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Abstract 

Multiple-input, multiple-output (MIMO) techniques have been proposed to meet the 

needs for higher data rates and lower delays in future wireless communication systems. 

The downlink capacity of multiuser MIMO systems is achieved when the system 

transmits to several users simultaneously. Frequently, many more users request service 

than the transmitter can simultaneously support. Thus, the transmitter requires a 

scheduling algorithm for the users, which must balance the goals of increasing 

throughput, reducing multiuser interference, lowering delays, ensuring fairness and 

quality of service (QoS), etc. 

In this thesis, we investigate the application of genetic algorithms (GAs) to perform 

scheduling in multiuser MIMO systems. GAs are a fast, suboptimal, low-complexity 

method of solving optimization problems, such as the maximization of a scheduling 

metric, and can handle arbitrary functions and QoS constraints. We first examine a 

system that transmits using capacity-achieving dirty paper coding (DPC). Our proposed 

GA structure both selects users and determines their encoding order for DPC, which 

affects the rates they receive. Our GA can also schedule users independently on different 

carriers of a multi-carrier system. We demonstrate that the GA performance is close to 

that of an optimal exhaustive search, but at a greatly reduced complexity. We further 

show that the GA convergence time can be significantly reduced by tuning the values of 

its parameters. 

While DPC is capacity-achieving, it is also very complex. Thus, we also investigate 

GA scheduling with two linear precoding schemes, block diagonalization and successive 

zero-forcing. We compare the complexity and performance of the GA with “greedy” 

scheduling algorithms, and find the GA is more complex, but performs better at higher 



 

signal-to-noise ratios (SNRs) and smaller user pool sizes. Both algorithms are near-

optimal, yet much less complex than an exhaustive search. We also propose hybrid 

greedy-genetic algorithms to gain benefits from both types of algorithms. 

Lastly, we propose an improved method of optimizing the transmit covariance 

matrices for successive zero-forcing. Our algorithm significantly improves upon the 

performance of the existing method at medium to high SNRs, and, unlike the existing 

method, can maximize a weighted sum rate, which is important for fairness and QoS 

considerations. 
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x Vector (lowercase boldface) 

X Matrix (uppercase boldface) 

x  y x is approximately equal to y 

x y  x is defined as y 

max{a,b} Maximum of a and b 

min{a,b} Minimum of a and b 

(x)+ Maximum of x and 0 

x Ceiling function; nearest integer greater than or equal to x 

EX{} Expected value / expectation over X (subscript may be omitted) 

IN (N×N) identity matrix (subscript may be omitted in general case) 

0M×N An all-zero (M×N) matrix (subscript may be omitted in general case) 

X* Best value for scalar X 

X* Conjugate of matrix X (note also smaller * than above) 

XT Transpose of matrix X 

XH Hermitian (conjugate) transpose of matrix X 

X–1 Inverse of square matrix X 
†X  Moore-Penrose pseudoinverse of matrix X 

X1/2, X–1/2 Square root and inverse square root of X 

|X| Determinant of matrix X 

Tr(X) Trace of matrix X 

rank(X) Rank of matrix X 

F
X  Frobenius norm of X 

0X   X is positive semidefinite 

 1,blkdiag X   A block-diagonal matrix formed from the matrices X1, … 

,   A set of numbers 

  Set of complex numbers 

  Cardinality of set   

 Empty set 

    “Big-O” (“order of”) notation 

 

 



 

List of Notable Symbols 

Aj Interference experienced by user j on broadcast channel, when used in 
context of MAC to BC transformations 

Bj Interference experienced by user j on multiple access channel, when used 
in context of MAC to BC transformations, or a precoder input covariance 
matrix, when used in context of linear beamforming 

C MIMO channel capacity 

C* Best chromosome in a population 

CE Ergodic MIMO channel capacity 

G Utility function value 

Gi Utility function value (fitness) of chromosome i 

GMT Utility function for maximum throughput criterion 

GPF (Causal) utility function for proportional fairness criterion 

Gi An effective channel matrix for user i, when used in context of MAC 
waterfilling, or a (proportional) gradient for user i, when used in context 
of conjugate gradient projection 

kG , ˆ
kG  Normalized and projected gradients for user k, respectively 

H Aggregate MIMO channel matrix of users in multiuser system (or matrix 
for the one user in a single-user system) 

Heff, He, Hk,e Effective channel matrix (for user k) 

Hk, Hjk Channel matrix for user k (on subcarrier j, for a multi-carrier system) 
B
kH , M

kH  Channel matrix for user k, specifically denoting for the BC and MAC, 
respectively 

kH , kH  Aggregate channel matrices for BD and SZF, respectively, used to find 
null space basis vectors / precoding or beamforming matrix for user k 

K Number of active users 

K0 Maximum number of simultaneously scheduled users (hard limit) 

MT Number of transmit antennas 

N Number of receive antennas (per user); see also NR 

NC Number of (sub)carriers in a multi-carrier system 

Ncombinations Number of (unordered) combinations of scheduled users 

Ng Number of generations (iterations) that genetic algorithm runs 

Nordered_selections Number of ordered selections of scheduled users 

Np Population size (number of chromosomes) for genetic algorithm 

NR Number of receive antennas (per user); see also N 

NS Maximum number of simultaneously scheduled users (soft limit) 

Nsamp Number of samples / Monte Carlo simulation iterations 

n, nk, njk Noise vector (for user k) (on subcarrier j) 

pc Probability of crossover operation in genetic algorithm 



 

pi Waterfilling power allocation, for eigenmode i 

pm Probability of mutation in genetic algorithm 

psel_i Probability of chromosome i being selected for breeding in genetic 
algorithm 

P Transmit power constraint 

Pk Transmit covariance matrix for user k, usually in the context of a MAC 

i
 , k

  Projector matrix for BD greedy algorithm, for iteration i / user k 

Qk Queue length for user k 

Qk Transmit covariance matrix, usually in the context of linear beamforming 
(exception: when referring to a QR decomposition, Q is a unitary matrix) 

Qk,o Transmit covariance matrix for SZF, found by method in [50] 

kr  Rank of aggregate channel matrix kH  

RBD Sum rate for BD 

Rk, Rjk Rate for user k (on subcarrier j, for a multi-carrier system) 
B
kR , M

kR  Rate for user k, specifically denoting for the BC and MAC, respectively 

kR  Average rate for user k 

RMAC Sum rate for the MAC 

RSZF, RWSZF Sum rate and weighted sum rate for SZF, respectively 

sjk Binary variable; equals 1 if user k scheduled on subcarrier j, 0 otherwise 

SE Standard error of the mean for Monte Carlo simulations 

s, sk Data symbol vector (intended for user k) 

Sk A covariance matrix for user k during iterative MAC waterfilling, or a 
search direction for user k during conjugate gradient projection 

  A set of scheduled users 

tc A time constant for exponential filter when calculating average rate kR  

Tk Transmit filter matrix for user k, when used in the context of conjugate 
gradient projection 

ˆ
kT  A transmit filter (before normalization) for user k 

ui User selected during iteration i of greedy scheduling algorithms 

U, Uk Utility value (for user k) 

UPF (Non-causal) utility function for proportional fairness criterion 

  Set of active users for greedy scheduling algorithms 

i  Subset of active users during iteration i of greedy scheduling algorithms 

s  Set of scheduled users for greedy scheduling algorithms 

kv  Rank of the null space of kH  

Vi, ˆ
kV  Row basis for BD greedy scheduling algorithm, at iteration i or for user k, 

respectively 
1
iV  Column basis for SZF greedy scheduling algorithm at iteration i 
0
kV , 0

kV  Null space basis for kH  and kH , for BD and SZF, respectively 



 

w The weight (number of ‘1’s) in the head of a chromosome 

wk A weight for the rate of user k, in a weighted sum rate 

WC Bandwidth of (sub)carriers in a multi-carrier system 

Wk Head-of-line packet delay for user k 

WT Total useful bandwidth in a single- or multi-carrier system 

W Aggregate precoding / beamforming matrix of users 

Wk Precoding / beamforming matrix for user k 

x, xk, xjk Transmitted data signal (intended for user k) (on subcarrier j) 

y, yk, yjk Received data signal (by user k) (on subcarrier j) 

 Step size, when used in context of conjugate gradient projection 

1, 2 Tunable parameters in adaptive mutation rate for genetic algorithm 

 OFDM bandwidth efficiency 

j Eigenvalues or Lagrange multipliers, depending on context 

, jk Lagrange multipliers 

G Mean of the fitness of a population of GA chromosomes 

 Correlation threshold for greedy scheduling algorithms 

, (k) A permutation of user indices, and the index at position k of the 
permutation 

 The signal-to-noise ratio in the context of ZF beamforming, or a 
Frobenius norm in the context of conjugate gradient projection 

̂  Standard deviation of results obtained from Monte Carlo simulations 

G Standard deviation of the fitness of a population of GA chromosomes 
2
n  Variance of additive white Gaussian noise 

k, jk Transmit covariance matrix for user k (on subcarrier j), usually in the 
context of DPC on a broadcast channel 

jk A Lagrange multiplier 

k  Gradient with respect to user k 
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Chapter 1 

Introduction 

1.1 Motivation 

Over the past two decades, there has been an ever-increasing demand for mobile 

communication services. Initially, mobile services were limited to voice traffic. However, 

with the growth of the Internet, mobile users are now very much interested in data 

capabilities. Current third generation (3G) cellular systems have begun to satisfy some of 

this demand with techniques such as adaptive modulation and turbo coding. However, as 

the market penetration of smartphones such as Apple’s iPhone and Research in Motion’s 

Blackberry increases, the demand for high speed wireless data grows rapidly. Thus, the 

key focus of research in wireless networks is towards spectral efficiency and very high 

data rates. 

Fourth generation (4G) systems are expected to provide a large improvement in data 

rates. The International Telecommunication Union has recommended in [1] and [2] that 

4G systems should be able to provide 1 Gbit/s for low mobility users and 100 Mbit/s for 

high mobility users. The minimum requirements for peak spectral efficiency are 15 

bit/s/Hz on the downlink and 6.75 bit/s/Hz on the uplink. Achieving those goals with 

current techniques is very difficult, and the radio channel itself is more problematical 

than wire or fibre links. 

To fulfill this end, research over the past decade has focused on the spatial techniques 

that are possible with multiple antennas at the transmitters and receivers. Designs 

employing both multiple transmit antennas and multiple receive antennas are known as 

multiple-input, multiple-output (MIMO) systems. Due to the additional spatial resources 

available in MIMO systems, higher capacity and throughput are possible without the 

need for additional bandwidth or power. MIMO techniques have been proposed for and 

incorporated into current and future wireless communication standards, including IEEE 

802.11n [3] (for wireless local area networks), 3GPP HSPA+ [4], 3GPP LTE [5] and 

LTE-Advanced [6], and IEEE 802.16e-2005 [7] and 802.16m (Advanced WiMAX) [8]. 
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[9] contains a comprehensive overview of MIMO techniques in advanced cellular 

systems. 

1.2 MIMO Wireless Communications 

The key to the additional gains in performance in MIMO systems is the additional 

degrees of freedom that come with the multiple antennas. These are additional resources 

that can be exploited beyond the frequency and time dimensions used in earlier single-

antenna systems. Seminal work [10],[11] has demonstrated that by adding antennas to 

transmitters and receivers, under rich scattering conditions the capacity of a MIMO 

system can scale linearly with the minimum of MT and NR, where MT is the number of 

antennas at the transmitter, and NR is the number of antennas at the receiver. 

One possible way of exploiting the degrees of freedom in a MIMO system is through 

the use of diversity. If the antennas are spaced far enough apart, the fading signal paths 

provided by each of those antennas can be considered to be independent. In such a case, 

the likelihood of all the paths being in a fade is much lower than the chance of a single 

path itself fading. Copies of the signal can be sent or received along each of these paths, 

creating a much more reliable data link overall. 

Alternatively, the degrees of freedom can be used for spatial multiplexing. The 

multiple antennas can be used to form several transmission streams. Additional data can 

be sent along each of these streams, resulting in a much higher capacity for the link. Both 

techniques require an uncorrelated rich scattering environment to work. As one might 

expect, there is a tradeoff between the gains achievable through spatial diversity and 

spatial multiplexing [12]. 

1.3 Orthogonal Frequency Division Multiplexing 

Although radio bandwidth is scarce, it is nonetheless still an important factor in 

improving the throughput of 4G wireless systems. Compared to bandwidths of a few 

MHz in current 3G systems, future designs are expected to use much larger frequency 

bands. LTE supports a scalable bandwidth of up to 20 MHz, and LTE-Advanced supports 

scaling the bandwidth up to 100 MHz [6]. 

However, with these larger bandwidths comes the problem of frequency-selective 

fading. The channel gain is not constant along the entire bandwidth; it instead varies 

across the frequency range. This leads to problems with inter-symbol interference (ISI). 

One way to combat ISI is to split the frequency band up into smaller sub-bands, so that 
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the fading across each of the sub-bands is approximately flat. Such frequency division 

multiplexing (FDM) techniques have been well known for several decades. Original 

designs separated the frequency bands entirely so they would not interfere. However, a 

more efficient technique was later found to allow the frequency bands to overlap. By 

spacing the subcarrier frequencies just sufficiently far apart that the signals maintain 

orthogonality, the frequency spectrum is used more efficiently while still in principle1 

avoiding interference between subcarriers. This multi-carrier system design is known as 

orthogonal frequency division multiplexing (OFDM). Such multi-carrier systems allow 

for additional degrees of freedom in dividing the system resources and thus enhancing its 

performance. 

In practice, OFDM can be implemented using the discrete Fourier transform (DFT) 

[14]. The DFT can be realized inexpensively in hardware with high computational 

efficiency using the fast Fourier transform (FFT). OFDM has been incorporated into 

many wireless communication standards, including those referenced earlier at the end of 

Section 1.1. [13] contains an overview of issues and techniques for OFDM as applied to 

wireless communications, including MIMO-OFDM. 

1.4 Multiuser MIMO Systems 

A typical cellular system consists of numerous users in communication with their 

corresponding base stations. In a MIMO multiuser system, each base station would have 

multiple transmit / receive antennas. In general, each user may also have multiple 

transmit / receive antennas, although currently, practically all users are equipped with 

only a single antenna2. On the uplink, or multiple access channel (MAC), several users 

communicate simultaneously with their base station, while on the downlink, or broadcast 

channel (BC), the base station transmits data to several users simultaneously. These 

multiple overlapping signals result in multiuser interference (MUI). A significant 

challenge of multiuser MIMO systems is to somehow reduce or eliminate MUI. Since in 

general the users cannot cooperate, it is the role of the base station to deal with the MUI. 

On the broadcast channel, it is known that the sum-capacity is achieved through a 

precoding process known as dirty paper coding (DPC) [15],[16],[17]. DPC achieves 

capacity by transmitting to multiple users and successively removing the effect of 

                                                 
1Implementation issues like an offset in the carrier frequencies or a time-dispersive multipath 
channel may result in interference between the subcarriers or the symbols [13]. However, such 
issues are outside the scope of this work. 
2 This case is often called a multiple-input, single-output (MISO) system. 
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interference on each user it encodes. At any given point in the encoding process, a user 

will not experience interference from the users encoded prior. Unfortunately, DPC is 

extremely complex and difficult to implement in practice. The process requires the base 

station having information about the downlink channel state of each user being encoded, 

having non-causal knowledge of each of the users’ signals that will be sent, and 

determining optimal power covariance matrices for each user to reduce the remaining 

MUI. While certain methods approximate DPC, often lower complexity methods are 

desired. 

Linear beamforming methods are thus of interest in the literature. Such methods are 

significantly less complex, though suboptimal, when compared to DPC. Beamforming 

processes the signal for each user independently by multiplying it by a certain 

beamforming weight vector(s) across the multiple transmit antennas. Proper design of the 

weight vector(s) can reduce or eliminate the MUI, but can also reduce the available 

degrees of freedom while doing so. 

1.5 MIMO Multiuser Scheduling 

With multiple users in the system, there exists another resource that can be harnessed, 

namely so-called multiuser diversity. Just as with multiple signal paths in a MIMO 

system meaning it is unlikely for all paths to be in a fade simultaneously, with multiple 

users, it is unlikely that all users will experience a fade simultaneously, provided that 

their channels are independent of each other. If the data that the users are receiving can 

tolerate some delay with no ill effect, the base station can exploit multiuser diversity to 

further increase capacity. A well-designed scheduler can transmit to users who presently 

have good channel conditions, and delay transmitting to other users until their channel 

conditions improve. This concept is already used in 3G cellular systems. It is well known 

that in a system with a single transmit antenna, it is optimal in terms of sum-capacity to 

devote all transmit power to the single user with the best channel [18]. However, in 

MIMO systems, this is no longer the case; as stated above, capacity is achieved with DPC 

while transmitting to multiple users simultaneously. 

Even though multiple users can be supported simultaneously, there is still usually a 

relatively low upper limit to the number of users that the base station can transmit to at 

once. This limit is usually related to the number of transmit antennas MT at the base 

station. The limit is very likely to be reached in a cellular system, where in general the 

number of users in communication with the base station is much greater than MT. Using 



 

5 

the multiple antennas to help eliminate MUI in general also reduces the number of users 

that can be simultaneously supported. Hence, this further necessitates the need for a 

scheduling algorithm at the base station. 

Since scheduling multiple users is required to achieve the sum-capacity in a MIMO 

system, MUI will arise, as already mentioned. Fortunately, the multiple antennas also 

provide assistance in dealing with the problem. The users will in general be separated in 

space from each other. The scheduling algorithm can make use of this by selecting users 

with a significant spatial separation of their channels. Signals directed towards these 

users would already experience little interference before complex coding is considered. 

Thus, the scheduling algorithm can also help reduce the burden of MUI removal between 

the users. On the whole, a MIMO scheduler thus should consider both channel gains and 

spatial separation in its scheduling decisions. 

One further very important factor that the scheduler must incorporate is fairness. In 

general, the users’ channels are heterogeneous; the users have different average channel 

gains, experience different levels of shadowing and multipath fading, etc. If the scheduler 

were to focus solely on system throughput, users in comparatively poor channel 

conditions would receive very little service. Thus, the scheduler must balance system 

throughput with fairness. 

Lastly, as the demand for high data rates over wireless links increases, so too does the 

demand for various multimedia services. The traffic for certain types of these services 

may be particularly sensitive to the delay it experiences. Examples include streaming of 

media, videoconferencing, Voice over Internet Protocol (VoIP) communications, and 

online gaming. These services may have certain quality of service (QoS) parameters that 

must be met, such as a maximum delay or minimum throughput. Failing to meet these 

parameters could lead to a degradation of service quality and user dissatisfaction. 

Thus, overall, the various factors involved in the design of MIMO systems and 

scheduling algorithms are quite complex. We discuss the technical aspects of multiuser 

MIMO systems and scheduling algorithms in more detail in Chapter 2. 

1.6 Research Goals and Summary of Contributions 

The primary goal of this research is to further investigate scheduling methods in 

MIMO systems. Scheduling of users in MIMO systems has been investigated to some 

extent, but generally not including issues related to fairness or QoS. This is particularly 

the case for DPC and certain other precoding schemes. In these schemes, the order in 
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which the users are encoded will affect the interference they experience and thus the data 

rates they can support. Thus, the scheduling algorithm should be aware of and capable of 

adjusting the encoding order of users. 

The scheduling algorithms should also be fast and of low complexity. There is often a 

limited time in which to make a scheduling decision; transmission intervals are often kept 

short so as to avoid the channel changing significantly within that interval. In general, the 

scheduler is aiming to optimize some sort of utility function for the system that 

incorporates whatever parameters or constraints that are on the data traffic being carried. 

For example, the scheduler may want to maximize the system throughput, yet make sure 

that users are fairly served, and that delays are not too high. The optimal method of doing 

so is to exhaustively check all possible selections of users, but this would take far too 

long in practice. Thus, the scheduler must be of low complexity in making a decision 

towards the goal of maximizing the utility. 

Thus, in summary, the first goal of this research is to investigate scheduling 

algorithms for DPC that are of low complexity, and are cognizant of both encoding order 

and QoS demands. We first wish to find said algorithms for DPC, since DPC achieves the 

capacity of a multiuser MIMO system. However, since DPC is quite complex, we also 

wish to investigate other precoding schemes. Thus, the second goal of this research is to 

extend the scheduling algorithms developed for DPC to more practical methods like 

linear beamforming. 

The main contributions provided by the work in this dissertation are as follows. 

 We have investigated the use of genetic algorithms for scheduling with DPC, an area 

which has received little prior research focus. Genetic algorithms (GAs) are a 

stochastic method of solving optimization problems, such as the maximization of 

scheduling algorithm utility functions. They are particularly known for their speed in 

finding very good solutions, and for being able to handle a wide variety of utility 

functions. We propose a GA scheduling approach under DPC precoding that 

accounts for the encoding order, and further extend that approach to allow scheduling 

of users independently on the carriers of an OFDM system. We investigate the 

performance of the GA for two cases: maximizing the system throughput, and 

maximizing the sum of the users’ instantaneous rates relative to their average rates 

(also known as the proportional fairness criterion [19]). These two cases provide a 

good indication of how the GA would work with any more general utility function 

that can be expressed in terms of a weighted sum rate. We demonstrate that the GA 
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performance is near-optimal compared with an exhaustive search at a greatly reduced 

complexity. Furthermore, in the case of an OFDM system, an increase in spectral 

efficiency is shown relative to the single-carrier case. 

 While the GA performs close to the exhaustive search, further improvements can still 

be obtained. We investigate the tuning of parameters of an adaptive mutation rate 

within the GA on the time it takes the GA to converge. We demonstrate that there is 

in fact a range of values for the parameters that lead to a near-minimum convergence 

time, and that it is important for the parameter values to be tuned to within that range. 

With tuning, the convergence time can decrease considerably, dropping the time to 

less than 30% of that required for untuned values in one case. A simple equation that 

is linear in the parameters is proposed to find their proper values for changing 

numbers of supported users and user pool sizes. We also investigate the effect of 

changing the crossover method in the GA on its convergence, but find that there is 

little gain to be found in doing so, especially compared to the parameter tuning. 

 We adapt the GA scheduling algorithm to two cases of linear precoding, using block 

diagonalization (BD) and successive zero-forcing (SZF). We compare the 

performance of the GA and other “greedy” scheduling algorithms to an exhaustive 

search. A comprehensive analysis of the complexity of both the GA and the greedy 

algorithms is also conducted. We find that the greedy algorithms are less complex 

than the GA. The GA outperforms the greedy algorithms at lower user pool sizes and 

higher signal-to-noise ratios (SNRs), while the greedy algorithm is better with more 

users and lower SNRs. We further propose two hybrid scheduling algorithms 

incorporating and combining traits of the genetic and greedy algorithms. These 

hybrid algorithms perform better than the original algorithms they are based on, with 

no increase in the order of complexity. 

 During our work with SZF, we identified a deficiency at higher SNRs in the 

previously published method used to allocate power to users. The resulting 

throughput is considerably lower than what it theoretically should be. We propose a 

new method to optimize the power allocated to users based on conjugate gradient 

projection that significantly increases the resulting throughput of the system. 

Furthermore, the existing method is only designed to attempt to maximize the system 

sum rate, and thus is not meant to handle issues of fairness or quality of service. Our 

proposed method also allows for the maximization of a weighted sum rate with SZF, 

where the weights may incorporate the relevant QoS constraints. We demonstrate 
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that our proposed method significantly outperforms the existing method at medium to 

high SNRs, regardless of the specific scheduling algorithm used, whether it is an 

optimal exhaustive search, or the genetic and greedy algorithms mentioned above 

that we proposed and investigated. 

1.7 Organization of the Thesis 

Chapter 2 begins by examining the background and details of MIMO aspects more 

closely. We discuss single-user and multiuser MIMO systems, including details about 

linear and non-linear methods to handle multiuser interference. We also give an overview 

of existing methods of incorporating fairness and QoS into scheduling utility functions. 

Chapter 3 covers the use of genetic algorithms for scheduling in single- and multi-

carrier dirty-paper-coded systems. We describe genetic algorithms in general, how they 

operate, and how they can be adapted for scheduling. The system model used for the 

investigation is described, and the results of Monte Carlo simulations are presented. We 

discuss the performance of the GA, including results on throughput, delay and 

convergence. A brief comparison of the runtime versus an exhaustive search is also 

provided. 

Chapter 4 describes the effects of tuning parameters within the GA. We provide 

simulation results evaluating how the tuning affects the convergence of the GA, and 

propose a simple linear equation to find suitable parameter values. We also compare the 

performance of the GA when using two different crossover operators. 

In Chapter 5, we examine the performance of genetic, greedy, and hybrid scheduling 

algorithms with BD and SZF. BD and SZF are described in detail. A complexity analysis 

of the investigated algorithms is provided, followed by simulation results covering their 

performance for a variety of user pool sizes and SNRs. 

Chapter 6 describes our proposed improved method for SZF transmit covariance 

optimization. We describe the proposed algorithm itself and provide simulation results 

for a few simple cases. We investigate how the algorithm performs when maximizing a 

weighted sum rate. We then re-examine the performance of the genetic and greedy 

scheduling algorithms for SZF using the new covariance algorithm. 

Finally, in Chapter 7, we provide overall conclusions for this work, and provide 

suggestions for possible areas of future work. 
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Chapter 2 

Background on MIMO, Precoding, and 
Scheduling 

2.1 Single-User MIMO Systems 

A single-user point-to-point MIMO system is depicted in Figure 2.1. The transmitter 

has MT transmit antennas, while the receiver has NR receive antennas. The complex 

received signal vector 1
1 2, , , R

R

T N
Ny y y    y    can be written as: 

 y = Hx + n, (2.1) 

where 1
1 2, , , T

T

T M
Mx x x    x    is the transmitted signal vector, 1RN n   is the noise 

vector, and R TN MH   is the channel matrix. Each element hij, 1  i  NR, 1  j  MT, 

represents the complex channel gain between the ith receive antenna and the jth transmit 

antenna. The entries of the noise vector n are independent and identically distributed 

(i.i.d.), circularly symmetric, complex Gaussian random variables with zero mean and 

variance 2
n  (or equivalently 2 / 2n  per complex dimension), such that   2

R

H
n NE nn I . 

Usually, the transmitter has a constraint P on the maximum power available, requiring 

Tr()  P, where  HEΣ xx . 

The capacity of the channel is achieved when the transmitted signal x is Gaussian 

 
 
 
 
 
 
 
 
 
 

Figure 2.1: Block diagram of a single-user MIMO system. 

Transmitter Receiver 
 

MT 
antennas 

NR 
antennas 



 

10 

distributed. If complete channel state information (CSI) is available at both the 

transmitter and the receiver, then the MIMO channel capacity is given by [10]: 

 2 22 2
1 1

log log 1
rr

i i i

i in n

p
C

 
 



 

    
           
  . (2.2) 

In (2.2), the i terms are the eigenvalues of the matrix product HHH (or equivalently 

HHH), while r is the rank of H; the i terms are also equal to the squared singular values 

of H. The values of pi and  are chosen according to the waterfilling power allocation 

over the eigenmodes of H with the power constraint P, such that  2 /i n ip   


   and 

1

r

ii
p P


 . The operator (x)+ denotes max{x,0}. 

In the event that channel knowledge is available only at the receiver, but not at the 

transmitter, the best capacity the transmitter can achieve is by allocating equal power to 

each of the transmit antennas. In this case, the capacity becomes [11]: 
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 . (2.3) 

Using the identities |I + AB| = |I + BA| and  1 mm
  I M , this capacity can be 

rewritten as: 

 2 22 2
log log

R T

H H
N M

T n T n

P P
C

M M 
   I HH I H H . (2.4) 

In a rich scattering environment, H will be full rank, so r = min{MT,NR}. In such a 

case, it can be shown that as the signal-to-noise ratio (SNR) grows large, the capacity will 

scale linearly with min{MT,NR} [10],[11]. One such environment is the spatially 

uncorrelated Rayleigh fading channel, where the entries of H are modeled as i.i.d. 

circularly symmetric complex Gaussian variables with zero mean and unit variance (or 

variance 0.5 per dimension). Under this model, the absolute values of the entries of H 

follow a Rayleigh distribution [20]. Since H is random, one is often interested in the 

ergodic capacity of the channel, which is the expected value of the capacity with respect 

to the channel matrix, i.e., CE = EH{C}. 

2.2 Multiuser MIMO Systems 

In a multiuser MIMO system, we are generally concerned with one of two possible 

models wherein K active users are attempting to simultaneously communicate with a base 

station. It is furthermore assumed that these users are unable to cooperate in their 
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communications. (If they were, the situation would reduce to an equivalent single-user 

MIMO system as described above.) The two models in essence describe a typical cellular  

scenario, and differ in the direction of communication. On the multiple access channel 

(MAC), also called the uplink, several users transmit data simultaneously to a base 

station. On the broadcast channel (BC), also known as the downlink, the base station 

transmits data to several users. Not all of the data is necessarily intended for all of the 

users on the downlink. In both cases, the multiple transmissions can impede each other, 

leading to multiuser interference (MUI). Often, the number of users K may be greater 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2: (a) Block diagram of MIMO multiple access channel. (b) Block diagram of MIMO 
broadcast channel. 
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than the base station can support simultaneously. In such a case, scheduling of users is 

required, as shall be discussed further in Section 2.4. 

2.2.1 MAC, BC, DPC, and Duality 

On the MAC, let T kM NM
k

H   be the channel matrix between the kth user and the 

base station, for all k = 1,2,…,K. The received signal vector 1TM y   at the base station 

will be: 

 
1

K
M
k k

k

 y H x n . (2.5) 

1kN
k

x   is the signal vector transmitted by user k, and 1TM n   is a complex additive 

white Gaussian noise (AWGN) vector1. The base station must separate the signals of the 

various users. It is known that the capacity of the Gaussian MAC is achieved when the 

base station employs successive interference cancellation to decode the users’ signals 

[10],[21],[22]. That is, after decoding the signal for a given user, the transmitted signal 

for that user is then recreated and subtracted from the combined received signal to 

remove the interference of that signal on the signals from the other users. The order in 

which the users are decoded will thus affect the rates they receive. Let 

{(1),(2),…,(K)} denote the order of the decoding, where (1) is the user decoded last, 

and   k kN NH
k k kE  P x x   denote the covariance of the transmitted signal of user k. 

Then, the achievable rate for each user is: 
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I H P H

I H P H
, (2.6) 

and the achievable MAC sum rate is: 

         21 1
log

HK KM M M
MAC k i i ik i

R R    
   I H P H . (2.7) 

On the BC, let k TN MB
k

H   be the channel matrix between the base station and the 

kth user, for all k = 1,2,…,K. The received signal vector 1kN
k

y   at each user k will be: 

 
1

K
B

k k j k
j

 y H x n . (2.8) 

                                                 
1 In the literature, 2

n  is usually assumed without loss of generality to be equal to 1. We also make 

this assumption throughout this thesis unless a specific value is stated for 2
n . 
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1TM
k

x   is the signal vector transmitted by the base station intended for user k, and 

1kN
k

n   is the complex AWGN vector experienced by user k. Since the users cannot 

cooperate in decoding their signals, it is the responsibility of the base station to help 

eliminate interference between the users, by precoding or preprocessing the data before it 

is transmitted. 

In a system with perfect channel knowledge and a source of interference known non-

causally at the transmitter (but not necessarily at the receiver), the transmitter can employ 

a technique known as writing on dirty paper. It is shown in [15] that the transmitted 

signal can be encoded in such a way that the known interference can be presubtracted, in 

essence removing its effect from the transmitted signal, making the system capacity the 

same as if the interference was not there. [15] demonstrated this for Gaussian-distributed 

interference and noise sources, but this was later extended in [23] to show that only one 

of the interference or noise needs to be Gaussian; the other can be arbitrarily distributed. 

On the BC, the signal intended for any given user is interference for any other user. 

However, the transmitter knows those signals in advance, and thus can encode them 

successively with dirty paper coding (DPC) [16],[17] to remove the interference from any 

user j on the signal for k, where j < k. Similar to the MAC, the encoding order will thus 

affect the rates each user receives. With the encoding order {(1),(2),…,(K)}, where 

(1) is encoded first, then an achievable set of rates is given by [24]: 

  

       
       

2log

H
B B

k j kj k
B

k H
B B

k j kj k

R
  



  














I H Σ H

I H Σ H
. (2.9) 

  T TM MH
k k kE  Σ x x   is the covariance matrix for the signal intended for user k. The 

achievable dirty paper region is then defined as the set of all possible rates from (2.9) for 

all covariance matrices k subject to the power constraint  kk
Tr P


 Σ  and over all 

possible encoding orders. 

Much effort has gone into characterizing the DPC rate region. It has been shown in 

[16],[17],[24],[25],[26] that DPC is optimal and achieves the capacity of the MIMO BC, 

and that the capacity region of the BC is the same as for the MAC. In other words, the 

MIMO MAC is the dual to the MIMO BC. If the BC has a set of channel matrices Hk, a 

power constraint  kk
Tr P


 Σ , and an encoding order , where user (1) is encoded 

last, the same rates will be achieved on the dual MAC with channel matrices H
kH , a sum-
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power constraint on the users of  kk
Tr P


 P , and the reverse decoding order  

where user (1) is decoded first. 

A typical DPC capacity region is shown in Figure 2.3. Two users with two antennas 

each receive data from a two-antenna base station. The SNR for each user is 10 dB, and 

the channel matrices for each user are: 

 1 2

0.3 0.2 0.6 0.2 0.4 0.1 0.3 0.6
,

0.1 0.3 1.0 0.2 0.6 1.7 0.6 0.7

i i i i

i i i i

       
            

H H . (2.10) 

The sum-capacity is achieved along a line segment on the boundary of the achievable 

region. The two end points of the segment correspond to the two possible encoding 

orders of the users. Any point along the line segment can be achieved in the long term by 

time-sharing between the two encoding orders. 

While dirty paper coding is optimal for the BC, it is also non-linear and highly 

complex. Much research effort has been dedicated to practical implementations of DPC. 

A number of these are based on extensions of Tomlinson-Harashima precoding (THP) 

[27],[28], which was originally designed to counteract inter-symbol interference, wherein 

a signal interferes with itself over time. Some applications and extensions of THP to the 

MIMO BC are described in [29],[30],[31]. THP has also been combined with trellis-

shaping codes to help remove some shaping loss caused by a modulo operation in THP 

[32]. Other methods of implementing DPC include superposition coding [33],[34], vector 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

1

2

3

4

5

6

R1 (bits/channel use)

R 2 (b
its

/c
ha

nn
el

 u
se

)

DPC BC achievable region

Achievable rate vectors

Sum−capacity   
= 7.1 bits/c.u.

 
Figure 2.3: Typical dirty paper coding achievable rate region for a 2×2 MIMO broadcast channel. 
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perturbation [35],[36], and lattice-based precoding [37],[38],[39]. All of these methods, 

however, remain non-linear and quite complex. 

2.3 MIMO Precoding and Beamforming 

Because of the complexity of DPC, other suboptimal methods are of interest to help 

reduce the interference between users. Linear beamforming methods are particularly 

desirable due to their comparatively low complexity. The signal for each user can be 

precoded or preprocessed separately by multiplying the data 1kN
k

s   for the user k by a 

beamforming matrix T kM N
k

W  . Then, the transmitted signal k kk
x W s . The 

beamforming matrices can be designed to remove at the transmitter some or all of the 

interference between the users. However, doing so can also restrict the degrees of 

freedom that the system has to transmit streams of data to users. Nonetheless, it is known 

that as K becomes large, the sum rate of beamforming asymptotically approaches that of 

DPC [40],[41]. This is intuitively explained; as the number of active users to choose from 

becomes large, the likelihood of finding users with near-orthogonal channels increases. 

Thus, beamforming functions just as well as DPC if there is little interference between 

users to start with. 

One linear method is channel inversion, sometimes called zero-forcing beamforming 

(ZFB) [17], which is designed for users with a single receive antenna1. Channel inversion 

creates a set of orthogonal, non-interfering channels. Let H 1 2, , ,
TT T T

K  H H H  be the 

vertical concatenation of K users’ channels (where K  MT). Then, the signal transmitted 

by the base station is †x H s , where s is the vector of data symbols for the K users; the 

kth entry of s is the data symbol sk for user k. †H  is the Moore-Penrose pseudoinverse2 of 

H [43], given by   1† H H 
H H HH . The beamforming matrix Wk for user k is the kth 

column of †H . An alternative method is to use regularized channel inversion, also called 

minimum mean squared error precoding [35],[44]. In this case, s is processed by the 

matrix   1H H K



H HH I , where  is the SNR. Both methods are somewhat sensitive to 

errors in the channel estimate, and can require a great deal of power to perform the 

channel inversion with badly-conditioned channels, which can lead to noise enhancement 

                                                 
1 With single-antenna users, the data vector sk for each user becomes a scalar sk. 
2 If there are power constraints per antenna at the base station instead of a total power constraint, 
some other generalized matrix inverse may provide better performance instead [42]. 
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at the receivers [45]. There is also an increasing gap in capacity compared to DPC as the 

SNR grows [45]. 

ZFB is a special case of a larger class of precoding schemes called orthogonal space-

division multiplexing (OSDM). OSDM is meant to completely remove MUI at the 

transmitter. ZFB can be extended to users with multiple receive antennas by considering 

each antenna as a separate user and zero-forcing accordingly. However, such a scheme is 

suboptimal, as the multiple receive antennas at a user can coordinate with each other to 

process the received signal. MUI should instead be removed between users, but not 

between antennas of a user. Schemes such as those described in [46],[47],[48] 

accomplish this by forcing the transmitted signal for a user to lie in the null space of the 

channel of all other users. In other words, HkWj = 0 for all k  j. The most commonly 

used of these schemes is known as block diagonalization (BD), after the nomenclature in 

[46]. The iterative method of [48], called Nu-SVD, is more general, but also more 

complex at larger MT and K. 

