to gesture learning. Of particular relevance are a basic understanding of 

long term and working memory, the distinction between procedural and declarative memories, 

and the factors affecting learning, as well as how learning is evaluated for each of these 

components. We also examine relevant work within the HCI literature on existing systems and 

methods that support gesture learning. 

2.1. TYPES OF MEMORY 

Long term memory can be categorized along a number of dimensions according to the length of 

the memory (short or long term), and the characteristics of the memory (procedural or 

declarative, and implicit or explicit).  

2.1.1. SHORT AND LONG TERM MEMORY 

Memory can be logically divided into short term memory (i.e., working memory) and long term 

memory (i.e., permanent storage). The capacity of working memory is relatively small, with room 

for approximately seven unique items at a time (Baddeley, 1994). Items in working memory are 

thus available for less than a minute (Luck & Vogel, 1997). This capacity can however be 

expanded through the use of chunking (Chase & Simon, 1973), in which distinct, logical objects 

can be grouped into a single, coherent group. For example, the string ‘ogd’ is unlikely to have 

meaning to a person, whereas one can remember the single word ‘dog’ quite easily.  Combining 

the letters into a logical whole allows for one item, instead of three separate items, being encoded. 

Chunking can be can be an extremely useful method of learning large amounts of information, but 

requires that the information have some structure or meaning (Gobet & Simon, 1998).  

Baddeley and Hitch (1947), described a useful conceptual model of working memory in 1947. 

This model consists of a central executive, phonological loop, and the visuo-spatial sketchpad. The 

central executive is responsible for allocating attention, processing information, and accesses 

information stored in long-term memory (as well as the other components of working memory). 
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The phonological loop is the short-term memory store responsible for processing auditory and 

verbal information, such as speech, music, and the rehearsal of words. The visuo-spatial 

sketchpad is the component of working memory that is responsible for processing images, color, 

and spatial information. Within gestural interaction, this type of memory is typically used only 

when referencing the guide or other learning material (e.g., consulting a crib sheet).  

While items in short term memory are typically forgotten after a minute, items in long term 

memory can be remembered for a much longer period, potentially years (Rohrer et al., 2005). 

Long term memory acts as a relatively permanent, limitless, store of memory, whereby memories 

are stored via consolidation. Sleep is believed to play a large role in consolidation, with memories 

being ‘strengthened’ during sleep (Stickgold, 2005). 

2.1.2. PROCEDURAL AND IMPLICIT MEMORY 

Remembering a particular sequence of actions, or steps to achieve a goal, is accomplished using 

procedural memory. In general, procedural (or non-declarative) memories are memories that are 

difficult to describe (Squire, 1992). The ability to tie shoelaces or ride a bicycle are due to stored 

procedural memories. Procedural memories that relate to motor movements are of particular 

interest to gestural interfaces, which require movements that can be somewhat complex and 

occasionally unnatural. 

Many procedural memories are learned implicitly, i.e., memories are generated without the 

conscious awareness of the learner (Roediger, 1990). This type of memory is believed to operate 

using an entirely separate process from explicit memory (Cohen et al., 1985). Implicit learning is 

important to gestural interfaces, as the form of a gesture is rarely the focus of the interaction, yet 

it must be learned for efficient gestural interaction. 

2.1.3. DECLARATIVE AND EXPLICIT MEMORY 

Remembering the pairing between a desired action and corresponding gesture falls within the 

scope of declarative memory. That is, it relates to a memory that can be described (Tulving & 

Markowitsch, 1998). The work verbal associate learning is of most relevance to gesture learning. 

In this type of learning, participants associate pairs of words, or a word with a corresponding 

action (Bower, 1970). Uses of declarative memory are common in everyday life, for example, 

remembering telephone numbers, or remembering that the alphorn and yodeling are icons of 

Swiss music. 
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Declarative memories are commonly learned explicitly, i.e., the learner is aware that they are 

being learned (Berry and Broadbent, 1988). Explicit learning requires active and conscious 

involvement on the part of the learner. Studying for a test or researching the history of the clock 

are common examples of explicit learning.  

2.2. FACTORS IN LEARNING 

2.2.1. FACTORS IN LEARNING PROCEDURAL MEMORIES 

Several factors affect the learning and performance of a movement. Unsurprisingly, the amount of 

practice has been shown to improve learning and performance. For many complex movements it 

is generally accepted that the practice must be deliberate, and not simply repetition of learned 

movement (Ericsson, Krampe, & Tesch-Romer, 1993). The distribution of practice over time has 

also been shown to affect the amount of learning, with increased learning when practice is 

distributed over time (Donovan & Radosevic, 1999). While these factors are important to skill 

learning, they are not as relevant to gesture learning as the feedback given via knowledge of 

results and knowledge of performance. 

Wulf and Shea (2004) provide an excellent summary of many of the known effects of augmented 

feedback. For example, they outline how the delay between performance and feedback can affect 

learning, what type of feedback (qualitative or quantitative) should be presented based on the 

user’s performance, and how summarizing and aggregating feedback can improve learning. While 

all of these elements are relevant to gestural learning, a full examination is beyond the scope of 

this thesis. However, this, along with other work (Wulf and Shea, 2004), provides an excellent 

review of the various parameters known to influence the learning of movements. A few key 

factors directly relevant to the work in this thesis are presented next 

Knowledge of results (KR) is information regarding the success or failure of a movement. The 

presence and frequency of KR has substantial consequences on the amount of learning that occurs 

during practice. When KR is too frequent, it hinders learning, as users become dependent on it to 

make small ‘corrective’ movements (Salmoni, Schmidt, & Walter, 1984; Schmidt, 1991). With 

respect to gestural interaction, KR can detail the gesture form that was recognized, or include the 

similarity of the performed gesture to other gestures. 

Knowledge of performance (KP) is information regarding how the performed movement differed 

from the target movement. As with KR, the presence and frequency of the target movement can 
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affect the degree to which the movement is learned (Park, Shea, & Wright, 2000). Within the 

context of gestural interaction, KP can be presented by displaying the user’s trajectory with the 

target trajectory, potentially highlighting discrepancies between the trajectories. Within gesture 

guides, this type of information has been recognized as important (e.g., the use of ‘feedforward’ 

and ‘feedback’ by Bau & Mackay (2008)), but the existing research from the motor learning 

literature has been largely ignored. 

Though the field of motor learning studied many fundamental issues such as how movements are 

learned and performed, it is not clear which research is directly applicable to gestural interaction. 

Research in motor learning typically makes no consideration for the usability of systems, so 

directly implementing their findings could result in systems that are not user-friendly and 

unpredictable. In addition, many studies within motor learning used simple, static one-

dimensional positioning tasks that do not reflect the complex nature of gestures or the dynamic 

environment that modern devices support. 

2.2.2. FACTORS IN LEARNING DECLARATIVE MEMORIES 

Several factors determine the degree to which something is learned and remembered. As with 

procedural learning, repetition plays a large role, with more repetitions aiding in learning. 

Similarly, the structure of practice has an impact, with distributed practice resulting in better 

learning than massed practice (Pashler et al., 2007). These two factors alone do not regulate the 

degree to which items are learned; when designing gestural interactions, there are several factors 

that affect the rate of learning. It is therefore important to understand the potential impacts these 

factors have on the usability and learnability of gestural interfaces. 

One factor that influences the memorability of items is the degree to which items are elaborated 

on (Cohen & Aphek, 1980). Rather than simply rehearsing each item, elaboration involves 

constructing mental associations between the new item and existing knowledge. By situating new 

information within a person’s existing mental schema, information becomes more strongly 

encoded and memorable. Related to the idea of elaboration is Craik and Lockhart’s (1972) levels-

of-processing effect. Craik and Lockhart observed that items that were processed superficially 

(e.g., based on their sensory components) were not remembered as well as when more semantic 

processing was involved (e.g., when participants thought about the meaning of the items). Within 

gestural interaction, the gestures could be designed such that they relate to some symbolic 

meaning associated with the action. 
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Another factor that influences the strength of a memory is the generation of an item. When 

subjects are able to generate their own stimuli, or portions of the stimuli, they remember them 

better than when the stimuli are given to them (Slackmecka & Graf, 1978). This generation effect 

has been shown to extend beyond improving memory for the stimuli itself. For example, Marsh, 

Edelman and Bower (2001), had participants either read or generate a list of 30 words, and those 

words were presented either on paper or on a computer monitor. Not only did participants 

remember the generated words better than the read words, but they were also better able to 

remember the context in which the generated words were presented. 

The organization of information also affects its memorability. If items can be structured into a 

logical order, e.g., a hierarchy, this tends to aid learning (Bower, 1970). For instance, Dowling 

(1973) found that participants were better able to recognize melodies derived from a single, 

previously heard group than melodies that spanned two previously heard groups. This provides 

evidence for organizational chunking in long-term memory, allowing for more efficient storage 

when items have structure. Within gesture learning, marking menus take advantage of this type of 

organization by structuring the commands in a hierarchy, and associating directional strokes with 

each level of the hierarchy. 

Interference can also play a large role in how items are remembered or forgotten. Retroactive 

interference occurs when previously learned information cannot be recalled due to new 

information being learned (Baddley & Dale, 1966). Conversely, proactive interference occurs 

when old information prevents new information from being learned (Kane & Engle, 2000). 

Associative interference may also lead to problems during recall, as it occurs when multiple, 

similar items are trying to be remembered. A large number of similar items results in greater 

interference and decreased learning (Ellenbogen, 2006). In all types of interference, the similarity 

between the pieces of information regulates the amount of interference that occurs, with more 

similarity resulting in more interference and difficulty during recall. Increasing the 

distinctiveness of each piece of information can reduce the interference, though in some cases this 

is at odds with constructing a meaningful organization of the material. Within gestural interfaces, 

interference can result from different contexts requiring the same gesture, or by having similarly 

formed gestures mapped to distinct actions. Designers should attempt to separate the gesture 

forms as much as possible, not only to decrease cognitive interference but to increase the 

accuracy of the gesture recognizer. 
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2.3. MEASURING LEARNING 

Due to differences in how memories are processed in the brain and the different contexts they are 

used in, procedural and declarative memories are studied using different paradigms. Procedural 

memory is often studied within the context of motor skills, involving the physical practice of a 

particular skill. Following practice, performance for that skill is measured using retention and 

transfer tests to assess learning. While studying declarative memory, a number of methods can be 

used. Recall tasks following training are common, but are sometimes not sensitive enough to 

small effects or are not applicable in some scenarios. As such, evaluations using mental 

chronometry or recognition tasks are common. 

2.3.1. MEASURING LEARNING FOR PROCEDURAL MEMORIES 

The field of motor learning has established methods for assessing the ability to learn and execute 

movements, ranging from simple pointing and grasping movements (Chapman et al., 2010) to 

complex skills such as surgical movements (Brydges et al., 2007) or sports (Helsen et al., 2000). 

The motor learning literature acknowledges a critical difference between performance and 

learning (Schmidt & Lee, 2011). Performance is the production of a specific action, whereas 

learning is the relatively permanent acquired capabilities that facilitate improved performance of 

that action. Within gestural interfaces, performance would refer to the production of a gesture, 

whereas learning would refer to one’s increased ability to recall a gesture and perform it more 

efficiently.  

Empirical studies that separate performance from learning commonly involve a training phase 

followed by a retention and then transfer component. In the retention component, participants 

perform the task at a common level of the independent variable, typically 24 to 48 hours after 

training (Shea & Morgan, 1979). In the transfer component, participants perform a novel 

variation on the task they were trained on, e.g., performing the task with the other limb.  

The use of retention tests is standard in the motor learning literature, as they allow the 

researcher to separate the effects of the performance factors from the learning factors. 

Performance factors have an effect only for a short time, whereas learning factors have an effect 

much longer after training. Tests are frequently performed after at least one full night of sleep 

(e.g., 24 hours), as sleep has been shown to play an important role in the consolidation of motor 

skills (Savion-Lemieux & Penhune, 2005). The task performed during retention tests is usually 
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similar to the task performed during training, but all participants are moved to the same level of 

the independent variable, which is often the removal of feedback (Schmidt & Lee, 2011).  

In the transfer component, participants perform a novel variation on the task they were trained 

on, e.g., performing the task with the other limb. For instance, participants might perform a 

learned skill at a different scale or angle (Albaret & Thon, 1998). There has also been substantial 

work within the motor learning field on bilateral transfer, i.e., the degree to which a skill learned 

with one hand transfers to the other (Annett and Bischof, 2013; Panzer et al., 2010; Sainburg & 

Wang, 2002). These studies show that transfer takes place even when participants are not 

ambidextrous. Transfer tests are another way to assess learning, as the mental changes associated 

with learning one skill are frequently generalizable to another, very similar skill. These tests can 

also show how well a learned skill generalizes to a new context (Shea & Morgan, 1979). Though 

previous research in the gesture learning literature does not use retention and transfer 

paradigms, we use them to examine the effects of the guidance hypothesis within the context of 

gesture learning (Chapter 5). 

2.3.2. MEASURING LEARNING FOR DECLARATIVE MEMORIES 

Various methods of testing memory and learning have been employed to understand the 

cognitive component of memory. An obvious method of testing memories is using free recall, 

wherein participants recall as much information as they can remember (Squire, 1992). A variant 

on this method is cued recall, wherein participants are given a cue and are asked to recall specific 

information related to that cue (Ellenbogen et al., 2006). This method is most relevant to gesture 

learning, as gestures are often paired with specific commands and those commands can be used 

as cues. 

Another method to evaluate the degree of learning is the use of ‘forgetting curves’ (Haist, 

Shimamura, & Shea, 1992). Measuring the ability to remember information in the days following 

the learning of the information allows researchers to measure how quickly the information is 

forgotten, which correlates negatively with the strength of learning. Shallower curves reflect 

information that was initially learned to a greater degree. In cases of overlearning, people are 

unlikely to forget the information, as it is deeply encoded with strong memory traces (Walker, 

1986). Related to this, researchers can also measure memory ‘savings’, which represent the cost 

to re-learn items which have previously been learned but forgotten. When items have been 
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previously learned, they will become remembered more quickly with re-training than unseen 

items (Roediger, 1990). 

Finally, mental chronometry can assess the degree to which something has been learned. Mental 

chronometry is the use of response times to assess how quickly something can be retrieved from 

memory (Squire & Zola, 1996). Faster response times are indicative of a memory that has a 

simpler trace, or stronger connections to other memories, indicating a greater learning. Mental 

chronometry can be a powerful tool to measure learning, as it removes many potential sources of 

variability, including the verbalization or motor performance used to express learned 

information. Mental chronometry is often used in conjunction with forced choice paradigms, 

where participants must select whether an item has been seen before, or if it is a new, unseen 

item (Dudukovic & Wagner, 2007). While mental chronometry has not been previously used in 

the gesture learning literature, we adapt it and use it to measure the efficiency of encoding in the 

recognition of gestures (Chapter 4). 

2.4. LEARNING AND MEMORY IN GESTURAL INTERACTION 

Within the context of human computer interaction, gestures have been seen as particularly suited 

for niche applications, for example, where input is otherwise constrained. These types of 

interfaces rely on both declarative and procedural memory, and typically require substantial 

amounts of training to master. There have not been studies on how the fundamental aspects of 

memory influence gesture learning, but there have been a number of systems and methods 

developed to improve the learnability and usability of gestural input. These systems often 

incorporate many features aimed at improving learning, making it difficult to establish the 

contribution of each relevant factor. 

2.4.1. APPROACHES TO TRAINING 

Researchers in human computer interaction have tended to view gesture learning as a problem to 

be solved rather than studied, with most research focusing on the development and evaluation of 

new systems rather than a systematic evaluation of the constituent factors.  

2.4.1.1. IMPLICIT MEMORY IN GESTURAL INTERACTION 

Several gestural systems are designed such that the guide is always available and the user 

implicitly learns the gestures that correspond to frequently used actions. Examples of this can be 

found with marking menus (Kurtenbach, 1993), where the user performs directional strokes on a 
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radial menu to indicate selections. The availability of the menu allows users to perform a visual 

search for the desired menu item if they are not able to recall it. Several extensions of this idea 

have been proposed to increase the bandwidth or ability to phrase commands while still 

maintaining the learning benefits of the structured menu (Bailly, Lecolinet, & Nigay, 2008; Zhao & 

Balakrishnan, 2004). A similar concept can also be found with gesture keyboards (Figure 2.1a), 

e.g., SHARK (Kristensson & Zhai, 2004), or Swype for the Android operating system. With these 

keyboards, users draw strokes directly over top of the desired letters to input text on touch-

screen devices. In both systems, it is assumed that users will perform the same command 

repeatedly, i.e., access the same menu items or input the same words, thus implicitly learning the 

corresponding gestures. While these systems may be effective for their specific use case, they do 

not generalize across applications, e.g., a marking menu system does not function well on a small 

touch screen due to the limited input space and high occlusion, and Swype-based interactions 

require substantial screen real-estate and only provide alpha-numeric input. 

a) 

 

b) 

 

 

Figure 2.1. a) Swype keyboard, in which users trace over the keys using a single fluid gesture. With enough iterations, 
users should implicitly learn the motor patterns required for frequent words. Image from wirelesszone.com. b) 
Octopocus is a dynamic guide that allows the user to directly trace out gestures and updates dynamically as the user 
completes the stroke. As the cursor moves from the position on the left to that on the right, the guide is updated to 
reflect the improbability of the ‘paste’ command being the target action. Image from Bau & Mackay (2008). 

 

Recently, systems offering dynamic, real-time guidance have been proposed (Bau & Mackay, 

2008; Bennett et al., 2011; Freeman et al., 2009; Kristensson & Denby, 2011). These systems 

provide the user with information to guide the execution of a gesture, such as a traceable 

depiction of the gesture (Figure 2.1b). These guides are believed to improve performance, as 

“feedforward and feedback facilitates learning and execution of complex gesture sets” (Bau & 

Mackay, 2008). The guide reflects the current state of the recognizer, allowing users to receive 
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immediate feedback as they are performing the gesture to help them complete the remainder of 

the gesture. 

