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Abstract

This thesis is concerned with the conversion of volumetric data to a surface model
for display purposes. Previous attempts at this problem cither did not convert the
volumetrie data to a surface model or did it with a conversion routine that has certain
limitations. The thesis introduces a more general surface model for the conversion of
the volumetrie data structure.

The thesis presents an extended cuberille model, a 3D border identification method,
a surface tracking algorithm, and a surface closure algorithm for the identification,
reconstruction, and display of 3D objects from 3D gray value data. The identification
starts with 3D gradient data, and concludes with a surface description of an identified
object. The surface can then be displayed by any graphics package.

3D edge clements are gradients, and the orientations of the gradients are quantized
to 26 directions. The cdge elements are then converted to the extended cuberille model.
The extended cuberille model has four volume primitives. Besides a cube, voxels are
extended to include three other polyhedra so that each voxel has a face whose orientation
is compatible with one of the 26 gradient orientations. This face is termed a face
primitive. There are also four types of external voxel faces, hence a surface description
in the extended cuberille model consists of the four types of voxel faces.

The three dimensional border identification method is based on the sign of the second
derivative of intensity change. For a bright object surrounded by a darker background,
the condition for a voxel being on a border is that the second derivative is negative and
changes sign for neighbors in the gradient direction. There exists exactly one layer of

border voxels that satisfy the condition. This avoids a multiple layer problem. Tracking



border voxels could simply be a breadth first search.

The surface tracking algorithm consists of three algorithms: the border face tracking
algorithm, face connection testing, and the surface closure algorithm.

The border face tracking algorithm traverses outways instead of 26 face, edge or
vertex connected voxels. Adjacent voxels of cach ontway of four tynes of face primitives
are defined according to a face orientation and the border voxel condition. The definition
results in less than 26 adjacent voxels, The border face trackimg algorithim is therefore
faster than a breadth first search.

Because a voxel is converted to one face, guite tew horder voxel faces are not ron
nected. During border face tracking, the information of disconnected faces is saved. The
surface closure algorithm will use this information to close a surface with four types of
external voxel faces in the extended cuberille model.

All algorithms are implemented and tested. Experimental results of 31 adentifica-
tion, horder face tracking, and surface closure by the extended cuberille model on test

data and medical data are given.
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Chapter 1

Introduction

This thesis is concerned with the conversion of volumetric data to a surface model
for display purposes. Previous attempts at this problem either did not convert the
volumetric data to a surface model or did it with a conversion routine that has certain
limitations. The thesis introduces a more general surface model for the conversion of
the volumetric data structure.

The thesis presents an extended cuberille model, a 3D border identification method,
a surface tracking algorithm, and a surface closure algorithm for the identification,
reconstruction, and display of 3D objects from 31 gray value data. The identification
starts with 3D gradient data, and concludes with a surface deseription of an identified

object. The surface can then be displayed by any graphics package.

1.1 The Extended Cuberille Model

In 3D identification and display, thresholding is widely used but restricted. In a variety
of applications, not many objects can be identified by simple thresholding. Fven the
optimal thresholding [GW87] also has some problems. Identification based on 31) edge
detection is a more general method. Some 31 edge operators have been proposed 1o
detect edge elements {Liu77, ZH79, MR81] using gradients.

The problem of how to group detected edge clements together to reconstruct an



integral objeet has not been discussed. Integral object representation is a relatively new
topic [Mans8]. It implies that if an object is represented by its surface, the surface must
be closed without missing faces. If the object is represented by a collection of voxels,
cach voxel is a solid with a thickness so that the space occupied by the object can be
measured.

A 3D Ldge element detected by a gradient operator is usually described by its
location (the center or a corner coordinates), magnitudes (steepness), and orientation
(norinal). This description has little gcometrical information because the edge’s shape
and size are undefined. As a result, they cannot be used to construct a surface. What is
needed are modeling primitives whose shape and size are defined and whose orientations
are close to their edge counterparts, i.c., a model. For instance, a modeling primitive
in a polyhedra surface is a face defined by a list of vertices. Faces are connected through
edges to form a closed a surface. A modeling primitive in a cubic B-spline surface is
a patch defined by its control net. Patches are connected to form a surface having
curvature continuity across cdges.

Currently available models in 3D surface identification are: cuberille model [HL79]
and marching cubes [L.C87]. Both are polyhedra models and both use thresholding to
identify objects.

In the cuberille model, the face primitive is a square voxel face. Algorithms track-
ing a surface of an object in a binary image have been seen in [AFH81] and [GU89].
An object can also be represented as a collection of cube shaped voxels. Volume ren-
dering algorithms have been seen in [Rey85b, FGR85, Rey87a]. Because of the regu-
larity of voxels, an object can be organized as an octree. Octree related algorithms
include tree generation algorithms [Sam81, Sam80, YS83], set operation algorithms
[H1S79], geometric transformation algorithms [JT80, Mea82b], and display algorithms
[D'T84, Mea82a, ZDI1].

The face primitives in the marching cubes [LC87] are triangles. The average nor-
mal of the triangles close to a voxel reflects the gradient orientation at that voxel. In

marching cubes algorithm, data are divided to cubes. A cube is made up of eight voxels

Q%)



in cight vertices, that are either inside or outside as determined by thresholding. The
algorithm marches cube by cube, creating triangle faces to model a picce of surface
within each cube. When the algorithm stops, a surface of triangles is completed, The

surface is displayed using traditional graphics techniques.

0, 1,-1)
y 1/
@, 0,0
X
4
(L-1,1

Figure 1.1: Three of the 26 gradient directions.

The following presents the motivation to extend the cuberille model for 31 edge
detection and surface construction. Suppose a 31 edge operator, such as the one by
[MR81], is applied to gray value data. It detects edges by computing a gradient. at
each voxel. The gradient at a voxel can be written as a vector V = (V,, V,, V.)
with the three components indicating intensity changes along three principal axes. The
magnitude of the gradient, approximated by |V| = |V.| + |V,| + |[V.], indicates the
possibility that the voxel is an edge element. The larger the magnitude, the more
likely that it is an edge voxel. The direction of the gradient vector determines the edge
orientation. For simplicity, the direction of a gradient is quantized to one of 26 directions
(see Fig. 1.1.)

Suppose an edge is detected at a voxel with orientation (1,1,1), as shown in Fig. 1.2(a).
The cuberille model would represent the edge: by three voxel faces whose average normal
is (1,1,1). It is more natural, however, to represent the edge by a face whose normal
coincides with the edge orientation. For example, the triangle face in Iig. 1.2(¢) would
construct a smoother surface than the three voxel faces in Fig. 1.2(b). Of course, an-

other face with the same normal could also be chosen as a face primitive. The problem



therefore is to choose a set of modeling primitives whose normals reflect the 26 gradi-
ent directions. To solve the problem the Extended Cuberille model is introduced in
Chapter 3.

The extended cuberille model has four volume primitives (see page 37, Fig. 3.1).
Besides a cube, voxels are extended to include three other polyhedra so that each voxel
has a face whose orientation is compatible with one of the 26 gradient vectors. This
face is called a face primitive. Hence a volume primitive can be referred to as either
a voxel or a face. The merits of the three representation schemes: space occupancy
cnumeration, octree, and surface representation by the extended cuberille model are

also briefly discussed in Chapter 3.

\ i
>

Z
(a) Gradient vector (1,1,1) (b) The cuberille mode! (c) The extended cuberille model

Figure 1.2: Difterent modeling primitives.

1.2 Three Dimensional Identification

Some results use 3D edge detection to identify a surface. The 3D boundary following
algorithm by [CR89] constructs a 3D boundary by stacking 2D boundaries, that have
been extracted using a heuristic search algorithm [Mar76]. The heuristic search uses
global information to determine boundary elements. To find a boundary is to find a
path of minimum cost from a starting edge element to a goal edge element. The sum
of the gradient magnitudes along the path could be a cost criterion. The algorithm is

basically a 2D method, and the search space is very large.

o



The method by [SZ87] models the local surface by parameterized patehes, 'The trace
points of a patch are thresholded 3D gradient points and further refined using contextual
structure. How to connect patches to a closed surface hasn’t been discussed.

A problem with identification based on gradient magnitudes is that there is no
definition of boundary edges in an edge image. For example, for the step inteusity
change in Fig. 1.3(b), the detected gradient is shown in Fig. 1.3(¢). There is a rather
flat area around the peak (valley). All edge clements whose magnitudes are larger
than a given threshold arc legal boundary cdge candidates, hecause edge operator and
magnitude calculation introduce errors. This causes a multiple layer problem. Tt is
difficult to construct a surface from muitiple iayers of edges.

I(v)
object background

(b) Intensity I(v) delined in g axis.
g

po
\ s

v 8
(c) Gradicnt of I(v). There is a flat
arca around the peak (valley) point.

a
\
\

¢ (d) Second directional derivative

(a) The gradient at voxel v is g(v).
of I(v).Voxel v is a zcro—crossing.

Figure 1.3: Many edge elements in a gradient image may be chosen as boundary candi-
dates.

Observe in Fig. 1.3(d) that the directional second derivative of an intensity change
has a steep slope around a zero-crossing. This directional second derivative corresponds
precisely to the peak of the gradient. Marr and Hildreth [MI80] suggested that zero-

crossings can be used to detect edge elements. A Gaussian filter is used to smooth



the data. Since there is no analytical model for image intensity, the directional sccond
derivative is used for the Gaussian filter. Hence zero-crossings are zero points resulting
from convolving the directional second derivative of a Gaussian filter with image inten-
sity. Itecent rescarch has been focused on the description of an image by ZCro-Crossings
at varions scales [Bro8s].

A 3D border identification method based on signs of the directional second deriva-
tives of intensity change is proposed in Chapter 4. The condition for a voxel being on
a border is given in page 57, i.c. the incqualities (4.26). For a bright object surrounded
by a darker background, the condition states that if the second derivative at a voxel is
negative and changes sign for neighbors in its gradient direction, the voxel is a border
voxel.

To compute the sccond derivative, a 3D edge operator is applied to compute gra-
dients. The gradient dircctions are quantized to 26 vectors. Asymmetric Gaussian
filters for 3D convolution are designed for the 26 gradient vectors. The long scale of the
Gaussian filter coincides with the gradient vector, with short scales in the perpendic-
ular directions. Hence the 3D convolution computation can be speeded up. Although
the quantization of gradients to 26 vectors is not smooth, analysis shows that the con-
dition of border voxel identification is not sensitive to quantization errors. Irom this
condition, there exists exactly one layer of border voxels, therefore the multiple layer
problem doesn’t occur. Tracking border voxels can be as simple as a breadth first scarch.

Compared with the heuristic search [CR89], the search space is greatly reduced.

1.3 The Surface Tracking Algorithm

By the proposed 3D identification method, there exists one layer of border voxels. The
breadth-first scarch algorithm [AHUS83] is used to track border voxels. In the algorithm,
a gradient image is interpreted as a graph, where nodes are voxels and edges are ad-
jacency relations between pairs of voxels (see Fig. 5.1(d), page 66). A possible way to

define the adjacency relation between a pair of voxels is by digital topology [KR89],



where two voxels are adjacent each other if they are either face, edge or vertex con-
nected. By the definition, cach voxel has 26 adjaceut voxels, hence every node has 26
edges in the graph.

The underlying data structure of the algorithm is a queue. The algorithin removes a
border voxel from the queuc and traverses its 26 adjacent voxels, testing il any satisfies
the inequalities (4.26). If so, the adjacent voxel is a border voxel. Meanwhile, il a border
voxel is found unmarked, mark it and queuc it. The algorithm repeatedly removes border
voxels from the queue until the queue is empty.

For a given object, the number of border voxels is determined by the condition (-1.26),
and is fixed. Since each border voxel is placed in the queue once, and 26 adjacent voxels
of every border voxel need to be tested, the time complexity of the algorithm is an order
of O(kng), where ng is the number of border voxels of an object, and A is the number
of adjacent voxels that a border voxel has, i.c. 26.

In the extended cuberille model, however, every border voxel is converted to a face
primitive. Intuitively, a face normal, which is one of the 26, shouldn’t have a dramatic
change from one border voxel to an adjacent one because the surface is supposed to
be smooth. Moreover, only those adjacent voxels on a border are of interest. 'This
suggests that the normal of a face can be used to assist in defining adjacent voxels. In
Chapter 5, the adjacent border voxels are defined for cach face primitive according to
the face orientation and the border voxel conditions (4.26). It results in less than 26
adjacent border voxels for each face.

Since a face primitive is either a square or a triangle, (sce page 37 Fig. 3.1), it has
at most four edges. There are at most four ways to connect one face to the next, and
each possibility crosses an edge. The ways of connection are called outways of a face.
In Chapter 5, the set of adjacent voxels is defined for cach ontway, and it is further split
into disjoint subsets. The surface tracking algorithm traverses outways instead of the
26 edge, face, or vertex connected voxels. While traversing an outway, il any adjacent
border voxel has been found once a subset is scanned, the traversal breaks and continues

to the next outway. This brings the constant k down to about half and thercfore speeds



up surface tracking.

1.4 The Surface Closure

In the extended cuberille model, a voxel is coverted to one face primitive. As a result,
the border voxel faces are not always connected. During surface tracking, the connec-
tion between the current face and an adjacent face is tested. If the two faces are not
connected, the information about a missing face is saved. The surface closure algorithm
uses this information to close a surface with four types of external voxel faces in the
extended cuberille model. The algorithm is discussed in Chapter 7.

The surface tracking algorithm therefore consists of three algorithms: the border
face tracking algorithm, face connection testing, and the surface closure algorithm. An

outline is given in Section 5.1. The algorithms and experimental results are covered in

Chapters 5 to 8.

1.5 The Surface Smoothing

Since voxels are very small, the shape and orientation of voxel faces are indiscriminating.
But if a zoom-in view is required, the surface appears to be rough. In this circumstance,
the surface smoothing algorithm can be used to smooth a surface. The algorithm adjusts
a border face normal according to its neighbor face’s orientation during border face

tracking. The algorithm is given in Chapter 9.

1.6 Overview

Figure 1.4 presents a depiction of the 3D identification and reconstruction process. Topic
boxes in the shaded area - the extended cuberille model, border voxel identification, the
border face tracking algorithm, border face connection testing, surface closure, and sur-

face smoothing -- will be addressed in this thesis. All algorithms have been implemented



and tested. An identified and reconstructed surface can be displayed by nearly any

graphical package.

Coverling to the ey
» Extended Cubcrille o plplay
M odel ARC JRC

3D Edge
Data

Border Voxcl #1  Surface Smooth
Identification

y

»| Border Face S
Tracking

Face Conncction
Testing

Surface Closure = Display Surfuce

Figure 1.4: The 3D identification and reconstruction process.

The thesis is organized as follows: Chapter 2 is a review of the literature. Sinee Liow
to guarantee an integral representation is covered in the topie of solid modeling, the
mathematical background of solid modeling is given first; then a survey aud analysis of
the current state-of-the-art for various representation schemes and related algorithms
are given. Three 3D edge operators are reviewed next. Specially, the edge detection
method by zero-crossings is discussed in detail because it is the starting point for 31)
border voxel identification.

Chapter 3 introduces the extented cuberille model that defines four volume primi-

tives. The implementation of converting the gradient to the model by location/direction

9



codes s disengsed,

Chapter 4 discusses the border identification method that is based on the sign of
the directional second derivative of intensity change. The analysis is first conducted in
continons sp-ace. The condition for identifying border voxels in discrete space is then
given,

The surface tracking algorithm is covered from Chapters 5 to 8. Chapter 5 discusses
the horder face tracking algorithm. The method and implementation of face conrection
testing are discussed in Chapter 6. Chapter 7 discusses the surface closure algorithm.
Fxperiment results are given in Chapter 8.

Chapter 9 discusses the surface smoothing algorithm, and Chapter 10 contains the

conclusion,
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Chapter 2

Review of the Literature

2.1 Solid Modeling

As depicted in Fig. 2.1, a solid model is a subset of a geometric model. I focuses
on creating complete representations of solid objects [Man88]; that is, one representa
tion models only one physical object, hence it permits answers to arbitrary geometrie

questions such as surface arca, volume, ctc.

Solid Model Graphical Model

The Extended
Cuberille Model

Figure 2.1: The extended cuberille model is a subset of a solid madel

The characteristics of completeness separates a solid model from a graphical model

that does not offer complete shape information. For example, in a wire frame model a

11



representation composed of a collection of lines may correspond to several solids, because
some lines might have different interpretations, hence define different surfaces. Since the
solids defined by a wire frame representation are not unique, the geometric properties for

answering the above questions cannot be calculated automatically. A standard example

is given in g, 2.2,

g W

Figure 2.2: An incomplete representation at the left interpreted as any one of the three

solids on the right.

"To solve this problem a natural step is to upgrade the wire frame model to a polyhe-
dral model so that the hidden part of the surface can be removed. A polyhedral model
represents an object by a list of polygons, yet it still cannot guarantee the integrity of
a solid. The integrity requires that the surface of a solid be closed. It also requires
that in.ersecting polygons not be allewed so that one would be able to tell which side
is insiae and which side is outside the solid.

Completeness and integrity arc the main problems faced by solid modeling. A
solid model should be able to enforce these conditions automatically so that an incorrect
representation is not created. Fortunately, a rigorous mathematical model has becn
developed to characterize solid objects. In the next section, the mathematical definitions
of the three-dimensional solid and regularized set operations on solid objects are

introduced.



2.1.1 Mathematical Model

Starting from the three-dimensional Euclidean space E?, the abstract entities to model

physical objects are subsets of £3, i.c. sets of points of E%. Bui this is too general
because only a few of the subsets of £ are adequate to model solid objects. Intuitively,
a solid is closed and bounded. It is also rigid, meaning that its shape is invariant under
a rigid transformation, i.c. translation and rotation. A solid must have an interior,
and cannot have dangling faces and branches, nor isolated points. A solid must he
representable by a finite number of faces. Finally, the surface of a solid is orientable. 1t
is unambiguous which side is inside and which side is outside the solid. The notion of
orientable implies that the surface of a solid cannot intersect itself.

Fig. 2.3(a) gives an example of a nonsolid set. The set in Fig. 2.3(a) is closed but
not solid because it has a dangling face, a dangling edge, an isolated point and an
intersecting face.

The solid informally described above can be compactly defined in terms of a point-

sct topology language as a bounded regular sct or r-set. A regular set is defined in

the following definition.

Definition 2.1 The regularization of a point sct A, r(A), is defined by
HA) = e(i(A)),

where c(A) and i(A) denote the closure and inlerior of A, respeclively.

Sets that satisly r(A) = A are said to be regular.

Informally speaking, the regularization of a set A removes from A all dangling faces,
edges, isolated points, then covers it with a tight surface and fills it. Fig. 2.3 shows the
process to regularize the nonregular set A given in (a).

Fig. 2.3(b) shows ¢(A), the interior of A, and 2.3(c) shows r(A), the regularization
of A.

Since regularity is widely used to characterize solids, it is also concisely called an

r-set.



Isolated polnt
/ Intersecting face
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Iligure 2.3: Regularize a nonsolid set to an r-set.

Definition 2.2 A bounded regular sct is termed an r-sel.

A regular set need not be connected; it may model two or more solids. It may also have

holes.

In conventional Boolean set operations r-sets are not closed; the set operation applied
to a solid may not neccessarily produce another solid (see Fig. 2.4(b)). To ensure that

regularity is closed under set operations, a modified version, called regularized set

operations, are introduced for r-sets.

Definition 2.3 The regularized sct operations: union, intersection, and sel difference,

denoted by U*, N*, =*, are defined as
AU B =¢(i(AU B))

AN® B =¢(i(AN B))
A-"B=c(i(A-B))

Fig. 2.4(c) gives an example where th» regularized intersection of two r-sets is still an

r-set.

14



Dangling facc ANB A MR

Figure 2.4: Regularized intersection of sets A and B

2.1.2 Representation Schemes

Once the solid objects have been mathematically defined, representation schemes suit.-
able for computer manipulation are needed. There are several methods for representing,
a solid. For example, a solid may be represented by a 3D enumeration avray, or by a
surface model, etc. In the next section, various representation schemes are reviewed,
Some important properties of representation schemes are expressive power, complete:
ness, conciseness, computational casc and applicability. Not all of these issnes are
related to this application; however, those properties directly related will be discussed

subsequently.



2.2 Various Representation Schemes

There are basically three schemes for representing a 3D object: spatial occupancy
enumeration, space subdivision, and surface representations. The properties of

various schemes and related algorithms are reviewed.

2.2.1 Spatial Occupancy Enumeration

A spatial occupancy enumeration is a representation that lists all voxels occupied by an
object. For example, an object in a 3D binary image is enumerated by the voxels with
density value 1. In the literature, the identification of an object from 3D density data
is accomplished mostly by thresholding, and it can be carried out at display time.
Therefore, interest is shown only in display algorithms. As the 3D enumeration array
possesses the property of spatial pre-sortedness [Mea82b], hidden surface removal
can be achieved by back-to-front (BTF) or front-to-back (FTB) readout. This has
motivated many 3D display algorithms, the so called volume rendering algorithms.

Some representatives are:
e back to front,
recursive BTF [Rey85a],

slice-by-slice BTF [FGR85],

e front to back,
slice-by-slice FTB [Far84],

dynamic screen FTB [Rey87b],
e ray tracing [1'T84, Rey85a].

Fig. 2.5 shows the recursive back to front display sequence for the given view point
[Rey85a).
In volume rendering algorithms, the modeling primitives are 3D points, i.e. voxels

without dimension. Strictly speaking, they cannot be used to model solids. Although
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Figure 2.5: The BTF read out sequence for the given view point is 6 427035 1,

display of 3D points is easy because only voxel coordinates are needed, the image has
dark holes caused by round off errors in coordinate transformations. Scaling also be-
comes a problem. As a result, extra steps are suggested to fix holes by scaling down the
image or painting a pixel color over a small neighborhood [Rey85a).

The computation is relatively easy because hidden surface removal is simply a hack
to front readout. The 3D enumerate array, however, is not concise. Since if the view
point changes, the back to front sequence also changes. Thus the whole data volume

needs to be read out again.

2.2.2 Space Subdivision Schemes

Spatial enumeration arrays are simple, general, and allow the use of a varicty of display
algorithms. The sizable memory consumption caused by vast data volumes offsets these
good points. Observe that in a spatial enumeration array the neighbors of a black
voxel are very likely to be black as well. By encoding this coherence information, the
space subdivision scheme divides the space adaptively to achieve space saving. A prime
example of space subdivision is the octree [JT80, Mca82b]. In this section octree

and related algorithms are reviewed, together with another scheme, the linear octree

17



[Gar82).

The Octree Representation

The root node of an octree represents the entire space of interest. The space is subdi-
vided in a recursive manner into eight octants, and each octant is represented by one
of eight children of the root node. If an octant is fully occupied by the object, the
corresponding node is marked black; if the octant is empty, the corresponding node
is marked white. Both black and white nodes are leaf nodes and subdivision of the
octant stops. Otherwise the node is marked gray, for the octant is partially occupicd.
It is continuously subdivided into eight octants unless it reaches the minimal resolution
(voxel level). An octree encoded object is shown in Fig. 2.6.

Octree related algorithms are listed below. Some of them are quadtree algorithms,

but they can be directly extended to octrees.

o Tree generation algorithms that create octrees from the datz represented by

spatial enumecration arrays:
Raster image to quadtree [Sam81],
Binary image to quadtree [Sam80],

Quadtree to octree [YS83].

e Set operation algorithms that take two octrees and calculate a new octree re-

sulting from regularized union, intersection, and difference of the two octrees:

Boolean operations [HS79].

¢ Geometric transformation algorithms that take an octree and calculate the

new octree after translating, rotating and scaling:
90 rotation, scaling and translation [JT80],
Rotating an arbitrary angle [Mea82b].

¢ Display algorithms that generate the image of an object encoded by an octree:

18



90 rotation and BTF display [DT84],
FTB display from arbitrary viewpoint [Mca82a],

FTB display [ZD91].

Some of these algorithms are reviewed.

Figure 2.6: An octree encoded object.

Octree Generation [Sam80] The algorithm converts a 31) binary array to an octree,
In the algorithm, each node has ten fields: one for the node type, i.c., black, white, or
gray, and nine pointers, eight pointing to its sons and one to its father. The voxels are
accessed sequentially as the postorder tree traversal and the octree is constructed hottom
up. During tree creation each voxel is accessed exactly once, and only maximal nodes
are created, that means the created nodes are either gray or black/white leaf nodes so
that no further node merges will occur. Hence the algorithm creates a minimum manher

of tree nodes during tree creation.
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Set Operation [HS79] The set operation algorithm is a simple tree traversal. For

example, to compute intersection, the two input trees are traversed simultancously. For

the two corresponding nodes ny and ng, if

1. nodes n; and ny are both leaves, the corresponding node in the output tree is

black if both n; and n, are black; otherwise, it is white;

2. cither ny or ny is a leaf node, and the node is black, the subtree of the nonleaf

node is copied to the output tree node; otherwise, the output tree node is white;

3. neither n, nor ny is a leal node, the algorithm processes recursively to the next

lower level.

The complexity of the algorithm is at most proportional to the size of the smaller tree.