Completely nulling the MUI is not necessarily the best solution; for example, 

capacity-achieving DPC only removes interference successively. By relaxing the zero-

MUI condition, the performance of linear beamforming can be improved. This is part of 

the concept behind zero-forcing-DPC (ZF-DPC) [17],[49]. ZF-DPC, which is designed 

for single-antenna users, performs an LQ decomposition1 of H (i.e., H = LQ), where L is 

a lower triangular matrix, and Q is unitary. Then, by choosing Wk as the kth column of 

QH, any user i will not experience interference from any user j, for all i < j. This was 

extended to users with more than one antenna in [50], where the extension is called 

successive zero-forcing (SZF). This block successive zero-forcing was also proposed in 

[51], in relation to a scheme called successive encoding and successive allocation method 

(SESAM). Both ZF-DPC and SZF approach the capacity of DPC in the low-SNR regime, 

in the limit as the available transmit power P becomes vanishingly small [17],[50], 

provided that an optimal user ordering is used for the interference removal. We also note 

that some other methods of beamforming try to handle the MUI without outright 

removing some or all of it [52],[53]. 

In ZF-DPC and SZF, some MUI is removed through linear beamforming. It is 

furthermore possible to remove the remaining user interference by encoding the users’ 

signals with DPC. Overall, interference on user k from users j > k is removed by 

                                                 
1 Equivalently, one could perform a QR decomposition on HH, where R is an upper triangular 

matrix. Then, ( )H H H  H QR R Q LQ  . 
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beamforming, and interference from users j < k is removed by DPC. In the case of SZF, 

this extension is called SZF-DPC1 [50]. The effective overall channel therefore becomes 

diagonal for ZF-DPC and block-diagonal for SZF-DPC. Since the use of DPC is assumed 

in these two schemes, they are no longer strictly linear, and they are technically both 

more complex than DPC alone. The benefit of the two schemes is that the (block-)

diagonal effective channel makes power allocation to the users much simpler than for 

DPC or SZF [50]. Both ZF-DPC and SZF-DPC approach the capacity of DPC in the 

high-SNR regime, in the limit as the transmit power P becomes infinite [50], for any 

arbitrary ordering of users. 

We lastly note that the above described methods of beamforming are mostly designed 

to maximize the system sum rate under a power constraint. There are also alternative 

goals in linear beamforming, such as minimizing power allocation subject to minimum 

signal-to-interference-plus-noise ratio (SINR) constraints [54],[55], maximizing the 

minimum user SINR or rate subject to a power constraint [54],[56],[57], and minimizing 

the mean squared error [58],[59],[60]. 

2.4 MIMO Multiuser Scheduling 

It is well known that in a single-input, single-output (SISO) system, where the 

transmitter and receivers each have only one antenna, it is optimal in terms of throughput 

to transmit to a single user at a time using all available transmit power [18],[61]. The 

random fluctuations inherent in the channel combined with a large user pool result in 

there likely being at least one user with a very good channel at any given time. Different 

users are hence selected at different scheduling intervals in a time division multiple 

access (TDMA) scheme. This concept is known as multiuser diversity. 

It is thus natural that initial scheduling efforts in MIMO were directed towards 

exploiting the same idea. However, having multiple antennas at the transmitter and 

receivers has the effect of reducing the magnitude of those fluctuations; this phenomenon 

is sometimes called “channel hardening” [62]. This reduces the amount of multiuser 

diversity that can be exploited through only TDMA. Some early schemes proposed to 

counteract channel hardening by artificially increasing the variations in the channel. In 

[63], the multiple antennas are used to create random beam directions to exploit what the 

                                                 
1 Strictly speaking, ZF-DPC in [17], etc., only considered this latter case with total interference 
removal and did not consider only partial interference removal like in SZF. However, SZF would 
be equivalent to such a scheme when the users have only one receive antenna. 
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authors call “opportunistic beamforming”; users who happen to be in that direction would 

have good channels and be scheduled. Similar concepts are used in other work (e.g. [64]), 

except that the beamforming changes deterministically instead of randomly, in order to 

aid channel estimation. 

Nevertheless, such TDMA methods are inherently inferior since they only schedule a 

single user at a time. As we know from earlier, multiple users should be scheduled 

simultaneously through DPC or beamforming. The gain of DPC over TDMA was 

investigated in [65]. It was found that at high SNR, the gain of DPC over TDMA on the 

broadcast channel is min{MT/NR,K},when each user has NR receive antennas and MT  NR 

(as is normally the case). This was further shown in [41], where the authors demonstrated 

that while the sum rate of both DPC and beamforming scale as MT log(log KNR), the sum 

rate of TDMA only scales as min{MT,NR}log(log K). However, there still may be an 

upper limit on the number of users that can communicate simultaneously, depending on 

the system setup. For example, as noted in the last section, when using ZFB, at most MT 

users can be supported at any given time.  

Properly exploiting multiuser diversity to maximize the sum rate consists of two 

factors; while selecting users with good channel gains is still important, users should also 

be chosen with a large spatial separation, to help reduce interference [66]. Thus, the 

selection of users can also play a role in reducing MUI just as precoding or beamforming 

does. [40],[67],[68],[69] contain examples of scheduling algorithms designed to, in part, 

select users based on reducing MUI. [67] attempts to select groups of users where a 

“good” antenna (i.e., with a high channel gain) for one user is “bad” for all other users. 

[68] selects groups of users to maximize the separation in the angles of arrival of their 

signals. [40] and [69] select users based in part on the orthogonality between the channels 

of the users. 

Considering scheduling algorithms overall, the vast majority of the algorithms are 

designed to maximize the system sum-capacity or sum-throughput. Just a few examples 

of these are [40],[70],[71],[72] for ZFB, [69],[73],[74] for BD, [75] for DPC, [49],[76],

[77] for ZF-DPC, [78],[79] for THP, and [80] for SZF-DPC. However, such algorithms 

can also tend to be unfair. Maximizing the throughput means that users who are the 

“best” (e.g. with good channel gains and spatially separated) would be favored, while 

users in poorer channel conditions would receive considerably less service. Thus, 

scheduling algorithms should also incorporate fairness into their scheduling criteria. 
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When fairness is considered, most research considers some variation of the 

proportional fairness (PF) criterion [63],[81]. This criterion schedules users with the 

highest ratio of current rate to average rate, selecting users when they tend to be near a 

peak in their own relative signal strength. (We discuss the PF criterion further in Chapter 

3.) Examples include [82],[83],[84],[85],[86]. While the PF criterion has been extensively 

examined, it does not guarantee any specific requirements for throughput, delay, etc. A 

related metric is the (weighted) alpha rule [87],[88], which can be tuned between the 

performance of maximum throughput, proportional fairness, and max-min fairness, the 

latter of which maximizes the minimum average throughput of all the users. In past work 

[89],[90], we have also proposed a metric to linearly tune the system performance 

between that of maximum throughput and proportional fairness. 

As a general rule, a scheduler is usually aiming to optimize some sort of utility 

function. That utility function can incorporate whatever quality of service (QoS) 

parameters are important to the scheduling. Several utility functions have been 

investigated for various resource constraints in the context of SISO systems. [91] and 

[92] define metrics to account for the queue length or delay of users. In [91], the 

Modified Largest Weighted Delay First (M-LWDF) algorithm selects users with the 

largest utility of kWkRk, where Wk is the delay experienced by user k, Rk is the current 

rate supported by user k, and k is a weight that can account for different QoS classes1. Wk 

can also be replaced by Qk, the length of the queue (in packets or bits) for user k. [92] 

defines the exponential rule, which replaces Wk or Qk with an exponential function of the 

delay or queue length. Both of these algorithms are known to be throughput-stable, which 

means that the average queue length for each user shall remain finite. The algorithms are 

meant to keep the chance of the delays or queue length exceeding some maximum 

threshold below a specified probability. They are thus useful in conjunction with delay-

sensitive applications. 

[93] defines a series of utility functions that are optimal in terms of resource 

allocation under either long-term resource-sharing constraints, or long-term minimum-

performance constraints. In the first of these cases, consider a system that wishes to 

maximize some utility U (for example, throughput), subject to users being served a 

certain proportion of the time. The utility for each user is then of the form Uk + vk, where 

Uk is the current utility of user k (e.g. the current rate it can support), and vk  0 ensures 

                                                 
1 [91] recommends making k inversely proportional to the average rate of user k, thus giving it 
some similarity to the PF criterion. 
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that user k has received its allocated proportion of time. vk will be zero if the user has 

been served enough to satisfy the constraint, and greater than zero otherwise. This form is 

meant if the resource shared (e.g. time) is not the same as the utility being maximized 

(e.g. throughput). If they are the same (e.g. each user k should receive at least a certain 

proportion 0  ak 1 of the overall throughput), the utility function should instead be of 

the form ( + vk)Uk, where 1 k kk
a v


   and 1kk

a


 . For the case of minimum-

performance guarantees (e.g. each user shall receive a certain minimum throughput), the 

utility function takes the form kUk, where k  1 ensures that user k has received its 

minimum performance. k will be one if it has received that minimum, and greater than 

one otherwise. [93] proves that these forms of utility functions will maximize the desired 

utility in the long term under the specified constraints, and explains how to adjust vk and 

k in order to properly track whether the constraints are being met. In general, the 

parameters can be updated with an exponential filter at each scheduling interval. 

One drawback to the above utility functions is that technically they are only defined 

for the case when a single user is served at a time. However, it is still possible to use 

them in MIMO applications. For example, it is shown in [94] that the multiuser 

equivalent of the M-LWDF algorithm is simply to maximize k k kk
W R

 . The metrics 

of [93] have been extended to an OFDM system in [95] by simply summing the metric 

over all subcarriers, but this extension also assumes that no more than one subcarrier is 

assigned per user, and no more than one user is assigned per subcarrier. Summing those 

metrics over all users would likely still work to some degree in a MIMO system with 

multiple simultaneous users. However, the metrics may no longer be optimal for 

maximizing the utility. To the best of our knowledge, this has not yet been formally 

investigated in the literature. 

Investigations of scheduling for QoS in MIMO systems have only recently become of 

interest. The problem of power minimization under minimum rate / SINR constraints is 

somewhat popular; see for example [83],[96],[97]. However, in this work, we are more 

interested in the problem of maximizing utility (usually involving throughput), subject to 

QoS constraints and a maximum power constraint. In general, one may consider two 

classes of service or traffic: real-time (i.e., delay sensitive, such as video traffic), and 

non-real-time, or best effort (which can tolerate some delay without harm). When these 

two types of traffic coexist in the same system, the scheduler can deal with this in one of 

two ways. First, the scheduler can deal with all types of traffic at once, allowing the QoS 
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of the two classes to be handled by the utility function. The scheduler should assign 

service to the real-time data more often. Investigations in [98],[99],[100] use this option; 

their results demonstrate how well certain types of utility functions handle the various 

QoS constraints. Unsurprisingly, utility functions incorporating delays handle delay-

sensitive traffic the best. However, there is also a tradeoff in throughput and delay; 

increasing the average throughput also increases the average and peak delay users 

experience. The second option is to differentiate between the two classes and assign real-

time traffic with higher priority. These schemes assign a certain proportion of the 

available resources to the delay-sensitive traffic first. Then, if there are resources 

remaining, they are allocated to best-effort traffic. Examples of this include [101] and 

[102]. This second option tends to meet QoS constraints somewhat better, but at the 

expense of overall system throughput. [103] describes a hybrid between the two choices; 

users are assigned resources first by the utility function for all classes. Then, if certain 

users have constraints that are being violated, the scheduler goes back and removes 

resources from users that do not require them, and reassigns them to users who do. 

Overall, MIMO scheduling with QoS has not been explored as fully as MIMO 

scheduling without QoS. This is an open field to which research effort can be dedicated, 

especially as QoS concerns become more prevalent in wireless cellular networks. 
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Chapter 3 

Genetic Scheduling Algorithms for 
Downlink Transmission in MIMO 
Single- and Multi-Carrier Systems with 
Dirty Paper Coding 

3.1 Introduction 

Utility-based scheduling algorithms ultimately are a specialized form of optimization. 

There exists some type of metric or cost function that is to be maximized or minimized, 

which incorporates the relevant parameters, usually under a certain set of constraints. 

Examples of these parameters may include throughput, packet delay or queue length [91], 

etc. For the downlink, the metric typically includes the maximization of a function of the 

system capacity or throughput, under the constraint that the total power allocated to all 

the scheduled users should not exceed the total available power. On the uplink, the metric 

may be to minimize the total transmit power subject to each user sending data at a given 

rate or having a minimum SINR [55]. For the case of a MIMO system, there would likely 

be an upper limit on the number of users NS that can be scheduled simultaneously. In 

certain cases like in a system operating under optimal dirty paper coding (DPC) [15],[16],

[17], this constraint may be soft, i.e., the system does not need to (but can) transmit to 

more than NS users at a time [75]. Under other schemes like ZFB [40] or BD [46], that 

constraint is instead a hard limit; the system cannot transmit to more users than there are 

transmit antennas. There may furthermore be quality of service (QoS) parameters to 

satisfy. In some cases, certain parameters (e.g. packet delay) may change with time; most 

often, in these cases, those parameters are treated as constant during the scheduling 

interval, and are updated after a scheduling decision is made. 

The scheduling decision does not necessarily consist of only which users to schedule, 

especially with a cross-layer design. As a general rule, the factors that the scheduler can 

control during the decision process may also include the order in which those users are 
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encoded, the amount of data sent to each of the scheduled users (which is usually 

expressed in terms of throughput and may depend on factors such as modulation and 

coding, which may or may not be under the control of the scheduler), and the power to be 

allocated to each of the scheduled users (generally set as required to achieve the 

scheduled rates). For MIMO systems, the scheduler may also decide how many data 

streams should be sent to each user, what beamforming vectors / transmit filters should 

be used (in the case of linear precoding), and which antennas to transmit with (e.g. if the 

system supports antenna selection). 

Strictly speaking, to determine the optimal set of users, the algorithm would have to 

search over all possible combinations of at most NS users from the pool of K users: 

  1combinations
SN K

kk
N


 . (3.1) 

Note that in certain scenarios, e.g. at low SNR, it may be in fact optimal to schedule less 

than the maximum number of users in order to maximize / minimize the utility function. 

Thus, the sum over k is required in the above equation, instead of simply having k = NS. 

In the case of order-dependent processing (e.g. DPC, THP, SZF), the order in which 

the selected users are encoded will also affect their resulting rates, and hence may change 

the utility function value. Thus, the size of the search space increases to: 

  _ 1
!ordered selections

SN K
kk

N k


 . (3.2) 

This exhaustive search and ordering quickly become infeasible as either the number of 

supportable users NS or the number of active users K grows. Consequently, lower 

complexity methods are required. 

In this chapter, we investigate the use of genetic algorithms for lower complexity 

downlink scheduling in a MIMO system. To begin, we first examine the general 

scheduling optimization problem that genetic algorithms are meant to simplify. We then 

discuss genetic algorithms and how they can be adapted to the scheduling problem. The 

remainder of the chapter discusses the simulation setup and results for a genetic 

scheduling algorithm in single-carrier and multi-carrier MIMO systems employing DPC. 

The performance is compared to the optimal solution. Issues of convergence and 

complexity are also discussed. Our contributions in this chapter have appeared in [104],

[105],[106]. 
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3.2 General Design and Optimal Solution for MIMO Multi-
Carrier Scheduling 

Before discussing the genetic algorithm, first the MIMO multi-carrier problem that 

the genetic algorithm is intended to solve should be examined in more detail. Most 

commonly, the scheduler is designed to somehow maximize the throughput of the system 

and to the individual users, or at least factor in those rates in its decision. As such, the 

utility function G(R1,…,RK) in reference to the user rates Rk is usually constrained to be: 

 0, 0,k
k

G
R k

R


   


. (3.3) 

In other words, if the rate for any user is increased while the rates for the other users 

remain constant, the utility function should also increase. It is possible for the utility 

function to be discontinuous, particularly if hard QoS constraints must not be violated. 

For example, if a certain minimum throughput is guaranteed, the function may have a low 

value if a user is below that threshold; otherwise, when the user is above the threshold, 

the function will have a high value. Nonetheless, the constraint in (3.3) can still be 

considered valid by defining the partial derivative to be some positive value at the 

discontinuity, whether by using the derivative immediately before or after the 

discontinuity or, perhaps, using the Dirac delta function at the discontinuity (i.e., 

considering the derivative to be “infinitely positive”) in the case of a step discontinuity in 

the utility function. 

Given the channel matrices {Hj1,…,HjK} of the pool of users on each subcarrier j, the 

goal of the scheduling algorithm is to find the set of scheduled users  , the encoding 

order π of the scheduled users, and the transmit covariance matrices Σjk for those users 

such that  , jkj k
Tr P


 Σ  and the resulting rates Rk, k   (where kR  jkj

R
 ) 

maximize the utility function G(R1,…,RK). It is assumed that for any user k , Σjk = 0, 

∀j, where 0 is an all-zero MT×MT matrix, and hence, Rk = 0. For k , Σjk is positive 

semidefinite and has   0jkTr Σ for at least one subcarrier j, and thus, Rk > 0. 

3.2.1 Optimal Solution: Mixed Integer Programming and Power 
Waterfilling 

The optimal solution can be obtained by decoupling the variables of the scheduled set 

of users   and their encoding order π from that of the transmit covariance matrices Σjk. 
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That is, for every possible   and π, Σjk can be calculated independently from any other 

set / order. The optimization then proceeds as follows. 

1) For a given set   and encoding order π, given the channel matrices Hjk on all 

subcarriers, calculate the optimal power transmit covariance matrices Σjk through 

waterfilling for the selected users and encoding order. The user rates {R1,…,RK} can 

thereby be determined from the covariance matrices. This waterfilling may possibly 

account for certain aspects of the utility function G. For instance, the matrices Σjk and 

rates Rk that would maximize a weighted sum rate k kk
w R

  with specific weights 

wk may be different than for another set of weights, and different again than, for 

example, an unweighted sum rate (i.e., if the weights are set to the same positive 

constant for each user). 

2) Based on the computed rates, determine the value of the utility function G(R1,…,RK) 

for this selection of users and encoding order. 

3) Repeat the first two steps for all other possible selections of users and encoding 

orders. The total number of possible solutions in the general case to exhaustively 

search through is given by (3.2). 

4) Select the set   and encoding order π that gives the maximum value for the utility 

function as the scheduling decision (possibly using secondary criteria in the event 

two solutions give the same maximum). 

 

As mentioned above, the user rates can be expressed in terms of  , π, and Σjk. Thus, 

the utility function can also be expressed in terms of those variables, i.e., 

    1 11, , ; ; , ,
CK N KG R R G  Σ Σ  . (3.4) 

The optimal utility function value is therefore: 
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and for a given   and π, 
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To make the optimization problem slightly less complex, we modify the transmit 

power constraint to: 

  jk Ck
Tr P N


 Σ . (3.7) 
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That is, the available transmit power is equally divided across all NC subcarriers. This 

largely enables the subcarriers to be scheduled independently of each other, depending on 

the utility function. 

We show in Appendix A that the optimal transmit covariance matrices in (3.6) for a 

given set of users and encoding order when using DPC satisfy the following set of 

equations: 

 , if 0
T Tjk M M jks Σ 0 ; (3.8) 
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 , 0jk jkΣ Ω  . (3.12) 

In the above, sjk is a binary variable equal to 1 if user k is scheduled on subcarrier j, 

and 0 otherwise. With the optimal transmit covariance matrices, the optimal user rates 

can then be determined, and hence, the maximum value of the utility function can be 

found for the selected set of users and encoding order. 

The covariance optimization problem is not convex, thus finding the optimal Σjk 

directly on the BC can be quite difficult. It is, in general, much easier to solve for the 

optimal transmit covariance matrices on the dual MAC and then convert those matrices 

into their equivalents on the BC (as in [107] and [82]) than to directly solve for the BC 

matrices. It is in fact unnecessary to transform to the BC until a scheduling decision is 

made on the dual MAC. We therefore use this duality and the methods in [107] and [82]1 

to find the optimal transmit covariance matrices in this work. 

3.2.2 Example Scheduling Criteria and Their Utility Functions 

In this work, we consider two criteria for scheduling in multi-carrier systems 

employing DPC: the maximum throughput criterion and the proportional fairness 

criterion. 

                                                 
1 At the time this work was carried out, we were only aware of the method of [82] to maximize a 
weighted sum rate for the MAC when the users have an arbitrary (i.e., more than one) number of 
receive antennas. Since then, far more efficient methods for maximizing a weighted sum rate have 
been published, such as that in [108]. 
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The maximum throughput criterion maximizes the instantaneous system throughput 

at each scheduling instance, i.e., 

 
1

K

MT k
k

G R


 . (3.13) 

Maximizing GMT results in the highest possible system capacity; the metric is simply 

that of the system sum rate. Under DPC, however, the encoding order has no effect on the 

system sum-capacity. Although the individual user rates and the optimal transmit 

covariance matrices will change, the sum of those rates will not. Hence, multiple 

solutions can give the same value of the metric. For this work, we break the tie in these 

situations in a max-min sense: whichever encoding order maximizes the smallest of the 

user rates is the preferred solution. 

The maximum throughput criterion suffers from a lack of fairness. Users that 

experience consistently poor channel conditions (e.g. far from the base station or in a 

shadowed location) will receive very little service and, in extreme cases, no service at all. 

Hence, some fairness constraint is usually imposed on the scheduling algorithm. 

The proportional fairness criterion is one of the best known compromises between 

fairness and throughput. A scheduler that is proportionally fair will maximize the 

following utility function [19]: 

  2
1

log
K

PF k
k

U R


 . (3.14) 

Here, kR  is the average long-term throughput of user k. A scheduler is said to be in a 

state of proportional fairness if, by changing from the current rate vector rx to another rate 

vector ry, the sum of the proportional changes in rates is less than or equal to zero [19]. 

A proportionally fair scheduler is often used in third generation cellular systems. The 

form in (3.14) is not normally used, because it is non-causal (the long-term average is the 

expected rate over all time, including the future), nor is it in the form required in (3.3). 

Rather, the following form is usually used: 
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 . (3.15) 

A scheduler that maximizes GPF also maximizes UPF, as proven in [19],[109],[110]. 

This form of the utility function is a weighted sum rate, where the users’ weights are 

1k kw R . The non-causal average throughput kR  is normally approximated by a 

moving average over a window of past slots and is calculated by: 
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. (3.16) 

Rk is updated for the next slot (t + 1) after the scheduling decision for slot t has been 

made, and thus the rates Rk(t) are known. If user k is not scheduled at slot t, Rk(t) = 0. The 

time constant tc is the window size for the averaging; in this work, we use tc = 100 slots. 

3.3 Genetic Algorithms 

3.3.1 General Description 

One potential suboptimal solution to the scheduling optimization problem lies in 

genetic algorithms [111]. Genetic algorithms (GAs) to some degree mimic biological 

systems in their operation. The algorithm starts with a set (or population) of data 

structures that are called chromosomes (or sometimes genes), which represent possible 

solutions to the optimization problem. These chromosomes are similar in concept to their 

biological counterparts. During each iteration (or generation) of the algorithm, several 

pairs of the chromosomes (called parents) from the population may be crossbred with a 

crossover operation by swapping information between the data sequences to form 

offspring or children. The likelihood of a chromosome being selected for breeding is 

related to its fitness, i.e., how good of a solution to the utility function that chromosome 

represents. Chromosomes that are more fit are more likely to be selected for breeding. 

The child chromosomes may also undergo a mutation operation, wherein each and any of 

the constituent elements of the children has a probability of being randomly altered. The 

offspring then replace their parents for the next iteration of the algorithm. For each 

generation, the child chromosomes should be checked to see if they meet the constraints 

on the problem, and for fitness in conjunction with the original utility function. Elitism 

may also be employed, wherein the “best” chromosome(s) may be kept from the previous 

generation when a new generation is created, so as not to lose the best solution found thus 

far. Through this “survival of the fittest” process, the chromosomes eventually evolve 

towards the optimal solution, while the random breeding and mutation process helps to 

ensure that the algorithm does not get stuck at a local maximum, but rather converges to 

the global maximum. Figure 3.1 shows the overall operation of a genetic algorithm. The 

specific implementation of the algorithm will depend on the problem being solved, but 

most GAs follow this general structure. [112] contains a good overview of the various 

options available in the design of each step of the GA. 
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Genetic algorithms belong to a class of stochastic and heuristic optimization 

techniques that operate in a somewhat random fashion, yet are guided in some manner 

towards the optimal solution. Other such techniques include simulated annealing [113] 

and particle swarm optimization [114]. GAs are a fairly popular method of optimization; 

within just the field of communications they have been used to help design and optimize 

antennas and electromagnetic devices [112], analog circuits [115], digital filters [116], 

wireless sensor networks [117], radio spectrum allocation [118], antenna selection 

algorithms [119], and so on. One reason for their popularity is their robustness to the 

utility function being optimized. The stochastic nature helps ensure that the algorithm 

finds a solution to the problem close to the global optimum. GAs have the benefit that 

they can still operate even if the utility function is not convex. (In the context of 

scheduling, when QoS constraints such as resource sharing or minimum performance 

requirements are included, this may end up being the case.) Many other optimization 

methods, although being able to find a stationary point faster than a GA in some cases, 

also require a convex function to operate on to ensure that the stationary point is a global 

optimum point instead of a local optimum. Genetic algorithms are also particularly suited 

for scheduling operations, as they are known for their speed of convergence. Due to its 

random nature, the algorithm may take some time to locate the overall optimal solution; 

in fact, for a limited operating time, finding the global optimum is not necessarily 

guaranteed. However, the GA will usually find a very good solution that is close to the 

optimal one quickly. 

Dealing with any constraints can be one of the more complicated issues in dealing 

with genetic algorithms. In each of the stages of the algorithm, the constraints can be 

considered in some fashion. During the mating selection process, the probability of a 

chromosome being selected for mating can be related to the fitness of that gene, which in 

 
 
 
 
 
 
 
 
 
 
 

Figure 3.1: Flow diagram of a general case genetic algorithm. 
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turn can be related to the constraints. That is, if a chromosome violates the constraints of 

the optimization, it should be of lower fitness, and consequently can be given a lower 

probability of selection. Care should also be taken in how rigidly the constraints are dealt 

with in the fitness function. If a constraint is violated, but only slightly, that solution may 

still be acceptable depending on the situation, but with some penalty in terms of its 

fitness. However, if multiple constraints are involved, it could become difficult to tell 

from a low value of the fitness function alone if a potential solution provides a high value 

for one parameter to be optimized while violating several other constraints, or if the 

solution is poor but does not violate any constraints. When performing the crossover and 

mutation processes, the constraints can also be considered. If a child of the process does 

not meet the constraints, that child could simply be removed. Alternatively, the child 

chromosome could be repaired so that it does meet at least some of the constraints. It may 

also be possible to define a birthing or mutation function that causes a child to fall within 

the constraints so long as the parents already meet the constraints. The actual specifics of 

the process depend on the implementation of the algorithm and the optimization problem 

to be solved. Some possible methods of handling constraints in GAs are discussed in 

[120]. 

3.3.2 Genetic Algorithm for Order-Dependent Precoding and Scheduling 

A genetic algorithm used for scheduling works somewhat differently from a typical 

scheduling algorithm. Usually, a scheduling algorithm calculates a metric for each user, 

then selects a user or users based on those metrics. After the selection, the algorithm must 

usually then go back and calculate new metrics for the remaining users based on the 

selected user(s). The algorithm iterates in this fashion until a maximum of NS users have 

been selected. In comparison, the genetic algorithm does somewhat the reverse; instead, 

it first selects an entire potential group of users via the chromosomes, and then calculates 

a fitness function for that set of users after the selection. Only after the users are selected 

does the algorithm check the fitness of the selection and see if the constraints are met. In 

essence, the GA partially decouples the process of selecting a group of users and 

encoding order from the calculation of the fitness for that group. 

As already mentioned, the scheduling optimization problem the GA is attempting to 

solve has two parts: the optimal selection of a group of users and encoding order, and the 

optimization of the utility function for that group and order. Within this work, we use the 

GA to solve the selection portion of the problem only; this is the more difficult part of the 
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two. The chromosomes represent potential solutions to that problem only, i.e., which 

users will be scheduled and in what order will their data be encoded. The GA mating 

process does not in and of itself calculate the fitness of each chromosome. This fitness 

can be calculated separately from the mating process itself, and within this work, 

(globally) optimally. The utility function (fitness) that is being maximized is a scheduling 

metric for each selection and ordering, such as those given by (3.13) and (3.15). 

A genetic algorithm was used in [109] to implement the maximum throughput and 

proportional fairness scheduling criteria in the context of orthogonal transmit spatial 

multiplexing (i.e., ZFB) for mobiles with a single receive antenna. In that case, the only 

scheduling constraint was that the number of users to be selected must be less than or 

equal to the number of transmit antennas. The algorithm was able to achieve a 

performance within about 0.5 dB of an optimal scheduler (implemented via integer 

programming and exhaustive search) in a much smaller number of calculations. For 

example, with 20 active users and 4 transmit antennas, the algorithm converged to a good 

solution in about 1/36 of the time of the optimal scheduler. 

The overall problem investigated herein is fairly similar to the problem in [109]. As 

such, the GA in [109] provides a good basis from which to expand upon for scheduling 

with order-dependent encoding (e.g. DPC), and also for multi-carrier transmission. The 

key differences between the investigation in [109] and in this work are listed as follows. 

1) The general design in [109] was for a system that uses ZFB, whereas this work 

considers DPC. Consequently, the design in this work also considers the effect of the 

encoding order on the solution. 

2) The problem that was considered in [109] encompassed only single-antenna 

receivers, whereas this work considers receivers with multiple antennas. Hence, the 

optimal solution involves power allocation over complex-valued covariance matrices 

instead of real-valued scalar powers. 

3) The system in [109] used single-carrier transmission. In comparison, this work for 

DPC also considers a multi-carrier system, and thus, the solution involves resource 

allocation and optimization across multiple carriers, adding an additional dimension 

to the problem. 

 

In [109], Lau uses a bit vector as a chromosome to indicate which users are 

scheduled. In this work, we extend this scheme to account for an encoding order and to 

allow for scheduling on multiple carriers. To begin, considering just a single-carrier 
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system, denoting which users are scheduled can still be accomplished by a vector of K 

bits. A ‘1’ in position k of the vector denotes a scheduled user, while a ‘0’ denotes an 

unscheduled user. As in [109], the weight w (i.e., the number of ‘1’s) of this vector 

should be between 1 and NS inclusive. The binary chromosome representation is a 

particularly good choice for scheduling (as opposed to, say, real-valued chromosomes), 

since the scheduling decision is itself binary; either a user is scheduled, or it is not. 

This leaves the encoding order to be represented in the chromosome. In our 

modification, we refer to the K-bit vector that denotes which users are scheduled as the 

“head” of the chromosome. The additional bits in the chromosome that denote the 

encoding order of the scheduled users we refer to as the “tail”. The tail of the 

chromosome consists of NS × log2(NS) bits (where  denotes the ceiling function). 

Each group of log2(NS) bits denotes the relative position of a scheduled user in the 

encoding order and is referred to as an “order number”. The first order number in the tail 

of the chromosome refers to the first ‘1’ in the head of the chromosome, the second order 

number refers to the second ‘1’, and so on. The relative order of the users is determined 

by the binary value of the order number, i.e., a larger value means a later position in the 

ordering. The only constraint on the representation is that the first w order numbers 

should be unique, i.e., they need not be sequential. Furthermore, in the event that fewer 

than NS users are scheduled, any order numbers beyond the first w are simply ignored. 

Two example chromosomes are shown in Figure 3.2. Note that the representation is 

independent of the number of antennas at the receivers, allowing the GA to be scaled to 

any number of receive antennas or to systems with different numbers of receive antennas 

per user. (However, in other encoding schemes, the number of supportable users NS may 

depend on the number of receive antennas.) 

The proposed chromosome representation is not the only possible one, nor is it 

necessarily the most efficient. For example, an alternative chromosome could consist of 

NS groups of log2(K) bits. Each group would stand for the user ID of the users to be 

 
 
 

Figure 3.2: Two typical chromosomes for single-carrier DPC scheduling with NS = 4 and K = 10. 
(a) Users 2, 4, 7, and 9 are scheduled and have order numbers ‘10’, ‘11’, ‘00’, and ‘01’, 

respectively. The users are therefore encoded in the order {7,9,2,4}. (b) Users 4 and 8 are 
scheduled and have order numbers ‘11’ and ‘01’, respectively. They are therefore encoded in the 

order {8,4}. The remaining two order numbers in the tail of the chromosome are ignored. 

0101001010||10110001

(a) 

0001000100||11011111 

(b) 
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scheduled, while the encoding order is simply represented by which group the ID is in. 

That is, the first group of bits represents the first encoded user, and so forth. An 

additional log2(NS) could be added to indicate how many users are scheduled, to allow 

scheduling less than the maximum supportable number of users. Since K is usually much 

larger than NS, this representation would use less memory than the first proposed scheme. 

However, our chosen representation has other benefits in its favor: 

 The encoding order is more decoupled from the user selection. Therefore, it is 

somewhat easier to consider the same selection of users, but a different encoding 

order, by simply changing a few bits in the tail of the chromosome. In comparison, to 

exchange the encoding order of two users in the second representation, all the bits 

from two of the groups would have to be swapped. 

 Crossover operations are more likely to lead to invalid children, and corrections are 

more difficult, with the second representation. During the crossover operation, it 

could be possible to create a user ID that does not exist. This scenario is the most 

likely to occur if K is slightly over a power of 2. For example, if K = 36, if a 

crossover occurs after the first bit of an ID of 33 (‘100001’) and an ID of 26 

(‘011010’), the ID of ‘111010’ (58) would be created, which is larger than the 

number of users. This could be avoided by restricting crossovers in the second 

representation to between the groups of bits, but it is also still possible to create a 

chromosome that has the same user scheduled twice. In both cases, correcting the 

chromosome is more difficult. Multiple bits in general would have to be changed to 

correct the chromosome. In comparison, the errors that can occur in the first 

representation are much easier to fix most often with some simple bit toggles. 

 Mutation is easier and / or works better with the first representation. Mutation in the 

first case is a simple bit-toggle operation, which is extremely efficient to implement. 

This same type of mutation could be applied to the second representation, but the 

mutation would not work as well. The probability of mutation tends to be fairly low, 

so within a given user ID, only one bit is likely to be changed, if any. This restricts 

the mutation of the ID to a sort of Gray mapping [20] around the original ID. That is, 

a single-bit mutation would only change the ID to one of log2(K) other IDs near the 

original binary value. This is not necessarily a good thing in scheduling. Rather, it 

would in general be more beneficial for a mutation to possibly result in any other user 

being considered for scheduling, for the largest diversity in the choice of selection. 

This is accomplished in the first representation. Doing so in the second representation 
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is still possible, but it would require a multi-bit mutation operation, operating on a 

bit-group scale instead of on individual bits, which is not as operationally efficient. 

 

Extension to a multi-carrier scenario is quite simple. Rather than a bit vector, we 

instead use a bit matrix. The order-aware single-carrier chromosome structure is repeated 

for NC rows, with the jth row of the matrix representing the scheduling and encoding 

order on the jth subcarrier. It is also possible to schedule subcarriers in groups rather than 

individually, in which case the number of rows would be equal to the number of groups. 

Typical chromosomes for the multi-carrier case are shown in Figure 3.3. 

As mentioned earlier, the problem and thus our GA methodology are similar to that 

described in [109]. Further implementation details are as follows. 

1) Initialization: A population of Np chromosomes is initialized at random. As 

previously mentioned, this initialization is constrained such that, in the head of 

chromosome, the weight wj of each of the rows is between 1 and NS inclusive. In 

addition, the order numbers in the tail are randomly initialized under the constraint 

that, for each row, the first wj order numbers are unique. This initial population 

represents the initial choices for the scheduling of users and their encoding order. In 

general, it is not known what the optimal ordered grouping is; thus, the initial random 

population provides a diverse set of possible choices from which the search for the 

optimal ordered grouping can be started. 

2) Selection: In [109], an intermediate population is formed from the initial population 

in each generation based on remainder stochastic sampling. Chromosomes are then 

selected from this intermediate population for crossover and mutation. In contrast, we 

select chromosomes directly from the population in a “roulette wheel” method based 

on their fitness. The fitness of a given chromosome i is defined by the value of the 

utility function Gi for the solution that is represented by that chromosome with 

 
 
 
 
 
 
 

Figure 3.3: Example of GA operation for multi-carrier DPC scheduling with four subcarriers, four 
transmit antennas, and 10 active users. (a) Two typical chromosomes and a random crossover 

location. (b) Crossover operation. (c) Mutation operation. (d) Correction of invalid child 
chromosomes. 

1 0 0 0 0 1 1 0 1 0 || 0 1 1 1 0 0 1 0 
0 0 0 1 1 0 0 0 0 1 || 0 1 1 0 0 0 0 0 
0 0 1 1 0 1 0 0 0 1 || 0 0 1 0 1 1 0 1 
1 1 0 0 1 0 0 0 0 1 || 0 0 0 1 1 0 1 1 

0 1 1 1 0 0 0 0 0 1 || 1 1 1 0 0 1 0 0 
0 0 0 1 1 0 1 0 0 1 || 1 1 1 0 0 1 0 0 
0 1 1 0 0 0 1 1 0 0 || 0 0 0 1 1 1 1 0 
0 0 1 0 0 1 1 0 1 0 || 0 0 1 1 0 1 1 0 
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optimal transmit covariance matrices, as given by (3.13) and (3.15). The probability 

of a chromosome being selected for breeding is given as: 
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Thus, the more fit a chromosome is, the more likely that it will be selected and hence 

pass along its characteristics to the next generation. 

