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Abstract

In this dissertation, we study the e↵ect of users’ transmission ordering on

the common rate and sum rate of pairwise multiway relay channels (MWRCs).

As an extension for two-way relay channel (TWRC), MWRC has been pro-

posed to improve the spectral e�ciency in wireless networks. In a pairwise

scheme, a set of pairs, known as ordering, is defined that represents the users’

transmission schedule. Each pair of users form a TWRC and simultaneously

send their data to the relay in an uplink phase. There are di↵erent strategies

for the relay to form the downlink message. We consider decode-and-forward

and functional-decode-forward relaying strategies for our study. We find the

ordering that achieves the maximum e�ciency of the pairwise MWRC. To find

transmission orderings that maximize the common rate and sum rate of the

system, we first develop a graphical model for the data transmission in a pair-

wise MWRC. Using the proposed graphical model, we, then, find the necessary

and su�cient conditions for an ordering to be feasible (i.e., allows for success-

ful decoding). Using this model, we finally find the optimal orderings that

achieve the maximum common rate and sum rate of the system, respectively.

Closed form expressions for the maximum achievable common rate and sum

rate are also found. Computer simulations are presented for better illustration

and comparison between the rate metrics of the proposed optimal orderings

and random orderings.
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Chapter 1

Introduction

Keeping records of real events and sharing them has been a matter of interest

since a long time ago. Lots of e↵ort has been put into this matter so that one

can record a beautiful scene as a digital image, an aesthetically pleasing melody

as a music file or a more sophisticated event as a movie. These are all exam-

ples of what is called data today. The demand for data sharing includes not

only sharing of recorded events, but also real time sharing applications. Data

sharing is not possible without having proper data communication protocols

and equipment. As an engineering problem, data communication should be

first modeled mathematically. Communication theory pursues the modelling

of di↵erent aspects of data communication [1, 2].

1.1 Communications Theory

The central problem in communication theory is to find an e�cient way for a

single transmitter to transmit its message to a receiver [1, 2, 3]. This problem,

by itself, brings up many other questions including but not limited to the

following:

• How should one describe the message?
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• What resources are available to the transmitter?

• How fast does the data transmission process take place?

• How reliable is the received message at the receiver?

The classical theory of communication can successfully formulate the above

questions in the language of mathematics. In fact, this is done by the father

of information theory, Claude Shannon, in his paper “A Mathematical Theory

of Communication” [4]. In this 60 years old paper, Shannon provides a math-

ematical framework which is still being used widely. More specifically, in this

paper he provides:

• The basics of information theory as a tool to describe the messages in

terms of information,

• The available bandwidth, time and signal power as the available resources,

• The concept of data transmission rate as a measure of transmission speed,

• Probability of error as a measure of reliability.

As an example, one realization of the traditional question mentioned at

the beginning, and perhaps the most widely used communication scenario,

is communication between mobile phones. A mobile handset (transmitter)

wants to transmit its owner’s voice (the massage) to another mobile phone

(the receiver). However, a one-to-one communication model is too simple to be

useful in this case. For example, in reality, even when two mobile phone users

are speaking to each other on their phone a lot of middle nodes (communication

devices existing in a network) are facilitating this communication (e.g., the

base station, or network switches between base stations) [5]. Therefore, more

sophisticated models are proposed and used. Cooperative communication is

one such case [6].
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1.2 Cooperative Communications

Figure 1.1: The fundamental relay channel.

As the name suggests, in cooperative communications some of the nodes can

help other nodes to improve e�ciency [7]. There might also be some dedicated

relays that are placed only to facilitate communications for other nodes. These

relays increase the degrees of freedom in the system and thus increase the

spectral e�ciency defined as data transmission rate per bandwidth unit. For

instance, a relay channel [8, 9] consists of a transmitter, a receiver and at

least one relay node, as shown in Figure 1.1. Recently, relay channels have

attracted lots of interest in the literature [10, 11, 12, 13, 14]. For example,

two-way relay channel (TWRC), in which two users exchange their data by

means of a common relay terminal, has been studied in detail [15, 16, 17,

18]. Introducing the concept of multiway relay channel (MWRC) [19, 20],

cooperative communications goes even further by describing a system wherein

more than two users receive service from a common relay. MWRC is a multi-

user communication system in which users share their data with the help of a

relay. Similar to TWRC, the network structure makes it possible for the relay

to benefit from network coding [16, 21, 22, 23]. Thus, MWRC can potentially

improve the spectral e�ciency in data sharing applications.
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1.3 Summary of Contributions and Disserta-

tion Organization

1.3.1 Motivation

In a special case of multiway relaying, known as pairwise multiway relaying,

users transmit their data to the relay in pairs. Thus, analysis of pairwise

MWRC is based on TWRC. Not only does pairwise relaying have a low decoding

complexity, but it also o↵ers interesting capacity achieving properties in various

MWRC setups [24, 25]. For instance, it has been shown that pairwise multiway

relaying along with rate splitting and joint source-channel decoding achieves

the capacity region of MWRC over finite fields [25]. However, one open problem

is that which users should be paired together in order to achieve the maximum

e�ciency of the pairwise MWRC. Considering common rate and sum rate of

the system as measures of e�ciency, we address this problem in this thesis for

di↵erent practical setups.

1.3.2 Summary of Contributions

In this dissertation, we address the e↵ect of ordering for pairwise MWRC sce-

narios. More precisely, we consider pairwise decode-and-forward (DF) and

functional-decode-forward (FDF) scenarios where there is no restriction on the

number of uplink transmissions by the users. In this case, we first discuss

that there exist NN�2 distinct orderings. Thus, finding the optimal ordering

through brute-force search becomes expensive for large N . Then, under a rea-

sonable assumption on user’s SNR, we analytically find the optimal orderings

to maximize the common rate and the sum rate. Also, closed form expressions

for the maximum achievable common rate and sum rate in both DF and FDF

schemes are presented.

In an MWRC network, there are cases where the available transmit power
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of users may be limited. This limit imposes upper bounds on the number of

uplink transmissions that a user can participate in. For this situation, a more

general case is considered in which an upper bound on the number of pairs that

a user can belong to is specified. Optimal orderings that achieve the maximum

common rate under these restrictions are found for both DF and FDF. When

the limit is two, the solutions simplify to those of [26] and [27]. A part of this

work has been published in [28].

1.3.3 Organization of the Thesis

In Chapter 2, we describe the system model and provide the needed background

on TWRCs. Then, we describe the pairwise MWRC. Furthermore, a graphical

representation for pairwise MWRC and the necessary and su�cient conditions

for an ordering to be feasible are described. In Chapter 3, we formulate the

common rate problem for pairwise MWRC. In addition, the orderings that

maximize the common rate for DF and FDF relaying are found. Moreover, the

performance of the optimal ordering is compared to those of random orderings

using computer simulations. In Chapter 4, we define the sum rate maximization

problem and solve it for both DF and FDF relaying in a pairwise MWRC.

Again, we compare the performance of our proposed orderings with those of

random orderings via simulations. Chapter 5 concludes this work and provides

some directions for future research.
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Chapter 2

Background

In this chapter, we describe the so called two-way relay channel (TWRC)

[15, 18, 29]. Further, we explain existing relaying strategies for TWRC. The

achievable rates of these relaying strategies are also presented. Then, we present

a general system model for MWRC. Finally, pairwise relaying for MWRC and

its relation to TWRC is described.

2.1 Two-Way Relay Channel

Consider a relay channel as shown in Figure 2.1. Two users, say Node 1 and

Node 2, want to communicate with each other and share their data. It is

assumed that users cannot communicate directly, that is, they can only com-

municate via the relay.

2.1.1 System Parameters

We denote the channel input at Node i by xi. The data at Node i, shown by

Xi, is a vector with elements chosen from a field F. Assume that the channel

from Node i to the relay has additive white Gaussian noise (AWGN) with noise

variance �2 and gain gi. Channels are assumed to be reciprocal. In other words,

channel from the relay to Node i has the same characteristics as channel from

6



Figure 2.1: A typical two-way relay channel

Node i to the relay. The transmit power of the relay is assumed to be Pr. Also,

the transmit power of Node i during each transmission period is assumed to

be Pi. Then, we define a signal to noise ratio (SNR) for Node i as �i , Pi|gr|2
�2 .

The received signal at the relay will be

yr = g
1

x
1

+ g
2

x
2

+ nr (2.1)

where nr is a zero-mean Gaussian noise with variance �2. The relay input to

the channel is denoted by xr and the received signal at Node i is shown by

yi. We denote the channel noise at Node i by ni which is assumed to be a

zero-mean Gaussian noise with variance �2. nr, n
1

and n
2

are assumed to be

independent. We say that R
1

is an achievable rate for Node 1 if there exists

a communication scheme such that Node 1 transmit its data with rate R
1

bits

per second and the maximal probability of error in decoding X
1

at Node 2

tends to zero. Similarly, we define the achievable rate for Node 2 as R
2

.

2.1.2 Relaying Strategies

There are several relaying protocols to facilitate the communications via the

relay. The first approach is the so called one way relaying (OWR) [7, 30]. In
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OWR, the users share their data in four time slots. In the first time slot X
1

is sent to the relay and x
2

= 0. The relay then forwards X
1

to Node 2 in

the second time slot. This is then followed by transmission of X
2

to the relay

during the third time slot, while x
1

= 0. In the fourth time slot, the relay

transmits X
2

to Node 1. Another relaying approach that is based on the idea

of network coding is as follows: in the first time slot, X
1

is transmitted to the

relay and x
2

= 0. In the second time slot, Node 2 transmits X
2

to the relay and

Node 1 transmit nothing. In the third time slot, the relay transmits X
1

� X
2

to both Node 1 and Node 2. This means that if X
1

and X
2

are vectors with

elements chosen from a field F, then the relay transmits X
1

� X
2

, where �
denotes element-wise summation of X

1

and X
2

over F. Thus, this approach

needs only three time slots and have a better spectral e�ciency than the OWR

approach. The spectral e�ciency can be further improved as in what we know

as TWRC [31, 32, 33]. For TWRC, in the first time slot, Node 1 and Node 2

simultaneously send their data to the relay. Then, in the second time slot the

relay broadcasts the summation of the two users’ messages to both of them.