2.4.1.2. EXPLICIT MEMORY IN GESTURAL INTERACTION 

The simplest method for teaching gestures is to present the user with a list (e.g., crib notes, Figure 

2.2a) of potential actions and a depiction of the corresponding gestures (Bau & Mackay, 2009; 

Brandl et al., 2008). These depictions can be simple trajectories that should be copied by the user, 

or complex pictograms describing hand configuration and movement (Baudel & Beaudouin-Lafon, 

1993). Kurtenbach, Moran, and Buxton (1994) developed animated crib notes to assist users in 

learning to perform gestures. While crib notes alone would be sufficient to aid users in the recall 

of gestures, the addition of in-context animations provide extra cues that help users learn the 

dynamics of a movement. Extending this concept is the use of video demonstrations, where the 

required movement is pre-recorded and played on-demand for the user (Freeman et al., 2009; 

Vogel & Balakrishnan, 2004). In each of these cases, the guide is separated from the input, leading 

to a less cohesive interaction and task-interruption when the user accesses the guide. These types 

of guides are thought to be less user-friendly and less effective at training gestures (Bau & 

Mackay, 2009; Bragdon et al., 2008; Freeman et al., 2009). 

a) 

 

b) 

 

Figure 2.2. a) Example of a type of crib note, in which each gesture is depicted next to the corresponding command. 
Image from Brandl et al. (2008) b) Gestural interface providing interactive help in which users can retrieve hints and 
practice gestures in the menu bar of the program. Image from Bragdon et al. (2010). 
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Bragdon et al. (2008) designed an explicit method for teaching gestures, aimed at making gestural 

interfaces more approachable. In their ‘GestureBar’ (Figure 2.2b), users practice and explore 

gestures within the menu bar before using them within an application. While GestureBar was 

more effective than traditional help menus, it requires additional training time prior to use and 

distracts the user from their primary task. A similar concept is found within the ‘Gesture Play’ 

system (Bragdon et al. 2010), where users perform multi-touch gestures that mimic physical 

actions in a separate sandbox before using them.  

While each of these techniques proposed and evaluated ways to improve the learnability of 

gestural systems, none evaluated the underlying mechanisms that influence the degree of 

learning. While each system may be better than traditional approaches, it is impossible to know 

how much each of the constituent features influenced the resultant learning. 

2.5. EVALUATION METHODS 

There is currently no standard method for evaluating the learning of gestural interaction. One 

common approach is to analyze behavior while participants are using the gesture system. In such 

studies, researchers analyze the frequency with which the gestures are used, the rate of gesture 

input, or user preference with the gesture system (Bragdon et al., 2010; Lepinski, Grossman, & 

Fitzmaurice, 2010). Appert and Zhai (2009) analyzed preference and memorability for keyboard 

shortcuts and gestures after training. They found that users did not have to consult the help menu 

system as often with gestures, and the use of gestures resulted in faster and more accurate recall 

of menu commands. To evaluate their menu-based gestural learning system, GestureBar, Bragdon 

et al. (2008) analyzed the number of correct gestures and the number of attempted gestures as 

participants used a gestural diagram editor. Kurtenbach et al. evaluated performance 

improvements over time as participants learned to use marking menus (1993). With each of these 

systems, user behavior was evaluated while users were actively engaged with the system, and did 

not separate performance from learning. 

Another common approach to evaluate gesture systems is to measure participant’s ability to 

recall specific gestures after training (Bradgon et al., 2010). To evaluate their dynamic and 

traceable gestural guide, Octopocus, Bau and Mackay (2008) compared participants’ ability to 

recall gestures before and after training with a gesture system and with a traditional help 

window. In the evaluation of a multi-touch gestural guide system, ShadowGuides, participants 

recalled gestures immediately following a training phase with ShadowGuides or a video-based 



 

24 

guide (Freeman et al., 2009). Zhai and Kristensson (2003) extended this evaluated the ability of 

participants to recall 100 gestures over a period of days. Though the aim of some of these systems 

is to assist users in the performance or execution of the gesture, they tend to focus on the 

cognitive component of gesture learning as measured using recall. While recall is a useful 

measure to assess the degree to which the action-gesture pairing was learned, these studies did 

not analyze the motor component of the gesture and were not able to isolate performance from 

learning. 

Due to the lack of standards in gestural interaction and the ad-hoc nature of many empirical 

studies, it is difficult to characterize the rate of gesture learning. For instance, Appert and Zhai 

(2009) found that participants could accurately recall approximately 80% of a 14-gesture set 

after 10 exposures to each gesture. Freeman et al. (2009) found participants could recall 67% of a 

16-gesture set after 8 exposures. When testing Gesture Play, Bragdon et al. (2010) found 

approximately 88% recall of a set of 16 gestures. Bau and Mackay (2008) compared video guides 

and their dynamic guide and found between 57 and 73% recall on a 16-gesture set after 9 

exposures to each gesture. From the wide variance in findings and number of gestures used, it is 

clear that standardized, generalizable evaluation methods need to be developed if the field is to 

move forward. 
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Chapter 3  

 

Self-Consistency of User-Defined Gestures1 

Within the framework defined in Section 1.3, it is important to identify the degree to which 

gesture learning is required, and the degree to which the system can leverage users’ existing 

knowledge. It is widely believed that if users select their own gestures, then this dramatically 

decreases the need for gesture learning. In this chapter, we examine the degree to which user-

defined gestures can lessen the need for gesture learning by probing the consistency of user-

defined gestures.  

As our study employs a gesture-password creation paradigm, we contribute descriptions of 

common gesture-choice strategies, as well as a method to compute similarity between two 

gesture password sequences. An understanding of how users create gestures passwords can help 

to recognize insecure gestures, can provide guidelines on the types of instructions provided 

during the gesture creation phase, and inform the design of gesture password input interfaces. 

3.1. USER DEFINED GESTURES 

User choice in gestural interfaces has been studied extensively in the context of command-based 

gestures. Wobbrock, Morris, and Wilson (2009) studied users’ choice of gestures for 27 separate 

commands on a multi-touch tabletop. They found that users produced similar gestures for 

‘concrete’ commands, but agreement decreased for commands that were more abstract. Further 

investigation by Morris, Wobbrock, and Wilson (2010) showed that users preferred gestures 

designed by end-user consensus to those developed by experts, indicating that there is a common 

basis for gesture design. In the context of mobile devices, Kray et al. (2010) examined how users 

chose gestures when their phone was interacting with different devices. They found that gestures 

                                                             

 

1 The majority of this chapter is currently under review at the Journal of Experimental Psychology: Applied 
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involving two phones were associated with greater movement than those involving a phone and a 

fixed display, demonstrating an interaction between environmental context and movement. Ruiz, 

Li, and Lank (2011) performed a gesture elicitation study using mobile devices to determine how 

users design motion gestures on mobile phones. Their results demonstrated that users preferred 

natural gestures, real-world metaphors, and direct manipulation. These research efforts indicate 

that users may choose natural and simple gestures, but as there is no concrete command or action 

on which to map the gesture, it is not obvious what a natural or simple gesture password may be. 

While commands that are more abstract are not consistent between users, there is still hope that 

a majority of functionality can be accessed through user-defined gestures. Recently, researchers 

have proposed systems that support user-defined gestures by querying a crowd-sourced 

database of gestures (Ouyang & Li, 2012). With such a system, users input what they believe is a 

natural gesture to accomplish an action and the system finds the nearest match based on other 

users’ gestures. If effective, this could mean that users need not learn gestures at all. However, for 

commands that have no match in the crowd-sourced database, the user must learn or define the 

appropriate action. Research by Nacenta et al. (2013) supports the adoption of user-defined 

gestures, and shows that they are more memorable than pre-defined and randomly assigned 

gestures. However, even this study includes a training phase where users had the gestures 

reinforced prior to being tested. 

Additionally, it is not clear if users are consistent with themselves when producing a gesture for 

an action multiple times. In typical desktop environments, the display, input devices, and visual 

feedback remain relatively constant from operation to operation. However, as technology moves 

to mobile, wearable, and ubiquitous interfaces, the environments are in a constant state of flux. It 

is unknown whether the desired action is the only factor influencing gesture choice in these 

scenarios, or if the screen location, orientation or other factors may also affect the users’ choice.  

Research into embodied cognition has found evidence that the environment impacts high-level 

cognitive processes and gestural choice may be influenced by the current context of the device. 

Embodied cognition theory posits that cognition is situated in the environment (Wilson, 2002). 

That is, high-level thoughts are grounded in the physical world. Thus, contextual and spatial 

factors may become particularly important when users cannot anchor gestures with personal or 

task-based meanings. For instance, pushing movements are more closely associated to negative 

judgments, and pulling movements are more closely associated to positive judgments (Markman 
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& Brendl, 2005). In this theory, we may expect users to create spatially anchored gestures, but the 

gestures may be more prone to influence by external factors.  

To examine the consistency of user-defined gestures when high-level instruction and 

environmental context were manipulated, we conducted two studies using a gesture-password 

generation paradigm. Gesture passwords provide a test-bed that allows for simple manipulations 

of the independent variables of interest while providing results that are relevant to emerging 

issues in security and authentication techniques for mobile devices. We examine two external 

factors that may influence the creation of gesture passwords: high-level instructions and device 

orientation.  

3.2. GESTURE PASSWORDS 

Gesture passwords provide an efficient method of authentication for mobile phones and tablets 

(Niu & Chen, 2012). To authenticate with a gesture password, users must slide their finger 

through a grid of buttons in a pre-set sequence. Such passwords are memorable, quick to perform, 

and require little cognitive overhead. In contrast to traditional numerical PIN authentication 

schemes, gesture passwords leverage motor and visual memory to provide memorability and 

high input speed. Gesture passwords have been popularized by the Android operating system, 

which uses them as the default authentication method. These experiments not only gave us 

insight into how the environment affects the choice of gestures, but it also enlightens us as to how 

users construct secure and memorable passwords in the absence of alphanumeric anchors. 

The types of gesture passwords users create may be related to their practices with other 

authentication mechanisms. Bonneau (2012) analyzed over 70 million passwords from Yahoo! 

users, finding that most passwords effectively provide fewer than 10 bits of security, despite the 

password space being much larger. Extracting 4 and 5 digit numeric passwords from the database 

allowed Bonneau to analyze PINs in-the-wild, though it is not clear if the use of numeric 

passwords in an alpha-numeric context represents real-world usage of PINs. Stanekova and 

Stanek (2013) analyzed numeric passwords and provided methods for users to remember PINs 

from randomly generated sequences easily. An analysis of leaked in-the-wild PINs revealed that 

users tend to use very simple, non-unique sequences when defining PINs (DataGenetics, 2012). 

This analysis found that more than 10% of the PINs they analyzed were ‘1234’, and the twenty 

most popular PINs (0.2% of the password space) represented more than 25% of the PINs used by 

users. A survey by Bonneau, Preibusch, and Anderson (2012) found that 7% of users chose PINs 
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based on their birthdays. This desire for convenience in authentication has been repeatedly 

identified in several studies (Clarke et al., 2002; De Luca, Langheinrich, & Haussmann, 2010). 

While the existing work on PIN choice uses in-the-wild data and provides thorough analyses, it is 

not clear if any of the results transfer to gesture passwords.  

While the common gesture password input space is spatially similar to a PIN pad, the numerical 

labels are not present so users will likely employ different strategies in their password design. 

Gesture passwords lack the content or meaning that users can rely on for PINs (e.g. Birthdays). It 

remains to be seen how users select passwords when there are no alphanumeric values or 

metaphors available to anchor their selections.  

3.3. EXPERIMENT 1: INFLUENCE OF INSTRUCTION 

The first experiment was aimed at understanding the influence of an instruction on participants’ 

gesture password creation. Prior research on gesture instruction has found that the modality of 

instruction can influence the accuracy of the gesture performed by the user being trained 

(Fothergill et al., 2012). We were specifically interested in how the form and design of a password 

changed when participants were encouraged to design passwords motivated by internal goals 

(memorability) versus external demands (security from attackers). To explore this issue, 

participants created gestures for three scenarios: easy for them to remember, hard for someone 

to guess, and hard for someone steal by watching. These three scenarios parallel the change in 

task that commonly used with gesture elicitation studies. We hypothesized that participants 

would create simpler passwords when only the internal motivation of memorability was a factor. 

When external factors, such as hypothetical attackers were introduced, we hypothesized that 

participants would vary their passwords more and make them more complex.  

3.3.1. PARTICIPANTS 

Thirty university students (M = 19.9 years, SD = 2.3 years, range = 18 - 27 years) were recruited 

for the experiment. Twenty-three participants were female and 14 had experience with gesture 

passwords. Participants were naive to the purpose of the study. All participants had normal or 

corrected-to-normal vision and were treated according to the APA ethical guidelines. The 

experiment lasted 30 minutes. 
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3.3.2. EQUIPMENT AND APPLICATION 

Participants were seated in an adjustable computer chair in front of a Dell SX2210T 21.5” 

touchscreen monitor with a resolution of 1920 x 1080 pixels and a refresh rate of 60 Hz. The 

monitor was oriented in an upright, vertical position, approximately 30 cm from the participant, 

within their comfortable reaching range (Figure 3.1).  

The monitor was connected to a PC that ran a custom WPF application that displayed the stimuli 

and recorded each gesture. The application divided the screen into thirds, with the top third 

reserved for the instruction, and the bottom two thirds used to display a grid of 3 x 3 targets. 

3.3.3. PROCEDURE 

At the beginning of the experiment, participants were seated in front of the touch screen and were 

informed that they had to create a number of gesture passwords, like those used on some tablets 

and mobile phones today. To create a password, participants had to draw a stroke through at 

least four grid targets. Whenever the participant’s finger crossed through a target, the target 

changed color to indicate a selection. As the finger moved towards the next target, an elastic line 

was rendered from the last target location to the current finger location. Once the finger was lifted 

from the screen, the stroke disappeared and the targets returned to their original color. 

   

Figure 3.1. Experimental setup with the touch-screen placed vertically (left) and horizontally (right) in front of the 
participant. Note that the horizontal condition was only used in Experiment 2. 

 

After participants created a password, they were asked to enter it again for validation. If the two 

passwords did not match, a tone sounded, indicating that the password was not valid and that 

they would need to enter it again. If participants made a mistake during the first two or three 

target selections, they were instructed to lift their finger, thereby erasing the stroke, and playing a 

tone that indicated the gesture was not accepted. 
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Participants were told to pay attention to the instruction on the screen before making each 

password, as the instructions changed during the experiment. Three different instructions were 

provided. In the easy condition, participants were prompted to “Enter a gesture that you can 

remember easily”. For the hard to guess condition, participants were asked to “Enter a gesture that 

would be very difficult for someone else to guess, but you can remember easily”. Lastly, in the hard 

to steal condition, participants were asked to “Enter a gesture that you would remember easily, but 

would be secure if someone was watching you enter it”. These instructions probed how internal 

versus external motivation and task influenced the gestures created. 

Participants were instructed to create seven different gestures for each condition, resulting in 

twenty-one unique gesture passwords. The presentation order of the three conditions was 

counterbalanced across participants. 

3.3.4. MEASURES 

To quantify the influence of motivation and instruction on the gestures, several measures were 

computed from the recorded touch data. Gesture length serves as a simple method to measure 

complexity of gesture, with longer gestures generally representing passwords that are more 

intricate. The starting location provides quantification of participants’ strategy, as well as 

examining how the spatial layout affects gesture choice. Finally, gesture similarity provides a 

method to measure how much participants vary their passwords, as well as measuring how 

unique a participant’s gestures are in comparison to other participants. 

3.3.4.1. GESTURE LENGTH 

To quantify the complexity of gestures, the length or number of targets that composed each 

gesture was computed. While other measures could have been used, such as the size of resulting 

bounding box, number of ‘corners’ in the gesture, or number of unique points, the total number of 

points provides a simple, direct measure of gesture complexity. While it is possible to make long 

gestures that are simple, and short gestures that are complex, such a measure accurately reflected 

the complexity of the majority of gestures produced by participants. 

3.3.4.2. STARTING LOCATION 

The starting location was chosen to understand the strategies participants used when creating 

gestures. We hypothesized that the starting location would be influenced by the complexity of the 
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gesture, as well as the strategy used to define the gesture. The starting location was defined as the 

first target used in the creation of each gesture. 

3.3.4.3. GESTURE SIMILARITY 

While there are several algorithms to compute the similarity of stroke gestures (e.g., $1 

(Wobbrock, Wilson, & Li, 2007), Rubine’s (1991), Li’s Protractor (2010), etc.), there are no 

published methods for computing the similarity of gesture passwords defined on a discrete grid. 

This is because, for grid-based gestures, similarity is often irrelevant, as the application is only 

interested if the input sequence matches the template sequence exactly. In contrast to this, we are 

interested in the relative similarity of non-identical gestures. Such a measure should accurately 

reflect minor variations in shape, as well as being translation invariant and robust to mirroring 

operations.  

The gesture similarity of two sequences was computed by first simplifying the gesture such that 

one of three possible states represented each directional change in the sequence: horizontal, 

vertical or diagonal. Thus, a four-point gesture in the shape of an ‘L’ would be represented as the 

sequence: vertical, vertical, horizontal. To convert this representation into a numerical value of 

similarity, the Levenshtein (1966), or edit distance, was computed between the two simplified 

sequences. The gesture similarity measure Gs was computed as: 

 

Where DL(A,B) is the Levenshtein distance of the simplified gesture sequences A and B. When 

gestures are identical, Gs=1; as gestures become less similar, Gs tends towards zero. Thus, Gs is 

bounded in the interval (0, 1].  

In the analysis of gesture similarity, two variants were considered: self-similarity and group-

similarity. Self-similarity averaged the similarity of each participant’s gestures to the other 

gestures they created for the same experimental phase. This provided a measure of how each 

participant varied his or her own gestures. Group-similarity averaged the similarity of each 

participant’s gestures with the gestures that all other participants created for the same 

experimental phase. This represented the uniqueness of the participants’ gestures amongst the 

set of gestures collected from all participants. 
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3.3.5. RESULTS 

Each of the measures was analyzed separately and is presented independently below. 

3.3.5.1. GESTURE LENGTH 

A one-way repeated measures ANOVA compared the effect of Instruction (i.e., easy, hard to guess, 

and hard to steal) on the gesture length participants used. The analysis revealed that there was a 

significant effect of Instruction (F2, 58 = 10.21, p < .005; Figure 3.2). Post-hoc comparisons using 

Bonferroni-corrected paired t-tests indicated that the mean gesture length for the easy condition 

(M = 5.82 points, SEM = 0.12 points) was significantly lower than the difficult to guess instruction 

(M = 7.02 points, SEM = 0.20, p < .001) and difficult to steal instruction (M = 7.03 points, SEM = 

0.19 points, p < .001). No significant difference was found between the gesture length used with 

the hard to guess and hard to steal instructions (p = .96). The results thus suggest that the 

instruction or prompt influences the complexity of the created gestures. Instructions that 

encourage memorability alone result in shorter gesture passwords, whereas instructions that 

suggest the need for increased security or privacy result in longer, more complex gesture 

passwords. 

 

Figure 3.2. Mean gesture length by instruction. Error bars represent the standard error of the mean. 

 

3.3.5.2. STARTING LOCATION 

A Pearson’s Chi-squared test of independence examined the relation between Starting Location 

(i.e., 1-9) and Instruction (i.e., easy, hard to guess, hard to steal). The analysis found that 
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Instruction significantly influenced the starting location of the gesture passwords (χ2(16) = 33.47, 

p < .01; Figure 3.3). ‘Easy’ gestures started in the top-center location more frequently (31 

compared to 16 and 15), whereas the ‘hard to guess’ gestures started more frequently in the 

bottom-right location (19 compared to 6 and 9). 

a) b) c) 

   

Figure 3.3. Frequency of starting location for each instruction. a) Easy; b) Hard to guess; c) Hard to steal. 