3) Crossover: Our GA uses a so-called “one-point” crossover operator similar to that in 

[109], with a probability of pc = 1. Once two “parent” chromosomes are selected by 

the previous step (it is possible that the same chromosome will be selected twice), a 

crossover point is chosen somewhere at random along the length of the chromosome. 

In the multi-carrier scenario, this same location is used across all rows of the 

chromosome. Any bits after the crossover point are swapped between the parent 

chromosomes to form two new “children” chromosomes. By combining the 

information of the parents in such a fashion, the chromosomes combine the partial 

characteristics of a good solution (e.g. some of the best users to be scheduled) into a 

new chromosome that represents a new and hopefully better solution. 

4) Adaptive Mutation: Mutation is applied to the children chromosomes that were 

created by the above crossover operation. The same adaptive mutation probability as 

in [109] is adapted for this work. The probability of any given bit in the children 

chromosomes toggling is given as: 
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where σG and μG are, respectively, the standard deviation and mean of the fitness of 

the current population before selection, and β1 = 1.2 and β2 = 10 are constants. The 

crossover operator has the most notable effect on the convergence of the GA when 

the genetic diversity in the population is large (e.g. in the initial random population). 

However, once the algorithm begins to converge on a solution, the mutation operator 

becomes increasingly important. As the GA starts to converge, the chromosomes in 

the population tend to end up sharing the same characteristics. (For example, several 

chromosomes may have some of the same users selected to be scheduled.) Thus, the 

fitness of those chromosomes tends to be similar. However, it is in general unknown 

if a particular chromosome represents a globally optimum solution, a locally 

optimum solution, or otherwise. Mutation allows the algorithm to maintain a wide 

variety of possible solutions and helps avoid stalling on a local maximum, and it 
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forces the algorithm to consider solutions other than those near the current best 

solution. Hence, when the variation in the fitness of the population becomes smaller, 

the probability of mutation should increase. This is accomplished by the adaptive 

mutation rate in (3.18). If the algorithm is converging on a solution, the standard 

deviation of the fitness of the chromosomes will drop relative to the mean fitness of 

the population, which results in a larger value for pm. If, instead, there is a fair 

amount of diversity in the fitness of the chromosomes, the standard deviation will 

comparatively be larger, and hence, the mutation rate will be smaller. 

5) Constraints: During crossover and mutation, it is common for children to be created 

that violate the constraints of scheduling at most NS users or of allocating each 

scheduled user a unique order number. These invalid chromosomes must somehow 

be dealt with. We correct any constraint violations as the last step in the breeding 

process. For each row in the chromosome, if the weight of the head is larger than NS, 

‘1’s are toggled at random to ‘0’s until the weight is NS. In the less likely event that 

the weight of the head is zero, one bit is toggled at random to a ‘1’. In the tail of the 

chromosome, if there are duplicated order numbers, one of the duplicates is replaced 

at random with an order number that is not yet used by one of the scheduled users. 

This is repeated until no duplicates remain. 

6) Elitism: For each generation of Np chromosomes, only Np − 2 new chromosomes are 

created through the breeding process. To prevent the previous best chromosome C* 

from the prior generation from being destroyed in the breeding process, a copy is 

inserted into the new population as one of the two remaining chromosomes. This 

process also causes the value of the utility function found by the algorithm to be 

strictly non-decreasing over time; otherwise, the value could, in fact, diverge from 

the optimum. The final chromosome of the population is also a copy of C*, except 

that the encoding order of two of the scheduled users is swapped at random. 

7) Iteration: Once a new population of Np chromosomes has been formed by the above 

selection and mutation processes, it replaces the old generation. The procedure then 

iterates for a total of Ng generations. The values of Np and Ng are dependent on the 

maximum number of scheduled users NS and the number of active users K, as 

described in Sections 3.5.3 and 3.5.4. 

 

Figure 3.3 shows the typical operation of the GA during the breeding of two multi-

carrier chromosomes within one generation. Figure 3.4 depicts a flow diagram 

summarizing the overall operation of our genetic algorithm. 
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3.4 Multiuser MIMO System Model with Single and Multiple 
Carriers 

3.4.1 Wireless Channel Model 

We wish to isolate the effects of the scheduling algorithm from any other effects that 

are specific to the implementation of the system (e.g. modulation and coding) or the type 

of data being carried. Hence, at the base station, we assume that packets arrive in such a 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.4: Flow diagram of the genetic scheduling algorithm. 
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manner that there is always data available to transmit to all users that request service. We 

also assume that the data rates that each user can support are determined by channel 

capacity to provide an upper bound on the performance. Turbo and low-density parity-

check codes [121] approach capacity within 0.5 dB; thus, this is a reasonable and 

commonly-used assumption. 

We consider a transmission system that consists of a base station with MT antennas, 

which schedules transmissions to a pool of K active users, each equipped with NR receive 

antennas. The channel gain between any given transmit-receive antenna pair on any 

carrier is modeled as an i.i.d. circularly-symmetric complex Gaussian process with unit 

variance (i.e., Rayleigh fading). A block-fading (quasi-static fading) model is assumed, 

where the coherence time of the channel is much longer than the scheduling and 

transmission interval, such that the channel gains are approximately constant for the 

entire interval. (Such a scenario is typical in the current generation of wireless packet 

data systems, e.g. [4] and [122], and where the transmission interval, which is on the 

order of milliseconds, is much less than the coherence time of the fading channel.) All 

channel gains then independently change between intervals. The path loss, shadowing, 

and fading conditions for each user are statistically identical. In the case of the 

proportional fairness scheduling criterion, a log-normal shadowing component [123] with 

a standard deviation of 8 dB is also added to the signal to provide a variation in the 

average signal strength (and, hence, the average supportable rate) across the set of active 

users. 8 dB is used as it is approximately in the middle of the range of standard deviations 

observed for both macrocellular and microcellular applications [123]. 

The channel between the base station and the kth user on the jth carrier is defined by 

the NR×MT channel matrix Hjk. The combined received signal for all users on the jth 

carrier is: 

 
1 1 1j j j

j j j j j

jK jK jK

     
              
          

y H n

y x H x n

y H n

   , (3.19) 

where xj is the MT×1 vector of transmitted symbols from the base station on the jth 

carrier, Hj is the (NRK)×MT aggregate channel matrix for all K users, yjk is the NR×1 

vector of received symbols for user k on the jth carrier, and nj is the (NRK)×1 Gaussian 

noise vector on carrier j with variance1 2

Rn N K I . 

                                                 
1 We assume without loss of generality that 2

n  = 1 throughout this work. 
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Each carrier is assumed to fade independently of all other carriers. Furthermore, it is 

assumed that the signal transmitted on any given carrier causes zero interference on any 

other carrier. In the multi-carrier case in this work, we assume that the total useful 

bandwidth WT (over which data signals are transmitted, not including factors like guard 

intervals, etc.) is identical to that in the single-carrier case to provide proper 

normalization for the spectral efficiency. Figure 3.5 demonstrates this with NC = 4 

subcarriers using orthogonal frequency division multiplexing (OFDM) and regular FDM. 

It is assumed that the base station perfectly knows the channel matrices for all users 

at all frequencies. This knowledge can come through channel estimation at the mobiles, 

based on a pilot signal that the base station transmits, which is then sent to the base 

station on a feedback channel. Alternatively, in the case of a time-division-duplex system 

for the uplink and downlink, the base station can estimate the uplink channels for the 

mobiles from their signals and then derive the downlink channels based on channel 

reciprocity. 

3.4.2 Physical Layer Model 

As we have previously mentioned, we wish to isolate the effects of the scheduling 

algorithm from the specific details of the implementation of the system. Hence, we take 

an information-theoretic approach to the performance of the physical layer. Furthermore, 

we are also interested in accounting for the effect that encoding order has on scheduling 

and the performance of the system. Thus, we consider a system where the users’ signals 

are encoded via DPC [15],[16],[17]. DPC is known to achieve the sum-capacity of a 

MIMO BC. Although DPC is currently infeasible, it can closely be approximated by 

some of the methods described in the previous chapter (e.g. [32],[34],[39]). Nevertheless, 

in this work, we are concerned with scheduling complexity, not encoding complexity, 

 
 
 
 
 
 
 
 

Figure 3.5: Conceptual power spectrum P(f) vs. frequency f of single-carrier and multi-carrier 
transmissions with same normalized total bandwidth WT. Total transmit power is divided equally 

among carriers. (a) Single carrier. (b) OFDM, 4 subcarriers. (c) FDM, 4 subcarriers. 
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and hence simply assume a system employing capacity-achieving DPC. To bypass the 

non-convexity of the BC, we instead perform utility function calculations on the dual 

MAC. 

3.4.3 Medium Access Control Layer Model 

On the medium access control layer, a scheduling algorithm is responsible for the 

allocation of power and resources to the active users. As mentioned, it is assumed that the 

base station knows the channel matrices of the users, usually via feedback from the users 

based on measurements made from a pilot signal. The scheduler takes these matrices as 

an input and attempts to maximize some sort of metric using the matrices, the total 

available transmit power P, and possibly other parameters. For simplicity, we assume the 

transmit power is divided equally among the subcarriers. The outputs of the scheduler are 

the set of scheduled users, the rates for those users, and the corresponding transmit 

covariance matrices (i.e., the power allocations). This information can be transmitted to 

the users on a downlink control channel. 

Strictly speaking, there is no limit to the number of users that can simultaneously be 

scheduled with DPC. (It should be noted, however, that certain approximations have 

limits based on the number of transmit or receive antennas.) However, if waterfilling the 

power is performed to maximize the sum-throughput, chances are that certain users will 

end up being allocated zero power and, hence, effectively not be scheduled. It is shown in 

[124] that, if there are MT transmit antennas, at most MT
2 users will be allocated non-zero 

power. In general, one cannot tell how many users must be scheduled to achieve the sum-

capacity. However, it has been shown in [75] that, most of the time, it is sufficient to 

schedule, at most, the same number of users as there are transmit antennas. Scheduling 

less than MT users will often lead to a significant loss in capacity, unless the SNR is low. 

However, scheduling more than MT users does not result in a significant gain in capacity; 

the system is already very close to capacity once MT users are scheduled. Hence, the 

scheduler need not consider additional users beyond NS = MT. 

Very little work in the literature looks at scheduling in conjunction with DPC alone. 

This is due to several reasons. In part it is due to the current infeasibility of DPC. Hence, 

scheduling efforts are more focused on other methods, such as linear precoding methods, 

or other suboptimal adaptations like ZF-DPC. Also, as just discussed, scheduling in DPC 

is not strictly necessary; waterfilling over all possible users in effect chooses which users 

to transmit to by allocating them non-zero power. However, we have focused on 
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scheduling under DPC for this work for a few reasons. First, DPC still is optimal, and we 

wish to analyze the performance of the GA in a “best case” scenario, to focus solely on 

the effect of the scheduling. Secondly, there may arise in the future some method that 

closely approximates DPC that is feasible for implementation. Such a method might have 

restrictions on the number of supportable users. Our GA would still be valid in this case. 

Lastly, the GA we have used for DPC scheduling is still trivially extendable to other 

precoding methods besides DPC, so it is also usable in present practical systems. 

3.5 Simulation Results 

In this section, we analyze the performance of the GA in implementing the maximum 

throughput (MT) and proportional fairness (PF) scheduling criteria in a system using 

DPC in both single-carrier and multi-carrier scenarios. In the multi-carrier scenario, we 

consider a relatively simple system with only four subcarriers to help reduce the 

simulation complexity. The performance of the GA is compared to an exhaustive search 

(ES), which serves as an upper bound. In addition, in the single-carrier case, we also 

compare a few results by using ZFB instead of DPC for reference to the earlier work in 

[109]. In all cases, a maximum of NS = MT users are scheduled per subcarrier. 

3.5.1 Single-Carrier Results 

Figure 3.6 demonstrates the performance of the maximum throughput scheduler in 

terms of the utility function value GMT (i.e., the system sum-throughput) versus SNR for 

various values of MT, NR, and K. For reference, the optimal performance of an ES is also 

shown. The ES provides the best possible performance for choosing a maximum of MT 

out of K users to serve simultaneously using DPC. It is shown that the GA achieves 

approximately 94–99% of the sum-throughput relative to the ES while being significantly 

less complex. Interestingly, the relative performance of the GA compared to the ES is 

essentially independent of the SNR. Over the SNR range of 0 to 10 dB, the change in 

relative performance is at most about 1.7%, for (NR,MT,K) = (1,4,20); for the other curves, 

the change is even less. It is also observed that the performance of the GA relative to the 

ES is better for MT = 2 than for MT = 4. This is not that surprising, as the larger the value 

of MT (and hence NS), the larger the search space is for the optimal user selection (as 

given by (3.2)). Nonetheless, even for this more complicated problem, the GA performs 

quite well. Overall, in terms of SNR, the GA performance is generally inferior to the 

optimal performance by about 0.5 dB. 
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For reference, we also simulated the performance of the system using DPC, but 

wherein the system attempted to transmit to as many users as possible, and with optimal 

power allocated to those users in order to maximize the system capacity. This is to 

reinforce the conclusions drawn in [75]. As expected, there is very little difference in the 

sum-throughput when scheduling only MT users compared to as many users as possible. 

In fact, for the most part, the performance is largely coincident with the ES results in 

Figure 3.6. Thus, we do not plot those results there, as the lines would essentially overlap. 

For MT = 4, we observed at best less than an additional 0.3 bit/s/Hz in throughput (or a 

2% increase), which is mostly negligible. 

Comparing the results with a system that uses ZFB for (NR,MT,K) = (1,2,10) and 

(1,4,10), it is shown that the suboptimal DPC GA performance is not worse than the 

optimal ZFB performance. In fact, the GA shows a gain of up to about 2 dB in Figure 

3.6(c) compared with the optimal ZFB results. Therefore, the performance of our GA for 

DPC is also better than that of the GA for ZFB as in [109], since that GA must 

accordingly be no greater than the exhaustive search for that scenario. 

Lastly, it can also be observed that there is an increase in throughput as NR, MT, or K 

increases, as expected from the corresponding increase in spatial or multiuser diversity. 

The largest gain in throughput comes from increasing MT, because doing so increases 

both the number of spatial channels and / or streams that can be transmitted, and the 

maximum number of users that can simultaneously be scheduled. This gain in throughput 
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Figure 3.6: Performance of maximum throughput scheduling versus SNR for a (NR,MT,K) single-

carrier MIMO system implemented via GA and ES. (a) NR = 1, MT = 2, and K = 10, 20. (b) NR = 2, 
MT = 2, and K = 10, 20. (c) NR = 1, MT = 4, and K = 10, 20. 
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comes despite the fact that the available transmit power is split among a larger number of 

users, thereby decreasing the individual capacities of those users. 

Figure 3.7 shows the maximum throughput performance versus K at an SNR of 10 

dB and better illustrates the effect of multiuser diversity. As the number of active users 

increases, so does the sum-throughput. However, this gain comes at the cost of increased 

complexity at the base station, both in terms of determining the users’ channels and the 

function evaluations of the scheduler. For the former, having more users equates to more 

feedback being required in order for the base station to have channel state information 

available for each of the users in order to make its scheduling decisions. The issue of 

feedback is beyond the scope of this work; we simply assume that the base station 

somehow has perfect knowledge of the channels. More important for this work is the 

latter case: as the number of users increases, eventually, either the GA population or the 

number of generations must also increase to compensate for the larger number of possible 

permutations of scheduled users (i.e., the larger number of potential optimization 

solutions). This directly results in additional utility function evaluations and, hence, more 

complexity within a given scheduling interval. We discuss the issue of complexity in 

more detail later in Section 3.5.4. 

Figure 3.8 shows the performance of the proportional fairness scheduler versus SNR 

in terms of the utility function value UPF achieved. Note that the values are negative, 

because the average rate per user is, in general, less than 1 bit/s/Hz, which yields a 
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Figure 3.7: Performance of maximum throughput scheduling at SNR = 10 dB versus the number 

of active users for an (NR,MT) single-carrier MIMO system implemented via GA and ES. 
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negative value for the logarithm. Complexity and time considerations prevented us from 

performing an exhaustive search for the case of (NR,MT,K) = (1,4,20). Each Monte Carlo 

run of the PF simulation first requires some initialization time for the average throughput 

for each user to reach its approximate steady-state value; each average rate is initialized 

to a low value, which then increases and converges to around the steady-state as users are 

scheduled. Additional scheduling instances are then required once the steady-state is 

reached; it is only these later samples which are useful for the simulation output. (In 

comparison, the maximum throughput simulations require much less time, as they do not 

require average statistics to be built up; the MT criterion only uses the instantaneous 

channel states at each scheduling interval.) This reason, combined with the 

combinatorially increasing complexity of the exhaustive search, makes the time for an ES 

simulation in the (1,4,20) case prohibitively large. 

It is again shown that the GA and an ES yield very similar results. In several cases, 

the plots for the exhaustive search and the GA almost overlap. As with the MT criterion, 

the PF performance of the GA, in terms of the utility function value achieved, is inferior 

to the optimal solution by at most approximately 0.5 dB. Interestingly, the performance 

of our GA is also approximately equal to the optimal performance of an ES when using 

ZFB. 

Figure 3.9 illustrates the distributions of average rates kR  and instantaneous 

scheduled sum rates kk
R

  that the different scheduling methods with the PF criterion 
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Figure 3.8: Performance of proportionally fair scheduling versus SNR for an (NR,MT,K) single-

carrier MIMO system implemented via GA and ES. 
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achieve. We consider the cases of (NR,MT,K) equal to (1,2,10) and (1,4,10) at an SNR of 

10 dB. Comparing the sum-rate curves, the GA curves have basically the same shape as 

the exhaustive DPC curves but are slightly shifted to the left. This shift is about 0.2 and 

0.74 bit/s/Hz for the (1,2,10) and (1,4,10) cases, respectively. Equivalently, this is on 

average about 0.1 to 0.185 bit/s/Hz per user for the two cases. A similar but smaller shift 

is shown in the average rate curves (about 0.02 and 0.1 bit/s/Hz, respectively).  

Comparing the GA results with the ES curves for ZFB, the (1,4,10) case is particularly 

noteworthy. The median of the average rates per user is approximately the same for the 

ZFB curve as it is for the GA curve, both being approximately 1.15 bit/s/Hz. However, 

the ZFB curve is slightly steeper; i.e., with ZFB, there is a smaller range of likely average 

rates. Looking at the instantaneous sum-rate curves, the ZFB curve generally displays a 

smaller sum rate than the GA curve, particularly below the 70th percentile. In other 

words, the instantaneous sum-throughput for an exhaustive search with ZFB will be 

lower than that for the GA and DPC about 70% of the time. Thus, between the two sets of 

curves, it can be stated that the optimal performance under ZFB is, perhaps, slightly more 

fair than the suboptimal DPC GA in terms of the variation of average rates across the set 

of active users, but this fairness comes at the expense of a significantly lower system 

capacity. This is in spite of the fact that both cases achieve about the same average utility 

function value, as seen in Figure 3.8. 
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Figure 3.9: Distributions of average rate per user and instantaneous sum-throughput for PF 

scheduling in an (NR,MT,K) single-carrier MIMO system at SNR = 10 dB. 
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3.5.2 Multi-Carrier Results 

Figure 3.10 shows the performance of the GA implementing the maximum 

throughput criterion in a multi-carrier OFDM system relative to an ES. The single-carrier 

GA performance is also shown for reference. The multi-carrier system occupies the same 

total useful bandwidth WT as the original single-carrier system, so that the SNR and 

throughput of the single- and multi-carrier systems can be properly normalized and 

compared. As in the single-carrier case, the throughput that the GA achieves is 

approximately 94–99% of that of the ES or, in terms of SNR, again about 0.5 dB worse. 

Thus, the extension of the GA to the multi-carrier scenario works just as well as with a 

single carrier. Furthermore, there is a notable increase in spectral efficiency that results 

from the use of OFDM, as a result of the subcarriers overlapping and, hence, more 

efficient use of bandwidth. The system sum-capacity relative to the single-carrier 

scenario increases by a factor of about 1.2 at an SNR of 0 dB, up to a factor of about 1.36 

at 10 dB. In terms of SNR, the gain is about 1.5 to 3 dB. We have also considered the 

case when an ordinary FDM system is used (with non-overlapping subcarriers). In this 

case, the total bandwidth WT is divided equally into four subcarriers, each with a 

bandwidth of WC = WT/4. Interestingly, the GA performance is this case is virtually 

indistinguishable from that of the single-carrier GA (thus, we do not plot it on the 

graphs). This implies that the performance of the GA per (sub)carrier is identical when 
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Figure 3.10: Performance of maximum throughput scheduling vs. SNR for an (NR,MT,K) multi-

carrier MIMO system implemented via GA and ES. (a) NR = 1, MT = 2, and K = 10, 20. (b) NR = 2, 
MT = 2, and K = 10, 20. (c) NR = 1, MT = 4, and K = 10, 20. 
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the available transmit power is divided equally among the subcarriers. Thus, the 

performance of the GA should scale to even larger numbers of subcarriers, though at the 

expense of added scheduling complexity. (We discuss the issue of complexity in more 

detail in Section 3.5.4.) With that added complexity, even further gains in the OFDM 

case likely could be obtained if even more subcarriers were used, due to the increased 

bandwidth efficiency  of OFDM, given by  = NC/(NC + 1) [13], if the guard interval is 

ignored. (The bandwidth efficiency of FDM is the same as for single-carrier 

transmission.) Lastly, we note increases in throughput with increasing MT, NR, and K just 

as in the single-carrier case. 

Figure 3.11 shows the GA performance for the proportional fairness criterion in the 

multi-carrier case. Once again, the GA performance is, at most, approximately 0.5 dB 

inferior to that of the ES. A gain in spectral efficiency for the OFDM case relative to the 

single-carrier one, similar to the gain for the maximum throughput criterion, can again be 

noted with the proportional fairness criterion. This indicates that users are receiving 

higher average throughputs (in bits per second per hertz) than in the single-carrier case. 

In theory, the multi-carrier system can simultaneously schedule up to NC×MT 

different users, provided the SNR is sufficiently high, as NS = MT users can be scheduled 

on each subcarrier. The likelihood of this occurrence increases with K due to the 

corresponding increase in multiuser diversity. A larger user pool increases the likelihood 

of a different set of users providing the largest scheduling metric on each subcarrier. Our 

0 2 4 6 8 10
−25

−20

−15

−10

−5

0

5

10

System Tx SNR (P/WTσn
2) (dB)

 

 

Σ k
[lo

g 2(A
vg

. u
se

r r
at

es
 R
k)]

  (
R k

:b
it/

s/
H

z)

(a)

0 2 4 6 8 10
−60

−55

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

System Tx SNR (P/WTσn
2) (dB)

 

 

(b)

  

SC (GA) OFDM (GA) OFDM (ES)

(1,2,10)
(2,2,10)
(1,4,10)

(1,2,20)
(2,2,20)
(1,4,20)

 
Figure 3.11: Performance of proportionally fair scheduling versus SNR for an (NR,MT,K) multi-
carrier MIMO system implemented via GA and ES. (a) K = 10, NR = 1, 2, and MT = 2, 4. (b) K = 

20, NR = 1, 2, and MT = 2, 4. 
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simulations show that the system indeed tends to simultaneously schedule large numbers 

of users. Figure 3.12 shows the distributions of the number of scheduled users for the 

proportional fairness criterion at an SNR of 10 dB. As an example, for the (NR,MT,K) = 

(1,2,10) case, the system usually schedules between five to seven users out of the eight 

maximum possible users. When K increases to 20, this increases to most often between 6 

and 8 users. 

This result has two main implications. First, each user is most often assigned to just 

one or, on occasion, two subcarriers. Hence, their instantaneous throughput (in bits per 

second) is lower than in the single-carrier case, because their assigned bandwidth is 

lower. Second, the delays of each user also decrease. More users are simultaneously 

scheduled in the multi-carrier case; hence, any particular user would be scheduled more 

often than in the single-carrier case. The CDF of the head-of-line delays per user (that is, 

how many transmission scheduling intervals elapse between a given user being selected, 

then being selected again) is shown in Figure 3.13. Unsurprisingly, our simulations 

indicate that, on average, because the multi-carrier system has four subcarriers, the delays 

per user are approximately four times smaller than in the single-carrier system. The user 

delays decrease; thus, the average user throughput increases, which helps in 

compensating for the reduction in instantaneous throughput. As a side comment, we also 

note scaling NR has no effect on the delays, nor does simultaneously scaling K and MT by 

the same factor. 
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Figure 3.12: Distributions of number of simultaneously scheduled users under the proportional 

fairness scheduling criterion at SNR = 10 dB for an (NR,MT,K) multi-carrier MIMO system. 
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3.5.3 Convergence 

Because of the random nature of the selection and breeding of the GA, the 

convergence of the GA is also a stochastic process. Hence, it is possible that a GA will 

not find a globally optimal solution for a utility function, particularly for a fixed number 

of iterations. The size of the search space obviously also affects the likelihood of finding 

the global optimum. The probability of not finding the optimum solution, of course, 

decreases the longer the algorithm is allowed to run. In addition, if elitism is not 

employed, the algorithm can, in fact, diverge from the optimum if a previously good 

solution is lost. With the use of elitism, the utility function value will strictly be non-

decreasing with the number of generations. Nonetheless, despite the chance of not 

converging to the global optimum, GAs are known for quickly finding a good solution to 

optimization problems. Hence, if that solution is sufficiently good, in many cases, it is not 

necessary to wait for the algorithm to find a better solution. 

Figure 3.14 shows the convergence of the GA with the number of generations for the 

maximum throughput criterion at an SNR of 10 dB. The figure shows, on average, how 

far from the optimal utility function value the algorithm is. As already seen in Figure 3.6, 

the convergence is largely independent of SNR; the GA achieves approximately the same 

proportion of the ES regardless of the SNR. We have also seen that the convergence 

under the proportional fairness criterion is quite similar, because the size of the search 

space is identical. Hence, we can focus solely on the maximum throughput criterion at 

one specific SNR when examining the convergence in more detail. We set Np = 20 for MT 

= 4 and K = 20, and Np = 10 for all other cases. 
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Figure 3.13: Distributions of head-of-line delays per user under the PF criterion at SNR = 10 dB 

for single- and multi-carrier transmission and various values of (NR,MT,K). 
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Figure 3.14 shows that initially the GA rapidly converges towards the optimum 

utility function value. After just a couple of generations, the algorithm achieves, on 

average, about 90% or more of the optimal value. (Recall also that generation 1 is the 

initial, random population.) As the algorithm progresses, the rate of convergence slows. 

In part, this is due to the algorithm, in some cases, prematurely halting on a local 

optimum point. In these cases, the mutation operation helps the algorithm become 

“unstuck” and consider other possibly better solutions. In other cases the rate of 

convergence slows, simply because the algorithm has already converged to an optimal or 

near-optimal solution for the scheduling problem. 

It can be seen that the number of receive antennas per user has very little effect on the 

convergence of the DPC genetic scheduling algorithm. It can also be seen that scaling 

either K or MT has similar effects on the convergence, as seen by the closeness in 

performance in the lines for (NR,MT,K) = (1,2,20) and (1,4,10). The figure furthermore 

demonstrates that for MT = 2 and K = 10, 5 generations is sufficient for the algorithm to 

converge to within about 99% of the optimal value on average. For the remainder of the 

cases, 10 generations is a sufficient time for the algorithm to run. Thus, these values for 

Ng are used throughout this chapter. 

Interestingly, it is not simply the number of generations the algorithm runs that 

affects the overall convergence, but rather the product Np×Ng, which is the total number 

of times the GA calculates the utility function. To demonstrate this, Figure 3.15 compares 

two cases each of the performance of the GA at (NR,MT,K) = (1,2,20) and (1,4,10). In the 

first case, Np = 10 and Ng = 10 as used throughout the rest of this chapter, whereas in the 

second, Np is doubled to 20 and Ng is halved to 5. The product Np×Ng thus remains 100 in 
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Figure 3.14: Average convergence of GA versus generations for the maximum throughput 

scheduling criterion at an SNR of 10 dB and various values of (NR,MT,K). 
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all the cases. It is seen in Figure 3.15(a) that the throughput is virtually identical for both 

cases of Np and Ng. Figure 3.15(b) confirms this, showing the maximum difference 

between the average throughput of the two cases is no greater that 0.07 bit/s/Hz, which is 

insignificant and likely within the error range of the Monte Carlo simulation. 

Figure 3.16 shows distributions of the number of generations required for the GA to 

find the globally optimum utility function value (i.e., the optimum selection of users and 

their encoding order). As expected, the larger the search space, the more generations are 

required. However, as Figure 3.14 implies, even in the cases where the algorithm has not 

found the optimal value, the value is usually quite close to the optimum. Based on the 

two figures, it can be determined that, for those cases that have not converged to the 
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Figure 3.15: (a) Performance of single-carrier MT GA scheduling vs. SNR for (NR,MT,K) = 

(1,2,20) and (1,4,10), each with {Np,Ng} = {10,10} and {20,5}. (b) Difference in sum-throughput 
for {Np,Ng} = {20,5} compared to {10,10}. 
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Figure 3.16: Distributions of number of generations required for GA convergence to the optimum 
utility function value for the maximum throughput scheduling criterion at an SNR of 10 dB and 

various values of (NR,MT,K). 
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globally optimum value after the maximum number of generations has been reached (i.e., 

Ng = 5 generations for MT = 2 and K = 10, and Ng = 10 generations otherwise), the GA 

has found a solution that, on the average, is within about 4–6% of the optimum value. 

Thus, as we have previously stated, although it may take the GA some time to find the 

overall optimum solution, it can quite rapidly find a near-optimum solution. 

In practice, it would be quite unlikely to know ahead of time what the globally 

optimal utility function value is, and thus how far the GA is away from it. Thus, it is hard 

to determine how many generations the GA should run for. We saw positive results in 

this work with Np×Ng scaling proportional to NS and K. However, other stopping criteria 

could also be used in practice. For instance, if there is some sort of scheduling deadline 

that exists in the system, the GA could simply run until that deadline is reached, then 

output its best decision. Alternatively, the GA could monitor the utility function value; if 

the value stalls for a number of generations past some threshold, the GA could then exit. 

If the system keeps statistics involved in past scheduling decisions, these could also be 

incorporated in deciding when to quit. For example, it could operate for only x 

generations more once a threshold, based on the past utility values, is reached. 

3.5.4 Runtime / Complexity Comparison 

Table 3.1 compares the runtime of the genetic algorithm to an exhaustive search in 

terms of the number of utility function evaluations required for each. The utility function 

that is evaluated is identical for both an ES and the GA, as given by (3.13) and (3.15), 

with the optimal transmit covariance matrices determined by the methods in [107] and 

[82], respectively. The table applies to both the single-carrier and multi-carrier scenarios; 

however, it should be noted that each individual utility function evaluation is NC times 

more complex in the multi-carrier scenario than its single-carrier equivalent. (Essentially, 

the single-carrier function is evaluated once per subcarrier, because each subcarrier is 

independently scheduled.) In addition, note that the number of evaluations is independent 

of the number of receive antennas at the mobiles. However, as the number of receive 

antennas increases, the larger channel matrices means that each evaluation will require 

more computations. 

The number of function evaluations used by our GA is larger compared to the work 

in [109] in the context of ZFB. This is a direct result of the larger search space that results 

from the use of the order-dependent encoding of DPC. Hence, additional function 

evaluations are required to compensate for that larger search space. In general, we find 
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that doubling either the number of generations or the population size for the GA relative 

to that in [109] yields good results. (Recall from the previous section that doubling either 

is equivalent for the performance and convergence.) 

The final two columns in Table 3.1 are applicable only for the proportional fairness1 

and maximum throughput criteria. Knowledge of the form of their utility functions can be 

exploited to reduce the complexity of an ES. In the case of the proportional fairness 

criterion, the utility metric is a weighted sum rate, where the weight of each user is the 

reciprocal of their average throughput. Because of this, and since the MAC capacity is 

convex, the maximization of that metric will lie on the boundary of the MAC capacity 

region, and thus also on the boundary of the DPC capacity region, as the two are 

coincident. Furthermore, the optimal decoding order on the MAC is known a priori as 

being the relative increasing order of the values of the user weights [82]. In other words, 

the larger the weight of a given user is, the later in the decoding order on the MAC 

should that user be positioned, with the highest weight being positioned last. This is 

intuitively explained. Users in later positions in the decoding order experience less 

interference overall, because the effect of users earlier in the ordering is removed. The 

user that is decoded last experiences no interference at all. Thus, it is logical to put the 

user with the largest weight in that position. The rate that is achieved by that user shall be 

the largest possible compared to any other order, and hence, its effect on maximizing the 

weighted sum rate would be the greatest. With the transformations in [24], this means 

that on the BC, the user with the largest weight should be encoded first. Thus, with the 

optimal decoding / encoding order known beforehand, it is therefore only necessary for 

the ES to search through all combinations of users (Eqn. (3.1)) instead of all ordered 

selections (Eqn. (3.2)), thereby reducing the complexity. 

                                                 
1 Strictly speaking, the column for PF also applies to any utility function in the form of a weighted 
sum rate, provided that the weights do not depend on the instantaneous user rates. 

Table 3.1: Runtime comparison of genetic and exhaustive search scheduling algorithms in terms 
of number of utility function evaluations required 

(NS,K) 
Genetic 

Algorithm 
(Np×Ng) 

Exhaustive Search
(General Case 

Utility Function) 

Exhaustive Search
(Proportional 

Fairness) 

Exhaustive Search
(Maximum 

Throughput) 
(2,10) 10×5 = 50 100 55 57 
(4,10) 10×10 = 100 5860 385 409 
(2,20) 10×10 = 100 400 210 212 
(4,20) 20×10 = 200 123520 6195 6219 
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In the case of the maximum throughput criterion, as previously mentioned, the 

maximum sum rate on the MAC and BC does not depend on the decoding / encoding 

order. Although the individual user rates change depending on the order, any given 

encoding order will result in the same value of the utility function. Choosing a specific 

order, if necessary, is therefore based on secondary criteria. This fact can be used to 

reduce the complexity of the ES. The search can first seek through all possible 

combinations of users to find the specific group that maximizes the utility function. Once 

that group is found, it can then search through all possible orderings of just those users to 

break the tie. 

The “general case” column of the table refers to some arbitrary utility function. In 

this general case, it is assumed that the utility function is such that the encoding order 

affects the function value, and there is no easy way to know beforehand what the optimal 

encoding order is. One such example might be if the utility function is a non-linear 

function of the user rates. In such a case, the exhaustive search must indeed search 

through all possible selections and orders of users. 

The runtime of the GA is significantly less dependent on the number of active users 

K, the number of transmit antennas MT, and the number of scheduled users NS. In 

particular, decent results were obtained when the number of function evaluations 

increased linearly with NS and approximately linearly with K. However, it is important to 

note that, based on the results in Figure 3.7, the rate at which the sum-throughput 

increases with the number of active users is not as large for the GA as it is for the ES. 

This fact indicates that the number of function evaluations in the GA needs to increase at 

a rate greater than linearly with K to match the curvature of the ES curve. This could be 

accomplished either through an increased population size or a larger number of 

generations. The more the function evaluations that the GA performs, the closer the 

performance will be to that of an ES. Hence, as more generations or a larger population 

size would likely be required with larger pools of users to maintain the current level of 

performance, additional complexity for larger K would result. 

There are, however, some steps that could be taken to reduce that complexity in 

practice. For example, it may be possible to determine beforehand one or two users that 

are particularly likely to be scheduled. This is quite reasonable, since we already assume 

that the base station has channel state information with which to make scheduling 

decisions. The likely candidates may include a certain user with a channel that is 

consistently known to be good (e.g. with low path loss or shadowing, or a channel matrix 



 

55 

with a high norm). Alternatively, this could be a user who has not been scheduled for a 

while and may be approaching some maximum delay or minimum throughput threshold. 

In such cases, the initial population could be seeded with chromosomes that include those 

users. This would result in a better starting location for the search and, hence, less time to 

converge, thus improving the GA performance. A similar situation would exist if the 

channel gains were correlated between adjacent scheduling instances. While we assumed 

in our simulations that the channel gains were independent between scheduling intervals, 

in practice, there will be some temporal correlation in the physical channel1. In such a 

case, the optimal scheduling solution might not significantly change between the decision 

intervals. Hence, the initial population for a given scheduling instance could be seeded 

with some of the best chromosomes from the previous instance, again leading to a 

reduced convergence time and improved performance. 

Nevertheless, for the analyzed scenarios, a simple linear dependence of the GA 

runtime on K and NS already yields throughput results close to that of the ES and without 

its associated combinatorial complexity. In fact, if the change in the number of active 

users is relatively small (e.g. a few users join or leave the system), the number of function 

evaluations can likely be kept constant with no significant effect on the GA performance. 

There is a large runtime reduction for the GA compared to the optimal algorithm. For 

NS = 2 and K = 10, there is not much of a reduction to be seen relative to an ES with the 

MT and PF criteria. However, for a general case utility function, the runtime with the GA 

is reduced by half. Increasing K to 20, the GA runtime is about half that of the MT and 

PF exhaustive searches, and a quarter of that in the general case. With (NS,K) = (4,10) and 

(4,20), there is a runtime reduction by a factor of about 4 and 31, respectively, for both 

the maximum throughput and proportional fairness criteria. Compared with a general 

case ES, the runtime is reduced by a factor of 58.6 and 617.6, respectively. 