Thus, TWRC only needs two time slots to perform the whole transmission.

Figure 2.2 illustrates these three strategies.

(a) (b) (c)

Figure 2.2: Three di↵erent relaying approaches for a relay channel.

In TWRC, depending on relay’s strategy for forming X
1

� X
2

, several for-

warding strategies are developed, namely amplify-and-forward (AF), decode-

and-forward, compress-and-forward (CF) and functional-decode-forward [15,

16, 19, 34]. In the next few sections, we describe these relaying strategies in
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more detail. However, in the rest of this thesis, we deal with DF and FDF

strategies only.

2.1.3 Amplify-and-Forward

For a TWRC with AF relaying strategy, both users send their data to the relay

simultaneously. Then, the relay amplifies the received signal and broadcasts

it back to both users. The amplification factor, ↵, is chosen such that the

transmit power of the relay does not exceed Pr. Thus,

xr = ↵yr = ↵(g
1

x
1

+ g
2

x
2

+ nr) (2.2)

in which

↵ =

s
Pr

|g
1

|2P
1

+ |g
2

|2P
2

+ �2

(2.3)

After subtracting its own signal, the received signal at at Node 1 is

y
1

= ↵g
1

(g
2

x
2

+ nr) + n
1

= ↵g
1

g
2

x
2

+ (↵g
1

nr + n
1

)
(2.4)

which is similar to the signal model for an AWGN channel with noise ↵g
1

nr+n
1

.

In a TWRC with a pair of users, a rate tuple (R
1

, R
2

) is said to be achievable if

Ri, for both i = 1, 2, is an achievable rate for Node i. Thus, for a TWRC with

AF relaying R
1

and R
2

are limited by the following achievable bounds [35]:

Ri  1

2
log

2

(1 + �i) (2.5)

R
1

+ R
2

 1

2
log

2

(1 + �
1

+ �
2

) . (2.6)

in which �i = |↵g1g2|2Pj

|(↵gi+1)|2�2 such that {i, j} = {1, 2}.
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2.1.4 Decode-and-Forward

For a TWRC with DF relaying strategy, the relay first decodes the received

messages completely and then broadcasts the summation of them to the users.

In other words, it can be assumed that in the uplink phase Node 1 and Node 2

transmit their data to the relay. The relay first decodes both X
1

and X
2

and,

in the consecutive downlink phase, the relay transmits X
1

� X
2

to both users.

It is assumed that the data rates are limited by the uplink phase, not by the

downlink phase. This is usually the case in practical wireless systems where

the users are low-power small transmitters and the relay is a powerful station.

Also, in various practical configurations that the transmit power of the relay

increases with the number of users, it has been shown that data rates are

limited by the uplink phase [35].

For a TWRC with DF relaying, R
1

and R
2

are limited by the following

achievable bounds [8, 36]:

Ri  1

2
log

2

(1 + �i) (2.7)

R
1

+ R
2

 1

2
log

2

(1 + �
1

+ �
2

) . (2.8)

2.1.5 Compress-and-Forward

CF was first proposed by Cover and El Gamal in [37]. For CF, relay quantizes

its received signal in the uplink phase and then compresses it. Denoting the

quantized version of yr by ŷr, we have

ŷr = g
1

x
1

+ g
2

x
2

+ nr + nq (2.9)

where, nq is the quantization error. In the next step, the relay applies a source

coding scheme on ŷr and forms xr. Several approaches have been proposed for

forming the relay output message. For details and achievable rates of these

10



approaches, the interested reader is referred to [18, 29, 37, 38] and references

therein.

2.1.6 Functional-Decode-Forward

FDF is first proposed by Nam et al. [17]. For a TWRC with FDF relaying,

the relay decodes the sum of the received signals and sends it back to the users

[16, 34]. In other words, relay tries to find the sum of the two received signals

directly without decoding each of them. Nam et al. showed that a realization

of FDF with nested lattice codes can achieve transmission rates upto within

1/2 bit of the capacity of TWRC [17, 39]. Considering AWGN links from users

to the relay and with the same assumptions as the previous section, Ri in an

FDF TWRC is limited by the following achievable upper bounds:

R
1

 max

⇢
0,

1

2
log

2

✓
�

1

�
1

+ �
2

+ �
1

◆�
, (2.10)

R
2

 max

⇢
0,

1

2
log

2

✓
�

2

�
2

+ �
1

+ �
2

◆�
. (2.11)

To the best of our knowledge, these are the largest achievable bounds existing

for Ri with FDF relaying.

2.2 Multiway Relay Channel

We consider an MWRC in which N users, namely U
1

, U
2

, . . . , UN , perform full

data exchange. This means that each user wants to decode all other users

data, denoted by Xis. It is assumed that users cannot communicate directly,

meaning that they can communicate only via the relay R. The channels from

Ui to R are denoted by CiR. We denote the channel gain for CiR by giR and

assume that all channels are AWGN with equal noise variance �2. Figure 2.3

illustrates an MWRC with N users.
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Maximizing Sum Rate and Common Rate
for Pairwise Multiway Relay Channel

Reza Rafie Borujeny, Student Member, IEEE, Moslem Noori, Member, IEEE,
and Masoud Ardakani, Senior Member, IEEE

Abstract—In this paper, we study the effect of users’ trans-
mission ordering on the common rate and sum rate of pairwise
multiway relay channels (MWRCs). We consider both decode-
and-forward and functional-decode-forward as relaying strate-
gies. To this end, we first develop a graphical model for the data
transmission in a pairwise MWRC. Using this model, we then
find the optimal orderings that achieve the maximum common
rate and sum rate of the system. The maximum achievable
common/sum rate is also found. Computer simulations are
presented for better illustration of the results.

Index Terms—Multi-way relay channels, decode-and-forward,
functional-decode-forward, pairwise relaying, common rate, sum
rate.

I. INTRODUCTION

A MULTIWAY relay channel (MWRC) [1] is an extension
of a two-way relay channel (TWRC) [2]–[6] in which

N � 2 users intend to share their data with each other. There
is often no direct link between users and a relay assists the
users to communicate their data messages. Recently, MWRCs
have received a lot of attention in the research community. For
example see [1], [7]–[10] and references therein.

Pairwise relaying, also known as pairwise network coding,
is a relaying approach specifically suggested for MWRCs [7],
[8]. In a pairwise scheme, we define a set of pairs, representing
the users’ transmission schedule. Every two users within a pair
form a TWRC and simultaneously send their data to the relay
in an uplink phase. This is then followed by a downlink phase
in which the relay broadcasts a function of the two users’
messages to all users [1]. Pairwise relaying not only does have
a low decoding complexity, but also offers interesting capacity-
achieving properties in various MWRC setups [9], [10]. For
instance, it has been shown that pairwise multiway relaying
along with rate splitting and joint source-channel decoding
achieves the capacity region of MWRC over finite fields [10].
It is worth mentioning that pairwise multi-way relaying is
often employed in two ways, namely pairwise decode-and-
forward (DF) [7] and functional-decode-forward (FDF) [9].

In a pairwise MWRC, the way that users are paired for
transmission is referred to as user’s ordering. The users’ or-
dering directly affects the achievable data rates of the users [7].
Considering different constraints on the relay transmit power,
authors in [11] have shown that their ordering maximizes the
common rate for an unrestricted MWRC with FDF relaying

The authors are with the Department of Electrical and Computer Engi-
neering, University of Alberta, Edmonton, AB, Canada T6G 2V4 (e-mail:
{reza.rafie, moslem, ardakani}@ualberta.ca).

A portion of this work is presented in ISIT 2014.

U1 U2 UN

R

C1R C2R
CNR

. . .

Fig. 1. An N -user MWRC.

where each user’s transmitted signals can depend on both its
message and its previously received signals.

In [7] authors find the optimal ordering to maximize the
achievable common rate of the users for an MWRC with
asymmetric Gaussian channels under the assumption that each
user transmits in at most two uplink phases. For relaying
strategy, they consider both pairwise DF and FDF relaying and
show that the optimal ordering for each strategy is different
than the other.

In this work, we go one step further than the work in [7]
and address the effect of ordering for more general pairwise
MWRC scenarios. More precisely, we first consider pairwise
DF and FDF scenarios where there is no restriction on the
number of uplink transmissions by the users. In this case,
we first discuss that there exist NN�2 distinct orderings.
Thus, finding the optimal ordering through brute-force search
becomes expensive for large N . Then, under a reasonable
assumption on user’s SNR, we analytically find the optimal
orderings to maximize the common rate and the sum rate.
Also, closed form expressions for the maximum achievable
common rate and sum rate in both DF and FDF schemes are
presented.

In an MWRC network, there are cases where the available
transmit power of users may be limited. This limit imposes
upper bounds on the number of uplink transmissions that a
user can participate in. For this situation, a more general case

Figure 2.3: A typical multiway relay channel.

2.2.1 Pairwise Relaying

In a pairwise transmission scheme, users are grouped in M pairs. These pairs

are not necessarily disjoint meaning that a specific user can appear in more

than one pair. A division of the users to subsets of pairs is called an ordering

of the users and is denoted by O = {{u
11

, u
12

}, . . . , {uM1

, uM2

}} where u`1 and

u`2 2 {U
1

, U
2

, . . . , UN}. We presume a half-duplex communication in which

a full data exchange consists of M uplink phases and each uplink phase is

followed by a downlink phase. Each of the M pairs transmit in one and only

one uplink phase. In each downlink phase, the relay transmits the sum of the

two messages received in the last uplink phase to all of the users. This means

that if Xi and Xj are vectors with elements chosen from a field F, then the relay

decodes Xi �Xj where � means element-wise summation of Xi and Xj over F.

These pairwise transmissions continue until the last pair of the ordering. We

assume that all users know which pair is associated with the received signals.

Having its own data, each user is able to decode the data of others at the end

of one round of full data exchange. In the rest of this work, we assume that

users have an unlimited amount of data to transmit such that none of them

will reach the end point before the others.

The transmit power of Ui during an uplink phase is assumed to be Pi.

12



Furthermore, an uplink signal to noise ratio for user Ui, namely �i, is defined

as �i , Pi|giR|2
�2 . Without loss of generality, we assume that

�N � �N�1

� · · · � �
1

> 0.

