
Using Regret Estimation to Solve Games Compactly

by

Dustin Morrill

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Dustin Morrill, 2016

Abstract

Game theoretic solution concepts, such as Nash equilibrium strategies that are opti-

mal against worst case opponents, provide guidance in finding desirable autonomous

agent behaviour. In particular, we wish to approximate solutions to complex, dy-

namic tasks, such as negotiation or bidding in auctions. Computational game theory

investigates effective methods for computing such strategies. Solving human-scale

games, however, is currently an intractable problem.

Counterfactual Regret Minimization (CFR) [43], is a regret-minimizing, on-

line learning algorithm that dominates the Annual Computer Poker Competition

(ACPC) and lends itself readily to various sampling and abstraction techniques.

Abstract games are created to mirror the strategic elements of an original game in

a more compact representation. The abstract game can be solved and the abstract

game solution can be translated back into the full game.

But crafting an abstract game requires domain-specific knowledge, and an ab-

straction can interact with the game solving process in unintuitive and harmful ways.

For example, abstracting a game can create pathologies where solutions to more

granular abstractions can be more exploitable against a worst-case opponent in the

full game than those derived from simpler abstractions [42]. An abstraction that

could be dynamically changed and informed by the solution process could potentially

produce better solutions more consistently.

We suggest that such abstractions can be largely subsumed by a regressor on game

features that estimates regret during CFR. Replacing abstraction with a regressor

allows the memory required to approximate a solution to a game to be proportional

to the complexity of the regressor rather than the size of the game itself. Furthermore,

the regressor essentially becomes a tunable, compact, and dynamic abstraction of

ii

the game that is informed by and adapts to the particular solution being computed.

These properties will allow this technique to scale to previously intractable domains.

We call this new algorithm Regression CFR (RCFR).

In addition to showing that this approach is theoretically and practically sound,

we improve RCFR by combining it with regret-matching+ [37]. Experiments involv-

ing two small poker games show that RCFR and its extension, RCFR+, show that

it can approximately solve games with regressors that are drastically less complex

than the game itself. In comparisons with traditional static abstractions of similar

complexity, RCFR variants tend to produce less exploitable strategies.

iii

Preface

Some of the research conducted for this thesis was a collaboration with PhD student

Kevin Waugh, of Carnegie Mellon University, as well as our respective supervisors,

Professor Michael Bowling (University of Alberta) and Professor J. Andrew Bagnell

(Carnegie Mellon University). Much of the work presented in this thesis was origi-

nally described in conference proceedings that have the four of us as co-authors [41].

The original idea for two of the four new algorithms described in this thesis (regres-

sion regret-matching and regression counterfactual regret minimization) are due to

Waugh. Theorems 3.0.3, 3.0.4, 3.0.7, and Corollary 3.0.5 were originally proven

by Waugh. However, the proofs in this thesis fix a mistake in these original proofs.

The proofs in this thesis are also greatly expanded, and Theorem 3.0.3 explicitly

shows the proof of a previously omitted edge case. Some of the experimental results I

contributed to the paper with Waugh et al. [41] are reproduced in Chapter 4 alongside

new results and analysis.

iv

It’s one of the fundamental principles of programming, that it’s extremely difficult to

gauge how much work is hidden behind the statement of a task, even to where the

trivial and impossible look the same when silhouetted in the morning haze.

– James Hague, “If You Haven’t Done It Before, All Bets Are Off”, Programming in

the Twenty-First Century (http://prog21.dadgum.com/209.html).

v

http://prog21.dadgum.com/209.html

Acknowledgements

I would like to thank

• my supervisor, Professor Michael Bowling, for his time, guidance, and advice.

• Professor Duane Szafron, who introduced me to algorithmic game theory and
involved me in the CPRG during my undergraduate studies.

• the Computer Poker Research Group (CPRG) for software infrastructure support.

• the current members of the CPRG: Michael Johanson, Neil Burch, Nolan Bard,
Kevin Waugh, Trevor Davis, Professor Rob Holte, and Viliam Lisy.

• past members of the CPRG: Josh Davidson, Richard Gibson, and Johnny Hawkin.

• fellow graduate students Marlos Machado, Zaheen Ahmad, and Tim Yee for
research discussions.

• Professor Paul Lu, who was my first computing science teacher and who has since
provided me with tremendous support and advice.

• Professor Jim Hoover, who initially convinced me that I could be successful in
computing science when I began university.

• my fiance, Melanie Jamieson for her love, support, and companionship.

• my family, particularly my parents, Rosalie and Rick Morrill, for their constant
encouragement and willingness to help.

• the Natural Sciences and Engineering Research Council of Canada (NSERC) and
Alberta Innovates Technology Futures (AITF) for the Canada Graduate Scholarship
(CGS) and Alberta Innovates Graduate Student Scholarship respectively, that
helped to fund this thesis.

• Alberta Innovates Centre for Machine Learning (AICML) for providing the re-
mainder of funding for this thesis.

• Calcul Québec, Westgrid, and Compute Canada for computing resources on which
experiments were run.

vi

Table of Contents

1 Introduction 1

2 Background 4
Extensive-form Games . 4

Equilibria . 5
Online Learning . 6

Regret-Matching . 7
RM+ . 7

Counterfactual Regret Minimization . 8
CFR+ . 10

Poker Games . 10
Leduc Hold’em . 11
No-limit One-card Poker . 11

Scaling CFR . 12
Sampling . 12
Abstraction . 13

Supervised Learning . 15
Regression Tree . 16

3 Functional Regret Estimation 19
Regression RM . 19

Regret Bounds . 20
Algorithm Details . 25

Regression CFR . 27
Relationship to Abstraction . 28

RRM+ and RCFR+ . 29

4 Experiments 34
Features . 35
Static Abstractions to Compare with RCFR 36

Leduc Hold’em . 36
No-limit One-card Poker . 37

Results . 37
Analysis . 38

5 Conclusions 44
Future Work . 45

Bibliography 47

vii

A Counterexample to Inequality 19 in Waugh et al.’s [41] Blackwell’s
Condition Error Bound Proof 52

viii

List of Figures

4.1 Exploitability of the final average strategies of RCFR and CFR
variants in Leduc hold’em. 39

4.2 Convergence of CFR variants that use representations that are near
45% of Leduc hold’em’s size. 40

4.3 Exploitability of the final average strategies of RCFR and CFR
variants in no-limit one-card poker. 41

4.4 Convergence of CFR variants that use representations that are near
4% of one-card poker’s size. 42

ix

Chapter 1

Introduction

Game theoretic solution concepts, such as Nash equilibrium strategies that are opti-

mal against worst case opponents, provide guidance in finding desirable autonomous

agent behaviour. In particular, we wish to approximate solutions to complex, dy-

namic tasks, such as negotiation or bidding in auctions. Computational game theory

investigates effective methods for computing such strategies. Solving human-scale

games, however, is currently an intractable problem.

The typical approach when dealing with games too large to solve directly is to

first create an abstract game that retains the same basic structure of the game one

wishes to solve, but is a fraction of the size. Instead of solving the game directly,

one solves this surrogate abstract game, and translates the abstract game solution

back into the original game. The hope is that the abstract game inherited the original

game’s strategically important factors and the identified solution to the abstract game

will perform well in the real game. While it has been extensively studied [33, 4, 17,

42, 21, 16, 31, 25, 23, 2, 26, 13], traditional abstraction is a flawed approach.

Waugh et al. [42] found that pathologies can exist where a solution to a finer

abstraction is more exploitable against a worst-case opponent in the full game than

a solution to a coarser abstraction. Imperfect information games in particular are

difficult to abstract because parts of the game that are never reached and actions that

are never used by an equilibrium may be necessary to prevent deviations from said

equilibrium. The threat of deviating to an unused line of play might be necessary to

punish the other player’s deviation. These two properties make creating abstractions

in imperfect information games problematic. As a result, crafting a good abstract

1

game requires care and extensive domain-specific knowledge.

But why are these games intractably large to begin with? Many real-world sequen-

tial decision problems such as online path planning [1], opponent exploitation [35],

and portfolio optimization [18], as well as parlor games such as poker, typically

have a regular structure and a compact description. Mapping these problems into a

general form, such as the bandit setting or an extensive-form game, strips them of

their structure and inflates their description, causing games like two-player, no-limit

Texas hold’em poker to have more than 8.2 · 10160 action choices over 2.7 · 10160

decision points [22, p. 12]1.

In this thesis, we introduce an alternative to static abstraction by presenting a

new online learning algorithm called Regression Regret-matching (RRM) that

combines a dynamic, flexible abstraction, in the form of a regressor, with the

elementary learning algorithm, Regret-matching (RM). We show that RRM can

be applied to compactly solve games when combined with Counterfactual Regret

Minimization (CFR) without a preliminary abstraction step. For this new CFR

variant, Regression CFR (RCFR), we derive theoretical guarantees2 akin to CFR’s,

except that RCFR’s solution approximation bound depends on the accuracy of its

regressor. The regressor takes advantage of the latent structure of the game through

a feature representation that decomposes and factorizes game sequences. When

there are strong relationships or redundancies between sequences, the regressor’s

representation of the game can be a fraction of the size of the game without severely

degrading the solution quality.

In addition, we incorporate the recent work of Tammelin [37] to create RRM+

and RCFR+, which are variants of RRM and RCFR respectively. We prove that

RRM+ and RCFR+ inherit the same theoretical properties as RRM and RCFR, and

show that RRM+’s regression problem allows the full representational power of its

regressor to improve its strategy approximation. Because of this, RRM+’s regression

problem may be easier than RRM’s, thereby allowing RCFR+ to find less exploitable

1This is the size of the 50-100 blinds, 20,000 chip stacks as played in the Annual Computer Poker
Competition (ACPC).

2Our derivation includes a correction to the originally published RCFR proof with Waugh et
al. [41].

2

strategies with simpler representations.

We tested these RCFR variants in two small artificial poker games, comparing

the exploitabilities of the strategy profiles they output against each other, as well as

those found by running CFR on traditional abstract games. One of the games is a

limit poker game where only one fixed bet size is allowed at any point in the game

and the game complexity comes from the number of possible chance outcomes. The

other is a no-limit game where its complexity derives from the many betting options

available to each player. These experiments provide evidence that RCFR+, and to a

lesser extent RCFR, are indeed more effective than traditional abstractions.

3

Chapter 2

Background

Before describing RCFR and its variants, we first present the formal setting and

terminology of extensive-form games, online learning, and supervised learning, as

well as the rules of the poker games that we use as test domains.

Extensive-form Games

An extensive-form game is a model of games that includes sequential decisions and

stochastic events. A play-out of a game is formed by walking a directed tree from

its root to a leaf, where edges are actions by players or chance and nodes are game

states. The leaf where a play-out ends contains that play-out’s utility allocation for

all players. The states where a player must act are partitioned into information sets

such that all states in the same information set are indistinguishable to the acting

player. All information sets are singletons in a perfect information game, such as

chess, but some are non-singletons in imperfect information games, such as poker.

Formally,

Definition 2.0.1 (Osborne and Rubinstein [29]). A two-player, zero-sum, extensive-

form game, is a tuple Γ = (H, p, σc, I, u) [29], where

• H is the set of game histories, which form a tree rooted at the empty history,

∅ ∈ H.

• A(h) is the set of actions available at h ∈ H, and ha ∈ H for each a ∈ A(h)

are children of h. In addition, let the set of terminal histories, Z ⊆ H such

that z ∈ Z if and only if |A(z)| = 0.

4

• p : H \ Z → { 1, 2, c } is the player choice function that determines the next

player, including a chance player, c, to act after any given non-terminal

history.

• σc(a|h) ∈ ∆A(h)
1 for { h ∈ H : p(h) = c } and a ∈ A(h), is a fixed probabil-

ity distribution over chance outcomes.

• I = I1 ∪ I2 is the information partition, which groups histories into infor-

mation sets where all histories in an information set are indistinguishable to

the acting player and have the same action sets.