 

3.3.5.3. GESTURE SIMILARITY 

A repeated-measures ANOVA with Instruction (i.e., easy, hard to guess, hard to steal) and 

Comparison-Type (i.e., self, group) determined how similar participant’s gestures were. The 

analysis found a main effect of Instruction (F2, 28 = 20.7, p < .001), and Comparison-Type (F1, 29 = 

19.8, p < .001; Figure 3.4). Post-hoc comparisons using Bonferroni-corrected paired-t tests 

indicated that the easy instruction resulted in significantly more similar gestures (M = 0.27; SEM 

= 0.011) than the hard to guess (M = 0.22; SEM = 0.008; p < .001) and hard to steal (M = 0.22; SEM 

= 0.010; p < .001) instructions. There was no significant difference between the hard to guess and 

hard to steal instructions (p = 0.74). The main effect of Comparison-Type additionally 

demonstrated that self-similarity measures (M = 0.26; SEM = 0.012) were significantly greater 

than the group-similarity measures (M = 0.22; SEM = 0.005; p < .001). This suggests that even 

when participants were instructed to generate hard gestures, they still produced a set of gestures 

that were more similar to each other, than they were to gestures created by other participants. No 

interaction was found between Instruction and Comparison-Type (p = 0.98).  
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Figure 3.4. Gesture similarity by instruction and comparison-type. Note the increased similarity found within the ‘easy’ 
condition, and that self-similarity is consistently higher than group-similarity. Error bars represent the standard error 
of the mean. 

 

The results indicate that participants were creating gestures that were less self-similar when 

instructed to create ‘hard’ gestures, as the self-similarity decreased between the easy condition 

and the two hard conditions. The length of the gestures increased from the easy to the hard 

conditions, which may account for some of the decrease in self-similarity. While this may be 

addressed by a length-normalized similarity measure, such a normalization may artificially 

discount the difference between gestures of vastly different lengths. Note that the self-similarity is 

higher than group-similarity in all cases (i.e., there is no significant interaction between the 

instruction factor and the comparison-type factor, p = 0.61). Thus, even when participants are 

trying to create difficult to steal gestures, they tended to re-use the same patterns. 

3.4. EXPERIMENT 2: INFLUENCE OF ENVIRONMENT 

Given that instructions influenced the creation of gestures, we sought to identify other factors 

affecting gesture choice. The second experiment explored how device orientation affected the 

choice of gesture passwords. In this experiment, the orientation of the touch screen was either 

vertical or horizontal.  

Due to the similarities found in Experiment 1 between the hard-to-guess and hard-to-steal 

instructions, the hard-to-steal instruction condition was omitted from Experiment 2. 
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3.4.1. PARTICIPANTS 

Twenty-eight university students were recruited (M = 22 years, SD = 3.2, range = 15 - 27), 17 of 

which were female. All participants had normal or corrected-to-normal vision and were treated 

according to the APA ethical guidelines. Eleven had experience with gesture passwords. The 

experiment lasted 30 minute. Participants were divided into a vertical condition, where the 

touchscreen was vertically upright as in Experiment 1 (Figure 3.1), and a horizontal condition, 

where the touchscreen was placed horizontally on the table in front of the participant. 

3.4.2. EQUIPMENT AND APPARATUS 

The experimental setup was the same as in Experiment 1, except that the touchscreen was placed 

horizontally for half of the participants. 

3.4.3. PROCEDURE 

Participants were asked to generate a password suitable for use on a mobile device. Each 

participant generated seven unique passwords for the two instruction conditions: easy - “Enter a 

gesture that you can remember easily” and hard - “Enter a gesture that would be very difficult for 

someone else to guess, but you can remember easily”. This resulted in 14 unique gestures created 

by each participant. Each participant completed each instruction condition when the touchscreen 

was either vertical or horizontal, as device orientation was a between-subjects factor. The 

presentation order of instructions and orientations were counterbalanced across participants. 

3.4.4. MEASURES 

The same measures used in Experiment 1 were also used in the analysis of Experiment 2.  

3.4.5. RESULTS 

As in Experiment 1, each measure was analyzed independently and is presented separately. 

3.4.5.1. GESTURE LENGTH 

A mixed-design ANOVA was conducted using a 2 (Instruction: easy, hard; within-subjects) x 2 

(Orientation: horizontal, vertical; between-subjects) design. The analysis revealed a significant 

effect of Instruction on the length of the gesture generated by participants (F1, 26 = 27.6, p < .001, 

with the gestures created when the easy instruction was provided (M = 5.42, SEM = 0.32) being 

shorter than those generated when the hard instruction was provided (M = 7.06, SEM = 0.18). 
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Orientation was not found to influence the length of gestures created (F1, 26 = 2.14, p = 0.16)), nor 

was there an interaction between Instruction and Orientation (p = 0.08). 

 

Figure 3.5. Length of resulting gestures across the four conditions. Error bars represent the standard error of the mean. 

 

3.4.5.2. STARTING LOCATION 

A Pearson’s Chi-squared test analyzed the influence of Instruction (i.e., easy, hard) on the Starting 

Location (i.e., 1-9) of each gesture that was created. The analysis determined that gestures 

generated when the hard instruction was provided started in the bottom right corner more often 

than those generated when the easy instruction was given (χ2(8) = 25.14, p < .01; Figure 3.6). 

With both instructions, gestures started in the top left hand corner three times more often than 

any other location. With the hard instruction however, gestures started in the top left corner less 

often than with the easy instruction (i.e., 73 to 89) and more often in the bottom right corner than 

with the easy instruction (p < .05, 9 to 0). The top-center location was also used more often in the 

creation of easy gestures, corroborating the findings of Experiment 1. 

a) 

 

b) 

 

Figure 3.6. Frequency of each starting location by instruction, collapsed across orientation. a) Easy, and b) Hard. 
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Screen Orientation also significantly influenced starting position (χ 2(8) = 18.2, p < .05, Figure 3.7). 

With both instructions, the top left was the most popular starting location, with gestures in the 

vertical condition starting in the top left significantly more often than in the horizontal condition 

(i.e., 99 to 63, p < .05). Similarly, gestures created in the vertical condition started less often in the 

bottom left and bottom right corner than in the horizontal condition (i.e., 5 to 13 and 2 to 7, 

respectively). These values were marginally significant due to the small cell frequencies. 

a) 

 

b) 

 

Figure 3.7. Frequency of each starting location by orientation, collapsed across instruction. a) Horizontal and b) 
Vertical. 

3.4.5.3. GESTURE SIMILARITY  

A three factor (Orientation: vertical, horizontal; Instruction: easy, hard; Comparison-Type: self, 

group), mixed design ANOVA was conducted to understand how similar the participant generated 

gestures were (Figure 3.8). The analysis revealed a significant effect of Instruction on the 

uniqueness of the gestures (F1, 26 = 12.1, p < .005). Post-hoc comparisons showed that the mean 

similarity for the easy instruction (M = 0.29, SEM = 0.009) was significantly higher than the hard 

instruction (M = 0.23, SEM = 0.015, p < .001). Comparison-Type was found to be significant (F1, 26 

= 6.26, p < .05), with self-similarity (M = 0.28, SEM = 0.016) significantly higher than group-

similarity (M = 0.24, SEM = 0.004, p < .05). Orientation also significantly affected the similarity of 

gestures (F1, 26 = 5.29, p < .05), with gestures created in the horizontal condition having 

significantly higher similarity (M = 0.268, SEM = 0.009) than those in the vertical condition (M = 

0.239; SEM = 0.009). There was no significant interaction between any of the factors (p > 0.50 in 

all cases). 
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Figure 3.8. Similarity (self and group) between the gestures created under all four conditions. Note the consistently 
high similarity in the easy condition and the higher similarity in the horizontal conditions. Error bars represent the 
standard error of the mean. 

 

3.5. DISCUSSION 

The instruction clearly influences participants’ choice of gestures. When told to create an ‘easy to 

remember’ gesture, participants typically created simple spatial patterns. However, when the 

external factors were introduced, e.g., the instruction was ‘hard to guess’, participants lengthened 

their gestures and generated more complex gestures. The impact of instruction is clearly visible in 

the gesture length, which demonstrated a significant difference between the easy and two hard 

conditions. 

When asked to create ‘hard to steal’ passwords, participants lengthened and increased the 

complexity in most cases, as with the ‘hard to guess’ condition. We noticed, however, qualitative 

differences between the ‘hard to steal’ and ‘hard to guess’ conditions in terms of the types of 

gestures created and the strategies used. Three strategies were observed when participants were 

designing gestures that were difficult to steal: crossovers (Figure 3.9a), repetition of points (Figure 

3.9b) and minimization of space (Figure 3.9c). When using crossovers, participants generated 

gestures passwords that were long, and contained many overlapping strokes (sometimes using an 

arcing motion to skip over points deliberately). The example shown in Figure 3.9b is an extreme 

example of repetition of points, in which participants included a single point multiple times in the 

same gesture, likely so that the imagined attacker could not simply memorize the sequence 

locations. Lastly, many participants approached the creation of ‘hard to steal’ gestures by 
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producing smaller gestures which could be completed quickly without making large, overt 

movements, making them harder for an attacker to observe. 

a) 

 

b) 

 

c) 

 

Figure 3.9. Variations used in constructing hard to steal gestures: a) Crossovers, b) Repetition of points, and c). 
Minimization of space. 

 

Regarding the starting location, there was a shift away from the top-center location when creating 

‘hard’ gestures, indicating that some participants were perhaps conscious about starting gestures 

in this ‘obvious’ location. This was emphasized in the increase in the use of the bottom right 

corner when creating ‘hard to guess’ instructions. However, the effect of starting location was 

minor in comparison to the drastic change in gesture length. 

Gesture similarity provides further evidence that instruction can influence the design of gestures. 

Gestures created with the easy instruction were more self-similar than those with the hard 

instruction, indicating that participants varied their gestures more with the hard instruction. 

However, even with the hard instruction, participants still generated variations of their own 

gestures, resulting in self-similarity that was consistently higher than group-similarity. This 

suggests that an instruction to create hard gestures may not be enough to get users to 

appropriately vary their gesture passwords. Rather, when changing passwords, it may be 

beneficial for the system to compute the similarity of the new password to previous passwords 

and suggest a change if it is too similar. 

With respect to the effects of instruction, the results of the second experiment mirror the first. 

Easy gestures tended to be shorter and simpler than hard gestures. Likewise, self-similarity was 

consistently higher than group-similarity, even when the hard instruction was provided. The 

orientation of the device did not have a significant effect on the measured complexity of the 

gestures. 

With respect to the starting location, participants created more gestures starting at the bottom of 

the screen, which was physically closer to participants. This is evident in the increase in gestures 
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starting in the bottom row more often for the horizontal condition, and the decrease in gestures 

that start in the top-left. This result emphasizes the interplay between motor movements and 

cognitive goals. The gestures used in the horizontal condition tended to minimize movements and 

could be completed using efficient maneuvers. Extending this reasoning to a mobile scenario, we 

would expect to find qualitative differences in gesture passwords generated when the tablet was 

flat on a surface or held at an angle. Likewise, passwords generated while using a device with one 

hand are likely to be qualitatively different from those defined the device is supported by one 

hand and the other hand is interacting, due to the substantial differences in movements required. 

The higher similarity values (both self and group-similarity) in the horizontal condition re-iterate 

the influence of the physical input space. Further studies are needed to confirm the cause of the 

increased similarity, but we suspect that participants ‘fell back’ onto symbols and actions that 

they were familiar with due to prior experience with writing and sketching. As most writing and 

sketching is performed on a horizontal surface, familiar symbols and shapes (and variants on 

these patterns) may be more natural for users. Conversely, the vertical touch-screen is a relatively 

novel environment that may illicit patterns that are more novel. 

3.5.1. ANALYSIS OF GESTURE FORM 

From the data collected from both experiments, we inspected the gestures to determine the types 

of strategies used by participants. Across both experiments, 1022 gestures were recorded. 

The uniqueness of gestures was analyzed by examining how many times each of the gestures was 

repeated across participants. There were 800 different gestures generated across participants 

with distribution shown in Figure 3.10. Of those, 708 were unique and only used once. On the 

other end of the spectrum, the most frequently used gesture, an ‘L’ shape (Figure 3.11), was 

independently generated by 20 participants. 

The nine most popular gestures are depicted in Figure 3.11 and represent 13% of all generated 

gestures. From these samples, as well as a manual inspection of the rest of the generated gestures, 

it is clear that the overwhelming majority of easy-to-remember passwords were based on simple 

spatial arrangements. Simple shapes starting in the top-left corner were frequent, as were spatial 

variations on these patterns (e.g., translation, rotation, and mirroring). 
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Figure 3.10. Frequency of use of gestures. Note that the first bar is truncated for clarity, the true value is 708, indicating 
that 708 gestures were totally unique and generated only once across both experiments. 

 

Another common observation was the limited use of directional changes, i.e., participants often 

produced two subsequent strokes in the same direction (e.g., Figure 3.11, top row). This has a 

cognitive and motor advantage for users, as they can chunk a series of three points as a single, 

ballistic stroke. Consequently, this reduces the effective space of possible passwords and results 

in overall less secure passwords.  

Participants did not appear to map numeric values onto the gesture positions (as in a PIN 

keypad), but rather treated them as a simple two-dimensional grid on which to draw shapes. This 

supports with our theory that gesture passwords may be anchored spatially when there is a lack 

of meaning associated with the input space. 
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Figure 3.11. Most popular gestures generated by participants, with the top left being the most frequently used 
gesture, with frequency decreasing to the right, then down. 

 

3.5.2. IMPLICATIONS FOR GESTURE PASSWORDS 

For designers of gesture password interfaces, the results of this study can guide future 

implementations in several ways.  

Designers should leverage the fact that the instructions given to the user can affect the strength or 

complexity of the user’s passwords. Designers should seek to convey the importance of gesture 

security to users when they are prompting the user for their password. After a user enters a 

password, the system could run simple tests to validate the strength of the password. First, it 

could compare against a database of simple shapes (and spatial transforms of these shapes). Next, 

it could count the number of directional changes in the password (rather than just the length of 

the password) and warn if the user has only one directional change. Lastly, the interface could 

provide tips on creating ‘hard’ gesture passwords, such as varying the starting location, re-using 

points, and including numerous directional changes. 

The similarity measure could prevent end-users from re-using variants on old passwords. This 

can reduce the chances that users could be re-exploited following a breach of their password. The 

similarity measure could also compare a user’s password to database of known passwords to 

determine a password’s uniqueness, and to encourage the user to create a more complex 

password if it is too similar to others. 
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3.5.3. IMPLICATIONS FOR GESTURE LEARNING 

The results of this study demonstrate that the high-level task can affect the types of gestures 

users choose. The results presented here with gesture passwords parallel the existing work on 

user-defined gestures that map to commands (Morris et al., 2006). What is novel, however, is the 

examination of the effects of manipulating the screen orientation in gesture definition. With the 

same high-level task, a change in the performance context can affect the resultant gestures for the 

same users.  

The increasing adoption of wearable and ubiquitous interfaces has resulted in a highly dynamic 

computing environment. The location of interfaces, the pose of the body, and the required actions 

to perform a gesture will vary in this environment. If the system relies on user-defined gestures, 

there may be substantial confusion as users migrate from one gesture to another within the same 

task. Thus, it is clear that user-defined gestures are not a panacea for the lack of affordances 

presented by gestural interaction, and gesture sets in the foreseeable future will require learning 

on the part of the end user. 

3.5.4. FUTURE WORK 

This study was conducted on a touch-screen monitor, and the results reflect what users may do 

on a tablet rather than a mobile phone or wearable interface. We suspect that passwords 

generated on a mobile phone are qualitatively different due to the different movement cost 

associated with entering them. Future work will test this hypothesis and examine if there are 

other aspects that change when entering gestures on a variety of mobile devices. 

Building on the spatial nature of the observed gestures, we plan to analyze how changes to the 

appearance of the input grid affect resulting passwords. Modifying the layout of the points with 

non-uniform spacing, or a circular layout may influence how users view and interact with the 

input space. In addition, by providing numerical or alphabetical anchors on the input grid we can 

examine how the presence of cognitive landmarks interacts with the spatial nature of gesture 

passwords, and how users generate memorable sequences when both mnemonic devices are 

available. 

3.6. SUMMARY 

The results of the second experiment indicate that user-defined gestures are not a panacea for the 

problem of gesture learning. Simple changes, such as the orientation of the device, can affect how 
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users create mappings between command and action. Therefore, interfaces that support user-

defined mappings of gestures should provide support to scaffold learning. 

3.6.1. RELEVANCE TO GESTURE LEARNING 

This chapter has provided evidence that users are not always consistent with the gestures that 

they produce, even when the task is held consistent. The metaphors that participants relied on 

changed as orientation changed, despite participants having similar intentions. Within the context 

of gestural interaction, these results point to a need to emphasize gestural learning even when 

users are able to select their own gestures. In particular, it demonstrates the need to support the 

declarative component of gesture learning within these scenarios. Users have to remember which 

action they intend to execute, even if the learning or performance context has changed. Systems 

must address the transfer of gesture learning across environmental conditions and minimize the 

cognitive interference that occurs when learning a variety of gestures in similar conditions. 

Systems may also need to integrate cues to prime the appropriate gesture to be recalled, or 

provide other mechanisms to help the users recognize or recall the appropriate action. 

With respect to the framework outlined in Chapter 1, this study provides evidence that pre-

existing knowledge may need to be supplemented by additional information. In cases where 

contextual interference is likely to occur (e.g., similar interfaces with different operations, or the 

same interface used in different environments), the user’s choice of gesture may need to be 

reinforced by interface cues or other learning support. 

3.6.2. LIMITATIONS 

While this study was conducted in a lab with desktop hardware that was reconfigured, emerging 

interaction paradigms, such as wearable and ubiquitous computing, will have similar dynamic 

environmental changes, which may alter the user’s perception of their functionality. Additionally, 

the use of gesture passwords as a test bed within this chapter has provided insights into the 

practical application of gestural interfaces. The preceding results can influence the design of 

future authentication mechanisms and improve security for mobile devices. 
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Chapter 4  

 

The Cognitive Advantage of Gestures1 

Complex gestural interfaces must support the user in learning the declarative mapping between 

their intent and the movements required to convey their intent to the system. Identified in 

Section 1.3, one method of providing this support is to modify how a gesture is rendered, in terms 

of the modality and the form within the modality. As identified in Chapter 2, many modalities and 

forms of feedback can be leveraged to support this learning. However, it is currently not clear 

how to best support such mappings.  