Geometric Transformation [JT80] Rotating an octree encoded space by 90 degrees
around an axis is accomplished simply by traversing the octree and permuting the nodes.
To scale an octree encoded object by a factor of 2, choose any child node of the current
root as the new root and discard its siblings. To scale by a factor of 1/2, create a new
root, node and link the former root to it as its child, with all its siblings white.

To translate an octree, however, may appear rather difficult. It takes a source tree
S, a translation vector (e, f, g), and creates a target octree T', which represents the
translation of S by (e, f, g). The algorithin traverses two octrees and compares their
nodes for overlap in a recursive manner. It has been shown that in the worst case cach
of the cight children of a target node may be compared to eight source nodes and their
64 children, yielding 576 comparisons. Since at the voxel level no overlap occurs and
the maximum number of nodes above the voxel level is bounded by 8", where n is the
resolution parameter for a 2" x 2" x 2" array, the number of comparisons is bounded by
567 * N3, where N = 27,

Rotating an octree an arbitrary angle is also difficult, and no details are given here.



FTB Display [Meag82b] The input to the algorithin is an octree encoded object;
the output is a quadtree representing a display screen. The projections of an octree node
on the display screen are three four-sided polygons, that can be enclosed by a bounding,
box. The quadtree nodes, called windows, are associated with two property values,
The first value is inactive/active, indicating that the corresponding screen arca has
been painted or not, and is initialized to active. For those windows marked inactive,
the second value is the pixel value painted.

The algorithm traverses an octree in a front to back sequence, checking interseetion
of octree nodes with the quadtree windows. If a node intersects only inactive windows,
it is not visible and is discarded, so are all its descendants, and the next node in the
traversal sequence at the same level or higher is processed. Il not, for a gray node,
the eight children are processed in a like manner; for a leaf node, the children of the
windows are examined. Any active window enclosed by the octree node is written with
the appropriate intensity value and marked inactive. At the lowest quadtree level the
center of a window is checked for enclosure.

Block shading is used instead of computing the local surface normal. In block shad-
ing, The surface intensity values for the three visible faces of a cube are calealated.
Quadtree windows enclosed by one of the three faces of a terminal node are given the
intensity value for that face. An anti-aliasing technique is used to reduce the artifacts
introduced by block shading, where intersection and enclosure tests are performed to a
higher resolution level than the screen. The displayed intensity value [or a window at

the pixel level is an average of those windows below the pixel level.

Linear Octree

In a regular octree each node has a unique path address: a string of node numbers
designating the nodes traversed from the root to it. Based on this obscrvation, the
linear octree of [Gar82) is simply a sorted list of path addresses of all black nodes. For
example, the linear octree that corresponds to the octree of Fig. 2.6 is

21, 3X, 71, 73
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The mark X indicates that the eight children in this level are all black and have
heen grouped together. Since there are no pointers and only black nodes are encoded,
lincar octrees save a lot of storage space (approximately 80% according to [Gar82]) over
regular octrees.

Boolean operations on lincar octrees are straightforward because of their sorted
nature. For example, to find the union of two linear octrees that have Np,, Np, black
nodes respectively needs O(Np, + Np,) time to scan and merge the input trees to an
output tree. The display algorithm, however, appears to be difficult [Gar86]. From
descriptions in previous sections it is clear that all display algorithms use a traversal
sequence, cither BTF or FTB, to get hidden surface removal. Because a linear octree has
no pointers and only black nodes arc encoded, tree traversal in a certain order becomes
awkward.

Another display strategy first determines the 3D border voxels by repeatedly elim-
inating the non-border nodes from a linear octree [AGR84], then traversing the octree
encoded border voxels in BTF sequence. But the O(n?(Ng+ M)) time to find the border
voxels from a linear octree, where Ny, is the length of the tree and M the number of the

border voxels, is much longer than the O(M) time to find the border voxels from a 3D

array.

2.2.3 Surface Representation Schemes

Another way is to represent objects by their surfaces. In this section two algorithms
are reviewed. One is surface tracking [AFH81, GU89| based on the cuberille model,
while the other, marching cubes [LC387], constructs a surface by triangle faces.

Some useful topological concepts and definitions are summarized in the next section.
Among them are adjacency, neighbor, border and surface [Sri81]. The definitions are

given in terms of the cuberille model.
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Border and Surface

There are three kinds of voxel adjacency: face adjacency by which two voxels touch
in a common face, edge adjacency by which two voxels touch in a common edge, and
similarly vertex adjacency. Hence a voxel has three kinds of neighbors: face adja-
cent neighbors, edge adjacent neighbors and vertex adjacent neighbors. For two voxels
w(uy, uz, ug) and v(vy, vg, v3), if not more than n, for 1 < n < 3, of their indices differ
by 1 and the rest are identical, the two voxcls are said to be n-adjacent, denoted by
the relation R,. For example, if voxel « and v are face adjacent, ul? v.

For a voxel u, the set of its n-adjacent neighbors or n-neighbors is denoted by N, (u).
A voxel has six 1-neighbors (face neighbors), cighteen 2-neighbors ( face and edge neigh-

bors) and twenty six 3-neighbors (face, edge and vertex neighbors), as shown in IMig. 2.7,

I" =

% i

(a) Six 1l-necighbors (b) Eighteen 2-necighbors (c¢) Twenty six 3-ncighbors

Figure 2.7: A voxel (in the center) and its n-neighbors.

Let S denote the set of voxels that belong to an object and S the background, then
the border of the object S, denoted by B(S), is defined as the set of voxels in S which

have at least one neighbor in 3, i.c.,
B(S) = {u|ucS and No(v) NS is nol emnply}

The surface of an object S, denoted by 6(S5, S), consists of all border voxel faces
that are at the interface of S and S. A voxel face is uniquely defined by two abutting

voxels, so the surface can be defined in terms of the ordered pair (u,v):
8(S,S) = {(u,v)|ucS, veS, ultjv}.
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Border and surface are different concepts. A border tracking algorithm has been re-
ported [USH82). It takes a 3D binary array, a border voxel and outputs a list of all
border voxels of an object. component. Algorithms to display the border voxels of an
object occur in [Gar86]. The algorithm encodes the border voxels in a linear octree and

displays three visible faces of each border voxel in a BTF sequence.

Surface Tracking Algorithms [AFH81,GU89]

In the cuberille model, each voxel face has four adjacent voxel faces connected through
its four edges. If voxel faces of a surface are mapped to nodes and adjacency to edges,
the surface of an object can be interpreted as a connected graph where every node has
degree four. If a four dimensional array, whose indices are voxel coordinates and facce
orientations, is available for marking visited faces, surface tracking is then a standard
breadth first or depth first graph traversal. Unfortunately, this marking scheme is not
practical. The surface tracking algorithm, originally proposed by [AFH81] and later
modificd by [GU89], aims at solving the marking problem. Based on certain adjacency
definition the algorithm interprets a surface as a digraph with its nodes all having
indegree two and outdegree two. A list is used for holding and checking visited faces
and it is possible to keep the list short. In the following a summary of related definitions
is given first and then the algorithm.

To define the adjacency on the set §(S, 5), assign three directed circuits, , j &, to a
border voxel u as shown in Fig. 2.8. Assume its front face, f, is on a surface, and let e,
and ¢ be two edges of f such that the i-circuit passes from e; to e;. Then ey is called
the in-edge of f and ¢, the out-edge. Apparently each face is passed by two circuits,
so a voxel face has two in-edges and two out-edges.

The adjacency of voxel faces of a surface is defined as follows: Let fi=(w,z) and

fo=(1',2') be two faces on a surface, f; is said to be T-adjacent to f;, and denoted

fltl‘fg, l'T

1. fi and f; share a common edge ¢;



cl| . ! c2

Figure 2.8: The three circuits assigned to a voxel.
2. e is an out-edge of f; and an in-edge of fy;
3. exactly one of the following cases holds (see Fig. 2.9):
(a) w =1,

(b) fi, fo arc in the same plane and w, v’ are on the same side of the plane;

2

(c) z= 2"

By definition, for any face fed(S5,S5), there are exactly two faces fi, fz, such that
fTfi, 1 <4 <2, and there are exactly two faces f{, f3 such that fiTf, for 1 <4 7 2
It has been shown [HW83] that a surface can be represented by a digraph whose nodes
are voxel faces and whose arcs represent T-adjacency of the faces. Fach node of the
digraph has indegree two and outdegree two. The surface of an edge and face connected
component of S corresponds to a connected subgraph of such a digraph. Furthermore,
every connected subgraph of the digraph is strongly connected. So there is a hinary
spanning tree rooted at any node of a subgraph. Hence given a starting face fy, the
surface tracking problem is reduced to traverse a binary spanning tree rooted at f,,

The input to the algorithm is binary data and a starting face fy. The ontput s
a list of faces on the surface that contains fy. The data structures are: o quene
containing faces to be processed, a list M of marked faces, and an output list L. A face

is represented by voxel coordinates and its orientation (one of six). The algoritho is

outlined below:
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Figure 2.9: Face f is T-adjacent to face F5 in the three cascs.

Surface tracking algorithm

Begin

1 queue fy and put two copies of fy in M;

2 vhile (Q is not empty

3 remove a face f from Q;

4 find f; for 1 <1< 2, such that fTf;
5 output f to L;

6 for [ —~ 1 to 2 do

7 if ficM then delete f; from AM;

& else queue f; and put f; into M;
9 end for;

10 end while;

end

The complexity of the algorithm depends on line 7 checking for a marked node.
When a node is visited, it is checked against M. If it is not in M, mark it by putting it
into Al If it is in M, remove it. It will never be visited again because every node has
indegree two. By this scheme the length of M is kept short.

An example of surface tracking is shown in Fig. 2.10. The body in Fig. 2.10(a) has

three voxels and each exterior face is identified by a number. The surface digraph and
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the binary spanning tree rooted in face 1 is shown in (b) and (c). The digraph for the
three voxel body has 14 nodes. One can imagine that for an ordinary object the digraph

must be extremely large.

) 7
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(a) The three voxel body (b) The modeling digraph  (c) The binary spanning tree

Figure 2.10: A three voxel body and its digraph.

To improve the performance, one possibility is to redefine face connectivity such that
some nodes of the digraph may only have indegree one, and the digraph is still strongly
connected. Thus for those nodes which have indegree one no checking for a marked node
is necessary. If a considerable number of nodes have indegree one, a greal time saving,
can be achieved. This observation leads to a modified version of the surface tracking
algorithm [GU89], which achieved a 30% time saving by making the definition of face

connectivity directionally sensitive.

Marching Cubes [LC87]

A cube is made up of eight voxels at cight vertices. If the vertices with value one are
inside a surface, and the vertices with value zero are outside, the surface intersects those
cube edges with one vertex having value one and the other zero. Since there are cight
vertices in a cube and two states, inside and outside, there are 2% = 256 ways a surface
can intersect a cube.

By inspecting two different symmetries the 236 cases can be reduced to 14 . First,

the triangulated surface within a cube is unchanged if the vertex valies are reversed.
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"T'his reduces the number of cases to 128, Second, all cases which can be reached by 90

degree rotations can be represented by one pattern. This reduces the cases to 14 (see

Fig. 2.11).

0 1 v6 1 2 3 4/
v3 v2

v4 vS
vl vl

index blvdslvdalvdnld  CTTTTTTTY [OTITIDTY LIl [y

._

Iigure 2.11: Fourteen intersection patterns of the marching cube algorithm.

Pattern 0 occurs if all vertex values are either one or zero, and produces no triangles.
Pattern 1 occurs if the surface separates one vertex from the other seven, resulting in
one triangle, and so on. Permutation of these 14 patterns using complementary and
rotational symmetry produces the 256 cases. A table is created for looking up each case
by the index of a given cube configuration.

The triangle face model approximates a surface more accurately than the voxel face
model because it gives more face orientations. Since the vertex normals of the triangles
arc computed explicitly and Gouraud shading is used, the image quality is good. The
marching cubes is more time consuming comparing with surface tracking because it
marches all data. The experimental results has shown that creating a triangle model

and a shaded image for 260 x 260 x 93 CT data (6,286,800 voxels) on a VAX 11/780
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needs 30 minutes.

2.3 3D Ident:fication Methods

In various representation schemes surveyed so far, the identification method used is
thresholding. There are some 3D edge operators developed in the early 80°s. One is
a direct extension of the Roberts operator [Liu77]; another is a generalization of the
Hueckel method of defining an operator using basis function expansion [Z179]; the
third is a generalization of the Prewitt method of defining an cdge operator by fitting a
surface to a neighborhood of each point [MR81]. A review of cach of these methods is

now given.

2.3.1 3D Edge Operators
3D Gradient Operator [Liu77]

Denote the intensity value associated with a voxel v(¢,7, &) by (2,5, k). A bhound-
ary element in the three-dimensional space is a line, e.g., lines LX (4,5, k), LY (v,7, k),
LZ(i,7,k) (see Fig. 2.12). The gradients at the three lines LX (2,5, k), LY (i,, k), and
LZ(1,3,k) are defined by:

|Grad|ux ik = |1(2,5,k) = 15,5+ LE+ D) + 16,7+ 1, k) = 1(i, 5,k +1)]
lGradILY(i,j,k) = II(Z’J7 k) - 1(L+ I’J’l" + l)l + “(2,],,\-*- l) - I(l + IiJa I‘)I
IGradILZ(i,j,k) = II(Z,],IC) - 1(¢ + laj + lvk)l + “(l + laj7 A) - I('v./ + Ia")l

The possible boundary elements are those lines which have high gradient values.

The sei of neighbors of a boundary element LX(2, 3, k) is defined as
Nixggm = {LX(,mn)| l=7and |j —m| + |k —n| =1},

and Npy(; k) and Npz k) are defined similarly. The algorithm insists that, at, least one

and at most two neighbors of every boundary element also lic on the boundary. So in
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Figure 2.12: Liu’s gradient operator.
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scarching the next boundary element only the four horizonta! and vertical neighbors of
the current boundary element need to be considered. Some heuristic information such

as the boundary is a low curvature, closed surface, etc., is also used to help scarching

the next boundary clement.

An Optimal 3D Edge Operator[ZH79]

A 3D edge element is interpreted as an oriented unit plane that separates voxels of
different intensities such that dark voxels lie on one side of the plane, and light voxels

lic on the other. An Optimal 3D edge operator finds the best oriented plane at each

point in a 3D image.

Mathematically, the ideal 3D edge patterns can by described by the set of parame-

terized step functions:

+1 faz+by+cz>0
Eﬂ.b.c(‘rs Y, 2) =
-1 faz+by+cz2<0
which are defined on the sphere:

S={(z,y,2): 2" +y*+:7 <1},
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and the vector N = (a, b,¢) is the unit normal of the plane ax + by + ¢z = 0.
Let I(z,y,z) denote an input image defined on the unit solid sphere S that has been
normalized to have zero mean and unit variance. The problem of detecting a 31) edge

element is formulated to scck the parameter values (a, b, ¢) so that the mean square
error
// U(z,y,2) = Eapel,y, )P dedydz:
s
is minimized. A practical solution to this minimization problem is to consider a finite-

dimensional subspace M and find its orthnormal basis functions
{1, 2y N}

The projection I'(z,y, z) of the I(z,y,z) onto M is given by

N

],((l, b’ C) = Z Ci‘/’i(""" Y, :)

=1

where
ci = // I'(z,y, 2)i(a,y, 2 )dadyd:z.

Similarly let E] , (z,y,2) denote the projection of patierns Eypc(w,y, 2) onto M, then

the full minimization problem can be replaced by finding (a, b, ¢) such that
JL 1@y, 2) = By oy, ) Pdedyds (2.1)

is minimized.

The finite-dimensional space M must be selected such that the patterns 15" are a good
approximation to E. Assume that all patterns £ have zero mean and unit. variance, then
the best basis functions are those functions that minimize the expected mean square

error
£ / / |E — E'*dzdydz =
s
N
€ [[\Basela,,2) = 3 aiti(z,y,2) dadydz.
S t=1
This expectation is taken over the full set of patterns £5 and is weighted by the prob-

ability density of occurrence of the patterns. Since the set of patterns is parameterized

by (a,b,c), E can be regarded as a random field with probability density p(a, b, ).
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The solution to this minimization problem is given by the Karhunen-Locve basis

functions; i.c., the 9; are the solutions to the integral eigenvalue problem:
// R(x’ Yy 2y .'L", yla z')1/);(:z:', yla z’)dm’dy'dz' = ’\ilbi(w’ Y, z)a (22)

where R(z,y, z,2'y'2') is the autocorrelation function of E,4(z,y,2). The autocorre-

lation function can be modeled as
1 4 1 2 ! ' /
R(z,y,z,2',y,2') =1~ - arccos(zz’ + yy' + 22'),

which is cqual to 1 when (z,y, 2) and (z',y’, 2') are vectors on the same direction; equal
to —1 when the two vectors point in opposite direction; and drops off linearly as the
angle between the vectors (z,y, 2) and (2,3, 2') increases from 0 to w. The first three

eigenfunctions which correspond to the largest three eigenvalues of (2.2) are

z

zb,(m,y,z) = Tm—’“ﬁ“‘?‘,
Y

Po(z,y,2) = N

2z

Py(z,y,2) = NWriEay e

The discrete approximation to the threc eigenfunctions defines the 3D edge operators.
A 3 x 3 x 3 operator is shown in Fig. 2.13. Since the three operators are rotationally
invariant only one is shown. Apply the operators to an input image will produce the

surface normal (a, b, ¢) at each image point, and this normal provides a precise minimum

for the cquation (2.1).

3D Edge Operator by Surface Fitting [MR81]

The original correspondence is a n-dimensional generalization of the Prewitt edge oper-
ator by fitting a hyperplane to a given hyperrectangular neighborhood. For simplicity,

only a 3-dimensional edge operator is given below.
Let (a,x2,23) be coordinates of the given point v in a three dimensional space.

Suppose v is the origin. Then the neighborhood of v of odd side length has the form
N, = {(z1,22,23)] —m; <z <my, 1 << 3}
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Figure 2.13: The optimal 3D edge operator 3y
The 3D edge element over N, is a plane defined by
3
g(z1, 22, 23) = ap + Z a;;
i=1
that best fits the input image I(z;, 22, x3) at the origin such that the mean square error
€= Z[g(l'l,.’lfg, "1:3) - ](.’L‘], T2, '7"3)]2
Ny
is minimized.
To find a’s that minimize e, differentiate € with respect to aqy, ay, @y, @y and set the
results to zero. Taking de/dagp gives
22[9(3:1,1‘2,3?3) - /(iﬂl,ﬂfz,ws)],
Ny
so that at the origin ap=1(0,0,0). To determine ay, ag, az which are the components of
the gradient of g(z,, 2, z3) in the principal directions, write de/da; in the form
23 [hjt —1,7541) + €5z — Iz, 22, 7)) 5,
Ny
for 1 < j <3, where hj(zj-1,z41) = g(21, T2, T3) — a;x;, so that a; and z; do not occur
in hj. Setting this to zero gives

Z.’L‘?aj = Exj](zl,l‘g, .'L‘3) - Z.’lfjhj(.’l)j.-],.’l,‘j.}.]).
Ny

Ny Ny
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In the last term of this expression, since h; does not involve z;, it may be reordered.

Ior example, to find a;, the last summation above can be reordered as

ma ma my
Z Z ]).1(.'1?2,.’233) Z Z.

Ty=—~m3 T3=~—T] ry=-my
Since
'"l.)
Z r;=0for1 <5 <3,
z,=—m,;

this entire expression reduces to zero. Thus,

o ZN., 1']'](371,332,1'3)
aj = =22 .
Ny %3

Note that Y, 2% is a constant, thus a; is proportional to a linear combination of I
values in the neighborhood of the given point, weighted by the j-coordinates of their
positions relative to the point.

For a 3 x 3 x 3 ncighborhood the 3D edge operator obtained this way are the weights

in the numerators (sce Fig. 2.14).

d /
z - 1 d ]
si0alnts
X L~ /oﬂ }1/1
P O/fo }/T
y 0// 11/
e //

Figure 2.14: The 3D edge operator defined by surface fitting

2.3.2 Edge Detection by Zero Crossing

Edge detection proposed by [MHB80] takes a local average of an image, then detects

intensity changes in the image.
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To average an image, a smoothing filter should be smooth and roughly band-limited
in the frequency domain. To climinate noise, the filter should be smooth and localized
in the spatial domain. The two localization requirements in both spatial and frequency

domains are conflicting. There is only one distribution, namely the Gaussian:

1 2
G(r) = ¢ 27 (2.3)
2ro
with Fourier transform
A 02ul2
Gw)=¢"72" (2.4)

that can optimize these two conflicting localization requirements.

Since intensity change occurs at Lhe extreme value of the gradient, that corresponds
to a zero-crossing of directional second derivative, edge clements are zero-crossings of
the second derivative D" in an appropriate direction:

f(z,y) = D"[G(x,y) = I(2,y)] (2.5)
11

=G"*I(x,y), (2.6)

where I(z,y) is image intensity, and * is the convolution operator. In one dimension

l x? 2
s —— — — l—’ﬂz l) lod
\/5;03(1 0'2)(’ . (2.7)

The Fourier transform of G is (jw)2G(w), and denote it by (/y(w)

G”(.'L') -

- w22

Go(w) = —wie™ 7 (2.8)

Fig. 2.15 shows the Mexican hat shaped G" operator for =2 and its Fourier trans-
form.

The direction in which the second derivative should be in is the one in which the
zero-crossing has maximum slope.

Similar to edge elements detected by a gradient operator, edge clements detected
by G” can also be characterized by their locations, orientations and amplitudes. The
location of an edge is a zero-crossing generated by a (" opcrator. The oricutation of
the edge is perpendicular to the direction in which G" is in. The amplitude of the edge

is the maximum slope of the G".



Figure 2.15: The G” operator for o=2 and its Fourier transform.



Chapter 3

The Extended Cuberille Model

This chapter introduces the extended cuberille model which has four volume primitives.
The mathematical definitions of voxels and objects in the extended cuberille model are
proposed. 3D cdge elements are converted to the four types of voxels by loc_dir codes.
Merits of the three representation schemes: space occupancy enumeration, octree, and

surface representation by the extended cuberille model are briefly discussed.

3.1 The Extended Cuberille Model

The modeling volume primitives are extended to include three other polyhedra (see
Fig. 3.1) so that each voxel has a face whose orientation is compatible with one of the

26 gradient orientations.

§ (a) Type_1 (b) Type_2 (c) Type_3 (d) Type_4

Figure 3.1: The set of volume primitives
As shown in Fig. 3.1, cutting a cube voxel through diagonals of top and hottom
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face gives the second polyhedron with a face orientation (1,0,1). Cutting a cube voxel
through three vertices defines the third and the fourth polyhedra, and gives a face
oriented at (—1,1,1). Since the last three polyhedra are not symmetric, it is assumed
that a volume primitive is invariant under 90 degree rotation about any principal axis.
Hence the faces of the volume primitives give 26 orientations. Furthermore, to be able
to represent objects hicrarchically, it is also assumed that a voxel scaled by a power of
two is the same. The formal definition is given in the following.

Let V be the set of four volume primitives shown in Fig. 3.1, i.e., V={type_l, type-2,
type3, typed}. Let T denote the transformation of 90 degree rotations about the
principal axes or power of two scalings. Thus T is an equivalence relation on V' and
cach type_k, k == 1,2,3,4, is an equivalence class by T'. Let I be the 3D coordinate set,

1 C 7% 7 is the set of integers, and f is a map, f : I — V, then

Definition 3.1 A wouxel v; is a pair of (i,f(i)), where f(i) is a volume primitive, i.e.,

J(i) <V, of minimum scale and i are the coordinates, i el.

Arguably, a cube could be cut other ways, as shown in Fig. 3.2, that also results in
26 [ace orientations. But the set V is better than other choices for it is the smallest set

that is closed under the subdivision operation.

9 N O

Iigure 3.2: Another set of volume primitives

Theorem 3.1 The set V' is closed under the subdivision operation, and it has the least

cardinality among those having the same property.

Proof: It follows directly from subdividing the four volume primitives, as shown in

Figs. 3.3(a) to (d), that the set V is closed under subdivision. It remains to be shown
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that it has the least cardinality. Let U7 be any set of volume primitives whose (vpe 3
and type.4 polyhedra are obtained by cutting a cube voxel, but not passing through
face diagonals. Assume the edge of a face is cut at a ratio u/(1 — u), as shown in
Fig. 3.3(f), then subdivision of the cube results in a new polyhedra with edge cut ratio
of u/(0.5—u). If U is closed, it must include at least the two sets of polyhedra from the
two ways of cutting to give the same face orientation. The same argunient holds for a

type-2 polyhedron. It follows |U/| > |V

(@ Type_1 (b) Type_2 (c) Type_3 (d) Type_4

N TN N

(e) Different cutting 1o get a face with normal (1,1,1). () Subdividing introduccs a new polyhedron,

Figure 3.3: The V set of volume primitives is closed under subdivision.

Since the set V is closed under the subdivisior | it is possible to represent objects by
octrees.
The mathematical definition of an object in the extended cuberille model is proposed

below:

Definition 3.2 An object S is a regularized union of voxels, S = U, v, where U*

denotes the regularized union operalion.