• u : Z → R is the utility function that associates a value to each terminal

history. Let u1(z) = u(z) be the utility of player 1 and u2(z) = −u(z) be the

utility of player 2 at terminal history z.

A behavioral strategy for player i, σi ∈ Σi, defines a probability distribution

at all information sets where player i acts. That is, if I ∈ Ii, then σi(·|I) ∈ ∆A(I).

We call a tuple of strategies (σ1, σ2) a strategy profile. Let πσ(z) be the probability

of reaching z by traversing the game tree with both players following σ from the root.

Let πσ−i(z) be the probability of reaching z using σ assuming player i takes actions

to reach z with probability one. Let πσ(h, z) be the probability of reaching z using

σ from history h, where πσ(h, z) is zero if h is not an ancestor of z. The expected

utility to player i under profile σ can then be written as ui(σ) = ∑
z∈Z π

σ(z)ui(z).

Equilibria

An ε-Nash equilibrium is a strategy profile where neither strategy can unilaterally

deviate to gain more than ε utility. That is,

u1(σ1, σ2) + ε ≥ u1(σ′1, σ2), and ∀σ′1 ∈ Σ1

u2(σ1, σ2) + ε ≥ u2(σ1, σ
′
2) ∀σ′2 ∈ Σ2.

An equilibrium strategy, that is, a strategy part of a Nash equilibrium, is minimax

optimal in a two-player, zero-sum game. This means that such strategies maximize
1∆S ⊂ R|S| denotes the probability simplex over set S, so a distribution σ ∈ ∆S must satisfy

the conditions of a probability distribution: 0 ≤ σ(s) ≤ 1 for all s ∈ S and
∑

s∈S σ(s) = 1.

5

their utility against a worst-case opponent and are low-risk strategies to play when

nothing can be assumed about the population of players one would compete against.

Online Learning

The standard online learning setting is a general repeated game framework. A learner

must choose a strategy, σt ∈ ∆|A| (a probability distribution over actions, A), on

every round and attempt to maximize her utility when the utility function is specified

by a potentially omnipotent adversary. In each round t ∈ [T] = [1, . . . , T], the

learner chooses a strategy, then observes the outcome of the game in the form of

a bounded utility vector, vt, where ‖vt‖∞ ≤ L. Each element vta corresponds to

the utility that the learner would have received for putting all of its mass on action

a ∈ A. The learner receives σt · vt = ∑
a∈A σ

t
av

t
a as its utility on round t, then

updates its strategy for the next round. The learner’s final score is its cumulative

utility,
∑T
t=1 σ

t · vt, so the question posed to algorithm designers is, “how should the

learner adapt its strategy on each round to improve its score?”

Regret minimization is a well studied and effective answer. Regret is defined ab-

stractly as the difference between the learner’s cumulative utility and the cumulative

utility she could have received if her strategies had been modified in a systematic

way. Of particular interest is external regret where the modification is to always

play the best action in hindsight over all rounds. If we think about the instantaneous

regret, rta, of action a on round t—that is, the difference between the utility of

playing a with 100% probability and the realized utility on round t—then we can

write external regret, Rext,T , as the maximum over a cumulative regret vector:

Rext,T = max
a∈A

RT
a =

T∑
t=1

rta =
T∑
t=1

vta −
(
σt · vt

)
1,where 1 is the vector of all ones.

We say that a learner is no-regret if her regret grows sublinearly with T (Rext,T ∈

o (T)) so that her average regret approaches zero as T increases. Now imagine that

two learners repeatedly compete in a zero-sum game for T rounds. It is well known

that the round-by-round average of the strategies used by these learners form a

2ε-equilibrium, given that the average external regret of either player is no more than

6

ε. Thus, the average strategies of two no-regret learners converges to an equilibrium,

and the accuracy with which an equilibrium is approximated can be chosen arbitrarily

by selecting a sufficiently large T .

Regret-Matching

Regret-matching (RM) is an elementary example of a no-regret algorithm. First,

notice that any mapping between actions and non-negative weights, ω ∈ R|A|,+,

admits the elementary strategy,

σ :=


ω
‖ω‖1

, if ‖ω‖1 = ∑
a∈A ωa > 0

1
|A| , otherwise.

(2.1)

If one desires to use this method to generate a strategy but also wishes to use a

mapping w ∈ R|A| that could include negative weights, w can simply be projected

onto the positive orthant: ω := w+ = max {0, w }. RM is the application of

Method 2.1 where the cumulative regret vector up to the previous round, t− 1, is

used as its weight mapping (w := Rt−1, R0 := 0). A learner that uses RM has her

external regret bounded by L
√
T |A|, thus RM is no-regret [5].

RM+

Regret-matching+ (RM+) [37] is a simple modification of RM that yields a no-

regret algorithm with useful properties. While RM projects potentially negative

cumulative regrets onto the positive orthant to generate its strategy, RM+ prevents

its weights from becoming negative. RM+ stores regret-like values, Qt ∈ R|A|,+,

where Qt = (Qt−1 + rt)+ and Q0 := 0, hereby denoted cumulative Q-regrets, and

applies Method 2.1 with ω := Qt−1 to generate its strategy on round t. As a result,

RM+ will always play an action after it receives a positive instantaneous regret, no

matter how poor its past returns.

Tammelin et al. [38] not only proved that RM+ shares RM’s L
√
T |A| external

regret bound and is therefore no-regret, but also that RM+ achieves a sublinear

tracking regret. Rather than considering the regret baseline to be a single action

over all T rounds, tracking regret allows the best action to switch (k − 1) times,

where k is a factor in the bound. Thus, RM+ is no-regret even in non-stationary

7

settings where the utility distribution for each action may be changing over time.

RM+ is the first RM variant to be shown to have this property.

Note that since Q-regrets are guarenteed to be non-negative by definition, there

is no need to project Q-regrets onto the positive orthant before generating a strategy.

0 is the only Q-regret value that can cause an action to receive no probability mass in

the resulting strategy. Compare this to RM, where any non-positive regret will have

the same effect. For example, in a two action game after T rounds, RT =
(

1
−1

)

and RT =
(

1
0

)
will both result in the same strategy, σT =

(
1
0

)
, showing that the

exact value of a non-positive regret is inconsequential to the resulting strategy. We

will return to this difference between RM and RM+ in the context of Regression

Regret-matching (RRM) to motivate a combination of RRM and RM+ and explain

its potential advantage over RRM.

Counterfactual Regret Minimization

Potentially, one could use any applicable no-regret algorithm, such as RM, to solve

any two-player, zero-sum game, except that this would be intractable for games

with many actions. Extensive-form games in particular present a challenge for these

algorithms as they would need to compute and store the regrets for each deterministic

strategy, of which there are exponentially many in the number of information sets.

To avoid these problems, Zinkevich et al. [43] developed Counterfactual Regret

Minimization (CFR), which requires memory and computation only proportional

to the number of information sets.

For each player i ∈ { 1, 2 }, define

• the counterfactual value for taking action a ∈ A(I) in information set I ∈

Ii to be the expected utility of a given that I is reached, weighted by the

probability that all other players and chance play to reach I ,

vti(a|I) =
∑
h∈I

∑
z∈Z

πt−i(h)πt(ha, z)ui(z).

• the instantaneous counterfactual regret of action a ∈ A(I) in information

set I ∈ Ii on round t to be the external regret with respect to counterfactual

8

values,

rti(a|I) = vti(a|I)−
∑

a′∈A(I)
σti(a′|I)vti(a′|I).

• the cumulative counterfactual regret of action a ∈ A(I) in information set

I ∈ Ii on round T to be the sum of instantaneous counterfactual regrets on

the same sequence over T rounds,

RT
i (a|I) =

T∑
t=1

rti(a|I).

CFR relies on the sum of player i’s positive counterfactual regrets over each

information set being an upper bound on the player’s external regret,Rext,T
i . Formally,

Rext,T
i ≤ ∑

I∈Ii
RT,+
i (I), where RT

i (I) = maxa∈A(I) R
T
i (a|I), and this was proven

by Zinkevich et al. [43]. It follows immediately that minimizing the counterfactual

regret at each information set independently will also minimize a player’s external

regret, thereby ensuring that the average over time of the CFR players’ strategies

converges to a Nash equilibrium.

CFR places independent no-regret learners at each information set, and each

works to minimize the counterfactual regret at its associated information set. On

every iteration, the learners together produce a behavioral strategy profile, called the

current strategy profile, from which counterfactual values are computed. Coun-

terfactual values induce counterfactual regrets, which are used to update each of

the learners. The realization plan of the current strategies are averaged over each

iteration to form the average strategy profile. Since the counterfactual regret, and

thus the external regret, of both players in the CFR algorithm is approaching zero, the

average strategy profile is an increasingly accurate approximation of an equilibrium

as T increases.

Strategies generated by variants of CFR currently dominate the Annual Com-

puter Poker Competition (ACPC), both in terms of the number of entrants and

their performance.

The original description of CFR updated the regrets for both players simultane-

ously [43], but more recently it has been found that alternating these updates makes

9

CFR variants perform better in practice [38], so all CFR variants implemented for

this thesis alternate their updates.

CFR+

Swapping out RM for RM+ in CFR results in CFR+, which was recently used to

solve heads-up limit Texas hold’em [6]. While current theory shows that its worst-

case performance is the same as CFR’s [38], CFR+ converges substantially faster in

practice [6].

The linearly weighted averaging σ̄Tp = 2/(T 2 + T)∑T
t=1 tσ

t
p, as used by Tam-

melin et al. [38], allows the average strategies to adapt faster, thereby allowing them

to be less exploitable after fewer iterations if the current strategies also tend to have

low exploitabilities. Tammelin et al. showed that CFR+ with linear averaging still

converges to an equilibrium, while the same property was not shown for plain CFR.

Linear averaging can also hurt CFR’s performance in practice [38], so there is no

reason to use it instead of uniform averaging in CFR. Since empirical convergence

rates are not the subject of this thesis, the CFR and CFR+ variants implemented for

this thesis used uniform averaging for simplicity and consistency.

Poker Games

The field of artificial intelligence has a rich tradition of using games as proving

grounds for its methods, including poker, chess, and go. Poker stands out among

these testbeds as a setting that includes both imperfect information and chance.

The notions of bluffing and misdirection, which are synonymous with poker, were

integral to the development of game theory, according to a conversation between

Bronowski and von Neumann [6]. In addition, poker can be scaled by altering its

rules, such as changing the composition of the deck, the number of betting rounds, or

the number of chips in each player’s stack. Scaling different portions of poker games

can also allow experiments that better emphasize different aspects of a learning

system, such as the way it deals with a wider range of chance events or available

betting actions. We will use two poker variants in our empirical validation.

10

Leduc Hold’em

Leduc hold’em [34] is a poker game based on Kuhn poker. It is a convenient testbed

as common operations, like best response and equilibrium computations, are tractable

and exact.

The game has two betting rounds, the preflop and flop. At the beginning of the

game both players ante a single chip into the pot and are dealt a single private card

from a shuffled deck of six cards—two jacks, two queens and two kings. Then begins

the preflop betting round where the first player can either check or bet. If the first

player checks, passing their turn, then the second player can end the betting round

by checking as well, or continue by betting. When facing a bet; the player can raise

by placing two chips into the pot; call by matching the bet in the pot and ending

the round; or fold by forfeiting the pot to the opponent. There is a maximum of two

wagers per round, i.e., one bet and one raise. A single public card is dealt face up for

both players to see at the beginning of the flop. If the flop betting ends without either

player folding, a showdown occurs and the player with the best hand takes the pot.

A player that pairs, i.e., their card matches the public card, always has the best hand

no matter the rank of the paired card or the opponent’s card. If neither player pairs,

the one with the highest rank card wins. In the event of a tie, the pot is split. The size

of a wager preflop is two chips, and is doubled to four chips on the flop.