It is also assumed that the data rates are limited by the uplink phase, not by

the downlink phase.

For a wireless MWRC with DF relaying strategy, the relay first decodes the

received signals completely and then broadcasts the sum of them to the users.

In other words, assume that at the `th uplink phase u`1 = Ui and u`2 = Uj are

paired and transmit their data to the relay. Denoting the data of u`1 and u`2 by

Xi and Xj, the relay decodes both Xi and Xj and in the consecutive downlink

phase, the relay transmits Xi � Xj to all of the users. For FDF relaying, the

relay decodes the sum of the received signals and sends it back to the users.

In other words, relay tries to find the sum of the two received signals directly

without decoding each of them. We consider both FDF and DF strategies in

the rest of this work.

Assume a pairwise relaying with N = 3 users and

O = {{U
1

, U
2

}, {U
2

, U
3

}, {U
1

, U
3

}} (2.12)

as shown in Figure 2.4. After one round of communication, assuming ideal

channels, each user has the following set of equations:

X
1

� X
2

= X(1)

r

X
2

� X3 = X(2)

r

X
3

� X
1

= X(3)

r

(2.13)

where X
(1)

r , X
(2)

r and X
(3)

r are the messages transmitted by the relay to the

users. As a result, X
(1)

r , X
(2)

r and X
(3)

r are known at each user. Considering that
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of our proposed orderings with those of randomly chosen
orderings via simulations in Section VI. Finally, Section VII
concludes the paper.

II. SYSTEM MODEL

We consider an MWRC in which N users, namely
U1, U2, . . . , UN , perform full data exchange. This means that
each user wants to decode all other users data, shown by Xis.
It is assumed that users cannot communicate directly, meaning
that they can communicate only via the relay R. The channels
from Ui to R are denoted by CiR. We assume all the channels
are Gaussian with the same noise variance �2, and denote the
channel gain for CiR by giR. Fig. 1 illustrates an MWRC with
N users.
In a pairwise transmission scheme users are grouped in M

pairs. These pairs are not necessarily disjoint meaning that
a specific user can appear in more than one pair. A division
of the users to subsets of pairs, is called an ordering of the
users and is denoted by O = {{u11, u12}, . . . , {uM1, uM2}}
where ui1 and ui2 2 {U1, U2, . . . , UN}. We presume a half-
duplex communication in which a full data exchange consists
of M uplink phases and each uplink phase is followed by a
downlink phase. Each of the M pairs transmit in one and only
one uplink phase. In each downlink phase, the relay transmits
the sum of the two messages received in the last uplink phase
to all of the users. This means that if Xi and Xj are vectors
with elements chosen from a field F, then the relay decodes
Xi � Xj where � means element-wise summation of Xi and
Xj over F. These pairwise transmissions continue until the last
pair of the ordering. We assume that all users know which pair
is associated with the received signals. Having its own data,
each user is able to decode the data of others at the end of
each round. For a wireless MWRC with DF relaying strategy,
the relay first decodes the received signals completely and
then broadcasts the sum of them to the users. In other words,
assume that ui1 and ui2 are paired and transmit their data to
the relay in an uplink phase. Denoting the data of ui1 and ui2

by Xi1 and Xi2 , the relay decodes both Xi1 and Xi2 and in
the consecutive downlink phase, the relay transmits Xi1 �Xi2

to all of the users. For FDF relaying, the relay is to decode
the sum of the received signals and send it back to the users
[3], [13]. In other words, relay tries to find the sum of the two
received signals directly without decoding each of them. We
consider both FDF and DF strategies in the rest of this work.
The transmit power of Ui during an uplink phase is assumed
to be Pi. Furthermore, an uplink signal to noise ratio for user
Ui, namely xi, is defined as xi , Pi|giR|2

�2 . Without loss of
generality, we assume that xN � xN�1 � · · · � x1 > 0. It
is also assumed that the data rates are limited by the uplink
phase, not by the downlink phase. This is usually the case in
practical wireless systems where users are low-power small
transmitters and the relay is a powerful station.
Fig. 2 illustrates a pairwise relaying withN = 3 users. After

one round of communication, each user has the following set

U1

U1

U1

U1

U1

U1

U2

U2

U2

U2

U2

U2

U3

U3

U3

U3

U3

U3

R

R

R

R

R

RUplink 1

Uplink 2

Uplink 3

Downlink 1

Downlink 2

Downlink 3

Fig. 2. A pairwise ordering with M = N = 3.

of equations:

X1 � X2 = X(1)
r

X2 � X3 = X(2)
r

X3 � X1 = X(3)
r

(1)

where X(1)
r , X(2)

r and X(3)
r are the messages transmitted by

the relay to the users. As a result, X1
r , X2

r and X3
r are known

at each user. Considering that each user knows its own data,
one can easily see that the system of equations at each user is
solvable. In a general N -MWRC, if the system of equations at
each user is solvable, we say that the corresponding ordering
is feasible. Feasibility implies that M should not be less than
N � 1 because each user needs to find N � 1 other users’
messages. As an example of an ordering with M = N � 1,
we could arbitrarily remove one of the pairs in the example of
Fig. 2 and the system of equations at each user is still feasible.
In a pairwise MWRC with M pairs, a rate tuple

(R1, R2, . . . , RN ) is achievable if any Ui can reliably (with
arbitrarily small probability of error) transmit its data to all
other users with rate Ri after each round’s M uplink and
downlink phases. The achievable rate tuple depends on the
transmit power of the users and the relay as well as the channel
gains, the noise power and relaying strategy.
When Ui participates in a pairwise transmission, say with

Uj , during an uplink phase, for DF relaying Ri and Rj are
limited by the following achievable bounds [12]

Ri  1

2M
log2 (1 + xi) (2)

Rj  1

2M
log2 (1 + xj) (3)

Ri + Rj  1

2M
log2 (1 + xi + xj) (4)

According to [14] and [7], Ri in an FDF MWRC is limited

Figure 2.4: A pairwise ordering with M = N = 3.

each user knows its own data, one can easily see that the system of equations at

each user is solvable. In a general N -MWRC, if the system of equations at each

user is solvable, we say that the corresponding ordering is feasible. Feasibility

implies that M should not be less than N � 1 because each user needs to find

N � 1 other users’ messages. As an example of an ordering with M = N � 1,

we could arbitrarily remove one of the pairs in the previous example and the

system of equations at each user is still feasible.

In a pairwise MWRC with M pairs, a rate tuple (R
1

, R
2

, . . . , RN) is achiev-

able if any Ui can reliably (with arbitrarily small probability of error) transmit

its data to all other users with rate Ri after each round’s M uplink and down-

link phases. The achievable rate tuple depends on the transmit power of the

users and the relay as well as the channel gains, the noise power and relaying

strategy.

When Ui participates in a pairwise transmission, say with Uj, during an

uplink phase, for DF relaying Ri and Rj are limited by the following achievable
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bounds [8]

Ri  1

2M
log

2

(1 + �i) (2.14)

Rj  1

2M
log

2

(1 + �j) (2.15)

Ri + Rj  1

2M
log

2

(1 + �i + �j) (2.16)

For an FDF MWRC, Ri in an FDF MWRC is limited by the following achiev-

able upper bounds according to [17, 39, 28]

Ri  max

⇢
0,

1

2M
log

2

✓
�i

�i + �j

+ �i

◆�
. (2.17)

The maximum achievable upper bound on Ri can be found by calculating upper

bounds, given by (2.14)-(2.17), for Ri over all pairs that Ui is part of and then

taking the minimum of these bounds. Instead of studying individual rates, we

study the common rate and sum rate of the system.

2.2.2 Common Rate and Sum Rate of Pairwise MWRC

Common rate and sum rate of an MWRC are two of the most famous metrics

that are used in the literature to measure the performance of di↵erent relaying

scenarios. Here, we define them as follows:

Definition 1. For a pairwise MWRC communicating with the rate tuple R =

(R
1

, . . . , RN), we define the common rate, CR, and the sum rate, SR, as follows

CR , min
i

Ri, (2.18)

SR ,
NX

i=1

Ri. (2.19)

As pointed out in [28] and according to (2.14)-(2.17), one can verify that the

ordering of the users a↵ects these upper bounds and consequently CR and SR.

Using Definition 1, we find the orderings that attains the maximum possible

15



CR and SR in Chapters 3 and 4, respectively, for both DF and FDF pairwise

multiway relaying.

2.2.3 Client Graph

Here, we introduce the concept of client graph which provides a convenient rep-

resentation of an ordering for pairwise MWRC. As we discuss in the following,

the client graph is a useful mathematical tool facilitating the comparison of

common rate and sum rate of di↵erent orderings.

An undirected graph G is an ordered pair G = (V, E) comprising a set

V = {v
1

, v
2

, . . . , vK} of vertices together with a set E of edges. Each edge

is a 2-element subset of V . For simplicity, if {vi, vj} 2 E, we say vivj 2 E.

If vivj 2 E, we say vj is adjacent to vi. The set of adjacent vertices of vi,

denoted by AG
i , is called the set of neighbors of vi. Also the degree of node

vi is deg(vi) = |AG
i |. The adjacency matrix of G, denoted by A = (aij), is a

K ⇥ K matrix in which aij = 1 i↵ vivj 2 E; otherwise, aij is 0. A path in G

is a sequence of consecutive edges that connects a sequence of vertices. G is

called connected if there is at least one path between every pair of its vertices.

A non-empty path with the same endpoints is called a cycle.

For a given pairwise ordering O, we define a client graph GO(V, E) where

V = {v
1

, v
2

, . . . , vN} is the set of vertices. There is a vertex vi in V correspond-

ing to each user Ui. There exists an edge e = vivj 2 E i↵ {Ui, Uj} 2 O. Note

that there is a one-to-one correspondence between all possible client graphs

and all possible pairwise orderings.

The overall time/frequency resources consumed in a communication round

is directly a↵ected by the number of pairs. As a result, we are interested

in identifying feasible orderings with minimum number of pairs which, as we

mentioned, is M = N � 1. To this end, we state the following theorem. As

we mention later in Chapter 3 and 4, no pairwise scheme with the aforemen-

tioned configuration can have a better performance in terms of metrics that we
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consider in this work.

Theorem 1. An ordering with M = N �1 pairs is feasible i↵ the corresponding

client graph is a tree.