In this chapter, we attempt to answer the question of whether or not gestures have a cognitive 

advantage over traditional input mechanisms, and why that may be the case. We explore gestures 

and traditional input using an ecologically focused experiment and examine the relative 

importance of visual and motoric actions when learning gestures. With a better understanding of 

how gestures are encoded, designers can build better training systems, which enable users to 

understand the gesture vocabulary of the system they are using quickly. 

4.1. LEARNING THE COMMAND-ACTION MAPPING 

Some researchers have believed that gestures are relatively easy to learn as they leverage the 

picture superiority effect as well as motor memory (Weiss and De Luca, 2008). The picture 

superiority effect suggests that information is learned more readily if it is presented in picture 

form. As gestures are often displayed graphically as strokes, one could reason that it may benefit 

due to this effect. The belief that motor memory may facilitate improved retention of gestures 

likely stems from the familiar long-term and robust nature of learned motor skills. It may also 

arise from the dual encoding (Paivio & Kalman, 1973) of actions as visual and distinct motoric 

patterns. Or, it could be explained by the information packaging hypothesis (Kita, 2000) which 

predicts that gestures aid in the conceptualization of ideas. Similar work has shown gesturing 

                                                             

 

1 The majority of this chapter is currently under review for publication at the Journal of Applied Cognitive Psychology. 
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while learning new information aids in the retention of that information (Cook, et al., 2008). This 

effect has been demonstrated in a number of domains, in particular the acquisition of language 

and mathematic skills (Goldin-Meadow et al. 2009; Iverson and Goldin-Meadow 2005). 

Regardless of the explanation, both the visual and motor components are considered important 

aspects of gestural interfaces. Some of the earliest gestural interfaces, marking menus 

(Kurtenbach, 1993), were designed such that invoking the same menu command would require 

the same motor movement. Additionally, the design included a visual ‘mark’, which was in theory 

redundant as the menu selections provided visual feedback. However, the mark was considered 

important to the design and it is believed to be an integral part of the success of marking menus 

(Kurtenbach, personal communication, May 22, 2014). 

Despite the prevalence of gestural interfaces, and the body of literature surrounding their design, 

there is no work confirming that gestures have a cognitive advantage over traditional input 

methods. There is also no work evaluating the relative effects of these components on gesture 

learning. To fully understand and be able to exploit the full potential of gestural interaction, it is 

essential that we determine what benefits gesture input offers, and what the causes of these 

benefits are. 

In this chapter, we present two experiments that further our understanding of gesture learning. 

In the first experiment, participants learned sequences using either gesturing or pointing. This 

experiment was ecologically focused, with gesture input leveraging both of the hypothesized 

visual and motor advantages. In the second experiment, the visual component was fixed and 

participants learned sequences of varying length using gesturing or pointing.  

4.2. EXPERIMENT 1: COMPARING GESTURES AND POINTING 

The purpose of the first experiment was to determine if gestures offer a cognitive advantage over 

traditional pointing methods with respect to the encoding and recall of pre-defined sequences. 

The study focused on addressing whether or not gestural interaction, as implemented in many 

interfaces, truly offers the advantage that many researchers claim. To that end, it was designed to 

be ecologically valid with the two conditions differing in both the visuals presented as well as the 

movements required. This experimental design is unable to assess the relative contribution of 

each aspect. 
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If the gesture condition is more efficient, it may be because fewer movements are required to 

articulate the sequence, which results in reduced movement complexity. Prior work has shown 

that movements that are more complex result in a longer response time when recalling the 

movement (Henry & Rogers, 1960). An alternative explanation may come from prior work 

spanning several domains that shows improvements in learning while gesturing (Kita, 2000; 

Goldin-Meadow et al. 2009). Lastly, gesture input may have an advantage due to the pictoral 

superiority effect (Paivio & Kalman, 1973), which would allow users to chunk the gestures into 

visually simpler shapes, which are easier to encode and recall. Alternatively, the use of pointing to 

enter sequences should result in movements that are more complex and have a longer movement 

time. This increases the user’s exposure to the sequence and may subsequently aid in learning. 

Additionally, it requires the user to expend more effort during the learning phase and has been 

shown to be a factor in learning (Cockburn et al, 2007). Thus, it is important to assess which of 

these input modalities has an advantage in a real-world scenario. 

4.2.1. PARTICIPANTS 

Twenty university students (M = 20.1, SD = 2.2, range= 18-27 years; 16 female) were recruited to 

participate in 30 minute session. All participants had normal or corrected-to-normal vision and 

were treated according to the APA ethical guidelines. 

4.2.2. EQUIPMENT AND APPARATUS 

A 21.5” Dell SX2210T touch monitor (Figure 4.1) which was set in the upright position and used 

for the experiment. The monitor had a resolution of 1920 x 1080 pixels and a refresh rate of 60 

Hz. The software was written in C# and WPF, and ran on a Windows 7 PC. The custom software 

was responsible for loading the current trial information, presenting the appropriate stimuli, and 

recording all touch events with their associated meta-data (e.g., time, position, and so on.). 

4.2.3. PROCEDURE 

Each participant performed a training phase where they learned pairings between sequences of 

dots and different background colours. After a break, participants performed a two-alternative 

forced choice task where they responded as quickly as possible to whether or not the presented 

color and sequence matched one that they had learned in the training phase. While this approach 

does not require the user to perform the learned gesture, response time is typically more 
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sensitive to smaller effects, providing a better understanding of the relative advantages of 

stroking and pointing.  

 

Figure 4.1. Experimental setup showing a participant learning a sequence in the pointing condition. The dots 
illuminated in sequence (in the top portion of the screen) and participants would touch them in the same sequence on 
the bottom portion of the screen. 

 

Participants completed a learning phase, followed by a 5-minute distractor task, and finally the 

recognition phase. Participants were randomly assigned to one of two conditions, either pointing 

or stroking. The gesture grid for the learning and test phases consisted of a 3 x 3 grid of dots. This 

gesture grid was shown on a background of one of seven distinct colors. 

  

Figure 4.2. (Left) The learning phase in the stroking condition displayed lines connecting the dots in the sequence 
during the demonstration as well as during user input. (Right) The screen presented to participants during the 
recognition task required participants to hold the bottom-most button until the probe gesture appeared. Then 
participants quickly touched the Yes or No button to indicate their response. 
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In the learning phase of the pointing condition (Figure 4.1), the seven sequences to be learned 

were shown by illuminating dots one at a time at an interval of 200 milliseconds. The full 

sequence remained visible until the end of the trial. Participants then had to repeat that sequence 

on a separate input grid underneath the instruction grid by pointing to each of the dots in 

sequence one at a time using four separate movements. As participants touched each of the dots, 

they illuminated and remained illuminated until the end of the trial. If the participant did not 

repeat the sequence correctly, a tone sounded to indicate an incorrect response. The screen was 

cleared and the participant moved to the next trial. The stroking condition was similar to the 

pointing condition, but in addition to the dots being illuminated, a line between each of the dots 

was animated to connect the dots in the sequence providing the visual feedback of typical 

gestural interfaces (Figure 4.2). Further, participants in the stroking condition specified the 

sequence using a single continuous stroke through the dots rather than individual pointing 

movements.  

Each participant performed both the pointing and stroking conditions, with the order 

counterbalanced across participants. Unique sequences and colours were used for each 

participant, but the same sequences and colours were used between participants and 

counterbalanced between the pointing and stroking condition. Each participant learned seven 

sequences during the learning phase. The learning phase consisted of three training blocks, each 

consisting of two sequential presentations of each gesture, resulting in six exposures to each of 

the seven gestures. 

Once the learning phase was completed, the distractor task consisting of a personality 

questionnaire followed by mathematical questions was administered. Participants were timed 

with a stopwatch, and after 5 minutes were told to stop. 

Finally, in the test phase, participants had 42 trials in which a gesture and background colour 

were shown, along with the instruction “Have you seen this gesture paired with this colour 

before?” as well as two buttons labelled “Yes” and “No” and a button at the bottom of the screen 

marked “Hold” (Figure 4.2). Participants rested their finger on the “Hold” button at which point a 

new gesture and background colour would be shown after a random interval between 500 to 

3500 milliseconds. Participants were instructed to respond as quickly and accurately as possible 

after the gesture was shown, and responded by pressing either the “Yes” or “No” button. Of the 42 

trials, half were pairings that were learned during the training phase, and half were unseen 
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pairings. Of the unseen pairings, half were novel, unseen sequences, and half were learned 

sequences paired with the incorrect colour. No novel colours were shown during the testing 

phase. Accuracy as well as response time (i.e., the time that the gesture was shown on-screen to 

the time when a button was pressed) was recorded. 

4.2.4. MEASURES 

Three measures were used to evaluate the degree of learning of each of the sequences, response 

time, accuracy, and efficiency. The response time was measured as the interval between the time 

when the gesture appeared on the screen and the time the finger touched down on either the 

“Yes” or “No” buttons. Accuracy was measured as the proportion of correct responses to the 

recognition task. Efficiency was computed as the response time divided by the proportion of 

correct responses. 

4.2.5. RESULTS 

A two-sample paired t-test compared the influence of stroking and pointing on response time, 

accuracy, and efficiency. 

4.2.5.1. RESPONSE TIME 

Input condition was found to marginally influence response time (t(18) = 1.9, p = 0.072, d = 0.85), 

with stroking resulting in faster responses (M = 1914 milliseconds, SEM = 465.6 milliseconds) 

than pointing (M = 2672 milliseconds, SEM = 1163 milliseconds). This indicates that gesturing 

while learning sequences may result in retrieval that is more efficient. 

  

Figure 4.3. Response time by condition. Error bars show standard error of the mean. 
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4.2.5.2. ACCURACY 

Input condition was not found to significantly influence accuracy (t(18) = 1.41, p = 0.176, d = 

0.81). While stroking, participants were slightly more accurate (M = 0.84, SEM = 0.135) than while 

pointing (M = 0.73, SEM = 0.138). This suggests that there may be a possible effect of stroking 

resulting in more memorable sequences than pointing. 

 

Figure 4.4. Accuracy by condition. Error bars show standard error of the mean. 

 

4.2.5.3. EFFICIENCY 

Input condition was found to significantly influence efficiency, (t(18) = 2.42, p = 0.027; d = 1.08). 

The use of stroking resulted in more efficient responses (M = 2493 milliseconds, SD = 1175 

milliseconds) than the use of pointing (M = 3865 milliseconds, SD = 1626 milliseconds). Combined 

with the accuracy and response time results, stroking shows a significant advantage over 

pointing. This indicates that gestures may be more readily learnable than traditional input.  

4.2.6. DISCUSSION 

The results demonstrate a substantial advantage for gestural input in the ability to encode and 

retrieve gestures. Participants in the stroking condition had more accurate and faster responses 

than those in the pointing condition. This resulted in significantly better efficiency for the 

participants in the stroking condition. 

While gestural input has an advantage, it is not clear what component of the gestural input is 

causing the advantage. The two conditions tested in this experiment differed in the movements 

required as well as the visual aspect so it is not possible to identify their relative contributions. 
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Figure 4.5. Efficiency by condition. Error bars show standard error of the mean. 

 

4.3. EXPERIMENT TWO: EFFECTS OF VISUAL AND MOTOR COMPONENTS 

Experiment one demonstrated that gestures have an advantage over pointing, though it is not 

clear whether that advantage is due to the visual or motor components of gestural interfaces. 

In this experiment, we sought to identify the contribution of the motor aspect to gesture learning. 

To that end, the visuals in both conditions were identical with visual strokes being rendered for 

both pointing and stroking conditions. The experiment was simplified by removing the colour 

pairing, and participants learned sequences of different lengths so that we could measure the 

‘cost’ of adding points to sequences learned under both conditions. 

4.3.1. PARTICIPANTS 

Twenty-four university students (M = 20.5, SD = 2.4, range= 18-25; 18 female) were recruited to 

participate in a 60-minute session. All participants had normal or corrected-to-normal vision and 

were treated according to the APA ethical guidelines. 

4.3.2. EQUIPMENT AND APPARATUS 

The same apparatus and distractor tasks as used in Experiment 1 were used again in Experiment 

2. The software used in the experiment was modified slightly to account for the minor change in 

experimental paradigm.  
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Figure 4.6. Participant demonstrating the learning phase during the pointing condition just prior to touching the final 
target. 

 

4.3.3. PROCEDURE 

Participants performed a learning phase, followed by a distractor task, and finally a test phase, 

similar to Experiment 1. 

During the learning phase, each participant learned a set of eight sequences of length 4, 5 or 6 

depending on the condition. Learning was structured into three blocks of training trials, with 

participants being exposed to each sequence twice per block, resulting in six exposures to each 

sequence during the learning phase. Each sequence was displayed with a stroke animating 

through them, as in the stroking condition in Experiment 1. Participants then had to either stroke 

through the sequence or point at each dot in the sequence using discrete movements. 

Following the learning phase, a 5-minute distractor task consisting of a personality questionnaire 

followed by mathematical questions was administered. 

Following the distractor task, the test phase was completed. Participants were shown 32 

sequences, each on a grey background, and determined if they had seen the gesture during the 

learning phase or not. The same response-time paradigm from Experiment 1 was used. Eight of 

the sequences presented during the test phase were trained sequences, eight were novel 

sequences, and each sequence was presented twice.  
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After the participant finished the testing phase there was a short break and the learning-

distractor-test procedure was repeated for the remaining two sequence lengths. The order of 

sequence length and the distribution of pointing and stroking was counterbalanced across 

participants. 

4.3.4. MEASURES 

As in the first experiment, response time, accuracy, and efficiency are used to assess learning. In 

addition, the input duration provided a deeper understanding of the results. Duration was 

calculated as the time between the first ‘touch down’ event and the last ‘touch up’ event when 

inputting the sequence during training. 

4.3.5. RESULTS 

A 3 x 2 mixed-design ANOVA was conducted with factors of length (4, 5, 6; within-subjects) and 

input type (pointing, stroking; between subjects). Where appropriate, Bonferroni-corrected 

paired t-tests were used for post-hoc, pairwise comparisons. 

4.3.5.1. RESPONSE TIME 

Response time was analyzed using a mixed design ANOVA with factors of Length (4, 5, 6; within-

subjects) and Input type (pointing, stroking; between subjects; (Figure 4.7). A significant main 

effect was found for Length (F2,28 = 4.593; p = 0.015). No significant main effect was found for 

Input type (F1,14 = 0.276; p = 0.605) nor was the interaction between Length and Input type found 

(F2,28= 0.173; p = 0.842). It thus does not appear that pointing or stroking dramatically impacts the 

response time when the visuals remain fixed. 

Post-hoc Bonferroni-corrected paired t-tests demonstrated that sequences of length six resulted 

in significantly longer response times (p = 0.007, d = 0.698; M = 2390 milliseconds, SD = 726 

milliseconds) than those of length five (M = 1955 milliseconds, SD = 499 milliseconds). The other 

pairwise comparisons were not found to be significant (p > 0.1). It thus appears that increased 

sequence lengths result in longer response times, but a larger range of sequence lengths is needed 

to fully identify the relationship. 
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Figure 4.7. Response time for stroking and pointing, by length of sequence. Error bars represent standard error of the 
mean. 

 

4.3.5.2. ACCURACY 

Accuracy was analyzed using a mixed design ANOVA with factors of Length (4, 5, 6; within-

subjects) and Input type (pointing, stroking; between subjects; (Figure 4.8). No main effects were 

found for length (F2,28 = 2.005; p = 0.147), input type (F1,14 = 0.303; p = 0.588), or the interaction 

between both (F2,28 = 0.432; p = 0.652). Thus, when the visuals are fixed, the accuracy of responses 

is not affected by sequence length or whether the participants were stroking or pointing. 

4.3.5.3. EFFICIENCY 

Efficiency was analyzed using a mixed design ANOVA with factors of Length (4, 5, 6; within-

subjects) and Input type (pointing, stroking; between subjects; (Figure 4.9). A significant main 

effect was found for Length (F2,28 = 4.78; p = 0.013). No significant main effect was found for Input 

type (F1,14 = 1.356; p = 0.257) now was the interaction between Length and Input type found to be 

significant (F2,28 = 0.081; p = 0.923). 

Post-hoc Bonferroni-corrected paired t-tests demonstrated that gestures of length 6 resulted in 

less efficient responses (p = 0.01, d = 0.95; M = 3141 milliseconds, SD = 931 milliseconds) than 

those of length 5 (M = 2394 milliseconds, SD = 618 milliseconds). All other pairwise comparisons 

were not significant (p > 0.1). Thus, efficiency does not appear to be affected by whether the 
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participant strokes or points, but rather by the sequence length. For this experiment, efficiency 

seems to be heavily dominated by response time. 

 

Figure 4.8. Accuracy for stroking and pointing, by length of sequence. Error bars represent standard error of the mean. 

 

Figure 4.9. Efficiency for stroking and pointing, by length of sequence. Error bars represent standard error of the mean. 
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4.3.5.4. DURATION 

Duration was analyzed using a mixed design ANOVA with factors of Length (4, 5, 6; within-

subjects) and Input type (pointing, stroking; between subjects; Figure 4.9). A significant main 

effect was found for Length (F2,28 = 61.75; p < 0.001) and Input type (F1,14 = 63.50; p < 0.001), as 

well as the interaction between Length and Input type (F2,28 = 69.50; p < 0.001). 

Bonferroni-corrected post-hoc tests determined that there was a significant effect of Iinput type 

(p < 0.001, d = 2.08), with pointing resulting in longer durations (M = 1316 milliseconds; SD = 

379.0 milliseconds) than stroking (M = 425 milliseconds, SD = 379.0 milliseconds). A significant 

difference was found between all post-hoc pairwise comparisons for length (p < 0.01) with 

sequences of length 4 (M = 664 milliseconds; SD = 213 milliseconds) less than those of length 5 

(M = 868 milliseconds; SD = 257 milliseconds), and both being less than those of length 6 (M = 

1079 milliseconds; SD = 369 milliseconds). There was, however, no significant difference between 

the different lengths of sequences for the stroking condition, only the pointing condition. 

 

Figure 4.10. Efficiency for stroking and pointing, by length of sequence. Error bars represent standard error of the 
mean. 

 

4.3.6. DISCUSSION 

Sequence length affects both response time and efficiency, with the longer sequence resulting in 

slower response times than the two shorter sequences. This is consistent with existing literature 
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that demonstrates an increase in response time with an increase in movement complexity. While 

we did not see significant increases between all of lengths 4, 5 and 6, we suspect that with a larger 

sample size the pattern would become more consistent. Alternatively, testing sequence lengths 

that cover a greater range (e.g., 4, 8, and 12) would likely emphasize this result. 

We did not see a significant or strong effect of movement type (i.e., pointing or stroking), or an 

interaction between movement type and length. In fact, the efficiency of responses to the 

sequences learned within the pointing condition was better than those learned with the stroking 

condition. This seems contradictory to Experiment 1. This indicates that the motor component of 

gesture learning is less important than the visual component. 

