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Abstract

Domain decomposition methods have proved to be an efficient approach for parallel
processing of partial differential equations on parallel architectures. The method is
well developed for elliptic equations, while it is still one of the active research areas
for the other types of mathematical models.

This work studies applications of geometric domain decomposition for a heat equa-
tion in cylindrical coordinates. The explicit/implicit algorithm, initially proposed by
Li, Lin and Wong, is implemented on a MYRIAS SPS-2 parallel computer. The main
objective of the research is to achieve a high parallel performance of the method
by reduction of communication and synchronization barriers. The thesis introduces
various asynchronous modifications of the original technique and investigates their

stability and accuracy of approximation.
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Chapter 1

Introduction

1.1 Formulation of a heat conduction problem in
cylindrical coordinates

A mathematical formulation of many problems in physics and engineering leads to a
partial differential equation. In this paper we will study a classical parabolic initial
value problem -- a heat conduction problem on a disc. It can be defined in the

following way.

Definition 1 Suppose a function ¢(r) represents a heat distribution on a disc of ra-
diusr = 1 al initial time to = 0. Find function u(r,t) that models the heat conduction
process between time tg = 0 and t; = 1, if the lemperature on the border of the disc

is u(1,) =0 for any time 0 <t < 1.

This physical problen w equivalent to the homogeneous initial value problem (1.1):

du 1
E—;(TU,-),.:O (1.1)

0<r<l. 0<t<L1;
u,(0.8) = 0,u(1.¢) = 0. 0<t>21;

u(r.0) = o(r). O0<r<l.
1



The above formulation assumes that the system is conserved and no additional
sources of energy are present, otherwise parabolic initial value problem (1.1) is mod-

ified to:

du 1
.5%‘ - -;(ru,.)r = F(r.t). (1.2)

In order to test different numerical schemes al! the computational experiments are
going to be conducted for a non-homogeneous parabolic problem (1.2), while in all
the formulas we will use homogeneous equation (1.1). The following two functions

will be used as the right part F(r,?) in (1.2):

¢ A function

F(r,t) = e-'(cz)s(%:r)(( -1+ %’;sin(g—r)) (1.3)

that corresponds to a smooth exact solution:
-1 n
u(r,l) =e€ cos(;;r). (1.1)

This right part of the non-iomogencous problem was used for all the perfor-

mance evaluation experiments.

e A function

-7 w

F(r,t)= (- —_— .h
(rt) = wt!w+t (15)

that generates a solution:

w .

u(r t) = —(1 = r*). 1.6
alr.t) = == (1 =) (1.6
The function (1.6) has a singularity in £ on a line t = —w. Thus for very small

w in the close neighborhood of 1 = 0 the 9*u/O1* is very big.

Notice, that (1.2) with (1.3) and (1.5) represent two artificial initial value problems
and are chosen to demonstrate the accuracy of approximation and stability of nnmer-

ical schemes for exact solutions with different properties.

to



1.2 Sequential numerical methods

In most cases, exact solutions of partial differential equations are impossible to find
theoretically, but they can be approximated in practice by various numerical methods.
Some of the most popular traditional techniques involve finite difference approxima-
tion.

Let us take N points of the disc radius r; = hi,7 = 0,1... N —1 with a space-step
h = 1/N. Assume that a time interval [to,?;] is partitioned on M time-levels t* =
tn,n=1,2,... M, where r = 1/M is a time-step. A numerical solution U} of the heat
equation will be computed for every time-level n at points r; of the disc radius. Using
the truncated Taylor expansion, derivatives }(ru,)r and d,u can be approximated by
the values of the solution at point (7,n) and it’s neighbors. Mathematical formulas
built in this manner are called finite difference approximations. Depending on the
form of a halo — points in the mesh, whose values are used to approximate a solution

at (r;,1") — we can classify finite differences as explicit forward difference:

w —ul™t (it h12)(uls) —ul™t) = (s = h/2) (Wl = uf)

T r;h? (17)
and implicit backward difference:
Wt (bl =) U )

T r;h?
Any numerical algorithin can be called compultationally useful if it is convergent,
consistent and stable. In this paper our interest will be concentrated on stability of

proposced computational schemes,

Definition 2 Supposc that « numerical algorithm approzimates the exact solution of
the homogencous problem (1.1) by a numerical solution U}, If the following incquality

holcs:

max [|l}]] < ) (1.9)

where Cis a constant and || x || is onc of the norms. then an algorithm is called

stable.



In other words. a numerical algorithm is stable. if the marimum of compulational

errors is bounded by the input errors.

Presented methods (1.7) and (1.8) have the same degree of accuracy O(h* -+ 1),
but represent two different schemes of computation.

The implicit backward difference method solves a system of linear equations tor
each time level. It is rather expensive. The main advantage of this scheme is its
unconditional stability, i.e. there are ro restrictions on a space-step h and time-
step 7.

The explicit forward diflerence method uses an approximate relationship between
the current time-level t; and the next one t;;, and does not require us to solve any
linear equations. This method can be trivially parallelized, as computations of every
point are independent from its neighbors on the same time-level, and rely only on
the points of a previous level. The main disadvantage of the explicit method is its
conditional stability. This method is stable only if:

h?

r< o (1.10)

In comparison with the implicit method, this condition will force us to use more

time-levels, than is necessary for a given accuracy.

1.3 Finite difference domain decomposition

With the rapid development of supercomputers. new nmmerical algorithins must he
found. Domain decomposition technigne is one of the most promising and actively
studied arcas in numerical analysis for parallel architectures. The main idea of this
procedure is to divide a problem on a set of related subproblems of a smaller size and
to solve them in a parallel manner. Although this method is already well developed
for elliptic problems, it is still a rescarch field for other types of equations.

We will study a geometric domain decomposition.



Definition 3 Geometric domain decomposition is a process of breaking down a
calculation inlo sections, which correspond to some physical sub-division of the system

being modclled.

