
Yesterday is history. Tomorrow is a mystery. Today is a gift.
That’s why it’s called the present.*

– Eleanor Roosevelt, 1935 and Anonymous*



University of Alberta

Learning Multi-Agent Pursuit of A Moving Target

by

Jieshan Lu

A thesis submitted to the Faculty of Graduate Studies and Research 
in partial fulfillment of the requirements for the degree of 

Master of Science

Department of Computing Science

©Jieshan Lu

Fall 2009
Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis 
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is 

converted to, or otherwise made available in digital form, the University of Alberta will advise potential 
users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and, 
except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or 

otherwise reproduced in any material form whatsoever without the author's prior written permission.



Examining Committee

Vadim Bulitko, Computing Science

Russell Greiner, Computing Science

Duane Szafron, Computing Science

Michael Carbonaro, Educational Psychology, University of Alberta



To my parents and husband,
I would not be able to explore my capacity and potentials without their unconditional love

and support.



Abstract

In this thesis we consider the task of catching a moving target with multiple pursuers, also

known as the “Pursuit Game”, in which coordination among the pursuers is critical. Our

testbed is inspired by the pursuit problem in video games, which require fast planning

to guarantee fluid frame rates. We apply supervised machine learning methods to auto-

matically derive efficient multi-agent pursuit strategies on rectangular grids. Learning is

achieved by computing training data off-line and exploring the game tree on small prob-

lems. We also generalize the data to previously unseen and larger problems by learning

robust pursuit policies, and run empirical comparisons between several sets of state fea-

tures using a simple learning architecture. The empirical results show that 1) the applica-

tion of learning across different maps can help improve game-play performance, especially

on non-trivial maps against intelligent targets, and 2) simple heuristic works effectively on

simple maps or less intelligent targets.
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Chapter 1

Introduction

This dissertation addresses the challenge of building multiple agents that can capture a mov-

ing target in the context of video games. Our approach applies machine learning to produce

effective heuristic search methods. Most search methods are guided by an estimated utility

value with respect to the goal, called a heuristic. Motivated by real-time heuristic search

and its applications, we are interested in using experience from one or more maps to learn

strategies that apply to a novel map. Therefore, we study the feasibility of off-line learning

to produce portable heuristics for solving the pursuit game.

The underline heuristic search method of the pursuit game is real-time Single Agent

Search (SAS). Typical SAS approaches have a two-phase procedure: planning and exe-

cution. In the planning phase, the problem solver computes a solution for a single agent

between a start state and a fixed goal state, while following some predefined optimization

criterion and a heuristic function (or in short heuristic) that guides the search. Once a full

solution is available, the agent executes the full solution by sequentially moving along the

solution path. However, this two-phased approach cannot produce satisfying real-time per-

formance in general because the time to compute a full solution could cause a significant

delay in move execution; it also does not apply well to multi-agent pursuit games as the

target is moving.

Many real-time applications restrict planning with a small constant time. This constraint

forces the agent to interleave planning and execution until it reaches the goal, and decouples

the planning complexity from the problem size [5, 7]. Hence, the agent appears to be more

reactive regardless of the scale of the problem.

An example of a real-time heuristics search algorithm is Ishida and Korf’s Moving

Target Search (MTS) [22]. There are two types of agent in MTS: the pursuer and the target.

Similar to SAS, the pursuer is an active agent who executes a partial solution that is based
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on map-dependent distance-heuristics. The target, however, is mobile in MTS as opposed

to the goal being static in SAS; and hence, complete search to one target location does not

apply. The search terminates when the target is captured (i.e., the positions of the target and

the pursuer coincide) or it escapes within a pre-specified time period. MTS assumes that 1)

all agent are aware of each others’ locations, 2) the target is slower than the pursuer, and

3) the two agents move in turns. MTS incrementally improves performance over multiple

trials by learning the heuristics based on the target’s locations. However, such learning is

slow; and it is no longer sufficient in a pursuit game with multiple pursuers.

This dissertation explores a way of learning to produce an effective real-time search

method for solving the multi-agent pursuit game. This is a challenging search problem

because an effective pursuit requires cooperation among the pursuers. We first address

the shortfalls of applying several existing SAS (learning) and multi-agent approaches to

this problem. Typical learning search approach learns map-dependent heuristics instead of

pursuit behavior. By contrast, our approach attempts to learn the pursuit behavior off-line

by constructing a target-specific model based on a set of significant features of any pursuit

game state. The resulting model is applied to a search method as an evaluation function to

produce effective pursuit behavior against the target that was learned.

In the remaining sections, we first present several real-life motivations to our off-line

learning approach. Then, a general evaluation of multi-agent moving target search is intro-

duced, followed by a discussion of common problems and challenges in Artificial Intelli-

gence (AI). This chapter closes with our contribution and the outline of this dissertation.

1.1. Motivation

The game of pursuit arises from various domains, including animal behaviors, military tac-

tics and commercial video games. In these three exemplary domains, an effective pursuit

requires cooperation among the pursuers, especially when the target has comparable or bet-

ter mobility than the pursuers. However, there are differences in the quality of performance

in nature, in man-power, and in the simulated world.

1.1.1. Animal Behaviors

Animals like wolves, African wild dogs, lionesses and tunas are naturally proficient in

cooperative hunting behaviors driven by food [31, 36]. Most predatory animals have the

ability to hunt for food independently. However, the success rate is low because the prey

can sometimes outrun and/or outsmart a single predator. It has been observed that hunting
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(a) Wolves (source: [48]) (b) African wild dogs (source: [39])

Figure 1.1: Examples of predatory animals engaged in cooperative pursuit behavior.

cooperatively with a group increases the success rate of capturing larger and stronger prey.

Adult animals in a group teach their young to hunt their prey with the cooperative techniques

of trap and chase, as shown in Figure 1.1. The youngling can learn from past experiences

and practice.

For example, adult wolves in a pack teach their young the art of hunting, where the

young learn from the adults’ experience and fine-tune their actions through practices [32].

In real hunting scenarios, pack members diversify their positions around the prey before a

full-speed pursuit. During the pursuit, a wolf can cut corners to intercept a prey that had

evaded another member in the pack.

African wild dogs are another example of predators that exhibit learning and coopera-

tive hunting behaviors. Pack members use a divide-and-conquer approach, which is passed

from generation to generation, to first isolate a vulnerable prey from the target group, and

then pursue that single prey in joint efforts that is likely to lead to a kill [9]. In particu-

lar, some members can chase their prey to what they believe is the barriers of the current

hunting ground, while other members disperse to intercept the prey.

In short, there is a close correlation between learning and cooperative pursuit in a wide

range of predatory animals. However, hunting is a non-trivial process because the animals

need to learn and hone their skill. Also, they need to identify similarities between the

training environment and the current environment in order to apply appropriate skills for

cooperative pursuit and capture.

1.1.2. Military Tactics

There have been numerous military support and profound motivation to computer research

since World War II; approximately 60 to 80 percent of research funds were provided by

3



(a) Encirclement using a large obstacle (b) Encirclement in a wide open terrain

(c) Ambush (source: [2])

Figure 1.2: Examples of military tactics: in (a) and (b) the lighter clouds represent the
divided offensive force and the arrows indicate their movement.

military-related agencies since 1960’s [10]. Military tasks often require infantry training

and may use supporting systems with AI that simulates the tactics. Military tactics that are

relevant to the pursuit game inspire us with the technique of dividing up forces to surround

the target with or without natural barriers in the environment.

Infantry use several tactics such as encirclement and ambush in pursuit of enemy forces.

Encirclement is an aggressive form of cooperative attack [13]. After a sequence of pursuit,

the offensive force performs a two-armed encirclement on an isolated enemy unit with (see

Figure 1.2(a)) or without (see Figure 1.2(b)) the use of a large obstacle. The sole purpose

of this act is to minimize the enemy’s options for escape. Ambush is more tactical than

encirclement, in terms of planning ahead before the arrival of the enemy. As shown in Fig-

ure 1.2(c), it requires 1) identifying a kill zone, 2) splitting up the attack squad around the

kill zone and awaiting enemy’s (target) arrival, and 3) ambushing the enemy [2]. The suc-

cess of both tactics depends on theoretical understanding, field practice and terrain analysis.

1.1.3. The Virtual World

The need of the aforementioned military tactics often arises in computer video games when

two groups of units are engaged due to a conflict of interest. These games are usually

supported by AI for the ability to manage many units simultaneously. Game designers are

confined to a conservative time limit (usually less than 100 milliseconds) of planning and
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(a) Supreme Commander (b) StarCraft II

(c) Dawn of War II – screenshot 1 (d) Dawn of War II – screenshot 2

Figure 1.3: Examples of real-time strategy games (sources: (a) from [29], (b) to (d)
from [17]).

execution for all units in order to ensure a smooth frame-rate [7]. Learning is usually disal-

lowed to keep game experience predictable and to simplify the AI code. If it appears at all,

cooperation emerges immediately from the quality of path-finding, which is a fundamental

operation of moving target search.

The AI in real-time strategy (RTS) games like Supreme Commander [12], Dawn of War

II [40] and StarCraft II [3] has the ability to manipulate many units at once. However, there

are often path-finding issues when the AI tries to relocate multiple units simultaneously.

In Figure 1.3(a), the Supreme Commander system allows friendly units to overlap their

positions during a battle with enemy units. They ignore each other in path-finding and do

not maximize their control area, which will be formally defined in Section 3.4. A similar

behavior also occur in Dawn of War II; the three units highlighted in Figure 1.3(c) bump

into each other during a relocation, as shown in Figure 1.3(d). Path-finding issues as such

reduce the range of attack and could leave enemy units a wide open space to escape.

Figure 1.3(b) illustrates another issue of coordinating path-finding in StarCraft II [3].

A platoon of Banelings engages to pursue a Colossus, which is a much larger, stronger unit.
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The Banelings did not flank the Colossus with multiple units before it is too late. As a result,

the Colossus flees, climbing onto a platform that is both inaccessible to the Banelings and

a tactical advantage for the Colossus, which uses ranged attacks.

A system that does not efficiently coordinate its agents in path-finding could fail to

achieve its goal and may suffer from severe consequences. Lack of coordination makes

the units less cooperative; units that are unable to disperse make themselves an easy target

of splash damage (i.e., indirect damage that is caused by an explosive impact at a loca-

tion nearby). Proper coordination is prominent in a sense that it not only increases human

player’s satisfaction, but also improves the reputation of the game in terms of intelligence.

Recent research on cooperative path-finding focuses on hand-coded strategies [23]. In this

work, we attempt to derive cooperative behavior automatically, via machine learning.

1.2. General Evaluation on Multi-Agent Moving Target Search

This thesis studies ways to help multiple pursuers capture a single moving target in the

settings with the following characteristics. All agents have the same speed. The pursuers

and the target can move within a finite, fixed, fully observable grid map in a turn-based

manner; all pursuers move in the current turn, then the target moves in the next turn, then

all pursuers and so forth. The turn-based setting follows the classical moving target search

approach, which ensures a pursuer’s reactivity in real-time and the completeness of the

search. This setting can also help compute the optimal pursuit policy (formally defined

in Section 2.4) in response to the target policy. The target tries to evade as long as possible.

Every pursuit game is restricted to a predefined time period, called time-out. When any one

pursuer intercepts the target by moving onto the target’s location before the time-out, it is

called a successful capture. Otherwise, the game times out, and the target “wins”.

We evaluate the run-time performance through a batch study on different maps with one

hundred instances randomly generated on each map. Each instance consists of the starting

locations of all agents, the pursuit policy, and the target’s evasion policy. The following

performance measures are chosen to evaluate the quality of pursuit in real-time simulations:

• the success rate of capture,

• the capture-travel and suboptimality, and

• planning effort per action.

The success rate of capture is the percentage of instances that end with a successful
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capture over all simulated instances; it indicates the ability of the pursuers to solve the pur-

suit game. The capture-travel represents the average travelled time-steps that the pursuers

take to capture the target over the same set of simulated instances. The optimal response

to a specific evasion policy is computed and used as a ruler to measure suboptimality on

corresponding instances. The suboptimality is precisely the ratio of run-time capture-travel

over optimal (i.e., shortest possible) capture-travel on the same instance, assuming finite.

Finally, planning effort per action presents an evaluation on step-wise computational cost.

It provides a guideline to evaluate how long the problem solver “thinks” before taking an

action in terms of the suitability to real-time applications. Our goal is to maximize the

success rate and to minimize the average capture-travel and the planning effort.

1.3. Common AI Problems and Challenges

There exist many challenges for solving the pursuit game. These include theoretical chal-

lenges regarding the solvability of MTS problems, performance challenges wherein real-

time response and solution quality are traded, the problems of applying SAS approaches in

multi-agent settings, and the challenge of imperfect information about the problem domain.

Based on uniform speed and turn-base games, the number of pursuers necessary and

sufficient to capture a moving target on grids is still unclear. It has been proven that three

pursuers are always sufficient to capture a moving target in any planar graph [1]. As two-

dimensional grids are a special class of planar graph, a recent study in heuristic search

proves that two pursuers are in fact necessary and sufficient on empty finite grids (i.e., with-

out obstacles) [18]. Their empirical results show that two pursuers might also be necessary

and sufficient on a subset of grids that do not resemble a dodecahedron. There is, however,

no associated theoretical proof.

It is difficult to balance real-time performance with success rate and capture-travel. As-

suming that target is slower than the pursuer, classical single-agent MTS algorithms [20,

21, 27] guarantee real-time performance and learn incrementally to reduce capture-travel.

They are, however, often misled by imperfect information about the map and the target’s

movement, resulting in infinite capture-travel (i.e., unsuccessful capture). One SAS ap-

proach [26] compromises real-time performance for a faster reduction rate of capture-travel

and a higher success rate, but it become less applicable in real-time applications.

Typical SAS approaches assume that a slower target will eventually be outrun rather

than being outsmarted [20, 21, 26, 27]. When these approaches are applied to agents of
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Figure 1.4: An example of the round-table scenario.

uniform speed, the target might only maintain a constant distance to the pursuer. Thus, the

success rate decreases and capture-travel increases, regardless of the real-time performance.