The amount of time to input each sequence was much longer for participants within the pointing 

condition than those within the stroking condition. As such, the length of time that participants 

were ‘exposed’ to the sequence was longer and this may partially account for why the pointing 

condition results in better efficiency in the second experiment than the first. 

To examine these issues further, we directly compared the results from the two experiments. 

4.4. CROSS-EXPERIMENT COMPARISONS 

As there was no strong effect of gesturing in the second experiment, we compared data from the 

first experiment to those in the second experiment, for the condition where users learned 

sequences of length four. The experiments differed in the pairing of gestures, and the number of 

sequences learned as well as the presence of visual strokes during training in the ‘pointing’ 

condition. To determine the effect of visual strokes, we compare both the pointing condition and 

stroking condition between experiments. The stroking condition differed only by the 

experimental design (learning seven sequences and pairing them with colors), while the pointing 

condition differed by experimental design as well as the presence of visual strokes. 

4.4.1. STROKING 

A two-tailed t-test comparing response time for the ‘stroking’ condition between the experiments 

shows no significant difference (t(20) = 1.2, p = 0.238, d = 0.52), with Experiment 1 resulting in 

slightly lower response times (M = 1914 milliseconds, SD = 466 milliseconds) than Experiment 2 

(M = 2156 milliseconds, SD = 462 milliseconds). 
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A two-tailed t-test comparing accuracy for the ‘stroking’ condition between the experiments 

shows no significant difference (t(20) = 0.270, p = 0.79, d = 0.14), with Experiment 1 resulting in 

lower accuracy (M = 0.790, SD = 0.126) than Experiment 2 (M = 0.81, SD = 0.157).  

A two-tailed t-test comparing efficiency for the ‘stroking’ condition between the experiments 

shows no significant difference (t(20) = 0.81, p = 0.428, d = 0.34), with Experiment 1 resulting in 

less efficiency (M = 2493 milliseconds, SD = 760 milliseconds) than Experiment 2 (M = 2739 

milliseconds, SD = 663 milliseconds). 

4.4.2. POINTING 

A two-tailed t-test comparing response time for the ‘pointing’ condition between the experiments 

shows no significant difference (t(20) = 1.121, p = 0.276, d = 0.48), with Experiment 1 resulting in 

higher response times (M = 2672 milliseconds, SD = 1163 milliseconds) than Experiment 2 (M = 

2128 milliseconds, SD = 1110 milliseconds). 

A two-tailed t-test comparing accuracy for the ‘pointing’ condition between the experiments 

shows a significant difference (t(20) = 2.1, p = 0.049, d = 0.87), with Experiment 1 resulting in 

lower accuracy (M = 0.71, SD = 0.136) than Experiment 2 (M = 0.833, SD = 0.148). 

A two-tailed t-test comparing efficiency for the ‘pointing’ condition between the experiments 

shows a significant difference (t(20) = 2.22, p = 0.038, d = 0.93), with Experiment 1 resulting in 

less efficiency (M = 3865 milliseconds, SD = 1627 milliseconds) than Experiment 2 (M = 2553 

milliseconds, SD = 1139 milliseconds). 

4.4.3. DISCUSSION 

The stroking conditions in both experiments resulted in very similar results, with no significant 

differences between any of the measures. This indicates that the effects of the differences 

between experiments for this condition were relatively minor (i.e., pairing sequences with colors, 

and learning a different number of sequences). If this were not the case, then a comparison 

between the pointing conditions would not be valid. 

The tests reveal a significant difference between pointing conditions between experiments. This 

is likely due to the presence of visual feedback in experiment two during the pointing task. 

Participants had faster response times, significantly more accurate responses, and significantly 

better efficiency, with such feedback The relatively large effect sizes (d = 0.48, 0.87 and 0.93) 
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illustrate the impact that the presence of absence of the visual feedback has when learning 

sequences. These effects are similar to that of adding 2 points to the sequence (e.g., the effect size 

between length 4 and 6 on response time is d = 0.698). 

Theories behind the picture superiority effect may explain why the visual component may play 

the larger role in gesture learning. The results of the presented experiment may support Nelson’s 

semantic sensory theory, which states that pictures are remembered more readily because they 

are more distinct than one another (Nelson et al., 1977). Within the context of our experiment, the 

shapes formed by the lines of the gestures may have resulted in much higher visual dissimilarity 

between the sequences with connecting lines compared to the sequences of dots that are all 

visually similar. Alternatively, the results may support a dual-coding view of the picture 

superiority effect, as the visually-connected sequences can be encoded as shapes and perhaps be 

assigned some semantic label by the user, whereas the unconnected sequences of dots seems less 

likely to evoke a more abstract meaning. Regardless of the explanation, it is clear that presenting 

a visual stroke to represent the gestures can dramatically affect the degree to which the sequence 

is learned. 

4.5. SUMMARY 

Gestural input has become prevalent in part because of the belief that it leverages visual and 

motor memory to improve the encoding of input sequences. We have found that gestures do offer 

cognitive advantages over typical pointing-based input techniques, and that users respond faster 

to sequences learned via gesturing.  

We have also shown that the visual and motor components of typical gesture input do not impact 

the memorability of gestures equally. The motor component appears to play a much less 

significant role than the visual trace connecting the points in the sequence. This finding is 

particularly important within the context of gesture learning systems, as it suggests that visual 

feedback may be leveraged to support learning the association between command and action. By 

repeatedly exposing users to the visual representation of a motion gesture, it may be encoded 

more readily and the declarative memory may be more easily recalled. Correspondingly, it does 

not appear to be sufficient to expose users to repeated movements in the hope that they will 

eventually learn the association between the movement and the desired action. The visual 

component is an essential aspect of gesture learning. 
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4.5.1. RELEVANCE TO GESTURE LEARNING 

With respect to the framework outlined in Section 1.3, we examined the declarative component of 

gesture learning. Specifically, the results indicate that the rendering of gestures affects the 

learnability of gestures. Additionally, the motor component does not appear to enhance the 

learning of the mapping between command and action, as previously thought. Designers should 

provide gestural interfaces which emphasize the visual component of gestures, as that appears to 

be the primary driver in memorability with respect to gesture recall. 

4.5.2. LIMITATIONS 

The presented studies focused on testing the declarative component of gesture learning using a 

two alternative forced-choice paradigm, and as such they did not require the participants to 

perform the gesture during the testing phase. Thus, the testing phase was primarily visual which 

likely has some measurable impact on the results. However, if the motor component is heavily 

involved in the ease-of-learning in gestural interfaces, then the paradigm used should still reflect 

some of those benefits. Further studies are needed to clearly identify the role of movements in 

gesture acquisition. 
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Chapter 5  

 

Learning and Performance with Gesture Guides1 

Support for learning the procedural component of gestures is crucial for enabling users to 

perform efficiently with a gesture-based interface. Once a user learns the command-action 

mapping, they need the ability to perform it, or to perform variants on it to convey additional 

parameters. To support this, systems need to provide appropriate feedback and guidance to 

support performance and learning. Additionally, designers of gesture guides need to be aware of 

the difference between learning and performance and how they apply to gestural interactions. 

This chapter explores how we can best train the procedural component of gesture learning and 

how it can be evaluated. 

5.1. LEARNING WITH GESTURE GUIDES 

As mentioned in section 2.3.1, performance refers to the execution of an action, whereas learning 

refers to the long-term changes associated with the ability to perform that action. The difference 

between learning and performance becomes very important when considering the guidance 

hypothesis (Schmidt and Lee, 1991). The guidance hypothesis states that excessive guidance 

during training can hinder learning, as the user can become reliant on the guidance. Guidance can 

take the form of knowledge of results (KR), which is information regarding the success or failure 

of a movement, or knowledge of performance (KP), which is information regarding how the 

participant and target movements differ. The amount of guidance provided to a user is an 

important consideration, as many new gesture guides provide concurrent or real-time feedback 

(or ‘feedforward’) to help the user execute the gesture. 

                                                             

 

1 The majority of this chapter has been published as Anderson, F and Bischof, W. F. “Learning and Performance with Gesture 

Guides” in the Proceedings of the ACM Conference on Human Factors in Computing Systems, 2013, pp. 1109-1118.  
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To date, most studies have evaluated the learnability of gestural interfaces by comparing 

performance measures taken during, or shortly after, the training phase of an experiment (Appert 

& Bau, 2010; Appert & Zhai, 2009; Bradgon, et al., 2008). These often include gesture recall, 

frequency of gesture use, or input speed. Although this evaluation is direct and intuitive as it 

mimics real world use cases, it does not necessarily evaluate how well the participants learned 

the gestures; it measures how well they performed them.  

This chapter makes three main contributions to the literature on gesture learning. First, we 

introduce the use of the retention and transfer experimental paradigm within the context of 

gesture learning. Second, we analyze four different gestural guides with this paradigm. Third, we 

introduce an adaptive guide that mitigates this tradeoff, and provides a smooth transition from 

novice to learned user. 

5.2. GESTURE GUIDE EXPERIMENT 

The purpose of this study was to evaluate the degree to which the design of the feedback affected 

the degree to which the procedural component of the gesture was learned. To assess this, 

participants learned a set of four gestures using one of four different types of guides, each of 

which varied how they presented feedback. Following this, participants performed retention and 

transfer tests, as well as delayed retention and transfer tests 24 hours later. 

5.3. METHODS 

5.3.1. PARTICIPANTS 

Thirty-six subjects participated in the study (M=25 years, SD=11 years, range = 18-77 years, 15 

male). All participants were right-handed, as determined by the Edinburgh handedness inventory 

(Oldfield, 1971). Each participant was assigned to one of four gesture guides: crib-notes, static-

tracing, dynamic-tracing, or adaptive which are described below. Before beginning the training 

phase, each participant was informed that there would be a follow-up test, but were not informed 

of the nature of this test. 

5.3.2. APPARATUS AND GESTURES 

The experiment used a pen-based Cintiq 21UX from Wacom, with the screen positioned directly 

in front of the participant at a 10° incline. The software was developed using the Windows 

Presentation Framework, and ran full-screen at 1600 x 1200 pixels. For reference, the display size 
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of the screen is (43 cm x 32.5 cm), resulting in a mapping of 1 pixel = 0.27 mm. The buttons on the 

pen were not used; all interaction was accomplished through the contact and motion of the pen 

on the screen. 

Each of the four gestures (see Figure 5.1b) was composed of one or two simple line or curve 

segments and paired with an arbitrary, unrelated verb. All gestures were the same length and 

defined by a single, computer-generated template rather than as a series of user-generated 

examples. The gestures were designed to cover a wide range of possible gestures, as all gestures 

can be described as a series of curves, lines, and corners (Cao & Zhai, 2007). The initial angle of 

each gesture was rotated such that it did not coincide with a major axis or a diagonal. While 

typical gesture systems use more than four gestures, this study is intentionally restricted to 

analyzing only four. If more gestures are added, participants have a difficult time learning the 

pairing between gesture and command, i.e., they struggle at the ‘cognitive’ phase of Fitts and 

Posner’s (1967) model rather than progressing through to the associative or autonomous phases. 

As the intent is to study the production and form of the gesture, the use of four gestures allows 

participants to learn the pairing quickly so they could then better learn the form. 

The red gesture, paired with ‘Choose’, was two straight lines of equal length joined by an obtuse 

angle. The green gesture, paired with ‘Send’, was a curve of constant radius, sweeping out a 180° 

arc. The blue gesture, paired with ‘Build’, was a curve of constant radius connected to a straight 

line. Lastly, the orange gesture, paired with ‘Find’, was composed of a long straight line connected 

to a short straight line at a 90° angle. 

5.3.3. GUIDE TYPES 

We evaluated four types of gesture learning systems. Three of the guides have been previously 

described in the literature or are very similar to previously described guides (crib-notes, static-

tracing, and dynamic-tracing), while the fourth (adaptive) is a novel contribution. 
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a) 

 

b) 

 

c) 

 

Figure 5.1. The behavior of the guides while performing the Send gesture during training trials for a) crib-notes, b) 
static-tracing, and c) dynamic-tracing. Note that adaptive guide is not shown as its behavior is identical to the 'static-
tracing’ guide, except the guide is removed partway through the trial. 

 

The crib-notes guide used a half-scale depiction of the gestures placed in the top-left corner of the 

screen (Figure 5.1a). Participants using this system were not informed of the scale relation 

between the guide and the target gesture, and learned the appropriate scale through the KP 

provided after each trial. This guide provides the least guidance, as participants cannot directly 

compare their current trajectory to the template and the template does not adapt to their 

movement. 

The static-tracing guide used a full-scale depiction of each of the template gestures, radiating from 

the initial pen location (Figure 5.1b). This guide allowed the participant to trace over the target 

gesture. As the participant drew their stroke, the guide was not updated. The use of this guide 

allowed us to examine what effects the continuous updating has on the learning and performance 

of the gestures. 

The dynamic-tracing guide (referred to as ‘dynamic guide’ in Bau and Mackay (2008) used a full-

scale depiction of the gestures, as with the static-tracing guide, but as the participant moved the 

pen, the guide dynamically updated to reflect the state of the recognizer (Figure 5.1c). As the 

participant drew their stroke, the opacity of each of the four gestures was mapped to a function of 

the similarity between the participant’s trajectory and the template of the target gesture. Gesture 

similarity during training was measured by computing the RMSE between the participant’s 

trajectory and an equivalent path length from each of the target gestures. In addition to modifying 

the opacity of the guide strokes, the initial segment of each template gesture was removed (an 

amount equal to the current participant’s stroke length), and the result is appended at the current 

pen location. This procedure effectively provided the ‘feedforward’ information to help guide the 

participant to the correct performance. 
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The adaptive guide provided a traceable guide identical to the one used in the static-tracing 

condition, but the guide disappeared at some point in time during the trial. The current trial as 

well as the current length of the participant’s stroke determined when the guide disappeared. For 

the first trial, the guide disappeared once the participant’s stroke had the same path length as the 

target gestures. Midway through the trials, the guide disappeared once the participant’s stroke 

was half the path length of the target gestures. By the end trial, the gesture guide did not appear 

at all. This approach let participants initially trace the gestures with high accuracy and usability, 

but eventually required them to draw the gestures without the guide. The adaptive guide 

provides a form of faded feedback (Sherwood, 1983; Wulf, Shea & Matschiner, 1998; Wulf & 

Schmidt, 1989) which has shown to be an effective method of presenting feedback to enhance 

learning. While the implementation of this guide for the lab study is straightforward, as the 

number of trials is known, the implementation in a real-world scenario is potentially more 

difficult. Various methods of implementing an adaptive guide in a real-world scenario are 

described in the Discussion. 

None of the guides used in this study were dynamic in the sense that they changed scale or 

orientation in response to the user’s strokes, as in other recent guide designs (Appert & Bau, 

2010; Panzer et al., 2010). This is an intentional choice, as it allows control over the exact gesture 

learned by the participants. This decision allows more precision in studying the effects of the 

guide on learning a particular gesture. It is highly unlikely that the ability to change scale or 

orientation will have any effect on the degree to which the user is guided, or subsequently learns 

the gesture. Once a user determines or selects a particular scale and orientation, they will likely 

use the guide to continue drawing the gesture at that particular scale or orientation. That is, the 

users would not just be guided to the same degree, they would also be guided to a different target 

gesture.  

5.3.4. PROCEDURE 

Participants were shown where to place the pen on the screen to activate the guide and where 

their score would appear. They were told to accrue as many points as possible and that their 

score was derived from the similarity to the target gesture, with additional points for faster 

performance. To compute the points, the training system awarded the user with points 

proportional to an execution time under four seconds and an accuracy error under 220 pixels. For 

instance, if the gesture was completed in two seconds with 30 pixels of error (i.e., average crib 

notes performance halfway through the trials) the participant received 197 points. 
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The training phase consisted of 60 trials for each gesture, with the presentation order 

randomized such that no gesture appeared in more than two successive trials. At the start of each 

trial, the target word appeared at the top of the screen. The current score, as well as the target 

circle, were also visible. To begin the trial, the participant placed the pen tip in the target circle, 

which caused the gesture guide to become visible immediately. The participant then drew the 

gesture on the screen, which left a visible ‘ink trail’. When the pen was lifted, all on-screen content 

was hidden for 1000 milliseconds. The participant was then provided with KP and KR, consisting 

of the target gesture along with the participant’s trajectory overlaid and the score for the current 

stroke Figure 5.2). After 1500 milliseconds of exposure to the KP and KR, the screen went blank 

for 1000 milliseconds, and then the next target word appeared. All training was performed with 

the right hand. 

Participants performed retention and transfer tests 15 minutes after completing the training 

phase. The retention test was similar to the training, with each participant performing 16 trials (4 

per gesture, with the order randomized), but no guide (KR or KP) was provided. Participants 

were instructed to draw the gestures from memory. They were also reminded of the four target 

words and told to take as much time as needed before drawing the gestures. The participants 

were not shown any of the gestures. The transfer test was identical to the retention test (16 trials 

with no guide, KP, or KR), but performed with the left hand. Approximately 24 hours later, each 

subject completed the retention and transfer follow-up tests again. 

 

Figure 5.2. Inter-trial screen showing KR (score in top right) and KP (trajectory overlay). 
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5.4. RESULTS 

Training, retention, and transfer data was analyzed with three mixed-design ANOVAs, and post-

hoc tests were conducted using Tukey’s HSD. Prior to each analysis, trials where the participant 

performed the incorrect gesture were discarded, as the focus of this study was on the form of the 

gesture, not on gesture recall. As we were interested in errors due to performance (i.e., slips) 

rather than cognitive errors (i.e., mistakes), these errors were removed. These errors were spread 

evenly across all guides, came primarily from the training data, and resulted in less than 1% of 

data being removed from training, retention, and transfer phases. 

5.4.1. GESTURE SIMILARITY 

The similarity of each stroke to the template was computed by resampling the template and the 

participant strokes to 128 evenly spaced points, then computing the root mean square error 

(RMSE) of the Euclidean distance between corresponding points. This method is sensitive to both 

scale and rotation, as participants matched the template gestures along those dimensions as well 

as shape. A graphical representation of the similarity data separated by GuideType is shown in 

Figure 5.3, and similarity by Gesture is shown in Figure 5.4. 

While RMSE is not the most popular method in gesture recognition, there are several reasons that 

make it a good choice for analyzing accuracy of motor production. First, the use of RMSE gives a 

direct and accurate measurement of the participant’s ability to produce the target gesture. 

Secondly, it does not rely on a collection of high-level features (see, e.g., Rubine’s algorithm 

(1991)), the selection of which will change with the next advancement in gesture recognition. 

That is, our results are independent of the current state of the art in gesture recognition. It is also 

worth noting that the error was also analyzed using the error measure used for the $1 recognizer 

(Wobbrock, Wilson, & Li, 2007), as well as by using the number of ‘points’ awarded on each trial, 

and the same patterns emerged from the resulting data. 
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Figure 5.3. Error for training, retention and transfer, for each guide type. There is an apparent tradeoff between 
performance during training, and the amount of learning, measured by retention and transfer. 

