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Abstract
Background: Transmissible spongiform encephalopathies (TSEs) are a group of fatal
neurodegenerative diseases caused by novel infectious agents referred to as prions. Prions appear
to be composed primarily, if not exclusively, of a misfolded isoform of the cellular prion protein.
TSE infectivity is remarkably stable and can resist many aggressive decontamination procedures,
increasing human, livestock and wildlife exposure to TSEs.

Findings: We tested the hypothesis that UV-ozone treatment reduces levels of the pathogenic
prion protein and inactivates the infectious agent. We found that UV-ozone treatment decreased
the carbon and prion protein content in infected brain homogenate to levels undetectable by dry-
ashing carbon analysis or immunoblotting, respectively. After 8 weeks of ashing, UV-ozone
treatment reduced the infectious titer of treated material by a factor of at least 105. A small amount
of infectivity, however, persisted despite UV-ozone treatment. When bound to either
montmorillonite clay or quartz surfaces, PrPTSE was still susceptible to degradation by UV-ozone.

Conclusion: Our findings strongly suggest that UV-ozone treatment can degrade pathogenic prion
protein and inactivate prions, even when the agent is associated with surfaces. Using larger UV-
ozone doses or combining UV-ozone treatment with other decontaminant methods may allow the
sterilization of TSE-contaminated materials.

Findings
Transmissible spongiform encephalopathies (TSEs, prion
diseases) are a group of fatal neurodegenerative diseases
that affect humans and a variety of domestic and wild

mammals [1]. The disease agents responsible for TSEs are
referred to as prions and are comprised primarily, if not
solely, of a misfolded isoform of the prion protein, desig-
nated PrPTSE, derived from the normal cellular isoform of
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the protein (PrPC) [2]. Whereas PrPC is susceptible to
hydrolysis and degradation, the conformation adopted by
PrPTSE affords it protection from numerous aggressive
treatments that inactivate conventional pathogens [3].
Incomplete sterilization of medical devices has resulted in
iatrogenic transmission of human TSEs [4]. Development
of effective prion decontamination methods represents an
important goal in safeguarding human and animal
health.

Ozone is a strong oxidant (EH
0 = 2.07 V) that chemically

alters and inactivates numerous chemical contaminants
and pathogens [5]. Ozone can be generated by corona dis-
charge, cold plasma and ultraviolet (UV)-ozone devices
[6]. In the case of UV-ozone generators, ultraviolet light at
two wavelengths contributes to ozone generation and
contaminant removal from surfaces: 185 nm photons dis-
sociate O2 to O forming ozone (O3) via a radical reaction,
and light at 254 nm excites bonds present in some organic
contaminants [7]. UV-ozone treatment can be conducted
at room temperature and pressure, is low-cost and has
been successfully employed to remove carbon from Si
microchip surfaces, x-ray optics and samples being pre-
pared for elemental analyses (e.g., spectromicroscopy) [8-
10]. Degradation of organic compounds by UV-ozone
involves breakage of carbon-carbon bonds and CO2 evo-
lution [7], and inactivation of proteins by ozone appears
to occur, at least initially, via side-chain oxidation and
structural rearrangement [11]. Although UV-based sys-
tems produce much less ozone and require substantially
longer exposure times than other generators, spectromi-
croscopic analyses have demonstrated that UV-ozone
effectively removes carbon from samples while preserving
the ultrastructure of treated samples [9,10]. In the present
study, we investigated the degree to which UV-ozone inac-
tivated prions deposited on Si wafers or associated with
quartz or montmorillonite clay (Mte) surfaces, using con-
ditions identical to those that remove carbon from spec-
tromicroscopy samples.

The Hyper strain of hamster-passaged transmissible mink
encephalopathy agent (HY) was used in all experiments
[12]. Brain homogenate (BH), 10% w/v in ddH2O, was
either deposited on inert Si wafer substrates (8 cm × 1 cm
× 500 mm) or, for studies examining degradation of PrPTSE

bound to particle surfaces, was allowed to adsorb to parti-
cles using published protocols [13]. Briefly, following
clarification by centrifugation, 30 mL HY BH was incu-
bated for 2 h in 10 mM NaCl with 0.5 or 3.2 mg of Mte or
quartz microparticles, respectively, or in the absence of
particles for control samples. All solutions were air-dried
overnight and UV-ozone treatment was initiated the fol-
lowing day. Samples were prepared such that UV-ozone
exposure was terminated on the same day for all samples.
Aliquots of all particle-free samples (0–8 weeks treat-
ment) were prepared for total carbon analysis (dry ashing

method, Leco CNS-2000 analyzer) [14], immunoblotting
using monoclonal antibody 3F4 and published protocols
[13], and intracerebral inoculation into Syrian hamsters
(Mesocricetus auratus, cared for in accordance with institu-
tional animal care protocols). Samples containing parti-
cles were prepared for immunoblotting. Digestion of HY
BH with 50 mg·mL-1 proteinase K (PK) for 30 minutes
indicated the initial presence of PrPTSE in the starting
material.