3.6 Conclusion 

In this chapter, we have investigated the use of genetic algorithms for scheduling in 

multiuser single-carrier and multi-carrier MIMO systems with DPC. We have described a 

GA representation that can account for both the selection of users and the encoding order 

of those users. This representation can be used just as easily in any system with linear or 

non-linear precoding where the encoding order of the users will affect the users’ 

                                                 
1 We can neglect the effect of correlation in this work, since its presence would not affect the 
comparison between the scheduling methods. 
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performance and / or the utility function. For the case of DPC, the representation is also 

independent of the number of receive antennas at each user. 

We considered a system with a base station with MT transmit antennas, which 

schedules transmissions using DPC to a pool of K active users, each having NR receive 

antennas, and analyzed the performance of the GA relative to the optimal performance of 

an exhaustive search. It was observed that the GA performed quite well, obtaining on 

average about 94–99% of the optimal utility function value with the maximum 

throughput scheduling criterion. In terms of SNR, the GA was approximately 0.5 dB 

inferior to the ES. The relative performance of the GA to the ES was basically 

independent of both the system SNR and the number of receive antennas at each mobile. 

The results for the proportional fairness scheduling criterion were much the same, with 

the GA again being about 0.5 dB away from optimal. 

Extending the analysis to a multi-carrier scenario, the relative performance of the GA 

was basically the same as with a single carrier. The use of OFDM with four subcarriers 

resulted in a gain in sum-throughput by a factor of about 1.2 to 1.36 for MT scheduling 

due to OFDM’s increased bandwidth efficiency compared to single-carrier transmission. 

For both MT and PF scheduling, the performance gain was about 1.5 to 3 dB when using 

OFDM. The multi-carrier system also was seen to schedule more users simultaneously, 

leading to decreased packet delays overall. In our multi-carrier work, we simplified the 

scheduling optimization problem by allocating equal transmit power to each of the 

subcarriers. It may be possible to further improve the performance by performing a joint 

scheduling and power optimization over the subcarriers instead of using equal power 

allocation. 

Examining the convergence, it was shown how quickly the GA converged to a very 

good solution (although not necessarily the global optimum). For the cases examined, a 

maximum of 10 generations was sufficient to obtain good results. This short convergence 

time also resulted in a greatly reduced runtime compared to the ES. The required 

calculations were reduced by a factor of up to 31 for the two examined scheduling criteria, 

and up to a factor of 617.6 for a more general case utility function and exhaustive search. 

Despite the very good performance of the GA seen in this chapter, it is possible to 

further improve its performance by the careful tuning of some of the aspects of the 

genetic algorithm. The next chapter examines this tuning in more detail. 
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Chapter 4 

Impact on and Improvement of the 
Convergence of GA Scheduling from 
Parameter Tuning and Change in 
Crossover Method 

4.1 Introduction 

It was seen in the previous chapter that our genetic algorithm for scheduling in 

MIMO systems with DPC performed quite well relative to an exhaustive search. That GA 

was based in part on a genetic algorithm used in [109] to perform scheduling in a system 

that used ZFB. As such, we adapted some of the concepts in [109] to our GA scheduling 

algorithm. One of the most notable of these was an adaptive mutation rate. As already 

mentioned, the parameters used within [109] still provided good performance in the 

context of DPC scheduling. However, it also raises the question: Are those parameters 

used for ZFB still the best overall to be used with DPC? Or, would a change in some of 

the values of those parameters lead to a further improved performance? In this chapter, 

we examine this issue and demonstrate that tuning the parameter values within the 

adaptive mutation rate can indeed lead to a significant improvement in the convergence 

of the DPC genetic algorithm. The average number of iterations required by the GA to 

converge to a given percentage of the optimum utility function value can be reduced to 

less than a third of that required by the original parameter values. We also briefly 

examine the impact of using a different crossover method than the one-point crossover 

used in the previous chapter. Our contributions for this chapter have appeared in [125],

[126]. 

4.2 Problem Description 

In the previous chapter, we used an adaptive mutation rate in our GA, which we 

repeat here for convenience: 
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In the above equation, G and G are the standard deviation and the mean of the fitness 

for the population of chromosomes during each generation, while 1 and 2 are constants. 

Earlier, we used the values of 1 = 1.2 and 2 = 10. 

In this chapter, we examine more closely the effect of the parameter values for 1 and 

2 in (4.1) on the convergence of the genetic algorithm. The initial motivation for this 

work first came from an examination of the mutation rates seen during the operation of 

our GA in the previous chapter. We observed that the rate upon the random initialization 

of the population tended to be in the range of 0.2–0.6. Higher values for pm were seen for 

a larger number of active users K and with a larger number of transmit antennas MT (or 

equivalently, the maximum number of scheduled users NS). Distributions of the mutation 

rate for the initial population of our GA are shown in Figure 4.1. The case of an SNR of 

10 dB is shown. We also examined the case of 0 dB; in that case, the curves look 

essentially the same, except they are shifted to the left on the x-axis by about 0.05 units. 

These values are somewhat higher than what is typically seen in a GA. A mutation 

rate about an order of magnitude lower (e.g. around 0.01) is more common [112],[127]. 

When combined with elitism, a higher mutation rate is not as much of a problem, as there 

is no danger of destroying the previous best solution. However, too high of a mutation 
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Figure 4.1: Distributions of the adaptive mutation rate for the random initial first generation of the 

genetic scheduling algorithm for DPC with 1 = 1.2 and 2 = 10, an SNR of 10 dB, and various 
values of (NR,MT,K). 
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rate can still slow the convergence of a GA, due to the destruction of good solution 

characteristics in the chromosomes that were obtained during previous generations. 

In summary, we suspect these adaptive mutation rates are likely too high. Thus, we 

generally are interested in increasing the parameters 1 and 2 to create a lower mutation 

rate, and analyzing the effect on the convergence of the GA. 

4.3 Simulation Setup and Results 

4.3.1 Simulation Setup 

The simulation setup and system model in this work are nearly identical to that in the 

previous chapter. We still consider a base station with MT transmit antennas, a transmit 

power limitation of P, and perfect channel knowledge. The base station schedules 

transmissions using capacity-achieving DPC to a pool of K users requesting service, each 

with NR receive antennas. The users experience statistically identical path loss, noise, 

shadowing, and Rayleigh block fading conditions. However, we only consider a single-

carrier system now, as it was seen in the previous chapter that the single-carrier and 

multi-carrier GA performance relative to an exhaustive search were much the same. 

The key difference in this chapter is that 1 and 2 are varied instead of being kept 

constant, and the change in the convergence of the GA is examined. We focus primarily 

on the GA convergence with the maximum throughput scheduling criterion (i.e., the 

utility function MT kk
G R ) at an SNR of 10 dB. However, we comment on other 

scenarios (i.e., convergence at different SNRs and under the proportional fairness 

scheduling criterion) in Section 4.4.2. 

4.3.2 Simulation Results 

Regardless of the specific value of NR, MT, or K, we can observe an overall trend in 

the simulation results as the values for 1 and 2 change. Notably, there is no single 

optimal operational point for either 1 or 2. Instead, there is an optimal range of values 

for both parameters where the average time for the GA to converge is both minimal and 

approximately equal. Outside of this range, smaller  values give too large of a mutation 

rate, while larger  values give too small a rate; either case increases the convergence 

time of the GA. In Figure 4.2 and Figure 4.3, we examine the effect on the convergence 

rate for (NR,MT,K) = (1,2,10), when one of 1 or 2 is varied while the other is kept 

constant. These figures show the probability of the GA having found the optimal utility 
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function value after the specified number of generations. The distributions in 

convergence time are very similar for 2 = 5–25 with a constant 1 = 1.2, and for 1 = 

1.2–4 while 2 is constant at 10. Of the values tested, (1,2) = (1.2,10), as we used in the 

previous chapter, results in the fewest generations required for the algorithm to converge 

to the optimal utility function value, but only by a small margin. 

We also observe that the closer the algorithm is to the optimal solution, the more 

pronounced of an effect that changes to 1 and 2 have. We now consider the case of 
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Figure 4.2: Distributions of number of generations required to converge to optimal utility function 

value for (NR,MT,K) = (1,2,10) at an SNR of 10 dB; 1 = 1.2 (constant), 2 variable. 
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Figure 4.3: Distributions of number of generations required to converge to optimal utility function 

value for (NR,MT,K) = (1,2,10) at an SNR of 10 dB; 1 variable2 = 10 (constant). 
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(NR,MT,K) = (1,2,20). Figure 4.4 shows the number of generations required for the 

algorithm to converge on average to within 1% of the optimal utility function value, 

while Figure 4.5 shows the number of generations to converge on average to within 0.1% 

of the optimal value. On an absolute scale, there is clearly a larger impact from changing 

the parameters on the algorithm convergence time at the 0.1% level than there is at the 

1% level. 
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Figure 4.4: Number of generations required to converge on average to within 1% of optimal utility 

function value as a function of 1 and 2 with (NR,MT,K) = (1,2,20) and an SNR of 10 dB. 
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Figure 4.5: Number of generations required to converge on average to within 0.1% of optimal 

utility function value as a function of 1 and 2 with (NR,MT,K) = (1,2,20) and an SNR of 10 dB. 
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Specifically, in Figure 4.4, we vary the values of 1 between 1.2 and 12 and 2 

between 5 and 100. Within this range, the average time to converge to within 1% of the 

optimal utility function value changes by about 7–8 generations from the longest time to 

the shortest. However, that same range for 1 and 2 causes a change of about 20–21 

generations at the 0.1% convergence level in Figure 4.5. Our simulations indicate a 

further increase in the impact of the parameter values on the convergence time when the 

algorithm is even closer on average to the optimal solution. However, a more detailed 

observation past this point would be unwarranted and likely inaccurate, owing to an 

increasing lack of unconverged cases / samples (i.e., those that have not yet found the 

optimal value) in our Monte Carlo simulations. The simulations consider the average 

over 10000 independent runs. When considering convergence to 0.1% of optimum, on 

average about 390 of the runs have not yet converged to the exact optimum value within 

the generations shown in Figure 4.5. This number of runs is still statistically significant. 

In comparison, we could consider a convergence even closer to optimum, such as to 

within 0.01%. In that case, though, only about 40 runs on average have not converged. 

Having that few cases runs the risk of yielding an inaccurate average, so it is best not to 

consider closer convergence levels1. 

Interestingly, if we consider the relative change in the convergence time instead of 

the absolute difference, the level of convergence has much smaller of an effect. For 

instance, moving from the highest point on the graphs of Figure 4.4 and Figure 4.5 at 

(1,2) = (1.2,5) to the lowest point yields a reduction in the average number of 

generations by a factor of about 0.72 at both levels. That is, the number of generations at 

the lowest point is about 0.72 times the number of generations at the highest point for 

both graphs. This fact can also be noted simply in observing the similar overall contour of 

the two figures. 

We also note two additional observations from the two figures. First, the optimal 

value for (1,2) is no longer around (1.2,10), compared to the earlier case in Figure 4.3 

with K = 10. Second, the region around the minimum values of the graph fluctuates 

somewhat. This is due to the stochastic way in which the GA converges. The algorithm  

                                                 
1 A good rule of thumb, similar to when calculating bit or symbol error rates, is to have 100 
statistical samples in order to be sure of a proper average. In the case of average bit or symbol 
error rate calculations, this means to have at least 100 bits or symbols that are in error out of 
however many are considered in total. In our case, this means to have at least 100 instances that 
have not in fact located the optimal selection of users to maximize the utility function, in order to 
find how far on average the GA is from the optimum utility function value. 
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Figure 4.6: Number of generations required to converge on average to within 0.1% of optimal 

utility function value as a function of 1 and 2 with 10 dB SNR and various (NR,MT,K). 
(a) (NR,MT,K) = (2,2,20). (b) (NR,MT,K) = (1,4,10). (c) (NR,MT,K) = (1,4,20). 
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may occasionally get extremely “lucky” and find the optimal solution in just a few 

generations. At other times, it can be “unlucky” and not find the optimal solution even 

after many generations. These outliers skew the mean to a small degree, and the small 

fluctuations in the graph are the result. 

The number of transmit antennas (or scheduled users) and / or the number of users in 

the pool also has an effect on the proper selection of the  values, as seen in Figure 4.6. 

In general, as MT or K increases, at least one of the  values must also increase to 

compensate. The dependence on MT can be seen most clearly when comparing Figure 

4.6(a) and (c), while the dependence on K is easiest seen when comparing Figure 4.6(b) 

and (c). The dependences can also be seen, although less clearly, when comparing Figure 

4.2 / Figure 4.3 with Figure 4.5 (for K) and with Figure 4.6(b) (for MT). However, notably, 

a change in the number of receive antennas per user NR does not significantly affect the 

convergence of the GA. This is seen in comparing Figure 4.5 to Figure 4.6(a). The lowest 

points in both graphs occur around the same values of 1 and2. This last fact is not that 

surprising; as we discussed in the previous chapter, the number of iterations required for 

either GA scheduling or an exhaustive search is independent of the number of receive 

antennas. Thus, one could expect that the convergence of the GA would still be largely 

independent of NR for other values of 1 and 2 as well. 

Consider the specific case of (NR,MT,K) = (1,4,20) shown in Figure 4.6(c). With the 

original values of (1,2) = (1.2,10) as used in the previous chapter, it takes 

approximately 550 generations to converge on average to within 0.1% of the optimal 

utility function value. (Note that this value is off the top of the z-axis in Figure 4.6(c).) 

However, by increasing the parameter values to somewhere in the vicinity of (1,2) = 

(7,70), the required number of generations drops to approximately 155. This is less than 

30% of the time with the original values, and clearly illustrates the importance of 

properly tuning the  values, particularly as K and MT increase. We demonstrate this 

further in Figure 4.7, which compares how close on average the GA is to the optimal 

utility function value as a function of the number of generations for two sets of  values. 

It can be seen that there is a significant reduction in convergence time over a wide range 

of levels of convergence. 

As we have noted above, rather than one specific operating point, there is instead a 

range of  values for which the rate of convergence of the GA is approximately the same. 

This can be seen to some degree in the earlier figures. We demonstrate this more clearly 
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in Figure 4.8, which depicts the range of  values for which the number of generations 

required to converge to 0.1% of the optimal value is within 5% of the minimum 

convergence time obtained over all values of 1 and 2. (Note that the ranges are very 

similar for other levels of convergence as well, just as was seen when comparing Figure 

4.4 and Figure 4.5.) There are two key observations from Figure 4.8. First, the ranges for  

(NR,MT,K) = (1,2,10) and (2,2,10), as well as for (1,2,20), (2,2,20), and (1,4,10), overlap. 

This provides additional confirmation that the specific number of receive antennas per 

user has little effect on the GA convergence. Rather, the primary effect of NR is actually 
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Figure 4.7: Average convergence of GA vs. number of generations at an SNR of 10 dB, with 

(NR,MT,K) = (1,4,20) and two sets of values for 1 and 2. 
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Figure 4.8: Ranges of (1,2) for which the number of generations for the GA to converge to 

within 0.1% of the optimum is within 5% of the minimum convergence time. 
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to somewhat increase the range of usable values of 1 and 2. This increased range with 

NR is a result of the increased receive diversity due to the additional antennas. The 

increased diversity decreases the variation in the capacity of the various users, thereby 

decreasing the variation in the solutions represented by the chromosomes (G in Eqn. 

4.1), and hence making the GA less sensitive to the  values. (This reduced variation in 

capacity was also observed in [62], where the phenomenon is referred to as “channel 

hardening”.) More importantly, though, the overlap in the ranges implies that doubling 

the number of users K has about the same effect on the proper  values as doubling the 

number of transmit antennas MT does. 

Second, note that each of the ranges has approximately the same slope. This implies 

that 1 and 2 could be expressed as a linear function of each other, as indicated by the 

black lines in Figure 4.8. Those three lines can be expressed by 1 + 0.152 = c, where 

c = 3.227, 7.45, and 17.2, from left to right respectively. Interestingly, those values of c 

are multiples of each other, i.e., 7.45/3.227 ≈ 17.2/7.45 ≈ 2.309. Hence, we see that as 

either K or MT doubles for each of the cases, the constant c scales proportionally. This 

indicates a linear relationship between the log of c and the log of the product KMT. Thus, 

based on the relationship between 1, 2, MT, K, and c seen in Figure 4.8, after 

performing a simple least-squares polynomial coefficient best fit (shown in Appendix C), 

it would seem that for any value of K and MT, one could select any value of 1 and 2 that 

satisfies the following constraints to reduce the average convergence time to within 5% 

of the minimum: 

  1.2071

1 2 1 20.15 7.5773 ,1.1 11, 3TKM        . (4.2) 

The above equation might also hold for a larger range of 1 and 2, but this would 

require further analysis. Nonetheless, this equation gives a very simple method to adapt 

the mutation rate parameters to changing system characteristics, such as users entering or 

leaving the system. We also note that given the fairly wide range of useful values seen in 

Figure 4.8, the specific values used for 1 and 2 do not necessarily have to precisely 

satisfy the equation. For example, for simplicity of implementation, one could quantize 

the values to, say, the nearest integer or nearest multiple of 0.5, and still obtain a very 

good convergence rate. In such a case, it is then probably better to select a value for 1 

and solve for 2, since the range of values that 2 can take on is larger. 

As a side comment, from a practical standpoint, the lowest value 1 can safely take 

on is exactly 1. It is possible, though quite unlikely, that the genetic algorithm could 



 

67 

create a set of chromosomes that all have the same fitness. In that case, the variance of 

the population’s fitness would become zero, and 2 would have no effect on the adaptive 

mutation rate. In this event, the mutation rate effectively becomes 1/1. Were 1 any 

smaller than 1, this would mean the probability of mutation would be greater than 100%, 

which is impossible. To be on the safe side, we consider only a minimum value of 1 of 

1.1, to allow for a margin of error, and a smaller maximum possible value for pm. 

4.4 Further Discussion 

4.4.1 Interpretation of Equation for Parameter Values 

Overall, there is a certain “best” operating range for the mutation rate that likely 

depends on many factors, including the channel, population size, the specific form of the 

chromosomes, and so forth. The simulations of the previous section showed that the 

effect of the parameter values becomes greater the closer the algorithm is to the optimal 

utility function value, and that the values of 1 and 2 should depend on the number of 

users in the pool and the number of transmit antennas (or equivalently, the maximum 

possible number of simultaneously scheduled users). Specifically, as either K or MT 

increases, so too should 1 and / or 2. In all, these results are not that surprising, and 

their reasons can be explained somewhat intuitively. 

To begin, the mutation operation exists to force genetic diversity in the population to 

avoid the algorithm stalling at local optima. It is thus most important and influential in 

later generations. Earlier, when there is already much diversity due to the random 

initialization, the crossover operator instead affects the GA’s initial convergence the most. 

Therefore, obviously the parameter values and thus the mutation rate will have the most 

notable effect the closer the algorithm is to the optimal value, as seen in the simulations. 

In general, mutations are intended to have a fairly small effect on the chromosomes, 

so that they mostly maintain the characteristics of a good solution, while still guiding the 

GA away from local optima. While too small of a mutation rate can slow the convergence 

rate due to the algorithm becoming stuck at local optima, too large of a mutation rate also 

risks slowing the convergence. In the following, we focus mostly on the head of the 

chromosome, as the selection of scheduled users usually has more of an impact on the 

maximization of the utility function than the order in which those users are encoded does. 

As the pool of users increases in size, so too does the length of the chromosomes. 

Consequently, for a given mutation probability, the longer chromosome has a higher 
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probability of experiencing some mutation. The probability of the head of the 

chromosome not mutating is  1
K

mp , which decreases exponentially with K. By the 

same reasoning, as K increases, it is therefore more likely for a chromosome to 

experience a mutation of multiple bits. The more bits that are mutated, the more likely it 

is that the chromosome will be harmfully impacted. The most harmful mutation that can 

occur is if a particularly good user who should be scheduled becomes de-selected. This 

could happen directly as a result of mutation of that user’s bit in the chromosome. It 

could also happen indirectly during the correction step; if too many users are scheduled, 

that user could be randomly de-selected1 while reducing the weight of the head to MT. 

Consequently, one can expect that as K increases, the mutation rate should be decreased 

somewhat to compensate. This can be accomplished by increasing the  values with K. 

In the case of an increase in MT, more transmit antennas means more users can be 

scheduled simultaneously. Hence, more ‘1’s would exist in the heads of the chromosomes. 

For a given mutation rate, there is therefore a higher chance that a ‘1’ will be toggled to a 

‘0’. As mentioned above, de-scheduling a good user is a particularly harmful mutation. 

More generally, de-selecting any user from being scheduled will very often result in a 

significant drop in the system capacity and the value of the utility function, especially 

with DPC. While it is usually not necessary to schedule more than MT users, scheduling 

fewer than MT users will almost always result in a significant reduction in the system 

capacity [75]. Doing so means that all the available degrees of freedom for scheduling 

and resource allocation are not being exploited. The exception to this may be if the SNR 

is low or that user happened to be experiencing bad channel conditions. However, in 

general, to avoid this scenario, the mutation rate should again be lowered as MT increases 

to compensate for the increased likelihood of de-scheduling a user. 

The relationship between 1, 2, K, and MT as found by the simulations is reasonably 

logical. Intuitively, for some given ratio G/G, one might expect or desire that pm should 

change such that, whatever the value of K is, the probability of no mutation occurring at 

all in (the head of) a chromosome should remain approximately constant. That way, the 

probability of a detrimental mutation would also be approximately constant. Hence, we 

would have  1
K

mp  ≈ Z, where Z is some constant. For pm << 1, this can be 

approximated as 1 – Kpm ≈ Z, or Kpm ≈ Y, where Y = 1 – Z. Substituting in Eqn. (4.1), we 

                                                 
1 During correction, if the weight w of the head is greater than MT, each scheduled user has an 
equally likely 1 in w chance of being de-selected. 
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get 1 2 G G K Y      for some ratio G G  . Thus, one could expect a nearly linear 

relationship between 1, 2, and K. Similarly, one might intuitively expect a change in pm 

such that the probability of de-selecting none of the scheduled users is approximately 

constant, for whatever the value of MT may be. Since the mutation operation acts 

independently on each bit of the chromosome, this probability is  1 TM

mp . Thus, by a 

similar derivation to that above, we would end up with 1 2 G G TM A      for some 

ratio G G   and some constant A. 

This intuitive line of thought is not too different from the simulation results and Eqn. 

(4.2). The value of 0.15 in (4.2) most likely represents some sort of average for the ratio 

G G  . However, the power of 1.2071 on the KMT term indicates that the probability of 

no mutation occurring should not quite be constant, but rather grow to a small degree 

with increasing K and MT. What is most likely happening is that the equation is providing 

some sort of middle ground between keeping the probability of not mutating fixed with K 

and MT, and yet still dealing with the combinatorially increasing search space. The fact 

that the encoding order bits can also be mutated would also have an effect. 

We expect that Eqn. (4.2) could possibly be used with precoding methods other than 

DPC (e.g. ZFB). However, in such cases, MT may have to be replaced with NS, the 

maximum possible number of simultaneously scheduled users, if NS  MT. In other 

precoding methods, there may not be an encoding order to consider, if any particular 

order results in the same user rates, like in ZFB and BD. Alternatively, the encoding 

order might actually affect the utility function value, in contrast to maximum throughput 

scheduling for DPC. However, in most of these cases, it is likely to be which users are 

scheduled, rather than their encoding order, that has the largest effect on the utility 

function value. Since we have seen that Eqn. (4.2) is largely based off the head of the 

chromosome (i.e., the scheduled users), the equation should still work reasonably well 

with those different precoding methods. 

4.4.2 Other SNRs and Utility Functions 

The work we have presented in this chapter has focused on convergence results for 

only the maximum throughput scheduling criterion at an SNR of 10 dB. However, the 

results are much the same for other SNRs. The change in the convergence rate with 1 

and 2 is very similar at, for example, an SNR of 0 dB. We demonstrate this in Figure 4.9. 

We have considered the case of (NR,MT,K) = (2,2,20) with parameter values of (1,2) = 
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(1.2,10), (3,30), and (5,100), and the case of (NR,MT,K) = (1,4,10) with parameter values 

of (1,2) = (1.2,10), (3,25), and (5,60). These  values were selected since, in their 

respective cases, the first set (1.2,10) are the original values used in the previous chapter, 

the middle set are values that reduce the average convergence time to about the minimum, 

and the last set are values that are too large at 10 dB, which result in an increased 

convergence time. 

It can be seen that the change in the convergence time with changes in 1 and 2 is 

largely the same at 0 dB as it is at 10 dB. For the (2,2,20) case, parameter values of 

(1.2,10) and (5,100) result in a lengthened convergence time, while (3,30) improves the 

convergence. The (1,4,10) case is a bit more interesting. It is again seen that values of 

(1.2,10) result in a prolonged convergence time, while values of (3,25) provide an 

improvement. However, values of (5,60) also result in a very similar convergence rate as 

(3,25). A likely cause for this is that the values (3,25) and (5,60) are probably close to the 

“edges” of the region that provides a good convergence rate at 0 dB. This further implies 

that at 0 dB, the regions might be somewhat larger than at 10 dB; the values (5,60) fall 

outside the (1,4,10) region for 10 dB in Figure 4.8, but appear to be not as bad at 0 dB. 

The values of (3,25) are a bit off the line established by Eqn. (4.2); values of (3,30) or 

(4,23) would be closer. Nevertheless, it is overall still clear that Eqn. (4.2) and values 

thereabout still provide a notable improvement in convergence even at other SNRs. This 

result is not that surprising, given the results of our work in the previous chapter. In that 
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Figure 4.9: Comparison of convergence of GA for (NR,MT,K) = (2,2,20) and (1,4,10) when 

changing {1,2} at different SNRs. (a) SNR = 10 dB. (b) SNR = 0 dB. 
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work, for a fixed 1, 2, and number of generations, the GA converged to approximately 

the same percentage of the optimal utility function value regardless of the SNR. Thus, 

seeing almost no SNR dependence for other  values can be reasonably expected. 

We have also performed some brief simulations using the proportional fairness (PF) 

scheduling criterion. As we explained in the previous chapter, simulating the PF criterion 

requires much more effort, since it requires average statistics to be built up before useful 

data can be obtained. Thus, we limit our focus to the case of (NR,MT,K) = (1,4,10) with 

the same parameter values as for the 0 vs. 10 dB results earlier. The average convergence 

of the PF scheduling algorithm is shown in Figure 4.10, in terms of the distance away 

from the optimal utility value GPF, as given in Eqn. (3.15). The results also show a similar 

overall change in the convergence rate with changing  values, but with a small 

difference in the rate of convergence compared to the maximum throughput criterion. 

That is, the convergence with the PF criterion tends to be slightly faster. It also appears 

that the same  values that produce a minimum convergence time for the maximum 

throughput criterion result in a convergence time close to the minimum for the PF 

criterion as well. There is very little difference in the overall look of the graph in Figure 

4.10 and that in Figure 4.9(a). 

4.5 Uniform Crossover 

Another possibility for improving the performance of the genetic algorithm is to 

change some of the details of the steps it uses. To that end, we have also investigated 

replacing the one-point crossover method in our GA. Numerous studies over the years 
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Figure 4.10: Average convergence of GA scheduling algorithm with the proportional fairness 

criterion, an SNR of 10 dB, and various values for 1 and 2. 
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have indicated that the one-point crossover is not necessarily the best operator. Rather, it 

has overall been seen that the two-point crossover and the uniform crossover perform 

better [128],[129],[130],[131]. The two-point crossover is much the same as the one-

point crossover, except that instead two crossover points are defined at random, and the 

bits between those points are exchanged between the parents. This operation still occurs 

with probability pc. In uniform crossover, each bit in the chromosome has the same 

probability to be exchanged between the parents. Most often, the probability of an 

exchange of each bit is 50% in uniform crossover; each bit is as equally likely as not to 

be exchanged. We have chosen to examine the uniform crossover, as studies have 

indicated that uniform crossover works better than the two-point crossover when using 

smaller population sizes [128],[129]. 

We compare the convergence of the GA using the one-point and the uniform 

crossover in Figure 4.11 and Figure 4.12. Both the original  values from the previous 

chapter and improved  values found from Eqn. (4.2) earlier this chapter are examined. 

We have also considered the cases of (NR,MT,K) = (1,2,10) and (2,2,10). However, we 

have found no discernable difference between the two crossover methods in those two 

cases, for either set of  values. Thus, we have not graphed these cases, as the graphs 

overlap and cannot easily be distinguished from each other. 

Examining the figures, it can be seen that there is mostly no significant change in 

performance for the crossover methods when the original  values are used. It is not until 

we consider the improved  values that we can start to see a difference. Nonetheless, the 

improvement is initially small. There is still no significant change in convergence when 

using the uniform crossover with (NR,MT,K) = (1,2,20) in Figure 4.11(a). There is a small 

convergence improvement with the uniform crossover with (NR,MT,K) = (2,2,20) in 

Figure 4.11(b), but not until an average convergence of about 0.5% away from the 

optimal utility function value. Even then, the improvement in convergence time is at best 

about 1 to 3 generations, although this does represent a relative improvement in 

convergence time by about 4–8%. 

The improvement in convergence time becomes more significant when examining 

the MT = 4 cases. The improvement in convergence time with the uniform crossover can 

be seen sooner in Figure 4.12(a), where again the improvement is at maximum about 8%. 

We note again, though, than on an absolute scale, this only represents a savings of about 

1–4 generations. The most significant improvement is seen in Figure 4.12(b) for 
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(NR,MT,K) = (1,4,20). At an average convergence level of 0.1%, the convergence time 

drops by about 20 generations, or about 13%. 

Overall, it can be seen that there is some improvement in convergence that can be 

obtained by the use of the uniform crossover operator, but these gains are a bit limited,  

especially when compared to the improvements seen when adjusting the parameter values 

for 1 and 2. Furthermore, there are additional considerations in using the uniform 

crossover method. First, the uniform crossover is more complicated than the one-point 
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Figure 4.11: Comparison of GA convergence with 1-point crossover (1X) and uniform crossover 
(UX) operators, each with two sets of  parameter values. (a) (NR,MT,K) = (1,2,20). (b) (NR,MT,K) 

= (2,2,20). 
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Figure 4.12: Comparison of GA convergence with 1-point crossover (1X) and uniform crossover 
(UX) operators, each with two sets of  parameter values. (a) (NR,MT,K) = (1,4,10). (b) (NR,MT,K) 

= (1,4,20). 
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crossover. A random number must be generated for every bit in the chromosome, to 

determine if that bit is exchanged, whereas only a single random crossover location must 

be generated for the one-point crossover. This overhead is not too bad; it is mostly 

negligible when compared to the complexity of calculating the utility function value. It is 

even less of a worry if the uniform crossover probability is 50%; in that case, only 

random binary values need to be generated. More important is the fact that our GA 

scheduling algorithm only operates for a limited number of generations. In that limited 

amount of time, the amount of improvement that can be obtained from the uniform 

crossover is small. The gain in using uniform crossover, both in terms of the additional 

relative throughput increase and the relative convergence time saved, is about half an 

order of magnitude smaller than the gain by adjusting the  values. More improvement 

would be attained if the algorithm were to run longer. 

Upon reflection, the relatively small gains obtained by using the uniform crossover 

operator instead of the one-point crossover operator are not that surprising, nor is the fact 

that significant gains are not seen until MT = 4. The chromosomes used for scheduling are 

rather “sparse” in content. Since normally K >> MT in wireless systems, the vast majority 

of the bits in the GA chromosome will be ‘0’s. This means that regardless of if the GA 

exchanges a large block of bits simultaneously, or does so one by one, most of the bits 

that are exchanged will be ‘0’s for other ‘0’s. Thus, there is effectively not much 

difference between the two methods. More gain being seen at MT = 4 stems from the fact 

that there are more ‘1’s in the chromosome that can possibly be exchanged for what is 

more likely to be a ‘0’ in the other parent. The gain also comes from the fact that the 

users will be swapped individually and independently rather than in a block. For example, 

if the crossover point in the one-point crossover is just before user k, any and all users k 

to K that are scheduled will be swapped between the parents. More users on average will 

be in that block to be swapped with larger MT. On average, in the long term, half of the 

bits in a chromosome can be expected to be swapped with both methods. In the uniform 

crossover, these bits are evenly distributed throughout the chromosome, while in the one-

point crossover, the bits are all on average in the second half of the chromosome. This 

may not always be bad, but the simulation results indicate that independent swapping can 

lead to a small improvement in performance. Given the results of the simulations, we 

expect that there may be an even larger gain to be found for even larger values of MT, for 

which even more users can be scheduled simultaneously. 
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4.6 Conclusion 

In this chapter, we have examined the impact of the adaptive mutation rate 

parameters on the convergence rate of genetic scheduling algorithms. We have observed 

that there is a reasonably wide range of values that result in a similar, near-minimum 

convergence time for the algorithm. However, we have also seen that it is important to 

tune the parameters to ensure the algorithm is operating within that range. In one case, 

tuning the parameters resulted in the number of generations required for the algorithm to 

converge dropping to less than 30% of the number required when the original parameter 

values from the prior chapter were used. 

We have also seen that the proper values for the parameters are dependent on both 

the number of users K and the number of transmit antennas MT, but less so on the number 

of receive antennas per user NR. We have proposed a simple equation that is linear in 1 

and 2 to tune the parameters for changing K and MT. This equation was seen to work 

well for various signal-to-noise ratios, and for both the maximum throughput and 

proportional fairness scheduling criteria. 

The effect of using a uniform crossover method in the GA instead of the previously 

used one-point crossover method was also examined. There is some improvement in the 

convergence of the GA to be obtained, but nowhere near as much as when tuning the 

adaptive mutation rate parameter values. The gain with uniform crossover is the most 

when MT is larger and the genetic algorithm is allowed to run for more generations. 

There is another potential detail of the GA where adjustment could lead to an 

improvement in performance. This is in the probability of crossover pc. We have used the 

value pc = 1 throughout our work. This value is at the upper limit for pc, and means that a 

crossover always occurs. It is possible that tuning this value may also improve the GA 

performance. The specific value of pc may also impact the proper values for the mutation 

rate and / or the values for 1 and 2. Examining the impact of tuning pc along with pm on 

the scheduling performance would be an interesting area for possible future work. 
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Chapter 5 

Genetic, Greedy, and Hybrid Scheduling 
Algorithms for Block Diagonalization 
and Successive Zero-Forcing 

5.1 Introduction 

In the previous chapter, we examined GA scheduling for MIMO systems employing 

dirty paper coding (DPC). This allowed us to focus solely on the effect of scheduling in 

an environment that would, scheduling issues aside, achieve the maximum possible 

capacity. Since unfortunately DPC is currently impractical for implementation, lower 

complexity precoding methods are of interest. Thus, we now shift our attention to 

scheduling methods for block diagonalization (BD) [46] and successive zero-forcing 

(SZF) [50] precoding. Both precoding methods are linear and thus of significantly lower 

complexity than DPC, though naturally their capacity is lower as well. In this chapter, we 

evaluate the performance of genetic and greedy scheduling algorithms for BD and SZF. 

We also compare the complexity of those algorithms in relation to existing algorithms 

and an exhaustive search. Finally, we also propose hybrid algorithms of the genetic and 

greedy algorithms that combine the characteristics of the two, which result in increased 

performance without an increase in the order of complexity. Our contributions in this 

chapter have appeared in [132],[133],[134]. 

5.2 System Model with Linear Precoding 

The system model we use is largely the same as in the previous chapters on GA 

scheduling for DPC. The main difference now is that rather than encoding each user’s 

signal with DPC, the transmitted signal for each user k is instead preprocessed with a 

transmit beamforming matrix T kM N
k

W  . If user k has Nk receive antennas, the Nk×1 

received signal yk at each user then becomes: 
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0

1

K

k k j j k
j

 y H W s n . (5.1) 

k TN M
k

H   is the channel matrix for user k, 1kN
k

s   is the data symbol vector 

intended for user k, and 1kN
k

n   is additive white Gaussian noise with variance 

 H
k kE n n 2

kn N I . K0 is the number of users that the system transmits to simultaneously. 

Otherwise, the system details are largely the same as in the previous chapters. 

5.2.1 Block Diagonalization 

Block diagonalization (BD) [46] was discussed briefly in Chapter 2. We expand upon 

the details here. 

BD is designed to completely eliminate all existing multiuser interference (MUI) at 

the transmitter. It does so by designing the beamforming matrices such that HkWj = 0 for 

all k  j. This in effect decouples the multiuser broadcast channel into parallel equivalent 

single-user channels. The received signal from Eqn. (5.1) then becomes yk = HkWksk + nk. 

If we consider the aggregate channel matrix: 

 1 2 o

TT T T
K

   H H H H , (5.2) 

and the aggregate precoding matrix: 

 
01 2 K

   W W W W , (5.3) 

then the overall product HW will have a block-diagonal structure (from which BD takes 

its name). 

Let us define the aggregate matrix kH  as follows: 

 
0

1,

01 1 1

K
j Tj j k

T N MT T T T
k k k K

 


 
   H H H H H    ; (5.4) 

that is, the concatenation of all channel matrices except that of user k. The zero-MUI 

constraint is satisfied by requiring that Wk fall in the null space of kH . This naturally 

implies that kH  has a null space of dimension greater than zero. This will be satisfied if 

 rank k k Tr M H  . Thus, up to K0 users can be supported simultaneously with BD if 

 
01 2max , , , K Tr r r M    [46]. We assume that the fading both between any two users and 

between the antennas of any given user is independent. Thus, each channel matrix will be 

of full rank, which is equal to Nk (assuming Nk < MT). In this case, the maximum number 
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of users K0 that can be supported 1  can also be determined by the constraint 

0

1,
,

K

j Tj j k
N M k

 
  . In the event that all users have the same number of receive 

antennas N, this further simplifies to K0 = MT/N, where  is the ceiling function. 