 

 

Figure 5.4. Error for training, retention, and transfer, for each gesture. There are no appreciable differences between 
the performances of each gesture. Error is primarily due to the type of training guide used. 
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5.4.1.1. TRAINING 

The training data was blocked by averaging six consecutive trials for each gesture, resulting in 10 

training blocks. As the error distributions were skewed, a log transform was applied to the RMSE 

values to normalize them before conducting the ANOVA. The same log transform was applied to 

all RMSE values before the analysis in subsequent sections. A three (GuideType) x four (Gesture) 

x ten (Block) mixed-design ANOVA was conducted with Gesture and Block as within-subjects 

factors and GuideType as between-subjects factor (summarized in Table 5.1). 

Table 5.1. ANOVA results for Accuracy. 

Factor F p ω2 

GuideType F3,32 = 34.34 0.00 0.45 

Gesture F3,96 = 4.20 0.01 0.01 

GuideType x Gesture F9,96 = 1.44 0.18 0.01 

Block F9, 288 = 5.08 0.00 0.05 

Block x GuideType F27,288 = 7.45 0.00 0.06 

Block x Gesture F27,864 = 0.15 0.12 0.00 

GuideType x Block x Gesture F81,864 = 1.08 0.31 0.00 

 

Post-hoc tests on GuideType showed that all guide types produced significantly different scores 

during training. From lowest to highest error produced, the guides are: ‘Static’, ‘Dynamic’, 

‘Adaptive’, ‘Crib’. Participants generally improved during training, with the error in the first block 

being significantly higher than the last block. The exception to this is with the adaptive guide, 

where participants progressively decreased in performance, due to the guide being removed 

earlier in the trial as they progressed through the training. 

The main effect of gesture shows that the ‘Find’ gesture was significantly easier to perform than 

the ‘Choose’ and ‘Send’ gestures, and ‘Build’ was easier to perform than ‘Send’, but the effect sizes 

were very small, and therefore were not analyzed further. 
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5.4.1.2. RETENTION 

To analyze the retention data, the four trials for each gesture were averaged per participant and 

analyzed using a four (GuideType) x four (Gesture) x two (Delay) mixed-design ANOVA with 

GuideType as a between-subjects factor and Gesture and Delay as within-subjects factors. Gesture 

was not found to significantly affect retention scores (F3, 96 = 0.30, p = 0.83), so this factor was 

pooled and the ANOVA was re-computed. 

Both Delay (F1, 248 = 8.90, p = 0.0031, ω2 = 0.02) and GuideType (F3, 32 = 2.93, p = 0.049, ω2 = 0.09) 

were found to significantly affect retention scores. Participants trained with crib-notes or the 

adaptive guide had significantly lower retention scores than those trained with the traceable 

guides. There was no significant difference between the retention scores of participants trained 

with either of the traceable guides. There was also no significant difference in the retention scores 

of participants trained with the adaptive guide or the crib notes. Performance on the 24-hour 

follow-up was poorer across all participants, compared to the 15-minute follow-up. 

5.4.1.3. TRANSFER  

To analyze the transfer data, all four trials for each gesture were averaged and analyzed using a 

four (GuideType) x four (Gesture) x two (Delay) mixed-design ANOVA with GuideType as 

between-subjects factor and Gesture and Delay as within-subjects factors. Again, the Gesture 

factor was not significant (F3, 96 = 1.23, p = 0.30) and was pooled in the reported results. 

The transfer results mimic the same pattern as the retention results, as evidenced by a Pearson’s 

correlation (ρ = 0.85, p < 0.001). While the ANOVA did not report significant main effects, this 

similarity in results to the retention results demonstrates the potential utility of transfer scores. 

One reason for the lack of significant main effects is the performance improvement in the crib-

notes trained participants following the 24-hour rest period, contrasted with the decreased 

performance of the participants trained with the dynamic guide.  

5.4.2. DURATION 

Duration was comptued as the time from the pen’s initial contact with the screen to when the pen 

left the screen. This measure includes any time the participant spent consulting the guide as well 

as the time to draw the gesture. Duration data for the training, retention, and transfer phases are 

shown with results separated by GuideType in Figure 5.5, and results separated by Gesture in 

Figure 5.6. 
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Figure 5.5. Duration of stroke during training, retention, and transfer, for each guide type. Guide type has little effect on 
the speed, allowing the tracing-based guides to provide high accuracy without a decrease in input speed. 

 

 

Figure 5.6. Duration of stroke during training, retention, and transfer, for each gesture. The ‘Send’ and ‘Find’ gestures 
are performed slightly faster than ‘Build’ and ‘Choose’. 
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5.4.2.1. TRAINING 

The mixed design ANOVA showed a main effect of Block (F9, 216 = 25.5, p < 0.001, ω2 = 0.13). There 

was a significant decrease in duration with nearly every block. There was also a main effect of 

Gesture (F3, 72 = 19.3, p < 0.001, ω2 = 0.01). The ‘Send’ and ‘Find’ gestures were performed 

significantly faster than the ‘Choose’ and ‘Build’ gestures, but the effect size is very small. 

GuideType had no effect on duration (F2, 24 = 0.53, p = 0.59, ω2 = 0.02). 

5.4.2.2. RETENTION 

The retention data shows only a main effect of Gesture (F3, 96 = 3.95, p = 0.01, ω2 = 0.02). ‘Choose’ 

is performed significantly slower than ‘Send’ and ‘Find’, but again, the effect size is quite small. As 

with the training data, the guide type has no effect on duration (F3, 32 = 0.60, p = 0.62, ω2 = 0.03). 

5.4.2.3. TRANSFER 

There was a main effect of Gesture during transfer (F3, 96 = 15.86, p < 0.001, ω2 = 0.04). Post-hoc 

tests revealed that all gestures were significantly different from each other. In increasing order of 

duration, the gestures were: ‘Send’, ‘Find’, ‘Choose’, and ‘Build’. These results were very similar to 

the training durations, except that the variance between gestures is increased, resulting in higher 

significance. 

5.5. DISCUSSION 

The type of guide used during training has clear effects on the behavior during training, as well as 

the retention and transfer scores. With high performance during training, there is little learned, 

but with low performance the participants retained substantially more. Additionally, by adapting 

the guide over time, the participants are able to balance performance and learning. These results 

have important implications for both the design of gestural guides, as well as for how they are 

evaluated. 

5.5.1. GUIDE DESIGN 

The three ‘traditional’ gesture guides (i.e., static-tracing, dynamic-tracing, and crib notes) showed 

performance improvements with training. There was an obvious and significant difference during 

training between crib-notes and the traceable guides with the crib-notes-trained participants 

performing much worse. Looking exclusively at the training data, it appears that the traditional 

guide types provided equal amounts of learning, but the baseline performance for crib-notes was 
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worse. However, this was not the case. The retention scores, which mimic an expert-usage 

scenario showed the lowest error for crib-notes.  

The newly proposed adaptive guide shows a much different result. While the traditional gesture 

guides lead to improved performance during training, the adaptive guide shows a gradual 

decrease in performance. This performance loss is easily explained. As the participant completed 

more trials, the guide disappeared earlier and earlier during gesture execution, forcing them to 

perform more of the gesture without the guide in place. In contrast to the traceable guides (static 

and dynamic), the adaptive guide actually provides a relatively smooth transition from novice to 

expert; there is not a substantial decrease in performance when the guide is removed. In contrast 

to the crib-notes guide, the adaptive guide provides a much more usable interface to novices, 

allowing direct tracing and high accuracy at the beginning of the training phase. 

With respect to the three traditional guides, it seems that the more guidance given during 

training, the worse the learning. The participants using traceable guides had the most guidance 

and the worst performance in retention and transfer. Conversely, the participants using crib-

notes had the least guidance during training but the best performance during retention and 

transfer. These results are explainable by the guidance hypothesis, and only become apparent 

within the retention and transfer paradigm. This shows an apparent tradeoff between immediate 

performance and learning. In addition, it appears that the dynamic guide has no benefit for 

performance or learning. The dynamic-traceable guide resulted in worse performance during 

training than the static guide, and users of this guide showed little to no learning of the gestures 

during retention and transfer. This is interesting, but not entirely surprising. That is, anytime the 

dynamic guide updated, it would necessarily deviate from the template trajectory. Thus, 

participants who attempted to trace the guide would also deviate from the template. However, 

unlike with crib notes, participants did not attempt to use the post-trial feedback (KP) to correct 

their previous errors and learn the correct performance.  

It is clear that the adaptive guide provides a balance between initial usability and long-term 

learning. Implementing the adaptive guide in practice, however, is not necessarily 

straightforward. In the experiment, the number of trials was fixed, and a simple linear model 

allowed us to gradually remove the guide. In practice, the user is continuously interacting with an 

interface for an unknown length of time. A simple way to implement the adaptive guide would be 
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to monitor the number of times each gesture was accessed, and provide less guidance each time 

the guide is accessed, up to some pre-determined threshold.  

Other approaches to achieving ‘adaptive’ style guides are possible as well. One simple way would 

be to add an access cost to the guide (e.g., a delay (Bau & Mackay, 2008)), and let users self-

regulate the appearance of the guide. This approach was tested in pilot studies, but did not have 

the desired effect. Many users simply accepted the delay as an intrinsic cost of using the interface, 

even when the delay was long (e.g., over 1 second). This behavior was present even through it 

was clearly explained that they did not have to wait for, and use the guide.  

In contrast to previous studies, the increased learning observed with crib-notes or the adaptive 

guides cannot be attributed to increased effort. In fact, the crib-notes guide requires the least 

effort, as drawing the gesture does not require careful tracing. This was evident with the duration 

data, which showed the crib-notes had marginally faster input time during training, especially in 

the earlier trials. If effort were the major determinant of learning, one would expect the dynamic-

tracing guide to have the best learning outcomes, as it requires more cognitive effort (and time) to 

follow the constantly updating trajectory. 

Overall, the type of gesture guide has little impact on duration during training, retention, or 

transfer. This is consistent with Bau and Mackay’s (2008) work that found no difference in the 

input time between a help menu and a dynamic guide Participants became faster over time as 

they became more familiar with the gestures. This is an important find, as it seems to violate the 

speed-accuracy tradeoff as long as the guide is available. That is, accuracy during training using 

traceable guides is substantially greater than crib-notes, but the speed of execution is similar, 

particularly after the first few training blocks.  

With these results, it is important to recognize that not all gesture-based interactions target 

expert-level skill acquisition. Many interfaces are used on an infrequent or casual basis, where the 

user is not expected to perform at maximum efficiency. For these situations, heavy guidance (with 

ease of use) is more desirable than limited guidance (with better learnability). However, if 

efficient expert use is of concern, one may consider a type of guide that initially leads to lower 

performance, but increases learning and speeds the progression from novice to expert. 

 

 



 

76 

5.5.2. EVALUATION PARADIGM 

During retention and transfer, the performance of participants trained with crib-notes was 

significantly better than all the other participants. This demonstrates a severe limitation of the 

training-only evaluation methods, as the performance changed drastically when guidance was 

removed. If only the performance data were considered, as in previous studies, one would have 

reported that the traceable guides were superior with a very large effect size of ω2 = 0.45. 

However, when looking at the retention data to assess the learning that occurred, crib-notes 

proved more effective.  

In addition to the focus on learning, another important difference of this work is the use of 

gesture accuracy as the outcome measure. Previous evaluations tend to use recall as the primary 

measure (Bau & MacKay, 2008; Zhai & Kristensson, 2003). However, as gesture sets become more 

complex, with a variety of hand shapes and strokes, the ability to articulate precise movements 

will be a very important measure of user proficiency. Additionally, analyzing the execution of a 

gesture allows performance improvements to be seen for each block, providing a more detailed 

look at how users improve with each system. 

The performance of nearly all participants suffered after a 24-hour break, with participants that 

used the traceable guides suffering the greatest performance loss. In general, this indicates users 

were ‘forgetting’ how to replicate the gesture precisely. When learning occurs, these losses are 

much less dramatic. These findings demonstrate the utility of using delayed retention and 

transfer, as the separation between participants who learned and those who did not becomes 

greater after a night of sleep (Savion-Lemieux & Penhune, 2005). This makes it easier to pinpoint 

the factors influencing learning.  

This study has important implications for the evaluation of future gesture-based interfaces or 

interactions involving relatively complex movements. When reporting on the effectiveness of 

various gesture guides, it is imperative that learning be properly assessed, so that designers are 

aware of the implications (both short and long term) of using an interface. While this places an 

additional burden on the investigator, it is critical when making claims about the learnability of 

these interfaces. 

It is also important to note that experts do not tend to reproduce the template precisely. In 

general, they make simplifications that deviate from the template and allow them to produce the 
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gesture more efficiently, but still be recognizable to the system. While this behavior would not be 

represented by the strict RMSE measure accurately, our experiments were focused on the 

reproduction of specific gestures. Similar to the use of a guide that does not adapt to scale or 

orientation, this simplification allowed us to study the effect of guidance in a controlled fashion. 

While we anticipate that expert gestures will show more error in a real-world scenario, we do not 

believe that will negate the guidance hypothesis as it applies to gesture learning. 

5.6. SUMMARY 

The results presented here show that we should have learning at the forefront when designing 

gesture guides, and leverage as much existing knowledge as possible. We demonstrated that 

excessive guidance hinders learning, and that this can be mitigated in a user-friendly manner by 

introducing faded feedback. We also showed how new experimental paradigms can reveal some 

of the existing problems with gestural interfaces. Lastly, we hope to have demonstrated the utility 

of drawing from existing knowledge from the motor control and motor learning domains. There is 

thus a plethora of knowledge from these areas that can be adapted for the design of gestural 

interfaces. 

With gesture systems that target efficient, expert usage, it is critical to consider the long-term 

learning of gestures and the effects that guidance can have on both performance and learning. 

Using a novel ‘adaptive’ guide, we demonstrated that detrimental effects of heavy guidance can be 

overcome, and that gesture guides can produce a smooth transition from novice to expert. We 

have also shown that traditional evaluation techniques can be ineffective in measuring learning 

itself, and that gesture guides may have unforeseen consequences. We have used an established 

technique from the area of motor learning to evaluate a representative set of gesture guides. We 

hope researchers and practitioners will use these results in the design and evaluation of future 

gestural interfaces. These findings are important to gesture learning, as they demonstrate 

improved methods of training the procedural component of gesture learning and provide a clear 

mechanism that can be used by designers and researchers to evaluate the degree to which new 

guides improve this aspect of learning. 

5.6.1. RELEVANCE TO GESTURE LEARNING 

Within the framework outlined in Section 1.3, we have demonstrated the importance of feedback 

in learning the correct execution of the gesture. We demonstrated that providing excessive 
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feedback during training could cause the user to rely on the feedback rather than learn the 

appropriate movements and achieve independence from the guides. We intentionally limited the 

size of the gesture set such that learning the declarative component of the gestures would not be a 

problem and participants would be able to focus solely on learning the procedural component. In 

this way, we can study those two aspects of gesture learning independently. 

5.6.2. LIMITATIONS 

This study is limited in the small number of gestures that were studied, and the complexity of the 

gestures. While a real-world study involving the learning of dozens of gestures would provide 

more valid results, such a study is impractical to conduct. With this being said, it is likely that the 

results of this study will remain true even with more complex 2D stroke gestures. From the 

training data, performance plateaus after the 5th or 6th block, so participants are already 

‘overlearning’ the gestures to a degree, yet the effect is still clear. Secondly, the guidance 

hypothesis that underlies the results has been demonstrated in a variety of tasks (including 

timing, force production, and figure drawing). While this does not guarantee that it will extend to 

gestures that are more complex, there is nothing to indicate the contrary. Lastly, the gestures 

were chosen to represent a wide range of potential motor actions. It is not clear, however, that the 

results would generalize to a 3D stroke gesture scenario, where the task is fundamentally more 

complex and would benefit more from guidance. 
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Chapter 6  

 

Full Body Gesture Training with an Augmented Reality Mirror1 

As gesture learning is not limited to two-dimensional stroke gestures, we were interested to see 

how well the gesture-learning framework applied to movements that are far more complex. To 

that end, we examined the training of full-body, 3D gestures. We leveraged prior results and 

emphasized visual feedback to encourage learning of the declarative component of gesture 

memory. We also leveraged adaptive, real-time feedback as well as summary feedback to 

encourage rapid learning of the procedural components of gestures. This chapter provides 

evidence that the framework outlined in Section 1.3 can be extended to complex interactions. 

6.1. LEARNING FULL BODY GESTURES 

It is clear that dynamic visual feedback plays an important role in motor skill acquisition of 2D 

gestures, and that the form of the feedback can influence the degree to which a skill is learned. As 

there are many interfaces being developed which support 3D, free-space gestures for input (Sato 

et al. 2001; Frontier Developments, 2011), we were interested in developing a new technique for 

training these types of gestures. In addition, the system could be developed such that it also 

supports the training of more general full-body movements such as those found in dance, sports 

or other domains. Learning these types of motor skills can be challenging, requiring hours of 

training and repetitive practice (Ward et al., 2004). Often, learning involves enrolling in classes 

where an instructor leads a group through a set of exercises. Ballet dancers often use mirrors to 

receive visual feedback in addition to coaching (Dearborn & Ross, 2006). While there may be no 

replacement for expert coaching, less formal self-paced learning may be more desirable for in-

home practice, to supplement professional coaching, or for hobbyists.  

                                                             

 

1 The majority of this chapter has been published as Anderson, F., Grossman, T., Matejka, J., and Fitzmaurice, G. 

“YouMove: Enhancing Movement Training with an Augmented Reality Mirror.” In the Proceedings of User Interfaces and 

Software Technology, 2013, pp. 311-320. 
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In this chapter, we present YouMove (Figure 6.1), a system for learning full body movements. 

YouMove is comprised of a Kinect-based recording system and a corresponding training system. 

The recording system is designed to be easy to use, so anyone can capture movement sequences 

and annotate them for learning, without the need for complicated motion capture hardware or 

software. The training system uses the recorded video and 3D movement data to guide the 

trainee through a series of interactive stages. The training system augments a traditional ‘ballet 

mirror’ experience by using a half-silvered mirror with graphic overlays for guidance and 

feedback. The use of a mirror allows for zero latency, high fidelity feedback. YouMove appears to 

be beneficial for several domains of movement, such as yoga, dance, and physical therapy, with 

more domains possible with further advances in sensing. 

 

Figure 6.1. YouMove allows users to record and learn physical movement sequences. An augmented reality mirror 
provides graphic overlays for guidance and feedback. Note that for this photo the virtual viewpoint was vertically 
repositioned to account for the offset of a head-mounted camera, and floor lighting was used to reduce glare. 

