

University of Alberta

GENETIC ALGORITHMS FOR SCHEDULING IN MULTIUSER MIMO WIRELESS

COMMUNICATION SYSTEMS

by

Robert Charles Elliott

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Communications

Department of Electrical and Computer Engineering

©Robert Charles Elliott

Spring 2011
Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential
users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and,

except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or
otherwise reproduced in any material form whatsoever without the author's prior written permission.

Examining Committee

Witold A. Krzymień, Electrical and Computer Engineering

Jeffrey Andrews, Electrical and Computer Engineering, University of Texas at Austin

Mike MacGregor, Computing Science

Hai Jiang, Electrical and Computer Engineering

Chintha Tellambura, Electrical and Computer Engineering

To my parents,

who may not understand everything in this thesis,

and yet are always understanding.

Abstract

Multiple-input, multiple-output (MIMO) techniques have been proposed to meet the

needs for higher data rates and lower delays in future wireless communication systems.

The downlink capacity of multiuser MIMO systems is achieved when the system

transmits to several users simultaneously. Frequently, many more users request service

than the transmitter can simultaneously support. Thus, the transmitter requires a

scheduling algorithm for the users, which must balance the goals of increasing

throughput, reducing multiuser interference, lowering delays, ensuring fairness and

quality of service (QoS), etc.

In this thesis, we investigate the application of genetic algorithms (GAs) to perform

scheduling in multiuser MIMO systems. GAs are a fast, suboptimal, low-complexity

method of solving optimization problems, such as the maximization of a scheduling

metric, and can handle arbitrary functions and QoS constraints. We first examine a

system that transmits using capacity-achieving dirty paper coding (DPC). Our proposed

GA structure both selects users and determines their encoding order for DPC, which

affects the rates they receive. Our GA can also schedule users independently on different

carriers of a multi-carrier system. We demonstrate that the GA performance is close to

that of an optimal exhaustive search, but at a greatly reduced complexity. We further

show that the GA convergence time can be significantly reduced by tuning the values of

its parameters.

While DPC is capacity-achieving, it is also very complex. Thus, we also investigate

GA scheduling with two linear precoding schemes, block diagonalization and successive

zero-forcing. We compare the complexity and performance of the GA with “greedy”

scheduling algorithms, and find the GA is more complex, but performs better at higher

signal-to-noise ratios (SNRs) and smaller user pool sizes. Both algorithms are near-

optimal, yet much less complex than an exhaustive search. We also propose hybrid

greedy-genetic algorithms to gain benefits from both types of algorithms.

Lastly, we propose an improved method of optimizing the transmit covariance

matrices for successive zero-forcing. Our algorithm significantly improves upon the

performance of the existing method at medium to high SNRs, and, unlike the existing

method, can maximize a weighted sum rate, which is important for fairness and QoS

considerations.

Acknowledgements

I must begin by expressing my sincere gratitude to my graduate supervisor, Dr.

Witold A. Krzymień, for his guidance and support throughout my doctoral studies. His

insight, advice, and assistance with my research program and his financial support have

been invaluable. I would also like to thank the members of my candidacy examination

committee, Dr. Ivan Fair, Dr. Hai Jiang, Dr. Joe Culberson, and committee chair Dr.

Vincent Gaudet, as well as my final Ph.D. defense committee, Dr. Jeffrey Andrews, Dr.

Mike MacGregor, Dr. Hai Jiang, Dr. Chintha Tellambura, and committee chair Dr.

Tongwen Chen. All of their input and feedback have been very beneficial.

I would like to gratefully acknowledge the funding and research environment

provided by TRLabs. Additional funding provided by the Natural Sciences and

Engineering Research Council (NSERC) of Canada, the Alberta Informatics Circle of

Research Excellence (iCORE), the Alberta Ingenuity Fund, Huawei Technologies, and

the Rohit Sharma Professorship is also gratefully acknowledged. This work made use of

the infrastructure and computational resources of AICT (Academic Information and

Communication Technologies) at the University of Alberta, and of WestGrid.

I have appreciated the academic and casual discussions over the years with my fellow

graduate students and colleagues at the University of Alberta and TRLabs. I must

particularly thank Dr. Shreeram Sigdel, with whom I collaborated on my work of

scheduling algorithms for BD and SZF. I would also like to thank Dr. David Mazzarese,

Dr. Mohsen Eslami, Dr. Kevin Jacobson, Arash Talebi, and Saeed Kaviani for their help

and input. I also thank Chris Van Kleeck for his assistance with proofreading my thesis.

I would also like to thank the fine folks at the German Aerospace Centre (DLR) in

Oberpfaffenhofen, Germany, for their accommodation and assistance during my stay

there as a visiting researcher in 2005. I would particularly like to acknowledge Ronald

Raulefs, Jutta Uelner, Alexander Arkhipov, Stefan Kaiser, Simon Plass, Stephan Sand,

and Armin Dammann. My apologies if I have accidentally forgotten to list someone.

Last, but certainly not least, I must thank my parents Mervin and Susie. I have had

their constant patience, encouragement, and loving support through all my endeavours

both academic and otherwise. They have stood by me through both the happy and the

challenging moments of my graduate studies. This thesis would not have been possible

without them.

Table of Contents

1 Introduction ...1

1.1 Motivation..1
1.2 MIMO Wireless Communications...2
1.3 Orthogonal Frequency Division Multiplexing...2
1.4 Multiuser MIMO Systems ...3
1.5 MIMO Multiuser Scheduling...4
1.6 Research Goals and Summary of Contributions ..5
1.7 Organization of the Thesis ...8

2 Background on MIMO, Precoding, and Scheduling ..9

2.1 Single-User MIMO Systems..9
2.2 Multiuser MIMO Systems ...10

2.2.1 MAC, BC, DPC, and Duality...12
2.3 MIMO Precoding and Beamforming ...15
2.4 MIMO Multiuser Scheduling...17

3 Genetic Scheduling Algorithms for Downlink Transmission in MIMO Single-
and Multi-Carrier Systems with Dirty Paper Coding..22

3.1 Introduction..22
3.2 General Design and Optimal Solution for MIMO Multi-Carrier Scheduling......24

3.2.1 Optimal Solution: Mixed Integer Programming and Power Waterfilling..24
3.2.2 Example Scheduling Criteria and Their Utility Functions.........................26

3.3 Genetic Algorithms..28
3.3.1 General Description ...28
3.3.2 Genetic Algorithm for Order-Dependent Precoding and Scheduling30

3.4 Multiuser MIMO System Model with Single and Multiple Carriers...................37
3.4.1 Wireless Channel Model ..37
3.4.2 Physical Layer Model ..39
3.4.3 Medium Access Control Layer Model...40

3.5 Simulation Results ...41
3.5.1 Single-Carrier Results ..41
3.5.2 Multi-Carrier Results ...46
3.5.3 Convergence...49
3.5.4 Runtime / Complexity Comparison ...52

3.6 Conclusion ...55

4 Impact on and Improvement of the Convergence of GA Scheduling from
Parameter Tuning and Change in Crossover Method ...57

4.1 Introduction..57
4.2 Problem Description ..57
4.3 Simulation Setup and Results ..59

4.3.1 Simulation Setup ..59
4.3.2 Simulation Results ...59

4.4 Further Discussion ...67

4.4.1 Interpretation of Equation for Parameter Values67
4.4.2 Other SNRs and Utility Functions ...69

4.5 Uniform Crossover ..71
4.6 Conclusion ...75

5 Genetic, Greedy, and Hybrid Scheduling Algorithms for Block Diagonalization
and Successive Zero-Forcing ..76

5.1 Introduction..76
5.2 System Model with Linear Precoding..76

5.2.1 Block Diagonalization..77
5.2.2 Successive Zero-Forcing..79

5.3 Scheduling Algorithms ..81
5.3.1 Genetic Algorithms ..81
5.3.2 Greedy Algorithms...83
5.3.3 Hybrid Algorithms ...85

5.4 Complexity Analysis..86
5.4.1 Complexity of Various Matrix Operations ..86
5.4.2 Complexity of Genetic Algorithm for Block Diagonalization...................87
5.4.3 Complexity of Genetic Algorithm for Successive Zero-Forcing89
5.4.4 Complexity of Greedy Algorithm for Block Diagonalization93
5.4.5 Complexity of Greedy Algorithm for Successive Zero-Forcing................94
5.4.6 Complexity of Hybrid Algorithms ...95

5.5 Simulation Results ...96
5.5.1 Block Diagonalization..97
5.5.2 Successive Zero-Forcing..101
5.5.3 Hybrid Algorithm 1..105
5.5.4 Hybrid Algorithm 2..108
5.5.5 Further Discussion ...111

5.6 Conclusion ...112

6 Improved Covariance Optimization for Successive Zero-Forcing Weighted and
Unweighted Sum-Rate Maximization ..114

6.1 Introduction..114
6.2 SZF Covariance Optimization ...115

6.2.1 Problem Discussion..115
6.2.2 Proposed Conjugate Gradient Projection Method....................................117

6.3 Simulation Results ...121
6.3.1 Unweighted Sum-Rate Performance of Proposed CGP Algorithm122
6.3.2 Weighted Sum-Rate Performance of Proposed CGP Algorithm125
6.3.3 Updated Scheduling Performance of GA and GrA..................................128
6.3.4 Original Covariance Method for User Selection with CGP for Sum-Rate

Maximization ...129
6.4 Conclusion ...132

7 Conclusions and Future Work ...134

7.1 Conclusions..134
7.2 Future Work...136

Bibliography ..138

A Validation of the Simulation Model ...150

A.1 Complex Gaussian Verification...150
A.2 Error in Monte Carlo Simulations..152
A.3 Comparison with Published Results ..155

B Optimality Conditions for DPC BC Scheduling ...157

C Least Squares Polynomial Fit for GA Tuning...162

D Existing Method to Find Covariance Matrices for Successive Zero-Forcing.....163

D.1 MAC Waterfilling..163
D.2 MAC to BC Transformations...164
D.3 SZF Null Space Projections ...165

E Supplemental Simulation Results for Scheduling Algorithms under Block
Diagonalization and Successive Zero-Forcing ..167

F Derivation of Gradient of SZF Weighted Sum Rate...174

G Supplemental Simulation Results for Scheduling Algorithms under SZF with
Conjugate Gradient Projection Covariance Optimization Method....................176

List of Tables

Table 3.1: Runtime comparison of genetic and exhaustive search scheduling algorithms
in terms of number of utility function evaluations required ...53

Table 5.1: Adaptive mutation rate parameter values used for varying numbers of active
users in pool (K) and varying numbers of simultaneously supportable users (K0)82

Table 5.2: Simplified greedy user scheduling algorithm for BD84

Table 5.3: Simplified greedy user scheduling algorithm for SZF.....................................85

Table 5.4: Summary of the complexity orders of different user scheduling algorithms...96

Table 6.1: CGP algorithm for SZF covariance optimization ..119

List of Figures

Figure 2.1: Block diagram of a single-user MIMO system. ...9

Figure 2.2: (a) Block diagram of MIMO multiple access channel. (b) Block diagram of
MIMO broadcast channel. ..11

Figure 2.3: Typical dirty paper coding achievable rate region for a 2×2 MIMO broadcast
channel. ...14

Figure 3.1: Flow diagram of a general case genetic algorithm. ..29

Figure 3.2: Two typical chromosomes for single-carrier DPC scheduling with NS = 4 and
K = 10. (a) Users 2, 4, 7, and 9 are scheduled and have order numbers ‘10’, ‘11’, ‘00’,
and ‘01’, respectively. The users are therefore encoded in the order {7,9,2,4}. (b) Users 4
and 8 are scheduled and have order numbers ‘11’ and ‘01’, respectively. They are
therefore encoded in the order {8,4}. The remaining two order numbers in the tail of the
chromosome are ignored...32

Figure 3.3: Example of GA operation for multi-carrier DPC scheduling with four
subcarriers, four transmit antennas, and 10 active users. (a) Two typical chromosomes
and a random crossover location. (b) Crossover operation. (c) Mutation operation.
(d) Correction of invalid child chromosomes. ..34

Figure 3.4: Flow diagram of the genetic scheduling algorithm.37

Figure 3.5: Conceptual power spectrum P(f) vs. frequency f of single-carrier and multi-
carrier transmissions with same normalized total bandwidth WT. Total transmit power is
divided equally among carriers. (a) Single carrier. (b) OFDM, 4 subcarriers. (c) FDM, 4
subcarriers. ..39

Figure 3.6: Performance of maximum throughput scheduling versus SNR for a (NR,MT,K)
single-carrier MIMO system implemented via GA and ES. (a) NR = 1, MT = 2, and K = 10,
20. (b) NR = 2, MT = 2, and K = 10, 20. (c) NR = 1, MT = 4, and K = 10, 20.42

Figure 3.7: Performance of maximum throughput scheduling at SNR = 10 dB versus the
number of active users for an (NR,MT) single-carrier MIMO system implemented via GA
and ES. ..43

Figure 3.8: Performance of proportionally fair scheduling versus SNR for an (NR,MT,K)
single-carrier MIMO system implemented via GA and ES. ...44

Figure 3.9: Distributions of average rate per user and instantaneous sum-throughput for
PF scheduling in an (NR,MT,K) single-carrier MIMO system at SNR = 10 dB.................45

Figure 3.10: Performance of maximum throughput scheduling vs. SNR for an (NR,MT,K)
multi-carrier MIMO system implemented via GA and ES. (a) NR = 1, MT = 2, and K = 10,
20. (b) NR = 2, MT = 2, and K = 10, 20. (c) NR = 1, MT = 4, and K = 10, 20.46

Figure 3.11: Performance of proportionally fair scheduling versus SNR for an (NR,MT,K)
multi-carrier MIMO system implemented via GA and ES. (a) K = 10, NR = 1, 2, and MT =
2, 4. (b) K = 20, NR = 1, 2, and MT = 2, 4..47

Figure 3.12: Distributions of number of simultaneously scheduled users under the
proportional fairness scheduling criterion at SNR = 10 dB for an (NR,MT,K) multi-carrier
MIMO system. ..48

Figure 3.13: Distributions of head-of-line delays per user under the PF criterion at SNR =
10 dB for single- and multi-carrier transmission and various values of (NR,MT,K).49

Figure 3.14: Average convergence of GA versus generations for the maximum
throughput scheduling criterion at an SNR of 10 dB and various values of (NR,MT,K)....50

Figure 3.15: (a) Performance of single-carrier MT GA scheduling vs. SNR for
(NR,MT,K) = (1,2,20) and (1,4,10), each with {Np,Ng} = {10,10} and {20,5}.
(b) Difference in sum-throughput for {Np,Ng} = {20,5} compared to {10,10}.51

Figure 3.16: Distributions of number of generations required for GA convergence to the
optimum utility function value for the maximum throughput scheduling criterion at an
SNR of 10 dB and various values of (NR,MT,K). ..51

Figure 4.1: Distributions of the adaptive mutation rate for the random initial first
generation of the genetic scheduling algorithm for DPC with 1 = 1.2 and 2 = 10, an
SNR of 10 dB, and various values of (NR,MT,K). ...58

Figure 4.2: Distributions of number of generations required to converge to optimal utility
function value for (NR,MT,K) = (1,2,10) at an SNR of 10 dB; 1 = 1.2 (constant), 2
variable..60

Figure 4.3: Distributions of number of generations required to converge to optimal utility
function value for (NR,MT,K) = (1,2,10) at an SNR of 10 dB; 1 variable2 = 10
(constant). ...60

Figure 4.4: Number of generations required to converge on average to within 1% of
optimal utility function value as a function of 1 and 2 with (NR,MT,K) = (1,2,20) and an
SNR of 10 dB..61

Figure 4.5: Number of generations required to converge on average to within 0.1% of
optimal utility function value as a function of 1 and 2 with (NR,MT,K) = (1,2,20) and an
SNR of 10 dB..61

Figure 4.6: Number of generations required to converge on average to within 0.1% of
optimal utility function value as a function of 1 and 2 with 10 dB SNR and various
(NR,MT,K). (a) (NR,MT,K) = (2,2,20). (b) (NR,MT,K) = (1,4,10). (c) (NR,MT,K) = (1,4,20).63

Figure 4.7: Average convergence of GA vs. number of generations at an SNR of 10 dB,
with (NR,MT,K) = (1,4,20) and two sets of values for 1 and 2..65

Figure 4.8: Ranges of (1,2) for which the number of generations for the GA to converge
to within 0.1% of the optimum is within 5% of the minimum convergence time.65

Figure 4.9: Comparison of convergence of GA for (NR,MT,K) = (2,2,20) and (1,4,10)
when changing {1,2} at different SNRs. (a) SNR = 10 dB. (b) SNR = 0 dB.70

Figure 4.10: Average convergence of GA scheduling algorithm with the proportional
fairness criterion, an SNR of 10 dB, and various values for 1 and 2.71

Figure 4.11: Comparison of GA convergence with 1-point crossover (1X) and uniform
crossover (UX) operators, each with two sets of parameter values. (a) (NR,MT,K) =
(1,2,20). (b) (NR,MT,K) = (2,2,20). ..73

Figure 4.12: Comparison of GA convergence with 1-point crossover (1X) and uniform
crossover (UX) operators, each with two sets of parameter values. (a) (NR,MT,K) =
(1,4,10). (b) (NR,MT,K) = (1,4,20). ..73

Figure 5.1: Performance vs. K of exhaustive search, greedy, genetic, and SCAHE
scheduling algorithms for BD; MT = 4, Nk = N = 2, K0 = 2. (a) SNR = 5 dB, and (b) 10 dB.
..98

Figure 5.2: Performance vs. K of exhaustive search, greedy, genetic, and SCAHE
scheduling algorithms for BD; MT = 8, Nk = N = 2, K0 = 4. (a) SNR = 5 dB, (b) 10 dB,
and (c) 15 dB...99

Figure 5.3: Performance vs. K of exhaustive search, greedy, and genetic scheduling
algorithms for SZF; MT = 4, Nk = N = 2, K0 = 2. (a) SNR = 5 dB, and (b) 10 dB...........101

Figure 5.4: Performance vs. K of exhaustive search, greedy, and genetic scheduling
algorithms for SZF; MT = 8, Nk = N = 2, K0 = 4. (a) SNR = 5 dB, (b) 10 dB, and (c) 15 dB.
..102

Figure 5.5: Average proportion of time that a given number of users out of a maximum of
K0 is scheduled using various algorithms for MT = 8, Nk = N = 2, and K0 = 4, with K = 10,
40, and 100. (a) BD, SNR = 5 dB. (b) BD, SNR = 10 dB. (c) SZF, SNR = 5 dB. (d) SZF,
SNR = 10 dB...104

Figure 5.6: Performance of exhaustive search, greedy, and genetic scheduling algorithms
for SZF vs. log(log K); MT = 8, Nk = N = 2, K0 = 4; SNR = 5 dB and 10 dB..................104

Figure 5.7: Improvement in average sum rate vs. K of hybrid algorithm 1 over the
unseeded GA while seeding the top n users into c chromosomes of the GA population.
MT = 8, Nk = N = 2, K0 = 4; SNR = 10 dB...106

Figure 5.8: Performance of hybrid algorithm 1 vs. K for BD and SZF; MT = 8, Nk = N = 2,
K0 = 4. (a) BD, SNR = 5 dB; (b) SZF, SNR = 5 dB; (c) BD, SNR = 10 dB; and (d) SZF,
SNR = 10 dB...107

Figure 5.9: Performance of hybrid algorithm 2 vs. K for BD while letting the GA within
HA2 run for Ng generations; MT = 8, Nk = N = 2, K0 = 4, SNR = 10 dB.........................108

Figure 5.10: Performance of hybrid algorithm 2 vs. K for BD and SZF; MT = 8, Nk = N =
2, K0 = 4. (a) BD, SNR = 10 dB; (b) SZF, SNR = 10 dB; (c) BD, SNR = 20 dB; and
(d) SZF, SNR = 20 dB. ...109

Figure 5.11: Maximum average sum rate vs. SNR for BD and SZF using an exhaustive
search; MT = 8, Nk = N = 2, K0 = 4, K = 16. ..111

Figure 6.1: Average sum rate vs. SNR with proposed and existing SZF covariance
optimization methods and BD; MT = 4, K = K0 = 2, N = 2. ..122

Figure 6.2: Average sum rate vs. SNR with proposed and existing SZF covariance
optimization methods and BD; MT = 6, K = K0 = 3, N = 2. ..122

Figure 6.3: Average sum rate vs. SNR with proposed and existing SZF covariance
optimization methods and BD, using exhaustive search scheduling; MT = 8, K0 = 4, N = 2,
K = 16..123

Figure 6.4: Distribution of improvement in average sum rate at 20 dB when initializing
CGP algorithm with Qk,o; MT = 6, K = K0 = 3, N = 2. ...125

Figure 6.5: Average weighted sum rate vs. SNR with proposed SZF covariance
optimization method and with BD; MT = 8, K = K0 = 4, N = 2, wk = k/10.126

Figure 6.6: Proportion of time that user index is encoded in given position to maximize
SZF weighted sum rate, where user weights equal 1/10 of user indices (wk = k/10); MT = 8,
K = K0 = 4, N = 2. Index “0” indicates no user encoded in that position. (a) User index is
encoded first. (b) User index encoded second. (c) User index encoded third. (d) User
index encoded fourth...127

Figure 6.7: Average sum rate vs. K comparing original and proposed CGP covariance
optimization methods; MT = 8, N = 2, K0 = 4. (a) SNR = 10 dB, and (b) 20 dB.............128

Figure 6.8: Distributions of convergence of CGP algorithm such that SZF sum rate
changes by less than 1×10-3 / 5×10-8 bit/s/Hz; MT = 8, N = 2, K0 = 4. (a) SNR = 10 dB,
and (b) 20 dB. ...130

Figure 6.9: Average GA sum rate vs. K comparing CGP and DL fitness for scheduling,
followed by CGP sum rate maximization with RR and DL initialization; MT = 8, N = 2,
K0 = 4. Performance without CGP algorithm also shown. (a) SNR = 10 dB, and (b) 20 dB.
..131

Figure A.1: Comparison of the distribution of values of a random Gaussian variable
generated by Matlab (solid lines) with the theoretical Gaussian distribution (dashed lines).
(a) PDF, (b) CDF. ...151

Figure A.2: Comparison of the distribution of values of a random Rayleigh variable
generated by Matlab (solid lines) with the theoretical Rayleigh distribution (dashed lines).
(a) PDF, (b) CDF. ...151

Figure A.3: Comparison of average sum rate and 95% confidence intervals vs. K for
genetic scheduling algorithm for BD with varying number of Monte Carlo simulation
runs Nsamp; MT = 8, N = 2, K0 = 4, SNR = 10 dB...154

Figure E.1: Performance vs. K of exhaustive search, greedy (GrA), genetic (GA), and
SCAHE [69] scheduling algorithms for BD and various SNR; MT = 4, Nk = N = 2, K0 = 2.
..168

Figure E.2: Performance vs. K of greedy (GrA), genetic (GA), and hybrid scheduling
algorithms 1 and 2 (HA1 and HA2) for BD and various SNR; MT = 4, Nk = N = 2, K0 = 2.
..169

Figure E.3: Performance vs. K of exhaustive search, greedy (GrA), genetic (GA), and
SCAHE [69] scheduling algorithms for BD and various SNR; MT = 8, Nk = N = 2, K0 = 4.
..170

Figure E.4: Performance vs. K of greedy (GrA), genetic (GA), and hybrid scheduling
algorithms 1 and 2 (HA1 and HA2) for BD and various SNR; MT = 8, Nk = N = 2, K0 = 4.
..171

Figure E.5: Performance vs. K of greedy (GrA), genetic (GA), and hybrid scheduling
algorithms 1 and 2 (HA1 and HA2) for SZF and various SNR; MT = 4, Nk = N = 2, K0 = 2.
..172

Figure E.6: Performance vs. K of greedy (GrA), genetic (GA), and hybrid scheduling
algorithms 1 and 2 (HA1 and HA2) for SZF and various SNR; MT = 8, Nk = N = 2, K0 = 4.
..173

Figure G.1: Performance vs. K of greedy (GrA) and genetic (GA) scheduling algorithms
for SZF, using proposed CGP (with “round-robin” initialization) and original methods to
obtain covariance matrices. Performance of GrA and GA for BD also shown. MT = 8, N =
2, K0 = 4, various SNRs. ...177

List of Abbreviations

1X One-point crossover

3G Third generation

3GPP Third Generation Partnership Project

4G Fourth generation

AWGN Additive white Gaussian noise

BC Broadcast channel

BD Block diagonalization

bit/s/Hz Bits per second per Hertz

bits/c.u. Bits per channel use

CDF Cumulative distribution function

CGP Conjugate gradient projection

CoMP Coordinated multipoint

CSI Channel state information

dB Decibel(s)

DFT Discrete Fourier transform

DL Dabbagh/Love

DPC Dirty paper coding

ES Exhaustive search

FDM Frequency division multiplexing

FFT Fast Fourier transform

F-norm Frobenius norm

GA Genetic algorithm

Gbit/s Gigabits per second

GrA Greedy algorithm

GSO Gram-Schmidt orthogonalization

HA1 Hybrid algorithm 1

HA2 Hybrid algorithm 2

HSPA High Speed Packet Access

IEEE Institute of Electrical and Electronics Engineers

i.i.d. Independent and identically distributed

ISI Inter-symbol interference

LTE Long Term Evolution

MAC Multiple access channel

Mbit/s Megabits per second

MC Multi-carrier

MHz Megahertz

MIMO Multiple-input, multiple-output

MISO Multiple-input, single-output

M-LWDF Modified largest weighted delay first

MT Maximum throughput

MUI Multiuser interference

Nu-SVD Null-space-directed singular value decomposition

OFDM Orthogonal frequency division multiplexing

OSDM Orthogonal space division multiplexing

PDF Probability distribution function

PF Proportional fairness / proportionally fair

QoS Quality of service

RR Round-robin

SC Single-carrier

SCAHE Shen/Chen/Andrews/Heath/Evans

SESAM Successive encoding and successive allocation method

SINR Signal-to-interference-plus-noise ratio

SISO Single-input, single-output

SNR Signal-to-noise ratio

SVD Singular value decomposition

SZF Successive zero-forcing

TDMA Time division multiple access

THP Tomlinson-Harashima precoding

Tx Transmit(ter)

UX Uniform crossover

VoIP Voice over Internet Protocol

WiMAX Worldwide Interoperability for Microwave Access

WSR Weighted sum rate

ZF Zero-forcing

ZFB Zero-forcing beamforming

Mathematical Notation

x, X Scalar (italics)

x Vector (lowercase boldface)

X Matrix (uppercase boldface)

x y x is approximately equal to y

x y x is defined as y

max{a,b} Maximum of a and b

min{a,b} Minimum of a and b

(x)+ Maximum of x and 0

x Ceiling function; nearest integer greater than or equal to x

EX{} Expected value / expectation over X (subscript may be omitted)

IN (N×N) identity matrix (subscript may be omitted in general case)

0M×N An all-zero (M×N) matrix (subscript may be omitted in general case)

X* Best value for scalar X

X* Conjugate of matrix X (note also smaller * than above)

XT Transpose of matrix X

XH Hermitian (conjugate) transpose of matrix X

X–1 Inverse of square matrix X
†X Moore-Penrose pseudoinverse of matrix X

X1/2, X–1/2 Square root and inverse square root of X

|X| Determinant of matrix X

Tr(X) Trace of matrix X

rank(X) Rank of matrix X

F
X Frobenius norm of X

0X X is positive semidefinite

 1,blkdiag X A block-diagonal matrix formed from the matrices X1, …

, A set of numbers

 Set of complex numbers

 Cardinality of set

 Empty set

 “Big-O” (“order of”) notation

List of Notable Symbols

Aj Interference experienced by user j on broadcast channel, when used in
context of MAC to BC transformations

Bj Interference experienced by user j on multiple access channel, when used
in context of MAC to BC transformations, or a precoder input covariance
matrix, when used in context of linear beamforming

C MIMO channel capacity

C* Best chromosome in a population

CE Ergodic MIMO channel capacity

G Utility function value

Gi Utility function value (fitness) of chromosome i

GMT Utility function for maximum throughput criterion

GPF (Causal) utility function for proportional fairness criterion

Gi An effective channel matrix for user i, when used in context of MAC
waterfilling, or a (proportional) gradient for user i, when used in context
of conjugate gradient projection

kG , ˆ
kG Normalized and projected gradients for user k, respectively

H Aggregate MIMO channel matrix of users in multiuser system (or matrix
for the one user in a single-user system)

Heff, He, Hk,e Effective channel matrix (for user k)

Hk, Hjk Channel matrix for user k (on subcarrier j, for a multi-carrier system)
B
kH , M

kH Channel matrix for user k, specifically denoting for the BC and MAC,
respectively

kH , kH Aggregate channel matrices for BD and SZF, respectively, used to find
null space basis vectors / precoding or beamforming matrix for user k

K Number of active users

K0 Maximum number of simultaneously scheduled users (hard limit)

MT Number of transmit antennas

N Number of receive antennas (per user); see also NR

NC Number of (sub)carriers in a multi-carrier system

Ncombinations Number of (unordered) combinations of scheduled users

Ng Number of generations (iterations) that genetic algorithm runs

Nordered_selections Number of ordered selections of scheduled users

Np Population size (number of chromosomes) for genetic algorithm

NR Number of receive antennas (per user); see also N

NS Maximum number of simultaneously scheduled users (soft limit)

Nsamp Number of samples / Monte Carlo simulation iterations

n, nk, njk Noise vector (for user k) (on subcarrier j)

pc Probability of crossover operation in genetic algorithm

pi Waterfilling power allocation, for eigenmode i

pm Probability of mutation in genetic algorithm

psel_i Probability of chromosome i being selected for breeding in genetic
algorithm

P Transmit power constraint

Pk Transmit covariance matrix for user k, usually in the context of a MAC

i
 , k

 Projector matrix for BD greedy algorithm, for iteration i / user k

Qk Queue length for user k

Qk Transmit covariance matrix, usually in the context of linear beamforming
(exception: when referring to a QR decomposition, Q is a unitary matrix)

Qk,o Transmit covariance matrix for SZF, found by method in [50]

kr Rank of aggregate channel matrix kH

RBD Sum rate for BD

Rk, Rjk Rate for user k (on subcarrier j, for a multi-carrier system)
B
kR , M

kR Rate for user k, specifically denoting for the BC and MAC, respectively

kR Average rate for user k

RMAC Sum rate for the MAC

RSZF, RWSZF Sum rate and weighted sum rate for SZF, respectively

sjk Binary variable; equals 1 if user k scheduled on subcarrier j, 0 otherwise

SE Standard error of the mean for Monte Carlo simulations

s, sk Data symbol vector (intended for user k)

Sk A covariance matrix for user k during iterative MAC waterfilling, or a
search direction for user k during conjugate gradient projection

 A set of scheduled users

tc A time constant for exponential filter when calculating average rate kR

Tk Transmit filter matrix for user k, when used in the context of conjugate
gradient projection

ˆ
kT A transmit filter (before normalization) for user k

ui User selected during iteration i of greedy scheduling algorithms

U, Uk Utility value (for user k)

UPF (Non-causal) utility function for proportional fairness criterion

 Set of active users for greedy scheduling algorithms

i Subset of active users during iteration i of greedy scheduling algorithms

s Set of scheduled users for greedy scheduling algorithms

kv Rank of the null space of kH

Vi, ˆ
kV Row basis for BD greedy scheduling algorithm, at iteration i or for user k,

respectively
1
iV Column basis for SZF greedy scheduling algorithm at iteration i
0
kV , 0

kV Null space basis for kH and kH , for BD and SZF, respectively

w The weight (number of ‘1’s) in the head of a chromosome

wk A weight for the rate of user k, in a weighted sum rate

WC Bandwidth of (sub)carriers in a multi-carrier system

Wk Head-of-line packet delay for user k

WT Total useful bandwidth in a single- or multi-carrier system

W Aggregate precoding / beamforming matrix of users

Wk Precoding / beamforming matrix for user k

x, xk, xjk Transmitted data signal (intended for user k) (on subcarrier j)

y, yk, yjk Received data signal (by user k) (on subcarrier j)

 Step size, when used in context of conjugate gradient projection

1, 2 Tunable parameters in adaptive mutation rate for genetic algorithm

 OFDM bandwidth efficiency

j Eigenvalues or Lagrange multipliers, depending on context

, jk Lagrange multipliers

G Mean of the fitness of a population of GA chromosomes

 Correlation threshold for greedy scheduling algorithms

, (k) A permutation of user indices, and the index at position k of the
permutation

 The signal-to-noise ratio in the context of ZF beamforming, or a
Frobenius norm in the context of conjugate gradient projection

̂ Standard deviation of results obtained from Monte Carlo simulations

G Standard deviation of the fitness of a population of GA chromosomes
2
n Variance of additive white Gaussian noise

k, jk Transmit covariance matrix for user k (on subcarrier j), usually in the
context of DPC on a broadcast channel

jk A Lagrange multiplier

k Gradient with respect to user k

1

Chapter 1

Introduction

1.1 Motivation

Over the past two decades, there has been an ever-increasing demand for mobile

communication services. Initially, mobile services were limited to voice traffic. However,

with the growth of the Internet, mobile users are now very much interested in data

capabilities. Current third generation (3G) cellular systems have begun to satisfy some of

this demand with techniques such as adaptive modulation and turbo coding. However, as

the market penetration of smartphones such as Apple’s iPhone and Research in Motion’s

Blackberry increases, the demand for high speed wireless data grows rapidly. Thus, the

key focus of research in wireless networks is towards spectral efficiency and very high

data rates.

Fourth generation (4G) systems are expected to provide a large improvement in data

rates. The International Telecommunication Union has recommended in [1] and [2] that

4G systems should be able to provide 1 Gbit/s for low mobility users and 100 Mbit/s for

high mobility users. The minimum requirements for peak spectral efficiency are 15

bit/s/Hz on the downlink and 6.75 bit/s/Hz on the uplink. Achieving those goals with

current techniques is very difficult, and the radio channel itself is more problematical

than wire or fibre links.

To fulfill this end, research over the past decade has focused on the spatial techniques

that are possible with multiple antennas at the transmitters and receivers. Designs

employing both multiple transmit antennas and multiple receive antennas are known as

multiple-input, multiple-output (MIMO) systems. Due to the additional spatial resources

available in MIMO systems, higher capacity and throughput are possible without the

need for additional bandwidth or power. MIMO techniques have been proposed for and

incorporated into current and future wireless communication standards, including IEEE

802.11n [3] (for wireless local area networks), 3GPP HSPA+ [4], 3GPP LTE [5] and

LTE-Advanced [6], and IEEE 802.16e-2005 [7] and 802.16m (Advanced WiMAX) [8].

2

[9] contains a comprehensive overview of MIMO techniques in advanced cellular

systems.

1.2 MIMO Wireless Communications

The key to the additional gains in performance in MIMO systems is the additional

degrees of freedom that come with the multiple antennas. These are additional resources

that can be exploited beyond the frequency and time dimensions used in earlier single-

antenna systems. Seminal work [10],[11] has demonstrated that by adding antennas to

transmitters and receivers, under rich scattering conditions the capacity of a MIMO

system can scale linearly with the minimum of MT and NR, where MT is the number of

antennas at the transmitter, and NR is the number of antennas at the receiver.

One possible way of exploiting the degrees of freedom in a MIMO system is through

the use of diversity. If the antennas are spaced far enough apart, the fading signal paths

provided by each of those antennas can be considered to be independent. In such a case,

the likelihood of all the paths being in a fade is much lower than the chance of a single

path itself fading. Copies of the signal can be sent or received along each of these paths,

creating a much more reliable data link overall.

Alternatively, the degrees of freedom can be used for spatial multiplexing. The

multiple antennas can be used to form several transmission streams. Additional data can

be sent along each of these streams, resulting in a much higher capacity for the link. Both

techniques require an uncorrelated rich scattering environment to work. As one might

expect, there is a tradeoff between the gains achievable through spatial diversity and

spatial multiplexing [12].

1.3 Orthogonal Frequency Division Multiplexing

Although radio bandwidth is scarce, it is nonetheless still an important factor in

improving the throughput of 4G wireless systems. Compared to bandwidths of a few

MHz in current 3G systems, future designs are expected to use much larger frequency

bands. LTE supports a scalable bandwidth of up to 20 MHz, and LTE-Advanced supports

scaling the bandwidth up to 100 MHz [6].

However, with these larger bandwidths comes the problem of frequency-selective

fading. The channel gain is not constant along the entire bandwidth; it instead varies

across the frequency range. This leads to problems with inter-symbol interference (ISI).

One way to combat ISI is to split the frequency band up into smaller sub-bands, so that

3

the fading across each of the sub-bands is approximately flat. Such frequency division

multiplexing (FDM) techniques have been well known for several decades. Original

designs separated the frequency bands entirely so they would not interfere. However, a

more efficient technique was later found to allow the frequency bands to overlap. By

spacing the subcarrier frequencies just sufficiently far apart that the signals maintain

orthogonality, the frequency spectrum is used more efficiently while still in principle1

avoiding interference between subcarriers. This multi-carrier system design is known as

orthogonal frequency division multiplexing (OFDM). Such multi-carrier systems allow

for additional degrees of freedom in dividing the system resources and thus enhancing its

performance.

In practice, OFDM can be implemented using the discrete Fourier transform (DFT)

[14]. The DFT can be realized inexpensively in hardware with high computational

efficiency using the fast Fourier transform (FFT). OFDM has been incorporated into

many wireless communication standards, including those referenced earlier at the end of

Section 1.1. [13] contains an overview of issues and techniques for OFDM as applied to

wireless communications, including MIMO-OFDM.

1.4 Multiuser MIMO Systems

A typical cellular system consists of numerous users in communication with their

corresponding base stations. In a MIMO multiuser system, each base station would have

multiple transmit / receive antennas. In general, each user may also have multiple

transmit / receive antennas, although currently, practically all users are equipped with

only a single antenna2. On the uplink, or multiple access channel (MAC), several users

communicate simultaneously with their base station, while on the downlink, or broadcast

channel (BC), the base station transmits data to several users simultaneously. These

multiple overlapping signals result in multiuser interference (MUI). A significant

challenge of multiuser MIMO systems is to somehow reduce or eliminate MUI. Since in

general the users cannot cooperate, it is the role of the base station to deal with the MUI.

On the broadcast channel, it is known that the sum-capacity is achieved through a

precoding process known as dirty paper coding (DPC) [15],[16],[17]. DPC achieves

capacity by transmitting to multiple users and successively removing the effect of

1Implementation issues like an offset in the carrier frequencies or a time-dispersive multipath
channel may result in interference between the subcarriers or the symbols [13]. However, such
issues are outside the scope of this work.
2 This case is often called a multiple-input, single-output (MISO) system.

4

interference on each user it encodes. At any given point in the encoding process, a user

will not experience interference from the users encoded prior. Unfortunately, DPC is

extremely complex and difficult to implement in practice. The process requires the base

station having information about the downlink channel state of each user being encoded,

having non-causal knowledge of each of the users’ signals that will be sent, and

determining optimal power covariance matrices for each user to reduce the remaining

MUI. While certain methods approximate DPC, often lower complexity methods are

desired.

Linear beamforming methods are thus of interest in the literature. Such methods are

significantly less complex, though suboptimal, when compared to DPC. Beamforming

processes the signal for each user independently by multiplying it by a certain

beamforming weight vector(s) across the multiple transmit antennas. Proper design of the

weight vector(s) can reduce or eliminate the MUI, but can also reduce the available

degrees of freedom while doing so.

1.5 MIMO Multiuser Scheduling

With multiple users in the system, there exists another resource that can be harnessed,

namely so-called multiuser diversity. Just as with multiple signal paths in a MIMO

system meaning it is unlikely for all paths to be in a fade simultaneously, with multiple

users, it is unlikely that all users will experience a fade simultaneously, provided that

their channels are independent of each other. If the data that the users are receiving can

tolerate some delay with no ill effect, the base station can exploit multiuser diversity to

further increase capacity. A well-designed scheduler can transmit to users who presently

have good channel conditions, and delay transmitting to other users until their channel

conditions improve. This concept is already used in 3G cellular systems. It is well known

that in a system with a single transmit antenna, it is optimal in terms of sum-capacity to

devote all transmit power to the single user with the best channel [18]. However, in

MIMO systems, this is no longer the case; as stated above, capacity is achieved with DPC

while transmitting to multiple users simultaneously.

Even though multiple users can be supported simultaneously, there is still usually a

relatively low upper limit to the number of users that the base station can transmit to at

once. This limit is usually related to the number of transmit antennas MT at the base

station. The limit is very likely to be reached in a cellular system, where in general the

number of users in communication with the base station is much greater than MT. Using

5

the multiple antennas to help eliminate MUI in general also reduces the number of users

that can be simultaneously supported. Hence, this further necessitates the need for a

scheduling algorithm at the base station.

Since scheduling multiple users is required to achieve the sum-capacity in a MIMO

system, MUI will arise, as already mentioned. Fortunately, the multiple antennas also

provide assistance in dealing with the problem. The users will in general be separated in

space from each other. The scheduling algorithm can make use of this by selecting users

with a significant spatial separation of their channels. Signals directed towards these

users would already experience little interference before complex coding is considered.

Thus, the scheduling algorithm can also help reduce the burden of MUI removal between

the users. On the whole, a MIMO scheduler thus should consider both channel gains and

spatial separation in its scheduling decisions.

One further very important factor that the scheduler must incorporate is fairness. In

general, the users’ channels are heterogeneous; the users have different average channel

gains, experience different levels of shadowing and multipath fading, etc. If the scheduler

were to focus solely on system throughput, users in comparatively poor channel

conditions would receive very little service. Thus, the scheduler must balance system

throughput with fairness.

Lastly, as the demand for high data rates over wireless links increases, so too does the

demand for various multimedia services. The traffic for certain types of these services

may be particularly sensitive to the delay it experiences. Examples include streaming of

media, videoconferencing, Voice over Internet Protocol (VoIP) communications, and

online gaming. These services may have certain quality of service (QoS) parameters that

must be met, such as a maximum delay or minimum throughput. Failing to meet these

parameters could lead to a degradation of service quality and user dissatisfaction.

Thus, overall, the various factors involved in the design of MIMO systems and

scheduling algorithms are quite complex. We discuss the technical aspects of multiuser

MIMO systems and scheduling algorithms in more detail in Chapter 2.

1.6 Research Goals and Summary of Contributions

The primary goal of this research is to further investigate scheduling methods in

MIMO systems. Scheduling of users in MIMO systems has been investigated to some

extent, but generally not including issues related to fairness or QoS. This is particularly

the case for DPC and certain other precoding schemes. In these schemes, the order in

6

which the users are encoded will affect the interference they experience and thus the data

rates they can support. Thus, the scheduling algorithm should be aware of and capable of

adjusting the encoding order of users.

The scheduling algorithms should also be fast and of low complexity. There is often a

limited time in which to make a scheduling decision; transmission intervals are often kept

short so as to avoid the channel changing significantly within that interval. In general, the

scheduler is aiming to optimize some sort of utility function for the system that

incorporates whatever parameters or constraints that are on the data traffic being carried.

For example, the scheduler may want to maximize the system throughput, yet make sure

that users are fairly served, and that delays are not too high. The optimal method of doing

so is to exhaustively check all possible selections of users, but this would take far too

long in practice. Thus, the scheduler must be of low complexity in making a decision

towards the goal of maximizing the utility.

Thus, in summary, the first goal of this research is to investigate scheduling

algorithms for DPC that are of low complexity, and are cognizant of both encoding order

and QoS demands. We first wish to find said algorithms for DPC, since DPC achieves the

capacity of a multiuser MIMO system. However, since DPC is quite complex, we also

wish to investigate other precoding schemes. Thus, the second goal of this research is to

extend the scheduling algorithms developed for DPC to more practical methods like

linear beamforming.

The main contributions provided by the work in this dissertation are as follows.

 We have investigated the use of genetic algorithms for scheduling with DPC, an area

which has received little prior research focus. Genetic algorithms (GAs) are a

stochastic method of solving optimization problems, such as the maximization of

scheduling algorithm utility functions. They are particularly known for their speed in

finding very good solutions, and for being able to handle a wide variety of utility

functions. We propose a GA scheduling approach under DPC precoding that

accounts for the encoding order, and further extend that approach to allow scheduling

of users independently on the carriers of an OFDM system. We investigate the

performance of the GA for two cases: maximizing the system throughput, and

maximizing the sum of the users’ instantaneous rates relative to their average rates

(also known as the proportional fairness criterion [19]). These two cases provide a

good indication of how the GA would work with any more general utility function

that can be expressed in terms of a weighted sum rate. We demonstrate that the GA

7

performance is near-optimal compared with an exhaustive search at a greatly reduced

complexity. Furthermore, in the case of an OFDM system, an increase in spectral

efficiency is shown relative to the single-carrier case.

 While the GA performs close to the exhaustive search, further improvements can still

be obtained. We investigate the tuning of parameters of an adaptive mutation rate

within the GA on the time it takes the GA to converge. We demonstrate that there is

in fact a range of values for the parameters that lead to a near-minimum convergence

time, and that it is important for the parameter values to be tuned to within that range.

With tuning, the convergence time can decrease considerably, dropping the time to

less than 30% of that required for untuned values in one case. A simple equation that

is linear in the parameters is proposed to find their proper values for changing

numbers of supported users and user pool sizes. We also investigate the effect of

changing the crossover method in the GA on its convergence, but find that there is

little gain to be found in doing so, especially compared to the parameter tuning.

 We adapt the GA scheduling algorithm to two cases of linear precoding, using block

diagonalization (BD) and successive zero-forcing (SZF). We compare the

performance of the GA and other “greedy” scheduling algorithms to an exhaustive

search. A comprehensive analysis of the complexity of both the GA and the greedy

algorithms is also conducted. We find that the greedy algorithms are less complex

than the GA. The GA outperforms the greedy algorithms at lower user pool sizes and

higher signal-to-noise ratios (SNRs), while the greedy algorithm is better with more

users and lower SNRs. We further propose two hybrid scheduling algorithms

incorporating and combining traits of the genetic and greedy algorithms. These

hybrid algorithms perform better than the original algorithms they are based on, with

no increase in the order of complexity.

 During our work with SZF, we identified a deficiency at higher SNRs in the

previously published method used to allocate power to users. The resulting

throughput is considerably lower than what it theoretically should be. We propose a

new method to optimize the power allocated to users based on conjugate gradient

projection that significantly increases the resulting throughput of the system.

Furthermore, the existing method is only designed to attempt to maximize the system

sum rate, and thus is not meant to handle issues of fairness or quality of service. Our

proposed method also allows for the maximization of a weighted sum rate with SZF,

where the weights may incorporate the relevant QoS constraints. We demonstrate

8

that our proposed method significantly outperforms the existing method at medium to

high SNRs, regardless of the specific scheduling algorithm used, whether it is an

optimal exhaustive search, or the genetic and greedy algorithms mentioned above

that we proposed and investigated.

1.7 Organization of the Thesis

Chapter 2 begins by examining the background and details of MIMO aspects more

closely. We discuss single-user and multiuser MIMO systems, including details about

linear and non-linear methods to handle multiuser interference. We also give an overview

of existing methods of incorporating fairness and QoS into scheduling utility functions.