Furthermore, it is non-trivial to solve a pursuit game with multiple pursuers, assuming

that the target is at least as fast as the pursuers. The core problem lies in the direct appli-

cation of SAS approaches to the multi-agent pursuit game. Pursuers often follow the same

path, resulting in clumping together and/or blocking each other’s path [37]. The perfor-

mance degrades in terms of increasing capture-travel and decreasing success rate. Consider

the round-table scenario on a grid (Figure 1.4) when the two pursuers (p1 and p2) try to

capture a moving target (T ). It is intuitive to secure a capture by having one pursuer travel

clockwise and the other counter-clockwise. Existing SAS methods instead instruct both

pursuers to travel clockwise or counter-clockwise together, resulting in an infinite pursuit

around the table. This shows that merely applying SAS methods to the multi-agent pursuit

game is insufficient to coordinate the pursuers’ paths.

One intuitive way to impose true cooperation is to plan a fully joint path for all pursuers,

so that they can maximize the control area. However, planning in joint fashion for multiple

agents is subject to time complexity that is exponential in the number of agents. Such

complexity in planning effort per action makes it less desirable in real-time applications.

It is also challenging to incorporate learning in real-time pursuit games without full in-

formation about the map. Success rate and capture-travel will not improve without learning

the map. A possible solution is to apply learned cooperative behaviors to new maps. This

way can promise a small planning effort per action and may improve capture-travel and

success rate. However, this approach requires a set of matching features across different

maps. Selection of such features is an open problem.
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1.4. Contribution

The thesis established in this study is that off-line supervised learning over a set of features

about any pursuit instance can improve the time to capture a target. As this work tries to

tackle the last, most difficult challenge in Section 1.3, the contributions include: 1) the first

application of off-line machine learning methods to multi-agent moving target pursuit; 2) in

evaluating the approach, we compare several sets of features and several machine learning

mechanisms; and 3) we compare the run-time performance against the precomputed optimal

response policy with respect to a target policy.

Our approach decouples learning from run-time and makes the search in multi-agent

pursuit more efficient in real-time. The results show that off-line learning can help capture

a target that uses a specific evading strategy in non-trivial environments at run-time. It can

also help planning in joint space while retaining the real-time property because the learning

process is separated from run-time. Moreover, our results show that simple heuristic works

effectively on trivial maps, where true distance-information is known. In fact, learning is

never necessary depending on what is known. Scalability, however, appears to be depen-

dent on the choice of training maps and the definition of features, which require a deeper

investigation beyond the scope of this thesis.

1.5. Thesis Outline

Chapter 2 introduces a formal lexicon for the MTS problem, which includes performance

measures and other technical terms used in a multi-agent pursuit game. The chapter will

furthermore motivate the need for cooperation in multi-agent settings. In Chapter 3, we

review previous research related to the task of MTS. They range from single-agent meth-

ods to multi-agent methods, as well as approaches that emphasize the effect of learning.

Chapter 4 introduces the core of our approach, which applies learning to real-time pursuit

applications. Experiment details and performance evaluation over a classical heuristic and

our learned behavior models will be provided in Chapter 5. The limitations and potential

improvements in Chapter 6. Chapter 7 summarizes the work and presents our conclusions.
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Chapter 2

Problem Formulation

We focus on the task of n ∈ N pursuers attempting to capture a single target in a fully

observable two-dimensional grid. Full observability is a simplifying assumption that is

most frequently employed in video game AI. Future work will generalize our result onto

partially observable cases.

2.1. Components

Grid. A game map is represented as a fixed, finite and fully observable two-dimensional

grid. An empty grid consists of a matrix of open, traversable square cells of uniform size.

Static geographical barriers are overlaid onto the grid to mark blocked cells. For example,

Figure 2.1(a) shows a 5 × 5 grid with four pillars. Each pillar occupies one cell. Larger

obstacles, such as walls, can occupy more than one cell. Any cell occupied by an obstacle

is not traversable.

In path-finding, a grid is translated into an undirected graphs G = 〈S,A〉, where S is a

finite set of traversable states (or vertices) andA : S → S is a finite set of actions (or edges)

between them. A state s ∈ S encodes its cell-location by x-y coordinates. An action a ∈ A

(a) Grid with obstacles (b) Four-connected graph (c) Eight-connected graph

Figure 2.1: Examples of grids and the corresponding graphs.
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is an edge that connects a pair of adjacent states such that s′ = a(s), where s′ is called a

successor of s with respect to a. For undirected graphs, every action has a reverse action

such that s = a′(s′). The weight of an action is defined by the cost function c : A→ (0,∞)

with c(s, s′) being the travel cost in distance for taking action a. The set of actions available

at any state s ∈ S is denoted by As = {a : a(s) 6= ø} ⊆ A. The size of the actions set at

any state is called branching factor, or |As|.

Typically, grids are represented in either four or eight connected graphs. In four-

connected graphs (e.g., Figure 2.1(b)), the maximum branching factor of a state is four

with cardinal actions (→, ↓, ←, and ↑). Such graphs are planar graphs since they do

not contain intersecting edges other than on the endpoints of the actions. Eight-connected

graphs (e.g., Figure 2.1(c)) are not planar graphs because a state could have diagonal edges

that intersect each other. Any cardinal action has a unit distance cost of 1, or c(s, s′) = 1.

One special type of actions is called stay, such that c(s, s) = 0 at state s. However, taking

any of the cardinal action or the stay action still accounts for one simulation time-step. Fur-

thermore, the maximum branching factor of a state in a four-connected grid becomes five,

and nine for eight-connected grids.

Agent. An agent is a moveable unit that can move from one state to another with a pre-

defined constant speed and has an associated path-finding algorithm (or policy). The speed

of an agent indicates the distance that the agent can traverse at each simulation time-step in

terms of cumulative travel cost. In a four-connected graph with a uniform action cost of 1

unit distance, for example, a speed of 1.0 means that the agent can traverse to an adjacent

state in exactly one simulation time-step. In single-agent moving target search, there are

two types of agents using different policies: pursuer and target. A good pursuer policy can

help a pursuer capture the target as quickly as possible. A good target policy allows the

target to remain free as long as possible.

Movements. The pursuit is launched by deploying all agents to their initial states, and

continues in a turn-based manner until the simulation is terminated by the capture (defined

below) or the time-out. In particular to moving target search, a pursuer is allowed to take one

action from its current state only after the target has committed an action, and so on. Any

agent may plan for an immediate, reactive action just before its execution, or a sequence of

cached actions by using an internal off-line search only to the last known target state before

this off-line search starts. However, an agent can only execute one action at its own turn.
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With the presence of multiple pursuers, all pursuers can take one action at a pursuer-turn,

and they all stay at their current location at the target’s turn.

Capture. The target is considered to be captured successfully when a pursuer makes its

current state coincide with the target’s current state before the simulation reaches the pre-

specified time-out. Otherwise, the simulation is labeled “failure to capture” before time-out;

and the target wins.

2.2. The Real-Time Constraint

The defining constraint of real-time performance is that the amount of planning effort per

action is restricted to be a small constant amount of time regardless the size of the map [7].

This constraint allows a fast response from a search agent to adapt to a changing goal. One

way to achieve real-time performance is that the agent plans its immediate action(s) by

localizing the search space to the neighbourhood of current state s, denoted by N(s).

This real-time constraint requires fast “thinking” for two reasons, namely fluid frame-

rates in video games and faster capture if all agents move asynchronously. The former is

addressed in this dissertation to make “thinking” independent to the size of the game map.

The latter is not included in our formulation, as it will be a subject of future research.

2.3. Cooperation and Coordination

The terms cooperation and coordination often appear in multi-agent scenarios; and to many,

they seem to be synonymous. In this thesis, we draw the following distinction between

the two. Cooperation specifies “how to pursue” in a pursuit game. It is a requirement

that demands collaborative path-finding from the pursuers. Coordination specifies “how

to cooperate” among the pursuers. It is an implementation of collaborative path-finding to

achieve cooperation across the pursuers. The planning of each pursuer’s action is required

to take other pursuers’ actions into account to capture a common target. Such planning

approach is called, the joint-action plan.

To formally define the joint-action plan, let the set of the current states of n pursuers

and a target be {s1, . . . , sn, starget} for si, starget ∈ S, i = 1, . . . , n. A joint-action plan

transform the set {s1, . . . , sn, starget} to {s′1, . . . , s′n, s′target}. Such set of individual states

is called a joint state, denoted by the shorthand notation, j ∈ J , where J is the set of all

possible joint states given a map and the number of pursuers and the target, and is of the
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size |S|n+1. A joint action on j is denoted by κ ∈ A (read joint-A), which is the set of all

joint actions of the size |A|n+1, and the successor of a joint state j is j′ = κ(j). Similar to

the definition of the action set at any singular state, the set of joint actions at any joint state

j is denoted by Aj = {κ : κ(j) 6= ø} ⊆ A.

2.4. Notation

Definition 2.5. Travel Distance: The travel cost of the shortest path between any two states

s1 and s2 ∈ S, is called the travel distance and is denoted by dist(s1, s2).

Definition 2.6. Heuristic Function: A heuristic function, h(s1, s2), is an estimated travel

distance between the two states. An admissible heuristic always underestimates the travel

distance, such that h(s1, s2) ≤ dist(s1, s2). Manhattan Distance is an admissible heuristic

that is often used on grids; and it ignores obstacles. It is the sum of differences of s1 and

s2’s corresponding coordinate components. When h(s1, s2) = dist(s1, s2) for all state

pairs, h is called a perfect heuristic and denoted by h∗.

Definition 2.7. Heuristic Depression: A heuristic depression is a local minimum of heuris-

tic values, which occurs at a state s when h(s, sgoal) ≤ h(s′, sgoal), for all possible succes-

sors s′ of s [27].

Definition 2.8. Capture-Travel (T ) is the average number of simulation time-steps that a

pursuer takes to capture the target.

Definition 2.9. Success Rate is the percentage of test instances that terminate with a suc-

cessful capture over the total number of test instances in an experimental batch.

Definition 2.10. Optimal Response Database (ORD): Given a target policy, an optimal

response database stores the lowest value of capture-travel of every possible joint state

configuration on a map.

Definition 2.11. Suboptimality Given a target policy, suboptimality is the ratio of capture-

travel under policy π, T π, over the optimal capture-travel T ∗, which is averaged over all

test instances.

Definition 2.12. Sufficiency: The number of pursuers n is sufficient for a class of graphs

G if and only if for any graph G ∈ G and any target policy πt there exists a joint pursuit

policy π for n pursuers, such that for any initial joint state jo, π is guaranteed to capture the

target in a finite number of simulation time-steps.
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Definition 2.13. Necessity: The number of pursuers n is said to be necessary for a class

of graphs G if and only if there exists a graph G ∈ G, a target policy π and an initial joint

state jo such that no joint pursuit policy for fewer than n pursuers will capture the target in

a finite number of simulation time-steps.

Definition 2.14. On-line Learning updates the estimate of a state value (e.g., heurisitics)

immediately after selecting an action at that state. If the state is revisited before the end of

the current trial, the new value will be considered instead.

Definition 2.15. On-policy Learning evaluates and updates the value of a policy for action

selection. Learning is used to improve the current policy [51].

Definition 2.16. Portability describes the applicability of a single evaluation function that

is trained on one map, onto another map. The training of such function follows the standard

form of supervised learning; the function learns from a set of examples with its input and

output. In our setting, the input is a set of features that describes a single pursuit instance,

whereas the output is the corresponding optimal capture-travel.
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Chapter 3

Related Work

Researchers from the mathematical and control communities have studied the “pursuit

game” for a several decades. However, there are few research results in the context of

multi-agent moving target search. This chapter first introduces several theoretical studies

on the pursuit game, and then reviews the fundamental algorithms on single-agent heuris-

tic search and single-agent moving target search. We also show how standard heuristic

methods are applied to solve multi-agent pursuit games, followed by several solutions from

cooperative methods. In addition, we show how other control methods are applied to ad-

dress the pursuit game. The approaches we describe in this chapter have in common a focus

on using learning to improve performance, which serves as a basis for our approach.

3.1. Graphical Analyses on the Pursuit Game

Graphical analysis of the pursuit game focuses on identifying theoretical solutions, limita-

tions, and bounds under rigorous mathematical constraints. We first review a few studies

on the necessity and sufficiency of the number of pursuers in arbitrary graphs, followed by

a related study specifically on grid maps. We then show that the pursuit game is in general

a challenging problem through the study on the search-time of pursuit games.

Goldstein et al. address the challenge of determining the number of pursuers that are

necessary and sufficient to capture a target in arbitrary graphs, showing that this challenge

is EXPTIME-complete [15]. Aigner and Fromme study the game on finite connected planar

graphs with n pursuers and 1 target; all agents have uniform speed and play optimally [1].

They identify the pursuers as cops and the target as the robber, and accordingly partition

planar graphs into cop-win graphs and robber-win graphs. By introducing the concept of

a pitfall p, which is defined as that p and all p’s successors overlap with the successors of

a state d 6= p, a cop-win graph is one that can be reduced to a single vertex (or state) by
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repeatedly removing pitfalls in any order. The authors prove that three pursuers are always

sufficient to ensure a capture in any planar graphs by taking control of pitfalls. Two pursuers

can control a region by controlling two distinct paths between two states, such that they can

move to any state on these two paths faster than the target. The third pursuer expands this

region by taking control of a pitfall in the target’s region, freeing one of the two pursuers to

subsequently expand their control region until the target cannot escape.

However, Aigner and Fromme’s proof raises reasonable doubts about whether three

pursuers are always necessary. Greiner and Isaza prove that two pursuers of uniform speed

are in fact necessary and sufficient to capture a target with the same speed in any empty

(i.e., no obstacles) finite four-connected grid, which is a robber-win planar graphs [18].

Assuming the grid is of size R×C, this proof assigns one pursuer to match the state of the

target column-wise, and the other row-wise. They show that the optimal solution takes a

maximum of max{R,C} steps for both pursuers to align with the target column-wise and

row-wise, followed by another maximum of R+ C steps to corner the target for a capture.

For non-empty four-connected grids, Isaza’s empirical results from examining the Op-

timalStrategy algorithm show that two pursuers are necessary and sufficient only on a sub-

class of such grids, but not all. However, there is no formal proof provided on the type of

grids that always requires three pursuers. A grid maze that resembles a dodecahedral planar

graph is an example in which three pursuers are necessary. In this grid, there are 20 major

states with branching factor of 3 (i.e., T-intersections) and 30 major “edges” (i.e., hallways

that are one-state wide). The length of cycle on each major state is no less than five times

the length of each “edge”. Therefore, the target can easily flee from one branch of an inter-

section while the two pursuers try to capture the target from the other two branches. In our

study, however, this type of non-empty grids will also be a subject of future research.