Let the singular value decomposition (SVD) of kH  be denoted as k H H
k k k U D V  

1 0 H

k k k k  U D V V    , where T TM M
k

V  . 1
kV  contains the first kr  right singular vectors, 

while 0
kV  contains the remaining MT – kr  right singular vectors. The columns of 0

kV  

form an orthonormal basis for the null space of kH . Constructing the beamforming 

matrices from the columns of 0
kV  will satisfy the zero-MUI requirement. The multiuser 

channel will then be decoupled into the following equivalent parallel single-user 

channels: 

 0
,k e k kH H V . (5.5) 

With a transmit power constraint P at the base station, the throughput achievable by 

block diagonalization is obtained by maximizing: 

 
0

2 , ,2:
1

1
max log
k k

K
H

BD k e k k e
k n

R


 
Q Q 0

I H Q H


, (5.6) 

such that  0

1

K

kk
Tr P


 Q . Qk is the square, positive semidefinite transmit covariance 

matrix for the equivalent channel Hk,e, with dimensions equal to the number of columns 

in 0
kV . The matrices Qk can be obtained by the well-known waterfilling solution over the 

equivalent block-diagonal channel matrix  
01, 2, ,, , ,e e e K eblkdiagH H H H  with the 

power constraint P [46]. 

While 0
kV  can be obtained through an SVD, a method to obtain 0

kV  through a QR 

decomposition, which is more computationally efficient and numerically stable than an 

SVD, was presented in [138]. 

                                                 
1 Even more users can be supported if the transmitter can account for the filter matrices Mk or 
antenna selection at the receivers. The transmitter can instead consider the null spaces of the 
effective matrices MkHk when performing the null space operation [46],[48],[135],[136],[137]. 
This process is known as coordinated beamforming. However, such techniques are beyond the 
scope of this work. 



 

79 

5.2.2 Successive Zero-Forcing 

Successive zero-forcing (SZF) [50] is similar in some aspects to BD. However, 

unlike BD, it does not completely null all MUI. As its name implies, the precoding is 

performed successively, and so an encoding order must be defined. For a given set of K0 

users with an encoding order , the received signal for each user k in Eqn. (5.1) can be 

expanded as1 [50]: 

                   k k k k i i i i ki k i k         
    y H W s W s W s n . (5.7) 

In SZF, the precoding matrix  kW  is designed such that it lies in the null space of 

the aggregate channel 1kH  of the k − 1 previously precoded users’ channels (in contrast 

to the null space of all other users with BD): 

      1 1 2 1

T
T T T

k k   
   H H H H . (5.8) 

With this null space constraint, we have that    k i  H W 0  for all i > k. Thus, the third 

term in the sum of Eqn. (5.7) is cancelled, and the equation reduces to: 

               k k k k i i ki k      
  y H W s W s n . (5.9) 

SZF of K0 users’ channels is possible2 if  
0 1rank K TM H . If we assume full-rank 

channel matrices as we did for BD, this constraint becomes  
0 1

1

K

Tkk
N M




 . 

Furthermore, if all users have the same number of receive antennas N, this finally 

becomes K0 = MT/N, just as in BD. 

Taking the SVD of (5.8) yields 1k H 1 1 1
H

k k k   U D V 1 0
1 1 1 1

H

k k k k     U D V V , where 

1
T TM M

k


 V  . Similar to BD, 1
1kV  holds the first  1rank kH  right singular vectors, 

while 0
1kV  contains the remaining  1rankk T kv M   H singular vectors. 0

0 TMV I  by 

definition. The columns of 0
1kV  are then an orthonormal basis for the null space of 1kH , 

from which the precoding matrices  kW  can be constructed. 

                                                 
1 It is assumed from here on that 2

n  = 1 for all users. 
2  As with BD, coordinated beamforming with cooperation between the transmitter and the 
receivers is possible to increase the number of supportable users, but this is again outside the 
scope of this work. 
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Under the assumption that the signals transmitted from the base station are Gaussian-

distributed [46],[50], then for a specific set of K0 users and a specific encoding order  = 

i for those users, the maximum achievable rate for each of those users is given by: 

  

       

       

0 0
1 1

1

2
1

0 0
1 1

1

log
i i i

i

i i i

k H H
j jk j k

j

k k H H
j jk j k

j

R
  



  

 




 


 
  

 
 

  
 





I H V B V H

I H V B V H

, (5.10) 

where the precoder input covariance matrices  i kB  and the channel input covariance 

matrices  i kQ  are defined such that  i k Q    i i

H
k k  W W    0 0

1 1i

H

k kk V B V . 

The achievable sum rate of SZF precoding for a given user order i is: 

 
           

1, , 0
: 0, 1

max
o

i

i
k k ki i ikk K

K

SZF k
Tr P k

R R
  





 





Q Q Q




. (5.11) 

The maximum achievable sum rate RSZF of SZF precoding is then obtained by 

maximizing (5.11) over all K0! possible user orders: 

 
0, 1,2, , !

max i

i
SZF SZF

i K
R R

 



. (5.12) 

Solving equations (5.10)–(5.12) to determine the optimal covariance matrices can be 

quite difficult, as the problem is not convex. However, for a given encoding order, the 

authors in [50] have proposed a suboptimal numerical technique based on DPC 

covariance optimization to solve Eqn. (5.11). The method involves using the sum-power 

iterative waterfilling method of [107] to find the optimal covariance matrices for the 

multiple access channel (MAC), using the MAC to BC transformations in [24] to obtain 

covariance matrices for the broadcast channel under DPC, and then projecting those 

matrices to the SZF null spaces to obtain  i kQ . We use this suboptimal method in this 

chapter. Full details on the technique can be found in Appendix D. 

There has been very little work in the literature on scheduling and ordering issues for 

SZF. The number of possible ordered user subsets (given by Eqn. (3.2)) and the fact that 

each ordering provides a different sum rate (in notable contrast to DPC) make the 

problem quite difficult. A further simplified covariance optimization scheme, along with 

a suboptimal user ordering algorithm to be used in conjunction, was proposed in [139]. 

However, that algorithm only performs well in the low-SNR regime. SZF has also been 

examined in the context of clustered network MIMO systems in [140]. However, to the 

best of our knowledge, no other work in the literature has dealt with this topic. 
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5.3 Scheduling Algorithms 

5.3.1 Genetic Algorithms 

The genetic scheduling algorithms we use are by and large the same as what is 

described in Chapter 3. Some of the details have been modified, though, to account for 

scheduling in the context of BD and SZF. 

To begin, for BD scheduling, rather than attempting to optimize the DPC sum rate, 

we are instead maximizing the sum of the rates of the scheduled users, as given by Eqn. 

(5.6). Thus, the fitness of the chromosomes is found from (5.6) when optimal covariance 

matrices are used. In this scenario, the encoding order is no longer a factor in the 

scheduling decision or the sum-rate maximization. Thus, the tail of the GA chromosomes 

is no longer necessary, so we simply remove it. In that respect, the chromosome 

representation becomes the same as that used in [109]. We are no longer concerned with 

the encoding order when dealing with GA elitism, either. Thus, we modify the breeding 

process as follows. During each generation of the GA, rather than only create a new 

population of Np – 2 chromosomes by breeding, we do create a full set of Np 

chromosomes. Then, denoting C* as the best chromosome from the previous generation, 

if C* does not already exist in the new population, the chromosome with the worst fitness 

in the new population is replaced by C*, provided that the fitness of that worst 

chromosome is lower than that of C*. 

For SZF, the details of the GA operation are almost identical to what is described in 

Chapter 3. The only difference is that the fitness of a chromosome is now defined by Eqn. 

(5.11) for the users and encoding order of that chromosome. We use the SZF covariance 

method described earlier and in Appendix D when determining the fitness. 

For both precoding methods, we adopt the improved adaptive mutation rate 

parameters from the previous chapter1. In the equation for 1 and 2, we replace the MT 

term with K0, the maximum number of users that can be scheduled using either precoding 

method. We also ignore the upper bound on 1, since we shall be considering a wider 

range for the number of active users K, and that upper bound may become too restrictive 

and degrade the performance. We wish to choose  values somewhere in the middle of 

                                                 
1 However, we do not adopt the uniform crossover operator, but continue to use the one-point 
crossover. This is mostly because the majority of the work in this chapter was completed before 
we decided to examine the crossover methods. However, this is still justified in that we saw in the 
previous chapter there was little additional gain in performance to be obtained by using the 
uniform crossover with limited generations, compared to the large gain seen by adjusting 1 and 2. 
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the range imposed by the constraints 1  1.1 and 2  3. Note that the lower limit on 2 

imposes an upper limit on 1 when Eqn. (4.2) is solved (and vice versa); that limit is 

dependent on the values for K and K0. In choosing the values, we choose a value for 1 

approximately in the middle of the range of its allowable values, then solve for 2. Since 

it was seen in the previous chapter that the values do not have to fall exactly on the line 

defined by Eqn. (4.2), we generally also quantize the values of 1 and 2 to the nearest 

multiple of 0.5. Table 5.1 shows the values used for 1 and 2 in this chapter. 

In deciding for how long to allow the GA to run, recall from Chapter 3 that it is the 

product Np×Ng that appears to determine the performance more than the individual 

values. This was seen in the near-identical performance for K = 10 and K0 = 4 with 

(Np,Ng) = (10,10) and (20,5). With this in mind, the values for Np and Ng used in Chapter 

3 seem to provide a performance reasonably close to optimal. Thus, it would be logical to 

continue with the same overall trend for those values in this work. Previously, for 

(K0,K) = (2,10), (2,20), (4,10), and (4,20), we had the equivalent of (Np,Ng) = (10,5), 

(10,10), (20,5), and (20,10), respectively. Continuing this pattern in this work, we have 

decided to set Np = 5K0 and Ng = K/2. Note that in this work, we only use even values 

for K0, so Np is also even. However, since the chromosomes are bred in pairs (two parents 

Table 5.1: Adaptive mutation rate parameter values used for varying numbers of active users in 
pool (K) and varying numbers of simultaneously supportable users (K0) 

Adaptive Mutation Rate Parameter Values 
(K,K0) 

Maximum Possible 
Value for 1 1 2 

(8,2) 2.02 1.5 6.5 
(10,2) 2.78 2 8 
(16,2) 5.42 3 18 
(20,2) 7.00 4 23 
(30,2) 11.70 6.5 38 
(40,2) 16.75 9 55 
(50,2) 22.07 11.5 73.5 
(70,2) 33.35 17 112 

(100,2) 51.54 26 173 
(8,4) 5.42 3 18 

(10,4) 7.00 4 23 
(16,4) 12.69 7 41 
(20,4) 16.75 9 55 
(30,4) 27.61 14.5 90.5 
(40,4) 39.26 20 131 
(50,4) 51.54 26 173 
(70,4) 77.59 39 260 

(100,4) 119.58 60 400 
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create two children), there could be issues if K0, and thus Np, was odd. To remedy this, 

one could discard one of the children created during breeding, such as the child with the 

lowest fitness, or more simply just discard one of the final two created. Alternatively, one 

could enforce an even-numbered population by instead using, for example, 

Np = 2×5K0/2. 

5.3.2 Greedy Algorithms 

Along with the GAs described above, we also consider two so-called “greedy” 

scheduling algorithms and their performance. Specifically, we consider the algorithms 

proposed by Sigdel and Krzymień in [141] for BD and [142] for SZF. These algorithms 

use a Frobenius-norm (F-norm) based metric in their scheduling decisions. The metrics 

consider a combination of channel gains and orthogonality. Specifically, at each step of 

the algorithm, the metric largely favors to be scheduled those users with the largest 

projection of their channel matrix into the null space of the users selected in earlier steps. 

In the BD algorithm, the projections of the previously selected users onto each potential 

user in the current step are also a factor in the metric. For the SZF algorithm, projections 

of each potential user to the null space of the aggregate channel (as given by (5.8)) for 

each prior step are also considered in the metric. Thus, the algorithms overall generally 

aim to select users whose channel matrices are the closest to orthogonal to each other. 

This way, data directed to a given user will already largely fall in the null space of the 

other users, and so the beamforming vectors for that user will be mostly aligned with the 

channel matrix of that user, which improves the system throughput. 

The greedy BD and SZF algorithms share some similarities to an F-norm projection-

based scheduling algorithm for BD proposed in [69]. However, the algorithms differ in 

two key areas. First, the scheduling metrics are less complex than those in [69]. Second, 

and most importantly, the greedy algorithms also use an intermediate grouping step to 

“filter out” some of the active users in the pool. The algorithms, in each step, first 

consider the projection of the channel matrices for each remaining user in the pool to the 

subspace of the channel matrices of those users already selected. If the spatial correlation 

of the users is not below a certain threshold  (i.e., the channels are not sufficiently close 

to orthogonal), those users are removed from the pool of users to select from, and do not 

proceed to have their full scheduling metric calculated. This intermediate grouping 

process can reduce the complexity of the scheduling process, but also creates a large 



 

84 

dependence of the performance of the algorithms on the value for the threshold . [141] 

discusses the selection of the value for  in more detail. 

In the case of SZF, there is also the matter of the order in which to encode the 

selected users. In [142], it is proposed to simply encode the users in the same order as 

they are selected by the greedy algorithm. Despite being suboptimal, the results of [142] 

indicate that ordering performs close to the optimal ordering obtained through an 

exhaustive search. 

We outline the details of Sigdel and Krzymień’s greedy algorithm (GrA) for BD in 

Table 5.2, while the GrA for SZF is described in Table 5.3. For notation,   = {1,2,…,K} 

denotes the set of active users requesting service, s  denotes the set of scheduled users, 

i  denotes an intermediate set of users in step i, and s  denotes the cardinality of the 

set s . 

Table 5.2: Simplified greedy user scheduling algorithm for BD 

1. Initialize: i = 1;   = {1,2,…,K}; s  = {}. 

 Find user 
2

1 arg max k Fk
u


 H


. 

 Set:  1s s u   ;  1 1\ u  . 

2. Set: i = i + 1. 
 Find projector matrix: 1 1T

H
i M i i


  I V V , where Vi–1 is the row basis of  sH  , 

and  
1 2 1i

TT T T
s u u u 

   H H H H . 

3. if s  < K0 then 

  Find 
1

1

,
H

k i F
i i s

k iF F

k k 




      
  

H V

H V
  . 

  if i  > 0 then 

  Select user 
2 2

backward
projection forward

projections

arg max
i

s

i k i k kF Fk
k

u  


 

 
 
 

  
 
 
 

H H


 
  

, where ˆ ˆH
k k k
  I V V , 

and ˆ
kV  is the row basis of Hk. 

  Set:  s s iu   ;  \i i iu  . 

  Go to Step 2. 
  end if 
 else Exit. 
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5.3.3 Hybrid Algorithms 

Lastly, we consider two hybrid algorithms of the genetic and greedy algorithms 

described in the previous sections. The first is a seeded genetic algorithm, which we shall 

call Hybrid Algorithm 1 (HA1). Rather than initialize the chromosomes of the GA 

completely at random, instead, the first step of the GrA is performed to find the user1 

with the largest channel F-norm. This user is then seeded into the chromosomes of the 

initial population; that is, the bit corresponding to that user in the head of each 

chromosome is set to ‘1’, forcing the GA to initially consider that user. The remaining 

users are selected randomly for each chromosome, as is the encoding order for those 

users in the case of SZF. The remainder of the operation of the GA is otherwise the same 

as previously described. This seeding was one of the possible ways to improve the GA 

performance mentioned in Chapter 3. 

                                                 
1 It is also possible to seed more than one user (for example, the two users with the largest channel 
norms) into the chromosomes. However, as we show in Section 5.5.3, seeding just the top user is 
the best choice. 

Table 5.3: Simplified greedy user scheduling algorithm for SZF 

1. Initialize: i = 1;   = {1,2,…,K}; s  = {}. 

 Find user 
2

1 arg max k Fk
u


 H


. 

 Set:  1s s u   ;  1 1\ u  . 

2. Set: i = i + 1. 

 Define:  
1 2 1

1 0

i

T HT T T
s u u u i i i i

       H H H H U D V V  . 

3. if s  < K0 then 

  Find 
1

1 1
,

k i F
i i s

k iF F

k k 

      
  

H V

H V
  . 

  if i  > 0 then 

  Select user 

20
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21 0

2

arg max if 2,

arg max otherwise.
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k i Fk
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H V
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  Set:  s s iu   ;  \i i iu  . 

  Go to Step 2. 
  end if 
 else Exit. 
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The second hybrid algorithm (HA2) starts by running the GrA as normal. However, 

rather than ending there, the algorithm then encodes those users (and encoding order, for 

SZF) into one chromosome, which replaces one of those randomly initialized at the start 

of the GA. The GA then runs, but for fewer generations than normal in order to help 

reduce the overall complexity. Due to elitism in the GA, the hybrid algorithm can 

perform no worse than the GrA alone. 

There are a few details that can be adjusted in both of these hybrid algorithms. For 

instance, one can adjust how much to seed in the first algorithm, and how many 

generations to run the GA for in the second. We examine these details more closely later 

in Sections 5.5.3 and 5.5.4. 

5.4 Complexity Analysis 

In this section, we compare the complexity of the genetic and greedy algorithms in 

terms of the number of flops required. A flop is a real-valued floating point operation; an 

addition, multiplication, or division is each 1 flop. A complex-valued addition and 

multiplication take 2 and 6 flops, respectively. In general, most matrix operations require 

about an equal number of multiplications and additions. Thus, we assume that complex-

valued operations need 4 times the flops as the real-valued ones. For the analysis, we 

assume Nk = N for all k, K0 = MT/N, and that the algorithms schedule the maximum of 

K0 users. Since K0 = MT/N = MT/N + , for some constant 0 ≤  < 1, K0 grows with the 

same order of complexity as MT/N. 

5.4.1 Complexity of Various Matrix Operations 

For an m×n complex-valued matrix m nA  , we list the complexity of various 

matrix operations required for the genetic and greedy scheduling algorithms. 

 Multiplying an m×n matrix by an n×p matrix requires 8mnp flops [143]1. 

 The squared F-norm 
2

F
A  requires a total of 4mn flops [69]. 

 A Gram-Schmidt orthogonalization (GSO) of A uses 8m2n − 2mn flops [69]. 

 The (inverse) pth root A1/p or A–1/p of an n×n matrix requires about    34
3112 1p n   

flops [145]. In particular, the (inverse) square root will require 3340
3 n  flops. 

                                                 
1 Multiplying square n×n matrices can in fact be done with complexity (n2.376) instead of (n3) 

[144]. However, we are uncertain if this complexity reduction still applies in general when 
multiplying rectangular matrices. Regardless, we show shortly that operations other than matrix 
multiplications dominate the order of complexity of the scheduling algorithms anyway. 
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 The determinant |A| of an n×n matrix is calculated by first performing an LU 

decomposition (A = LU), with a complexity of 38
3 n flops [143]. The determinant is 

then the product of the n diagonal entries of U. Thus, |A| has a total complexity of 

38
3 n  + 6n flops. 

 A QR decomposition of an m×n matrix, m ≥ n, to find m nR   and m mQ   

requires a total of 16m2n − 8mn2 + 38
3 n  flops [143]. 

 Waterfilling over j eigenmodes requires a maximum of 2j2 + 6j flops [69]. 

 A full SVD (A = UDVH) of an m×n matrix, m ≥ n, requires 16m2n + 32mn2 + 36n3 

flops [143]. If m < n, the complexity can be approximated by instead taking the SVD 

of AH. The U and V of A will be the V and U of AH, respectively. Furthermore, the 

complexity can be reduced if not all of U, D, and V are required. For example, if only 

the singular values D are required, then only 16mn2 – 316
3 n  flops are needed [143]. 

The primary GA function of selecting users through crossover and mutation is mostly bit 

manipulation operations with the chromosomes, which are of negligible computational 

complexity. The complexity instead lies in calculating the utility function for the 

selection of users represented by each chromosome. On the other hand, the complexity of 

the greedy algorithm comes mainly from F-norm calculations and matrix multiplications. 

5.4.2 Complexity of Genetic Algorithm for Block Diagonalization 

The utility function (i.e., the fitness of each chromosome) is the sum-throughput for 

the selected users as given by Eqn. (5.6). However, it is not necessary to completely 

calculate the transmit covariance matrices to find the sum-throughput. The following 

steps are taken for each chromosome: First, for each of the K0 users, find the null space 

basis vectors 0
kV  of kH . Second, obtain the effective channel matrices Hk,e as given by 

Eqn. (5.5). Third, find the singular values of each Hk,e. Fourth, waterfill over the 

eigenvalues of all scheduled users to get the power allocated to each eigenmode. Fifth, 

calculate the sum-throughput from the eigenvalues and power allocations. The 

complexity of each step is as follows. 

Step 1: To find 0
kV  for user k, it is not necessary to perform an SVD of the 

(K0 − 1)N×MT matrix kH . Instead, one may perform a QR decomposition of H
kH  to save 

on computational complexity. Let us express H
kH  = QR = [Q1 Q0]R. Then Q0, the 

rightmost MT − (K0 − 1)N columns of Q, are orthonormal basis vectors for the null space 
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of kH . The complexity of the K0 QR decompositions is K0[  2
016 TM K N N  − 

8MT(K0N − N)2 + 8
3 (K0N − N)3]. After expansion and simplification, the complexity of 

the first step is ( 3
TM K0). 

Step 2: Finding the equivalent channel matrices involves K0 multiplications of an 

N×MT matrix with an MT×(MT − K0N − N) matrix, for complexity 8K0NMT(MT − K0N + N) 

≈ (8K0N
2
TM  − 8K0N

2MT(MT/N) + 8K0N
2MT) = (MTK0N

2), as the first two terms cancel. 

Step 3: Finding the singular values of each N×(MT − K0N + N) matrix Hk,e requires 

16N(MT − K0N + N)2 − 16
3 (MT − K0N + N)3 flops. Thus, for K0 users and their effective 

channel matrices, and replacing K0N with MT + N, we get a complexity of (N3K0), as 

the MT terms cancel. 

Step 4: The rank of each of the effective matrices Hk,e is r = MT − K0N + N. Thus, 

there are a total of K0r eigenmodes. First, K0r multiplications are required to square the 

(real-valued) singular values into eigenvalues for , ,
H

k e k eH H , then waterfilling requires 

2(K0r)2 + 6K0r flops. As in the previous step, if we replace the K0N in r with MT + N, we 

find a total complexity of ( 2 2
0N K )  (MTNK0). 

Step 5: The sum-throughput can be found by  
0

2
2

1

log 1
K r

i i n
i

p 


 , where i are the 

eigenvalues and pi are the associated waterfilling power allocations for each eigenvalue 

from Step 4. This requires 1 addition, multiplication, and division for each of the K0r 

terms, K0r more multiplications for the product of the terms, and a log2 calculation, 

whose complexity can be neglected here1. Thus, the final step requires 4K0r flops, which 

is of order (NK0). 

Thus, one fitness calculation is ( 3
0TM K ) + (MTK0N

2) + (N3K0) + (MTNK0) + 

(NK0). Overall, based on the highest order term, this is therefore ( 3
0TM K ). The GA 

calculates this metric Np×Ng times. Recall from earlier that we use Np = 5K0 and 

Ng = K/2 for the GA. Thus, the entire GA scheduling process for BD is ( 2 3
0 TKK M ). 

                                                 
1 Strictly speaking, the log2 operation is not even necessary. We could have also used the product 
in Step 5 as the fitness for the GA, since the log function is monotonically increasing. However, 
since the log function is of a much lower order of complexity (a single calculation for each 
chromosome) compared to everything else, it is trivial to include it. 



 

89 

5.4.3 Complexity of Genetic Algorithm for Successive Zero-Forcing 

This utility function (fitness) for each chromosome is the sum rate for the selected 

users and encoding order as given by Eqns. (5.10) and (5.11). For ease of notation, we 

assume without loss of generality that (j) = j. To calculate the sum rate, the following 

steps are taken: First, find the covariance matrices Pi for the dual MAC with the iterative 

algorithm in [107]. Second, convert the MAC matrices Pi to BC matrices i for DPC, as 

in [24]. Third, convert the DPC matrices i to SZF covariance matrices Qi as in [50]. 

Fourth, calculate the sum rate from (5.10) and (5.11). More details for each step can be 

found in Appendix D. The complexity of each step is as follows. 

Step 1: The MAC covariance Pi matrices are first initialized to some value. Then, 

during each iteration of the algorithm, for each user i, an effective channel matrix 

TN M
i

G   is calculated by   1 2
H

i i j j jj i




 G H I H P H . For all K0 users, H

j j jH P H  

can be calculated and stored, using 8K0(
2 2

T TM N M N ) flops. For the first user, the 

matrix H
i j j jj i
 Z I H P H  can be calculated using MT + (K0 – 1)(2 2

TM ) flops. For the 

remaining K0 – 1 users, Zi can be calculated recursively by Zi+1 = Zi + H
i i i H P H

1 1 1
H
i i i  H P H , using a total of (K0 – 1)(4 2

TM ) flops. Finding the inverse square root of 

each MT×MT matrix Zi requires 3340
3 TM  flops. The final multiplication by Hi requires an 

additional 8 2
TM N flops per user. Out of this entire operation, it can be seen the highest 

order calculation is that of the inverse square root. Thus, the calculation of Gi for K0 users 

is ( 3
0TM K ). 

Once the effective channel matrices are computed, new covariance matrices are 

calculated from the block-diagonal channel formed from  
01, , Kblkdiag G G . First, the 

N×N matrices H
i iG G  are formed using a total of 8K0MTN2 flops. Then, an SVD is 

performed to obtain H H
i i i i iG G U D V . However, since only the matrices Ui and Di are 

required from the SVD, only 48N3 flops are required per SVD instead of 84N3 if we also 

needed Vi [143]. There are a total of K0N eigenvalues i; waterfilling over the 

eigenmodes thus requires 2(K0N)2 + 6K0N flops. From the resulting eigenmode power 

allocations pi, the sum rate can be found (for the purposes of determining algorithm 

convergence) with 4K0N flops by  0 2
2 1

log 1
K N

i i ni
p 


 . Updated covariance matrices 
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are found from H
i i i iS U Λ U , where the i matrices are formed from the eigenmode 

power allocations. Since the i are real diagonal matrices, Si can each be found using 

8N3 + 2N2 flops. Finally, the Pi (in the general case) are updated for the next iteration 

n + 1 by    0

0 0

11 1 Kn n
i i iK K

  P S P , using a total of 6K0N
2 flops. For this entire updating 

procedure, the highest order calculation is multiplying H
i iG G , which is (K0MTN2). 

Thus, for one iteration of the MAC iterative waterfilling algorithm, it is clear that the 

highest order calculation is that of the inverse square root. Thus, the entire algorithm has 

complexity ( 3
0TM K )1, where  is the number of iterations required for the algorithm 

to converge sufficiently for the purposes of scheduling. From the figures in [107],  = 5 

is usually sufficient for the algorithm to converge very close to the sum rate, and should 

be enough for our scheduling requirements. 

Step 2: For the MAC to BC calculations, we have  1

1

j H N N
j j i ji

 


  A I H Σ H   

and 0

1
T T

K M MH
j i i ii j


 

  B I H P H  , where i are the DPC BC covariance matrices. 

All Bj can be recursively calculated, starting with 
0 TK MB I . The remaining K0 – 1 

matrices require 8MTN2 + 8 2
TM N + 2 2

TM  flops each to multiply H
i i iH P H  and add to the 

previously calculated Bj. A similar running sum can also be kept for the i (once they 

have been calculated) in Aj. Each Aj for j > 1 (as A1 = I) then requires 2 2
TM  + 8 2

TM N + 

8MTN2 + N flops to calculate. Calculation of 1 2
jA  and 1 2

j
A , j > 1, each require 3340

3 N  

flops, while each 1 2
j
B , j < K0, requires 3340

3 TM  flops. The product 1 2 1 2 TM NH
j j j

  B H A   

generally requires 8 2
TM N + 8MTN2 flops, except for j = 1 and K0, where knowing A1 and 

0KB  (and hence their inverse square roots) are identity matrices reduces the complexity to 

just 8 2
TM N and 8MTN2, respectively. Finding the SVD 1 2 1 2H H

j j j j j j
  B H A F Λ G , where 

TM N
j

F   and N N
j

G  , requires 16 2
TM N + 32MTN2 + 36N3 flops for each j. j is 

then found by 1 2 1 2 1 2 1 2H H
j j j j j j j j j j

 Σ B F G A P A G F B . Let 1 2 1 2H
j j j j j

T A G F B , and note 

that Bj and Aj (and their (inverse) square roots) are all Hermitian. Calculating Tj requires 

8 2
TM N + 8MTN2 flops to compute at j = 1, 8N3 + 8MTN2 flops at j = K0, and 8 2

TM N + 

                                                 
1  This would therefore also be the order of complexity for calculating the fitness of a GA 
chromosome for maximum throughput scheduling under DPC. 
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8MTN2 + 8N3 flops otherwise. Then, H
j j j jΣ T P T , requiring a further 8 2

TM N + 8MTN2 

flops to compute. Overall, it can be seen that the highest order term in the MAC to BC 

transformations is the 3340
3 TM  flops required to calculate 1 2

j
B . (K0 – 1) of these roots are 

calculated, so the complexity of Step 2 overall is ( 3
0TM K ). 

Step 3: In converting the BC covariance matrices j to SZF matrices Qj, first, Q1 = 1. 

For the remaining K0 – 1 users,   10
1

T TM M j N
j

  
 V   must be calculated for each of the 

aggregate matrices  1
1

Tj N M
j

 
 H  . Like for the BD null space vectors, this can be done 

with a QR decomposition instead of an SVD. The complexity of these calculations are 

0

2
[

K

j 216 TM N (j – 1) – 8MTN2(j – 1)2 + 8
3 N3(j – 1)3] = 0 1

1
[

K

n



 216 TM Nn  – 8MTN2n2 + 

8
3 N3n3] = 8 2

TM NK0(K0 – 1) – 8
6 MTN2(K0 – 1)(K0)(2K0 – 1) + 8

3 N3[(K0 – 1)K0/2]2. Recall 

that K0 has the same order as MT/N, or equivalently, N has the same order as MT/K0. 

Substituting N = MT/K0 in the above1, we obtain a complexity of 6K0
3
TM  – 316

3 TM  – 

3 12
03 TM K  , so the order of complexity of finding the null space vectors is ( 3

0TM K ). 

Next, K0 – 1 products  0 0
1 1

H

j j V V  must be calculated, with each product using 

8 2
TM [MT – (j – 1)N] flops. The products thus use a total of 0

2
8

K

j 2
TM [MT – (j – 1)N] = 

0 1

1
[

K

n



 8 3
TM  – 8 2

TM nN] = 8 3
TM (K0 – 1) – 4 2

TM NK0(K0 – 1) flops. Again substituting 

N = MT/K0, we get a complexity of 4 3
TM K0 – 4 3

TM , for an order of ( 3
0TM K ). For users 

j = 2 to K0 – 1,    0 0 0 0
1 1 1 1

H H

j j j j j j   Q V V Σ V V , resulting in a further total complexity of 

16(K0 – 2) 3
TM  flops. For the final user j = K0, first the effective channel matrix eff H

    0

0 0 0 0 0

1 2
1 0 0

1 11

HK H
K j K K K Kj


 

 I H Q H H V V  is calculated. This involves  2
02 1TM K   

flops to add the Qj, 
2 28 8T TN M N M N   flops to form I  0

0 0

1

1

K H
K j Kj



H Q H , 340
3 N3 

flops to find the inverse square root, and 8 2
TM N + 8MTN2 flops to multiply the root by 

 
0 0 0

0 0
1 1

H

K K K H V V . Once Heff is found, first H
eff effH H  is calculated using 8 2

TM N flops, 

then the product is waterfilled with power constraint  0 1

1

K

jj
P Tr




 Q  to find a 

                                                 
1 Strictly, this should be N = MT/(K0 – ), but neglecting  does not affect the order of complexity. 
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temporary covariance matrix 
0KQ . Calculating the power constraint requires (K0 – 1)MT 

flops, since the diagonal elements of Qj are real. The waterfilling involves an SVD 

requiring U and D, but not V, so 48 3
TM  flops are needed. D has N non-zero eigenvalues 

(since Heff is N×MT), so the waterfilling takes 2N2 + 6N flops. Then 
0

H
K Q UΛU , where 

 is a real diagonal matrix formed from the waterfilling eigenmode power allocations, 

requiring 8 3
TM  + 2MTN flops, exploiting the structure of  to reduce complexity. Finally, 

   
0 0 0 0 0

0 0 0 0
1 1 1 1o

H H

K K K K K K   Q V V Q V V  is found using 16 3
TM  flops. Within Step 3, there 

are several calculations that require ( 3
0TM K ), so this is the overall complexity of this 

step. 

Step 4: The SZF sum rate of Eqns. (5.10) and (5.11) can be rewritten as 

   0
1

2 1 1
1

log
K

j jH H
j i j j i ji i

j



 


      I H Q H I H Q H . The determinant in the 

numerator must be calculated K0 times, while the denominator must be found K0 – 1 

times (the value at j = 1 is 1). A running sum of the Qi can be used for each j; overall, this 

sum will require 2K0
2
TM  flops. Having the sum, the terms within the determinant 

functions take 8 2
TM N + 8MTN2 + N flops to calculate for each j. Finding the determinant 

of those N×N terms then requires 38
3 N  + 6N flops. Finally, having the (real) determinant 

values, dividing them for each j and finding the overall product would require an 

additional 2K0 – 1 flops, plus one log2 operation, which we ignore. Thus, the calculation 

of the SZF sum rate requires (2K0 – 1)(8 2
TM N + 8MTN2 + 7N + 38

3 N  + 1) + 2K0
2
TM  flops. 

Hence, Step 4 has an overall complexity of ( 2
0TM K N ). 

Thus, one fitness calculation requires ( 3
0TM K ), from Steps 1 to 3. The GA 

calculates this metric Np×Ng times, where Np = 5K0 and Ng = K/2. Thus, the entire GA 

scheduling process for SZF is ( 2 3
0 TKK M ). This is the same as for BD, but it is clear 

from the overall description that the SZF scheduling certainly must have a larger constant 

in front of that 2 3
0 TKK M  term. 
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5.4.4 Complexity of Greedy Algorithm for Block Diagonalization 

In this section we determine the complexity of the BD GrA. This work was done in 

collaboration with Dr. Shreeram Sigdel [132]. The complexity of each step is as follows. 

Step 1: The F-norm of the N×MT channel matrix is calculated for each of the K users, 

requiring 4KNMT flops. 

Step 2: For i ≥ 2, the projection matrix requires a GSO of the (i − 1)N×MT matrix 

 sH   to obtain the row basis Vi–1, then a multiplication and subtraction to get i
 

TM I 1 1
H

i i V V . The total number of flops required is 8(i – 1)2N2MT – 2(i – 1)NMT + 

28( 1) Ti NM  + MT = 8(i – 1)2N2MT + (i – 1)( 28 TNM  – 2NMT) + MT. 

Step 3: Finding the 1
H

k i FH V  term uses a multiplication and F-norm and thus 

requires (8MT + 4)N2(i − 1) flops. k F
H can be reused from Step 1, at the cost of some 

memory storage. 1
H

i FV  has negligible complexity, since its rows are orthonormal; hence 

 1 1H
i F

i N  V , which is negligible to compute, as is the division for the 

normalization. This correlation calculation is done for each of the i  users. Thus, the 

complexity of the intermediate grouping is i (8MT + 4)N2(i − 1) flops. The projection 

matrices k
  only need to be calculated one time at i = 2, then can be reused for larger i. 

Each of the 2  projection matrices requires a GSO to find ˆ
kV , a matrix multiplication, 

and a subtraction from the identity, yielding a complexity of 2 (8N2MT – 2NMT + 

28 TNM  + MT) flops. The forward and backward projections combined require a total of i 

matrix multiplications, F-norm calculations, and real additions. The projections are done 

for each of the i  users, so the total complexity is i i (8N 2
TM  + 4NMT + 1) flops. 

Thus, the total complexity of the greedy algorithm is 4KNMT + 2 (8N2MT – 

2NMT + 28 TNM  + MT) + 0

2
{

K

i 8(i – 1)2N2MT + (i – 1)( 28 TNM  – 2NMT) + MT + i ×

[(i − 1)(8MTN2 + 4N2) + i( 28 TNM  + 4NMT + 1)]}. After simplification, it can be found that 

the complexity of the GrA for BD is ( 02

2

K

T ii
M N i

  ). i  is a random variable in the 

range 0 ≤ i  ≤ (K − i + 1), and its value depends on the threshold . In the worst case, 

the greedy algorithm must search over (K − i + 1) users in Step 3. (The most likely reason 
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for this to occur is if  = 1.) Thus, although the search is generally simpler, the worst-case 

complexity of the BD GrA is (  02

2
1

K

T i
M N i K i


  ). After further simplification, we 

find that the GrA complexity is ( 2 2
0 TKK M N )  ( 3

0 TKK M ). 

Thus, overall, the GrA complexity for BD is lower than that of the GA by a factor of 

K0. However, it should be noted that the GrA will still require one calculation of (5.6) to 

find the sum rate for selected users, whereas for the GA, most of that calculation has 

already been carried out. This is in essence the calculation for a single GA chromosome, 

so the GrA must carry out the one additional step of complexity order ( 3
0 TK M ). 

In comparison, the complexity of an exhaustive search is found by calculating (5.6) 

for all possible groups of K0 out of K users. Its complexity is thus    0

3
0

K
K TK M  [69]. 

5.4.5 Complexity of Greedy Algorithm for Successive Zero-Forcing 

In this section, we find the complexity of the GrA for SZF. The complexity of each 

step is as follows. 

Step 1: This step is identical to Step 1 of the BD GrA; it requires 4KNMT flops. 