Chapter 3 covers the use of genetic algorithms for scheduling in single- and multi-

carrier dirty-paper-coded systems. We describe genetic algorithms in general, how they

operate, and how they can be adapted for scheduling. The system model used for the

investigation is described, and the results of Monte Carlo simulations are presented. We

discuss the performance of the GA, including results on throughput, delay and

convergence. A brief comparison of the runtime versus an exhaustive search is also

provided.

Chapter 4 describes the effects of tuning parameters within the GA. We provide

simulation results evaluating how the tuning affects the convergence of the GA, and

propose a simple linear equation to find suitable parameter values. We also compare the

performance of the GA when using two different crossover operators.

In Chapter 5, we examine the performance of genetic, greedy, and hybrid scheduling

algorithms with BD and SZF. BD and SZF are described in detail. A complexity analysis

of the investigated algorithms is provided, followed by simulation results covering their

performance for a variety of user pool sizes and SNRs.

Chapter 6 describes our proposed improved method for SZF transmit covariance

optimization. We describe the proposed algorithm itself and provide simulation results

for a few simple cases. We investigate how the algorithm performs when maximizing a

weighted sum rate. We then re-examine the performance of the genetic and greedy

scheduling algorithms for SZF using the new covariance algorithm.

Finally, in Chapter 7, we provide overall conclusions for this work, and provide

suggestions for possible areas of future work.

9

Chapter 2

Background on MIMO, Precoding, and
Scheduling

2.1 Single-User MIMO Systems

A single-user point-to-point MIMO system is depicted in Figure 2.1. The transmitter

has MT transmit antennas, while the receiver has NR receive antennas. The complex

received signal vector 1
1 2, , , R

R

T N
Ny y y y can be written as:

 y = Hx + n, (2.1)

where 1
1 2, , , T

T

T M
Mx x x x is the transmitted signal vector, 1RN n is the noise

vector, and R TN MH is the channel matrix. Each element hij, 1 i NR, 1 j MT,

represents the complex channel gain between the ith receive antenna and the jth transmit

antenna. The entries of the noise vector n are independent and identically distributed

(i.i.d.), circularly symmetric, complex Gaussian random variables with zero mean and

variance 2
n (or equivalently 2 / 2n per complex dimension), such that 2

R

H
n NE nn I .

Usually, the transmitter has a constraint P on the maximum power available, requiring

Tr() P, where HEΣ xx .

The capacity of the channel is achieved when the transmitted signal x is Gaussian

Figure 2.1: Block diagram of a single-user MIMO system.

Transmitter Receiver

MT
antennas

NR
antennas

10

distributed. If complete channel state information (CSI) is available at both the

transmitter and the receiver, then the MIMO channel capacity is given by [10]:

 2 22 2
1 1

log log 1
rr

i i i

i in n

p
C

 . (2.2)

In (2.2), the i terms are the eigenvalues of the matrix product HHH (or equivalently

HHH), while r is the rank of H; the i terms are also equal to the squared singular values

of H. The values of pi and are chosen according to the waterfilling power allocation

over the eigenmodes of H with the power constraint P, such that 2 /i n ip

 and

1

r

ii
p P

 . The operator (x)+ denotes max{x,0}.

In the event that channel knowledge is available only at the receiver, but not at the

transmitter, the best capacity the transmitter can achieve is by allocating equal power to

each of the transmit antennas. In this case, the capacity becomes [11]:

 2 2
1

log 1
r

i

i T n

P
C

M

 . (2.3)

Using the identities |I + AB| = |I + BA| and 1 mm
 I M , this capacity can be

rewritten as:

 2 22 2
log log

R T

H H
N M

T n T n

P P
C

M M
 I HH I H H . (2.4)

In a rich scattering environment, H will be full rank, so r = min{MT,NR}. In such a

case, it can be shown that as the signal-to-noise ratio (SNR) grows large, the capacity will

scale linearly with min{MT,NR} [10],[11]. One such environment is the spatially

uncorrelated Rayleigh fading channel, where the entries of H are modeled as i.i.d.

circularly symmetric complex Gaussian variables with zero mean and unit variance (or

variance 0.5 per dimension). Under this model, the absolute values of the entries of H

follow a Rayleigh distribution [20]. Since H is random, one is often interested in the

ergodic capacity of the channel, which is the expected value of the capacity with respect

to the channel matrix, i.e., CE = EH{C}.

2.2 Multiuser MIMO Systems

In a multiuser MIMO system, we are generally concerned with one of two possible

models wherein K active users are attempting to simultaneously communicate with a base

station. It is furthermore assumed that these users are unable to cooperate in their

11

communications. (If they were, the situation would reduce to an equivalent single-user

MIMO system as described above.) The two models in essence describe a typical cellular

scenario, and differ in the direction of communication. On the multiple access channel

(MAC), also called the uplink, several users transmit data simultaneously to a base

station. On the broadcast channel (BC), also known as the downlink, the base station

transmits data to several users. Not all of the data is necessarily intended for all of the

users on the downlink. In both cases, the multiple transmissions can impede each other,

leading to multiuser interference (MUI). Often, the number of users K may be greater

Figure 2.2: (a) Block diagram of MIMO multiple access channel. (b) Block diagram of MIMO
broadcast channel.

User 1

User 2

User K

N1 antennas

N2 antennas

NK antennas

Base
Station

1
MH

2
MH

M
KH

(a)

MT antennas

Wireless Channel

User 1

User 2

User K

N1 antennas

N2 antennas

NK antennas

Base
Station

1
BH

2
BH

B
KH

(b)

MT antennas

Wireless Channel

12

than the base station can support simultaneously. In such a case, scheduling of users is

required, as shall be discussed further in Section 2.4.

2.2.1 MAC, BC, DPC, and Duality

On the MAC, let T kM NM
k

H be the channel matrix between the kth user and the

base station, for all k = 1,2,…,K. The received signal vector 1TM y at the base station

will be:

1

K
M
k k

k

 y H x n . (2.5)

1kN
k

x is the signal vector transmitted by user k, and 1TM n is a complex additive

white Gaussian noise (AWGN) vector1. The base station must separate the signals of the

various users. It is known that the capacity of the Gaussian MAC is achieved when the

base station employs successive interference cancellation to decode the users’ signals

[10],[21],[22]. That is, after decoding the signal for a given user, the transmitted signal

for that user is then recreated and subtracted from the combined received signal to

remove the interference of that signal on the signals from the other users. The order in

which the users are decoded will thus affect the rates they receive. Let

{(1),(2),…,(K)} denote the order of the decoding, where (1) is the user decoded last,

and k kN NH
k k kE P x x denote the covariance of the transmitted signal of user k.

Then, the achievable rate for each user is:

1

2
1

1

log

Hk M M
i i ii

M
k Hk M M

i i ii

R

I H P H

I H P H
, (2.6)

and the achievable MAC sum rate is:

 21 1
log

HK KM M M
MAC k i i ik i

R R
 I H P H . (2.7)

On the BC, let k TN MB
k

H be the channel matrix between the base station and the

kth user, for all k = 1,2,…,K. The received signal vector 1kN
k

y at each user k will be:

1

K
B

k k j k
j

 y H x n . (2.8)

1 In the literature, 2

n is usually assumed without loss of generality to be equal to 1. We also make

this assumption throughout this thesis unless a specific value is stated for 2
n .

13

1TM
k

x is the signal vector transmitted by the base station intended for user k, and

1kN
k

n is the complex AWGN vector experienced by user k. Since the users cannot

cooperate in decoding their signals, it is the responsibility of the base station to help

eliminate interference between the users, by precoding or preprocessing the data before it

is transmitted.

In a system with perfect channel knowledge and a source of interference known non-

causally at the transmitter (but not necessarily at the receiver), the transmitter can employ

a technique known as writing on dirty paper. It is shown in [15] that the transmitted

signal can be encoded in such a way that the known interference can be presubtracted, in

essence removing its effect from the transmitted signal, making the system capacity the

same as if the interference was not there. [15] demonstrated this for Gaussian-distributed

interference and noise sources, but this was later extended in [23] to show that only one

of the interference or noise needs to be Gaussian; the other can be arbitrarily distributed.

On the BC, the signal intended for any given user is interference for any other user.

However, the transmitter knows those signals in advance, and thus can encode them

successively with dirty paper coding (DPC) [16],[17] to remove the interference from any

user j on the signal for k, where j < k. Similar to the MAC, the encoding order will thus

affect the rates each user receives. With the encoding order {(1),(2),…,(K)}, where

(1) is encoded first, then an achievable set of rates is given by [24]:

2log

H
B B

k j kj k
B

k H
B B

k j kj k

R

I H Σ H

I H Σ H
. (2.9)

 T TM MH
k k kE Σ x x is the covariance matrix for the signal intended for user k. The

achievable dirty paper region is then defined as the set of all possible rates from (2.9) for

all covariance matrices k subject to the power constraint kk
Tr P

 Σ and over all

possible encoding orders.

Much effort has gone into characterizing the DPC rate region. It has been shown in

[16],[17],[24],[25],[26] that DPC is optimal and achieves the capacity of the MIMO BC,

and that the capacity region of the BC is the same as for the MAC. In other words, the

MIMO MAC is the dual to the MIMO BC. If the BC has a set of channel matrices Hk, a

power constraint kk
Tr P

 Σ , and an encoding order , where user (1) is encoded

last, the same rates will be achieved on the dual MAC with channel matrices H
kH , a sum-

14

power constraint on the users of kk
Tr P

 P , and the reverse decoding order

where user (1) is decoded first.

A typical DPC capacity region is shown in Figure 2.3. Two users with two antennas

each receive data from a two-antenna base station. The SNR for each user is 10 dB, and

the channel matrices for each user are:

 1 2

0.3 0.2 0.6 0.2 0.4 0.1 0.3 0.6
,

0.1 0.3 1.0 0.2 0.6 1.7 0.6 0.7

i i i i

i i i i

H H . (2.10)

The sum-capacity is achieved along a line segment on the boundary of the achievable

region. The two end points of the segment correspond to the two possible encoding

orders of the users. Any point along the line segment can be achieved in the long term by

time-sharing between the two encoding orders.

While dirty paper coding is optimal for the BC, it is also non-linear and highly

complex. Much research effort has been dedicated to practical implementations of DPC.

A number of these are based on extensions of Tomlinson-Harashima precoding (THP)

[27],[28], which was originally designed to counteract inter-symbol interference, wherein

a signal interferes with itself over time. Some applications and extensions of THP to the

MIMO BC are described in [29],[30],[31]. THP has also been combined with trellis-

shaping codes to help remove some shaping loss caused by a modulo operation in THP

[32]. Other methods of implementing DPC include superposition coding [33],[34], vector

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

1

2

3

4

5

6

R1 (bits/channel use)

R 2 (b
its

/c
ha

nn
el

 u
se

)

DPC BC achievable region

Achievable rate vectors

Sum−capacity
= 7.1 bits/c.u.

Figure 2.3: Typical dirty paper coding achievable rate region for a 2×2 MIMO broadcast channel.

15

perturbation [35],[36], and lattice-based precoding [37],[38],[39]. All of these methods,

however, remain non-linear and quite complex.

2.3 MIMO Precoding and Beamforming

Because of the complexity of DPC, other suboptimal methods are of interest to help

reduce the interference between users. Linear beamforming methods are particularly

desirable due to their comparatively low complexity. The signal for each user can be

precoded or preprocessed separately by multiplying the data 1kN
k

s for the user k by a

beamforming matrix T kM N
k

W . Then, the transmitted signal k kk
x W s . The

beamforming matrices can be designed to remove at the transmitter some or all of the

interference between the users. However, doing so can also restrict the degrees of

freedom that the system has to transmit streams of data to users. Nonetheless, it is known

that as K becomes large, the sum rate of beamforming asymptotically approaches that of

DPC [40],[41]. This is intuitively explained; as the number of active users to choose from

becomes large, the likelihood of finding users with near-orthogonal channels increases.

Thus, beamforming functions just as well as DPC if there is little interference between

users to start with.

One linear method is channel inversion, sometimes called zero-forcing beamforming

(ZFB) [17], which is designed for users with a single receive antenna1. Channel inversion

creates a set of orthogonal, non-interfering channels. Let H 1 2, , ,
TT T T

K H H H be the

vertical concatenation of K users’ channels (where K MT). Then, the signal transmitted

by the base station is †x H s , where s is the vector of data symbols for the K users; the

kth entry of s is the data symbol sk for user k. †H is the Moore-Penrose pseudoinverse2 of

H [43], given by 1† H H
H H HH . The beamforming matrix Wk for user k is the kth

column of †H . An alternative method is to use regularized channel inversion, also called

minimum mean squared error precoding [35],[44]. In this case, s is processed by the

matrix 1H H K

H HH I , where is the SNR. Both methods are somewhat sensitive to

errors in the channel estimate, and can require a great deal of power to perform the

channel inversion with badly-conditioned channels, which can lead to noise enhancement

1 With single-antenna users, the data vector sk for each user becomes a scalar sk.
2 If there are power constraints per antenna at the base station instead of a total power constraint,
some other generalized matrix inverse may provide better performance instead [42].

16

at the receivers [45]. There is also an increasing gap in capacity compared to DPC as the

SNR grows [45].

ZFB is a special case of a larger class of precoding schemes called orthogonal space-

division multiplexing (OSDM). OSDM is meant to completely remove MUI at the

transmitter. ZFB can be extended to users with multiple receive antennas by considering

each antenna as a separate user and zero-forcing accordingly. However, such a scheme is

suboptimal, as the multiple receive antennas at a user can coordinate with each other to

process the received signal. MUI should instead be removed between users, but not

between antennas of a user. Schemes such as those described in [46],[47],[48]

accomplish this by forcing the transmitted signal for a user to lie in the null space of the

channel of all other users. In other words, HkWj = 0 for all k j. The most commonly

used of these schemes is known as block diagonalization (BD), after the nomenclature in

[46]. The iterative method of [48], called Nu-SVD, is more general, but also more

complex at larger MT and K.

Completely nulling the MUI is not necessarily the best solution; for example,

capacity-achieving DPC only removes interference successively. By relaxing the zero-

MUI condition, the performance of linear beamforming can be improved. This is part of

the concept behind zero-forcing-DPC (ZF-DPC) [17],[49]. ZF-DPC, which is designed

for single-antenna users, performs an LQ decomposition1 of H (i.e., H = LQ), where L is

a lower triangular matrix, and Q is unitary. Then, by choosing Wk as the kth column of

QH, any user i will not experience interference from any user j, for all i < j. This was

extended to users with more than one antenna in [50], where the extension is called

successive zero-forcing (SZF). This block successive zero-forcing was also proposed in

[51], in relation to a scheme called successive encoding and successive allocation method

(SESAM). Both ZF-DPC and SZF approach the capacity of DPC in the low-SNR regime,

in the limit as the available transmit power P becomes vanishingly small [17],[50],

provided that an optimal user ordering is used for the interference removal. We also note

that some other methods of beamforming try to handle the MUI without outright

removing some or all of it [52],[53].

In ZF-DPC and SZF, some MUI is removed through linear beamforming. It is

furthermore possible to remove the remaining user interference by encoding the users’

signals with DPC. Overall, interference on user k from users j > k is removed by

1 Equivalently, one could perform a QR decomposition on HH, where R is an upper triangular

matrix. Then, ()H H H H QR R Q LQ .

17

beamforming, and interference from users j < k is removed by DPC. In the case of SZF,

this extension is called SZF-DPC1 [50]. The effective overall channel therefore becomes

diagonal for ZF-DPC and block-diagonal for SZF-DPC. Since the use of DPC is assumed

in these two schemes, they are no longer strictly linear, and they are technically both

more complex than DPC alone. The benefit of the two schemes is that the (block-)

diagonal effective channel makes power allocation to the users much simpler than for

DPC or SZF [50]. Both ZF-DPC and SZF-DPC approach the capacity of DPC in the

high-SNR regime, in the limit as the transmit power P becomes infinite [50], for any

arbitrary ordering of users.

We lastly note that the above described methods of beamforming are mostly designed

to maximize the system sum rate under a power constraint. There are also alternative

goals in linear beamforming, such as minimizing power allocation subject to minimum

signal-to-interference-plus-noise ratio (SINR) constraints [54],[55], maximizing the

minimum user SINR or rate subject to a power constraint [54],[56],[57], and minimizing

the mean squared error [58],[59],[60].

2.4 MIMO Multiuser Scheduling

It is well known that in a single-input, single-output (SISO) system, where the

transmitter and receivers each have only one antenna, it is optimal in terms of throughput

to transmit to a single user at a time using all available transmit power [18],[61]. The

random fluctuations inherent in the channel combined with a large user pool result in

there likely being at least one user with a very good channel at any given time. Different

users are hence selected at different scheduling intervals in a time division multiple

access (TDMA) scheme. This concept is known as multiuser diversity.

It is thus natural that initial scheduling efforts in MIMO were directed towards

exploiting the same idea. However, having multiple antennas at the transmitter and

receivers has the effect of reducing the magnitude of those fluctuations; this phenomenon

is sometimes called “channel hardening” [62]. This reduces the amount of multiuser

diversity that can be exploited through only TDMA. Some early schemes proposed to

counteract channel hardening by artificially increasing the variations in the channel. In

[63], the multiple antennas are used to create random beam directions to exploit what the

1 Strictly speaking, ZF-DPC in [17], etc., only considered this latter case with total interference
removal and did not consider only partial interference removal like in SZF. However, SZF would
be equivalent to such a scheme when the users have only one receive antenna.

18

authors call “opportunistic beamforming”; users who happen to be in that direction would

have good channels and be scheduled. Similar concepts are used in other work (e.g. [64]),

except that the beamforming changes deterministically instead of randomly, in order to

aid channel estimation.

Nevertheless, such TDMA methods are inherently inferior since they only schedule a

single user at a time. As we know from earlier, multiple users should be scheduled

simultaneously through DPC or beamforming. The gain of DPC over TDMA was

investigated in [65]. It was found that at high SNR, the gain of DPC over TDMA on the

broadcast channel is min{MT/NR,K},when each user has NR receive antennas and MT NR

(as is normally the case). This was further shown in [41], where the authors demonstrated

that while the sum rate of both DPC and beamforming scale as MT log(log KNR), the sum

rate of TDMA only scales as min{MT,NR}log(log K). However, there still may be an

upper limit on the number of users that can communicate simultaneously, depending on

the system setup. For example, as noted in the last section, when using ZFB, at most MT

users can be supported at any given time.

Properly exploiting multiuser diversity to maximize the sum rate consists of two

factors; while selecting users with good channel gains is still important, users should also

be chosen with a large spatial separation, to help reduce interference [66]. Thus, the

selection of users can also play a role in reducing MUI just as precoding or beamforming

does. [40],[67],[68],[69] contain examples of scheduling algorithms designed to, in part,

select users based on reducing MUI. [67] attempts to select groups of users where a

“good” antenna (i.e., with a high channel gain) for one user is “bad” for all other users.

[68] selects groups of users to maximize the separation in the angles of arrival of their

signals. [40] and [69] select users based in part on the orthogonality between the channels

of the users.

Considering scheduling algorithms overall, the vast majority of the algorithms are

designed to maximize the system sum-capacity or sum-throughput. Just a few examples

of these are [40],[70],[71],[72] for ZFB, [69],[73],[74] for BD, [75] for DPC, [49],[76],

[77] for ZF-DPC, [78],[79] for THP, and [80] for SZF-DPC. However, such algorithms

can also tend to be unfair. Maximizing the throughput means that users who are the

“best” (e.g. with good channel gains and spatially separated) would be favored, while

users in poorer channel conditions would receive considerably less service. Thus,

scheduling algorithms should also incorporate fairness into their scheduling criteria.

19

When fairness is considered, most research considers some variation of the

proportional fairness (PF) criterion [63],[81]. This criterion schedules users with the

highest ratio of current rate to average rate, selecting users when they tend to be near a

peak in their own relative signal strength. (We discuss the PF criterion further in Chapter

3.) Examples include [82],[83],[84],[85],[86]. While the PF criterion has been extensively

examined, it does not guarantee any specific requirements for throughput, delay, etc. A

related metric is the (weighted) alpha rule [87],[88], which can be tuned between the

performance of maximum throughput, proportional fairness, and max-min fairness, the

latter of which maximizes the minimum average throughput of all the users. In past work

[89],[90], we have also proposed a metric to linearly tune the system performance

between that of maximum throughput and proportional fairness.

As a general rule, a scheduler is usually aiming to optimize some sort of utility

function. That utility function can incorporate whatever quality of service (QoS)

parameters are important to the scheduling. Several utility functions have been

investigated for various resource constraints in the context of SISO systems. [91] and

[92] define metrics to account for the queue length or delay of users. In [91], the

Modified Largest Weighted Delay First (M-LWDF) algorithm selects users with the

largest utility of kWkRk, where Wk is the delay experienced by user k, Rk is the current

rate supported by user k, and k is a weight that can account for different QoS classes1. Wk

can also be replaced by Qk, the length of the queue (in packets or bits) for user k. [92]

defines the exponential rule, which replaces Wk or Qk with an exponential function of the

delay or queue length. Both of these algorithms are known to be throughput-stable, which

means that the average queue length for each user shall remain finite. The algorithms are

meant to keep the chance of the delays or queue length exceeding some maximum

threshold below a specified probability. They are thus useful in conjunction with delay-

sensitive applications.

[93] defines a series of utility functions that are optimal in terms of resource

allocation under either long-term resource-sharing constraints, or long-term minimum-

performance constraints. In the first of these cases, consider a system that wishes to

maximize some utility U (for example, throughput), subject to users being served a

certain proportion of the time. The utility for each user is then of the form Uk + vk, where

Uk is the current utility of user k (e.g. the current rate it can support), and vk 0 ensures

1 [91] recommends making k inversely proportional to the average rate of user k, thus giving it
some similarity to the PF criterion.

20

that user k has received its allocated proportion of time. vk will be zero if the user has

been served enough to satisfy the constraint, and greater than zero otherwise. This form is

meant if the resource shared (e.g. time) is not the same as the utility being maximized

(e.g. throughput). If they are the same (e.g. each user k should receive at least a certain

proportion 0 ak 1 of the overall throughput), the utility function should instead be of

the form (+ vk)Uk, where 1 k kk
a v

 and 1kk

a

 . For the case of minimum-

performance guarantees (e.g. each user shall receive a certain minimum throughput), the

utility function takes the form kUk, where k 1 ensures that user k has received its

minimum performance. k will be one if it has received that minimum, and greater than

one otherwise. [93] proves that these forms of utility functions will maximize the desired

utility in the long term under the specified constraints, and explains how to adjust vk and

k in order to properly track whether the constraints are being met. In general, the

parameters can be updated with an exponential filter at each scheduling interval.

One drawback to the above utility functions is that technically they are only defined

for the case when a single user is served at a time. However, it is still possible to use

them in MIMO applications. For example, it is shown in [94] that the multiuser

equivalent of the M-LWDF algorithm is simply to maximize k k kk
W R

 . The metrics

of [93] have been extended to an OFDM system in [95] by simply summing the metric

over all subcarriers, but this extension also assumes that no more than one subcarrier is

assigned per user, and no more than one user is assigned per subcarrier. Summing those

metrics over all users would likely still work to some degree in a MIMO system with

multiple simultaneous users. However, the metrics may no longer be optimal for

maximizing the utility. To the best of our knowledge, this has not yet been formally

investigated in the literature.

Investigations of scheduling for QoS in MIMO systems have only recently become of

interest. The problem of power minimization under minimum rate / SINR constraints is

somewhat popular; see for example [83],[96],[97]. However, in this work, we are more

interested in the problem of maximizing utility (usually involving throughput), subject to

QoS constraints and a maximum power constraint. In general, one may consider two

classes of service or traffic: real-time (i.e., delay sensitive, such as video traffic), and

non-real-time, or best effort (which can tolerate some delay without harm). When these

two types of traffic coexist in the same system, the scheduler can deal with this in one of

two ways. First, the scheduler can deal with all types of traffic at once, allowing the QoS

21

of the two classes to be handled by the utility function. The scheduler should assign

service to the real-time data more often. Investigations in [98],[99],[100] use this option;

their results demonstrate how well certain types of utility functions handle the various

QoS constraints. Unsurprisingly, utility functions incorporating delays handle delay-

sensitive traffic the best. However, there is also a tradeoff in throughput and delay;

increasing the average throughput also increases the average and peak delay users

experience. The second option is to differentiate between the two classes and assign real-

time traffic with higher priority. These schemes assign a certain proportion of the

available resources to the delay-sensitive traffic first. Then, if there are resources

remaining, they are allocated to best-effort traffic. Examples of this include [101] and

[102]. This second option tends to meet QoS constraints somewhat better, but at the

expense of overall system throughput. [103] describes a hybrid between the two choices;

users are assigned resources first by the utility function for all classes. Then, if certain

users have constraints that are being violated, the scheduler goes back and removes

resources from users that do not require them, and reassigns them to users who do.

Overall, MIMO scheduling with QoS has not been explored as fully as MIMO

scheduling without QoS. This is an open field to which research effort can be dedicated,

especially as QoS concerns become more prevalent in wireless cellular networks.

22

Chapter 3

Genetic Scheduling Algorithms for
Downlink Transmission in MIMO
Single- and Multi-Carrier Systems with
Dirty Paper Coding

3.1 Introduction

Utility-based scheduling algorithms ultimately are a specialized form of optimization.

There exists some type of metric or cost function that is to be maximized or minimized,

which incorporates the relevant parameters, usually under a certain set of constraints.

Examples of these parameters may include throughput, packet delay or queue length [91],

etc. For the downlink, the metric typically includes the maximization of a function of the

system capacity or throughput, under the constraint that the total power allocated to all

the scheduled users should not exceed the total available power. On the uplink, the metric

may be to minimize the total transmit power subject to each user sending data at a given

rate or having a minimum SINR [55]. For the case of a MIMO system, there would likely

be an upper limit on the number of users NS that can be scheduled simultaneously. In

certain cases like in a system operating under optimal dirty paper coding (DPC) [15],[16],

[17], this constraint may be soft, i.e., the system does not need to (but can) transmit to

more than NS users at a time [75]. Under other schemes like ZFB [40] or BD [46], that

constraint is instead a hard limit; the system cannot transmit to more users than there are

transmit antennas. There may furthermore be quality of service (QoS) parameters to

satisfy. In some cases, certain parameters (e.g. packet delay) may change with time; most

often, in these cases, those parameters are treated as constant during the scheduling

interval, and are updated after a scheduling decision is made.

The scheduling decision does not necessarily consist of only which users to schedule,

especially with a cross-layer design. As a general rule, the factors that the scheduler can

control during the decision process may also include the order in which those users are

23

encoded, the amount of data sent to each of the scheduled users (which is usually

expressed in terms of throughput and may depend on factors such as modulation and

coding, which may or may not be under the control of the scheduler), and the power to be

allocated to each of the scheduled users (generally set as required to achieve the

scheduled rates). For MIMO systems, the scheduler may also decide how many data

streams should be sent to each user, what beamforming vectors / transmit filters should

be used (in the case of linear precoding), and which antennas to transmit with (e.g. if the

system supports antenna selection).

Strictly speaking, to determine the optimal set of users, the algorithm would have to

search over all possible combinations of at most NS users from the pool of K users:

 1combinations
SN K

kk
N

 . (3.1)

Note that in certain scenarios, e.g. at low SNR, it may be in fact optimal to schedule less

than the maximum number of users in order to maximize / minimize the utility function.

Thus, the sum over k is required in the above equation, instead of simply having k = NS.

In the case of order-dependent processing (e.g. DPC, THP, SZF), the order in which

the selected users are encoded will also affect their resulting rates, and hence may change

the utility function value. Thus, the size of the search space increases to:

 _ 1
!ordered selections

SN K
kk

N k

 . (3.2)

This exhaustive search and ordering quickly become infeasible as either the number of

supportable users NS or the number of active users K grows. Consequently, lower

complexity methods are required.

In this chapter, we investigate the use of genetic algorithms for lower complexity

downlink scheduling in a MIMO system. To begin, we first examine the general

scheduling optimization problem that genetic algorithms are meant to simplify. We then

discuss genetic algorithms and how they can be adapted to the scheduling problem. The

remainder of the chapter discusses the simulation setup and results for a genetic

scheduling algorithm in single-carrier and multi-carrier MIMO systems employing DPC.

The performance is compared to the optimal solution. Issues of convergence and

complexity are also discussed. Our contributions in this chapter have appeared in [104],

[105],[106].

24

3.2 General Design and Optimal Solution for MIMO Multi-
Carrier Scheduling

Before discussing the genetic algorithm, first the MIMO multi-carrier problem that

the genetic algorithm is intended to solve should be examined in more detail. Most

commonly, the scheduler is designed to somehow maximize the throughput of the system

and to the individual users, or at least factor in those rates in its decision. As such, the

utility function G(R1,…,RK) in reference to the user rates Rk is usually constrained to be:

 0, 0,k
k

G
R k

R

. (3.3)

In other words, if the rate for any user is increased while the rates for the other users

remain constant, the utility function should also increase. It is possible for the utility

function to be discontinuous, particularly if hard QoS constraints must not be violated.

For example, if a certain minimum throughput is guaranteed, the function may have a low

value if a user is below that threshold; otherwise, when the user is above the threshold,

the function will have a high value. Nonetheless, the constraint in (3.3) can still be

considered valid by defining the partial derivative to be some positive value at the

discontinuity, whether by using the derivative immediately before or after the

discontinuity or, perhaps, using the Dirac delta function at the discontinuity (i.e.,

considering the derivative to be “infinitely positive”) in the case of a step discontinuity in

the utility function.

Given the channel matrices {Hj1,…,HjK} of the pool of users on each subcarrier j, the

goal of the scheduling algorithm is to find the set of scheduled users , the encoding

order π of the scheduled users, and the transmit covariance matrices Σjk for those users

such that , jkj k
Tr P

 Σ and the resulting rates Rk, k (where kR jkj

R
)

maximize the utility function G(R1,…,RK). It is assumed that for any user k , Σjk = 0,

∀j, where 0 is an all-zero MT×MT matrix, and hence, Rk = 0. For k , Σjk is positive

semidefinite and has 0jkTr Σ for at least one subcarrier j, and thus, Rk > 0.

3.2.1 Optimal Solution: Mixed Integer Programming and Power
Waterfilling

The optimal solution can be obtained by decoupling the variables of the scheduled set

of users and their encoding order π from that of the transmit covariance matrices Σjk.

25

That is, for every possible and π, Σjk can be calculated independently from any other

set / order. The optimization then proceeds as follows.

1) For a given set and encoding order π, given the channel matrices Hjk on all

subcarriers, calculate the optimal power transmit covariance matrices Σjk through

waterfilling for the selected users and encoding order. The user rates {R1,…,RK} can

thereby be determined from the covariance matrices. This waterfilling may possibly

account for certain aspects of the utility function G. For instance, the matrices Σjk and

rates Rk that would maximize a weighted sum rate k kk
w R

 with specific weights

wk may be different than for another set of weights, and different again than, for

example, an unweighted sum rate (i.e., if the weights are set to the same positive

constant for each user).

2) Based on the computed rates, determine the value of the utility function G(R1,…,RK)

for this selection of users and encoding order.

3) Repeat the first two steps for all other possible selections of users and encoding

orders. The total number of possible solutions in the general case to exhaustively

search through is given by (3.2).

4) Select the set and encoding order π that gives the maximum value for the utility

function as the scheduling decision (possibly using secondary criteria in the event

two solutions give the same maximum).

As mentioned above, the user rates can be expressed in terms of , π, and Σjk. Thus,

the utility function can also be expressed in terms of those variables, i.e.,

 1 11, , ; ; , ,
CK N KG R R G Σ Σ . (3.4)

The optimal utility function value is therefore:

11

11
, , ,...,

* max ; ; ,...,
C

N KC

N KG G

Σ Σ

Σ Σ

 , (3.5)

and for a given and π,

11 ,

, 11
,..., : 0, , ;

max ; ; ,...,
C

N K jk jkC j k

N K
j k Tr P

G G

Σ Σ Σ Σ

Σ Σ

. (3.6)

To make the optimization problem slightly less complex, we modify the transmit

power constraint to:

 jk Ck
Tr P N

 Σ . (3.7)

26

That is, the available transmit power is equally divided across all NC subcarriers. This

largely enables the subcarriers to be scheduled independently of each other, depending on

the utility function.

We show in Appendix A that the optimal transmit covariance matrices in (3.6) for a

given set of users and encoding order when using DPC satisfy the following set of

equations:

 , if 0
T Tjk M M jks Σ 0 ; (3.8)

 , 1,...,jk C C
k

Tr P N j N

 Σ

; (3.9)

 0jk jkTr Σ ; (3.10)

1 1

* * * *

,
T T T T

T T T T T T
ji ji ju ji ji ji ji ju ji ji

i k u i i k u ii i

T
j jk M jk M jk M M

G G

R R

s k

 H I H Σ H H H I H Σ H H

I I Ω 0
; (3.11)

 , 0jk jkΣ Ω . (3.12)

In the above, sjk is a binary variable equal to 1 if user k is scheduled on subcarrier j,

and 0 otherwise. With the optimal transmit covariance matrices, the optimal user rates

can then be determined, and hence, the maximum value of the utility function can be

found for the selected set of users and encoding order.

The covariance optimization problem is not convex, thus finding the optimal Σjk

directly on the BC can be quite difficult. It is, in general, much easier to solve for the

optimal transmit covariance matrices on the dual MAC and then convert those matrices

into their equivalents on the BC (as in [107] and [82]) than to directly solve for the BC

matrices. It is in fact unnecessary to transform to the BC until a scheduling decision is

made on the dual MAC. We therefore use this duality and the methods in [107] and [82]1

to find the optimal transmit covariance matrices in this work.

3.2.2 Example Scheduling Criteria and Their Utility Functions

In this work, we consider two criteria for scheduling in multi-carrier systems

employing DPC: the maximum throughput criterion and the proportional fairness

criterion.

1 At the time this work was carried out, we were only aware of the method of [82] to maximize a
weighted sum rate for the MAC when the users have an arbitrary (i.e., more than one) number of
receive antennas. Since then, far more efficient methods for maximizing a weighted sum rate have
been published, such as that in [108].

27

The maximum throughput criterion maximizes the instantaneous system throughput

at each scheduling instance, i.e.,

1

K

MT k
k

G R

 . (3.13)

Maximizing GMT results in the highest possible system capacity; the metric is simply

that of the system sum rate. Under DPC, however, the encoding order has no effect on the

system sum-capacity. Although the individual user rates and the optimal transmit

covariance matrices will change, the sum of those rates will not. Hence, multiple

solutions can give the same value of the metric. For this work, we break the tie in these

situations in a max-min sense: whichever encoding order maximizes the smallest of the

user rates is the preferred solution.

The maximum throughput criterion suffers from a lack of fairness. Users that

experience consistently poor channel conditions (e.g. far from the base station or in a

shadowed location) will receive very little service and, in extreme cases, no service at all.

Hence, some fairness constraint is usually imposed on the scheduling algorithm.

The proportional fairness criterion is one of the best known compromises between

fairness and throughput. A scheduler that is proportionally fair will maximize the

following utility function [19]:

 2
1

log
K

PF k
k

U R

 . (3.14)

Here, kR is the average long-term throughput of user k. A scheduler is said to be in a

state of proportional fairness if, by changing from the current rate vector rx to another rate

vector ry, the sum of the proportional changes in rates is less than or equal to zero [19].

A proportionally fair scheduler is often used in third generation cellular systems. The

form in (3.14) is not normally used, because it is non-causal (the long-term average is the

expected rate over all time, including the future), nor is it in the form required in (3.3).

Rather, the following form is usually used:

1

K
k

PF
k k

R
G

R

 . (3.15)

A scheduler that maximizes GPF also maximizes UPF, as proven in [19],[109],[110].

This form of the utility function is a weighted sum rate, where the users’ weights are

1k kw R . The non-causal average throughput kR is normally approximated by a

moving average over a window of past slots and is calculated by:

28

 1 1
1 1k k k

c c

R t R t R t
t t

. (3.16)

Rk is updated for the next slot (t + 1) after the scheduling decision for slot t has been

made, and thus the rates Rk(t) are known. If user k is not scheduled at slot t, Rk(t) = 0. The

time constant tc is the window size for the averaging; in this work, we use tc = 100 slots.

3.3 Genetic Algorithms

3.3.1 General Description

One potential suboptimal solution to the scheduling optimization problem lies in

genetic algorithms [111]. Genetic algorithms (GAs) to some degree mimic biological

systems in their operation. The algorithm starts with a set (or population) of data

structures that are called chromosomes (or sometimes genes), which represent possible

solutions to the optimization problem. These chromosomes are similar in concept to their

biological counterparts. During each iteration (or generation) of the algorithm, several

pairs of the chromosomes (called parents) from the population may be crossbred with a

crossover operation by swapping information between the data sequences to form

offspring or children. The likelihood of a chromosome being selected for breeding is

related to its fitness, i.e., how good of a solution to the utility function that chromosome

represents. Chromosomes that are more fit are more likely to be selected for breeding.

The child chromosomes may also undergo a mutation operation, wherein each and any of

the constituent elements of the children has a probability of being randomly altered. The

offspring then replace their parents for the next iteration of the algorithm. For each

generation, the child chromosomes should be checked to see if they meet the constraints

on the problem, and for fitness in conjunction with the original utility function. Elitism

may also be employed, wherein the “best” chromosome(s) may be kept from the previous

generation when a new generation is created, so as not to lose the best solution found thus

far. Through this “survival of the fittest” process, the chromosomes eventually evolve

towards the optimal solution, while the random breeding and mutation process helps to

ensure that the algorithm does not get stuck at a local maximum, but rather converges to

the global maximum. Figure 3.1 shows the overall operation of a genetic algorithm. The

specific implementation of the algorithm will depend on the problem being solved, but

most GAs follow this general structure. [112] contains a good overview of the various

options available in the design of each step of the GA.

29

Genetic algorithms belong to a class of stochastic and heuristic optimization

techniques that operate in a somewhat random fashion, yet are guided in some manner

towards the optimal solution. Other such techniques include simulated annealing [113]

and particle swarm optimization [114]. GAs are a fairly popular method of optimization;

within just the field of communications they have been used to help design and optimize

antennas and electromagnetic devices [112], analog circuits [115], digital filters [116],

wireless sensor networks [117], radio spectrum allocation [118], antenna selection

algorithms [119], and so on. One reason for their popularity is their robustness to the

utility function being optimized. The stochastic nature helps ensure that the algorithm

finds a solution to the problem close to the global optimum. GAs have the benefit that

they can still operate even if the utility function is not convex. (In the context of

scheduling, when QoS constraints such as resource sharing or minimum performance

requirements are included, this may end up being the case.) Many other optimization

methods, although being able to find a stationary point faster than a GA in some cases,

also require a convex function to operate on to ensure that the stationary point is a global

optimum point instead of a local optimum. Genetic algorithms are also particularly suited

for scheduling operations, as they are known for their speed of convergence. Due to its

random nature, the algorithm may take some time to locate the overall optimal solution;

in fact, for a limited operating time, finding the global optimum is not necessarily

guaranteed. However, the GA will usually find a very good solution that is close to the

optimal one quickly.

Dealing with any constraints can be one of the more complicated issues in dealing

with genetic algorithms. In each of the stages of the algorithm, the constraints can be

considered in some fashion. During the mating selection process, the probability of a

chromosome being selected for mating can be related to the fitness of that gene, which in

Figure 3.1: Flow diagram of a general case genetic algorithm.

Start
Initialize a

population of
Np chromosomes.

Begin creating
next generation.

Randomly select
two chromosomes

for mating.

Perform
crossover
operation.

Perform
mutation
operation.

Have
Np offspring

been created?

Replace
population with
new generation.

Has
stopping criterion

been reached?
End

YESYES

NONO

30

turn can be related to the constraints. That is, if a chromosome violates the constraints of

the optimization, it should be of lower fitness, and consequently can be given a lower

probability of selection. Care should also be taken in how rigidly the constraints are dealt

with in the fitness function. If a constraint is violated, but only slightly, that solution may

still be acceptable depending on the situation, but with some penalty in terms of its

fitness. However, if multiple constraints are involved, it could become difficult to tell

from a low value of the fitness function alone if a potential solution provides a high value

for one parameter to be optimized while violating several other constraints, or if the

solution is poor but does not violate any constraints. When performing the crossover and

mutation processes, the constraints can also be considered. If a child of the process does

not meet the constraints, that child could simply be removed. Alternatively, the child

chromosome could be repaired so that it does meet at least some of the constraints. It may

also be possible to define a birthing or mutation function that causes a child to fall within

the constraints so long as the parents already meet the constraints. The actual specifics of

the process depend on the implementation of the algorithm and the optimization problem

to be solved. Some possible methods of handling constraints in GAs are discussed in

[120].

3.3.2 Genetic Algorithm for Order-Dependent Precoding and Scheduling

A genetic algorithm used for scheduling works somewhat differently from a typical

scheduling algorithm. Usually, a scheduling algorithm calculates a metric for each user,

then selects a user or users based on those metrics. After the selection, the algorithm must

usually then go back and calculate new metrics for the remaining users based on the

selected user(s). The algorithm iterates in this fashion until a maximum of NS users have

been selected. In comparison, the genetic algorithm does somewhat the reverse; instead,

it first selects an entire potential group of users via the chromosomes, and then calculates

a fitness function for that set of users after the selection. Only after the users are selected

does the algorithm check the fitness of the selection and see if the constraints are met. In

essence, the GA partially decouples the process of selecting a group of users and

encoding order from the calculation of the fitness for that group.

As already mentioned, the scheduling optimization problem the GA is attempting to

solve has two parts: the optimal selection of a group of users and encoding order, and the

optimization of the utility function for that group and order. Within this work, we use the

GA to solve the selection portion of the problem only; this is the more difficult part of the

31

two. The chromosomes represent potential solutions to that problem only, i.e., which

users will be scheduled and in what order will their data be encoded. The GA mating

process does not in and of itself calculate the fitness of each chromosome. This fitness

can be calculated separately from the mating process itself, and within this work,

(globally) optimally. The utility function (fitness) that is being maximized is a scheduling

metric for each selection and ordering, such as those given by (3.13) and (3.15).

A genetic algorithm was used in [109] to implement the maximum throughput and

proportional fairness scheduling criteria in the context of orthogonal transmit spatial

multiplexing (i.e., ZFB) for mobiles with a single receive antenna. In that case, the only

scheduling constraint was that the number of users to be selected must be less than or

equal to the number of transmit antennas. The algorithm was able to achieve a

performance within about 0.5 dB of an optimal scheduler (implemented via integer

programming and exhaustive search) in a much smaller number of calculations. For

example, with 20 active users and 4 transmit antennas, the algorithm converged to a good

solution in about 1/36 of the time of the optimal scheduler.

The overall problem investigated herein is fairly similar to the problem in [109]. As

such, the GA in [109] provides a good basis from which to expand upon for scheduling

with order-dependent encoding (e.g. DPC), and also for multi-carrier transmission. The

key differences between the investigation in [109] and in this work are listed as follows.

1) The general design in [109] was for a system that uses ZFB, whereas this work

considers DPC. Consequently, the design in this work also considers the effect of the

encoding order on the solution.

2) The problem that was considered in [109] encompassed only single-antenna

receivers, whereas this work considers receivers with multiple antennas. Hence, the

optimal solution involves power allocation over complex-valued covariance matrices

instead of real-valued scalar powers.

3) The system in [109] used single-carrier transmission. In comparison, this work for

DPC also considers a multi-carrier system, and thus, the solution involves resource

allocation and optimization across multiple carriers, adding an additional dimension

to the problem.

In [109], Lau uses a bit vector as a chromosome to indicate which users are

scheduled. In this work, we extend this scheme to account for an encoding order and to

allow for scheduling on multiple carriers. To begin, considering just a single-carrier

32

system, denoting which users are scheduled can still be accomplished by a vector of K

bits. A ‘1’ in position k of the vector denotes a scheduled user, while a ‘0’ denotes an

unscheduled user. As in [109], the weight w (i.e., the number of ‘1’s) of this vector

should be between 1 and NS inclusive. The binary chromosome representation is a

particularly good choice for scheduling (as opposed to, say, real-valued chromosomes),

since the scheduling decision is itself binary; either a user is scheduled, or it is not.

This leaves the encoding order to be represented in the chromosome. In our

modification, we refer to the K-bit vector that denotes which users are scheduled as the

“head” of the chromosome. The additional bits in the chromosome that denote the

encoding order of the scheduled users we refer to as the “tail”. The tail of the

chromosome consists of NS × log2(NS) bits (where denotes the ceiling function).

Each group of log2(NS) bits denotes the relative position of a scheduled user in the

encoding order and is referred to as an “order number”. The first order number in the tail

of the chromosome refers to the first ‘1’ in the head of the chromosome, the second order

number refers to the second ‘1’, and so on. The relative order of the users is determined

by the binary value of the order number, i.e., a larger value means a later position in the

ordering. The only constraint on the representation is that the first w order numbers

should be unique, i.e., they need not be sequential. Furthermore, in the event that fewer

than NS users are scheduled, any order numbers beyond the first w are simply ignored.

Two example chromosomes are shown in Figure 3.2. Note that the representation is

independent of the number of antennas at the receivers, allowing the GA to be scaled to

any number of receive antennas or to systems with different numbers of receive antennas

per user. (However, in other encoding schemes, the number of supportable users NS may

depend on the number of receive antennas.)

The proposed chromosome representation is not the only possible one, nor is it

necessarily the most efficient. For example, an alternative chromosome could consist of

NS groups of log2(K) bits. Each group would stand for the user ID of the users to be

Figure 3.2: Two typical chromosomes for single-carrier DPC scheduling with NS = 4 and K = 10.
(a) Users 2, 4, 7, and 9 are scheduled and have order numbers ‘10’, ‘11’, ‘00’, and ‘01’,

respectively. The users are therefore encoded in the order {7,9,2,4}. (b) Users 4 and 8 are
scheduled and have order numbers ‘11’ and ‘01’, respectively. They are therefore encoded in the

order {8,4}. The remaining two order numbers in the tail of the chromosome are ignored.

0101001010||10110001

(a)

0001000100||11011111

(b)

33

scheduled, while the encoding order is simply represented by which group the ID is in.

That is, the first group of bits represents the first encoded user, and so forth. An

additional log2(NS) could be added to indicate how many users are scheduled, to allow

scheduling less than the maximum supportable number of users. Since K is usually much

larger than NS, this representation would use less memory than the first proposed scheme.

However, our chosen representation has other benefits in its favor:

 The encoding order is more decoupled from the user selection. Therefore, it is

somewhat easier to consider the same selection of users, but a different encoding

order, by simply changing a few bits in the tail of the chromosome. In comparison, to

exchange the encoding order of two users in the second representation, all the bits

from two of the groups would have to be swapped.

 Crossover operations are more likely to lead to invalid children, and corrections are

more difficult, with the second representation. During the crossover operation, it

could be possible to create a user ID that does not exist. This scenario is the most

likely to occur if K is slightly over a power of 2. For example, if K = 36, if a

crossover occurs after the first bit of an ID of 33 (‘100001’) and an ID of 26

(‘011010’), the ID of ‘111010’ (58) would be created, which is larger than the

number of users. This could be avoided by restricting crossovers in the second

representation to between the groups of bits, but it is also still possible to create a

chromosome that has the same user scheduled twice. In both cases, correcting the

chromosome is more difficult. Multiple bits in general would have to be changed to

correct the chromosome. In comparison, the errors that can occur in the first

representation are much easier to fix most often with some simple bit toggles.