Bonato et al. show that the search-time (i.e., capture-travel) of pursuit games depends on

the number of pursuers when both the pursuers and the target play optimally [4]. Although

the search-time for n pursuers is invariant of the structure of the graph, it is polynomial

to the number of states. The upper bound of the search-time is half the number of states

for a wide-range of graphs. Moreover, the decision of determining whether n pursuers can

capture the evading target in a given time-out is NP-complete1. As a result, it is challenging

to solve the pursuit game in general.
1NP stands for nondeterministic polynomial time. A decision problem is called NP if some algorithm can

guess and then verify a solution for correctness in time polynomial in the input size [45]. NP-complete problems
are the hardest problems in NP as no fast solution to this class of problems is known.
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3.2. Single Agent Search

Single agent search (SAS) is a fundamental class of search methods for solving a problem

with only one agent and a stationary goal. An SAS algorithm is often guided by a heuris-

tic function to find a shortest solution path to the goal. There are two phases in any SAS

algorithms, namely planning and execution. Given a graph G = (S,A) as defined in Sec-

tion 2.1, the heuristic value for state s ∈ S, denoted by h(s), is the estimated travel cost

to the fixed goal state sg; and hence, the second argument of the h-function (see Defini-

tion 2.6) is ignored. During the planning phase, the problem solver computes a partial or

full path depending on the imposition of the real-time property (Section 2.2). The problem

solver subsequently moves the agent along the computed path toward the goal.

Well known algorithms for pathfinding problems are A∗, and various versions of real-

time heuristic approaches with or without learning. They are the underlying algorithms for

moving target search algorithms, which differ from typical SAS algorithms by attempting

to path-find to a changing goal. In this section, we will review these SAS algorithms that

influence the algorithms for moving target search.

A widely applied search algorithm is A∗ [16], which computes an optimal solution from

the start-state so to the single goal-state sg. The search prioritizes state expansion by the

evaluation function f(s) = g(s)+h(s), where g(s) = dist(so, s) and h(s) is the estimated

distance from s to sg. A∗ allows a state to be re-opened when there exists a lower f -

value through an alternative path; and its f -value is updated accordingly. If h is admissible

(see Definition 2.6), then A∗ is guaranteed to return an optimal solution path. However, a

naive implementation of A∗ is not suitable to real-time applications because 1) the run-time

of A∗ depends on the size of the game map, which often causes serious delays in taking the

initial action, and 2) the memory requirement is large, as A∗ maintains a list of expanded

states and a list of opened states.

Real-time search, which plans in a local area (i.e., a neighbourhood of the current state)

at a time, is one resolution that satisfies the real-time constraint and reduces memory re-

quirements. It computes a partial solution to the goal and allows an agent to interleave

planning and execution repeatedly until it reaches the goal. For example, the hill-climbing

algorithm considers only the immediate successors of the current state without maintain-

ing a list of expanded states or open states [44]. The agent selects and executes the action

that leads to an adjacent state with the lowest cost, and repeats this process until it reaches

the goal. The simplicity of this approach trades off to the ability of overcoming heuris-
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Figure 3.1: An illustration of a heuristic depression: heuristic values located at the top right
corner of a cell are the Manhattan distances to the goal state T . The hill-climbing agent P
tries to path-find from state s6 to s8. However, it is unable to reach s8 due to the heuristic
depressions at state s6 and s3.

tic depression (see Definition 2.7) that often appears in non-trivial problems. As shown

in Figure 3.1, an agent can be easily trapped in a heuristic depression as it “believes” in the

inaccurate heuristics.

Korf introduces the trial-based algorithm, Learning Real-Time A∗ (LRTA∗), to address

the issue of heuristic depression [27]. LRTA∗ gradually updates a table of heuristic values

with respect to the goal state during the course of search. The initial values need not be

accurate as long as they are admissible and can be computed by functions as simple as

Manhattan distance. The algorithm is given in Figure 3.2. For each state s being expanded,

LRTA∗ considers the successors that are one action away (line 1) and selects the one with

the lowest f -value (line 2). A heuristic update occurs when the f -value of the selected

successor is greater then the h-value of the current state, followed by the execution of the

corresponding action (line 3 and 4). The heuristics learned by LRTA∗ is proven to converge

to the perfect heuristic (see Definition 2.6) of the states along every optimal path if the

values are initially admissible.

LRTA∗ (s, sg): {** uses and updates h(s, sg) **}

1: generate the list of successors of s
2: determine the best successor s′ with the lowest f(s′) = dist(s, s′) + h(s′, sg)
3: if f(s′) > h(s, sg), then h(s, sg)← f(s′)
4: return the action a such that s′ = argmina(s){f(a(s))}

Figure 3.2: The LRTA∗ algorithm.
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MTS (sp, sg, s′g, isPursuer): {** uses and updates h(s, sg) **}

1: if isPursuer then
2: generate the list of successors of s
3: determine the best successor s′ with the lowest f(s′p, sg) = c(sp, s′p) + h(s′p, sg)
4: if f(s′p, sg) > h(sp, sg), then h(sp, sg)← f(s′p, sg)
5: return the action a such that s′p = argminf(a(sp))a(sp)
6: else
7: h′(sp, sg)← h(sp, s′g)− c(sg, s′g)
8: if h′(sp, sg) > h(sp, sg, then h(sp, sg)← h′(sp, sg)
9: end if

Figure 3.3: The MTS algorithm.

Moving target search (MTS) extends LRTA∗ to adapt to a changing goal and uses one

pursuer to capture the moving target [22]. In lieu of learning one-dimensional heuristics

with respect to a fixed goal, MTS learns pairwise heuristics and computes the shortest dis-

tance between pairs of states on a map. Assuming in a turn-based setting that the target

is slower than the pursuer, MTS updates heuristics during both the pursuer’s turn and the

target’s turn, as in Figure 3.3. However, this approach is subject to “thrashing” (i.e., moving

back and forth) in heuristic depressions and “loss of information” when the target changes

its current state [33, 34]. Ishida enhances MTS with the hand-tuned commitment and de-

liberation to reduce the effect of these problems. In particular, the degree of commitment

targets the issue of “loss of information” by forcing the pursuer to focus on learning one tar-

get state without acquiring its current state at every step. The degree of deliberation, on the

other hand, mediates the “thrashing” symptom by performing an off-line search that leads

the pursuer outside the heuristic depression. Malex, nonetheless, shows that improvement

of performance with the two enhancements is still not guaranteed [33, 34].

Koenig et al. also tackles the same issues by introducing the algorithm called Eager

Moving-Target-Adaptive A∗ [26]. This method, however, is more similar to A∗ in that the

memory requirement is linear in the size of state space, and the planning time depends on

the map size. Therefore, it is less suitable to real-time applications.

3.3. Applying Standard Heuristic Search Methods to Multi-Agent
Pursuit Games

Many existing approaches to multi-agent pursuit game directly apply SAS approaches to

individual pursuers. Orkin emphasizes that applying SAS methods to multi-agent problems
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causes the clumping behavior of the pursuers, which ultimately lack coordinated behav-

ior [37]. In most cases, pursuers are not aware of each other and make plans independently.

This defeats the advantage of having multiple pursuers to catch one target.

Korf introduces a simple non-learning solution to grid-based and hexagonal pursuit

games, called the Multi-Agent Greedy (MA-Greedy) approach [28]. Under the same as-

sumption of a slower target, each pursuer searches for the target greedily and independently

by minimizing the evaluation on pairs of states with Equation 3.1.

f(sp, sg) = h(sp, sg)− wR, (3.1)

where w is a constant weight in [0, 1.0], and R is the repulsion (i.e., h-value from pursuer

p to another nearest pursuer p′). The repulsion force is a naive way to prevent pursuers

clumping together by the key component, w. A MA-Greedy pursuer behaves like a hill-

climbing agent if w approaches 0, whereas the pursuers will cease to move in the direction

of the target together if w approaches 1. The fixed magnitude of w prohibits the pursuers

from traveling in close proximity, allowing the target to flee between them. However, an

MA-Greedy pursuer is unable to solve the game in the round-table scenario (see Figure 1.4).

Multi-Agent Real-Time A∗(MA-RTA∗) [25] produces effects similar to MA-Greedy. It

is based on a variation of LRTA∗ and hill-climbing, namely Real-Time A∗ (RTA∗). RTA∗

“hill-climbs” from the current state s to the immediate (best) successor with the minimum

f -value, but it differs from LRTA∗ as RTA∗ updates h(s, sg) with the f -value of its second

best successor. If another pursuer considers the state s at a later time-step, the new value will

be used and this pursuer will chose a different path than the previous pursuer’s. MA-RTA∗

coordinates pursuers by sharing the same heuristic table only. On grid maps, it does not

perform well due to a large number of ties [57]. Similar to MTS, MA-RTA∗ also requires

trial-based learning to improve performance; The pursuers require on-line “training” on the

map before they behave reasonably.

3.4. Cooperative Methods for Common Goals

For multi-agent pursuit games, the quality of cooperation is critical to the game-play per-

formance, albeit highly difficult to achieve. Pursuers are required to capture the target as

quickly as possible through joint effort due to the shared common goal. To date, only a lim-

ited number of published approaches that cope with cooperation. They either extend SAS

algorithms with external control structures or invent new heuristics to impose cooperation.
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Multiple Agent Moving Target Search (MA-MTS) is a distributed approach that equips

a SAS method or an adversarial search algorithm2 (e.g., Minimax) with the external struc-

ture called the belief set, which consists of information about other pursuers and the tar-

get [14]. If the target moves out of sight of a pursuer, then this pursuer keeps track of a

set of possible states that the target could reach before it sees the target again. The belief

set can help maximize the pursuers’ control area to minimize the target’s mobility. Each

pursuer uses its own belief set as inference to select a distinct goal state.

Also, the size of the belief set must be reduced to a constant (e.g., records the location

of the four corners of a region only) to satisfy the real-time property. When the target is not

visible to a pursuer for an extended period, the non-reduced belief set of that pursuer could

become a copy of the map, slowing down the process of selecting its subgoal. A reduced

belief set could contain the same corners of the entire map. As a result, the pursuers with

the same belief sets are confused and cease moving in the direction of the target. This

unwanted behavior can be observed from the round-table scenario (see Figure 1.4).

Isaza et al. introduces a novel cover heuristic, which is incorporated in an new dis-

tributed multi-agent algorithm, called Cover with Risk and Abstraction (CRA) [19]. The

cover heuristic evaluates a group of agents jointly by counting the number of states that this

group of agents can reach faster than any opponent, through a bidirectional expansion over

the entire map. A pursuer computes its cover by expanding the cover from its current state

and other pursuers’ current states. Each pursuer selects an action that maximizes its cover.

Let |S| be the size of the map and b be the average branching factor. This naive greedy

approach is subject to a O(|S|b)-bounded computational overhead at each planning cycle.

Naively maximizing the cover also causes a pursuer that is approaching to the target faster

than the other pursuers, to hold back. In response to these issues, Isaza introduced a risk

factor to make a pursuer less conservative, and used state abstraction as in PRA∗ [50] to

combat the computational overhead of cover over the original state space. Among existing

multi-agent moving target search methods, CRA demonstrates the best quality of coopera-

tion and highest success rate to solve the round-table pursuit game. Yet, it does not satisfy

the real-time property because the computation of cover is dependent on the map size.
2Adversarial search is used on problems that involve agents with two conflicting goals [43]. When an agent

plans for an action, it must consider any possible actions that its opponent might take. This approach is usually
applied in games such as chess; it is also applicable to the pursuit game as the two opposing types of agents are
the pursuer(s) and the target.
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3.5. Reinforcement Learning Approaches

Reinforcement learning (RL) is about making a sequence of decisions in an environment

that is modeled as a finite Markov decision process3; it allows agent(s) to learn a pol-

icy (mapping each state to an action) that maximizes the long-term reward [52]. Typical

approaches use some form of function approximator to encode (an approximation to) the

policy. In this section, we will briefly describe how RL can be applied to the pursuit game,

followed by RL’s role in self-play learners (i.e., an agent that learns by playing games

against itself). We will conclude this section with a discussion about the applicability of RL

to computer games.

Typical multi-agent Reinforcement Learning approaches try to achieve cooperation

with information shared on sensation, policies and joint tasks, and conduct on-line, on-

policy learning (see Definition 2.14 and 2.15). For example, Kalyanakrishnan et al. tackle

the problem called half field offense in RoboCup Soccer, where the offense team tries to

maximize the number of goals it scores until the ball becomes the possession of a team

of defenders or goes out of bound [24]. Their results show that adding inter-agent com-

munication for sharing information helps the players learn more effectively, in that the

learner’s performance dominates an approach that does not use sharing, starting around

5000 episodes.

As another example, Wang and Xu introduce an adaptive algorithm called POESALA

to four-pursuer pursuit games [56]. Using Q-learning [52], POESALA tries to learn an

optimal joint pursuit strategy against a randomly moving target on four-connected grids.

They show that POESALA outperforms a comparable heuristic algorithm and a distributed

learner after 15,000 episodes. In games, however, enemy units often actively evade the

pursuers. To date, determining an effective pursuit policy over an intelligent evading target

remains an open problem.

Many RL systems encode the policy using some function approximators. For example,

Tesauro’s TD-Gammon combines a multi-layer neural network (see details in Section 4.1.3)

and a TD approach, TD(λ), to evaluate its state-action pairs and to learn from the outcome

of the game of backgammon [55]. In particular, the agent learns the policy through self-

play games with randomness induced by rolling the dice. Besides the rules of the game,

TD-Gammon does not require initial knowledge about the strategy at the onset of the game,
3A Markov decision process (MDP) is a discrete, stochastic decision making process defined by a set

of states S and actions A and by the one-step dynamic of the environment with transition probabilities
P (s′|s, a) ∈ [0, 1] and costs R(s′, s, a) ∈ <, where s, s′ ∈ S and a ∈ A [52].
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as it back-progates the changes in state value (i.e., error) using TD(λ). The results show

that TD-Gammon outperforms the Neurogammon learner, which is initialized using hu-

man expertise. However, the training process is time consuming, as early training episodes

can take up thousands of time-steps and the best performance is obtained after training on

200,000 games.