Step 2: For i ≥ 2, the matrix  sH   is (i − 1)N×MT. Performing an SVD of this 

matrix requires 16 2
TM N(i – 1) + 32MTN2(i − 1)2 + 36N3(i − 1)3 flops. 

Step 3: The calculation of the correlation for the intermediate grouping is the same as 

for the BD GrA. It thus has complexity 1i (8MT + 4)N2(i − 1) flops. For the user 

selection metric, the denominator need not be fully calculated for each i. Instead, a 

running sum can be kept and updated with each i, at the expense of the storage of at most 

2  real scalars. At each i, the term 
20

k i F
H V  requires (8MT + 4)N[MT − (i − 1)N] flops 

to compute the multiplication and F-norm for each user in i . Then, 1 flop is required 

to divide by the sum in the denominator, followed by 1 flop to update the sum for the 

next i; we neglect these final 2 flops. Thus, the complexity of Step 3 is i (8MT + 4)N×

[MT − (i − 1)N] flops.  

Therefore, the total complexity of the greedy algorithm for SZF is 4KNMT + 

0

2
{

K

i 16 2
TM N(i – 1) + 32MTN2(i − 1)2 + 36N3(i − 1)3 + 1i (8MT + 4)N2(i − 1) + i × 

(8MT + 4)N[MT − (i − 1)N]}. After some simplification of the above equation, we find the 
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highest order terms are (8MT + 4)N2 0 1

1
[

K

n



 n i  – n 1n ] and (8MT + 4)MTN×

0

2

K

ii  . Expanding the sum in the first term gives 0 1

1
[

K

n



 n i  – n 1n ] = (K0 – 1)×

0K  + 0 1

1

K

nn



  . This makes the first term equal to (8MT + 4)N2(K0 – 1)
0K  + 

(8MT + 4)N2 0 1

1

K

nn



  . Thus, the order of complexity of the two terms is 

(MTN2K0
0K  + MTN2 0 1

1

K

nn



  ) and ( 02

2

K

T ii
M N

  ), respectively. The first half 

of the first term is approximately equivalent to (
0

2
T KM N   + …). Since MT > N, the 

second term is of higher order, so the entire GrA for SZF has a complexity of 

( 02

2

K

T ii
M N

  ). Just as with the GrA for BD, i  is a random variable in the range 

0 ≤ i  ≤ (K − i + 1), whose value depends on the threshold . Thus, in the worst case, 

i  = (K − i + 1), and the order of complexity becomes (  02

2
1

K

T i
M N K i


  ). After 

further simplification, we finally find the worst-case complexity for the GrA is 

( 2
0 TKK M N )  ( 3

TKM ). 

Thus, overall, the GrA complexity for SZF is lower than that of the GA by a factor of 

2
0K . However, just like for BD, the GrA must afterwards find the covariance matrices 

and sum rate for the selected users and encoding order, whereas the GA has already done 

this. This additional step has complexity order ( 3
0 TK M ), the same as a single SZF GA 

chromosome fitness calculation. 

In comparison, the complexity of an exhaustive search is found by finding the sum 

rate for all possible groups and encoding orders of up to K0 out of K users. Its complexity 

is thus    0

3
0 0! K

K TK K M    0 3
0

K
TK K M . 

5.4.6 Complexity of Hybrid Algorithms 

As already seen in the previous two sections, the complexity of finding the user with 

the best channel F-norm is 4KNMT. The idea of the first hybrid algorithm (HA1) is to use 

that user as a seed in the GA chromosome, but otherwise operate the GA as normal. The 

complexity of finding that user is of lower order than the overall GA. Thus, the order of 

complexity of HA1 is ( 2 3
0 TKK M ) for both BD and SZF, the same as for the GA. 
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The worst-case complexity of the GrA was found to be ( 3
0 TKK M ) for BD and 

( 3
TKM ) for SZF. To reduce the complexity of HA2, the idea is that rather than run the 

GA for a number of generations which is dependent on K, instead we run for a constant 

number of generations after running the GrA. This removes the factor of K from the order 

of complexity of the GA, making its order less than that of the GrA. The order of 

complexity for the GA portion would be ( 2 3
0 TK M ). Hence, the highest order term, and 

thus the overall order of complexity for HA2, is the same as for the GrA, i.e., 

( 3
0 TKK M ) for BD and ( 3

TKM ) for SZF, in the worst case. Obviously, the total 

complexity will be higher than the GrA alone. However, if the generations for the GA are 

restricted, the added computations should not be very significant. 

We summarize the complexity orders of all the algorithms in Table 5.4. 

5.5 Simulation Results 

In this section, we present simulation results demonstrating the performance of our 

scheduling algorithms. A performance comparison of the exhaustive search, genetic 

algorithm (GA), and greedy algorithm (GrA) for both BD and SZF are presented first. 

The simulations and examination of the greedy algorithms were done in collaboration 

with Dr. Shreeram Sigdel [132],[133],[134]. For the GrA, the optimal correlation 

threshold  (that maximizes the sum rate) was used, and determined as in [141] through 

simulation. The optimal case exhaustively searches through all possible user 

combinations (and encoding orders in case of SZF). For reference, when examining the 

BD performance, we also consider the sum rate for the two scheduling algorithms 

Table 5.4: Summary of the complexity orders of different user scheduling algorithms 

Algorithm Complexity Order (BD) Complexity Order (SZF) 

Greedy  02

2

K

T ii
M N i

    02

2

K

T ii
M N

   

Greedy (worst case)  2 2
0 TKK M N    3

0 TKK M  2
0 TKK M N    3

TKM  

Genetic  2 3
0 TKK M   2 3

0 TKK M  

Hybrid 1  2 3
0 TKK M   2 3

0 TKK M  

Hybrid 2  3
0 TKK M   3

TKM  

Exhaustive Search   0

3
0

K
K TK M    0

3
0 0! K

K TK K M    0 3
0

K
TK K M
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proposed in [69]. We label these algorithms “SCAHE” after the initials of the authors’ 

names. One of the two, based on F-norms and projections, has already been mentioned. 

The BD GrA is similar to this algorithm, but is less complex; the SCAHE metric is more 

complicated (its forward projections for each sk   (see Table 5.2) also consider the 

null spaces of the other previously scheduled users) and the algorithm considers all active 

users (i.e., no threshold is used). The second SCAHE algorithm is based on capacity. 

During each iteration, the algorithm selects the user from those remaining in the pool that 

maximizes the sum rate when scheduled together with the users selected in the previous 

iterations. The two algorithms both have complexity 2 3
0( )TKK M  [69]. Later, we 

examine the performance of the two hybrid algorithms. 

5.5.1 Block Diagonalization 

Figure 5.1 shows the performance versus the number of active users K of the 

scheduling algorithms for a case where MT = 4, Nk = N = 2 for all K users, and K0 = 2, at 

an SNR of 5 dB and 10 dB, where the SNR is defined as P/ 2
n  (see Eqn. (5.6)). It is 

observed that the GrA performs better than the GA for low SNR, but the GA outperforms 

the GrA at higher SNR. The reasons for this are as follows. Since the GrA starts by 

selecting the user with the maximum channel F-norm, the transmit power allocated to that 

strongest user will be the highest. The second user may in fact receive much less power 

than the first user (in the case of two selected users presented here). At low SNR (as P 

approaches 0), scheduling a single user can become optimal, resulting in a better sum rate 

than scheduling two users. In such a case, zero-forcing across users is not beneficial as 

the gain of the projected channel of the second selected user will be low. (In other words, 

Heff for the second user will be poor.) On the other hand, it is by no means guaranteed 

that the GA will select the user with the maximum channel gain, due to its stochastic 

nature. This reduces the GA throughput at lower SNR. Both algorithms perform well 

compared to the optimal performance of the exhaustive search, achieving about 93−98% 

of the best possible throughput, with a gap less than 1 bit/s/Hz from optimal. We have 

performed additional simulations at 0, 15, and 20 dB, which we relegate to Appendix E 

for space and presentation considerations. These supplementary results indicate that the 

GrA continues to be better at the lower SNR of 0 dB, while at 15 and 20 dB, the GA 
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shows further improvement over the GrA1. For reference, we also show results for the 

SCAHE algorithms. It can be seen that the GrA performs essentially identically to the 

SCAHE F-norm algorithm at all SNR levels. However, the SCAHE capacity algorithm 

still performs better than both the GrA and GA. We note, though, that the complexity of 

the GrA is lower than the GA and both SCAHE algorithms by a factor of K0, as discussed 

in Section 5.4.4. 

Similarly, we perform the simulations for MT = 8, Nk = N = 2, and K0 = 4; the results 

for SNR = 5 dB, 10 dB and 15 dB are given in Figure 5.2. Further results for 0 dB and 20 

dB are in Appendix E. We first note that the results are different than in our work in 

[132]. In that earlier work, the results for the GrA were erroneously for a non-optimized 

threshold in Step 3 of the algorithm (i.e., using  = 1). With the optimized threshold in 

                                                 
1 The performance of current cellular systems is limited by out-of-cell interference; while the 
interference-free SNR might be high, the SINR can be much lower. While some gains in spectral 
efficiency are still possible from MIMO spatial multiplexing, they are nowhere near as significant 
as the gains at high SNR / SINR. However, MIMO system designs employing network coordin-
ation (e.g. [146]) can mitigate or eliminate much of this intercell interference, allowing the system 
to indeed operate in the high-SNR regime. Thus, our simulation results at higher SNRs may have 
the most relevance for future MIMO systems. (For example, [146] considers an SNR of 18 dB.) 
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Figure 5.1: Performance vs. K of exhaustive search, greedy, genetic, and SCAHE scheduling 

algorithms for BD; MT = 4, Nk = N = 2, K0 = 2. (a) SNR = 5 dB, and (b) 10 dB. 
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this work, the GrA performance is improved, and hence the analysis of the simulation 

results leads to somewhat different conclusions. 

We observe a similar trend as in the MT = 4 case. Namely, the GrA has a better 

performance at low SNR, but the GA has a better performance at higher SNR. 

Interestingly, we also now more clearly observe a crossover in performance as the SNR 

increases. Specifically, at 10 dB, the GA performs better at low K, while the GrA 

performs better at high K; the sum rate of the two algorithms becomes equal somewhere 

between K = 30 and 40. At low SNR, this trend again comes down to scheduling the user 

with the best channel with the GrA, whereas this is not guaranteed for the GA. In  
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Figure 5.2: Performance vs. K of exhaustive search, greedy, genetic, and SCAHE scheduling 

algorithms for BD; MT = 8, Nk = N = 2, K0 = 4. (a) SNR = 5 dB, (b) 10 dB, and (c) 15 dB. 
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comparison, at high SNR, orthogonality between users is a more important factor. It is 

generally better to find users whose channel matrices are closer to orthogonal to each 

other, rather than first focus on the one user with the best channel gain, since all the 

users’ channel gains are good. Since the GrA is biased towards that one user, who may no 

longer be the best choice, its performance suffers relative to the GA. 

We also observe that the GA tends to perform better at lower K than the GrA. This is 

since at lower K, orthogonality is also quite important. With a small user pool, finding 

users that are relatively close to orthogonal is difficult compared to at large K, due to 

multiuser diversity. Multiuser diversity and basic probability theory dictates that the more 

users that there are to choose from, the more likely it will be that there are users whose 

channels are close to orthogonal. More specifically, at lower K, it is therefore more 

difficult to find users that are orthogonal to the one specific user with the best channel F-

norm. In the GrA, the small number of users to select from, combined with the use of the 

threshold, can in fact often result in the GrA scheduling fewer users than is appropriate. 

Thus, some of the system’s resources and degrees of freedom in the transmitter are 

wasted. In comparison, while the GrA might exclude certain users because of its 

threshold and comparisons to the best individual user, the GA does not exclude any 

particular users. Often, at low K, finding a good set of users that are closer to orthogonal, 

where that set does not include the user with the best channel, results in a better overall 

sum rate than if that user must be included. Thus, for these reasons the GA performs 

better than the GrA when the user pool is small. At large K, a good user set that includes 

the best user is far more likely, and the GrA is no longer in danger of scheduling too few 

users, so the GrA performs better at large K. 

Further, we note that the performance of the GA does not increase as rapidly with K; 

an increasing performance gap between the GA and the exhaustive search is observed as 

K increases. A similar gap was observed in Chapter 3, for scheduling under DPC 

precoding. Possible ways to compensate for the gap in practice were also discussed in 

that chapter, including seeding the initial population and preserving chromosomes 

between scheduling instances if temporal correlation in the channels exists. Nevertheless, 

this increasing gap results in the crossover in performance between the GrA and the GA 

with K at mid-range SNRs, since the GrA does not have that same increasing gap; its 

growth in sum rate with K is the about the same as that for the exhaustive search. Both 

algorithms have much lower complexity than the exhaustive search, yet still yield decent 

throughput relative to the best possible, although not as close to the best as for K0 = 2. For 
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5 and 10 dB, the algorithms provide, at worst, no less than about 90% of the optimal sum 

rate. Finally, we note the two SCAHE algorithms perform better than the GrA and GA at 

MT = 8, though they both trade off complexity for that additional performance compared 

to the GrA. 

5.5.2 Successive Zero-Forcing 

Figure 5.3 shows the SZF performance for MT = 4. We see much the same overall 

trend as was seen for BD precoding. For small K (e.g. K < 15 at SNR = 5 dB) the GA 

outperforms the GrA, whereas for large K the GrA outperforms the GA. At SNR = 10 dB, 

the performance of the GrA and GA has been found to be essentially identical for K > 30; 

hence the plots in Figure 5.3(b) are not clearly distinguishable. Additional simulations 

(results shown in Appendix E) also demonstrated that at 0 dB, the GrA outperformed the 

GA for all K, while at higher SNRs (i.e., 15 and 20 dB), the GA outperformed the GrA. It 

is also observed that the proposed algorithms perform very close to the exhaustive search. 

The performance of both algorithms is less than 0.8 bit/s/Hz inferior to optimal, 

achieving about 95−98% of the sum rate of an exhaustive search. 
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Figure 5.3: Performance vs. K of exhaustive search, greedy, and genetic scheduling algorithms for 

SZF; MT = 4, Nk = N = 2, K0 = 2. (a) SNR = 5 dB, and (b) 10 dB. 
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Similar results are observed for MT = 8 in Figure 5.4. A crossover of the performance 

curves of the GrA and GA can be seen from these figures, just like what was seen for BD. 

However, the crossover occurs at a lower value of K compared to BD (e.g. about K = 20 

for SZF at 10 dB compared to about K = 35 for BD). The reasons for this are similar to 

those for BD. With the use of the threshold, the GrA tends to be biased toward too few 

users at low K, and toward scheduling the maximum number of users at higher K. The 

GA has no such bias one way or the other. We note that when scheduling multiple users 

simultaneously, the cancellation of multiuser interference can become a significant factor. 

Thus, it is often best to schedule less than the maximum servable number of users in 
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Figure 5.4: Performance vs. K of exhaustive search, greedy, and genetic scheduling algorithms for 

SZF; MT = 8, Nk = N = 2, K0 = 4. (a) SNR = 5 dB, (b) 10 dB, and (c) 15 dB. 
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order to maximize the sum rate for small K, since there is not a large enough pool of 

users to select from to help reduce multiuser interference through pre-existing user  

channel orthogonality. Nevertheless, selecting too few users also reduces the throughput, 

as degrees of freedom in the system are wasted. As was seen with BD, at low K, both 

scheduling too few users due to the threshold, and being forced to schedule the user with 

the best channel norm instead of looking more at orthogonal users, causes the GrA 

performance to suffer relative to the GA. The reverse is true at higher K, since it is more 

likely for the best user to be in a good orthogonal group due to multiuser diversity. 

However, finding orthogonal users is not as important as in BD, since SZF only nulls the 

interference of a user on previously encoded users, not on all other users. Hence, we see 

the crossover in performance occur at a smaller value of K compared to BD. It would be 

interesting to examine this crossover in performance between the algorithms further, to 

find some sort of theoretical analysis as to why the crossover occurs at a specific value of 

K. However, since the GrA throughput is quite dependent on the threshold , and because 

the GA is stochastic in nature, this would be extremely difficult, if not impossible. 

We examine the number of users scheduled by each of the algorithms in Figure 5.5. 

The graphs reinforce the statements made in the previous paragraph. At low K (K = 10), it 

is seen that for both BD and SZF, the GrA tends to schedule far fewer users than what an 

exhaustive search indicates should be appropriate. The GrA tends to schedule just two 

users a little over 10% of the time in SZF, and even more often in BD. The GrA in fact 

even schedules only a single user on rare occasions. Thus, available transmit resources 

are being wasted. In comparison, the GA schedules a (more appropriately) larger number 

of users at low K, and so its throughput is better. By a more mid-range value of K (K = 

40), the number of users simultaneously scheduled by both the GrA and the GA are much 

closer to each other. We also note that in comparing BD to SZF, all the algorithms tend to 

schedule more users simultaneously when using SZF at all K, as a result of the less 

stringent null space constraints. 

Looking back once more at Figure 5.4, we again see that the rate of increase in 

throughput of the GA with K does not match that of the exhaustive search, while the GrA 

does, which also contributes to the crossover. In fact, the sum rate of any beamforming 

(including BD and SZF) is known to grow as log(log K) [41]. In Figure 5.6, we plot the 

throughput performance of the algorithms vs. log(log K) for SZF at 5 and 10 dB and MT = 

8. We see that the exhaustive search curve is linear, as expected. More importantly, it is 

observed that the GrA curve is also linear, with about the same slope as the exhaustive  
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search, meaning that the GrA achieves about the same growth in throughput versus K due 

to multiuser diversity as the exhaustive search. In other words, the gap in the GrA 

performance versus the optimum is approximately constant as K increases. This result 
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Figure 5.5: Average proportion of time that a given number of users out of a maximum of K0 is 

scheduled using various algorithms for MT = 8, Nk = N = 2, and K0 = 4, with K = 10, 40, and 100. 
(a) BD, SNR = 5 dB. (b) BD, SNR = 10 dB. (c) SZF, SNR = 5 dB. (d) SZF, SNR = 10 dB. 
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Figure 5.6: Performance of exhaustive search, greedy, and genetic scheduling algorithms for SZF 

vs. log(log K); MT = 8, Nk = N = 2, K0 = 4; SNR = 5 dB and 10 dB. 
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can also be seen in the earlier figures, but not as clearly, especially in Figure 5.4, where 

the exhaustive search curve does not extend to K = 100. It is also observed that the GA 

curve seems close to being linear, but that its slope is less steep, thus resulting in the 

widening gap in performance compared to the optimum. However, there still is a slight 

upward curve to the GA plots. This indicates a possibility that the rate of increase in the 

gap with the ES performance may slow at even larger K. As K asymptotically becomes 

very large, the GA might achieve a constant gap from the exhaustive search as well. 

The performance of both proposed algorithms is still quite close to that of an 

exhaustive search, though not quite as close as for MT = 4. The worst performance of the 

algorithms is still not less than 90% of the optimal throughput, at least up to K = 40. Full 

exhaustive search results are not available for larger K, due to the combinatorially 

increasing complexity. Simulating for even larger K would take a prohibitively long time. 

5.5.3 Hybrid Algorithm 1 

In this section, we focus on the MT = 8 cases, as these are the cases where the most 

improvement in sum rate relative to the exhaustive search can be obtained. Full results 

are available in Appendix E. We first investigate the various options for seeding the best 

F-norm user(s) into the chromosomes. We note that the calculations to find the maximum 

F-norm will have already been carried out, so how often that result is used from that point 

on will have no further impact on the complexity. We hence examine the effect of 

seeding the “top” user (with the highest channel F-norm) into one chromosome, two 

chromosomes, and the entire population of chromosomes for the GA. Furthermore, it is 

trivial when finding the maximum F-norm to keep track of the top two users instead of 

just one. Thus, we also examine seeding the top two users each into one chromosome, 

each into two chromosomes, and seeding into the entire population, where one user is 

seeded into half of the population’s chromosomes, and the second into the other half. 

When initializing the GA, the algorithm first creates a random set of users (and a 

random encoding order for those users, in the case of SZF). The algorithm then checks if 

the desired seed user has been scheduled in the chromosome. If so, the GA proceeds to 

the next chromosome. Otherwise, the user drops the last user that was scheduled in the 

chromosome and inserts the seed user as the first user in the scheduled group. For 

example, if a chromosome indicates to schedule the users {18,2,12,7}, while user 5 is the 

seed, the GA would drop user 7 and insert user 5 at the front, creating the group 
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{5,18,2,12}. In the case of SZF, this also means the seed user will be encoded first, just 

as with the SZF greedy algorithm. 

We show simulation results in Figure 5.7 for one BD case with MT = 8, Nk = N = 2, 

and K0 = 4 at an SNR of 10 dB. The figure shows the improvement in average sum rate. 

It can be seen that seeding the top user in just one or two chromosomes has an almost 

negligible effect on the sum rate. The increase is less than 0.1 bit/s/Hz. However, when 

the top user is seeded in the entire population, the effect is more significant. The sum rate 

increases by about 0.3 to 0.4 bit/s/Hz. Seeding the top two users into just one or two 

chromosomes also has a mostly negligible effect, although seeding two users does seem 

to improve the performance very slightly. This extra improvement is likely within the 

error bounds of the simulation, though, since we are dealing with hundredths of a bit/s/Hz. 

Seeding the top two users throughout the population seems to have no significant 

difference in effect; if anything, seeding two users may even occasionally worsen the 

performance. Thus, it appears that the best option is to seed the single top user with the 

best channel F-norm into the entire GA population. 

With this in mind, simulation results for HA1 with the “seed top user in all 

chromosomes” strategy are seen in Figure 5.8 for BD and SZF. It is observed that for the 

fairly small increase in the complexity required to seed the GA chromosomes, there is a 

reasonable, though slight, increase in the performance of HA1 compared to the GA. The 

gain in throughput is not so large at smaller K; the sum rate increases by about 0.1 

bit/s/Hz. This is expected from the discussions in the previous sections; at low K, the GA 

already performs well, so there is not as much gain to be achieved in the first place. The 
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Figure 5.7: Improvement in average sum rate vs. K of hybrid algorithm 1 over the unseeded GA 

while seeding the top n users into c chromosomes of the GA population. MT = 8, Nk = N = 2, K0 = 
4; SNR = 10 dB. 
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GA in HA1 does see some benefit, though, since it is not forced to keep the user with the 

best channel; the breeding process could remove that user from contention if it is not 

included in the best subset of users that will maximize the utility function, but will keep it 

if it is. HA1 is also not required to keep that top user in the first encoding position for 

SZF, either. The throughput gain is higher at larger K. The throughput goes up by about 

0.3 bit/s/Hz at an SNR of 5 dB in Figure 5.8(a) and (b), respectively, and by about 0.4 

bit/s/Hz at 10 dB in Figure 5.8(c) and (d). Essentially the same increase in performance is 

seen for both BD and SZF. In fact, for both precoding methods, the seeding of the GA 

improves its performance such that it now approximately equals or even exceeds that of 

the GrA at 10 dB. This is compared to the crossover in the GA and GrA performance 

seen without the seeding. However, it should also be noted that the gain in performance 

amounts to at best about an extra 2% in throughput, so in relative terms, the gain is rather 

minor. 
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Figure 5.8: Performance of hybrid algorithm 1 vs. K for BD and SZF; MT = 8, Nk = N = 2, K0 = 4. 
(a) BD, SNR = 5 dB; (b) SZF, SNR = 5 dB; (c) BD, SNR = 10 dB; and (d) SZF, SNR = 10 dB. 
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5.5.4 Hybrid Algorithm 2 

In analyzing the performance of HA2, we again focus on the MT = 8 cases, since they 

best illustrate the effect of adding the GA to the GrA; full results are in Appendix E. First, 

we examine the best number of generations for which to run the GA. Figure 5.9 shows 

the case for BD at an SNR of 10 dB, letting the GA run for 2, 5, and 10 generations. It 

can be seen that the biggest relative gain to the GrA comes after just two generations. The 

gain is largest at lower K, which is to be expected; the GA was earlier seen to perform 

better at low K when compared to the GrA. We would expect the GA portion of HA2 to 

also perform relatively better at higher SNR for similar reasons. Running the GA for 5 

and 10 generations does unsurprisingly further improve the average sum rate of HA2. 

However, there appear to be diminishing returns at this point. For instance, the gain in 

throughput relative to the GrA at K around 16 to 20 when running 2 generations is the 

same gain in throughput seen when increasing the generations from 2 to 10. In other 

words, the same addition in sum rate is seen when the complexity of the GA portion of 

HA2 quintuples (or when adding 8 more generations) as was seen when the first two 

generations were added. For this reason, and also because we wish to keep the added 

complexity from the GA in HA2 as low as reasonably possible, we have decided to 

continue to use only 2 generations in HA2 for the remainder of the work on this 

algorithm. 

Figure 5.10(a) and (b) show the performance for BD and SZF, respectively, at an 

SNR of 10 dB. It is observed that HA2 essentially acts asymptotically yielding the better 

of the GrA and GA performances. At lower K, the HA2 performance is essentially the 
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Figure 5.9: Performance of hybrid algorithm 2 vs. K for BD while letting the GA within HA2 run 

for Ng generations; MT = 8, Nk = N = 2, K0 = 4, SNR = 10 dB. 
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same as that of the GA. At larger K, its performance is slightly better than that of the GrA. 

However, most interesting are the mid-range values of K. It is observed that HA2 makes 

a smooth transition between the GA and GrA performances. In this mid-range (i.e., where 

the crossover in performance between the GA and GrA occurs), HA2 performs better 

than either of the GA or the GrA individually. This is without increasing the order of 

complexity from that of the GrA (though the total number of flops must obviously 

increase).  

We saw the same asymptotic type of performance for HA2 in our simulations for 

lower values of SNR; these results are shown in Appendix E. However, at high SNR, the 

trend changes. Figure 5.10(c) and (d) show the HA2 performance at an SNR of 20 dB. It 

is observed that the HA2 throughput drops below that of the GA. At high SNR, as already 

discussed, the GrA selection is not necessarily the best, since all users have good 

channels. Thus, it does not necessarily make a good seed as a starting point for the GA 

part of HA2, so the net effect is not much better than if the initial population was 

completely random as in the baseline GA. The throughput then is lower at higher SNRs 
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Figure 5.10: Performance of hybrid algorithm 2 vs. K for BD and SZF; MT = 8, Nk = N = 2, K0 = 4. 
(a) BD, SNR = 10 dB; (b) SZF, SNR = 10 dB; (c) BD, SNR = 20 dB; and (d) SZF, SNR = 20 dB. 
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simply because HA2 does not iterate as many generations as the GA does. However, we 

note that the HA2 performance is still improved compared to the GrA. The throughput 

increases by about 0.64 bit/s/Hz for BD and 0.25 bit/s/Hz for SZF at K = 100, and by 

about 2.9 bit/s/Hz for BD and about 1.5 bit/s/Hz for SZF at K = 10. Thus, the gains are 

the most significant at low K; the sum rate increases by about 8% and 4.5% at K = 10 for 

BD and SZF, respectively. We would expect that for extremely large K the HA2 sum rate 

would converge asymptotically to about that of the GrA, as was also seen for 10 dB. 

Lastly, we note with interest that at 20 dB, the system performance using BD actually 

exceeds that when using SZF by several bit/s/Hz. This, however, does not have anything 

to do in particular with the scheduling algorithms. Rather, the lower throughput is largely 

due to the generation of the SZF covariance matrices. Recall that the method presented in 

[50] and described in Appendix D to find covariance matrices for SZF is suboptimal. 

This is in comparison to the waterfilling power allocation for BD, which is known to be 

optimal. In fact, the covariance matrices obtained using BD must also be a valid solution 

for SZF, since they meet the SZF constraints. BD requires H(k)W(j) = 0 for all j  k, so 

the relaxed constraint of H(k)W(j) = 0 for all j > k required for SZF is automatically met. 

The transmit power constraint on the covariance matrices is also met. Thus, the 

performance for SZF with optimal covariance matrices should and must be no worse than 

that when using BD. 

For confirmation of the above, we simulated an exhaustive search with both BD and 

SZF for MT = 8, K = 16, and an SNR ranging from 0 to 20 dB. (A full exhaustive search 

for all K would be too time-consuming to simulate due to the combinatorial complexity.) 

The results of these simulations are shown in Figure 5.11. These simulations indicate that 

the best possible SZF average sum rate with these parameters and the suboptimal 

covariance method at 20 dB is about 40.1 bit/s/Hz. This maximum SZF throughput is still 

below that for both the suboptimal GA and HA2 with BD, and thus obviously below the 

optimal throughput using BD. The simulations indicate that the maximum throughput for 

BD at 20 dB is about 44.5 bit/s/Hz. In fact, the throughput of SZF starts to drop below 

that of BD starting at about 11 dB SNR, indicating an increasing deficiency in the 

existing SZF covariance method as the SNR increases. Thus, the lower performance of 

our scheduling algorithms at 20 dB under SZF, compared to the equivalent algorithms 

under BD (e.g. the SZF GA or GrA in Figure 5.10(d) versus the BD GA or GrA in Figure 

5.10(c)), is unrelated to the scheduling algorithms themselves. 
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5.5.5 Further Discussion 

It was seen in the simulation results that the relative performance between the GrA 

and the GA is dependent on the number of users K and the SNR. The GA performs better 

than the GrA at higher SNR and lower K; at higher K and lower SNR, the GrA is better. 

However, in all cases when using BD, the SCAHE capacity-based algorithm performs 

better than either the GrA or the GA. Additionally, the SCAHE algorithms also have the 

same order of complexity as the GA. 

Furthermore, since the work in this chapter was conducted, we have become aware of 

another scheduling algorithm proposed in [147]. This algorithm uses a capacity upper 

bound to schedule users, by assuming the scheduled users can cooperate in decoding their 

signals. The upper bound is then the single-user MIMO capacity of the aggregate channel 

matrix H from Eqn. (5.2). The authors also manage some computational savings by 

assuming an equal power allocation across the transmit antennas and by the use of the 

matrix inversion lemma (also known as the Woodbury formula [148]). It is demonstrated 

in [147] that the proposed algorithm performs about the same as the SCAHE algorithms 

(most often giving about the same sum rate as the SCAHE F-norm algorithm). However, 

the order of complexity of the algorithm is only about ( 1 3
0 TKK M ). 

In light of the above facts, one may wonder if the use of the GA is justified in 

practice. If algorithms exist of the same or lesser complexity, but better performance, the 

use of the GA seems less compelling. However, it should first be recalled that the bulk of 

the GA complexity lies in the computation of the fitness for each chromosome. Of that, 
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Figure 5.11: Maximum average sum rate vs. SNR for BD and SZF using an exhaustive search; MT 

= 8, Nk = N = 2, K0 = 4, K = 16. 
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the most complex part is calculating the null space basis vectors. It should be possible to 

find some sort of reduced complexity metric, perhaps one that avoids having to calculate 

the null space vectors every time the GA fitness is calculated. In such a case, the GA 

complexity would be reduced. Second, BD is a case where encoding order does not 

apply. When encoding order is also a factor in scheduling, such as in SZF, the problem is 

more complex, but the GA can handle the extra complexity without much effort. For the 

specific case of SZF, it was seen that despite the added complexity from the encoding 

order, the order of complexity of the GA did not increase. We did look briefly at the 

encoding order for the exhaustive search with SZF, but were unable to see any particular 

pattern in terms of which users should be encoded where in the order. Third, maximizing 

throughput is a comparatively simple criterion, so it stands to reason that there exist some 

lower complexity ways to approximate its performance. However, if several quality of 

service (QoS) requirements were also added to the mix (e.g. several classes of traffic, 

delay-sensitive data, etc.), the situation would become much more difficult. The GA is 

likely more suited to scheduling in such a scenario. Lastly, the GA also used a very naïve 

initialization method (the random initial population). When some additional information 

is available to the GA, it can perform better. This was seen to a small degree with HA1, 

but also with HA2, when the GA used the information from the GrA to improve the 

performance. In the latter case, the GA was useful as a supplementary search after the 

initial decision was made. In both cases, again the order of complexity did not increase 

by using the extra information. In a practical channel with temporal correlation, the GA 

should be able to use information from past scheduling instances to further improve the 

performance. [149] describes a related concept, where the authors use an evolutionary 

algorithm (though not specifically a GA) with an estimation of distribution method [150] 

for scheduling on a MIMO uplink. The algorithm in general gathers statistical 

information from the fitness of individuals of previous populations to help guide the 

initialization of future populations. For all the above reasons, there is still a justifiable 

reason to use the GA in scheduling applications, either as a full scheduling algorithm 

itself, or as a supplement to another algorithm. 

5.6 Conclusion 

In this chapter, we have examined low complexity genetic and greedy user 

scheduling algorithms for multiuser MIMO downlink systems employing block 

diagonalization (BD) and successive zero-forcing (SZF) precoding. The proposed 
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algorithms are much less complex, but perform close to the highly complex exhaustive 

search. For both BD and SZF, we have demonstrated that at low SNR, the greedy 

algorithm performs better than the genetic algorithm, but as the SNR increases, the 

throughput of the genetic algorithm surpasses that of the greedy algorithm. Similarly, at 

smaller values of K, where K is the number of users requesting service, the GA performs 

better, but as K increases, the greedy algorithm can outperform the GA. The tradeoff in 

performance is in large part due to the GrA being biased towards one certain good user, 

and thus scheduling too few users or not considering certain other users as a result. A 

detailed complexity analysis showed that for BD, the order of complexity of the GA is 

higher than that of the GrA by a factor of K0, where K0 denotes the maximum number of 

simultaneously supported multiple-antenna users. For SZF, the GA is more complex than 

the GrA by a factor of 2
0K . For both BD and SZF, the GrA achieves similar sum-rate 

growth with K as the exhaustive search, whereas the GA does not for larger MT. 

We have also proposed two hybrid algorithms combining the genetic and greedy 

algorithms. We demonstrated that the first hybrid, a seeded GA, improved marginally 

upon the performance of the regular GA at large K by about 0.3 to 0.4 bit/s/Hz, with no 

increase in the order of complexity. This represents about a 2% increase in throughput. 

The second hybrid was shown to act asymptotically like the better of the genetic and 

greedy algorithms at low to mid-range SNRs. At high SNR, the hybrid performance was 

inferior to that of the GA, but still improved upon the performance of the GrA, while 

maintaining the same order of complexity as the GrA. At low K, an increase in 

throughput of about 8% for BD and about 4.5% for SZF was seen relative to the GrA. 

The work in this chapter also identified a deficiency in the method used to obtain 

covariance matrices for SZF. It was seen that even with optimal scheduling, the 

throughput of SZF can drop below that of BD, when theoretically it should not. There is 

also a second deficiency with the existing covariance method. The purpose of these 

examined scheduling algorithms is to potentially improve the performance of fourth 

generation wireless systems. Such performance measures will also likely include quality 

of service issues. Unfortunately, the existing SZF covariance method has no way of 

incorporating those measures. The method is for a straight sum-rate maximization, and 

thus is not ideal in, for example, a weighted sum rate, wherein the weights may 

incorporate the QoS measures. We address these issues and propose a solution for both 

problems in the next chapter. 
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Chapter 6 

Improved Covariance Optimization for 
Successive Zero-Forcing Weighted and 
Unweighted Sum-Rate Maximization 

6.1 Introduction 

In the previous chapter, we examined the average sum rate achievable by using 

successive zero-forcing (SZF) precoding [50]. In that chapter, we used a suboptimal 

method from [50] to obtain transmit covariance matrices satisfying the power and null 

space constraints. That suboptimal method performs reasonably well. The sum rate of 

SZF exceeds that of block diagonalization (BD) [46] in the simulation results provided in 

[50] with limited or no scheduling considered. We furthermore found that SZF often 

exceeds BD when scheduling is also included, based on our own simulation results of the 

previous chapter. However, we have found two main deficiencies with the existing 

method. We found in one scenario with 8 transmit antennas, 2 receive antennas per user, 

and thus up to 4 users capable of being scheduled simultaneously, for any SNR greater 

than 11 dB, the sum-throughput achieved by SZF dropped below that achieved by BD, 

even with exhaustive search scheduling. This does not make sense; the BD optimization 

problem is a more constrained version of the SZF optimization problem. Any solution 

that satisfies the BD constraints also satisfies the SZF constraints. Therefore, the 

performance of SZF must in theory always be no worse than that of BD. The problem 

was ultimately identified to lie with the suboptimal SZF covariance method. The authors 

in [50] acknowledge that their method is suboptimal, and that better methods can likely 

be found, but to date, we are unaware of any results in the literature examining exactly 

how suboptimal the existing method is. We show in the remainder of this chapter that the 

covariance method in fact becomes worse as both the SNR and the number of supportable 

users increase. 

The second deficiency is that the existing covariance method only accounts for 

maximization of a pure (unweighted) sum rate. However, the method cannot be directly 
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applied to a weighted sum-rate (WSR) maximization; i.e., to maximize k kk
w R , where 

wk is a weight for user k, and Rk is the data rate for user k. It may be possible to extend the 

method of [50] to a WSR by first solving a WSR maximization for the multiple access 

channel (MAC), then proceeding as normal. However, a WSR maximization for the 

MAC (and thus for the broadcast channel (BC) due to duality) is found for one specific 

ordering of users. Namely, it is known that users should be decoded on the MAC in the 

increasing order of the size of the weights of the users, such that the user with the largest 

weight is decoded last [82],[151]. Equivalently, the user with the largest weight should be 

encoded first on the BC. (We have also discussed this issue in Chapter 3 regarding 

proportionally fair scheduling using DPC.) Because of this, the existing method’s 

transformations and projections may not be the best if a different encoding order is to be 

considered for the SZF WSR. Neither is it necessarily the case that the same encoding 

ordering that is optimal to maximize the WSR for SZF is the same ordering required for 

the MAC / BC. 