 Mutation is easier and / or works better with the first representation. Mutation in the

first case is a simple bit-toggle operation, which is extremely efficient to implement.

This same type of mutation could be applied to the second representation, but the

mutation would not work as well. The probability of mutation tends to be fairly low,

so within a given user ID, only one bit is likely to be changed, if any. This restricts

the mutation of the ID to a sort of Gray mapping [20] around the original ID. That is,

a single-bit mutation would only change the ID to one of log2(K) other IDs near the

original binary value. This is not necessarily a good thing in scheduling. Rather, it

would in general be more beneficial for a mutation to possibly result in any other user

being considered for scheduling, for the largest diversity in the choice of selection.

This is accomplished in the first representation. Doing so in the second representation

34

is still possible, but it would require a multi-bit mutation operation, operating on a

bit-group scale instead of on individual bits, which is not as operationally efficient.

Extension to a multi-carrier scenario is quite simple. Rather than a bit vector, we

instead use a bit matrix. The order-aware single-carrier chromosome structure is repeated

for NC rows, with the jth row of the matrix representing the scheduling and encoding

order on the jth subcarrier. It is also possible to schedule subcarriers in groups rather than

individually, in which case the number of rows would be equal to the number of groups.

Typical chromosomes for the multi-carrier case are shown in Figure 3.3.

As mentioned earlier, the problem and thus our GA methodology are similar to that

described in [109]. Further implementation details are as follows.

1) Initialization: A population of Np chromosomes is initialized at random. As

previously mentioned, this initialization is constrained such that, in the head of

chromosome, the weight wj of each of the rows is between 1 and NS inclusive. In

addition, the order numbers in the tail are randomly initialized under the constraint

that, for each row, the first wj order numbers are unique. This initial population

represents the initial choices for the scheduling of users and their encoding order. In

general, it is not known what the optimal ordered grouping is; thus, the initial random

population provides a diverse set of possible choices from which the search for the

optimal ordered grouping can be started.

2) Selection: In [109], an intermediate population is formed from the initial population

in each generation based on remainder stochastic sampling. Chromosomes are then

selected from this intermediate population for crossover and mutation. In contrast, we

select chromosomes directly from the population in a “roulette wheel” method based

on their fitness. The fitness of a given chromosome i is defined by the value of the

utility function Gi for the solution that is represented by that chromosome with

Figure 3.3: Example of GA operation for multi-carrier DPC scheduling with four subcarriers, four
transmit antennas, and 10 active users. (a) Two typical chromosomes and a random crossover

location. (b) Crossover operation. (c) Mutation operation. (d) Correction of invalid child
chromosomes.

1 0 0 0 0 1 1 0 1 0 || 0 1 1 1 0 0 1 0
0 0 0 1 1 0 0 0 0 1 || 0 1 1 0 0 0 0 0
0 0 1 1 0 1 0 0 0 1 || 0 0 1 0 1 1 0 1
1 1 0 0 1 0 0 0 0 1 || 0 0 0 1 1 0 1 1

0 1 1 1 0 0 0 0 0 1 || 1 1 1 0 0 1 0 0
0 0 0 1 1 0 1 0 0 1 || 1 1 1 0 0 1 0 0
0 1 1 0 0 0 1 1 0 0 || 0 0 0 1 1 1 1 0
0 0 1 0 0 1 1 0 1 0 || 0 0 1 1 0 1 1 0

10000
00011
00110
11001

00001 || 11100100
01001 || 11100100
01100 || 00011110
11010 || 00110110

11010 || 01110010
00001 || 01100000
10001 || 00101101
00001 || 00011011

01110
00011
01100
00100

10000
00011
00110
01000

10001 || 11100100
01010 || 11100100
01100 || 00011110
11010 || 00111110

11010 || 01100000
00001 || 01100000
10100 || 00101101
00001 || 00011010

01110
00011
01000
00100

10000
00011
00110
01000

10001 || 11100100
01010 || 11100100
01100 || 00011110
11010 || 00011110

10010 || 01101100
00001 || 01100000
10100 || 00101101
00001 || 00011010

00110
00011
01000
00100

(a) (b) (c) (d)

35

optimal transmit covariance matrices, as given by (3.13) and (3.15). The probability

of a chromosome being selected for breeding is given as:

 _

1

p

i
sel i N

nn

G
p

G

. (3.17)

Thus, the more fit a chromosome is, the more likely that it will be selected and hence

pass along its characteristics to the next generation.

3) Crossover: Our GA uses a so-called “one-point” crossover operator similar to that in

[109], with a probability of pc = 1. Once two “parent” chromosomes are selected by

the previous step (it is possible that the same chromosome will be selected twice), a

crossover point is chosen somewhere at random along the length of the chromosome.

In the multi-carrier scenario, this same location is used across all rows of the

chromosome. Any bits after the crossover point are swapped between the parent

chromosomes to form two new “children” chromosomes. By combining the

information of the parents in such a fashion, the chromosomes combine the partial

characteristics of a good solution (e.g. some of the best users to be scheduled) into a

new chromosome that represents a new and hopefully better solution.

4) Adaptive Mutation: Mutation is applied to the children chromosomes that were

created by the above crossover operation. The same adaptive mutation probability as

in [109] is adapted for this work. The probability of any given bit in the children

chromosomes toggling is given as:

1 2

1
m

G G

p

, (3.18)

where σG and μG are, respectively, the standard deviation and mean of the fitness of

the current population before selection, and β1 = 1.2 and β2 = 10 are constants. The

crossover operator has the most notable effect on the convergence of the GA when

the genetic diversity in the population is large (e.g. in the initial random population).

However, once the algorithm begins to converge on a solution, the mutation operator

becomes increasingly important. As the GA starts to converge, the chromosomes in

the population tend to end up sharing the same characteristics. (For example, several

chromosomes may have some of the same users selected to be scheduled.) Thus, the

fitness of those chromosomes tends to be similar. However, it is in general unknown

if a particular chromosome represents a globally optimum solution, a locally

optimum solution, or otherwise. Mutation allows the algorithm to maintain a wide

variety of possible solutions and helps avoid stalling on a local maximum, and it

36

forces the algorithm to consider solutions other than those near the current best

solution. Hence, when the variation in the fitness of the population becomes smaller,

the probability of mutation should increase. This is accomplished by the adaptive

mutation rate in (3.18). If the algorithm is converging on a solution, the standard

deviation of the fitness of the chromosomes will drop relative to the mean fitness of

the population, which results in a larger value for pm. If, instead, there is a fair

amount of diversity in the fitness of the chromosomes, the standard deviation will

comparatively be larger, and hence, the mutation rate will be smaller.

5) Constraints: During crossover and mutation, it is common for children to be created

that violate the constraints of scheduling at most NS users or of allocating each

scheduled user a unique order number. These invalid chromosomes must somehow

be dealt with. We correct any constraint violations as the last step in the breeding

process. For each row in the chromosome, if the weight of the head is larger than NS,

‘1’s are toggled at random to ‘0’s until the weight is NS. In the less likely event that

the weight of the head is zero, one bit is toggled at random to a ‘1’. In the tail of the

chromosome, if there are duplicated order numbers, one of the duplicates is replaced

at random with an order number that is not yet used by one of the scheduled users.

This is repeated until no duplicates remain.

6) Elitism: For each generation of Np chromosomes, only Np − 2 new chromosomes are

created through the breeding process. To prevent the previous best chromosome C*

from the prior generation from being destroyed in the breeding process, a copy is

inserted into the new population as one of the two remaining chromosomes. This

process also causes the value of the utility function found by the algorithm to be

strictly non-decreasing over time; otherwise, the value could, in fact, diverge from

the optimum. The final chromosome of the population is also a copy of C*, except

that the encoding order of two of the scheduled users is swapped at random.

7) Iteration: Once a new population of Np chromosomes has been formed by the above

selection and mutation processes, it replaces the old generation. The procedure then

iterates for a total of Ng generations. The values of Np and Ng are dependent on the

maximum number of scheduled users NS and the number of active users K, as

described in Sections 3.5.3 and 3.5.4.

Figure 3.3 shows the typical operation of the GA during the breeding of two multi-

carrier chromosomes within one generation. Figure 3.4 depicts a flow diagram

summarizing the overall operation of our genetic algorithm.

37

3.4 Multiuser MIMO System Model with Single and Multiple
Carriers

3.4.1 Wireless Channel Model

We wish to isolate the effects of the scheduling algorithm from any other effects that

are specific to the implementation of the system (e.g. modulation and coding) or the type

of data being carried. Hence, at the base station, we assume that packets arrive in such a

Figure 3.4: Flow diagram of the genetic scheduling algorithm.

Start

Initialize a population of Np chromosomes at random.

Update G and G.

Select two parent chromosomes from the population based on (3.17).

Perform crossover operation to form two child chromosomes.

Toggle bits in children with mutation probability pm in (3.18).

Correct constraint violations in children.

Insert copy of previous best chromosome C* into new generation.

Insert 2nd copy of previous best with encoding order of two users swapped randomly.

Replace previous population with new generation.

End

YES

YES

NO

NO

Have
Np–2 children been

created?

Have
Ng generations been

created?

Calculate fitness of chromosomes and find best chromosome C*.

Calculate fitness of chromosomes and find best chromosome C*.

Make scheduling decision based on C*.

38

manner that there is always data available to transmit to all users that request service. We

also assume that the data rates that each user can support are determined by channel

capacity to provide an upper bound on the performance. Turbo and low-density parity-

check codes [121] approach capacity within 0.5 dB; thus, this is a reasonable and

commonly-used assumption.

We consider a transmission system that consists of a base station with MT antennas,

which schedules transmissions to a pool of K active users, each equipped with NR receive

antennas. The channel gain between any given transmit-receive antenna pair on any

carrier is modeled as an i.i.d. circularly-symmetric complex Gaussian process with unit

variance (i.e., Rayleigh fading). A block-fading (quasi-static fading) model is assumed,

where the coherence time of the channel is much longer than the scheduling and

transmission interval, such that the channel gains are approximately constant for the

entire interval. (Such a scenario is typical in the current generation of wireless packet

data systems, e.g. [4] and [122], and where the transmission interval, which is on the

order of milliseconds, is much less than the coherence time of the fading channel.) All

channel gains then independently change between intervals. The path loss, shadowing,

and fading conditions for each user are statistically identical. In the case of the

proportional fairness scheduling criterion, a log-normal shadowing component [123] with

a standard deviation of 8 dB is also added to the signal to provide a variation in the

average signal strength (and, hence, the average supportable rate) across the set of active

users. 8 dB is used as it is approximately in the middle of the range of standard deviations

observed for both macrocellular and microcellular applications [123].

The channel between the base station and the kth user on the jth carrier is defined by

the NR×MT channel matrix Hjk. The combined received signal for all users on the jth

carrier is:

1 1 1j j j

j j j j j

jK jK jK

y H n

y x H x n

y H n

 , (3.19)

where xj is the MT×1 vector of transmitted symbols from the base station on the jth

carrier, Hj is the (NRK)×MT aggregate channel matrix for all K users, yjk is the NR×1

vector of received symbols for user k on the jth carrier, and nj is the (NRK)×1 Gaussian

noise vector on carrier j with variance1 2

Rn N K I .

1 We assume without loss of generality that 2

n = 1 throughout this work.

39

Each carrier is assumed to fade independently of all other carriers. Furthermore, it is

assumed that the signal transmitted on any given carrier causes zero interference on any

other carrier. In the multi-carrier case in this work, we assume that the total useful

bandwidth WT (over which data signals are transmitted, not including factors like guard

intervals, etc.) is identical to that in the single-carrier case to provide proper

normalization for the spectral efficiency. Figure 3.5 demonstrates this with NC = 4

subcarriers using orthogonal frequency division multiplexing (OFDM) and regular FDM.

It is assumed that the base station perfectly knows the channel matrices for all users

at all frequencies. This knowledge can come through channel estimation at the mobiles,

based on a pilot signal that the base station transmits, which is then sent to the base

station on a feedback channel. Alternatively, in the case of a time-division-duplex system

for the uplink and downlink, the base station can estimate the uplink channels for the

mobiles from their signals and then derive the downlink channels based on channel

reciprocity.

3.4.2 Physical Layer Model

As we have previously mentioned, we wish to isolate the effects of the scheduling

algorithm from the specific details of the implementation of the system. Hence, we take

an information-theoretic approach to the performance of the physical layer. Furthermore,

we are also interested in accounting for the effect that encoding order has on scheduling

and the performance of the system. Thus, we consider a system where the users’ signals

are encoded via DPC [15],[16],[17]. DPC is known to achieve the sum-capacity of a

MIMO BC. Although DPC is currently infeasible, it can closely be approximated by

some of the methods described in the previous chapter (e.g. [32],[34],[39]). Nevertheless,

in this work, we are concerned with scheduling complexity, not encoding complexity,

Figure 3.5: Conceptual power spectrum P(f) vs. frequency f of single-carrier and multi-carrier
transmissions with same normalized total bandwidth WT. Total transmit power is divided equally

among carriers. (a) Single carrier. (b) OFDM, 4 subcarriers. (c) FDM, 4 subcarriers.

P(f)

f

a

WT

(a) P(f)

f

a/4

WT WC =
2WT/5

(b) P(f)

f

a/4

WT WC =
WT/4

(c)

40

and hence simply assume a system employing capacity-achieving DPC. To bypass the

non-convexity of the BC, we instead perform utility function calculations on the dual

MAC.

3.4.3 Medium Access Control Layer Model

On the medium access control layer, a scheduling algorithm is responsible for the

allocation of power and resources to the active users. As mentioned, it is assumed that the

base station knows the channel matrices of the users, usually via feedback from the users

based on measurements made from a pilot signal. The scheduler takes these matrices as

an input and attempts to maximize some sort of metric using the matrices, the total

available transmit power P, and possibly other parameters. For simplicity, we assume the

transmit power is divided equally among the subcarriers. The outputs of the scheduler are

the set of scheduled users, the rates for those users, and the corresponding transmit

covariance matrices (i.e., the power allocations). This information can be transmitted to

the users on a downlink control channel.

Strictly speaking, there is no limit to the number of users that can simultaneously be

scheduled with DPC. (It should be noted, however, that certain approximations have

limits based on the number of transmit or receive antennas.) However, if waterfilling the

power is performed to maximize the sum-throughput, chances are that certain users will

end up being allocated zero power and, hence, effectively not be scheduled. It is shown in

[124] that, if there are MT transmit antennas, at most MT
2 users will be allocated non-zero

power. In general, one cannot tell how many users must be scheduled to achieve the sum-

capacity. However, it has been shown in [75] that, most of the time, it is sufficient to

schedule, at most, the same number of users as there are transmit antennas. Scheduling

less than MT users will often lead to a significant loss in capacity, unless the SNR is low.

However, scheduling more than MT users does not result in a significant gain in capacity;

the system is already very close to capacity once MT users are scheduled. Hence, the

scheduler need not consider additional users beyond NS = MT.

Very little work in the literature looks at scheduling in conjunction with DPC alone.

This is due to several reasons. In part it is due to the current infeasibility of DPC. Hence,

scheduling efforts are more focused on other methods, such as linear precoding methods,

or other suboptimal adaptations like ZF-DPC. Also, as just discussed, scheduling in DPC

is not strictly necessary; waterfilling over all possible users in effect chooses which users

to transmit to by allocating them non-zero power. However, we have focused on

41

scheduling under DPC for this work for a few reasons. First, DPC still is optimal, and we

wish to analyze the performance of the GA in a “best case” scenario, to focus solely on

the effect of the scheduling. Secondly, there may arise in the future some method that

closely approximates DPC that is feasible for implementation. Such a method might have

restrictions on the number of supportable users. Our GA would still be valid in this case.

Lastly, the GA we have used for DPC scheduling is still trivially extendable to other

precoding methods besides DPC, so it is also usable in present practical systems.

3.5 Simulation Results

In this section, we analyze the performance of the GA in implementing the maximum

throughput (MT) and proportional fairness (PF) scheduling criteria in a system using

DPC in both single-carrier and multi-carrier scenarios. In the multi-carrier scenario, we

consider a relatively simple system with only four subcarriers to help reduce the

simulation complexity. The performance of the GA is compared to an exhaustive search

(ES), which serves as an upper bound. In addition, in the single-carrier case, we also

compare a few results by using ZFB instead of DPC for reference to the earlier work in

[109]. In all cases, a maximum of NS = MT users are scheduled per subcarrier.

3.5.1 Single-Carrier Results

Figure 3.6 demonstrates the performance of the maximum throughput scheduler in

terms of the utility function value GMT (i.e., the system sum-throughput) versus SNR for

various values of MT, NR, and K. For reference, the optimal performance of an ES is also

shown. The ES provides the best possible performance for choosing a maximum of MT

out of K users to serve simultaneously using DPC. It is shown that the GA achieves

approximately 94–99% of the sum-throughput relative to the ES while being significantly

less complex. Interestingly, the relative performance of the GA compared to the ES is

essentially independent of the SNR. Over the SNR range of 0 to 10 dB, the change in

relative performance is at most about 1.7%, for (NR,MT,K) = (1,4,20); for the other curves,

the change is even less. It is also observed that the performance of the GA relative to the

ES is better for MT = 2 than for MT = 4. This is not that surprising, as the larger the value

of MT (and hence NS), the larger the search space is for the optimal user selection (as

given by (3.2)). Nonetheless, even for this more complicated problem, the GA performs

quite well. Overall, in terms of SNR, the GA performance is generally inferior to the

optimal performance by about 0.5 dB.

42

For reference, we also simulated the performance of the system using DPC, but

wherein the system attempted to transmit to as many users as possible, and with optimal

power allocated to those users in order to maximize the system capacity. This is to

reinforce the conclusions drawn in [75]. As expected, there is very little difference in the

sum-throughput when scheduling only MT users compared to as many users as possible.

In fact, for the most part, the performance is largely coincident with the ES results in

Figure 3.6. Thus, we do not plot those results there, as the lines would essentially overlap.

For MT = 4, we observed at best less than an additional 0.3 bit/s/Hz in throughput (or a

2% increase), which is mostly negligible.

Comparing the results with a system that uses ZFB for (NR,MT,K) = (1,2,10) and

(1,4,10), it is shown that the suboptimal DPC GA performance is not worse than the

optimal ZFB performance. In fact, the GA shows a gain of up to about 2 dB in Figure

3.6(c) compared with the optimal ZFB results. Therefore, the performance of our GA for

DPC is also better than that of the GA for ZFB as in [109], since that GA must

accordingly be no greater than the exhaustive search for that scenario.

Lastly, it can also be observed that there is an increase in throughput as NR, MT, or K

increases, as expected from the corresponding increase in spatial or multiuser diversity.

The largest gain in throughput comes from increasing MT, because doing so increases

both the number of spatial channels and / or streams that can be transmitted, and the

maximum number of users that can simultaneously be scheduled. This gain in throughput

0 2 4 6 8 10
2

3

4

5

6

7

8

9

System Tx SNR (P/WTσn
2) (dB)

(1,2,20)

(1,2,10)

Su
m

 o
f u

se
r t

hr
ou

gh
pu

ts
 (b

it/
s/

H
z)

(a)

0 2 4 6 8 10
3

4

5

6

7

8

9

10

System Tx SNR (P/WTσn
2) (dB)

(2,2,20)

(2,2,10)

(b)

0 2 4 6 8 10
3

5

7

9

11

13

15

System Tx SNR (P/WTσn
2) (dB)

(1,4,20)

(1,4,10)

(c)

GA
ES (DPC)
ES (ZFB)

GA
ES (DPC)

GA
ES (DPC)
ES (ZFB)

Figure 3.6: Performance of maximum throughput scheduling versus SNR for a (NR,MT,K) single-

carrier MIMO system implemented via GA and ES. (a) NR = 1, MT = 2, and K = 10, 20. (b) NR = 2,
MT = 2, and K = 10, 20. (c) NR = 1, MT = 4, and K = 10, 20.

43

comes despite the fact that the available transmit power is split among a larger number of

users, thereby decreasing the individual capacities of those users.

Figure 3.7 shows the maximum throughput performance versus K at an SNR of 10

dB and better illustrates the effect of multiuser diversity. As the number of active users

increases, so does the sum-throughput. However, this gain comes at the cost of increased

complexity at the base station, both in terms of determining the users’ channels and the

function evaluations of the scheduler. For the former, having more users equates to more

feedback being required in order for the base station to have channel state information

available for each of the users in order to make its scheduling decisions. The issue of

feedback is beyond the scope of this work; we simply assume that the base station

somehow has perfect knowledge of the channels. More important for this work is the

latter case: as the number of users increases, eventually, either the GA population or the

number of generations must also increase to compensate for the larger number of possible

permutations of scheduled users (i.e., the larger number of potential optimization

solutions). This directly results in additional utility function evaluations and, hence, more

complexity within a given scheduling interval. We discuss the issue of complexity in

more detail later in Section 3.5.4.

Figure 3.8 shows the performance of the proportional fairness scheduler versus SNR

in terms of the utility function value UPF achieved. Note that the values are negative,

because the average rate per user is, in general, less than 1 bit/s/Hz, which yields a

8 10 12 14 16 18 20
7

8

9

10

11

12

13

14

15

(1,4)

(2,2)

(1,2)

Number of active users in system (K)

Su
m

 o
f u

se
r t

hr
ou

gh
pu

ts
 (b

it/
s/

H
z)

GA
ES (DPC)
ES (ZFB)

Figure 3.7: Performance of maximum throughput scheduling at SNR = 10 dB versus the number

of active users for an (NR,MT) single-carrier MIMO system implemented via GA and ES.

44

negative value for the logarithm. Complexity and time considerations prevented us from

performing an exhaustive search for the case of (NR,MT,K) = (1,4,20). Each Monte Carlo

run of the PF simulation first requires some initialization time for the average throughput

for each user to reach its approximate steady-state value; each average rate is initialized

to a low value, which then increases and converges to around the steady-state as users are

scheduled. Additional scheduling instances are then required once the steady-state is

reached; it is only these later samples which are useful for the simulation output. (In

comparison, the maximum throughput simulations require much less time, as they do not

require average statistics to be built up; the MT criterion only uses the instantaneous

channel states at each scheduling interval.) This reason, combined with the

combinatorially increasing complexity of the exhaustive search, makes the time for an ES

simulation in the (1,4,20) case prohibitively large.

It is again shown that the GA and an ES yield very similar results. In several cases,

the plots for the exhaustive search and the GA almost overlap. As with the MT criterion,

the PF performance of the GA, in terms of the utility function value achieved, is inferior

to the optimal solution by at most approximately 0.5 dB. Interestingly, the performance

of our GA is also approximately equal to the optimal performance of an ES when using

ZFB.

Figure 3.9 illustrates the distributions of average rates kR and instantaneous

scheduled sum rates kk
R

 that the different scheduling methods with the PF criterion

0 2 4 6 8 10
−60

−50

−40

−30

−20

−10

0
(1,4,10)

(2,2,10)

(1,2,10)
(1,4,20)

(2,2,20)

(1,2,20)

Σ k
[lo

g 2(A
vg

. u
se

r r
at

es
 R
k)]

 (
R k

:b
it/

s/
H

z)

System Tx SNR (P/WTσn
2) (dB)

GA
ES (DPC)
ES (ZFB)

Figure 3.8: Performance of proportionally fair scheduling versus SNR for an (NR,MT,K) single-

carrier MIMO system implemented via GA and ES.

45

achieve. We consider the cases of (NR,MT,K) equal to (1,2,10) and (1,4,10) at an SNR of

10 dB. Comparing the sum-rate curves, the GA curves have basically the same shape as

the exhaustive DPC curves but are slightly shifted to the left. This shift is about 0.2 and

0.74 bit/s/Hz for the (1,2,10) and (1,4,10) cases, respectively. Equivalently, this is on

average about 0.1 to 0.185 bit/s/Hz per user for the two cases. A similar but smaller shift

is shown in the average rate curves (about 0.02 and 0.1 bit/s/Hz, respectively).

Comparing the GA results with the ES curves for ZFB, the (1,4,10) case is particularly

noteworthy. The median of the average rates per user is approximately the same for the

ZFB curve as it is for the GA curve, both being approximately 1.15 bit/s/Hz. However,

the ZFB curve is slightly steeper; i.e., with ZFB, there is a smaller range of likely average

rates. Looking at the instantaneous sum-rate curves, the ZFB curve generally displays a

smaller sum rate than the GA curve, particularly below the 70th percentile. In other

words, the instantaneous sum-throughput for an exhaustive search with ZFB will be

lower than that for the GA and DPC about 70% of the time. Thus, between the two sets of

curves, it can be stated that the optimal performance under ZFB is, perhaps, slightly more

fair than the suboptimal DPC GA in terms of the variation of average rates across the set

of active users, but this fairness comes at the expense of a significantly lower system

capacity. This is in spite of the fact that both cases achieve about the same average utility

function value, as seen in Figure 3.8.

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

Average rate per user (bit/s/Hz)

2 4 6 8 10 12 14 16 18 20 22
Instantaneous sum−throughput (bit/s/Hz)

(1,2,10),
inst.

(1,4,10),
inst.

(1,4,10),
avg.

(1,2,10),
avg.

C
D

F

GA
ES (DPC)
ES (ZFB)

Figure 3.9: Distributions of average rate per user and instantaneous sum-throughput for PF

scheduling in an (NR,MT,K) single-carrier MIMO system at SNR = 10 dB.

46

3.5.2 Multi-Carrier Results

Figure 3.10 shows the performance of the GA implementing the maximum

throughput criterion in a multi-carrier OFDM system relative to an ES. The single-carrier

GA performance is also shown for reference. The multi-carrier system occupies the same

total useful bandwidth WT as the original single-carrier system, so that the SNR and

throughput of the single- and multi-carrier systems can be properly normalized and

compared. As in the single-carrier case, the throughput that the GA achieves is

approximately 94–99% of that of the ES or, in terms of SNR, again about 0.5 dB worse.

Thus, the extension of the GA to the multi-carrier scenario works just as well as with a

single carrier. Furthermore, there is a notable increase in spectral efficiency that results

from the use of OFDM, as a result of the subcarriers overlapping and, hence, more

efficient use of bandwidth. The system sum-capacity relative to the single-carrier

scenario increases by a factor of about 1.2 at an SNR of 0 dB, up to a factor of about 1.36

at 10 dB. In terms of SNR, the gain is about 1.5 to 3 dB. We have also considered the

case when an ordinary FDM system is used (with non-overlapping subcarriers). In this

case, the total bandwidth WT is divided equally into four subcarriers, each with a

bandwidth of WC = WT/4. Interestingly, the GA performance is this case is virtually

indistinguishable from that of the single-carrier GA (thus, we do not plot it on the

graphs). This implies that the performance of the GA per (sub)carrier is identical when

0 2 4 6 8 10
2

3

4

5

6

7

8

9

10

11

12

Su
m

 o
f u

se
r t

hr
ou

gh
pu

ts
 R
jk

 o
ve

r a
ll

su
b−

ca
rr

ie
rs

 (b
it/

s/
H

z)

(a)

System Tx SNR (P/WTσn
2) (dB)

0 2 4 6 8 10
3

4

5

6

7

8

9

10

11

12

13

14

System Tx SNR (P/WTσn
2) (dB)

(b)

0 2 4 6 8 10
4

6

8

10

12

14

16

18

20

System Tx SNR (P/WTσn
2) (dB)

(c)

SC (GA) OFDM (GA) OFDM (ES)

(1,2,10)
(1,2,20)

(2,2,10)
(2,2,20)

(1,4,10)
(1,4,20)

Figure 3.10: Performance of maximum throughput scheduling vs. SNR for an (NR,MT,K) multi-

carrier MIMO system implemented via GA and ES. (a) NR = 1, MT = 2, and K = 10, 20. (b) NR = 2,
MT = 2, and K = 10, 20. (c) NR = 1, MT = 4, and K = 10, 20.

47

the available transmit power is divided equally among the subcarriers. Thus, the

performance of the GA should scale to even larger numbers of subcarriers, though at the

expense of added scheduling complexity. (We discuss the issue of complexity in more

detail in Section 3.5.4.) With that added complexity, even further gains in the OFDM

case likely could be obtained if even more subcarriers were used, due to the increased

bandwidth efficiency of OFDM, given by = NC/(NC + 1) [13], if the guard interval is

ignored. (The bandwidth efficiency of FDM is the same as for single-carrier

transmission.) Lastly, we note increases in throughput with increasing MT, NR, and K just

as in the single-carrier case.

Figure 3.11 shows the GA performance for the proportional fairness criterion in the

multi-carrier case. Once again, the GA performance is, at most, approximately 0.5 dB

inferior to that of the ES. A gain in spectral efficiency for the OFDM case relative to the

single-carrier one, similar to the gain for the maximum throughput criterion, can again be

noted with the proportional fairness criterion. This indicates that users are receiving

higher average throughputs (in bits per second per hertz) than in the single-carrier case.

In theory, the multi-carrier system can simultaneously schedule up to NC×MT

different users, provided the SNR is sufficiently high, as NS = MT users can be scheduled

on each subcarrier. The likelihood of this occurrence increases with K due to the

corresponding increase in multiuser diversity. A larger user pool increases the likelihood

of a different set of users providing the largest scheduling metric on each subcarrier. Our

0 2 4 6 8 10
−25

−20

−15

−10

−5

0

5

10

System Tx SNR (P/WTσn
2) (dB)

Σ k
[lo

g 2(A
vg

. u
se

r r
at

es
 R
k)]

 (
R k

:b
it/

s/
H

z)

(a)

0 2 4 6 8 10
−60

−55

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

System Tx SNR (P/WTσn
2) (dB)

(b)

SC (GA) OFDM (GA) OFDM (ES)

(1,2,10)
(2,2,10)
(1,4,10)

(1,2,20)
(2,2,20)
(1,4,20)

Figure 3.11: Performance of proportionally fair scheduling versus SNR for an (NR,MT,K) multi-
carrier MIMO system implemented via GA and ES. (a) K = 10, NR = 1, 2, and MT = 2, 4. (b) K =

20, NR = 1, 2, and MT = 2, 4.

48

simulations show that the system indeed tends to simultaneously schedule large numbers

of users. Figure 3.12 shows the distributions of the number of scheduled users for the

proportional fairness criterion at an SNR of 10 dB. As an example, for the (NR,MT,K) =

(1,2,10) case, the system usually schedules between five to seven users out of the eight

maximum possible users. When K increases to 20, this increases to most often between 6

and 8 users.

This result has two main implications. First, each user is most often assigned to just

one or, on occasion, two subcarriers. Hence, their instantaneous throughput (in bits per

second) is lower than in the single-carrier case, because their assigned bandwidth is

lower. Second, the delays of each user also decrease. More users are simultaneously

scheduled in the multi-carrier case; hence, any particular user would be scheduled more

often than in the single-carrier case. The CDF of the head-of-line delays per user (that is,

how many transmission scheduling intervals elapse between a given user being selected,

then being selected again) is shown in Figure 3.13. Unsurprisingly, our simulations

indicate that, on average, because the multi-carrier system has four subcarriers, the delays

per user are approximately four times smaller than in the single-carrier system. The user

delays decrease; thus, the average user throughput increases, which helps in

compensating for the reduction in instantaneous throughput. As a side comment, we also

note scaling NR has no effect on the delays, nor does simultaneously scaling K and MT by

the same factor.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Pr
ob

ab
ili

ty

Number of scheduled users

(1,2,10)
(1,2,20)
(1,4,10)
(1,4,20)

Figure 3.12: Distributions of number of simultaneously scheduled users under the proportional

fairness scheduling criterion at SNR = 10 dB for an (NR,MT,K) multi-carrier MIMO system.

49

3.5.3 Convergence

Because of the random nature of the selection and breeding of the GA, the

convergence of the GA is also a stochastic process. Hence, it is possible that a GA will

not find a globally optimal solution for a utility function, particularly for a fixed number

of iterations. The size of the search space obviously also affects the likelihood of finding

the global optimum. The probability of not finding the optimum solution, of course,

decreases the longer the algorithm is allowed to run. In addition, if elitism is not

employed, the algorithm can, in fact, diverge from the optimum if a previously good

solution is lost. With the use of elitism, the utility function value will strictly be non-

decreasing with the number of generations. Nonetheless, despite the chance of not

converging to the global optimum, GAs are known for quickly finding a good solution to

optimization problems. Hence, if that solution is sufficiently good, in many cases, it is not

necessary to wait for the algorithm to find a better solution.

Figure 3.14 shows the convergence of the GA with the number of generations for the

maximum throughput criterion at an SNR of 10 dB. The figure shows, on average, how

far from the optimal utility function value the algorithm is. As already seen in Figure 3.6,

the convergence is largely independent of SNR; the GA achieves approximately the same

proportion of the ES regardless of the SNR. We have also seen that the convergence

under the proportional fairness criterion is quite similar, because the size of the search

space is identical. Hence, we can focus solely on the maximum throughput criterion at

one specific SNR when examining the convergence in more detail. We set Np = 20 for MT

= 4 and K = 20, and Np = 10 for all other cases.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Delay (scheduling intervals)

C
D

F

MC
SC
(1,2,10)
(1,2,20)
(2,2,10)
(2,2,20)
(1,4,10)
(1,4,20)

Figure 3.13: Distributions of head-of-line delays per user under the PF criterion at SNR = 10 dB

for single- and multi-carrier transmission and various values of (NR,MT,K).

50

Figure 3.14 shows that initially the GA rapidly converges towards the optimum

utility function value. After just a couple of generations, the algorithm achieves, on

average, about 90% or more of the optimal value. (Recall also that generation 1 is the

initial, random population.) As the algorithm progresses, the rate of convergence slows.

In part, this is due to the algorithm, in some cases, prematurely halting on a local

optimum point. In these cases, the mutation operation helps the algorithm become

“unstuck” and consider other possibly better solutions. In other cases the rate of

convergence slows, simply because the algorithm has already converged to an optimal or

near-optimal solution for the scheduling problem.

It can be seen that the number of receive antennas per user has very little effect on the

convergence of the DPC genetic scheduling algorithm. It can also be seen that scaling

either K or MT has similar effects on the convergence, as seen by the closeness in

performance in the lines for (NR,MT,K) = (1,2,20) and (1,4,10). The figure furthermore

demonstrates that for MT = 2 and K = 10, 5 generations is sufficient for the algorithm to

converge to within about 99% of the optimal value on average. For the remainder of the

cases, 10 generations is a sufficient time for the algorithm to run. Thus, these values for

Ng are used throughout this chapter.

Interestingly, it is not simply the number of generations the algorithm runs that

affects the overall convergence, but rather the product Np×Ng, which is the total number

of times the GA calculates the utility function. To demonstrate this, Figure 3.15 compares

two cases each of the performance of the GA at (NR,MT,K) = (1,2,20) and (1,4,10). In the

first case, Np = 10 and Ng = 10 as used throughout the rest of this chapter, whereas in the

second, Np is doubled to 20 and Ng is halved to 5. The product Np×Ng thus remains 100 in

0 2 4 6 8 10 12 14 16 18 20
10−3

10−2

10−1

1
−

A
vg

. p
ro

po
rti

on
 o

f o
pt

im
um

Number of generations

(1,2,10)
(1,2,20)
(2,2,10)
(2,2,20)
(1,4,10)
(1,4,20)

Figure 3.14: Average convergence of GA versus generations for the maximum throughput

scheduling criterion at an SNR of 10 dB and various values of (NR,MT,K).

51

all the cases. It is seen in Figure 3.15(a) that the throughput is virtually identical for both

cases of Np and Ng. Figure 3.15(b) confirms this, showing the maximum difference

between the average throughput of the two cases is no greater that 0.07 bit/s/Hz, which is

insignificant and likely within the error range of the Monte Carlo simulation.

Figure 3.16 shows distributions of the number of generations required for the GA to

find the globally optimum utility function value (i.e., the optimum selection of users and

their encoding order). As expected, the larger the search space, the more generations are

required. However, as Figure 3.14 implies, even in the cases where the algorithm has not

found the optimal value, the value is usually quite close to the optimum. Based on the

two figures, it can be determined that, for those cases that have not converged to the

0 2 4 6 8 10
3
4
5
6
7
8
9

10
11
12
13
14

System Tx SNR (P/WTσn
2) (dB)

Su
m

 o
f u

se
r t

hr
ou

gh
pu

ts
 (b

it/
s/

H
z)

(a)
0 2 4 6 8 10

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

System Tx SNR (P/WTσn
2) (dB)

D
iff

er
en

ce
 in

 su
m

 th
ro

ug
hp

ut
 (b

it/
s/

H
z)

(b)

(1,2,20){10,10}
(1,2,20){20,5}
(1,4,10){10,10}
(1,4,10){20,5}

(1,2,20)
(1,4,10)

Figure 3.15: (a) Performance of single-carrier MT GA scheduling vs. SNR for (NR,MT,K) =

(1,2,20) and (1,4,10), each with {Np,Ng} = {10,10} and {20,5}. (b) Difference in sum-throughput
for {Np,Ng} = {20,5} compared to {10,10}.

100 101 102

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

C
D

F

Generations required to converge to optimum utility function value

(1,2,10)
(1,2,20)
(2,2,10)
(2,2,20)
(1,4,10)
(1,4,20)

Figure 3.16: Distributions of number of generations required for GA convergence to the optimum
utility function value for the maximum throughput scheduling criterion at an SNR of 10 dB and

various values of (NR,MT,K).

52

globally optimum value after the maximum number of generations has been reached (i.e.,

Ng = 5 generations for MT = 2 and K = 10, and Ng = 10 generations otherwise), the GA

has found a solution that, on the average, is within about 4–6% of the optimum value.

Thus, as we have previously stated, although it may take the GA some time to find the

overall optimum solution, it can quite rapidly find a near-optimum solution.

In practice, it would be quite unlikely to know ahead of time what the globally

optimal utility function value is, and thus how far the GA is away from it. Thus, it is hard

to determine how many generations the GA should run for. We saw positive results in

this work with Np×Ng scaling proportional to NS and K. However, other stopping criteria

could also be used in practice. For instance, if there is some sort of scheduling deadline

that exists in the system, the GA could simply run until that deadline is reached, then

output its best decision. Alternatively, the GA could monitor the utility function value; if

the value stalls for a number of generations past some threshold, the GA could then exit.

If the system keeps statistics involved in past scheduling decisions, these could also be

incorporated in deciding when to quit. For example, it could operate for only x

generations more once a threshold, based on the past utility values, is reached.

3.5.4 Runtime / Complexity Comparison

Table 3.1 compares the runtime of the genetic algorithm to an exhaustive search in

terms of the number of utility function evaluations required for each. The utility function

that is evaluated is identical for both an ES and the GA, as given by (3.13) and (3.15),

with the optimal transmit covariance matrices determined by the methods in [107] and

[82], respectively. The table applies to both the single-carrier and multi-carrier scenarios;

however, it should be noted that each individual utility function evaluation is NC times

more complex in the multi-carrier scenario than its single-carrier equivalent. (Essentially,

the single-carrier function is evaluated once per subcarrier, because each subcarrier is

independently scheduled.) In addition, note that the number of evaluations is independent

of the number of receive antennas at the mobiles. However, as the number of receive

antennas increases, the larger channel matrices means that each evaluation will require

more computations.

The number of function evaluations used by our GA is larger compared to the work

in [109] in the context of ZFB. This is a direct result of the larger search space that results

from the use of the order-dependent encoding of DPC. Hence, additional function

evaluations are required to compensate for that larger search space. In general, we find

53

that doubling either the number of generations or the population size for the GA relative

to that in [109] yields good results. (Recall from the previous section that doubling either

is equivalent for the performance and convergence.)

The final two columns in Table 3.1 are applicable only for the proportional fairness1

and maximum throughput criteria. Knowledge of the form of their utility functions can be

exploited to reduce the complexity of an ES. In the case of the proportional fairness

criterion, the utility metric is a weighted sum rate, where the weight of each user is the

reciprocal of their average throughput. Because of this, and since the MAC capacity is

convex, the maximization of that metric will lie on the boundary of the MAC capacity

region, and thus also on the boundary of the DPC capacity region, as the two are

coincident. Furthermore, the optimal decoding order on the MAC is known a priori as

being the relative increasing order of the values of the user weights [82]. In other words,

the larger the weight of a given user is, the later in the decoding order on the MAC

should that user be positioned, with the highest weight being positioned last. This is

intuitively explained. Users in later positions in the decoding order experience less

interference overall, because the effect of users earlier in the ordering is removed. The

user that is decoded last experiences no interference at all. Thus, it is logical to put the

user with the largest weight in that position. The rate that is achieved by that user shall be

the largest possible compared to any other order, and hence, its effect on maximizing the

weighted sum rate would be the greatest. With the transformations in [24], this means

that on the BC, the user with the largest weight should be encoded first. Thus, with the

optimal decoding / encoding order known beforehand, it is therefore only necessary for

the ES to search through all combinations of users (Eqn. (3.1)) instead of all ordered

selections (Eqn. (3.2)), thereby reducing the complexity.

1 Strictly speaking, the column for PF also applies to any utility function in the form of a weighted
sum rate, provided that the weights do not depend on the instantaneous user rates.

Table 3.1: Runtime comparison of genetic and exhaustive search scheduling algorithms in terms
of number of utility function evaluations required

(NS,K)
Genetic

Algorithm
(Np×Ng)

Exhaustive Search
(General Case

Utility Function)

Exhaustive Search
(Proportional

Fairness)

Exhaustive Search
(Maximum

Throughput)
(2,10) 10×5 = 50 100 55 57
(4,10) 10×10 = 100 5860 385 409
(2,20) 10×10 = 100 400 210 212
(4,20) 20×10 = 200 123520 6195 6219

54

In the case of the maximum throughput criterion, as previously mentioned, the

maximum sum rate on the MAC and BC does not depend on the decoding / encoding

order. Although the individual user rates change depending on the order, any given

encoding order will result in the same value of the utility function. Choosing a specific

order, if necessary, is therefore based on secondary criteria. This fact can be used to

reduce the complexity of the ES. The search can first seek through all possible

combinations of users to find the specific group that maximizes the utility function. Once

that group is found, it can then search through all possible orderings of just those users to

break the tie.

The “general case” column of the table refers to some arbitrary utility function. In

this general case, it is assumed that the utility function is such that the encoding order

affects the function value, and there is no easy way to know beforehand what the optimal

encoding order is. One such example might be if the utility function is a non-linear

function of the user rates. In such a case, the exhaustive search must indeed search

through all possible selections and orders of users.

The runtime of the GA is significantly less dependent on the number of active users

K, the number of transmit antennas MT, and the number of scheduled users NS. In

particular, decent results were obtained when the number of function evaluations

increased linearly with NS and approximately linearly with K. However, it is important to

note that, based on the results in Figure 3.7, the rate at which the sum-throughput

increases with the number of active users is not as large for the GA as it is for the ES.

This fact indicates that the number of function evaluations in the GA needs to increase at

a rate greater than linearly with K to match the curvature of the ES curve. This could be

accomplished either through an increased population size or a larger number of

generations. The more the function evaluations that the GA performs, the closer the

performance will be to that of an ES. Hence, as more generations or a larger population

size would likely be required with larger pools of users to maintain the current level of

performance, additional complexity for larger K would result.

There are, however, some steps that could be taken to reduce that complexity in

practice. For example, it may be possible to determine beforehand one or two users that

are particularly likely to be scheduled. This is quite reasonable, since we already assume

that the base station has channel state information with which to make scheduling

decisions. The likely candidates may include a certain user with a channel that is

consistently known to be good (e.g. with low path loss or shadowing, or a channel matrix

55

with a high norm). Alternatively, this could be a user who has not been scheduled for a

while and may be approaching some maximum delay or minimum throughput threshold.

In such cases, the initial population could be seeded with chromosomes that include those

users. This would result in a better starting location for the search and, hence, less time to

converge, thus improving the GA performance. A similar situation would exist if the

channel gains were correlated between adjacent scheduling instances. While we assumed

in our simulations that the channel gains were independent between scheduling intervals,

in practice, there will be some temporal correlation in the physical channel1. In such a

case, the optimal scheduling solution might not significantly change between the decision

intervals. Hence, the initial population for a given scheduling instance could be seeded

with some of the best chromosomes from the previous instance, again leading to a

reduced convergence time and improved performance.

Nevertheless, for the analyzed scenarios, a simple linear dependence of the GA

runtime on K and NS already yields throughput results close to that of the ES and without

its associated combinatorial complexity. In fact, if the change in the number of active

users is relatively small (e.g. a few users join or leave the system), the number of function

evaluations can likely be kept constant with no significant effect on the GA performance.

There is a large runtime reduction for the GA compared to the optimal algorithm. For

NS = 2 and K = 10, there is not much of a reduction to be seen relative to an ES with the

MT and PF criteria. However, for a general case utility function, the runtime with the GA

is reduced by half. Increasing K to 20, the GA runtime is about half that of the MT and

PF exhaustive searches, and a quarter of that in the general case. With (NS,K) = (4,10) and

(4,20), there is a runtime reduction by a factor of about 4 and 31, respectively, for both

the maximum throughput and proportional fairness criteria. Compared with a general

case ES, the runtime is reduced by a factor of 58.6 and 617.6, respectively.

3.6 Conclusion

In this chapter, we have investigated the use of genetic algorithms for scheduling in

multiuser single-carrier and multi-carrier MIMO systems with DPC. We have described a

GA representation that can account for both the selection of users and the encoding order

of those users. This representation can be used just as easily in any system with linear or

non-linear precoding where the encoding order of the users will affect the users’

1 We can neglect the effect of correlation in this work, since its presence would not affect the
comparison between the scheduling methods.

56

performance and / or the utility function. For the case of DPC, the representation is also

independent of the number of receive antennas at each user.

We considered a system with a base station with MT transmit antennas, which

schedules transmissions using DPC to a pool of K active users, each having NR receive

antennas, and analyzed the performance of the GA relative to the optimal performance of

an exhaustive search. It was observed that the GA performed quite well, obtaining on

average about 94–99% of the optimal utility function value with the maximum

throughput scheduling criterion. In terms of SNR, the GA was approximately 0.5 dB

inferior to the ES. The relative performance of the GA to the ES was basically

independent of both the system SNR and the number of receive antennas at each mobile.

The results for the proportional fairness scheduling criterion were much the same, with

the GA again being about 0.5 dB away from optimal.

Extending the analysis to a multi-carrier scenario, the relative performance of the GA

was basically the same as with a single carrier. The use of OFDM with four subcarriers

resulted in a gain in sum-throughput by a factor of about 1.2 to 1.36 for MT scheduling

due to OFDM’s increased bandwidth efficiency compared to single-carrier transmission.

For both MT and PF scheduling, the performance gain was about 1.5 to 3 dB when using

OFDM. The multi-carrier system also was seen to schedule more users simultaneously,

leading to decreased packet delays overall. In our multi-carrier work, we simplified the

scheduling optimization problem by allocating equal transmit power to each of the

subcarriers. It may be possible to further improve the performance by performing a joint

scheduling and power optimization over the subcarriers instead of using equal power

allocation.

