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T .. ABSTRACT

.A'siender.two-dimensipnal‘wedge wing at a:high:hach number
isTSubjectedito an inmu]sive'change in the angle of attack The time
histony of ‘the flow, till the fina] steady state is- reached. is analysed
and the unsteady flow solutions determining the temporal variations .
in the 1ift, drag, and rate of heat transfer are numerically obtained
| The used: paramcters defining the probIem are the free stream
'ﬁachfnumber M_. Reynolds number'Rew'g, based on the free_stream condi—
tions and’the Tength of the wedge L*;'the.semt~Wedge»ang1e'owband the
hinitial'and‘final»angies of attack oy and xg .in the problem considered
M, and°Re s > 1 and the ang]es involved By %> af << 1. However,

their relative magnitudes are such that the combination M /(Re L,.,)]/2

. remains: finite and the : product N |e| < 0(1) where 8 is the maximum

deflection of the wedge surfaces

‘ Two types of thermal conditions on the wedge surface are
’used 1nsulated uedge surface and the wedge surface maintained at a
constant temperature The fluid is assumed to be a perfect gas with
'constant Specific heat at constant pressure c*, constant ratio of the

P
specific heats Y and constant Prandt] number Pr.
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CHAPTER I
HE PROBLEM AND ASSOCIATED LITERATURE

STATEMENT ‘6F

1. Introduction o

wings with the Ccross section of narrow wedge are common]y
_‘used as 11ft1ng surfaces in hypersonic vehic]es The behav10ur of
such wings in steady flow condit1ons ‘have been studied in great deta11
'over'the past two decades. However, the quest1on of maneuverab111ty
and contro] of hyperson1c ‘vehicles often necess1tates the study of
the flow in var1ous unsteady situat1ons The present work dea]s with

one such-prob]em A s]ender two . d1mensiona1 wedge w1ng mov1ng at a

- high Mach nunber is subaected to. an impu]s1ve change in. the ang]e of

attack. The time h1story of the flow, till the fjnal steady state is
reached, is analysed and the unsteady flow so]utions‘are'used to

determine.the temporai ‘variations in'the 1ift, drag, heat transfer
~

@

rate and other characterist1cs of the wing

The disturbances: due to the presence of the wedge are, confined

:vwlth1n a curved shock beyond which the free stream cond1t1ons preva11
.For a slender wedge with a. sharp leadwng edge the shock is attached to .
the leading edge . So the flows- on the two sides of the wedge become

: 1ndependent of each other, wh1ch can be cons1dered separate]y Thus .
-the problem under 1nvest1gation reduces to the problem of f1nd1ng the
';unsteady hyperson1c flow over an 1nc1ined flat p]ate after an 1nstan—

_taneous increase or decrease in the angle of 1nc11nation.



~,
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-~ The hypersonic viscous flow over a slender body is characterized
by the presence of a high temperature, low-density boundary layer adjacent
to_the‘body, whiCh is considerably thicker than the corresponding boundary
layers in subsonic or moderately supersonic flows. The disp]acement A

effects due to this thick boundary layer significantly changes the

external inviscid flow and 1ncreases the.pressure on the surface of the

body. . The flow in the boundary: layer is, in turn governed by the

pressure (its streanwise gradient, in particular) and other external

flow conditions : Thus* the boundary layer and surrounding 1nVisc1d flow

are mutua]iy interdependent. This phenomenon-which has been variously

referred to in the literature as the hypersonic Viscous interaction,

' viscid- 1nv1sc1d 1nteraction or shock boundary 1ayer 1nteraction, is the

basic feature that distinguishes the viscous flow at large Mach numbers -«

from those at smaller Mach numbers. = A review of literature on the

interaction problem in two-dimensiona hypersonic viscous flows over

‘slender bodies'is given in the following Section.

:1 2 ReView of Literature

Shen [1,2] first considered the viscous effects in the steady
hypersonic flow over slender wedges He conSidered the entire flow
region between the wedge surface and the 1eading edge shock as the'

boundary layer and established the validity of the boundary layer -~

B equations 1n this region provided the ratio of the boundary layer

| thickness to the axial distance is much Tess than unity

Detai]ed study of the hypersonic viscous flow by Lees and -

_ Probstein [3 4] he]ped to clarify some of the ba51c concepts They<



3.

showed that the model postdlated by Shen in which the boundary lqyer was
assumed to occupy the entire region'between the body surface and the |
shock, was inconsistant with the continuity condition. Figuré 1.1 shows
" the flow regionsken‘an inclined. flat plate according to the model in-
troduced by Lees ;nd Probstein. The }egion between the shock and the
| body surface is divided into two distinct regions, the external layer
hnd the boundary layef. In'the external layer the effects of viscosity
are heg]igib]e, so that the flow.in this region is Qovérned by the
inviscid Eu]ef equations. In the . other region»the.flow is goyerned by
the boundary lﬁyér équﬁtions (Shen [1], Lees [5]). Thus the hypersonic
viscous interaction problem, ménﬁioned eéf]ier, ha§,the follpwing fhree .
_ éspects: ' e | |

Schk WAVE

L EXTERNAL
LAYER

| BOUNDARY
LAYER

. Figure 1.1 Flow Regions Over annidclined Flat
Plate in Hypersonic Flow



(i) The flcw in the external layer can be considered as the in-
viscid hypersonic flow over an "effective body" given by the
boundary.layer disp]acement thickness added to the original
body. A _

(1i) The distribution of pressure, tangential velocity and total
enthalpy at the edge of the "effective body" determines the
flow in the boundary layer.

" (411) - The displacement thickness uEed.td obtain the external
B 1nvisc1d flow should be consistent with the displacemént
‘thickness obtainedAfrom the solution of the boundary liyer

equations.

Various methods used to tackle the interaction prdb]em for
§teady flow are reviewed in detail by Hayes qnd Probstein [6],vDorrance (73,
Stewartson [8] Moore [9] The basic characteriétics'of,these approaches

(S5

are‘out]ined below.

/g The flow in ‘the external layer wh1ch is equ1va1ent to the
1nV1scid hypersonic flow over a sharp-edged body of arbitrary shape can
'/be obtained by the method of characterist1cs, the shock expansionqiheory
(i'and the tangent wedge approximat1on The last method is the easiest of
__the three. gives results of sufficient accuracy and has been emp]oyed
extensive]y in the hypersonic interaction problens In the tangent
wedge approx1mation the pressure at any po1nt on a slender body of
‘thickness,y;(x*) is approximated by the pressure across an ob11que

~shock that produces-the‘]oca]-flqw'deflectiqn dy;/dxt* For free stream '

S



Mach number M_ >> 1 and for a slender body with dy;/dx* << 1, if the
product K(x*) = M_ &y;/dx* remains finite, then the tangent wedge

approximation gives the following results:

*( * :
56;_)_:- Ve gt ke (gt o2 1o

_;__"3(" D v omd) , (1.2)
Ha(x*) -2

T—u—:z——‘-']'l‘O(Mm) (].3)
Z

Linnel [10] obtained these results in a somewhat different form by

assuming isentropic flow in fhe shock 1&yer. Goldsworthy [11] later
pointed ‘out that the yériation in entropy introduces errors of O(M;Z)
only. For small and large\vélues of K equation (1.1) can be expandéd

as: : o . o N

* gk 2 ) <
pp(x o +yk+i§-}—)-|< + X ) 3 4 o(k5) (1.4)

~and |

R,
_gr___;ﬁx?_). ;{1_ (Y'H) 2+ ok (1.5)

Equations (1.4) and (1 5) are often used in place of the complete
-equat1on (1. 1) for the sake of - simp11f1cat1on
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For the hypersonic interaction problem K in.the equation (1.1),

(1.4) or (1.5) has to be replaced by:

* *
dé*(x ]

x (1.6)

dp
K(x*) = Mw[a—i-;"'
where y*(x*) defines the body surface and 6*(x*) is the boundary layer
displacement thickness. Since the'displacement thickness 6* in (1.6)
is not known a priori, the use of tangent wedge approximation still
Hretains the basic iterative nature of the interaction problem. How-
ever, a great simplification is offered because the 1ﬁvispid flow in
the externa] layer need not be calculated explicitly. A disadvantage
of using the tangent wedge approximation is that the vorticity in the
external layer due to the curvature of the shock, which may affect the
structure of the boundary layer, can not be accounted for. However,
'_Hayes and Probstein [6] have pointed out that for a sharp-edged slender
- body the effects of the vorticity jnteraction can be neglected beyond
a region‘very close to the leading .edge.
Lees and Probstein [3,4] showed that the extent of the inter-
act1on between the boundary 1ayer and the jnviscid external flow is

~characterized by the hyperson1c interaction parameter X » def1ned by

A : 1/2
- 3 C
x =M —) (1.7
g (Rem’x* )
where
: : pRUEX*
Req xx = % : (1.8)



and C is the coefficient of the linear viscbsity-temperature relation.
Two extreme cases corresponding to x < 0(1) and X >> 1 were called the
weak and strong interaction flows. The flow on a semi-infinite flat
plate in the two exfreme cases of weak and strong interaction has re-
ceived considerable attention in the past. For the weak interaction
case [3,4,6] corresponding to a region far from the leading edge, the
appropriate expansion for the tangent-wedge approximation is given by
. equation (1.4). It was assumed that the pressure and other inviscid
quantities varied slowly enough so that an approximate C1osed-form
expression for &* obtained from the zero-pressure gradient boundary
layer solutions could be substituted in the expansion (1.4), resulting
in a pressure distribution of thg form p*/p* = 1 + Ax. A first 6rder
correction to the skin friction was then calculated as a perturbation
to the zero-pressure gradient solution and it was shown that the heat
~ transfer was unal tered to first order. |

In the strong interaction case, corresponding to-a region
near the leading edge, equation (1.5) is the appropriate expansion ofd
the tangent wedge approximation. Using«only the first term of equation
(1.5) an order of magnitude analysis shows that in the strong inter-
action regiomt p* a X aﬁd 8*/x* o Y]/Z/Mm. Since X a x*-]'/z, the” 3
boundary layer admits similarity solution. Solutions for this zer@i
: order strong interaction theory were presented by Shen [2], Li and
Nagamatsu [12], Stewartson [8,12] and borrance [7] for an insulated
flat plate with Pr = T. Li and Nagamatsu [14] later considered the
- case of a:gonstant tenperature_plate. The consfants of proportionality "~

in the equations for p* and 6*, obtained by these authors were in‘genera]
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agreement, the differences being mainly due to different methods of
solving the boundary layer equations. In the works of Stewartson
(and also Bush [15]) however, the tangent-wedge approximation was not

-1/2 and &* « x*3/4

used. Instead, it was shown that for p* o x* the
flows in both the boundary layer and the external layer admitted similar
solutions. A solution based on the method of jnner and outer expansion
was preseﬁted in which it was possible to take into account the effects
of vorticity in the‘external flow.

Lees and Probstein later generalized the strong and weak
interaction theories for flow over a flat plate at non-zero angles
of 1hc1dence [6]. The zero-order solutions are not affected and the
effects of the non-zero angle of incidence appear through terms of h
highew order. In Section 3.2 the expansion scheme for the strong
interaction case, outlined in Reference 6, is developed and solutions
uﬁto third order are presented.

In the strong and weak interaction theories mentioned above,
the pressure variations were such that the boundary layer equations
admitted similarity éolutions. The partial differential equations
then could be transformed ihto ordinéry differeatial equations in

\;;;table transformed variables. 'Such simplifications are not possible
for moderately high values of X. A theory valid for all values of X
was presented by Nagakura and Naruse [16]. They considered the two-
dimensional flow on an insulated slender body and used the Karman-
Pohlhausen integrai method to solve the boundary layer flow for an

arbitrary pressure distributibn. However, in the final expression

‘the'pressure at any point on the body was given implicitly through a

-

-
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»comp]icated nonTinear- equatton A Th1s method 1s more SU1tab1e for the.
inverse prob]em of determ1n1ng the body shape for a g1ven pressure
d1str1but1on than forgthe d1rect prob]em of determlningcthe pressure
distribution on a ‘body of given shape . '

An approx1mate method orlg1na11y suggested by Lees [17] and '
‘1ater modified by Moore [18] is often used in 1nteract1on prob]ems for .
general values of x. In this ‘method, ca]]ed the "local f]at plate SRR
s1m11ar1ty" method the pressure gradient term in the- momentum equat1on |
is neglected a]together, thus reducing the prob]em to the zero—pressure'v
gradient Blass1us prob]em The basis of th1s assumptlon 1s the fact
that the pressure grad1ent term 1n the momentum equat1on has a coeff1c1ent
of the form v-1 which may become very sma]] for the. h1gh temperature
gas in the boundary 1ayer . The so]ut1ons for&SIender wedges presentedA
by Cheng et al [19], Dewey [20] and Mirels and Lewellen [21] belong
to th1s category. Other approx1mate theor1es include the works of
Bertram and B]ackstock [2&] and thte [23] where a d1sp]acement th1ck-‘_f'
ness d1str1but1on of the form 6*/x* = axpm/(Mmp*) was assumed The
coefficient a was found to remain approx1mate1y constant for the
entire range of x, depend1ng only on the thermal conditions on the }
body. The pressure d1str1but1on p*(x*)fwas then obtained frdm this
.relat1on and the tangent wedge equat1on (1/1) In sp1te of tHe1r

approx1mate nature these theories often g1ve qu1te usefu] and pract1ca1

resu]ts A ° _ . ‘
' nn and Bradlgy [24] presented a d1fferent approach to the ."
‘ 1nteract10n probTem wh1ch eliminated many of the approx1mat1ons made

in the references mentioned ear11er. .The flow over a flat p]ate at
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'? zero incidence was cons1dered The§non s1m11ar boundary layer flow was

:sobtained by numer1ca]1y'501v1ng the part1a1 d1fferent1a1 equat1ons The‘

“5{iexterna1 f]ow was solvis by the method of characterist:cs, The two e

B .solut1ons were iterated. ti]] theyfconverged w1th1n the requ1red degree
of accuracy. ‘ ‘ M
| ! Two other solut1ons of the 1nteract1on prob]em by Kurzrock
| and Mates [25] and® But]er [26] should be ment1oned because of their novel
tiapproach In both ‘works the steady f]ow over a f1at p]ate at zero
R 1nc1dence was obta1ned as the asymptot1c Jimit of the unsteady "1mpuls1ve—
start from—rest" prob]em The comp]ete unsteady Nav1er Stokes equat1ons '
were so]ved numer1ca11y at d1screte t1me steps over a reg1on that ex- .
-tended beyond, the shock surface. Thus the 1nteract1on between the
_externa] layer and the boundary layer d1d not appear exp]1c1t1y - The (
-E1ntéa:ed1ate t1mesteps were cons1dered essent1a11y as 1terat1o//steps ’
for the f1na1 steady solution and the authors did not attr1bute any
's1gn1f1cance to thevunsteady so]ut1on. These methods requ1re too much
computer tlme to- be of pract1ca1 use 1n3the genera] case However, the
: résu]ts are usefu1 to conf1rm the va]id1ty of" the boundary 1ayer assump—
. tions. ' o ' ’ '
o The forego1ng dwscu551on was on the 1nteract1on problem in
steady hyperson1c f]ows In unsteady f1ows the 1nteract1on problem is
further comp11cated because the 1atera1 ve]oc1ty of the unknown’ d1sp]ace-
ment surface a]so affecfs the externa] flow Lighthill [27] presented
an extens1on of the—tangent wedge approx1nmt1on to obta1n the pressure ,
- on a s]ender‘mov1ng body of shape y*(x* t*) placed in an 1nv1sc1d hyper-’