UV-ozone exposure was conducted in an ashing oven con-
sisting of enclosed metal housing equipped with a cus-
tom-made, cold-cathode, low-pressure, grid mercury
lamp (producing UV radiation with wavelengths of 185

UV-ozone treatment decreases carbon and PrPTSE levelsFigure 1
UV-ozone treatment decreases carbon and PrPTSE 

levels. (a) Total (organic and inorganic) carbon was meas-
ured following 0, 1, 2, 4 or 8 weeks of UV-ozone treatment. 
Bars represent means ± one standard deviation; numerical 
values above bars indicate the mean mass of carbon remain-
ing in mg. Experiment is representative of two independent 
replicates. (b) Immunoblot analysis of prion protein following 
ozone ashing for the indicated time period. Hyper-infected 
brain homogenate (HY BH) and HY BH treated with 50 
mg·mL-1 proteinase K (PK) demonstrate the presence of 
PrPTSE before ashing. Immunoblot used anti-prion protein 
antibody 3F4.
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and 254 nm; 1.5 mW·cm2 at 1 in) mounted on a 5 cm ×
15 cm Alzak reflector (Jelight Co., Irvine, CA). Dry air
(<1% relative humidity, 20°C) was pumped into the oven
(1.2 L·min-1) to purge CO2 and replenish O2 for ozone
generation. Silicon substrates with dried brain homoge-
nate were placed 2 mm from the lamp and ashed for 0–8
weeks. After ashing, residual brain material was removed
from substrates by agitation in phosphate buffered saline
(PBS, for carbon analysis, immunoblotting and bioassay)
or 10× SDS-PAGE sample buffer (100 mM Tris pH 8.0,
10% SDS, 7.5 mM EDTA, 100 mM dithiothreitol, 30%
glycerol, for immunoblotting only) at 95°C. Material was
removed from the silicon surface until the substrate
appeared visibly clean and mirror-like. Sample buffer
extraction of residual PrPTSE is a harsh treatment that
denatures the protein and ranks among the most effective
known means of removing PrPTSE from surfaces [13,15].
Test extractions with 10× SDS-PAGE sample buffer at
95°C or PBS at 20°C were equally effective on removing
both ashed and unashed material from Si wafers (data not
shown). For the non-ashed control sample (0 weeks),
brain material was removed from the Si substrate follow-
ing overnight drying.

UV-ozone ashing of brain homogenate (BH) from TSE-
infected hamsters resulted in a time-dependent loss of car-

bon (Figure 1a). Approximately 50% of the carbon was
lost after 1 week of ashing (initial value of 528 ± 2 mg was
reduced to 238 ± 1 mg). Interestingly, no decrease in car-
bon content occurred during the second week of UV-
ozone treatment (249 ± 1 mg). At 4 weeks, the carbon con-
tent had decreased to ~10% of the initial concentration
(51 ± 2 mg). Carbon was not detected after 8 weeks of ash-
ing, indicating that < 2 mg C remained.

Non-linear carbon loss in HY BH samples could indicate
resistance of a subset of biomolecules to UV-ozone degra-
dation. Previous work has shown that DNA and RNA are
substantially more susceptible to ozone attack than pro-
teins [16] and dried proteins are particularly resistant to
ozone action [11]. Experiments investigating sample
thickness, biomolecule composition and carbon loss
kinetics may provide insight into the cause of the
observed non-linearity in carbon loss from BH.

UV-ozone treatment reduced PrPTSE levels in a time-
dependent manner (Figure 1b). After one week of ashing,
prion protein immunoreactivity was reduced to nearly
undetectable levels by immunoblotting and after two
weeks, levels were below the limits of immunoblotting
detection. Our previous work has shown that similar
reductions in immunoreactivity correspond to at least a

Table 1: UV-ozonation decreases infectious TSE titer and increases disease incubation.

Inoculum Positive/Total Animals Onset of Clinical 
Symptoms (dpi)

Estimated Titer (ID50 
per 50 mL dosage)

Approximate 
Reduction in Titer

Dilutions of Starting 
Material

HY BH (10% w/v) 4/4 67 ± 0* 106-107 Not applicable

HY BH (102 dilution factor) 8/8 86 ± 0* 104-105 102

HY BH (104 dilution factor) 8/8 107 ± 0* 102-103 104

HY BH (106 dilution factor) 2/8 141, 156†,‡ 0–101 106

PBS 0/4 >365‡ 0 Not applicable

UV-ozone Treated 
Material

HY BH (10% w/v) ashed 4 
weeks

4/4 120 ± 10* 101-102 105

HY BH (10% w/v) ashed 8 
weeks

5/7 127, 136, 136, 136, 141†,‡ 1–101 106

* Mean days post inoculation (dpi) ± SD to onset of clinical symptoms of TSE infection
† Number of dpi to onset of clinical TSE symptoms for each clinically-affected animal in the group
‡ Animals showing no clinical signs of TSE infection were sacrificed 365 days post-inoculation
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200-fold loss of PrPTSE [17]. As expected, prion protein
levels remained below the limit of detection in samples
exposed to either 4 or 8 weeks of UV-ozone.