In 1991 Du, Dawson & Dupont published a paper [1] in which a domain decom-
position approach for a heat equation in Cartesian coordinates was studied. They
proposed to use explicit forward finite difference method on the interfaces between
sub-domains, while solving implicit backward diflerence linear equations for interior
points in a parallel manner.

An application of the same technique for a heat equation in cylindrical coordinates
is given in a recent, publication of Li, Lin and Wong [2}.

For a function f(r,t) define f* = f(r;,1") and

Bz,r.f" = q-—l’ (1'11)
92, f(r) = (r+h/2)([(r +h) - f("));g(" = h/2)(f(r) - f(r - h)), (1.12)
o fo = ~3fo -*-gj,ffl = fz. (1.13)

Assume, for simplicity, that a domain is decomposed into two sub-domains
0,1,....,d=1and d+1,d+2...,N, where d is an interface point. The numerical

domain decomposition algorithm is defined in the following way:

e Interior points of both sub-domains i = 1.2,....d = 1,d +1,...,N — 1 will be

computed nsing implicit method:

1
A, UN —~ Fa;"',,(.f;' = 0. (1.14)

e Supposc, the coarse grid space-step H is a multiple of h and satisfies the stability
condition 7 < H?*/2. The interface point d can be solved by explicit forward
difference formula:

S
duUf = =02l =0, (1.15)



e In order to satisfy boundary conditions we will put:
Uy=0, n=0,1,...,M, (1.16)

and compute:

o.Uy =0, n=12...M. (1.17)
¢ Initial conditions correspond to:

U=¢, i=0,1,...,N. (1.18)

The following theorem, presented in [2], proves the stability of the described above

method:

Theorem 1 Assume, that U? is a solution of (1.14)-(1.18) and |0*u/d%!| and |
(MUrrr)s | are bounded by a positive constant Co on [0,1] x [0,1]. Then for 7 =

At < H?[2, the following error estimate holds:

max | u(2;,1") = UM | C(Co)(h® + H? + 7). (1.19)

i,n

1.4 A speedup ratio as a measure of algorithm

efficiency

The main goal of parallel computing is. using multiprocessor architectures, to solve
traditional problems significantly faster than can be done by a conventional sequential
computer. The efficiency of any parallel algorithm and its implementation are usually

judged by a speedup ratio.

Definition 4 ! If 7 is the time taken to run a program on one processor. and 7, the
time taken to run it on P processors, then the valio of lwo program creculion limes:

7

Tp

This and many other definitions of parallel computing terms are found in "A Glossary of Parallcl
Computing Terminology™ (5]

6



is called a speedup.
A linear speedup — a speedup directly proportional to the number of processors

used — corresponds Lo the mazimum efficiency of a parallel algorithm.
Two major laws govern the speedup of a parallel implementation.

Theorem 2 Amdahl’s Law
If o is the proportion of a calculation which is serial, and 1 — ¢ is the parallelizable

portion, then the speedup which can be achieved with P processors is

. 1 1
i =P

Thus, no matter how many processors are used, the speedup is limited.

Theorem 3 Gustafson’s Law
If the size of most problems is scaled up sufficiently, then any required speedup effi-

ciency can be achieved on any number of processors.

In this paper we will use a notion of a speedup as a ratio between 7, and 7p,
where 7, is the execution time of a sequential implicit backward finite difference
algorithm. This choice can be justified by the fact that this method is applied for all
interior points of sub-domains in every studied parallel scheme. Moreover all parallel
implementations share the same code for solving linear equations and error estimates
used in the sequential implicit backward difference method.

A non-homogencous equation (1.2) with a right part (1.3) was used for all the
performance graphs in this paper. The problem is solved for N = 1024 points in
the domain with A = 8192 time-levels. All numerical experiments were computed
using al most 8 processors out of 60 available on a MYRIAS SPS-2 computer. As it
will be shown further the performance of the presented algorithm was low even for
this number of processors. Moreover the proposed new method of communication

reduction limits a possible number of sub-domains to 8 for 1024 x 8192 problem size.



Chapter 2

Direct Implementation of Domain

Decomposition Algorithm

2.1 Algorithm pseudocode, data structures and
shared memory model

Let us start a discussion of the direct implementation of the computation scheme
proposed in [2] "translating” mathematical description of the method (1.14)-(1.18)
into parallel pseudocode. The following data structure Domain represents one sub-

domain of the problem ( Figure 1).

typedef struct {

int max; /* The number of points in the sub-domain #/

int start; /* The first point of the sub-domain */

double *A ; /* a matrix for implicit backward finite difference
method */

double *F; /* right part of the heat equation #*/

/*

These shared memory locations will contain points of my solution
and will be read by my neighb.rs

*/

volatile BC *leftInternBC;

volatile BC *rightInternBC;

8
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int iter; int iter; (O Interior point, computed by backward
int IsRead; int IsRead; Py finite differcace scheme
Interior point, used in explicit forward difference
@ inerface point, computed by explicit forward difference
Shared memory page
Figure 1: The sub-domain data structures
/*
These shared memory locations will contain points of my
neighbor’s solution and will be read by me
*/
volatile BC *leftExternBC;
volatile BC *rightExternBC;
} Domain;
/* The shared memory location */
typedéf struct {
double u; /* One point of the solution */
int iter; /* Iteration when this point was computed */
int isRead; /* A flag to mark if the value was read already

by my neighbor. This information is needed
to avoid a deadlock#*/
} BC;



A function computeDomain represents an algorithm for computing one of the

sub-domains. This code will be executed in parallel by every processor in the com-

putational domain.