. sonic stream\\ Th1s extension was based on the “piston analogy" of

/
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vHayes [28], who observed the equ1va1ence between ‘the steady two d1mens1ona1
o flow over an arb1trary body and ‘the unsteady one- d1mens1ona1 f]ow 1n
‘front of a moving piston. The pressure in front of a p1$ton moving
with a veloc1ty w* in a'stationary compressib]e medium is g1ven by

B * * * : ]/2' -
gg'f 1 +f w +1. w {(le_w J . ;a(].g)

r@where'the‘subsCripti¢'refers to‘conditionS‘infthe undisturbed gas. |
Equat1ons 1 1 and 1.9 are ana]ogous 1f one 1dent1f1es w* with the normaryf
ve1oc1ty component u* dy*/dx* 1nduced because of the slope of the body
- For a mOV1ng body an add1t1ona1 term ay*lat* is 1ntroduced in the Horma]v
veloc1ty component. Thus the 1nstantaneous pressure p*(x* t*) on the

'body'ns given by equat1on 1.1 W1th :

. o

K tx) = WL E) . (10)

where o S
S T y* ay* : ' L ' )
W) s et 0an)

. S . % : .
. Miles [29] has discussed the above expression and several

'other var1ataons ar1s1ng from the expans1ons (1.4) and (1.5), for-the'
: unsteady pressure 1n inviscid hypersonic flow. The first tuo:terms
vof the'expans1on (1 4) lead to the acoust1c approximation formula,
while: the p1ston theory of L1ghth111 [27] correspond to the f1rst four
térms of (1.4). T '
' For the unsteady interact1on prob]em y¥in (1. 11) should be Yo
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~rep1aced by . (y* +-A*), where At(x*’t*) is the disp]acement thickness
for the unsteady boundary 1ayers, 1ntroduced by Moore and Ostrach [30]
Examp]es of unsteady interaction prob]em 4nclude the work '
of Rodk1ewicz and Reshotko [31] who cons1dered the unsteady weak inter-
__act1on flow on a semi- 1nf1n1te flat plate at: zero-1nc1dence after the
free stream Mach number was. 1mpu1s1ve1y increased by a-small amount
(of 0(1%)) The pressure on the p]ate was assuned constant for calcu-
Vhlat1ng the unsteady boundary 1ayer and a sma]] unsteady perturbation
in the pressure was - ca]cu]ated from the boundary layer so]ut1ons This
approach 1s Justified because of the sma]] change 1nvo]ved in the ;
"problem Rodk1ew1cz and co-workers [32 37] 1ater cons1dered several
variations of this prob]em » | ) _
Unsteady 1nteract1on prob]ems 1nvo]v1ng lateral mot1on of the
“body are sole]y conf1ned to cases of . harmon1c osc111at1ons King [38] ,'
- and Orlik RUckemann [39]. cons1dered the 1nteract1on on an osc111at1ng

s]ender wedge These are exanp]es of qua51-steady ana]ys1s, that is,

the flow at any 1nstant was assumed to be the steady flow cornespond1ng .

,td the cond1t1ons preva1]1ng at that 1nstant Interact1on prob]ems
"1nv ving 1mpu151ve 1atera1 mot1on of the body are not ava11ab1e 1n

11teratu

1 3 Descriptlon of the Present Nork

;'_.; o ' In the present: work the tangent wedge approx1mat1on ‘and its

extens1on to the unsteady case dIScussed 1n the ]ast sect1on w111 be
»used to descr1be the interact1on between the external f]ow and the

boundary layer._ The parameters~def1n1ng-the prob]em are the free‘stream
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Mach number'M°° Reynolds number Re, | » based on thekfree stream con-

ditions and‘the length of the wedge L*, the semi-wedge angle 6, and

the initiai and final angles of attack oy and af; In the problems

considered M_ and:Rew’L* >> 1 and the angles involved é;. g, 0g << i.
However, their relative magnitudes are.such that the combination

M /(Re -)]/eremains.finite and the product Mtlei 5_0(1), where 6
is the max1mum def]ect1on of the wedge surfaces The thermal condi-.

t1ons on the wedge_surface_a]so afféct the problem. ATwo'types of

_ thermal condition are used in this work - insulated wedge surface and

- the wedge surface maintained at a constant temperature The fluid is

assumed to be a perfect gas w1th constant c; » Y and Pr. HoweVer, the
assumpt1ons Pr=1and y + 1, used in some of the ear11er references,
will not be’ made here.

- . In Chapter 11, the govern1ng‘equat1ons and their transformat1onsr
are presented. Chapter III is devoted to the prob]em of steady flow

on an inclined flat p]ate A four term series solution for the strong

1nteract1on region is described 1n Sectlon 3 2. A more - e]aborate f1n1te

' d1fference so]ut1on is presented in Section 3 3 and the resu]ts of the _

steady f]ow case are d1scussed 1n Section 3. 4 ~ In Chapter IV the un-

steady flow on an inclined plate follow1ng an ‘impulsive change in the

‘angle‘of 1nc11nat1onv1s»descr1bed. In1t1a] cond1t10ns,1n time are de-

~rived from the steady solutions of Chapter III. The finite d1fference '

" method of solution is deScribed in detail.  In Chapter V is indicated ‘

| thehunsteady'characteriStics of.the two dimensional wedge wing.

© the utilization of the solutionsion'the two sides of the wedge yielding
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CHAPTER I
" THE GOVERNING EQUATIONS

2.1 :Compressible Boundéry Layer Equations for Two-Diménsiona]

| Unsteady.Flow | A
v The governing equations for the f]ow in the boundary layer :
are g1ven by [8]:

Cont1nu1ty qquat}on:

et o ' ‘ |
SeFt s&w(p*“*)“"y‘r(p*"*) o &n

" Momentum equations:

ip*(a'tf*'l.‘ Bor v 3—3:) - - B a—f;(u g—;;) | (é.,z) B
b < gﬁ;. o f ‘. | : }'A  A» (2_3)‘  g
Ehéfgy gquatioh:; . | Af. C
: (at* *‘ggi *) at* EL §§#~(u. gs:)f_

“where H* =VCBT* + 5*2/2 is the ﬁotal.énthalpy. These eduations,'tof

e
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,gethe} with‘the equation of Stéte:”
,\_ o } p* =. R¥ % T* | o (2.5)
and the.viscosit¥-temperatUre-re]ation:
u* : uk (T) S (2.6)

défine the complete set of equations governing the flow in the boundary

layer. If we write

. u* v* *
UTE VTP
\v ‘\ '
S * T* *
) . = = = H—
p %, T TZ’U u;
and e
. H =——2-_l *‘..
. -qum
“equa;idnS»(Z;] - 2.6)Atake the non’dimensional fdrm:
. %%fg%(DU) v (DV) e
U, LU, Bu B 13 2 ‘__1"--_-1_1» T,
3t T M et Vg g_p 5% L[H-u"]-# Re,, 1= P 3y (rgy) (2.8)
} 0= gg.f . o - (2.9)
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gokop o )
-5—-+ubax+va.y Bp'at[H'"] o
# .1 11 3 ,3H , 2(Pr-1) 3 | = Bu
Re, i+ o P 3y Uay) o 2r=1) 2 33 (2.10)
p=poT . (2.11)
and R u = u(T) (2.12)
 where . B= ¥$L . (2.13) .
g . ' X . u*.p*l_* .

is the Reyno]ds number based on the length of the wedge and the free
stream conditiens. ' ' o

The y1scos1ty-temperature re]at1on (2 12) is given by the

.

Sutherland fonmu]a o o 4
L “%« | S
T (2.8)
T

where S* is a constant which has a value 110° for air.. The formula
. (2.15) is d1ff1cult to work with and a linear v1sc051tx tanperature

',relat1on of the form

w=e€r., .. (2.16)
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suggested by Chapman and Rubésin [40] has been extensively used for A
compfeSsiblé boundary layer problems. The cdhstant C is taken as
]/2(]+S*/T*x/ﬂ'+s*/T*) where T, is the non dimensional wall temper-
ature Thus the viscosity given by the approximation( 2.16) correspond
exactly to the Sutherland value at the wall, where the effects of

viscosity are most pronounced.

2.2 Transfonna%ions of the Governing Equations -

The}governihg equations are now transformed to bring them to
a form suitable-for numerical solution. The first step involves the
_ 1ntroduct1on of the stream funct1on, w, def1ned by
and the app11cat1on of Dorodn1tsyn—Howarth transformat1on wh1ch used
'1n conJunct1on with the linear v1scos1ty-temperature relation (2.16)

e11minates p from«the transformed equations. - In this transformation -

the ianpendént variéb]es X, y, t érevchanged to_I} i}lffWhere

“e X = x . RN SR (2.18a)
oy I o'dy o ~ (2.18b)
. e T=1t o o (2.18¢)
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]
For any function ¢(x,y,t) one obtains the following relations

18
3 .3 , 2Y 3 (2.19a)
X 3% 3y |
_$.= b 22 (2.19b)
ay .
3 . 3Y 3¢ , 3% |
5t = 3t oo + == (2.19¢)
BT T: |
Equations {2.17) and (2.7) theh reduce to _
w=2 (2.20)
S 7
vl (&3, oy (2.21)
P ax ax 7 at

Applying the relations (2&19)'- (2.21)'6n equations {2:8) and (2.10)
and making use of (2.9), (2.11) and (2.16) we obtain

2 .3 S
b, 2w WAy Bl AE Lo 2L (2.2
3yst  ay axay X ay CEPax Ty w,L* 3y e

 amd U :
v ' ' o f A
Mo wol A, e,,‘,—%%m (2]
at 3y 9x - a 'ay . ay
5

N __w_ Lowdy
PrRe°° L*[By f Z(Pr ]){( ) }]

(2.23)
Ay By , '



nqrmalized forms. In the usual boundary layer problems ﬂﬂiﬁ- the
pressure is a known function, it is possible to eliminate the term
Cp/Re L% appearing in the equations(Z 22) and(2.23), by suitably in-
corporat1ng it in the transformed variables. This leads to equations
with coefficients of 0(1) which are convenient to handle numer1ca11y
But in the present problem the pressure is an unknown function to be
determ1ned in accordance with the interaction equation In order to
obtain normalized coefficients in the trans formed equations we 1ntro—

~duce the function p(x t) gliven by:

Plx,t) = Rxat) | (2.28)
PgX .
where pox is the zero-order strong 1nteract1on so]ut1on for the steady
state pressure and p0 is a constant .to be determ1ned in the next Chapter.
‘The functlon P is of 0(1). »
The 1ndependent varlab]es are now changed from X, y, t to

<

7, N» T where °

X=x - (2.25a)

< — Re_ | 4 ' '
g y o, * 7/2

. .on = — (—==) - (2.25b)
r-and;vA :
: T=-T | T {2.25¢)
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1/2

Noting that ¥ = iL* x /€, where

— g3
XL w = (ﬁg;:[:o _(2.26)

is the interaction para er evaluated at the end of the wedge, we can

~write

n=Ayx /4 ' (2.27)
where _ ’ .
Re : .
A = %. __fhié}gl/z (2.28)
C pO'xL*

’

«is a constant. For any function ¢(X,y,t) we have

9% _ 3% _n 3¢ . (2.29a)
] ax ax 4x " '
'§%=A?"‘/4g% © (2.29)
2 _ 3% o (2.29¢)
at ot »

If we define
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and use the relations (2.29), then the equations (2.22) and (2.23)

transform to

_ _ 2 2 2, _ .3
g [%E'a-f of 3°Fy _ ¢ g_%__ 5 g_g
anaot axan 39X 9n an an
+a[-1+22% 2B [H- ()]—0 (2.31)
p ax
-and
4x%+47[—§ii_.“;——a-i—%,‘j—1-4séi’£[n—< 2’
at "N ax  ax p ot
% 2 af oM. ..
Fg'[an + 2(Pr—1){( LER an-ggjq] f5y =0 (2.32)

The coordinates x and t have not been distorted in the trans- ~
‘format1ons., This fac111tates the retrieval of phys1ca]1y significant
resu]ts from the solutions of the transformed equations. Thus we can

write (2.31) and (2.32) in the form

4x9_2_f._.+4 [Qﬁﬁ_ﬁiﬁ]_fﬁ_aﬁi
anat an Qxan X th anz 8n3
+pl-1+222 ][H-( )]=o | (2.33)
~ ) p
of oH _ 3f 3Hy _ 4o X 3P ry _
- and. _4x 3t * Gy ax ~axand T 8 B-at.[” G
_ 2"_ . 2.2 3 R
- D [N NHS LTy g
p%[;?»rz(vrm(;?) 1 e LR Tl (2.38)



It should be remembered that in the context of equations (72.33) and

(2.34)
D
IRV
IX ax
n.t
9 -3
at ~ at
X,N

whereas, in the context of equations (2.7) - (2.11)

_8_:_8_1
Ix T 9x

y,t
_8:3_‘
at ~ 3t

XY

However, for variables such as p, which are independent of y(and hence
independent of y and n) the partial derivative with respect to x

and t are same in both senses.