 

This chapter provides several contributions. First, we provide a generalized full-body movement 

training system, YouMove. Next, we provide design guidelines, implementation details, and 

interaction techniques for a whole-body, interactive, augmented reality mirror. Third, we provide 

an evaluation demonstrating YouMove’s effectiveness over a traditional video approach. Last, we 

analyze learning and preferences with YouMove and provide directions for future work. 
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6.2. INSIGHTS ON TRADITIONAL INSTRUCTION 

To gain insights that could inform the design of YouMove, we observed professional yoga and 

ballet classes.  

Our observations were consistent with the strategies discussed in the recent work of Velloso, 

Bulling, and Gellerson (2013). We observed a feedback loop between trainer and trainee 

consisting of demonstration, performance, and feedback. For example, both the ballet and yoga 

instructors would demonstrate the movement sequence, then have the trainees repeat the 

sequence as they made comments and physical corrections to the trainees’ movements. 

We also observed the ballet instructor using an adaptive guidance approach, reducing the amount 

of guidance as the class progressed. The trainees started at the barre, then moved to the mirror, 

and finished the class with more complex sequences without the use of the mirror. In both 

classes, instructors provided timing cues, motivation, and alternative metaphors for thinking 

about the movement. 

6.3. DESIGN GUIDELINES  

Based on our observations of instruction strategies and a review of previous literature, we have 

developed a set of design goals to guide the development of the YouMove system. We believe 

these guidelines are applicable to movement training systems in general. 

6.3.1. LEVERAGE DOMAIN KNOWLEDGE 

Experienced trainers have more knowledge than what can be expressed in a recorded movement. 

Our observations indicated that feedback from instructors is based on domain knowledge. The 

experts know how to segment movement and which parameters of the movement are important. 

The authoring system should support the capture of this domain knowledge with minimal effort. 

6.3.2. MOTIVATE THE USER 

Engagement and motivation is an important part of learning (Bederson, 2004). The training 

system should provide feedback on the user’s progress, encourage the user to continue with their 

practice, and make it an enjoyable experience. 
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6.3.3. SIMPLE PRESENTATION, LOW COGNITIVE LOAD 

While practicing, the users should maintain a low cognitive load (Van Merriënboer & Sweller, 

2005). The user’s attention should be on the movement, not on interpreting user interface 

elements that are complex. A direct representation of the movement and simple scoring measures 

should focus the user on learning the movement. 

6.3.4. ADAPTIVE GUIDANCE 

Excessive guidance and video demonstrations can hurt learning, as users come to rely on the 

guides (Palmiter & Elkerton, 1991; Schmidt & Wulf, 1997). As the user learns the movement, 

guidance should be reduced. 

6.3.5. AVERAGE FEEDBACK 

Feedback on individual movements can cause trainees to focus on small errors, rather than the 

larger systemic errors. Aggregating feedback from several performances allows trainees to see 

and correct systemic errors in their movement (Yao et al., 1994). While summary feedback (e.g., 

overlaying all performances rather than averaging them into a single skeleton) would result in 

improved learning (Lavery, 1962; Winstein & Schmidt, 1990), averaged feedback simplified the 

visual complexity.  

6.3.6. USER DRIVEN LEARNING 

Trainees have varying skill levels and preferences that will dictate their training needs. The 

system should allow users to progress at their own pace to maximize learning (Wulf, Raupach, & 

Pfeiffer, 2005). 

6.4. AUGMENTED REALITY MIRROR IMPLEMENTATION 

While there have been previous implementations of virtually enhanced physical mirrors 

(Doctorow, 2011; Microsoft Research, 2012), we are unaware of a technical setup similar to our 

own in the research literature. This section contributes a technical description of our Augmented 

Reality Mirror setup, which could have implications that go beyond the YouMove system. 

The floor-to-ceiling mirrors often found in ballet studios inspired our use of the mirror for 

YouMove. These mirrors allow dancers to see their movements, providing them with immediate 
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visual feedback (Dearborn & Ross, 2006). By augmenting a traditional mirror with interactive 

content, we provide additional information that helps trainees learn a movement.  

6.4.1. CONFIGURATION 

The configuration of the Augmented Reality Mirror is illustrated in Figure 6.2. The display 

consists of a 3.2m x 1.8m pane of glass with a half-silvered mirror film applied to one side, and a 

diffuse film applied to the other. The mirror film was applied to the surface facing the user. The 

film (Supreme Silver 20 – www.apexfilms.ca) transmits 16% of the visible light, and reflects 58%, 

resulting in a highly reflective surface while still allowing projected light to pass through. Several 

other mirror films were tested, but the others absorbed more of the projector light, or did not 

reflect the user’s image as clearly. The diffuse film serves to diffuse the light from a rear-mounted 

projector (Mitsubishi FD630U, 1920x1080 pixels). 

A Microsoft Kinect was mounted below the mirror to track the user. The location of the mirror 

was specified in the coordinate space of the Kinect. The position of the user’s head and the 

corners of the mirror define an asymmetric projection matrix used to render on-screen content. 

 

Figure 6.2. Overview of system design showing projector, layered screen, dynamic lighting, Kinect and user location. 

 

6.4.2. LIGHTING 

While the system is usable in varying ambient lighting conditions, the experience was improved 

by being in an environment with controlled lighting. With bright ambient light and a dark 



 

84 

projection image, the user focuses solely on their reflection in the mirror. With low ambient light 

and a bright projection, the user’s reflection disappears. With a moderate amount of ambient 

light, the user’s reflection and the projected image are both visible (Figure 6.1). The ability to 

control lighting allows the system to shift the user’s attention between the relevant images 

(virtual or reflected). 

To manipulate the ambient light, a servo motor was mounted to a light’s dimmer switch and 

connected to the PC through an Arduino over USB. The servo motor was mounted using modular 

building blocks (LEGO), allowing the motor to be easily removed and accurately replaced later. 

The physical actuation of existing dimmer switches would not require the end user to modify any 

existing wiring or manually adjust the lighting. 

6.4.3. INTERACTION 

Mirror-based augmented reality offers unique opportunities for interaction. The user’s reflection 

directly activates on-screen components, allowing for direct manipulation of a 2D interface from 

3D free-space. This reflection selection provides zero latency feedback on hand position, allowing 

quick positioning (Ng et al., 2012). Buttons are activated by dwelling the hand over the button. 

During the dwell period, the button expands, providing feedback and increasing the activation 

area in case the user’s hand drifts. 

We implemented two types of buttons. Global menu buttons are located on the left side of the 

mirror, so they will not be triggered accidently during training. The vertical location of the global 

buttons adapts to the user’s height, so that menu items are not out of reach. Quick-access 

contextual buttons are presented near the user’s head, and only appear when required. These 

buttons are convenient, and their body-centric positioning allows them to be activated by a 

‘gesture posture’, as their location relative to the body is constant, similar to Virtual Shelves (Li, 

Dearman, & Troung, 2009). 

6.5. YOUMOVE IMPLEMENTATION 

YouMove is composed of a simple program to record data, and a separate training system for 

playback of that data. The authoring and training system were designed to run independently. 

The recording software was written in C#, using the WPF framework and the Kinect SDK (v1.6). 

The training software is written in C++, using openFrameworks, OpenGL and the Microsoft Kinect 

SDK v1.6. All software was run on a Windows 7 PC, with 12 GB of RAM and a dual core processor. 
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The only calibration required for the training system is to specify the location of the mirror when it 

is first set up. 

6.5.1. YOUMOVE AUTHORING SYSTEM 

We developed custom software to capture a trainer’s movement and domain knowledge. By 

simplifying capture, YouMove allows experts to contribute learning material without the need for 

complicated motion capture hardware or software. The recording system allows authors to 

record themselves performing the movement. The system captures video, audio and 3D skeleton 

movement data of the author. 

6.5.1.1. RECORDING  

After launching the software, the author is presented with a screen that has a single ‘Record’ 

button as well as the current video stream from the Kinect with a skeleton overlay. To capture 

movement, the author presses record, performs the movement, and then presses the stop button. 

Pressing stop takes the author to the editing interface. 

6.5.1.2. EDITING 

The editing interface (Figure 6.3) allows authors to trim the recording to eliminate unwanted data 

– such as walking to or from the capture volume. The author can also specify global parameters 

for the movement, i.e., timing, smoothness, precision, or stability. These parameters were used by 

the training system when providing feedback. 

Authors then specify keyframes for the recorded movement. Keyframes are postures within the 

movement that are particularly important for a trainee to match during the movement. For 

example, a keyframe for a baseball throw may be when the hand reaches peak extension.  

Keyframes are specified by navigating to the desired frame and then directly clicking on joints to 

specify the important joints for that keyframe. When a joint is selected, the current frame becomes 

a keyframe. These keyframes and important joints will be used in the training system to provide 

tailored guidance and feedback.  

Authors can also associate an additional audiovisual recording with individual keyframes, 

allowing the trainer to provide additional information regarding the movement. This annotation 

is done by clicking the ‘record’ and ‘stop’ buttons below each keyframe marker. Annotations 
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provide information that may not be immediately obvious to a trainee from seeing the author’s 

movement, or to discuss common pitfalls to avoid. For example, to throw a baseball, an author 

may annotate the keyframe with a short clip explaining that the elbow should be at approximately 

90 degrees.  

 

Figure 6.3. The editing interface allows authors to specify keyframes and global movement parameters. Each keyframe 
specifies the important joints for that moment, and can be associated with a recording that provides detail. 

 

6.5.1.3. SAVING AND SHARING CAPTURES 

The user saves the capture by clicking the Save button. The data is saved as media files (.mp4 

video and .wav audio) and plain-text files containing time stamped skeleton locations and 

keyframe metadata used to synchronize the data.  

6.5.2. YOUMOVE TRAINING SYSTEM 

The training system is used to teach the movements previously recorded with the authoring 

system. 
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6.5.2.1. MOVEMENT GALLERY 

The initial screen of the system presents a gallery of movements that the user may wish to learn 

(Figure 6.4). All buttons and icons throughout the entire system are selected using the reflection 

selection technique.  

6.5.2.2. QUERY BY EXAMPLE 

Selecting the magnifying glass allows users to search for a movement by example. The search 

screen instructs users to hold a representative posture of the desired movement. Once the user 

stays still, the system searches the movements in the library for the best match, presenting the 

most similar movements in a grid for the user to select.  

 

Figure 6.4. The movement gallery allows users to change profiles, query by example, and select a movement. 

 

The posture similarity heuristic used for the search is the same as what is used for the scoring 

measure used in training. That is, it takes a ‘snapshot’ of the posture the user is performing, and 

compares it to each of the keyframes in each movement of the library. The ability to query by 

movement may also be useful to search for movements where the movement is emphasized, 

rather than the pose. 

6.5.2.3. SKELETON ALIGNMENT  

A fundamental feature of the YouMove training system is guidance and feedback based on a 

comparison of the author’s and trainee’s skeleton. The Kinect provides skeleton tracking, 
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reported as 20 joints with 3D positions updated at 30Hz. The tracked joints include large body 

parts, such as the hands, arms, torso, legs, and the head, but fine movements (e.g., the fingers) are 

not tracked. 

To properly calibrate the author’s training skeleton to each user, it must be scaled and translated 

to match the user’s size and position. This is necessary for the skeleton-driven feedback and for 

accurate scoring. The spatial alignment is done by aligning the hips of the author skeleton with 

the hips of the trainee. Orientation is not aligned, as it is assumed that the trainee and trainer will 

be performing the movements in the same orientation relative to the Kinect. 

Scaling the skeleton is achieved by dynamically resizing each bone in the trainee skeleton to 

match the size of the corresponding bone in the trainer. This scaling is done hierarchically from 

the hips to propagate changes throughout the skeleton. This method is necessary as a simple 

uniform scaling would not accommodate users with proportionally different limb lengths. We 

have found that this skeleton algorithm works robustly, and allows the system to work well even 

when the trainee has a significantly different age, height, or weight from the author. 

6.5.2.4. SCORING AND STAGE PROGRESSION 

The YouMove system incorporates several elements of gamification designed to motivate the user 

(Li, Grossman, & Fitzmaurice, 2012). Training is composed of a series of stages, and each stage 

scores the user’s performance based on the similarity between their movement and the target 

movement. If their performance is high enough, they get a gold star and are allowed to progress 

to the next stage. To avoid frustration, a stage is also unlocked if they repeat the stage twice. 

Each keyframe is scored based on the joint with the maximum error, measured by Euclidean 

distance. Only important joints specified in the authoring tool are used to compute the score. To 

allow for small errors in timing, a window of 0.5s on each side of the target frame is searched to 

find the best matching posture. If the author has specified that timing is important in the 

authoring tool, this window is decreased to 0.25s. The maximal Euclidean distance is mapped to a 

score using a linear mapping, with 0 error being a perfect 10, and 0.15m of error resulting in the 

score of 7.5 needed to get a gold star and unlock subsequent stages. If precision is specified as a 

global parameter, this mapping is modified so 0.10m results in a score of 7.5. These values were 

determined by experimentation. 
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6.5.2.5. TRAINING STAGES 

Once a movement is selected from the gallery, the system progresses through five stages: 

Demonstration, Posture Guide, Movement Guide, Mirror, and On Your Own. The user can navigate 

through the stages using a selection screen (Figure 6.5, left), although the locking mechanism 

forces the user to initially perform the stages in order.  

The stages progressively introduce the movement to the trainee, and gradually reduce their 

reliance on guidance and feedback. Each stage presents the user with unique challenges and a 

different context to perform the movement in, reducing the negative impact of specificity of 

learning (Proteau, Marteniuk, & Levesque, 1992). The Posture Guide repeats twice, and the 

Movement Guide, Mirror and On Your Own repeat five times, allowing users to practice without 

being interrupted.  

  

Figure 6.5. Left) Stage selection interface allowing users to begin one of the unlocked stages. Right) Demonstration 
stage. 

 

6.5.3. DEMONSTRATION 

The demonstration stage plays the recorded video for the trainee (Figure 6.5, right). This stage is 

designed to be simple and familiar, so the focus is on the movement to be learned.  

Audio is played alongside the video to help with timing. At the start of the movement, a pre-

recorded voice speaks the word ‘and’, and each keyframe is counted out in sequence, i.e., ‘One’, 

‘Two’, etc. The use of numbers (rather than a metronome click) helps trainees remember each 

movement in the sequence. This counting is present in all other guides except for the ‘On Your 

Own’ guide. A progress bar on the bottom of the screen is synched to the video playback.  
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6.5.3.1. POSTURE GUIDE 

The posture guide (Figure 6.6) helps trainees refine their body position by pausing the movement 

at each keyframe and providing real-time feedback on their errors. This stage is inspired by the 

tutorial system found in Pause and Play (Pongnumkul et al., 2011), as it halts the tutorial and 

allows trainees to work at their own pace. The stage pauses until the user holds a stable position 

for one second, or until five seconds have elapsed. An additional progress bar on the bottom of the 

screen represents the amount of time they have currently been stable. If stability is specified as a 

global parameter in the authoring tool, the threshold for detecting stable movement is lowered 

from 5 to 3 cm per frame. 

 

Figure 6.6. The posture guide requires trainees to maintain a stable posture, matching the position of the trainer. Errors 
in joint position are indicated by red circles. The callout (top right of figure) resolves depth ambiguities. 

 

In this stage, ambient lighting is increased and the trainer’s skeleton is virtually aligned to the 

trainee on each rendered frame. Trainees are instructed to match their reflection with the 

trainer’s green skeleton, as in Figure 6.1. Errors in positioning are shown as red circles overlaid 

on the user’s joints, with the circle radius proportional to the joint error. If the largest error is 

found to be in the z-axis (depth), then a call-out window appears that shows the trainee a side-

view of their body position superimposed on the trainer movement. Using the error to determine 

when to show the feedback is a form of bandwidth feedback (Sherwood, 1988; Winstein & 

Schmidt, 2004) which has been shown to improve learning. The author’s original video is also 

displayed on the screen for additional visual reference. The video is automatically cropped based 

on the location of the trainer’s skeleton within the video to preserve on-screen space.  
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6.5.3.2. MOVEMENT GUIDE  

The movement guide (Figure 6.7) provides a skeleton similar to that of the posture guide, but it 

moves in real-time and does not pause on the keyframes. In addition, the trainer’s skeleton is 

aligned relative to the starting location of the trainee on each repetition – forcing the trainee to 

move with the skeleton to maintain alignment. 

The movement guide also provides ‘cue ribbons’ – 3D trajectories that help the user with timing 

by visualizing the upcoming movements. The ribbons display the trajectory of the hands and feet 

300ms ahead of the current frame, with the ribbon becoming more opaque the farther it is in the 

future. To reduce visual complexity, the ribbons are only displayed if the joint is going to surpass 

a velocity threshold of 75 cm/s within the subsequent 300 ms. If smoothness is specified as an 

important parameter, the ribbons are extended to movement 500m/s in the future, to allow 

trainees to better prepare their upcoming trajectories. 

 

Figure 6.7. The movement guide encourages the trainee to match the trainer’s movements at full speed, using green 
ribbons (inset) to cue upcoming movements. 

 

6.5.3.3. MIRROR GUIDE 

The mirror guide encourages the trainee to focus on their reflection, and does not provide any 

visual cues to guide the movements. A black screen is projected onto the mirror, and the ambient 

lighting is increased to enable the trainee to see a clear reflection of themself in the mirror. Audio 

cues are present to help with timing. This type of guide is similar to a ballet class, where the 

student practices in front of the mirror with the instructor counting the beats. 
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6.5.3.4. ON YOUR OWN 

The ‘On Your Own’ guide mimics a real-world performance scenario where the trainee relies only 

on what they have learned. The ambient lighting is off, and a white image is projected onto the 

mirror, preventing the trainee from seeing any reflection. The only audio cue provided is the 

word ‘and’, used to indicate the start of the movement. 

6.5.4. POST-STAGE FEEDBACK 

Trainees can view their performance using the Post-Stage Feedback screen (Figure 6.8). This 

screen is displayed after each of the training stages, except the Demonstration. This screen 

summarizes each of the previous repetitions and presents the aggregate data for each keyframe. 

Trainees can navigate between keyframes to see an average score for that keyframe, as well as 

their body pose and a summary video for that frame. During Post-Stage Feedback, ambient 

lighting is kept at a moderate level, and the projected background is grey. This enables the trainee 

to see the on-screen content, while allowing them to see their reflection and use reflection-based 

buttons. 

Error in posture is represented by two skeletons: the average skeleton of the trainee for all 

repetitions (blue), and the trainer skeleton (green). The same circles used in the posture guide are 

used for feedback to indicate relative joint error. While viewing the feedback, trainees can rotate 

the 3D view of the skeletons by walking left or right, allowing them to see errors in all 

dimensions. 

A summary video is also provided for each keyframe, allowing the trainee to quickly assess their 

movements and compare them to the trainer. The trainer video is a static image taken from the 

recorded video, while the trainee video is an animated sequence of images, each taken from one 

repetition of the movement, displayed for 0.5s each. By animating the images, trainees can easily 

see the variations in their movement from frame to frame. 