Leduc hold’em has 672 canonical sequences2. At equilibrium, the first player is

expected to lose 0.086 chips per hand. The typical utility measure in poker games is

the millibig-blind (mbb), which is a thousandth of the big-blind. In Leduc hold’em,

both players pay an ante of one chip, so the big-blind is effectively one chip, and the

first player loses 86 mbb optimally.

No-limit One-card Poker

Most of the size of Leduc hold’em comes from the size of its deck, the presence of

a public board card, and the number of rounds. But other interesting games result

from modifying Kuhn poker by increasing the number of betting actions available by

2The sequences that cannot be merged by identifying card suit symmetries.

11

increasing each player’s chip stack size, and making the game no-limit. A no-limit

poker game is one where players are allowed to wager any number of chips between

a minimum wager and the acting player’s stack size, but is otherwise the same as

limit poker.

The second game we use in this thesis is a variant of no-limit one-card poker

with one betting round, a four card deck where each have the same suit but different

rank, no public cards, ten chip stacks, and a one chip ante for both players. Thus, all

matches begin with a pot containing two chips and both players have nine chips to

spend to wager back and forth until a player calls or folds to end the match. While

at first glance this game may appear simpler than Leduc hold’em since it has fewer

rounds and a smaller, simpler deck, this one-card poker game has 3200 sequences,

making it more than four times larger.

Similar to Leduc hold’em, the big-blind is effectively its one chip ante, and the

first player is expected to lose 83 mbb optimally in this game.

Scaling CFR

CFR is efficient in the number of information sets, but when the game has more than

10160 of them, like no-limit Texas hold’em, CFR is impractical. Fortunately, CFR

lends itself readily to various sampling and abstraction techniques that improve its

computational properties, perhaps at a cost to the solution approximation quality.

As we are proposing an alternative approach to scaling CFR, we briefly review past

approaches to this problem.

Sampling

A common technique for reducing the computation of statistical estimations is

sampling. It is the fundamental idea used by Monte-Carlo tree search algorithms,

which are state-of-the-art players of perfect information games like go [10, 14]

and hex [19]. Monte-Carlo CFR (MCCFR) [28], an extension of CFR, was also

developed to use sampling to solve large games more quickly. MCCFR represents

a family of CFR variants that sample player or chance actions to obtain estimates

12

of counterfactual values, and thus regrets. These sampled counterfactual regrets are

unbiased estimates of their unsampled counterparts, so the CFR convergence theory

holds in expectation. Average strategy sampling [8], external sampling [28] and

public chance sampling [24] typically outperform their sister variants, including

vanilla CFR, in terms of running time in practice. Average strategy sampling is the

least used of these three however, as it requires the most parameter tuning.

Abstraction

A popular technique to generate approximate equilibrium strategies in games too

large to solve directly, even when sampling, is to solve a smaller abstracted version

of the game and play the solution in the original game [33]. Games are typically

abstracted in two ways: merging information sets in an information or state-space

abstraction [4, 17, 21, 26] and doing an action abstraction by discretizing or

shrinking the set of legal actions [16, 31, 13].

State-space Abstraction

Two or more information sets, I1, I2, . . . , In ∈ I, that are compatible, in the sense

that their action sets are the same (A(I1) = A(I2) . . . = A(In)), can be collapsed

into a single information set in an abstract game. The information sets involved in

the merge were distinct in the original game, but are indistinguishable in the abstract

game. More formally, one may define this type of abstraction as a many-to-one

mapping, f : I full → Iabstract, where I full is the set of information sets in the full game,

and Iabstract is that in the abstract game.

In this way, an abstract game is built to be a smaller version of the original game.

For example, in Leduc hold’em, merging all the information sets where the player

holds either the king or queen allows the player to distinguish between holding a

jack versus a queen, or a jack versus a king, but not distinguish between holding

a queen versus a king. The hope is that there is redundancy in (near) equilibrium

strategies of the original game that are leveraged by the abstraction: strategies with

low exploitability that, for all I ∈ Iabstract, use a similar policy at all I ′ ∈ I full where

f(I ′) = I [27]. Of course, to find such strategies they must be equilibrium strategies

13

in the abstract game, so the design of the abstraction would ideally reflect this. A

state-space abstraction is often generated by specifying a similarity function between

compatible information sets and grouping them with a clustering algorithm, such as

k-means [26], where the size of the resulting abstraction is the number of clusters.

Action Abstraction

Instead of grouping previously disjoint information sets, one could remove informa-

tion sets by restricting the action sets of each player. Considering now a no-limit

poker game, allowing players to take only fold, call, pot size wagers, and all-in

wagers would be an example of such an abstraction.

A benefit of removing actions is that it prevents agents from playing risky actions

that would require a finely-grained abstraction to properly utilize or exploit. For

example, a small bet in no-limit poker increases the risk and potential utility of

the hand and prolongs the betting round. To be effective, the player making the

small bet must be able to make a good decision if the opponent re-raises. Many

good decisions have to be made in a row for the small bet to pay off, and otherwise

the player takes a greater loss than she would have if she would not have bet. In

contrast, an all-in wager is always the player’s final action, and call or fold are the

only options available to the opponent for her final action. An all-in wager has a

positive expected value as long as the actor’s hand defeats more than half of the

hands that the opponent could be holding, averaged over all potential board cards.

So deciding whether to make an all-in versus a check/call or fold is simple, it limits

the opponent’s options, and it requires no additional reasoning to obtain its payoff,

thus making all-in a low risk option.

An additional complication involved in using an action abstraction is that a

translation step is required before the solution to the abstract game can be played in

the original game. Because play-outs in the original game may involve actions that

were declared illegal in the abstract game, the real information set must be translated

into its closest counterpart in the abstract game [31]. The abstract game solution can

then sample its behavioral strategy at this abstract information set to select an action.

14

Supervised Learning

The modifications to RM and CFR presented in this thesis center around the idea that

a table of regrets or similar values can be faithfully reproduced by a more compact

representation. To describe these modifications and explain how one would go about

building such a representation, we first give an overview of supervised learning.

Supervised learning refers to a particular learning setting where the learner must

produce a function that generalizes a batch of labeled examples. The learning is

“supervised” because training examples are labeled, i.e. every input example has

an associated output value, also called a target. In contrast to online learning, we

typically think about supervised learning as being done in a one-shot manner where

the learner observes all input–target pairs before producing any output. The output

of a supervised learning algorithm is a mapping from instances of the input space

to instances of the target space. The goal is to produce a mapping that compactly

represents the underlying relationship between training inputs and targets. With such

a mapping, one could reproduce training targets from their inputs and accurately

estimate the values of previously unseen inputs.

If the targets are continuous scalars, the problem is called a regression problem.

For example, finding the least squares fit between two-dimensional data points, where

one dimension is the input space and the other is the target space. An algorithm that

solves a regression problem is called a regressor. A regressor produces a function,

f : X → R, that maps elements of the input space, X , to a real number.

When X is complicated, e.g. the space of images or the sequences of a game,

we can define a feature space and an associated feature expansion for all x ∈ X ,

ϕ (x) ∈ Φ, that describes characteristic properties of elements in X . Typically, the

feature space is Euclidean, i.e. Φ ⊆ Rm, where m > 0 is the number of features,

and ϕ (x) is called the feature vector of the instance x ∈ X . Features that could

be used to describe the sequences of a poker game could be the size of the pot, the

size of the wager to be made, the round, the next player to act, whether or not the

acting player is holding a king, or whether the acting player’s private card pairs a

community board card. Once a feature expansion is defined, any of a number of

15

supervised learning algorithms could be applied to learn a mapping between features

and targets.

Regression Tree

One such prediction model is a regression tree. A regression tree is a piecewise-

constant function that is induced by a hierarchy of questions, or splits, that determine

the estimate for any x ∈ X . Given ϕ (x), the tree begins by checking the feature

values against the root node’s question, then takes the path determined by the answer.

Typically, regression trees are binary, so the left path will be taken if the answer is

affirmative or the right if it is negative. If the next node encountered is a leaf, that

leaf’s value is returned as the prediction. If it is an internal node, the features are

checked against this node’s splitting feature, and the appropriate path is again taken.

Each leaf value is a function of the targets associated with the training examples

that would fall into the leaf. For a regression tree that attempts to minimize the

squared error from the training data, the mean of the targets in the leaf is used

as the leaf value. Alternatively, the median is chosen to minimize absolute error.

The questions could be chosen in different ways, but two common ways are by

recursive [7] or best-first partitioning [12, 32].

Recursive Partitioning

To build a regression tree with recursive partitioning, the examples in each node are

split on the feature value that would most reduce the average error in that node. At

the current node on the frontier of the growing regression tree, beginning at the root,

the split is chosen that induces the partition that minimizes the average error of the

data in the node. Two child nodes are created, one for each side of the partition, and

this process is repeated in each of the children. Splits are made until there are no

more splits to make or a stopping condition has been reached. Two common stopping

criteria are that the error reduction of the next split in proportion to the unsplit error

is below a threshold, or the average error within the node is less than a threshold3.

3Waugh et al. [41] states that a threshold on the proportional error reduction was used as the
stopping condition, but this is inaccurate. It was in fact a threshold on the average error within the
node.

16

The value of such thresholds would then determine the granularity of the partition

induced by the regression tree and the tree’s size.

Best-first Partitioning

A regression tree is built with best-first partitioning by progressively making the

best split considering all the nodes on the frontier of the tree. The best split is the

one that most reduces the error of the tree overall. The reduction in error that would

result from making a split is equal to the difference between the error between the

examples in the node and the sum of the errors of the potential child nodes, so this

can be computed efficiently. Whenever a split is made, the best splits of the new

child nodes are computed and saved to be compared with the error reductions of the

previously made splits on the frontier of the current tree. Deciding which split to

make only requires searching through the previously computed error reductions, one

for each frontier node, to find the best split.

Splits would continue to be made until making a split becomes too expensive

according to a regularization function. For example, a regularizer that returns the

current size of the tree increases the cost of splitting a node linearly as the tree grows,

and would encourage the creation of smaller trees. Analogous to the regularizer of

a linear model, such biases toward simple tree models could be useful to improve

generalization and avoid overfitting.

In the context of a supervised learning problem where the learner has a parameter

or complexity budget, recursive partitioning is inconvenient because the error thresh-

old must be tuned to meet the budget. Finding an acceptable threshold automatically

requires building multiple trees with various thresholds in a parameter search, which

is computationally wasteful. Meeting a complexity budget with best-first partitioning

on the other hand, is trivial, since one can set the regularizer to be zero until the

budget is exhausted, and infinite afterwards.

Motivation for Using Regression Trees

While it is NP-complete to find an optimal regression tree [20], the non-linearity of

the partitions induced by the tree structure facilitates the learning of complicated

17

functions. The tree structures learned in this fashion are a rudimentary but often

effective form of representation learning. While slower to train than a linear regressor,

trees are fast to train and evaluate compared to more complicated models, such as

kernel representations or deep networks. The dominating computational task is

sorting the training examples in a node to be split, which typically takes O (n log n)

operations, where n is the number of examples to sort, and this must be done once for

every feature [39]. Evaluating a new example costs O (s) in the worst-case, where

s is the number of splits in the tree, but the estimate could potentially return after

checking the first split.

18

Chapter 3

Functional Regret Estimation

Here we describe new algorithmic and theoretical contributions to the fields of online

learning and game solving. The key idea that leads to the following algorithms is

that we can view traditional abstraction as one choice of a compact representation

for an intractably large tabular mapping between game sequences and values (regrets

or Q-regrets, typically). A regressor is a different way of compactly representing

an arbitrary mapping, one that is more flexible and adapts to training examples. So

instead of thinking about abstracting a game and subsequently solving the abstract

game with a technique like CFR, we can think about defining features on the original

game sequences and estimating associated values. Such an estimator can be trained

on values that are computed during each CFR iteration. This intuition forms the

basis of Regression RM (RRM) and Regression CFR (RCFR).