2.3 The Interaction Equation
ﬂr the unsteady flow over a flat plate inclined at a small

angle 6, to the main flow, the shape of the "effective body" is given

by

B y;(x*,t*) =aeb x* + A*(X*.t*) (2.35)
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" From equation (1.11) the normal velocity component at the edge of this

_effeotive body is

' dA* aL*
wr(x*,t*) =. u; [eb + 3X*] 3t*

(2.36)
Here A*(x* t*) is the displacement th1ckness for the unsteady boundary
layer, “introduced by Moore and Ostrach [30]. In terms of the present’
) nofatjons tho.differentjaT equation'for A* becomes

. y.*~

‘ e L
a2 loguger - [ (ogug - orum)ays]
_Y'[')‘ ‘ i
. *' oL .
2_ [ *A* Ye ( * _ *)dy*] = 0 : (2.37)
at* e Pe = PTIVY - S
v | -

. Using the continoity gduation for the external flow

adg‘ e - .
S-F;"‘W (p;u;) =0- ' . (2.38)
. n é’:
equation (2.37) can be reduced to ul
L _ :
yE =
8 - _ *u* .
p*[at* ut ax*] sl | 0 - S
b
*
o Ye : - L v
* _ ‘ ‘
tawwler | 0 -5 o] (2.39)
ot e A _ -
Sy o Te -

If we app]y_fhe transformations of'the<1ast section on the two integrals -

épbearing in (2.39) it is found that



B et

o4

y*- » ] y* .
~e ok €. p*
[To-gy e [ 08 e
e e. ;0 e
43 Y5
1/2
(y=13: L* (X, &) - 3/4 7 : :
. R J [H - ( 2. “1 én ~ (2.80)
/P, M, P | : S

el .0

Here terms of O(M 2) have been neg]ected from the 1ntegrand of -the
1ast integral.. wr1t1ngv6* forAboth the 1ntegrals in (2 39) and us1ng

- (2.38) once again, we obtain

8% L, 96*

A% L, BNk o '
_.___(at*A+ u; ———ax = -—B + ue _—_BX* . o (2.41)
A further s1mp11f1cat1on is obtained if u; is rep]aced by u* . This

is: cons1stent w1th the- observat1on of Stewartson [8] and" Go]dsworthy
[11] that '
U= =1 +0(MY) T (2.42)

e ug

“when M‘ is large but the product of M_ and the stream11ne deflection =

»

in the externa] f]ow remains f1nit93 Therefore from (1.1), (] 11) and

'?(2.35) we have '

p(X,t) = —‘E—
POX

| 12" -
= [1 + YK, {1—-K.+ [(lz— K) + 1] 13 - (2.43)
pox . S
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where B )1\7=:_‘

K(x,t) = M (eb 6,28 B (2.44) "
' and
- . . — ]/2 @ \ Ty .
* o1 Xk 0 3/4 £.2 o
s(x,t) = f* -1l Al X f -3 ) 1 dn  (2.45)
_ P, e P :
- - . , _— » : » {
vijB o . : The 1nteract1on prob]em can now be stated as fo]]ows the

funct1ons f(x,n, t) and H(x,n,t) are ‘to be so]ved from equation (2 33)
and (2 34) for a funct1on p(x t) wh1ch is re]ated to f(x,n,t) .and
H(x,n,t) through equat1ons (2. 43-45).

_ 2.4 'Boundary and Initia] Conditioﬁz
' The cond1t1ons on the wedge surface and at the outer edge
of the boundary 1ayer‘prov1de the boundary cond1t1ons in n. - On the

wedge surface both components of ve]oc1ty are zero and the wedge 1s-

e1ther 1nsu1ated or he]d.at a constant temperature. Thus,

. u* =0 i . : ) (2.463)
vk = (0 T . (2'46b)

XL 0 (for insilated s u 4
- or insulate wedQQySurface) (2.46¢)

or -» -

T* =Tt = constant (for constant temperature wedge surface) (2.46d)
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In terﬁs of the’trénSformed‘variab]es‘we<h§ve
at n =0 | . o
f=0,  (2.47a)

N | C Lo, | (2.47b)

\/4
Q
X
i}
o

tr (2.47¢)
or H =,Hb“= constant . (2.47d)

.~ where H = ¢; Tg/%gugz . At the edge of the boundary iayer the‘tangéntia]

velocity and the total enthalpy in the boundary layer should match with

the corresﬁondingnﬁuantities’in.the external .layer. Thus s
. : . o s _ ’
: BN K ] - - R &m‘,;{
‘at y* = y'g | |
u* = u* » - (2.48a)
\ H* =.Hg_ - o ’%) o
In terms df transfofmedﬂvariab]es we have
’ af- v ‘. . N ‘. . N
o 1 . v ‘ | , (2.49a)
CH=1 . (2.49b).

whefe;terms of o?derbﬂ;z have been neglected.



. -~ In boundary layef'problems'if'is cUstoméry:to satisfy‘the

condi tions '(2.49a,b) at a finite value n = Ng. The value of n  is

e
'choSen sdfficjentiy lafgé} so @hat, in the resy]fing so]ufion
lanf(ne)/énnl s N 3;é\and ]akH(ne)/ahkl + k21 can be nadé 1ess

than a predefined.to]éfahce. From preiiminary experiments it was
found that; for'the'problens coﬁsidéréd,in the present wofk ne‘='8
was‘sufficient for’agtOTefance of 1075, |

: :The initial‘conditions.in x and t are discussed in Chapters

IIT and 1V.

27
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" CHAPTER IIT
THE STEADY FLOW ON AN INCLINED FLAT PLATE

3.1 Introduction

- In 'this Chapter thé steady hypersovnic. ﬂow on a flat plate
Qxlmed at a sma]'l angle eb to the free stream will be cons1dered
The solution of the steady prob]em will prov1de the initial cond1t1ons

- for the»unsteady prob]em at t = 0 and a]so the final solution to which
' ~ the unstead_y 1 ow should converge as t » . | A' | | }
Spec1a]1zing the govermng equat1ons to the. steady case, we

have from equatmns (2 33) and. (2 34)

'5;&4» £ §E.f.- 4x [_a_f—___azf - ?iaz‘f]
-3'n3 3712".' ©onon 9xan - 3X 3n2 ~
1+—321[H )] (3.1)
~and S
' - .2
°H | ¢ oH _ éiél"._ of 3K
r ;{2‘* fan [an 3X ~ Bx an]
2, 2 3, - |
2(1-pPr) 3°F, af 3°f ) .
2 tan 3 RS I

- For ghé_ steady problem p = E(x) is giv'en by '(2.43) with

' K(X), = M (6 +g—g) L . (3.3)
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and § = G(X) giVen by equation (2;45),

3.2 Series Expansion Solution of the Steady Problem* ‘

A ser1es expansion scheme for solving the steady strong
1nteract1on f]ow on an 1nc11ned flat plate or1gina]1y suggested by
Lees and Probste1n [el, is considered 1n this Sect1on. Us1ng appro-
_ priate expans1ons for P §, f and H 1n terms of the interaction para—
: T’Vmeter X and Kb( M eb), the part1a1 differentia] equat1ons (3. 1) and
i(3 2) are reduced to a sequence of ord1nary d1fferent1a1 equat1ons
'The unknown cqnstants appear1ng in the expansions of p, &, etc. are.
thenvdeterm1ned from the solutions of these ordinary differential
equat1ons in accordance with the tangent wedge equat1on

" The zero-order term of this scheme correspond to the strong

interaction s1m11ar1ty so]ut1on considered in references-[6,7,8,12,
13 14] where the assumpt1on Pr = 1 was made to Simblify the energy
equation Solutlons for h1gher order terms are not generally avail-
~able. In this section solutions for terms up to third order are
carried out for arb1trary values of Pr._'

: Ne start w1th the expan51on |

o = xxtt) Ki 3+l 8

K-2
I LT L

+ ok~ 4 '; "‘.(1.5)' |

: of,the,tangent wedge'equation'(l;1).- If we define the constant

Contents of th1s Sect1on were presented 1n the Th1rd Canadian Congress

~of Applted Mechanics, Calgary, 1971 and published in AIAA Journal,
.Vol. 9, No. 3, pp. 535-537 1971) )
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Ky = M8, ‘ | . (3.4)
‘then fnbmv(3.3) we have
K(x) =K M X | - (3.8)

For the strong interaction region (x >> I)Ian order of magni-

tude analysis [6] shows that

S . —4/2

o X @ X
or ", Lo (3.6)

‘Writing K(x) = Kb + constant x]/2 and substituting in equation (1.5),
we have for X >> 1 : ' ' |
| - 1Kb Py + p3Kb2 S 32, o
| P(X) = Po x[1 + —772' -———-———-———'+ 0(x , )]1 : (3-7)_ '
where p1(1 0 1 »2,3) are constants to be determ1ned Consistent with
~_(3 7) we have for & |
SR P 2 |
. 210 e L gy

o0

.where 8. (1 0,1,2 3) are- constants On subst1tut1ng (3. 7) and (3 8)

in (3. 5) and (I 5) one obta1ns the fbl]ow1ng re]ations between the tworv

&
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sets of consténts:

s
- f%-f(v+1) ao?, o - (3.9a) ’
Pj =’%f<51 * §%9 i | ',> (3.9b) -
pz’%g 2 %"I‘L)TEZ)T' (3.9¢}).
pé,:‘.? 515.+- 1_96_ (5] + 3%)2 . B - (3'9‘1)'

. B

I view of the expans1ons (3.7) and. (3 8) Lees and Prob-

stein [9] suggested the fo]low1ng expansions for f and H

- f](h) Kb f (n) + f3(n) Kb

f(X "n). _ "3/2) (3.]0)

= fo(n) +
: 0‘ S ]/2 X
énd
S K Hy (a2 L |
HGn) = Hyln) + ‘1;'2'(" LTS oY) aan)

~On 1nsert1ng the expan51ons (3 7) (3.10) and (3. 11) in the
equations (3 1) and (3.2) and. equating the terms of the same order on

- the two sides we" get the followlng.sets_pf coupled ord1nary_d1fferent%al

equations for f;(n), H;(n) (i=0,1,2,3):

B R B 20 (32



2

Hy' + Prf0 0" 2(1 -Pr)L(F) + fofy'1 =0

‘,fi" + fofi'k- féf] + 2f6'f] + B[H]-Zféfi]
= p[3 BHg-g >+ff01
H" + Prfo ] fJPrfOH]

1.

e Z(I-Pr)[f oFit* 2f"f"+f6"f ]+ 2PrHgf

0" 1
p]PrfoHé
U ffs! —;2f6fé +,3f6-f2 +ie[ﬂ2-2f6fé]

= ppl2eig g + ffy']

=

L Hy' 4 Prfghy - 2Prf6H2

"+f6"f2] +-3PrH,f

- 2(1-Pr)[f0f"'+2f"f2

—

f3 + 3f"f + B(H 2f )

0 0

fé'f + f f3 2f0

.

._. ' 2y ' .
= P3l2B(Hg-Fg ) + fofo ]

"o™2 -'

32

- (3.12b)

(3.13a)

4(3;13b)

1(3:14a)‘

(3.140)
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2B gy i
"p] 2(Ho.f )
+ p][%-(H]-Zféfi) - £1]
. _ 26,10+ (148) £12 (3.15a)
1" 1
Hé"+ PrfOHé 2Prf0H3
- 20 Pr) [f: f"'+2f6'f§'+f6"f3] + 3PrH0f3
p3Prf0 0'
o+ p][Z(l -Pr) {fof"'+2f6'fif+f6"fi} - Hy']
+ 2(1-Pr){f £t + (F]') 1+ Prif] Hy-2fH) - (3.15b)

} Here the prime represents d1fferent1at1on w1th respect to
n, In equations (3 ]3) through (3 15) ‘the unknown constants P; (i=1, 2 3)
appear in the 1nhomogeneous barts ' To e]iminate theserunknowns_we

1ntroduce a further change of variab]es

<. h - _ M S :

. R e = — . 3.

f] p]' . F] : p] ’ ; ) ( ]6)_
o fy Hy

7”?3;# L, W= (3.17)

B
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= _ = 2 = = 2
f3 = (f3’p3f2)/p]v ’ H3 = (H3—p3H2)/p] (3

{
differential equations for F.(n), Ay(n) (i=1,2,3):

/

|
L) + ey = F () (3

@) D E - f P (3

The linear operators'ng)-(i,j=1,2,3)-are given by

/ ? ' ) - (])_ d3 dz | : ' d [N}
/ o KT Ty T - (ag28)fy g+ bify BRACE
‘ , ; dn™ dn” . :
| L(Z) = ijE7—-+ Prf, -9 - a.prf ’v (3
T2 0 dn - 2iPrfy :

2

(3) . - . , d3 . i d . l’l d .
L1  = . 2(]_pr)(f0>;-§,+ 2f0 ;—§-+_f0 .Hﬁ) + biPrH0 (3.
A - dn n o

with a; = 1,3, =a;=2, by =2, b, = by = 3. The functions Fgl),
ng) are given by ' |

o 0
. o v : ;

P = (R (1-2) - £l ()T

+§ BT, -2T}) - 28(Hy-fp?) for =3 \ . (3

) fgl)(n)'= biB(Ho-féz) + fy'f, for i‘=1,? ' (3.

34

.18)

From equations (3.13) through (3.15) we obtain the following

.19a)

.19b)

20)

21)

22)

23)

.24)
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. /
FZ () = prige, for i=1,2 (3.25) -

PS8 n) = Pr(Ry-Hg) (£g-2F) + Prf, (F;-£5)
2 |
+ 2(1-Pr)[(?}') + ?}fi"] for i=3 (3.26)
: With cy = 1.5 and cz': 2.

From (2.47) and (2.49) the boundary conditions can be

written as

fO(O) =0 (3.27a)
e
°f6(o) =0  (3.27b)
Hé(o) = 0 (for insulated surface) (3.27¢)
or = Hy . (for constant temperature surface) (3.27d)

(3.27e)
(3.27F)
and for T, A (i=1,2,3)

__?Z(d)_; o ' o (3.28a)



A}
H

?ﬁ(o) = Q

ﬁ}(o) = 0" (for insulated surface)

or H (0) = 0 (for constant temperature surface)
f] (ne) =0
H.i(ne) =0

Jo

(3.28b)

(3.28¢)

(3.28d)

(3.28e)

(3.28f)

In order to determine the unknown constants Pyi» Gi(i=0,1,2,3)

we insert the expansions (3.7), (3.10) and (3.11) in (2.45) to obtain

the following epressiGh for §; % ?3

1

‘ o2
M. s +p]&3¢/‘ 7z
, (pg) X

B
%,
e

+ {pz(Iz‘Io)"'[pz('Iz‘IO) + P]2(13‘I‘|+10)]Kb2}7)—(j

(Hq f'z)dn

—
+

. where

(| -2£4F}) dn

—
-
II

H

|

[

0 S
lw —2f ?") dn

I3 = r (Ry=2fgF{-F}) dn
o : -

(3.29)

(3.30a)

_(3.30b)

(3.30c)

va(-f3v. 30d)
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- On comparing (3l29) with (3.8) one obtaiﬁs

| Pg)
~;I] S . N
4 . IZ ‘. . 7_ Co
- 8, = p?(TO_ - - (3310
I o (I3-1)) ) »
3 = pZ(E - 1)+ B P 1] (3.314)

~Using (3.9) and (3.31) we now obtain the foT]dWihg ex-

‘pressions,for”fhe constants pi;

- . ) . 1/2 .
3 +
Po =7 (y-1) [x£¥§llﬂ - I (3.32a)
| 1
L
1 _*(y—l)(1110-811) , (3.32p)
Py = £3Y+]) /2 ' (3.32¢)
-0 (Y -])[ZY(Y+1)] (131,-101,,) .
p12(401 -401]+4310) S -
P3-= ,(521 ~70T,,) | - (8.32q)
f; _ Numer1ca1 method of so]v1ng the ord1nary differential
equat1ons for f@h‘Ho,' ﬁ'(1 1,2 3) is descr1bed in the fo]]ow1ngf

' ﬁ.§gpsecqun From ﬁﬁgse so]ut1ons the 1ntegra1s I0 Ii, I, }3,are ;

2 e

e



38

L

_'calculated' ‘The constants Pi» (1 =0, 1 2 3) are then obta1ned from the
equations (3.3])‘and (3.32). - IR B =
v3.2a_ Methodtof'561ution