Proof. For the forward direction, note that if the client graph is not a tree, then

it has an isolated vertex (a vertex with no neighbors). This means that there is

a user that do not participate in any of the pairs. Thus, no one receives any data

from this isolated user. This contradicts the feasibility of the ordering. For the

backward direction, we use the fact that if the client graph is a tree then there

is exactly one path Pi,j between any pair of nodes vi and vj. Then we show

that Ui can decode Xj for any j. Assume that Pi,j = {vivi1 , vi1vi2 , . . . , vinvj}.

The equations corresponding to the edges in this path are:

Xi � Xi1 = X(m1)

r

Xi1 � Xi2 = X(m2)

r (2.20)

...

Xin � Xj = X(mn)

r

in which X
(mk)

r represent the relay message at the corresponding downlink.

Manipulating this system of equations, we wind up with

Xi � (�1)mn�1Xj =
nM

k=1

(�1)mk�1X(mk)

r . (2.21)

Knowing its own data, Ui can decode Xj for all j 6= i. Thus, if the client graph

is a tree the corresponding ordering is feasible.

In the rest of this thesis, we assume M = N � 1 and use the terms client

tree and client graph, interchangeably. We denote the maximum achievable

common rate and sum rate for a client graph GO by CR(GO) and SR(GO),

respectively.
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Chapter 3

Common Rate Maximization for

Pairwise Multiway Relay

Channels

In this chapter, first we state the common rate maximization problem. Then

we present the optimal orderings that achieve the maximum common rate for

a pairwise MWRC with AWGN channels. Additionally, a more general case is

considered in which an upper bound on the number of pairs that a user can be-

long to is specified. Optimal orderings that achieve the maximum common rate

under these restrictions are found for both DF and FDF. Finally, simulation

results are presented for better illustration of the results.

3.1 Problem Statement

By common rate maximization problem, we mean finding the ordering with

maximum CR(GO). We focus on this problem under two setups, namely uncon-

strained common rate maximization and constrained common rate maximiza-

tion problem. Denoting the set of all feasible orderings whit O, we formulate

18



an unconstrained common rate maximization problem as:

OUCR = argmax
O2O

CR(GO) (3.1)

In a pairwise MWRC, with GO(V, E) as its client tree, the average transmit

power of Ui over a complete full-data exchange round may be limited. This

could potentially force a bound on the number of transmissions by each user.

Thus, in the second common rate maximization scenario, we set a bound on the

number of pairs a user participate in. We denote this bound for Ui by Bi and

call it transmission bound of Ui. We assume that Bi � 2 for all i = 1, 2, . . . , N .

Thus, a constrained common rate maximization problem is defined as:

OCCR = argmax
O2O

CR(GO)

subject to deg(Vi)  Bi.

(3.2)

This means that, given Bi’s, we want to find an ordering that achieves the

maximum CR in an MWRC.

In order to solve a common rate maximization problem, we need to find

a client graph GO with greatest CR(GO) among all client trees. One way is

to search over all of the possible client trees and find the one that maximizes

CR(GO). According to Cayley’s formula [40], this necessitates us searching over

NN�2 client trees which is impractical even if the number of users is not very

large. This motivates us to develop e�cient solutions for finding the optimal

client trees without searching all possible client trees.

3.2 Problem Solution

In this section, we provide solutions to the unconstrained common rate maxi-

mization and constrained common rate maximization. We solve these for both

DF and FDF relaying.
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1

U
2

UN�1

. . .

Fig. 2. Client tree that maximizes CR(GO) for a pairwise MWRC with DF relaying.

the number of users is not very large. This motivates us to develop efficient solutions for finding

the optimal client trees without searching all possible client trees.

IV. PROBLEM SOLUTION

In this section, we provide solutions to the unconstrained common rate maximization, con-

strained common rate maximization, and unconstrained sum rate maximization problems. We

solve these for both DF and FDF relaying.

A. Unconstrained Common Rate Maximization for DF Relaying

Considering (2), (3) and (4), our goal is to find the ordering that achieves the maximum

CR(GO). Theorem 2 provides the solution to this maximization problem.

Theorem 2. For an unconstrained common rate problem, the optimal ordering is

OUCR ={{U
1

,UN}, {U
2

,UN}, {U
3

,UN}, . . . , {UN�1

,UN}}

and the maximum achievable common rate is

CR(GO) =
1

4(N � 1)
min {log

2

(1 + �
1

+ �N) , 2 log
2

(1 + �
1

)} . (13)

Proof: See Appendix A.

Figure 3.1: Client tree that maximizes CR(GO) for a pairwise MWRC with DF
relaying.

3.2.1 Unconstrained Common Rate Maximization for

DF Relaying

Considering (2.14), (2.15) and (2.16), our goal is to find the ordering that

achieves the maximum CR(GO). Theorem 2 provides the solution to this max-

imization problem.

Theorem 2. For an unconstrained common rate problem, the optimal ordering

is

OUCR={{U
1

,UN}, {U
2

,UN}, {U
3

,UN}, . . . , {UN�1

,UN}}

and the maximum achievable common rate is

CR(GO) =
1

4(N � 1)
min {log

2

(1 + �
1

+ �N) , 2 log
2

(1 + �
1

)} . (3.3)

Proof. We first define an N ⇥ N weight matrix W = (wi,j) as

wi,j =
1

2(N � 1)
min

⇢
log

2

(1 + �j),
1

2
log

2

(1 + �i + �j)

�
(3.4)

for all pairs of i and j with i 6= j and wi,i = 0. According to this definition and

our assumption that

�N � �N�1

� · · · � �
1

> 0 (3.5)
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wi,j is an increasing function of both j and i, for j 6= i. For a given client graph

GO with adjacency matrix A = (ai,j), we have

CR(GO) = min {wi,j|ai,j 6= 0} . (3.6)

The client graph GO is connected and A is symmetric. As a result, for every

i = 1, 2, . . . , N � 1, there exist at least one j such that ai,j = 1. If we define

the minimum value of row i in W , with respect to GO, as ri = min{wi,j|ai,j 6=
0; j = 1, 2, . . . , N} for i = 1, 2, . . . , N , and also define the minimum value of

column k with respect to GO as ck = min{wj,k|aj,k 6= 0; j = 1, 2, . . . , N} for

every k = 1, 2, . . . , N , we can rewrite equation (3.6) as:

CR(GO) = min {c
1

, c
2

, . . . , cN} (3.7)

and

CR(GO) = min {r
1

, r
2

, . . . , rN} . (3.8)

The ordering which achieves the maximum CR is the one which maximizes

the right hand side of equations (3.7) and (3.8). However, we know that ck 
wN,k and ri  wi,N . The ordering O = {{U

1

, UN}, {U
2

, UN}, . . . , {UN�1

, UN}}
maximizes both cks and ris by picking the most significant entries in each

column and each row, simultaneously. Consequently, it achieves the maximum

CR in a DF MWRC. As a result, the common rate is given by

CR(GO) = min{w
1,N , wN,1} (3.9)

which is equivalent to (3.3).

The intuition behind this theorem is that the transmission rate of each user

may increase if we increase the SNR of its pair. In the optimal ordering, all

users (except the best user in terms of SNR) get their highest possible rate,
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while the best user gets its worst possible rate. Yet, our theorem shows that

this ordering is the optimal one in terms of common rate. Figure 3.1 illustrates

the optimal ordering for a DF MWRC that achieves the maximum CR. It

shows that for having the maximum possible common rate, the user with the

highest SNR should be paired with all of the other users.

3.2.2 Constrained Common Rate Maximization for DF

Relaying

Given the upper bounds Bi’s, the optimal ordering for constrained common

rate maximization problem is found through the following theorem.

Theorem 3. In an MWRC with DF relaying and transmission bounds Bi � 2,

for i = 1, 2, . . . , N , the ordering that achieves the maximum CR is given by

OCCR =
m�1[

i=0

{{Ub(N�i)+j, UN�i}| j = 1, 2, . . . , BN�i} [

{{Ub(N�m)+1

, UN�m}, {Ub(N�m)+2

, UN�m}, . . . , {UN�m+1

, UN�m}}
(3.10)

where,

b(N � i) =

8
><

>:

i�1X

k=0

(BN�k � 1) i 6= 0

0 i = 0

and m is the smallest integer such that b(N � m) + BN�m � N � m � 1.

Proof. We prove the theorem by contradiction. Assume that the ordering O

given by (3.10) is not optimal and there is another ordering O0 that has a higher

CR, i.e., CR(O0) > CR(O). Assume that

CR(O) =
1

4(N � 1)
log

2

�
1 + �b(N�i)+1

+ �N�i

�
(3.11)
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Fig. 3. Client tree that maximizes CR(GO) for a pairwise MWRC with DF relaying.

until deg(VN�1

) = BN�1

� 1. To keep the graph connected, we also pair UBN
and UN�1

. We

continue this process, until the graph is connected. Fig. 3 illustrates the optimal ordering for a

DF MWRC with BN = 3, BN�1

= 4 and BN�m � 3.

C. Unconstrained Sum Rate Maximization for DF Relaying

The ordering given by Theorem 4 achieves the maximum sum rate in an unconstrained MWRC

with DF relaying.

Theorem 4. In an MWRC with DF relaying the optimal ordering that achieves the maximum

SR is given by

OUSR = {{U
2

, U
1

}, {U
3

, U
1

}, . . . , {UN , U
1

}} (15)

and the maximum achievable sum rate is given by:

SR(GO) =
1

2(N � 1)
log

2

 QN
i=1

(1 + �i)

1 + �1�N

1+�1+�N

!

. (16)

Proof: See Appendix C.

In the optimal ordering, according to the proof of Theorem 4, all of the users except U
1

and UN , can transmit with their highest transmission rates given by (2). Additionally, U
1

and

UN transmit with rates satisfying (4). Fig. 4 shows the optimal ordering for a DF MWRC that

achieves the maximum SR.

Figure 3.2: Client tree that maximizes CR(GO) for a pairwise MWRC with DF
relaying.

for an i such that m � i � 1. Then, according to the monotonicity of columns

of W in (3.4), Ub(N�i)+1

can not be paired with any of {Uj|j < N � i} in O0.