The regularized set operations, sce page 14, defines AU 3 = c(2(AU D)), where e(AULS)

and i(A U B) denote the closure and interior of AU .
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‘I'he definition gives the constructive process: because voxels can only touch in faces,
edges or vertices, it implies v, N* v; = ¢ for i # j. Thus U™v; removes all internal voxel
faces to make a solid object with one interior enclosed by a surface.

There are also several ways Lo represent objects in the extended cuberille model. In
the next Section, the merits of three representation schemes: the ennmeration scheme,

octrees, and surface representation, are briefly discussed.

3.2 Merits of Representation Schemes

The spatial emumeration scheme in the extended cuberille model lists all voxels whose
spaces are cither fully or partially occupied by an object. The interior of an object
is filled by type_l voxels because they are fully occupied. All type 2 to type.4 voxels
represent, partially occnpied space and are therefore on the border of an object. Type.1
voxels could also be on the border if the surface passes through at least one of its
faces. For example, Figs. 3.4(a) to (¢) show a mathematically defined object, its space
cnunieration representation, and its space occupied in the cuberille model. Although the
representation gives a smoother surface, it is not as storage efficient as its counterpart in
the cuberille model, for it needs two arguments - coordinates, type or gradient direction

to list a voxel.

Y/
(a) Defined object. (b) Space enumeration (c) Space enumeration
in the extended cuberille in the cuberille model.

model.

Figure 3.1: A mathematically defined object and its representation.
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Z (a) Space subdivision. (b) The subdivided object.

01234567 0123 4567

(c) The Octree representation (d) The octree representation in the
in the cuberill model. extented cuberille model.

Figure 3.5: An octree represented object in the extended cuberille model.

An octree in the extended cuberille model may have five types of leaf nodes. In
addition to the cube shaped black and white leal nodes, type-2, type3 and type 4 leaf
nodes represent partially occupied space and are all black. An octree representing the
object in the previous example is shown in Fig. 3.5(d). Compared with the octreein the
cuberille model (Fig. 3.5(c)), the octree in the extended model is inore concise becanse
it includes leaf nodes to represent certain partially occupied spaces. Now consider two
extreme cases shown in Fig. 3.6. For the object in Fig. 3.6(a), the octrees for the two
models wou = be the same. For the object in Fig. 3.6(b), the subdivision around the
border in the cuberille model would o »h the voxel level, whereas there is no subdivision
in the extended model, because th root " ode is a leaf node. For the object with a surface

slope as shown in Fig. 3.6(c), the su.. |ivision in the extended mode would, in the worst
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(a) (b) (©)

Figure 3.6: Comparing tree size of two models.

case, reach the voxel level. The following conclusion results:

Theorem 3.2 7o represent an object, the size of an octree in the extended cuberille

model is al most the size of an octree in the cuberille model.

Figure 3.7: Four types of external voxel faces.

A surface representation lists all external voxel faces on a surface. Since there are
four types of voxels, and by examing Fig. 3.1, there are only four types of external voxel

faces, as shown in I'ig. 3.7. 1t therefore follows:
»

Theorem 3.3 The four types of external vozel faces shown in Fig. 3.7 can close the
surface of any object.
Since there are only four types of external voxel faces in the extended cuberille model, it

is expected that the implementation of a surface representation is not very complicated.

On the other hand, the surface of an object may not always be very smooth.



3.3 Converting to the Extended Cuberille Model

This Section discusses the implementation of converting edge elements to the modeling
primitives.

The characteristic of the extended cuberille model is that a voxel has a face whose
normal coincides with edge orientation. This face is termed a face primitive. A voxel
can therefore be referred to as either a volume primitive or a face primitive. T'he next

section gives the implementation using a one-byte code to record edge orientation.

3.3.1 The location/direction code

An edge has both magnitude and orientation. The magnitude is stored as an integer,
and the orientation is converted to a one-byte location/direction code, loc_dir code for
short. Since there are 26 edge orientations, the orientation of an edge is recorded in the
lower six bits of its loc_dir code with one bit for cach x, —x,y, —y, z and =z direction.
Each location/direction code corresponds to a face primitive. Fig. 3.8 shows the locdir
code for the four face primitives. Since type.3 and type.4 face have the same normal,
they are distinguished by the fact that a type-3 voxel is outside an object and a type4
voxel is inside. Bit six of the location/direction code is the inside/outside bit. Because
a type_4 voxel is inside, bit six of its loc_dir code is set to one.

The insidejoutside question is tested with the edge direction as follows: if vy and v,
are the two voxel neighbors in the 3 x 3 x 3 neighborhood along the gradient direction,
then v, the central voxel, is inside if [(vo) > [/(vi) + [(v2)]/2, otherwise it is outside.
I(v;), i = 1,2, is the intensity value at voxel v; and it is assumed that objecls have
larger intensity values than the background.

A tyne_l voxel is always set to inside (an outside type.l voxel is not a solid). A
type_2 voxel can be sct to ecither inside or outside. In the implementation, it is set to
outside.

Bit 7 of the loc.dir code is used to mark a voxel visited in the surface tracking

algorithm (see Chapter 5).
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Figure 3.8: The location/direction codes for the four volume primitives.

Hence applying the 3D edge operator to a 3D array results in an array of edge

magnitudes and location/direction codes.

3.3.2 Display an Edge Image and a Surface

The location/direction code, along with the voxel coordinates, specifies the type (shape),
the normal and the location of a face primitive, but not the size. This section describes
how to store and access the geometrical information of faces to display an edge image
and a surface.

A data str . ture, called TABLE, is created to save the geometry of the four face
primitives. The first two levels of the table necessary for displaying are depicted in
Fig. 3.9. The full table structure will be given in Section 5.4.

The table has 128 entrics, corresponding to the lower seven bits of the loc_dir code.
Fach table entry has two fields: a pointer, face, pointing to a BASIC_FACE structure
where the face gcometry is stored, and a coordinate transformation Matrix. Since the
lower seven bits are not fully used, some entries are empty.

A face is stored as three lists of vertex coordinates, *ix,*iy,*iz. Other information
such as the number of vertices, the center coordinates are also stored in the structure.

To display an edge, the edge loc_dir code is used to index the table entry. The
face vertices pointed to by the face pointer are read out. The vertex coordinates are

transformed by the Matrix so that the resulting face normal is consistent with the edge

44



Index O 17 18 65 66
Identity . Identity . N\
NULL | NULL Matrix | Matrix Matrix | Matrix
face face face ) face ]
___-{/
BASIC_FACE type-1 :£’> type_2 type_3 ype_d
center_coors center_coors center_coors center_coors
n_of_vertices: 5 n_of_vertices: 5 n_of_vertices: 4 n_of_vcitices: 4
*ix | iy [ *ie *ix | iy | *iz *ix | iy | *ie wix | wiy | *in
Figure 3.9: The TABLE structure.
orientation.

A graphics package, WINDLIB [GB87], is used to display voxel faces. WINDLIB

displays shaded polygons and interactively supports rotating and scaling of displayed

objects. Fig. 3.10 shows the edge image cf a test object sphere. The test data has

volume of 40 x 40 x 40 with 16 gray values. The detected edges whose magnitudes are

greater than 8 are displayed. The displayed size of a face is proportional to the edge

magnitude. The bigger the edge magunitude, the larger the size of the displayed face.

Fig. 3.10 also showns the surfaces of three test objects reconstructed by the extended

cuberille model. The surfaces were extracted by the 3D border identification method

discussed in Chapter 4, the surface tracking algorithm in Chapter 5, and the surface

closure algorithm in Chapter 7 . The three surfaces clearly show the four types of

external voxel faces.




Chapter 4

3D Border Identification

This chapter presents a three dimensional border identification method based on the
sign of the second derivative of intensity change. The chapter is organized as follows.
Section 4.1 defines the surface as zcro-crossings from a step intensity change in contin-
uous space. Section 4.2 analyzes the direction the second derivative should be in. The
next two sections discuss two ways of reducing the computational cost, and asymmetric
Gaussian filters are proposed for 3D convolutions. In Section 4.5, border voxels in dis-
crete space are defined based on the sign of the second derivatives. The implementation
of the asymmetric Gaussian filters and discrete convolution are given in Scction 4.6.

Procedures to compute the sign of the sccond derivative and some experimental results

are contained in the last two sections.

4.1 Surface of Step Intensity Change

This section will show that zero-crossings correspond to a step intensity change.
Suppose there is a step intensity change across an object surface, as shown in 1.3(b).
Let I(z,y,z) be the intensity function, (z,y,2) € R®, R is the set of real numbers.
Without loss of generality, supposc the intensity change occurs at the origin and in the
z direction. Clearly, the origin is the desired surface point. It will show in the following

that a zero-crossing occurs at the origin.
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For a bright object surrounded by a darker background, the intensity around the
surface can be modcled as a one dimensional step change, I(z,y, 2) = ¢(n/2—arctan(kz))
for a sufficiently large constant £ > 0. The constant ¢ describes the change magnitude
and k describes the intensity change rate. The smoothing filter G(z,y, 2) is a Gaussian

filter with variance o. Let w(z,y, z) be the second derivative in the z-direction of the

smoothed function I(z,y,z). w(z,y, z) is given by

2
ﬁ[G(.’l;,y,z)*l(m,y,z)], (41)
that is,
2 :12 12 z/2
%///*(72—1—-556_ 207 carctan k(z — z')dz'dy'dz’".
T To

Exchange the integral with the derivative, and evaluate the second derivative with re-

spect to I(z,y, z) resulls in

1 o _22  2ckd(z —2')
P r) — ~ e . 1 .
w(x) s /_oo € 247 03 k(= m,)2)2d7: (4.2)

which is a function of z. Because the integrand is an odd function, w(z) =0 at z = 0.
To see how w(x) changes sign across z = 0, it is necessary to evaluate the sign of w'(z)

at = 0. Note that the difference between the derivative of x — z’ with respect to z

and 2’ is minus one, hence

50 212 _ .3 !
1 / e d( 2ck3(z — z') ) da.

i { ) — > 206 —
wi(w) = e A (T Rz — 2P

2ro

Integrating the right hand side of above equation by parts gives

1 fore) ‘J 22 .3 -
u}l(m) - / (_1_2)6_5;!. 2ck (:E T ) d(L‘I
210 J-o0' O (14 k2%(x — z')?)?
and at * =0,
1”2
2ck3 o ;1;’26_:_07
W) = = [~ i o, .
w'(0) 5703 J-oo (1 7 B2 z' > (4.3)

Hence w(x) is monotonically increasing in the neighborhood of 2 = 0. In other words,
w(x) changes sign from negative to positive as it crosses zero at = 0. = 0 is therefore

called a zero-crossing and the properties of zero-crossings can be used as a condition

to detect surface points.
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It is worthwhile to point out that the location of zero-crossings is not seusitive to the
direction of the second derivative of an intensity change. Suppose the second derivative
is taken in the direction [. The direction cosines of [ are cos a, cos 3 and cos @ {or some

a,3,0,< w/2. (4.2) then beconies

oo 12 9nfe3( g WA
= g [ B
Because cos? a > 0, the direction of ! does not affect the zero location nor the sign of
w(z) but only the magnitude of w(x).

To summarize, let v = (z,y,2) € 13 and [ be a directed line at v pointing outside

of the surface. If v is on the surface, it must satisfy the following conditions:

L
SrlG(v) 1)) = 0 (1.4)
and
9? o*
—[G(v = él) x I(v — él)] < 0, —a?[G(v +6l)* I(v+60)] >0 (4.5)

ol?

for a small 6/ > 0 in the direction of [. Alternatively, the conditions above can be

written in terms of w(v) as

w(v—6l) <0 (1.6)
w(v + 81) > 0.

4.2 The Direction of The Second Derivative

As pointed out in the previous section, the direction of the second derivative does not
affect the location of zero-crossings. But due to the quantization errors and noise, it is
desired to take the second derivative in a direction that has a maximum rate of change.
This section shows the direction in which the second derivative of the intensity function
has maximum change rate.

Suppose the gradient at v is g(v) with the direction g. Take v as the origin and

form a right-handed orthogonal coordinate system {v;n,(, b} such that n is in the same
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Figure 4.1: Coordina t,b) with origin v.
direction as g, as shown in Iig. 4.7 .7 . . -airected line, and cos a, cos 8 and cos 7y

be the direction cosines of [ respect Lo the (it, t, b)-coordi” ate system.
The derivative of the intensity function i(n,t,b) in the direction of { is given by
7]

)ll(n,l,b) (—(Z cos @ + — 9 cosﬂ—}- 9 cosy) I(n,1,b). (4.7)

an al

\ f ot v \ HP ; : : : al — ol —
At the origin v, because n is in the gradient direction, 3-;|(0,0,0) =0 and %‘l(O,O»O) = 0.

Therefore,
9 1(0,0,0) = 2 1(0,0,0) (4.8
571(0,0,0) = 5-1(0,0,0) cose. .8)
If =0, 5’,[(0 0,0) takes its extreme value 5%1(0,0,0), the gradient value of v.

The second derivative of I(n,¢,b) in the direction [ is given by

P by = (2 costat+ 2a B+ -2
n = S
o (b, b) = ( 708" @+ o 2cosacos f + s cos c cos v+
92 e, 92
a0 Ob.,cosﬁcos*y+ 32 ¢ B+ == 55 €0 24) I(n,t,b). (4.9)

For a fixed [, ‘,’—,21 (n,t,b) changes most rapidly in its gradient direction, that is
the direction of (£ + 'uf + & b) L;’lzl(n,t,b). Because at origin v, %000 = 0 and
(.—,3|(0.0'0) = 0, to make the calculation simpler, an approximation is made that in a small
neighborhood V of », %fl,,ev =0 and % vev = 0 (see Fig. 4.2). Hence equation (4.9) is
reduced to

2 2

0 al
0—121(77 t,b) = 8—n5cos a. (4.10)
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L

Figure 4.2: The neighborhood V of v.

For a given direction { in V, the gradient of i’%;;l(n,t,b) is then given by

OF oot + 21 costal' + 2L cont al
— cos” anl + —— cos —— cos® ab
ond an2ar < T Guzan @
PYE
= 5—,,(:032 Q. (4.11)
n

Equation (4.11) shows that for any given [, if at every point (n,6,b) € V the second
derivative is taken in the dircction of [, the resulting 25 I(n, t,b) always changes rapid]
g 5 Y g pidly
in the direction of 7. Especially when a = 0, { lies in the direction of 7, %‘yl(n, l,b) =
aa—;I(n,t,b) and changes most rapidly with the rate % Consequently, the direction

in which the second derivative of v should be taken is the gradient direction of w.

Conditions (4.4) and (4.5) are then written as

i [G(v)* [(v)] =0 (4.12
0(12 J\V v)j= VU, . )
and
i [G(v —ég)* I( 6g)] <0 i [G(v+ 6 v+ 6 0 (4.13
Fa? v g) v g)] <0, g v g) * (v g)] > 0, 13)

where 6g > 0 and g is in the gradient direction of /(v) at v.
By the symmetric property of convolution, the second derivative in condition (4.12)

can b¢ taken with either G(v) or [(v). The left-hand side of (4.12) can therefore be
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written as G(v)#+ ,%:; [{(v)or ',—'I"{:—Q(_.'(v)* I(v). Because the intensity function I(v) is usually
unknown, the sccond derivative is taken with the Gaussian filter G(v). Denote —agg—sz(v)

by G, the above equations become:
!
(i (v) * I(v) = 0, (4.14)

(iy(v = bg) * I{v — bg) <0, G;’(v +6g) * I(v+ bg) > 0. (4.15)
Write above equations in terms of w(v), w(v) = Gj(v) * 1(v), (4.6) becomes:

w(v) =0
w(v—48g) <0 (4.16)
w(v + 8g) > 0.

Since the conditions (4.14) and (4.15) involve three dimensional convolutions, the
computation is very expensive. The next two sections show how to simplify the compu-
tation. It first shows in what circumstance the 3D convolutions can be reduced to 1D
convolutions. It then shows that in general, the 3D Gaussian filter can be replaced by

an asymmetric one so that it is possible to implement conditions (4.14) and (4.15) with

a reasonable cost.

4.3 Evaluation by 1D Convolution

This section will show that if the intensity function f(v) is separable in the {v;n,t,b}
coordinate system, the 31) convolution in conditions (4.14) and (4.15) can be replaced

by a 1D convolution.

Substitute G(x,y, =) into condition (4.14), and its left-hand side becomes

)* 1 _(z=aP4(y—y"P4(==s")?
o(z,y,2) ///( " e ) I(', ¢, 2')dz'dy'dz’,  (4.17)
()J 971'0'

where g is the gradient direction of 7{:r, 1. z) at (x,y, z), and the three integrations are

in the interval (—oo0, 00).



To calculate the convolution at ¢, transform (a,y,z) to the {ein ¢, b} coordinate
system and express (4.17) in terms of (n.t,b) as
UL T MR U M

-~ ()2 1 ’ / ! 7
w(n,t,b) = ///W(m‘ 22 Y I U DY Aty . (1Y)

At the origin v, @(0,0,0) = w(x,y,z). I I(n,t,b) is separable, e, I(n,0,b) =

I1(n) I;(t)I3(b), the right hand side of (4.18) can be expressed as

"2 4 (hb)2 27 wen)?
- T 12(1,')1-;([)')(“'(1[)'/—()—-( ! ¢” 2T ) L)', (1.19)

o\ ro

[l
—e
(V2ro)?

Since I(n,t,b) > 0, the first 2-dimensional integration of (4.19) is positive. The zero

location and the sign of (4.19) are determined by the second integration. The 3D

convolutions in conditions (4.14) and (4.15) can thercfore be replaced by the following

one dimensional convolution in the direction n instead:

2 1 n—n')?

wn(n, t,b) = /—)—2( c¢™ 2 ) I/t bh)dn!
on

= GM(n) * I(n,1,b).

13

2o

Hence for a separable intensity function, the condition (4.16) for testing zero-crossings

is replaced by:
wy(n,t,b) =0

Wp(n — én,t,b) <0 (4.20)

wu(n + én,t,b) > 0.

4.4 Convolutions for the General Case

In general, however, /(n,f,b) is not separable. But it will soon be seen that the svmn-
metric Gaussian filter in the 3D convolution can be replaced by an asymmetric one with
a smaller scale in the ¢, b axes. As a result, conditions (4.11) and (4.15) can be tested
with a reasonable expense.

First, observe from Fig. 4.3 that a Gaussian filter is localized. It approximates zero

when its arguments are out of the range (=30,30). Hence finite scale Gaussian fii‘ers



Figure 4.3: A Gaussian filter is localized within (—30,30).

can be used in convolutions. The integral interval in (4.18) therefore takes (—30,30)
instead of (—oo, 00).

Secondly, let I(n',1,b) be the result of the 2D integration respect to ¢'. 4 in (4.18),

-, 3a R%4 1 =t 24 (b—b')2 - .
(0,1, h) = /—'x /_3” mc 202 I(n', ¢, 6")dt'db

= G(t,b) * I(n,1,b) (4.21)

ST

where (I8, b) is the two dimensional Gaussian filter in ¢, b direction, then (4.18) becomes

30 )2 (n=n’)? .
u';(n,l,b):/ —()—-( ! e 27 ) I(n',t,b)dn’

30 On? 2o

which 1s

2 .
win,d,b) = —G(n)x*I(n,t,b)

an?

= G(n)*G(L,b)* I(n,t,b).

Note fre (4.21) that [{n, b, 1) is a smoothed version of I(n, b, t) in planes perpendicular
to the n axis. Remember that 7 is the gradient direction at v, in whichever direction
in the tb jizne the intensity change rate at v is zero. It is reasonable to assume that
in a small neighborhood of v, I(n,t,b) does not significantly change in the tb direction.

Hence the 2D Gaussian filter G(¢, b) with a smaller o can be used in (4.21). This suggests
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the use of an asymmetric Gaussian filter with different scales, oy in » axis and oy in b, ¢

axes and o > 09, i.e.

2 2,42
l _JLQ'_‘ R du
(;(71, [’ b) = ——— 2:1l 202 ,

(V2r)30 0}
ta smooth the intensity I(n,(,b) at v. Denote %(&'(n,t,b) by (%'(n,t,0), where

2 n? _l') 0?2

Gu(nt,b) = —=——={1 = ~3)c 1 2, (4.22)

and the 3D convolution in (1.18) becomes:

win, L) = G (n, 0, by x [(n, t, h)

304 30q oy I n? _(n—u;)z _(:—x')2+(2l.-f.')2
== =l = e “n b (' 0,0 da'dt'db.
—301 =302 /=50y (V2T ) a10% oy

o3 can take a rather simall value, and the size of an asymmetric Gaussian filter is smaller
than a symmetric one. As a result the computation of 31 convolution can he speeded
up.

The analysis so far in continuous space is summarized as follows. The surface points
are zero-crossings where the directional second derivatives of the intensity function are
zero and change sign across the surface. The direction of the second derivative at a point
v is the gradient direction of v. But the location of a zero-crossing is not. sensitive to the
direction of the second derivative. This property makes zero-crossings very competitive
for identifying border voxels in discrete space. Finally, to reduce the computation cost,
asymmetric Gaussian filters are used in 31 convolutions.

The border identification in the discrete space is introduce-] ir: the following sections.

4.5 A Border in Discrete Space

Because the data to be processed are defined on integer coordinates where they were
collected, conditions (4.14) and (4.15) for identifying a surface in a continuous space
must be adequately adapted to a discrete space. This section introduces the cendition

to identify border voxels in a discrete space.

(%))
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Let I(v) € N, N = {0,1,2,...}, be an intensity function defined on a discrete
domain, v = (2,y,2z) € 4% Z = {0,+1,+2,...}. For simplicity, v is called a voxel.
Let GY(z,y,2) be a finite scale discrete Caussian filter, resulting from sampling Gg(v)
in (4.14) in a fir - interval (=30,30), and w(z,y.z) ' ~ the the discrete convolution of

m(a. Y,2) with I(z,y,2),

w(z,y,z) = Gy(z,y,2) % [(z,y,2). (4.23)

Transform the coordinate system {0;z,y,z} to {v;n,(, b} and express the above convo-

lution in terms of (n, 1, ) as
w(n,t,b) = ZZE(’" i, k) I(n—1i,t—jb—k), (4.24)

where G (n,t,b) is the finite scale discrete Gaussian filter resulting from sampling the

one in (4.22),

rll

"(n, b, b) = ZZZG" i,7,k)6(n —i,t — 7,0 — k). (4.25)

At the origin v,
w(0,0,0) = w(z,y, z).

The w(x,y,z) in (4.23) is defined on voxels of integer coordirzics and is unde-
fined between voxels. Because of the discrete nature of voxels, not many voxels have
w(x,y,z) = 0. Condition (4.16) in Scction 4.2, however, infers that for a bvight object
surrounded by a darker background and for those voxels close to a border, 1w (z,y,2) is
negative inside the object and positive outside. There exists exactly one layer of voxels
on which w(xz,y, z) is negative and changes sign for neighbors in the gradient direction.
This layer is called the negative layer. Similarly, there exists exactly one positive
layer of voxels. It is possible to define either the negative layer or the positive layer
as the border. Since the negative layer is part of the object, the border is defined as
the negative layer of voxels. Zero-crossing voxels can be treated as either positive or
negative, and are also included in the Lorder set. Condition (4.14) therefore becomes

w(r,y,z) <0.



To express condition (4.15) in the discrete space, it is necessary to determine the
neighbor voxels on which the condition needs to be tested.

The gradient of [(v) at v is approximated by V, = (V,,V,,V.) and is quantized
to 26 directions, sce page 3 Fig. 1.1. In each of the directions, voxels arve cither face
connected, edge connected, or vertex connected. If V, = (1,0,0) and v is on the border
(the negative layer), the voxel (x + 1,y,z) is on the positive layer, w(x + 1,y,2) > 0,
and the voxel (z — 1,y,2) is inside, w(x = 1,y,z) < 0. For V, = (1.1,0), however, il v
is on the border, the voxel (x + 1,y + 1, z) is not on the positive layer but (@ + 1,4, 2)
and (z,y + 1,z) are, as shown in Iig. 4.4. Therefore it is necessary to verify that
w(z —1,y,2) <0, w(a,y — 1,2) <0, w(e+1,y,2) >0, and w(x,y+ 1,z) > 0. These
cases reveal that the condition (1.15) should be tested on face connected neighbor voxels

for every non-zero component of V,.

positive layer

Xx=1 X y x+1
i N
V=(1,1,0)
Vs
P Y y
- X
v y-1

zZ

Figure 4.4: If the gradient components, V., V,, of a border voxel v are non zero, w(w)
has to change sign in both z,y directions.

To summarize, for a bright object surrounded by a darker background, if »(x,y, z)

is a border voxel, it must simultancously satisfly the following inequalities:

w(z,y,z) <0,

w(z —1,y,z) wlz+1,y,2) <0, if V. #£0,
( ), 2) w( 2 Y5 2) # (4.26)
w(z,y—1,z) wlz,y+1,2) <0, if V, #0,

w(z,y,z—1) w(z,y,z+1) <0, f V, #0.

Similarly, for a dark object surrounded by a brighter background, the border voxels can

be defined as the positive layer of voxels.