A group of 5 contextual buttons are displayed around the user, allowing them to re-perform the 

previous stage, advance to the next stage, navigate between keyframes, or view a video 

annotation if one has been associated with the current keyframe.  
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Figure 6.8. The Post-Stage Feedback screen, showing trainees their overall score, average position (skeleton), and video 
for each keyframe. 

 

6.6. EVALUATION 

A controlled study was conducted to compare YouMove to traditional video-based instruction 

methods. Effectiveness of movement instruction was compared using the results of retention 

scores after training with each system. Subjects also provided qualitative feedback on the 

YouMove system, and the use of a mirror as an interactive display. 

6.6.1. PARTICIPANTS 

Eight participants (2 female) between 21 and 51 years old, (M = 30.1 years) were recruited from 

within the organization, but external to the group. No participants had prior knowledge of, or 

experience with the system or study, or a dance background. 

6.6.2. STUDY MOVEMENTS 

We recorded four movements for the study – two ballet movements and two abstract movements. 

The ballet movements (variations on the Tendu and Developpe) were easier to conceptualize and 

only required a moderate amount of movement. The abstract movements were more difficult to 

perform, as they were a series of postures with no clear structure and required substantial 

movement. All movements used four keyframes. 
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6.6.3. CONDITIONS 

The two conditions for the study were YouMove and Video. The YouMove condition consisted of 

the YouMove system as previously described. None of the movements contained multimedia 

annotations or had global movement parameters specified. The Video condition consisted of a 

video projected on the mirror screen at the same size as the Demonstration guide (102 x 76 cm), 

with the area on the screen around the video projected white to prevent the participants from 

seeing their reflection.  

6.6.4. DESIGN 

The study was conducted as a two factor repeated-measures design, with each participant 

learning two movements using YouMove (one abstract followed by one ballet), and two by using 

just the demonstration video. The condition order and movement pair to condition mapping was 

fully counterbalanced across the 8 participants. 

6.6.5. PROCEDURE 

Each participant was introduced to the YouMove system using a simple tutorial movement. The 

experiment began once participants were comfortable with the system. 

Each movement began with a pre-test phase, in which the participant watched a video of the 

movement twice, and then performed the movement five times during the ‘On Your Own’ guide. 

Next, the participant trained using either the full YouMove system, or just the Video. During 

training, the participant practiced 45 times, either by practicing along with the video, or by 

practicing with the various guides of the YouMove system. In the YouMove condition, users were 

free to navigate to any of the unlocked training stages. 

Participants completed a retention test five minutes after completing the training. The test 

consisted of watching the demonstration video once to review the movement, then performing 

the movement five times during the ‘On Your Own’ guide. The Kinect recorded the participant’s 

movements in all stages of the study. 

A short questionnaire was given to participants after completing the tasks to elicit qualitative 

feedback. The study took approximately two hours to complete. 
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6.6.6. RESULTS 

A repeated measures ANOVA with two independent variables: Condition (YouMove, Video), and 

Movement type (Ballet, Abstract) was performed. Performance (Figure 6.9) was measured by 

computing the RMSE between the space-and-time aligned user skeletons and the target skeleton, 

using the neck, hands, elbows, knees and feet. These joints were chosen because they are reliably 

tracked and capture the majority of the information in the movements. Similar analyses were 

conducted using only the joints specified by the content author, as well as using the joint that has 

maximal error (the measure used in computing the in-game score). All of these analyses produced 

equivalent statistical findings, and so we only present the RMSE analysis. 
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Figure 6.9. Performance on each trial, for each of the conditions, averaged over all 8 subjects. 

 

The change from pre-test to post-test was significant (F1,7 = 9.98, p = 0.02), with YouMove scores 

improving by an average of 0.10m (44%), and the Video condition improving scores by 0.05m 

(20%), representing a medium-large effect size (η2 = 0.13). The effect of movement type on the 

change was not significant (F1,7 = 0.24, p > 0.6), nor was the interaction between movement type 

and condition (F1,7 = 0.23, p > 0.7), indicating that YouMove’s effectiveness is not dependent on 

movement difficulty.  
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Figure 6.10. Pre-test, training, and post-test scores for the YouMove and Video conditions. 

 

An ANOVA was also conducted on the post-test scores with factors of Condition and 

MovementType. The condition was significant (F1,7 = 9.96, p = 0.02) with scores of 0.12m for 

YouMove and 0.18m for Video, an improvement of 33% (Figure 6.10). The movement type was 

also significant (F1,7 = 114.2, p < 0.01), with scores of 0.10m for ballet movements and 0.19m for 

abstract movements, indicating that ballet movements were easier.  

6.6.7. STAGE USAGE ANALYSIS 

For the YouMove condition, most participants performed the training guides in sequence, 

although some participants did choose to replay guides before continuing. After unlocking all 

stages, there was no clear preference, but users seemed less likely to return to the posture guide. 

This is likely due to the increased time the posture guide requires. The guide use by trial is 

visualized in Figure 6.11. 
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Figure 6.11. Frequency of use for each guide type for all participants during training with the YouMove system. 

 

6.7. DISCUSSION 

Overall, we were pleased to see that when comparing pre-test and post-test results, learning 

increased by more than a factor of 2 (44% vs. 20%) with the YouMove system. 

6.7.1. ANALYSIS OF LEARNING 

Across all conditions, participants appeared to learn the movement within the first few training 

trials (Figure 6.9) and then reached a plateau, with relatively constant performance. In the case of 

the video condition, this was likely because the trainee had truly plateaued, and learned all of the 

usable information from the video. With the YouMove condition, however, the gradual reduction 

of guidance meant that the trainee was continually learning the movement and making up for the 

lack of guidance with increased skill, resulting in consistently high performance. 

The retention scores show improved learning with YouMove, as performance is maintained on 

the retention tests. In contrast, retention scores for video are worse than in training, evidenced by 

the upward slope in Figure 6.10. 

While training with the YouMove system took longer (i.e., average of 20 minutes compared to 11 

minutes with video), this cannot fully explain the results of learning, as the number of exposures 

to the movement remained constant. Additionally, performance on the video condition plateaued 

after approximately 8 repetitions, and unlike the YouMove condition, the stimuli did not change 

and so it is unlikely that any additional learning would occur if the video condition had been 

repeated for 20 minutes. 
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6.7.2. MIRROR INTERACTION 

Dynamic lighting allowed the system to shift the attention of the user, and did not seem to distract 

participants. The dynamic lighting provided the intended effect and enabled the screen to be 

multiplexed, allowing the trainee to use both their reflection and the projected guide.  

Some participants had difficulty lining up the reflection of their hand with the buttons for the 

reflection selection technique. To mitigate these problems, we have since added virtual cursors 

that appear if the system has been waiting more than five seconds for a selection to be made. 

These cursors provide novice users with the necessary feedback to correct their movement, yet 

do not interfere with the efficient reflection-based interaction. 

6.7.3. QUERY BY EXAMPLE 

While the ability to search for similar movements was not tested in the user study, during 

informal use it proved to be fairly robust and useful. For novices, this feature will allow querying 

of large databases without having to know the name of the movement. This is especially useful in 

domains that have complex or cryptic names for their movements. 

During training, the trainee’s performance is recorded in the same format as the trainer’s. This 

allows users to upload their movements for others to learn from, and enables them to review 

their prior performances at a later date. 

6.7.4. AUTHORING 

The authoring system proved to be easy to use. No formal study was conducted, but it was sent to 

an untrained user and they were able to record and annotate several movements with minimal 

effort. The movements were successfully transferred and used in the training system. 

The authoring system benefits experts as it allows for content expansion. One minute of content 

creation generates approximately ten minutes of unique training content with stages that vary the 

method of presentation and provide feedback. This allows experts with limited time to produce a 

useful quantity of content with minimal time investment. 
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6.7.5. TRAINING STAGES 

The Demonstration stage was well liked by users. This is likely due to familiarity with video as a 

teaching tool, and the ability for participants to easily understand the content. Some participants 

did, however, comment on the difficulty in judging limb placement and depth from video. 

The Posture Guide allowed users to correct the movement, and many errors in positioning were 

corrected using the posture guide and depth callout. Though similar in nature to the posture 

guide, the movement guide was one of the most preferred guides. It provides guidance at full-

speed while still providing useful feedback.  

The Mirror Guide and ‘On Your Own’ guide were clearly valuable. Many participants felt that they 

had learned the movement, but when the guides were taken away they struggled to remember 

the sequence. 

The Post-Stage Feedback was also well received. Five participants explicitly mentioned that the 

ability to move back and forth to change the viewpoint of the skeleton was a useful feature. The 

utility of the feedback is evident in the fact that many participants spent a substantial amount of 

time on this stage. They were aware that the amount of exposures to the movement was kept 

constant, and that any time spent on the feedback screen would lengthen the experiment, yet 

many participants still examined each keyframe. 

6.8. FUTURE WORK 

The addition of social features and richer gamification could greatly help YouMove. One can 

imagine online yoga, dance or martial arts classes, with competition from online peer groups, but 

more work is needed to achieve this. 

6.9. SUMMARY 

In this chapter, we demonstrated that the framework and concepts from two-dimensional gesture 

learning generalize to gestures that are more complex. We have adapted various forms of visual 

feedback to support memorability of each of the gestures, showing not only skeletal movements, 

but dynamic trajectory highlights. Additionally, the video cues presented help provide unique 

visual cues that help users remember the appropriate movement. To support learning of the 

procedural component, the system provides summary feedback after each stage. Additionally, the 

adaptive guide makes the system approachable and usable by novices but gradually progresses 
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them to expert levels of performance. There are still many open questions regarding how to 

optimally train users to perform the complex movements, however, this system provides 

evidence that gesture training by interactive systems can be much more effective than traditional 

instruction if the various aspects of gesture learning are accounted for. 

6.9.1. RELEVANCE TO GESTURE LEARNING 

This chapter primarily examines the learning of the procedural component of gesture production. 

As with the previous chapter, a small set of gestures was utilized so the users did not have to 

focus on which gesture to learn. The design of the feedback used in YouMove was tailored to 

specifically maximize learning. The adaptive, faded feedback, as well as the averaged and user-

driven feedback allowed the participants to receive optimized information from the system to aid 

them in learning. The system also demonstrated how various types of feedback could be 

integrated into a single, coherent system. 

6.9.2. LIMITATIONS 

The evaluation captures the combined effects of many novel elements. More work is needed to 

analyze each component and its contribution to learning. Long-term learning and retention are 

also important areas to explore. 

One limitation of the system is related to the skeletal tracking of the Kinect. In particular, the 

Kinect has difficulty tracking movements that cause large amounts of occlusion. One possible 

improvement would be to leverage multiple Kinects (Butler et al., 2012). Improvements in 

sensing technology will open new domains of training. Playing musical instruments, surgery, 

many sports, and other motor-skill based domains could benefit from such a system. 

Another limitation is the large mirror required for the training system. While the presented 

implementation uses a half-silvered mirror as a display, the software could also run as a 

traditional video-based augmented reality system, as in (Velloso, Bulling, & Gellerson, 2013). This 

would be more accessible to users, but does not provide the real-time feedback that the mirror 

does. It would be interesting to better understand any learning difference between a mirror and 

video based system on various devices (large screen, small screen, etc.). 
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Chapter 7  

 

Thesis Conclusions 

7.1. SUMMARY 

This thesis presented several contributions in the area of gestural learning within HCI. We 

contributed a framework which describes the design of gestural learning interfaces as being 

driven by a user’s pre-existing knowledge, their support for learning the declarative mapping 

between gesture and action, and their support for learning the procedural component that results 

in accurate gesture execution.  

With respect to the questions posed in Chapter 1, we now have the following answers: 

Gesture learning is necessary in nearly any system involving gestures, and it cannot be completely 

avoided by allowing for user-defined gestures. We showed that user-defined gestures are not 

always self-consistent for a given high-level task, indicating a need for some amount of learning 

even within user-defined scenarios. 

Gestures do, in fact, have an advantage over traditional input methods, and this advantage comes 

from the visual system’s ability to encode the gesture as a shape, rather than the motor system’s 

encoding of the gesture. We analyzed what factors are at play when learning gestures and 

compared the effects of the visual and motor components. We found a strong effect of visual 

feedback in the recognition of learned gestures. 

When training the procedural component of gestures, we should leverage as much knowledge as 

possible from motor learning and avoid designs that emphasize guidance over learning. 

Additionally, retention and transfer tests should be utilized so that learning can be accurately 

assessed. We analyzed various approaches to providing visual feedback in gesture training 

systems using a retention and transfer paradigm. We also developed an adaptive approach that 

provides ease of use for novices while still providing learning benefits. 

Lastly, we showed that our findings from two-dimensional gestures, as well as other findings 

from motor learning generalize two more complex, full-body movements. We integrated a variety 
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of features that support gesture learning into a single coherent system designed to provide 

maximal learning benefit. 

7.2. CONTRIBUTIONS 

Chapter 3 presented two studies to understand the benefits and limitations of user-defined 

gestures. Both studies used a gesture password creation paradigm to provide a simple, easily 

manipulated test bed on which to test hypotheses. The first study examined the effect of high-

level instruction on the types of gesture passwords generated by participants and found 

significant effects on the complexity and structure of the gesture when the instruction was 

manipulated. The results support related work which analyzed user-defined gestures when 

varying the high-level task. The second study, inspired by work in embodied cognition, examined 

the effect of the orientation of a device on the structure of gesture that was created. This study 

revealed that the orientation of the device affected the types of gestures created, even within the 

same user. This suggests that user-defined gestures may not always be consistent even when the 

task remains the same, which indicates some need for gesture learning even within gestural 

interfaces that support user-defined gestures. 

In Chapter 4, we presented two studies that examined the cognitive benefits of learning 

sequences using gestural input compared to learning those sequences using traditional pointing 

input. The studies focused on the declarative component of gesture learning, and used a two-

alternative forced-choice recognition task to assess the degree to which the sequences were 

learned. The first study utilized a more ecologically valid paradigm, rendering strokes between 

each dot in the sequence as well as requiring participants to use a continuous stroking motion. 

Under these conditions, gestural input resulted in the sequences being learned more efficiently. In 

the second study, the visual feedback remained fixed between the two conditions so the only 

modification was the movements required by the participant. Under these conditions, the 

advantage that gestural input demonstrated in the prior study disappeared. These results point to 

the visual, rather than the motor component being the dominant factor when learning the 

declarative component of gestures. 

In Chapter 5, we examined the role of visual feedback in learning the procedural component of 

the movement. Using a training and retention paradigm common to motor learning, we assessed 

the impact of guidance during gesture learning. We found that the type of visual feedback used 

during training dramatically influences how well the gestures are learned. Having visual feedback 
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that participants could trace directly on top of resulted in worse performance than feedback that 

was scaled and offset from the desired gesture. We also developed and assessed an adaptive guide 

that preserves the ease-of-use of the traceable guides but gradually removes the guidance, which 

allows for greater learning. We find that the retention tests provide a very different view of 

learning than what has previously been used to evaluate gesture learning. 

Lastly, Chapter 6 presented a novel system, YouMove, which extends our understanding of 

interactive gesture training to complex, 3D gestures. The system uses an interactive augmented-

reality mirror to overlay feedback directly over-top of users’ reflections. This provides a simple 

and natural metaphor for understanding the guidance provided by the system. It also leverages 

staged feedback, with each stage gradually reducing the amount of feedback provided to 

encourage learning. A retention test demonstrated enhanced learning with the YouMove system 

compared to a traditional video-based approach.  

7.3. FUTURE WORK 

7.3.1. UNDERSTANDING GESTURE LEARNING 

There are many open questions within the scope of gesture learning and the framework 

presented in Chapter 1. At a high level, one of the foremost questions is to identify the relative 

importance of the procedural and declarative components with respect to their impact on user 

performance and usability. Within this, there are likely differences in user experience where 

novices may prefer systems which emphasize learning of the gesture vocabulary (declarative 

component) and provide heavy guidance for the procedural components, whereas users with 

more expertise may prefer the opposite. 

Current gesture guides, including those presented in this thesis, do not take full advantage of the 

full body of literature from the motor learning domain to maximize training of the procedural 

component. There are dozens of concrete guidelines that are ready to be implemented and 

integrated into current gesture training systems. Integrating these principles into usable, 

practical systems remains a large challenge.  

With respect to the declarative component, non-visual modalities for gesture learning may still 

prove beneficial. Prior work (Andersen and Zhai, 2010) examined the sonification of gestures, but 

found little benefit in terms of performance. They did not, however, examine learning effects. In a 

related domain, Grossman et al. (2007) examined the learning of shortcut keys, and found that 
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audio was a very successful method in instructing users on the pairing between command and 

shortcut. Haptic modalities may also prove useful in rendering gestures to the user, perhaps 

leveraging benefits of dual coding (Paivio, 1973). 

7.3.2. APPLICATIONS 

Emerging applications will provide a plethora of new challenges for gesture learning. Wearable 

interfaces are becoming increasingly more prevalent, and implantable interfaces are on the 

horizon (Holz, 2012). These new modes of interaction do not have high input and output 

bandwidth and they are to be used within highly dynamic environments. As such, future gesture 

learning approaches for these systems must address new issues such as skill transfer between 

different contexts (so users can accurately perform gestures in novel configurations), and new 

modalities for presenting feedback such as haptic or audio rendering. 

Related to this, truly ubiquitous computing is poised to become a reality in the near future with 

sensors and intelligence embedded in our lights, appliances, etc. These intelligent environments 

currently lack a clear input space and obvious affordances which make them optimal candidates 

for gestural interaction. With these interfaces, it will be likely that some combination of user-

defined and standardized gestures will be implemented to provide baseline functionality. 

However, to unlock the full potential of an intelligent environment, the user should be able to 

control many elements in rapid succession by phrasing actions together and configuring new 

functionality. For these more expressive scenarios, we envision offline configurations used to 

configure the desired functionality while training the user in the gestures required to operate the 

functionality. Engaging platforms will need to be developed that provide efficient tutoring, and 

these platforms will need to leverage fundamental knowledge about how gestures are learned 

and adapt them to each unique scenario. 

Future work on the training of complex, 3D gestures will largely involve the development of new 

methods to provide real-time guidance and feedback within a user interface. The work presented 

in Chapter 6 required users to undergo offline training before being able to accurately reproduce 

the movement. However, this is not ideal and would not be suitable for interactive systems. 

However, these trainers for complex movement will have the greatest applicability going forward. 

They have applications across sports, dance, medicine, manufacturing, etc. Current approaches to 

virtual training are often bespoke, with limited applicability beyond their domain. Not only does 

this limit their applicability, but it requires each designer to understand fundamental principles of 
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movement learning, which is beyond the scope of most software developers. Thus, a platform 

which is able to abstract as much expert knowledge as possible has great utility that spans many 

application domains. 
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