Examining the convergence, it was shown how quickly the GA converged to a very

good solution (although not necessarily the global optimum). For the cases examined, a

maximum of 10 generations was sufficient to obtain good results. This short convergence

time also resulted in a greatly reduced runtime compared to the ES. The required

calculations were reduced by a factor of up to 31 for the two examined scheduling criteria,

and up to a factor of 617.6 for a more general case utility function and exhaustive search.

Despite the very good performance of the GA seen in this chapter, it is possible to

further improve its performance by the careful tuning of some of the aspects of the

genetic algorithm. The next chapter examines this tuning in more detail.

57

Chapter 4

Impact on and Improvement of the
Convergence of GA Scheduling from
Parameter Tuning and Change in
Crossover Method

4.1 Introduction

It was seen in the previous chapter that our genetic algorithm for scheduling in

MIMO systems with DPC performed quite well relative to an exhaustive search. That GA

was based in part on a genetic algorithm used in [109] to perform scheduling in a system

that used ZFB. As such, we adapted some of the concepts in [109] to our GA scheduling

algorithm. One of the most notable of these was an adaptive mutation rate. As already

mentioned, the parameters used within [109] still provided good performance in the

context of DPC scheduling. However, it also raises the question: Are those parameters

used for ZFB still the best overall to be used with DPC? Or, would a change in some of

the values of those parameters lead to a further improved performance? In this chapter,

we examine this issue and demonstrate that tuning the parameter values within the

adaptive mutation rate can indeed lead to a significant improvement in the convergence

of the DPC genetic algorithm. The average number of iterations required by the GA to

converge to a given percentage of the optimum utility function value can be reduced to

less than a third of that required by the original parameter values. We also briefly

examine the impact of using a different crossover method than the one-point crossover

used in the previous chapter. Our contributions for this chapter have appeared in [125],

[126].

4.2 Problem Description

In the previous chapter, we used an adaptive mutation rate in our GA, which we

repeat here for convenience:

58

1 2

1
m

G G

p

. (4.1)

In the above equation, G and G are the standard deviation and the mean of the fitness

for the population of chromosomes during each generation, while 1 and 2 are constants.

Earlier, we used the values of 1 = 1.2 and 2 = 10.

In this chapter, we examine more closely the effect of the parameter values for 1 and

2 in (4.1) on the convergence of the genetic algorithm. The initial motivation for this

work first came from an examination of the mutation rates seen during the operation of

our GA in the previous chapter. We observed that the rate upon the random initialization

of the population tended to be in the range of 0.2–0.6. Higher values for pm were seen for

a larger number of active users K and with a larger number of transmit antennas MT (or

equivalently, the maximum number of scheduled users NS). Distributions of the mutation

rate for the initial population of our GA are shown in Figure 4.1. The case of an SNR of

10 dB is shown. We also examined the case of 0 dB; in that case, the curves look

essentially the same, except they are shifted to the left on the x-axis by about 0.05 units.

These values are somewhat higher than what is typically seen in a GA. A mutation

rate about an order of magnitude lower (e.g. around 0.01) is more common [112],[127].

When combined with elitism, a higher mutation rate is not as much of a problem, as there

is no danger of destroying the previous best solution. However, too high of a mutation

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pm

C
D

F

(1,2,10)
(1,2,20)
(2,2,10)
(2,2,20)
(1,4,10)
(1,4,20)

Figure 4.1: Distributions of the adaptive mutation rate for the random initial first generation of the

genetic scheduling algorithm for DPC with 1 = 1.2 and 2 = 10, an SNR of 10 dB, and various
values of (NR,MT,K).

59

rate can still slow the convergence of a GA, due to the destruction of good solution

characteristics in the chromosomes that were obtained during previous generations.

In summary, we suspect these adaptive mutation rates are likely too high. Thus, we

generally are interested in increasing the parameters 1 and 2 to create a lower mutation

rate, and analyzing the effect on the convergence of the GA.

4.3 Simulation Setup and Results

4.3.1 Simulation Setup

The simulation setup and system model in this work are nearly identical to that in the

previous chapter. We still consider a base station with MT transmit antennas, a transmit

power limitation of P, and perfect channel knowledge. The base station schedules

transmissions using capacity-achieving DPC to a pool of K users requesting service, each

with NR receive antennas. The users experience statistically identical path loss, noise,

shadowing, and Rayleigh block fading conditions. However, we only consider a single-

carrier system now, as it was seen in the previous chapter that the single-carrier and

multi-carrier GA performance relative to an exhaustive search were much the same.

The key difference in this chapter is that 1 and 2 are varied instead of being kept

constant, and the change in the convergence of the GA is examined. We focus primarily

on the GA convergence with the maximum throughput scheduling criterion (i.e., the

utility function MT kk
G R) at an SNR of 10 dB. However, we comment on other

scenarios (i.e., convergence at different SNRs and under the proportional fairness

scheduling criterion) in Section 4.4.2.

4.3.2 Simulation Results

Regardless of the specific value of NR, MT, or K, we can observe an overall trend in

the simulation results as the values for 1 and 2 change. Notably, there is no single

optimal operational point for either 1 or 2. Instead, there is an optimal range of values

for both parameters where the average time for the GA to converge is both minimal and

approximately equal. Outside of this range, smaller values give too large of a mutation

rate, while larger values give too small a rate; either case increases the convergence

time of the GA. In Figure 4.2 and Figure 4.3, we examine the effect on the convergence

rate for (NR,MT,K) = (1,2,10), when one of 1 or 2 is varied while the other is kept

constant. These figures show the probability of the GA having found the optimal utility

60

function value after the specified number of generations. The distributions in

convergence time are very similar for 2 = 5–25 with a constant 1 = 1.2, and for 1 =

1.2–4 while 2 is constant at 10. Of the values tested, (1,2) = (1.2,10), as we used in the

previous chapter, results in the fewest generations required for the algorithm to converge

to the optimal utility function value, but only by a small margin.

We also observe that the closer the algorithm is to the optimal solution, the more

pronounced of an effect that changes to 1 and 2 have. We now consider the case of

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generations

C
D

F

50
100

150 200

9 10 11 12

0.8

0.82

0.84

0.86

10

15

5

20

25

Figure 4.2: Distributions of number of generations required to converge to optimal utility function

value for (NR,MT,K) = (1,2,10) at an SNR of 10 dB; 1 = 1.2 (constant), 2 variable.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generations

C
D

F

7.5 10

15 20

8.6 9 9.5 10 10.4
0.76

0.78

0.8

0.82

1.2

2

4

3

5

Figure 4.3: Distributions of number of generations required to converge to optimal utility function

value for (NR,MT,K) = (1,2,10) at an SNR of 10 dB; 1 variable2 = 10 (constant).

61

(NR,MT,K) = (1,2,20). Figure 4.4 shows the number of generations required for the

algorithm to converge on average to within 1% of the optimal utility function value,

while Figure 4.5 shows the number of generations to converge on average to within 0.1%

of the optimal value. On an absolute scale, there is clearly a larger impact from changing

the parameters on the algorithm convergence time at the 0.1% level than there is at the

1% level.

100

101

101

102

21

23

25

27

29

β2

β1

G
en

er
at

io
ns

Figure 4.4: Number of generations required to converge on average to within 1% of optimal utility

function value as a function of 1 and 2 with (NR,MT,K) = (1,2,20) and an SNR of 10 dB.

100

101

101

102

50

55

60

65

70

75

β2

β1

G
en

er
at

io
ns

Figure 4.5: Number of generations required to converge on average to within 0.1% of optimal

utility function value as a function of 1 and 2 with (NR,MT,K) = (1,2,20) and an SNR of 10 dB.

62

Specifically, in Figure 4.4, we vary the values of 1 between 1.2 and 12 and 2

between 5 and 100. Within this range, the average time to converge to within 1% of the

optimal utility function value changes by about 7–8 generations from the longest time to

the shortest. However, that same range for 1 and 2 causes a change of about 20–21

generations at the 0.1% convergence level in Figure 4.5. Our simulations indicate a

further increase in the impact of the parameter values on the convergence time when the

algorithm is even closer on average to the optimal solution. However, a more detailed

observation past this point would be unwarranted and likely inaccurate, owing to an

increasing lack of unconverged cases / samples (i.e., those that have not yet found the

optimal value) in our Monte Carlo simulations. The simulations consider the average

over 10000 independent runs. When considering convergence to 0.1% of optimum, on

average about 390 of the runs have not yet converged to the exact optimum value within

the generations shown in Figure 4.5. This number of runs is still statistically significant.

In comparison, we could consider a convergence even closer to optimum, such as to

within 0.01%. In that case, though, only about 40 runs on average have not converged.

Having that few cases runs the risk of yielding an inaccurate average, so it is best not to

consider closer convergence levels1.

Interestingly, if we consider the relative change in the convergence time instead of

the absolute difference, the level of convergence has much smaller of an effect. For

instance, moving from the highest point on the graphs of Figure 4.4 and Figure 4.5 at

(1,2) = (1.2,5) to the lowest point yields a reduction in the average number of

generations by a factor of about 0.72 at both levels. That is, the number of generations at

the lowest point is about 0.72 times the number of generations at the highest point for

both graphs. This fact can also be noted simply in observing the similar overall contour of

the two figures.

We also note two additional observations from the two figures. First, the optimal

value for (1,2) is no longer around (1.2,10), compared to the earlier case in Figure 4.3

with K = 10. Second, the region around the minimum values of the graph fluctuates

somewhat. This is due to the stochastic way in which the GA converges. The algorithm

1 A good rule of thumb, similar to when calculating bit or symbol error rates, is to have 100
statistical samples in order to be sure of a proper average. In the case of average bit or symbol
error rate calculations, this means to have at least 100 bits or symbols that are in error out of
however many are considered in total. In our case, this means to have at least 100 instances that
have not in fact located the optimal selection of users to maximize the utility function, in order to
find how far on average the GA is from the optimum utility function value.

63

100

101

101

102

49
52
55
58
61
64

β2

β1

G
en

er
at

io
ns

100

101
5 10 20 30 40 50 60

52

56

60

64

68

72

β2

β1

G
en

er
at

io
ns

100

10110 50 100 150 200

150

175
200
225
250
275
300

350
400

β1

β2

G
en

er
at

io
ns

Figure 4.6: Number of generations required to converge on average to within 0.1% of optimal

utility function value as a function of 1 and 2 with 10 dB SNR and various (NR,MT,K).
(a) (NR,MT,K) = (2,2,20). (b) (NR,MT,K) = (1,4,10). (c) (NR,MT,K) = (1,4,20).

(a)

(b)

(c)

64

may occasionally get extremely “lucky” and find the optimal solution in just a few

generations. At other times, it can be “unlucky” and not find the optimal solution even

after many generations. These outliers skew the mean to a small degree, and the small

fluctuations in the graph are the result.

The number of transmit antennas (or scheduled users) and / or the number of users in

the pool also has an effect on the proper selection of the values, as seen in Figure 4.6.

In general, as MT or K increases, at least one of the values must also increase to

compensate. The dependence on MT can be seen most clearly when comparing Figure

4.6(a) and (c), while the dependence on K is easiest seen when comparing Figure 4.6(b)

and (c). The dependences can also be seen, although less clearly, when comparing Figure

4.2 / Figure 4.3 with Figure 4.5 (for K) and with Figure 4.6(b) (for MT). However, notably,

a change in the number of receive antennas per user NR does not significantly affect the

convergence of the GA. This is seen in comparing Figure 4.5 to Figure 4.6(a). The lowest

points in both graphs occur around the same values of 1 and2. This last fact is not that

surprising; as we discussed in the previous chapter, the number of iterations required for

either GA scheduling or an exhaustive search is independent of the number of receive

antennas. Thus, one could expect that the convergence of the GA would still be largely

independent of NR for other values of 1 and 2 as well.

Consider the specific case of (NR,MT,K) = (1,4,20) shown in Figure 4.6(c). With the

original values of (1,2) = (1.2,10) as used in the previous chapter, it takes

approximately 550 generations to converge on average to within 0.1% of the optimal

utility function value. (Note that this value is off the top of the z-axis in Figure 4.6(c).)

However, by increasing the parameter values to somewhere in the vicinity of (1,2) =

(7,70), the required number of generations drops to approximately 155. This is less than

30% of the time with the original values, and clearly illustrates the importance of

properly tuning the values, particularly as K and MT increase. We demonstrate this

further in Figure 4.7, which compares how close on average the GA is to the optimal

utility function value as a function of the number of generations for two sets of values.

It can be seen that there is a significant reduction in convergence time over a wide range

of levels of convergence.

As we have noted above, rather than one specific operating point, there is instead a

range of values for which the rate of convergence of the GA is approximately the same.

This can be seen to some degree in the earlier figures. We demonstrate this more clearly

65

in Figure 4.8, which depicts the range of values for which the number of generations

required to converge to 0.1% of the optimal value is within 5% of the minimum

convergence time obtained over all values of 1 and 2. (Note that the ranges are very

similar for other levels of convergence as well, just as was seen when comparing Figure

4.4 and Figure 4.5.) There are two key observations from Figure 4.8. First, the ranges for

(NR,MT,K) = (1,2,10) and (2,2,10), as well as for (1,2,20), (2,2,20), and (1,4,10), overlap.

This provides additional confirmation that the specific number of receive antennas per

user has little effect on the GA convergence. Rather, the primary effect of NR is actually

0 50 100 150 200 250 300 350 400 450 500 550
10−3

10−2

10−1

Number of generations

1
−

A
vg

. p
ro

po
rti

on
 o

f o
pt

im
um

β1 = 1.2, β2 = 10

β1 = 7, β2 = 70

Figure 4.7: Average convergence of GA vs. number of generations at an SNR of 10 dB, with

(NR,MT,K) = (1,4,20) and two sets of values for 1 and 2.

(1,2,10) (1,2,20) (2,2,10) (2,2,20) (1,4,10) (1,4,20)

0 20 40 60 80 100 120 140 160
1

3

5

7

9

11

β2

β 1

Figure 4.8: Ranges of (1,2) for which the number of generations for the GA to converge to

within 0.1% of the optimum is within 5% of the minimum convergence time.

66

to somewhat increase the range of usable values of 1 and 2. This increased range with

NR is a result of the increased receive diversity due to the additional antennas. The

increased diversity decreases the variation in the capacity of the various users, thereby

decreasing the variation in the solutions represented by the chromosomes (G in Eqn.

4.1), and hence making the GA less sensitive to the values. (This reduced variation in

capacity was also observed in [62], where the phenomenon is referred to as “channel

hardening”.) More importantly, though, the overlap in the ranges implies that doubling

the number of users K has about the same effect on the proper values as doubling the

number of transmit antennas MT does.

Second, note that each of the ranges has approximately the same slope. This implies

that 1 and 2 could be expressed as a linear function of each other, as indicated by the

black lines in Figure 4.8. Those three lines can be expressed by 1 + 0.152 = c, where

c = 3.227, 7.45, and 17.2, from left to right respectively. Interestingly, those values of c

are multiples of each other, i.e., 7.45/3.227 ≈ 17.2/7.45 ≈ 2.309. Hence, we see that as

either K or MT doubles for each of the cases, the constant c scales proportionally. This

indicates a linear relationship between the log of c and the log of the product KMT. Thus,

based on the relationship between 1, 2, MT, K, and c seen in Figure 4.8, after

performing a simple least-squares polynomial coefficient best fit (shown in Appendix C),

it would seem that for any value of K and MT, one could select any value of 1 and 2 that

satisfies the following constraints to reduce the average convergence time to within 5%

of the minimum:

 1.2071

1 2 1 20.15 7.5773 ,1.1 11, 3TKM . (4.2)

The above equation might also hold for a larger range of 1 and 2, but this would

require further analysis. Nonetheless, this equation gives a very simple method to adapt

the mutation rate parameters to changing system characteristics, such as users entering or

leaving the system. We also note that given the fairly wide range of useful values seen in

Figure 4.8, the specific values used for 1 and 2 do not necessarily have to precisely

satisfy the equation. For example, for simplicity of implementation, one could quantize

the values to, say, the nearest integer or nearest multiple of 0.5, and still obtain a very

good convergence rate. In such a case, it is then probably better to select a value for 1

and solve for 2, since the range of values that 2 can take on is larger.

As a side comment, from a practical standpoint, the lowest value 1 can safely take

on is exactly 1. It is possible, though quite unlikely, that the genetic algorithm could

67

create a set of chromosomes that all have the same fitness. In that case, the variance of

the population’s fitness would become zero, and 2 would have no effect on the adaptive

mutation rate. In this event, the mutation rate effectively becomes 1/1. Were 1 any

smaller than 1, this would mean the probability of mutation would be greater than 100%,

which is impossible. To be on the safe side, we consider only a minimum value of 1 of

1.1, to allow for a margin of error, and a smaller maximum possible value for pm.

4.4 Further Discussion

4.4.1 Interpretation of Equation for Parameter Values

Overall, there is a certain “best” operating range for the mutation rate that likely

depends on many factors, including the channel, population size, the specific form of the

chromosomes, and so forth. The simulations of the previous section showed that the

effect of the parameter values becomes greater the closer the algorithm is to the optimal

utility function value, and that the values of 1 and 2 should depend on the number of

users in the pool and the number of transmit antennas (or equivalently, the maximum

possible number of simultaneously scheduled users). Specifically, as either K or MT

increases, so too should 1 and / or 2. In all, these results are not that surprising, and

their reasons can be explained somewhat intuitively.

To begin, the mutation operation exists to force genetic diversity in the population to

avoid the algorithm stalling at local optima. It is thus most important and influential in

later generations. Earlier, when there is already much diversity due to the random

initialization, the crossover operator instead affects the GA’s initial convergence the most.

Therefore, obviously the parameter values and thus the mutation rate will have the most

notable effect the closer the algorithm is to the optimal value, as seen in the simulations.

In general, mutations are intended to have a fairly small effect on the chromosomes,

so that they mostly maintain the characteristics of a good solution, while still guiding the

GA away from local optima. While too small of a mutation rate can slow the convergence

rate due to the algorithm becoming stuck at local optima, too large of a mutation rate also

risks slowing the convergence. In the following, we focus mostly on the head of the

chromosome, as the selection of scheduled users usually has more of an impact on the

maximization of the utility function than the order in which those users are encoded does.

As the pool of users increases in size, so too does the length of the chromosomes.

Consequently, for a given mutation probability, the longer chromosome has a higher

68

probability of experiencing some mutation. The probability of the head of the

chromosome not mutating is 1
K

mp , which decreases exponentially with K. By the

same reasoning, as K increases, it is therefore more likely for a chromosome to

experience a mutation of multiple bits. The more bits that are mutated, the more likely it

is that the chromosome will be harmfully impacted. The most harmful mutation that can

occur is if a particularly good user who should be scheduled becomes de-selected. This

could happen directly as a result of mutation of that user’s bit in the chromosome. It

could also happen indirectly during the correction step; if too many users are scheduled,

that user could be randomly de-selected1 while reducing the weight of the head to MT.

Consequently, one can expect that as K increases, the mutation rate should be decreased

somewhat to compensate. This can be accomplished by increasing the values with K.

In the case of an increase in MT, more transmit antennas means more users can be

scheduled simultaneously. Hence, more ‘1’s would exist in the heads of the chromosomes.

For a given mutation rate, there is therefore a higher chance that a ‘1’ will be toggled to a

‘0’. As mentioned above, de-scheduling a good user is a particularly harmful mutation.

More generally, de-selecting any user from being scheduled will very often result in a

significant drop in the system capacity and the value of the utility function, especially

with DPC. While it is usually not necessary to schedule more than MT users, scheduling

fewer than MT users will almost always result in a significant reduction in the system

capacity [75]. Doing so means that all the available degrees of freedom for scheduling

and resource allocation are not being exploited. The exception to this may be if the SNR

is low or that user happened to be experiencing bad channel conditions. However, in

general, to avoid this scenario, the mutation rate should again be lowered as MT increases

to compensate for the increased likelihood of de-scheduling a user.

The relationship between 1, 2, K, and MT as found by the simulations is reasonably

logical. Intuitively, for some given ratio G/G, one might expect or desire that pm should

change such that, whatever the value of K is, the probability of no mutation occurring at

all in (the head of) a chromosome should remain approximately constant. That way, the

probability of a detrimental mutation would also be approximately constant. Hence, we

would have 1
K

mp ≈ Z, where Z is some constant. For pm << 1, this can be

approximated as 1 – Kpm ≈ Z, or Kpm ≈ Y, where Y = 1 – Z. Substituting in Eqn. (4.1), we

1 During correction, if the weight w of the head is greater than MT, each scheduled user has an
equally likely 1 in w chance of being de-selected.

69

get 1 2 G G K Y for some ratio G G . Thus, one could expect a nearly linear

relationship between 1, 2, and K. Similarly, one might intuitively expect a change in pm

such that the probability of de-selecting none of the scheduled users is approximately

constant, for whatever the value of MT may be. Since the mutation operation acts

independently on each bit of the chromosome, this probability is 1 TM

mp . Thus, by a

similar derivation to that above, we would end up with 1 2 G G TM A for some

ratio G G and some constant A.

This intuitive line of thought is not too different from the simulation results and Eqn.

(4.2). The value of 0.15 in (4.2) most likely represents some sort of average for the ratio

G G . However, the power of 1.2071 on the KMT term indicates that the probability of

no mutation occurring should not quite be constant, but rather grow to a small degree

with increasing K and MT. What is most likely happening is that the equation is providing

some sort of middle ground between keeping the probability of not mutating fixed with K

and MT, and yet still dealing with the combinatorially increasing search space. The fact

that the encoding order bits can also be mutated would also have an effect.

We expect that Eqn. (4.2) could possibly be used with precoding methods other than

DPC (e.g. ZFB). However, in such cases, MT may have to be replaced with NS, the

maximum possible number of simultaneously scheduled users, if NS MT. In other

precoding methods, there may not be an encoding order to consider, if any particular

order results in the same user rates, like in ZFB and BD. Alternatively, the encoding

order might actually affect the utility function value, in contrast to maximum throughput

scheduling for DPC. However, in most of these cases, it is likely to be which users are

scheduled, rather than their encoding order, that has the largest effect on the utility

function value. Since we have seen that Eqn. (4.2) is largely based off the head of the

chromosome (i.e., the scheduled users), the equation should still work reasonably well

with those different precoding methods.

4.4.2 Other SNRs and Utility Functions

The work we have presented in this chapter has focused on convergence results for

only the maximum throughput scheduling criterion at an SNR of 10 dB. However, the

results are much the same for other SNRs. The change in the convergence rate with 1

and 2 is very similar at, for example, an SNR of 0 dB. We demonstrate this in Figure 4.9.

We have considered the case of (NR,MT,K) = (2,2,20) with parameter values of (1,2) =

70

(1.2,10), (3,30), and (5,100), and the case of (NR,MT,K) = (1,4,10) with parameter values

of (1,2) = (1.2,10), (3,25), and (5,60). These values were selected since, in their

respective cases, the first set (1.2,10) are the original values used in the previous chapter,

the middle set are values that reduce the average convergence time to about the minimum,

and the last set are values that are too large at 10 dB, which result in an increased

convergence time.

It can be seen that the change in the convergence time with changes in 1 and 2 is

largely the same at 0 dB as it is at 10 dB. For the (2,2,20) case, parameter values of

(1.2,10) and (5,100) result in a lengthened convergence time, while (3,30) improves the

convergence. The (1,4,10) case is a bit more interesting. It is again seen that values of

(1.2,10) result in a prolonged convergence time, while values of (3,25) provide an

improvement. However, values of (5,60) also result in a very similar convergence rate as

(3,25). A likely cause for this is that the values (3,25) and (5,60) are probably close to the

“edges” of the region that provides a good convergence rate at 0 dB. This further implies

that at 0 dB, the regions might be somewhat larger than at 10 dB; the values (5,60) fall

outside the (1,4,10) region for 10 dB in Figure 4.8, but appear to be not as bad at 0 dB.

The values of (3,25) are a bit off the line established by Eqn. (4.2); values of (3,30) or

(4,23) would be closer. Nevertheless, it is overall still clear that Eqn. (4.2) and values

thereabout still provide a notable improvement in convergence even at other SNRs. This

result is not that surprising, given the results of our work in the previous chapter. In that

0 20 40 60 80
10−3

10−2

10−1

Number of generations

1
−

A
vg

. p
ro

po
rti

on
 o

f o
pt

im
um

(a)

0 20 40 60 80
10−3

10−2

10−1

Number of generations

(b)

(2,2,20) {1.2,10}
(2,2,20) {3,30}
(2,2,20) {5,100}
(1,4,10) {1.2,10}
(1,4,10) {3,25}
(1,4,10) {5,60}

(2,2,20) {1.2,10}
(2,2,20) {3,30}
(2,2,20) {5,100}
(1,4,10) {1.2,10}
(1,4,10) {3,25}
(1,4,10) {5,60}

Figure 4.9: Comparison of convergence of GA for (NR,MT,K) = (2,2,20) and (1,4,10) when

changing {1,2} at different SNRs. (a) SNR = 10 dB. (b) SNR = 0 dB.

71

work, for a fixed 1, 2, and number of generations, the GA converged to approximately

the same percentage of the optimal utility function value regardless of the SNR. Thus,

seeing almost no SNR dependence for other values can be reasonably expected.

We have also performed some brief simulations using the proportional fairness (PF)

scheduling criterion. As we explained in the previous chapter, simulating the PF criterion

requires much more effort, since it requires average statistics to be built up before useful

data can be obtained. Thus, we limit our focus to the case of (NR,MT,K) = (1,4,10) with

the same parameter values as for the 0 vs. 10 dB results earlier. The average convergence

of the PF scheduling algorithm is shown in Figure 4.10, in terms of the distance away

from the optimal utility value GPF, as given in Eqn. (3.15). The results also show a similar

overall change in the convergence rate with changing values, but with a small

difference in the rate of convergence compared to the maximum throughput criterion.

That is, the convergence with the PF criterion tends to be slightly faster. It also appears

that the same values that produce a minimum convergence time for the maximum

throughput criterion result in a convergence time close to the minimum for the PF

criterion as well. There is very little difference in the overall look of the graph in Figure

4.10 and that in Figure 4.9(a).

4.5 Uniform Crossover

Another possibility for improving the performance of the genetic algorithm is to

change some of the details of the steps it uses. To that end, we have also investigated

replacing the one-point crossover method in our GA. Numerous studies over the years

0 10 20 30 40 50 60 70
10−3

10−2

10−1

Number of generations

1
−

A
vg

. p
ro

po
rti

on
 o

f o
pt

im
um

β1 = 1.2, β2 = 10

β1 = 3, β2 = 25

β1 = 5, β2 = 60

Figure 4.10: Average convergence of GA scheduling algorithm with the proportional fairness

criterion, an SNR of 10 dB, and various values for 1 and 2.

72

have indicated that the one-point crossover is not necessarily the best operator. Rather, it

has overall been seen that the two-point crossover and the uniform crossover perform

better [128],[129],[130],[131]. The two-point crossover is much the same as the one-

point crossover, except that instead two crossover points are defined at random, and the

bits between those points are exchanged between the parents. This operation still occurs

with probability pc. In uniform crossover, each bit in the chromosome has the same

probability to be exchanged between the parents. Most often, the probability of an

exchange of each bit is 50% in uniform crossover; each bit is as equally likely as not to

be exchanged. We have chosen to examine the uniform crossover, as studies have

indicated that uniform crossover works better than the two-point crossover when using

smaller population sizes [128],[129].

We compare the convergence of the GA using the one-point and the uniform

crossover in Figure 4.11 and Figure 4.12. Both the original values from the previous

chapter and improved values found from Eqn. (4.2) earlier this chapter are examined.

We have also considered the cases of (NR,MT,K) = (1,2,10) and (2,2,10). However, we

have found no discernable difference between the two crossover methods in those two

cases, for either set of values. Thus, we have not graphed these cases, as the graphs

overlap and cannot easily be distinguished from each other.

Examining the figures, it can be seen that there is mostly no significant change in

performance for the crossover methods when the original values are used. It is not until

we consider the improved values that we can start to see a difference. Nonetheless, the

improvement is initially small. There is still no significant change in convergence when

using the uniform crossover with (NR,MT,K) = (1,2,20) in Figure 4.11(a). There is a small

convergence improvement with the uniform crossover with (NR,MT,K) = (2,2,20) in

Figure 4.11(b), but not until an average convergence of about 0.5% away from the

optimal utility function value. Even then, the improvement in convergence time is at best

about 1 to 3 generations, although this does represent a relative improvement in

convergence time by about 4–8%.

The improvement in convergence time becomes more significant when examining

the MT = 4 cases. The improvement in convergence time with the uniform crossover can

be seen sooner in Figure 4.12(a), where again the improvement is at maximum about 8%.

We note again, though, than on an absolute scale, this only represents a savings of about

1–4 generations. The most significant improvement is seen in Figure 4.12(b) for

73

(NR,MT,K) = (1,4,20). At an average convergence level of 0.1%, the convergence time

drops by about 20 generations, or about 13%.

Overall, it can be seen that there is some improvement in convergence that can be

obtained by the use of the uniform crossover operator, but these gains are a bit limited,

especially when compared to the improvements seen when adjusting the parameter values

for 1 and 2. Furthermore, there are additional considerations in using the uniform

crossover method. First, the uniform crossover is more complicated than the one-point

0 10 20 30 40 50 60 70
10−3

10−2

10−1

Number of generations

1
−

A
vg

. p
ro

po
rti

on
 o

f o
pt

im
um

(a)

0 10 20 30 40 50 60 70
10−3

10−2

10−1

Number of generations

(b)

1X, β1=1.2, β2=10

UX, β1=1.2, β2=10

1X, β1=3, β2=30

UX, β1=3, β2=30

1X, β1=1.2, β2=10

UX, β1=1.2, β2=10

1X, β1=3, β2=30

UX, β1=3, β2=30

Figure 4.11: Comparison of GA convergence with 1-point crossover (1X) and uniform crossover
(UX) operators, each with two sets of parameter values. (a) (NR,MT,K) = (1,2,20). (b) (NR,MT,K)

= (2,2,20).

0 10 20 30 40 50 60 70 80
10−3

10−2

10−1

1
−

A
vg

. p
ro

po
rti

on
 o

f o
pt

im
um

Number of generations

(a)

0 20 40 60 80 100 120 140 160
10−3

10−2

10−1

Number of generations

(b)

1X, β1=1.2, β2=10

UX, β1=1.2, β2=10

1X, β1=3, β2=30

UX, β1=3, β2=30

1X, β1=1.2, β2=10

UX, β1=1.2, β2=10

1X, β1=7, β2=70

UX, β1=7, β2=70

Figure 4.12: Comparison of GA convergence with 1-point crossover (1X) and uniform crossover
(UX) operators, each with two sets of parameter values. (a) (NR,MT,K) = (1,4,10). (b) (NR,MT,K)

= (1,4,20).

74

crossover. A random number must be generated for every bit in the chromosome, to

determine if that bit is exchanged, whereas only a single random crossover location must

be generated for the one-point crossover. This overhead is not too bad; it is mostly

negligible when compared to the complexity of calculating the utility function value. It is

even less of a worry if the uniform crossover probability is 50%; in that case, only

random binary values need to be generated. More important is the fact that our GA

scheduling algorithm only operates for a limited number of generations. In that limited

amount of time, the amount of improvement that can be obtained from the uniform

crossover is small. The gain in using uniform crossover, both in terms of the additional

relative throughput increase and the relative convergence time saved, is about half an

order of magnitude smaller than the gain by adjusting the values. More improvement

would be attained if the algorithm were to run longer.

Upon reflection, the relatively small gains obtained by using the uniform crossover

operator instead of the one-point crossover operator are not that surprising, nor is the fact

that significant gains are not seen until MT = 4. The chromosomes used for scheduling are

rather “sparse” in content. Since normally K >> MT in wireless systems, the vast majority

of the bits in the GA chromosome will be ‘0’s. This means that regardless of if the GA

exchanges a large block of bits simultaneously, or does so one by one, most of the bits

that are exchanged will be ‘0’s for other ‘0’s. Thus, there is effectively not much

difference between the two methods. More gain being seen at MT = 4 stems from the fact

that there are more ‘1’s in the chromosome that can possibly be exchanged for what is

more likely to be a ‘0’ in the other parent. The gain also comes from the fact that the

users will be swapped individually and independently rather than in a block. For example,

if the crossover point in the one-point crossover is just before user k, any and all users k

to K that are scheduled will be swapped between the parents. More users on average will

be in that block to be swapped with larger MT. On average, in the long term, half of the

bits in a chromosome can be expected to be swapped with both methods. In the uniform

crossover, these bits are evenly distributed throughout the chromosome, while in the one-

point crossover, the bits are all on average in the second half of the chromosome. This

may not always be bad, but the simulation results indicate that independent swapping can

lead to a small improvement in performance. Given the results of the simulations, we

expect that there may be an even larger gain to be found for even larger values of MT, for

which even more users can be scheduled simultaneously.

75

4.6 Conclusion

In this chapter, we have examined the impact of the adaptive mutation rate

parameters on the convergence rate of genetic scheduling algorithms. We have observed

that there is a reasonably wide range of values that result in a similar, near-minimum

convergence time for the algorithm. However, we have also seen that it is important to

tune the parameters to ensure the algorithm is operating within that range. In one case,

tuning the parameters resulted in the number of generations required for the algorithm to

converge dropping to less than 30% of the number required when the original parameter

values from the prior chapter were used.

We have also seen that the proper values for the parameters are dependent on both

the number of users K and the number of transmit antennas MT, but less so on the number

of receive antennas per user NR. We have proposed a simple equation that is linear in 1

and 2 to tune the parameters for changing K and MT. This equation was seen to work

well for various signal-to-noise ratios, and for both the maximum throughput and

proportional fairness scheduling criteria.

The effect of using a uniform crossover method in the GA instead of the previously

used one-point crossover method was also examined. There is some improvement in the

convergence of the GA to be obtained, but nowhere near as much as when tuning the

adaptive mutation rate parameter values. The gain with uniform crossover is the most

when MT is larger and the genetic algorithm is allowed to run for more generations.

There is another potential detail of the GA where adjustment could lead to an

improvement in performance. This is in the probability of crossover pc. We have used the

value pc = 1 throughout our work. This value is at the upper limit for pc, and means that a

crossover always occurs. It is possible that tuning this value may also improve the GA

performance. The specific value of pc may also impact the proper values for the mutation

rate and / or the values for 1 and 2. Examining the impact of tuning pc along with pm on

the scheduling performance would be an interesting area for possible future work.

76

Chapter 5

Genetic, Greedy, and Hybrid Scheduling
Algorithms for Block Diagonalization
and Successive Zero-Forcing

5.1 Introduction

In the previous chapter, we examined GA scheduling for MIMO systems employing

dirty paper coding (DPC). This allowed us to focus solely on the effect of scheduling in

an environment that would, scheduling issues aside, achieve the maximum possible

capacity. Since unfortunately DPC is currently impractical for implementation, lower

complexity precoding methods are of interest. Thus, we now shift our attention to

scheduling methods for block diagonalization (BD) [46] and successive zero-forcing

(SZF) [50] precoding. Both precoding methods are linear and thus of significantly lower

complexity than DPC, though naturally their capacity is lower as well. In this chapter, we

evaluate the performance of genetic and greedy scheduling algorithms for BD and SZF.

We also compare the complexity of those algorithms in relation to existing algorithms

and an exhaustive search. Finally, we also propose hybrid algorithms of the genetic and

greedy algorithms that combine the characteristics of the two, which result in increased

performance without an increase in the order of complexity. Our contributions in this

chapter have appeared in [132],[133],[134].

5.2 System Model with Linear Precoding

The system model we use is largely the same as in the previous chapters on GA

scheduling for DPC. The main difference now is that rather than encoding each user’s

signal with DPC, the transmitted signal for each user k is instead preprocessed with a

transmit beamforming matrix T kM N
k

W . If user k has Nk receive antennas, the Nk×1

received signal yk at each user then becomes:

77

0

1

K

k k j j k
j

 y H W s n . (5.1)

k TN M
k

H is the channel matrix for user k, 1kN
k

s is the data symbol vector

intended for user k, and 1kN
k

n is additive white Gaussian noise with variance

 H
k kE n n 2

kn N I . K0 is the number of users that the system transmits to simultaneously.

Otherwise, the system details are largely the same as in the previous chapters.

5.2.1 Block Diagonalization

Block diagonalization (BD) [46] was discussed briefly in Chapter 2. We expand upon

the details here.

BD is designed to completely eliminate all existing multiuser interference (MUI) at

the transmitter. It does so by designing the beamforming matrices such that HkWj = 0 for

all k j. This in effect decouples the multiuser broadcast channel into parallel equivalent

single-user channels. The received signal from Eqn. (5.1) then becomes yk = HkWksk + nk.

If we consider the aggregate channel matrix:

 1 2 o

TT T T
K

 H H H H , (5.2)

and the aggregate precoding matrix:

01 2 K

 W W W W , (5.3)

then the overall product HW will have a block-diagonal structure (from which BD takes

its name).

Let us define the aggregate matrix kH as follows:

0

1,

01 1 1

K
j Tj j k

T N MT T T T
k k k K

 H H H H H ; (5.4)

that is, the concatenation of all channel matrices except that of user k. The zero-MUI

constraint is satisfied by requiring that Wk fall in the null space of kH . This naturally

implies that kH has a null space of dimension greater than zero. This will be satisfied if

 rank k k Tr M H . Thus, up to K0 users can be supported simultaneously with BD if

01 2max , , , K Tr r r M [46]. We assume that the fading both between any two users and

between the antennas of any given user is independent. Thus, each channel matrix will be

of full rank, which is equal to Nk (assuming Nk < MT). In this case, the maximum number

78

of users K0 that can be supported 1 can also be determined by the constraint

0

1,
,

K

j Tj j k
N M k

 . In the event that all users have the same number of receive

antennas N, this further simplifies to K0 = MT/N, where is the ceiling function.

Let the singular value decomposition (SVD) of kH be denoted as k H H
k k k U D V

1 0 H

k k k k U D V V , where T TM M
k

V . 1
kV contains the first kr right singular vectors,

while 0
kV contains the remaining MT – kr right singular vectors. The columns of 0

kV

form an orthonormal basis for the null space of kH . Constructing the beamforming

matrices from the columns of 0
kV will satisfy the zero-MUI requirement. The multiuser

channel will then be decoupled into the following equivalent parallel single-user

channels:

 0
,k e k kH H V . (5.5)

With a transmit power constraint P at the base station, the throughput achievable by

block diagonalization is obtained by maximizing:

0

2 , ,2:
1

1
max log
k k

K
H

BD k e k k e
k n

R

Q Q 0

I H Q H

, (5.6)

such that 0

1

K

kk
Tr P

 Q . Qk is the square, positive semidefinite transmit covariance

matrix for the equivalent channel Hk,e, with dimensions equal to the number of columns

in 0
kV . The matrices Qk can be obtained by the well-known waterfilling solution over the

equivalent block-diagonal channel matrix
01, 2, ,, , ,e e e K eblkdiagH H H H with the

power constraint P [46].

While 0
kV can be obtained through an SVD, a method to obtain 0

kV through a QR

decomposition, which is more computationally efficient and numerically stable than an

SVD, was presented in [138].

1 Even more users can be supported if the transmitter can account for the filter matrices Mk or
antenna selection at the receivers. The transmitter can instead consider the null spaces of the
effective matrices MkHk when performing the null space operation [46],[48],[135],[136],[137].
This process is known as coordinated beamforming. However, such techniques are beyond the
scope of this work.

79

5.2.2 Successive Zero-Forcing

Successive zero-forcing (SZF) [50] is similar in some aspects to BD. However,

unlike BD, it does not completely null all MUI. As its name implies, the precoding is

performed successively, and so an encoding order must be defined. For a given set of K0

users with an encoding order , the received signal for each user k in Eqn. (5.1) can be

expanded as1 [50]:

 k k k k i i i i ki k i k
 y H W s W s W s n . (5.7)

In SZF, the precoding matrix kW is designed such that it lies in the null space of

the aggregate channel 1kH of the k − 1 previously precoded users’ channels (in contrast

to the null space of all other users with BD):

 1 1 2 1

T
T T T

k k
 H H H H . (5.8)

With this null space constraint, we have that k i H W 0 for all i > k. Thus, the third

term in the sum of Eqn. (5.7) is cancelled, and the equation reduces to:

 k k k k i i ki k
 y H W s W s n . (5.9)

SZF of K0 users’ channels is possible2 if
0 1rank K TM H . If we assume full-rank

channel matrices as we did for BD, this constraint becomes
0 1

1

K

Tkk
N M

 .

Furthermore, if all users have the same number of receive antennas N, this finally

becomes K0 = MT/N, just as in BD.

Taking the SVD of (5.8) yields 1k H 1 1 1
H

k k k U D V 1 0
1 1 1 1

H

k k k k U D V V , where

1
T TM M

k

 V . Similar to BD, 1
1kV holds the first 1rank kH right singular vectors,

while 0
1kV contains the remaining 1rankk T kv M H singular vectors. 0

0 TMV I by

definition. The columns of 0
1kV are then an orthonormal basis for the null space of 1kH ,

from which the precoding matrices kW can be constructed.

1 It is assumed from here on that 2

n = 1 for all users.
2 As with BD, coordinated beamforming with cooperation between the transmitter and the
receivers is possible to increase the number of supportable users, but this is again outside the
scope of this work.

80

Under the assumption that the signals transmitted from the base station are Gaussian-

distributed [46],[50], then for a specific set of K0 users and a specific encoding order =

i for those users, the maximum achievable rate for each of those users is given by:

0 0
1 1

1

2
1

0 0
1 1

1

log
i i i

i

i i i

k H H
j jk j k

j

k k H H
j jk j k

j

R

I H V B V H

I H V B V H

, (5.10)

where the precoder input covariance matrices i kB and the channel input covariance

matrices i kQ are defined such that i k Q i i

H
k k W W 0 0

1 1i

H

k kk V B V .

The achievable sum rate of SZF precoding for a given user order i is:

1, , 0
: 0, 1

max
o

i

i
k k ki i ikk K

K

SZF k
Tr P k

R R

Q Q Q

. (5.11)

The maximum achievable sum rate RSZF of SZF precoding is then obtained by

maximizing (5.11) over all K0! possible user orders:

0, 1,2, , !

max i

i
SZF SZF

i K
R R

. (5.12)

Solving equations (5.10)–(5.12) to determine the optimal covariance matrices can be

quite difficult, as the problem is not convex. However, for a given encoding order, the

authors in [50] have proposed a suboptimal numerical technique based on DPC

covariance optimization to solve Eqn. (5.11). The method involves using the sum-power

iterative waterfilling method of [107] to find the optimal covariance matrices for the

multiple access channel (MAC), using the MAC to BC transformations in [24] to obtain

covariance matrices for the broadcast channel under DPC, and then projecting those

matrices to the SZF null spaces to obtain i kQ . We use this suboptimal method in this

chapter. Full details on the technique can be found in Appendix D.

There has been very little work in the literature on scheduling and ordering issues for

SZF. The number of possible ordered user subsets (given by Eqn. (3.2)) and the fact that

each ordering provides a different sum rate (in notable contrast to DPC) make the

problem quite difficult. A further simplified covariance optimization scheme, along with

a suboptimal user ordering algorithm to be used in conjunction, was proposed in [139].

However, that algorithm only performs well in the low-SNR regime. SZF has also been

examined in the context of clustered network MIMO systems in [140]. However, to the

best of our knowledge, no other work in the literature has dealt with this topic.

81

5.3 Scheduling Algorithms

5.3.1 Genetic Algorithms

The genetic scheduling algorithms we use are by and large the same as what is

described in Chapter 3. Some of the details have been modified, though, to account for

scheduling in the context of BD and SZF.

To begin, for BD scheduling, rather than attempting to optimize the DPC sum rate,

we are instead maximizing the sum of the rates of the scheduled users, as given by Eqn.

(5.6). Thus, the fitness of the chromosomes is found from (5.6) when optimal covariance

matrices are used. In this scenario, the encoding order is no longer a factor in the

scheduling decision or the sum-rate maximization. Thus, the tail of the GA chromosomes

is no longer necessary, so we simply remove it. In that respect, the chromosome

representation becomes the same as that used in [109]. We are no longer concerned with

the encoding order when dealing with GA elitism, either. Thus, we modify the breeding

process as follows. During each generation of the GA, rather than only create a new

population of Np – 2 chromosomes by breeding, we do create a full set of Np

chromosomes. Then, denoting C* as the best chromosome from the previous generation,

if C* does not already exist in the new population, the chromosome with the worst fitness

in the new population is replaced by C*, provided that the fitness of that worst

chromosome is lower than that of C*.

For SZF, the details of the GA operation are almost identical to what is described in

Chapter 3. The only difference is that the fitness of a chromosome is now defined by Eqn.

(5.11) for the users and encoding order of that chromosome. We use the SZF covariance

method described earlier and in Appendix D when determining the fitness.

For both precoding methods, we adopt the improved adaptive mutation rate

parameters from the previous chapter1. In the equation for 1 and 2, we replace the MT

term with K0, the maximum number of users that can be scheduled using either precoding

method. We also ignore the upper bound on 1, since we shall be considering a wider

range for the number of active users K, and that upper bound may become too restrictive

and degrade the performance. We wish to choose values somewhere in the middle of

1 However, we do not adopt the uniform crossover operator, but continue to use the one-point
crossover. This is mostly because the majority of the work in this chapter was completed before
we decided to examine the crossover methods. However, this is still justified in that we saw in the
previous chapter there was little additional gain in performance to be obtained by using the
uniform crossover with limited generations, compared to the large gain seen by adjusting 1 and 2.

82

the range imposed by the constraints 1 1.1 and 2 3. Note that the lower limit on 2

imposes an upper limit on 1 when Eqn. (4.2) is solved (and vice versa); that limit is

dependent on the values for K and K0. In choosing the values, we choose a value for 1

approximately in the middle of the range of its allowable values, then solve for 2. Since

it was seen in the previous chapter that the values do not have to fall exactly on the line

defined by Eqn. (4.2), we generally also quantize the values of 1 and 2 to the nearest

multiple of 0.5. Table 5.1 shows the values used for 1 and 2 in this chapter.