The inequalities (4.26) are the condition to identify border voxels in a discrete space.
Obviously, there is only one layer of voxels that will satisfy the condition. This makes
subsequent. surface tracking casy. Computation of w(z,y,2) in a discrete space will be

discussed in the next section.

4.6 The Design of the Discrete Filter

This section gives the setting of {v;n,(, b} coordinate sysic: at » voxel and the discrete
asymmetric Gaussian filters used in the implementation.

To compute w(x,y,z), a {v;n,l,b} coordinate system is established at every voxel
v. Figs. 4.5(a) to 4.7(a) show the three {v;n,t, b} for three voxels with gradient vectors
(1,0,0), (0,1,—1) and (—1,1,~1). The {v;n,t,b} for other gradient vectors are just 90
degree rotations of the three. The axis 77 at v is always set in the gradient direction of
v, so the system {v;n,t, b} changes from voxel to voxel.

Since G is scparable, G7(n,1,b) = Gi(n)G(t)G(b), the scale, or length, of G, in
cach dimension is the leagth of the corresponding one dimensional filter. The length of
the one dimensional (/2 (n) is determined by variance o1, the length of one dimensional
G(t) and G(L) is determined by variance 02, o1 > 2. Figs. 4.5(b) to 4.7(b) depict

im(n) of o1 = 2.0 and G(¢) of 02 = 0.5 for the three gradient vectors. The unit on
the n or t axis is the distance between pair of voxels along the axis. For the gradient
vector (1,0,0) shown in Fig. 4.5, G%(n) spans approximately 13 voxels, G(t) and G(b)
spans approximately 3 voxels. For the gradient vector (0,1, —1), however, the distance
between pairs of voxel on the n axis is longer than that for (1,0,0), so the Gl/(n) in Fig.
4.6(b) is narrower, and the &7(n) in Fig. 4.7(b)is even narrower. Consequently, the sum
of the discrete convolutivn in (4.24) is over the range:

6 1 i
i, =5 3 > Gl kI (n =it —j,b— k).
i=—6 j=—1 k=—1
Figs. 4.5(c) to 4.7(c) show the three discrete asymmetric Gl (n, t, b) filters of scales

oy = 2.0 and &> = 0.5 foc the three gradient vectors. The line segments in the Figures



.001 .004 .007

kml LOM I}OC'? l,ooa LOOO I;.Ol.

.008

.000 -.012-,

00T 004 001

2].000 |,00! LOOI I/.L‘Od LOOl

y
x (1,0,0)
z
(a) The (vin,,b}.
n Gp"(n) Gr;'(n)
-6 .0044
-5 .0115
-3 .0202
-3 .0202
-2 .0000
-1 -.0330
0 -.0498
1 -.0330
2 .0000
3 .0202 .
4 .0202 L I | n
5 .0115
6 .0044

(b) The one dimensiona! G 'r"(n) and G(1).

401?¢ \',’ ? ¢ qf’
.001 04 007 000

.000-.012-.019 ~.012 .

(c) The G"n(n,l.b) atv.

G(t)

.0000
L0000
.0000
.0000
.0002
.1064
. 7865
.1064
.0002
.0000
.0000
.0000
.0000

ooo/l o.») . on z/l 0171 012

.007 ,004 001

Figure 4.5: The {v;n, !, b} system and the G, filter for the gradient vector (1,0,0).

represent connections between voxcls. There is a voxel located in every line intersection,

join and end point. A weight, & (7, j, k), is labeled beside every such point.

The G”(n,t,b) in Fig. 4.5(c) spans 6 face connected voxels cach side along - axis,

one voxel each side along ¢ and b axes. So the filter size is 65.

The G"(n,t,b) in Fig. 4.6(c) spans 6 edge connected voxels cach side along n axis,

one voxel each side along ¢ axis, and one voxel each side along b axis.

63.

The filter size is

The G"(n,¢,b) in Fig. 4.7(c) spans 6 vertex connected voxels each side along n axis,

3 voxels in tb plane, and totally 52 voxels.

59



.0000

n G, "(n) G,'(n)

-8.485 .0001
-7.071  .0011
-5.656 .0063
-4.242 .0183

oon -2.828 .0183
-1.414 -.0194
0.000 -.0498
1.414 -.0104 l l
2.828 .0183 -
4.242 .0183 T T -
5.656 .0063 I I

7.071 .0011
8.445  .0201

t  G(t) G()
-5,656 0000
-4.242 .0000
~3.535 ,0000
-2.121 .,0000
-1.414 .0103
-0.707 .,2075
0.000 .5641
0.707 .2075% I |
1.414 .0103 T
2.121 .0000
3,535 0000
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Figure 4.6: The {v;n,t, b} system and the G, filter for the gradient vector (0,1, —1).
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Figure 4.7: The {v;n,t, b} system and the G, filter for the gradient vector (=1, 1, —1).
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4.7 The Implementation and Results

As shown in Fig. 4.8, there are basically two steps before computing w(z,y, 2). Pro-
cedure read_data() rcads the data file named object into an unsigned char array
scena[][][]. Procedure edge_detector() applies a 3D edge operator to the data ar-
ray scene[] [J1[]. The results are an unsigned char array grad_loc_.dir[][][] which
stores the gradient direction/location code of every voxel, and a short integer array
grad_mag[] (][] recording gradient magnitudes at every voxel. Procedure computew()

computes w(z,y,z). The results are stored in a short integer array w[][J[].

#idefine clen 128
#define rlen 128
#define zlen 32

unsigned char scene[zlen][rlen][clen];
unsigned char grad_loc_dir[zlen][rlen] [clen];
short grad_mag[zlen] [rlen] [clen] ,w[zlen] [rlen] [clen];

extern void read_data(),edge_detector(),compute_w();

prepr: ess(char *object)

{
read_data(object); /* read data into memory */
edge_detector(); /* apply 3d edge operator */
compute_w(); /* compute w(x,y,z) */
}

Figure 4.8: Steps to compute w(z,y, ).

The procedure computew(), sce below, calls gaussian_1(), gaussian_2(), and
gaussian 3() to compute the three Gaussian filters. The resulting filters are stored in
three double arrays G1_.3[1[1[], G2_.3[1[1[], and G3_3[]1[]J []. Next, for every voxel
(1,3 ,k) with non zero gradient magnitude, the micro get_increaments() is called to
compute gradient components along each axis. In the micro, arguments i, j,k are voxel

coordinatcs, arguments i1, jj,kk are gradient components in axis i, j,k, respectively
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and are either 1, -1, or 0. Argument n is the number of non zero gradient compo-
nents. The procedure then computes w[i] [j][k] by calling either convolution_1(),
convolution.2(), or convolution_3() depending on n. If n is one, convolution.1()
is called to compute convolution with filter G1_3. Else if n is two, convolution. 2() is
called to compute convolution with G2.3. Llse if n is three, convolution_3() is called to

compute with G3_3. The result is rounded to a short integer and stored in w1l [3] [k].

#define N 21
#define T 5

double G1_3[T][TI[N],G2_3[TI[TI[N],G3_3[TI[T]IN];/*Gaussian filters*/

int R_LEN,C_LEN,Z_LEN; /¥ data size */
int xml, yml, zml; /* left margins */
int xmr, ymr, zmr; /* right margins */

void gaussian_1(),gaussian_2(),gaussian_3();

void compute_w(void)

{

short i,j,k,i1,jj,kk,n;

double convolution_1(),convolution_2(),convolution_3();

1 gaussian_1();gaussian_2();gaussian_3(); /*compute G2_1,G3_2,G3_3*/
2

3 for(i=zml; i<=Z_LEN-zmr; i++)

4 for(j=yml; j<=R_LEN-ymr; j++)

5 for(k=xml; k<=C_LEN-xmr; k++)

6 if (grad_magl[il [j1[k1){

7 get_increments(i,j,k,ii,jj,kk,n); /* gradient components */
8 if (n==0) continue;

9 else if(n==1) w[i][j][k]=(short)convolution_1(i,j,k,ii,jj,kk);
10 else if(n==2) w[il [j][k]=(short)convolution_2(i,j,k,ii,jj,kk);
11 else if(n==3) wl[il[j][k)=(short)convoliution_3(i,j,k,ii,jj,kk);

Figure 4.9: The procedure compute_w().
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IMig. 4.10 shows one slice of an experimental result of w(z,y, z) on test data of volume
40 x 40 x 40. The object is a sphere of radius 7 with 16 values. The sphere has gray
value 0 and the background 16. Since the sphere is darker than the background, the

border is chosen Lo be the positive layer of voxels.

vw(x,y,z) slice y = 21

\ x 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 28 27 28 29 30

z

i0 0 0 0 OO 0 O OO OUOOOOOOOOO0O OO
11T 0 0 0 0 0 0 0O OO 0O-4 00 0 0 O O0O0TCO0C OO
i2 0 0 0 0 0-5-5-8-7T-7T-7T-7T-7T-8-5~6 0 0 0 0 0
13 0 0 0 0-6-6-4-4-3-2-2-2-3-4-4-6-6 00 0 O
14 0 0 ¢c-6-6-4-1 1 3 4 4 4 3 1-1-4-6-6 0 0 0
i6 0 0-5 6-4-1 2 56 8 8 8 8 8 b 2-1-4-6-5 0 0
16 0 0-5-4-1 2 56 6 6 0 0 0 6 6 6 2-1-4-5 0 O
17 0 0-8-4 1 5 6 6 0 0 0 0 0 6 6 56 1-4-8 0 O
8 0 0-7-3 3 8 6 0 0 0 0 0 0 0 6 8 3-3-7 0 O
199 0 0-7-2 4 8 0 0 0 0 0 0 0 0 0 8 4-2-7 0 O
20 0-4-7-2 4 8 0 0 0 0 0 0 0 O 0 8 4-2-7-4 0
26 0 0-7-2 4 8 0 0 0 0 0 0 0 0 0 8 4-2-7T 0 O
2 0 0-7-3 3 8 6 0 0 00O 00 0O 6 8 3-3-7T 00
23 0 0-8-4 1 5 6 6 0 0 0 0 06 6 5 1-4-8 0 0
24 0 0-5-4-1 2 6 6 6 0 0 0 6 6 656 2-1-4-6 0 O
288 0 0-5-6-4-1 2 5 8 8 8 8 8 6§ 2-1-4-6-56 00
26 0 0 0-6-6-4-1 1 3 4 4 4 3 1~-1-4-6-6 0 0 0
27 0 0 0 0-6-6-4-4-3-2-2-2-3-4-4-6-6 0 0 0 0
28 00 0 0 0-5-6-8-7-7~7T~-7~-7-8-5-5 0 0 0 0 O
29 0 0 0 0 00 0 00 0-4 00 O0OOO0OCOO0OOTOO
30 00 0 0 00O 0O OCOOUOOOOOOOO0OTO9O

Figure 4.10: Sphere slice y = 21.

Fig. 1.11 shows the border voxels of the sphere slice identified by the condition (4.26).
The positive layer of border voxels is labeled /, —, \, and |, which signify the gradient
orientations. lor instance, for the voxel x = 23, y = 21, z = 14, its w(23,21,14) =1
which is positive. Its gradient is directed at /. To be a border voxel, its neighbor’w has
to change sign in both «— and | direction. Examining the horizontal neighbors shows
that the w values change sign from negative to positive. The vertical neighbors’w also

changes sign from negative to positive. Since the w(23,21,14) > 0 and its neighbor
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changes sign in the gradient direction, the voxel (23,21,14) satisfies inequalities (1.26).
It is a border voxel. For those border voxels with non-zero Vy, the w values of their
y-neighbors have to change sign as well.

Except the labeled border voxels layer, none of the remaining voxels with positive w
values having neighbors change sign in the gradient direction. So none of them are on
the border. From this experimental result it clearly shows that there is only one positive

layer of border voxels.

w(x,y,z) slice y = 21

\ x 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

¥4

10 0 0 0 0 0 0 0 0 0 0 O O 0O 0 O 0 0O O O O O
11 0 0 0 0 0 0 0 0 0 0-4 0 0 0 0 0 0 O 0 O O
12 0 0 0 0 0-5-5-8-T-7-7T-7-7T-8-6-6 0 0 0 0 O
13 0 0 0 0-6-6-4-4-3-2-2-2-3-4-4-6-6 0 0 0 O
14 o0 0 0-6-6-4-1 \ | | | | | /~-1-4-6-6 0 0 0
16 0 0-5-6-4-1 \ 5 8 8 8 8 8 6 /-1-4-6-56 0 0
16 0 0-5-4-1 \ 5 6 6 0 0 0 6 6 6 /-1-4-56 0 0
17 0 0-8-4 \ 5 6 6 0 0 0 0O 0 6 6 5 /~-4-8 0 0
18 0 0-7-3 - 8 6 0 0 0 0 0 0 0 6 8 --3-7 0 O
19 0 0-7T-2 - 8 0 0 0 0 0 0 0 0 0 8 --2-7T 0 O
20 0-4-7-2 - 8 0 0 0 0 0 0 0 0 0 8 --2-7-4 0
22 0 0-7-2 - 8 0 0 0 0 0O 0O O 0 0 8 --2-~7T 00
22 0 0-7-3 - 8 6 0 0 0 0 00 0 6 8 --3-T 00
23 0 0-8-4 / 5 6 6 0 0 0 0 0 6 6 56 --4-8 00
24 0 0-5-4-1 / 5 6 6 0 0 0 6 6 6 \'-1-4-5 0 0
256 0 0-5-6~4-1 / 5 8 8 8 8 8 b \-1-4-6-56 0 0
2 00 0-6-6-4-1/ | } | } | \-1-4-6-6 0 0 0
27T 0 0 0 0~6-6-4-4-3-2-2-2-3-4-4-6-68 0 0 0 0
28 0 0 0 0 0-5-5-8-7-7-7-7-7-8-6-5 0 0 0 O 0
220 0 0 0 0 0 0 0 0 0 0-4 00 O0O0O0OOO OO
30 00 0 O O OO OGO OGOUOUOUOOOTUOUOOTGOO O

Figure 4.11: Border voxels of sphere slice y = 21
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Chapter 5

The Surface Tracking Algorithm

The surface tracking algorithim traverses border voxels, converts border voxels to face

primitives as defined in the extended cuberille model, and connects the faces in a closed

surface.
(a) An object defined by thresholding. (b) The object border voxels defined by
conditions (4.26).
2 i
& { i ’{ D
R W

(c) The border voxels convprtcd (d) The embedded graph where (e) Surfacc closure,
to face primitives defined in the nodes are border voxels and edges
cextended cubrille model. are adjacency between pairs of voxels.

Figure 5.1: An example to show the surface tracking steps.

An example is given in Fig. 5.1 (a) to (e) to demonstrate how an object is converted
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to a surface. The object is a 4 x 4 x 4 cube defined by thresholding. Acording to
condition (4.26), however, the object border is the set of voxels shown in (b). The
border voxels are converted to the extended cuberille model in (¢), where a border voxel
is represented by a face. Because each voxel is converted to one face primitive, the
resulting surface in (c) is not closed. There is therefore one more step to fill missing

faces to close the surface, as shown in (e).

5.1 The Tasks of Surface Tracking

The surface tracking algorithm is outlined in Fig. 5.2. The algorithm starts with three
sets of data: the loc_dir codes, the gradient magnitudes, and the w values, and concludes
with a surface description of an identified object. It has basically three ta:t. o calling
procedure Border face_tracking() in line 4 to traverse border voxel faces and test face
connections, and calling procedure Close_surface() in line 5 to connect border vosel

faces to close a surface.

Surface_tracking()

{
1 read_data(); /* read data into memory */
2 init_lirts(); /* initialize the queue, lists #*/
3 make_table(); /* initialize the table */
4 Border_face_tracking(); /* track border voxel faces “/
5 Close_surface(); /* close surface «f
}

Figure 5.2: The surface tracking algorithm

The procedure read_data() in line 1 reads three sets of data into memory. The
loc_dir codes are read into a 3D array grad_loc_dir of type unsigned char. ‘I'ne gra-
dient magnitudes, used as a rough threshold to assist in border voxel identification, are
read into a short integer array grad.mag. These two data sets werc resuits of calling

procedure edge_detector() (see page 62). w(z,y,z) values, resulting from calling pro-
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cedure compute w(), are read into a short integer array w. These procedures have been

discussed in Chapter 4,

In lines 2 to 3, procedures init.1ists() and make_table() initiali«: all associated
data structures, such as queue, lists, tables, and trie used by the border face tracking
and the surface closure algorithms.

The surface tracking algorithm consists of several algorithms, and there are niany
data s:iructures to implement the algorithm. Therefore, discussion of the algor’ um
undergoes several chapters. In this chapter, the border face tracking algorithm is dis-
cussed. In Chapter 6, the method and implementation to test voxel face connection are

discussed. Chapter 7 will discuss the surface closure algorithm. Experimental results

are given in Chapter 8.

5.2 The Border Face Tracking Algorithm

As shown in Fig. 5.1(d), if border voxels and adjacency relations between vexels can be
interpreted as a graph, where nodes are border voxels and edges are adjacency relations
between pairs of voxels, a standard breadth-first search algorithm can be used to track
border voxels. The procedure is outlined in Fig. 5.5,

The underlying data structure is a greue, where each queue cell has three integers,
X,¥,2, for recording the coordinates of a border voxel. The type definition, Q_CELL, is
given in page 83.

In the procedure, the micro get_start_face in line 1 reads the coordinates of a start
border voxel, and the procedure span_start_face() scarches its adjacent border voxels,
marks them and queues them.

The while loop in line 4 starts tracking border voxels. A cell is obtained from the
queue as the current voxel. In line 9, the Neighbor face() is called to scarch for the
cui.ent voxel’s adjacent border voxels. It scans all adjacent voxels, testing if any satisfies
the condition (4.26). Meanwhile if an adjacent border voxel is unmarked, mark it and

queue it. After the procedure Neighbor face() returns, add_to_display._table() is
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int X,¥,2; /*current voxel coordinates*/
Q_CELL *current_voxel;

Border_face_tracking()

{

unsigned char  irdex; /* the table index */
1 get_start_fale; /* start voxel coordinates */
2 span_start_face(}; /* span the start voxel */
4 vwhile(current_voxel = remove_q_head() {
5 x=current_voxel->x;
6 y=current_voxel->y;
7 z=current_voxel->z;
8 index=grad_loc_dir{x][y][z] & “MARK;
9 Neighbor _face(index); /* search neighbor voxels */

10 add_to_display_table(x,y,z,index); /* add to display tatle */

Figure 5.3: The border face tracking procedure.

called to add the current voxel coordinates, x y z, and its lcedir code, index, to a

structure array for displaying the face later. While the queuc is not empty, the loop
continues to the next cell in the queue. The while loop stops wnce the guene is empty.

The time ¢ aplexity of Border face tracking() depends on the while loox -
the procedure call Neighbor face(). It is analyzed below. The data to start traching
are three arrays, grad_loc_dir, grad_mag, and w. Bit 7 of grad.loc.dir is designat
for marking, hence checking and marking a voxel visited can be done in consti it Ve,
As a result, the time to execute Neighbor face() depends on the number of cdjacent,
voxels that a border voxel could have. Since cach unmarked border vox « is pliced in
the queue once, the while loop is exccuted only once for every border voxel. Denote
the number of adjacent voxels that a border voxel has as k, and the total namber of
the border voxeis as ng, the time complexity of Border face_tracking?) is therefore

O(knpg).
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For a given object, ng is determined by condition (4.26) and is fixed. But k varies
with the number of adjacent voxels that » border voxel could have. A way to define the
adjacency relations between pairs of voxels is by the digital topology [KR89], where two
voxels are adjacent to cach other if they are either face, edge or vertex connected. By
this definition, each voxel has 26 adjacent voxels. Hence the constant k is about 26.

Observe from Fig. 5.1 (c¢), howaver, that in the extended cuberille model, every
border voxel can be converted to a face, and all thie faces ar~ on a surface. Intuitively,
a face normal shouldn’t have a dramatic change from one horder voxel to an adjacent
one because the surface should be smooth. This suggests that the face normal can be
used to assist in scarching adjacent voxels. In the nex - ¢y adjacent voxels and
related definitions based on a given face normal will be introduced. It results in less
than 26 adjacent voxels. ared the algorithm will track horder voxel faces instead of
border voxels

Since [ace primitives are either square or triangular, see Fig. 5.1 page 37, a face
primitive has at most four edges. Therc are at mos: four ways to connect ‘i,z current
face to the next face. The neighbor connections are called outways of a border voxel
face. The border face tracking algorithm traverses outways instead of adjacent voxels.
Whenever a border voxel of an outway is found, the scarch breaks :nd proceeds to the

next outway. This reduces the constant & to about half, and hence specds up border

face tracking,.

5.3 Related Definitions

This section introduces definitions of the current voxel and the current face, outways,

adjacent voxels, and neighbors for three face primitives used in the border face tracking

algorithm.



5.3.1 The Current Voxel and the Currert Face

As shown in Fig. 5.3, the border face tracking algorithm is a breadth first scarch and
the data structure is a quev- « f border voxels. While trackiag, t! o algorithm obtains a
voxel from the queue, and this voxel is called the current voxel. The current voxel is
converted to a face by its .oc_dir code. This face is cailed the current {ace. The algo-
rithm then traverses the adjacent border voxels of the current face by calling procednre

Neighbor face().

5.3.2 Outways of the Current Voxel

As shown in Fig. 3.1, face primitives in the extended cuberille model are either square
or triangular, and a face primitive has at most four edges. Ar a result, there are at
most foar ways to connect the current face to the neud face. Equivaleady, there are at
most four ways to traverse from the current voxel to the next voxel, and cach possibility
cro. :s an edge. The ways of traversing are called outsw ays of the current voxel. Fig. 5.4
shows the four outways of a type_l face, the four outways of a type2 face, and the three

outways of a type_3 ouiside face.

outway 4
outway 4
outway 1 [} outway |
outway 1
" |~ outway 3
- »
4 ouyway 3 !
outway 3 outway 2 outway 2
outway 2
(1) The fcur outways of (2) The four outways of (%) The three outways of a
a type_1 face. atype_2 face. type_3 outside face.

Figure 5.4: The outways of a type.l face, a type 2 face, and a type.d outside face.
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5.3.3 Adjacent Voxels of an Outway

Those voxels located in front of an outway may be defined as the adjacent voxels of
the outway. Scarching adjacent voxels can therefore be divided to searching outways.
Observe Fig. 5.4 that outways of a type.1 face are symmetric. It is enough to define
adjacent, voxels for the first outway. For the ether three outways, adjacent voxels can be
obtained by 90 degree rotations of those of the first outway. Similar reasoning applies
for a type-3 face. For a tyir 2 face, outway 1 and 3 are symmetric, and outway 2 and
4 are symmetric. It is necessary to define adjacent voxel. for outways 1 and 2.
Definir.- adjacent, voxels for three face primitives used in the border face tracking

algorithm is based on the following assumption of a smooth surface:

Assumption 5.1 The face normal difference between the current border vozel and an

adjaceni ves ! i< lees than 90 degrees.

Since scarching border ~oxels is the main concern oi the border face tracking aigo-
rithm, among the 26 face, edge, or vertex connected voxels, on!:” those voxels possible
on a border are defined as adjacent voxels. It will be shown in the following that a
type-1 face has 24 adjacent voxels, a type.2 face has 22 adjacent voxels, and a type-3
face has 18 adjacent voxels.

Supposc voxel v is a type.1 border voxel as ~hown in Fig. 5.5(a). If the border is
defined as the negative layer, according to condition (4.2€), the voxel on the right hand
stde is on the positive layer. The voxcl on the left hand side has negative w value. If
it. is on the border, under Assumption 5.1, the voxel v would have w(v) > 0. But this
contradicts the fact that voxel v is on the border. Hence the left voxel is inside. This
leaves 24 face, edge, and vertex connected voxels. Because four outways of the type.l
face are symmetric, the 24 voxels are divided to 4 disjoint sets, with one for each outway.
g, 5.5{h) shows the wljave it voxels defined for ontway 1 of the tvpe_l face.

For a type.2 border voxel v, sce Fig. 5.6(a), if v is on a border of a negative layer,
Voxels v1 and v2 are on the positive layer. V- xels v3 and v4 are not on the border under

Assumption 5.1. It leaves 22 face, edge, and vertex connected voxels. Dividing them
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z (a) A type_1 border voxel v. The right side voxel of v is
on the positive layer, and the left side voxel is inside.

]

outway 1

current voxel
(b) Six adjace voxels defined for outway 1 of atype_1 face.

Figure 5.5: The adjacent voxels defined for outway 1 of a type.l face.

into four disjoint sets for four outways results in four adjacent voxel sets. Figs. 5.6(b)
and (c) show the adjacent voxels defined for - way 1 and outway 2 of the tvpe 2 face.

For a type.3 border voxel v, sec Fig. 5.7(a), if v is on a be ' r ol a negative layer,
v, v and v; are on the positive layer. By the same argument, voxels v4 to vy are not,
on the border. It leaves 18 face, edge, and vertex connected voxels that are divided into
three adjacent voxel sets, with one for each outway. Fig. 5.7(b) shows the six adjacent
voxels for outway 1 of the type.3 face.