Monotonicity of rows and columns of W also implies that none of the Uj’s for

j 2 {1, 2, . . . , b(N � i)}, can be paired with Uk when k  N � i in O0. As a

result, GO0 should be disconnected which contradicts Theorem 1.

According to Theorem 3, in order to construct the optimal client tree,

we should keep pairing the unpaired user with smallest SNR with UN till

deg(VN) = BN . Then we do the same thing for users with smallest SNRs that

are not paired yet, but this time we pair them with UN�1

until deg(VN�1

) =

BN�1

� 1. To keep the graph connected, we also pair UBN
and UN�1

. We

continue this process, until the graph is connected. Figure 3.2 illustrates the

optimal ordering for a DF MWRC with BN = 3, BN�1

= 4 and BN�m � 3.

3.2.3 Unconstrained and Constrained Common Rate

Maximization for FDF Relaying

Considering (2.17), we find the ordering that achieves the maximum CR(GO)

for FDF relaying. Theorem 4 gives the optimal ordering for this scenario.

Interestingly, the optimal ordering in this case satisfies deg(vi)  2 for all

i 2 {1, 2, . . . , N}. Subsequently, it is also the optimal ordering for the energy-

limited case, i.e. the constrained common rate maximization.
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Theorem 4. The ordering given by

OUCR = OCCR = {{U
1

, U
2

}, {U
2

, U
3

}, {U
3

, U
4

}, . . . , {UN�1

, UN}} (3.12)

achieves the maximum common rate in an MWRC with FDF relaying and the

maximum achievable common rate is

CR(GO) = max

⇢
min

i2{1,...,N}

⇢
1

2(N � 1)
log

2

✓
�i +

�i

�i + �i+1

◆�
, 0

�
. (3.13)

Proof. Here, by an optimal tree, we mean a client tree that achieves the max-

imum CR with respect to (2.17). There are two statements regarding (2.17)

which we use to prove the theorem:

1. The function f(x) = x
�
1 + 1

x+↵

�
is an increasing function of x for ↵ > 0.

2. The function g(x) =
�
1 + 1

↵+x

�
is a decreasing function of x.

In this proof, without loss of generality we assume that �
1

> 1. Discussion for

the general case that some of the pairs transmit with rate R = 0 is straightfor-

ward. Given a client tree, GO(V, E), with an FDF MWRC, we have

CR(GO) = min
i,j

⇢
1

2(N � 1)
log

2

✓
�i +

�i

�i + �j

◆�
. (3.14)

where �i  �j and vivj 2 E. Using (3.14), we prove the following lemma.

Lemma 1. There exists an optimal tree, GO(V, E), in which AGO
1

= {v
2

}.

Proof. We adapt GO0(V, E 0) from GO such that we disconnect all of the neigh-

bors of v
1

from v
1

and connect them to v
2

. We also make v
1

and v
2

neighbors.

More precisely,

E 0 = (E � {v
1

vi|vi 2 AGO
1

}) [ {v
2

vi|vi 2 AGO
1

; i 6= 2} [ {v
1

v
2

} (3.15)
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Because of monotonicity of f(x) and g(x), to verify that CR(GO)  CR(GO0),

we just need to show

�
1

✓
1 +

1

�
1

+ �
min

◆
 �

2

✓
1 +

1

�
2

+ �1

◆
(3.16)

where, �min = min{�i|vi 2 AGO
1

}. After some manipulation, we find that (3.16)

is equivalent to

0  (�
2

� �
1

)(�
1

+ �
min

)(�
2

+ �
1

) + �
2

�
min

� �2

1

(3.17)

which, according to the fact that �
1

 �
min

, is true.

We prove the theorem by induction. If N = 2 the theorem obviously holds.

Now, assume that the statement of the theorem holds for every FDF MWRC

with N = k. We show that it also holds for any FDF MWRC with N = k + 1.

For N = k + 1, according to Lemma 1, there exists an optimal tree GO(V, E)

in which AGO
1

= {v
2

}. From equation (3.14), we also have:

CR(GO) = min
i,j

⇢
1

2(N � 1)
log

2

✓
�i +

�i

�i + �j

◆
|1 < i  j; vivj 2 E

�

[
⇢

1

2(N � 1)
log

2

✓
�

1

+
�

1

�
1

+ �
2

◆�
(3.18)

If the second term in (3.18) is the limiting term in all of the possible client trees

with AGO
1

= {v
2

}, the proposed ordering is optimal. Otherwise, maximizing

CR(GO) is equivalent to maximizing

min

⇢
�i

✓
1 +

1

�i + �j

◆
|1 < i  j; vivj 2 E

�
. (3.19)

It is equivalent to maximizing the CR for GO0(V 0, E 0), in which V 0 = V � {v
1

}
and E 0 = E � {v

1

vm|vm 2 AGO
1

}. According to the induction hypothesis, it
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Fig. 5. Client tree that maximizes CR(GO) for a pairwise MWRC with FDF relaying.

with Uj , is given by:

Ri  1

2(N � 1)
log

2

✓
�i

�i + �j

+ �i

◆
. (19)

This weaker upper bound is still interesting in many practical settings in which the most

significant term at the right hand side of (5) is the one mentioned in (19). For instance, one can

easily verify that if �
1

+ �1

�1+�N
� 1, (19) and (5) are equivalent. The optimal ordering in this

case is given by the following theorem:

Theorem 6. The ordering

OUSR = {{U
2

, U
1

}, {U
3

, U
1

}, . . . , {UN�1

, U
1

}} (20)

is the optimal ordering for an unconstrained FDF MWRC subject to (19). Moreover, the maximum

sum rate for this ordering is:

SR(GO) =
1

2(N � 1)
log

2

 
max

⇢
1,

✓
�

1

+
�

1

�
1

+ �N

◆�
⇥

NY

i=2

max

⇢
1,

�i

�i + �
1

+ �i

�!
. (21)

Proof: See Appendix E.

Remark: From Theorem 6 and considering (19), one can show that the maximum achievable

sum rate for the optimal ordering is

SR(GO) =
1

2(N � 1)
⇥ log

2

  
NY

i=1

�i

! 
NY

i=2

1 +
1

�i + �
1

!✓
1 +

1

�
1

+ �N

◆!

. (22)

Thus, the maximum sum rate can be upper bounded by

SR(GO)  1

2(N � 1)
log

2

 
NY

i=1

�i ⇥
✓

1 +
1

2�
1

◆N
!

. (23)

Figure 3.3: Client tree that maximizes CR(GO) for a pairwise MWRC with
FDF relaying.

happens when

O0 = {{v
2

v
3

}, {v
3

v
4

}, . . . , {vN�1

vN}} (3.20)

and as a reslut

O = {{v
1

v
2

}, {v
2

v
3

}, . . . , {vN�1

vN}} (3.21)

Figure 3.3 illustrates the optimal ordering for an FDF MWRC that achieves

the maximum CR.

Remark: The proofs given in this chapter are based on two main assump-

tions. First, we assumed that the transmit power for each user during each

uplink phase is fixed to a constant. Second, is the fact that during all uplink

phases that Ui participates in them, for one round of full data exchange, Ui al-

ways transmit the same packet of information Xi. Based on these assumptions,

we can show that there is no feasible ordering with more than N �1 pairs with

a higher common rate than that of the optimal tree.

To show that, first notice that from the proof of Theorem 1 we can conclude

that a general ordering with any arbitrary number of pairs is feasible i↵ the

corresponding client graph is connected. From this, we can conclude that the

client graph of each feasible ordering has at least one spanning tree (i.e., a sub-

graph that is a tree and includes all nodes.) We want to show that the common

rate of a general client graph is not higher than the maximum common rate of

its spanning trees.

According to proof of Theorem 2, we can see that for DF relaying the

transmission rate of user Ui, when it is paired with Uj, depends on the SNR
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of Uj in such a way that if we increase �j, Ri may increases. As a result, the

transmission rate of Ui is only a↵ected by the pair with the lowest SNR. In

other words, the transmission rate of a user is dominantly a↵ected only by its

neighbor with the lowest SNR. As a result, adding more edges to a spanning

tree will not increase the common rate in this case. A similar statement can

be made for FDF relaying. From the proof of Theorem 4, we can see that the

transmission rate of a user is dominantly a↵ected this time only by its neighbor

with the highest SNR. So, the common rate of one connected client graph can

not be higher than the maximum common rate of its spanning trees.

3.3 Simulation Results

In this section, we investigate the performance of the optimal ordering in com-

parison with random orderings. We use Monte Carlo simulation to average

over common rate for the optimal ordering and a randomly selected ordering,

for both DF and FDF relaying. For each simulation round, random ordering

is selected uniformly at random from all of the feasible client trees. We again,

assume that the data rates are limited by the uplink phase. Similar to [27],

it is assumed that the channels between the users and the relay are Rayleigh

fading. The number of users is set to N = 4 and 8. Figure 3.4 and 3.5 de-

pict the comparison between the common rate of the optimal ordering and

random ordering for DF and FDF relaying, respectively, in low to high SNR

regimes. The upper bounds are given by max-flow min-cut theorem [8]. In

order to illustrate the di↵erence between optimal ordering and random order-

ings, we define the common rate gap of random ordering and optimal ordering

as GC = CR(GO)�CR(GO0 )
CR(GO)

where, by abuse of notation, we denote the average

of common rate over all of the simulation rounds by CR(·). The subscripts O

and O0 denote optimal ordering and randomly chosen orderings, respectively.

Figure 3.6 illustrates the aforementioned gap and feature the e↵ect of optimal

27



ordering on common rate of the system. This figure also shows that for high

SNR regime, the performance of a randomly chosen ordering for FDF coincides

with that of optimal ordering. However, for DF relaying, the e↵ect of ordering

becomes more important as SNR increases.
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Fig. 6. Comparison between the common rate of the

optimal ordering and random ordering in MWRC with

DF relaying for N = 4 and 8.
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Fig. 7. Comparison between the sum rate of the optimal

ordering and random ordering in MWRC with DF relaying

for N = 4 and 8.

Similarly, we can show that for a random ordering O0, the corresponding sum rate is lower

bounded by

SR(GO0) � 1

2(N � 1)
log

2

 
NY

i=1

�i ⇥
✓

1 +
1

2�N

◆N
!