Intracerebral inoculation of samples into hamsters
allowed direct assessment of the degree to which UV-
ozone treatment diminished the infectious titer of ashed
sample extracts. Table 1 presents the results obtained from
43 hamsters inoculated with UV-ozone treated (11 ani-
mals) and untreated infectious BH at various dilutions
(32 animals), and the time to onset of clinical symptoms
after inoculation. Weanling hamsters were intracerebrally
dosed with ozone-treated material or a dilution series of
the starting BH as a control on which to base estimates of
remaining infectious titer in ashed samples. Each 50 mL
sample of undiluted, unashed BH contained 106–107

infectious units [12]. Based on the dilution series, ~102

infectious units of TSE agent remained in BH after 4 weeks
ashing (Table 1). With material which had been subjected
to 8 weeks of ashing, two of seven inoculated hamsters
did not succumb to disease within a 365-day period
(Table 1). UV-ozone clearly reduced the titer of ashed TSE
agent. Precise determination of low prion titers is chal-
lenging [18], but the bioassay data indicate that the UV-
ozone ashing conditions used here reduced TSE agent titer
by at least a factor of 105 and possibly more.

To test whether UV-ozone is capable of degrading prions
bound to surfaces, we bound HY BH to two particles with
different surfaces properties, namely Mte and quartz [13],
and subjected both particle- and nonparticle-associated
HY BH to 1 week of UV-ozone treatment (Figure 2). Sam-
ples prepared and incubated identically, but not exposed
to UV-ozone, served as controls. Following ozonation or
incubation, all samples were extracted with 10× sample
buffer, a harsh treatment capable of removing approxi-
mately 95% of PrPTSE from mineral surfaces [13,15]. No

prion protein immunoreactivity was detectable in any of
the UV-ozone treated samples suggesting UV-ozone is
capable of degrading PrPTSE bound to surfaces.

Our results indicate that, in a controlled setting, that UV-
ozone treatment degrades PrPTSE and inactivates prions.
The relative contributions of ozone and ultraviolet light
toward reducing PrPTSE levels are difficult to ascertain in
our system as UV light is required for ozone production.
We hypothesize that much of the observed degradation
and inactivation resulted from ozone exposure for the fol-
lowing reasons. First, a reduction in carbon content, such
as that observed in Figure 1a, is a characteristic effect of
ozone and not of UV radiation [7]. Second, in aqueous
media, proteins in general and TSE infectivity in particu-
lar, resist large doses of UV radiation [19], and dried bio-
molecules, such as those in our system, exhibit more
resistance to UV inactivation than do wet samples [20,21].

We consider it unlikely that UV-ozone treatment caused
irreversible binding of PrPTSE to all tested surfaces (viz. Si,
Mte and quartz), due to (1) substantial differences in sur-
faces properties among the materials, (2) previous reports
indicating that proteins are more easily removed from sur-
faces following ozonation [22,23] and (3) the efficacy of
10× sample buffer in removing avidly-bound PrPTSE from
mineral surfaces [13,15]. Bioassay of the ozone-treated
Mte or quartz bound PrPTSE will clarify the extent to which
UV-ozone affects surface-bound prions.

In the present study, we employed a gentle UV-ozonation
approach. Use of more aggressive UV-ozone treatment
(e.g., by use of a higher wattage lamp), other techniques
that produce higher ozone concentrations, ozone in com-
bination with either other species of reactive oxygen or
with other decontaminants might more effectively dimin-
ish prion titers. The hamster TSE strains, HY and 263K, are
structurally related [24]; HY is as resistant to guanidine
denaturation and PK digestion as 263K and Sc237 strains
[25,26]. The stability of the HY strain and its degradation
by UV-ozone suggest that this method may have utility in
decontaminating other prion strains, and investigation
into UV-ozonation to decontaminate human strains or
prions bound to stainless steel surfaces, as a model for sur-
gical instruments, is warranted.

Abbreviations
BH: brain homogenate; dpi: days post-inoculation; HY:
Hyper strain of hamster-passaged transmissible mink
encephalopathy agent; Mte: montmorillonite clay; PAGE:
polyacrylamide gel electrophoresis; PBS: phosphate buff-
ered saline; PK: proteinase K; PrPC: cellular prion protein;
PrP: prion protein; PrPTSE: disease-associated prion pro-
tein; TSE: transmissible spongiform encephalopathy; UV:
ultraviolet.

Susceptibility of Mte or quartz bound PrPTSE to UV-ozone degradationFigure 2
Susceptibility of Mte or quartz bound PrPTSE to UV-
ozone degradation. Immunoblot analysis of PrP immuno-
reactivity following 7 days of UV-ozonation (+) or incubation 
without UV-ozone (-) of Hyper-infected brain homogenate 
(HY BH) or HY BH bound to montmorillonite clay (Mte) or 
quartz. Immunoblot used anti-prion protein antibody 3F4.
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