Adjacent voxels of each outway of the threc faces are in turn divided to subsets.
A subset with more than one voxel is enclosed by braces. Duing border face tracking,
adjacent voxels of a subsct will be searched as an unit.

A type_l face have six orientations. A type.2 face have 12 orientations, and a type.3
face 8 orientations. The adjacent voxels for any face orientation can be obtained by 90
degree rotations of the three given in Fig. 5.5 to Fig. 5.7. The rotation matrices, the

adjacent voxel coordinates, etc. are stored in a table of structure type TABLE. The

TABLE structure will be given 1n Section 5.4.
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(a) A type_2 border voxel v. Voxels vl and v2 are on the positive layer.
Voxel v3 and v4 arc not on the border.

/1 7‘,' /
, 1,

g 1y LA,
¢ [,__ { ‘
L /,'/

current .« uxel

(b) Four adjacent voxels of outway 1 of the type_2 face.

(¢) Seven adjacent voxels for outway 2 of the type_2 face.

Figure 5.6: The adjacent voxels defined for a type.2 face.



1V4 h Iv7

yv3
7
Y. v 8 vl

(a) A type_3 border voxel v. Voxels v1, v2 and v3 are on the positive layer.,
Voxcels v4 to v8 are not on the border.

L way 1 ( w B (

(b) Six adjacent voxels for outway 1 of 1 type_3 face.

Figure 5.7: Adjacent voxeis - =il for a typed face.

5.3.4 Neighbors and Neighbor Faces of an Outway

Among the adjacent voxels of an outway, those voxels located on a border are called
neighbors of the outway. A neighbor voxel is converted to a face by its loc_dir code.

This face is called a neighbor face of the outway.

5.3.5 Connected Faces

In the extended cuberille model, each voxel is converted to one face primitive. As a
consequence, a neighbor face may not be connected to the current face. H ihe current
face and a neighbor face share a common edge, they are said to be connected to cach
other. Otherwise, the two faces are not connected. Fig 5.8 shows some examples. I
case (a), neighbor faces are connected to the current face. In case (b), neighbor faces

are not connected to the current face. The close surface algorithin will solve the surface

closure problem.



neighbor face neighbor face neighbor face neighbor face
outway outway outway y
current face current face current face current face
(a) The ncighbor faces are connected to (b) The neighbor faces are not connected to the
the current face. current face.

Figure 5.8: A ncighbor face may not be connected to the current face.

5.4 The TABLE structure

Outways and adjacent voxels are stored in a table of type TABLE, and are accessible by
a face’s loc_dir code. The TABLE type definition and the table structure are given in
Fig. 5.9 and Fig. 5.10.

As shown in Fig 5.9, the table has 128 entries. The seven bit table index corresponds
to the loc_dir code. A table entry has three fields: a pointer face pointi: g to the
BASIC_FACE structure of the face, a 4 x 4 rotation matrix, and the normal components
nx, ny, nz. Only the three face primitives oriented at the direction shown in Fig 5.4
are stored in the BASIC_FACE structures. Other face orientations can be obtained by
multiplying with the rotation matrices in the table entries.

The BASIC_FACE structure has: an integer n_of ways indicating the number of out-
ways of a face, and a pointer outways pointing to an array of OUTWAY structures. It also
includes the number of vertices, and three arrays of the vertex coordinates, *ix, *iy,
xiz, that are necessary for display a face.

The OUTWAY structure includes a rotation matrix, the number of subsets, and a
pointer subset pointing Lo an array of subsets structures. Again, the subsetsstructure
has an integer indicating the number of adjacent voxels in the subset, and a pointer
adj_voxels pointing to an ADJ_VOXEI. structure array where the adjacent voxels in the
subset are stored, ctc. For a type.l and a type.3 face, all outways are symmetric.

Therefore, only the subsets of the first outway are stored and pointed to by the subset
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typedef float MATRIX (4] [4];

typedef struct lookup_table {

MATRIX matrix; /* rotation matrix x/
BASIC_FACE *face;
double nx,ny,nz; /* normal components */

} TABLE table[128];

typedef struct basic_face {
int type:; /* face type */
int n_of_ways; /* number of outways */
OUTWAY *outways;
int n_of_vertices; /* number of vertices */
float *ix,*iy,*iz; /* vertex coordinates  */
float €cX,Cy,CZ; /* center coordinates */

} BASIC_FACE;
typede” struct outcoming_way {

MATRIX matrix; /* v ation mat: x */
int edge_type;
int n_of_subsets; /* uvamber of subsets */
struct subsets *subset;
COORDINATES *bounding_voxel;
} OUTWAY;
_typedef struct subsets {
b int n_of_adj_voxels;/* number of adj voxels */
ADJ_VOXEL *adj_voxels;
};
typedef struct adjacent_voxel {
float ix,iy,iz; /* voxel coordinates */
int n_of_con_faces; /* number of con faces */
CON_FACE *con_faces;
int n_of_dis_faces; /* number of discon faces*/
DIS_FACE *dis_faces;
int b_voxel_type;
COORDINATES bounding_-~vxel;

} ADJ_VOXEL;

Figure 5.9: The TARLE type definition.
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pointers of other outways. The adjacent voxel coordinates of other outways can be
obtained by multiplying the rotation matrix in the corresponding OUTWAY entry. For
a type-2 face, adjacent voxels for the first and the second outway are stored in two
subsets structures .

Besides voxel coordinates, the ADJ_VOXEL structure includes two more structures,
CON_FACE and DIS_FACE, storing possible neighbor faces that are connected or discon-
nected to the current face. Their usage will be discussed with the close surface algorithm

in Chapter 7.

5.5 Tracking Neighbor Faces

This section discusses the Neighbor face() procedure, which is called by the border
face tracking algorithm in page 69. The procedure is outlined in Fig 5.11.

The purpose of the procedure is to scarch outways of the current voxel for neighbors
and to check connections between the current face and neighbor faces. Two for loops
in line 6 and line 9 serve the two purposes.

In the procedure, the argument index is the current voxel’s loc_dir code, which is
used to index the table entry in line 1. Line 2 allocates enough memory ) hold the
biggest subset of each outway, and initializes associated flags. In line 6, procedure
Search neighbor() is called for each outway. It secarches adjacent voxel subsets for
neighbors. The neighbor information is saved for checking face connection in the second
for loop. The procedure Face_connection() in the sccond for loop will be discussed
with the close surface algorithm in Chapter 7.

The procedure Search neighbor() is outlined in Fig 5.12. It has four arguments:
outway is the specified outway; index is the current voxel’s loc_dir code; w is a pointer
pointing to the corresponding outway structure in the table; n_w is a pointer in the
calling procedure, pointing to a piece of memory for saving neighbor information of the
outway.

In the procedure, line 1 copies the rotation matrix to £inalm, which is a concate-
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typedef ADJ_VOXEL NEIGHBOR;

BASIC_FACE *f;

void Neighbor_face(unsigned char index)

{

int i
OUTWAY *W;
NEIGHBOR *n,kn_w;

f = vablelindex].face;

/* allocate memory for neighbors, initialize flags */
n_w = (NEi* 4OR *)calloc(f->n_of_ways*4,sizeof (NEIGHBOR));
for(n=n_w, 9; i<f->n_of_ways; n++,i++){

init_neighbors_and_flags;

}

/* search every outway of the current voxel for neighbors */

for(n=n_w,w=f->outways,i=0; i<f->n_of_ways; w++,n+=4,i++){
Search_neighbor(i,index,w,n);

/* .est face connections f¢r every outway */

for(n=n_w,w=f->outways,i=0; i<f->n_of_ways; w++,n+=4,i++){

Face_connection(i,index,w,n);

}

I'igure 5.11: The Neighb:r face() procedure.
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extern int gr_threshold; /* a rough threshold x*/
int n_n[4] [4] ,n_set[4],n_num[4];
MATRIX final_m[4]; /* rotation matrix */

Search_neighbor(int outway,unsigned char index,OUTWAY *w,NEIGHBOR *n_w)
{

int j.k,1;

int tx,ty,tz; /* adjacent voxel coordx/
struct subsets *s;

NEIGHBOR *n_tab, *n;

/* finai_m concatenates ta.ls '.index].matrix and w->matrix */
1 copy_matrix(outway_matrir[index*4+outway],final_m{outway],d);

2 for(s=w->subset,n=n_w,j=0; j<w->n_of_subsets; s++,j++){
3 for(n_tab=s—>adj_voxels,k=0,l=0;k<s—>n_of_adj”voxels;n_tab++,k++){

4 calc_adj_voxel_coords(tx,ty,tz);

/* test if the adjacent voxel satisfies conditions (4.26) */

5 if (grad_magltx] (ty] [tz] < gr_threshold || wltx][tyiltz] > 0
[l '( cross_zero(tx,ty,tz,-1)) ) continue;

6 n_n[outway] [1++] = k; n_num[outway] += 1;

/* save neighbor coordinates of the outway */
7 save_neighbor_coordinates(n);

/* if the neighbor is unmarked, mark it and queue it */
8 if (1 (grad_loc_dir[(int)n->ix] [(int)n->iy] [(int)n->iz] & MARK)){
9 grad_loc_dir[(int)n->ix][(int)n->iyl [(int)n->iz] |= MARK;
10 (void)append_queue();
11 n++; }
12}
13 if(n_num[outway]) { /* as least one neighbor is found */

n_set[outway] = j; break;
}
}

Figure 5.12: The procedure Search_neighhor().
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nation of two matrices: the matrix in the indexed table entry and the mateix in the
outway entry. Rotation matrices for every outway of every lace orientation were precal
culated during initialization, and stored in a global matrix array outway matrix. All
matrices are 4 x 4, indicated by an externally declared variable d in the copy matrix()
procedure. Since all matrices are 90 degrees rotation matrices, the matrix elements are
cither 0, 1, or -1.

In lines 2 and 3, for cach subset of the outway and for cach adjacent voxel of a
subset, the function calc.adj_voxel.coords is called to multiply the rotation matrix
final m[outway] with the voxel coordinates read from the table. The results are saved
in three integers, tx,ty,tz.

Line 5 tests if the adjacent voxel, tx,ty,tz, is a border voxel. If the voxel’s gradient
magnitude is less than a rough threshold, gr_threshold, or its w value is positive but
a border is defined as a negative layer, the adjacent voxel is not a neighbor. The for
loop of line 3 continues to test the next adjacent voxel. Otherwise it tests if the voxel
satisfies condition (4.26) by calling function cross_zero (). If the function returns false,
the for loop continues. If the function returns true, the adjacent voxel is a neighbor.
Subsequently, from lines 6 to 11, the neighbor information is saved for testing face
connections later, and if it is unmarked, mark it and queue it. The for loop of line 3
stops after a subset is scanned. In line 13, if at least one neighbor has been found, the
for loop of line 2 breaks and the procedure Search neighbor () returns.

The function cross_zero(tx,ty,tz,border) tests if the voxel, tx,ty, tz, satislies
condition (4.26). The argument border accepts two values: =1 il the border is defined
as a negative layer of voxels, or 1 if the border is defined as a positive layer of voxels.
The function accesses the global array w1 [1[1 by voxel coordinates. Therefore, testing
condition (4.26) for a given voxel can be done in constant time. Its implementation is
straightforward. No details are given here.

The procedure append.queue() appends an unmarked neighbor to the quene. The
queue is a linked list of queue cells, defined by type Q_CELL, and pointed to by a global

pointer, queue, of type QUEUE. The type definitions are given in Fig 5.13. The pointer
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queue has two pointers: head pointing to the first cell of the queue, aud rear pointing
to the last cell of the quene. Henee cither removing or appending a quene cell can be

done in constant thne,

typedef struct queue_cell {

int X,¥,2; /* a border voxel couiulnates */
struct queue_cell *next;

} Q_CELL;

typedef struct queue {
Q_CELL *head ; /* pointing to the queue head */
Q_CELL xrear; /* pointing to the queue rear */

} QUEUE *queue;

Figure 5.13: The queue cell and queue tvpe definition.

The time complexity of the procedure Search neighbor () depends on two for loops
in lines 2 and 3. Similar to calculating adjacent voxel coordinates in line 4, testing
if conditions in line 5, marking a neighbor in line 9, etc., all can be done in time
O(1), the for loop of line 3 depends on the number of adjacent voxels in a subset,
s->n_of_adj_voxels. Once the for loop of line 3 stops and at lcast one neighbor has
heen found, the for loop of line 2 breaks. Therefore, the time to execute the two for

loops is about hall of the length of all subsets of an outway. Detailed analysis will be

given in the next Section.

5.6 Complexity Analysis

In previous sections, the definitions of adjacent voxels for three face primitives, the table
structure to store and access this information, and the Neighbor face() procedure for
searching neighbors have been discussed. This section discusses the performance of the
border face tracking algorithm by this implementation.

The analysis given in page 69 has shown that the time complexity of the border

face tracking algorithm is O(kny). nyp is the the number of border voxels, and for a
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given object, it is fixed. The constant & depends on the number of adjacent voxels
that a border voxel has and the way that the procedure Neighbor.face() scarches
the adjacent voxels for neighbors.  As discussed in the previous section, the search
neighborhood of the current voxel is split to scarch outways.  Adjacent voxels of an
outway are separated into subsets. Subsets are scarched in a given order. Whenever a
subset has been scarched and at least one neighbor has been found, the search stops
and proceeds to the next outway.

If the possibility of an adjacent voxel to be a neighbor is uniformly distributed, for
the type-l face whose adjacent voxels are shown in Fig 5.5, the average time to search
an outway is approximately F(1 4+ 243+ 1) + 2x6 = 3%. The total time to search
four outways is approximately 11.33. For the type2 face whose adjacent voxels are
shown in Fig 5.6, the average search time is approximately 1550, For a type 3 face, it's
approximately 12.50. Therefore, the constant & is about (1433 + 15.50 | 12.50)/3, i.e.,
14.

In conclusion the time complexity of the Border face.tracking() procedure is
O(kng), where ng is the number of border voxels of a given object and constant &

is approximately 14.

5.7 Correctness of the Algorithm

This section will show that tracking outways is equivalent to tracking adjacent voxels.
In other words, no border voxel will be missed. The analysis is based on the following

theory:

Theorem 5.1 [f an object surfuce is closed, neighbors of any border vorel ave edge

connected vozels.

Proof: Consider voxels as a tessellation of the space, every border voxel contains a picce
of surface, or a patch. If a border voxel has no edge connected neighbor bhut a vertex

connected neighbor voxel, the two patches in the two border voxels are not connected,
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bhecanse two patehies can not be connected through one vertex. The surface is therefore
not. elosed. It conchides that for an object with a closed surface, tracking 18 cdge
connected voxels is enough. The theory is also correct for a polyhedral surface where
cach voxel contains one or more faces, The property of a polyhedral surface will be
given in Chapter 6.

If an object surface is not closed hecause of noise or some unknown reasons, vertex
connected voxels shonld be searched as a natural extension. This is the reason that
vertex connected voxels are also included in adjacent voxel sets. Missing faces between
two vertex connected voxel faces can be tiled arbitrarily. In the extended cuberille
model, they should be tiled with ihe four types of external voxel faces.

Adjacent voxels defined for type_l, type-2 and type_3 faces in Fig. 5.5 to 5.7 are or-
dered so that a Tace connected voxel is the first one to be scarched, and vertex connected
voxels are the lash ones to be searched, basically as a scarch extension. The following
will show that if more than one adjacent voxel are neighbors, they are in turn adjacent
and therefore reachable in the given order.

For outway 1 of the tvpe.l face, see Fig. 5.5, under Assumption 5.1, a neighbor face
should has normal component V. > 0. Clearly, among the first three adjacent voxels,
only one could possibly satisly condition (4.26). Also, among the rest three adjacent
voxels, only one could possibly be a neighbor. If Theory 5.1 holds, and if there exists two
neighbors, the second is the edge connected neighbor, adjacent voxel 4, and is reachable
from adjacent voxel 1 because they are face connected. If adjacent voxel 1 is not a
neighbor, but cither adjaceat voxel 2 or 3 is, adjacent voxel 4 is also reachable. This
can be seen by enumerating all possible face patterns as shown in the follows.

There are six possible neighbor face patterns for adjacent voxel 2, see Iig. 6.9(a) (b)
and (d), page 99. The second and the last face in (d) are impossible for adjacent voxel 4
to be a neighbor. Among the rest four faces, adjacent voxel 4 is the first neighbor of
outway 4 of the face in (b), and the first neighbor of outway 1 of the first face in (d).
It is in the second subsct of outway 4 of the face in (a), also in the second subset of the

third face in (d), and is reachable because the face connected voxel is not a neighbor.



A similar analysis applies to adjacent voxel 3.

For outway 1 of the type22 face, see Fig. 5.6, by the same argument, only one among,
the first two adjacent voxels could possibly be a neighbor. 1f none of thenvare a neighbor,
both adjacent voxel 3 and 4 will be searched as an extension.

For outway 2 of the type_2 lace, if adjacent voxel 1is a neighbor, adjacent voxels 2 to
5 of the second subset are face connected to it and are therefore reachable from adjacent
voxel 1. If adjacent voxel 1 is not a neighbor, however, the second subset of four adjacent
voxels will be scarched. If none are a neighbor, the two vertex connected voxels will be
scarched as an extension, because only one of them could possibly be a neighbor.

For type.3 voxel, sce Fig. 5.7, Il adjacent voxel 1 is a border voxel, adjacent voxels 2
to 4 of the second subset are face connected to adjacent voxel 1 and are therefore
reachable. If adjacent voxel 1 is not a neighbor, the subset of }1<|.i:|(‘(-||l, voxels 2 Lo 4 will
be scarched. If none are a neighbor, both vertex connected voxels will be searched,

It concludes that for an object with a closed border, tracking ontways is equivalent,

to tracking adjacent voxels.
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5.8 The Result of Border Face Tracking

Iig. 5.14 shows the result of border face tracking of the two test objects given in Fig. 3.10.
‘T'he surface of the sphere has few holes on it, and the surface of the cylinder has few
disconnected pieces. This is because the algorithm tracks border voxels and a border
voxel is converted to one face primitive. Careful observing the images, however, reveals
that the border voxels are connected, for the disconnected faces are just one unit apart.

The next two chapters will discusses the face connection testing and surface closure.

Figure 5.14: The result of tracking border faces of two test objects.
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Chapter 6

Face Connection Testing

In the extended cuberille model, cach voxel is converted to one face primitive. As a
result, a quite few of border voxel faces are not connected. It is necessary to test face
connection during border face tracking.

The first two sections of this chapter give background knowledge about a polyhedral
surface, and measurements to test and to close a polyhedral surface. The rest of this
chapter will discuss data structures and procedures to implement these measurements

in the surface tracking algorithm.

6.1 Polygon Faces

The face primitives in the extended cuberille model are polygon faces. An edge of a
polygon face is directed, from its start vertex to its end vertex, and the edges of a face
form a directed edge ring. The normal of a polygon face could point to either side of the
face. In this implementation, it is assumed that the face normal points in a direction so
that the normal and the edge ring form a left handed coordinate system, as shown in

Fig. 6.1(a).
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6.2 A Polyhedral Surface

A surface in the extended cuborille model is a polyhedral surface. A polyhedral surface
consists of polygon faces. The normal of a face is always pointing to outside of the
surface. In ether words, the edge ring of a polygon face is in the clockwise direction if
looked at the face from outside. If two faces are connected, they share a common edge.
Both edge rings pass the common edge, once in its forward and once in its backward
direction, as shown in Fig. 6.1(b). If an edge is passed with only one edge ring, a face
is missing. 't therefore concludes that a polyhedral surface is closed if and only if every
edge is shared by exactly two faces. This property of a polyhedral surface can be used as
a measurement to test surface closure. It also offers a way to close a surface. Obviously,
the cuberille model doesn’t possess this property.

In the following sections, the data structures for face connection testing are discussed.

The procedures are discussed in Section 6.7

A A facc is missing here.

(a) The edge ring and face normal of three face (b) If two faces are connected, the two cdge rings
primitives in the exteded cuberille model. share a common edge.

Figure 6.1: Polygon faces and polyhedral surface.

6.3 Related Definitions

This scction gives the related definitions for testing face connection in the surface track-

ing algorithm. They are: connected face, disconnected face, bounding voxel and missing

edge.
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6.3.1 Connected and Disconnected Faces

As mentioned before, if the current face and a neighbor face share an edge, they are
said to be connected. The neighbor face is called a connected face. Otherwise, the
two faces are not connected and the neighbor face is a disconnected face. Possible

connected ind disconnected neighbor faces are stored in the table structure,

6.3.2 Bounding Voxel and Missing Edge

While the surface tracking algorithm traverses an outway of the current face to a neigh-
bor face, it crosses an edge. This edge is called the current edge. I the current
face and the neighbor face are connected, the current edge is passed by two edge rings,
the current face edge ring and the neighbor face edge ring. I€ the current Tace is not.
connected to the neighbor face, however, the face between then is missing, This face
is called the missing face. The voxel where the missing face is located is called the
bounding voxel of the missing face. In this case, the current edge should be shared by
the edge ring of not the neighbor face but the missing face, if the surface is eventually
closed. The edge in the missing face is directed backward to the current edge. "This
edge is called the current missing edge, as shown in Fig. 6.2.

There are two types of missing edges. One is a voxel edge of unit length, labeled as
type '1’. The other is diagonal of a square voxel face, labeled as type '2°. "The two types

of missing edges are also shown in Fig. 6.2.

bounding voxel neighbor face
type "2’ current missing cdge ‘7

type 1’ missing cdge
current cdge
current face

Figure 6.2: The current edge, the current missing edge and the bounding voxel.
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Since a missing face can be determined by its bounding voxel and missing edges, this

information is saved during face connection testing.

6.4 The Data Structure

This section discusses the part of TABLE type definitions and data structures for storing

connected faces, disconnected faces, and bounding voxels, etc.

6.4.1 Connected and Disconnected Face Structure

The possible connected and disconnected neighbor faces are stored in the adjacent voxel
structure, 'T'he ADJ_VOXEL type definition is shown again in Fig. 6.3. The structure has
two pointers: a pointer con_faces pointing to an array of CON_FACE structures where
possible neighbor faces connected to the current face are stored, and a pointer dis_faces
pointing to an array of DIS_FACE structures where possible disconnected neighbor faces
are stored.

The CON_FACE structure has an unsigned char, loc_dir, recording the loc_dir code
of a connected neighbor face. The DIS_FACE structure also has a field loc.dir. The
reason to store a disconnected face is to locate a bounding voxel where a missing face
resides. The bounding voxel structure is given in the next section.

While tracking border faces, the algorithm tests if a neighbor face’s loc_dir code
matches one of the loc_dir codes in the CON_FACE structure. If so, the neighbor face is
a connected face, do nothing. Else there is a face missing between the current face and
the neighbor face. The algorithm continues to test if the neighbor face’s loc_dir code
matches one of the loc_dir codes in the DIS_FACE structure. If so, the missing face’s
bounding voxel coordinates are obtained from the table and saved. This information
will be used to find the missing face in the close surface algorithm in Chapter 7.

Figs. 6.4 to 6.7 show connected faces, disconnected faces and bounding voxels for
the adjacent voxels of a type_l, a type_2, and a type.3 face. Vertex connected adjacent

voxels are not included in the figures.
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typedef struct coordinates {
float X,¥,2;
} COORDINATES;

typedef struct connected_face {
int type;
unsigned char loc_dir,

} CON_FACE;

typedef struct disconnected_face {
unsigned char loc_dir;
unsigned char smooth_loc_dir;

int b_voxel_type;

COORDINATES bounding_voxel;

EDGE edge_2;

COORDINATES bounding_voxel_2;
} DIS_FACE;

typedef struct adjacent_voxel {

float ix,iy,iz;

int n_of_con_faces;

CON_FACE *con_faces;

int n_of_dis_faces;

DIS_FACE *dis_faces;

int b_voxel_type;

COORDINATES bounding_voxel;
} ADJ_VOXEL;

typedef struct outcoming_way {

struct subsets *subset;
COORDINATES *bounding_voxel;
} OUTWAY;

Figure 6.3: The TABLE type definition continues: connected and disconnected faces.
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adjacent voxe )

current _voxel

adjacent voxel 2

bounding

oxcl

bounding voxcl

current voxel

adjacent voxel 3

ccurrent voxel

bounding voxcl 1

current voxcl bounding

adjacent voxcl 4

—{ U hounding voxel

current voxel

voxcl 2

(a) Two connccted faces for adjacent voxel 1.
The bounding voxel is the current voxel.

(b) Onc conncected face for adjacent voxel 2, and onc
disconnected face whose bounding voxel is the
current neighbor.

(c) Six disconnected faces and their bounding voxels
for adjacent voxel 3.

edge_2

current missing edge

(d) the bounding voxel for adjacent voxel 4.