Regression RM

Regression RM (RRM) is an online learning algorithm that is a principled general-

ization of RM. RRM allows structural information between actions to be used to

improve learning and compactly represent regrets. Structural information here is

in the form of a feature expansion, ϕ (a) ∈ Φ, that is associated with every action

a ∈ A. Intuitively, if two actions a ∈ A and a′ ∈ A have similar features, then taking

action a and receiving a utility should provide information about what the utility

would be if a′ were taken, and vice-versa. Note that one can reduce RRM to RM

by using indicator features to describe each action and a regressor that averages the

19

targets associated with each action, such as gradient descent with a 1
t
-learning rate.

After every round of an online learning problem, the learner receives a utility

vector vt, which admits an instantaneous regret vector, rt = vt− (σt ·vt)1. Typically,

RM would accumulate these instantaneous regrets in a cumulative regret vector,

Rt = ∑T
s=1 r

s, and use Rt to make an informed prediction on subsequent rounds.

Instead, RRM uses a regressor to learn a function, f t : Φ → R, where f t(ϕ (a))

approximates the average instantaneous regret, r̄ta = 1
t

∑t
s=1 r

s. An estimate of the

cumulative regret is then Rt
a = tr̄ta ≈ R̃t

a = tf t(ϕ (a)). RRM’s policy on round t,

σt, is then proportional to the regret estimates after the previous round, R̃t−1.

In a stateful setting, where many learners are used to find good strategies in each

state independently, RRM allows features of the state, or state–action combinations,

to be specified so that a regressor can estimate the regrets for each state–action.

RRM has an advantage over the conventional approach when there is structure

between states and actions. For example, in a poker game, holding any two different

sets of cards represents two distinct information sets, but they might in fact be

strategically similar, or two wager sizes may be close enough that they could be

considered the same. More generally, if an elementary relationship exists between

states and actions, RRM may allow the collection of strategies to improve faster and

with lower storage requirements. And rather than defining a static abstraction before

learning, RRM allows a dynamic abstraction, in the form of a regressor, to be shaped

by the data obtained while learning.

Regret Bounds

The regret of RRM can be bounded in terms of the representational power of

the regressor. The proof of which requires the following general definitions and

theorems.

Definition 3.0.2 (ε-Blackwell’s Condition). Let

φ(b) = (b+)2 for b ∈ R, and

Φ(y) =
d∑
i=1

φ(yi) =
∥∥∥y+

∥∥∥2

2
for y ∈ Rd and d > 0.

20

Then Blackwell’s condition is satisfied with ε ∈ R error if

sup
vt+1∈V

∇Φ(Rt) · rt+1 ≤ ε. (3.1)

Theorem 3.0.3 (Bound on Error in Achieving Blackwell’s Condition). Consider the

online learning setting as described in Section 2 with action set A. A learner that

uses Method 2.1 with weights ω := y+, where y ∈ R|A|, to generate her strategy on

round t+ 1, satisfies ε-Blackwell’s condition with ε at most

4 ‖v‖2

∥∥∥Rt,+ − y+
∥∥∥

1
1. (3.2)

Proof. Consider arbitrary v = vt+1 ∈ V . Expanding and doing algebra on the

left-hand-side of Blackwell’s condition,

∇Φ(Rt) · rt+1 = ∇Φ(Rt) · [v − (v · σ) 1] (3.3)

= 2
[
Rt,+ · v −Rt,+ · [(v · σ) 1]

]
(3.4)

= 2
[
Rt,+ · v −

(
Rt,+ · 1

)
(σ · v)

]
(3.5)

= 2
[
Rt,+ · v −

(∥∥∥Rt,+
∥∥∥

1
σ
)
· v
]

(3.6)

= 2v ·
(
Rt,+ −

∥∥∥Rt,+
∥∥∥

1
σ
)
. (3.7)

Note that (3.7) is always zero when Rt,+ = 0, so the theorem is trivially proven in

this case. Consider now only the case when Rt,+ 6= 0. By Cauchy-Schwarz,

2v ·
(
Rt,+ −

∥∥∥Rt,+
∥∥∥

1
σ
)
≤ 2 ‖v‖2

∥∥∥Rt,+ −
∥∥∥Rt,+

∥∥∥
1
σ
∥∥∥

2
(3.8)

Since ‖x‖2 ≤ ‖x‖1 for arbitrary x ∈ Rd and d > 0,

≤ 2 ‖v‖2

∥∥∥Rt,+ −
∥∥∥Rt,+

∥∥∥
1
σ
∥∥∥

1
. (3.9)

When y = 0, we can apply the triangle inequality to simplify the third term in the

21

product of (3.9), ∥∥∥Rt,+ −
∥∥∥Rt,+

∥∥∥
1
σ
∥∥∥

1
≤
∥∥∥Rt,+

∥∥∥
1

+
∥∥∥∥∥∥Rt,+

∥∥∥
1
σ
∥∥∥

1
(3.10)

=
∥∥∥Rt,+

∥∥∥
1

+
∥∥∥Rt,+

∥∥∥
1
‖σ‖1 (3.11)

=
∥∥∥Rt,+

∥∥∥
1

(1 + ‖σ‖1) (3.12)

=
∥∥∥Rt,+

∥∥∥
1

(
1 +

∥∥∥∥∥ 1
|A|

∥∥∥∥∥
1

)
(3.13)

=
∥∥∥Rt,+

∥∥∥
1

(
1 + ‖1‖1

|A|

)
(3.14)

=
∥∥∥Rt,+

∥∥∥
1

(1 + 1) (3.15)

= 2
∥∥∥Rt,+

∥∥∥
1
. (3.16)

Substituting (3.16) back into (3.9) finishes the proof for this case:

2 ‖v‖2

∥∥∥Rt,+ −
∥∥∥Rt,+

∥∥∥
1
σ
∥∥∥

1
≤ 2 ‖v‖2

(
2
∥∥∥Rt,+

∥∥∥
1

)
(3.17)

= 4 ‖v‖2

∥∥∥Rt,+
∥∥∥

1
. (3.18)

When y 6= 0, we can apply the triangle inequality for distances to simplify the third

term in the product of (3.9),∥∥∥Rt,+ −
∥∥∥Rt,+

∥∥∥
1
σ
∥∥∥

1
=
∥∥∥∥∥Rt,+ −

∥∥∥Rt,+
∥∥∥

1

y+

‖y+‖1

∥∥∥∥∥
1

(3.19)

=
∥∥∥∥∥Rt,+ − ‖R

t,+‖1
‖y+‖1

y+
∥∥∥∥∥

1
(3.20)

≤
∥∥∥Rt,+ − y+

∥∥∥
1

+
∥∥∥∥∥‖Rt,+‖1
‖y+‖1

y+ − y+
∥∥∥∥∥

1
(3.21)

=
∥∥∥Rt,+ − y+

∥∥∥
1

+
∥∥∥∥∥
(
‖Rt,+‖1
‖y+‖1

− 1
)
y+
∥∥∥∥∥

1
(3.22)

=
∥∥∥Rt,+ − y+

∥∥∥
1

+
∣∣∣∣∣‖Rt,+‖1
‖y+‖1

− 1
∣∣∣∣∣ ∥∥∥y+

∥∥∥
1

(3.23)

=
∥∥∥Rt,+ − y+

∥∥∥
1

+
∣∣∣∣∣‖Rt,+‖1
‖y+‖1

∥∥∥y+
∥∥∥

1
−
∥∥∥y+

∥∥∥
1

∣∣∣∣∣ (3.24)

=
∥∥∥Rt,+ − y+

∥∥∥
1

+
∣∣∣∥∥∥Rt,+

∥∥∥
1
−
∥∥∥y+

∥∥∥
1

∣∣∣ . (3.25)

By the reverse triangle inequality,

≤
∥∥∥Rt,+ − y+

∥∥∥
1

+
∥∥∥Rt,+ − y+

∥∥∥
1

(3.26)

= 2
∥∥∥Rt,+ − y+

∥∥∥
1
. (3.27)

22

Inserting (3.27) back into (3.9) completes the proof for this final case:

∇Φ(Rt) · (v − (v · σ) 1) ≤ 2 ‖v‖2

(
2
∥∥∥Rt,+ − y+

∥∥∥
1

)
(3.28)

= 4 ‖v‖2

∥∥∥Rt,+ − y+
∥∥∥

1
. (3.29)

Theorem 3.0.4 (Regret Bound Given εt-Blackwell’s Condition is Satisfied). If a

learner satisfies εt-Blackwell’s condition on every round t, then the learner’s regret

is bounded by
√
T |A|L2 +∑T

t=1 ε
t. That is, so long as the learner chooses her σt

such that
∑T
t=1 ε

t < T 2, the learner will be no-regret.

Proof. Adapted from Cesa-Bianchi and Lugosi [9]. Observe that ∇Φ is 2-Lipschitz

continuous:

‖∇Φ(x)−∇Φ(x′)‖2 = ‖2x− 2x′‖2 , for arbitrary x, x′ ∈ Rd and d > 0 (3.30)

= 2 ‖x− x′‖2 . (3.31)

By Lipschitz continuity of ∇Φ,

Φ(Rt+1) ≤ Φ(Rt) +∇Φ(Rt) ·
(
Rt+1 −Rt

)
+
∥∥∥Rt+1 −Rt

∥∥∥2

2
(3.32)

= Φ(Rt) +∇Φ(Rt) · rt+1 +
∥∥∥rt+1

∥∥∥2

2
. (3.33)

By εt+1-Blackwell’s condition,

≤ Φ(Rt) + εt+1 +
∥∥∥rt+1

∥∥∥2

2
(3.34)

≤ Φ(Rt) + εt+1 + sup
v∈V
‖v‖2

2 . (3.35)

Since ‖x‖2 ≤
√
d ‖x‖∞ for arbitrary x ∈ Rd and d > 0,

≤ Φ(Rt) + εt+1 + |A|
(

sup
v∈V
‖v‖∞

)2

. (3.36)

Since ‖vt‖∞ ≤ L,

≤ Φ(Rt) + εt+1 + |A|L2. (3.37)

Iterating the inequality,

≤ (t+ 1) |A|L2 +
t+1∑
s=1

εs. (3.38)

23

Bounding the maximum regret in terms of Φ(RT), we find

max
a∈A

RT
a ≤ max

a∈A
RT,+
a =

∥∥∥RT,+
∥∥∥
∞

(3.39)

≤
∥∥∥RT,+

∥∥∥
2

=
√

Φ(RT) (3.40)

≤

√√√√L2T |A|+
T∑
t=1

εt. (3.41)

Combining Theorems 3.0.3 and 3.0.4 allows us to prove a general regret bound

that applies to RRM.

Corollary 3.0.5 (Regret Bound Given Regret Estimation Error in Terms of `1 Dis-

tance). A learner that uses Method 2.1 with weights ω := yt,+, where yt ∈ R|A|, to

generate her strategy on round t+ 1, has her regret bounded by√√√√L√|A|(LT√|A|+ 4
T∑
t=1
‖Rt,+ − yt,+‖1

)
. (3.42)

So long as the learner chooses yt such that
∑T
t=1 ‖Rt,+ − yt,+‖1 < T 2, the learner

will be no-regret.

Proof. Setting εt := 4 ‖v‖2 ‖Rt,+ − yt,+‖1, as specified by Theorem 3.0.3, into 3.0.4

yields the desired inequality:√√√√T |A|L2 +
T∑
t=1

εt =

√√√√L2T |A|+
T∑
t=1

4 ‖v‖2 ‖Rt,+ − yt,+‖1 (3.43)

=

√√√√L2T |A|+ 4 ‖v‖2

T∑
t=1
‖Rt,+ − yt,+‖1 (3.44)

≤

√√√√L2T |A|+ 4L
√
|A|

T∑
t=1
‖Rt,+ − yt,+‖1 (3.45)

=

√√√√L√|A|(LT√|A|+ 4
T∑
t=1
‖Rt,+ − yt,+‖1

)
. (3.46)

Corollary 3.0.5 reduces to the familiar L
√
T |A| bound when applied to RM. If

one measures the deviation from regrets with the Euclidean distance, an extra
√
|A|

factor is added to the bound’s error term, but the no-regret guarantee is unaffected.