The equat1ons for fO,H0 are non11near wh11e those for f

H (i=1,2 3) are 11near The prob]ems are of the boundary value type

‘that is, three cond1t1ons are spec1f1ed at n = 0 and two cond1t1ons

atn=n,. o
-Let us first conSider»the zeroforder prob]em » ‘._' o o i ' :'/'
. - - ) 7 ' . B 7 g //-
o+ fofd' + B(Hoefég)-=rolv 5 1 (3.12a)
H(')' + PrfOH(') -‘_2('1-Pr‘)[,(f"c',")2 + f(')“] =0 ?_"(3.-‘"2”; .
A : ' :?' : L . - ?
. o (0) f (0)'--0 3 B (0) = 0orH (0) %.H5~,
o) = 1l =1 j e

"Ear11er workers often used the assumptwon Pr =f]; wh1ch e11m1nates
'.the 1ast term in (3 12b) For Pr = ] and ‘the. 1nsu]ated surface»case
A (0) =0 (a]so for constant surface temperature case with- Hb 1)‘

: "equat1on (3. ]2b) has the constant solut1on H (n) _;‘ The zero order

‘,prob1em in sqgh cases. reduees to: the class1ca1 Fa]kner Skan prob]em

PR
il 7 B . _"*, b
. \ ) g0

A ol

e Ry rfyt + a7 =0 (3.352)
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$g(0) =05 £5(0).= 05 fhlng) = 1 - (3.33)
In the1r work on similar solutions of compress1b1e boundary

1ayers, Cohen and Reshotko [41] have studied extens1ve1y prob]ems of the

type (3. ]2 ,27) for arb1trary values of B. It was shown that for

'__pos1t1ve values of B, the conditions (3.27) are sufficient to give a

unlque so]ut1on. _In the present case B = (Y 1)/y is pos1t1ve
The non11near boundary value problem g1venrby equat1ons

(3 12,27) can only be so]ved 1terat1ve1y In the method emp]oyed by

Cohen and Reshotko the d1fferent1a1 equat1ons were transformed to an

/" R
integral system with f6 as the 1ndependent var1ab1e. At'each'iteration

stage a better approx1mat1on to the so]ut1ons was obtained by numer1ca1]y

".1ntegrat1ng two functwons that 1nvo]ved the current approximate so]u—

‘ t1ons ~In the present work we use a more direct approach callied the

shoot1ng metnod", where the solution to the boundary value problem is

-'obta1ned by solving a sequence of. 1n1t1a1 va]ue prob]ems

" of the’row vector

we f1rst cons1der the 1nsu1ated surface case. The equations

_(3‘]2) can be solved as an 1n1t1a1 value prob]em if all the elements

e = T60), fg,(O»)_,“fé'(p)-.aHo',w),‘Hg,<"0)J o Gaa

lare'known we f1rst assume su1tab1e approx1mat1ons oy .and A for the

unknown cond1t1ons f"(O) and H (Q) “With the initial cond1t1on

J.

" o '
A
W

L‘-y‘_’.'

CR

E
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5 . ¢ =1[0,0,0,, 1,01 (3.35)

the équétions (3.12) are solved upvtb,n =ng by the predictor-

"

~ corrector method described in'Appendix A. -From,thé solution wé note

>
|

R S 1= folng) - . (3.36)
" and, o . ' B] = %) o (3.36b) » |

. ' = . . ;' ‘ *L«; s :
which ‘represent the errors in satisfyingtfie eonditions at n = n

]

e’

—

The equations are solved two more times with the initial conditions:

B -

N o .

-Cé = [0 0, oy + a, A] , 0] - . _3“ "_ (3;37;)»
and c3 =00, 0, o , x]'+-e;no] . (3.37)

: ‘ﬂé small quantity ‘Let (A2 82) and (A3 B3) be errors corres—
5“to (3.36) in the two cases. Interpo]at1ng from the above’ re-
su]ts we obta1n more accurate approx1mat1ons for the m1ss1ng 1n1t1a1

: conditions:

L e(B 3-33;\]) o S
EERRRICS ) + A, (B B)+A3(B wy o (3
'.‘ B -B - ‘ - 4)»».
f2 T Rl aB ~ (3.38b)

YR (B2 B) + A2(B3-B RO -BZ) :

Vo
\
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'The'cégculatibhs are fepeatéd with these values of the missing conditions..
‘The iteration is.stopped when |A1f and |B]| becomeS'Iess.than a prede-.
_"finedvto1erénée. fhe initial appfoxfmations o]'and Ay are found_by
pre]iminary tr1§1s; The perturbatioh term € is prqgressive]y.reduéed
| as ggé solution aﬁprbéches cthergehce,' ’ |
For constant'SUFface te@perature case the missing initiaT

cond1t1ons are fg lgo) and HO(O) The above iteration scheme. is used

with
. f [0?_0;iu],th. X]]; »xf . : \ ._ '-(3;?9é)
- €2 = 10 04'51 ;»e’-Hb;'Xll"  A” :1.1 K <%'3?b)
. .cé = [0; 6, d.ll_, Hb_’ N + re] B ‘ | : (339C)

The prob]ems for f , He ( 1 2 3) are 11near and therefore,~
" can be so]ved d1rect1y For each i we so]ve ‘the f0110w1ng three’
1n1t1a1 va1ue probiems us1ng the pred1ctor-corrector method dessr1bed

in- Appendix A
- i)+ BH(]):% D o :

LMY ¢ LB M) L F2) )

| "f(”(o)}o oy 0 s Midy <0 ?
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W0y =0;u0M0)y=0 (3. 40)

LD (D) 4 g4l - g
ng')(H(z))'+.L§3>'(f(z)')_ o
#2)(0) ¥A0.§Ff(?5io) =0 f(Z)ié)‘= 13
12 (0) = 0 ; H(?)Eo).; o (3:41)
Lgl)(f(3));+ BH(?? ;q0v
,ng)(H(3))N;L§3)(f(g)> - 0_.’
: __»v"f(.”(b). - 0-;'vf(‘3)i0-)v.= o #3(6) = o ;
1'7 H(3?(oj . ;.H(3)io) - o} @for 1ﬁsﬁiét§d;su;féce) i
B | pf' 'H(B)(o)-f’b ; H(é)Zci ; 1 (fo}‘cénstan£-tgm§e'_yuren;urfaéejf(3.42)
'Tﬁg_sb1utjon.can'then ég.bbtaingd’frbm.‘

; vfi.

f(” +.Af.(2) . Bf(:.{)}.'." ' - (_3;‘433) o

N P f @ e g am) g

. : : ) ‘ ] LA
. o . - : B A O NS

T
L
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where the constants A, B are adJusted to satisfy the conditions f (n ) = Q-

and H (n ) = 0. A,and B are given_by

f“)<n )H(3)(n ) - £, )H“’( o)
f‘2’<ne)n‘3’< ) - f‘3’(n )H(2’<n )

(3.44a)

. RTCT # A n (n) s
f‘3’kn )H‘2’< o) - f(z)(n )H(3)( T

The FORTRAN program for the series so]ution 1s described in

' Appendix A

3 3 Finite Difference So]ution for the Steady Problem _
| The series expan51on solution discussed in Section 3. 2 has

3/2. This so]ution is therefore suitabie for

.an error of order X
‘suff1c1ent1y high va]ues of X on]y In the prob]ems conSIdered in

| “the present work XL* can be as ]ow as 0(1), which requires a more -

Zp accurate solution. In the current Section a finite difference method

s presented which refines the steady state series. expan51on so]ution
;The complete form of the tangent wedge equation is used.
For the finite difference so]ution 1t is necessary to specifym

‘ the 1nit1a1 va]ues of f(x],n) H(x .n) and. p(x ) on some 1n1t1a1 line

u".x'='x]{ In numerica] solutions of the steady boundary layer prob]ems

[22, 42 44] the usual practice is to specify these initnyl conditions

.at x Q. Since ai] the- x-derivataves are multiplied by X, the partialb

' differential equations (3 l) and (3.2) reduce to ordinary differentia] '

[N
-



44
equations innat x = 0. The”solutions of these ordinary differential
equations are then used»as the 1nitia1vva1ues This approach is
_‘quest1onab1e because it assumes the validlty of the boundary layer
equat1ons at x = 0. In the present work an alternate approach in
“line with that used by Baxter and F]Ugge-Lotz [45] is employed. The -
values given by the series expansion so]ution on a line x = X, near
the 1ead1ng edge are used as the initial values X] s’ given a

-3

value of the order 1077, which corresponds to X ~ 0(10 ), S0 that the

ser1es expansion so]utxons are of suff1c1ent accuracy at x = x]

Lees 51 mentioned (6*/x*)2 107!

as the limit of the app]icab11ity
- of the boundary layer equat1ons The present choice meets this cr1ter10n.

The 1nit1a1 cond1t1ons are, therefore,

pl? (n) Kb pzﬂz(n)+[p3 (rl)"'p] f3(n)]K

. | H A |
H(x] A.n)\ - Ho(n)+ p] '{;2) Kb .pz 2(71)"'[})3 2(71)+p'| 3(71)] b '(3.4k5b)_-

ek .pélpf sz |

plxy) = 1+ =7 iy e 3 b {3.45¢)

"where Xy XL* x ‘1/2 and the other qnantittes are as deftned_in the -
‘"_prev1ous Section .. o » ‘ V'A - _.

o The interact1on between the boundary 1ayer and the externa1
lalayer is 'tackled by an iterat1ve procedure Each 1terat1on cyc]e con-

fSISts of the fo]low1ng two parts

\é‘\.?‘ ’
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(i) to solve equations (3 1,2), for any given p(x) dist 1but1on
in the‘reg1on Xy £ x <1, 0=<n < ng subject to the 1n1t1a1
conditions (3.45a,b) and’boundary conditions (2.47) and (2.49),
(ii) to obtain a new B(x)-distribution from the solutions f(x,n),
H(x,n) of (i), making use of equations (2 43) (2. 45), (3. 3)
and (3 45c) ’
: .The steps (+) and (ii) are ‘repeated unt11 p(x) converges
w1th1n a specified to1erance.‘ Details of the two parts are given in

: the-sub-sections 3.3a and73.3bs'

8§

3.3a Finitebbifference So]utfon of the Boundary Layer Equations

From the series:exoansion solutions it can be observed that
the'xéderivatives of-different flow variables f, H, p, etc. are large
'for sma]] va]ues of X and the x-dependence decreases in the downstream
d1rect10n For the _same degree of accuracy a finite d1fference scheme
shou]d therefore emp]oy smal]er steps1ze near the leading edge. In
- the present work we use the fo]10w1ng arrangement of x- stat1ons, in
‘ mwhlch the step51zes 1ncrease in the pos1t1v X - direct1on in. geometr1c

‘progress1on:;

R i : Axi =Xy | - (3.46a)
AX, = x, -'xj )= Kb RE §52,3,...,d s (3.46b)

2 R

Here'K¥.is akconstant,greater than‘] and J_ is an integer such that
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Xy = 1.

| ‘In equations (3.1) and (3.2) the x-derivatives appear in
the form 4x 9¢/ax Where ¢ is a dummy_function._ A finite difference
formula’for this term for_the present~arrangement of x-stations can

be written as:
» % =>' : - ’ , | = .
- [ax ax]j B¢, (Bj+cj)¢j_] * Cio5.0s §=2,3,..d (3.47)

C. are given by:

where ¢j represents ¢(xj)_and the coefficients Bj’ j

Bj = 4(Kx+1)/Kx’, Jj=2

) 4(2Kx+1) X

T TR+ AX. j=3,4,...,9 - : o (3.48)
I X ~J ’ . C
w2
4K " x ~ e
—5731— §=3.4, (3.9

Th1s corresponds to three point backward d1fference formu]a for j=3,4,
0 and two—po1nt backward difference formu]a for j=2*. The trunca—
‘nt1on error involved in equat1on (3 47) is of the order xJAx (a ¢/3x )

for 3 =2 and x Ax (a ¢/8x3)j for j=3 4,. S

. For 3-2 ¢ 1s undefined. But since CZ has beeh set equa] to zero
" this does go% present any problem. This arb1traryness has been 1ntro-
duced for the sake of uniformity at a]] x-stat1ons 3 2 3, sds T :
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Substituting (3.47) in (3.1,2) we obtain

pJf"' +FLO4BE - (B#CFy 4 + Cif5 o]

_ e )f - )f: C .
fj[(Bj+Q$)fJ (ijcj?tl_ + 2] + Q H - (3.50)
dnd’ ,
pﬁ-u" + HiL(1+8 )f - (Bj+Cj)fj_ + 05,1
- ‘- » - 7" 3 3 | //
fJ[BJHJ (BJfCJ)HJ—l * O] ' //
%27, ﬂ’I'-‘ll-[(f") + £ f0 =0 ‘ (3.51)
“ 1 J'J - 7
lin'equations (3.50;51) the prime represents differentiation
- With respect tovn.ahd_the function Q(x) is defined by /
q(xy = el -2 L] 2
5 .

| At any'station X f xJ, fi HJ ],'f 2 and HJ o are all known functions

of n and p . Qj’ 50 C are known constants Thus equat1ons (3 50 51)
form a set of coupled non]inear ordlnary d1fferent1a1 equat1ons for

-

f ~and H of the form' '

. q]‘f.lt + ’aszl'l;{- ¢] (n)f“"‘ a3f.2 + ¢2(n)f| + G4H = 0 . (3_53)
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agh" “+atgfH '+ (N)H 4o FHr0 (R) Fraag[(F )2eF e ] = 0 (3.54)

where the o's are known constynts and the ¢'s are known functions of

n. -The boundary conditions are®

7o) =
S £1(0) = 0
B H'(0) = 0
.or ’ . \' (3.55)
N H(0) = Hb'
o= /5
Hng) =1 -

By solving.the ordinary differential équation problem
(3.53-55) ‘at x = Xps X35 +vesXg 6ne'can ‘generate a numérica] 561utidn
" of the part1a1 differential equat1ons (3 1,2) in the region Xp X < X3,
0<nc< e This approach ‘often called the "d1fference-d1fferent1a1
_ fmethod" in . the llterature was or1g1na11y suggested by’ Hartree and |
’ womersley [46] and has been used extens1ve1y by Mann and Bradley [24]
fand Sm1th and co-workers [42 43 45] in boundary layer problems. Be-
cause of the use of backward d1fference formulas for the x-der1vat1ves

th1s 1mp11c1t method is’ 1nherent1y stable [42]
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- shodting wh1ch reduced‘th1s sens1t1v1ty in certain cases of the

49
Equations (3.53-55) can be considered as a fifth order non-
linear boundary value problem with three conditions.s;zcified at n =20
and‘the othar two specified at n = Na- Such a problem can only be
solved ife::§jve1y, The method most commonly used is the "shooting
method" descfibed in Section 3.2 in connection with the problem for

zero-order functions fO’ Hy-

The shooting method, although adequate for certain problems,

has a severe limitation. In this method ‘it is implicitly assumed

that if the conditions at one boundary are perturbed by a small amount,
the changes in the solution of the initial value problem near the other
boundary will be of simi]ar'magnitude. But the equations (3.53,54)

do not have such a behaviour. The coefficients of some terms in these

‘equations involve the quantities Bj and Cj which are multiples of the
‘ jterm-xj/ij. The stepsizes ij are to be kept small to reduce the
“truncation errors of the finite difference scheme. This makes the

term x./ij; and therefore some of the coefficients of (3.53,54),

quite -large as the solut1on proceeds in the downstream d1rect1on

The presence of these large coeff1c1ents makes the solution extremely
sensitive to small changes in the initial conditions [42]. wWhile
exper1ment1ng w1th the~shoot1ng method, the present author found s1tu- .
ations where a change of 0(30~ ) in f''(0) could cause a change of - E :
0(104) in £ (n ). ‘The shooting method is obv1ously unsu1tab1e 1n such. |

cases. Cebec1 and Ke]ler [47] 1ntroduced a mod1f1cat1on called “para11e1

Falkner- Skan prob]em.i However, for,the»problem under cons1deratlon,

e
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this modification did not offer much advantage.