Figure 6.4: The connected faces, disconnected faces, and bounding voxels of a type_l

face.



adjacent voxel 1

() One connected and twe disconnected faces
for adjacent voae!

currcnt voxcl

adjacent voxel 2

(b) Two connceted faces, three disconnected faces
and the bounding voxel for adjacent voxel 2.

current voxel

bounding voxel for the rest

N - 1

]

bounding voxcl bounding voxcl

Figure 6.5: The connected faces, disconnected faces and bounding voxels for outway |
of a type.2 face.
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current voxel

/ A

(a) Two connected faces for adjacent voxel 1.

adjacent voxel 1

current voxcl cunent voxel current voxel current voxel

adjacent voxel 4
adjacetn voxci 3 adjacent voxel 5
adjacent voxel 2

(b) Non for adjacent voxels 2 to 5.

current voxcl

(c) The bounding voxel for outway 2.

boyAding voxel

Figure 6.6: The connected faces, disconnected faces and bounding voxels for outway 2
of the type2 face.
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adjacent voxel i

N

(a) One connected face for adjacent voxel 1.

adjacetn voxel 2 current voxel

adjacent voxel 3

current voxel

‘

(b) None for adjacent voxels 2 to 4,

current voxel current voxel

adjacent voxel 4

bounding voxel

(c) The bounding voxel for outway 1.

current voxel

Figure 6.7: The connected faces, disconnected faces and bonnding voxels of a type.3
face.
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6.4.2 Bounding Voxel Structure

Bounding voxel coordinates may be stored in one of the three structure levels in the
table. As shown in Fig. 6.3, there is a bounding.voxel pointer in the OUTWAY struc-
ture, a bounding voxel ficld in the ADJ_VOXEL structure, and a bounding.voxel in the
DIS_FACE structure.

‘The bounding voxel stored in an outway entry relates to those missing edges whose
hounding voxel is unique and obvious. For example, for the type.3 face shown in Fig. 6.7,
the bounding voxel of adjacent voxels 1 to 4 is unique. As a missing cdge is always of
type 2", the bounding voxel is obviously the one that shares the edge. Since there is
only one bounding voxel for an outway, the bounding voxel coordinates are stored in the
outway structure, as shown in Fig. 6.7(c). No disconnected face is stored. Connection
testing can be speeded up.

For a type '’ missing edge, however, its bounding voxel is not obvious. Observe from
Figs. 6.4 to 6.6 that the current face and a disconnected neighbor face can determine
the location of a missing face’s bounding voxel. Therefore, the bounding voxels of
disconnected faces are stored in DIS_FACE structures. During face connection testing, if
a neighbor face’s loc_dir code matches a disconnected face’s loc_dir code, the bounding
voxel coordinates are read out. The bounding voxel that is common for the rest of
disconnected faces is stored in the ADJ_VOXEL structurc so that it can be read out
without matching loc_dir codes.

Storing all disconnected faces makes the table lengthy and checking inefficient. For
some type '’ missing edges, no disconnected face is stored. During face connection
testing, if the bounding voxel of the current missing edge isn’t in the table, the current
missing edge is temperately placed in a table, called open_edge_table. Its bounding vox-
els will be located at the beginning of the close surface algorithm. The open_edge_table
type definition is given in the next section. The disconnected faces that are chosen to

store in the table and those that are not is discussed in the next section.
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6.5 Neighbor Faces Stored in the Table

This section discusses which connected or disconnected neighbor faces are chosen to be

stored in the table.

6.5.1 Neighbor Faces for a Type_1 Face

Yor the adjacent voxel | of a type_l face, under Assumption 5.1, there could he nine
adjacent voxel faces whose normal component V. > 0. Two are connected faces stored
in two CON_FACE structures, as shown in I'ig. 6.4(a). Seven are disconnected faces, as
shown in Fig. 6.8. Among them, the three in (a) cannot be a neighbor face if the current
voxel is on a border. The four in (b) are possible, and their missing faces are obviously
those white triangle faces. Since the missing edges of the neighbor faces are all of type
'2’, whose bounding voxels could be the same one, only one bounding voxel, the current
voxel, is stored in the ADJ_VOXEL structure as shown in Fig. 6.4(a), no disconnected lace

is stored.

adjacent voxel

current voxel

(a) These faces are impossible to be a neighbor face,

. missing trangle face
adjacent voxel

N

current voxel

(b) These necighbor faces have missing edges of type '2'.

Figure 6.8: The disconnected faces for adjacent voxel 1 of a type_l face.

A similar analysis applies to adjacent voxel 2 of the type_l face. There could he
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nine adjacent, voxel faces whose normal component V. > 0. The nine faces are shown
in Figs. 6.9(a) to (d). Those faces in (c) cannot be a neighbor face because the voxel
on the right hand side of the current voxel is on the positive layer. The faces in (d) are
possible neighbor faces, and are all disconnected faces. The missing faces are obviously
those white triangle faces. Since missing edges of the neighbor faces are all of type
"2’ whose bounding voxels are stored in the outway structure, the four faces in (d)
arc not stored. During face connection testing, the current missing edge is placed in
the open_edge_table. The bounding voxel coordinates were/will be read out when the

neighbor face was/ic the current face.

adjacent voxcl adjacent voxel

current voxel

current voxel missing squarc face

(a) One connccted face. (b) One disconnected face. Its bounding
voxel is the current neighbor.

adjacent voxel

current voxel
(c) These ncighbor face orientations are impossible.

missing triangle face

adjacent voxel

" currentvoxel . . .
missing triangle face

(d) These disconnected faces are not stored. Their bounding voxels are obvious.

Figure 6.9: Connected and disconnected faces for adjacent voxel 2 of the type_l face.

It leaves two faces, a connected face and a disconnected face shown in Figs. 6.9 (a)

to (b), stored in the table, (sce also Fig. 6.4(b)). The missing face in (b) is obviously
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the white square face, whose bounding voxel is the neighbor voxel.

For adjacent voxel 3, however, things are different. None of the nine faces ave
connected to the current face. Three cannot be a neighbor face. Hence it leaves six
disconnected faces, as shown in Fig. 6.4(c¢), and each has its own bounding voxels.
The first case in (c) is the same as the second one in (b) but traversing in the inverse
direction from the neighbor face to the current face. Since the bounding voxel in (b)
is the neighbor voxel, the bounding voxel in (¢) is the current voxel so that traversing
from either voxel will place missing edges in the same bounding voxel. The bounding
voxel for the second face in (c) is similarly defined by comparing with the disconnected
face in Fig. 6.5(b).

For the remaining four possible ncighbor faces in Fig. 6.4(c), the missing face is ob-
viously the white square face, and the missing edges are all of type "2 , whose hounding
voxel is the one, labeled bounding voxel 2, that shares the edge. But the cnvrent miss-
ing edge isn’t shared by bounding voxel 2. Only if the missing facce is located in another
bounding voxel, that could be the one labeled bounding voxel 1, could the current face
be connected to the neighbor face. Therefore, two bounding voxcls, bounding.voxel
and bounding voxel.%, are stored in the DIS_FACE structure, sce Iig. 6.3. To form a
square missing face, the edge which is shared by the two bounding voxels is also stored
in the edge_2 field of the DIS_FACE structure.

For adjacent voxel 4, all nine faces are possibly neighbor face, and none of them
is connected to the current face. The nine faces could have the same bounding voxel.
Therefore, there is only one bounding voxel stored in the ADJ_VOXEL structure, as shown

in Fig. 6.4(d). No disconnected face is stored.

6.5.2 Neighbor Faces for a Type_2 Face

Outway 1 Neighbor faces for outway 1 of a type.2 face is shown in IFig. 6.5. For
adjacent voxel 1 shown in Fig. 6.5(a), there exist nine faces whose face normal changes
less than 90 degrees from the current face. Among them, the six faces shown in Fig. 6.10

cannot be a neighbor face. It leaves three possible neighbor faces, one connected face
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and two disconnected faces, as shown in Fig. 6.5(a).

Figure 6.10: These neighbor face orientations are impossible.

For adjacent voxel 2, all nine faces are possible neighbor faces. Two connected
faces, three disconnected faces and their bounding voxel are shown in Fig. 6.5(b). One

bounding voxel for the remaining four faces is stored in the ADJ_VOXEL structure.

Outway 2 Neighbor faces for outway 2 of a type_2 face are shown in Fig. 6.6. Since
the current missing edge is always a type "2’ edge, one bounding voxel is stored in the

OUTWAY structure for all disconnected faces. Two connected faces are stored for adjacent

voxel 1.

6.5.3 Neighbor Faces for a Type_3 Face

Neighbor faces for outway 1 of a type_3 face are shown in Fig. 6.7. There is one connected
face for adjacent voxel 1. Since the current missing edge is always of type '2’, one

bounding voxel is stored in the OUTWAY structure for all disconnected faces.

6.6 The Open Cell Structure

During border face tracking, if a neighbor face is not connected to the current face, the
missing face’s bounding voxel and missing edges are obtained from the table, trans-
formed to the correct orientation, and saved in a data structure called open.cell.

The open cells are organized as a hash table, as shown in Fig. 6.11. Each open_cell
has a field, center, of type COORDINATES, recording a bounding voxel’s coordinates, an
integer, layer, indicating that the voxel is in the positive or negative layer, a linked list

of missing edges, and a pointer pointing to the next open cell in the bucket.
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The hash_table has 100 buckets. The hash function is a lincar combination of the
voxel coordinates, see the following, representing a group of 100 parallel planes of an
arbitrary orientation. Each plane corresponds to a bucket. If a bounding voxel center, or

the module of its coordinate combination, falls into one of the planes, it will be inserted

to the corresponding bucket.

int hash(COORDINATES center)
{

return((int) (center.x+2.0*center.y+3.5%center.z) % n_of_buckets);

}

A missing edge is saved in a structure called open_edge, or EDGE. The open_edge has
an integer, type, recording the type of the missing edge, which is either ’1* or 2% The
start_v and end_v are the missing edge’s start and end vertex coordinates. Missing

edges in a bounding voxel are organized as a linked list and sorted by edge vertices.

6.7 Testing Face Connection

This section discusses the procedure for face connection testing using the data structures
given in previous sections.

Recall that the border face tracking procedure in page 69 traverses horder voxel faces
by calling procedure Neighbor face(). The Neighbor_face() procedure, see page 80,
has two loops: the first loop searches the neighbors of outways; the second loop tests if
the current face is connected to the neighbor faces of cach outway by calling procedure
Face_connection(). The Face_connection() procedure is outlined in Iig. 6.12.

The procedure has four arguments: outway indicates the current ontway; index is
the current face’s loc_dir code; w points to the corresponding outway structure in the
table; and n points to a structure where neighbor coordinates, ctc., of the outway were
saved during border face tracking. The procedure works as follows: if a neighbor face of
the outway is connected to the current face, do nothing; clse save the current missing

edge in the missing face’s bounding voxel.
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#define n_of_buckets 100

typedef COORDINATES VERTEX;
typedef struct open_edge {
int type; /* 1’ or 2’
VERTEX start_v;
VERTEX end_v;
} EDGE;

typedef struct missing_edge {
EDGE edge;
MISSING_EDGE *next ;

} MISSING_EDGE;

typedef struct open_cell {

COORDINATES center;
int layer;
MISSING_EDGE *missing_edge;
OPEN_CELL *next;

} OPEN_CELL;

OPEN_CELL *hash_table[n_of_buckets];

*/

Figure 6.11: The bounding voxel, missing edges and the open cell definitions.

In line I, if no neighbor of the outway was found, the current missing edge is cal-

structure,
From lines 6 to 31, the for loop tests if a neighbor face, whose coordinates are
n->ix,n->iy,n->iz, is a connccted or disconnected face.
Line 7 initializes two flags: £_flag, connected face flag, and b_voxel flag, bounding

voxel flag, to NOTFOUND.

Lines 9 to 14 test if the neighbor face’s loc_dir code matches the loc_dir code of a
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culated and saved in the open_edge_table, and the procedure returns. If neighbors
do exist, in line 5, the pointer s points to the subset the neighbors belong to, and in

line 8, the n_tab points to the corresponding adjacent voxel of the subset in the table

connected face, which is pointed to by the n_tab->con_faces pointer. In line 10, the



void
Face

{

W N =

0o N o o;

10
11

13
14

15
16

17
18

19
20
21
22

_connection(int outway, unsigned char index, OUTWAY *w, NEIGHBOR *n)

int i,1l,f_flag,b_voxel_flag;

struct subsets *s;

ADJ_VOXEL *n_tab;

ADJ_FACE *af_tab;

DIS_FACE *df _tab;

COORDINATES center;

EDGE edge;

if (n_num[outway]==NULL){ /* if no neighbor for the outway */
calc_edge_coors{edge); /* calc the current missing edge */
add_to_o_e_table(edge); /* add the edge to open_edge_table*/
return;

}

s=w->subset+n_set [outway]; /* s: the subset structures */

for(i=0; i<n_num[outwayl; n++,i++){ /* for each neighbor face x/

f_flag=NOTFOUND; b_voxel_flag=NOTFOUND;
n_tab=s->adj_voxels+n_n[outway] [i];/* n_tab: the adjacent voxel*/

/* if the neighbor face is a connected face */
for(af_tab=n_tab->con_faces,1=0; i<n_tab->n_of_con_faces;
af_tab++,1++){
calc_face_loc_dir(n->con_faces->loc_dir,af_tab->loc_dir);
if (! ((grad_loc_dir[(int)n->ix] [(int)n->iy] [(int)n->iz] &
“MARK) ~ n->con_faces->loc_dir)){
f_flag=FOUND;
break; }
}
/* if the neighbor face is a disconnected face */
if(f_flag == NOTFOUND)
for(df_tab=n_tab->dis_faces,1=0; l<n_tab->n_of_dis_faces;
df _tab++,1++){
calc_face_loc_dir(n->dis_faces->loc_dir,df_tab->loc_dir);
if(1((grad_loc_dir[(int)n->ix] [(int)n->iy]l [(int)n->iz] &
“MARK) "~ n->dis_faces->loc_dir)){
b_voxel_flag = FOUND;
switch_voxel (&center,Zedge) ;
break; }
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/* if a bounding voxel is in the adj_voxel entry */

23 if(f_flag==NOTFOUND && b_voxel_flag==NOTFOUND)
24 if (n_tab->b_voxel_type) {

25 b_voxel_flag = FOUND;

26 switch_voxel(&center,&edge); }

/* if & bounding voxel is in the outway entry */

27 if (f_flag==NOTFOUND && b_voxel_flag==NOTFOUND)
28 if (w->bounding_voxel) find_bounding_voxel(w);
29 elsc {

30 calc_edge_coors(edge);

31 add_to_o_e_table(edge); }

} /* end of for */

Figure 6.12; The Face_connection() procedure.

function calc_face_loc_dir calculates a connected face’s loc_dir code by multiplying it
with the precomputed rotation matrix and savee the result in n->con_faces->loc.dir.
Line 11 tests if the neighbor face’s loc.dir code matches the connected face’s loc_dir
code. If the two match, the neighbor face is a connected face. The for loop breaks
and the procedure continues to test the next neighbor face. If the neighbor face doesn’t
match any one of the connected faces, there is a face missing. The rest of the procedure
tries to obtain the bounding voxel of the missing face.

From lines 16 to 22, the for loop tests if the neighbor face’s loc_dir code matches
one of the disconnected face’s loc_dir codes in the table. If so, in line 20, the bound-
ing voxel coordinates and the missing edge vertices are computed by calling function
switch_voxel(), and saved in the hash_table. The for loop breaks and the procedure
continues to test the next neighbor face.

If none of them match, line 24 tests if a bounding voxel exists in the table’s ADJ_VOXEL
structure. This bounding voxel is for those disconnected faces not stored in the table’s
DIS_FACE structures. If it exists, again the function switch_voxel() is called to com-

pute the the bounding voxel’s coordinates and the missing edge’s vertices. Otherwise,

105



line 28 tests if a bounding voxel exists in the table’s OUTWAY structure.  Until line
29, if a bounding voxel has not found, the current missing edge is appended to the
open_edge_table.

The function switch_voxel(), see the following, does basically three things, First,
the bounding voxel coordinates are read from the table, trarsformed by the precom-
puted rotation matrix, and saved in a structure center. Next, the current missing edge
vertices are read from the BASIC_FACE structure, multiplicd by the matrix in the table
entry, and saved in a structurc edge. Then the function insert_to_hash_table() is
called to insert the bounding voxel coordinates and the current missing edge vertices in
the hash_table.

void switch_voxel(COORDINATES *center,EDGE *edge)

{
calc_bounding_voxel_coors(center);
calc_edge_coors(edge);
if (insert_to_hash_.table(center,edge));
else add_to_o_e_table(edge);

}

The function insert_to_hash_table(), sce the following, works as follows. I the
bounding voxel is already in the hash table, the edge is inserted in the bounding voxels
missing edge list. Otherwise, both the bounding voxel and the edge are inserted in the
hash_table. It is known that hashing has, on average, constant time for a membership
test, an insert or delete operation.

OPEN_CELL *insert_to_hash_table(COORDINATES *center, EDGE *edge)
{

int index;

OPEN_CELL *0C;

index = hash(center);
for(oc=hash_table[index]; oc!=NULL; oc=oc->next){
if (same_box_center) {
if(insert_edge(edge,oc,INSERT)) return(oc);
else return(NULL); }
}

oc = insert_to_new_box(center,edge);
return(oc);
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As discussed, calling Face_connection() results in two tables: the hash table and
the open edge table. When the border face tracking algorithm stops, missing edges are
cither in the hash_table, or in the open_edge_table if their bounding voxels haven’t
been found. In other words, the procedure Face_connection() guarantees every edge
appears in pairs, both forward and backward copy, no matter whether the current face

is connected to neighbor faces or not.
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Chapter 7
The Close Surface Algorithm

As discussed in the previous chapter, when the border face tracking algorithm stops,
border voxel faces have been placed in the display table, and missing edges and their
bounding voxels have been placed in the hash_table, or in the open_edge table if
their bounding voxels haven’t been found. Next, the close surface algorithm is called to
replace missing edges with external voxel faces to close the surface. This chapter will
discuss the close surface algorithm and data structures.

As shown below, the close surface algorithm has two tasks. It calls procedure
add_oe_to.hash_table() to find bounding voxels for the missing edges in the open
edge table, and adds the missing edges to the hash table. It then calls procedure
Fill.edges() to replace the missing edges in the hash table with four types of external

voxel faces.
void Close_surface(void)

{
add_oe_to_hash_table();

Fill_edges();

A open_edge_table entry has two ficlds: missing edge vertices, and the center

coordinates of its current voxel.

#define n_of_open_edges 500
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struct open_edge_cell {
EDGE edge;
COORDINATES center;

} open_edge_table[n_of_open_edges];

‘T'he procedure add.oe_to_hash_table() is shown below. For every missing edge
in the open edge table, it tries to find a bounding voxel already in the hash table for
it. Missing edges in the open edge table are all type '1’ edges. The bounding voxel
of a type ’1" edge could be one of the four voxels that share the edge. The procedure
tests the four voxels, with the missing edge’s current voxel the last, checking if any
is contained in the hash_table. If a bounding voxel exists and the missing edge is
successfully added to the bounding voxel, the table entry of the missing edge is erased.
When the add_oe_to_hash_table() returns, if every missing edge has been added to

the hash table, the open_edge_table should be empty.

void add_oe_to_hash_table(void)

{
struct open_edge_cell *0@Q;
for(oe=oe_list->first; oe<oe_list->last; oe++){
/* if is one of the three voxels sharing the edge */
if(add_edge_to_hash_table(oe->edge,oe->center))
zlse /* if is the current voxel */
if (add_oe_to_bounding_voxel(oe->center,oe->edge))
else continue;
/* erase an open_edge table entry */
*0e = x(oe_list->last-1);
oe_list->last--;
oe--;
}
}

For every bounding voxel in the hash table, the Fill_edges() procedure fills edges
to make a missing edge list a closed edge ring. The missing edge ring is then replaced
by external voxel faces, that are added to a table called o_f_table for displaying, and

removed from the bounding voxel. If removing a missing edge ring results in an empty
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missing edge list, the bounding voxel itself is deleted from the hash table. When the
procedure Fill_ edges() returns, if missing edges in all bounding voxels have been
replaced by external voxel faces, the hash table should be cmpty.

After Close.surface() is called, if both the open_edge_table and the hash_table
arc empty, the surface is closed.

The data structures and the algorithm for replacing missing edges in the hash table

with external voxel faces are discussed in the following sections.

7.1 The Trie Structure

Recall that the extended cuberille model has four types of external voxel faces: a square,
a rectangle, a triangle, and an asymmetric triangular face, as shown in Fig. 3.7, page 42.
For any external voxel face, there arc only two types of edges: type '17 or type "2°. Since
edges are directed, a voxel face can be characterized by a ring of edge types, or a list
of numbers. For example, a square voxel face can be listed as 1111, because it has four
type '1’ edges. A triangular voxel face can be listed as 222, because it has three type
’2’ edges. Since the other two voxel faces are not symmetric, their edge type rings are
not unique. But a list of edge types will uniquely specify a voxel face. For example,
either 1212 or 2121 specifies a rectangular voxel face, while 121, 211, or 112 specifies an
asymmetric triangular face.

The missing edges in a bounding voxel are therefore directed and of two types, and a
list of edge types corresponds to voxel faces. There are a few possible lists of missing edge
types in a bounding voxel. The possible edge type lists are stored in a data structure
called trie [AHU83] as shown in Fig. 7.1.

A trie node has three pointers: a left node pointer corresponding to an edge type
’1’, a right node pointer corresponding to an edge type '2’, and a code pointer. The
type definition for a trie node is given in the following, where trie is a global pointer

initialized to point to the root node.
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Figure 7.1: The trie for the existing edge type lists.

typedef struct trie_node {
NODE *node[2] ;
void (*procedure) () ;

} NODE =trie;

As shown in Fig. 7.1, a path from the root node to a gray node corresponds to a list
of edge types. The code pointer in a gray node points to a procedure that converts the
missing edge list to voxel faces, whereas the code pointer in a white node is null. Since
some edge type lists correspond to the same voxel faces, their code pointers point to the
same procedure. The procedures for initializing the trie, init_trie(), inserting a node

to the trie, ete., are given in Appendix A.1.

7.2 Lists of Edge Types

There are a total of 31 lists of edge types, therefore 31 gray nodes, in the trie. Some of
them are circular shiftings of the same edge ring. For example, 112, 121, and 211 are
circular shifts of a triangular face edge ring, and all correspond to the triangle. The 31
lists of edge types correspond to nine different edge type rings, therefore there are nine

procedures, see below, converting an edge type list to voxel faces.
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void init_procedures(void)

{
procedures[0] = square_face;
procedures1] = triangle_face;
procedures[2] = face_1122;
procedures[3] = face_1212;
procedures[4] = face_11112;
procedures[5] = face_eight_1i;
procedures[6] = face_six_1;
procedures[7] = face_six_1_2;
procedures[8] = face_121112;

}

The simple ones are edge type 1111, that is a square face, and edge types 112,
121, 211, and 222, that correspond to a triangular face. Tor the edge type 1111,
the code pointer in the gray node points to a procedure called square face(). The
square_face(), sce the following, takes four vertices of a square face, computes the
face normal, and adds the face to the of_table for displaying, then empties the miss-
ing edge list.

void square_face(OPEN_CELL *oc)

{
MISSING_EDGE *mp ;
VECTOR nor;

mp = oc->missing_edge;
get_square_face_vertices(mp);
get_square_face_normal(nor);
add_to_o_f_table(oc->center,nor,SQUARE);
oc->missing_edge = NULL;

Similarly, the code pointers in the gray nodes of paths 112, 121, 211, and 222 point
to a procedure, triangle face(), that replaces the edge rings with a triangle.

For other edge types, things arc little more complicated. Since there are more edges, a
list of edge types usually corresponds to more than one voxel face, and may have different
face configurations. For example, six type '1" edges can formn either two squares or four
triangles, as shown in Fig 7.2(a). But the two cases can be distinguished by testing if

there are three connected missing edges in one plane,
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(b) Eight type "1’ edges can be converted to
three square voxel faces, depending on which
layer the bouding voxel is located in.

inside outside

(a) Two different situations for six type '1’ edges.

Figure 7.2: Six type ’1’ edges and eight type '1’ edges.

Another example is a ring of eight type '1’ edges, which can be replaced by three
square voxel faces, as shown in Fig 7.2(b). There are two different situations, depending
on whether the bounding voxel is inside or outside the surface. The two situations can
be distinguished by testing the sign of an integer layer in the current bounding voxel
structure, as shown in the following. If layer is positive and a surface is defined as the

negative layer of border voxels, the bounding voxel is outside the surface. Otherwise

the bounding voxel is inside.

if(oc->layer > 0) i_o = outside;
else i_o = inside;

The nine procedures are listcd in Appendix A.2. No further discussion will be pre-

sented.

7.3 The Matching Algorithm

The algorithm for converting a missing edge list to voxel faces works as follows. For
cvery bounding voxel in the hash table, the algorithm takes the list of missing edge
types in the bounding voxel to traverse the trie by calling procedure Match_edges(),
see Iig. 7.3 line 3. Once the traversal stops at a gray node so that the edge list matches
the path, the procedure, which is pointed to by the gray node code pointer, is called to
convert the missing edge list to voxel faces, and to add the voxel faces to the o_f_table.

Then the bounding voxel is deleted from the hash table.
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void Fill_edges(void)

{
int i;
MISSING_EDGE *mp ;
OPEN_CELL *0C,*pre;

for(i=0; i<n_of_buckets; i++)
for(pre=oc=hash_table[i]; oc != NULL; oc=oc->next){
if (Match_edges(oc,i,ADD) ){/* if edges matches a path  */
if (oc==hash_table[i]){ /* delete the bounding voxel */
hash_table[il=oc->next;
pre=hash_table[i];
}else pre->next=oc->next;
}else pre=oc;

Figure 7.3: The Fill_edges() procedure.