24

Corollary 3.0.6 (Regret Bound Given Regret Estimation Error in Terms of Euclidean

Distance). If the error between the cumulative regrets and the weights with which

the learner is using to generate its strategy is measured as the Euclidean distance

between these two vectors, the learner’s regret is bounded by√√√√L |A|(LT + 4
T∑
t=1
‖Rt,+ − yt,+‖2

)
. (3.47)

Proof. Applying the fact that ‖x‖1 ≤
√
d ‖x‖2 for x ∈ Rd and d > 0 to Corol-

lary 3.0.5 yields the desired bound.

Algorithm Details

RRM has been defined abstractly, but the regression problem that must be solved

to implement RRM has yet to be completely specified. In particular, what are the

training targets? One choice is to make the training targets the instantaneous regrets,

but on every round, the regressor either needs to be trained with all examples that

have been observed since the first round, or it must adapt online to the latest regrets.

Either way, this choice constrains the regressor to be one that predicts the average

target given a specific feature vector, i.e. one that minimizes squared training error.

Algorithm 1 is an alternative that allows a regressor that does not minimize

squared error. It requires storing and updating r̄t to use as targets2, which removes

one of RRM’s motivations and its potential advantages, but this might still be a

worthwhile approach to gain sample-efficiency through generalization between

actions, or simply to test that RRM would be useful in a particular problem with a

particular regressor.

Algorithm 2 is a more practical approach that also allows one to use an arbitrary

regressor. Unfortunately, it potentially introduces a compounding error problem,

since it bootstraps the targets on round t with the predictions made by the regression

function, f t−1 after round t − 1. Since (t − 1)f t−1(a) = R̃t−1
a ≈ Rt−1

a , we can

approximate Rt
a ≈ R̃t−1

a + rta. Then RRM can train its regressor with ϕ (a)– R̃
t−1
a +rt

a

t

2Rt could be used instead, but we discuss the version with r̄t so that RRM’s regressor is always
estimating r̄t.

25

pairs, thereby bootstrapping itself, in the same sense as reinforcement learning’s

bootstrapping [36], i.e. its future predictions are based on its current estimates.

Since R̃t−1 is an estimate that may not exactly match Rt−1, the bootstrapped

target R̃t−1
a +rt

a

t
may not match r̄t, so errors incurred during the regression process

will be felt twice on each round: once during the generation of R̃t to form the

learner’s policy, σt, and once during the creation of the bootstrapped targets. The

error betweenRt and R̃t depends not only on the regressor’s capacity to reproduce its

training data, but also the error between Rt−1 and R̃t−1, thereby causing small errors

to possibly compound and become significant on later rounds. Our experiments in

Chapter 4 investigate whether or not this is an issue in practice.

Algorithm 1 Regression Regret-Matching with Stored r̄

r̄0 ← 0 ∈ R|A|
f ← CONSTANTFUNCTION(0) . Always returns zero
for t ∈ [T] do

R̃t ← [tf t(ϕ (a))]a∈A
Choose σt ∝

(
R̃t−1

)+

Observe vt ∈ R|A|
X t ← []
for a ∈ A do

X t ← X t ∪ ϕ (a)
rt|A| ← vt|A| − σt · vt

r̄t|A| ← r̄t−1
|A| +

rt
|A|−r̄

t−1
|A|

t

end for
f t ← TRAINREGRESSOR(X t, r̄t)

end for

26

Algorithm 2 Regression Regret-Matching with Bootstrapping

f ← CONSTANTFUNCTION(0) . Always returns zero
for t ∈ [T] do

R̃t ← [tf t(ϕ (a))]a∈A
Choose σt ∝

(
R̃t−1

)+

Observe vt ∈ R|A|
X t ← [] ∈ R|A|
˜̄rt ← [] ∈ R|A| . Bootstrapped average
for a ∈ A do

X t
a ← ϕ (a)

rta ← vta − σt · vt
˜̄rt−1
a ← R̃t−1

t−1
˜̄rta ← ˜̄rt−1

a + rt
a−˜̄rt−1

a

t

end for
f t ← TRAINREGRESSOR(X t, ˜̄rt)

end for

Regression CFR

Using RRM as the base learner in CFR results in Regression CFR (RCFR). Each

sequence, Ia, where I ∈ I, P (I) = i, and a ∈ A(I), is given a feature expansion,

ϕ (Ia). Whenever player i’s policy, σti(·|I), at an information set is required, player

i’s regression function, fi : Φ→ R, is used to generate R̃t and subsequently σt(·|I).

Instead of independent no-regret learners each contributing their policy, σti(·|I), to

the player’s current strategy, a single shared regressor or an ensemble of regressors

generates the entire current strategy, σti . Using a shared regressor allows generaliza-

tion over distinct sequences, thereby enabling games to be solved with a compact

representation that is potentially a fraction of the size of the original game.

Procedurally, each iteration of RCFR consists of two steps. The first step is

essentially an iteration of CFR, with two differences. The first difference is that the

strategies are generated from regressors rather than tables of cumulative regrets. The

second is that instantaneous regrets that are computed during a walk of the game tree

and traditionally are used to update cumulative regrets are instead added to a table of

regression data along with the features of their associated game sequences. Once the

CFR-like iteration is finished we can use this regression data to update or retrain a

27

regressor. The updated regressor is then used on the next RCFR iteration to generate

the player’s strategy. Just like in CFR, the average of the reach probabilities to every

sequence can be tracked to yield an average strategy profile. The only difference in

RCFR is that the reach probabilities are generated by querying regressors instead of

tables.

Inherited from RRM, RCFR’s regret bound depends on the accuracy of its

regression system.

Theorem 3.0.7. Let Ni = maxI∈Ii
|A(I)|. Then RCFR bounds the external regret

for player i after T iterations by

|Ii|

√√√√L√Ni

(
LT

√
Ni + 4

T∑
t=1

εt
)

(3.48)

so as long as its approximate regrets, R̃t(·|I), at every information set I , on round

t, has bounded `1 error,
∥∥∥Rt(·|I)− R̃t(·|I)

∥∥∥
1
≤ εt. Therefore, as long as RCFR’s

regression system is accurate enough that
∑T
t=1

∥∥∥Rt(·|I)− R̃t(·|I)
∥∥∥

1
< T 2 at every

information set I , RCFR’s average profile will converge to a Nash equilibrium.

Proof. By Corollary 3.0.5, RRM has bounded counterfactual regret on all informa-

tion sets I ∈ Ii,

RT
i (I) ≤

√√√√L√Ni

(
LT

√
Ni + 4

T∑
t=1

εt
)
.

Using the fact that Rext,T
i ≤ ∑I∈Ii

RT,+
i (I) from Zinkevich et al. [43], the theorem

is proven:

Rext,T
i ≤

∑
I∈Ii

√√√√L√Ni

(
LT

√
Ni + 4

T∑
t=1

εt
)

≤ |Ii|

√√√√L√Ni

(
LT

√
Ni + 4

T∑
t=1

εt
)
.

Relationship to Abstraction

The regressor can be thought of as a dynamic “soft” abstraction that relates the regret

values of distinct player sequences to each other, without necessarily collapsing

28

them together completely. Such an abstraction is soft in contrast to traditional “hard”

abstraction techniques [17, 21] that must merge compatible information sets so they

are indistinguishable. The complexity of the regressor, e.g. the number of weights in

a linear model or the number of nodes in a regression tree, is analogous to the size

of the abstraction. And while traditional abstractions must be set in advance of the

game solving process, RCFR’s game representation adapts during solving.

Action abstraction however, does not neatly fit under the RCFR umbrella. RCFR

does not have a convenient way of preventing the counterfactual values of certain

actions from influencing the regrets of other actions or preventing certain actions

from being played, yet these are the fundamental effects of traditional action ab-

stractions. These two effects may be useful in preventing risky actions from being

played as discussed in Section 2. But RCFR computes an approximate equilibrium

in the full game, thereby avoiding possible detrimental sequence removal effects.

The experiments in Section 4 illustrate and explore this trade-off.

RRM+ and RCFR+

If negative exact or approximate average regrets, r̄ta or ˜̄rta, are set to zero in Algorithm

1 or 2, the regression targets become average Q-regrets or approximate average Q-

regrets, respectively. Thus the resulting algorithms are RM+ variants of RRM and

we denote them RRM+.

Recall that negative regrets are set to zero by RM before it generates its strategy.

This means that all non-positive regrets are mapped to the same probability mass.

But a regressor in RRM that attempts to optimize squared or absolute loss would see

a large loss between an estimate of 0 and a true regret of -100, for example. The RRM

regressor is then encouraged to use some of its representational power to accurately

estimate the precise values for negative regrets. Since negative approximate regrets

will be set to zero during strategy formation, this representational power is essentially

wasted. Said another way, a regressor that is only more accurate when estimating

negative values will not make RRM’s strategy approximation any more accurate. If

instead the regressor used all of its representational power to accurately estimate

29

positive regrets, then its strategies would certainly better resemble those that would

have been played by RM.

RRM+ avoids this problem entirely because its regressor is trained to estimate

Q-regrets, which are by definition non-negative. All of the regressor’s represen-

tational power in this case is used to estimate values that will have an impact on

the resulting strategy. Any improvement in the regressor’s accuracy must improve

RRM+’s strategy approximation.

In addition, RRM+ is theoretically sound, having regret bounds similar to those

of RRM. They differ only in that the error of the estimates produced by the RRM+

regressor are measured with respect toQ-regrets rather than conventional regrets. But

before proving RRM+’s regret bound, we must prove a variation of ε-Blackwell’s

condition with Q-regrets as targets and some elementary facts about Q-regret.

Definition 3.0.8 (Instantaneous Q-regret). Derived from the definition of cumulative

Q-regret, the instantaneous Q-regret on iteration t is

qt = Qt −Qt−1

= (Qt−1 + rt)+ −Qt−1

=

Qt−1 + rt −Qt−1, if rt > −Qt−1

−Qt−1, otherwise

=

rt, if rt > −Qt−1

−Qt−1, otherwise

= max { rt,−Qt−1 }

where Q0 = 0. Alternatively, the condition on which qt = −Qt−1 can be restated as

rt ≤ 0 and
∣∣∣rt∣∣∣ ≥ ∣∣∣Qt−1

∣∣∣ = Qt−1.

Definition 3.0.9 (ε-Blackwell’s Condition with Q-regret). Then Blackwell’s condi-

tion is satisfied with ε ∈ R error if

sup
vt+1∈V

∇Φ(Qt) · qt+1 ≤ ε. (3.49)

Theorem 3.0.10 (Bound on Error in Achieving Blackwell’s Condition With Respect

to Q-regret). Consider the online learning setting as described in Section 2 with

30

action set A. A learner that uses Method 2.1 with weights ω := y+, where y ∈ R|A|,

to generate her strategy on round t+ 1, satisfies ε-Blackwell’s condition with ε at

most

4 ‖v‖2

∥∥∥Qt − y+
∥∥∥

1
. (3.50)

Proof. Consider arbitrary v = vt+1 ∈ V . Expanding and doing algebra on the

left-hand-side of Blackwell’s condition for Q-regret,

∇Φ(Qt) · qt+1 = 2Qt,+ · qt+1

= 2Qt ·

−Qt, if rt+1 ≤ −Qt

rt+1, otherwise.

When Qt = 0, Blackwell’s condition is satisfied exactly, so consider now only the

case where Qt 6= 0. Consider the case when qt+1 = −Qt. Since each element of Qt

is non-negative by the definition of Q-regrets,

= 2Qt · −Qt

≤ 2Qt · 0 = 0,

which proves the theorem for this case. In the remaining case,

= 2Qt · rt+1.

Repeating the same steps as those in the proof of Theorem 3.0.3 with Qt substituted
for Rt,+ concludes the proof by yielding

≤ 4 ‖v‖2

∥∥∥Qt − y+
∥∥∥

1
.