An alternative approach based on the "quasilinearization
method" was developed for solving the oroblem (3.53-55). The quasi-
linearization method, which is essentially an extension of the Newton-
Raphson method of solving algebraic or transcendental equations (Bellman
and Kalaba [48]), provides a powerful tool for solving nonlinear boundary

value problems. Radbill [49,50], Libby and Chen [51] and Jaffee and

-Thomas [52] applied this method to equations arising from the boundary

Tayer problems.

.-In the present case we formulate an iterative scheme, each
cycle of which involves solving linearized forms\of equations (3.53,54).
These linear equations are solved by a finite difference method where
the conditions at botn boundaries could be used eimultaneous1;. Bell-
man and Kalaba [48] and Kenneth and McGill [53] gave proof of con-
vergence for second order boundary value problems. Similar analysis
for the problems considered here are not available in the literature.

However , at each iteration cycl€ we have to calculate two gquantities

" which indicate how close1y the current solution satisfies the original

»

nonlinear equations. Exam1nat1on of these terms 1nd1cqte a uniform

"rap1d convergence and a]so prov1des a su1tab1e means of stopping the

j1terat16n after the necessary accuracy has been achieved.

A At éech stat1on xJ we solve for a sequence of functions
[m](n) H[m](n) m=1,2,. o startlng w1th a suitable initial assump-
tion f[ol(n) H[Ol(n) where each set of functions f[m](n) H[m](n),

: m = 0,1,2;;;.‘sat1sf1es the boundary cond1t1ons (3.55). At any station



xj/%he olutions of "the pfecéeding’sfation'xj_];aré used as the initial

- assumption. Thus we set

Oy = £ (356
w03y - ﬁjr1(n)'* PRTE   (3;565)

'If,wé introduce the,fungt{ons‘e(m)(n)vand»g(m)(n) such that

'@[ml(h) = f[m]injz— f[m-]](n) . B ‘;‘ (3;575)>,ﬁ

ol = ulgy ™) @)

& - o T | |
) * then at the m th iteration cycle the momentum equation (3.50) gives
- the®following linearized equatioh'for'e[m]f > ) _ -

CTe[mJJa¥+01[m](ﬁ)etm];{+Oétm](ﬁ)e[m]f+d3[m](n)e[m] = _ F[m](ﬁ)

';{;/,' - - T B o : §¥§

(3.58)
with the bouhdaty’conditioﬁs  ’

3

(1]
Lo IR
3
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~—~~
(=}
— >
|
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(3.59)
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~and

- The eoefficientsvin'eqhation (3.58) are defined be]owﬁ

| to][mj(ﬁ) =:(]}Bj’f[m'13(n)vr‘(é;+C;)f (n) 20, 5‘ (3-6055{e

(52
’é[m]f(ng)'?'o o o :h_~‘3?59°5k
L;,] . Py . ‘(3‘.V6§)‘a)A

jlj-2'"

Jj j-2

[m](n) - - 205 )f['“ o (n)+(B €, )f' 1(n) Cf ) (3.600)

-and

,0_3[m](n’) = (‘]‘fBj‘),f[m-']]lt"(nl) , » (3.60d)

el < G

- me‘IJié){(1+Bj)f[m'l](n??(Bj+°j?fj-i(“) £ C, fJ 2(n)}

b

- A0y (00 A )< (B0 )5 () 055 plm)1

B Qj ch'll(h)" L <_} ;’,_ N ’_(3.6Qe9

The funct1on F[m](n) represents the departure from sat1sfy1ng the

- momentum equatlon (3.50)\

ngen by equat1ons-(3.58-

t the m th 1terat1on cyc]e ,The prob]em

0) is solved by a matrix method described

SNTRPRISE S

e S
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The SO]Ut10" e[m](n) is then used to obtain
~ the next kmete f[m](n) = fm1(n) 4 e[mJ(n)

,_1n detai] in Appendix B.

~ From the energy equat1on (3. 51) we obta1n the fo]10w1ng
11near1zed equat1on for g(m)

T

T

with the boundary conditions:

g[m]z0)1=_0 for insulated surface

(3‘.265)
or [m](o) = ; foryconstant‘temperature sd?f#cé ‘:_' (3.p2b)
a»,"‘d‘ o S ». '. .g[m::«l(ne)ﬁ; 0 | (3;62c5
'Tﬁe;coeffféienﬁs‘aﬁpearfngziﬁ‘equation (3.6]) are Aéfined below:
%o ;”Bs/Pr S o (3.63a)
["‘3<n>- v— (148 )f[m](n) - (BJ¥cJ)fJ 1)+ 647y (.53
cs[mj(n) = f["‘](n) (3.63q)_ L

G[ml(")vs.;é' ﬁ[m#1]i$)‘

e s i

oo g N
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o wl- ‘](n){(1+a )f[m](n) (BjC)fyy(m) + ¢ s 2<n)}

[m](n){B 1. (BJ+cJ) i)+ ¢ ._Z(n)’}

2y ) (2 o f[“']&n)ff',“.].ir'ri} o (3.63)

Here aga1n, the funct1on G[m](n) represents the departure from satis-
'fy1ng the energy equat1on (3. 51) at the m th iferation cyc]e The
'problem def1ned by equations (3 61 63) are”§64fed by a matrix method
deta1ls of which are descr1bed in Append1x B. The so]ut;on g[m](n)
is then used to obta1n the next 1terate H[m](n) = H[m ])(n) + g[m](n)

P .
AN S

The 1terat1on is stopped after the m th cyc]e 1f -

max(] Ie[“‘JI[;llg["‘]II,IIF[’“.]II,l L N C R 2)
where ¢ is a_pfedefined tolerance and ||¢|| for any function ¢(n) is

<

[le]] = max {|¢(n)l} o ; h‘(3.65) e

o ~ Osnzng A |
-Once the:iljte:::h (3.64) is sat1sf1ed the functions f[m]( )

and H[m](n) are accepted as the so]ut1on at the stat1' X = x},'i.e:://y
fy(n)e= f.,[?mJ(n) | o %.66@1)'

»Hj‘(ﬁ) Sl S (3.66)

58
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(3.3). We. f1rst 1ntroduce the ‘normalized ¢

v 55
Thisacompleteg‘tne'Calculations at the j th station and the solution "~
pfoceede to the hext station Xj41" '

-7

_ For a tolerance € = 107, the number of iterations-netessary

was 2 in most cases and was never more than 4.

3.3b Sblution of the Interaction Equation
- From the‘se1ut{on of the bbunddry layer equations the pressure

distribution can nbw be obtained using._the equat1ons (2 43), (2 45) and

AN
o ' -/
5(x) = m_ X (34 (3.67)
SoXL* |
H-f'Z)dn o S
T(x) = L T — o (3.68)

6 and'I are constants assoc1ated with the zero-order. so]ut1on de-
fined 1in the Sect1on 3 2. In view of the: re]at1on (3 3la) between the

constants 85s Pg and 10, equat1on (2.45) becomes

p(X) (5]
§(x)

(3.69)

',From‘(2;43) we recall
1 il 2 172
P(X) = —=[1 + K =K+ [(-K) + 11 . 1]

»-IPOX . ) ' ' ] .

N



- 56
Th_1‘s relation can be inverted to give thé following expression fo'f‘K,
in terms of p: -
(ppyx-1)

K(x) = i -~ (3 .70)'
Iv* + (ppgx - 1) Y172 o

Since X = EL*‘X']/Z', equation (3.70) can be written as
-5y 1/8 -va]/z' : ' ‘
s(x) = — 177 (3.71)
Where ‘ . _ | »
s = xM ke (3.72)
t3‘=ipo YL* o ' L ) (3_.73)

"and P has been replaced by T/ from (3.69).
~ Now, from (3.3) ’

iy e Ldy
K_(x) - _Moo(eb tax!

ewriting'K'b = M8 and using thé relations (3.67) and (_3.:'72): we obtain

- os{x) = Ke, x-_[/4 + §4[%-6—f X g%] B _ (3.74)
" where |
| TSRS THAE N € B 5!

R
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Equationl(3;74) gives;the following differential'equation for §

e o (3.76)

. The method of obﬁajn1ng the pressure distr1but1on p(x) from
- the so]ut1on of the boundary layer equations can now be described as
| fona&s. | |

- From the solut1on of the boundary Tayer equat1ons f(x,n)
H(x,n) we calculate the I(x) d1str1butlon using equation (3.68).
Equat1ons (3.76) and_(3-71) then defines,a non11near flrst order
tordinary differential equation‘forAE'withhthe'initial condition:

at x = x]

j [H(x] .n) - {f' (X'I .n)} ] dn
0 p(xy)

(3.77)

V_where f(x],n), H(X];n) and'E(x]) are those given’in}(3 45). We then
'hsolve for G(x) and obta1n the . pressure funct1on p(x) from (3. 69)

: Ne solve the d1fferent1a] equat1on for § by an 1terat1ve
-; methbd based on quas111near1zat1on Let _{n](x), n=20, 1 »2,... be a
sequence of iterates sat1sfy1ng the 1n1t1a1 cond1t1on (3. 77)‘ If we

| def1ne a sequence of functfons

Iy - ‘{"J(x) G, etz (378)

e

~
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then r[ ](x) represents the correction to be added to the exie{ing solu-
t1on —[" ]](x) From (3.71, 76,77). we obtan‘\e following linearized
prob]em for T["](x): )

.~ and

X %_["L aEM(x) <[ < pInd(yy . (3.79)
,T[."J(x])'= o T (3.80)
" Where : -‘ v R o | [‘ ]j_, :
| [n],y - 3 _ 1 asytm11
S - o(y#1) T . y(3vel) 12, [n-1] |
3 5l L o3 -3—._+ x1/2y G.810)
L 2, 3-2 YY+1 __(y?_)_ 1;2{‘72 S
o 174 R -
D(n)(X)= ’X d—x ‘ —-(_). Kb X ,{n ] ) (3.8“))

B %4

The superscr1pt [n- 1] 1n the last terms of (3 81a b) imp11es that the
'current iterate § sin-11 1s to be used 1n p]ace of 5 The funct1on
D["](x) represents the departure from satisfy1ng the d1fferent1a1
equation at the end of the (n- l)th iteration cycle. ["J(x) is
' solved at the stations xj, j 2, 3 «.J by means of a fin1te d1fference

ﬁethod described in Append1x C The next 1terate _{"] = _{" 1] +T[n]
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is theén calculated. The iteration is stopped when

“max {ilr[nlll, IlD[nJ[l} <e

»

' where'ebis.a predefined tolerance and for any function o(x)

ol = max {]o I} : o (3.82)
' 1_j<J :
Once the cr1ter1on (3 82) is sat1sf1ed —{n] is accepted as’

'-thevso]ut1on 5. We then calculate
= T./8; »3=2,3,...0 ~ (3.83)

which gives_the pressure distribution corresponding to the T distri-

bution. ) 8 ‘

73;4A Results.of the Steady Flow ProbTem
_ The results of the serles so]ut1on method of Sect1on 3.1 and '
| 3 2 are presented in Tab]es 3 t..and 3.2 for Pr = 1,0 and Pr = 9x72 for
1 4. Correspond1ng resu]ts avallable in the literature are mostly _
‘conf1ned for the ‘zero-order solut1on and for Pr 1 0 Comparison
) with the ‘available: resu]ts are g1ven in Table 3.3. S
The ]ack of good agreement with the resu]ts of reference
>[13]‘is”due to the.factvthat 1nvStewartson s work the tangent wedge '

’ "approximationbwas not used. ,ReferenCeS [14] and [16] made use of
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1dent1ca] with the 1nsulated surface case,

| 60
x | * TABLE 3.1 |
RESULTS OF THE SERIES SOLUTION, Pr=1.0, y=1.4
| Constant Temperature Surface
Hy = 1.0% My - 0.75 Hy = 0.5 Hy = 0.25 Hy = 0.0
f5'(0) 0.76275 0.70985 0.65555 - 0.59966 0.54192
1(0) -0.439Q2 -0.38851 -0.33604  -0.28122 -0.22352
f"(O) -0.50238  -0.43317  ~0.36097 -0.28517 . -0.20488
3'(0) 0.37567 0.32262 0.26704 0.20833 0.14559
_Hé(d)' 0.0 0.12767 0.25152 ©  0.37118 . - 0.48618
H; (0) 0.0 -0.049415  -0.095230  -0.13684  -0.17343
H 200 0.0 -0.044431  -0.083600°  -0.11648 = --0.14164
: H3(0), 0.0 0.030704 0.057669 0.080050 © 0.096598
I, 1.3091  1.0802 0.84660 ~  0.60775  0.3629]
I 0.60845 0.49842  °0.38816 0.27797 0.16835 |
1, . 0.59464 0.48268 0.37213 - 0.26383 0.15905 °=~{’"‘5\
I3 -0.15318  *-0.12451 -0.094934 ° -0.067762  -0.040542
Gd | 0.73394  0.66669 0.59022 0.50008 - 0.38643
- -0:80117 ~  -0.88426 -1.0011  -1.1824 ~1.5227
8 -0.82398 ~ -1.0034 -1.2861 . -1.7975 . -3.0026
3 0.22395 0.27017 10.34326 - 0.47659 0.79750
' Py 0.50904  0.42008 0.32920 ©  0.23632 0.14112 -
P 1.4969  1.6418 1.8486  2.1792 2.8402
P, 1.5098 - 1.8139 .2.2948 3.1765 5.3451
Py 1.3067 1.5745  1.9986 2.7758 4.6750
*Fbr Pr=1. 0 the constant-tenperature surface case with H5 = 1.0 is



TABLE 3.2

RESULTS OF THE SERIES SOLUTION, Pr = 0.72, y = 1.4

o

61

- Insulated

Constantﬁtemperature Surface

Surface* H, = 1.0 H, = 0.75 Hy = 0.5 Hy = 0.25 H, = 0.0
f5'(0) ~ 0.73347  0.77184  0.71433  0.65514  0.59403  0.53065
f'(0) -0.40862  -0.44635 -0.39195 -0.33525 -0.27576 -0.21274
f2'(0) -0.45843  -0.50958 -0.43573 -0.35844  -0.27690  -0.18994

f3'(0)  0.33730  0.38013  0.32374  0.26443  0.20143 - 0.13354
 HG(0)  0.83244  -0.078114 0037865 0.15023 0.25859 - 0.36245
~ Hj(0)  0.0082451  0.036826 -0.0096634 -0.052783 -0.091917 -0.12620
H(0)  0.012646  0.039139 -0.0040486 -0.042388 -0.074853 ~-0.099956
H3(0)  -0.024620  -0.044235 -0.010735 0.019043  0.044208 . 0.063401
Iy 1.2175 © © 1.3903  1.1316  0.86725  0.59655  0.31850
I 0.56600 ~ 0.64181  0.51791  0.39369  0.26953  0.14609
1, . 0.54984'  0.62411 ~ 0.49885  0.37513  0.25400  0.13710
I3 - -0.17254  -0.17970 = -0.14593 -0.11225 -0.079041 -0.047019
5 - 0.70780 0.75637  0.68237  0.59737  0.49544  0.36201
8, -0.83070  -0.77930 -0.86640 -0.99244 -1.1985  -1.6318
S, ~ . -0.88748  -0.77852 -0.96141 -1.2609  -1.8406  -3.4377
63 0.21841  0.20040  0.24380  0.31388  0.44639  0.78795
Pg © 0.47342  0.54063 . 0.44001  0.33723 = '0.23196  0.12385
p; - 1.5524 1.4475  1.5976  1.8175 . 2.1863  3.0146
P 1.6183 . 1/4126 . 1.719%4  2.2220  3.2053  6.0359
P . -1.3305 . 1.1918  1.4507 © 1.8721  2.6830  4.8985

-~ For the_insulate
- Hy(0), H,(0), H,

T P -

d surface case the numbers given in
(0) and H;(0) respectively.