. (24)

According to (23) and (24), we find an upper bound for the difference between the sum rate of

a random ordering and the optimal ordering as follows

SR(GO) � SR(GO0)  1

2
log

2

✓
�N(1 + 2�

1

)

�
1

(1 + 2�N)

◆
(25)

and as a result

lim
�1!1

(SR(GO) � SR(GO0)) = 0. (26)

Interestingly, (26) shows that for FDF relaying in high SNR regime, the performance of a

randomly chosen ordering approaches the performance of the optimal ordering.

8

Figure 3.4: Comparison between the common rate of the optimal ordering and
random ordering in MWRC with DF relaying for N = 4 and 8.
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Fig. 9. Comparison between the sum rate of the opti-

mal ordering and random ordering in MWRC with FDF

relaying for N = 4 and 8.

V. SIMULATION RESULTS

In this section, we investigate the performance of the optimal ordering in comparison with

random orderings. We use Monte Carlo simulation to average over common rate and sum rate

for the optimal ordering and a randomly selected ordering, for both DF and FDF relaying. For

each simulation round, random ordering is selected uniformly at random from all of the feasible

client trees. We again, assume that the data rates are limited by the uplink phase. Similar to

[7], it is assumed that the channels between the users and the relay are Rayleigh fading with

parameter 1. The number of users is set to N = 4 and 8.

In order to illustrate the difference between optimal ordering and random orderings, we define

the common rate gap [7] of random ordering and optimal ordering as GC = CR(GO)�CR(GO0 )
CR(GO)

where, by abuse of notation, we denote the average of common rate over all of the simulation

rounds by CR(·). The subscripts O and O0 denote optimal ordering and randomly chosen

Figure 3.5: Comparison between the common rate of the optimal ordering and
random ordering in MWRC with FDF relaying for N = 4 and 8.
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Chapter 4

Sum Rate Maximization for

Pairwise Multiway Relay

Channels

In this chapter, first we state the sum rate maximization problem. Then we

present the optimal orderings that achieve the maximum sum rate for a pairwise

MWRC with AWGN channels. Simulation results are presented for better

illustration of the results.

4.1 Problem Statement

In an unconstrained sum rate maximization, we want to find the ordering that

maximizes the sum rate of the considered MWRC network. More precisely, an

unconstrained sum rate maximization problem is formulated as:

OUSR = arg max
O2O

SR(GO). (4.1)

In this case, as we discussed earlier, there exist NN�2 distinct feasible order-

ings. Thus, finding the optimal ordering through brute-force search becomes
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expensive for large N . Then, under a reasonable assumption on user’s SNR,

we analytically find the optimal orderings to maximize the sum rate for both

DF and FDF schemes.

4.2 Problem Solution

In this section, we provide solution to the unconstrained sum rate maximiza-

tion. We solve this problem for both DF and FDF relaying.

4.2.1 Unconstrained Sum Rate Maximization for DF

Relaying

The ordering given by Theorem 5 achieves the maximum sum rate in an un-

constrained MWRC with DF relaying.

Theorem 5. In an MWRC with DF relaying the optimal ordering that achieves

the maximum SR is given by

OUSR = {{U
2

, U
1

}, {U
3

, U
1

}, . . . , {UN , U
1

}} (4.2)

and the maximum achievable sum rate is given by:

SR(GO) =
1

2(N � 1)
log

2

 QN
i=1

(1 + �i)

1 + �1�N

1+�1+�N

!
. (4.3)

Proof. We prove Theorem 5 by induction. For N = 2, SR = 1

2

log
2

(1 + �
1

+ �
2

)

which is true for a two way relay channel with half-duplex DF relaying. Now,

assume that the statement of Theorem 5 is true for all N  k. We show that it

also holds for N = k + 1. If deg(v
1

) = N � 1, the statement holds. Otherwise,

deg(v
1

) < N � 1. Let us define V 0 the set of all neighbors of v
1

that have a
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degree greater than 1, i.e.,

V 0 = {vj 2 AGO
1

|deg(vj) > 1}. (4.4)

Note that deg(v
1

) < N � 1 and as a result, V 0 is nonempty. Since GO is a

tree, there exists one unique path from v
1

to any other node vi, i 6= 1. We

define the set of edges that form a path from v
1

to vi by Pi. For any vj 2 V 0

and considering v
1

as the root of GO, we define the set of descendants of vj as

Dj = {vi 2 V |v
1

vj 2 Pi; i 6= j}. Figure 4.1 illustrates the set of descendants of

vj. Since deg(v
1

) < N � 1, there exists at least one j such that Dj 6= {}. For

21

statement holds. Otherwise, deg(v
1

) < N � 1. Let us define V 0 the set of all neighbors of v
1

that have a degree greater than 1, i.e.,

V 0 = {vi 2 AGO
1

|deg(vi) > 1}. (34)

Note that deg(v
1

) < N � 1 and as a result, V 0 is nonempty. Since GO is a tree, there exists one

unique path from v
1

to any other node vi, i 6= 1. We define the set of edges that form a path

from v
1

to vi by Pi. For any vj 2 V 0 and considering v
1

as the root of GO, we define the set of

descendants of vj as Dj = {vi 2 V |v
1

vj 2 Pi; i 6= j}. Fig. 12 illustrates the set of descendants

of vj . Since deg(v
1

) < N � 1, there exists at least one j such that Dj 6= {}. For these j’s, we

v
1

Dj

vj

... ...

. . . . . .

. . .

. . .

Fig. 12. Set of descendants of vj .

define the highest SNR among the descendant of vj and vj itself, as

h⇤(vj) = max{�i|vi 2 Dj [ vj}. (35)

Now, assume that

v⇤ = arg max
vj2A

GO
1 ,Dj 6={}

h⇤(vj). (36)

We denote the set of descendants of v⇤ by D⇤. According to the induction hypothesis, by

removing v⇤ and all of its descendants from the client tree GO, we have

R
1

+
X

vi2A
GO
1 �{v⇤}

Ri  1

2(N � 1)
log

2

0

@
(1 + �

1

) ⇥ Q
vi2A

GO
1 �{v⇤} (1 + �i)

1 + �1�⇤
1

1+�1+�⇤
1

1

A (37)

Figure 4.1: Set of descendants of vj.

these j’s, we define the highest SNR among the descendant of vj and vj itself,

as

h⇤(vj) = max{�i|vi 2 Dj [ vj}. (4.5)

Now, assume that

v⇤ = arg max
vj2A

GO
1 ,Dj 6={}

h⇤(vj). (4.6)

We denote the set of descendants of v⇤ by D⇤. According to the induction

hypothesis, by removing v⇤ and all of its descendants from the client tree GO,
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we have

R
1

+
X

vi2A
GO
1 �{v⇤}

Ri  1

2(N � 1)
log

2

0

@
(1 + �

1

) ⇥Q
vi2A

GO
1 �{v⇤} (1 + �i)

1 + �1�⇤
1

1+�1+�⇤
1

1

A

(4.7)

where, �⇤
1

= max{�i|vi 2 AGO
1

� {v⇤}}. Similarly, by removing v
1

and all of its

neighbors, except v⇤, we have

X

vi2D⇤[v⇤

Ri  1

2(N � 1)
log

2

 
(1 + h⇤(v⇤)) ⇥Qvi2D⇤ (1 + �i)

1 + �min⇥h⇤
(v⇤

)

1+�min+h⇤
(v⇤

)

!
(4.8)

where, �
min

= min{�i|vi 2 D⇤ [ {v⇤}}. Now, we have �N = max{h⇤(v⇤), �⇤
1

}
and �

1

 �
min

. Then, as a result of (2.14),(4.7) and (4.8), we have

NX

i=1

Ri  1

2(N � 1)
log

2

0

@
QN

i=1

(1 + �i)⇣
1 + �1⇥�⇤

1
1+�1+�⇤

1

⌘⇣
1 + �min⇥h⇤

(v⇤
)

1+�min+h⇤
(v⇤

)

⌘

1

A . (4.9)

This configuration achieves a lower sum rate than (4.3) i↵

✓
1 +

�
1

⇥ �⇤
1

1 + �
1

+ �⇤
1

◆✓
1 +

�
min

⇥ h⇤(v⇤)
1 + �

min

+ h⇤(v⇤)

◆
�
✓

1 +
�

1

�N

1 + �
1

+ �N

◆
(4.10)

which, according to the fact that �N = max{h⇤(v⇤), �⇤
1

}, is true.

In the optimal ordering, according to the proof of Theorem 5, all of the

users except U
1

and UN , can transmit with their highest transmission rates

given by (2.14). Additionally, U
1

and UN transmit with rates satisfying (2.16).

Figure 4.2 shows the optimal ordering for a DF MWRC that achieves the

maximum SR.
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Fig. 4. Client tree that maximizes SR(GO) for a pairwise MWRC with DF relaying and also maximizes SR(GO) for a pairwise

MWRC with FDF relaying subject to the weakened upper bound given by (19).

D. Unconstrained and Constrained Common Rate Maximization for FDF Relaying

Considering (5), we find the ordering that achieves the maximum CR(GO) for FDF relaying.

Theorem 5 gives the optimal ordering for this scenario. Interestingly, the optimal ordering in this

case satisfies deg(vi)  2 for all i 2 {1, 2, . . . , N}. Subsequently, it is also the optimal ordering

for the energy-limited case, i.e. the constrained common rate maximization.

Theorem 5. The ordering given by

OUCR = OCCR = {{U
1

, U
2

}, {U
2

, U
3

}, {U
3

, U
4

}, . . . , {UN�1

, UN}} (17)

achieves the maximum common rate in an MWRC with FDF relaying and the maximum achiev-

able common rate is

CR(GO)= min
i2{1,...,N}

⇢
1

2(N � 1)
log

2

✓
�i+

�i

�i+�i+1

◆�
. (18)

Proof: See Appendix D.

Fig. 5 illustrates the optimal ordering for an FDF MWRC that achieves the maximum CR.

E. Unconstrained Sum Rate Maximization for FDF Relaying

In order to find an ordering with maximum sum rate in this case, we consider a weaker

condition than (5). We assume that the upper bound on achievable rate for Ui, when it is paired

Figure 4.2: Client tree that maximizes SR(GO) for a pairwise MWRC with DF
relaying and also maximizes SR(GO) for a pairwise MWRC with FDF relaying
subject to the weakened upper bound given by (4.11).