Overall, RL approaches usually require substantial amount of training to some policy

(i.e.,, not necessarily optimal), and moreover, RL is applied to problems that can be formu-

lated in a MDP or partially observable MDP. In the pursuit game, if the target agent is also

changing, the model of the problem becomes dynamic. Thus, the standard MDP does not

apply because MDP is applicable to only stationary models. In particular to multi-agent

pursuit game, Wang and Xu identify two major problems in learning the optimal pursuit

strategies in multi-agent systems: 1) learning is not guaranteed to converge due to circu-

lation among agents’ actions (i.e., “thrashing” in Section 3.2), and 2) learned strategy is

not optimal due to conflicts of actions (i.e., pusuers clumping together) [56]. Therefore,

learning the multi-agent pursuit game in general and trying to formulate the pursuit game

in a MDP are challenging.

Furthermore, as computer games require real-time performance, game designers disal-

low learning on-line to accommodate fast frame rate. Learning any game-play strategy will

need to be decoupled from run-time before a good approximator can be exploited to produce

reasonable actions on-line. The class of RL approaches on predictive state representation

(PSR) could make generalized learning across different environments possible in the back-

end. PSR uses features that are flexible, learnable, and portable to new maps [49, 54] to

learn desired optimal strategies. Game developers can train a learner at the development

phase, and exploit the resulting learner as an evaluation function in the final production of

the game.

3.6. Other methods

A system, called Boids, which simulates real-time flocking motions and demonstrates vari-

ous steering behaviors in continuous space, has been applied to moving target search [41].

Flocking units exhibit highly reactive coordination by eliminating collisions through novel

definitions of separation, alignment and cohesion with flock-mates nearby. In the scenario

of pursuing a moving object, the units travel as one big unit. They follow the target, which

is comparable to a single-agent moving target search.
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Transfer of learning is a well studied subject in educational psychology and economics [8].

Ormrod, researching in educational psychology, found a close correlation between transfer

of learning and problem solving due to the general application of past experience to solve

a problem in new situations [38]. This work indicates a potential application of transfer of

learning in the context of AI. Sharma et al. use relative game-state information as portable

features in adversarial Real-Time Strategy games. They show that transfer of learning can

improve performance across various games in different areas on a map [47]. It is an on-

line learning approach that combines case-base reasoning (CRB) and RL, which requires

multiple training episodes to improve performance during run-time. In this approach, CRB

serves as a function approximator for RL, while RL provides a temporal-difference based

revision to CBR. This combination can cope with unseen related problems based on expe-

rience. Games that are run in the current batch-simulation are used as examples to learn the

pursuit policy in a new game in the same simulation. In fact, this is a form of supervised

learning in terms of machine learning techniques.

More recently, Samadi et al. applies a supervised learning architecture to solve problems

such as the sliding-tile puzzles and Towers of Hanoi [46]. They use a simple artificial neural

network to learn multiple heuristics from a set of training examples with various solution

costs. The trained network serves as an evaluation function when it is applied in SAS

methods. Their results show that this learned function can improve game-play performance

by significantly reducing planning effort and being scalable to larger problems. Although

their work applies learning to single-agent methods with static goals, it inspires our work

for using supervised learning technique to derive an approximation of a optimal policy in

the adversarial pursuit game.

In summary, it is challenging to strike a balance between real-time performance and

the cost of learning to aid the quality of cooperation for multi-agent pursuit games. Many

existing SAS methods lean toward the extreme of real-time performance by instructing indi-

vidual pursuers to follow the shortest paths to the target, while cooperative methods require

appropriate representation of knowledge to minimize computational overhead. Further-

more, on-line learning methods require substantial training before the pursuers exhibit rea-

sonable behaviors in performance-critical applications, for example during a video game.

It is also non-trivial for the agents to adapt learned behaviors in new maps. We address

these issues by performing learning off-line and utilizing problem-independent features to

increase portability of the learned policies.
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Chapter 4

Off-line Learning to Pursue

The task of multiple agents pursuing a moving target is a difficult path-finding problem in

that achieving cooperation is non-trivial. One way to achieve this task is to incorporate

learning. Learning has shown its advantage of improving performance on various SAS

methods, as in Section 3.2, for finding a shortest solution path.

We explore learning to pursue using two pursuers and one target on fully observable

four-connected grid-maps in which two pursuers are sufficient; perfect heuristic (see Defi-

nition 2.6) is not always available on these maps. Most existing single-agent moving target

search approaches apply to pursuers that can outrun, instead of outsmarting, the target with

the assumption of a slower target (see Section 3.2). In the following study, all agents have

the same speed, which makes the problem more interesting and challenging. Also, we make

the following assumptions:

• All agents are aware of each other’s locations at all times. Future work will extend

our methods to partially observable problems.

• More than one agent can occupy the same state, although our desired approach is

expected to learn to minimize such occurrences during pursuit.

• Four cardinal actions (defined in Section 2.1) and stay are allowed at a state, making

the maximum branching factor of a state five.

In our framework, we decouple learning from run-time by using the architecture as

shown in Figure 4.1. The goal is to learn from a set of past experiences to produce reason-

able, cooperative behaviors at the run-time of a pursuit game on a previously unseen map.

There are two phases in this framework: training (off-line) and run-time (on-line). In the

following sections, we examine each phase in detail.
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Figure 4.1: The system architecture used in this study.

4.1. The Training Phase

The training phase is an off-line process of supervised learning (see Definition 2.16). Given

a target evasion policy and a map, we first compute the corresponding optimal response

database (see Definition 2.10) for all possible initial joint state configurations. We then

sample a set of instances randomly, and extract a set of portable features and the optimal

value of capture-travel from each example to construct a set of training data. Finally, the

training data serves as the input to a machine learning system for generating a behavior

model, which can be independently applied in a search at run-time.

4.1.1. Computing Optimal Response Databases

The computation of an optimal response database for the pursuit game, which is carried out

off-line, adopts the end-game analysis methods from board games. The input is comprised

of the game map, agent information, and the target policy. In particular, agent information

specifies the number of pursuers and the speed of each agent. In this study, we consider

agents of a uniform speed, which is set at 1.0 as mentioned in Section 2.1.
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TargetPolicy (map m, pursuers n, algorithm evade alg):

1: generate the set J for all possible joint states, for map m and n+ 1 agents
2: for each j in J do
3: πtarget[j]← evade alg.next action(j)
4: end for
5: save πtarget

OptimalResponse (map m, pursuers n, policy πtarget):

1: generate the set J for all possible joint states, for map m and n+ 1 agents
2: for each j in J do
3: h∗[j]←∞
4: if j is a capture-state then
5: insert 〈j, h = 0〉 into priority queue q
6: end if
7: end for
8: while q is not empty do
9: 〈j, h∗[j]〉 ← q.pop()

10: generate all possible joint action κ at j {** κ is defined in Section 2.3**}
11: for each joint action κ at j do
12: j′ = κ(j)
13: if πtarget[j′] = j.getStateOfTarget() AND h∗[j′] =∞ then
14: h← h∗[j] + 1
15: insert 〈j′, h〉 into q
16: end if
17: end for
18: end while
19: save h∗

Figure 4.2: The OptimalResponse Algorithm.

As another input for the optimal response database, the target policy is computed a pri-

ori. We assume that the policy is deterministic and Markovian1. The target policy uses

a pre-specified evading strategy to generate a move for every joint state configuration as

shown in Figure 4.2. The result is stored in a table, so that it can serve as look-up table

to compute its corresponding optimal pursuit response subsequently. This method is also a

way to solve tie-breaking on the target’s policy at run-time. There are many cases in which

the target has multiple choice of actions with the same lowest cost. With randomness, the

target might choose a different action from the one that is used to compute the optimal pur-

suit response database. This is problematic for computing the database because the target

is not deterministic while the database does not currently handle uncertainty. Therefore, we
1The Markov property is defined as such that the likelihood of a given future state depends only on its

present state, but not on any past states, at any given time [53].
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solve tie-breaking on the target policy by storing the deterministic actions in a table.

In response to the target policy, the computation of the pursuers’ optimal response starts

from all possible joint state configurations where the target is captured (OptimalResponse:

line 5 in Figure 4.2). The capture-travel for these configurations is clearly 0. Following

the assumption of the target policy being deterministic and Markovian in any given joint

state configuration j (defined in Section 2.3), the computation incorporates the bottom-up

dynamic programming approach to back-propagate the value of capture-travel to all parent

configurations (line 8 to 19). The computation stops when the values of capture-travel for

all configurations are generated. During this process, the database keeps only the smallest

value for each game-state configuration (line 13 and 14). Thus, the result is a optimal

capture-travel for every joint state of the current map with regards to the target policy.

Let |S| be the size of a map. The time complexity for both the target policy and the

pursuers’ optimal response database is O(|S|n+1) for n pursuers and one target. Although

this exponential complexity makes the computation tractable only for small maps and n,

the resulting database can be used to derive a pursuit model that is efficient at run-time.

For the remaining body of this thesis, we refer to an optimal response database using

the abbreviation ORD.

4.1.2. Features

An ORD contains the joint state configurations in a given map. To made its result portable

to future application on different maps, it uses features to identify similar instances on

different maps. This process is the fundamental operation of learning to pursue. As the

joint state configuration is described in x-y coordinates (i.e., map-dependent), such set of

features is not portable to different maps, making it difficult to identify similar instances.

Instead of recording the coordinate of the agents’ position, it is more sensible to record the

agent-topology and the features about their local environment. In this section, we explore

such set of portable features that could help a learner and/or a pursuit-planner identify

similar instances across different maps.

Distance

Since the maps used in this study are four-connected grids and the cost in distance for each

non-stay action is 1, we can use Manhattan distance (see Definition 2.6),manH to estimate

the travel distance between any pair of states. In particular, we record manH for every pair

of the current states of the three agents. Assuming that the pursuers are A and B, and the
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(a) (b) (c) (d)

Figure 4.3: Several examples of identical agent-topologies.

target is T , the distance-features are:

• manH(A, T ): estimated distance between pursuer A and target T ,

• manH(B, T ): estimated distance between pursuer B and target T , and

• manH(A,B): estimated distance between pursuers A and B.

As in an sense of straight-line distance on four-connected grids, these features describe

how far apart from the the target and from each other each pursuer is. They approximate

the shape of the “triangular” topology over all agents on a grid, regardless the ordering

of the agents. However, we label the pursuers systematically. Although there might be

different sorting methods of the pursuers’ positions, the pursuers here are sorted by their

coordinates, such that pursuer A is always the one at the lowest y-coordinate and (then) the

x-coordinate. This arrangement treats the topologies with the same manH values as the

same topology, as shown in Figure 4.3. This method is known as state aliasing or classes of

equivalence over the state space.

Difference in Distance to Target

Another potentially useful distance feature is the difference in distance to target, which is

δ = |manH(A, T )−manH(B, T )|. It indicates whether the two pursuers are pursuing the

target for similar distance or not. This feature is based on the assumption that both pursuers

can close in to the target in a similar amount of time-steps.

Consider the scenario as in Figure 4.4(a), both pursuers are in-line with the target,

such that one is closer to the target than the other. If the pursuers maintain this alignment

during the pursuit, they allow the target to flee in the opposite direction, possibly indefinitely

around an obstacle. On the other hand, if the pursuers spread out to cover more area of the

map, the target could be forced to change direction in its movement, which could lead to

a faster captures. In Figure 4.4(b), for example, both pursuers encircle the target using the
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(a) (b)

Figure 4.4: Examples of different delta scenarios on a 9× 9 grid.

edges of the map while they are both maximum 2 steps away from the capture. We would

like to give more credit to cases as in Figure 4.4(b) than in Figure 4.4(a). This feature is

considered to be a supporting feature of the distance-features.

Mobility

As a component of the target’s evasion algorithm in MA-MTS (Section 3.4), mobility is

used to count the number of traversable states by looking in a small local search space

with respect to the target. It helps the target maximize its chance to flee to an open space;

the wider the better. In this thesis, we extend this term to both pursuer and target. To

minimize the computational cost over all possible features, the computation is simplified

from lookahead depth d > 1 to d = 1.

In general, the mobility, denoted by m(s), is the number of distinct actions available

at state s, or m(s) = |As| (defined in Section 2.1: Grid). For the target, m(sT |sA , sB )

excludes any action that leads to the current state of a pursuer. That is,

m(sT |sA , sB ) = |
{
a(sT ) : a ∈ As

T
, a(sT ) 6= sA , a(sT ) 6= sB

}
|, (4.1)

where a(sT ) is an action function that translates the state sT to the successor state s′
T

on

action a. For example, Figure 4.5(a) shows that m(sT ) = 5 (including the stay action)

since none of the target’s actions are blocked by any obstacle or a pursuer. In Figure 4.5(b),

pursuer A is adjacent to the target; and hence, m(sT ) = 3.

In single-agent cases,m(sp) = |A(sp)| for the pursuer p, including the action that leads

to the current state of the target. In multi-agent cases, let P be the set of all pursuers, or

P = {A,B} in this study. The mobility of P , as in Equation 4.2, is the number of distinct

joint actions κ available at the joint state j (defined in Section 2.3) with regard to the current

state of any pursuer p ∈ P , which is jointly denoted by jP = {sA , sB} ⊂ j. The definition
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(a) (b) (c)

(d) (e)

Figure 4.5: Mobility Computation: (a) and (b) compute for the target; (c) to (e) compute
for pursuers.

of κ(jP ) differs from the definition of κ(j) only in that the target state is not considered.

The same distinction also applies to the definitions of AjP and Aj . The joint action that

leads to either an alternative permutation of jP (i.e., a swap of the pursuers’ states), or a

joint state that both pursuers coincide at the same state, are excluded in the computation

of m(jP ). Such computation follows the intuition of the cover heuristic (Section 3.4) on

maximizing the cover area, but differs as it is independent of the map size.

m(jP ) = |
{
κ(jP ) : κ ∈ A(jP ), κ(jP ) 6= jP , s′

A
, s′

B
∈ κ(jP ), s′

A
6= s′

B

}
|, (4.2)

where s′
A

and s′
B

are a successor of sA and sB respectively.

Figure 4.5(c) illustrates the case where both pursuers have maximum amount freedom

to move, even though the target is standing right next to B. In this case, m(jP ) = 25.

Figure 4.5(d) shows the two cases where the successor states of pursuer A and B will

coincide. Therefore, m(jP ) = 23. In addition to sharing the same pursuer state in a joint-

state successor, swapping state is also undesirable since the agent-topology is the same as

the current joint state. Thus, m(jP ) = 22 in Figure 4.5(e).

Sensing in Local Environment

As Manhattan distance is used to represent the agent-topology, it ignores obstacles in close

proximity of any agent. There are, however, significant difference between a case that
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occurs in an open area and a case that occurs in an area with static obstacles in the agent’s

way. To compactly describe map topology around an agent, we introduce virtual sensors

on each agent for detecting obstacles or an opponent nearby. The range of sensor is limited

to achieve the real-time property. We consider two types of light-weighed sensors on four-

connected grid maps: beam sensor and hill-climb sensor.