Function 2.1: computeDomain

void computeDomain(domain)
Domain *domain;

{

double t, left, right, leftBC, rigiiBC;
int j, i1, ir, iter;

Allocate local memory for the solution on this sub-domain,
perform LU decomposition of the matrix for implicit backward
difference method.

for(iter = 1; iter <= MAXITERATION; i++ )

{

/*
Read my leftExternBC, written by my left neighbor on the previous

10

iteration and compute my left boundary condition (left Interface point)

*/

if ( domain->leftExternBC )
{
left = memread( domain->leftExternBC, iter -1,vaited);
U[domain->start] = leftBC = forwardBC ( left,
U[domain->start],
U[domain->start+offBC],
domain->start, iter );
}
/*
Read my rightExternBC, written by my right neighbor on the previous
iteration and compute my right boundary condition
(right Interface point)
*/

if ( domain->rightExternBC )
{
right = memread( domain->rightExternBC, iter -1,waited) ;
domain->rightU = rightBC =
forwardBC ( U[domain->start+domain->max-offBC],
domain->rightU,
right,
domain->start+domain->max, iter );
}
else
domain->rightU = rightBC = 0.0;
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Compute my internal points of the sub-domain using
implicit backward finite difference method

/*
Update my rightInternBC and leftInternBC. They will be read
by my neighbors on the next iteration

*/
it (! domain.isFirst )
{
memwrite (U[domain.start + offBC], iter,
domain.leftInternBC, slowed);
}
if ( domain.rightInternBC )
{
memwrite (U[domain.start + domain.max - offBC], iter,
domain.rightInternBC, slowed);
}

o

As it is seen from the pseudocode of computeDomain all communication be-
tween neighboring processors is implemented through the shared memory (functions
memread and memwrite). Moreover, these two functions are responsible for synchro-
nization of the algorithm. Notice that variables waited and slow keep statistics
on the number of iterations when computation must be stopped in order to synchro-
nize the process with neighboring sub-domains and to avoid a deadlock. A counter
waited contains the number of time-levels when the necessary information is not
available; slow counts the number of time-levels when a processor must slow down
in order to ailow its neighbor to read a value from the shared memory before it will

be overwritten.

Function 2.2: memread

double memread( b¢, iter, waited)
int iter;

BC *be;

int *yaited;



{
Check if the information in the shared memory was already
updated by the neighboring processor
isClash=bc -> iter - iter;
if (isClash)
{
If not , then increment a counter "waited"
and wait till the needed information will be available
}
Update the field "“isRead" and return the value, read from the
shared menory.
bec -> isRead = iter;
result = bc->u;
return(result);
}

Function 2.3: memwrite

void memwrite( U, iter, bc, slow)

doudble U;

int iter;
BC *bc;
int *slow;
{

Before writing to the shared memory location, make sure that
the neighbor read the current value from it.
if( bc-> isRead != (iter-1))
{
Increment counter "slow" and wait till the current
value in the shared memory is read.

}

Write to the shared memory location:
be->u = U;
be->iter = iter;

All experiments in this paper were performed on a 64 processor MYRIAS SPS-2

computer. The traditional MYRIAS architecture does not have any shared memory,

12



though it is simulated by the software. !

There are two models of the virtual shared memory, implemented on the MYRIAS:
cached and un-cached memory. They can be best characterized by their respective
access algorithms.

The cached memory maintains one "write only page” of shared memory, which is
available to only one processor at a time. There are multiple "read only ” copies of the
"writable page” attached to each processor. The user is responsible for broadcasting
changes of the “write only” page to its copies. The un-cached memory consists of
only one copy of shared memory page, that is floating hbetween processors, and there
is no need for broadcasting any changes. This type of memory can be effective for
some types problems.

For the domain decomposition method, interfaces between each pair of domains
are needed to be stored in the shared memory. Only two neighboring processors will
need to access each border of their domains (Figure 1 and Function 2.1). Therefore,
there is nc need to have multiple copies of the interface points. ¥hi-. leads to the
decision to use un-cached memory for this problem.

The graph on Figure 2 represents results of one of the early implementation tests.
The heat equation is solved for 256 points in the domain and 1024 {ime-levels. When
the domain is divided into two sub-domains the parallel program will run almost twice
faster than the sequential implementation of the backward finite difference method.
There is only one interface between two domains and one page of shared memory
is moving between the two processors. But as the number of processors increases,
the number of borders between domains increases as well. All the data by default is
still stored on one page of shared memory, therefore all the processors are competing
to access it. The computing time of a parallel program in the example on Figure 2
increases almost exponentially with respect to a number of processors !

The obvious solution is to increase a number of pages of shared memory. The

cached memory model is one possible alternative. It will increase a number of “read

1Sce the release notes of MYRIAS system software and the programmers guide [3] and [4]

13
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Figure 2: Influence of page alignment of shared memory

only” pages and processors waiting for the update of their interface points are not
competing with each other. On the other hand there is enly one "writable page” and
the update of this page will creale a tree of messages to every “read only page”, which
is not necessary for every processor.

The current implementation uses a page alignment for un-cached model to solve
the problem of memory contention.? The data needed for a pair of processors is stored
on a separate page of un-cached memory. Thevefore there are only two processors
that will compete for access to a page of shaved memory. Iimproved resulis are scen

from the graph or Figure 2.

2The final implementation uses the un-evziid memory model, but in the carly stages of this
project cached memory was tested as well. Ou average the cached memory version of the programn
was up to 25% slower then the un-cached one.



2.2 Dependance of the speedup on a problem size

From the description of th. explicit/implicit domain decomposition method (1.14)-
(1.18) it is clear that all the computations can be done in parallel. Therefore, by
Amdahl’s Law there is no upper bound on the reachable speedup. Moreover, the
Gustafson’s Law states that arbitrary high speedup can be reached for the sufficiently
scaled problem size.

In the first experiment let us compare the speedup and accuracy of approximation
of the domain decomposition algorithm for different problem sizes. We can fix a
number of time-levels to M = 8192 and change the number of points in the domain
N = 256,512,1024,8192. A proportion between the number of time-levels and a
domain size can be characterized by s = 7/h% A sequential implementation of the
implicit backward finite difference method will be compared with the parallel domain
decomposition ran on 4 processors.