Lemma 3.0.11. The squared `2 norm of instantaneous regret is an upper bound on

that of instantaneous Q-regret.

Proof. Consider the instantaneous regret and Q-regret on a single action a ∈ A.

(qt)2 = (max { rt,−Qt−1 })2

=

(Qt−1)2, if rt ≤ 0 and |rt| ≥ |Qt−1| = Qt−1

(rt)2, otherwise

=

(Qt−1)2, if rt ≤ 0 and (rt)2 ≥ (Qt−1)2

(rt)2, otherwise

31

Since (qt)2 = (Qt−1)2 only when (rt)2 ≥ (Qt−1)2,

(qt)2 ≤ (rt)2.

Since the squared `2 norm of a vector y ∈ R|A|, ‖y‖2
2 = ∑|A|

i=1 y
2,

∥∥∥qt∥∥∥2

2
=
∑
a∈A

(qta)2

≤
∑
a∈A

(rta)2

≤
∥∥∥rt∥∥∥2

2
.

Theorem 3.0.12 (Regret Bound Given εt-Blackwell’s Condition on Q-regret is

Satisfied). If a learner satisfies εt-Blackwell’s condition with respect to Q-regret on

every round t, then the learner’s regret is bounded by
√
T |A|L2 +∑T

t=1 ε
t. This is

the same regret bound one would achieve by satisfying εt-Blackwell’s condition with

respect to regrets.

Proof.

By Lipschitz continuity of the gradient of Φ,

Φ(Qt+1) ≤ Φ(Qt) +∇Φ(Qt) ·
(
Qt+1 −Qt

)
+
∥∥∥Qt+1 −Qt

∥∥∥2

2
(3.51)

= Φ(Qt) +∇Φ(Qt) · qt+1 +
∥∥∥qt+1

∥∥∥2

2
. (3.52)

By εt+1-Blackwell’s condition and Lemma 3.0.11,

≤ Φ(Qt) + εt+1 +
∥∥∥rt+1

∥∥∥2

2
(3.53)

≤ (t+ 1) |A|L2 +
t+1∑
s=1

εs. (3.54)

Bounding the maximum regret in terms of Φ(QT), we find

max
a∈A

RT
a ≤ max

a∈A
QT
a , by Tammelin et al.’s Lemma 1 [38]. (3.55)

=
∥∥∥QT

∥∥∥
∞
≤
∥∥∥QT

∥∥∥
2

=
√

Φ(QT) (3.56)

≤

√√√√T |A|L2 +
T∑
t=1

εt. (3.57)

32

Theorems 3.0.10 and 3.0.12 together show that measuring the deviation from

regrets and Q-regrets yields the same regret bound, so RRM+ has the same regret

bound as RRM except that their estimation targets differ. As an aside, note that just

as Theorem 3.0.5 is an alternative proof of RM’s regret bound, Theorem 3.0.12 is an

alternative proof of RM+’s external regret bound.

Just as RRM can be used in CFR in place of RM, so can RRM+. We call the

variant of RCFR that uses RRM+ RCFR+. Procedurally, RCFR+ is no different

from RCFR, except that Q-regrets or approximate Q-regrets are used as regression

targets. RCFR+ also retains the same guarantees as RCFR by combining the bound

of Corollary 3.0.5, and Theorems 3.0.12 and 3.0.7.

33

Chapter 4

Experiments

We compare the exploitability of strategies computed by RCFR variants against each

other and abstracted CFR with similarly complex game representations, to illustrate

the empirical advantage of RCFR and explore some choices in its application. We

compare RCFR’s performance in Leduc hold’em against traditional state-space

abstractions, and in no-limit one-card poker against traditional action abstractions,

as well as unabstracted CFR+ in both games. The iterative behaviour of some of

these RCFR and CFR variants is shown to qualitatively compare their convergence.

100,000 solver iterations were used to generate all strategies. The traditional abstract

games were solved with CFR+1.

The following RCFR variants were tested:

• RCFR with a single best-first regression tree for each player and stored r̄t

RRM (BF).

• RCFR with a single best-first regression tree for each player and bootstrapped

RRM (BFBS).

• RCFR+ with a single best-first regression tree for each player and stored

q̄t = Qt

t
RRM+ (BF+).

• RCFR+ with a single best-first regression tree for each player and bootstrapped

RRM+ (BF+
BS).

In addition, we also compare these new RCFR variants with the results for RCFR

with a single recursive partitioning regression tree and stored r̄t RRM (RP) that were
1This setup deviates from Waugh et al.’s [41] experiments where traditional abstract games were

solved with chance-sampled CFR [44], but the exploitabilities of the resulting strategies are similar.

34

originally presented with Waugh et al. [41]. Recursive partitioning regression tree

RCFR versions were not run in no-limit one-card poker due to the lack of a clear

advantage in Leduc over the analogous best-first version, BF, and the significant

tuning required to find error tolerances that match desired regressor complexities.

All regression trees minimized squared training error. While the theory presented

in Chapter 3 states that minimizing absolute error yields a regret bound where

regression errors are not scaled by an additional
√
|A| factor, this was discovered

after experiments were completed. Prior to this new theory, minimizing squared

error was believed to yield the best regret bound.

Features

The feature expansion we used in both games for best-first regression tree RCFR

variants2 is the concatenation of a card feature expansion and a betting feature

expansion. To accommodate no-limit histories, the betting feature expansion is

itself a concatenation of a vector of features for each information set–action pair in

the history’s action sequence, listed from most to least recent. Each feature is an

elementary descriptor of a poker sequence component, and is meant to be extendable

to larger poker games with little modification.

• Card Features

– The acting player’s expected hand strength (E[HS]), which is the proba-

bility of winning the hand given the available information, and marginal-

ized over a uniform distribution of opponent hands and the possible

future board card.

– The rank of the board card or zero on the preflop.

• Information Set-Action Features

– Feature that indicates player 1 is next to act.

– Feature that indicates player 2 is next to act.

2The recursive partitioning tree used alternative betting features that do not extend well from limit
to no-limit poker. They are described by Waugh et al. [41].

35

– The pot size after this action.

– The acting player’s remaining stack size.

– Feature that indicates the action was a fold.

– Feature that indicates the action was a call.

– Feature that indicates the action was a non-all-in wager.

– Feature that indicates the action was an all-in wager.

– The wager size in chips.

– The wager size in fractions of the pot after matching the opponent’s

current contribution.

– The wager size in fractions of the acting player’s remaining stack.

Static Abstractions to Compare with RCFR

Here we describe the design of the traditional static abstractions that we compare

with RCFR in our two chosen poker games. Each type of abstraction was chosen as

a natural abstraction in their respective game. For Leduc hold’em, this is state-space

abstraction that obscures the exact identity of the private and public cards, while in

no-limit one-card poker, this is a pot fraction action abstraction where a small number

of different pot fraction sized wagers are allowed. The range of abstraction sizes

was chosen to reflect the typical range of abstraction sizes for each abstraction type.

Each abstraction has been used in previous works in the same or similar testbeds [42,

40, 31].

Leduc Hold’em

In Leduc hold’em, a typical abstraction is one that groups together cards on the

preflop and only distinguishes between pairing and non-pairing board cards on

the flop. We use the abstractions defined by Waugh et al. [42], which are hand-

crafted abstractions that are analogous to the E[HS] based abstractions commonly

used in Texas hold’em. Abstractions are denoted, for example, J.QK to describe

the abstraction that can distinguish between a jack and a queen or king, but cannot

distinguish between a queen and king. The remaining three abstractions are then

36

JQK, JQ.K, and J.Q.K. One may also note that J.Q.K is a strict refinement of the other

three abstractions, and J.QK and JQ.K both are strict refinements of JQK.

No-limit One-card Poker

A typical poker action abstraction is one that declares a set of wagers, usually in the

form of pot size fractions, that the agents are allowed to play along with check/call,

fold, and all-in [16, 42, 31]. All other wagers are disallowed.

In order to play in the unabstracted game, actions played in the real game must

be translated into the abstract game, and action choices by the abstract game solution

must be translated into the real game. While there is currently no clear best translation

scheme, we follow Schnizlein et al.’s [31] advice and use abstract, soft, geometric

translation, where a wager is never interpreted as a check/call or fold. “Abstract”

refers to how actions are translated based on the pot size in the abstract game rather

than the real game. “Soft” signifies that each potential translation of a real game

action in a sequence is given a weight and the weight is sampled (consistently

within the hand) to obtain a single abstract sequence. And “geometric” refers to the

geometric similarity metric introduced by Gilpin et al. [16]. This configuration is

typically competitive with alternatives in terms of exploitability, and it is still used

in the ACPC agents fielded by the University of Alberta’s Computer Poker Research

Group.

We denote allowed wagers by a single letter code where H is half the pot size, P

is the pot size, and D is double the pot size. We also use ∅ to denote the null betting

abstraction where only check/call, fold, and all-in are allowed. ∅, P, HP, PD, and HPD

abstractions are used as our action abstraction exemplars in no-limit one-card poker.

Results

Comparisons of the final exploitabilities of profiles found with different methods

are shown in Figures 4.1 and 4.3. They are aligned by complexity on the horizontal

axis as a percentage of the size of the unabstracted game, so points along the same

vertical line were found with approaches requiring a similar complexity. RCFR’s

37

complexity is the size of its regression trees while the complexity of a conventional

abstraction is the size of its abstract game. The subfigures with a linear vertical axis

readily shows the raw performance of each of the techniques, while the subfigures

with a logarithmic vertical axis reflect the increasing computational difficulty of

reducing exploitability as exploitability decreases.

Convergence graphs, Figures 4.2 and 4.4, show the progress of some of these

strategies during their solver iterations. Each of the methods within a convergence

graph have a similar size, except for unabstracted FULL+, which is included for

comparison.

Analysis

BF and RP perform similarly well in Leduc hold’em, as shown by Figure 4.1. The

lower exploitability of BF near full game size is due to BF using alternating CFR

updates rather than RP’s simultaneous updates, since both are essentially tabular here.

This suggests that the best-first regression tree, with its greater simplicity in terms of

enforcing a complexity budget is a better choice for use in RCFR.

RCFR+ outperforms plain RCFR at every complexity level in both games, and

dramatically so at moderate complexities. Since all points besides those very near to

full game complexity, including those using plain RCFR have largely converged, this

is not due to RM+’s better empirical convergence properties. Instead, this shows that

in these games Q-regrets are significantly easier for regression trees to learn than

regrets. In fact, BF+ and BF+
BS were run with complexity budgets larger than 80% of

Leduc hold’em, but Figure 4.1 shows that less than 80% of the game size was all

that was required to perfectly estimate the Q-regrets. And when the Q-regrets were

estimated perfectly, or nearly so, RCFR+ matched the convergence performance of

FULL+, so RCFR+ also inherits the improved convergence properties that have been

observed for CFR+.

Every version of RCFR outperforms every state-space abstraction in Leduc

hold’em (see Figure 4.1) by a wide margin. The action abstractions in one-card

poker are more effective (see Figure 4.3), but both RCFR+ variants outperform all

38

20% 30% 40% 50% 60% 70% 80% 90% 100%
Complexity (% of FULL)

0

200

400

600

800

1000

1200

E
xp
lo
it
ab
ili
ty

(m
bb

)

JQK+

J.QK+

JQ.K+

J.Q.K+

FULL+

RP

BF

BFBS

BF+

BF+BS

(a) Linear scale.

20% 30% 40% 50% 60% 70% 80% 90% 100%
Complexity (% of FULL)

10−1

100

101

102

103

E
xp
lo
it
ab
ili
ty

(m
bb

)

JQK+

J.QK+

JQ.K+

J.Q.K+

FULL+

RP

BF

BFBS

BF+

BF+BS

(b) Logarithmic scale.

Figure 4.1: Exploitability of the final average strategies of RCFR and CFR variants

in Leduc hold’em.