The Beam sensor operates as a laser beam shooting outward in all four cardinal direc-

tions of an agent’s current state. It is used to detect static obstacles on the map. Given

a hand-tuned range limit R, the sensor returns four integer values, reast, rsouth, rwest and

rnorth ∈ [0, R]. Each beam emits through a state until it reaches an obstacle or the prede-

fined range. The advantages of this sensor include its simplicity and the applicability to all

agents while respecting to the real-time property (see Section 2.2). It is, however, a naive

sensor because it misses the detection of any obstacle located diagonally to the sensor-

origin. Also, it does not detect an opponent because it is difficult to justify what the value

would be if the beam touches an opponent or an obstacle. Consider the case in which the

agent tries to stay away from obstacles to avoid any potential heuristic depression while it

attempts to approach the opponent. The learner would need to learn a weight with opposing

signs for the two circumstances, which are embodied in the same feature.

The hill-climb sensor can distinguish the target from an obstacle. Since the target can

use the mobility feature to detect open areas, this sensor is not necessary on the target, but

it is applicable to the pursuers. Given a fixed number of state-expansions R (the range), the

hill-climb sensor on a pursuer uses the heuristic manH(s, starget) for any state s to hill-

climb (see Section 3.2) toward the target. It indicates the distance that a pursuer can travel

before its path is blocked by an obstacle or before it can reach the target within the pre-

specified range. At any state s, the sensor value r is computed by the following equation:

r =
{
d/R if target is not detected within d ≤ R steps.
2 otherwise, target is seen within range.

If an obstacle is detected within the range R, then r is a positive real number in [0, 1).

Otherwise, r = 1 indicates that the agent can freely travel R steps toward the target. If

the target is detected within R steps inclusively, r takes a special value to distinguish the

“sighting” of the opponent from an obstacle. This special value can be any constant greater

than 1 because this sensor is designed to lead a pursuer directly toward the target if it falls

within the pursuer’s line-of-sight. We simply use 2.0 as the special feature value.

The corresponding algorithm is provided in Figure 4.6. First, it compares the current

state s of a pursuer to the target state (line 2). If they coincide, it returns the capture value
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HillClimbSensor (state s, state starget): {** R is a pre-specifed non-zero constant **}

1: captured← 2.0
2: if s = starget then
3: return captured
4: end if
5: h← manH(s, starget)
6: d← 0
7: current← s
8: while d < R do
9: expand current to find the successor state s′ = argmins′ manH(s′, starget)

10: h′ ← manH(s′, starget)
11: if h′ ≥ h then {** current is in heuristic depression (i.e., detected an obstacle) **}
12: break
13: end if
14: if s′ = starget then
15: return captured
16: end if
17: current← s′

18: increment d by 1
19: end while
20: return d

R

Figure 4.6: The HillClimbSensor Algorithm.

right away. Otherwise, it determines the next state s′ within range by expanding s to s′

with the lowest heuristic value (line 9). If s is in heuristic depression (see Definition 2.7),

then the sensor has reached an obstacle and returns d
R . Also, if s′ is where the target is,

the algorithm returns the capture value. Otherwise, current state is updated to s′ while a

successful step has made (line 17 and 18).

In summary, these features provide information about the agent-topolgy, their mobility,

and local search space. Agent-topology only captures the relative positioning information

about each agent. Mobility can further describer how viable their immediate action plan is,

while sensor information about the local space can help an agent recognize a local terrain.

The combination of these features can be used to describe an instance over any grid map.

4.1.3. The Learning System

As different game maps may contain similar obstacle configurations, local features can

describe a pursuit instance regardless the actual map from which they are extracted. These

features enable the possibility of producing map-independent pursuit behaviors. We can

construct a set of training data using these features labeled with the optimal capture-travel
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T ∗ that is determined by the corresponding ORD. The training data can serve as the input

to a learning system for generating a pursuit behavior model with two pursuers. Therefore,

we can apply a supervised learning architecture based on artificial neural network (ANN),

which is inspired by Samadi’s approach that combines multiple heuristics to improve game-

play performance (see Section 3.6). We choose supervised learning over reinforcement

learning (RL) for two major reasons. First, when the target changes its location, the problem

to be solved becomes dynamic. As the standard MDP does not apply because it only applies

to stationary models, RL does not apply either. Secondly, the ORD already provides the

optimal strategies that a learner can learn from. There is no learner that can outperform

the optimal strategy. As a result, we use supervised learning to approximate the optimal

strategies stored in the ORD.

An Overview of ANN

An ANN emulates the brain’s information-processing circuitry by constructing a network

of neurons, which are capable of collecting, processing, and disseminating electronic sig-

nals [44]. A link, which carries a weight wi,j can be established to propagate an activation

value ai (i.e., the signal) from neuron i to neuron j. The weight indicates the strength and

the sign of this link. To produce the activation value aj , the propagation process first com-

putes the weighted sum of all of its input ai for i = 0, . . . , n. This sum is then sent to the

activation function gj at neuron j to produce the output value of aj :

aj = gj

(
n∑
i=0

wi,jai

)
.

The activation function gj can take the form of one of many types of functions, such as

linear regression, sigmoid function, and gaussian function, to name a few.

Types of ANN

There are two types of ANN structures in general: feed-forward networks and recurrent

networks. In this study, we use the feed-forward network, which is a function that simply

maps its input to output (i.e., an approximation of optimal capture-travel). However, the

recurrent network, which feeds the output back into itself as an input, does not apply to our

study. The main reasons are that, at run time, 1) the value of capture-travel is not available

until the end of thes game, but it is used to evaluate the joint states at every planning step,

and 2) the output is an estimated value to the optimal capture-travle. Feeding the estimated
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capture-travel back into the network for tuning could confuse the learning system that in-

tends to learn the optimal capture-travel. As this is an initial study that incorporate the ORD

into the pursuit game, feed-forward network can approximate the optimal capture-travel of

a given instance, which can help us analyze the correlation of the input features. Moreover,

the resulting network, also called a behavior model, can be used directly as an evaluation

function by a search algorithm at run-time.

Architecture

A network has three types of layers: input layer, hidden layer(s), and output layer. For the

pursuit game, each feature about a pursuit instance is represented as a neuron in the input

layer, whereas the corresponding T ∗ is represented as a single neuron in the output layer

(see Figure 4.7(a)). The backpropagation algorithm is applied to train the network. In this

study, we use a simple, three-layer, fully connected ANN architecture, which uses sigmoid

and linear activation functions on the hidden neurons and the output neuron respectively.

Using a single layer of hidden neurons that are activated by non-linear squashing functions

can produce a simple function approximator of T ∗, which can help analyze how each fea-

ture influences the output value. Using multiple hidden layers with nonlinear squashing

function can produce a nonlinear function approximator, which makes it difficult to study

the influence of individual features with respect to T ∗; such nonlinear approximator will be

a subject of future studies on the pursuit game.

Figure 4.7(b) illustrates a more precise, hand-tuned neural network architecture. It takes

(a) (b)

Figure 4.7: ANN achitectures: (a) a general ANN feed-forward architecture with a single
hidden layer for the pursuit game and (b) our ANN architecture for the pursuit game.
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the three-layer structure with three2 neurons in the hidden layer. The activation function on

every hidden neuron is a logistic regression, whose output signal is a real number between

0 and 1. Each hidden neuron applies the logistic regression on all input feature values;

its output becomes an input to the output neuron. The output neuron then computes a

linear combination on all input signals from the hidden neurons to produce the estimate of

capture-travel in (−∞,+∞).

4.2. Run-Time Phase

At the run-time phase, we test a behavior model that is generated by the learning system

in a previously unseen map. The behavior model is incorporated into a real-time heuristic

pursuit algorithm, in which it serves as an evaluation function f over a pursuit instance.

As illustrated in Figure 4.1, the centralized action planner for the pursuers performs the

following general steps:

1. The planner observes the joint state j over all agents.

2. It uses the behavior model (an ANN) to evaluate j.

3. It computes a joint path from j with a pre-specified length (or depth) and returns a

joint action to the simulation.

The simulation executes the joint action, followed by a target’s move, based on the turn-base

setting. This process repeats until the target is captured, or the simulation times out.

4.2.1. An Adversarial Approach

The planner used by the pursuers opts for an appropriate real-time search algorithm, so that

it can strike a balance between planning effort per action and pursuit quality. Since the

pursuit game involves two opposing types of agents, we use an adversarial search algorithm

to utilize a learned behavior model. The father of all adversarial search is the minimax

algorithm. The pseudocode (Figure A.1) and a sample game tree (Figure A.3) are provided

in the Appendix A respectively.

In terms of the pursuit game, the planner can apply this algorithm for all pursuers to

evaluate a joint state based on the predicted movement of the target. It treats all pursuers

as one central minded player and the target the other. At the pursuers’ ply, they try to
2By observation, more hidden neurons in this architecture do not show any impact to the pursuit performance

at run-time.
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maximize the utility of a joint-state j, called f(j). Since the pursuers, in fact, attempt to

minimize the estimated capture-travel Tj , the utility of a joint-state j takes the negation of

Tj , or f(j) = −Tj . The utility at the pursuers’ ply is in turn based on the target’s ply by

assuming that the target is trying to minimize the utility of a successor joint state j′.

By convention, a full-ply in minimax include one Max-ply and one Min-ply. On four-

connected grids, an agent can have branching factor b = 5 at a state, including stay. For a

joint state with two pursuers and one target, one full-ply in minimax will need to examine

b3d = 53 = 125 successor joint states, 1252 for two full plies, and 1253 for three. Even

without considering any internal computation cost for evaluating one state, three full-ply

lookeahead requires an examination of almost two million joint states. This significant

overhead brings a challenge in using ANN network at run-time.

4.2.2. Multi-Agent Minimax

To address the computational overhead for increasing number of plies, we modified the

standard minimax algorithm with alpha-beta pruning by assigning one ply for each agent

while preserving the joint state evaluation. At a pursuer’s ply, the algorithm maximizes the

f -value of a joint state j, whereas the algorithm tries to minimize the f(j′) at the target’s

ply, such that j′ is a successor joint state of j by varying the target’s state. For n pursuers

and one target, each ply is 1
n+1 of a full ply. We call this algorithm Multi-agent Minimax

(or MA-Minimax), which relies on the zero-sum property of a two-player game.

As show in Figure 4.8, the planner must know the simulation time-out value, which is

set to the total number of states |S| on the current map. It also pre-loads an ANN for joint

state evaluation. The MA-Minimax-Driver algorithm, which is initiated by the simulation,

receives the current joint state and the lookahead depth. All agents are scheduled in a

priority queue by their allowable time-to-move according to the simulation clock. This

Global input:
1. set max← |S|, the total number of states on the current map
2. load the neural network, ann

MA-Minimax-Driver (joint state j, depth d):

1: initialize the global priority move queue q for each agent u by its next allowable time-
to-move

2: MA-Minimax (j, −max, max, d)
3: execute the cached actions for the pursuers.

Figure 4.8: The MA-Minimax-Driver algorithm.
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queue helps automate the process of iterating through subsequent successor joint states.

With speed of 1.0 and the current simulation clock at time C, the time-to-move for all

pursuers is C + 1.0 and C + 2.0 for the target initially based on the turn-based setting. This

priority ensures that the pursuers consider their joint actions before predicting the targets

whereabout. The driver then launches a full MA-Minimax, followed by the execution of

one cached move for each pursuer simultaneously (line 2 and 3).

Figure 4.9 shows the detailed algorithm of MA-Minimax. Agent u is the first agent

scheduled to move according to the priority queue (line 1 of the MA-Minimax algorithm).

This algorithm then checks whether the current joint state j is a terminal state or it has

reached the bottom ply (line 2 to 4). If so, its f -value is returned to the previous ply.

Otherwise, it generates a portion of j’s successors with regard to the current state of agent

u. Its identity—a pursuer or a target—indicates whether this is a max-ply or a min-ply (line

5 to 7). If u is a pursuer, then MA-Minimax works on a max-ply; otherwise, it works a on

min-ply. For each successor state s′ of the current state s of u, MA-Minimax reconstructs

a successor joint state j′ with s′ (line 11), and recursively calls itself on the next ply (line

12 to 16). Only the maximum return value f(j′) is recorded, and so as its corresponding

action (line 19 and 20). Line 25 handles a potential cut-off of a subtree if the best value of

the min-ply can not match up the best value of the max-ply. At last, the best action a∗ for u

is cached, and its value is returned to the previous ply.

The utility value is determined by the function f(j) : |S|n+1 → < for n pursuers on

a map with |S| number of states. To evaluate j using an ANN, a set of features must be

extracted in the same manner as defined in this ANN (line 1 in Figure 4.9: the f-function).

The ANN estimates the capture-travel e over this set features on j (line 2). Based on the

zero-sum property, e is mapped to enorm within the range [−|S|,+|S|] (line 3 and 4). If j

resembles a capture-state, then e approaches 0 and its enorm approaches −|S|. Any value

of e that is greater than 2|S| indicates that j is expected to result in a failure capture. Its

norm enorm is mapped onto |S|. Therefore, a pursuer’s ply prefers a negative enorm with

small magnitude, whereas the target prefers a large positive value. To follow the max-ply

manner, enorm must be negated for a pursuer (line 6), as mentioned in Section 4.2.1.
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MA-Minimax (joint state j, value α, value β, depth d ):

1: agent u← q.pop()
2: if j is a capture-state or d = 0 then
3: return f(j, u)
4: end if
5: if u is not a pursuer then
6: swap values of α and β
7: end if
8: v∗ ← −∞
9: for each successor s′ of the current state s of u do

10: update or insert 〈u, time-to-move+ 1.0〉 in q such that u will be at s′

11: j′ ← change only the current state of u from s to s′ in j
12: if u is a pursuer then
13: v ←MA-Minimax (j′, α, β, d− 1)
14: else
15: v ← -MA-Minimax (j′, -β, -α, d− 1)
16: end if
17: reset the entry for agent u with the original time-to-move in q such that u is at s
18: if v > v∗ then
19: v∗ ← v
20: best action a∗ ← a such that s′ = a(s)
21: end if
22: if v∗ > α then
23: α← v∗

24: end if
25: if v∗ > β then {cut off!}
26: break
27: end if
28: end for
29: if u is not a pursuer then
30: v∗ ← −v∗
31: end if
32: cache the best action a∗ for u
33: return v∗

f (joint state j, agent u):

1: extract the vector of features of j as defined in the ANN used, ann
2: e← ann.compute(features)
3: clip the value of e between the range [0, 2max] if e is out of this range
4: enorm ← e−max {** map e to the range [−max,max] **}
5: if u is a pursuer then
6: return −enorm

7: else
8: return enorm

9: end if

Figure 4.9: The MA-Minimax algorithm and the f function with an ANN evaluator.
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4.3. Expected Performance

Figure 4.10: Targeted performance of MA-Minimax with our ANN evaluators.

