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Figure 11: Document transfers to cyberspace
(Investintech).

Real-Time Decisions @ ® Robot Navigation

The form of image classification called Neural Networking
QPY Skill Aquisition (NN) imitates the process of the human brain and uses the
information from the input layer to feed forward through layers
to determine which answer on the output layer is correct.
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Figure 4: Step one of Method - Identify the type of
machine learning for the task. (COGNUB).

Convolutional Neural Networks (CNN's) build on the concepts from
neural networks by considering all the information in a specific region of an

Figure 1: Robot working alongside image and linking the data together to predict if patterns are being formed.
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Figure 6: Structure of a CNN (EasyTensorFlow).
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Figure 2: A-ssessing f-he VF ZTR In the-
LIMDA lab (University of Alberta).
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Figure 9: Line graph of the relationship between Loss
function and Accuracy on prototype CNN (Sharma).

Figure 10: Line graph of the relationship between Loss
function and Accuracy on final CNN (Patel).

= Using machine learning libraries like Tensorflow, Keras and Numpy, the slight variations in layer variables between
the similar CNN'’s created a network with an average of 99.3% accuracy and an average 3% loss from the cost
function.

= The learning curve of the networks both prove that improvement levels out between 10-15 epochs (training tests),
less epochs needed for adequate results means less time wasted running tests.

Fiure 3: Example of the keys that are
desired to be recognized.

*The VF 2TR is a subtractive manufacturing machine with Computer Numerical control (CNC).
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