The Table 2.1 compares performance of the sequential and parallel programs.

More detailed statistics can he found in the Appendix (Table A.9).

Table 2.1: Dependance of the speedup and approximation errors on a probiem size

Problem size Sequential Parallel (4 proc)
| M N T s | Maxeror [ 7, | Maxerror | 7, | 7/7
8192 256 | 8 [[7.0x10°% [ 657 [ 6.8 x 107% | 415 | 1.58
8192 | 512 | 32 [| 5.3 x107% | 1314 || 1.6 x 107% | 572 || 2.29
8192 | 1024 | 125 || 4.9 x 107% | 2630 || 1.0 x 107% | 935 || 2.81
8192 | 2048 | 512 || 4.8 x 10~% | 5260 || 3.8 x 10 | 1606 || 3.27

Speedups achieved in this test are directly proportional to the domain size of the
problem. It is clear, that increasing a number of points in the domain will increase
the size of sub-domains and a granularity of the parallel computations, therefore will
lead to a better specdups.

On the other hand, the only practically reasonable notion of the problem scale is a
redvition of computational errors due to the increased domain size. As it was stated

carlier the sequential and parallel algorithms have the same order of approximations:

15



O(h? + 7). But from the Table 2.1 one can sce that for very big domains (s > 1) the
maximum computational error does not decrease significantly. Moreover, in order to
keep values of s small we will need to increase the number of time-levels polynomially
faster than the number of nodes in the domain. Every time-level represents a synchro-
nization barrier and a communication point of the algorithm, hence communication
and synchronization efficiency losses are going to grow polynomially fast in relation

to the problem scale.

Conclusion 1 The above considerations suggest that Gustafson’s Law is not directly
applicable for the studied algorithm and linear speedups are not theoretically reachable

for any scaled problem size without loss of computational accuracy.

2.3 A geometry of domain decomposition.

One of the ways to address a problem of synchronization is by load balancing, <venly
distributing the work amongst available processors. For this particular algorithm a
computational complexity is linearly dependent on a sub-domain size. Hence, intu-
itively, one would like to partition a domain into cqual size sub-domains to ensure
approximately equal work load for every processor. Efficeincy losses can be evalu-
ated using statistics collected by functions memread (Function 2.2) and memwrite

(Function 2.3):

¢ The number of times computation was stalled, waiting for the neighboring do-

main to finish its portion of the work and to supply the data (waited ).

e The number of times a processor was not able to write to a shared memory
location as its neighbor still did not read the previons value from this location

(slow).

In this section all the experiments were conducted for a problem with A = 8192 time-
levels and N = 1024 points in the domain. We will consider data for 8 processors

though results are similar for any other number of CPUs.
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Table 2.2: Synchronization overhead of equally partitioned domains

[ Domain No. | Sub-domain Size || waited | slow ||

0 128 8085 168
] 128 4621 165
2 128 7622 165
3 128 2721 167
4 128 6989 180
5 128 || 230 | 4

6 128 7087 16
7 128 8111 332

The Table 2.2 presents statistics for the equal domain distribution. The main
conclusion from this experiment is the fact that the first and last domains were
waiting almost on every iteration. Clearly, computations of these sub-domains utilize
boundary conditions of the heat coaduction problem and therefore need half the
communication, than the interior sub-domains. An average cost of reading a shared
memory location is about 200-300 floating point operations.®> This is equivalent to the
CPU time needed to compute values of an additional 30-40 points in every domain.
This consideration gave an idea to use so-called “heavy border ” work distribution.

]

The “heavy border” method partitions N nodes of the problem in such a way
that the first and the last sub-domains will get about 35 extra nodes than interior
sub-domains. As it is seen from Table 2.3 values of waited and slow are close almost
for all processors.

Examining Tables 2.2-2.3 it hecomes clear that interior domains of equal sizes are
not computed with the same speed. One of the reasons for this is memory contention.
It takes approximately the same amount of time for each processor to compute all
the points of the interior sub-domain, hence two neighouring processors will try to

read from the same page of shared memory at the same time. A method of “mixed

distributions™ alternates “hig” and “small” sub-domain sizes for CPUs with ID num-

3This result is experimental. Exact numbers are not available.
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Table 2.3: Synchronization overhead of a “heavy border” distribution

[| Domain No. | Sub-domain Size || vaited | slow ]]

0 154 6759 3
1 119 7327 2
2 119 7963 5
3 119 7000 11
4 119 8111 9
5 119 7394 20
6 119 8146 19
7 154 133 12

bers 1...p — 1, while assigning the biggest number of points to the processors 0 and

p. Statistics for “mixed distribution” method is represented in Table 2.4

Table 2.4: Synchronization overhead of a “mixed distribution”

| Domain No. | Sub-domain Size || waited | slow |

0 148 8069 | 20
1 131 1571 17
) 111 | 8594 34
3 131 872 17
4 111 8790 | 315
5 131 H17T | 74
6 113 8422 | 127 |
7 148 3036 | 67

The speedup graph on Figure 3 summarizes all the experiments with direet imple-
mentation of a domain decomposition algorithm. A detailed statistics can be found

in the Appendix ( Tables A.10-A.12 ).

Conclusion 2 The following statements follow from the vesulls deseribed above.

o Optimal cfficiency is nol reachable mainly due 1o the high communicalion and

synchronization cost.

18
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Figure 3: Speedup graph of direct implementations

e Dircct implementation of the proposed computation scheme on @ MYRIAS par-
aliel multiprocessor with virtual shaved memory gives acceptable speedup only
for 2 or i proccssors.

o Attempts to improve algorithm performance using different domain sizes can
somewhat reduce synchronization overhead and memory contention. buf do not

give any significant performance gains.