In deciding for how long to allow the GA to run, recall from Chapter 3 that it is the

product Np×Ng that appears to determine the performance more than the individual

values. This was seen in the near-identical performance for K = 10 and K0 = 4 with

(Np,Ng) = (10,10) and (20,5). With this in mind, the values for Np and Ng used in Chapter

3 seem to provide a performance reasonably close to optimal. Thus, it would be logical to

continue with the same overall trend for those values in this work. Previously, for

(K0,K) = (2,10), (2,20), (4,10), and (4,20), we had the equivalent of (Np,Ng) = (10,5),

(10,10), (20,5), and (20,10), respectively. Continuing this pattern in this work, we have

decided to set Np = 5K0 and Ng = K/2. Note that in this work, we only use even values

for K0, so Np is also even. However, since the chromosomes are bred in pairs (two parents

Table 5.1: Adaptive mutation rate parameter values used for varying numbers of active users in
pool (K) and varying numbers of simultaneously supportable users (K0)

Adaptive Mutation Rate Parameter Values
(K,K0)

Maximum Possible
Value for 1 1 2

(8,2) 2.02 1.5 6.5
(10,2) 2.78 2 8
(16,2) 5.42 3 18
(20,2) 7.00 4 23
(30,2) 11.70 6.5 38
(40,2) 16.75 9 55
(50,2) 22.07 11.5 73.5
(70,2) 33.35 17 112

(100,2) 51.54 26 173
(8,4) 5.42 3 18

(10,4) 7.00 4 23
(16,4) 12.69 7 41
(20,4) 16.75 9 55
(30,4) 27.61 14.5 90.5
(40,4) 39.26 20 131
(50,4) 51.54 26 173
(70,4) 77.59 39 260

(100,4) 119.58 60 400

83

create two children), there could be issues if K0, and thus Np, was odd. To remedy this,

one could discard one of the children created during breeding, such as the child with the

lowest fitness, or more simply just discard one of the final two created. Alternatively, one

could enforce an even-numbered population by instead using, for example,

Np = 2×5K0/2.

5.3.2 Greedy Algorithms

Along with the GAs described above, we also consider two so-called “greedy”

scheduling algorithms and their performance. Specifically, we consider the algorithms

proposed by Sigdel and Krzymień in [141] for BD and [142] for SZF. These algorithms

use a Frobenius-norm (F-norm) based metric in their scheduling decisions. The metrics

consider a combination of channel gains and orthogonality. Specifically, at each step of

the algorithm, the metric largely favors to be scheduled those users with the largest

projection of their channel matrix into the null space of the users selected in earlier steps.

In the BD algorithm, the projections of the previously selected users onto each potential

user in the current step are also a factor in the metric. For the SZF algorithm, projections

of each potential user to the null space of the aggregate channel (as given by (5.8)) for

each prior step are also considered in the metric. Thus, the algorithms overall generally

aim to select users whose channel matrices are the closest to orthogonal to each other.

This way, data directed to a given user will already largely fall in the null space of the

other users, and so the beamforming vectors for that user will be mostly aligned with the

channel matrix of that user, which improves the system throughput.

The greedy BD and SZF algorithms share some similarities to an F-norm projection-

based scheduling algorithm for BD proposed in [69]. However, the algorithms differ in

two key areas. First, the scheduling metrics are less complex than those in [69]. Second,

and most importantly, the greedy algorithms also use an intermediate grouping step to

“filter out” some of the active users in the pool. The algorithms, in each step, first

consider the projection of the channel matrices for each remaining user in the pool to the

subspace of the channel matrices of those users already selected. If the spatial correlation

of the users is not below a certain threshold (i.e., the channels are not sufficiently close

to orthogonal), those users are removed from the pool of users to select from, and do not

proceed to have their full scheduling metric calculated. This intermediate grouping

process can reduce the complexity of the scheduling process, but also creates a large

84

dependence of the performance of the algorithms on the value for the threshold . [141]

discusses the selection of the value for in more detail.

In the case of SZF, there is also the matter of the order in which to encode the

selected users. In [142], it is proposed to simply encode the users in the same order as

they are selected by the greedy algorithm. Despite being suboptimal, the results of [142]

indicate that ordering performs close to the optimal ordering obtained through an

exhaustive search.

We outline the details of Sigdel and Krzymień’s greedy algorithm (GrA) for BD in

Table 5.2, while the GrA for SZF is described in Table 5.3. For notation, = {1,2,…,K}

denotes the set of active users requesting service, s denotes the set of scheduled users,

i denotes an intermediate set of users in step i, and s denotes the cardinality of the

set s .

Table 5.2: Simplified greedy user scheduling algorithm for BD

1. Initialize: i = 1; = {1,2,…,K}; s = {}.

 Find user
2

1 arg max k Fk
u

 H

.

 Set: 1s s u ; 1 1\ u .

2. Set: i = i + 1.
 Find projector matrix: 1 1T

H
i M i i

 I V V , where Vi–1 is the row basis of sH ,

and
1 2 1i

TT T T
s u u u

 H H H H .

3. if s < K0 then

 Find
1

1

,
H

k i F
i i s

k iF F

k k

H V

H V
 .

 if i > 0 then

 Select user
2 2

backward
projection forward

projections

arg max
i

s

i k i k kF Fk
k

u

H H

, where ˆ ˆH
k k k
 I V V ,

and ˆ
kV is the row basis of Hk.

 Set: s s iu ; \i i iu .

 Go to Step 2.
 end if
 else Exit.

85

5.3.3 Hybrid Algorithms

Lastly, we consider two hybrid algorithms of the genetic and greedy algorithms

described in the previous sections. The first is a seeded genetic algorithm, which we shall

call Hybrid Algorithm 1 (HA1). Rather than initialize the chromosomes of the GA

completely at random, instead, the first step of the GrA is performed to find the user1

with the largest channel F-norm. This user is then seeded into the chromosomes of the

initial population; that is, the bit corresponding to that user in the head of each

chromosome is set to ‘1’, forcing the GA to initially consider that user. The remaining

users are selected randomly for each chromosome, as is the encoding order for those

users in the case of SZF. The remainder of the operation of the GA is otherwise the same

as previously described. This seeding was one of the possible ways to improve the GA

performance mentioned in Chapter 3.

1 It is also possible to seed more than one user (for example, the two users with the largest channel
norms) into the chromosomes. However, as we show in Section 5.5.3, seeding just the top user is
the best choice.

Table 5.3: Simplified greedy user scheduling algorithm for SZF

1. Initialize: i = 1; = {1,2,…,K}; s = {}.

 Find user
2

1 arg max k Fk
u

 H

.

 Set: 1s s u ; 1 1\ u .

2. Set: i = i + 1.

 Define:
1 2 1

1 0

i

T HT T T
s u u u i i i i

 H H H H U D V V .

3. if s < K0 then

 Find
1

1 1
,

k i F
i i s

k iF F

k k

H V

H V
 .

 if i > 0 then

 Select user

20

20

21 0

2

arg max if 2,

arg max otherwise.

i

i

k i Fk

i k i F

ik
k jj F

i

u

H V

H V

H V

 Set: s s iu ; \i i iu .

 Go to Step 2.
 end if
 else Exit.

86

The second hybrid algorithm (HA2) starts by running the GrA as normal. However,

rather than ending there, the algorithm then encodes those users (and encoding order, for

SZF) into one chromosome, which replaces one of those randomly initialized at the start

of the GA. The GA then runs, but for fewer generations than normal in order to help

reduce the overall complexity. Due to elitism in the GA, the hybrid algorithm can

perform no worse than the GrA alone.

There are a few details that can be adjusted in both of these hybrid algorithms. For

instance, one can adjust how much to seed in the first algorithm, and how many

generations to run the GA for in the second. We examine these details more closely later

in Sections 5.5.3 and 5.5.4.

5.4 Complexity Analysis

In this section, we compare the complexity of the genetic and greedy algorithms in

terms of the number of flops required. A flop is a real-valued floating point operation; an

addition, multiplication, or division is each 1 flop. A complex-valued addition and

multiplication take 2 and 6 flops, respectively. In general, most matrix operations require

about an equal number of multiplications and additions. Thus, we assume that complex-

valued operations need 4 times the flops as the real-valued ones. For the analysis, we

assume Nk = N for all k, K0 = MT/N, and that the algorithms schedule the maximum of

K0 users. Since K0 = MT/N = MT/N + , for some constant 0 ≤ < 1, K0 grows with the

same order of complexity as MT/N.

5.4.1 Complexity of Various Matrix Operations

For an m×n complex-valued matrix m nA , we list the complexity of various

matrix operations required for the genetic and greedy scheduling algorithms.

 Multiplying an m×n matrix by an n×p matrix requires 8mnp flops [143]1.

 The squared F-norm
2

F
A requires a total of 4mn flops [69].

 A Gram-Schmidt orthogonalization (GSO) of A uses 8m2n − 2mn flops [69].

 The (inverse) pth root A1/p or A–1/p of an n×n matrix requires about 34
3112 1p n

flops [145]. In particular, the (inverse) square root will require 3340
3 n flops.

1 Multiplying square n×n matrices can in fact be done with complexity (n2.376) instead of (n3)

[144]. However, we are uncertain if this complexity reduction still applies in general when
multiplying rectangular matrices. Regardless, we show shortly that operations other than matrix
multiplications dominate the order of complexity of the scheduling algorithms anyway.

87

 The determinant |A| of an n×n matrix is calculated by first performing an LU

decomposition (A = LU), with a complexity of 38
3 n flops [143]. The determinant is

then the product of the n diagonal entries of U. Thus, |A| has a total complexity of

38
3 n + 6n flops.

 A QR decomposition of an m×n matrix, m ≥ n, to find m nR and m mQ

requires a total of 16m2n − 8mn2 + 38
3 n flops [143].

 Waterfilling over j eigenmodes requires a maximum of 2j2 + 6j flops [69].

 A full SVD (A = UDVH) of an m×n matrix, m ≥ n, requires 16m2n + 32mn2 + 36n3

flops [143]. If m < n, the complexity can be approximated by instead taking the SVD

of AH. The U and V of A will be the V and U of AH, respectively. Furthermore, the

complexity can be reduced if not all of U, D, and V are required. For example, if only

the singular values D are required, then only 16mn2 – 316
3 n flops are needed [143].

The primary GA function of selecting users through crossover and mutation is mostly bit

manipulation operations with the chromosomes, which are of negligible computational

complexity. The complexity instead lies in calculating the utility function for the

selection of users represented by each chromosome. On the other hand, the complexity of

the greedy algorithm comes mainly from F-norm calculations and matrix multiplications.

5.4.2 Complexity of Genetic Algorithm for Block Diagonalization

The utility function (i.e., the fitness of each chromosome) is the sum-throughput for

the selected users as given by Eqn. (5.6). However, it is not necessary to completely

calculate the transmit covariance matrices to find the sum-throughput. The following

steps are taken for each chromosome: First, for each of the K0 users, find the null space

basis vectors 0
kV of kH . Second, obtain the effective channel matrices Hk,e as given by

Eqn. (5.5). Third, find the singular values of each Hk,e. Fourth, waterfill over the

eigenvalues of all scheduled users to get the power allocated to each eigenmode. Fifth,

calculate the sum-throughput from the eigenvalues and power allocations. The

complexity of each step is as follows.

Step 1: To find 0
kV for user k, it is not necessary to perform an SVD of the

(K0 − 1)N×MT matrix kH . Instead, one may perform a QR decomposition of H
kH to save

on computational complexity. Let us express H
kH = QR = [Q1 Q0]R. Then Q0, the

rightmost MT − (K0 − 1)N columns of Q, are orthonormal basis vectors for the null space

88

of kH . The complexity of the K0 QR decompositions is K0[2
016 TM K N N −

8MT(K0N − N)2 + 8
3 (K0N − N)3]. After expansion and simplification, the complexity of

the first step is (3
TM K0).

Step 2: Finding the equivalent channel matrices involves K0 multiplications of an

N×MT matrix with an MT×(MT − K0N − N) matrix, for complexity 8K0NMT(MT − K0N + N)

≈ (8K0N
2
TM − 8K0N

2MT(MT/N) + 8K0N
2MT) = (MTK0N

2), as the first two terms cancel.

Step 3: Finding the singular values of each N×(MT − K0N + N) matrix Hk,e requires

16N(MT − K0N + N)2 − 16
3 (MT − K0N + N)3 flops. Thus, for K0 users and their effective

channel matrices, and replacing K0N with MT + N, we get a complexity of (N3K0), as

the MT terms cancel.

Step 4: The rank of each of the effective matrices Hk,e is r = MT − K0N + N. Thus,

there are a total of K0r eigenmodes. First, K0r multiplications are required to square the

(real-valued) singular values into eigenvalues for , ,
H

k e k eH H , then waterfilling requires

2(K0r)2 + 6K0r flops. As in the previous step, if we replace the K0N in r with MT + N, we

find a total complexity of (2 2
0N K) (MTNK0).

Step 5: The sum-throughput can be found by
0

2
2

1

log 1
K r

i i n
i

p

 , where i are the

eigenvalues and pi are the associated waterfilling power allocations for each eigenvalue

from Step 4. This requires 1 addition, multiplication, and division for each of the K0r

terms, K0r more multiplications for the product of the terms, and a log2 calculation,

whose complexity can be neglected here1. Thus, the final step requires 4K0r flops, which

is of order (NK0).

Thus, one fitness calculation is (3
0TM K) + (MTK0N

2) + (N3K0) + (MTNK0) +

(NK0). Overall, based on the highest order term, this is therefore (3
0TM K). The GA

calculates this metric Np×Ng times. Recall from earlier that we use Np = 5K0 and

Ng = K/2 for the GA. Thus, the entire GA scheduling process for BD is (2 3
0 TKK M).

1 Strictly speaking, the log2 operation is not even necessary. We could have also used the product
in Step 5 as the fitness for the GA, since the log function is monotonically increasing. However,
since the log function is of a much lower order of complexity (a single calculation for each
chromosome) compared to everything else, it is trivial to include it.

89

5.4.3 Complexity of Genetic Algorithm for Successive Zero-Forcing

This utility function (fitness) for each chromosome is the sum rate for the selected

users and encoding order as given by Eqns. (5.10) and (5.11). For ease of notation, we

assume without loss of generality that (j) = j. To calculate the sum rate, the following

steps are taken: First, find the covariance matrices Pi for the dual MAC with the iterative

algorithm in [107]. Second, convert the MAC matrices Pi to BC matrices i for DPC, as

in [24]. Third, convert the DPC matrices i to SZF covariance matrices Qi as in [50].

Fourth, calculate the sum rate from (5.10) and (5.11). More details for each step can be

found in Appendix D. The complexity of each step is as follows.

Step 1: The MAC covariance Pi matrices are first initialized to some value. Then,

during each iteration of the algorithm, for each user i, an effective channel matrix

TN M
i

G is calculated by 1 2
H

i i j j jj i

 G H I H P H . For all K0 users, H

j j jH P H

can be calculated and stored, using 8K0(
2 2

T TM N M N) flops. For the first user, the

matrix H
i j j jj i
 Z I H P H can be calculated using MT + (K0 – 1)(2 2

TM) flops. For the

remaining K0 – 1 users, Zi can be calculated recursively by Zi+1 = Zi + H
i i i H P H

1 1 1
H
i i i H P H , using a total of (K0 – 1)(4 2

TM) flops. Finding the inverse square root of

each MT×MT matrix Zi requires 3340
3 TM flops. The final multiplication by Hi requires an

additional 8 2
TM N flops per user. Out of this entire operation, it can be seen the highest

order calculation is that of the inverse square root. Thus, the calculation of Gi for K0 users

is (3
0TM K).

Once the effective channel matrices are computed, new covariance matrices are

calculated from the block-diagonal channel formed from
01, , Kblkdiag G G . First, the

N×N matrices H
i iG G are formed using a total of 8K0MTN2 flops. Then, an SVD is

performed to obtain H H
i i i i iG G U D V . However, since only the matrices Ui and Di are

required from the SVD, only 48N3 flops are required per SVD instead of 84N3 if we also

needed Vi [143]. There are a total of K0N eigenvalues i; waterfilling over the

eigenmodes thus requires 2(K0N)2 + 6K0N flops. From the resulting eigenmode power

allocations pi, the sum rate can be found (for the purposes of determining algorithm

convergence) with 4K0N flops by 0 2
2 1

log 1
K N

i i ni
p

 . Updated covariance matrices

90

are found from H
i i i iS U Λ U , where the i matrices are formed from the eigenmode

power allocations. Since the i are real diagonal matrices, Si can each be found using

8N3 + 2N2 flops. Finally, the Pi (in the general case) are updated for the next iteration

n + 1 by 0

0 0

11 1 Kn n
i i iK K

 P S P , using a total of 6K0N
2 flops. For this entire updating

procedure, the highest order calculation is multiplying H
i iG G , which is (K0MTN2).

Thus, for one iteration of the MAC iterative waterfilling algorithm, it is clear that the

highest order calculation is that of the inverse square root. Thus, the entire algorithm has

complexity (3
0TM K)1, where is the number of iterations required for the algorithm

to converge sufficiently for the purposes of scheduling. From the figures in [107], = 5

is usually sufficient for the algorithm to converge very close to the sum rate, and should

be enough for our scheduling requirements.

Step 2: For the MAC to BC calculations, we have 1

1

j H N N
j j i ji

 A I H Σ H

and 0

1
T T

K M MH
j i i ii j

 B I H P H , where i are the DPC BC covariance matrices.

All Bj can be recursively calculated, starting with
0 TK MB I . The remaining K0 – 1

matrices require 8MTN2 + 8 2
TM N + 2 2

TM flops each to multiply H
i i iH P H and add to the

previously calculated Bj. A similar running sum can also be kept for the i (once they

have been calculated) in Aj. Each Aj for j > 1 (as A1 = I) then requires 2 2
TM + 8 2

TM N +

8MTN2 + N flops to calculate. Calculation of 1 2
jA and 1 2

j
A , j > 1, each require 3340

3 N

flops, while each 1 2
j
B , j < K0, requires 3340

3 TM flops. The product 1 2 1 2 TM NH
j j j

 B H A

generally requires 8 2
TM N + 8MTN2 flops, except for j = 1 and K0, where knowing A1 and

0KB (and hence their inverse square roots) are identity matrices reduces the complexity to

just 8 2
TM N and 8MTN2, respectively. Finding the SVD 1 2 1 2H H

j j j j j j
 B H A F Λ G , where

TM N
j

F and N N
j

G , requires 16 2
TM N + 32MTN2 + 36N3 flops for each j. j is

then found by 1 2 1 2 1 2 1 2H H
j j j j j j j j j j

 Σ B F G A P A G F B . Let 1 2 1 2H
j j j j j

T A G F B , and note

that Bj and Aj (and their (inverse) square roots) are all Hermitian. Calculating Tj requires

8 2
TM N + 8MTN2 flops to compute at j = 1, 8N3 + 8MTN2 flops at j = K0, and 8 2

TM N +

1 This would therefore also be the order of complexity for calculating the fitness of a GA
chromosome for maximum throughput scheduling under DPC.

91

8MTN2 + 8N3 flops otherwise. Then, H
j j j jΣ T P T , requiring a further 8 2

TM N + 8MTN2

flops to compute. Overall, it can be seen that the highest order term in the MAC to BC

transformations is the 3340
3 TM flops required to calculate 1 2

j
B . (K0 – 1) of these roots are

calculated, so the complexity of Step 2 overall is (3
0TM K).

Step 3: In converting the BC covariance matrices j to SZF matrices Qj, first, Q1 = 1.

For the remaining K0 – 1 users, 10
1

T TM M j N
j

 V must be calculated for each of the

aggregate matrices 1
1

Tj N M
j

 H . Like for the BD null space vectors, this can be done

with a QR decomposition instead of an SVD. The complexity of these calculations are

0

2
[

K

j 216 TM N (j – 1) – 8MTN2(j – 1)2 + 8
3 N3(j – 1)3] = 0 1

1
[

K

n

 216 TM Nn – 8MTN2n2 +

8
3 N3n3] = 8 2

TM NK0(K0 – 1) – 8
6 MTN2(K0 – 1)(K0)(2K0 – 1) + 8

3 N3[(K0 – 1)K0/2]2. Recall

that K0 has the same order as MT/N, or equivalently, N has the same order as MT/K0.

Substituting N = MT/K0 in the above1, we obtain a complexity of 6K0
3
TM – 316

3 TM –

3 12
03 TM K , so the order of complexity of finding the null space vectors is (3

0TM K).

Next, K0 – 1 products 0 0
1 1

H

j j V V must be calculated, with each product using

8 2
TM [MT – (j – 1)N] flops. The products thus use a total of 0

2
8

K

j 2
TM [MT – (j – 1)N] =

0 1

1
[

K

n

 8 3
TM – 8 2

TM nN] = 8 3
TM (K0 – 1) – 4 2

TM NK0(K0 – 1) flops. Again substituting

N = MT/K0, we get a complexity of 4 3
TM K0 – 4 3

TM , for an order of (3
0TM K). For users

j = 2 to K0 – 1, 0 0 0 0
1 1 1 1

H H

j j j j j j Q V V Σ V V , resulting in a further total complexity of

16(K0 – 2) 3
TM flops. For the final user j = K0, first the effective channel matrix eff H

 0

0 0 0 0 0

1 2
1 0 0

1 11

HK H
K j K K K Kj

 I H Q H H V V is calculated. This involves 2
02 1TM K

flops to add the Qj,
2 28 8T TN M N M N flops to form I 0

0 0

1

1

K H
K j Kj

H Q H , 340
3 N3

flops to find the inverse square root, and 8 2
TM N + 8MTN2 flops to multiply the root by

0 0 0

0 0
1 1

H

K K K H V V . Once Heff is found, first H
eff effH H is calculated using 8 2

TM N flops,

then the product is waterfilled with power constraint 0 1

1

K

jj
P Tr

 Q to find a

1 Strictly, this should be N = MT/(K0 –), but neglecting does not affect the order of complexity.

92

temporary covariance matrix
0KQ . Calculating the power constraint requires (K0 – 1)MT

flops, since the diagonal elements of Qj are real. The waterfilling involves an SVD

requiring U and D, but not V, so 48 3
TM flops are needed. D has N non-zero eigenvalues

(since Heff is N×MT), so the waterfilling takes 2N2 + 6N flops. Then
0

H
K Q UΛU , where

 is a real diagonal matrix formed from the waterfilling eigenmode power allocations,

requiring 8 3
TM + 2MTN flops, exploiting the structure of to reduce complexity. Finally,

0 0 0 0 0

0 0 0 0
1 1 1 1o

H H

K K K K K K Q V V Q V V is found using 16 3
TM flops. Within Step 3, there

are several calculations that require (3
0TM K), so this is the overall complexity of this

step.

Step 4: The SZF sum rate of Eqns. (5.10) and (5.11) can be rewritten as

 0
1

2 1 1
1

log
K

j jH H
j i j j i ji i

j

 I H Q H I H Q H . The determinant in the

numerator must be calculated K0 times, while the denominator must be found K0 – 1

times (the value at j = 1 is 1). A running sum of the Qi can be used for each j; overall, this

sum will require 2K0
2
TM flops. Having the sum, the terms within the determinant

functions take 8 2
TM N + 8MTN2 + N flops to calculate for each j. Finding the determinant

of those N×N terms then requires 38
3 N + 6N flops. Finally, having the (real) determinant

values, dividing them for each j and finding the overall product would require an

additional 2K0 – 1 flops, plus one log2 operation, which we ignore. Thus, the calculation

of the SZF sum rate requires (2K0 – 1)(8 2
TM N + 8MTN2 + 7N + 38

3 N + 1) + 2K0
2
TM flops.

Hence, Step 4 has an overall complexity of (2
0TM K N).

Thus, one fitness calculation requires (3
0TM K), from Steps 1 to 3. The GA

calculates this metric Np×Ng times, where Np = 5K0 and Ng = K/2. Thus, the entire GA

scheduling process for SZF is (2 3
0 TKK M). This is the same as for BD, but it is clear

from the overall description that the SZF scheduling certainly must have a larger constant

in front of that 2 3
0 TKK M term.

93

5.4.4 Complexity of Greedy Algorithm for Block Diagonalization

In this section we determine the complexity of the BD GrA. This work was done in

collaboration with Dr. Shreeram Sigdel [132]. The complexity of each step is as follows.

Step 1: The F-norm of the N×MT channel matrix is calculated for each of the K users,

requiring 4KNMT flops.

Step 2: For i ≥ 2, the projection matrix requires a GSO of the (i − 1)N×MT matrix

 sH to obtain the row basis Vi–1, then a multiplication and subtraction to get i

TM I 1 1
H

i i V V . The total number of flops required is 8(i – 1)2N2MT – 2(i – 1)NMT +

28(1) Ti NM + MT = 8(i – 1)2N2MT + (i – 1)(28 TNM – 2NMT) + MT.

Step 3: Finding the 1
H

k i FH V term uses a multiplication and F-norm and thus

requires (8MT + 4)N2(i − 1) flops. k F
H can be reused from Step 1, at the cost of some

memory storage. 1
H

i FV has negligible complexity, since its rows are orthonormal; hence

 1 1H
i F

i N V , which is negligible to compute, as is the division for the

normalization. This correlation calculation is done for each of the i users. Thus, the

complexity of the intermediate grouping is i (8MT + 4)N2(i − 1) flops. The projection

matrices k
 only need to be calculated one time at i = 2, then can be reused for larger i.

Each of the 2 projection matrices requires a GSO to find ˆ
kV , a matrix multiplication,

and a subtraction from the identity, yielding a complexity of 2 (8N2MT – 2NMT +

28 TNM + MT) flops. The forward and backward projections combined require a total of i

matrix multiplications, F-norm calculations, and real additions. The projections are done

for each of the i users, so the total complexity is i i (8N 2
TM + 4NMT + 1) flops.

Thus, the total complexity of the greedy algorithm is 4KNMT + 2 (8N2MT –

2NMT + 28 TNM + MT) + 0

2
{

K

i 8(i – 1)2N2MT + (i – 1)(28 TNM – 2NMT) + MT + i ×

[(i − 1)(8MTN2 + 4N2) + i(28 TNM + 4NMT + 1)]}. After simplification, it can be found that

the complexity of the GrA for BD is (02

2

K

T ii
M N i

). i is a random variable in the

range 0 ≤ i ≤ (K − i + 1), and its value depends on the threshold . In the worst case,

the greedy algorithm must search over (K − i + 1) users in Step 3. (The most likely reason

94

for this to occur is if = 1.) Thus, although the search is generally simpler, the worst-case

complexity of the BD GrA is (02

2
1

K

T i
M N i K i

). After further simplification, we

find that the GrA complexity is (2 2
0 TKK M N) (3

0 TKK M).

Thus, overall, the GrA complexity for BD is lower than that of the GA by a factor of

K0. However, it should be noted that the GrA will still require one calculation of (5.6) to

find the sum rate for selected users, whereas for the GA, most of that calculation has

already been carried out. This is in essence the calculation for a single GA chromosome,

so the GrA must carry out the one additional step of complexity order (3
0 TK M).

In comparison, the complexity of an exhaustive search is found by calculating (5.6)

for all possible groups of K0 out of K users. Its complexity is thus 0

3
0

K
K TK M [69].

5.4.5 Complexity of Greedy Algorithm for Successive Zero-Forcing

In this section, we find the complexity of the GrA for SZF. The complexity of each

step is as follows.

Step 1: This step is identical to Step 1 of the BD GrA; it requires 4KNMT flops.

Step 2: For i ≥ 2, the matrix sH is (i − 1)N×MT. Performing an SVD of this

matrix requires 16 2
TM N(i – 1) + 32MTN2(i − 1)2 + 36N3(i − 1)3 flops.

Step 3: The calculation of the correlation for the intermediate grouping is the same as

for the BD GrA. It thus has complexity 1i (8MT + 4)N2(i − 1) flops. For the user

selection metric, the denominator need not be fully calculated for each i. Instead, a

running sum can be kept and updated with each i, at the expense of the storage of at most

2 real scalars. At each i, the term
20

k i F
H V requires (8MT + 4)N[MT − (i − 1)N] flops

to compute the multiplication and F-norm for each user in i . Then, 1 flop is required

to divide by the sum in the denominator, followed by 1 flop to update the sum for the

next i; we neglect these final 2 flops. Thus, the complexity of Step 3 is i (8MT + 4)N×

[MT − (i − 1)N] flops.

Therefore, the total complexity of the greedy algorithm for SZF is 4KNMT +

0

2
{

K

i 16 2
TM N(i – 1) + 32MTN2(i − 1)2 + 36N3(i − 1)3 + 1i (8MT + 4)N2(i − 1) + i ×

(8MT + 4)N[MT − (i − 1)N]}. After some simplification of the above equation, we find the

95

highest order terms are (8MT + 4)N2 0 1

1
[

K

n

 n i – n 1n] and (8MT + 4)MTN×

0

2

K

ii . Expanding the sum in the first term gives 0 1

1
[

K

n

 n i – n 1n] = (K0 – 1)×

0K + 0 1

1

K

nn

 . This makes the first term equal to (8MT + 4)N2(K0 – 1)
0K +

(8MT + 4)N2 0 1

1

K

nn

 . Thus, the order of complexity of the two terms is

(MTN2K0
0K + MTN2 0 1

1

K

nn

) and (02

2

K

T ii
M N

), respectively. The first half

of the first term is approximately equivalent to (
0

2
T KM N + …). Since MT > N, the

second term is of higher order, so the entire GrA for SZF has a complexity of

(02

2

K

T ii
M N

). Just as with the GrA for BD, i is a random variable in the range

0 ≤ i ≤ (K − i + 1), whose value depends on the threshold . Thus, in the worst case,

i = (K − i + 1), and the order of complexity becomes (02

2
1

K

T i
M N K i

). After

further simplification, we finally find the worst-case complexity for the GrA is

(2
0 TKK M N) (3

TKM).

Thus, overall, the GrA complexity for SZF is lower than that of the GA by a factor of

2
0K . However, just like for BD, the GrA must afterwards find the covariance matrices

and sum rate for the selected users and encoding order, whereas the GA has already done

this. This additional step has complexity order (3
0 TK M), the same as a single SZF GA

chromosome fitness calculation.

In comparison, the complexity of an exhaustive search is found by finding the sum

rate for all possible groups and encoding orders of up to K0 out of K users. Its complexity

is thus 0

3
0 0! K

K TK K M 0 3
0

K
TK K M .

5.4.6 Complexity of Hybrid Algorithms

As already seen in the previous two sections, the complexity of finding the user with

the best channel F-norm is 4KNMT. The idea of the first hybrid algorithm (HA1) is to use

that user as a seed in the GA chromosome, but otherwise operate the GA as normal. The

complexity of finding that user is of lower order than the overall GA. Thus, the order of

complexity of HA1 is (2 3
0 TKK M) for both BD and SZF, the same as for the GA.

96

The worst-case complexity of the GrA was found to be (3
0 TKK M) for BD and

(3
TKM) for SZF. To reduce the complexity of HA2, the idea is that rather than run the

GA for a number of generations which is dependent on K, instead we run for a constant

number of generations after running the GrA. This removes the factor of K from the order

of complexity of the GA, making its order less than that of the GrA. The order of

complexity for the GA portion would be (2 3
0 TK M). Hence, the highest order term, and

thus the overall order of complexity for HA2, is the same as for the GrA, i.e.,

(3
0 TKK M) for BD and (3

TKM) for SZF, in the worst case. Obviously, the total

complexity will be higher than the GrA alone. However, if the generations for the GA are

restricted, the added computations should not be very significant.

We summarize the complexity orders of all the algorithms in Table 5.4.

5.5 Simulation Results

In this section, we present simulation results demonstrating the performance of our

scheduling algorithms. A performance comparison of the exhaustive search, genetic

algorithm (GA), and greedy algorithm (GrA) for both BD and SZF are presented first.

The simulations and examination of the greedy algorithms were done in collaboration

with Dr. Shreeram Sigdel [132],[133],[134]. For the GrA, the optimal correlation

threshold (that maximizes the sum rate) was used, and determined as in [141] through

simulation. The optimal case exhaustively searches through all possible user

combinations (and encoding orders in case of SZF). For reference, when examining the

BD performance, we also consider the sum rate for the two scheduling algorithms

Table 5.4: Summary of the complexity orders of different user scheduling algorithms

Algorithm Complexity Order (BD) Complexity Order (SZF)

Greedy 02

2

K

T ii
M N i

 02

2

K

T ii
M N

Greedy (worst case) 2 2
0 TKK M N 3

0 TKK M 2
0 TKK M N 3

TKM

Genetic 2 3
0 TKK M 2 3

0 TKK M

Hybrid 1 2 3
0 TKK M 2 3

0 TKK M

Hybrid 2 3
0 TKK M 3

TKM

Exhaustive Search 0

3
0

K
K TK M 0

3
0 0! K

K TK K M 0 3
0

K
TK K M

97

proposed in [69]. We label these algorithms “SCAHE” after the initials of the authors’

names. One of the two, based on F-norms and projections, has already been mentioned.

The BD GrA is similar to this algorithm, but is less complex; the SCAHE metric is more

complicated (its forward projections for each sk (see Table 5.2) also consider the

null spaces of the other previously scheduled users) and the algorithm considers all active

users (i.e., no threshold is used). The second SCAHE algorithm is based on capacity.

During each iteration, the algorithm selects the user from those remaining in the pool that

maximizes the sum rate when scheduled together with the users selected in the previous

iterations. The two algorithms both have complexity 2 3
0()TKK M [69]. Later, we

examine the performance of the two hybrid algorithms.

5.5.1 Block Diagonalization

Figure 5.1 shows the performance versus the number of active users K of the

scheduling algorithms for a case where MT = 4, Nk = N = 2 for all K users, and K0 = 2, at

an SNR of 5 dB and 10 dB, where the SNR is defined as P/ 2
n (see Eqn. (5.6)). It is

observed that the GrA performs better than the GA for low SNR, but the GA outperforms

the GrA at higher SNR. The reasons for this are as follows. Since the GrA starts by

selecting the user with the maximum channel F-norm, the transmit power allocated to that

strongest user will be the highest. The second user may in fact receive much less power

than the first user (in the case of two selected users presented here). At low SNR (as P

approaches 0), scheduling a single user can become optimal, resulting in a better sum rate

than scheduling two users. In such a case, zero-forcing across users is not beneficial as

the gain of the projected channel of the second selected user will be low. (In other words,

Heff for the second user will be poor.) On the other hand, it is by no means guaranteed

that the GA will select the user with the maximum channel gain, due to its stochastic

nature. This reduces the GA throughput at lower SNR. Both algorithms perform well

compared to the optimal performance of the exhaustive search, achieving about 93−98%

of the best possible throughput, with a gap less than 1 bit/s/Hz from optimal. We have

performed additional simulations at 0, 15, and 20 dB, which we relegate to Appendix E

for space and presentation considerations. These supplementary results indicate that the

GrA continues to be better at the lower SNR of 0 dB, while at 15 and 20 dB, the GA

98

shows further improvement over the GrA1. For reference, we also show results for the

SCAHE algorithms. It can be seen that the GrA performs essentially identically to the

SCAHE F-norm algorithm at all SNR levels. However, the SCAHE capacity algorithm

still performs better than both the GrA and GA. We note, though, that the complexity of

the GrA is lower than the GA and both SCAHE algorithms by a factor of K0, as discussed

in Section 5.4.4.

Similarly, we perform the simulations for MT = 8, Nk = N = 2, and K0 = 4; the results

for SNR = 5 dB, 10 dB and 15 dB are given in Figure 5.2. Further results for 0 dB and 20

dB are in Appendix E. We first note that the results are different than in our work in

[132]. In that earlier work, the results for the GrA were erroneously for a non-optimized

threshold in Step 3 of the algorithm (i.e., using = 1). With the optimized threshold in

1 The performance of current cellular systems is limited by out-of-cell interference; while the
interference-free SNR might be high, the SINR can be much lower. While some gains in spectral
efficiency are still possible from MIMO spatial multiplexing, they are nowhere near as significant
as the gains at high SNR / SINR. However, MIMO system designs employing network coordin-
ation (e.g. [146]) can mitigate or eliminate much of this intercell interference, allowing the system
to indeed operate in the high-SNR regime. Thus, our simulation results at higher SNRs may have
the most relevance for future MIMO systems. (For example, [146] considers an SNR of 18 dB.)

0 10 20 30 40 50 60 70 80 90 100
6

6.5

7

7.5

8

8.5

9

9.5

A
ve

ra
ge

 su
m

 ra
te

 (b
it/

s/
H

z)

(a)

0 10 20 30 40 50 60 70 80 90 100
9

10

11

12

13

14

15

Number of users (K)

(b)

A
ve

ra
ge

 su
m

 ra
te

 (b
it/

s/
H

z)

Exhaustive search
Greedy algorithm (GrA)
Genetic algorithm (GA)
SCAHE (capacity based)
SCAHE (F−norm based)

Figure 5.1: Performance vs. K of exhaustive search, greedy, genetic, and SCAHE scheduling

algorithms for BD; MT = 4, Nk = N = 2, K0 = 2. (a) SNR = 5 dB, and (b) 10 dB.

99

this work, the GrA performance is improved, and hence the analysis of the simulation

results leads to somewhat different conclusions.

We observe a similar trend as in the MT = 4 case. Namely, the GrA has a better

performance at low SNR, but the GA has a better performance at higher SNR.

Interestingly, we also now more clearly observe a crossover in performance as the SNR

increases. Specifically, at 10 dB, the GA performs better at low K, while the GrA

performs better at high K; the sum rate of the two algorithms becomes equal somewhere

between K = 30 and 40. At low SNR, this trend again comes down to scheduling the user

with the best channel with the GrA, whereas this is not guaranteed for the GA. In

0 10 20 30 40 50 60 70 80 90 100
10

11

12

13

14

15

A
ve

ra
ge

 su
m

 ra
te

 (b
it/

s/
H

z)

(a)

0 10 20 30 40 50 60 70 80 90 100
17

18

19

20

21

22

23

24

25

(b)A
ve

ra
ge

 su
m

 ra
te

 (b
it/

s/
H

z)

0 10 20 30 40 50 60 70 80 90 100
24

26

28

30

32

34

36

(c)A
ve

ra
ge

 su
m

 ra
te

 (b
it/

s/
H

z)

Number of users (K)

Exhaustive search
Greedy algorithm (GrA)
Genetic algorithm (GA)
SCAHE (capacity based)
SCAHE (F−norm based)

Figure 5.2: Performance vs. K of exhaustive search, greedy, genetic, and SCAHE scheduling

algorithms for BD; MT = 8, Nk = N = 2, K0 = 4. (a) SNR = 5 dB, (b) 10 dB, and (c) 15 dB.

100

comparison, at high SNR, orthogonality between users is a more important factor. It is

generally better to find users whose channel matrices are closer to orthogonal to each

other, rather than first focus on the one user with the best channel gain, since all the

users’ channel gains are good. Since the GrA is biased towards that one user, who may no

longer be the best choice, its performance suffers relative to the GA.

We also observe that the GA tends to perform better at lower K than the GrA. This is

since at lower K, orthogonality is also quite important. With a small user pool, finding

users that are relatively close to orthogonal is difficult compared to at large K, due to

multiuser diversity. Multiuser diversity and basic probability theory dictates that the more

users that there are to choose from, the more likely it will be that there are users whose

channels are close to orthogonal. More specifically, at lower K, it is therefore more

difficult to find users that are orthogonal to the one specific user with the best channel F-

norm. In the GrA, the small number of users to select from, combined with the use of the

threshold, can in fact often result in the GrA scheduling fewer users than is appropriate.

Thus, some of the system’s resources and degrees of freedom in the transmitter are

wasted. In comparison, while the GrA might exclude certain users because of its

threshold and comparisons to the best individual user, the GA does not exclude any

particular users. Often, at low K, finding a good set of users that are closer to orthogonal,

where that set does not include the user with the best channel, results in a better overall

sum rate than if that user must be included. Thus, for these reasons the GA performs

better than the GrA when the user pool is small. At large K, a good user set that includes

the best user is far more likely, and the GrA is no longer in danger of scheduling too few

users, so the GrA performs better at large K.

Further, we note that the performance of the GA does not increase as rapidly with K;

an increasing performance gap between the GA and the exhaustive search is observed as

K increases. A similar gap was observed in Chapter 3, for scheduling under DPC

precoding. Possible ways to compensate for the gap in practice were also discussed in

that chapter, including seeding the initial population and preserving chromosomes

between scheduling instances if temporal correlation in the channels exists. Nevertheless,

this increasing gap results in the crossover in performance between the GrA and the GA

with K at mid-range SNRs, since the GrA does not have that same increasing gap; its

growth in sum rate with K is the about the same as that for the exhaustive search. Both

algorithms have much lower complexity than the exhaustive search, yet still yield decent

throughput relative to the best possible, although not as close to the best as for K0 = 2. For

101

5 and 10 dB, the algorithms provide, at worst, no less than about 90% of the optimal sum

rate. Finally, we note the two SCAHE algorithms perform better than the GrA and GA at

MT = 8, though they both trade off complexity for that additional performance compared

to the GrA.

5.5.2 Successive Zero-Forcing

Figure 5.3 shows the SZF performance for MT = 4. We see much the same overall

trend as was seen for BD precoding. For small K (e.g. K < 15 at SNR = 5 dB) the GA

outperforms the GrA, whereas for large K the GrA outperforms the GA. At SNR = 10 dB,

the performance of the GrA and GA has been found to be essentially identical for K > 30;

hence the plots in Figure 5.3(b) are not clearly distinguishable. Additional simulations

(results shown in Appendix E) also demonstrated that at 0 dB, the GrA outperformed the

GA for all K, while at higher SNRs (i.e., 15 and 20 dB), the GA outperformed the GrA. It

is also observed that the proposed algorithms perform very close to the exhaustive search.

The performance of both algorithms is less than 0.8 bit/s/Hz inferior to optimal,

achieving about 95−98% of the sum rate of an exhaustive search.

0 10 20 30 40 50 60 70 80 90 100
6.5

7

7.5

8

8.5

9

9.5

10

A
ve

ra
ge

 su
m

 ra
te

 (b
it/

s/
H

z)

(a)

0 10 20 30 40 50 60 70 80 90 100
10.5

11
11.5

12
12.5

13
13.5

14
14.5

15

(b)

A
ve

ra
ge

 su
m

 ra
te

 (b
it/

s/
H

z)

Number of users (K)

Exhaustive search
Greedy algorithm (GrA)
Genetic algorithm (GA)

Figure 5.3: Performance vs. K of exhaustive search, greedy, and genetic scheduling algorithms for

SZF; MT = 4, Nk = N = 2, K0 = 2. (a) SNR = 5 dB, and (b) 10 dB.

102

Similar results are observed for MT = 8 in Figure 5.4. A crossover of the performance

curves of the GrA and GA can be seen from these figures, just like what was seen for BD.

However, the crossover occurs at a lower value of K compared to BD (e.g. about K = 20

for SZF at 10 dB compared to about K = 35 for BD). The reasons for this are similar to

those for BD. With the use of the threshold, the GrA tends to be biased toward too few

users at low K, and toward scheduling the maximum number of users at higher K. The

GA has no such bias one way or the other. We note that when scheduling multiple users

simultaneously, the cancellation of multiuser interference can become a significant factor.

Thus, it is often best to schedule less than the maximum servable number of users in

0 10 20 30 40 50 60 70 80 90 100
11

12

13

14

15

A
ve

ra
ge

 su
m

 ra
te

 (b
it/

s/
H

z)

(a)

0 10 20 30 40 50 60 70 80 90 100
17

18

19

20

21

22

23

24

(b)A
ve

ra
ge

 su
m

 ra
te

 (b
it/

s/
H

z)

0 10 20 30 40 50 60 70 80 90 100
24

25

26

27

28

29

30

31

A
ve

ra
ge

 su
m

 ra
te

 (b
it/

s/
H

z)

(c)

Number of users (K)

Exhaustive search
Greedy algorithm (GrA)
Genetic algorithm (GA)

Figure 5.4: Performance vs. K of exhaustive search, greedy, and genetic scheduling algorithms for

SZF; MT = 8, Nk = N = 2, K0 = 4. (a) SNR = 5 dB, (b) 10 dB, and (c) 15 dB.

103

order to maximize the sum rate for small K, since there is not a large enough pool of

users to select from to help reduce multiuser interference through pre-existing user

channel orthogonality. Nevertheless, selecting too few users also reduces the throughput,

as degrees of freedom in the system are wasted. As was seen with BD, at low K, both

scheduling too few users due to the threshold, and being forced to schedule the user with

the best channel norm instead of looking more at orthogonal users, causes the GrA

performance to suffer relative to the GA. The reverse is true at higher K, since it is more

likely for the best user to be in a good orthogonal group due to multiuser diversity.

However, finding orthogonal users is not as important as in BD, since SZF only nulls the

interference of a user on previously encoded users, not on all other users. Hence, we see

the crossover in performance occur at a smaller value of K compared to BD. It would be

interesting to examine this crossover in performance between the algorithms further, to

find some sort of theoretical analysis as to why the crossover occurs at a specific value of

K. However, since the GrA throughput is quite dependent on the threshold , and because

the GA is stochastic in nature, this would be extremely difficult, if not impossible.

We examine the number of users scheduled by each of the algorithms in Figure 5.5.

The graphs reinforce the statements made in the previous paragraph. At low K (K = 10), it

is seen that for both BD and SZF, the GrA tends to schedule far fewer users than what an

exhaustive search indicates should be appropriate. The GrA tends to schedule just two

users a little over 10% of the time in SZF, and even more often in BD. The GrA in fact

even schedules only a single user on rare occasions. Thus, available transmit resources

are being wasted. In comparison, the GA schedules a (more appropriately) larger number

of users at low K, and so its throughput is better. By a more mid-range value of K (K =

40), the number of users simultaneously scheduled by both the GrA and the GA are much

closer to each other. We also note that in comparing BD to SZF, all the algorithms tend to

schedule more users simultaneously when using SZF at all K, as a result of the less

stringent null space constraints.

Looking back once more at Figure 5.4, we again see that the rate of increase in

throughput of the GA with K does not match that of the exhaustive search, while the GrA

does, which also contributes to the crossover. In fact, the sum rate of any beamforming

(including BD and SZF) is known to grow as log(log K) [41]. In Figure 5.6, we plot the

throughput performance of the algorithms vs. log(log K) for SZF at 5 and 10 dB and MT =

8. We see that the exhaustive search curve is linear, as expected. More importantly, it is

observed that the GrA curve is also linear, with about the same slope as the exhaustive

104

search, meaning that the GrA achieves about the same growth in throughput versus K due

to multiuser diversity as the exhaustive search. In other words, the gap in the GrA

performance versus the optimum is approximately constant as K increases. This result

10 40100 10 40100 10 40100 10 40100
0

0.2

0.4

0.6

0.8

1

(c)

1 2 3 4
0

0.2

0.4

0.6

0.8

1

Number of scheduled users

(d)

10 40100 10 40100 10 40100 10 40100
0

0.2

0.4

0.6

0.8

1

Pr
op

or
tio

n
of

 ti
m

e

(a)

1 2 3 4
0

0.2

0.4

0.6

0.8

1

Number of scheduled users

Pr
op

or
tio

n
of

 ti
m

e

(b)

GrA
GA
ES

←K→

Figure 5.5: Average proportion of time that a given number of users out of a maximum of K0 is

scheduled using various algorithms for MT = 8, Nk = N = 2, and K0 = 4, with K = 10, 40, and 100.
(a) BD, SNR = 5 dB. (b) BD, SNR = 10 dB. (c) SZF, SNR = 5 dB. (d) SZF, SNR = 10 dB.

0.4 0.6 0.8 1 1.2 1.4 1.6
10

12

14

16

18

20

22

24

10 dB

5 dB

A
ve

ra
ge

 su
m

 ra
te

 (b
it/

s/
H

z)

log(log K)

ES
GrA
GA

Figure 5.6: Performance of exhaustive search, greedy, and genetic scheduling algorithms for SZF

vs. log(log K); MT = 8, Nk = N = 2, K0 = 4; SNR = 5 dB and 10 dB.