In this chapter, we propose a new method that accounts for both of these issues. It 

both significantly improves the throughput for SZF and enables the maximization of a 

weighted sum rate. Our contributions in this chapter have appeared in [152]. 

6.2 SZF Covariance Optimization 

6.2.1 Problem Discussion 

Attempting to solve Eqns. (5.10)–(5.12) from the previous chapter to determine 

optimal covariance matrices for the SZF sum rate is quite complex. The optimization in 

(5.11) is non-convex, unlike that of BD, where the complete decoupling of the users’ 

effective channels creates a convex problem. Thus, finding a global optimum can be 

difficult. In the less-constrained case of DPC, the issue of non-convexity for the 

broadcast channel can be avoided by operating on the dual MAC instead. This duality 

would be useful in SZF, since the formula for the SZF sum rate is essentially the same as 

for DPC, except with the additional null space constraints. Unfortunately, the 

transformation from MAC to BC or vice versa does not support those additional 

constraints. Attempting to consider an effective channel such as 0
, 1k e k kH H V  on the 

MAC, similar to that for BD (Eqn. (5.5) in the previous chapter), then transforming to the 

BC also does not work. The transformations used in [24] have a specific trait that if a set 

of covariance matrices Pk with a certain sum-trace (e.g. P) is available for the MAC, the 
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transformed BC matrices k will satisfy the same sum-trace constraint. In other words, 

   k kk k
Tr Tr Σ P . It is the less than or equal wherein the problem lies for SZF. If 

 kk
Tr P P , then  kk

Tr Σ  will also equal P only if the matrices Pk were optimal 

for the MAC at that sum-trace P. If they were not optimal, then  kk
Tr Σ  will be less 

than P. If one were to then transform these matrices k with the smaller sum-trace (say, 

P ) back to the MAC, one would then obtain a new set of covariance matrices kP  for the 

MAC where  kk
Tr P P  , and which provide the same sum rate as the original 

matrices Pk. This causes the problem for SZF. By forcing the covariance matrices to lie in 

the null space of other users (as required for SZF) by considering effective channel 

matrices, the covariance matrices that are obtained will not be optimal for the MAC. 

Transforming them to the BC in a desire to obtain matrices for SZF will yield a set of 

matrices with a reduced sum-power. Any set of matrices that does not exactly equal the 

sum-power constraint cannot be optimal for SZF. This is proven simply by considering 

the final user encoded in SZF. This user does not cause interference on any users encoded 

earlier in the encoding order. If the covariance matrices have a total power less than the 

sum-power constraint, it is then always possible to increase the power allocated to the last 

user. Doing so will increase its rate, but will have no effect on any other users, leading to 

a strictly larger new sum rate. This therefore proves the original matrices could not be 

optimal. 

Research has found other capacity duality transformations between the MAC and the 

BC based on minimax duality [153] and / or Lagrange duality [154]. These 

transformations allow more general-case linear constraints on the transmit covariance. 

However, these constraints only apply to the net transmit covariance matrix kk
Σ Σ , 

not on the individual covariance matrices k themselves. These constraints are meant to 

apply to, for example, power constraints on individual transmit antennas or groups of 

antennas, instead of (or in addition to) the standard sum-power constraint. There 

furthermore do exist alternative, more general MAC-BC dualities and transformations, 

such as mean-squared-error duality [155], SINR duality [53],[156], and rate duality [157], 

which also account for linear precoding and beamforming1. However, the results for these 

                                                 
1  There are additionally convex transformations for alternative problems other than WSR 
maximization, such as minimizing power subject to SINR constraints on the users [158]. These, 
however, are outside the scope of this work. 
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dualities indicate that even if the null space constraints can be accounted for in the 

transformations (which is not necessarily guaranteed), the problem on the dual MAC 

would still be a non-convex problem. Thus, regardless of operating on the MAC or the 

BC, finding the global optimum would remain difficult. Finding a local optimum solution 

is somewhat easier, although how far that solution is from the global optimum may be 

uncertain. 

6.2.2 Proposed Conjugate Gradient Projection Method 

Since a globally optimal solution is quite difficult to find, a locally optimal method 

may be useful. Furthermore, since the problem on either the MAC or the BC is non-

convex, one may choose to operate on either. Thus, we choose to operate directly on the 

BC, in order to avoid having to perform MAC-BC transformations. 

We propose a conjugate gradient projection (CGP) algorithm to optimize the 

covariance matrices for SZF. Conjugate gradient methods have provable convergence for 

convex utility functions, and, when solving systems of linear equations, the convergence 

is superlinear [159] (that is, if the problem has n real variables, in the worst case the 

algorithm will take n iterations, but most often much fewer). CGP is also particularly 

useful in MIMO systems as the solutions can be found using gradients and functions of 

complex-valued matrix variables. Some methods are only well-defined for functions of 

real-valued vectors, so in those circumstances the covariance matrices and functions 

would have to be decoupled and expressed in terms of those vectors. CGP algorithms or 

gradient projection algorithms have been used for covariance optimization in other 

similar circumstances. For example, CGP is used in a weighted MAC sum-rate 

maximization in [108] and [151], and a gradient projection method is used for MIMO 

interference systems in [160] and the MIMO MAC in [161]. We model our CGP 

algorithm after the one in [108], which operates on transmit filter matrices Tu instead of 

on the covariance matrices Qu directly. This method has the advantage of guaranteeing a 

positive semidefinite covariance matrix H
u u uQ T T  (this is a Cholesky decomposition 

[43]). Operating on Qu directly would require an additional projection during each 

iteration to ensure the solution is in the set of positive semidefinite matrices (cf. [151]). 

Let us rewrite and combine Eqns. (5.10) and (5.11) to account for a weighted sum 

rate. Without loss of generality, we assume (k) = k for brevity of notation. 
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Note in (6.1) that        0 0 0 0
1 1 1 1

H H

k k k k k k k kTr Tr Tr Tr   
           

Q V B V B V V B , as the 

columns of 0
1kV  are orthonormal, so  0 0

1 1

H

k k  V V I 1. Thus, there is the same power 

constraint on Bk as there is on Qk. 

Let us further define H
k k kB T T , where Tk is a min{ , }k k kv v N  matrix, kv is the 

number of columns in 0
1kV , and Nk is the number of receive antennas at user k. Thus, the 

precoding matrix Wk for SZF will be 0
1k k kW V T . Defining Tk in such a manner helps 

reduce the complexity of the optimization by reducing the number of optimization 

variables [50]. The power constraint can also be re-expressed as 
2

k Fk
P T , since 

 2

k kFk
Tr T B . The CGP algorithm2 that operates on Tk is described in Table 6.1. 

Because the SZF WSR maximization problem is not convex, the CGP algorithm may 

not necessarily find the global optimum. Furthermore, the optimal Tk are not necessarily 

unique, since Bk are positive semidefinite. (For example, multiply Tk by any unitary 

matrix U, and the new k kT T U  will yield the same Bk, since H
k k T T  H H

k k T UU T

H
k kT T . Thus, kT  will provide the same WSR as Tk.) 

The local optimum that the algorithm finds is also to some degree dependent on the 

initial values for Tk. Often, when optimizing covariance matrices, an initial choice of a 

scaled identity matrix is used, but in general this cannot be done here, as generally Tk is 

not a square matrix. Furthermore, even if the algorithm were operating on Bk instead of 

Tk, a scaled identity would still not be an appropriate starting point, as the rank would 

likely be too large; the rank of Bk would be kv  instead of min{ , }k kv N . Instead, we 

                                                 
1 However, in general  0 0

1 1

H

k k  V V I .  0 0
1 1

H

k k V V  is the projection to the null space used in the 

covariance method from [50]. If that projection were in fact unitary, the method in [50] would in 
fact be optimal. 
2 We wish to point out that the “conjugate” in conjugate gradient is unrelated to the concept of the 
“conjugate” of a complex number, i.e., x = a + ib, x* = a – ib. In this context, “conjugate” refers to 
the property of conjugacy. If there exists a set of n real-valued, non-zero vectors {p0, …, pn} such 
that 0T

i j p Ap  for all i  j, where A is a symmetric positive definite matrix, then that set of 

vectors is said to be conjugate with respect to A [159]. 
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initialize Tk by distributing values of 0/ / kP K v  uniformly to the columns of Tk in a 

round-robin fashion. This is equivalent to creating a min{ , } min{ , }k k k kv N v N  identity 

matrix, vertically concatenating copies of the rows of that identity matrix until there are 

kv  rows, then finally multiplying by 0/ / kP K v . For example, if Tk was 3×2, entries 

(1,1), (2,2), and (3,1) of Tk would be initialized to 0/ / 3P K , while the remaining 

entries would be 0. 

 
0 0 0

0 0

0 00

/ / 3 0 / / 3 0 / / 3

0 / / 3 0 / / 3 0_ _ . . _ _ . .
/ / 3 0 / / 3/ / 3 0

;
P K P K P K

P K P Kk init e g k init e g
P K P KP K

   
    
    

T B  (6.2) 

Table 6.1: CGP algorithm for SZF covariance optimization 

Initialize: Tk; Sk = 0, k;  = 1;  = 1. 
Calculate WSR from (6.1). 
repeat 

Store: Tk_old = Tk, k; Sk_old = Sk, k; old = ; WSRold = WSR. 
Calculate gradients: Gk,k from (6.3). 

Normalize gradients: 
2k k

k Fk

P



G G
G

, k. 

Project gradients: 
 
 

ˆ
H
k kk

k k kH
k kk

Tr

Tr
 




T G
G G T

T T
, k. 

Calculate Frobenius norm: 
2ˆ

kk F
  G . 

Determine search directions: _
ˆ

oldk k k old

 S G S , k. 

Step in search directions: _
ˆ

k k old k T T S , k. 

Normalize transmit filter sum-power: 
2

ˆ
ˆ

k k

kk F

P



T T
T

, k. 

Calculate WSR from (6.1). 
Set LoopCounter = 0. 
while WSR < WSRold do 

Decrease step size . 

Set ˆ
k kS G , k. 

LoopCounter = LoopCounter + 1. 
if LoopCounter = LoopThresh then 

Set WSRold = WSR. 
Reset  to 1. 

end if 

Recalculate ˆ
kT , Tk, and WSR. 

end while 
until desired accuracy reached 
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The gradient can be calculated using matrix calculus from the partial differential of 

(6.1) with respect to H
kT  [162]. Specifically, k  *2 WSZF kR  T 2

TH
WSZF kR   T . 

Since the gradients will be normalized, leading constants can be left off. We show in 

Appendix F that the gradient for user k is proportional to: 
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. (6.3) 

The above gradients seem quite complex at first glance. However, some 

computational savings can be obtained by a successive calculation of part of the 

gradients. To begin, the sums  0 0
1 11

Hi H
i j j j jj  
Φ V T T V  can first be calculated and 

stored for each i = 1, …, K0 to avoid calculating these sums multiple times. Next, we can 

define Zk as: 

 
1 1

1 1 1 1 1
H H H H

k k k k k k k k k k k k kw w
 

             Z H I H Φ H H H I H Φ H H . (6.4) 

Then, each gradient Gk can be calculated starting from k = K0 downward, using a running 

sum for Zk. For example, in the case of K0 = 4,    0 0
4 3 4 3 4

H
G V Z V T , 

   0 0
3 2 3 4 2 3

H
 G V Z Z V T , and so on. 

In [108], the authors define aggregate matrices G, S, and T, which are the horizontal 

concatenation of the matrices Gu, Su, and Tu, respectively. This primarily allows them to 

avoid the summation of squared F-norms and traces in the notation for their algorithm. 

For example, in the gradient normalization step, 
2

u Fu G  can be represented more 

compactly as 
2

F
G . This notation, strictly speaking, is not possible with our adaptation 

for SZF, as the gradients Gk and matrices Tk are generally of different dimensions for 

each k. An equivalent notation could still be used by instead defining aggregate matrices 

as a block-diagonal formation of the component matrices instead of a horizontal 

concatenation, i.e.,  
01, , KblkdiagG G G . However, this could potentially require 

additional memory and computational complexity unless the algorithm can account for 

the sparseness of the aggregate matrices (i.e., the many matrix entries after block-

diagonalization that equal zero), and is not strictly necessary in the first place. 
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In the “step in search directions” portion of the algorithm, it is possible to find an 

approximately best step size for , for example via an inexact line search like Armijo’s 

Rule [159]. However, we find just as in [108] that it is generally sufficient to simply 

reduce the step size by a factor if there is no increase in the WSR. For example, we had 

good results when using equal weights of wk = 1, k, by simply multiplying  by about 

0.8. We did, however, notice on rare occasions when the algorithm did not converge 

properly. This is likely due to the non-convexity of the problem; the algorithm is likely 

stalling near a saddle point in these cases. Repeated decreases in  did not result in an 

increase in the WSR, and often lead to a small decrease in the WSR. This may also be 

due to the fact that when a non-linear function is being optimized, an inexact line search 

(or lack of one, in our case) can lead to the search not being in the correct direction [159]. 

For example, if a function is being maximized, although the search should be in a 

direction of ascent, the search direction may actually be in one of descent. Thus, we 

implement the addition of a loop counter to compensate for these rare cases1. If the loop 

counter reaches a certain threshold (we use a threshold of 100), the previous best WSR is 

set to the currently found value for the WSR, and  is reset2 to 1. Since this updated value 

is often slightly smaller than the previous value, there is a guaranteed larger value that the 

algorithm can head towards. This slight decrease in WSR and resetting of  is generally 

enough for the algorithm to get sufficiently far enough away from wherever it has stalled 

to continue finding a better solution (i.e., even better than where it stalled). If the 

algorithm’s WSR still does not increase notably at this point, then it means the algorithm 

has found a local solution to the problem, as the change in WSR should be less than the 

desired accuracy. Thus, the algorithm can stop and return the current solution. 

6.3 Simulation Results 

In this section, we present simulation results comparing the performance of our 

proposed SZF CGP covariance optimization method to the existing method. The 

simulation setup is identical to that in the previous chapters, i.e., a base station with MT 

transmit antennas, a pool of K users each with N receive antennas, etc. For reference, we 

also present the performance when using BD. 

                                                 
1 During our simulations, these rare cases seemed to primarily occur at low SNR. 
2 This is similar and related in concept to the notion of “restarting” the CGP search during non-
linear optimizations, as discussed in [159]. 
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6.3.1 Unweighted Sum-Rate Performance of Proposed CGP Algorithm 

We begin by comparing two relatively simple cases also examined in [50]. Figure 6.1 

and Figure 6.2 show cases for an unweighted sum rate (i.e., all users have a weight of 1) 

for BD and the existing and proposed SZF covariance optimization methods. In the first 

case, MT = 4, K = K0 = 2, and N = 2, while in the second, MT = 6, K = K0 = 3, and N = 2. 

In both of these cases, strictly speaking scheduling is not necessary, as the number of 

available users K equals the number of simultaneously supportable users K0. However, 
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Figure 6.1: Average sum rate vs. SNR with proposed and existing SZF covariance optimization 

methods and BD; MT = 4, K = K0 = 2, N = 2. 

0 2 4 6 8 10 12 14 16 18 20
4
6
8

10
12
14
16
18
20
22
24
26
28
30

SNR (dB)

A
ve

ra
ge

 su
m

 ra
te

 (b
it/

s/
H

z)

 

 
SZF (proposed)
SZF (existing)
BD

 
Figure 6.2: Average sum rate vs. SNR with proposed and existing SZF covariance optimization 

methods and BD; MT = 6, K = K0 = 3, N = 2. 
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we do still consider all possible subsets of those users, and all possible encoding orders of 

those users for SZF, to find the ordered selection that gives the maximum sum rate. 

It can be seen that at low SNR, there is essentially no difference between our 

proposed CGP algorithm and the existing SZF covariance method from [50]. However, as 

the SNR increases, there is an increasing gain in the throughput of our proposed 

algorithm relative to the existing algorithm. In Figure 6.1, the gains are rather modest; the 

sum rate is about 0.35 bit/s/Hz larger at 10 dB, about 0.65 bit/s/Hz larger at 14 dB, and 

about 0.6 bit/s/Hz larger at 20 dB. These represent percentage gains of about 3.5%, 5%, 

and 3%, respectively. However, the gains are much more significant in Figure 6.2. The 

throughput increase is about 0.75 bit/s/Hz at 10 dB, and about 2.45 bit/s/Hz at 20 dB. 

This is a percentage gain of over 5% and 9%, respectively. More importantly, we note 

that the performance of the original method is worse than that of BD above an SNR of 16 

dB. This result was not visible in [50], as the graph for MT = 6, K = 3 in that paper only 

went up to 16 dB. In comparison, our proposed CGP algorithm performance is 

consistently above that of BD. We can thus see that the performance gains generally 

increase both with the number of supported users and with the SNR, though the gain with 

SNR may eventually start to drop off at lower K0. 

In Figure 6.3, we present a somewhat more complicated scenario more related to our 

scheduling work in the previous chapter. In this case, we consider a larger user pool size 

of K = 16 with MT = 8. Each user in the pool has N = 2 receive antennas, so at most K0 = 

4 users can be served simultaneously. We use an exhaustive search for scheduling that 
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Figure 6.3: Average sum rate vs. SNR with proposed and existing SZF covariance optimization 

methods and BD, using exhaustive search scheduling; MT = 8, K0 = 4, N = 2, K = 16. 
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considers all possible subsets of users and encoding orders. This decouples the effect of 

the specific scheduling algorithm and allows us to focus on the performance of the SZF 

covariance optimization methods. This is also the scenario from the end of the last 

chapter where we identified the deficiencies with the existing method. 

For the existing numerical method to find the covariance, as also seen in the last 

chapter, the average sum rate for SZF quickly becomes less than that of BD, at around 11 

dB. However, the average sum rate for SZF using our CGP algorithm remains higher than 

that of BD at least up to an SNR of 20 dB. The improvement in performance over the 

existing algorithm is about 0.68 bit/s/Hz (about 5%) at 5 dB, about 1.5 bit/s/Hz (about 

7%) at 10 dB, and about 4.85 bit/s/Hz (about 12%) at 20 dB. 

We note, though, that the gain in throughput relative to BD starts to decrease at 

higher SNR. The throughput likely becomes less than that of BD at an SNR somewhere 

larger than 20 dB. This serves to demonstrate that our CGP algorithm, though improved, 

is still globally suboptimal. However, a worse performance than BD can be avoided with 

our algorithm. Rather than the “round-robin” initialization described in Section 6.2.2, 

instead the matrices Tk can be initialized based on the BD-optimal covariance matrices. 

Initial values for Bk can be obtained from the BD matrices Qk,BD by k B

 0 0
1 , 1

H

k k BD k V Q V . Since the BD matrices meet the SZF null space constraints, they can 

be built from the SZF null space basis vectors, meaning Qk,BD can be expressed as 

 0 0
1 , 1

H

k k BD k V B V . Thus, k B    0 0 0 0
1 1 , 1 1

H H

k k k BD k k    V V B V V ,k BD IB I ,k BDB . Initial 

values for Tk can then be obtained through Cholesky decomposition. However, this for 

the most part should be unnecessary, as that extremely high of an SNR is unlikely to be 

seen in practice. 

We have also noticed that, while the existing SZF covariance method is worse than 

our proposed CGP method, the covariance matrices Qk,o provided by that method 

sometimes provide a better starting point for our CGP algorithm than the round-robin 

initialization. This is particularly the case at high SNR. For example, consider the 

scenario from Figure 6.2. For that same scenario, Figure 6.4 shows a distribution of the 

gain in sum rate at 20 dB obtained using Qk,o as the starting point, relative to the sum rate 

using our original initialization. The large spike near zero shows that for a large 

proportion of the time, initializing with Qk,o has no effect on the resulting sum rate. About 

4% of the time, Qk,o actually yields a smaller sum rate. However, around 35% of the time, 

initializing with Qk,o results in a higher sum rate, with the throughput in certain instances 
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increasing by up to 3 bit/s/Hz. However, averaged over all instances, the mean increase in 

sum rate is not that significant. When using Qk,o, the average sum rate for our CGP at 20 

dB increases from about 29.3 bit/s/Hz to about 29.7 bit/s/Hz. This extra throughput 

represents on average about an additional 1.4% increase in throughput. Thus, on average, 

this small additional throughput is likely not worth the added computational complexity. 

To get that extra percent, in effect two optimizations must be run. The first is on the 

MAC (followed by transforms and projections) to find Qk,o, then a second with our CGP 

algorithm using Qk,o for initialization. 

Furthermore, as K increases, this effect seems to essentially disappear. If we consider 

now the scenario from Figure 6.3, there is virtually no difference in the average sum rate 

between the two initialization methods. Our simulations only showed an improvement of 

about 0.03 bit/s/Hz at 20 dB, which is certainly negligible and likely within the error 

margin of the simulation. It appears that the larger user pool and scheduling has the effect 

of removing any initialization-based gains. In part, this is because the larger user pool 

means that the scheduled users’ channels are closer to orthogonal. The larger pool also 

means that the scheduling algorithm has more options to choose a different set of users or 

encoding order that may negate any effect from the different initialization point. 

6.3.2 Weighted Sum-Rate Performance of Proposed CGP Algorithm 

We now consider a simple scenario for a weighted sum rate. We examine the case 

where MT = 8, K = K0 = 4, and N = 2. Recall from Chapter 3 that the proportionally fair 

scheduling algorithm takes a fair amount of effort to simulate, due to the need to build up 
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Figure 6.4: Distribution of improvement in average sum rate at 20 dB when initializing CGP 

algorithm with Qk,o; MT = 6, K = K0 = 3, N = 2. 
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average rate statistics for the users. To avoid this, in this scenario we simply set the 

weight for each user proportional to that user’s index, i.e., /k kk
w k w  . (The sum in 

the denominator is just for normalization and does not affect the rates the scheduled users 

receive.) Such a scenario might arise in practice if each user belongs to a different class 

of service, such as if they are carrying different types of traffic, or they have paid for 

higher average data rates. Figure 6.5 shows the WSR performance of our proposed CGP 

method relative to a WSR using BD. All possible user subsets and orderings are 

considered. Recall that there exists no prior method for weighted SZF covariance 

optimization, so we cannot compare our performance to any such algorithm. We observe 

that the WSR of SZF is larger than that when using BD. The SZF algorithm performs 

better than BD in this scenario by about 0.5 dB in SNR. 

Our simulations for this scenario also indicated only a minor correlation between the 

best user encoding order and the relative sizes of the weights. Figure 6.6 shows a 

histogram of how often each user index is encoded in a given position for the best 

obtained WSR. A user index of 0 indicates that no user was encoded in that position (i.e., 

transmitting to less than the maximum supportable number of users maximized the WSR). 

It can be seen that there is somewhat of a tendency to encode the users in the decreasing 

order of their weights. This trend is strongest at lower SNRs. However, as the SNR 

increases, this trend diminishes. At 20 dB, for example, it is approximately equally likely 

that users 3 and 4 (with weights 0.3 and 0.4, respectively) will be encoded first. User 2 is 

encoded first about half as often as 3 or 4, but also encoded second about half as often as 

3 or 4. Thus, there is no hard rule to determine the optimal encoding order for a WSR for 
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Figure 6.5: Average weighted sum rate vs. SNR with proposed SZF covariance optimization 

method and with BD; MT = 8, K = K0 = 4, N = 2, wk = k/10. 
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SZF. This is in stark contrast to the MAC or when using DPC on the BC, as discussed in 

the introduction to this chapter. 

We also note that even at high SNR, it is often best in terms of maximizing the WSR 

to not transmit to the maximum possible number of users. In this scenario, with the 

limited user pool to choose from, it is better to transmit to less than the maximum about 

43–57% of the time. We made a similar observation in the previous chapter for 

unweighted sum rates when scheduling to small user pools, for both BD and SZF. The 

likelihood of scheduling the maximum possible number of users increased in the previous 

chapter with the size of the user pool K, due to multiuser diversity and the increased 

chance of finding users with orthogonal channels. This fact is unlikely to change by using 

our proposed CGP optimization algorithm here. 
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Figure 6.6: Proportion of time that user index is encoded in given position to maximize SZF 

weighted sum rate, where user weights equal 1/10 of user indices (wk = k/10); MT = 8, K = K0 = 4, 
N = 2. Index “0” indicates no user encoded in that position. (a) User index is encoded first. 

(b) User index encoded second. (c) User index encoded third. (d) User index encoded fourth. 
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6.3.3 Updated Scheduling Performance of GA and GrA 

Now that we have an SZF covariance algorithm that performs better than the existing 

algorithm, we proceed to run the genetic and greedy scheduling algorithms from the 

previous chapter to find the improvement in their performance. We concentrate primarily 

on the MT = 8 case. Based on the results from Figure 6.1, there is not much change to be 

expected with the CGP method versus the original method with MT = 4. Simulations 

verify this; the change between the two methods is generally less than 0.1 bit/s/Hz in sum 

rate, which is less than a 1% change in throughput. 

Figure 6.7 shows a comparison of the performance vs. K of the GA and GrA when 

using the original method and our proposed CGP covariance optimization method with 

MT = 8 at an SNR of 10 and 20 dB; more results are in Appendix G. There is a significant 

increase in throughput seen for our proposed CGP algorithm. At 10 dB, the sum rate of 
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Figure 6.7: Average sum rate vs. K comparing original and proposed CGP covariance optimization 

methods; MT = 8, N = 2, K0 = 4. (a) SNR = 10 dB, and (b) 20 dB. 
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the GA increases by around 1.7–1.9 bit/s/Hz, or about 8–9.5%, while the GrA increases 

by about 1.7–2.1 bit/s/Hz, or about 7.5–11.5%. At 20 dB, the GA sum rate increases by 

about 5.5–6 bit/s/Hz, or about 13.5–16%, while the GrA increases by about 6–6.6 

bit/s/Hz, or about 15.5–19.5%. 

It is clear that the GrA seems to benefit the most from using our proposed CGP 

algorithm. This can be seen in the larger increases in throughput compared to those for 

the GA. It can also be seen when comparing the GA and GrA performance at 20 dB. 

With the original method, the GA outperforms the GrA, whereas with our CGP algorithm, 

the throughput of the two algorithms is nearly identical. This is explained in part by the 

threshold in the GrA. We have seen in our simulations that the optimal threshold for the 

GrA is somewhat larger when using the CGP method compared to the original method. 

This means that the GrA rejects fewer users from consideration, leading to an increase in 

throughput, particularly at low K. However, this must also mean that the GrA is more 

computationally complex, since it must now calculate metrics for those users when 

scheduling. 

6.3.4 Original Covariance Method for User Selection with CGP for Sum-
Rate Maximization 

As we have seen from the simulation results earlier in this chapter, the original 

covariance method from [50] is significantly inferior to our proposed CGP method in 

terms of the average sum rate it provides at higher SNR and larger K0. However, the 

original method does have the advantage of being faster. Recall from the complexity 

analysis of the GA for SZF in the last chapter that the order of complexity of finding the 

SZF sum rate (i.e., the fitness of one chromosome) is 3
0( )TM K . The step of finding the 

null space basis vectors is also 3
0( )TM K  in itself. Since our proposed CGP algorithm 

also requires the same null space basis vectors, it too must be at least of complexity order 

3
0( )TM K . However, the MAC waterfilling algorithm only requires around 5 iterations 

to converge, as discussed in the previous chapter. (We ignore the additional complexity 

of the transformations and projections for the moment.) In comparison, our CGP 

algorithm requires a significantly longer period of time to converge. 

Figure 6.8 shows distributions of the number of iterations required for the CGP 

algorithm to converge such that the change in SZF sum rate is less than 10-3 bit/s/Hz and 

less than 5×10-8 bit/s/Hz. We show the case for MT = 8, N = 2, K0 = 4, using a random 

selection and ordering of K0 users at an SNR of 10 and 20 dB. The CGP algorithm 
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appears to have a significant dependence of its convergence on SNR; the higher the SNR, 

the slower the convergence. At 10 dB, it takes an average of 26 iterations to converge to 

10-3 bit/s/Hz and 62 iterations to converge to 5×10-8 bit/s/Hz. At 20 dB, this increases to 

59 and 183 generations, respectively. 

This slower convergence is motivation to use the faster original covariance method 

for user scheduling. Thus, we investigate the following: the fitness for the GA 

chromosomes is given by the SZF sum rate as determined by the original covariance 

method. (We shall refer to this as “DL fitness” in the following, based on the initials of 

the authors’ names in [50].) Once a group of users and encoding order is selected based 

on the DL fitness, our proposed CGP method is used to find better covariance matrices 

for that scheduling decision. Note that this alternative only applies to the GA, since the 

SZF covariance optimization is not involved in the GrA scheduling itself, but rather only 

after the scheduling decision has been made, and to a lesser extent in the selection of the 

threshold. 

Figure 6.9 shows the performance of the GA when using the DL fitness for 

scheduling. As part of that scheduling, the original method’s covariance matrices are 
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Figure 6.8: Distributions of convergence of CGP algorithm such that SZF sum rate changes by 

less than 1×10-3 / 5×10-8 bit/s/Hz; MT = 8, N = 2, K0 = 4. (a) SNR = 10 dB, and (b) 20 dB. 
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automatically available as part of calculating the DL fitness. Thus, it is trivial to initialize 

the CGP with those matrices instead of the “round-robin” initialization we have proposed, 

in order to obtain the small increase in performance they provide. We also compare the 

sum rate using these two initialization points, dubbed “DL init” and “RR init”, 

respectively. We also include the sum rate from the previous chapter (without using the 

CGP algorithm) for reference. 

It can be seen that the DL fitness provides a worse sum rate than using the CGP 

algorithm for the GA fitness. At 10 dB, the DL fitness is about 0.8–0.9 bit/s/Hz worse, 

providing about 96% of the throughput of the CGP fitness. At 20 dB, the loss is about 

2.0–3.4 bit/s/Hz when using the RR initialization, or about 4.5–8%. Interestingly, at this 

SNR, and when using the DL fitness, this is an instance where using DL initialization 

actually has a notable effect on the sum rate. The loss relative to the CGP fitness with RR 

0 10 20 30 40 50 60 70 80 90 100
19

20

21

22

23

24

A
ve

ra
ge

 su
m

 ra
te

 (b
it/

s/
H

z)

 

 

(a)

0 10 20 30 40 50 60 70 80 90 100
35
36
37
38
39
40
41
42
43
44
45
46

Number of users (K)

A
ve

ra
ge

 su
m

 ra
te

 (b
it/

s/
H

z)

 

 

(b)

CGP fit., RR init.
CGP fit., DL init.
DL fit., RR init.
DL fit., DL init.
DL fit., no CGP

CGP fit., RR init.
CGP fit., DL init.
DL fit., RR init.
DL fit., DL init.
DL fit., no CGP

 
Figure 6.9: Average GA sum rate vs. K comparing CGP and DL fitness for scheduling, followed 

by CGP sum rate maximization with RR and DL initialization; MT = 8, N = 2, K0 = 4. Performance 
without CGP algorithm also shown. (a) SNR = 10 dB, and (b) 20 dB. 
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initialization is only 1.1–2.5 bit/s/Hz (2.5–6%), a difference of 0.9 bit/s/Hz compared to 

the loss using the DL fitness with RR initialization. Hence, there is an overall loss in 

performance compared to the CGP fitness. However, performing the CGP sum-rate 

maximization after the selection still provides a better sum rate than not doing so. The 

improvement over just using the original method by itself is about 0.8–1.0 bit/s/Hz, or 4–

5%, at 10 dB, and 2.1–3.4 bit/s/Hz, or 6–8.5%, at 20 dB when using the RR initialization. 

With the DL initialization, the gain increases to 3.0–4.3 bit/s/Hz (8.5–10.5%) at 20 dB. 

Thus, there is some justification to using the DL fitness for scheduling, if its reduced 

complexity is an important factor in the system design. However, the usage is somewhat 

limited; it is only beneficial for medium SNRs. At high SNR, the throughput when using 

BD can be larger than using SZF with the DL fitness for scheduling; see also the BD 

results in Appendix G. 

6.4 Conclusion 

We have proposed and examined an improved method based on conjugate gradient 

projection for optimizing the covariance matrices for SZF precoding. This proposed 

method outperforms the existing method from [50] by up to an additional 12% in sum 

rate for the simpler cases analyzed with exhaustive search scheduling and smaller 

numbers of active users K. It was also seen that there is an increasing gain in the 

performance of our method over the prior method both with increasing SNR and with 

higher numbers of simultaneously supportable users K0. Our proposed method also 

consistently had a throughput larger than that when using block diagonalization (BD); the 

throughput of the existing scheme was seen to drop below that of BD at higher SNR and 

K0. 

Our CGP method also supports the maximization of a weighted sum rate (WSR) 

using SZF. Such a weighted sum rate is important for quality of service issues. To our 

knowledge, there is no prior method for WSR maximization using SZF in the literature. 

We demonstrated with a simple case that even when considering a WSR, our proposed 

method still provided a higher weighted throughput than when using BD. 

Even larger gains were obtained when using the CGP method in conjunction with the 

genetic and greedy algorithms examined in the previous chapter. The GA sum rate 

increased by about 8–9.5% at 10 dB and about 13.5–16% at 20 dB, while the GrA 

improved by about 7.5–11.5% at 10 dB and about 15.5–19.5% at 20 dB. It was further 

seen that using the prior covariance method for scheduling, then optimizing the 
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covariance matrices with the CGP algorithm for that user selection, provides about half 

the gain in throughput as using the CGP sum rate for scheduling. 

Although our proposed method improves on the performance of the existing method, 

our method is still not globally optimal. Since the SZF optimization problem is non-

convex, finding the global optimum is very difficult. It is thus hard to say how far away 

our scheme is from the global optimum for SZF. There are a few global optimization 

techniques which could find the best overall solution. Since the performance of our CGP 

algorithm is to some degree dependent on the starting point used to initialize the 

algorithm, a stochastic method could be used to try different starting points. One could 

run a large-scale simulation trying multiple random starting points for the CGP algorithm. 

Even better, a genetic algorithm could be used in order to drive those random starting 

points towards a location that would lead to the global optimum. Given enough time, 

such a method would eventually cause the CGP algorithm to converge to near the global 

optimum. Alternatively, a branch-and-bound with reformulation linearization technique 

such as that described in [163],[164],[165] may assist in finding the global optimum. 

However, such a technique would be extremely complex and not meant for real-time 

implementation in practical systems. It would be meant solely to provide an optimal 

benchmark for comparative purposes. Nonetheless, the global optimization problem 

remains as future work. 
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Chapter 7 

Conclusions and Future Work 

7.1 Conclusions 

With research for future wireless communication systems concentrating on MIMO 

designs, there is a need for MIMO scheduling algorithms. Such scheduling algorithms 

must choose users to balance numerous factors, such as increasing the system throughput, 

lowering multiuser interference, ensuring fairness, meeting quality of service constraints, 

and so forth. In this thesis, we investigated low complexity scheduling algorithms for 

multiuser MIMO systems. 

In particular, we examined the use of genetic algorithms (GAs) for MIMO scheduling. 

In Chapter 3, we investigated the use of GAs for scheduling in systems employing dirty 

paper coding (DPC). DPC is optimal in achieving the broadcast channel capacity of 

multiuser MIMO systems, so this case provided a benchmark for determining the best 

that the GA can perform. The GA chromosome structure we proposed can both account 

for an encoding order in the precoding and allow the scheduling of users on several 

carriers in a multi-carrier system. The maximum throughput and proportional fairness 

(PF) scheduling criteria were examined, although the general structure used for the GA 

allows for the maximization of an arbitrary utility function. It was seen that the GA 

performed within about 0.5 dB of an exhaustive search for the cases examined. A further 

increase in sum-throughput and a decrease in delays were seen when a 4-carrier OFDM 

system was examined. The GA performance was obtained at a large runtime decrease 

compared to an exhaustive search. The GA complexity was linear in both the number of 

active users and in the maximum number of users that can be scheduled, compared to the 

combinatorial complexity of the exhaustive search. 

In Chapter 4, it was seen that tuning the parameters of the GA is very important in 

reducing the time it takes for the GA to converge. We found that by tuning the 

parameters in the adaptive mutation rate, the convergence time dropped to less than 30% 

of the time for untuned values in one case. We were also able to derive a simple equation 
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that was linear in the parameters to adjust their values for changing numbers of active 

users and numbers of supportable users, to allow the values to be in the range required for 

near-minimum convergence times. We also examined the effect of replacing the one-

point crossover operator of the GA with a uniform crossover operator, but found that this 

had little effect on the GA convergence. 

The GA was then extended to systems with linear beamforming in Chapter 5. We 

examined the performance of a GA and a “greedy” algorithm (GrA) for each of block 

diagonalization (BD) and successive zero-forcing (SZF). An in-depth complexity analysis 

found that the GrA was of lower complexity than the GA by a factor of K0 for BD and 

2
0K  for SZF, where K0 is the number of simultaneously supportable users. It was found 

that the GA tended to perform better than the GrA at higher signal-to-noise ratios (SNRs) 

and lower numbers of active users K, while the GrA was better at lower SNRs and higher 

K. Both algorithms performed fairly closely to an exhaustive search, providing no worse 

than 90% of the optimal throughput. We also proposed two hybrid algorithms combining 

the traits of the GA and the GrA. The first hybrid improved upon the performance of the 

GA by about 2% in throughput, while the second improved upon the GrA, increasing 

throughput at low K by about 8% for BD and 4.5% for SZF. Both hybrid algorithms 

yielded these improvements without causing an increase in the order of complexity of the 

algorithms. 