4.2.2 Unconstrained Sum Rate Maximization for FDF

Relaying

In order to find an ordering with maximum sum rate in this case, we consider a

weaker condition than (2.17). We assume that the upper bound on achievable

rate for Ui, when it is paired with Uj, is given by:

Ri  1

2(N � 1)
log

2

✓
�i

�i + �j

+ �i

◆
. (4.11)

This weaker upper bound is still interesting in many practical settings in which

the most significant term at the right hand side of (2.17) is the one mentioned

in (4.11). For instance, one can easily verify that if �
1

+ �1

�1+�N
� 1, (4.11)

and (2.17) are equivalent. The optimal ordering in this case is given by the

following theorem:

Theorem 6. The ordering

OUSR = {{U
2

, U
1

}, {U
3

, U
1

}, . . . , {UN , U
1

}} (4.12)

is the optimal ordering for an unconstrained FDF MWRC subject to (4.11).

Moreover, the maximum sum rate for this ordering is:
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SR(GO) =

1

2(N � 1)
log

2

 
max

⇢
1,

✓
�

1

+
�

1

�
1

+ �N

◆�
⇥

NY

i=2

max

⇢
1,

�i

�i + �
1

+ �i

�!
.

(4.13)

Proof. To prove the theorem, we first show that there is an optimal tree with

deg(vN) = 1 (Lemma 2). Then we prove that in the optimal tree each node

needs to have only one neighbor among nodes with a lower SNR (Lemma 3).

We then show that there exist an optimal tree with deg(vN) = deg(vN�1

) = 1

(Lemma 4). In the next step, we prove that in an optimal tree for two nodes

of degree one, say vi and vj, if vi has a higher SNR than vj then the neighbor

of vi has a higher SNR than the neighbor of vj (Lemma 5). Then we prove the

theorem by induction (Lemma 6).

We use the following convention for the rest of this proof:

di , 22(N�1)Ri . (4.14)

As a result, the bound given by (4.11) is equivalent to

di  �i

✓
1 +

1

�i + �j

◆
. (4.15)

We also define Ds(GO) = max
QN

i=1

di = 22(N�1)SR(GO). Assume that G(V, E) is

a tree such that {vi, vj, vk} ✓ V and{vivj, vivk} ✓ E. We define a V-transform

on G in such a way that V(G, vi, vj, vk) = G0(V, E 0) and E 0 = (E � {vivk}) [
{vjvk}. Figure 4.3 shows the operation of a V-transform.

Lemma 2. There exists an optimal tree in which deg(vN) = 1.

Proof. Assume GO is an optimal tree in which deg(vN) > 1 and vi and vj

are two neighbors of vN and �j is the minimum SNR value of the neighbors
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Fig. 13. Operation of V -transform, V (G, vi, vj , vk).

Proof: Assume GO is an optimal tree in which deg(vN) > 1 and vi and vj are two neighbors

of vN and �j is the minimum SNR value of the neighbors of Vn. Consequently, we have �i � �j .

It is straightforward to show that by performing a V -transform on GO and transform it to

GO0 = V (GO, vN , vi, vj), we have Ds(GO0)
Ds(GO)

� 1:

Ds(GO0)

Ds(GO)
�

⇣
1 + 1

�N+�i

⌘⇣
1 + 1

�i+hG
O0

(vi)

⌘ ⇣
1 + 1

�j+hG
O0

(vj)

⌘

⇣
1 + 1

�i+�N

⌘ ⇣
1 + 1

�i+�N

⌘ ⇣
1 + 1

�j+�N

⌘ � 1. (51)

It means that the sum rate of GO0 is not less than sum rate of GO. Note that, after applying

this V -transform, we have reduced degree of vN by one. After applying deg(vN) � 2 more V -

transforms, we end up with an optimal tree with deg(vN) = 1. Fig. 14 illustrates a hypothetical

optimal tree with deg(vN) = 4. It shows how we apply 3 V -transforms to get an optimal tree

with deg(vN) = 1.

Lemma 3. There exists an optimal tree, GO(V, E), such that for any 0 < i < N�1, deg(vN�i) 
i + 1. Furthermore, the number of neighbors of vN�i with a lower SNR than VN�i is at most

one and consequently, the number of neighbors of vN�i which have higher SNR than �N�i is at

least deg(vN�i) � 1.

Proof: If the number of those neighbors of vN�i that have a lower SNR value than �N�i is

a, after applying a�1 V -transforms, we end up with an optimal tree in which deg(vN�i)  i+1.

These a � 1 V -transforms have the form V (G, VN�i, vi, vk) and vk has the highest SNR value

Figure 4.3: Operation of V-transform, V(G, vi, vj, vk).

of Vn. Consequently, we have �i � �j. It is straightforward to show that by

performing a V-transform on GO and transform it to GO0 = V(GO, vN , vi, vj),

we have Ds(GO0 )
Ds(GO)

� 1:

Ds(GO0)

Ds(GO)
�

⇣
1 + 1

�N+�i

⌘⇣
1 + 1

�i+hGO0
(vi)

⌘⇣
1 + 1

�j+hGO0
(vj)

⌘

⇣
1 + 1

�i+�N

⌘⇣
1 + 1

�i+�N

⌘⇣
1 + 1

�j+�N

⌘ � 1. (4.16)

Here, hGO0 (vm) is the highest SNR of neighbors of vm in GO0 . It means that the

sum rate of GO0 is not less than sum rate of GO. Note that, after applying this

V-transform, we have reduced degree of vN by one. After applying deg(vN)� 2

more V-transforms, we end up with an optimal tree with deg(vN) = 1. Figure

4.4 illustrates a hypothetical optimal tree with deg(vN) = 4. It shows how we

apply 3 V-transforms to get an optimal tree with deg(vN) = 1.

Lemma 3. There exists an optimal tree, GO(V, E), such that for any 0 < i <

N �1, deg(vN�i)  i+1. Furthermore, the number of neighbors of vN�i with a

lower SNR than �N�i is at most one and consequently, the number of neighbors

of vN�i which have higher SNR than �N�i is at least deg(vN�i) � 1.

Proof. If the number of those neighbors of vN�i that have a lower SNR value

than �N�i is a, after applying a � 1 V-transforms, we end up with an optimal

tree in which deg(vN�i)  i + 1. These a � 1 V-transforms have the form

V(G, VN�i, vi, vk) and vk has the highest SNR value among all of the neighbors

of vN�i.
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Fig. 14. Applying 3 V -transform on an optimal tree with deg(vN) = 4.

among all of the neighbors of vN�i.

Now, assume that deg(vN�i)  i+1 and vN�i has at most one neighbor vj such that j < N�i.

Then, we have that the number of neighbors of vN�i that have a higher SNR than �N�i is

� |AGO
N�i| � 1 = deg(vN�i) � 1.

Lemma 4. There exists an optimal tree, GO(V, E), in which deg(vN) = deg(vN�1

) = 1.

Moreover, if vj is the only neighbor of vN�1

and vi is the only neighbor of vN , then �i � �j

Proof: If deg(vN�1

) = 2, according to Lemma (3) and (2), there exists an optimal tree

GO(V, E) in which deg(vN) = 1 and vNvN�1

2 E. Let the other neighbor of vN�1

be vj . Then,

GO0 = V (GO, vN , vi, vj) is an optimal tree in which deg(vN�1

) = 1. So, there always exists an

optimal tree GO, with deg(vN) = deg(vN�1

) = 1. Assume that the only neighbor of vN�1

is

vj . If vj = vN , the graph will be disconnected. Otherwise, if the only neighbor of vN is vi, we

want to prove that �i � �j . We also assume �N 6= �N�1

; otherwise, one can rename the nodes

in such a way that theorem holds. Assume that GO00(V, E 00) is a client tree in which:

E 00 = (E � {vNvi, vN�1

vj}) [ {vNvj, vN�1

vi}. (52)

Figure 4.4: Applying 3 V-transform on an optimal tree with deg(vN) = 4.

Now, assume that deg(vN�i)  i + 1 and vN�i has at most one neighbor

vj such that j < N � i. Then, we have that the number of neighbors of vN�i

that have a higher SNR than �N�i is greater than or equal to |AGO
N�i| � 1 =

deg(vN�i) � 1.

Lemma 4. There exists an optimal tree, GO(V, E), in which deg(vN) = 1 and

deg(vN�1

) = 1. Moreover, if vj is the only neighbor of vN�1

and vi is the only

neighbor of vN , then �i � �j

Proof. If deg(vN�1

) = 2, according to Lemma 2 and 3, there exists an optimal

tree GO(V, E) in which deg(vN) = 1 and vNvN�1

2 E. Let the other neighbor

of vN�1

be vj. Then, GO0 = V(GO, vN , vi, vj) is an optimal tree in which

deg(vN�1

) = 1. So, there always exists an optimal tree GO, with deg(vN) =

deg(vN�1

) = 1. Now, assume that deg(vN�1

) = 1 and the only neighbor of

vN�1

is vj. If vj = vN , the graph will be disconnected. Otherwise, if the only

neighbor of vN is vi, we want to prove that �i � �j. We also assume �N 6= �N�1

;

otherwise, one can rename the nodes in such a way that theorem holds. Assume

that GO00(V, E 00) is a client tree in which:

E 00 = (E � {vNvi, vN�1

vj}) [ {vNvj, vN�1

vi}. (4.17)
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We show that Ds(GO00)  Ds(GO) i↵ �i � �j:

Ds(GO00)

Ds(GO)
=

⇣
1 + 1

�N+�j

⌘
2

⇣
1 + 1

�N�1+�i

⌘
2

⇣
1 + 1

�N+�i

⌘
2

⇣
1 + 1

�N�1+�j

⌘
2

(4.18)

and as a result:

Ds(GO00)

Ds(GO)
 1

,
✓

1 +
1

�N + �j

◆✓
1 +

1

�N�1

+ �i

◆

✓

1 +
1

�N + �i

◆✓
1 +

1

�N�1

+ �j

◆

, �N�j + �i�N�1

 �N�i + �N�1

�j

, �j  �i.

Next lemma, is a generalization of Lemma 4 and we prove it in a similar

way.