While the procedure Match.edges() matches a missing edge list with a trie path,

the missing edges might not be a closed cdge ring. An example is shown in Fig. 7.4.

The missing edges in the left bounding voxel is short a type '1” edge to form a closed

edge ring, which is corresponding to a triangle. Two type ’1” edges arc absent from the

middle bounding voxel to form a square voxel face. One type '’ edge is absent from the

right bounding voxel to form a square voxel face. Apparently, if there is an edge absent

from a bounding voxel, its backward copy must be also absent from another bounding

voxel if the surface is eventually closed.

Y
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(a) Three bounding voxels. (b) Their missing edges. (c) Edges inserted in pairs.

Figure 7.4: Insert edges to missing cdge list in pairs.

Therefore, if there is an edge absent during matching, the Match_edges () procedure
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inserts an edge to the missing edge list. It also inserts a backward copy of the edge
to another bounding voxel. In other words, edges are always inserted in pairs. The
procedure is given in Fig 7.5. Its argument, oc, is a pointer pointing to an open_cell
structuvre in the hash table.

"The for loop of line 3 traverses a trie path and matches the missing edge list. When
the matching starts, the pointer mp points to the first missing edge in the list, and tn is
a node pointer in the trie root node whose index matches the missing edge type. In line
4 the function match.vertex() is called to match the missing edge’s end vertex with
the next missing edge’s start vertex. The return value is assigned to a variable flag.

The function match_vertex() may rcturn four values. If it returns 0, the current
missing edge is connected to the next one. The pointer mp moves to the next missing
edge in the list, and the node pointer tn moves to a child node whose index matches
the next missing edge type. The for loop continues.

If the function returns 1 or 2, however, there is an absence of type ’1’ or type '2’
edge between the current missing edge and the next one. In line 7, the backward copy
of the edge is inserted in the hash table by calling add_edge_to_hash_table(), and in
line 8, the forward copy is inserted in the missing edge list between the current missing
edge and the next one. The for loop continues.

If the function returns neither 0, 1 nor 2, there are at least two edges lacking between
the current missing edge and the next one. The missing edge list cannot be converted
to voxel faces al this time. The procedure Fill_edges() returns.

When the for loop of line 3 stops, the pointer mp points to the last edge in the
missing edge list.

In line 11, the procedure matches the end vertex of the last edge with the start vertex
of the first edge by calling function match_vertex(). If the function returns 0, the two
arc the same vertex. The missing edge list is now a closed edge ring and matches a trie
path. In line 12, the procedure pointed to by the code pointer in the path’s gray node
is called to replace ihe missing edge ring with voxel faces.

If the function returns 1 or 2, an edge of type '1’ or type "2’ is absent between the
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int Match_edges(OPEN_CELL *oc)

{
int flag;
NODE *tn;
VERTEX start_v;

MISSING_EDGE *mp, *pre;

mp = oc->missing. edge;
start_v = mp->edge.start_v;

/* match a missing edge list with a trie path */

for(tn=trie->node[mp->edge.type-’'1’]; mp->next!=NULL && tn!=NULL;
pre=mp,mp=mp->next,tn=tn->node [mp->edge.type-’1’]) {

© 0 ~N®»

11
12
13
14
15
16
17
18
19

Figure 7.5: The Match_edges() procedure.

flag = match_vertex(mp->edge.end_v,mp->next->edge.start_v);
if(flag == 0) continue;
else if(flag == 1 || flag == 2) {
add_edge_to_hash_table(re_edge,oc->center);
insert_edge_to_mp_next(oc,mp,pre);}
else return(0);
}
/* match the end vertex of the edge list with the start vertex */
if((flag=match_vertex(mp->edge.end_v,start_v)) ==
(*(tn->procedure)) (oc);
return(1);}
else(flag == 1 || flag == 2) {
add_edge_to_hash_table(re_edge,oc-)center);
insert_edge_to_mp_next(oc,mp,pre);
(*(tn->node[flag-1]->procedure)) (oc);
return(1); }
else return(0);
}
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last missing edge and the first one. Similarly, in lines 15 and 16, a pair of edges are
inserted and a procedure is called to replace the missing edge ring with voxel faces.

If the function returns neither 1, 2 nor 0, the missing edge list cannot match a trie
path at thie time, and the procedure Fill_edges() returns.

Because of cross insertion of edges, some missing edge lists may not be a close

edge ring after the first time the Fill_edges() is called. Therefore, the Fill.edges()

procedure is called several times.

7.4 Complexity Analysis

The time to traversc a trie path and to match a missing edge list is proportional to the
path length to a gray node. The average path length to a gray node in the trie is about
5.3. Hence the time complexity of the close surface algorithm is O(kny,), where ny, is
the number of bounding voxels in the hash table and the constant k is about 5.3. The
number of bounding vexels depends on the complexity of the surface. Experimental
results on test data and medical data have shown that the ratio of the number of border
voxels to the number of bounding voxels is ranged from 25.3 to 1.6. Because the number
of bounding voxels is less than the number of the border voxels, it expects that the close
surface algorithm is faster than the border face tracking algorithm. In other words, the

time complexity of the surface tracking algorithm depends on the border face tracking.

7.5 Conclusion of Surface Closure

The surface tracking algorithm guarantees every edge of a surface appears in a pair, a
forward copy and a backward copy, no matter if the surface is closed or not. This can
be scen from the Face_connection() and the Match_edge() procedures.

During face connection testing, if the current face is connected to a neighbor face,
the current edge appears twice, once in the current face and once in the neighbor face. If

the current face is not connected to the neighbor face, the current edge is in the current
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face, the current missing edge is saved in either the hash table or the open edge table.
During matching missing edge lists with trie paths, edges are always inserted in paires. If
a missing edge list matches a trie path, the list will be removed from the hash table and
replaced with voxel faces. In other words, if a backward copy of an edge is acquired by a
face, it will be deleted from the hash table, for it is shared by two faces. The conclusion

follows:

Conclusion 7.1 After the close surface algorithm is called, +f the open edge table and

the hash table are both emply, the surface is closed.

If Theory 5.1 holds, i.e., if there exist an edge connected neighbor for every ontway
of a border voxel face, the surface can be closed after calling the close surface algorithm.
This is because all necessary information to close a surface: the connected faces, discon-
nected faces and bounding voxels is stored in the table, and there exist a small number
of possible missing edge list in a bounding voxel.

Unfortunately, due to noise and other reasons, a neighbor of an outway doesn’t
always exist. The surface therefore can’t always be closed. A simple solution to solve
this problem is to search more voxels further down the outway. In other words, extending
an adjacent voxel set to include more voxels. Some examples are shown in the next

section.
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7.6 Extension of Adjacent Voxels

A typical example is to extend outway 1 of a type.2 face to include two more adjacent

voxels shown in Fig. 7.6.

adjacent voxel 7
adjacent voxel 6

outway |

current_voxel

Figure 7.6: I'wo more adjacent voxels for outway 1 of a type.2 face.

The two voxels are neither face, edge nor vertex connected to the current voxel. But
these face patierns happen quite often. It is reasonable to include the two voxels in the
adjacent voxel set.

Similar extensions were made for most outways of the three face primitives used in

the surface tracking algorithm. No further details will be given here.
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Chapter 8

Experimental Results of the

Surface Tracking

This chapter gives experimental results of the surface tracking algorithm on medical

data. The performance results of call graph profile is given in Section 8.2,

8.1 Experimental Results

Fig. 8.1 shows the surface of a piece of medical object. The data size of the picce is
208 x 208 x 26, resulting from lincarly interpolating 6 CT slices with 5 in between every

pair. The following gives the code segment for interpolating 5 slices between slices & — 1

and k.
#define R_LEN 208 /* row size */
#define C_LEN 208 /* column size */

short n_of_inter = 6;
unsigned char buffer[R_LEN] [C_LEN]; /* slice buffer */
unsigned char data[Z_LEN] [R_LEN][C_LEN]; /* data buffer */

for(l=1; l<n_of_inter; 1l++){ /* interpolate 5 slices */
for(i=0; i<C_LEN; i++)
for(j=0; j<R_LEN; j++)
datalk-1+1][i]1[j] =
(datalk-1][i] [j1*(n_of _inter-1)+buffer[i] [j]1*1)/n_of_inter;
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)
k += n_of_inter-1;
for(i=0; i<R_LEN; i++) /* copy slice k */
for(j=0; j<C_LEN; j++)
data(k] [i] [j] = buffer[il[j];
k++;

Figure 8.1: The surface of a piece of medical object.

The gray values of the data set, originally ranged from -1024 to 1660, were linerly
mapped to the range of 0 to 255. The object has a brighter color than the background,
therefore, its border is the negative layer of voxels.

Executing the surface tracking algorithm on the piece results in 17,742 border voxels,
and total of 26,409 voxel faces after the close surface algorithm was called. The image
was displayed on a Silicon Graphics Iris station 4D/35. Display of 26409 faces takes
only seconds.

Fig. 8.3 shows the surface of a skull viewed from three different angles. The surface
was reconstructed from 14 CT slices. The 14 CT slices, shown in Fig. 8.2, were linearly
interpolated to produce a data set of 208 x 208 x 79 voxels. Executing the surface
tracking algorithm on the data results in 84,708 border voxels, and total of 132,022
voxel faces on the surface. The image was displyed on a Silicon Graphics Iris station

4D/35.



Figure 8.2: 12 out of 14 C'T slices.

8.2 Performance Results

The following lists the call graph profile, the results of running gprof, of the surface
tracking algorithm on the data of Fig. 8.1. The call profile was cut to show only those
procedures discussed in previous chapters. The first 22 procedures that spend most of
the execution time are listed in Appendix B.

The first column in the call graph is the index of a procedure. The second column
is the time percentage used by the procedure and its descendents. The self colmnn
shows the seconds of time spent in the procedure itsell. The descendents colimn shows
the seconds of time spent in the descendents of the procedure. The called+self gives
the number of times the procedure was called and the nnmber of times the procedure
called itself recursively. The name is the name of a procedure. The call graph is sorted

by time, with the most time consuming procedure on top.



Figure 8.3: The surface of a skull from different view points.
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index Ytime self descendents called+self
called/total
0.00 54.06 1/1
[2] 95.3 0.00 54.06 1
0.53 38.39 1/1
8.25 2.59 1/1
0.00 4.20 1/1
0.00 0.09 1/1
0.00 0.00 1/1
0.53 38.39 1/1
(4] 68.6 0.53 38.39 1
1.85 36.39 17742/17743
0.13 0.00 17743/17743
0.01 0.00 1/1
0.00 0.00 1/17743
1.85 36.39 17742/17743
[s] 67.4 1.85 36.40 17743
4.88 16.17 70583/70583
4.52 4.38 70579/70579
0.33 2.62 158909/171371
1.31 1.59 158900/159373
4.88 16.17 70583/70583
(6] 37.1 4.88 16.17 70583
4.87 0.00 79581/79582
4.66 0.00 198551/319683
0.41 2.94 70583/70583
2.85 0.09 70583/141173
0.08 0.26 17742/17742
4.52 4.98 T70579/70579

called/total
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parents

name index

children

_main [3]
_Surface_tracking [2]
_Border_face_tracking [4]
_read_all_data [7]
_close_surface [12]
_make_table [53]
_init_lists [103]

_Surface_tracking [2]
_Border_face_tracking [4]
_neighbor_face [5]
_remove_q_head [49]

_span_start_face [86]

_span_start_face [86]

_Border_face_tracking [4]
_neighbor_face [5]

_search_neighbor [6]

_face_connection [8]

-calloc [16]

_free [18]

_neighbor_face [5]
_search_neighbor [6]
.cross_zero [11]
_transform_3d [9]
.untranslate_matrix [15]
-copy_matrix [10]
_append_queue [34]

_neighbor_face [5]



[8] 16.7 4.52
2.85

.00
.00
.09
.01

[12] 7.4

O O O O

.98

0.00

O Wb Db

.03

.20
.20
.04
.07

70579
121132/319683
14447/14447

1/1

i/1
1/1

_face_connection [8]
_transform_3d [9]
_insert_to_hash_table[22]

_Surface_tracking [2]
.close_surface [12]

_£ill_edges [13]

_add_oce_to_hash_table[54]

Among the five procedures of the surface tracking algorithm, see index [2], the

Border_face.tracking used 0.53 + 38.39 = 38.92 seconds, accounted for 68.6% of the

total time. Its descendent, the neighbor_face, used 1.85 4+ 36.39 = 38.24 seconds, ac-

counted for 67.4% of the total time. In turn, 21.05 seconds were used in its descendent

searchneighbor, sce index [5], that accounts for 37.1% of the total time, and 9.5 sec-

onds, 16.7%, were used in its descendent face.connection. While the close_surface

algorithm used only 4.2 seconds, 7.4% of the total time. The result verifies the per-

formance analysis in page 117, and concludes that the time complexity of the surface

tracking algorithm depends on the border face tracking.



Chapter 9

Surface Smoothing

Since voxels are very small, the shape and orientation of voxel faces are indiscriminat-
ing. But if a zoom-in view is required, the surface appears to be rough. Under this
circumstance, the surface smoothing algorithm can be used to smooth a surface.

A border face normal can be adjusted according to its neighbor face’s orientation
during border face tracking. Recall that the normal of a border voxel face is recorded
in its loc_dir code, and the tracking algorithm traverses the border face’s outways. If a
neighbor of an outway exists, the possible neighbor face’s loc_dir codes are read from
the table. If the neighbor face is a connected face, nothing needs to be changed. If the
neighbor face is a disconnected face, the current face’s loc_dir code might need to be
changed to make smoother connection. Some examples are shown in Fig. 9.1.

A face normal is recorded in the lower six bits of its loc_dir code. Six bit masks, NZ,
Z, NY, Y, NX, X, is used to set the six bits. For example, if a face has normal =, uie
statement loc_dir=X will set bit 0 of its loc_dir code to 1. If a face normal is % -- z , the
statement loc_dir=Y|INZ will set bit 2 to 1 and bit 5 to 1. Obviously, bit, combination
X and NX shouldn’t appear in the same loc_dir code. Neither Y and NY, Z and NZ.

Fig. 9.1 shows the adjustment of the current face’s normal. This can be implemented
by including a field smooth loc_dir, initialized to the desired normal component, in
the disconnected face structure, see Fig. 6.3 page 92. For the first case in Fig. 9.1,

dis_faces->smooth loc_dir is initialed to NZ. During tracking, this information is read
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neighbor face

ncighbor face

— ~N —
current face loc_dir: X changed to XINZ current face: X changed to: XINZ
neighbor face neighbore face
£
_— ~ —_—
current face: XIZ changed to: XINYIZ current face: XI1Z changed to: XIYIZ

Figure 9.1: The current face normal is adjusted to connect to the neighbor face.

out, transformed, and saved in a global variable smooth_loc.dir. The following code

segment shows the process of one outway:

if(f_flag[outway] == NOTFOUND){
clear(smooth_loc_dir);

/* if the neighbor is a disconnected face */
for(df_tab=n_tab->dis_faces,1=0; 1l<n_tab->n_of_dis_faces;
df _tab++,1+4+){

calc_face_loc_dir(n->dis_faces->loc_dir,df_tab->loc_dir);

/* if the neighbor face matches the disconnected face loc_dir */
if (! ((grad_loc_dir[(int)n->ix][(int)n->iy] [(int)n->iz] &
“MARK) - n->dis_faces->loc_dir)) {
if (df _tab->smooth_loc_dir != NULL){
/* calc the desired normal component */
calc_face_loc_dir(n->dis_faces->smooth_loc_dir,
df_tab->smooth_loc_dir);
/* save it in a global variable */
smooth_loc_dir |= n->dis_faces->smooth_loc_dir;
}

break;

The above code segment is included in a procedure face_smooth(), which adjusts
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the current face’s normal based on neighbor face’s loc.dir code. The surface smoothing
procedure is shown below.

The argument index is the current face’s loc.dir code. The first 7 lines do exactly
thesanu:astheighboriace()proaxhwc:aHouﬂernenuny,hﬂﬁaﬁzoﬂags,mulmvwch

neighbor voxels of each outway.

jint smooth_surface(unsigned char index)

{
int i;
OUTWAY *W;
NEIGHBOR *n,kn_w;
1 f = table[index] .face;
/* allocate memory for neighbors, initialize flags */
2 n_w = (NEIGHBOR *)calloc(f-)n_of_ways*4,sizeof(NEIGHBOR));
3 for(n=n_w,i=0; i<f->n_of_ways; n++,i++) {
4 init_neighbors_and_flags;
}

/* search every outway of the current voxel for neighbors */
5 for(n=n_w,w=f->outways,i=0; i<f->n_of_ways; wHt,n+=4,i++){

6 Search_neighbor(i,index,w,n);
7 }
/* adjust the normal components of the current face */
8 for(n=n_w,w=f->outways,i=0; i<f->n_of_ways; wt+,n+=4,i++){
9 face_smooth(i,index,w,n);
i0 }
11 if (smooth_loc_dir) { /* if the smooth_loc_dir adjusted */
/* if both X and NX were set, clear the two bits */

12 if (smooth_loc_dir & X &% smooth_loc_dir & NX)
i3 smooth_loc_dir &= “X; smooth_loc_dir &= “NX;
14 if (smooth_loc_dir & Y && smooth_loc_dir & NY)
15 smooth_loc_dir &= “Y; smooth_loc_dir &= "NY;
16 if (smooth_loc_dir & Z && smooth_loc_.dir & NZ)
17 smooth_loc_dir &= “Z; smooth_loc.dir &= “NZ;

}

/* adjust the current face’s loc_dir */
18 if (smooth_loc_dir) grad_loc_dir[x][y]l([z] |= smooth_loc_dir;

}
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The for loop of line 8 adjusts the normal of the current face by calling func-
tion face.smooth, that sets the corresponding bits of the smooth loc_dir variable
If smooth_.loc.dir was set, starting from line 12, the if statement tests if both bit
X and NX were set. If so, both bits are cleared. Bits Y and NY, Z and NZ are also
tested. Finally, in line 18, the smooth_loc.dir is set to the current voxel’s loc_dir code,
grad.loc.dir[x] [y][z].

The surface smooth algorithm has raised some problems. First, change loc.dir code in
one outway may break face connection in other outways. Therefore, the face connection
cannot be tested at this local stage, because there is no guarantee that an edge is shared
by two faces. It is not possible to retrack border voxel faces either, because all border
voxels have been marked after the smooth surface algorithm is called. Second, change
of loc_dir code results in a few border voxels that are no longer satisfly condition (4.26),
and are therefore not on a border. As a consequence, the surface smooth algorithm
operates alone. It revises the grad_loc.dir array, and writes it to a disk file. The
surface tracking algorithm can read in ecither the original grad_loc_dir array or the

revised one to start tracking.



Chapter 10

Conclusion

10.1 Summary

This thesis is concerned with the conversion of volumetric data to a surface model for
display purposes. The thesis has presented and implemented an extended cuberille
model, a 3D border identification method, a surface tracking algorithm, and a surface
closure algorithm.

The 3D edge elements are gradients, and orientations of gradients are quantized
to 26 directions. The edge elements arc converted to the extended cuberille model by
loc.dir codes. The model has four types of voxels so that each voxel has a face whose
orientation is compatible with onc of the 26 gradient directions. This face is termed a
face primitive. There are also four types of external voxel faces, hence a surface in the
extended cuberille consists of four types of faces.

Merits of the three representation schemes: space occupancy enumeration, octree,
and surface representation by the extended cuberille model were briefly discussed. Anal-
ysis has shown that the octree representation is more concise than that in the cuberille
model.

The three dimensional border identification method is based on sign of the second
derivative of intensity change. For a bright object surrounded by a dark background,

the condition for a voxel being on a border is that the second derivative is negative and
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changes sign for neighbors in the gradient direction. There exists exactly one layer of
voxels that satisfies the condition, so the multiple layer problem doesn’t occur.

The surface tracking algorithm consists of three algorithms: border face tracking,
face connection testing, and the surface closure algorithm.

The border face tracking algorithm traverses outways instead of 26 face, edge or
vertex connected voxels. Adjacent voxels for every outway of every face primitive have
been defined according to the face orientation. The definition results in less than 26
adjacent voxels. Moreover, adjacent voxels of an outway are further split to disjoint
subsets. The algorithm is therefore faster than a breadth first search.

Since a voxel is converted to onc face primitive, many border voxel faces are not
connected. During border face tracking, the algorithm tests face connection and saves
the disconnected face information for the surface closure algorithm to close the surface.

The Algorithms were tested on medical data. The time complexity analysis and the
execution call graph profile have shown that the border face tracking algorithm is most
time consuming among the three, accounting for 37.2% of total execution time.

The surface tracking algorithm starts with three 3D arrays - the loc_dir codes, the
gradient magnitudes, and the w values. Combining the memory consumption, it is a
volume based algorithm after all. But once the border voxel faces of a surface have be
saved in a display table, all subsequent operations such as display, rotation and scaling,
etc., work on border voxel faces. The time complexity is therefore an order of the

number of the border vox« is of a displayed object.

10.2 Comparison with Other Surface Models

The extended cuberiile model in this thesis will be compared with the cuberille model,

the marching cubes, and other algorithms in the following aspects: completeness, rep-

resentation schemes, identification method, time complexity, and surface smoothness.
The extended cuberille model and the triangle model of marching cubes are informa-

tion complete. But the surface tracking algorithm in this thesis tests surface closure, so

131



it is more complicated than marching cubes. The cuberille model is ambiguous in some
sense, because an edge could be shared by four faces. In some cases, there is no way to
differentiate the inside from the outside of a surface. The surface tracking algorithm by
[AFH81, GU89] works on the cuberille model. There is a theoretical difficulty to prove
a surface closure. The other two 3D gradient based algorithms by [CR89]) and [SZ87]
did not discuss the surface modeling problem.

In the cuberille and the extended cuberille model, an object can easily be represented
by an octree because of the regularity of voxels. It is known that the octree is the best
data structure for set operations, which is merely a tree traversal. Set operations in
the marching cubes, however, are polygon clipping of two surfaces, that is a quadratic
algorithm.

There are basically two ways to identily a surface: by thresholding or by gradients.
Thresholding has limitations. Even the optimal thresholding [GW87] also has problems,
where the thresholded boundary from subimages may not he connected. Identification
by gradients or zero-crossings is more general. Especially in 3D display, it is nccessary
to know face normals for shading. The surface tracking algorithm by [AFII8I, GU8Y]
and the marching cubes by [LC87] both use thresholding. Compared with the zero-
crossing based identification method in this thesis, the identification of those algorithms
is restricted.

The time complexity of surface tracking depends on the number of voxels on a
surface. Since surface size is usually less than data size, surface tracking is faster than
volumetric data scanning. Marching cubes is a volume scanning algorithm. The surface
tracking in this thesis traverses one face per vorder voxel. Comparing with the one
by [AFH81, GU89] which traverses six faces of a border voxel, the surface tracking
algorithm in this thesis is faster. However, it needs testing surface closure.

The cuberille model has one face primitive and 6 face orientation.. The extended
cuberille model has four face primitives and 26 face orientations. The triangle model of
marching cubes has 14 face patterns and much more face orientations. Therefore, the

extended cuberille model constructs a smoother surface than the cuberiile model, while
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the marching cubes constructs the smoothest surface. However, surface smoothness is

not a big issue, since Gouround shading can generate a smooth shaded display for a

surface model with much less face orientations.

10.3 Future Research

There are some problems unsolved. In Chapter 3, merits of three representation schemes:
space occupancy enumeration, octree, and surface representation by the extended cu-
berille model have been briefly discussed. Identifying an object and converting it to a
surface representation has been implemented in the thesis. But octree related algorithms
such as octree generation algorithm, etc., have not been discussed.

In Chapter 4, the Gaussian filters of o7 = 2.0 and o, = 0.5 for 26 gradient vectors
have been designed. But how to chose o values so that the Assumption 5.1 will hold
has not been discussed.

In Chapter 5 Section 5.7, the correctness of the border face tracking algorithm has
been shown under Theory 5.1. For situations where Theory 5.1 doesn’t hold, tracking
adjacent voxels of an outway has been extended to one or two more steps, see Chapter 7
Scction 7.6. But if there exist big holes on a border, how to close the surface has not
been considered.