~.,

e

the rows 5{8 are
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(i}i TABLE 3.3
COMPARISON WITH THE AVAILABLE RESULTS (Pr=1.0, y=1.4)
ource = ) = = = = =
h (H,=1.0) K 1.0 Hy=1.0 (Hy=0.0) (H,=0.0) tHb 0.0)
Stewartson [13] 0.555°  0.88]
Li et al [14] 0.514 0.766 0.149 0.539 0.408

Nagakura et ai [15] 0.510  1.49 0.764
Present work 0.50904 1.5098 0.76275 0.14112 0.54192 - O.48618

the'tengent'wedge approximation However, the method of so]y1ng the
bOundary layer equat1ons were d1fferent in the two works. L1 and Nagamatsu
used ana]og computers: while Nagakura and Naruse used von Karman's 1ntegra]

method. In references [13] and [16] a two term express1on of the fonn

®

P =P, X + constant

- was obtained for the pressure on a flat plate at zero 1nc1dence  The
constant term corresponds to PoP> in the present notat1on.

In Figures 3.1 to 3 8 the results of the series solution are
conpared with those of the finite difference so]ut1on The f1n1te
d1fference so]ut1ons were carr1ed out w1th the f1rst stat1on x] = 1./1024
and K ] 15. This corresponds to 36 X~ stat1ons between x = 0.0 and

Cx = 1.0, The step sizes in the n- d1rect10n were. taken as 1./16 which
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corresponds to 129 nrﬁtations.
Figures 3.1 and 3.2 showvthe v%locity and/total”’enthalpy

profiles at fouh different locations x =.0.25, 0.5, 0.75 and 1.0 along

a flat plate at ah angle 2° to . the free stream with M_ = 20.0, QL* = 8.0,

Pr = 0.72, y = 1.4 and Hb = 0.5. Since the error involved in the series

solution are of order ¥ -3/2

the agheeneht improves in the upstream
difectipn. The overall agreement is goo; because of the high. value
of ;L* . - Figures 3.3 and 3.4 show the variation of the surface shear
function fh" the surface enthalpy grédient HB, the nondimensional
pressure and displacement thickness p and § along the plate obtained.
by the series solution ahd the finite difference solution. The series
‘ so]ution:prEdicts lower values for fé', HB and p and>higher va]ueg for
§, the d1screpantiés being offthe,order of 10%, 5%, 15% and 10% at
x =1.0. '
| Thé”agreémeht.between the series solution and thetfinite
d1fference solution decreases with the decreas1ng values of XL* be-
cause of the larger error terms in the series so]ut1on The disagree-
" ment becomes s1gn1f1cant for XL*'< 4. In Figures 3.5_- 3.8 the he- '
sults from the tWo-sb]dtions are compéred for a flat p]atévinc1ined
at an angle of 2° to the free stream w1th M = 10.0, Pr = 0.72, o
= 1. 4 and Hb = 0 5 for XL* = 2 0 " The d1sagreemeht is -quite notice-
able as can be seen from the ve]oc1ty and tota] entha1py profiles in

';F1gures 3_5 and 3.6. The var1at1ons of fé‘, Hb’ p and & along the

B2

p]atevahé shown in Figuresv3,7-and‘3.8. The values predicted by the B
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series solufﬁon at x = 1.0 are about 70%, 20% and 25% less for fo's

-

l

Hb and P respective]y while the value for & is about 50% higher.

-
oy

In the remaining figures of,;h1s section the results from

the finite difference sglutibns are pfeéented to show éﬁ% effects of

Ny,

M= 20, Xi‘

o _ ' .
changing the parameters b Hpo XL* on fb » Hy » pand § .

Figures 3.9 through 3412 shows the distribution of fé', Hé,
§ and p along the plate for B = - 2°, 0°, 2°, 4°, 6° with Pr = 0.72,
y = 1.4, M =20, H = 0.5 and XL« = 8-

Figures 3.13 through 3.16c5resents the effect of increasing

XL* on the d1str1but1on of £ Hé, 8§ and p along the plate for

b t]
Pr = 0.72, y = 1.4, M, = ]0 Hb = 0.5 and 6y = 2°.

Figure 3. 17 through 3.20 shows the d1str1but1on of fB' Hé

8:0 and. eb = 2°.
y

¢ . C .
{ L
i b

oo
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S anu 1 along the p]ate for Hb = 0.0, 0.5, 1.0 with Pr 0.72, vy = 1.4,
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© CHAPTER IV
.~ THE UNSTEADY PROBLEM
4.1 The Inftial Conditions | A (\f i}t)

In this chapter we consider the unste?é ys;da f?m on a
plate, whose inc]ination to the free stream has been impulsive]y changed
to eb gat’'t =0 from the original inclination 8 K at t < 0. The
~ steady state solution of the last Chapter, corresponding to eb b'i’.
describes the ftow on the plate prevai]ing at t < 0. At the instant’
'of the impuISive change (t-O) the spatial distribution of the velocity
and temperature field with respect to the flat ‘plate is given by this
‘steady state-so]ution. However.»the change in the inc]ination‘of the

plate changes the shape of the effective body which in turn changes

“  the pressure distribution.

J

) “The initia] conditions in x are specifieo at x = x, for

t >0. In accordance with the aporoach"in the steady problem, we
'assume that the series soiution corresponding to eb = eb £ gives the
soiution at x = x] for t > 0.- This is equivalent to assuming that the
'-final steady state is reached instantaneously at x = Xq- This assump-
. tion is justified because the close proximity to the leading edge makes

the flow at x = x1 extreme]y insensitive to the ang]e of inc]ination

o oand the initial and final- steady state solutions there differ by

‘less . than,1¥ Thus the initia] conditions in-x are given by
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for t >0
: T, (n)p K PoTo (n)+[p F,(n)+p %F (n)]K
f(xyn,t) = fo(n) + Tiuf o 22 32 771 3 b (g)
1 0 112
: : _X1
nmwn 07, (n)+[p 4, (n)+p1 2 (n) 1K
HOxpanat) = Hyn) + _1}2b f "2 Al i A) " 113 b:f (4.2)
~ X Xlz‘
, Py K P,tp, K : ,
- 1 %, P2*P3 Ky f ‘
P(Xy,t) = 1 + — + = (4.3)
1 “x117- 2 3 |
L g s
where x; = X« X /2 and Kb.f =M, eb‘f. w
The initial conditions in t are given by . STy
‘for x > x| ' | 3 .t
f(x,m,0) = £ (x,m) (4.4)
. .
Hoona0) = KO ) . (4.5)

: Qhere f(o) and H(O) are the steady state solutions,cor}esponding to
b’;eb = eb i obtained by the finite difference method of Section 3.3.
The initial pressure: distribution p(x,0) = '{0)(x) is calculated by the
method of Section;3 3b using Kb o in place of Kb The 1n1t1a1 and
'boundary céﬂﬂf;ions are shown schematical1y in F1gure 4 1 .

.4 2 Finite Difference Method for the Unsteady Problem
- The unsteady equations are solved at discrete time- -steps
»ti' i= 2 o< T with stepsizes 1ncreasing progressive]y in the positive

_vt-direction o o
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G F
x
0O . X
A B
/
I'd
<
H - E
t B E ' on ABEH: f-0; ¢ -0; H-Hb“_orH'-D*' A
on FCDG: £'= 1; H=-1 ”

on ABCD: £=°; H=H% p=p° -

od ADGH: £ =1; H=Hy; p-p,

Figure 4.1 Arrangement of the Boundary Conditions (Schematic)
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(4.6a)

(('I{;/eb)

Here the first timestep At] is of 0(10'3) and Kt is a constant greater

than 1. The arrangement of x-stations is the same as that given in

(3.46). Figure 4.2 shows schematically the arrangements of x and t

;tatiohs.
—.1Ax‘l AXJ-‘ AXJ
! !‘— 1 4 cee J |1 L e 1 3 3
Aty 0 xy xg9 x3 Xj.2 Xj-1 % X 1.2 Xy x
- " ‘
= '2
- "3 ij = KX AKJ-];J‘= 2,3 J
v , At; =K, At;q,i=23...
— t;- .
‘ Atir" : ‘.‘ ‘Kx,K' >1
—1ti
At
—1tj

Figure 4.2 Schematic Ariangement=of the x and t Stations

& -
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We introduce the notation

£ (x,n) = f(x,n,ty) | (4.7a)
H (xn) = Hixan, ty) (4.7b)
7 (x) = Blxuty) ete. (4.7¢)

For any function ¢(t) the first derivative in the backward difference

form can be written as:

where the,qhant1t1es

= u.¢(1) - {u,tv )¢(1']) +v ¢(i'2) (4.8)
i i i
\ui, v; are given by
K, +1
1 t
Uy = — for i = 1
i At1 Kt
1 2Kt+1 .
.= K{i— (—K?T—) fOY‘ 1 > 2 (4-9)
vy = 0 for 1 =1
- ‘ K£2 ‘
> 2 (4.10)

.

1
= — for i >
At1 Kt+| 3

in equation (4;8) is of the 6rder of(Ati(32¢/at2)(i)
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for i=1 and At12(82¢/at2)(1) for i > 2.
Using (4.8) equations (2.33) and (2.34) can be written as

o
3 2 2 2
i a~f 3" f of f of 3 f
5( )(X) ;;3-* f ;;g - 4X[5;'(5;§;‘+ i) - 5;‘;;§J
(1-1) (i-2)
Fadev) 350w BT oW pe@h?y - 0 @y

2, 2 3
+ 2 P:—] 5(1)( ){(_a_g_) + .a_:a__g.} =0 (4.12)
an an

_Here.absence of any superscript in f and H indicates f(i)(x,n) and

H(i)(x,n)ﬂ Q(i)(x) and R(1)(x).are given by

-~

x

=i)
Q(i)(x) = 8[1 - %%T7.§§;l—ﬂ : (4.13)
pt
(1) x_ op (V) |
and , .R (x) = 48 3y (Bt) | (4.14)

p

The use of backward difference formulas for the t-derivatives
results in an implicit scheme which is 1nherent1y stable. At each
time step t = ti, 1=1.2,3,... we ipproxjmate the functions 5{1),
Q(i) ahd R(i) by,extfapOIating from‘theAyélues at the previous time-
~ steps. The partial diffgrential'equations (4.i1,12) are then solved

in the region X] £ X 5;xJ. 0<n 5_né'usiﬁg the initial conditions

]
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(4.1-3) and the boundary conditions (2.47,49). The method described
in Section 3.3a is followed. From the solution we then obtain B{‘)
{n accordance with the interaction equattions (2.43-45). The solution
then proceeds to the next time step t = t1+]. The solution {s continued
“til1l ap/at Momes less than ]0'? in magnitude and is then compared with
the steady state solution correspondiné to 6 = 0y - The method of
solution for the time steps t, and t, fis different from that for the
general time step ti' i > 3. They are described in the following sub-

sections.

4.2a General Case, t = t,, i >3

At the time steps t1(133) we use the following extrapolation

formulas for 5(1), Q(i) and R(i)

5(1)(,()

]

()P 00 - k@t 0 (4.15)

(M ix) = (e eV - k¥ (@ae)

(2,501 (x)+255¢ -2 ()45t -3) ()1

‘ (i) X -
- RV /(x) = z — — (4.17)
Ati ]: 24513 1)(x)‘+ 6134?)(5)
where . ’ 2
. 4 (ZKt+]) Kt (4.18a)
z, = - .18a
1 (Et+1$ |
2 .
2K, T+2K, +1 . ’
z, = _EE___ELE. , (4.18b)

(KK
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(2Kt +K +1)(K +1)

- 2= - T (4:18¢)
(2K +1)K » :
'l+Kt : ’
Z4 = - T— : ! ‘(4.18d) )
S 4

L8

’ The truncation errors inrequétions.(4.15), (4.16) andn(4;17)’
are of the order of Atjz(azg/atz)(i), At%z(BZQ/atz)(i) andvAt12(83p/at3)(i)
respectively. ) | _ ‘ N

With these véIUes/for B(i). Q(j)‘and R(T) ¢he equations (4.11)
" and (4.]2) can now be sp]ved in thg region X} £ X 5;xj, 0 f_n f'ne:
The method discussed in Section 3.3a is followed. The x-derivatives
are replaced by backward'difference formulas and the resulting ordinary v
d1fferent1a] equations are so]ved at the s%gt1ons X3 (3=2,J) using the
1terat1ve method based on quasilinearization. The linearized prqb]ems
to be solved at the m th iteration cycle are given by (3.58-%3) with. “
the %o]]owing eiception§{ ' ‘

cz[m](n) = - 'Z(Bj,,qj(fi))f[vnnl-"l:.‘in\)+(8j+cj)f&_-l(h)-'.ij:'j_z_(n) - 4xju‘i (4.193)

Fmn) - 53(1) fm=1300)
o £t c0em)AMHn)-(Byre )£ () + ¢4681 ()3

- A eI A1 n) - (ayec )68 1 (e ) ()

L.

oy W)
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h . ax;uy fL™ ‘](n) (ugvyf (URITR v f (-2) () (4.190)
‘\2,
B os[m,](n,) = ij[‘“]fh) - Axgug + 'ij_(i) o (4'2035
Sy = BTy
ol D148, £ )-8 5, ff“)(n) . cy f(’);n>}
ﬁmmnaﬂmUM) w+cm“Nm+cu“Nmf
»; : &g;;xa;inumzmz + 2oy £
]y (G 2
axg Qugh™ 0 n) - Cughvyiy o (n) + vy Tt
B e

_ " Here f[m](n) and H[m](n)~ere the.ﬁ th iteratemfor fgi)(ﬁj
eand H(])(n) The eXtra terms fn (4 19,20) over the correquhdinguex-- '
~pressions (3 60c,e) and (3 63c R} result from the t- der1vat1ves in
© (2.33,34). These extra terms do not present -any add1tiona1 d1ff1cu1ty
and the matrix method described in. Appendix B is used to solve. the
linearized equations for e[ m] and g[m] .
. After so]v1ng f (1)(n) and H (1)(n) gt all x-stations

x (J 2 J) we calcu]ate :



.