This approach transforms a full ply into n + 1 plies, so that we can verify the effec-

tiveness of a learned ANN on more values of ply d. When d 6= x(n + 1) where x is the

number of full plies, the algorithm allows a pursuers to plan for one more action than the

other. This could be beneficial as one pursuer may appears to be more aggressive than the

other. Although alpha-beta pruning reduces the number of states examined from O(b3d)

to O(
√
b3d) in the best case on expanding in full plies, pruning is not guaranteed since the

states are not ordered by values in advance. Nevertheless, any alpha-beta pruning could

help reduce the planning cost, regardless of full plies or fractional plies, to further satisfy

the real-time property.

The targeted performance of MA-Minimax is illustrated in Figure 4.10. On the left side

of the scale, we have planning with shallow depth of plies d. Any d-value less than a full ply

with a small n (n ≤ 2) can produce short planning effort, resulting in fast action response

time. However, the target is considered to be static during planning, which will increase the

chance of a failure capture. On the other side of the scale, it can plan as deep as possible in

a simulation without a time-out. The response time is potentially indefinitely slow, but the

infinite depth guarantees the algorithm to reach a capture-state, assuming that our problem

is a win for the pursuers. Our goal is to find the setting for this algorithm combined with

the use of a trained ANN to strive a balance between response time and effectiveness.
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Chapter 5

Experiments and Evaluation

To achieve the expected performance described in Section 4.3, we conduct various ex-

periments using two pursuers and one target, all of uniform speed, to help us understand

whether the fundamental pursuit behavior given a target strategy is learnable. We use two

different frameworks: a simulation framework to generate training data and testing run-time

performance, and a learning framework to train the behavior models. Due to the overhead

of computing an optimal response database (ORD), we selected several small maps with

less than 100 states. Given a target algorithm and the optimal response database, we use

two sets of features that include different types of sensor information to learn a pursuit

behavior: the beam sensor and the hill-climb sensor. Also, we use a simple ANN as a

lightweight behavior model to evaluate the joint states at run-time testing. We analyze the

learned behaviors through run-time simulations. The planning algorithm is MA-Miniax,

which is used to compare the performances of two different types of evaluation function,

whereas their result is evaluated by the aforementioned measures in Section 1.2.

5.1. Choice of Maps

The use of small maps makes the computation of an optimal pursuit response tractable, as

well as helps us understand the characteristics of features and the scalability of a learned

behavior over small maps. We aim to construct a behavior model using small problems that

reflect a wide range of terrain configurations to induce sensible performance on different

maps, and perhaps larger maps. Regarding the test domain, we select five toy maps, as

shown in Figure 5.1, with increasing complexity in obstacle layout.

Empty 5×5 is a trivial grid map. Any agent can freely maneuver at any state (branching

factor b = 5), except those along the border of the map. In contrast, the maneuverability of

an agent is greatly restricted due to the four pillars in Hand-made 5 × 5. Only the center
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(a) Empty 5× 5 (b) Hand-made 5× 5 (c) Round-table 7× 7

(d) Round-table 9× 9 (e) Sparse-obstacle 10× 10

Figure 5.1: Illustrations of the toy maps used in study.

state (an intersection) has a branching factor of 5; the other states have between 2 and 4

successors. This map resembles a maze environment with no dead-ends. Each pillar stands

as the smallest round-table that can be placed on a grid map. Pursuers can capture a target

only if they can corner the target together. Figure 5.1(c) shows a larger round-table—the

only obstacle—in the map. This map is known to be difficult to capture a target with a

small amount of cooperative pursuers [19]. Once a behavior model is constructed over

Round-table 7 × 7, we observe whether this model can derive reasonable performance on

Round-table 9 × 9 (Figure 5.1(d)) in terms of a quick capture. Sparse-obstacle 10 × 10

(Figure 5.1(e)) is a test of scalability. It contains small obstacles that are sparsely placed on

the map, where the effect of learning over the other four smaller maps is evaluated.

The actual problem size is provided in Table 5.1. The second column presents the

various percentage of obstacle occupations. The third column shows the total number of
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Map Obstacles (%) |S| in original space |S|2+1 in joint space
Hand-made 5× 5 16 21 9, 261
Empty 5× 5 0 25 15,625
Round-table 7× 7 27 36 46,656
Round-table 9× 9 31 56 175,616
Sparse 10× 10 14 86 636,056

Table 5.1: The size of problems that are used in our study.

passable grid cell on the map (i.e., state size), whereas the last column presents the size

of the joint space for two pursuers and one target. It is the total number of joint state

configurations on the corresponding map.

5.2. Frameworks

We use two separate frameworks to perform learning and apply learning. We first use a

real-time simulation framework to generate the optimal pursuit response databases. This

framework is created in C++ by Isaza [19] and used for the development of the CRA al-

gorithm (see Section 3.4). Isaza’s framework can also simulate various path-finding ap-

proaches, including cooperative ones. Therefore, we also use this framework for testing the

learned behavior models with the MA-Minimax Algorithm at run-time.

We use the Fast Artificial Neural Network Library (FANN) [35] for the learning system

during the training phase. FANN is an open source library that implements multilayer

artificial neural networks and provides a large, robust set of training algorithms and methods

to manipulate the training data. As it is portable to any C++ platform, we also use this

library to port a trained ANN into Isaza’s framework for run-time simulations.

5.3. Target Algorithms

To study performance on a variety of pursuit tasks, we consider the following target strate-

gies:

• OPT: The OPT target uses the optimal evading policy to flee from its pursuers, which

it assumes uses an optimal pursuit policy. The computation of the optimal pursuit

policy is similar to our OptimalResponse algorithm, except that the target’s policy is

not pre-computed. Instead, the computation of the target’s optimal policy interleaves

with the computation of the pursuers’ optimal policy in an adversarial fashion. It

follows the OptimalStrategy algorithm in Isaza’s study [18].
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• SFL: The SFL target uses the Simple Flee algorithm. This algorithm randomly places

twenty beacons on the states of the map at the onset of the game [19]. If the number

of states on a map is less than twenty, then it places exactly one beacon per state

and no extra beacons. It applies Path-refinement A* (PRA*) [50] that is based on

distance-heuristic and state abstraction to compute a path between the target and the

beacon that is furthest from any pursuer. Once the path is available at a predefined

level of state abstraction, it is then refined to the ground level for execution. The

target executes three moves of the complete path before it re-plans for the new state-

configuration of all agents.

• DAM: The DAM target also uses state abstraction in the Dynamic Abstract Minimax

algorithm [6]. It starts with a minimax search at the top level of abstraction and seeks

an escape path from both of the pursuers by using cumulative distance (also called

CML) to all pursuers. If such path is found, the abstract path is refined to the ground

level for execution. If not, the search continues at a lower abstraction level until it

reaches the ground level. We fix lookahead depth in the minimax algorithm to be 5

fractional plies for this study.

5.4. ANN-Training Experiments

A preprocessing step prior to training is feature extraction. With the same ORD, we extrac-

tion two separate sets of features that differ only in the sensor type used (see Table 5.2).

No. Feature Name

0 manHx(A, T )
1 manHy(A, T )
2 manHx(B, T )
3 manHy(B, T )
4 manHx(A,B)
5 manHy(A,B)
6 δ
7 m(jP )
8 m(jT )

No.
Feature Name

Beam Sensor Hill-climb Sensor
9 reastT rA

10 rsouthT
rB

11 rwestT
12 rnorthT

13 reastA
14 rsouthA

15 rwestA
16 rnorthA

17 reastB
18 rsouthB

19 rwestB
20 rnorthB

Table 5.2: The set of features to be extracted on any pursuit instance.
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Suppose the set of pursuers P is {A, B}, and the target is T . We extract the distance fea-

tures betweenA and T ,B and T , as well asA andB (features 0 to 5). The distance features

are decomposed into x-components and y-components. Feature 6 is the difference in dis-

tance (in both x and y components) to target, δ. Regarding the representation of current joint

state j, features 7 and 8 computes the mobility of the pursuers and the target respectively

by looking around the immediate neighbours of the current state. The following features

convey sensor information at the current state of each agent. Using the beam sensor as an

example, feature 9 to 12 represent the sensor data in all four compass directions from the

current state of the target. When the hill-climb sensor is used, only the sensor data on the

pursuers are computed, which reduces the feature set by half.

5.4.1. Sensor Range

To meet the real-time constraint, the sensing range does not reach every edge of the map.

However, it is still undetermined about what range value a sensor should take, without

compromising performance to the real-time property. Since the beam sensor can only detect

static obstacles, such as walls and fixed objects, it is considered to be a naive sensor for

determining how far a pursuer is to the nearest obstacle within range. Scanning the map

with a deep, straight range can potentially result in recording the boundaries of the map,

making the sensor data less scalable to larger maps. For example, a beam sensing range of

at least 4 steps will detect all edges of the 5×5 maps. Alternatively, if the sensing range for

all beam sensors are set to 6, no 5 × 5 map will expose the agents to a training example in

which the beam range exceeds 4. Instead trying to determine an adequate range value, we

focus on verifying whether one sensor is superior than the other in solving pursuit problems

by comparing both sensors at range 3. We then examine the ranges of the hill-climb sensor

at 5, 7, 10 to determine the effect of increasing the sensing ranges.

5.4.2. Training Data

To study the applicability of a learned behavior model on a new map, we use the leave-

one-out cross-validation method to construct the training data and the test data as shown

in Table 5.3. In particular, we choose 4 out of the 5 toy maps for training, and then we

test the resulting network on the remaining map at run-time. Hence, we have 5 categories

of resulting networks, each of whose name is prefixed with one of the five names shown

in the first column of Table 5.3. To construct the training data for each network, we ran-

domly sample 5,000 joint states in each map, whose total number of joint state is provided
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ANN Name Training Map Combination Test Map
ann-Empty5 Hm, R7, Rt, Sp Empty 5× 5
ann-Handmade5 Em, R7, Rt, Sp Hand-made 5× 5
ann-Round7 Em, Hm, Rt, Sp Round-table 7× 7
ann-Round9 Em, Hm, R7, Sp Round-table 9× 9
ann-Sparse10 Em, Hm, R7, Rt Sparse 10× 10

Table 5.3: Naming conventions on ANN and the maps that are used for training and testing
(Hm = Hand-made 5 × 5, Em = Empty 5 × 5, R7 = Round-table 7 × 7, Rt = Round-table
9× 9, Sp = Sparse 10× 10).

in Table 5.1. As a result, each set of training data contains 20,000 instances, each of which

includes a list of features and the optimal capture-travel.

5.4.3. Training and Preliminary Evaluation

We use the resilient back-propagation (RPROP1) algorithm to drive the training process on

different sets of data (5 maps × 2 sets of features × 3 target policies). For each map M

(i.e., the hold-out map), each target policy, and each set of features, we train one behavior

model over 20,000 samples from the other four maps (5,000 each). We then combine train-

ing with 10-fold cross-validation2 on these samples. Although the training process runs

through the entire 10-fold cross-validation, the model (i.e., network) is saved at the low-

est validation error value over the samples. The network will be then tested over a set of

sample pursuit instances on the hold-out map M at run-time. Before testing the resulting

networks at run-time, however, we evaluate the networks by 1) determining the influence

of each feature under different sensor types for estimating optimal capture-travel, and 2)

determining the portability of a network by the average root mean squared error (defined

in Equation 5.1) against the corresponding hold-out map.

Using the beam sensors, Figure 5.2 shows the resulting feature weight-strength. Each

subfigure illustrates the feature correlations to a hidden neuron H1, H2, or H3 respectively.

Each group of bars corresponds to the feature weight-strength from the network learned

against the OPT, DAM, or SFL targets respectively. The connection weight between a fea-

ture and a hidden neuron is averaged over all five networks under the same target, whereas

each bar shows the magnitude of such average weight-strength, which is automatically

quantized between -26 and 26 by FANN.

For learning to pursue the OPT target with two pursuers, H3 shows the strongest weight-
1RPROP is a weight update algorithm that is faster than the standard back-propagation algorithm [42] .
2We found no noticeable impacts on the RMSE as we varied the k in k-fold cross-validation.
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Figure 5.2: Feature weights with the beam sensor: in each subfigure, the chart on the left
shows the weight-strength between each feature and a hidden neuron, whereas the much
narrower chart on the right shows the weight-strength between the hidden neuron and the
output neuron.
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Figure 5.3: Feature weights with the hill-climb sensor.
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strength to the output (see Figure 5.2(c)) although there is no great difference in weight-

strength to the other two hidden neurons. According Table 5.2 and the goal of minimizing

the capture-travel, we make the following observations:

• The features of distance-to-target (0 – 3) are most positively influential to minimizing

the capture-travel, implying that short distance-to-target are favourable.

• The smaller positive strength on feature 4 and 5 implies that the separation between

the pursuers should not be too great in the attempt of capturing the OPT target.

• However, the moderately negative strength of the difference in distance-to-target

(Feature 6: δ) shows that the classifier prefers one pursuer to be closer to the tar-

get while the other is further away during a pursuit. It is surprising that this feature

does not support equal distance to target for a pincer movement. Instead, it prefers

one pursuer to be more aggressive in chasing the target while the other one holds back

for a potential trap. While surprising, this result is in line with observed animal be-

haviors in cooperative hunting (see Section 1.1.1), where some group members herd

their prey toward other members as a trap.

• In terms of mobility, the pursuers prefer a joint state that gives them more choices of

actions (by a negative weight on Feature 7) but gives the target lower mobility (by a

positive weight on Feature 8). These two weights can be related to the best capture

scenario where both pursuers corner the target against an obstacle.

• The negative weight-strengths on the beam sensors (Features 9 to 20) are mostly

consistent in preferring large, positive sensor data; and hence, these features prefer

all agents in an open area by straight-line distances. This result makes sense on

the pursuers, but not so on the target. Features 9 to 12 contradict with the target

mobility (Feature 8), which could cause some undesirable behaviors that cause the

performance to degrade during run time.