At the end of this chapter I would like to point out that though a virtual shared
memory becomes a bottleneck for this implementation, all addressed problems are
not specific to the current MYRIAS architecture. Other implementations on different
computers may perform significantly better. Nevertheless all, the outlined problems

will just be scaled down or magnified for any parallel multiprocessor.



Chapter 3

Asynchronous Domain

Decomposition Algorithm

3.1 Asynchronous chaotic algorithm

One of the main drawbacks of the original algorithm is the requirement that every
processor compute the same time-level of its domain at. the same time with its neigh-
bors. Consider the following features of the MYRIAS architecture and conditions of

the experiments:

e all the processors are of the same type and have the same amount of local

memory ( 4 MB);

o generally speaking, the communication speed hetween any two processors on

one hoard is the sanie;

e all the interior sub-domains are of the same size, therefore it takes the same

number of processor cycles to compute one time-level.

The analysis above allows us to draw a conclusion. that there are no “slow™ and “fast”
processors and the synchronization conflicts appear only due to the state of virtual

shared memory and the system in general.

20
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Let’s try to relax the synchronization and allow every sub-domain to compute its
next time-level with currently available values on the interfaces. We can suppose that

at least for very smooth functions with small u, the difference

urtt = (3.1)

is very small; u? is an expected value of the interface point and u** is the available

value of this interface. Suppose, |k] < K. A relaxation parameter K controls the
asynchronous behavior of the algorithm and represents a variety of time-levels that
can be computed at the same time by different processors. This approach will allow
sub-domains that werc slow on the previous time-level to catch up on the next ones.

Functions memread ( 2.2) and memwrite ( 2.3) will he modified as follows:

Function 3.4: memread

double memread( bc, iter, waited )

int iter;
BC *be;

int *yaited;

{

If the value in the shared memory (bc) was computed more
then K iterations ago then wait for my neighbor to catch up.
isClash = (abs (bc -> iter - iter ) > K );

if (isClash)

{
*yaited +=1;
Sleep, periodically checking the shared memory location (bc)
till my neighbor will catch up.

}

result = bc->u;
bc -> isRead = iter;
return(result);

Function 3.5: memwrite

void memwrite( U, iter, bc, slow)
double U;

int iter;

BC *be;
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int *slow;
char isClash;

First make sure that my neighbor read from this shared memory location
at least K iterations ago.

isClash = (abs( bc -> isRead - iter + 1 ) > K );

it (isClash)

{
*glow += 1 ;
Sleep, periodically checking the shared memory location (bc)
till my neighbor will catch up.

3

Write to the shared memory.
bec->u = U;
be->iter = iter;

Using a method, described above, the actual value of every interface point will
depend not only on the input data, but on the speed of the neighboring processors
and the current state of a whole system. Such computational schemes might cause
different final resuits for the same input and the same number of processors and
sub-domains. Further in the paper we will refer to this algorithm as “chaotic”.

Let us test the convergence of the chaotic method. Note, a numerical method is
convergent if a reduction of the time-step and space-step will result in a reduction of
computational errors. In Table 3.5 one can compare maximum errors produced by
the proposed asynchronous techmique with previously described sequential method

and the original synchronized domain decomposition.

Table 3.5: Convergence of the asynehronous method

M N [ Sequential | Synchronized Asynchronous

K=8 | K=100

x 1075 [ 25 x 107 [3.9x 107" [ 2.8 x 107"
2.2 1079 1 1.9 % 107" | 1.7 2 107%

1024 | 128 | 4.7
16392 | 1024 || 2.5 x 107

Conclusion 3 Chaolic asynchronous method gives unacceplably big crvors for a lesled

smooth function in comparison with ovigina! synchronized version of the algorithm



and does not effectively converge to the ezact solution. This makes such an approach

completely unusable.

3.2 Adaptive asynchronous algorithm

Let us move further from the assumption (3.1) in the previous section and, instead
of accepting any available values for the interface point, use an adaptive approach
described below.

First, we can rewrite 1(r ), of the original heat equation in the following way:

Srhe=E s (32)

r

For a function f(r,t) define the following approximations !

¢ Right-hand sided formulas:

_11f(r) — 18] (r — k) 4 9f(r = 2h) — 2f(r — 3h)

i)/.f(r) = oh (33)
a'lhf(r) — 2f(7') - 5f(7' - h‘) + ';'{(7' - 2]1) -— f('l' —_ 3’2) (34)
o Left-hand sided formulas:
O f(r) = ~11f(r) +18f(r + 1) —6 I.:)f(r +2h) +2f(r + 3h) (33)
Puflr) = 2f(r)=5f(r + h) +4f(r +2h) — f(r + 3h) (3.6)

h?
Consider r; be an interface point between m and m + 1 sub-domains. Suppose

that the m-th sub-domain has completed computations of a time-level n. In order

to proceed to n + | time-level, the sub-domain m needs to compute a value of its

ICacfficients in these formulas are computed using traditional method of truncated Taylor ex-
pansions. We will call (3.3)-(3.6) one-hand sided formulas as they approximate derivative at a point
r using values to the right or left from it.
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interface point u(r;, 7(n + 1)), using a value of u(r; + H,7n). provided by the sub-
domain m +1. Assume that sub-domain m + 1 still has not fin; hed processing n —th
time-level and therefore point u(r; + H,Tn) is not available.

Under the traditional scheme the m-th processor must stop and wait for the
processor m + 1 to complete the n-th time-level. A chaotic asynchronous method
proposss to use a previous time-level value u(r; + H,7(n — 1)) instead, assuming it
to be a sufficiently “close” to the needed value. Alternatively, the m-th sub-domain
can adapt to the current state of shared memory and approximate u(r; + H, ) by
using a modified form of the heat equation:

0,.,UT — —oKUM 1 =0 (3.7)

L
r
where 8, f(r) and 9% f(r) are computed using (3.3) and (3.4). H is a new space-step
for one-hand sided approximations, H is a multiple of h and usually is bigger then

H.