105

can also be seen in the earlier figures, but not as clearly, especially in Figure 5.4, where

the exhaustive search curve does not extend to K = 100. It is also observed that the GA

curve seems close to being linear, but that its slope is less steep, thus resulting in the

widening gap in performance compared to the optimum. However, there still is a slight

upward curve to the GA plots. This indicates a possibility that the rate of increase in the

gap with the ES performance may slow at even larger K. As K asymptotically becomes

very large, the GA might achieve a constant gap from the exhaustive search as well.

The performance of both proposed algorithms is still quite close to that of an

exhaustive search, though not quite as close as for MT = 4. The worst performance of the

algorithms is still not less than 90% of the optimal throughput, at least up to K = 40. Full

exhaustive search results are not available for larger K, due to the combinatorially

increasing complexity. Simulating for even larger K would take a prohibitively long time.

5.5.3 Hybrid Algorithm 1

In this section, we focus on the MT = 8 cases, as these are the cases where the most

improvement in sum rate relative to the exhaustive search can be obtained. Full results

are available in Appendix E. We first investigate the various options for seeding the best

F-norm user(s) into the chromosomes. We note that the calculations to find the maximum

F-norm will have already been carried out, so how often that result is used from that point

on will have no further impact on the complexity. We hence examine the effect of

seeding the “top” user (with the highest channel F-norm) into one chromosome, two

chromosomes, and the entire population of chromosomes for the GA. Furthermore, it is

trivial when finding the maximum F-norm to keep track of the top two users instead of

just one. Thus, we also examine seeding the top two users each into one chromosome,

each into two chromosomes, and seeding into the entire population, where one user is

seeded into half of the population’s chromosomes, and the second into the other half.

When initializing the GA, the algorithm first creates a random set of users (and a

random encoding order for those users, in the case of SZF). The algorithm then checks if

the desired seed user has been scheduled in the chromosome. If so, the GA proceeds to

the next chromosome. Otherwise, the user drops the last user that was scheduled in the

chromosome and inserts the seed user as the first user in the scheduled group. For

example, if a chromosome indicates to schedule the users {18,2,12,7}, while user 5 is the

seed, the GA would drop user 7 and insert user 5 at the front, creating the group

106

{5,18,2,12}. In the case of SZF, this also means the seed user will be encoded first, just

as with the SZF greedy algorithm.

We show simulation results in Figure 5.7 for one BD case with MT = 8, Nk = N = 2,

and K0 = 4 at an SNR of 10 dB. The figure shows the improvement in average sum rate.

It can be seen that seeding the top user in just one or two chromosomes has an almost

negligible effect on the sum rate. The increase is less than 0.1 bit/s/Hz. However, when

the top user is seeded in the entire population, the effect is more significant. The sum rate

increases by about 0.3 to 0.4 bit/s/Hz. Seeding the top two users into just one or two

chromosomes also has a mostly negligible effect, although seeding two users does seem

to improve the performance very slightly. This extra improvement is likely within the

error bounds of the simulation, though, since we are dealing with hundredths of a bit/s/Hz.

Seeding the top two users throughout the population seems to have no significant

difference in effect; if anything, seeding two users may even occasionally worsen the

performance. Thus, it appears that the best option is to seed the single top user with the

best channel F-norm into the entire GA population.

With this in mind, simulation results for HA1 with the “seed top user in all

chromosomes” strategy are seen in Figure 5.8 for BD and SZF. It is observed that for the

fairly small increase in the complexity required to seed the GA chromosomes, there is a

reasonable, though slight, increase in the performance of HA1 compared to the GA. The

gain in throughput is not so large at smaller K; the sum rate increases by about 0.1

bit/s/Hz. This is expected from the discussions in the previous sections; at low K, the GA

already performs well, so there is not as much gain to be achieved in the first place. The

0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

0.4

Number of users (K)

Im
pr

ov
em

en
t i

n
av

er
ag

e
su

m
 ra

te
 (b

it/
s/

H
z)

Top 1 × 1
Top 1 × 2
Top 1 × all
Top 2 × 1
Top 2 × 2
Top 2 × all

Figure 5.7: Improvement in average sum rate vs. K of hybrid algorithm 1 over the unseeded GA

while seeding the top n users into c chromosomes of the GA population. MT = 8, Nk = N = 2, K0 =
4; SNR = 10 dB.

107

GA in HA1 does see some benefit, though, since it is not forced to keep the user with the

best channel; the breeding process could remove that user from contention if it is not

included in the best subset of users that will maximize the utility function, but will keep it

if it is. HA1 is also not required to keep that top user in the first encoding position for

SZF, either. The throughput gain is higher at larger K. The throughput goes up by about

0.3 bit/s/Hz at an SNR of 5 dB in Figure 5.8(a) and (b), respectively, and by about 0.4

bit/s/Hz at 10 dB in Figure 5.8(c) and (d). Essentially the same increase in performance is

seen for both BD and SZF. In fact, for both precoding methods, the seeding of the GA

improves its performance such that it now approximately equals or even exceeds that of

the GrA at 10 dB. This is compared to the crossover in the GA and GrA performance

seen without the seeding. However, it should also be noted that the gain in performance

amounts to at best about an extra 2% in throughput, so in relative terms, the gain is rather

minor.

0 10 20 30 40 50 60 70 80 90 100
11

12

13

14

A
ve

ra
ge

 su
m

 ra
te

 (b
it/

s/
H

z)

(a)

0 10 20 30 40 50 60 70 80 90 100

12

13

14

15

(b)

0 10 20 30 40 50 60 70 80 90 100
19

20

21

22

A
ve

ra
ge

 su
m

 ra
te

 (b
it/

s/
H

z)

Number of users (K)

(c)

0 10 20 30 40 50 60 70 80 90 100
19

20

21

22

Number of users (K)

(d)GA (BD)
GrA (BD)
HA1 (BD)

GA (SZF)
GrA (SZF)
HA1 (SZF)

GA (BD)
GrA (BD)
HA1 (BD)

GA (SZF)
GrA (SZF)
HA1 (SZF)

Figure 5.8: Performance of hybrid algorithm 1 vs. K for BD and SZF; MT = 8, Nk = N = 2, K0 = 4.
(a) BD, SNR = 5 dB; (b) SZF, SNR = 5 dB; (c) BD, SNR = 10 dB; and (d) SZF, SNR = 10 dB.

108

5.5.4 Hybrid Algorithm 2

In analyzing the performance of HA2, we again focus on the MT = 8 cases, since they

best illustrate the effect of adding the GA to the GrA; full results are in Appendix E. First,

we examine the best number of generations for which to run the GA. Figure 5.9 shows

the case for BD at an SNR of 10 dB, letting the GA run for 2, 5, and 10 generations. It

can be seen that the biggest relative gain to the GrA comes after just two generations. The

gain is largest at lower K, which is to be expected; the GA was earlier seen to perform

better at low K when compared to the GrA. We would expect the GA portion of HA2 to

also perform relatively better at higher SNR for similar reasons. Running the GA for 5

and 10 generations does unsurprisingly further improve the average sum rate of HA2.

However, there appear to be diminishing returns at this point. For instance, the gain in

throughput relative to the GrA at K around 16 to 20 when running 2 generations is the

same gain in throughput seen when increasing the generations from 2 to 10. In other

words, the same addition in sum rate is seen when the complexity of the GA portion of

HA2 quintuples (or when adding 8 more generations) as was seen when the first two

generations were added. For this reason, and also because we wish to keep the added

complexity from the GA in HA2 as low as reasonably possible, we have decided to

continue to use only 2 generations in HA2 for the remainder of the work on this

algorithm.

Figure 5.10(a) and (b) show the performance for BD and SZF, respectively, at an

SNR of 10 dB. It is observed that HA2 essentially acts asymptotically yielding the better

of the GrA and GA performances. At lower K, the HA2 performance is essentially the

0 10 20 30 40 50 60 70 80 90 100
18

18.5

19

19.5

20

20.5

21

21.5

22

22.5

Number of users (K)

A
ve

ra
ge

 su
m

 ra
te

 (b
it/

s/
H

z)

GrA
HA2, Ng=2
HA2, Ng=5
HA2, Ng=10

Figure 5.9: Performance of hybrid algorithm 2 vs. K for BD while letting the GA within HA2 run

for Ng generations; MT = 8, Nk = N = 2, K0 = 4, SNR = 10 dB.

109

same as that of the GA. At larger K, its performance is slightly better than that of the GrA.

However, most interesting are the mid-range values of K. It is observed that HA2 makes

a smooth transition between the GA and GrA performances. In this mid-range (i.e., where

the crossover in performance between the GA and GrA occurs), HA2 performs better

than either of the GA or the GrA individually. This is without increasing the order of

complexity from that of the GrA (though the total number of flops must obviously

increase).

We saw the same asymptotic type of performance for HA2 in our simulations for

lower values of SNR; these results are shown in Appendix E. However, at high SNR, the

trend changes. Figure 5.10(c) and (d) show the HA2 performance at an SNR of 20 dB. It

is observed that the HA2 throughput drops below that of the GA. At high SNR, as already

discussed, the GrA selection is not necessarily the best, since all users have good

channels. Thus, it does not necessarily make a good seed as a starting point for the GA

part of HA2, so the net effect is not much better than if the initial population was

completely random as in the baseline GA. The throughput then is lower at higher SNRs

0 10 20 30 40 50 60 70 80 90 100
19

19.5

20

20.5

21

21.5

22

22.5

(a)

A
ve

ra
ge

 su
m

 ra
te

 (b
it/

s/
H

z)

0 10 20 30 40 50 60 70 80 90 100
19

19.5

20

20.5

21

21.5

22

22.5

(b)

0 10 20 30 40 50 60 70 80 90 100
39

40

41

42

43

44

45

46

A
ve

ra
ge

 su
m

 ra
te

 (b
it/

s/
H

z)

(c)

Number of users (K)
0 10 20 30 40 50 60 70 80 90 100

35

36

37

38

39

40

Number of users (K)

(d)

GA (BD)
GrA (BD)
HA2 (BD)

GA (BD)
GrA (BD)
HA2 (BD)

GA (SZF)
GrA (SZF)
HA2 (SZF)

GA (SZF)
GrA (SZF)
HA2 (SZF)

Figure 5.10: Performance of hybrid algorithm 2 vs. K for BD and SZF; MT = 8, Nk = N = 2, K0 = 4.
(a) BD, SNR = 10 dB; (b) SZF, SNR = 10 dB; (c) BD, SNR = 20 dB; and (d) SZF, SNR = 20 dB.

110

simply because HA2 does not iterate as many generations as the GA does. However, we

note that the HA2 performance is still improved compared to the GrA. The throughput

increases by about 0.64 bit/s/Hz for BD and 0.25 bit/s/Hz for SZF at K = 100, and by

about 2.9 bit/s/Hz for BD and about 1.5 bit/s/Hz for SZF at K = 10. Thus, the gains are

the most significant at low K; the sum rate increases by about 8% and 4.5% at K = 10 for

BD and SZF, respectively. We would expect that for extremely large K the HA2 sum rate

would converge asymptotically to about that of the GrA, as was also seen for 10 dB.

Lastly, we note with interest that at 20 dB, the system performance using BD actually

exceeds that when using SZF by several bit/s/Hz. This, however, does not have anything

to do in particular with the scheduling algorithms. Rather, the lower throughput is largely

due to the generation of the SZF covariance matrices. Recall that the method presented in

[50] and described in Appendix D to find covariance matrices for SZF is suboptimal.

This is in comparison to the waterfilling power allocation for BD, which is known to be

optimal. In fact, the covariance matrices obtained using BD must also be a valid solution

for SZF, since they meet the SZF constraints. BD requires H(k)W(j) = 0 for all j k, so

the relaxed constraint of H(k)W(j) = 0 for all j > k required for SZF is automatically met.

The transmit power constraint on the covariance matrices is also met. Thus, the

performance for SZF with optimal covariance matrices should and must be no worse than

that when using BD.

For confirmation of the above, we simulated an exhaustive search with both BD and

SZF for MT = 8, K = 16, and an SNR ranging from 0 to 20 dB. (A full exhaustive search

for all K would be too time-consuming to simulate due to the combinatorial complexity.)

The results of these simulations are shown in Figure 5.11. These simulations indicate that

the best possible SZF average sum rate with these parameters and the suboptimal

covariance method at 20 dB is about 40.1 bit/s/Hz. This maximum SZF throughput is still

below that for both the suboptimal GA and HA2 with BD, and thus obviously below the

optimal throughput using BD. The simulations indicate that the maximum throughput for

BD at 20 dB is about 44.5 bit/s/Hz. In fact, the throughput of SZF starts to drop below

that of BD starting at about 11 dB SNR, indicating an increasing deficiency in the

existing SZF covariance method as the SNR increases. Thus, the lower performance of

our scheduling algorithms at 20 dB under SZF, compared to the equivalent algorithms

under BD (e.g. the SZF GA or GrA in Figure 5.10(d) versus the BD GA or GrA in Figure

5.10(c)), is unrelated to the scheduling algorithms themselves.

111

5.5.5 Further Discussion

It was seen in the simulation results that the relative performance between the GrA

and the GA is dependent on the number of users K and the SNR. The GA performs better

than the GrA at higher SNR and lower K; at higher K and lower SNR, the GrA is better.

However, in all cases when using BD, the SCAHE capacity-based algorithm performs

better than either the GrA or the GA. Additionally, the SCAHE algorithms also have the

same order of complexity as the GA.

Furthermore, since the work in this chapter was conducted, we have become aware of

another scheduling algorithm proposed in [147]. This algorithm uses a capacity upper

bound to schedule users, by assuming the scheduled users can cooperate in decoding their

signals. The upper bound is then the single-user MIMO capacity of the aggregate channel

matrix H from Eqn. (5.2). The authors also manage some computational savings by

assuming an equal power allocation across the transmit antennas and by the use of the

matrix inversion lemma (also known as the Woodbury formula [148]). It is demonstrated

in [147] that the proposed algorithm performs about the same as the SCAHE algorithms

(most often giving about the same sum rate as the SCAHE F-norm algorithm). However,

the order of complexity of the algorithm is only about (1 3
0 TKK M).

In light of the above facts, one may wonder if the use of the GA is justified in

practice. If algorithms exist of the same or lesser complexity, but better performance, the

use of the GA seems less compelling. However, it should first be recalled that the bulk of

the GA complexity lies in the computation of the fitness for each chromosome. Of that,

0 5 10 15 20
5

10

15

20

25

30

35

40

45

SNR (dB)

A
ve

ra
ge

 su
m

 ra
te

 (b
it/

s/
H

z)

BD
SZF

Figure 5.11: Maximum average sum rate vs. SNR for BD and SZF using an exhaustive search; MT

= 8, Nk = N = 2, K0 = 4, K = 16.

112

the most complex part is calculating the null space basis vectors. It should be possible to

find some sort of reduced complexity metric, perhaps one that avoids having to calculate

the null space vectors every time the GA fitness is calculated. In such a case, the GA

complexity would be reduced. Second, BD is a case where encoding order does not

apply. When encoding order is also a factor in scheduling, such as in SZF, the problem is

more complex, but the GA can handle the extra complexity without much effort. For the

specific case of SZF, it was seen that despite the added complexity from the encoding

order, the order of complexity of the GA did not increase. We did look briefly at the

encoding order for the exhaustive search with SZF, but were unable to see any particular

pattern in terms of which users should be encoded where in the order. Third, maximizing

throughput is a comparatively simple criterion, so it stands to reason that there exist some

lower complexity ways to approximate its performance. However, if several quality of

service (QoS) requirements were also added to the mix (e.g. several classes of traffic,

delay-sensitive data, etc.), the situation would become much more difficult. The GA is

likely more suited to scheduling in such a scenario. Lastly, the GA also used a very naïve

initialization method (the random initial population). When some additional information

is available to the GA, it can perform better. This was seen to a small degree with HA1,

but also with HA2, when the GA used the information from the GrA to improve the

performance. In the latter case, the GA was useful as a supplementary search after the

initial decision was made. In both cases, again the order of complexity did not increase

by using the extra information. In a practical channel with temporal correlation, the GA

should be able to use information from past scheduling instances to further improve the

performance. [149] describes a related concept, where the authors use an evolutionary

algorithm (though not specifically a GA) with an estimation of distribution method [150]

for scheduling on a MIMO uplink. The algorithm in general gathers statistical

information from the fitness of individuals of previous populations to help guide the

initialization of future populations. For all the above reasons, there is still a justifiable

reason to use the GA in scheduling applications, either as a full scheduling algorithm

itself, or as a supplement to another algorithm.

5.6 Conclusion

In this chapter, we have examined low complexity genetic and greedy user

scheduling algorithms for multiuser MIMO downlink systems employing block

diagonalization (BD) and successive zero-forcing (SZF) precoding. The proposed

113

algorithms are much less complex, but perform close to the highly complex exhaustive

search. For both BD and SZF, we have demonstrated that at low SNR, the greedy

algorithm performs better than the genetic algorithm, but as the SNR increases, the

throughput of the genetic algorithm surpasses that of the greedy algorithm. Similarly, at

smaller values of K, where K is the number of users requesting service, the GA performs

better, but as K increases, the greedy algorithm can outperform the GA. The tradeoff in

performance is in large part due to the GrA being biased towards one certain good user,

and thus scheduling too few users or not considering certain other users as a result. A

detailed complexity analysis showed that for BD, the order of complexity of the GA is

higher than that of the GrA by a factor of K0, where K0 denotes the maximum number of

simultaneously supported multiple-antenna users. For SZF, the GA is more complex than

the GrA by a factor of 2
0K . For both BD and SZF, the GrA achieves similar sum-rate

growth with K as the exhaustive search, whereas the GA does not for larger MT.

We have also proposed two hybrid algorithms combining the genetic and greedy

algorithms. We demonstrated that the first hybrid, a seeded GA, improved marginally

upon the performance of the regular GA at large K by about 0.3 to 0.4 bit/s/Hz, with no

increase in the order of complexity. This represents about a 2% increase in throughput.

The second hybrid was shown to act asymptotically like the better of the genetic and

greedy algorithms at low to mid-range SNRs. At high SNR, the hybrid performance was

inferior to that of the GA, but still improved upon the performance of the GrA, while

maintaining the same order of complexity as the GrA. At low K, an increase in

throughput of about 8% for BD and about 4.5% for SZF was seen relative to the GrA.

The work in this chapter also identified a deficiency in the method used to obtain

covariance matrices for SZF. It was seen that even with optimal scheduling, the

throughput of SZF can drop below that of BD, when theoretically it should not. There is

also a second deficiency with the existing covariance method. The purpose of these

examined scheduling algorithms is to potentially improve the performance of fourth

generation wireless systems. Such performance measures will also likely include quality

of service issues. Unfortunately, the existing SZF covariance method has no way of

incorporating those measures. The method is for a straight sum-rate maximization, and

thus is not ideal in, for example, a weighted sum rate, wherein the weights may

incorporate the QoS measures. We address these issues and propose a solution for both

problems in the next chapter.

114

Chapter 6

Improved Covariance Optimization for
Successive Zero-Forcing Weighted and
Unweighted Sum-Rate Maximization

6.1 Introduction

In the previous chapter, we examined the average sum rate achievable by using

successive zero-forcing (SZF) precoding [50]. In that chapter, we used a suboptimal

method from [50] to obtain transmit covariance matrices satisfying the power and null

space constraints. That suboptimal method performs reasonably well. The sum rate of

SZF exceeds that of block diagonalization (BD) [46] in the simulation results provided in

[50] with limited or no scheduling considered. We furthermore found that SZF often

exceeds BD when scheduling is also included, based on our own simulation results of the

previous chapter. However, we have found two main deficiencies with the existing

method. We found in one scenario with 8 transmit antennas, 2 receive antennas per user,

and thus up to 4 users capable of being scheduled simultaneously, for any SNR greater

than 11 dB, the sum-throughput achieved by SZF dropped below that achieved by BD,

even with exhaustive search scheduling. This does not make sense; the BD optimization

problem is a more constrained version of the SZF optimization problem. Any solution

that satisfies the BD constraints also satisfies the SZF constraints. Therefore, the

performance of SZF must in theory always be no worse than that of BD. The problem

was ultimately identified to lie with the suboptimal SZF covariance method. The authors

in [50] acknowledge that their method is suboptimal, and that better methods can likely

be found, but to date, we are unaware of any results in the literature examining exactly

how suboptimal the existing method is. We show in the remainder of this chapter that the

covariance method in fact becomes worse as both the SNR and the number of supportable

users increase.

The second deficiency is that the existing covariance method only accounts for

maximization of a pure (unweighted) sum rate. However, the method cannot be directly

115

applied to a weighted sum-rate (WSR) maximization; i.e., to maximize k kk
w R , where

wk is a weight for user k, and Rk is the data rate for user k. It may be possible to extend the

method of [50] to a WSR by first solving a WSR maximization for the multiple access

channel (MAC), then proceeding as normal. However, a WSR maximization for the

MAC (and thus for the broadcast channel (BC) due to duality) is found for one specific

ordering of users. Namely, it is known that users should be decoded on the MAC in the

increasing order of the size of the weights of the users, such that the user with the largest

weight is decoded last [82],[151]. Equivalently, the user with the largest weight should be

encoded first on the BC. (We have also discussed this issue in Chapter 3 regarding

proportionally fair scheduling using DPC.) Because of this, the existing method’s

transformations and projections may not be the best if a different encoding order is to be

considered for the SZF WSR. Neither is it necessarily the case that the same encoding

ordering that is optimal to maximize the WSR for SZF is the same ordering required for

the MAC / BC.

In this chapter, we propose a new method that accounts for both of these issues. It

both significantly improves the throughput for SZF and enables the maximization of a

weighted sum rate. Our contributions in this chapter have appeared in [152].

6.2 SZF Covariance Optimization

6.2.1 Problem Discussion

Attempting to solve Eqns. (5.10)–(5.12) from the previous chapter to determine

optimal covariance matrices for the SZF sum rate is quite complex. The optimization in

(5.11) is non-convex, unlike that of BD, where the complete decoupling of the users’

effective channels creates a convex problem. Thus, finding a global optimum can be

difficult. In the less-constrained case of DPC, the issue of non-convexity for the

broadcast channel can be avoided by operating on the dual MAC instead. This duality

would be useful in SZF, since the formula for the SZF sum rate is essentially the same as

for DPC, except with the additional null space constraints. Unfortunately, the

transformation from MAC to BC or vice versa does not support those additional

constraints. Attempting to consider an effective channel such as 0
, 1k e k kH H V on the

MAC, similar to that for BD (Eqn. (5.5) in the previous chapter), then transforming to the

BC also does not work. The transformations used in [24] have a specific trait that if a set

of covariance matrices Pk with a certain sum-trace (e.g. P) is available for the MAC, the

116

transformed BC matrices k will satisfy the same sum-trace constraint. In other words,

 k kk k
Tr Tr Σ P . It is the less than or equal wherein the problem lies for SZF. If

 kk
Tr P P , then kk

Tr Σ will also equal P only if the matrices Pk were optimal

for the MAC at that sum-trace P. If they were not optimal, then kk
Tr Σ will be less

than P. If one were to then transform these matrices k with the smaller sum-trace (say,

P) back to the MAC, one would then obtain a new set of covariance matrices kP for the

MAC where kk
Tr P P , and which provide the same sum rate as the original

matrices Pk. This causes the problem for SZF. By forcing the covariance matrices to lie in

the null space of other users (as required for SZF) by considering effective channel

matrices, the covariance matrices that are obtained will not be optimal for the MAC.

Transforming them to the BC in a desire to obtain matrices for SZF will yield a set of

matrices with a reduced sum-power. Any set of matrices that does not exactly equal the

sum-power constraint cannot be optimal for SZF. This is proven simply by considering

the final user encoded in SZF. This user does not cause interference on any users encoded

earlier in the encoding order. If the covariance matrices have a total power less than the

sum-power constraint, it is then always possible to increase the power allocated to the last

user. Doing so will increase its rate, but will have no effect on any other users, leading to

a strictly larger new sum rate. This therefore proves the original matrices could not be

optimal.

Research has found other capacity duality transformations between the MAC and the

BC based on minimax duality [153] and / or Lagrange duality [154]. These

transformations allow more general-case linear constraints on the transmit covariance.

However, these constraints only apply to the net transmit covariance matrix kk
Σ Σ ,

not on the individual covariance matrices k themselves. These constraints are meant to

apply to, for example, power constraints on individual transmit antennas or groups of

antennas, instead of (or in addition to) the standard sum-power constraint. There

furthermore do exist alternative, more general MAC-BC dualities and transformations,

such as mean-squared-error duality [155], SINR duality [53],[156], and rate duality [157],

which also account for linear precoding and beamforming1. However, the results for these

1 There are additionally convex transformations for alternative problems other than WSR
maximization, such as minimizing power subject to SINR constraints on the users [158]. These,
however, are outside the scope of this work.

117

dualities indicate that even if the null space constraints can be accounted for in the

transformations (which is not necessarily guaranteed), the problem on the dual MAC

would still be a non-convex problem. Thus, regardless of operating on the MAC or the

BC, finding the global optimum would remain difficult. Finding a local optimum solution

is somewhat easier, although how far that solution is from the global optimum may be

uncertain.

6.2.2 Proposed Conjugate Gradient Projection Method

Since a globally optimal solution is quite difficult to find, a locally optimal method

may be useful. Furthermore, since the problem on either the MAC or the BC is non-

convex, one may choose to operate on either. Thus, we choose to operate directly on the

BC, in order to avoid having to perform MAC-BC transformations.

We propose a conjugate gradient projection (CGP) algorithm to optimize the

covariance matrices for SZF. Conjugate gradient methods have provable convergence for

convex utility functions, and, when solving systems of linear equations, the convergence

is superlinear [159] (that is, if the problem has n real variables, in the worst case the

algorithm will take n iterations, but most often much fewer). CGP is also particularly

useful in MIMO systems as the solutions can be found using gradients and functions of

complex-valued matrix variables. Some methods are only well-defined for functions of

real-valued vectors, so in those circumstances the covariance matrices and functions

would have to be decoupled and expressed in terms of those vectors. CGP algorithms or

gradient projection algorithms have been used for covariance optimization in other

similar circumstances. For example, CGP is used in a weighted MAC sum-rate

maximization in [108] and [151], and a gradient projection method is used for MIMO

interference systems in [160] and the MIMO MAC in [161]. We model our CGP

algorithm after the one in [108], which operates on transmit filter matrices Tu instead of

on the covariance matrices Qu directly. This method has the advantage of guaranteeing a

positive semidefinite covariance matrix H
u u uQ T T (this is a Cholesky decomposition

[43]). Operating on Qu directly would require an additional projection during each

iteration to ensure the solution is in the set of positive semidefinite matrices (cf. [151]).

Let us rewrite and combine Eqns. (5.10) and (5.11) to account for a weighted sum

rate. Without loss of generality, we assume (k) = k for brevity of notation.

118

0

0 0
1 1

1

2 10, 1 0 0
1 1

1

max log
k kk

k H H
k i i i kK

i

WSZF k kTr P Hk H
k i i i k

i

R w

B B

I H V B V H

I H V B V H

 (6.1)

Note in (6.1) that 0 0 0 0
1 1 1 1

H H

k k k k k k k kTr Tr Tr Tr

Q V B V B V V B , as the

columns of 0
1kV are orthonormal, so 0 0

1 1

H

k k V V I 1. Thus, there is the same power

constraint on Bk as there is on Qk.

Let us further define H
k k kB T T , where Tk is a min{ , }k k kv v N matrix, kv is the

number of columns in 0
1kV , and Nk is the number of receive antennas at user k. Thus, the

precoding matrix Wk for SZF will be 0
1k k kW V T . Defining Tk in such a manner helps

reduce the complexity of the optimization by reducing the number of optimization

variables [50]. The power constraint can also be re-expressed as
2

k Fk
P T , since

 2

k kFk
Tr T B . The CGP algorithm2 that operates on Tk is described in Table 6.1.

Because the SZF WSR maximization problem is not convex, the CGP algorithm may

not necessarily find the global optimum. Furthermore, the optimal Tk are not necessarily

unique, since Bk are positive semidefinite. (For example, multiply Tk by any unitary

matrix U, and the new k kT T U will yield the same Bk, since H
k k T T H H

k k T UU T

H
k kT T . Thus, kT will provide the same WSR as Tk.)

The local optimum that the algorithm finds is also to some degree dependent on the

initial values for Tk. Often, when optimizing covariance matrices, an initial choice of a

scaled identity matrix is used, but in general this cannot be done here, as generally Tk is

not a square matrix. Furthermore, even if the algorithm were operating on Bk instead of

Tk, a scaled identity would still not be an appropriate starting point, as the rank would

likely be too large; the rank of Bk would be kv instead of min{ , }k kv N . Instead, we

1 However, in general 0 0

1 1

H

k k V V I . 0 0
1 1

H

k k V V is the projection to the null space used in the

covariance method from [50]. If that projection were in fact unitary, the method in [50] would in
fact be optimal.
2 We wish to point out that the “conjugate” in conjugate gradient is unrelated to the concept of the
“conjugate” of a complex number, i.e., x = a + ib, x* = a – ib. In this context, “conjugate” refers to
the property of conjugacy. If there exists a set of n real-valued, non-zero vectors {p0, …, pn} such
that 0T

i j p Ap for all i j, where A is a symmetric positive definite matrix, then that set of

vectors is said to be conjugate with respect to A [159].

119

initialize Tk by distributing values of 0/ / kP K v uniformly to the columns of Tk in a

round-robin fashion. This is equivalent to creating a min{ , } min{ , }k k k kv N v N identity

matrix, vertically concatenating copies of the rows of that identity matrix until there are

kv rows, then finally multiplying by 0/ / kP K v . For example, if Tk was 3×2, entries

(1,1), (2,2), and (3,1) of Tk would be initialized to 0/ / 3P K , while the remaining

entries would be 0.

0 0 0

0 0

0 00

/ / 3 0 / / 3 0 / / 3

0 / / 3 0 / / 3 0_ _ . . _ _ . .
/ / 3 0 / / 3/ / 3 0

;
P K P K P K

P K P Kk init e g k init e g
P K P KP K

T B (6.2)

Table 6.1: CGP algorithm for SZF covariance optimization

Initialize: Tk; Sk = 0, k; = 1; = 1.
Calculate WSR from (6.1).
repeat

Store: Tk_old = Tk, k; Sk_old = Sk, k; old = ; WSRold = WSR.
Calculate gradients: Gk,k from (6.3).

Normalize gradients:
2k k

k Fk

P

G G
G

, k.

Project gradients:

ˆ
H
k kk

k k kH
k kk

Tr

Tr

T G
G G T

T T
, k.

Calculate Frobenius norm:
2ˆ

kk F
 G .

Determine search directions: _
ˆ

oldk k k old

 S G S , k.

Step in search directions: _
ˆ

k k old k T T S , k.

Normalize transmit filter sum-power:
2

ˆ
ˆ

k k

kk F

P

T T
T

, k.

Calculate WSR from (6.1).
Set LoopCounter = 0.
while WSR < WSRold do

Decrease step size .

Set ˆ
k kS G , k.

LoopCounter = LoopCounter + 1.
if LoopCounter = LoopThresh then

Set WSRold = WSR.
Reset to 1.

end if

Recalculate ˆ
kT , Tk, and WSR.

end while
until desired accuracy reached

120

The gradient can be calculated using matrix calculus from the partial differential of

(6.1) with respect to H
kT [162]. Specifically, k *2 WSZF kR T 2

TH
WSZF kR T .

Since the gradients will be normalized, leading constants can be left off. We show in

Appendix F that the gradient for user k is proportional to:

0

0

1

0 0 0
1 1 1

1

1
1

0 0 0
1 1 1

1 1

K iH HH H H
k k i i i j j j j i i

i k j

K i HH H H
i i i j j j j i i k k

i k j

w

w

G V H I H V T T V H H

H I H V T T V H H V T

. (6.3)

The above gradients seem quite complex at first glance. However, some

computational savings can be obtained by a successive calculation of part of the

gradients. To begin, the sums 0 0
1 11

Hi H
i j j j jj
Φ V T T V can first be calculated and

stored for each i = 1, …, K0 to avoid calculating these sums multiple times. Next, we can

define Zk as:

1 1

1 1 1 1 1
H H H H

k k k k k k k k k k k k kw w

 Z H I H Φ H H H I H Φ H H . (6.4)

Then, each gradient Gk can be calculated starting from k = K0 downward, using a running

sum for Zk. For example, in the case of K0 = 4, 0 0
4 3 4 3 4

H
G V Z V T ,

 0 0
3 2 3 4 2 3

H
 G V Z Z V T , and so on.

In [108], the authors define aggregate matrices G, S, and T, which are the horizontal

concatenation of the matrices Gu, Su, and Tu, respectively. This primarily allows them to

avoid the summation of squared F-norms and traces in the notation for their algorithm.

For example, in the gradient normalization step,
2

u Fu G can be represented more

compactly as
2

F
G . This notation, strictly speaking, is not possible with our adaptation

for SZF, as the gradients Gk and matrices Tk are generally of different dimensions for

each k. An equivalent notation could still be used by instead defining aggregate matrices

as a block-diagonal formation of the component matrices instead of a horizontal

concatenation, i.e.,
01, , KblkdiagG G G . However, this could potentially require

additional memory and computational complexity unless the algorithm can account for

the sparseness of the aggregate matrices (i.e., the many matrix entries after block-

diagonalization that equal zero), and is not strictly necessary in the first place.

121

In the “step in search directions” portion of the algorithm, it is possible to find an

approximately best step size for , for example via an inexact line search like Armijo’s

Rule [159]. However, we find just as in [108] that it is generally sufficient to simply

reduce the step size by a factor if there is no increase in the WSR. For example, we had

good results when using equal weights of wk = 1, k, by simply multiplying by about

0.8. We did, however, notice on rare occasions when the algorithm did not converge

properly. This is likely due to the non-convexity of the problem; the algorithm is likely

stalling near a saddle point in these cases. Repeated decreases in did not result in an

increase in the WSR, and often lead to a small decrease in the WSR. This may also be

due to the fact that when a non-linear function is being optimized, an inexact line search

(or lack of one, in our case) can lead to the search not being in the correct direction [159].

For example, if a function is being maximized, although the search should be in a

direction of ascent, the search direction may actually be in one of descent. Thus, we

implement the addition of a loop counter to compensate for these rare cases1. If the loop

counter reaches a certain threshold (we use a threshold of 100), the previous best WSR is

set to the currently found value for the WSR, and is reset2 to 1. Since this updated value

is often slightly smaller than the previous value, there is a guaranteed larger value that the

algorithm can head towards. This slight decrease in WSR and resetting of is generally

enough for the algorithm to get sufficiently far enough away from wherever it has stalled

to continue finding a better solution (i.e., even better than where it stalled). If the

algorithm’s WSR still does not increase notably at this point, then it means the algorithm

has found a local solution to the problem, as the change in WSR should be less than the

desired accuracy. Thus, the algorithm can stop and return the current solution.

6.3 Simulation Results

In this section, we present simulation results comparing the performance of our

proposed SZF CGP covariance optimization method to the existing method. The

simulation setup is identical to that in the previous chapters, i.e., a base station with MT

transmit antennas, a pool of K users each with N receive antennas, etc. For reference, we

also present the performance when using BD.

1 During our simulations, these rare cases seemed to primarily occur at low SNR.
2 This is similar and related in concept to the notion of “restarting” the CGP search during non-
linear optimizations, as discussed in [159].

122

6.3.1 Unweighted Sum-Rate Performance of Proposed CGP Algorithm

We begin by comparing two relatively simple cases also examined in [50]. Figure 6.1

and Figure 6.2 show cases for an unweighted sum rate (i.e., all users have a weight of 1)

for BD and the existing and proposed SZF covariance optimization methods. In the first

case, MT = 4, K = K0 = 2, and N = 2, while in the second, MT = 6, K = K0 = 3, and N = 2.

In both of these cases, strictly speaking scheduling is not necessary, as the number of

available users K equals the number of simultaneously supportable users K0. However,

0 2 4 6 8 10 12 14 16 18 20
3

5

7

9

11

13

15

17

19

21

A
ve

ra
ge

 su
m

 ra
te

 (b
it/

s/
H

z)

SNR (dB)

SZF (proposed)
SZF (existing)
BD

Figure 6.1: Average sum rate vs. SNR with proposed and existing SZF covariance optimization

methods and BD; MT = 4, K = K0 = 2, N = 2.

0 2 4 6 8 10 12 14 16 18 20
4
6
8

10
12
14
16
18
20
22
24
26
28
30

SNR (dB)

A
ve

ra
ge

 su
m

 ra
te

 (b
it/

s/
H

z)

SZF (proposed)
SZF (existing)
BD

Figure 6.2: Average sum rate vs. SNR with proposed and existing SZF covariance optimization

methods and BD; MT = 6, K = K0 = 3, N = 2.

123

we do still consider all possible subsets of those users, and all possible encoding orders of

those users for SZF, to find the ordered selection that gives the maximum sum rate.

It can be seen that at low SNR, there is essentially no difference between our

proposed CGP algorithm and the existing SZF covariance method from [50]. However, as

the SNR increases, there is an increasing gain in the throughput of our proposed

algorithm relative to the existing algorithm. In Figure 6.1, the gains are rather modest; the

sum rate is about 0.35 bit/s/Hz larger at 10 dB, about 0.65 bit/s/Hz larger at 14 dB, and

about 0.6 bit/s/Hz larger at 20 dB. These represent percentage gains of about 3.5%, 5%,

and 3%, respectively. However, the gains are much more significant in Figure 6.2. The

throughput increase is about 0.75 bit/s/Hz at 10 dB, and about 2.45 bit/s/Hz at 20 dB.

This is a percentage gain of over 5% and 9%, respectively. More importantly, we note

that the performance of the original method is worse than that of BD above an SNR of 16

dB. This result was not visible in [50], as the graph for MT = 6, K = 3 in that paper only

went up to 16 dB. In comparison, our proposed CGP algorithm performance is

consistently above that of BD. We can thus see that the performance gains generally

increase both with the number of supported users and with the SNR, though the gain with

SNR may eventually start to drop off at lower K0.

In Figure 6.3, we present a somewhat more complicated scenario more related to our

scheduling work in the previous chapter. In this case, we consider a larger user pool size

of K = 16 with MT = 8. Each user in the pool has N = 2 receive antennas, so at most K0 =

4 users can be served simultaneously. We use an exhaustive search for scheduling that

0 2 4 6 8 10 12 14 16 18 20
5

10

15

20

25

30

35

40

45

SNR (dB)

A
ve

ra
ge

 su
m

 ra
te

 (b
it/

s/
H

z)

SZF (proposed)
SZF (existing)
BD

Figure 6.3: Average sum rate vs. SNR with proposed and existing SZF covariance optimization

methods and BD, using exhaustive search scheduling; MT = 8, K0 = 4, N = 2, K = 16.

124

considers all possible subsets of users and encoding orders. This decouples the effect of

the specific scheduling algorithm and allows us to focus on the performance of the SZF

covariance optimization methods. This is also the scenario from the end of the last

chapter where we identified the deficiencies with the existing method.

For the existing numerical method to find the covariance, as also seen in the last

chapter, the average sum rate for SZF quickly becomes less than that of BD, at around 11

dB. However, the average sum rate for SZF using our CGP algorithm remains higher than

that of BD at least up to an SNR of 20 dB. The improvement in performance over the

existing algorithm is about 0.68 bit/s/Hz (about 5%) at 5 dB, about 1.5 bit/s/Hz (about

7%) at 10 dB, and about 4.85 bit/s/Hz (about 12%) at 20 dB.

We note, though, that the gain in throughput relative to BD starts to decrease at

higher SNR. The throughput likely becomes less than that of BD at an SNR somewhere

larger than 20 dB. This serves to demonstrate that our CGP algorithm, though improved,

is still globally suboptimal. However, a worse performance than BD can be avoided with

our algorithm. Rather than the “round-robin” initialization described in Section 6.2.2,

instead the matrices Tk can be initialized based on the BD-optimal covariance matrices.

Initial values for Bk can be obtained from the BD matrices Qk,BD by k B

 0 0
1 , 1

H

k k BD k V Q V . Since the BD matrices meet the SZF null space constraints, they can

be built from the SZF null space basis vectors, meaning Qk,BD can be expressed as

 0 0
1 , 1

H

k k BD k V B V . Thus, k B 0 0 0 0
1 1 , 1 1

H H

k k k BD k k V V B V V ,k BD IB I ,k BDB . Initial

values for Tk can then be obtained through Cholesky decomposition. However, this for

the most part should be unnecessary, as that extremely high of an SNR is unlikely to be

seen in practice.

We have also noticed that, while the existing SZF covariance method is worse than

our proposed CGP method, the covariance matrices Qk,o provided by that method

sometimes provide a better starting point for our CGP algorithm than the round-robin

initialization. This is particularly the case at high SNR. For example, consider the

scenario from Figure 6.2. For that same scenario, Figure 6.4 shows a distribution of the

gain in sum rate at 20 dB obtained using Qk,o as the starting point, relative to the sum rate

using our original initialization. The large spike near zero shows that for a large

proportion of the time, initializing with Qk,o has no effect on the resulting sum rate. About

4% of the time, Qk,o actually yields a smaller sum rate. However, around 35% of the time,

initializing with Qk,o results in a higher sum rate, with the throughput in certain instances

125

increasing by up to 3 bit/s/Hz. However, averaged over all instances, the mean increase in

sum rate is not that significant. When using Qk,o, the average sum rate for our CGP at 20

dB increases from about 29.3 bit/s/Hz to about 29.7 bit/s/Hz. This extra throughput

represents on average about an additional 1.4% increase in throughput. Thus, on average,

this small additional throughput is likely not worth the added computational complexity.

To get that extra percent, in effect two optimizations must be run. The first is on the

MAC (followed by transforms and projections) to find Qk,o, then a second with our CGP

algorithm using Qk,o for initialization.

Furthermore, as K increases, this effect seems to essentially disappear. If we consider

now the scenario from Figure 6.3, there is virtually no difference in the average sum rate

between the two initialization methods. Our simulations only showed an improvement of

about 0.03 bit/s/Hz at 20 dB, which is certainly negligible and likely within the error

margin of the simulation. It appears that the larger user pool and scheduling has the effect

of removing any initialization-based gains. In part, this is because the larger user pool

means that the scheduled users’ channels are closer to orthogonal. The larger pool also

means that the scheduling algorithm has more options to choose a different set of users or

encoding order that may negate any effect from the different initialization point.

6.3.2 Weighted Sum-Rate Performance of Proposed CGP Algorithm

We now consider a simple scenario for a weighted sum rate. We examine the case

where MT = 8, K = K0 = 4, and N = 2. Recall from Chapter 3 that the proportionally fair

scheduling algorithm takes a fair amount of effort to simulate, due to the need to build up

−1 −0.5 0 0.5 1 1.5 2 2.5 3
0

0.1
0.2

0.3
0.4

0.5

0.6
0.7
0.8

0.9
1

Improvement in average sum rate (bit/s/Hz)

C
D

F

Figure 6.4: Distribution of improvement in average sum rate at 20 dB when initializing CGP

algorithm with Qk,o; MT = 6, K = K0 = 3, N = 2.

126

average rate statistics for the users. To avoid this, in this scenario we simply set the

weight for each user proportional to that user’s index, i.e., /k kk
w k w . (The sum in

the denominator is just for normalization and does not affect the rates the scheduled users

receive.) Such a scenario might arise in practice if each user belongs to a different class

of service, such as if they are carrying different types of traffic, or they have paid for

higher average data rates. Figure 6.5 shows the WSR performance of our proposed CGP

method relative to a WSR using BD. All possible user subsets and orderings are

considered. Recall that there exists no prior method for weighted SZF covariance

optimization, so we cannot compare our performance to any such algorithm. We observe

that the WSR of SZF is larger than that when using BD. The SZF algorithm performs

better than BD in this scenario by about 0.5 dB in SNR.

Our simulations for this scenario also indicated only a minor correlation between the

best user encoding order and the relative sizes of the weights. Figure 6.6 shows a

histogram of how often each user index is encoded in a given position for the best

obtained WSR. A user index of 0 indicates that no user was encoded in that position (i.e.,

transmitting to less than the maximum supportable number of users maximized the WSR).

It can be seen that there is somewhat of a tendency to encode the users in the decreasing

order of their weights. This trend is strongest at lower SNRs. However, as the SNR

increases, this trend diminishes. At 20 dB, for example, it is approximately equally likely

that users 3 and 4 (with weights 0.3 and 0.4, respectively) will be encoded first. User 2 is

encoded first about half as often as 3 or 4, but also encoded second about half as often as

3 or 4. Thus, there is no hard rule to determine the optimal encoding order for a WSR for

0 2 4 6 8 10 12 14 16 18 20
1

2
3

4
5

6
7

8
9

10
11

SNR (dB)

A
ve

ra
ge

 w
ei

gh
te

d
su

m
 ra

te
 (b

it/
s/

H
z)

SZF (proposed)
BD

Figure 6.5: Average weighted sum rate vs. SNR with proposed SZF covariance optimization

method and with BD; MT = 8, K = K0 = 4, N = 2, wk = k/10.

127

SZF. This is in stark contrast to the MAC or when using DPC on the BC, as discussed in

the introduction to this chapter.

We also note that even at high SNR, it is often best in terms of maximizing the WSR

to not transmit to the maximum possible number of users. In this scenario, with the

limited user pool to choose from, it is better to transmit to less than the maximum about

43–57% of the time. We made a similar observation in the previous chapter for

unweighted sum rates when scheduling to small user pools, for both BD and SZF. The

likelihood of scheduling the maximum possible number of users increased in the previous

chapter with the size of the user pool K, due to multiuser diversity and the increased

chance of finding users with orthogonal channels. This fact is unlikely to change by using

our proposed CGP optimization algorithm here.

1 2 3 4
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(a) User
encoded

first

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
(b) User
encoded
second

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

User index

(c) User
encoded

third

Pr
op

or
tio

n
of

 ti
m

e
us

er
 in

de
x

en
co

de
d

in
 g

iv
en

 p
os

iti
on

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

User index

(d) User
encoded
fourth

0 dB 5 dB 10 dB 15 dB 20 dB

Figure 6.6: Proportion of time that user index is encoded in given position to maximize SZF

weighted sum rate, where user weights equal 1/10 of user indices (wk = k/10); MT = 8, K = K0 = 4,
N = 2. Index “0” indicates no user encoded in that position. (a) User index is encoded first.

(b) User index encoded second. (c) User index encoded third. (d) User index encoded fourth.

128

6.3.3 Updated Scheduling Performance of GA and GrA

Now that we have an SZF covariance algorithm that performs better than the existing

algorithm, we proceed to run the genetic and greedy scheduling algorithms from the

previous chapter to find the improvement in their performance. We concentrate primarily

on the MT = 8 case. Based on the results from Figure 6.1, there is not much change to be

expected with the CGP method versus the original method with MT = 4. Simulations

verify this; the change between the two methods is generally less than 0.1 bit/s/Hz in sum

rate, which is less than a 1% change in throughput.