L e
i o AL R (1)

The pressure distribution —<1) can now be obtained from the equation :
,>(2 43 45) by the ‘method described in Section 3.3b. We first convert
. the prob]em into an ordinary differential equation for § i) in X. This
is then so]ved iterativeiy using the method based on qua51iinearization
The linearized prob]em.at the n th iteration cyc]e is given by (3 79 81)

w1th the fo]]ow1ng exceptions

["](x) +{x ugl

'(‘)[ﬁl;—L T“)/a + ﬂ—lr)-' ”23 l[n ”(4 22).
7z
c4<s [ﬂlg—)—c iz +1(12——)- 172

D[n](x) ‘f' g§: %-3'+ x{u 8 - (u +v )_41 ]) + v1'<1 2)}
T3 I(i)/gi- X]/a N - Ky x1/4 [n-11 -
(4.23)

‘4 [jr_(x;_)_ ;31‘(1)/5 + 1_(12_1 1/2]”?- T f

The superscript [n 1] in the - last terms of(4 22)and(4 23)

- impYies that the current iterate 5 [" ]] is to be used for 6.' ;3

and ;4 are: constants defined in (3 73) -and (3. 75) The tenns inside

the cur]y brackets resuit from the unsteady term aa/at in equation (2. 44)

From the converged so]ution —(1) we ca]cu]ate the pressure distribution .

3

3
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R ;.=2’J_ " ‘4.‘24

From this~5(?) we then calculate Qj(i) (j=2,J) using the finite dif-

ference formulas given in Appendix C.

4.2b " Second Time Step -
‘At the second time step (i 2) the extrapo]at1on formula _
(4 17) can not. be used to approximate R(z). In order to maintain the

_ same order~of accuracy we use the fo1lowiﬁg'1terative scheme:

“%f ?) and Q(a) are obtalned from (4. 15) and (4 16) and R(z)

approximated by -

-

(4.25)

- | g 0,y -
R(z)(x) L P00
| A%y LK, B (x)K ‘Wooj

4 - The formula (4. 25) has a truncat1on error of the. order of
At\ (azp/atz)(z) N1th these va]ues of _(2) Q(z) and R(z) the method )
descr1bed in Sectlon 4.2a is fol]owed to obta1n a better approx1mat1on

- .for p —{2) and Q(z) R(z) is then obtained from-

R(z)(x) . 48 X [(ZKtﬂ )E('Z‘)(x)'(HKt)ZF(]).v(‘x)fKtzE(_O‘).(X’)] _
(4.26)

.. B - . _

which has the same order of truncation error as equation (4.17). The

’ ~ea1co1atiohs are repeated»with”;hesevvaldes of 3(2), 0(2? and R(2),
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The iteration is coniinued'till 5(2)‘con9erges within a
predefined tolerance. Not more than three iterations was necessary to

stabi]izeii(z)'to six sjgnificané digits.

4.2c First Time Step - ‘ v A
At the first time step (181) we use the fo]low1ng 1terat1Ve

We start with the assumption _(])(x) = —(0)(x) Q(I)(x) = Q(o)(x)
;R(])(x) =0 and fo]]ow the method . described in Section 4 2a to obtain f
" a better approx1mat1on for p —(1) and Q(]) R(])(x) 1s then obtained »

~ from o ' :

-(1) -{0) . 8
1 : : 4 97,
Rl )(x) 45. At] ‘ b](g(x) (x)- S (_4"27)

wh1ch has a truncat1on error of - order Atl(a p/atz)(]) Weirepeet the

ca]culations with these va]ues of p ‘(]) 0(1) and R(]) A ' ‘
v The 1terat1on is continued t111 '{]) converges with1n a

apredefined to]erance 'To stab111ze —(1) “to s1x s1gn1f1cant d1g1ts, .:}' .

the number.of iterations.necessary was between four and six:

'4 3 Resu]ts of the Unsteady Prob1em
The var1ation of p, f"(O), and H' (0) with t1me 1s presented
1n Figures 4.3 through 4 5 A]] curves are made for Pr = 0.72,,y , 4’,
. XL* -8, M = 20, and the change of ang]e from 2° to 6°. The initiaI‘\‘
'and final states are also indicated. ' -

. Figure 4 3 a]so 1nd1cates 10cation of the condition t*uajx* =
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- which corresponds to the d1scont1nu1ties quoted in the 11terature s, 31].
The d1scont1nu1ty 1s avoided by suitable formulation of the variab]es,

and in particular by avoiding the variabIe of the type t*”«/x* :
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CHAPTER V
APPLICATION OF THE SOLUTIONS

5.1 Aerodynamic Characteristics of Slender Wedge Wings

| Figure 5.1 shows thé various forces acting on a slender wedge
" of semiﬁedge'ingie'ew at an angle of attack a. If"the sub#cripts T
~and'B represent the top and'bottom'surfaces of the wedge respectively,

then the total normal force per unit width acting on the two sides are

o

Figure 5.1 ~Aerbdynqm1c»Fprcés Acting on a Wedge

- . . . ~



L*
(FN*)T.B = I (p*)T,B dx* (5.1)
o .
% . - 1
(F*) 2Pn Xy w -
or N 7.8 . 0L f X ‘/Z(B)T’B dx (5.2)

Tl .
pomrr S g

The total tangential force per unit width on the two sides are given

by ‘ n
- L*
(Fg)yp = | (g ox* (5.3)

0

where t* 'nis the shear stress on the surface given B'y

. * . ’
SRR | , (5.4)
‘ y*=yf

. -

Using the transformations of Chapter II we can write

— 3/2

. ‘. 2 ; ]
: * . _ .
r*=%—p; u;z po]/z—xl‘—a—- X 3/4 pi—g-l » (5.5)
' . A an~ n=0 .
Therefore from (5.3) we' have
| ) V- 321 L
(F*)y g Pg X+ .34 = 3%F |
: n . = x (p —> |n=0) dx (5.6)
s -‘Z.quw’L" ﬂq ' o : 133 E T’B :

" The 1ift and drag ?:oéffi'c'i'ents of the wedge wing can now be giy‘en as

102



(Fy*)g - (Fy*)p - (Fg)g 0 + (Fg*)y 0g

CL =

% p*u*ZL*

_(Fghg + (FgM)p + (Fyt)g 05 + (Fy)goy

D %jp*u*zL*

where

o

Using .(5.2) and (5.6) we have

12— 3/2

ZPORL* Po

103

(5.7)

(5.8)

(5.9a)

(5.9b)

. |
o m g Dy - ) - [ g%z, 1001 (5410)

Y"

172 3/2

P 2P Xy »

¢ = t* [y + Jy Bt
D T“];Tr""‘[ 2.8%2,1] e [9; g%, 707]

wherevdl, J2 représent the 1nte§ra1$‘

1T
3 = f' x V2 5 dx
o
J, = I -[x'3/4 B’g—g | 1 dx
-~ 3~ n=0

DAO
The 19t to drag.ratio is given by C,/Cp.

V.

(5.11)

(5.12a)

(5.12b)
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The position of the aerodynamic centre is given by

L* . L
. -:(Q x* p§ dx* - [ x* Py dx*
Xac . %-p*u*zL* (5.13)
L o0 oo

or in the nondimensional form

x:c J
Xac = Lo = XL*1/2 (5.]4)

(9,879 ,7)" %‘“‘T72“ (92 g8~z 17)

Here J3 represents the integral

- ‘l
J3 = f ]/2 p dx - (5.15)
: .

/

The rate of heat transfer to the wedge p&Junit area at any

point 6} the surface is given by

a* = (kr 23 - (5.16)

y*=y§

Making use of the transfdnmations of Chapter II we can write

> - - 3/2 ‘ 'g
*_ . 1 1/2XL -3/4 — s
%_p.u,s r P pvn- i RS Bn | =0] (5.17)

If Q* denote the total heat transfer rate. per unit w1dth to one side of
the wedge. then

S

\



N ~ 3/2
@)y 2 e (518)
Pl "2 000
where J4 represents the integral
! oM
3 - f (x5l (5.19)
n=

.
The integrals J]. JZ’ J3. J4 are of the form
1

f xw ¢(x) dx (5.20)

o

Because of the special arrangement of the x-stations used in the nu- A
merical method, the function ¢(x) is given as a set of values ¢j at

the abscissae xj. jfl,Z,...J. A modification of the Simpson's rule

to evaluate the integrals of the form (5.20) is described in Appendix D.

~
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 APPENDIX A |
NUMERICAL. METHODS FOR THE SERIES SOLUTION

In this appendix we describe ‘the numerical procedure for
so]ving the coupled initial va]ue problem of the fonm

fFroooa r(f,f-,f'!,u.¢1(n)) o (Aaa)
H..ll =tG(H;Hi_;f,f',f",f" "¢2’(n)) ’ ‘ | j‘_ (A.]b)

'with the initial values f(o) f! (0), f"(O)..H(O) and H (0) spec1f1ed
o ¢] and ¢2 represent known functions of n- ‘A predictor corrector method
us1ng .the Fa?kner extrapo]at1on formula for predictor and the Adams

interpo]at1on formula fbr corrector is employed This . scheme was

Zx‘or1gina11y chosen hy Smith and C]utter [42] because of 1ts su1tab1]1ty

in. h19h order problems of the fonn (A 1). ,
He d1vide the interva] 0 to n'= n by (N-1) un1form

_steps of size h._ For any function ¢(n) we use- the notat1on

. where T me = kDA, keTi2,30 N 0 (A.3)

 Let us consider the general situation where the solution has



A2

progressed up to hk » k > 4. Extrapolating from the known values of f,
H and their derivatives at the last four n- -stations, we predict the un-
known values at the station k+1. Representing the extrapolated values

“With the superscript ~ , the Falkner extrapolation formulas can be

_written as:
~ . . N ’
frar = '+ [55f"' 59f£'i+37f§'é-9f"'] (A.4a)
L = L h N " r. 1 ' - )
fr = i+ EI'[ >k ’59fk 1H37f 0,91, 33 (a.4b)
?k+] = f + hf 335 [323f '-264f) ! ]+]59f 2-38fk 3] (A.4c)
0 = Ut h 4 [ 1 v .
Hk+] = Hy + 23‘[55“ -sguk ]+37Hk 2~9H 3] (A.4d)
B H e B [55H!-59H! _+37H! . -gh: ']  (A.ge)
k+1 k" 2% k™27 k-1 k-2"""k-3 e MR

The va]ues of f"f and H'' at the stat1on k+1 can now be eva]uated from
- A. ] and A.2 us1ng the extrapo]ated values:

| . | :. fé;i ‘F(fk+]’fé+1’féll’Hk+]’¢],k*]) '(A.Sa)

o e T G(Hk+1'Hk+l’ k+1’fk+1’fk+]’ k+].¢2 1) (A.5b)

\

The Adams 1nterpolation formu]as are now used to determ1ne more accurate

o va]ues of the unknawns at the stat1on k+1:



A3

| . e h t i [ I ] 111 10 | .
fi+l fi' t ?T [gfk;]+]9fk -5f 2] , (A.6a)

fiend

[fk+]+19f&' ka ]+f"2] . : (A.6b)

2
+ hep + 1 [38f" +171f"-36f" #7620 05] (A.6c)

-+
L]
-

k+1

k k+1
' ETY) h e ‘ ' || »I
= h ' '“ ' | o .

The values of fesp and Hk+t are then calculated from A.1 and A.2. This -

completes the calculations at the station k+1 and the solution pro-

ceeds to the next station.

3

The errors 1nvolved in the formulas (A.4) and (A.6) are of
order (h %) or ]ess However, “the_errors in the extrapo]ation and the
1nterpo]at1on formulas are of opposite s1gns  Thus, the abso]ute |
»value of the dlfference between the predicted and the corrected va]ues
prov1des an upper bound for the error at that particular step If we |

‘Vdefxne

.E _g max {l$ '¢ I s ¢ = f’fl:f|.sf'Jl’H3HisH'|} : (A'7)
kT Max Ue-el 5 ot o AT

- then the error at an&!point:in the'solution is bounded by -
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| L)
The choice of the step size h is governed by the maxinium tolerance
allowed on €max: 1N all the pYoblems solved by this method, h = 270

(corresponding to N = 513 for n_ = 8) was found sufficient to bound
e . _
€ Within 1077,

To start the solution by the predictor-corrector method

described above, so]ut1ons at the stations 3, 4 are required.

'The va]ues at station k=1 (n=0) are prOV1ded by the 1nit 1 conditions.
The solutions at stations 2,3,4 are obtained by a Runge- Kutta method
described by Romanelli [54]. Subroutine RKFA solves the initial value

problem A.1‘using the_ébové.algorifhm.
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APPENDIX B
'METHOD OF ‘SOLVING THE LINEARIZED MOMENTUM
AND ENERGY EQUATIONS “
. )

In this appendix we describe the finite difference method of
solving the 1ihearjzed'5rob]ems (3.66,67) énd (3.69,70). We use uni-
form step size in the n—direction and follow the notation of equations
(A<2,3). |

The following «finite difference formulas are used:

Five point symmetric'formulgs: ' \» : : o

.'(dj%) = (- +2¢» 3,0, )/2h3+0(h2) | -( )

a3 & k=2 201" Puap) /20 - Bt

< (95%9 = (-¢ +i5¢ -30¢ +15¢ ‘¢ )/12h + 0(h4) (B.1b)
'l Kk k-2 P17 P "Pke2 '

(aﬁ) (¢k 2 8¢k ]+8¢k+] ¢k+2)/12h + 0(h4) ‘ - (B.1c)

Five point unsymmetric formulas:

(One forward and three backﬂard points)

(—8—) (¢k 3-6¢k 2+12¢k 1-10¢k+3¢k.,,])/2h + o(h ) (B.2a)

(__g.) = ( k 3+4¢k o*69, _ ]-20¢k+11¢k+])/12h + 0(n° ) (B.ZP)



B

d 4 ”
(G = (-0p_3+60, ,-180, 1 +108,+30,,1)/12h + 0(n*) (B.2¢)

k

(Four forward points) o
() = (-256,+48¢, ,1-360,,,+16¢, -3, ,,)/12h + 0(h*)  (8.3)
n’ k k+1 k+2 k+3 k+4 :
(Four backward points)
d _ 4
(3%)k = (3¢k_4-16¢k_3+36¢k_2-48¢k_]f25¢k)/12h + 0(hY)  (B.4)

Three point symmetric formulas:

2

(%—%)k = (812840, /0E + 0(n°) (B.5a)
n ) v

(%%0; = (=4, _*9y47)/2h + O(h?) ~ (B.5b)

i

Three point unsymnétric formulas: (Two vforw’ard points)

(;ﬁ% = (=36, 440,10 4p)/2h + O(h%) (8.6)

&

The problem given by equations (3.66,67) can be written as:

ae''' +b(n)e'* + c(n)e' + d(n)e = f(n) (B.7)
~
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B3
e(0) = 0 - (B.8a)
e'(0) =0 - (B.8b)
e'(n,) = 0 _ ~ (B.8c)

where a is a known constant and b,c,d,f are known functions of n.