The feature correlation to H1 and H2 also exhibit similar characteristics in terms of pursuing

the OPT target.

The trained networks on the suboptimal targets, DAM and SFL respectively, bear simi-

larity to the networks trained against OPT in terms of the distance-to-target, δ, mobility, and

sensor features’ weights. They differ in the pursuer-separation features, such that the pur-

suers should keep greater separation from each other. However, such speculations cannot

be verified until the run-time performance is shown.
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Network
OPT SFL DAM

Bm Hc Bm Hc Bm Hc
ann-Empty5 17.38 17.38 19.74 19.89 20.62 20.59
ann-Handmade5 15.13 18.08 20.93 21.97 20.77 20.79
ann-Round7 31.87 37.32 42.15 41.00 43.40 41.96
ann-Round9 61.63 61.64 71.06 71.43 70.35 72.22
ann-Sparse10 91.91 91.94 90.91 92.79 92.09 91.73

Table 5.4: RMSE comparison: Beam (Bm) versus Hill-climb (Hc), R = 3.

Compared to the feature correlations in Figure 5.2, Figure 5.3 shows more consistent

correlation between the features and the hidden neurons in the networks using the hill-

climb sensors, especially for both the OPT target and the SFL target. The most positively

dominant features are still the distance-to-target (preferring small values), while the most

negatively dominant features are the sensors (preferring larger values) because the sensor

feature of a pursuer spikes if the target moves within the sensing range. The mobility

features of both pursuers and the target also agree with the networks using beam sensors.

Moreover, the pursuer separation and δ are promoted by the negative weight-strength when

pursuing the OPT and SFL target. For the DAM target, however, separation seems less

important. Again, studies in run-time performances will reveal the actual behaviors induced

by the features.

As another preliminary study prior to the run-time evaluations, testing trained networks

against instances from a previously unseen map can help us further understand the sen-

sor data. The ANN-predicted capture-travel is evaluated by the root mean squared error

(RMSE) (as in Equation 5.1) against the optimal capture-travel from the corresponding

ORD. Given a set of joint states samples Jo, RMSE(Jo) is the average of the absolute dif-

ference between ORD(j) and the estimated ANN(j) for every joint state j ∈ Jo. The

smaller the value of the RMSE(Jo), the more accurate the trained network is.

RMSE(Jo) =
√

1
| Jo |

∑
j∈Jo

[ANN(j)− ORD(j)]2 (5.1)

Due to the limited options for sensing range on small maps, we present the RMSE on

networks with sensing range r = 3 for the pursuit of all three types of targets. Table 5.4

illustrates the RMSE when the networks are tested against their unseen maps. Within this

myopic range, there is no obvious differences in using the beam sensor or the hill-climb

sensor. However, beam sensor shows lower RMSE in 80% of the cases for pursuing the

OPT target and the SFL target respectively. The results on DAM targets are mixed.
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To determine whether the sensing range of the hill-climb sensor matters to the estimated

capture-travel, Figure 5.4 shows the RMSE on capture-travel computed by the networks

using the hill-climb sensor with the range of R = 3, 5, 7, 10 respectively. For the OPT

target, the sensor range does not demonstrate any impact on the RMSE, except that the error

is high overall. The lowest capture-travel error is about 14 steps by testing the neural net,

ann-Handmade5, with the sensor range of 7. The resulting RMSE on the two largest maps,

Sparse 10 × 10 and Round-table 9 × 9, produce the highest errors respectively. The order

of the curves indicates that RMSE is positively proportional to the map size. Qualitatively,

the tests against the DAM and the SFL target also show similar, consistent RMSE trends

(see Figure B.1 and B.2). Nevertheless, it is undetermined at this stage whether there is

direct correlation between RMSE and the run-time performance.
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Figure 5.4: RMSE from the tests against the ANN generated with the hill-climb sensor.

5.5. Run-time Experiments

The main goal of this study is learning to pursue instead of determining an appropriate

pursuit algorithm. In a run-time simulation, all agents have the same speed. For the ease

of evaluation, we use speed of 1.0, as defined in Chapter 2. Each state allows the maxi-

mum four cardinal action and the stay action, which costs 1 time-step. The time-out of a

simulation is set to be 10 times the maximum dimension of the grid map being tested on.

For each combination of training maps and the type of target (OPT, DAM and SFL), the

corresponding learned behavior model is tested on 100 instances on a new map.

The pursuers are driven by the following pursuit approaches:

• MA-Minimax (d) with ANN: An ANN is used as the evaluation function in MA-
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Minimax with a depth of d plies.

• MA-Minimax (d) with CML: CML is an evaluation function that computes the cu-

mulative Manhattan distance heuristic between the pursuers and the target. It is the

sum of Manhattan distance between every pursuer and the target. This heuristic is

used to provide a base-line performance as compared to using an ANN evaluator.

The lookahead depth ranges from 3 to 9, and range values r include 3, 5, 7, and 10. How-

ever, only the results on full-ply lookahead depths (d = 3, 6, 9) and R = 3 are presented in

this section. The results showing the performance of fractional plies and more range values

are arranged in Appendix B.3.

We first focus on the run-time results in Figure 5.5 for pursuing the OPT target. Each

row of subfigures represents the three performance measures, namely success rate, average

capture-travel, and average suboptimality, on the networks to be tested on the corresponding

unseen map. Each subfigure illustrated three curves, which represent three different eval-

uation functions. The curve with a diamond shaped marker represents the performance of

the model using three hidden neurons (n3) and the beam sensor with range of 3 (i.e., beam

model), whereas the curve with a cross shaped marker represents the one using the hill-

climb sensor under the same network architecture (i.e., hill-climb model). The curve with

a square shaped marker shows the base-line performance of CML function. We refer to

the models with the short-hand name beam and hill-climb when statistic significance are

presented with the corresponding measures.

Our observation over the run-time results is statistically supported by paired t-tests.

Each t-test is conducted over any two different evaluation functions. The p-value indicates

the statistic significance of the relevant observation.

As illustrated in Figure 5.5(a), the performance of CML on the empty map surpasses

both the beam model (with p = 8.9 × 10−67) and the hill-climb model (with p = 7.9 ×

10−75) at d = 3 by a large margin. On empty maps (i.e., finite, trivial, four-connected

graphs without obstacles), the Manhattan heuristic is optimal. CML with a myopic looka-

head depth leads the pursuers to aggressively corner the OPT target without worrying about

separation between each other. In contrast, both models show learning from more com-

plicated maps can be misleading in the application on simply open terrains. They overly

deliberate on the decision of separation on empty maps.

Interestingly enough, CML’s success rate decreases as d increases. Deeper planning

makes the CML pursuers more conservative in pursuing the smart OPT target, and therefore,
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(b) ann-Handmade5 vs. OPT
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(c) ann-Round7 vs. OPT
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(d) ann-Round9 vs. OPT
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Figure 5.5: Run-time performance against the OPT target.
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(a) Diagonal (b) Corner (c) Indefinite pur-
suit

Figure 5.6: Dead-lock scenarios occurred during run-time: the dotted lines mean that there
could be more grid cells in the direction of these lines (i.e., the presented terrain can be a
portion of a large map).

allowing the OPT target to lead the pursuers into the diagonal dead-lock scenario, as shown

in Figure 5.6(a). Also with the increasing lookahead depth, both models catch up with

CML and finally overtake the success rate at d = 9: beam> CML with p = 1.2×10−3 and

hill-climb > CML with p = 5.5× 10−5. In comparison, the beam model solves more cases

than the hill-climb sensor at shallower depth (p = 6.1 × 10−6 at d = 6), while hill-climb

crosses both CML (p = 5.5 × 10−5) and the beam model at d = 9. The results in terms

of suboptimality and capture-travel show that the hill-climb sensor becomes more effective

in solving more difficult cases as d increases; the suboptimality of the hill-climb model at

d = 9 decreases to the same level CML at d = 3, while its average capture-travel at d = 9

is still greater than CML at d = 3.

The mobility of an agent is intrinsically limited by the characteristics of the map as seen

in Hand-made 5 × 5 (Figure 5.1(b)). However, Manhattan heuristic is also optimal on this

map, whereas separation is physically imposed upon the pursuers. These characteristics

give pursuit advantages to CML. Therefore, CML shows superior performance overall as

in Figure 5.5(b), except at d = 6; by the success rate,

• at d = 3, CML > beam and CML > hill-climb with p = 8.7× 10−41, and

• at d = 9, CML > beam while both CML and hill-climb have 100% success rate.

Depth 6 seems to be a pathological lookahead value for CML pursuers (CML < beam

with p = 9.5 × 10−6) because they can easily fall into the indefinite pursuit around the

obstacle (see Figure 5.6(c)). The hill-climb model is also subject to the same dead-lock

scenario (hill-climb < CML with p = 8.0×10−31 at d = 6) because the sensor encourages

individual pursuers to move in toward the target. On the other hand, the beam model solves

just a few cases shy of CML at d = 3; and it surpasses CML at d = 6 with a success rate

of 97%, which appears to be indicated by the lowest RMSE in Table 5.4. This observation
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shows that that learning on other larger, more complicated maps with imperfect heuristics

can help pursue the OPT target in a smaller, obstacle-filled environment.

The round-table scenarios are fundamental motivating examples in this study. The Man-

hattan heuristic is no longer perfect. Pursuers must find ways to propel away from each

other so that they can corner the target together from opposing sides of the table. In Fig-

ure 5.5(c), the success rates of all three types of pursuers drop drastically at d = 3, showing

that learning cannot combat the shallow lookahead in a difficult map. The beam model

declares a clear victory from depth at and beyond d = 6 by the success rate,

• beam > CML , and

• beam > hill-climb with p = 3.9× 10−4,

but the success rate cannot exceed 60% even at d = 9. CML is subject to all three dead-

lock cases shown in Figure 5.6 without the assistance of true distance-heuristics. The beam

model is able to avoid the diagonal case and the case of indefinite pursuit because learning

encourages separation between the pursuers alone as well as the difference in distance-

to-target. However, the corner case is the most difficult dead-lock to overcome. In Fig-

ure 5.6(b), pursuer A is able to hold the target at the corner. Pursuer B, positioned on the

diagonally opposite side of the table, cannot escape the depression in the joint space without

A or T changing their current state. The hill-climb sensor shows consistent conservativeness

in separation; clumping pursuers give a greater chance for the target to run free.

While learning on Round-table 9 × 9 and Sparse 10 × 10 can improve the solution of

smaller problems, as in Round-table 7× 7, it is less scalable to larger problems in applying

learned behaviors from Round-table 7× 7 in Round-table 9× 9. The beam model can only

solve around 20% of the cases, while the hill-climb model can solve only 15% (see Fig-

ure 5.5(d)). The winner, CML, is also only able solve at most 26% of cases (at d = 9, CML

> beam and CML > hill-climb with p = 2.7 × 10−2) most of which are likely simpler

cases as indicated by the high values of suboptimality.

The scalability is even poorer as in Sparse 10 × 10, which contains multiple small

heuristic depressions (see Figure 5.5(e)). Although this map is largest in our study, the

obstacle topologies and the large open areas are not similar to those on the smaller maps

that were used in training. It is difficult to test the model on an instance of which it have no

experience. CML performs unexpectedly well in both success rate and suboptimality, for

example, at d = 9:
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• by success rate, CML > beam with p = 4.1 × 10−60 and CML > hill-climb with

p = 3.1× 10−66;

• by suboptimality, CML < beam with p = 1.6 × 10−21 and CML < hill-climb with

p = 4.9× 10−20.

The pursuit in open areas resembles the behavior on the empty map.

Either the beam model or the hill-climb model on pursuing the DAM target shows dom-

inating success rates of at least 90% over CML (see Figure B.3 with p-values), except for

the trivial map, Hand-made 5 × 5. The main reason for this is that DAM is a surrendering

target. When it is pushed against at least one edge while a pursuer in its immediate neigh-

bourhood, a capture is guaranteed. In fact, learning shows that one greedy pursuer and one

laid-back pursuer (i.e., further away from the target) can help minimize the optimal capture-

travel. The greedy pursuer can herd the target into a corner, which the laid-back pursuer

provides an extra barrier to limit the mobility of the target. It is also noteworthy that the

run-time performance against the DAM target is also indicated by the corresponding RMSE

entry in Table 5.4. As both sensors show mixed RMSE results on different maps, such that

one has lower RMSE value than the other on certain maps, but not all, all three performance

measures in Figure B.3 show similar mixed results at run-time.

The SFL target is much easier to capture due to self-defeating behavior. in particular,

it often plans an “escape” path toward a selected beacon through the interception course of

the pursuers. Therefore, pursuers that uses a greedy evaluation like CML can easily succeed

in capturing the target on simple small maps without learning (see Figure B.4(a) and B.4(b)

with p-values). On more difficult maps as in Figure B.4(c) to B.4(e), the results support

the hill-climb model over the beam model because the hill-climb sensor can draw a pursuer

toward the target, while the target may meet the pursuer half way.

In terms of planning effort per time-step, the dominating component lies in the expan-

sion of the search tree, as described in Section 4.3. Since all three types of pursuers use the

same planning algorithm, the only difference in planning effort is the process of extracting

the features. CML uses a scalar heuristic, whose computation is in small constant time.

Similarly, the distance features in a model can be computed in small constant time, whereas

the computation of the mobility features and the sensor data are linear to the local search

space. With a prespecified range, both mobility and sensor data can be obtain in constant

time as well. Thus, the use of these models still satisfies the real-time property: planning

effort per time-step is a small constant.
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Overall, learning can help improve performance in pursuing an intelligent target in a ter-

rain that resembles a previously experienced one. In particular, beam sensor demonstrates

better combined ability in pursuer separation and in cornering the target. On the other hand,

there are several scenarios in which a greedy approach can directly corner the target with

shallow planning depth (i.e., without too much “thinking”). First, trivial, open-area maps

with an accurate initial heuristic can provide easy-to-compute, sufficient heuristic to guide

the pursuit. Secondly, if the pursuers cannot recognize the obstacles on a new map, there is a

higher chance of successful capture by being a risk-taker than an uncertain thinker. Also, if

the target’s escape strategy is highly suboptimal, the pursuers can simply apply the distance

heuristics instead of over-thinking the pursuit of a trivial target. In terms of scalability, it is

still inconclusive on what causes the inability for the models to scale up to larger problems.