Figure 6.7 shows a comparison of the performance vs. K of the GA and GrA when

using the original method and our proposed CGP covariance optimization method with

MT = 8 at an SNR of 10 and 20 dB; more results are in Appendix G. There is a significant

increase in throughput seen for our proposed CGP algorithm. At 10 dB, the sum rate of

0 10 20 30 40 50 60 70 80 90 100
17

18

19

20

21

22

23

24

25

A
ve

ra
ge

 su
m

 ra
te

 (b
it/

s/
H

z)

(a)

0 10 20 30 40 50 60 70 80 90 100
30

32

34

36

38

40

42

44

46

Number of users (K)

A
ve

ra
ge

 su
m

 ra
te

 (b
it/

s/
H

z)

(b)

GrA (orig.)
GA (orig.)
GrA (CGP)
GA (CGP)

GrA (orig.)
GA (orig.)
GrA (CGP)
GA (CGP)

Figure 6.7: Average sum rate vs. K comparing original and proposed CGP covariance optimization

methods; MT = 8, N = 2, K0 = 4. (a) SNR = 10 dB, and (b) 20 dB.

129

the GA increases by around 1.7–1.9 bit/s/Hz, or about 8–9.5%, while the GrA increases

by about 1.7–2.1 bit/s/Hz, or about 7.5–11.5%. At 20 dB, the GA sum rate increases by

about 5.5–6 bit/s/Hz, or about 13.5–16%, while the GrA increases by about 6–6.6

bit/s/Hz, or about 15.5–19.5%.

It is clear that the GrA seems to benefit the most from using our proposed CGP

algorithm. This can be seen in the larger increases in throughput compared to those for

the GA. It can also be seen when comparing the GA and GrA performance at 20 dB.

With the original method, the GA outperforms the GrA, whereas with our CGP algorithm,

the throughput of the two algorithms is nearly identical. This is explained in part by the

threshold in the GrA. We have seen in our simulations that the optimal threshold for the

GrA is somewhat larger when using the CGP method compared to the original method.

This means that the GrA rejects fewer users from consideration, leading to an increase in

throughput, particularly at low K. However, this must also mean that the GrA is more

computationally complex, since it must now calculate metrics for those users when

scheduling.

6.3.4 Original Covariance Method for User Selection with CGP for Sum-
Rate Maximization

As we have seen from the simulation results earlier in this chapter, the original

covariance method from [50] is significantly inferior to our proposed CGP method in

terms of the average sum rate it provides at higher SNR and larger K0. However, the

original method does have the advantage of being faster. Recall from the complexity

analysis of the GA for SZF in the last chapter that the order of complexity of finding the

SZF sum rate (i.e., the fitness of one chromosome) is 3
0()TM K . The step of finding the

null space basis vectors is also 3
0()TM K in itself. Since our proposed CGP algorithm

also requires the same null space basis vectors, it too must be at least of complexity order

3
0()TM K . However, the MAC waterfilling algorithm only requires around 5 iterations

to converge, as discussed in the previous chapter. (We ignore the additional complexity

of the transformations and projections for the moment.) In comparison, our CGP

algorithm requires a significantly longer period of time to converge.

Figure 6.8 shows distributions of the number of iterations required for the CGP

algorithm to converge such that the change in SZF sum rate is less than 10-3 bit/s/Hz and

less than 5×10-8 bit/s/Hz. We show the case for MT = 8, N = 2, K0 = 4, using a random

selection and ordering of K0 users at an SNR of 10 and 20 dB. The CGP algorithm

130

appears to have a significant dependence of its convergence on SNR; the higher the SNR,

the slower the convergence. At 10 dB, it takes an average of 26 iterations to converge to

10-3 bit/s/Hz and 62 iterations to converge to 5×10-8 bit/s/Hz. At 20 dB, this increases to

59 and 183 generations, respectively.

This slower convergence is motivation to use the faster original covariance method

for user scheduling. Thus, we investigate the following: the fitness for the GA

chromosomes is given by the SZF sum rate as determined by the original covariance

method. (We shall refer to this as “DL fitness” in the following, based on the initials of

the authors’ names in [50].) Once a group of users and encoding order is selected based

on the DL fitness, our proposed CGP method is used to find better covariance matrices

for that scheduling decision. Note that this alternative only applies to the GA, since the

SZF covariance optimization is not involved in the GrA scheduling itself, but rather only

after the scheduling decision has been made, and to a lesser extent in the selection of the

threshold.

Figure 6.9 shows the performance of the GA when using the DL fitness for

scheduling. As part of that scheduling, the original method’s covariance matrices are

0 10 20 30 40 50 60 70 80 90 100 110 120
0

0.2

0.4

0.6

0.8

1

C
D

F

(a)

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

Number of iterations

C
D

F

(b)

1×10−3

5×10−8

1×10−3

5×10−8

Figure 6.8: Distributions of convergence of CGP algorithm such that SZF sum rate changes by

less than 1×10-3 / 5×10-8 bit/s/Hz; MT = 8, N = 2, K0 = 4. (a) SNR = 10 dB, and (b) 20 dB.

131

automatically available as part of calculating the DL fitness. Thus, it is trivial to initialize

the CGP with those matrices instead of the “round-robin” initialization we have proposed,

in order to obtain the small increase in performance they provide. We also compare the

sum rate using these two initialization points, dubbed “DL init” and “RR init”,

respectively. We also include the sum rate from the previous chapter (without using the

CGP algorithm) for reference.

It can be seen that the DL fitness provides a worse sum rate than using the CGP

algorithm for the GA fitness. At 10 dB, the DL fitness is about 0.8–0.9 bit/s/Hz worse,

providing about 96% of the throughput of the CGP fitness. At 20 dB, the loss is about

2.0–3.4 bit/s/Hz when using the RR initialization, or about 4.5–8%. Interestingly, at this

SNR, and when using the DL fitness, this is an instance where using DL initialization

actually has a notable effect on the sum rate. The loss relative to the CGP fitness with RR

0 10 20 30 40 50 60 70 80 90 100
19

20

21

22

23

24

A
ve

ra
ge

 su
m

 ra
te

 (b
it/

s/
H

z)

(a)

0 10 20 30 40 50 60 70 80 90 100
35
36
37
38
39
40
41
42
43
44
45
46

Number of users (K)

A
ve

ra
ge

 su
m

 ra
te

 (b
it/

s/
H

z)

(b)

CGP fit., RR init.
CGP fit., DL init.
DL fit., RR init.
DL fit., DL init.
DL fit., no CGP

CGP fit., RR init.
CGP fit., DL init.
DL fit., RR init.
DL fit., DL init.
DL fit., no CGP

Figure 6.9: Average GA sum rate vs. K comparing CGP and DL fitness for scheduling, followed

by CGP sum rate maximization with RR and DL initialization; MT = 8, N = 2, K0 = 4. Performance
without CGP algorithm also shown. (a) SNR = 10 dB, and (b) 20 dB.

132

initialization is only 1.1–2.5 bit/s/Hz (2.5–6%), a difference of 0.9 bit/s/Hz compared to

the loss using the DL fitness with RR initialization. Hence, there is an overall loss in

performance compared to the CGP fitness. However, performing the CGP sum-rate

maximization after the selection still provides a better sum rate than not doing so. The

improvement over just using the original method by itself is about 0.8–1.0 bit/s/Hz, or 4–

5%, at 10 dB, and 2.1–3.4 bit/s/Hz, or 6–8.5%, at 20 dB when using the RR initialization.

With the DL initialization, the gain increases to 3.0–4.3 bit/s/Hz (8.5–10.5%) at 20 dB.

Thus, there is some justification to using the DL fitness for scheduling, if its reduced

complexity is an important factor in the system design. However, the usage is somewhat

limited; it is only beneficial for medium SNRs. At high SNR, the throughput when using

BD can be larger than using SZF with the DL fitness for scheduling; see also the BD

results in Appendix G.

6.4 Conclusion

We have proposed and examined an improved method based on conjugate gradient

projection for optimizing the covariance matrices for SZF precoding. This proposed

method outperforms the existing method from [50] by up to an additional 12% in sum

rate for the simpler cases analyzed with exhaustive search scheduling and smaller

numbers of active users K. It was also seen that there is an increasing gain in the

performance of our method over the prior method both with increasing SNR and with

higher numbers of simultaneously supportable users K0. Our proposed method also

consistently had a throughput larger than that when using block diagonalization (BD); the

throughput of the existing scheme was seen to drop below that of BD at higher SNR and

K0.

Our CGP method also supports the maximization of a weighted sum rate (WSR)

using SZF. Such a weighted sum rate is important for quality of service issues. To our

knowledge, there is no prior method for WSR maximization using SZF in the literature.

We demonstrated with a simple case that even when considering a WSR, our proposed

method still provided a higher weighted throughput than when using BD.

Even larger gains were obtained when using the CGP method in conjunction with the

genetic and greedy algorithms examined in the previous chapter. The GA sum rate

increased by about 8–9.5% at 10 dB and about 13.5–16% at 20 dB, while the GrA

improved by about 7.5–11.5% at 10 dB and about 15.5–19.5% at 20 dB. It was further

seen that using the prior covariance method for scheduling, then optimizing the

133

covariance matrices with the CGP algorithm for that user selection, provides about half

the gain in throughput as using the CGP sum rate for scheduling.

Although our proposed method improves on the performance of the existing method,

our method is still not globally optimal. Since the SZF optimization problem is non-

convex, finding the global optimum is very difficult. It is thus hard to say how far away

our scheme is from the global optimum for SZF. There are a few global optimization

techniques which could find the best overall solution. Since the performance of our CGP

algorithm is to some degree dependent on the starting point used to initialize the

algorithm, a stochastic method could be used to try different starting points. One could

run a large-scale simulation trying multiple random starting points for the CGP algorithm.

Even better, a genetic algorithm could be used in order to drive those random starting

points towards a location that would lead to the global optimum. Given enough time,

such a method would eventually cause the CGP algorithm to converge to near the global

optimum. Alternatively, a branch-and-bound with reformulation linearization technique

such as that described in [163],[164],[165] may assist in finding the global optimum.

However, such a technique would be extremely complex and not meant for real-time

implementation in practical systems. It would be meant solely to provide an optimal

benchmark for comparative purposes. Nonetheless, the global optimization problem

remains as future work.

134

Chapter 7

Conclusions and Future Work

7.1 Conclusions

With research for future wireless communication systems concentrating on MIMO

designs, there is a need for MIMO scheduling algorithms. Such scheduling algorithms

must choose users to balance numerous factors, such as increasing the system throughput,

lowering multiuser interference, ensuring fairness, meeting quality of service constraints,

and so forth. In this thesis, we investigated low complexity scheduling algorithms for

multiuser MIMO systems.

In particular, we examined the use of genetic algorithms (GAs) for MIMO scheduling.

In Chapter 3, we investigated the use of GAs for scheduling in systems employing dirty

paper coding (DPC). DPC is optimal in achieving the broadcast channel capacity of

multiuser MIMO systems, so this case provided a benchmark for determining the best

that the GA can perform. The GA chromosome structure we proposed can both account

for an encoding order in the precoding and allow the scheduling of users on several

carriers in a multi-carrier system. The maximum throughput and proportional fairness

(PF) scheduling criteria were examined, although the general structure used for the GA

allows for the maximization of an arbitrary utility function. It was seen that the GA

performed within about 0.5 dB of an exhaustive search for the cases examined. A further

increase in sum-throughput and a decrease in delays were seen when a 4-carrier OFDM

system was examined. The GA performance was obtained at a large runtime decrease

compared to an exhaustive search. The GA complexity was linear in both the number of

active users and in the maximum number of users that can be scheduled, compared to the

combinatorial complexity of the exhaustive search.

In Chapter 4, it was seen that tuning the parameters of the GA is very important in

reducing the time it takes for the GA to converge. We found that by tuning the

parameters in the adaptive mutation rate, the convergence time dropped to less than 30%

of the time for untuned values in one case. We were also able to derive a simple equation

135

that was linear in the parameters to adjust their values for changing numbers of active

users and numbers of supportable users, to allow the values to be in the range required for

near-minimum convergence times. We also examined the effect of replacing the one-

point crossover operator of the GA with a uniform crossover operator, but found that this

had little effect on the GA convergence.

The GA was then extended to systems with linear beamforming in Chapter 5. We

examined the performance of a GA and a “greedy” algorithm (GrA) for each of block

diagonalization (BD) and successive zero-forcing (SZF). An in-depth complexity analysis

found that the GrA was of lower complexity than the GA by a factor of K0 for BD and

2
0K for SZF, where K0 is the number of simultaneously supportable users. It was found

that the GA tended to perform better than the GrA at higher signal-to-noise ratios (SNRs)

and lower numbers of active users K, while the GrA was better at lower SNRs and higher

K. Both algorithms performed fairly closely to an exhaustive search, providing no worse

than 90% of the optimal throughput. We also proposed two hybrid algorithms combining

the traits of the GA and the GrA. The first hybrid improved upon the performance of the

GA by about 2% in throughput, while the second improved upon the GrA, increasing

throughput at low K by about 8% for BD and 4.5% for SZF. Both hybrid algorithms

yielded these improvements without causing an increase in the order of complexity of the

algorithms.

Our work in Chapter 5 identified two deficiencies with the existing method in the

literature for SZF covariance optimization. The existing method provides lower

throughput than it should at higher SNRs, and does not support the maximization of a

weighted sum rate. In Chapter 6, we proposed a new method based on conjugate gradient

projection that addresses both deficiencies. The proposed method improved the

throughput of an exhaustive search by about 7% at an SNR of 10 dB, and by about 12%

at 20 dB. Using this new method with the GA and GrA from Chapter 5 resulted in even

larger gains. The throughput of the GA improved by about 8–9.5% at 10 dB and about

13.5–16% at 20 dB, while the GrA improved by about 7.5–11.5% at 10 dB and 15.5–

19.5% at 20 dB.

In summary, this work demonstrated that genetic algorithms can provide a viable

method of scheduling for multiuser MIMO systems. However, in some circumstances, a

GA may not be the best overall choice. The results of Chapter 5 demonstrated that it is

possible to design greedy scheduling algorithms with the same or lower complexity than

the GA, and that provide higher throughput than the GA. That being said, the

136

circumstances of those results were somewhat simplistic. The algorithms were examined

assuming perfect channel knowledge, uncorrelated channels, and a comparatively simple

maximization of the system sum rate. GAs may be better suited for circumstances where

there are several other factors of fairness and quality of service that must also be balanced.

The GA is also only as complex as the function used to calculate the fitness of the

chromosomes. By using a lower complexity fitness function, the GA could perhaps trade

off that lower complexity for a longer run time to further increase its performance. Lastly,

the GA was seen to be a good supplement to existing algorithms. By running a greedy

algorithm, followed by a GA for a small number of generations, the performance is

guaranteed to be no worse than the greedy algorithm alone, and for a comparatively small

increase in complexity. That is, the increase in complexity was less than the order of

complexity overall of the original algorithm. Thus, there is certainly a place for genetic

algorithms in the realm of MIMO multiuser scheduling.

7.2 Future Work

The work performed in this thesis used relatively simple scheduling utility functions.

That is, we limited our work to the maximum throughput and proportional fairness

criteria. However, the PF criterion should be representative of how well the GA should

perform relative to an exhaustive search for any weighted sum rate. Nevertheless, it

would be useful to investigate the performance of a genetic scheduling algorithm with

actual QoS constraints, and various classes of data traffic being carried. Some possible

alternative utility functions are described in Chapter 2 (e.g. [87]–[93]). In general, the

only change necessary to the GA would be to use these utility functions to calculate the

fitness of the chromosomes. All other aspects of the GA would remain the same.

Another possible area for research is in transmitter-receiver coordination. We

mentioned in a few places in this thesis that coordinated transmitter-receiver processing is

capable of supporting additional users. It would be of interest to examine this further in

how it relates to GA scheduling. On a related note, it is also possible for the users to

perform receive antenna switching, i.e., to activate and deactivate their antennas as the

situation warrants. The results of [73], for example, seem to indicate this may in fact be

required to truly maximize the sum rate for BD. A GA could help in this regard; in such a

situation, the GA would become a joint scheduling and receive antenna selection

algorithm.

137

The research herein assumed perfect channel knowledge. However, such knowledge

is unfeasible in a practical system. Thus, an important area for research is the effect of

imperfect or limited channel state information on the scheduling process. DPC is

particularly known for being sensitive to errors in the channel knowledge. [86] and [166]

are examples of work in this area, but the field in general and for multiuser MIMO

specifically has yet to be well covered. Interestingly, there is a possibility that a GA could

benefit from limited channel information, in that the fitness function would likely be less

complex. But in any case, the effect of limited feedback on GA scheduling would be a

good subject for future work. Such work should also consider more practical channel

models, including such effects as temporal and / or spatial correlation.

An emerging topic in wireless research is in the area of network coordination. In

these techniques, the base stations for several cells act together to help reduce the

interference within the network. In one example, this may include coordinating the

transmissions of base stations so signals sent to users in one cell do not interfere with the

reception of users in other cells from their base station [167]. More recently, though,

coordinated multipoint (CoMP) transmission has been of interest, where the base stations

in several cells can act as a distributed MIMO array. A user in one cell can receive useful

information from several base stations simultaneously [168]. A genetic scheduling

algorithm may be quite useful for CoMP. A GA has a structure well suited to

parallelization in the calculation of the fitness of the chromosomes. These calculations

could be distributed among the base stations in order to help speed up the process and

reduce the load compared to a single location running a scheduling algorithm. Thus, the

use of GAs for scheduling with CoMP is a promising direction for research.

Lastly, as we noted in Chapter 6, the improved covariance optimization algorithm we

proposed is still globally suboptimal. It would be worthwhile to determine what the

globally optimal performance of SZF is. It is unlikely that this could be determined on a

timescale reasonable enough for practical implementation, but it would still serve as a

useful benchmark.

138

Bibliography

[1] “Requirements related to technical performance for IMT-Advanced radio interface(s),” Int.
Telecommun. Union, Tech. Rep. ITU-R M.2134, Nov. 2008.

[2] “Guidelines for evaluation of radio interface technologies for IMT-Advanced,” Int.
Telecommun. Union, Tech. Rep. ITU-R M.2135-1, Dec. 2009.

[3] Y. Xiao, “IEEE 802.11n: enhancements for higher throughput in wireless LANs,” IEEE
Wireless Commun., vol. 12, no. 6, pp. 82–91, Dec. 2005.

[4] High Speed Downlink Packet Access (HSDPA); Overall Description; Stage 2 (Release 7),
3rd Generation Partnership Project (3GPP) Standard TS 25.308 V7.11.0 (2010-09), Sept.
2010.

[5] Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial
Radio Access Network (E-UTRAN); Overall Description; Stage 2 (Release 8), 3rd
Generation Partnership Project (3GPP) Standard TS 36.300 V8.12.0 (2010-03), Mar. 2010.

[6] A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe, and T. Thomas, “LTE-advanced: next-
generation wireless broadband technology,” IEEE Wireless Commun., vol. 17, no. 3, pp.
10–22, Jun. 2010.

[7] K. Etemad, “Overview of mobile WiMAX technology and evolution,” IEEE Commun.
Mag., vol. 46, no. 10, pp. 31–40, Oct. 2008.

[8] S. Ahmadi, “An overview of next-generation mobile WiMAX technology,” IEEE Commun.
Mag., vol. 47, no. 6, pp. 84–98, Jun. 2009.

[9] Q. Li, G. Li, W. Lee, M.-il Lee, D. Mazzarese, B. Clerckx, and Z. Li, “MIMO techniques in
WiMAX and LTE: a feature overview,” IEEE Commun. Mag., vol. 48, no. 5, pp. 86–92,
May 2010.

[10] İ. E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans. Telecommun., vol.
10, no. 6, pp. 585–595, Nov./Dec. 1999.

[11] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading
environment when using multiple antennas,” Wireless Pers. Commun., vol. 6, no. 3, pp.
311–335, Mar. 1998.

[12] L. Zheng and D. Tse, “Diversity and multiplexing: a fundamental tradeoff in multiple-
antenna channels,” IEEE Trans. Inf. Theory, vol. 49, no. 5, pp. 1073–1096, May 2003.

[13] Orthogonal Frequency Division Multiplexing for Wireless Communications, Y. Li and G. L.
Stüber, Eds. New York, NY: Springer-Verlag, 2006.

139

[14] S. Weinstein and P. Ebert, “Data transmission by frequency-division multiplexing using the
discrete Fourier transform,” IEEE Trans. Commun. Technol., vol. 19, no. 5, pp. 628–634,
Oct. 1971.

[15] M. H. M. Costa, “Writing on dirty paper,” IEEE Trans. Inf. Theory, vol. IT-29, no. 3, pp.
439–441, May 1983.

[16] G. Caire and S. Shamai, “On achievable rates in a multi-antenna broadcast downlink,” in
Proc. 38th Annu. Allerton Conf. Commun., Control and Comput., Monticello, IL, Oct. 2000.

[17] G. Caire and S. Shamai (Shitz), “On the achievable throughput of a multiantenna Gaussian
broadcast channel,” IEEE Trans. Inf. Theory, vol. 49, no. 7, pp. 1691–1706, Jul. 2003.

[18] R. Knopp and P. A. Humblet, “Information capacity and power control in single-cell
multiuser communications,” in Proc. IEEE Int. Conf. Commun. (ICC’95), Seattle, WA, Jun.
1995, vol. 1, pp. 331–335.

[19] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control for communication networks:
shadow prices, proportional fairness, and stability,” J. Oper. Res. Soc., vol. 49, no. 3, pp.
237–252, Mar. 1998.

[20] J. G. Proakis and M. Salehi, Digital Communications, 5th ed. New York, NY: McGraw-Hill,
2008.

[21] S. Verdú, “Multiple-access channels with memory with and without frame synchronism,”
IEEE Trans. Inf. Theory, vol. 35, no. 3, pp. 605–619, May 1989.

[22] W. Yu, W. Rhee, S. Boyd, and J. M. Cioffi, “Iterative water-filling for Gaussian vector
multiple-access channels,” IEEE Trans. Inf. Theory, vol. 50, no. 1, pp. 145–152, Jan. 2004.

[23] A. Cohen and A. Lapidoth, “The Gaussian watermarking game,” IEEE Trans. Inf. Theory,
vol. 48, no. 6, pp. 1639–1667, Jun. 2002.

[24] S. Vishwanath, N. Jindal, and A. Goldsmith, “Duality, achievable rates, and sum-rate
capacity of Gaussian MIMO broadcast channels,” IEEE Trans. Inf. Theory, vol. 49, no. 10,
pp. 2658–2668, Oct. 2003.

[25] N. Jindal, S. Vishwanath, and A. J. Goldsmith, “On the duality of Gaussian multiple-access
and broadcast channels,” IEEE Trans. Inf. Theory, vol. 50, no. 5, pp. 768–783, May 2004.

[26] H. Weingarten, Y. Steinberg, and S. Shamai (Shitz), “The capacity region of the Gaussian
multiple-input multiple-output broadcast channel,” IEEE Trans. Inf. Theory, vol. 52, no. 9,
pp. 3936–3964, Sept. 2006.

[27] M. Tomlinson, “New automatic equaliser employing modulo arithmetic,” Electron. Lett.,
vol. 7, no. 5, pp. 138–139, Mar. 1971.

[28] H. Harashima and H. Miyakawa, “Matched-transmission technique for channels with
intersymbol interference,” IEEE Trans. Commun., vol. 20, no. 4, pp. 774–780, Aug. 1972.

[29] R. F. H. Fischer, Precoding and Signal Shaping for Digital Transmission, New York, NY:
John Wiley & Sons, 2002.

140

[30] C. Windpassinger, R. F. H. Fischer, T. Vencel, and J. B. Huber, “Precoding in multiantenna
and multiuser communications,” IEEE Trans. Wireless Commun., vol. 3, no. 4, pp. 1305–
1316, Jul. 2004.

[31] V. Stankovic and M. Haardt, “Successive optimization Tomlinson-Harashima precoding
(SO THP) for multi-user MIMO systems,” in Proc. IEEE Int. Conf. Acoustics, Speech, and
Signal Process. (ICASSP’05), Philadelphia, PA, Mar. 2005, vol. 3, pp. III/1117–III/1120.

[32] W. Yu, D. P. Varodayan, and J. M. Cioffi, “Trellis and convolutional precoding for
transmitter-based interference presubtraction,” IEEE Trans. Commun., vol. 53, no. 7, pp.
1220–1230, Jul. 2005.

[33] A. Bennatan, D. Burshtein, G. Caire, and S. Shamai (Shitz), “Superposition coding for side-
information channels,” IEEE Trans. Inf. Theory, vol. 52, no. 5, pp. 1872–1889, May 2006.

[34] S.-C. Lin and H.-J. Su, “Practical vector dirty paper coding for MIMO Gaussian broadcast
channels,” IEEE J. Sel. Areas Commun., vol. 25, no. 7, pp. 1345–1357, Sept. 2007.

[35] C. B. Peel, B. M. Hochwald, and A. L. Swindlehurst, “A vector-perturbation technique for
near-capacity multiantenna multiuser communication – part I: channel inversion and
regularization,” IEEE Trans. Commun., vol. 53, no. 1, pp. 195–202, Jan. 2005.

[36] B. M. Hochwald, C. B. Peel, and A. L. Swindlehurst, “A vector-perturbation technique for
near-capacity multiantenna multiuser communication – part II: perturbation,” IEEE Trans.
Commun., vol. 53, no. 31, pp. 537–544, Mar. 2005.

[37] U. Erez, S. Shamai (Shitz), and R. Zamir, “Capacity and lattice strategies for cancelling
known interference,” in Proc. Int. Symp. Inf. Theory and Its Applications (ISITA’00),
Honolulu, HI, Nov. 2000, pp. 681–684.

[38] C. Windpassinger, R. F. H. Fischer, and J. B. Huber, “Lattice-reduction-aided broadcast
precoding,” IEEE Trans. Commun., vol. 52, no. 12, pp. 2057–2060, Dec. 2004.

[39] U. Erez and S. ten Brink, “A close-to-capacity dirty paper coding scheme,” IEEE Trans. Inf.
Theory, vol. 51, no. 10, pp. 3417–3432, Oct. 2005.

[40] T. Yoo and A. Goldsmith, “On the optimality of multiantenna broadcast scheduling using
zero-forcing beamforming,” IEEE J. Sel. Areas Commun., vol. 24, no. 3, pp. 528–541, Mar.
2006.

[41] M. Sharif and B. Hassibi, “A comparison of time-sharing, DPC, and beamforming for
MIMO broadcast channels with many users,” IEEE Trans. Commun., vol. 55, no. 1, pp. 11–
15, Jan. 2007.

[42] A. Wiesel, Y. C. Eldar, and S. Shamai (Shitz), “Zero-forcing precoding and generalized
inverses,” IEEE Trans. Signal Process., vol. 56, no. 9, pp. 4409–4418, Sept. 2008.

[43] R. A. Horn and C. R. Johnson, Matrix Analysis. New York, NY: Cambridge Univ. Press,
1985.

[44] M. Joham, W. Utschick, and J. A. Nossek, “Linear transmit processing in MIMO
communications systems,” IEEE Trans. Signal Process., vol. 53, no. 8, pp. 2700–2712, Aug.
2005.

141

[45] Q. H. Spencer, C. B. Peel, A. L. Swindlehurst, and M. Haardt, “An introduction to the
multi-user MIMO downlink,” IEEE Commun. Mag., vol. 42, no. 10, pp. 60–67, Oct. 2004.

[46] Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zero forcing methods for downlink
spatial multiplexing in multiuser MIMO channels,” IEEE Trans. Signal Process., vol. 52,
no. 2, pp. 461–471, Feb. 2004.

[47] L.-U Choi and R. D. Murch, “A transmit preprocessing technique for multiuser MIMO
systems using a decomposition approach,” IEEE Trans. Wireless Commun., vol. 3, no. 1, pp.
20–24, Jan. 2004.

[48] Z. Pan, K.-K. Wong, and T.-S. Ng, “Generalized multiuser orthogonal space-division
multiplexing,” IEEE Trans. Wireless Commun., vol. 3, no. 6, pp. 1969–1973, Nov. 2004.

[49] Z. Tu and R. Blum, “Multiuser diversity for a dirty paper approach,” IEEE Commun. Lett.,
vol. 7, no. 8, pp. 370–372, Aug. 2003.

[50] A. D. Dabbagh and D. J. Love, “Precoding for multiple antenna Gaussian broadcast
channels with successive zero-forcing,” IEEE Trans. Signal Process., vol. 55, no. 7, pp.
3837–3850, Jul. 2007.

[51] P. Tejera, W. Utschick, G. Bauch, and J. A. Nossek, “Subchannel allocation in multiuser
multiple-input-multiple-output systems," IEEE Trans. Inf. Theory, vol. 52, no. 10, pp.
4721–4733, Oct. 2006.

[52] M. Stojnic, H. Vikalo, and B. Hassibi, “Rate maximization in multi-antenna broadcast
channels with linear preprocessing,” IEEE Trans. Wireless Commun., vol. 5, no. 9, pp.
2338–2342, Sept. 2006.

[53] M. Codreanu, A. Tölli, M. Juntti, and M. Latva-aho, “Joint design of Tx-Rx beamformers in
MIMO downlink channel,” IEEE Trans. Signal Process., vol. 55, no. 9, pp. 4639–4655,
Sept. 2007.

[54] A. Wiesel, Y. C. Eldar, and S. Shamai (Shitz), “Linear precoding via conic optimization for
fixed MIMO receivers,” IEEE Trans. Signal Process., vol. 54, no. 1, pp. 161–176, Jan.
2006.

[55] M. Schubert and H. Boche, “Iterative multiuser uplink and downlink beamforming under
SINR constraints,” IEEE Trans. Signal Process., vol. 53, no. 7, pp. 2324–2334, Jul. 2005.

[56] H. Boche and M. Schubert, “Optimal multi-user interference balancing using transmit
beamforming,” Wireless Pers. Commun., vol. 26, no. 4, pp. 305–324, Sept. 2003.

[57] S. Shi, M. Schubert, and H. Boche, “Rate optimization for multiuser MIMO systems with
linear processing,” IEEE Trans. Signal Process., vol. 56, no. 8, pp. 4020–4030, Aug. 2008.

[58] S. Serbetli and A. Yener, “Transceiver optimization for multiuser MIMO systems,” IEEE
Trans. Signal Process., vol. 52, no. 1, pp. 214–226, Jan. 2004.

[59] S. Shi, M. Schubert, and H. Boche, “Downlink MMSE transceiver optimization for
multiuser MIMO systems: duality and sum-MSE minimization,” IEEE Trans. Signal
Process., vol. 55, no. 11, pp. 5436–5446, Nov. 2007.

142

[60] A. J. Tenenbaum and R. S. Adve, “Linear processing and sum throughput in the multiuser
MIMO downlink,” IEEE Trans. Wireless Commun., vol. 8, no. 5, pp. 2652–2661, May 2009.

[61] M. Grossglauser and D. Tse, “Mobility increases the capacity of ad-hoc wireless networks,”
IEEE/ACM Trans. Netw., vol. 10, no. 4, pp. 477–486, Aug. 2002.

[62] B. M. Hochwald, T. L. Marzetta, and V. Tarokh, “Multiple-antenna channel hardening and
its implications for rate feedback and scheduling,” IEEE Trans. Inf. Theory, vol. 50, no. 9,
pp. 1893–1909, Sept. 2004.

[63] P. Viswanath, D. N. C. Tse, and R. Laroia, “Opportunistic beamforming using dumb
antennas,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1277–1294, Jun. 2002.

[64] P. Schulz-Rittich, A. Senst, U. Krause, and H. Meyr, “Increasing system throughput by
time-varying beamforming in multiuser systems with slowly varying fading channels,” in
Proc. IEEE Veh. Technol. Conf. (VTC’03-Fall), Orlando, FL, Oct. 2003, vol. 1, pp. 368–
372.

[65] N. Jindal and A. Goldsmith, “Dirty-paper coding versus TDMA for MIMO broadcast
channels,” IEEE Trans. Inf. Theory, vol. 51, no. 5, pp. 1783–1794, May 2005.

[66] R. W. Heath, Jr., M. Airy, and A. J. Paulraj, “Multiuser diversity for MIMO wireless
systems with linear receivers,” in Proc. 35th Asilomar Conf. Signals, Systems and
Computers, Pacific Grove, CA, Nov. 2001, vol. 2, pp. 1194–1199.

[67] D. Aktas and H. El Gamal, “Multiuser scheduling for MIMO wireless systems,” in Proc.
IEEE Veh. Technol. Conf. (VTC’03-Fall), Orlando, FL, Oct. 2003, vol. 3, pp. 1743–1747.

[68] D. Bartolomé, D. P. Palomar, and A. I. Pérez-Neira, “Real-time scheduling for wireless
multiuser MISO systems under different fairness criteria,” in Proc. Int. Symp. Signal
Process. and Its Applications (ISSPA’03), Paris, France, Jul. 2003, vol. 1, pp. 213–216.

[69] Z. Shen, R. Chen, J. G. Andrews, R. W. Heath, Jr., and B. L. Evans, “Low complexity user
selection algorithms for multiuser MIMO systems with block diagonalization,” IEEE Trans.
Signal Process., vol. 54, no. 9, pp. 3658–3663, Sept. 2006.

[70] J. Wang, D. J. Love, and M. D. Zoltowski, “User selection with zero-forcing beamforming
achieves the asymptotically optimal sum rate,” IEEE Trans. Signal Process., vol. 56, no. 8,
pp. 3713–3726, Aug. 2008.

[71] C. Guthy, W. Utschick, and G. Dietl, “Low-complexity linear zero-forcing for the MIMO
broadcast channel,” IEEE J. Sel. Topics Signal Process., vol. 3, no. 6, pp. 1106–1117, Dec.
2009.

[72] G. Dimic and N. D. Sidiropoulos, “On downlink beamforming with greedy user selection:
performance analysis and a simple new algorithm,” IEEE Trans. Signal Process., vol. 53,
no. 10, pp. 3857–3868, Oct. 2005.

[73] B. C. Lim, W. A. Krzymień, and C. Schlegel, “Efficient sum rate maximization and
resource allocation in block-diagonalized space-division multiplexing,” IEEE Trans. Veh.
Technol., vol. 58, no. 1, pp. 478–484, Jan. 2009.

143

[74] L. Jin, Z. Hu, and X. Gu, “A new scheduling algorithm with low complexity for multiuser
multiple-input multiple-output downlink system,” in Proc. Int. Conf. Wireless Commun.
Signal Process. (WCSP’09), Nanjing, China, Nov. 2009, pp. 1–5.

[75] D. J. Mazzarese and W. A. Krzymień, “Scheduling algorithms and throughput
maximization for the downlink of packet-data cellular systems with multiple antennas at the
base station,” Wireless Pers. Commun., vol. 43, no. 2, pp. 215–260, Oct. 2007.

[76] J. Jiang, R. M. Buehrer, and W. H. Tranter, “Greedy scheduling performance for a zero-
forcing dirty-paper coded system,” IEEE Trans. Commun., vol. 54, no. 5, pp. 789–793, May
2006.

[77] J. Dai, C. Chang, Z. Ye, and Y. S. Hung, “An efficient greedy scheduler for zero-forcing
dirty-paper coding,” IEEE Trans. Commun., vol. 57, no. 7, pp. 1939–1943, Jul. 2009.

[78] Q. Zhou, H. Dai, and H. Zhang, “Joint Tomlinson-Harashima precoding and scheduling for
multiuser MIMO with imperfect feedback,” in Proc. IEEE Wireless Commun. Netw. Conf.
(WCNC’06), Las Vegas, NV, Apr. 2006, vol. 3, pp. 1233–1238.

[79] B. Ozdemir and O. Gurbuz, “Scheduling approach for MIMO with Tomlinson-Harashima
precoding,” in Proc. IEEE Veh. Technol. Conf. (VTC’06-Spr.), Melbourne, Australia, May
2006, vol. 1, pp. 329–333.

[80] L.-N. Tran and E.-K. Hong, “Multiuser diversity for successive zero-forcing dirty paper
coding: greedy scheduling algorithms and asymptotic performance analysis,” IEEE Trans.
Signal Process., vol. 58, no. 6, pp. 3411–3416, Jun. 2010.

[81] V. K. N. Lau, “Proportional fair space-time scheduling for wireless communications,” IEEE
Trans. Commun., vol. 53, no. 8, pp. 1353–1360, Aug. 2005.

[82] H. Viswanathan, S. Venkatesan, and H. Huang, “Downlink capacity evaluation of cellular
networks with known-interference cancellation,” IEEE J. Sel. Areas Commun., vol. 21, no.
5, pp. 802–811, Jun. 2003.

[83] Y. Rong and Y. Hua, “Space-time power scheduling of MIMO links – fairness and QoS
considerations,” IEEE J. Sel. Topics Signal Process., vol. 2, no. 2, pp. 171–180, Apr. 2008.

[84] M. Torabzadeh and W. Ajib, “Packet scheduling and fairness for multiuser MIMO
systems,” IEEE Trans. Veh. Technol., vol. 59, no. 3, pp. 1330–1340, Mar. 2010.

[85] G. Primolevo, O. Simeone, and U. Spagnolini, “Channel aware scheduling for broadcast
MIMO systems with orthogonal linear precoding and fairness constraints,” in Proc. IEEE
Int. Conf. Commun. (ICC’05), Seoul, Korea, May 2005, vol. 4, pp. 2749–2753.

[86] M. Kobayashi and G. Caire, “Joint beamforming and scheduling for a multi-antenna
downlink with imperfect transmitter channel knowledge,” IEEE J. Sel. Areas Commun., vol.
25, no. 7, pp. 1468–1477, Sept. 2007.

[87] A. Sang, X. Wang, M. Madihian, and R. D. Gitlin, “A flexible downlink scheduling scheme
in cellular packet data systems,” IEEE Trans. Wireless Commun., vol. 5, no. 3, pp. 568–577,
Mar. 2006.

144

[88] A. Khan, R. Vesilo, and I. B. Collings, “Efficient user selection algorithms for wireless
broadcast channels,” in Proc. 2nd Int. Conf. Wireless Broadband and Ultra Wideband
Commun. (AusWireless 2007), Sydney, Australia, Aug. 2007, pp. 63–68.

[89] R. C. Elliott and W. A. Krzymień, “Scheduling algorithms for high-throughput packet data
service in cellular radio systems,” Canadian J. Electr. Comput. Eng., vol. 29, no. 1, pp.
117–127, Jan.-Apr. 2004.

[90] R. C. Elliott and W. A. Krzymień, “Scheduling of wireless packet data transmissions,” U.S.
Patent 7,295,513, Nov. 13, 2007.

[91] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, P. Whiting, and R. Vijayakumar,
“Providing quality of service over a shared wireless link,” IEEE Commun. Mag., vol. 39, no.
2, pp. 150–154, Feb. 2001.

[92] S. Shakkottai and A. L. Stolyar, “Scheduling for multiple flows sharing a time-varying
channel: the exponential rule,” American Mathematical Society Translations, Series 2, vol.
207, pp. 185–202, 2002.

[93] X. Liu, E. K. P. Chong, and N. B. Shroff, “A framework for opportunistic scheduling in
wireless networks,” Comput. Netw., vol. 41, no. 4, pp. 451–474, Mar. 2003.

[94] C. Wang and R. D. Murch, “Optimal downlink multi-user MIMO cross-layer scheduling
using HOL packet waiting time,” IEEE Trans. Wireless Commun., vol. 5, no. 10, pp. 2856–
2862, Oct. 2006.

[95] Z. Zhang, Y. He, and E. K. P. Chong, “Opportunistic downlink scheduling for multiuser
OFDM systems,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC’05), New Orleans,
LA, Mar. 2005, vol. 2, pp. 1206–1212.

[96] J. Hang, Z. Fan, and F. She, “Performance analysis of power optimization and user
scheduling in multi-user MIMO-OFDM systems,” in Proc. IEEE Int. Conf. Intelligent
Comput. and Intelligent Systems (ICIS’09), Shanghai, China, Nov. 2009, vol. 3, pp. 238–
242.

[97] Z. Rosberg, A. Cantoni, and R. P. Liu, “Resource allocation for QoS multiuser MIMO with
zero forcing and MMSE beamforming,” in Proc. 18th Int. Workshop on Quality of Service
(IWQoS 2010), Beijing, China, Jun. 2010, pp. 1–6.

[98] M. Kountouris, A. Pandharipande, H. Kim, and D. Gesbert, “QoS-based user scheduling for
multiuser MIMO systems,” in Proc. IEEE Veh. Technol. Conf. (VTC’05-Spr.), Stockholm,
Sweden, May-Jun. 2005, vol. 1, pp. 211–215.

[99] J. Torres, V. Morillo-Velarde, B. Soret, M. C. Aguayo-Torres, and J. T. Entrambasaguas,
“Cross-layer user multiplexing algorithms evaluation in MIMO OFDM wireless systems,”
in Proc. 16th IST Mobile and Wireless Commun. Summit, Budapest, Hungary, Jul. 2007, pp.
1–5.

[100] M. Li, Y. Xu, and Y. Cai, “A cross-layer packet scheduling and antenna selection scheme
for multi-service MIMO systems,” in Proc. 4th Int. Conf. Wireless Commun., Netw. and
Mobile Comput. (WiCOM’08), Dalian, China, Oct. 2008, pp. 1–4.

145

[101] O. Souihli and T. Ohtsuki, “Joint feedback and scheduling scheme for service-differentiated
multiuser MIMO systems,” IEEE Trans. Wireless Commun., vol. 9, no. 2, pp. 528–533, Feb.
2010.

[102] S. Lee and J. S. Thompson, “QoS-guaranteed sequential user selection in multiuser MIMO
downlink channels,” in Proc. IEEE Veh. Technol. Conf. (VTC’07-Spr.), Dublin, Ireland,
Apr. 2007, pp. 1926–1930.

[103] T. Hui, W. Shuang, G. Youjun, S. Qiaoyun, and Z. Ping, “A QoS-guarantee resource
allocation scheme in multi-user MIMO-OFDM systems,” in Proc. IEEE Veh. Technol. Conf.
(VTC’07-Fall), Baltimore, MD, Sept.-Oct. 2007, pp. 1802–1806.

[104] R. C. Elliott and W. A. Krzymień, “Downlink scheduling for multiple antenna systems with
dirty paper coding via genetic algorithms,” in Proc. IEEE Veh. Technol. Conf. (VTC’07-
Spr.), Dublin, Ireland, Apr. 2007, pp. 2339–2343.

[105] R. C. Elliott and W. A. Krzymień, “Downlink scheduling for multiple antenna multi-carrier
systems with dirty paper coding via genetic algorithms,” in Multi-Carrier Spread Spectrum
2007, S. Plass et al., Eds. Dordrecht, The Netherlands: Springer, 2007, pp. 47–56.

[106] R. C. Elliott and W. A. Krzymień, “Downlink scheduling via genetic algorithms for
multiuser single-carrier and multicarrier MIMO systems with dirty paper coding,” IEEE
Trans. Veh. Technol., vol. 58, no. 7, pp. 3247–3262, Sept. 2009.

[107] N. Jindal, W. Rhee, S. Vishwanath, S. A. Jafar, and A. Goldsmith, “Sum power iterative
water-filling for multi-antenna Gaussian broadcast channels,” IEEE Trans. Inf. Theory, vol.
51, no. 4, pp. 1570–1580, Apr. 2005.

[108] R. Böhnke and K.-D. Kammeyer, “Weighted sum rate maximization for the MIMO-
downlink using a projected conjugate gradient algorithm,” in Proc. Int. Workshop on Cross
Layer Design (IWCLD’07), Jinan, China, Sept. 2007, pp. 82–85.

[109] V. K. N. Lau, “Optimal downlink space-time scheduling design with convex utility
functions—Multiple-antenna systems with orthogonal spatial multiplexing,” IEEE Trans.
Veh. Technol., vol. 54, no. 4, pp. 1322–1333, Jul. 2005.

[110] J.-Y. Le Boudec. (2008, Dec. 9). Rate Adaptation, Congestion Control and Fairness: A
Tutorial [Online]. Available: http://ica1www.epfl.ch/PS_files/LEB3132.pdf

[111] J. H. Holland, Adaptation in Natural and Artificial Systems, 1st ed. Ann Arbor, MI: Univ.
Michigan Press, 1975.

[112] D. S. Weile and E. Michielssen, “Genetic algorithm optimization applied to
electromagnetics: a review,” IEEE Trans. Antennas Propagat., vol. 45, no. 3, pp. 343–353,
Mar. 1997.

[113] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,”
Science, New Series, vol. 220, no. 4598, pp. 671–680, Mar. 1983.

[114] M. Clerc and J. Kennedy, “The particle swarm - explosion, stability, and convergence in a
multidimensional complex space,” IEEE Trans. Evol. Comput., vol. 6, no. 1, pp. 58–73, Feb.
2002.

146

[115] C. Mattiussi and D. Floreano, “Analog genetic encoding for the evolution of circuits and
networks,” IEEE Trans. Evol. Comput., vol. 11, no. 5, pp. 596–607, Oct. 2007.

[116] Y. Yu and Y. Xinjie, “Cooperative coevolutionary genetic algorithm for digital IIR filter
design,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1311–1318, Jun. 2007.

[117] X.-M. Hu, J. Zhang, Y. Yu, H. S.-H. Chung, Y.-L. Li, Y.-H. Shi, and X.-N. Luo, “Hybrid
genetic algorithm using a forward encoding scheme for lifetime maximization of wireless
sensor networks,” IEEE Trans. Evol. Comput., vol. 14, no. 5, pp. 766–781, Oct. 2010.

[118] Z. Zhao, Z. Peng, S. Zheng, and J. Shang, “Cognitive radio spectrum allocation using
evolutionary algorithms,” IEEE Trans. Wireless Commun., vol. 8, no. 9, pp. 4421–4425,
Sept. 2009.

[119] H.-Y. Lu and W.-H. Fang, “Joint transmit/receive antenna selection in MIMO systems
based on the priority-based genetic algorithm," IEEE Antennas Wireless Propagat. Lett.,
vol. 6, pp. 588–591, 2007.

[120] B. G. W. Craenen, A. E. Eiben, and E. Marchiori, “How to handle constraints with
evolutionary algorithms,” in The Practical Handbook of Genetic Algorithms: Applications,
2nd ed., L. Chambers, Ed. Boca Raton, FL: Chapman & Hall / CRC, 2001, pp. 341–361.

[121] S. Lin and D. J. Costello Jr., Error Control Coding, 2nd ed. Upper Saddle River, NJ:
Prentice Hall, 2004.

[122] cdma2000 High Rate Packet Data Air Interface Specification, 3rd Generation Partnership
Project 2 (3GPP2) Standard C.S0024-B v3.0, Sept. 2009.

[123] G. L. Stüber, Principles of Mobile Communication, 2nd ed. Boston, MA: Kluwer, 2001, ch.
2.4.

[124] W. Yu and W. Rhee, “Degrees of freedom in wireless multiuser spatial multiplex systems
with multiple antennas,” IEEE Trans. Commun., vol. 54, no. 10, pp. 1747–1753, Oct. 2006.

[125] R. C. Elliott and W. A. Krzymień, “On the convergence of genetic scheduling algorithms
for downlink transmission in multi-user MIMO systems,” in Proc. Int. Symp. Wireless Pers.
Multimedia Commun. (WPMC’08), Lapland, Finland, Sept. 2008.