Rep]af1ng e''',e'',e' by the finite difference'formu]as we

obtain the following system of linear a]gebfaic equations for the vector

‘i, ek(k%]’N)

a8 o o Tl [/
A2 By G D By - S B B N L R
Ay B3 (3 D3 E5 | | le| |F3 |
A S {//”’h\\_
A, B G L - e [T Rt "
; |
O Puos By Oyis Duea Ey-3 |n-3] | FN-3
An-2 By 2 ON-2 On-2 En-2 | (en-2| | Fin-2
An-1 By-1 Cn-1 Dy EN-lA ®N-1] | FN-
g Ay By Gy oy By IBERINE
L | AL IR D IR B B
7 (B.9)
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‘”_or'

Me=F R (8.10)

Zero elements of the matr%x.M“afe not shown. The e]emenfs_in each!

réw are normalized gtwthat the magnftude'bf»the 1afgest e}emenf equals 17
The first, second and the last row of (B.9) are obtained “

from the boundary conditibns.(B.S)»andlfhe‘finite diffefence formﬁ]as .

i

(B.3) and (B.4). Thus we have

Ap=1,8B,=C =D =E =F=0 EENCRIEVE
. | . _
= _25 g - - _3 ce L = _ 1 . -
Ap=-gg:82°1,C=-3-0"3" Ep=-763F2"0 (B.11b)
R T NP R _.2 oo -
An="T6 » BN 3 N T N B Tas e iy T O (B.11¢c)

The rows 3 to N-2 are obtained from the differential equation

(B.7) using the.finite difference formulas (B.1). The elements are

N

E

given by - :
A = (- =170 * 17 Ck)fa _ \ (B.12a)
B, = (a +%hb - 50% ¢ )a ~ (B.12D)

3

o~

(@)
[

k i”(— %—hbk + h3dk)/a - : “(B.12c)



2
N 4 .0 2.2\,
Dy = (-a +'§-hbk + 3.hvck)/a
W
= (2. hy
Ek'(ZAZ T?) -

'fk = h3fk/a for_kf3,4;.-f.N-2

where a is so chosen that

J“ . max {Ak’ Bk’_ck’,Dk’ Ek} = ]

(B.
.

(B:

" For the (N 1)th row in (B 9) we have used the unsymmetr1c

. formulas (B 2) The e]ements are g1ven by
&

. _a _h he -, :
BT I e ¥ bm T 17 SN-1)/0

(33“%" T Nl)/o‘

z -

)
SO
1l

e h 32' .
N-1 = (83 + Zby g = F T oy y)/e

-
“~

O
=
—

I
~~
)

o

-1 o
wjen

b~

o

5 . 13
N-1 % & R ey * ) /e

(8
(B.

(.

(B.

(B.

- B5

12d)
12e)

12f)

.13)

.14a)

14b) -

14e)

.14d)

T4e)

14F).



' B6
" where o is chosen to satisfy (B.13). |

" The system of equat1ons (B 9) is solved by Gauss1an e11m1na—
tiou:with'part1a1 p1vot1ng. (B.]O) is first transformed into -

-

Ve =F . - ~ (B.15)

where U is a NXN upper tr1angu1ar matrix. Because of the"pentadiagonaT'

form of the matrix M U is also of band structure with four superd1agona1

e]ements in each row. From (B,IS) e 1s-ca1cu1ated by back subst1tut1on.
| The procedure out11ned above 1nvo]v1ng 1n1t1a1 sca11ng of

. the e]ements and part1a1 p1vot1ng during e11m1nat1on is recommended by

' w11k1nson [55], Forsythe and Moler [56] and is. known to restr1ct the

growth of round—off errors. The FORTRAN subg@ut1ne SLV5 was used to

solve ‘the lxnear system of the form (B. 9)

The 11near1zed energy equat1on leads to the prob1em (3 69,70)

which can be written as . _ B g

ag'' + b(n)g' +.c(n) g = d(n) . (B.16)
9 (0) 0 - for 1nsu1ated surface L o (5,175)
'or R g(0) = 0 for constant-temperature surface =~~~ (B}17b)

and o glng) =0:. . © (B.17¢)



B7
’ Here a is a known~constant and b,c, d are known funct1ons of n.

Swnce (B 16) is a second degree equatlon the three po1nt
formh]a;-su,s) are suff{c1ent for truncation errors of O(h ). The
foT]oﬁinQVSystem»of linear algebréié équations is obtained,for the
vector g, (k=1,N) | o ‘

- S I e
Ay By G P I 1
A3 By G ’ 93 | 03
. Ak‘ .’ Bk Ck . N v gk = Dk
) Au-2 Bnz On-2 | 9n-2|  |On-2
Anat Byer Onarf o j9n-1| PN
" AN 'BN,‘ IN .DN
. = L - L. -
. i
i (B.18)
‘From the boundary condifions»(B,17) we have
A = —'3” B =1 C, = - D, =0 RS (B.19a)
1 =3B TG mmg.D20 (8.
for -insulated surface
.. _or o : _fA] =71, B]2= 0,C=0, Di =0 T (B.19b) -

for ‘constant-temperature surface



ghd

.o

For k = 2,3,...,N-1 we have from (B.16) and (B.5)

A = (a-Bo 0

- ’ 2 :
kK ‘(52a + h ck)/q.

oI
]

= (a 4”%4bk)]a '

~
H

; o
: Dk = h dk(a

The scaling factor a is so chosen thaty

e

- ’ »Ima,x (A, ? Bk.’ Ck} = 1.‘ ,

AN =_0’ BN‘.: 1 v’ DN= 0

B8

A'(Bs19c)

(B.20a)

(B.20b)"

: (Bs20e)

g (B.ZOd)‘

(B.21)

The system of equations (B 18) is so]ved by Gaussian e11m1na-

t1on with partia] p1vot1ng. (The resulting upper tr1angu1ar matrix

' 1s of band structure with two superdiagonal elements

subrout1ne SLV3 was used to solve the system (B. 18)

The FORTRAN:
Also the FORTRAN

. “Subroutine MEEQN was used to solve the momentum and energy equations

*at’ any X= statlon using the method described in: Section 3. 3a.";

k)
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APPENDIX C |
NUMERICAL METHODS FOR THE INTERACTION PROBLEM

i  Thg prob]em g{ven‘§y equatfons ﬂ3;79;86) §an be writteh as
g; +'a(X)r = b(x) ) " c(e.1) |

“ o "":T(x]): o (e

,‘wheré;é(;) ahdvb(;) aré'khgwnifun;tions of x;_’Usfng thé.arranéement '

of x statiohé deschibed in (3.46), we so\ye tﬁe above'problem By a

“finite differénce method. The fo11owing'formu1as are used:
@ = 5 ezt arstpg aratiatiistynl - (€32

l'(C.3b)’”

O-‘.g- :
x
/]

By ‘[9214’.]'-1+C22¢j+C23¢j+’l+c_2_4¢,j+2+c25¢j+3] |
= AxJ [°31¢3 2* 32¢j—'I+c33¢j+¢34¢j+1’+c35¢j¥2] (C.3¢)
doy - b or |
(G = [,'?41_%-'3*'542“’3-_2*‘:434’5-1*°444_’j+°45¢j+1]A - (C.3d)

= ij‘[c51¢j-4tc52¢j-3+c53¢j-2+°54¢j5]+c55¢j] (C.3e)



ce

The coefficients Cry (Ks2 = 1,5) are functions of K and are.
| given in Tab]e C 1. The yruncation errors of ‘the formules (c.3) are
of 0(ax;Y). | o o

7 ‘Using the formu]as (C 3) we obtain from (C. 1) the fo]]ow1ng

~system of Tinear equations for TJ j= 1 22400yl

- o ) ! - P“ - — .-
Re Bp & D B 2 |F
Ay By C3 Dy E5 3| [F3
A By Gy Dy By | |Fs
N 0B G S A . ;:
: A3-3 833 Cy3 Dyo3 Ey3 T3l (Feesl T
o M B G Py B | [T2| [ Fuez
Bae1 B G Pat Byur | (S| [ Fany
_ N . A, B, C, D, E, o, { |F
L T i3 oI g 9] LY ]
(C.4)

~ The elements of the matrix are given by'{



C3

(5 W00 = A8 G/ = 8 O /L

(€°7) ‘suoyenby uy bujavaddy ™ syuayoisfaoy ayy
ERELT |

X -
A
¢ At ) , ,
X, . X A X, Ad A X
o M8+ P 1 ] o R X g 1 g
// G
X X . o
Am. 2 A9 + V_.c+ﬂv_ -1 xv_m - exw_., ® g ! Ad 14
X “ x:
N PR
21 X X
g - .m.@l |Jm_| ,NV_- og»m £
X .x , X "
Y K % X » :
AR .m.|| . Xy ,
5 @M._lo...lﬂp mx» 2
| X
X X N A
A ¥ A y 2 X
- r X
b b P , TGgeor b
G b € | E
£ 4 Ly



~Fdr,j

3,4,..

.J-2

cop/a

AX

0 _g N
.+ X az)/a

Cy3/a

Cog/c

| c25/a

/e

C3p/a

X

X

€34/

35/

wa

c4

(c.6)

(c.7)



c5

: Aj.q = Eq/o

-2}
(]
1]
—
I
N
<
[

(]
[
'
-t
n
(2]
w
~
Q

(c.8)

31 = Cag ¥ T 2

w
[
|
‘o
[3)]
N
~
Q

(c.9)

‘In .equatidhs '(C.’6—9) the q_uan‘tir.ties a are'so chosen that

max{ABCD

j J j’Ej =1 for j=2,3,...,d . - (B.10) .'



The matrix in the equation (c.4) is of‘tﬁe same form as that
in equatidn-(B.Q). The Iihéar system (B}9) is solved by the subroutine
SLV5. The FORTRAN subroutihe PRESS computes the pressure functién P
éorresponding to a given T‘distr{butkon by using the method described

in Section 3.3b and this Appendix.
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_ APPENDIX D
EVALUATION OF THE INTEGRAtS IN CHAPTER V

In this appendix we develop a formula for the numerical
| evaluation:of integrals of the type

] .
[ P (x) dx ” (p.1)

(o]

uéing a method similar to the Simpson's rule. The exponent w > - 1

and-¢j, j=1,0 are specified'at a set of points xj, j=1,J as shown in

& —

Figure D.1.

'_p,“1 Xp X3 - X % %41 Xy-2 Xg-1 X3

Figure D.1 Set of Points Used to Evaluate Integral (D.1)



DZ

For x, we approximate ¢(x) by a second degree

i-1 =X 2 %0
polynomial of the form

o(x) = ax® + bx + ¢ (D.2)
passing through the points (xj-l‘¢j-1)'(xj’¢j) and (xj+],¢j+]).

Thusrwe have

X

J+l
¢ (x) dx
Xsp
. _a w3 w+3 w+2 w+2 wt] w+1
= 543 X J+'I 1+ _T [XJ+‘I 11+ o b X541 11
= Lot] 2
= J+] [A xJ+]+Bj xj+3+cj] - X5 Eﬂkﬂxj’]+Bjxj']+CJ] (D.3)
1 3
. ’ . Cr e
The quantities A, By, C; are given by 52&&’;}‘
Ay = [65,7-(0808; + Koo J VKK +Dax 2] (0.42)"
J T3t SR R S Rl Rl Kx J ’
By = Dlxgyn)ogunt (g y g (14K )4,

- (gt Ky VK (K1) ok B wt2) ] (D.4b)

a o

C5 = DxgXgo105017%5-01%501 (1K)



7

through the last,foqr po1nts; This giyessthe fo]]ow1ngkformu]a:

. D3

xj+1xJKx¢J 11/(K, (K +1) (w+])] ~ (D.4c)

The error involved in (D.3) is of the order Ax3+m[—-%ﬂ
dx™ j

a

1f J is odd, then the 1ntervals between . Xy and Xy are grouped
two at a time and the formula (D.3) is app11ed on each group. Thus

we have 2

a / y B
';\~ f x“9(x) dx = xw”[(A -A4)x +'“_32"‘?’4.)"(3 +V(CZ"C,"#)]
. . v ‘

+ xw+‘ [(A,- A6)x + (54-36)x5 + (C4-Cg)]

)

A w+] o . :
* X [(AJ 37Aj. D5 2 + (Byl3-Byq)xgp
- * (CJ-3fFJ-1)J~*'AJ;1 Bt G (D.5)

Here the integra] betWeeh x=10 and X = xi has been calculated by

;us1ng the same - second degree curve that passes through the points 1,2,3.

If J is odd, we use “the above scheme for. the 1ntegra1 up to
X3.3 ‘and ca]cu]ate the rema1n1ng part by pass1ng a th1rd degree ‘curve
2

- f _x‘“q»i'x:)'_, dx = x5 1[(A -A@c + (B, B4)x + (Cy-Cy) ]

0



o . 2 4 (8.-B)x. + (c §
x5 LiRg-Rgdxg™ + (By-Bg)x; + (C4=Co)]

..............

“wt] 3 ' 2
* %3l Do a3t (RygD) xj g+ (BJ 4 2)XJ 3

+.(CJ_4-D3)] + DO + p]‘f DZA+'D3‘:: ~ (D.s)

The quantities Dgs Dy» Dy, Dy are giVEﬂ ?y

P4

D = (?O+ai¥a2+a3)/(w+4)‘f o A';'_ . (Di7§) _“

17 Dol iy atxg_gvay Oty gtxg)

- ?2(*J;3+XJ+XJ-I)+a3(xd*xdéi+xoéz)]/(wf3) BN RN

Do = Taglxgly Xy 2%%52 Xy 3*%g_3 Xgop)* ag(xy_, X3-37%3-3 *Jf*d?xd—z)'i;  o

‘-, o

i az(xa 3 XJ+XJ - 1 X)- T J 3)+ as(xa J- 1+XJ*T ‘J- 2**0 -2 J)]/(w+2)’

(D 7c)

3° I:ao - 1 J 2 X3- 3*31 XJ 2 J 3 J+a2 J-3 J J 1.

Yoot

+ aé xJ XJ-]'XJ-ZJ/(w+1)' - . ‘; ‘¢j7d)‘

. Y??f?" AR 3 = ¢y Kx'/[AxJ,(Kx+])(Kx K +1)] . (U’galfv

Qa1-f_f“¢JF1{Kx31[A§J?(KX+])] . '€T‘ >, ;v(Disb) .j

‘D4



D5

¢J 2 K, /[Ax 3(x +1)] o _(b.8c)‘
3‘- -¢J 3K, /[Ax 3(Kx+1)(Kx2+ig(+’_1)] . | (D.8d) |

The FORTRAN subrout1ne INTEG computes the 1ntegra1 (D. 1)

using this formu]a