All these issues could be future research topics, and it is expected that some of these

topics could be quite difficult.
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Appendix A

Procedures of the Close Surface

Algorithm

A.1 Procedures of Trie Initialization, Insertion

#include <stdio.h>
#include <math.h>
#include “trie.h"

FILE *topen(), *fp;

int getwoxd(void)

{
int i,c;
char *y;

wordlen=0;

for(w=word,i=0; i<MAXLEN; i++) *u++ = O;

w = word;

if((c = *u++ = getc(fp)) != 1’ && c != '2’) return(c);
wordlen++;

while((c = *wt++ = getc(fp)) == 1’ || ¢ == ’2?) wordlent+;
*(w-1) =’ 7;

return(’L’);

}
int codename(void)
{
int i,c;
char *w,code [MAXLEN] ;

for(w=code,i=0; i<MAXLEN; i++) #w++ = O;
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while((c = getc(fp)) == * * || ¢ == ’\t’ || ¢ == ’\n’);

¥ = code;

ky++ = C;

while((c = sw++ = getc(fp)) != ’ > &k ¢ != *\t’ && c != ’\n’);
#(w-1) = 73
return(atoi(code));

}

NODE #*makenode(void)

{
NODE *tn;

tn=(NODE *)calloc(1, sizeof(NODE));
return(tn);

}

insert_to_trie(NODE *tnode,int i,void (*procedure)())

{

int index;
NODE *tn;

it(word[i] == * *){
tnode->procedure = procedure;
}else {
index = word[i] -~ ’1’;
if(tnode->node[index] == NULL){
tnode->node[index] = makenode();

}

insert_to_trie(tnode~>nodelindex],i+1,procedure);

}

print_trie(NODE *tnode,int i)
{
if(tnode->node[0] != NULL) {
word[i] = *1’;
print_trie(cnode->node[0],i+1);
}
if((tnode->procedure) != NULL) {
word[i] = ’#’;
fputs(word,stdout);
putchar(’ ’);
}
if(tnode->node[1] '= NULL) {
word[i] = *2’;
print_trie(tnode->node[1],i+1);
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word[i] = 0;

}
#define len 20
void (*procedures[lenl)();

void init_procedures(void)

{
extern void square_face();
extern void triangle_face();
extern void face_1122();
extern void face_1212();
extern void face_11112();
extern void face_eight_1();
extern void face_six_1();
extern void face_six_1_2();
extern void face_121112();
procedures[0] = square_face;
procedures[1] = triangle_face;
proceduresf2] = face_1122;
procedures[3] = face_1212;
procedures{4] = face_11112;
procedures{5] = face_eight_1;
procedures[6] = face_six_1;
procedures[7] = face_six_1_2;
procedures[8] = face_121112;

}

NODE *init_trie(void)

{
int c;
NODE *tn;

init_procedures();
tn = makenode();

fp=fopen('/usr/sunevere/grad/xiaoqu/surface/trie.data","r");
it (£p==NULL) {
fprintf(stderr, "cannot read the file\n");
exit(1);
}
while((c=getword()) != EOF){
if(c == L) {
fputs(word,stdout);
insert_to_trie(tn,0,procedures[codename()]);
}
}
fclose(fp);

printf("\n");
print_trie(tn,0);
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return(tn);

A.2 Procedures to Convert Missing £dge Lists to
Voxel Faces

void square_face(OPEN_CELL *oc)

{
int i;
MISSING_EDGE  *mp;
VECTOR vi,v2,nor;

mp=oc->missing_edge;
ges_square_vertices;
get_square_face_normal;
add_to_o_f_table(oc->center,nor,SQUARE);

oc->missing_edge = NULL;

}

void triangle_face(OPEN_CELL *oc)
{
int i;
MISS1&G_EDGE *mp;
VECTOR vl,v2,nor;

mp=oc->missing_edge;
get_triangle_vertices;
get_triangle_face_normal;
add_to_o_f_table(oc->center,noxr,TRIANGLE);

oc->missing_edge = NULL;

3

void face_1212(0OPEN_CELL *oc)
{

MISSING_EDGE *mp, *pre;
VECTOR vi,v2,nor;

int flag=0;
mp=oc->missing_edge;
mp_edge_is_vector_vil;
mp_next_next_edgo_is_vector_v2;

mp=mp->next->next;

if(vl.x == v2.x && v1.y == v2.y && vi.z == v2.z){
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square_face(oc);

}Yelse {

mp=oc->missing_edge;

it (mp->next->edge.end_v.x != mp->edge
if (mp->next->edge.end_v.y != mp->edge
if (mp~>next->edge.end_v.z != mp->edge

.start_v.x) flag++;
.start_v.y) flag++;
.start_v.z) flag++;

it(flag '= 1) {

/* the two edges are not on the bounding_voxel surface */

pre=mp;
mp=mp->next;
}
get_triangle_vertices;
get_triangle_face_normal;

add_to_o_f_table(oc->center,nor, TRIANGLE);

if(mp == oc->missing_edge) /* delete these two edges */
oc->missing_edge = mp->next->next;

else

pre->next = mp->next->next;

mp=oc->missing_edge;

/* if the left two edges are not connected */
if(!(ep_end_v_is_ep_next_start_v(mp))){
oc->missing_edge = oc->missing_edge->next;

mp->next=NULL;
oc->missing_edge~>next = mp;
}

triangle_face(oc);

void face_1122(0PEN_CELL #*oc)

{

int flag=0;
MISSING_EDGE *mp;
VECTOR vi,v2,nor;
EDGE re_edge;

mp=oc->missing_edge;
if ((mp->edge.type) != (mp->next->edge
else mp=mp->next;

‘(mp~->next->edge.end_v.x != mp->edge.
if(mp->next->edge.end_v.y != mp->edge.
if(mp->next->edge.end. * .. '= mp->edge.

if(flag==1){
get_triangle_vertices;
get_triangle_facu_ncrmal;

.type)) ;

start_v.x) flag++;
start_v.y) flag++;
start_v.z) flag++;

add_to_o_f_table{oc->center,nor,TRIANGLE);
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if(mp == oc->missing_edge) /% delete these two edges */
oc->missing_edge = mp->next->next;
else if(mp == oc->missing_edge~>next)
oc->missing_edge->next = mp->next->next;
else {
fprintf(stderr,”"\nstrange! face_1122 flag=1");
exit (0);
}
re_edge.type = ’'1’;
get_re_triangle_edge_vertices;

if(insert_edge(re_edge,oc,ADD)) {
triangle_face(oc);

}else {
fprintf(stderr,"\nre_edge not insert");
exit(0);

}

Yelse if(flag==3){
mp=oc->missing_edge;
if({mp->edge.type) == (mp->next->edge.type)) ;
else mp=mp->next;

get_triangle_vertices;
get_triangle_face_normal;

add_to_o_f_table(oc->center,nor, TRIANGLE);

if(mp == oc->missing_edge) /* delete these two edges */
oc->missing_edge = mp->next->next;
else if(mp == oc->missing_edge->next)
oc->missing_edge->next = mp->next->next;
else {
fprintf(stderr,"\nstrange! flag=3");
exit(0);
}

re_edge.type = mp->edge.type;
get_re_triangle_edge_vertices;

if(insert_edge(re_edge,oc,ADD)){
triangle_face(oc);

}else{
fprintf(stderr,’\nre_edge not insert");
exit (0);
}
}else {
fprintf(stderr,"\nstrange!");
exit(0);
}
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void face_11112(0PEN_CELL =*oc)

{
MISSING_EDGE *mp, *pre;
VECTOR vi,v2,nor;
EDGE re_edge;
int flag=0;

mp=oc->missing_edge;
if (mp->edge.type == '1°) {
for(; mp~>next->edge.type != ’2’; pre=mp,mp=mp->next);
if (mp->next->next == NULL){ /* mp points to 121 */
mp->next->next = oc->missing_edge;
oc->missing_edge = oc->missing_edge->next;
mp->next->next->next=NULL;
}

}else {
/* mp points to 121 %/

for(; mp->next->next != NULL; pre=mp,mp=mp->next)};
mp->next->next=oc->missing_edge;

oc->missing_edge = mp->next;

mp->next = NULL;

mp=oc->missing_edge;

}

/* test if the current edge ard the next next edge are parallel */
mp_edge_is_vector_vi;
mp_next_next_edge_is_vector_v2;

if(vi.x == v2.x && vi.y == v2.y && vi.z == v2.z){

/* first choice: three triangles */

pre= mp->next;

mp = mp->next->next;

if (mp->next == NULL) {
mp->next = oc->missing_edge;
oc->missing_edge = oc->missing_edge->next;
mp->next->next=NULL;

}

get_triangle_vertices;

get_triangle_face_normal;

add_to_o_f_table(oc->center,nor,TRIANGLE);

if(mp == oc->missing_edge) /* delete these two edges */
oc->missing_edge = mp->next->next;

else
pre->next = mp->next->next;

re._edge.type = ’2’;
get_re_triangle_edge_vertices;
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void

if(insert_edge(re_edge,oc,ADD)){
face_1122(oc);

}else{

}

}else {

tprintf(stderr,"\nre_edge not insert");
exit(0);

/* second choice: one square face and one triangle */

if (mp->next->edge.end_v.x != mp->edge.start_v.x) flag++;
if (mp->next->edge.end_v.y != mp->edge.start_v.y) flag++;
if (mp->next->edge.end_v.z != mp~>edge.start_v.z) flagt+;

if(f1ag!=1){

}

flag=0;

pre=mp;

mp=mp->next ; /% mp: type ’2’ edge */
if(mp->next->edge.end_v.x != mp->edge.start_v.x) flag++;
if(mp->next->edge.end_v.y != mp->edge.start_v.y) flag++;
if (mp->next->edge.end_v.z != mp->edge.start_v.z) *lag++;

if({flag==1){

get_triangle_vertices;
get_triangle_face_normal;

add_to_o_f_table(oc->center,nor, TRIANGLE) ;

if(mp == oc->missing_edge)/* delete these two edges */
oc->missing_edge = mp->next->next;

else
pre~>next = mp->next->rext;

re_edge.type = ’1’;
get_re_triangle_edge_vertices;

if(insert_edge(re_edge,oc,ADD)){
square_face(oc);

}else{
fprintf(stderr,”\nre_edge not insert");

}

}else ;

face_eight_1(OPEN_CELL *oc)

MISSING_EDGE *mp, *pre;

VECTOR
EDGE
int
float
void

vi,v2,out_nor,nor;
re_edge;

flag=0, i_o=inside;
dot_pro;
face_six_1();
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if(oc->layer > 0) i_o = outside;

mp=oc->missing_edge;
mp_edge_is_vector_vi;
mp_next_next_edge_is_vector_v2;

if(1(vl.x == v2.x && vi.y == v2.y && vi.z == v2.2)) {
pre= mp;
mp = mp->next;
}
/* Now, mp, mp->next, mp->next->next are in the same plzne */
get_square_vertices;
get_square_face_normal;

/* out_nor is a vector pointing at the center of the voxel */
out_nor.x = oc->center.x - mp->edge.start_v.x;
out_nor.y = oc->center.y - mp->edge.start_v.y;
out_nor.z = oc->center.z - mp->edge.start_v.z;

dot_pro = nor.x*out_nor.x + nor.y*out_ncr.y + nor.z*out_nor.z;
if((i_o==outside && dot_pro<0.0) || (i_o==inside && dot_pro>0)){
pre= mp->next;
mp = mp->next->next;

3

/* Now, mp, mp->next, mp->next->next form a legal square face. */
get_square_vertices;
get_square_face_normal;
add_to_o_f_table(oc~->center,nor,SQUARE);
if(mp == oc->missing_edge)
oc-->missing_edge = mp->next->next->next;
else
pre->next = mp->next->next->next;

re_edge.type = ’'1’;

get_re_square_edge_vertices;

if(insert_edge(re_edge,oc,ADD)){
face_six_1(oc);

}else{
fprintf(stderr,’\nre_edge not added 1");
exit(0);
}
}
void face_six_1(0OPEN_CELL *oc)
{
MISSING_EDGE *mp, *pre;
VECTOR vi,v2,out_nor,nor;
EDGE re_edge;
int flag=0;
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extern void add_to_single_cell_list();

mp=oc->missing_edge;
mp_edge_is_vector_vi;
mp_next_next_edge_is_vector_v2:

/* test if the current edge and the next next edge are in a plane */
if(1(tlag=(vl.x == v2.x && vi.y == v2.y && vi.z == v2.2) ) ) {
pre=mp;
mp=mp->next;

mp_edge_is_vector_vi;
mp_next_next_edge_is_vector_v2;

if (1 (flag=(vl.x == v2.x &k vi.y == v2.y && vi.z == v2.2))) {
pre=mp;
mp=mp->next;

mp_edge_is_vector_vi;
mp_next_next_edge_is_vector_v2;

flag = (vi.x == v2.x && vi.y == v2.y && vi.z == v2.z);
}
}
switch(flag){
case 1: /* two square faces */
get_square_vertices;
get_square_face_normal;
add_to_o_f_table(oc->center,nor,SQUARE);
if(mp == oc~->missing_edge)
oc—->missing_edge = mp->next->next->next;
else
pre->next = mp->next->next->next;
re_edge.type = ’1’°;
get_re_square_edge_vertices;
if(insert_edge(re_edge,oc,ADD)){
square_face(oc);
}else{
fprintf(stderr,"\nre_edge not added 2");
exit(0);
}
break;
case 0: /* remove a triangle face, left whatever */

get_triangle_vertices;
get_triangle_faca_normal;
add_to_o_f_table(oc->center,nor, TRIANGLE);

if(mp == oc->missing_edge)

oc->missing_edge = mp->next->next;
else
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void

pre->next = mp->next->next;

re_edge.type = ’2’;

get_re_triangle_edge_vertices;

if(insert_edge(re_edge,oc,ADD)){
add_to_single_cell_list{(oc,NULL);

}else{
fprintf(stderr,'\nre_edge not added 3");
exit(0);

}

break;

face_six_1_2(0PEN_CELL *oc)

MISSING_EDGE *mp, *pre;

VECTOR
EDGE
int

vi,v2,nor;
re_edge;
i_o=inside;

if(oc->layer > 0) i_o = outside;
mp=oc->missing_edge;

switch (i_o) {
case outside:

for(; mp->edge.type != '2’; pre=mp, mp=mp->next);
/* mp points to 21 */
if (mp->next == NULL){
mp->next = oc->missing_edge;
oc->missing_edge = oc->missing_edge->next;
mp->next->next = NULL;
}
get_triangle_vertices;
get_triangle_face_normal;
add_to_o_f_table(oc->center,nor, TRIANGLE);
/* delete these two edges */
if(mp == oc->missing_edge)
oc->missing._edge = mp->next->next;
else
pre->next = mp->next->next;

re_edge.type = ’1°’;
get_re_triangle_edge_vertices;

if (insert_edge(re_edge,oc,ADD)) {
face_six_1(oc);
}else{
fprintf(stderr,"\n re_edge not added");
}
break;
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case inside:

if(mp->edge.type == '2’){
for(; mp->next != NULL; pre=mp, mp=mp->next);
/* mp points to the last */
mp->next = oc->missing_edge;
oc->missing_edge = mp;
pre->next = NULL;
/* mp points to 12, the first */
get_triangle_vertices;
get_triangle_face_normal;

add_to_o_?_table(oc->center,nor, TRIANGLE);

/* delete these two edges */
oc->missing_edge = oc->missing_edge->next->next;

re_edge.type = ’1’;
get_re_triangle_edge_vertices;

if(insert_edge(re_edge,oc,ADD)){
face_six_1(oc);

}else{
fprintf(stderr,"\nre_edge not added 5");
exit(0);
}
}else{

for(; mp->next->edge.type != ’2’; pre=mp, mp=mp->next);
/* mp points to 12 */

get_triangle_vertices;

get_triangle_face_normal;

add_to_o_f_table(oc->center,nor, TRIANGLE);

/% delete these two edges */
if(mp == oc->missing_edge)
oc->missing_edge = mp->next->next;
else
pre->next = mp->next->next;

re_edge.type = ’1’;
get_re_triangle_edge_vertices;

if(insert_edge(re_edge,oc,ADD)){
face_six_1(oc);

}else{
fprintf(stderr,"\rre_edge not added 6");

}

break;
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void

default:
fprintf(stderr,”"\nno such case for six_1_2");

face_121112(0PEN_CELL *oc)

MISSING_EDGE *mp, *pre;

VECTOR vi,v2,nor;
EDGE re_edge;
int i_o=insidse;

if(oc->layer > 0) i_o = outside;
mp=oc->missing_edge;
switch (i_o) {
case outside:
for(; mp->edge.type !'= ’2’; pre=mp, mp=mp->next);
/* mp points to 21 */
if (mp->next == NULL){
mp->next = oc->missing_edge;
oc—>missing_edge = oc->missing_edge->next;
mp->next->next = NULL;
}
get_triangle_vertices;
get_triangle_face_normal;
add_to_o_f_table{oc->center,nor,TRIANGLE) ;

/* delete these two edges */
if(mp == oc->missing_edge)

oc->missing_edge = mp->next->next;
else

pre->next = mp->next->next;
re_edge.type = ’1’;
get_re_triangle_edge_vertices;
if(insert_edge(re_edge,oc,ADD)) face_11112(oc);
else fprintf(stderr,"\nre_edge not added");
break;

case inside:
break;

default:
fprintf(stderr,"\nno such case for 121112");
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Appendix B

Call Graph ©"i  ..e Listing

called/total parents
index Ytime self descendents called+self name index
called/total children
<spontaneous>
{11 95.3 0.00 54.06 start [1]
0.00 54,06 1/1 _main [3]
0.00 0.00 1/1 _on_exit [109]
0.00 0.00 1/1 _exit [223]
0.00 54.06 1/1 _main [3]
(2] 95.3 0.00 54.06 1 _Surface_tracking [2]
0.53 38.39 1/1 _Border_face_tracking [4]
8.25 2.59 1/1 _read_all_data [7]
0.00 4.20 1/1 _close_surface [12]
0.00 0.09 1/1 _make_table [53]
0.00 0.01 2/3 _tprintf [76]
0.00 0.00 1/1 _init_lists [103]
0.00 0.00 1/1 .div [111]
0.00 54.06 1/1 start [1]
£3] 95.3 0.00 54.06 1 _main [3]
0.00 54.06 1/1 _Surface_tracking [2]
0.00 0.00 3/34 _atoi [205]
0.53 38.39 1/1 _Surface_tracking [2]
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[4] 68.6 0.53 38.39 1 _Border_face_tracking [4]

1.85 36.39  17742/17743 _neighbor_face [5]
0.13 0.00 17743/17743 _remove_q_head [49]
0.01 0.00 1/ _span_start_face [86]
0.00 0.00 1/2 _printt [865]
0.00 0.00 1/1 _scant [93]
0.00 0.00 1/79582 _cross_zero [11]
0.00 0.00 1/17743 _span_start_face [86]
1.85 36.39  17742/17743 _Border_face_tracking [4]
{5l 67.4 1.856 36.40 17743 _neighbor_face [5]
4.88 16.17  70583/70583 _search_neighbor_for_outway [6]
4.52 4.98 70579/70579 _face_connection_for_outway [8]
0.33 2.62 158909/171371 _calloc [16]
1.31 1.59 158900/159373 _tree [18]
4.88 16.17  70583/70583 _neighbor_face [5]
(el 37.1 4.88 16.17 70583 _search_neighbor_for_outway [6]
4.87 0.00 79581/79582 _cross_zero [11]
4.66 0.00 198551/319683 _transform_3d [9]
0.41 2.94 70583/70583 _untranslate_matrix [15]
2.85 0.09 70533/141173 _copy_matrix [10]
0.08 0.26 17742/17742 _append_queue [34]
8.25 2.59 1/1 _Surface_tracking [2]
(71 19.1  8.25 2.59 1 _read_all_data [7]
0.00 2.56 78/78 _fread [19]
0.00 0.03 3/4 _fopen [62]
0.00 0.00 80/163603 .mul [46]
0.00 0.00 3/4 _fclose [102]
0.00 0.00 2/171371 _calloc [16]
0.00 0.00 2/159373 _free [18]
4.52 4.98 70579/70579 _neighbor_face [5]
8] 16.7 4.52 4.98 70579 _face_connection_for_outway [8]
2.85 0.00 121132/319683 _transform_3d [8]
1.11 1.03 14447/14447 _insert_to_hash_table [22]
2.85 0.00 121132/319683 _face_connection_for_outway [8]
4.66 0.00 198551/319683 _search_neighbor_for_outway [6]
) 13.2  7.51 0.00 319683 _transform_3d [9]
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0.00 0.00 7/141173 -make_table [53]

2.85 0.09 70583/141173 _untranslate_matrix [15]

2.85 0.09 70583/141173 _search_neighbor_for_outway [6]
(10] 10.4 6.71 0.17 141173 _copy_matrix [10]

0.17 0.00 141173/163603 .mul [45]

0.00 0.00 1/79582 _Border_face_tracking [4]

4.87 0.00 79581/79582 _search_neighbor_for_outway [6]
[11) 8.6 4.87 0.00 79582 _cross_zero [11]

0.00 4.20 1/1 _Surface_tracking [2]
{12] 7.4 0.00 4.20 1 _close_surface [12]

0.09 4.04 1/1 _£ill_edges [13]

0.01 0.07 1/1 _add_o_e_to_hash_table [54]

0.09 4.04 1/1 _close_surface [12]
[13] 7.3 0.09 4.04 1 _fill_edges [13]

0.41 2.81 6068/7611 _match_edges [14]

0.00 0.82 2/2 _close_single_cells [28]

0.00 0.00 1/3 _fprintf [76]

0.00 0.00 1/9 _fflush [208]

0.10 0.71 1543/7611 _close_single_cells [28]

0.41 2.81 6068/7611 _£ill_edges [13]
[14] 7.1 0.51 3.52 7611 _match_edges [14]

0.26 1.52 5980/6203 ~add_edge_to_ndash_table [23]

0.19 0.32 890/891 _face_11112 [31]

0.12 0.21 850/876 _face_six_1 [35]

0.22 0.00 23615/23615 _match_vertex [41]

0.08 0.11 1998/2911 _triangle_face [39]

0.09 0.09 1642/3026 _square_face [37]

0.04 0.09 392/860 _face_1122 [38]

0.05 0.07 5077/5077 _insert_edge_to_mp_next [50]

0.02 0.02 174/174 -face_1212 [59]

0.01 0.01 23/23 _face_eight_1 [66]

0.00 0.01 640/676 ~add_to_single_cell_list [84]

0.00 0.00 3/3 _face_six_1_2 [95]

0.00 0.00 1/1 _face_121112 [98]

C.41 2.94 70583/70583 -search_neighbor_for_outway [6]
[15] 5.9 0.41 2.94 70583 _untranslate_matrix [15]
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2.85 0.09 70583/141173
0.00 0.00 2/171371
0.00 0.00 12/171371
0.00 0.00 24/171371
0.00 0.00 26/171371
0.00 0.00 58/171371
0.00 0.00 204/171371
0.03 0.20 12136/171371
0.33 2.62 158909/171371
[16] 5.6 0.36 2.83 171371
1.44 1.06 171371/217824
0.17 0.00 171371/171838
0.16 0.00 171371/171371
0.00 0.00 1/217824
0.00 0.00 1/217824
0.00 0.00 1/217824
0.00 0.00 1/217824
0.00 0.00 1/217824
0.00 0.00 1/217824
0.00 0.00 6/217824
0.01 0.00 676/217824
0.04 0.03 5077/217824
0.05 0.04 6367/217824
0.14 0.10 16579/217824
0.15 0.11  17742/217824
1.44 1.06 171371/217824
[17] 5.6 1.83 1.34 217824
0.49 0.22 156280/159366
0.40 0.00 61544/61544
0.01 0.23 467/467
0.00 0.00 2/159373
0.00 0.00 4/159373
0.00 0.00 467/159373
1.31 1.59 158900/159373
[18] 5.1 1.31 1.59 159373
1.25 0.33 159373/159373
0.01 0.00 3086/159366
0.00 2.56 78/78
[19] 4.5 0.00 2.56 78
0.00 2.55 1100/1103

_copy_matrix [10]

_read_all_data [7]
_out_type_3_face [96]
_in_type_1_face [90]
_type_2_face [89]
_makenode [97]
_add_sdge_to_hash_table [23]
_insert_to_hash_table [22]
_neighbor_face [5]

-calloc [16]
-malloc [17]
.umul [46]
_bzero [47]

_make_e_face_list [104]
_make_f_face_list [105]
_make_o_face_list [107]
_make_new_q [106]
_make_open_edge_list [108]
_on_exit [109]
__findbuf [77]
_add_to_single_cell_list [84]
_insert_edge_to_mp_next [50]
_add_edge_to_hash_table [23]
_insert_edge [26]
_append_queue [34]
_calloc [16]

-malloc [17]
_delete [30]
_demote [33)]
_morecore [40]

_read_all_data (7]

_fclose [102]

_morecore [40]

_neighbor_face [5]
_free [18]

_insert [24]

_de? tce [30]

_read_all_data [7]
_fread [19]
._tilbut [20]



0.01
0.00

.00
.00

1170/1170
78/163603

0.00
0.00
0.00
(20] 4.5 0.00
2.565
0.01
0.00

.00

00

.55
.56

00

.00
.00

1/1103
2/1103
1100/1103
1103
1103/1103
5/6
1/9

1103/1103
1103

.11
.11
.60
.03
.07

O O O r» -

O O O W -

.03
.03
.12
.20
.01

14447/14447
14447
8379/16579
12136/171371
14447/25765

.memcpy [81]
.mul [45]

_number [91]
_getword (87]
_fread [1.]
__tilbut [20]
_read [21]
__tindbuf [77]
_fflush [208]

__filbur [20]
_read [21]

_face_connection_for_outway [S]
_insert_to_hash_table [22]

_insert_edge [26]

_calloc [16]

_hash [48]
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