39

100 101 102 103 104 105

Iterations

10−1

100

101

102

103

E
xp
lo
it
ab
ili
ty

(m
bb

)

JQ.K+

FULL+

RP-45%

BF+-47%

BF+BS-47%

BF-47%
BFBS-47%

Figure 4.2: Convergence of CFR variants that use representations that are near 45%

of Leduc hold’em’s size, along with unabstracted FULL+ for comparison.

40

5% 10% 15% 20% 25% 30%
Complexity (% of FULL)

0

500

1000

1500

2000

2500

3000

E
xp
lo
it
ab
ili
ty

(m
bb

)

∅+
P+

PD+

HP+

HPD+

BF

BFBS

BF+

BF+BS

(a) Linear scale.

5% 10% 15% 20% 25% 30%
Complexity (% of FULL)

10−1

100

101

102

103

E
xp
lo
it
ab
ili
ty

(m
bb

)

∅+
P+

PD+

HP+

HPD+

BF

BFBS

BF+

BF+BS

(b) Logarithmic scale.

Figure 4.3: Exploitability of the final average strategies of RCFR and CFR variants

in no-limit one-card poker. Runs with more than 35% of the game’s complexity have

been omitted because they all achieved the same performance as FULL+.

41

100 101 102 103 104 105

Iterations

10−1

100

101

102

103

E
xp
lo
it
ab
ili
ty

(m
bb

)

P+

FULL+

BF+-4%

BF+BS-4%

BF-4%
BFBS-4%

Figure 4.4: Convergence of CFR variants that use representations that are near 4%

of one-card poker’s size, along with unabstracted FULL+ for comparison.

42

but the null abstraction at its complexity. Even so, RCFR+ outperforms even the

null abstraction with only 2% greater complexity. As discussed in Section 2, action

abstractions that limit the number of risky options, as ∅ does, tend to be economical

in terms of the exploitability they reach versus the abstract game’s size. But even the

abstract game with one non-all-in wager, P, is complex enough to make RCFR+ the

clearly better approach.

As expected, bootstrapping does tend to decrease RCFR’s performance. Fortu-

nately, the estimation errors do not appear to be compounding wildly either, as the

bootstrapped versions of RCFR still perform near their non-bootstrapped counter-

parts, and outperform many of the static abstractions. In addition, the bootstrapped

version of RCFR+, BF+
BS, outperforms all other variants at almost every complexity

level in one-card poker. Thus, using bootstrapping with RCFR+ may be an effective

way of reducing the storage requirements of RCFR without severely increasing the

exploitability of the final strategy profile.

Another trend to note is that RCFR largely avoids abstraction pathologies. For

the most part, the lines in Figures 4.1 and 4.3 approach zero as complexity increases.

However, pathologies do occur, particularly in bootstrapped versions, as one might

expect from the estimation error added by bootstrapping.

43

Chapter 5

Conclusions

In this thesis, we introduced RCFR, an imperfect information game solving technique

that can compactly solve large games without abstracting them a priori. RCFR is

an alternative to both state-space and action abstraction methods to approximately

solve large games with compact representations. We showed that RCFR and its

variants are theoretically sound, with regret and equilibrium guarantees. RCFR

variants allow practitioners to avoid the challenge of creating abstractions, which

requires preparation and domain knowledge before the solving process can begin.

As a side-effect, RCFR avoids sequence removal effects that can arise in imperfect

information games. These effects are liable to trip-up abstraction designers and lead

to strategy profiles that are highly exploitable in the real game. Furthermore, its

compact representation is shaped by the data it obtains while solving the game,

making it a powerful and flexible dynamic abstraction technique.

In experiments, RCFR tends to produce less exploitable strategies than its tradi-

tional abstraction counterparts. RCFR+, even with bootstrapped Q-regret estimates,

generates strategy profiles with similar complexities but lower exploitabilities than

traditional abstractions in two poker games: Leduc hold’em, a small limit variant of

Texas hold’em, and no-limit one card poker. In addition, both RCFR and RCFR+

variants solve these games nearly as well as unabstracted CFR+ with representations

that are a fraction of the size.

44

Future Work

The games solved by RCFR variants in this thesis are still small, so the next obvious

step is to scale to larger games that require some form of abstraction, such as no-limit

Texas hold’em or phantom hex on a large board. The following problems remain to

be investigated and solved to achieve this goal.

Various sampling schemes that contribute heavily to CFR’s popularity have yet

to be incorporated into RCFR. Such extensions should be straightforward, both for

RCFR’s theory and implementation, but we are concerned about how the sampling

variance and regressor error will interact. We suspect that lower variance sampling

schemes, perhaps similar to the probing method proposed by Gibson et al. [15], that

limit such interaction will perform better. This would particularly be a problem for

RCFR+, as CFR+ with almost any sampling tends to perform worse than plain CFR

with the same sampling scheme. It may be that if sampling is necessary, one would

be better off using a different work-around to make the regression problem better

reflect the strategy generation problem, such as estimating the probability mass

for each action directly, rather than estimating regrets or Q-regrets. This could be

done by extending exponential weights/hedge [11] to regression hedge. In addition,

adapting the DAGGer algorithm [30] to extensive-form games and using it in the

context of RCFR could reduce the impact of regression errors on the exploitability

of the resulting strategy profile by aligning the regressor’s strategy with the sequence

distribution imposed by the observed regrets.

In our experiments, the average strategy was stored exactly as a table, which

would be infeasible for larger games. This could be avoided by using another

regressor instead of a table, but this would introduce another potential compounding

error problem. DAGGer [30] might be a fix for such a problem, but an alternative

is to save a copy of RCFR’s regressors that generate the current strategies for each

player every n > 1 iterations. Rather than storing the average explicitly, it could

be computed on demand by querying the (compact) current strategy checkpoints.

Another alternative for RCFR+ is to forgo computing the average at all, since it has

been observed that the current strategies of RM+-based solvers tend to converge to

45

zero exploitability as well [37, 6, 38].

RCFR still requires some domain knowledge in the form of an adequate feature

representation, but this could potentially be learned as well. The regression trees

employed for the experiments in this thesis do automatically generate a type of

feature representation in the form of a training data partitioning. More sophisticated

representation learning strategies such as deep neural networks and autoencoders [3]

might be effective as well if they could be run fast enough. Or perhaps such tech-

niques could be used offline to generate an effective “base” representation to facilitate

the learning of a linear function online. Since many RCFR iterations are required for

convergence, whatever regressor is used must be fast, both to train and to query.

46

Bibliography

[1] Baruch Awerbuch and Robert D. Kleinberg. “Adaptive routing with end-to-end
feedback: distributed learning and geometric approaches”. In: Proceedings
of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL,
USA, June 13-16, 2004. 2004, pp. 45–53. DOI: 10.1145/1007352.1007367.
URL: http://doi.acm.org/10.1145/1007352.1007367.

[2] Nolan Bard, Michael Johanson, Neil Burch, and Michael Bowling. “Online
Implicit Agent Modelling”. In: International Conference on Autonomous
Agents and Multiagent Systems (AAMAS). 2013.

[3] Yoshua Bengio, Aaron Courville, and Pierre Vincent. “Representation learn-
ing: A review and new perspectives”. In: Pattern Analysis and Machine
Intelligence, IEEE Transactions on 35.8 (2013), pp. 1798–1828.

[4] Darse Billings, Neil Burch, Aaron Davidson, Robert Holte, Jonathan
Schaeffer, Terence Schauenberg, and Duane Szafron. “Approximating
game-theoretic optimal strategies for full-scale poker”. In: Proceedings of
the 18th international joint conference on Artificial intelligence. Morgan
Kaufmann Publishers Inc. 2003, pp. 661–668.

[5] David Blackwell. “An analog of the minimax theorem for vector payoffs.” In:
Pacific J. Math. 6.1 (1956), pp. 1–8. URL: http://projecteuclid.org/euclid.pjm/
1103044235.

[6] Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin.
“Heads-up limit hold’em poker is solved”. In: Science 347.6218 (2015),
pp. 145–149.

[7] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification
and Regression Trees. Wadsworth, 1984. ISBN: 0-534-98053-8.

[8] Neil Burch, Marc Lanctot, Duane Szafron, and Richard Gibson. “Efficient
Monte Carlo counterfactual regret minimization in games with many player
actions”. In: Advances in Neural Information Processing Systems. 2012,
pp. 1880–1888.

[9] Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games.
Cambridge University Press, 2006.

[10] Rémi Coulom. “Computing Elo Ratings of Move Patterns in the Game of Go”.
In: International Computer Games Association Journal 30 (2007), pp. 198–
208.

47

http://dx.doi.org/10.1145/1007352.1007367
http://doi.acm.org/10.1145/1007352.1007367
http://projecteuclid.org/euclid.pjm/1103044235
http://projecteuclid.org/euclid.pjm/1103044235

[11] Yoav Freund and Robert E Schapire. “A decision-theoretic generalization of
on-line learning and an application to boosting”. In: Journal of computer and
system sciences 55.1 (1997), pp. 119–139.

[12] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. “Additive Logistic
Regression: A Statistical View of Boosting”. In: Annals of Statistics (2000),
pp. 337–374.

[13] Sam Ganzfried and Tuomas Sandholm. “Action translation in extensive-form
games with large action spaces: Axioms, paradoxes, and the pseudo-harmonic
mapping”. In: Proceedings of the Twenty-Third international joint conference
on Artificial Intelligence. AAAI Press. 2013, pp. 120–128.

[14] Sylvain Gelly and David Silver. “Achieving Master Level Play in 9 x 9
Computer Go.” In: 23rd Conference on Artificial Intelligence. 2008, pp. 1537–
1540.

[15] Richard Gibson, Marc Lanctot, Neil Burch, Duane Szafron, and Michael
Bowling. “Generalized Sampling and Variance in Counterfactual Regret Mini-
mization”. In: Twenty-Sixth AAAI Conference on Artificial Intelligence. 2012.

[16] Andrew Gilpin, Tuomas Sandholm, and Troels Bjerre Sørensen. “A heads-
up no-limit Texas Hold’em poker player: discretized betting models and
automatically generated equilibrium-finding programs”. In: Proceedings of
the 7th international joint conference on Autonomous agents and multiagent
systems-Volume 2. International Foundation for Autonomous Agents and
Multiagent Systems. 2008, pp. 911–918.

[17] Andrew Gilpin, Tuomas Sandholm, and Troels Bjerre Sørensen. “Potential-
aware Automated Abstraction of Sequential Games, and Holistic Equilibrium
Analysis of Texas Hold’em Poker”. In: AAAI Conference on Artificial Intelli-
gence (AAAI). 2007.

[18] Elad Hazan, Adam Kalai, Satyen Kale, and Amit Agarwal. “Logarithmic
Regret Algorithms for Online Convex Optimization”. In: Learning Theory,
19th Annual Conference on Learning Theory, COLT 2006, Pittsburgh, PA,
USA, June 22-25, 2006, Proceedings. 2006, pp. 499–513. DOI: 10.1007/
11776420_37. URL: http://dx.doi.org/10.1007/11776420_37.

[19] Shih-Chieh Huang, Broderick Arneson, Ryan B Hayward, Martin Müller,
and Jakub Pawlewicz. “MoHex 2.0: a pattern-based MCTS Hex player”. In:
Computers and Games. Springer, 2014, pp. 60–71.

[20] Laurent Hyafil and Ronald L. Rivest. “Constructing Optimal Binary Decision
Trees is NP-Complete”. In: Inf. Process. Lett. 5.1 (1976), pp. 15–17. DOI:
10.1016/0020-0190(76)90095-8. URL: http://dx.doi.org/10.1016/0020-
0190(76)90095-8.

[21] M. Johanson. “Robust Strategies and Counter-Strategies: Building a Cham-
pion Level Computer Poker Player”. MA thesis. University of Alberta, 2007.