Such an approach allows a processor m to continue computations further, using an
approximated values in a forward difference scheme (1.15). The computation model
of a described method for the domain m is presented on Figure 4.

Computations for the “slow” processor m + 1 can be carried out using the same
technique. Suppose, that the processor m is working on the n + &k + 1 time-level,
while m + 1 just completed time-level n. In order to procced the (m + 1)-th sub-
domain needs the value of u(r; = H,a), but u(r; — I.7(n + k)) is available instead.
Equation (3.7) can be used to approximate the needed value. Partial derivatives must
be computed using (3.5) and (3.6), Tk will be used for approximation of UM, The
computation diagram is analogous to Figure 4.

The function computeDomain ( 3.6) must be changed:

Function 3.6: computeDomain

void computeDomain(domain)

24
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Figure 4: A computation halo of combined correction operator

Domain *domain;

......................................

for(iter = 1; iter <= MAXITERATION; i++ )
{
if ( domain->leftExternBC )
{
Read my leftExternBC.

If it was not updated on the previous
iteration by my left neighbor compute the value of the
interface point using left-hand sided formula.

Compute the value of my interface point applying forward
explicit difference method

}

if ( domain->rightExternBC )
{
Compute my right interface point in the similar fashion as
the left interface.
}
else
domain->rightVU = rightBC = 0.0;



Compute my internal points of the sub-domain using
implicit backward finite difference method

Update my rightInternBC and leftIntexrnBC. They will be read
by my neighbors on the next iteration

}

The method, described above, still has a chaotic nature as the actual computation
scheme of all interface points will be chosen dynamically, depending on the data in

shared memory.

3.3 Stability of asynchronous adaptive algorithm

Let us investigate a computational stability of the adaptive asynchronous algorithm.

Recall, as it was proven by Theorem 1, the original domain decomposition method is

stable under the following condition:

H?
5

T < (3.8)

The main difference between the original and proposed techniques is the change
in the computation algorithm for interface points. In the modified version of the
method a forward finite difference (1.15) is applied to a point that was previously
approximated by one of the one-hand sided formulas (3.3)-(3.6). The incquality (3.3)
guarantees stability of the forward finite difference operator. Unfortunately, we can-
not expect any one-hand sided formula to be stable by itself. If it was the case, then
this will mean that a final solution of a parabolic initial value problem does not de-
pend on one of the boundary conditions. Thercfore a proposed chaotic algorithm is
stable only if a combination of one-hand sided operator with forward finite difference
method is stable. |

In order to give a rigorous proof, one has to estimate a norm of the combined
approximation operator. In this work we will look at experimental results that suggest

that a proposed chaotic scheme is stable at least for a specified class of functions.



A stability requirement for a discussed combined ope<stor can be interpreted in

the following way:

Conjecture 1 The combined opcrator is stable if the : rpansion of errors by non-
stable one-hand sided operators (5.3)-(3.6) is going lo be compensated by the error

reduction of conditionally stable forward difference operator.

By analogy with a condition number for a forward difference methoed, let us define

5=

H7
where H is a space-step for the equation (3.7). The goal of numerical tests was to

determine the influence of § and relaxation parameters K on computational errors

produced by this method.
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Figure 5: Speedup of a chaotic algorithm with corrections

The Table 3.6 summarizes experimental results for the non-smooth solution? (1.6).

9 . . .
“Both functions gave similar results.
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Table 3.6: Stability of adaptive asynchronous scheme
TH/E] 5 | K=0 | K=3 | k=5 | K=17 |
1.5 |0.18530 | 9.1 x 10~% 00 eee ..
2.5 |0.06671 || 9.1 x107% | 9.7 x 107% | 1.0 x 107 00
3.0 |0.04632 || 9.1 x 10 | 9.6 x 10~ | 1.0 x 10~ | 1.0 x 10~%

The tested domain contained 100 points computed on 1500 time-levels by 3 processors,
w = 0.01. Notice that oo in this table corresponds to a non-stable numerical process.

A typical computational log-file is presented by Figure 6. For this experiment
3 = 0.046, that corresponds to H = 3H. The relaxation parameter is K = 3. A
gap in the log specifies a distance between a current time-level and a time-level of a
neighbor. One can see that for this set of parameters the input errors are increased by
left-hand side backward difference and then reduced by the forward central difference
method. Such behavior satisfies a stability condition in Conjunction 1.

Described numerical tests allow us to conclude the following:

Conclusion 4 The chaotic algorithm with corrections is stable for funclions with

bounded 9*1/01? for small values of paramecler K and § € s = 7[/H?.

The speedup graph is shown on Figure 5. Performance statistics is presented in
Appendix (Tables A.13 and A.14). The process of synchronization reduction tends
to reduce the amount of system overhead ( compare with system+waited cpu time
and pages in/created in Tables A.10-A.12). Overall proportion of the uscful user

cpu time is increased approximately by 20%.



Figure 6: A typical computation log-file

oooooooooooooooooooooooooooooooooooooooo

Iteration 37 is computed

Left backward difference (gap 2)

Input Errors: 2.07e-01 1.76e-91 1.37e-01 2.28e-01
Result 2.295839e-01

Central Difference error 2.223917e-01

oooooooooooooooooooooooooooooooooooooooo

Iteration 38 is computed

Left backward difference (gap 1)

Input Errors: 2.06e-01 1.75e-01 1.36e-01 2.28e-01
Result  2.287237e-01

Central Difference error 2.215820e-01

oooooooooooooooooooooooooooooooooooooooo

........................................

Iteration 40 is computed

Left backward difference (gap 2)

Input Errors: 2.05e-01 1.74e-01 1.35e-01 2.26e-01
Result 2.273628e-01

Central Difference error 2.201042e-01

ooooooooooooooooooooooooooooooooooooo

Iteration 41 is computed

29



Chapter 4

Domain Decomposition with

Reduced Communication Scheme

Analyzing performance graphs in the previous chapter or.e can conclude that, at least
for a MYRIAS architecture. the synchronization overhead is not the main reason for
low speedups. The original algorithm can be faster if it is possible to reduce the
access of shared memory. The presented experimental stability resnlts for a chaotic
algorithm with corrections suggests a solution to this problem.