[126] R. C. Elliott and W. A. Krzymień, “On the convergence of genetic scheduling algorithms
for downlink transmission in multi-user MIMO systems,” Wireless Pers. Commun., Sept.
2010. [Online]. doi: 10.1007/s11277-010-0131-4

[127] E. K. P. Chong and S. H. Żak, An Introduction to Optimization, 2nd ed. New York, NY:
Wiley, 2001.

[128] M. Srinivas and L. M. Patnaik, “Genetic algorithms: a survey,” Computer, vol. 27, no. 6, pp.
17–26, Jun. 1994.

[129] W. M. Spears, “Adapting crossover in evolutionary algorithms,” in Proc. 4th Annu. Evol.
Programming Conf., San Diego, CA, Mar. 1995, pp. 367–384.

[130] R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms, 2nd ed. Hoboken, NJ: Wiley,
2004.

147

[131] D. B. Fogel, Evolutionary Computation: Toward a New Philosophy of Machine Intelligence,
3rd ed. Hoboken, NJ: Wiley, 2006.

[132] S. Sigdel, R. C. Elliott, W. A. Krzymień, and M. Al-Shalash, “Greedy and genetic user
scheduling algorithms for multiuser MIMO systems with block diagonalization,” in Proc.
IEEE Veh. Technol. Conf. (VTC’09-Fall), Anchorage, AK, Sept. 2009, pp. 1–6.

[133] R. C. Elliott, S. Sigdel, W. A. Krzymień, M. Al-Shalash, and A. C. K. Soong, “Genetic and
greedy user scheduling for multiuser MIMO systems with successive zero-forcing,” in Proc.
5th IEEE Broadband Wireless Access Workshop (2009 IEEE GLOBECOM Workshops),
Honolulu, HI, Nov. 2009, pp. 1–6.

[134] R. C. Elliott, S. Sigdel, and W. A. Krzymień, “Low complexity greedy, genetic, and hybrid
user scheduling algorithms for multiuser MIMO systems with successive zero-forcing,”
submitted to Eur. Trans. Telecommun., Mar. 2011.

[135] B. Farhang-Boroujeny, Q. Spencer, and A. L. Swindlehurst, “Layering techniques for
space–time communications in multi-user networks,” in Proc. IEEE Veh. Technol. Conf.
(VTC’03-Fall), Orlando, FL, Oct. 2003, vol. 2, pp. 1339–1342.

[136] C.-B. Chae, D. Mazzarese, N. Jindal, and R. W. Heath, Jr., “Coordinated beamforming with
limited feedback in the MIMO broadcast channel,” IEEE J. Sel. Areas Commun., vol. 26, no.
8, pp. 1505–1515, Oct. 2008.

[137] Z. Shen, R. Chen, J. G. Andrews, R. W. Heath, Jr., and B. L. Evans, “Sum capacity of
multiuser MIMO broadcast channels with block diagonalization,” IEEE Trans. Wireless
Commun., vol. 6, no. 6, pp. 2040–2045, Jun. 2007.

[138] R. Chen, R. W. Heath, Jr., and J. G. Andrews, “Transmit selection diversity for unitary
precoded multiuser spatial multiplexing systems with linear receivers,” IEEE Trans. Signal
Process., vol. 55, no. 3, pp. 1159–1171, Mar. 2007.

[139] S. Sigdel and W. A. Krzymień, “Simplified transmit covariance optimization and user
ordering algorithm for successive zero-forcing precoding,” in Proc. IEEE 10th Workshop on
Signal Process. Advances in Wireless Commun. (SPAWC’09), Perugia, Italy, Jun. 2009, pp.
235–239.

[140] S. Sigdel and W. A. Krzymień, “User scheduling for network MIMO systems with
successive zero-forcing precoding,” in Proc. IEEE Veh. Technol. Conf. (VTC’10-Fall),
Ottawa, Canada, Sept. 2010, pp. 1–6.

[141] S. Sigdel and W. A. Krzymień, “Simplified fair scheduling and antenna selection
algorithms for multiuser MIMO orthogonal space-division multiplexing downlink,” IEEE
Trans. Veh. Technol., vol. 58, no. 3, pp. 1329–1344, Mar. 2009.

[142] S. Sigdel and W. A. Krzymień, “Efficient user selection and ordering algorithms for
successive zero-forcing precoding for multiuser MIMO downlink,” in Proc. IEEE Veh.
Technol. Conf. (VTC’09-Spr.), Barcelona, Spain, Apr. 2009, pp. 1–6.

[143] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Baltimore, MD: The John
Hopkins Univ. Press, 1996.

148

[144] D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic progressions,” J.
Symbolic Computation, vol. 9, no. 3, pp. 251–280, Mar. 1990.

[145] C.-H. Guo and N. J. Higham, “A Schur-Newton method for the matrix pth root and its
inverse,” SIAM J. Matrix Anal. Appl., vol. 28, no. 3, pp. 788–804, 2006.

[146] G. J. Foschini, K. Karakayali, and R. A. Valenzuela, “Coordinating multiple antenna
cellular networks to achieve enormous spectral efficiency,” IEE Proc.-Commun., vol. 153,
no. 4, pp. 548–555, Aug. 2006.

[147] X. Zhang and J. Lee, “Low complexity MIMO scheduling with channel decomposition
using capacity upperbound,” IEEE Trans. Commun., vol. 56, no. 6, pp. 871–876, Jun. 2008.

[148] W. W. Hager, “Updating the inverse of a matrix,” SIAM Review, vol. 31, no. 2, pp. 221–239,
Jun. 1989.

[149] M. Naeem and D. C. Lee, “Estimation of distribution algorithm for scheduling in uplink
multiuser wireless communication system,” in Proc. IEEE Symp. Computational Intell. in
Scheduling (CI-Sched’09), Nashville, TN, Mar.-Apr. 2009, pp. 36–41.

[150] Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation, P.
Larrañaga and J. A. Lozano, Eds. Norwell, MA: Kluwer Academic Publishers, 2002.

[151] J. Liu, Y. T. Hou, and H. D. Sherali, “On the maximum weighted sum-rate of MIMO
Gaussian broadcast channels,” in Proc. IEEE Int. Conf. Commun. (ICC’08), Beijing, China,
May 2008, pp. 3664–3668.

[152] R. C. Elliott and W. A. Krzymień, “Improved and weighted sum rate maximization for
successive zero-forcing in multiuser MIMO systems,” submitted to EURASIP J. Wireless
Commun. Netw., Nov. 2010.

[153] W. Yu, “Uplink-downlink duality via minimax duality,” IEEE Trans. Inf. Theory, vol. 52,
no. 2, pp. 361–374, Feb. 2006.

[154] L. Zhang, R. Zhang, Y.-C. Liang, Y. Xin, and H. V. Poor, “On Gaussian MIMO BC-MAC
duality with multiple transmit covariance constraints,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT’09), Seoul, Korea, Jun.-Jul. 2009, pp. 2502–2506.

[155] R. Hunger, M. Joham, and W. Utschick, “On the MSE-duality of the broadcast channel and
the multiple access channel,” IEEE Trans. Signal Process., vol. 57, no. 2, pp. 698–713, Feb.
2009.

[156] M. Codreanu, A. Tölli, M. Juntti, and M. Latva-aho, “Uplink-downlink SINR duality via
Lagrange duality,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC’08), Las Vegas,
NV, Mar.-Apr. 2008, pp. 1160–1165.

[157] R. Hunger and M. Joham, “A general rate duality of the MIMO multiple access channel and
the MIMO broadcast channel,” in Proc. IEEE Global Telecommun. Conf.
(GLOBECOM’08), New Orleans, LA, Nov.-Dec. 2008, pp. 1–5.

[158] W. Yu and T. Lan, “Transmitter optimization for the multi-antenna downlink with per-
antenna power constraints,” IEEE Trans. Signal Process., vol. 55, no. 6, pp. 2646–2660,
Jun. 2007.

149

[159] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New York, NY: Springer,
2006.

[160] S. Ye and R. S. Blum, “Optimized signalling for MIMO interference systems with
feedback,” IEEE Trans. Signal Process., vol. 51, no. 11, pp. 2839–2848, Nov. 2003.

[161] R. Hunger, D. A. Schmidt, M. Joham, and W. Utschick, “A general covariance-based
optimization framework using orthogonal projections,” in Proc. IEEE 9th Workshop on
Signal Process. Advances in Wireless Commun. (SPAWC’08), Recife, Brazil, pp. 76–80, Jul.
2008.

[162] K. B. Petersen and M. S. Pedersen. (2008, Oct.). The matrix cookbook. Technical Univ. of
Denmark. Ver.20081110. [Online]. Available: http://www2.imm.dtu.dk/pubdb/p.php?3274

[163] J. Liu, Y. T. Hou, Y. Shi, H. D. Sherali, and S. Kompella, “On the capacity of multiuser
MIMO networks with interference,” IEEE Trans. Wireless Commun., vol. 7, no. 2, pp. 488–
494, Feb. 2008.

[164] J. Liu, Y. T. Hou, and H. D. Sherali, “Optimal power allocation for achieving perfect
secrecy capacity in MIMO wire-tap channels,” in Proc. 43rd Conf. Inf. Sciences Systems
(CISS’09), Baltimore, MD, Mar. 2009, pp. 606–611.

[165] Y. Shi, Y. T. Hou, and H. D. Sherali, “Cross-layer optimization for data rate utility problem
in UWB-based ad hoc networks,” IEEE Trans. Mobile Comput., vol. 7, no. 6, pp. 764–777,
Jun. 2008.

[166] T. Yoo, N. Jindal, and A. Goldsmith, “Multi-antenna downlink channels with limited
feedback and user selection,” IEEE J. Sel. Areas Commun., vol. 25, no. 7, pp. 1478–1491,
Sept. 2007.

[167] M. K. Karakayali, G. J. Foschini, and R. A. Valenzuela, “Network coordination for
spectrally efficient communications in cellular systems,” IEEE Wireless Commun., vol. 13,
no. 4, pp. 56–61, Aug. 2006.

[168] M. Sawahashi, Y. Kishiyama, A. Morimoto, D. Nishikawa, and M. Tanno, “Coordinated
multipoint transmission/reception techniques for LTE-advanced,” IEEE Wireless Commun.,
vol. 17, no. 3, pp. 26–34, Jun. 2010.

[169] R. Gonzalez, Data Analysis for Experimental Design. New York, NY: The Guilford Press,
2009.

[170] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, England: Cambridge
University Press, 2004.

[171] A. Hjørungnes and D. Gesbert, “Complex-valued matrix differentiation: techniques and key
results,” IEEE Trans. Signal Process., vol. 55, no. 6, pp. 2740–2746, Jun. 2007.

[172] E. W. Weisstein. (2010, Dec.). Least squares fitting--polynomial. MathWorld--A Wolfram
Web Resource. [Online]. Available:
http://mathworld.wolfram.com/LeastSquaresFittingPolynomial.html

150

Appendix A

Validation of the Simulation Model

The simulation model used in this work assumed a Rayleigh fading channel, which

represents a system with a rich scattering environment, wherein the received signal has

no significant specular / line-of-sight component. When examining the proportional

fairness criterion, we also assumed the existence of log-normal shadowing. The

simulation results were determined via Monte Carlo methods. All simulations were

conducted using Matlab. To verify the simulations overall, we examine three factors in

more detail. First, we check whether the channel gains are indeed complex Gaussian-

distributed values, as they should be. Second, we examine the error in the Monte Carlo

results. Lastly, we compare the simulation results to findings published in the literature.

A.1 Complex Gaussian Verification

Gaussian variables are generated in Matlab using the “randn” function. The function

generates values for a Gaussian-distributed variable with zero mean and unit variance. To

ensure that the values are different each time Matlab is run, the state of the random

number generator can be set to a value based on the system clock.

Figure A.1 shows the approximate PDF and CDF of a set of 100,000 values of a real

Gaussian random variable generated by Matlab. The PDF px(x) and CDF Fx(x) of a

Gaussian random variable x with mean x and variance 2
x respectively are [20]:

 2 2/ 21

2
x xx

x

x

p x e

 ; (A.1)

 2/ 21 x xx t
xF x e dt

 . (A.2)

It can be seen that the random variables from Matlab, which would be used in

simulations, closely match the theoretical distributions. The plots for the simulated and

analytical results overlap. The mean and variance of the random variables were –0.0039

and 1.0034 respectively, which are very close to the expected values of 0 and 1. Testing

151

the covariance of the random variables x(n) and x(n + t), for offsets of t = 1 to 1000, the

maximum magnitude of the covariance observed was 0.0101 for any offset, which

indicates that the Gaussian variables generated by Matlab are also uncorrelated, as

desired. These results thus also verify the generation of log-normal shadowing values,

which are also Gaussian-distributed. The only difference is that they are in units of dB,

and have a standard deviation of 8 dB. The required standard deviation can be obtained

easily by multiplying the Matlab-generated Gaussian variables by 8.

The Rayleigh channel requires complex-valued Gaussian variables with zero mean

and unit variance. These can be generated from the real-valued Gaussian variables by r =

 / 2R Ix ix , where xR and xI are i.i.d. Gaussian random variables with zero mean and

unit variance. Figure A.2 shows the PDF and CDF of the magnitude of 100,000 values of

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

x

p x
(x

)

(a)

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

x

F x
(x

)

(b)

Figure A.1: Comparison of the distribution of values of a random Gaussian variable generated by
Matlab (solid lines) with the theoretical Gaussian distribution (dashed lines). (a) PDF, (b) CDF.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

r

p r
(r

)

(a)

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

r

F r
(r

)
(b)

Figure A.2: Comparison of the distribution of values of a random Rayleigh variable generated by
Matlab (solid lines) with the theoretical Rayleigh distribution (dashed lines). (a) PDF, (b) CDF.

152

such a complex Gaussian variable generated in Matlab. The magnitude of the complex

Gaussian variables should be Rayleigh distributed with a PDF and CDF of [20]:

 2 2/ 2
2

, 0xr
r

x

r
p r e r

 , (A.3)

 2 2/ 21 , 0xr
rF r e r . (A.4)

2
x is the variance of the Gaussian variables making up the real and imaginary parts of

the complex variable; in this case, 2
x = 1/2.

Once again, it can be seen that the generated and theoretical distributions match very

closely. The generated complex Gaussian variables had a mean of 0.0015 – 0.0008i and a

variance of 0.9979, which again are close to the desired values. The magnitude of the

complex Gaussian variables should theoretically have a mean of r = / 2x = 0.8862

and a variance of 2 22 / 2r x = 0.2146 [20]. The generated variables had a mean

of 0.8857 and a variance of 0.2135, which are very near their theoretical values.

Thus, given the overall closeness of the generated random variables to their

theoretical distributions, means, and variances, the generation of channel matrices for our

Rayleigh channel model is validated.

A.2 Error in Monte Carlo Simulations

The figures for the simulation results throughout the thesis generally are meant to

show an average of some sort, most commonly the average throughput or sum rate

provided by the scheduling algorithms. What this is supposed to mean is the ergodic

average; that is, the expected value obtained by averaging over all possible channel

realizations. However, in practice for the simulations, we do not have the true ergodic

mean. Instead, we have a sample mean taken over multiple independent realizations of

the channel. Thus, there is some error inherent in the reported values. Strictly speaking,

the figures should actually have error bars to depict the uncertainty in the mean.

However, in practice, the error bars are almost never included in published literature.

While there is an error in the mean, if a sufficiently large number of realizations are

averaged, the sample mean closely approximates the ergodic mean. If the error is small

enough, then leaving off the error bars is justified if their range cannot be viewed clearly

in the figures.

The error in the simulation is found from the standard error of the mean, given by:

153

 ˆE sampS N . (A.5)

̂ is the standard deviation of the results for the independent runs of the simulation, and

Nsamp is the number of samples used to calculate the mean [169]. The standard error is an

estimate of the standard deviation of the sample mean. Clearly, as the number of samples

increases, the standard error decreases.

The confidence interval for the mean can then be found from the standard error. In

general, a certain percentage confidence interval can be found by a certain number of

standard errors around the sample mean. For example, if the samples for the mean follow

a normal (Gaussian) distribution1, then the 95% confidence interval will be 1.96SE

around the mean [169]. It can then be said that we are 95 percent confident that the true

ergodic (or population) mean falls within that interval.

We illustrate this for the case of our genetic scheduling algorithm for block

diagonalization from Chapter 5, with MT = 8, N = 2, and K0 = 4, at an SNR of 10 dB.

Figure A.3 shows how the average sum rate and the 95% confidence interval for the

average changes as the number of samples increases. When Nsamp = 1000, the 95%

confidence interval is about 0.06 bit/s/Hz, and the sum-rate curve is fairly smooth. Thus,

1000 runs of the Monte Carlo simulation should in general be enough to obtain a very

good estimate of the mean. However, in many cases, we still run simulations for even

longer (when feasible) for even tighter bounds on the results. In general, most simulations

were run for either 5000 or 10000 independent channel realizations. The main exceptions

to this were some of the exhaustive search simulations. With the exhaustive search, the

combinatorial complexity greatly increased the run times for the simulations, particularly

for order-dependent cases like successive zero-forcing. With the exhaustive search, for

larger K, to keep the total simulation time feasible, the total number of runs was limited

to 1000. On the other hand, simulations for the proportional fairness criterion were run

for a longer time, due to there being two sources of randomness in the channel matrices:

the complex Gaussian channel gains for the Rayleigh channel, and the log-normal

shadowing components. We note that since the Rayleigh channel gains change for each

simulation run and for each transmit-receive antenna pair at each scheduling interval,

while the shadowing is fixed for the length of a simulation run and is constant for all

1 With a large number of samples, the distribution will closely approximate a normal distribution,
due to the central limit theorem [20] (also assuming the mean and standard error are finite). If the
number of samples is not sufficiently large, a t distribution can be used with Nsamp – 1 degrees of
freedom [169].

154

receive antennas of a given user, the Rayleigh components account for a much larger

proportion of the randomness in the simulations.

Overall, the largest 95% confidence intervals appear to occur for smaller K, and also

at lower SNR (not shown above). This is reasonable; we expect there to be a larger

variance in the supportable capacity when there is not a larger pool of users to choose

18

19

20

21

22

23

Nsamp = 5 Nsamp = 10

19

20

21

22

Nsamp = 25 Nsamp = 50

19

20

21

22

A
ve

ra
ge

 su
m

 ra
te

 (b
it/

s/
H

z)

Nsamp = 100 Nsamp = 250

19

20

21

22

Nsamp = 500 Nsamp = 1000

5 10 20 30 40 50 60 70 80 90 100
19

20

21

22

Number of users (K)

Nsamp = 2500

5 10 20 30 40 50 60 70 80 90 100
Number of users (K)

Nsamp = 5000

Figure A.3: Comparison of average sum rate and 95% confidence intervals vs. K for genetic

scheduling algorithm for BD with varying number of Monte Carlo simulation runs Nsamp; MT = 8,
N = 2, K0 = 4, SNR = 10 dB.

155

from, and when channel conditions dictate more often that less than the maximum

number of users should be scheduled. However, in the worst case throughout our work,

we generally see that the 95% confidence interval around the average sum rate / sum-

capacity is still at most about 0.06 bit/s/Hz, similar to what is seen with Nsamp = 1000 in

Figure A.3. The Nsamp = 5000 case from Figure A.3 is fairly representative of the error for

most of the cases in this thesis, regardless of the specific precoding method, SNR, etc.

A.3 Comparison with Published Results

One final check that can be done is to compare the results from our work with those

that exist in prior literature. This is primarily meant to verify that the system simulations

have been properly set up. Since almost all prior work focuses on maximizing the system

sum rate, the comparisons can be made relative to our optimal results for exhaustive

search scheduling. In cases where we simulate scheduling algorithms proposed by others,

those results can also be compared for further verification of the setup.

For the results on DPC, we can compare our maximum throughput results1 with those

in [75] and [109]. The results of our exhaustive search from Figure 3.6(a) and Figure 3.7

match those for the sum-capacity in Figure 14 and Figure 11 of [75] for MT = 2 and NR =

1. Our results for MT = 4 in Figure 3.7 are slightly below the sum-capacity in Figure 11 of

[75], but we note that the sum-capacity therein does not assume that a maximum of MT

users is scheduled. However, our results are very close to the best “successive

projections” scheduling algorithm of [75], which does only schedule MT users. Thus, our

exhaustive search results for MT = 4 (with a maximum of MT users) are also likely

accurate. Lastly, our comparable results for ZFB in Chapter 3 are the same as those

reported in [109].

For our results on BD scheduling, we can compare with those in [69] and [147]. Our

exhaustive search results in Figure 5.1 match those in Figure 1 of [69] for MT = 4 and N =

2 at 10 dB. Furthermore, our simulation results for the SCAHE scheduling algorithms in

[69] also match those reported in [69]. Additionally, our exhaustive search and SCAHE

results for MT = 8 and N = 2 in Figure 5.2 at 10 dB match those reported in Figure 2 of

[147].

There exist almost no results in the literature for SZF scheduling, so there is very

little with which to compare. Exhaustive search results were obtained from simulations

1 We unfortunately have been unable to locate other appropriate results in the literature for
proportionally fair scheduling with DPC, to which we can compare our results in Chapter 3.

156

independently in [142]; these match our results in Figure 5.3. There are also SZF results

for K = K0 in [50]. We simulated these same cases for our comparison of SZF covariance

optimization algorithms in Chapter 6. Our simulation results of Figure 6.1 and Figure 6.2

are the same as those for BD and SZF reported in Figures 5 and 6 of [50].

Thus, overall, we have first seen that the random values we have generated fall into

the desired complex Gaussian distribution. Second, the confidence intervals for the mean

sum rates of our simulations are quite tight. Last, the results of our simulations match

those reported in other published works for the same system setup and certain identical

scheduling algorithms. Thus, we can have a high degree of confidence in the validity of

our results.

157

Appendix B

Optimality Conditions for DPC BC
Scheduling

From equation (2.9) in Chapter 2, the rate for a given user (k) in a DPC system is

given by:

2log

H
k u ku k

k H
k u ku k

R

I H Σ H

I H Σ H
. (B.1)

Without loss of generality, let the users be ordered such that (k) = k. With non-

interfering subcarriers, the rate for user k on subcarrier j is then:

 2log

H
jk ju jku k

jk H
jk ju jku k

R

I H Σ H

I H Σ H
. (B.2)

Taking the constraints mentioned in Chapter 3 into account, the optimization problem

,G

 of equation (3.6) can be expressed with Lagrange multipliers [170] as:

11

11
,..., 1

, , : 0

max ; ; ,...,
C

C
N KC

jk

N

N K j jk C
j k

jk jk jk jk
j k j k

G Tr P N

Tr Tr

Σ Σ

Ω

Σ Σ Σ

Σ Ω Σ

. (B.3)

The final term in equation (B.3) ensures that the transmit covariance matrices jk are

positive semidefinite, given that the variables jk are positive semidefinite. Since the

trace of a matrix is the sum of its eigenvalues, if jk is not positive semidefinite, it will

have a negative eigenvalue, and hence there will exist jk such that the trace of jkjk and

the overall equation will not be maximized compared to a case for which jk were

positive semidefinite and had non-negative eigenvalues.

Let sjk be a binary variable indicating if user k is scheduled on subcarrier j. The

Karush-Kuhn-Tucker [170] conditions for optimality are then:

158

 0, 1,..,j jk C C
k

Tr P N j N

 Σ

; (B.4)

 0jk jkTr Σ ; (B.5)

 , , : 1
T T T T

T
j jk M jk M jk M M jk

jk

G
s j k s

I I Ω 0

Σ
. (B.6)

We can expand / jkG Σ as:

 i

jk i ji

RG G

R R

 Σ

1

ji

i
jk

R

 Σ
. (B.7)

Lemma: The partial derivatives /ji jkR Σ are given by:

1 1

* * * *

1

* *

,

,

,
T T

T T T T T T
ji ji ju ji ji ji ji ju ji ji

u i u i

ji

T T T
jk ji ji ju ji ji

u i

M M

k i

R

k i

k i

H I H Σ H H H I H Σ H H

Σ H I H Σ H H

0

, (B.8)

and in particular,

1

1 * *
1 1 1 1

1

0j T T T
j j ju j j

uj

R

H I H Σ H H

Σ
 , (B.9)

where T and * are the (non-Hermitian) transpose and conjugate operators, respectively.

Proof: We can replace the log2 in (B.2) with log without affecting the maximization.

Then, assuming k > i, we can expand (B.2) as:

,

,

log log

log

log

H H
ji ji ju ji ji ju ji

u i u i

H H
ji jk ji ji ju ji

u i u k

H H
ji jk ji ji ju ji

u i u k

R

I H Σ H I H Σ H

I H Σ H H Σ H

I H Σ H H Σ H

. (B.10)

If k < i, jk does not appear in Rji, and thus /
T Tji jk M MR Σ 0 . First, we consider

k i. Making some substitutions, let g(f) = log(f), f(U) = |U|, 0 jiA H , 1
H
jiA H , and

159

H
ji ju ji

u i

U I H Σ H . Then, based on the tables and techniques in [162],[171], we

can calculate the derivative of the first half of Rji as:

1 1 1

1 1 1

1
0 1 0 1

,

1 1
0 1 0 1

,

1 1
1 0 0 1

,

jk ju
u i u k

jk ju
u i u k

jk ju
u i u k

g f f f Tr

Tr Tr

Tr

Tr Tr

Tr Tr

U U U

U U U U U U

U I A Σ A A Σ A

U A Σ A U A Σ A

A U A Σ U A Σ A

. (B.11)

Note that the second half of the last line above does not contain the term jkΣ . Based

on [171], we therefore have:

11
0 1 0 1

1 1

0 0 1 1 0 1 0 1

1 1

0
TT T T T T

jk

T

T T T T T T T
ju ju

u i u i

T TT H T T H T T T
ji ji ju ji ji ji ji ju ji ji

u i u i

g

A U A A U A
Σ

A I A Σ A A A I A Σ A A

H I H Σ H H H I H Σ H H

. (B.12)

We now note that the second half of (B.10) is basically the same form as the first

half, provided now that k > i. If so, then we have:

1 1

* * * *ji T T T T T T
ji ji ju ji ji ji ji ju ji ji

u i u ijk

R

 H I H Σ H H H I H Σ H H
Σ

. (B.13)

However, if k = i, the second half of (B.10) disappears, and / /ji jk jkR g Σ Σ . This

proves the first part of the lemma.

In the following, note that any positive semidefinite or positive definite matrix A can

be expressed in the form A = MMH through a Cholesky decomposition [43]. The transmit

covariance matrices jk of the users, being of the form H
jk jk jkEΣ x x , are positive

semidefinite (as are their transposes), and hence a sum of those matrices would be such as

well. Let T
ju

u i

A Σ . Then,

160

 HT T T H T
ji ju ji ji ji ji ji ji ji

u i

H Σ H H AH H MM H H M H M (B.14)

is positive semidefinite. The addition of the identity matrix, which is positive definite, to

the above will make the sum strictly positive definite. Furthermore, note that the inverse

of a positive definite matrix is also positive definite [43]. Thus, letting B

1

T T
ji ju ji

u i

I H Σ H , and setting k = i, we have:

1

jk T T T
jk jk ju jk jk

u kjk

HT T H T T
jk jk jk jk jk jk

R

H I H Σ H H
Σ

H BH H LL H H L H L

. (B.15)

Thus, jk jkR Σ , and in particular 1 1j jR Σ , must be at least positive semidefinite.

In the event NR MT, and hence T
jkH has more columns than rows, if Hjk is full rank,

jk jkR Σ will also have full rank and hence in fact be strictly positive definite. In any

event, it is also clear that jk jkR Σ can only be equal to
T TM M0 if Hjk is an all-zero

matrix, which occurs with probability zero in practice. This completes the proof of the

lemma.

From (B.5), we know either jk or jkTr Σ is zero, and from the problem constraints

we know that jkTr Σ is zero if user k is not scheduled on subcarrier j, and greater than

zero if it is. Hence, if sjk = 1, jk = 0. From (B.4), for each j, either j is zero, or j > 0 and

 jk Ck
Tr P N

 Σ . Let us now focus on k = 1. Then, (B.7) reduces to 1/ jG Σ

 1 1 1/ /j jG R R Σ . From (B.6), since jk is zero when sjk = 1, if j is zero, then there

are two possibilities: (a)
T T

T
jk M MΩ 0 , and either 1/ 0G R or 1 1/

T Tj j M MR Σ 0 ; or

(b) 1 1 1 1 T T

T
j j j M MG R R Σ Ω 0 . However, we know from the lemma that

1 1j jR Σ is non-zero, and 1/ 0G R by the constraint of equation (3.3) in Chapter 3.

Thus, case (a) is impossible. Furthermore, since 1/ 0G R , and since 1 1j jR Σ and

T
jkΩ are both positive semidefinite, case (b) is also impossible; it is impossible for two

non-zero positive semidefinite matrices to add to an all-zero matrix. Thus, we must have

161

j > 0 for each j. This can also be proven intuitively; if jk Ck
Tr P N

 Σ , it is

always possible to increase the rate of the user encoded first by increasing its power until

 jk Ck
Tr P N

 Σ , without affecting the rates of the users encoded later in the order.

We lastly note that due to the structure of (B.8), it is only necessary to sum (B.7) over

all i k. (B.7) can then be expressed more compactly. Hence, from the above facts and

equations (B.4) to (B.8), we find the optimal transmit covariance matrices for a given set

of users and encoding order satisfy the following set of equations:

 , if 0
T Tjk M M jks Σ 0 ; (B.16)

 , 1,...,jk C C
k

Tr P N j N

 Σ

; (B.17)

 0jk jkTr Σ ; (B.18)

1 1

* * * *

,
T T T T

T T T T T T
ji ji ju ji ji ji ji ju ji ji

i k u i i k u ii i

T
j jk M jk M jk M M

G G

R R

s k

 H I H Σ H H H I H Σ H H

I I Ω 0
; (B.19)

 , 0jk jkΣ Ω . (B.20)

162

Appendix C

Least Squares Polynomial Fit for GA
Tuning

In Chapter 4, we find that there is a linear relationship between the log of the product

KMT and the log of a constant c for tuning the adaptive mutation rate parameters 1 and

2. This means we can express the relationship as a log(KMT) + b = log(c), for some

constants a and b. We now proceed to find the least squares fit for the polynomial

coefficients a and b [172]. The linear equations can be written in matrix form as follows:

log 3.227 log 20 1

log 7.45 log 40 1

log 17.2 log 80 1

a a

b b

X . (C.1)

The least squares fit values for a and b can then be found by left-multiplying both

sides of the above equation by the Moore-Penrose pseudoinverse [43] of X:

1 1†

log 3.227
1.2071

log 7.45
2.4445

log 17.2

T T T Ta a a

b b b

X X X X X X X X X . (C.2)

Thus, we have 1.2071 log(KMT) – 2.4445 = log(c). We can further expand b as

follows:

 2.4445 1.2071 2.0252 1.2071log 7.5773b . (C.3)

Thus, 1.2071 [log(KMT) – log(7.5773)] = log(c). Then, it is simply a matter of

rearranging the equation as 1.2071 log(KMT/7.5773) = log[(KMT/7.5773)1.2071] = log(c),

or c = (KMT/7.5773)1.2071. Thus, we finally have:

 1 + 0.152 = (KMT/7.5773)1.2071. (C.4)

163

Appendix D

Existing Method to Find Covariance
Matrices for Successive Zero-Forcing

In [50], the authors propose a suboptimal method to find covariance matrices for

successive zero-forcing (SZF) precoding that satisfy the required null space and sum-

trace constraints. This method involves finding optimal covariance matrices for the users

on the multiple access channel (MAC), transforming those matrices to the broadcast

channel (BC), and finally projecting the BC covariance matrices to the null space and

performing waterfilling for the user encoded last to obtain the SZF matrices. We

elaborate on the procedure in the following.

D.1 MAC Waterfilling

To begin, optimal covariance matrices Pi for the multiple access channel must be

found for the users. This could be done using any type of iterative waterfilling procedure

to maximize the sum rate for the MAC, or even any procedure to maximize the weighted

sum rate, if the weights are set to the same positive value for each user. The authors of

[50] recommend the algorithm in [107], and it is this algorithm that we use in our work.

To maximize the MAC sum rate and obtain the optimal Pi for K0 users, the algorithm

in [107] uses the following steps at each iteration n:

1) For each user i = 1,…,K0, generate an effective channel matrix:

 1 2
H

i i j j jj i

 G H I H P H , (D.1)

where Hi is the broadcast channel matrix for user i; the channel matrix for the dual

MAC is H
iH .

2) The effective channel matrices are treated as parallel, non-interfering channels.

Covariance matrices Si are found from the well-known waterfilling algorithm over

the block-diagonal matrix formed from
01, , Kblkdiag G G , with power constraint

P. First, the following SVD is computed for each i:

164

 H H
i i i i iG G U D V . (D.2)

Then, H
i i i iS U Λ U , where 1

i i
 Λ I D , (A)+ denotes component-wise the

maximum of each component of A and 0, and is found such that1 0

1

K

ii
Tr P

 Λ .

3) The covariance matrices are updated for the next iteration. If K0 = 2, this can be done

simply by 1n
i i

 P S . However, this update may not converge in general; the sum

rate may diverge from the optimal. To ensure convergence to the optimal sum rate for

any K0, the covariance matrices should be updated as follows:

 1 0

0 0

11n n
i i i

K

K K

 P S P . (D.3)

The authors of [107] also recommend that the first few iterations of the algorithm

could be updated by 1n
i i

 P S before switching to the update method of (D.3), to allow

faster initial convergence. In our work, we use a slight modification of this

recommendation. Either update method will always produce a set of covariance matrices

each iteration that meets the sum-power constraint, provided that the initial starting point

 0
iP used also meets that constraint. The algorithm will also monotonically approach the

optimal sum rate, unless it diverges under the first update method. Since during the

algorithm operation we monitor the sum rate at each iteration for convergence to a certain

accuracy, we can thus also trivially monitor for a decrease in the sum rate. If one is

found, only then do we switch the update method from 1n
i i

 P S to that in (D.3). This

provides faster total convergence, and still ensures convergence to the optimal sum rate

and covariance matrices Pi.

D.2 MAC to BC Transformations

Once the optimal Pi for the MAC are found, they must be converted to optimal i for

the BC. This is accomplished using the transformations proposed in [24], which we

describe below.

Assume without loss of generality an encoding / decoding order (j) = j, where user 1

in the order is assumed to be encoded last on the BC, and decoded first on the MAC. In

this case, the rate for each user on the MAC will be:

1 This assumes without loss of generality that the AWGN variance 2

n is 1.

165

0

0
2

1

log

K H
i i ii jM

j K H
i i ii j

R

I H P H

I H P H
, (D.4)

and the rate for each user on the BC will be:

1

2 1

1

log

j H
j i jiB

j j H
j i ji

R

I H Σ H

I H Σ H
. (D.5)

First, define and calculate a set of matrices Bj as follows:

 0

1

K H
j i i ii j

B I H P H . (D.6)

These are the interference matrices for each user j on the MAC (i.e., the denominator of

M
jR). Then, define a set of matrices Aj, which are the interference matrices for each user

on the BC, as:

 1

1

j H
j j i ji

 A I H Σ H . (D.7)

Lastly, for each j, calculate the product 1/ 2 1/ 2H
j j j
 B H A , and denote its SVD as:

 1/ 2 1/ 2H H
j j j j j j
 B H A F D G . (D.8)

The BC covariance matrices j and the matrices Aj can be calculated successively for

increasing j, starting with A1 = I. The transformation for j is given by:

 1/ 2 1/ 2 1/ 2 1/ 2H H
j j j j j j j j j j

 Σ B F G A P A G F B . (D.9)

Using this transformation will yield a set of BC covariance matrices j with

 jj
Tr Σ jj

Tr P . Furthermore, the transformation will result in M B
j jR R for all

j.

The order chosen for the users will obviously affect the covariance matrices and the

rates they obtain. The authors of [50] do not explicitly say what order to use for the

transformation. However, the equations they use imply that if user (1) is encoded first

for SZF, then user (1) should be encoded last for DPC on the BC. In this manner, the

equation for the DPC user rates will be identical to the equation for the SZF user rates,

apart from the additional null space constraints of SZF.

D.3 SZF Null Space Projections

With the optimal covariance matrices j for DPC obtained, the authors of [50] then

project those matrices into the null spaces of users as required for SZF. Let us assume an

166

SZF encoding order (j) = j, with user 1 encoded first. The projection then proceeds as

follows:

1) Calculate the null space basis vectors 0
1jV for each user j (see Chapter 5).

2) For each user j = 2 to K0 – 1, obtain the SZF covariance matrix Qj as follows:

 0 0 0 0
1 1 1 1

H H

j j j j j j Q V V Σ V V . (D.10)

We note that the projection is unnecessary for j = 1, since 0
0V I . Thus, Q1 = 1.

3) For the final user j = K0, find the effective channel Heff:

 0

0 0 0 0 0

1 2
1 0 0

1 11

HK H
eff K j K K K Kj

 H I H Q H H V V . (D.11)

4) Obtain a temporary covariance matrix
0KQ by waterfilling over Heff with the power

constraint 0 1

1

K

jj
P Tr

 Q .

5) Obtain the final covariance matrix
0KQ by:

0 0 0 0 0 0

0 0 0 0
1 1 1 1

H H

K K K K K K Q V V Q V V . (D.12)

Although the SZF covariance method described in this appendix is suboptimal, it

does perform quite well for K0 = 2, and for higher K0 at low to medium SNRs. However,

as K0 or the SNR grows larger, the conjugate gradient projection algorithm we propose in

Chapter 6 can provide a significant improvement in the sum rate.

167

Appendix E

Supplemental Simulation Results for
Scheduling Algorithms under Block
Diagonalization and Successive Zero-
Forcing

This appendix contains additional simulation results for the scheduling algorithms

discussed in Chapter 5. The results here cover a wider range of signal-to-noise ratios

(SNRs) than those presented in Chapter 5. We first present the results for BD, followed

by the results for SZF. The graphs begin on the next page; the remainder of this page is

intentionally left blank.

168

21

22

23
24

25

26

27 20 dB

15

16

17

18

19

20

21
15 dB

10

11

12

13

14

15

A
ve

ra
ge

 su
m

 ra
te

 (b
it/

s/
H

z)

10 dB

6

6.5

7

7.5

8

8.5

9 5 dB

0 10 20 30 40 50 60 70 80 90 100
3.5

4

4.5

5

Number of users (K)

0 dB

Exh. Search
GrA
GA
SCAHE−Cap.
SCAHE−Frob.

Figure E.1: Performance vs. K of exhaustive search, greedy (GrA), genetic (GA), and SCAHE

[69] scheduling algorithms for BD and various SNR; MT = 4, Nk = N = 2, K0 = 2.

169

21

22

23

24

25

26

27

20 dB

15

16

17

18

19

20 15 dB

10

11

12

13

14

A
ve

ra
ge

 su
m

 ra
te

 (b
it/

s/
H

z)

10 dB

6

6.5

7

7.5

8

8.5

9
5 dB

0 10 20 30 40 50 60 70 80 90 100
3.5

4

4.5

5

Number of users (K)

0 dB

GrA
GA
HA1
HA2

Figure E.2: Performance vs. K of greedy (GrA), genetic (GA), and hybrid scheduling algorithms 1

and 2 (HA1 and HA2) for BD and various SNR; MT = 4, Nk = N = 2, K0 = 2.

170

34
36
38
40
42
44
46
48

20 dB

24

26

28

30

32

34

36
15 dB

17

19

21

23

25

A
ve

ra
ge

 su
m

 ra
te

 (b
it/

s/
H

z)

10 dB

11

12

13

14

15

5 dB

0 10 20 30 40 50 60 70 80 90 100

6

6.5

7

7.5

8

Number of users (K)

0 dB

Exh. Search
GrA
GA
SCAHE−Cap.
SCAHE−Frob.

Figure E.3: Performance vs. K of exhaustive search, greedy (GrA), genetic (GA), and SCAHE

[69] scheduling algorithms for BD and various SNR; MT = 8, Nk = N = 2, K0 = 4.

171

34

36

38

40

42

44

46

20 dB

24

26

28

30

32 15 dB

17

18

19

20

21

22

A
ve

ra
ge

 su
m

 ra
te

 (b
it/

s/
H

z)

10 dB

10.5
11

11.5
12

12.5
13

13.5
14

5 dB

0 10 20 30 40 50 60 70 80 90 100

6

6.5

7

7.5

Number of users (K)

0 dB

GrA
GA
HA1
HA2

Figure E.4: Performance vs. K of greedy (GrA), genetic (GA), and hybrid scheduling algorithms 1

and 2 (HA1 and HA2) for BD and various SNR; MT = 8, Nk = N = 2, K0 = 4.

172

20
21
22
23
24
25
26
27

20 dB

15

16

17

18

19

20 15 dB

11

12

13

14

15

A
ve

ra
ge

 su
m

 ra
te

 (b
it/

s/
H

z)

10 dB

6.5
7

7.5
8

8.5
9

9.5
10

5 dB

0 10 20 30 40 50 60 70 80 90 100

4

4.5

5

5.5

Number of users (K)

0 dB

ES
GrA
GA
HA1
HA2

Figure E.5: Performance vs. K of greedy (GrA), genetic (GA), and hybrid scheduling algorithms 1

and 2 (HA1 and HA2) for SZF and various SNR; MT = 4, Nk = N = 2, K0 = 2.

173

31

33

35

37

39

41

20 dB

24

26

28

30

32

15 dB

17
18
19
20
21
22
23
24

A
ve

ra
ge

 su
m

 ra
te

 (b
it/

s/
H

z) 10 dB

11

12

13

14

15
5 dB

0 10 20 30 40 50 60 70 80 90 100

6.5

7

7.5

8

Number of users (K)

0 dB

ES
GrA
GA
HA1
HA2

Figure E.6: Performance vs. K of greedy (GrA), genetic (GA), and hybrid scheduling algorithms 1

and 2 (HA1 and HA2) for SZF and various SNR; MT = 8, Nk = N = 2, K0 = 4.

174

Appendix F

Derivation of Gradient of SZF Weighted
Sum Rate

Let us assume as in Chapter 6 an encoding order for SZF of (i) = i, where user 1 is

encoded first. The weighted sum rate of SZF is then 0

1

K

i ii
w R

 , where:

0 0
1 111

2 21 1 0 0
1 11 1

10 0 0 0
2 1 1 2 1 11 1

log log

log log

Hii H HH
i j j j j ii j i jj

i i HiH H H
i j i i j j j j ik j

H Hi iH H H H
i j j j j i i j j j j ij j

R

I H V T T V HI H Q H

I H Q H I H V T T V H

I H V T T V H I H V T T V H

. (F.1)

Note that the expression for Ri is very similar to that for DPC, thus, we can find the

partial derivatives of Ri with respect to Qk in much the same manner as we used in

Appendix B. Let us define H
j j jY T T and H

j jX T . Furthermore, similar to as done in

Appendix B, let us define g(U) = log |U|, 0
0, 1ij i jA H V , 0

1, 1

H H
ij j iA V H , and U I

 0 0
1 11

Hi H
i j j j ij H V Y V H . Then, following equation (B.11) in Appendix B, for k i, we

can calculate the derivative of the first half of Ri with respect to Yk by:

 1 1
1, 0, 0, 1,1,

i

ik ik k ij j ijj j k
g Tr Tr

 A U A Y U A Y A . (F.2)

The second half of (F.2) does not contain kY , so we may ignore it. Thus,

substituting for Yk, we get [162],[171]:

1 1
1, 0, 1, 0,

1
1, 0,

1 1
1, 0, 1, 0,

H
ik ik k ik ik k k

H H
ik ik k k k k

H H
ik ik k k ik ik k k

g Tr Tr

Tr

Tr Tr

A U A Y A U A X X

A U A X X X X

A U A X X A U A X X

. (F.3)

Now, from [171], if a differential g is a function of *Tr X (or of HTr X ,

since the trace of X* equals the trace of XH), then /g X will evaluate to an all-zero

175

matrix. (Similarly, if g is a function of Tr X , then */g X is also all-zero.) Thus,

we find:

 1
1, 0,

TH
ik ik k

k

g
0 A U A X

X
. (F.4)

Substituting in for the temporary variables, for k i, we thus have:

 1
0 0 0 0

1 1 1 11

T
H HiH H H

k i i j j j j i i k kH j
k

g

V H I H V T T V H H V T

T
. (F.5)

If k > i, then / H
kg T is an all-zero matrix. The derivation for the second half of Ri is

much the same, except that it is only non-zero for k i – 1.

Thus, we can now find the gradient of the weighted sum rate 0

1

K

WSZF i ii
R w R

 with

respect to user k as follows:

 0

* 1
2 2 2

T T
KWSZF WSZF i

k iH Hi
k k k

R R R
w

T T T

. (F.6)

As the first half of / H
i kR T is only non-zero for i k, and the second half is only

non-zero for i k + 1, the bounds of the summation can be reduced. This yields:

0

0

1
0 0 0 0

1 1 1 11

1
10 0 0 0

1 1 1 11
1

2

log 2

K
H HiH H H

i k i i j j j j i i k kj
i k

k K
H HiH H H

i k i i j j j j i i k kj
i k

w

w

V H I H V T T V H H V T

V H I H V T T V H H V T

. (F.7)

The denominator of log 2 comes from the fact that Ri uses a base-2 logarithm, while the

above derivations used a base-e (natural) logarithm. However, since our conjugate

gradient projection algorithm normalizes the gradients, the leading constants can be left

off. Then, pulling terms not involving i out of the summations, we finally find that the

gradient for user k is proportional to:

0

0

1

0 0 0
1 1 1

1

1
1

0 0 0
1 1 1

1 1

K iH HH H H
k k i i i j j j j i i

i k j

K i HH H H
i i i j j j j i i k k

i k j

w

w

G V H I H V T T V H H

H I H V T T V H H V T

. (F.8)

176

Appendix G

Supplemental Simulation Results for
Scheduling Algorithms under SZF with
Conjugate Gradient Projection
Covariance Optimization Method

This appendix contains additional simulation results for the scheduling algorithms

operating under successive zero-forcing (SZF), using the conjugate gradient projection

(CGP) algorithm we propose in Chapter 6 to optimize the covariance matrices. The

results here cover a wider range of signal-to-noise ratios (SNRs) than those presented in

Chapter 6. We compare the performance of our proposed algorithm with the original

method for the calculation of covariance matrices from [50]. For reference, we also show

the performance of the scheduling algorithms when using block diagonalization (BD).

The graphs are on the next page; the remainder of this page is intentionally left blank.

177

31

34

37

40

43

46

20 dB

24

26

28

30

32

34 15 dB

17
18
19
20
21
22
23
24
25

A
ve

ra
ge

 su
m

 ra
te

 (b
it/

s/
H

z)

10 dB

11

12

13

14

15 5 dB

0 10 20 30 40 50 60 70 80 90 100

6

6.5

7

7.5

8

8.5

Number of users (K)

0 dB

GrA (CGP)
GA (CGP)
GrA (Orig.)
GA (Orig.)
GrA (BD)
GA (BD)

Figure G.1: Performance vs. K of greedy (GrA) and genetic (GA) scheduling algorithms for SZF,
using proposed CGP (with “round-robin” initialization) and original methods to obtain covariance
matrices. Performance of GrA and GA for BD also shown. MT = 8, N = 2, K0 = 4, various SNRs.