48

http://dx.doi.org/10.1007/11776420_37
http://dx.doi.org/10.1007/11776420_37
http://dx.doi.org/10.1007/11776420_37
http://dx.doi.org/10.1016/0020-0190(76)90095-8
http://dx.doi.org/10.1016/0020-0190(76)90095-8
http://dx.doi.org/10.1016/0020-0190(76)90095-8

[22] Michael Johanson. Measuring the Size of Large No-Limit Poker Games. Tech-
nical Report TR13-01. Department of Computing Science, University of
Alberta, 2013.

[23] Michael Johanson, Nolan Bard, Neil Burch, and Michael Bowling. “Finding
Optimal Abstract Strategies in Extensive Form Games”. In: Proceedings of
the Twenty-Sixth Conference on Artificial Intelligence (AAAI). 2012.

[24] Michael Johanson, Nolan Bard, Marc Lanctot, Richard Gibson, and Michael
Bowling. “Efficient Nash Equilibrium Approximation through Monte Carlo
Counterfactual Regret Minimization”. In: Proceedings of the Eleventh Interna-
tional Conference on Autonomous Agents and Multi-Agent Systems (AAMAS).
2012.

[25] Michael Johanson, Michael Bowling, Kevin Waugh, and Martin Zinkevich.
“Accelerating Best Response Calculation in Large Extensive Games”. In:
Proceedings of the Twenty-Second International Joint Conference on Artificial
Intelligence (IJCAI). 2011, pp. 258–265.

[26] Michael Johanson, Neil Burch, Richard Valenzano, and Michael Bowling.
“Evaluating state-space abstractions in extensive-form games”. In: Proceedings
of the 2013 international conference on Autonomous agents and multi-agent
systems. International Foundation for Autonomous Agents and Multiagent
Systems. 2013, pp. 271–278.

[27] Marc Lanctot, Neil Burch, Martin Zinkevich, Michael Bowling, and Richard
G Gibson. “No-Regret Learning in Extensive-Form Games with Imperfect
Recall”. In: Proceedings of the 29th International Conference on Machine
Learning (ICML-12). 2012, pp. 65–72.

[28] Marc Lanctot, Kevin Waugh, Martin Zinkevich, and Michael Bowling. “Monte
Carlo sampling for regret minimization in extensive games”. In: Advances in
Neural Information Processing Systems. 2009, pp. 1078–1086.

[29] Martin J. Osborne and Ariel Rubinstein. A Course On Game Theory. MIT
Press, 1994.

[30] Stéphane Ross, Geoffrey J Gordon, and J Andrew Bagnell. “A Reduction
of Imitation Learning and Structured Prediction to No-Regret Online Learn-
ing”. In: International Conference on Artificial Intelligence and Statistics
(AISTATS). 2011.

[31] David Schnizlein, Michael Bowling, and Duane Szafron. “Probabilistic state
translation in extensive games with large action sets”. In: Proceedings of the
Twenty-First International Joint Conference on Artificial Intelligence (IJCAI).
2009, pp. 276–284.

[32] Haijian Shi. “Best-first decision tree learning”. MA thesis. University of
Waikato, 2007.

49

[33] Jiefu Shi and Michael L. Littman. “Abstraction Methods for Game Theo-
retic Poker”. In: Computers and Games, Second International Conference,
CG 2000, Hamamatsu, Japan, October 26-28, 2000, Revised Papers. 2000,
pp. 333–345. DOI: 10.1007/3-540-45579-5_22. URL: http://dx.doi.org/10.
1007/3-540-45579-5_22.

[34] Finnegan Southey, Michael H. Bowling, Bryce Larson, Carmelo Piccione,
Neil Burch, Darse Billings, and D. Chris Rayner. “Bayes’ Bluff: Opponent
Modelling in Poker”. In: UAI ’05, Proceedings of the 21st Conference in
Uncertainty in Artificial Intelligence, Edinburgh, Scotland, July 26-29, 2005.
2005, pp. 550–558. URL: https://dslpitt.org/uai/displayArticleDetails.jsp?
mmnu=1&smnu=2&article_id=1216&proceeding_id=21.

[35] Finnegan Southey, Bret Hoehn, and Robert C. Holte. “Effective short-term
opponent exploitation in simplified poker”. In: Machine Learning 74.2 (2009),
pp. 159–189. DOI: 10.1007/s10994-008-5091-5. URL: http://dx.doi.org/10.
1007/s10994-008-5091-5.

[36] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning : An Intro-
duction. MIT Press, 1998.

[37] Oskari Tammelin. “Solving Large Imperfect Information Games Using
CFR+”. In: arXiv preprint arXiv:1407.5042 (2014).

[38] Oskari Tammelin, Neil Burch, Michael Johanson, and Michael Bowling.
“Solving Heads-up Limit Texas Hold’em”. In: Proceedings of the 24th Inter-
national Joint Conference on Artificial Intelligence. 2015.

[39] Luís Torgo. “Inductive learning to tree-based regression models”. PhD thesis.
University of Porto, 1999.

[40] Kevin Waugh, Nolan Bard, and Michael H. Bowling. “Strategy Grafting in
Extensive Games”. In: Advances in Neural Information Processing Systems
22: 23rd Annual Conference on Neural Information Processing Systems 2009.
Proceedings of a meeting held 7-10 December 2009, Vancouver, British
Columbia, Canada. 2009, pp. 2026–2034. URL: http://papers.nips.cc/paper/
3634-strategy-grafting-in-extensive-games.

[41] Kevin Waugh, Dustin Morrill, J. Andrew Bagnell, and Michael Bowling.
“Solving Games with Functional Regret Estimation”. In: Twenty-Ninth AAAI
Conference on Artificial Intelligence, January 25-29, 2015, Austin Texas, USA.
Austin Texas, USA, Jan. 2015, pp. 2138–2145.

[42] Kevin Waugh, David Schnizlein, Michael H. Bowling, and Duane Szafron.
“Abstraction pathologies in extensive games”. In: 8th International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2009),
Budapest, Hungary, May 10-15, 2009, Volume 2. 2009, pp. 781–788. DOI: 10.
1145/1558109.1558119. URL: http://doi.acm.org/10.1145/1558109.1558119.

50

http://dx.doi.org/10.1007/3-540-45579-5_22
http://dx.doi.org/10.1007/3-540-45579-5_22
http://dx.doi.org/10.1007/3-540-45579-5_22
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1216&proceeding_id=21
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1216&proceeding_id=21
http://dx.doi.org/10.1007/s10994-008-5091-5
http://dx.doi.org/10.1007/s10994-008-5091-5
http://dx.doi.org/10.1007/s10994-008-5091-5
http://papers.nips.cc/paper/3634-strategy-grafting-in-extensive-games
http://papers.nips.cc/paper/3634-strategy-grafting-in-extensive-games
http://dx.doi.org/10.1145/1558109.1558119
http://dx.doi.org/10.1145/1558109.1558119
http://doi.acm.org/10.1145/1558109.1558119

[43] Martin Zinkevich, Michael Johanson, Michael H. Bowling, and Carmelo
Piccione. “Regret Minimization in Games with Incomplete Information”. In:
Advances in Neural Information Processing Systems 20, Proceedings of the
Twenty-First Annual Conference on Neural Information Processing Systems,
Vancouver, British Columbia, Canada, December 3-6, 2007. 2007, pp. 1729–
1736. URL: http://papers.nips.cc/paper/3306-regret-minimization-in-games-
with-incomplete-information.

[44] Martin Zinkevich, Michael Johanson, Michael H. Bowling, and Carmelo
Piccione. Regret Minimization in Games with Incomplete Information. Tech.
rep. TR07-14. Department of Computing Science, University of Alberta,
2007.

51

http://papers.nips.cc/paper/3306-regret-minimization-in-games-with-incomplete-information
http://papers.nips.cc/paper/3306-regret-minimization-in-games-with-incomplete-information

Appendix A

Counterexample to Inequality 19 in
Waugh et al.’s [41] Blackwell’s
Condition Error Bound Proof

Waugh et al. [41] presents the first proof of a bound on the error of Blackwell’s

condition during online learning in terms of the Euclidean distance between the

learner’s regrets and the weights it will play on the next round. Here we show that

the proof is incorrect.

Theorem A.0.13. Inequality 19 in the Blackwell’s condition error bound proof

provided by Waugh et al. [41] is false.

Proof. To map the notation from that proof to the notation used in this thesis, note

that e = 1, (x)+ = x+ for any x ∈ Rd and d > 0, and
(
R̃T
)

+
= y, where y ∈ R|A|

is an arbitrary vector of weights that the learner will use to generate its strategy in

the next round.

First, we convert the error term in the right-hand-side of line 18 in Waugh et al.’s

proof into our notation,∥∥∥∥(RT
)

+
−
((
R̃T
)

+
/e ·

(
R̃T
)

+

)
e ·
(
RT
)

+

∥∥∥∥
2

=
∥∥∥RT,+ −

(
y+/1 · y+

)
1 ·RT,+

∥∥∥
2

(A.1)

=

∥∥∥∥∥∥RT,+ −

∥∥∥RT,+
∥∥∥

1
‖y+‖1

y+

∥∥∥∥∥∥
2

. (A.2)

52

Next, we show the inequality that Waugh et al. asserts, still in our notation,∥∥∥∥∥∥RT,+ −

∥∥∥RT,+
∥∥∥

1
‖y+‖1

y+

∥∥∥∥∥∥
2

≤
∥∥∥RT,+ − y+

∥∥∥
2
. (A.3)

Finally, we convert this back into the error term in the right-hand-side of line 19 in

Waugh et al.’s proof,

∥∥∥RT,+ − y+
∥∥∥

2
=
∥∥∥∥(RT

)
+
−
(
R̃T
)

+

∥∥∥∥
2
. (A.4)

Showing that Inequality A.3 is false would then break the connection between A.1

and A.4, thereby showing that Inequality 19 of the original proof is also false. Waugh

et al. [41] justify Inequality 19 by mentioning that “projections preserve distances”,

but the following is a counterexample. Choose

RT =
(

1
0

)

y =
(

0
1
2

)
.

Consequently,

RT,+ = RT

y+ = y∥∥∥RT,+
∥∥∥

1
= 1∥∥∥y+

∥∥∥
1

= 1
2∥∥∥RT,+

∥∥∥
1

‖y+‖1
= 1

1/2 = 2.

Evaluating the left-hand-side of Inequality A.3,∥∥∥∥∥∥RT,+ −

∥∥∥RT,+
∥∥∥

1
‖y+‖1

y+

∥∥∥∥∥∥
2

=
∥∥∥∥∥
(

1
0

)
− 2

(
0
1
2

)∥∥∥∥∥
2

=
∥∥∥∥∥
(

1
0

)
−
(

0
1

)∥∥∥∥∥
2

=
∥∥∥∥∥
(

1
−1

)∥∥∥∥∥
2

=
√

2 ≈ 1.41.

53

The right-hand-side is

∥∥∥RT,+ − y+
∥∥∥

2
=
∥∥∥∥∥
(

1
0

)
−
(

0
1
2

)∥∥∥∥∥
2

=
∥∥∥∥∥
(

1
−1
2

)∥∥∥∥∥
2

=
√

1 + 1
4 =
√

1.25 ≈ 1.12.

Since
√

2 >
√

1.25, inequality A.3 is false, implying that Inequality 19 of the

original proof is also false.

54

	Introduction
	Background
	Extensive-form Games
	Equilibria

	Online Learning
	Regret-Matching
	RM+

	Counterfactual Regret Minimization
	CFR+

	Poker Games
	Leduc Hold'em
	No-limit One-card Poker

	Scaling CFR
	Sampling
	Abstraction

	Supervised Learning
	Regression Tree

	Functional Regret Estimation
	Regression RM
	Regret Bounds
	Algorithm Details

	Regression CFR
	Relationship to Abstraction

	RRM+ and RCFR+

	Experiments
	Features
	Static Abstractions to Compare with RCFR
	Leduc Hold'em
	No-limit One-card Poker

	Results
	Analysis

	Conclusions
	Future Work

	Bibliography
	Counterexample to Inequality 19 in Waugh et al.'s rcfr Blackwell's Condition Error Bound Proof