Let us consider the following scheme:

e All the interior points of sub-domains are computed as before.

o Every I — th time-level interface points are computed applying (1.15), wl- e a
small number K is a synchronization parameter. Only on these time-levels

a processor will access shared memory.

o All the time-levels between K'(j) and K'(j + 1) will be computed by a combined

operator, previously defined for an adaptive asynchronous scheme,

Such algorithm will increase granularity of computation and reduee the amount
of communication by K times.

The new psendocode of the function computeDomain is presented below:

30



Function 4.7: computeDomain

void computeDomain(domain)
Domain #domain;

--------------------------------------

for(iter = 1; iter <= MAXITERATION; i++ )

Read the values from the shared memory, computed by my neighbor
on the previous iteration, wait if they are not available.

for(gap = 0; (gap <= K) && (iter < MAXITERATION); iter ++, gap++ )

{
Compute the value of my interface points applying
one-hand sided formulas and forward
explicit difference method.
Compute my internal points of the sub-domain using
implicit backward finite difference method

}

Update my rightInternBC and leftInternBC. They will be read
by my neighbors on the next iteration

The performance graph on Figure T compares all three previously discussed meth-
ods. The reduced communication scheme has a better speedup for any number of
processors between 2 and 8. Statistics for the reduced communication scheme (Ta-
bles A.15-A.17) shows that less frequent access of the shared memory results in the
further increase of the user cpu time and significant reduction of the number of

created memory pages.

Table 1.7: Stability of the reduced communication scheme

fa/my « | K=0 . ] N=3 | K=5 | K=7 |
) 0.104 §1 9.7 x 107% ] 1.4 x 107% 00
2.5 | 0.0667 || 917 x 1079 | 1.3 x 107 | 1.9 x 10~% o)
3.0 001632 | 917 x 107 | 1.3 x 107% | 1.7 x 10~ | 2.6 x 107
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Figure 7: Reduced communication verses other methe.s

Moreover, a described method can be viewed as a special case of a chaotic method,
described before. Hence, a stability conclusion (Conclusion 4 from the previous chap-
ter) can he applied here too.

The same stability tests were performed as hefore. A problem size is 100 x 1500. A
non-homogencous part F(r,1) yields an exact solution (1.6) with big second derivative

in time near 0. Table 4.7 summa. izes the results.

Table 4.8: Dependence of stability on a nnmber of sub-domains.

K=3 | k=5 | K=7 |

H No. of sub-domains H

[

4 1.2 % 1079 127 2 107" 1 6.6 « 107
5 25 %107 [ 5.0 2 107 ) LT« 107™
6 3.8 x 107" | 8.0 x 10-% <

7 6.4 x 1079 | 1.0« 1079 1 3.2 2 10~™
3 9.0 x 107" | 1.3 » 107" ~x

A comparison of computation errors for the adaptive asynchrenous scheme witly

corrections (Table 3.6) and reduced communication scheme (Table 4.7) shows:
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o The stability estimates for both computation methods are the same, as it was

predicted before.

e The actual errors for an algorithm with reduced communication are smaller.
This can be explained by the fact that an asynchronous scheme applies one-

hand sided formulas much more often then a proposed new method.

The other property of a method with reduced communication is that the actual
::rror and stability can depend on a number of used sub-domains . Table 4.8 repro-
duces results of the experiment with a smooth exact solution (1.4), H = 2.5H and a
problem size is 1024 x 8192.

Stability requirement of the discussed method introduces an upper limit to a pos-
sible number of sub-domains for a problem of a fixed size. Consider a heat conduction
problem with N points in the domain and T time-levels. A “coarse” grid space step H
must satisfy a stability condition for the forward difference method and be a multiple

of h = 1/N. Therefore, the following inequality holds:

m 2
H = ¥ T (4.1)

where m is the number of points of a “fine” grid in one space-step of a “coarse” grid.

It is important to guarantee that the halo (Figure 4) of a combined operator
belongs entirely to one sub-domain, otherwise it will extremely complicate a commu-
nication scheme. Suppose that a domain is partitioned equally among P processors
and the space-step of one-hand sided operator s // = mh. Then the following must

be true:

V
RITTEN !7; + m. (4.2)

As it is scen from the numerical experiments. in order to ensure stability of a
combined operator for a reduction p rrameter K = 5, ¢ = H/H must be not less then

2.5.



Consider a problem where N = 1024 and T = §192, used for all speedup graphs
in this paper. Using formula (4.1) we will get m = 17 and for ¢ = 2.7, i = 45. Then

from the inequality (4.2) the biggest possible P = 8.

Conclusion 5 Presented results allow us to make the following conclusions:

o The communication reduction method allows to achieve much better speedups

for the MYRIAS architecture than any other tested algorithm of parallel domain

decomposition.

o The adaptive combined operator gves stable numerical results for tested functions

and H > 2.5H.

e The forward difference stebility conditions and experimental values of o force to

limit a number of sub-domains for any given problem size.
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Conclusion

The numerical results, presented in this paper, summarize a long series of experiments
with the domain decomposition technique for a heat equation in cylindrical coordi-
nates. The main goal of this investigat.ion——— to reach reasonably high performance
of a MYRIAS implementation of the algorithm — was possible to achieve only by
introduction of asynchronous schemes of computation and communication reduction.
Though for a number of tested functions, the presented algorithm experimentally
proved to be stable, a theoretical question about stability of such approach is open.
Moreover, an application of such technique can be generalized to parabolic problems

in higher dimensions.
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Appendix

This appendix summerizes all the conducted experiments and represents a detailed
statistics for each parallel run of domain decomposition algorithm and its modifica-

tions. The following data appears in the tables below:

e user cpu time-total time spent executing a user code (% of a total execution

time).

e system cpu time-total time spent executing system code (% of a total exe-

cution time).