Lemma 5. Assume that GO(V, E) is an optimal tree in which deg(vN) =

deg(vN�1

) = · · · = deg(vN�i) = 1 and i < N � 1. Also, assume that q < p  i

and {vjvN�p, vkvN�q} 2 E. Then �j  �k.

Proof. It is obvious that j > N � i and k > N � i, otherwise the graph is

disconnected. Now, if �k < �j, according to Lemma 4, the graph GO0(V, E 0)

with E 0 = (E � {vjvN�p, vkvN�q}) [ {vjvN�q, vkvN�p} has a greater sum rate

which contradicts the fact that GO is optimal.

Lemma 6. Assume GO(V, E) is an optimal tree and i is the largest integer

such that

deg(vN) = deg(vN�1

) = · · · = deg(vN�i) = 1. (4.19)

If i < N � 1, then there exists an optimal tree GO0(V, E 0) in which

deg(vN) = deg(vN�1

) = · · · = deg(vN�i+1

) = 1. (4.20)
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Proof. Assume that AGO
N�i+1

\{vN , vN�1

, . . . , vN�i} = {vm1 , vm2 , . . . , vmn} where

m
1

> m
2

> · · · > mn. Define

B = AGO
N�i+1

� {vN , vN�1

, . . . , vN�i}. (4.21)

According to Lemma 3, we assume that |B|  1. If |B| = 0, GO is disconnected.

Assume B = {vj}. Consider GO0(V, E 0) such that

E 0 =(E � {vm1vN�i+1

, vm2vN�i+1

, . . . , vmnvN�i+1

})

[ {vm1vj, vm2vj, . . . , vmnvj}. (4.22)

Then, one can conclude that Ds(GO)

Ds(GO0 )
� 1 as follows:

Ds(GO)

Ds(GO0)
�

⇣
1 + 1

�N�i+1+�m1

⌘⇣
1 + 1

�j+hGO(vj)

⌘

⇣
1 + 1

�N�i+1+�j

⌘⇣
1 + 1

�j+hGO0 (vj)

⌘ (4.23)

) Ds(GO)

Ds(GO0)
�
⇣
1 + 1

�N�i+1+�m1

⌘

⇣
1 + 1

�N�i+1+�j

⌘ � 1. (4.24)

According to Lemma 6, there exists an optimal tree with respect to (4.11)

in which

deg(vN) = deg(vN�1

) = · · · = deg(v
2

) = 1. (4.25)

As a result, O is an optimal solution with respect to (4.11). The muximum

achievable sum rate, SR(GO), could be found directly from (4.13).

Remark: From Theorem 6 and considering (4.11), one can show that the
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maximum achievable sum rate for the optimal ordering is

SR(GO) =

1

2(N � 1)
⇥ log

2

  
NY

i=1

�i

! 
NY

i=2

1 +
1

�i + �
1

!✓
1 +

1

�
1

+ �N

◆!
.

(4.26)

Thus, the maximum sum rate can be upper bounded by

SR(GO)  1

2(N � 1)
log

2

 
NY

i=1

�i ⇥
✓

1 +
1

2�
1

◆N
!

. (4.27)

Similarly, we can show that for a random ordering O0, the corresponding sum

rate is lower bounded by

SR(GO0) � 1

2(N � 1)
log

2

 
NY

i=1

�i ⇥
✓

1 +
1

2�N

◆N
!

. (4.28)

According to (4.27) and (4.28), we find an upper bound for the di↵erence

between the sum rate of a random ordering and the optimal ordering as follows

SR(GO) � SR(GO0)  1

2
log

2

 ✓
�N(1 + 2�

1

)

�
1

(1 + 2�N)

◆N
!

(4.29)

and as a result

lim
�1!1

(SR(GO) � SR(GO0)) = 0. (4.30)

Interestingly, (4.30) shows that for FDF relaying in high SNR regime, the

performance of a randomly chosen ordering approaches the performance of the

optimal ordering.

Remark: Similar to the argument we had in Chapter 3, we can show that

there is no feasible ordering with more than N �1 pairs with a higher sum rate

than that of the optimal tree.
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4.3 Simulation Results

In this section, we investigate the performance of the optimal ordering in com-

parison with random orderings. Again, we use Monte Carlo simulation to av-

erage over sum rate for the optimal ordering and a randomly selected ordering,

for both DF and FDF relaying. For each simulation round, random ordering

is selected uniformly at random from all of the feasible client trees. We again,

assume that the data rates are limited by the uplink phase. Channels from

users to the relay are simulated as slow Rayleigh fading. The number of users

is set to N = 4 and 8.

Figure 4.5 and 4.6 compare the sum rate of the optimal ordering and

average performance of random orderings for DF and FDF relaying, respec-

tively. Again, the upper bounds are given by max-flow min-cut theorem [8].

To have a better illustration of the di↵erence between optimal ordering and

random orderings, we define the sum rate gap of random ordering and opti-

mal ordering similar to the common rate gap. More precisely, it is defined as

GS = SR(GO)�SR(GO0 )
SR(GO)

. The subscripts O and O0 denote optimal ordering and

randomly chosen orderings, respectively. Figure 4.7 depicts the aforementioned

sum rate gap. As we showed, it can be seen that for high SNR regime the per-

formance of a randomly chosen ordering for FDF coincides with that of optimal

ordering. For DF relaying, the sum rate gap increases and the e↵ect of ordering

becomes more important as SNR increases.
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Fig. 6. Comparison between the common rate of the

optimal ordering and random ordering in MWRC with

DF relaying for N = 4 and 8.
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Fig. 7. Comparison between the sum rate of the optimal

ordering and random ordering in MWRC with DF relaying

for N = 4 and 8.

Similarly, we can show that for a random ordering O0, the corresponding sum rate is lower

bounded by

SR(GO0) � 1

2(N � 1)
log

2

 
NY

i=1

�i ⇥
✓

1 +
1

2�N

◆N
!

. (24)

According to (23) and (24), we find an upper bound for the difference between the sum rate of

a random ordering and the optimal ordering as follows

SR(GO) � SR(GO0)  1

2
log

2

✓
�N(1 + 2�

1

)

�
1

(1 + 2�N)

◆
(25)

and as a result

lim
�1!1

(SR(GO) � SR(GO0)) = 0. (26)

Interestingly, (26) shows that for FDF relaying in high SNR regime, the performance of a

randomly chosen ordering approaches the performance of the optimal ordering.

Figure 4.5: Comparison between the sum rate of the optimal ordering and
random ordering in MWRC with DF relaying for N = 4 and 8.
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Fig. 8. Comparison between the common rate of the

optimal ordering and random ordering in MWRC with

FDF relaying for N = 4 and 8.
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Fig. 9. Comparison between the sum rate of the opti-

mal ordering and random ordering in MWRC with FDF

relaying for N = 4 and 8.

V. SIMULATION RESULTS

In this section, we investigate the performance of the optimal ordering in comparison with

random orderings. We use Monte Carlo simulation to average over common rate and sum rate

for the optimal ordering and a randomly selected ordering, for both DF and FDF relaying. For

each simulation round, random ordering is selected uniformly at random from all of the feasible

client trees. We again, assume that the data rates are limited by the uplink phase. Similar to

[7], it is assumed that the channels between the users and the relay are Rayleigh fading with

parameter 1. The number of users is set to N = 4 and 8.

In order to illustrate the difference between optimal ordering and random orderings, we define

the common rate gap [7] of random ordering and optimal ordering as GC = CR(GO)�CR(GO0 )
CR(GO)

where, by abuse of notation, we denote the average of common rate over all of the simulation

rounds by CR(·). The subscripts O and O0 denote optimal ordering and randomly chosen

Figure 4.6: Comparison between the sum rate of the optimal ordering and
random ordering in MWRC with FDF relaying for N = 4 and 8.
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Chapter 5

Conclusion

In this work, we studied the e↵ect of users’ transmission ordering on the com-

mon rate and sum rate of a pairwise MWRC. Both DF and FDF relaying were

studied. First, we suggested a graphical model for the data communication

between the users. Then, using this model, optimal orderings were found that

maximize common rate and (under a mild practical assumption) sum rate in

the system. Moreover, we showed that for high SNR regimes, the e↵ect of

ordering becomes less important when the relay performs FDF.

Our claims were supported and verified by computer simulations. Based

on our simulations, one can compare the maximum performance of pairwise

MWRC with cut-set bound and performance of random orderings. Figure 5.1

summarizes the main results of our simulations. In addition, one can investigate

the performance of optimal ordering in comparison with random ordering and

cut-set bound for di↵erent values of N . Based on our simulations, e↵ect of

ordering for both common rate and sum rate with both DF and FDF becomes

more important. Compared to cut-set bound, the gap between optimal ordering

and cut-set bound for DF decreases as the number of users, N , increases.

However, the gap between optimal ordering and cut-set bound increases with

the increase in N for both common rate and sum rate with FDF.

47



Figure 5.1: Summary of simulation results.

5.1 Future Work

In general, for AWGN channels, it is not proven that pairwise scheme can

achieve the sum rate capacity. One possible future work is to find other trans-

mission schemes that outperform the pairwise scheme in terms of achievable

sum rate. As we showed in Chapter 2, the received system of linear equation

at all users should be solvable to have a feasible MWRC. In a pairwise MWRC,

each equation is a linear combination of exactly two users’ messages. One may

think about a more general case that orderings are not limited to pairs. In

other words, a group of users that transmit simultaneously in an uplink phase

may have more than two users. Finding efficient transmission strategies for

such a case is one possible future research direction.

Further, in the optimal ordering for sum rate maximization with FDF re-

laying, the user with the lowest SNR is sacrificed in terms of transmission rate.

Considering the issue of transmission fairness and finding orderings that have

a performance near the optimal ordering (e.g., see [41]) is another potential

topic for future work.
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We did not consider multiple-input multiple-output (MIMO) systems in this

work. Recently, research e↵ort has been directed toward TWRCs that users

and the relay are equipped with multiple antennas [42, 43, 44, 45]. Di↵erent

approaches for MIMO TWRC has been proposed and achievable bounds are

found [46]. However, the sum rate and common rate maximization problems for

MIMO pairwise MWRC is not studied yet. Considering the same problem and

finding the optimal transmission schemes for MIMO MWRC systems would be

interesting.
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