Our work in Chapter 5 identified two deficiencies with the existing method in the 

literature for SZF covariance optimization. The existing method provides lower 

throughput than it should at higher SNRs, and does not support the maximization of a 

weighted sum rate. In Chapter 6, we proposed a new method based on conjugate gradient 

projection that addresses both deficiencies. The proposed method improved the 

throughput of an exhaustive search by about 7% at an SNR of 10 dB, and by about 12% 

at 20 dB. Using this new method with the GA and GrA from Chapter 5 resulted in even 

larger gains. The throughput of the GA improved by about 8–9.5% at 10 dB and about 

13.5–16% at 20 dB, while the GrA improved by about 7.5–11.5% at 10 dB and 15.5–

19.5% at 20 dB. 

In summary, this work demonstrated that genetic algorithms can provide a viable 

method of scheduling for multiuser MIMO systems. However, in some circumstances, a 

GA may not be the best overall choice. The results of Chapter 5 demonstrated that it is 

possible to design greedy scheduling algorithms with the same or lower complexity than 

the GA, and that provide higher throughput than the GA. That being said, the 



 

136 

circumstances of those results were somewhat simplistic. The algorithms were examined 

assuming perfect channel knowledge, uncorrelated channels, and a comparatively simple 

maximization of the system sum rate. GAs may be better suited for circumstances where 

there are several other factors of fairness and quality of service that must also be balanced. 

The GA is also only as complex as the function used to calculate the fitness of the 

chromosomes. By using a lower complexity fitness function, the GA could perhaps trade 

off that lower complexity for a longer run time to further increase its performance. Lastly, 

the GA was seen to be a good supplement to existing algorithms. By running a greedy 

algorithm, followed by a GA for a small number of generations, the performance is 

guaranteed to be no worse than the greedy algorithm alone, and for a comparatively small 

increase in complexity. That is, the increase in complexity was less than the order of 

complexity overall of the original algorithm. Thus, there is certainly a place for genetic 

algorithms in the realm of MIMO multiuser scheduling. 

7.2 Future Work 

The work performed in this thesis used relatively simple scheduling utility functions. 

That is, we limited our work to the maximum throughput and proportional fairness 

criteria. However, the PF criterion should be representative of how well the GA should 

perform relative to an exhaustive search for any weighted sum rate. Nevertheless, it 

would be useful to investigate the performance of a genetic scheduling algorithm with 

actual QoS constraints, and various classes of data traffic being carried. Some possible 

alternative utility functions are described in Chapter 2 (e.g. [87]–[93]). In general, the 

only change necessary to the GA would be to use these utility functions to calculate the 

fitness of the chromosomes. All other aspects of the GA would remain the same. 

Another possible area for research is in transmitter-receiver coordination. We 

mentioned in a few places in this thesis that coordinated transmitter-receiver processing is 

capable of supporting additional users. It would be of interest to examine this further in 

how it relates to GA scheduling. On a related note, it is also possible for the users to 

perform receive antenna switching, i.e., to activate and deactivate their antennas as the 

situation warrants. The results of [73], for example, seem to indicate this may in fact be 

required to truly maximize the sum rate for BD. A GA could help in this regard; in such a 

situation, the GA would become a joint scheduling and receive antenna selection 

algorithm. 
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The research herein assumed perfect channel knowledge. However, such knowledge 

is unfeasible in a practical system. Thus, an important area for research is the effect of 

imperfect or limited channel state information on the scheduling process. DPC is 

particularly known for being sensitive to errors in the channel knowledge. [86] and [166] 

are examples of work in this area, but the field in general and for multiuser MIMO 

specifically has yet to be well covered. Interestingly, there is a possibility that a GA could 

benefit from limited channel information, in that the fitness function would likely be less 

complex. But in any case, the effect of limited feedback on GA scheduling would be a 

good subject for future work. Such work should also consider more practical channel 

models, including such effects as temporal and / or spatial correlation. 

An emerging topic in wireless research is in the area of network coordination. In 

these techniques, the base stations for several cells act together to help reduce the 

interference within the network. In one example, this may include coordinating the 

transmissions of base stations so signals sent to users in one cell do not interfere with the 

reception of users in other cells from their base station [167]. More recently, though, 

coordinated multipoint (CoMP) transmission has been of interest, where the base stations 

in several cells can act as a distributed MIMO array. A user in one cell can receive useful 

information from several base stations simultaneously [168]. A genetic scheduling 

algorithm may be quite useful for CoMP. A GA has a structure well suited to 

parallelization in the calculation of the fitness of the chromosomes. These calculations 

could be distributed among the base stations in order to help speed up the process and 

reduce the load compared to a single location running a scheduling algorithm. Thus, the 

use of GAs for scheduling with CoMP is a promising direction for research. 

Lastly, as we noted in Chapter 6, the improved covariance optimization algorithm we 

proposed is still globally suboptimal. It would be worthwhile to determine what the 

globally optimal performance of SZF is. It is unlikely that this could be determined on a 

timescale reasonable enough for practical implementation, but it would still serve as a 

useful benchmark. 
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Appendix A 

Validation of the Simulation Model  

The simulation model used in this work assumed a Rayleigh fading channel, which 

represents a system with a rich scattering environment, wherein the received signal has 

no significant specular / line-of-sight component. When examining the proportional 

fairness criterion, we also assumed the existence of log-normal shadowing. The 

simulation results were determined via Monte Carlo methods. All simulations were 

conducted using Matlab. To verify the simulations overall, we examine three factors in 

more detail. First, we check whether the channel gains are indeed complex Gaussian-

distributed values, as they should be. Second, we examine the error in the Monte Carlo 

results. Lastly, we compare the simulation results to findings published in the literature. 

A.1 Complex Gaussian Verification 

Gaussian variables are generated in Matlab using the “randn” function. The function 

generates values for a Gaussian-distributed variable with zero mean and unit variance. To 

ensure that the values are different each time Matlab is run, the state of the random 

number generator can be set to a value based on the system clock. 

Figure A.1 shows the approximate PDF and CDF of a set of 100,000 values of a real 

Gaussian random variable generated by Matlab. The PDF px(x) and CDF Fx(x) of a 

Gaussian random variable x with mean x and variance 2
x  respectively are [20]: 

    2 2/ 21
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x xx
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p x e  
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xF x e dt

 



 


  . (A.2) 

It can be seen that the random variables from Matlab, which would be used in 

simulations, closely match the theoretical distributions. The plots for the simulated and 

analytical results overlap. The mean and variance of the random variables were –0.0039 

and 1.0034 respectively, which are very close to the expected values of 0 and 1. Testing 
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the covariance of the random variables x(n) and x(n + t), for offsets of t = 1 to 1000, the 

maximum magnitude of the covariance observed was 0.0101 for any offset, which 

indicates that the Gaussian variables generated by Matlab are also uncorrelated, as 

desired. These results thus also verify the generation of log-normal shadowing values, 

which are also Gaussian-distributed. The only difference is that they are in units of dB, 

and have a standard deviation of 8 dB. The required standard deviation can be obtained 

easily by multiplying the Matlab-generated Gaussian variables by 8. 

The Rayleigh channel requires complex-valued Gaussian variables with zero mean 

and unit variance. These can be generated from the real-valued Gaussian variables by r = 

  / 2R Ix ix , where xR and xI are i.i.d. Gaussian random variables with zero mean and 

unit variance. Figure A.2 shows the PDF and CDF of the magnitude of 100,000 values of 
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Figure A.1: Comparison of the distribution of values of a random Gaussian variable generated by 
Matlab (solid lines) with the theoretical Gaussian distribution (dashed lines). (a) PDF, (b) CDF. 
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Figure A.2: Comparison of the distribution of values of a random Rayleigh variable generated by 
Matlab (solid lines) with the theoretical Rayleigh distribution (dashed lines). (a) PDF, (b) CDF. 
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such a complex Gaussian variable generated in Matlab. The magnitude of the complex 

Gaussian variables should be Rayleigh distributed with a PDF and CDF of [20]: 

   2 2/ 2
2

, 0xr
r

x

r
p r e r


  , (A.3) 

   2 2/ 21 , 0xr
rF r e r   . (A.4) 

2
x  is the variance of the Gaussian variables making up the real and imaginary parts of 

the complex variable; in this case, 2
x  = 1/2. 

Once again, it can be seen that the generated and theoretical distributions match very 

closely. The generated complex Gaussian variables had a mean of 0.0015 – 0.0008i and a 

variance of 0.9979, which again are close to the desired values. The magnitude of the 

complex Gaussian variables should theoretically have a mean of r = / 2x   = 0.8862 

and a variance of  2 22 / 2r x     = 0.2146 [20]. The generated variables had a mean 

of 0.8857 and a variance of 0.2135, which are very near their theoretical values. 

Thus, given the overall closeness of the generated random variables to their 

theoretical distributions, means, and variances, the generation of channel matrices for our 

Rayleigh channel model is validated. 

A.2 Error in Monte Carlo Simulations 

The figures for the simulation results throughout the thesis generally are meant to 

show an average of some sort, most commonly the average throughput or sum rate 

provided by the scheduling algorithms. What this is supposed to mean is the ergodic 

average; that is, the expected value obtained by averaging over all possible channel 

realizations. However, in practice for the simulations, we do not have the true ergodic 

mean. Instead, we have a sample mean taken over multiple independent realizations of 

the channel. Thus, there is some error inherent in the reported values. Strictly speaking, 

the figures should actually have error bars to depict the uncertainty in the mean. 

However, in practice, the error bars are almost never included in published literature. 

While there is an error in the mean, if a sufficiently large number of realizations are 

averaged, the sample mean closely approximates the ergodic mean. If the error is small 

enough, then leaving off the error bars is justified if their range cannot be viewed clearly 

in the figures. 

The error in the simulation is found from the standard error of the mean, given by: 
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 ˆE sampS N . (A.5) 

̂  is the standard deviation of the results for the independent runs of the simulation, and 

Nsamp is the number of samples used to calculate the mean [169]. The standard error is an 

estimate of the standard deviation of the sample mean. Clearly, as the number of samples 

increases, the standard error decreases. 

The confidence interval for the mean can then be found from the standard error. In 

general, a certain percentage confidence interval can be found by a certain number of 

standard errors around the sample mean. For example, if the samples for the mean follow 

a normal (Gaussian) distribution1, then the 95% confidence interval will be 1.96SE 

around the mean [169]. It can then be said that we are 95 percent confident that the true 

ergodic (or population) mean falls within that interval. 

We illustrate this for the case of our genetic scheduling algorithm for block 

diagonalization from Chapter 5, with MT = 8, N = 2, and K0 = 4, at an SNR of 10 dB. 

Figure A.3 shows how the average sum rate and the 95% confidence interval for the 

average changes as the number of samples increases. When Nsamp = 1000, the 95% 

confidence interval is about 0.06 bit/s/Hz, and the sum-rate curve is fairly smooth. Thus, 

1000 runs of the Monte Carlo simulation should in general be enough to obtain a very 

good estimate of the mean. However, in many cases, we still run simulations for even 

longer (when feasible) for even tighter bounds on the results. In general, most simulations 

were run for either 5000 or 10000 independent channel realizations. The main exceptions 

to this were some of the exhaustive search simulations. With the exhaustive search, the 

combinatorial complexity greatly increased the run times for the simulations, particularly 

for order-dependent cases like successive zero-forcing. With the exhaustive search, for 

larger K, to keep the total simulation time feasible, the total number of runs was limited 

to 1000. On the other hand, simulations for the proportional fairness criterion were run 

for a longer time, due to there being two sources of randomness in the channel matrices: 

the complex Gaussian channel gains for the Rayleigh channel, and the log-normal 

shadowing components. We note that since the Rayleigh channel gains change for each 

simulation run and for each transmit-receive antenna pair at each scheduling interval, 

while the shadowing is fixed for the length of a simulation run and is constant for all 

                                                 
1 With a large number of samples, the distribution will closely approximate a normal distribution, 
due to the central limit theorem [20] (also assuming the mean and standard error are finite). If the 
number of samples is not sufficiently large, a t distribution can be used with Nsamp – 1 degrees of 
freedom [169]. 
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receive antennas of a given user, the Rayleigh components account for a much larger 

proportion of the randomness in the simulations. 

Overall, the largest 95% confidence intervals appear to occur for smaller K, and also 

at lower SNR (not shown above). This is reasonable; we expect there to be a larger 

variance in the supportable capacity when there is not a larger pool of users to choose 
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Figure A.3: Comparison of average sum rate and 95% confidence intervals vs. K for genetic 

scheduling algorithm for BD with varying number of Monte Carlo simulation runs Nsamp; MT = 8, 
N = 2, K0 = 4, SNR = 10 dB. 
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from, and when channel conditions dictate more often that less than the maximum 

number of users should be scheduled. However, in the worst case throughout our work, 

we generally see that the 95% confidence interval around the average sum rate / sum-

capacity is still at most about 0.06 bit/s/Hz, similar to what is seen with Nsamp = 1000 in 

Figure A.3. The Nsamp = 5000 case from Figure A.3 is fairly representative of the error for 

most of the cases in this thesis, regardless of the specific precoding method, SNR, etc. 

A.3 Comparison with Published Results 

One final check that can be done is to compare the results from our work with those 

that exist in prior literature. This is primarily meant to verify that the system simulations 

have been properly set up. Since almost all prior work focuses on maximizing the system 

sum rate, the comparisons can be made relative to our optimal results for exhaustive 

search scheduling. In cases where we simulate scheduling algorithms proposed by others, 

those results can also be compared for further verification of the setup. 

For the results on DPC, we can compare our maximum throughput results1 with those 

in [75] and [109]. The results of our exhaustive search from Figure 3.6(a) and Figure 3.7 

match those for the sum-capacity in Figure 14 and Figure 11 of [75] for MT = 2 and NR = 

1. Our results for MT = 4 in Figure 3.7 are slightly below the sum-capacity in Figure 11 of 

[75], but we note that the sum-capacity therein does not assume that a maximum of MT 

users is scheduled. However, our results are very close to the best “successive 

projections” scheduling algorithm of [75], which does only schedule MT users. Thus, our 

exhaustive search results for MT = 4 (with a maximum of MT users) are also likely 

accurate. Lastly, our comparable results for ZFB in Chapter 3 are the same as those 

reported in [109]. 

For our results on BD scheduling, we can compare with those in [69] and [147]. Our 

exhaustive search results in Figure 5.1 match those in Figure 1 of [69] for MT = 4 and N = 

2 at 10 dB. Furthermore, our simulation results for the SCAHE scheduling algorithms in 

[69] also match those reported in [69]. Additionally, our exhaustive search and SCAHE 

results for MT = 8 and N = 2 in Figure 5.2 at 10 dB match those reported in Figure 2 of 

[147]. 

There exist almost no results in the literature for SZF scheduling, so there is very 

little with which to compare. Exhaustive search results were obtained from simulations 

                                                 
1  We unfortunately have been unable to locate other appropriate results in the literature for 
proportionally fair scheduling with DPC, to which we can compare our results in Chapter 3. 
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independently in [142]; these match our results in Figure 5.3. There are also SZF results 

for K = K0 in [50]. We simulated these same cases for our comparison of SZF covariance 

optimization algorithms in Chapter 6. Our simulation results of Figure 6.1 and Figure 6.2 

are the same as those for BD and SZF reported in Figures 5 and 6 of [50]. 

Thus, overall, we have first seen that the random values we have generated fall into 

the desired complex Gaussian distribution. Second, the confidence intervals for the mean 

sum rates of our simulations are quite tight. Last, the results of our simulations match 

those reported in other published works for the same system setup and certain identical 

scheduling algorithms. Thus, we can have a high degree of confidence in the validity of 

our results. 
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Appendix B 

Optimality Conditions for DPC BC 
Scheduling 

From equation (2.9) in Chapter 2, the rate for a given user (k) in a DPC system is 

given by: 
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Without loss of generality, let the users be ordered such that (k) = k. With non-

interfering subcarriers, the rate for user k on subcarrier j is then: 
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Taking the constraints mentioned in Chapter 3 into account, the optimization problem 

,G 

  of equation (3.6) can be expressed with Lagrange multipliers [170] as: 
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The final term in equation (B.3) ensures that the transmit covariance matrices jk are 

positive semidefinite, given that the variables jk are positive semidefinite. Since the 

trace of a matrix is the sum of its eigenvalues, if jk is not positive semidefinite, it will 

have a negative eigenvalue, and hence there will exist jk such that the trace of jkjk and 

the overall equation will not be maximized compared to a case for which jk were 

positive semidefinite and had non-negative eigenvalues. 

Let sjk be a binary variable indicating if user k is scheduled on subcarrier j. The 

Karush-Kuhn-Tucker [170] conditions for optimality are then: 
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We can expand / jkG Σ  as: 
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Lemma: The partial derivatives /ji jkR Σ  are given by: 
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and in particular, 
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where T and * are the (non-Hermitian) transpose and conjugate operators, respectively. 

 

Proof: We can replace the log2 in (B.2) with log without affecting the maximization. 

Then, assuming k > i, we can expand (B.2) as: 
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If k < i, jk does not appear in Rji, and thus /
T Tji jk M MR   Σ 0 . First, we consider 

k  i. Making some substitutions, let g(f) = log(f), f(U) = |U|, 0 jiA H , 1
H
jiA H , and 
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H
ji ju ji

u i

 
   

 
U I H Σ H . Then, based on the tables and techniques in [162],[171], we 

can calculate the derivative of the first half of Rji as: 

 

 
     

 

 

1 1 1

1 1 1

1
0 1 0 1

,

1 1
0 1 0 1

,

1 1
1 0 0 1

,

jk ju
u i u k

jk ju
u i u k

jk ju
u i u k

g f f f Tr

Tr Tr

Tr

Tr Tr

Tr Tr

  

  



 

 

 

 

 

       

    

          
     

        
   
       

 







U U U

U U U U U U

U I A Σ A A Σ A

U A Σ A U A Σ A

A U A Σ U A Σ A



 

. (B.11) 

Note that the second half of the last line above does not contain the term jkΣ . Based 

on [171], we therefore have: 

   

   

11
0 1 0 1

1 1

0 0 1 1 0 1 0 1

1 1

0
TT T T T T

jk

T

T T T T T T T
ju ju

u i u i

T TT H T T H T T T
ji ji ju ji ji ji ji ju ji ji

u i u i

g 

 

 

 

 

 


  



                 
        

      
         

      

 

 

A U A A U A
Σ

A I A Σ A A A I A Σ A A

H I H Σ H H H I H Σ H H

. (B.12) 

We now note that the second half of (B.10) is basically the same form as the first 

half, provided now that k > i. If so, then we have: 

 
1 1

* * * *ji T T T T T T
ji ji ju ji ji ji ji ju ji ji

u i u ijk

R
 

 

       
                

 H I H Σ H H H I H Σ H H
Σ

. (B.13) 

However, if k = i, the second half of (B.10) disappears, and / /ji jk jkR g    Σ Σ . This 

proves the first part of the lemma. 

In the following, note that any positive semidefinite or positive definite matrix A can 

be expressed in the form A = MMH through a Cholesky decomposition [43]. The transmit 

covariance matrices jk of the users, being of the form  H
jk jk jkEΣ x x , are positive 

semidefinite (as are their transposes), and hence a sum of those matrices would be such as 

well. Let T
ju

u i

A Σ . Then, 
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   HT T T H T
ji ju ji ji ji ji ji ji ji

u i

    



 
   

 
H Σ H H AH H MM H H M H M  (B.14) 

is positive semidefinite. The addition of the identity matrix, which is positive definite, to 

the above will make the sum strictly positive definite. Furthermore, note that the inverse 

of a positive definite matrix is also positive definite [43]. Thus, letting B

1

T T
ji ju ji

u i







  
  

  
I H Σ H , and setting k = i, we have: 

 

  

1

jk T T T
jk jk ju jk jk

u kjk

HT T H T T
jk jk jk jk jk jk

R


 



 

         

  

H I H Σ H H
Σ

H BH H LL H H L H L

. (B.15) 

Thus, jk jkR Σ , and in particular 1 1j jR Σ , must be at least positive semidefinite. 

In the event NR  MT, and hence T
jkH  has more columns than rows, if Hjk is full rank, 

jk jkR Σ  will also have full rank and hence in fact be strictly positive definite. In any 

event, it is also clear that jk jkR Σ  can only be equal to 
T TM M0  if Hjk is an all-zero 

matrix, which occurs with probability zero in practice. This completes the proof of the 

lemma. 

 

From (B.5), we know either jk or  jkTr Σ  is zero, and from the problem constraints 

we know that  jkTr Σ  is zero if user k is not scheduled on subcarrier j, and greater than 

zero if it is. Hence, if sjk = 1, jk = 0. From (B.4), for each j, either j is zero, or j > 0 and 

 jk Ck
Tr P N


 Σ . Let us now focus on k = 1. Then, (B.7) reduces to 1/ jG  Σ

  1 1 1/ /j jG R R   Σ . From (B.6), since jk is zero when sjk = 1, if j is zero, then there 

are two possibilities: (a) 
T T

T
jk M MΩ 0 , and either 1/ 0G R    or 1 1/

T Tj j M MR   Σ 0 ; or 

(b)   1 1 1 1 T T

T
j j j M MG R R      Σ Ω 0 . However, we know from the lemma that 

1 1j jR Σ  is non-zero, and 1/ 0G R    by the constraint of equation (3.3) in Chapter 3. 

Thus, case (a) is impossible. Furthermore, since 1/ 0G R   , and since 1 1j jR Σ  and 

T
jkΩ are both positive semidefinite, case (b) is also impossible; it is impossible for two 

non-zero positive semidefinite matrices to add to an all-zero matrix. Thus, we must have 
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j > 0 for each j. This can also be proven intuitively; if  jk Ck
Tr P N


 Σ , it is 

always possible to increase the rate of the user encoded first by increasing its power until 

 jk Ck
Tr P N


 Σ , without affecting the rates of the users encoded later in the order. 

We lastly note that due to the structure of (B.8), it is only necessary to sum (B.7) over 

all i  k. (B.7) can then be expressed more compactly. Hence, from the above facts and 

equations (B.4) to (B.8), we find the optimal transmit covariance matrices for a given set 

of users and encoding order satisfy the following set of equations: 

 , if 0
T Tjk M M jks Σ 0 ; (B.16) 

   , 1,...,jk C C
k

Tr P N j N


  Σ


; (B.17) 

   0jk jkTr Σ ; (B.18) 

1 1

* * * *

,
T T T T

T T T T T T
ji ji ju ji ji ji ji ju ji ji

i k u i i k u ii i

T
j jk M jk M jk M M

G G

R R

s k 

 

   



                                  
     

   H I H Σ H H H I H Σ H H

I I Ω 0 
; (B.19) 

 , 0jk jkΣ Ω  . (B.20) 
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Appendix C 

Least Squares Polynomial Fit for GA 
Tuning 

In Chapter 4, we find that there is a linear relationship between the log of the product 

KMT and the log of a constant c for tuning the adaptive mutation rate parameters 1 and 

2. This means we can express the relationship as a log(KMT) + b = log(c), for some 

constants a and b. We now proceed to find the least squares fit for the polynomial 

coefficients a and b [172]. The linear equations can be written in matrix form as follows: 

 

 
 
 

 
 
 

log 3.227 log 20 1

log 7.45 log 40 1

log 17.2 log 80 1

a a

b b

   
                       

X . (C.1) 

The least squares fit values for a and b can then be found by left-multiplying both 

sides of the above equation by the Moore-Penrose pseudoinverse [43] of X: 

   
 
 
 

1 1†

log 3.227
1.2071

log 7.45
2.4445

log 17.2

T T T Ta a a

b b b

 
 

                                

X X X X X X X X X . (C.2) 

Thus, we have 1.2071 log(KMT) – 2.4445 = log(c). We can further expand b as 

follows: 

  2.4445 1.2071 2.0252 1.2071log 7.5773b        . (C.3) 

Thus, 1.2071 [log(KMT) – log(7.5773)] = log(c). Then, it is simply a matter of 

rearranging the equation as 1.2071 log(KMT/7.5773) = log[(KMT/7.5773)1.2071] = log(c), 

or c = (KMT/7.5773)1.2071. Thus, we finally have: 

 1 + 0.152 = (KMT/7.5773)1.2071. (C.4) 
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Appendix D 

Existing Method to Find Covariance 
Matrices for Successive Zero-Forcing 

In [50], the authors propose a suboptimal method to find covariance matrices for 

successive zero-forcing (SZF) precoding that satisfy the required null space and sum-

trace constraints. This method involves finding optimal covariance matrices for the users 

on the multiple access channel (MAC), transforming those matrices to the broadcast 

channel (BC), and finally projecting the BC covariance matrices to the null space and 

performing waterfilling for the user encoded last to obtain the SZF matrices. We 

elaborate on the procedure in the following. 

D.1 MAC Waterfilling 

To begin, optimal covariance matrices Pi for the multiple access channel must be 

found for the users. This could be done using any type of iterative waterfilling procedure 

to maximize the sum rate for the MAC, or even any procedure to maximize the weighted 

sum rate, if the weights are set to the same positive value for each user. The authors of 

[50] recommend the algorithm in [107], and it is this algorithm that we use in our work. 

To maximize the MAC sum rate and obtain the optimal Pi for K0 users, the algorithm 

in [107] uses the following steps at each iteration n: 

1) For each user i = 1,…,K0, generate an effective channel matrix: 

   1 2
H

i i j j jj i




 G H I H P H , (D.1) 

where Hi is the broadcast channel matrix for user i; the channel matrix for the dual 

MAC is H
iH . 

2) The effective channel matrices are treated as parallel, non-interfering channels. 

Covariance matrices Si are found from the well-known waterfilling algorithm over 

the block-diagonal matrix formed from  
01, , Kblkdiag G G , with power constraint 

P. First, the following SVD is computed for each i: 



 

164 

 H H
i i i i iG G U D V . (D.2) 

Then, H
i i i iS U Λ U , where   1

i i
 Λ I D , (A)+ denotes component-wise the 

maximum of each component of A and 0, and  is found such that1  0

1

K

ii
Tr P


 Λ . 

3) The covariance matrices are updated for the next iteration. If K0 = 2, this can be done 

simply by  1n
i i

 P S . However, this update may not converge in general; the sum 

rate may diverge from the optimal. To ensure convergence to the optimal sum rate for 

any K0, the covariance matrices should be updated as follows: 

    1 0

0 0

11n n
i i i

K

K K
 

 P S P . (D.3) 

 

The authors of [107] also recommend that the first few iterations of the algorithm 

could be updated by  1n
i i

 P S  before switching to the update method of (D.3), to allow 

faster initial convergence. In our work, we use a slight modification of this 

recommendation. Either update method will always produce a set of covariance matrices 

each iteration that meets the sum-power constraint, provided that the initial starting point 

 0
iP  used also meets that constraint. The algorithm will also monotonically approach the 

optimal sum rate, unless it diverges under the first update method. Since during the 

algorithm operation we monitor the sum rate at each iteration for convergence to a certain 

accuracy, we can thus also trivially monitor for a decrease in the sum rate. If one is 

found, only then do we switch the update method from  1n
i i

 P S  to that in (D.3). This 

provides faster total convergence, and still ensures convergence to the optimal sum rate 

and covariance matrices Pi. 

D.2 MAC to BC Transformations 

Once the optimal Pi for the MAC are found, they must be converted to optimal i for 

the BC. This is accomplished using the transformations proposed in [24], which we 

describe below. 

Assume without loss of generality an encoding / decoding order (j) = j, where user 1 

in the order is assumed to be encoded last on the BC, and decoded first on the MAC. In 

this case, the rate for each user on the MAC will be: 

                                                 
1 This assumes without loss of generality that the AWGN variance 2

n  is 1. 
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0

0
2

1

log

K H
i i ii jM

j K H
i i ii j

R


 









I H P H

I H P H
, (D.4) 

and the rate for each user on the BC will be: 

 
 
 

1

2 1

1

log

j H
j i jiB

j j H
j i ji

R














I H Σ H

I H Σ H
. (D.5) 

First, define and calculate a set of matrices Bj as follows: 

 0

1

K H
j i i ii j 

B I H P H . (D.6) 

These are the interference matrices for each user j on the MAC (i.e., the denominator of 

M
jR ). Then, define a set of matrices Aj, which are the interference matrices for each user 

on the BC, as: 

  1

1

j H
j j i ji




 A I H Σ H . (D.7) 

Lastly, for each j, calculate the product 1/ 2 1/ 2H
j j j
 B H A , and denote its SVD as: 

 1/ 2 1/ 2H H
j j j j j j
  B H A F D G . (D.8) 

The BC covariance matrices j and the matrices Aj can be calculated successively for 

increasing j, starting with A1 = I. The transformation for j is given by: 

 1/ 2 1/ 2 1/ 2 1/ 2H H
j j j j j j j j j j

 Σ B F G A P A G F B . (D.9) 

Using this transformation will yield a set of BC covariance matrices j with 

 jj
Tr  Σ  jj

Tr P . Furthermore, the transformation will result in M B
j jR R  for all 

j. 

The order chosen for the users will obviously affect the covariance matrices and the 

rates they obtain. The authors of [50] do not explicitly say what order to use for the 

transformation. However, the equations they use imply that if user (1) is encoded first 

for SZF, then user (1) should be encoded last for DPC on the BC. In this manner, the 

equation for the DPC user rates will be identical to the equation for the SZF user rates, 

apart from the additional null space constraints of SZF. 

D.3 SZF Null Space Projections 

With the optimal covariance matrices j for DPC obtained, the authors of [50] then 

project those matrices into the null spaces of users as required for SZF. Let us assume an 
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SZF encoding order (j) = j, with user 1 encoded first. The projection then proceeds as 

follows: 

1) Calculate the null space basis vectors 0
1jV  for each user j (see Chapter 5). 

2) For each user j = 2 to K0 – 1, obtain the SZF covariance matrix Qj as follows: 

    0 0 0 0
1 1 1 1

H H

j j j j j j   Q V V Σ V V . (D.10) 

We note that the projection is unnecessary for j = 1, since 0
0V I . Thus, Q1 = 1. 

3) For the final user j = K0, find the effective channel Heff: 

     0

0 0 0 0 0

1 2
1 0 0

1 11

HK H
eff K j K K K Kj


 

  H I H Q H H V V . (D.11) 

4) Obtain a temporary covariance matrix 
0KQ  by waterfilling over Heff with the power 

constraint  0 1

1

K

jj
P Tr




 Q . 

5) Obtain the final covariance matrix 
0KQ  by: 

    
0 0 0 0 0 0

0 0 0 0
1 1 1 1

H H

K K K K K K   Q V V Q V V . (D.12) 

 

Although the SZF covariance method described in this appendix is suboptimal, it 

does perform quite well for K0 = 2, and for higher K0 at low to medium SNRs. However, 

as K0 or the SNR grows larger, the conjugate gradient projection algorithm we propose in 

Chapter 6 can provide a significant improvement in the sum rate. 
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Appendix E 

Supplemental Simulation Results for 
Scheduling Algorithms under Block 
Diagonalization and Successive Zero-
Forcing 

This appendix contains additional simulation results for the scheduling algorithms 

discussed in Chapter 5. The results here cover a wider range of signal-to-noise ratios 

(SNRs) than those presented in Chapter 5. We first present the results for BD, followed 

by the results for SZF. The graphs begin on the next page; the remainder of this page is 

intentionally left blank. 
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Figure E.1: Performance vs. K of exhaustive search, greedy (GrA), genetic (GA), and SCAHE 

[69] scheduling algorithms for BD and various SNR; MT = 4, Nk = N = 2, K0 = 2. 
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Figure E.2: Performance vs. K of greedy (GrA), genetic (GA), and hybrid scheduling algorithms 1 

and 2 (HA1 and HA2) for BD and various SNR; MT = 4, Nk = N = 2, K0 = 2. 
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Figure E.3: Performance vs. K of exhaustive search, greedy (GrA), genetic (GA), and SCAHE 

[69] scheduling algorithms for BD and various SNR; MT = 8, Nk = N = 2, K0 = 4. 
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Figure E.4: Performance vs. K of greedy (GrA), genetic (GA), and hybrid scheduling algorithms 1 

and 2 (HA1 and HA2) for BD and various SNR; MT = 8, Nk = N = 2, K0 = 4. 
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Figure E.5: Performance vs. K of greedy (GrA), genetic (GA), and hybrid scheduling algorithms 1 

and 2 (HA1 and HA2) for SZF and various SNR; MT = 4, Nk = N = 2, K0 = 2. 



 

173 

31

33

35

37

39

41

 

 
20 dB

24

26

28

30

32

15 dB

17
18
19
20
21
22
23
24

A
ve

ra
ge

 su
m

 ra
te

 (b
it/

s/
H

z) 10 dB

11

12

13

14

15
5 dB

0 10 20 30 40 50 60 70 80 90 100

6.5

7

7.5

8

Number of users (K)

0 dB

ES
GrA
GA
HA1
HA2

 
Figure E.6: Performance vs. K of greedy (GrA), genetic (GA), and hybrid scheduling algorithms 1 

and 2 (HA1 and HA2) for SZF and various SNR; MT = 8, Nk = N = 2, K0 = 4. 
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Appendix F 

Derivation of Gradient of SZF Weighted 
Sum Rate 

Let us assume as in Chapter 6 an encoding order for SZF of (i) = i, where user 1 is 

encoded first. The weighted sum rate of SZF is then 0

1

K

i ii
w R

 , where: 

 
 

   

0 0
1 111

2 21 1 0 0
1 11 1

10 0 0 0
2 1 1 2 1 11 1

log log

log log

Hii H HH
i j j j j ii j i jj

i i HiH H H
i j i i j j j j ik j

H Hi iH H H H
i j j j j i i j j j j ij j

R
 

 
  


    


 

 

   


 

 

I H V T T V HI H Q H

I H Q H I H V T T V H

I H V T T V H I H V T T V H

. (F.1) 

Note that the expression for Ri is very similar to that for DPC, thus, we can find the 

partial derivatives of Ri with respect to Qk in much the same manner as we used in 

Appendix B. Let us define H
j j jY T T  and H

j jX T . Furthermore, similar to as done in 

Appendix B, let us define g(U) = log |U|, 0
0, 1ij i jA H V ,  0

1, 1

H H
ij j iA V H , and  U I

 0 0
1 11

Hi H
i j j j ij   H V Y V H . Then, following equation (B.11) in Appendix B, for k  i, we 

can calculate the derivative of the first half of Ri with respect to Yk by: 

     1 1
1, 0, 0, 1,1,

i

ik ik k ij j ijj j k
g Tr Tr 

 
    A U A Y U A Y A . (F.2) 

The second half of (F.2) does not contain kY , so we may ignore it. Thus, 

substituting for Yk, we get [162],[171]: 

 

    
  
    

1 1
1, 0, 1, 0,

1
1, 0,

1 1
1, 0, 1, 0,

H
ik ik k ik ik k k

H H
ik ik k k k k

H H
ik ik k k ik ik k k

g Tr Tr

Tr

Tr Tr

 



 

    

     

   

A U A Y A U A X X

A U A X X X X

A U A X X A U A X X

. (F.3) 

Now, from [171], if a differential g  is a function of  *Tr X  (or of  HTr X , 

since the trace of X* equals the trace of XH), then /g X  will evaluate to an all-zero 
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matrix. (Similarly, if g  is a function of  Tr X , then */g X  is also all-zero.) Thus, 

we find: 

 1
1, 0,

TH
ik ik k

k

g      
0 A U A X

X
. (F.4) 

Substituting in for the temporary variables, for k  i, we thus have: 

      1
0 0 0 0

1 1 1 11

T
H HiH H H

k i i j j j j i i k kH j
k

g 

   

         
V H I H V T T V H H V T

T
. (F.5) 

If k > i, then / H
kg T  is an all-zero matrix. The derivation for the second half of Ri is 

much the same, except that it is only non-zero for k  i – 1. 

Thus, we can now find the gradient of the weighted sum rate 0

1

K

WSZF i ii
R w R


  with 

respect to user k as follows: 

 0

* 1
2 2 2

T T
KWSZF WSZF i

k iH Hi
k k k

R R R
w



     
           


T T T

. (F.6) 

As the first half of / H
i kR T  is only non-zero for i  k, and the second half is only 

non-zero for i  k + 1, the bounds of the summation can be reduced. This yields: 

    
    

0

0

1
0 0 0 0

1 1 1 11

1
10 0 0 0

1 1 1 11
1

2

log 2
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k K
H HiH H H

i k i i j j j j i i k kj
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V H I H V T T V H H V T

V H I H V T T V H H V T

. (F.7) 

The denominator of log 2 comes from the fact that Ri uses a base-2 logarithm, while the 

above derivations used a base-e (natural) logarithm. However, since our conjugate 

gradient projection algorithm normalizes the gradients, the leading constants can be left 

off. Then, pulling terms not involving i out of the summations, we finally find that the 

gradient for user k is proportional to: 
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1
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. (F.8) 
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Appendix G 

Supplemental Simulation Results for 
Scheduling Algorithms under SZF with 
Conjugate Gradient Projection 
Covariance Optimization Method 

This appendix contains additional simulation results for the scheduling algorithms 

operating under successive zero-forcing (SZF), using the conjugate gradient projection 

(CGP) algorithm we propose in Chapter 6 to optimize the covariance matrices. The 

results here cover a wider range of signal-to-noise ratios (SNRs) than those presented in 

Chapter 6. We compare the performance of our proposed algorithm with the original 

method for the calculation of covariance matrices from [50]. For reference, we also show 

the performance of the scheduling algorithms when using block diagonalization (BD). 

The graphs are on the next page; the remainder of this page is intentionally left blank. 
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Figure G.1: Performance vs. K of greedy (GrA) and genetic (GA) scheduling algorithms for SZF, 
using proposed CGP (with “round-robin” initialization) and original methods to obtain covariance 
matrices. Performance of GrA and GA for BD also shown. MT = 8, N = 2, K0 = 4, various SNRs. 