In hindsight of the run-time evaluation on the learned models, there exists a correla-

tion between RMSE (see Table 5.4) and the run-time performance measures in the pursuit

games of chasing a less optimal target (see Figure B.6 and B.7). A model with a lower

RMSE shows higher success rate in solving the pursuit instances, and hence, reducing the

average capture-travel. Also, a smaller RMSE value implies the higher accuracy of the

learned model. Therefore, more difficult cases can be solved while reducing the overall

suboptimality.
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Chapter 6

Limitations and Potential
Improvements

In this study, we examine the multi-agent pursuit game from a microscopic view on small

toy maps. Out intent is to gain a better understanding of how cooperation can be achieved

through two pursuers. Any additional agent can be thought of as an augmentation from the

discussed approach. There are still many limitations to overcome and improvements to be

done for this specific problem.

6.1. Limitations

There are limitations in both training phase and the run-time phase. In the training phase,

they are:

• The computation for the ORD is subject to the “curse of dimensionality”. There-

fore, our study is restricted in learning from small maps, which in turn, limits certain

complicated terrain representation which could be useful for learning to pursue.

• The off-line learning is currently using one machine learning approach. We can also

try support vector machines (if time permits), and various reinforcement learning

approaches that are capable of coping with uncertainty. The precondition on select-

ing these methods is that the result model must be portable to run-time simulations.

Particularly, fast execution of the model is preferred in real-time applications.

• Although the current feature sets exhibit some advantage of utilizing learning in the

pursuit games and they are easy to compute, it is an on-going investigation into dis-

covering features with more sophisticated correlations.
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• Considering the feature correlations as in both Figure 5.2 and 5.3, the feature weights

follow similar connection distribution toward each hidden neuron, independent of

the type of the target. Although the hidden neurons are activated by the sigmoid

function, this function can be seen as a squashing function that translate each input

value between zero and one. Also, using a one single hidden layer, the similar weight

strength on the connections between a hidden neuron and the output neuron indicates

that model is linear in the feature space. Using deep nets can produce a nonlinear

function to approximate the optimal capture-travel. However, it is not yet known

whether the use of deep nets can improve pursuit performance.

The limitation in the run-time phase lies in the choice of planning algorithm. Comparing

the learned models with simple heuristics inside the same minimax algorithm is subject to

exponential expansion in the search tree. Regarding to real-time applications, a desired

method must strike a balance between the quality of the pursuit and the planning effort.

We can try utilizing the models in different multi-agent real-time search approaches, or

a combination of these approaches. However, the literature on this specific topic is also

limited to date.

6.2. Potential Improvements

To echo the motivation of the real-time property in Section 2.2 with respect to the assump-

tion on fully observable problems, it will be interesting to consider the pursuit games in

an asynchronous environment, which is also partially observable. However, before we can

move onto such future studies, several potential improvements can be made to our current

approach, ranging from the choice of maps, to feature selection, to training approaches, and

to the run-time approach.

Learning over the five toy maps is insufficient to conclude that a learned model will

scale. One improvement can be training a model over a few more maps of different sizes,

but with similar shapes of obstacle, so that a familiar obstacle can be recognized on a

new map; the pursuit behaviors from this new map can be derived from the known maps.

Alternatively, we can take advantage of state abstraction and compute the ORD on each

abstraction level as each abstract graph is a reduced version of its child graph.

Furthermore, reinforcement learning (RL) is an alternative for building pursuit models

over large maps, in which ORD becomes intractable to compute. Especially, large maps

that contain a wide variations of terrains can provide a rich set of examples to the learner.
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However, the premise of applying RL on the pursuit game is that time is not an issue.

With the same assumptions about the map, the agent and their movement as in our

approach, it will be interesting to use learning to approximate the value of the cover heuristic

(see Section 3.4). However, such a study is non-trivial as the shape of the cover can be

completely different within one step. There exist technologies that can help decompose the

state space to make reinforcement learning more effective. Graph Laplacian is an example

of such technology, as it uses Laplacian matrix to represent spanning trees on a graph [30].

However, making it into a feature that is independent to the map size remains an open

problem.

Until the development of a better suited features set for the pursuit game, it is diffi-

cult to determine the appropriate training method for this particular problem. The num-

ber of parameters for turning an ANN is already an overhead. We can use the cascade-

correlation [11] approach to automatically determine the best net work architectures instead

of using the simple, hand-tuned neural network architecture, The advantage of using cas-

cade networks is that the network has more freedom in choosing what it needs for learning

the instances. The disadvantage, however, lies in the difficulty in analyzing the effect of

each features by their weights, and the tendency of overfitting.

During run-time simulations, we can incorporate online-learning to fine-tune the be-

havior model for the current map to determine whether the current performance can be

further improved. On another token, we can augment this two-pursuer approach to more

pursuers. Similar to the idea of state abstraction, one can designed a binary command hier-

archy consisting of abstract units for making decisions and the ground units for executing

the commanders’ decisions.
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Chapter 7

Conclusion

The multi-agent pursuit game often arises in real life, ranging from animal and human

behaviors to computer video games. In all three real-life domains, there exist a common

process of learning from others’ experience prior to the one’s own real practice. In computer

simulations, however, learning off-line is often difficult to achieve due to the computation

overhead on the training instances, the construction of portable feature sets, and the chal-

lenge of finding of an appropriate training method.

This thesis presented a survey on various related work to the classical single-agent mov-

ing target search approaches, which incrementally learn about the environment to help im-

prove performance online. These approaches are subject to “loss of information” and the

“thrashing” behavior due to the restriction of running in real-time. When they are applied

in multi-agent scenarios, the pursuers become uncoordinated as they attempt to capture the

moving target. Furthermore, the learned information depends on the structure of the cur-

rent map only, neglecting the existence of any teammates or any previously known pursuit

behaviors in similar environments.

To make learning to pursue possible, we proposed an off-line learning framework to

gather pursuit instances from different maps and to model a general pursuit behavior across

these maps. To do so, we precomputed the optimal response database for different tar-

gets, and defined two different sets of features containing relative distance metric about

all agents, local mobility evaluation, and local sensor data. These two sets differ in the

approach of collect sensor data (i.e., the beam sensor and the hill-climb sensor).

Preliminary training results in terms of root mean squared error to the optimal capture-

travel showed that beam sensor slightly outperformed hill-climb sensor in the pursuit of

the optimal target due to the moderate level of separation between the pursuers. The same

results also showed that varying the sensing range do not have any impact on the accuracy
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of estimating the capture-travel.

The application of the learned models in run-time are driven by the multi-agent minimax

algorithm, which puts planning for each agent on a separate ply. Due to the exponential

expansion of the minimax search tree, the run-time testing beyond 9 steps ahead becomes

intractable. Therefore, we examined the learned behaviors on the full-ply of 3, 6, and 9.

The empirical results showed that learning is required to help improve performance on

non-trivial maps (e.g., round-tables) when pursuing an intelligent target. These results also

reveal that learning is unnecessary when the map is trivial or the target is suboptimal.

Moreover, these empirical results demonstrated correlation between the root mean squared

error and the run-time performances. The greater the error, the less successful a model is

in capturing the target. This error also correlates to the map size, showing that the model

applied on smaller maps is more efficient, in terms of success rate, than applying on larger

maps. Such correlation indicates the poor scalability of the current learning framework. Fu-

ture work is necessary in improving the feature definition, and well as the training process.
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Appendix A

Minimax

Minimax (joint state j, depth d):
1: if j is a capture-state or d = 0 then
2: return f(j)
3: end if
4: v ← −∞
5: for each successor joint state j′ do
6: v ← max{v,−Minimax(j′, d− 1) }
7: end for
8: return v

Figure A.1: The Minimax Algorithm.

AlphaBeta (joint state j, depth d, α, β)
1: if j is a capture-state or d = 0 then
2: return f(j) {** f is an arbitrary evaluation function **}
3: end if
4: for each successor joint state j′ do
5: α← max(α, -AlphaBeta(j′, d− 1, −β, −α))
6: if (β ≤ α) then {** Beta cut-off **}
7: break
8: end if
9: end for

10: return α

Figure A.2: Minimax with alpha-beta pruning: β represents target (or opponent in general)
best choice of action. The subtree is discarded if α is worse than β.
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Figure A.3: An example of a minimax game tree for maximum depth d = 3 in the context
of the pursuit game. A round state on the tree represent a joint state. The pursuers make a
joint decision on a Max-ply, and predict the target’s move on a Min-ply. By convention, the
combination of a Max-ply and a subsequent Min-ply is considered as a full ply.
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Appendix B

Empirical Results on Non-Optimal
Targets

B.1. Training Results

As mentioned in Section 5.4.3, RMSE is dependent to the map size but independent to the

sensor range. Here, this claim is reinforced by the tests against non-optimal targets. Both

type of sensors yield to similar RMSE value as the sensor range increases.

B.2. Run-Time Experimental Results on Full-Plies

Figure B.3 and Figure B.4 demonstrate the run-time performance of the DAM target and

then SFL target respectively. For more detailed discussion on these two figures, please refer

to Section 5.5.

B.3. Run-Time Experimental Results Showing Fractional Plies

In this section, we present the run time performance with d = 3, 4, . . . , 9, including frac-

tional plies. Also, we include the performance multiple sensing ranges at R = 3, 5, 7, 10

for the hill-climb sensor. This result can help us further understand the effect of sensing

range and the fractional ply lookahead during run-time.

For the OPT target, neither longer sensing range for hill-climb sensor or the fractional

ply changes previous observation in Section 5.5 on every map, except for Hand-made 5 ×

5. On this map, however, increasing the range for the hill-climb sensor improves pursuit

performance. In Figure B.5(b), both models at R = 10 and R = 7 can achieve an success

rate about 97% to 98%. Although there exist pathology at d = 4 and 5, the model at R = 7

recovers 100% success rate at d = 6, while the one at R = 10 reaches 100% at d = 7 with
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a smoother curve. on this simple map, these two models demonstrate high competence

against CML.

For the DAM target, the observation on the two 5×5 maps still does not vary. However,

the hill-climb models at R = 5 supersedes CML on Round-table 7 × 7; and at R = 5 and

R = 7, the hill-climb models join the beam model in the superior league of pursuit game

solver on Round-table 9 × 9. On Sparse 10 × 10, the hill-climb model at R = 5 with

d = 4 exhibits the best performance among all models. The favourable fractional ply of 4

indicates that allowing one pursuer to plan an extra move to the target that is one time-step

out dated constitutes a team of greedy and laid-back pursuers, which seems to be the best

combination behavior in chasing the DAM target as mentioned in Section 5.5.

For the SFL target, the run-time performance shows that every hill-climb model is an

efficient candidate in pursuing the SFL target, except for the two 5× 5 maps. Consistently

for the SFL target and DAM target, d = 4 appears to be the magic ply for the pursuers

because at depth 4, the pursuers are greedy toward the target in general, while the one

pursuer planning an extra move has the ability of changing the joint state continuously.

This behavior makes the other pursuer re-plan an action toward the target as well.

In summary, sensing range with the combination of planning with fractional plies on

separate non-trivial maps do show an improvement in performance. Especially, hill-climb

models with range of at least 5 generally demonstrate highly efficient performance in terms

of success rate and suboptimality. All hill-climb models are in general better suited for

pursuing less optimal targets.
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Figure B.1: RMSE vs. the hill-climb sensor on SFL target.
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Figure B.2: RMSE vs. the hill-climb sensor on DAM target.
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(a) Empty5: CML > beam (p = 1.2× 10−2) and CML > hill-climb (p = 5.0× 10−46)

3 4 5 6 7 8 9
20

30

40

50

60

70

80

90

100

S
uc

ce
ss

 r
at

e 
(%

)

Minimax Depth (d)

 

 

3 4 5 6 7 8 9
0

5

10

15

20

25

30

35

40

A
ve

ra
ge

 c
ap

tu
re

−
tr

av
el

 (
T

)

Minimax Depth (d)
3 4 5 6 7 8 9

0

2

4

6

8

10

12

A
ve

ra
ge

 S
ub

op
tim

al
ity

 (
T

 / 
T* )

Minimax Depth (d)

n3−Beam(3)
n3−Hill−climb(3)
CML

(b) Handmade5: CML > hill-climb (p = 4.8× 10−23) and CML > beam (p = 1.1× 10−24)
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(c) Round7: hill-climb > CML (p = 4.7× 10−2) and hill-climb > beam (p = 1.7× 10−22)
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(d) Round9: beam > hill-climb (p = 9.9× 10−5) and beam > CML (p = 2.4× 10−7)
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(e) Sparse10: hill-climb > CML (p = 3.3× 10−3) and hill-climb > beam (p = 1.9× 10−3)

Figure B.3: Run-time performance against the DAM target. P-values under each subfigure
represent the statistic significance on paired comparison over the success rates at d = 3.
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(a) Empty5: CML > hill-climb (p = 1.6× 10−1) and CML > beam (p = 6.4× 10−3)

3 4 5 6 7 8 9
30

40

50

60

70

80

90

100

S
uc

ce
ss

 r
at

e 
(%

)

Minimax Depth (d)

 

 

3 4 5 6 7 8 9
0

5

10

15

20

25

30

35

A
ve

ra
ge

 c
ap

tu
re

−
tr

av
el

 (
T

)

Minimax Depth (d)
3 4 5 6 7 8 9

0

2

4

6

8

10

12

A
ve

ra
ge

 S
ub

op
tim

al
ity

 (
T

 / 
T* )

Minimax Depth (d)

n3−Beam(3)
n3−Hill−climb(3)
CML

(b) Handmade5: CML > hill-climb (p = 2.3× 10−30) and CML > beam (p = 2.7× 10−31)
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(c) Round7: hill-climb > CML (p = 1.3× 10−1) and hill-climb > beam (p = 2.4× 10−4)
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(d) Round9: for suboptimality at d = 9, beam < hill-climb (p = 4.4 × 10−1) and beam < CML
(p = 1.8× 10−6)
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(e) Sparse10: hill-climb > CML (p = 3.3× 10−1) and hill-climb > beam (p = 7.2× 10−1)

Figure B.4: Run-time performance against the SFL target. P-values under each subfigure
represent the statistic significance on paired comparison over the success rates at d = 3,
except for Round9.
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(e) ann-Sparse10 vs. OPT

Figure B.5: Run-time experiment against the OPT target with multiple hill-climb sensor
ranges.
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(d) ann-Round9 vs. DAM
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(e) ann-Sparse10 vs. DAM

Figure B.6: Run-time experiment against the DAM target with multiple hill-climb sensor
ranges.
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Figure B.7: Run-time experiment against the SFL target with multiple hill-climb sensor
ranges.
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