¢ idle cpu time-total idle time (% of a total execution time). Note, in most

cascs idle time is equal to 0.

e wait cpu time-total wait time (% of a total execution time) A task is resident
but unable to execute, waiting for a resource. For all presented algorithms
the time spent waiting for synchronization will be added to this category of

cfficiency losses.

e pages in/out-number of pages moved between processors to satisly task page
requests in; number of pages moved due to over-commitment of memory on the
processors initiating the move out ( this value is always eqaal to 0 and does

not appear in the tables below ).

e pages created-number of pages created to support memory merging.
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The speedup is calculated as a ratio between parallel execution time and a time
spent to solve a problem sequentially by implicit backward finite difference method

(75 = 2630 sec).
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Table A.9: Performance of the algorithm verses domain size

Domain size
(8192 time-levels)

Time distribution (%) || Mem;;:pa.ges
user | system | idle | wait || in | created

Time Speedup
~ (4 processors)

256
512
1024
2048

4
61
3
84

25
18
11
7

0

0
0
0

31
21
15
8

57 20
63 25
69 30
79 38

415 1.58
572 2.29
935 2.81

1606 | 3.21

Table A.10: Statistics for the equal distribution algorithm

Proc || Time distribution (%) [ Memory pages || Time | Speedup
ll J] user | system | idle | wait || in | created || ﬁ_ ll
2 91| 4 |0 5 [[42] 20 [H81] 177
3 81 8 0 11 | 53 23 1118 2.35
4 73 11 0| 15 | 69 30 935 2.81
5 66 13 0 | 21 || 78 32 837 3.14
6 60 15 0| 24 |t 94 38 767 3.42
T 0 52 16 0 | 32 || 108 14 762 3.45
8 50 18 0 [ 32 | 122 50 706 3.72

‘able A.11: Statistics for the “heavy border™ distribution algorithm

|l Proc || Time distribution (%) || Memory pages || Time | Speedup
I [| user | system [ idle | wait [ in | created
2 91 4 0 5 42 20 1479 1.77
3 83 8 0 9 55 25 1085 242 |
4 4 11 0 14 67 28 919 2.86
5 G9 13 0 18 S 32 803 3.27
6 60 15 0 P2 91 38 765 3.43
7 538 17 0 25 | 108 44 692 3.80
8§ [ 52 ] 18 0|30 [jur] 44 682 | 3.85 ﬂ




Table A.12: Statistics for the mixed distribution algorithm

Proc || Time distribution (%)

=Memory p;-ggs

|| user | system | idle | wait

in | created

Time l Speedup “

91
86
74
69
61
55
53

o0 =3 O Ot o O N

Table A.13: Statistics for asynchronous algorithm

4
8
11
13
15
16
18

5
6
14
18
23
28

0 | 29 || 119 47 674

41 20 1492
54 24 1053
68 28 926
tt 78 32 806
94 38 759
108 44 729

1.76
2.49
2.84
3.26
3.46
3.60
3.90

|]-Proc [ Time distribution (%) [ Memory pages || Time | Speedup “
|| user | system | idle | wait || in [ created |
2 94 3 1 1 42 20 1420 1.85
3 90 7 1 3 95 25 1001 2.62
4 83 10 3 4 67 28 816 3.22
5 80 12 3 5 78 32 681 3.86
6 [t 15 4 6 94 18 609 4.31
I] T | o1r [ 2| 7 Jws| w 534 | 4.92
8 67 17 8 8 | 117 44 520 5.05

Table A.14: Statistics for adaptive asynchronous algorithm (I = 8)

Proc | Time distribution (%) || Memory pages || Time | Speedup
user | system [ idle [ wait || in | created ||

2 95 4 0 2 42 20 1419 1.85
3 89 7 0 3 55 25 1006 2.61
4 83 11 0 6 67 23 818 3.21
5 30 13 0 6 78 32 682 3.85
6 5 16 0 9 94 38 613 4.29
7 74 18 0 $ 108 41 533 1.93
8 67 20 1 13§ 117 14 526 5
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Table A.15: Statistics for the algorithm with reduced communication scheme (K = 2)

Proc || Time distribution (%) || Memory pages || Time | Speedup
|| user | system | idle | wait || in | created |
2 foa] 2 Jo] 4 4] 22 [1438] 182
3 87 4 0 9 60 27 1052 2.5
4 80 6 0 14 | 77 36 862 3.05
5 76 7 0 17 || 88 40 137 3.56
6 68 8 0 | 23 || 103 48 688 3.82
7 64 9 1 27 || 122 56 634 4.14
8 59 9 1 31 | 137 64 602 4.36

Table A.16: Statistics for the algorithm with reduced communication scheme (K = 4)

Proc || Time distribution (%) | Memory pages J| Time | Speedup
|| user | system | idle | wait || in [ created ﬂ
2 96 2 0 2 43 22 1406 1.87
3 92 3 0 4 60 27 986 2.66
4 89 5 0 7 77 36 779 3.37
5 87 6 0 7 88 10 638 4.12
6 82 7 0 11 | 103 48 573 4.58
7 8 S 1 13 | 122 56 516 5.09
8 78 9 1 12 | 137 64 454 5.79

Table A.17: Statistics for the algorithm with reduced communication scheme (K" = 6)

Proc | Time distribution (%) || Memory pages || Time | Speedup
user | system | idle [ wait | in | created |
2 97 i 0 2 13 22 1402 1.87
3 91 3 0 ) 60 27 997 2.63
4 38 4 0 8 7 36 789 3.33
5 87 5 0 T 88 10 637 4.12
6 82 6 0 11 | 103 48 570 4.61
T 7 7 0 13 |f 122 56 510 5.15
S 78 8 1 14 || 137 64 458 5.74




