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Introduction
Poly (N-isopropylacrylamide) (pNIPAm) is one of the most com-

pletely studied “smart” polymers due to its unique reversible thermo-
responsivity.That is, when pNIPAm in water is heated > ~31°C, it tran-
sits from a random coil to a globule conformation; this transition 
is reversed when T < ~31°C. This conformational change is accompa-
nied by water exchange process. When pNIPAm undergoes the coil to 
globule transition, water is expelled, while water is “sorbed” when the 
polymer undergoes the opposite process. Researchers have synthesized 
various structures from pNIPAm, e.g., block [1], random [2], and star 
[3] polymers, as well as crosslinked hydrogels, and ultimately colloidal-
ly stable particles (microgels [4], and nanogels [5]). Of these, microgels 
are generally defined as cross-linked networks of water soluble poly-
mers. The special network structure leads microgels to swell with water. 
Since stimuli responsive microgels were discovered, they have emerged 
as important building blocks for sensing, [6,7] chemical separation, 
[8,9] and drug delivery. [10,11] Compared with hydrogels, the size of 
microgels is in the range of tens of nanometers to several micrometers 
that gives rise to a rapid response to external stimuli. [12] Additionally, 
pNIPAm microgels can be functionalized with other comonomers, in-
cluding acrylic acid (AAc), [13-15] 2-hydroxyethyl methacrylate, [16] 
N-hydroxymethyl acrylamide, [17] and so on. Of these, AAc is com-
monly used to functionalize pNIPAm microgels to render them pH 
responsive. Since AAc has a pKa of ~ 4.25, pNIPAm-co-AAc microgels 
are negatively charged at pH> 4.25, and “neutral” (initiator affords the 
microgel with a slight negative charge) at pH< 4.25. As a result, pNI-
PAm-co-AAc microgels are not completely thermoresponsive at pH> 
4.25 due to Coulombic repulsions between the deprotonated AAc in the 
microgel structure. At pH< 4.25 the microgels are fully thermorespon-
sive. AAc also allows for facile functionalization of the microgels via 
reaction of amine containing molecules with the AAc on the microgel 
via carbodiimide coupling [18,19].

Various optical sensors have been designed with stimuli-responsive 
hydrogels/ microgels. For example, Asher et al. [20,21] developed three 
dimensional (3D) polymerized colloidal crystal array hydrogel sensing 
materials. Composed of stimuli-responsive hydrogels, these photonic 
materials (PMs) change their volume in response to external stimuli, 
resulting in the shift of the Bragg diffraction of the crystalline colloi-
dal array, and therefore yielding evident color changes. Additionally, 
Asher et al. [22] prepared close-packed two dimensional (2D) polysty-
rene particle arrays by self-assembly of spreading particle monolayers 
on mercury surfaces. Color alterations of high-diffraction efficiency 2D 
photonic crystals indicate environmental changes, and hence allow-
ing them to be developed for sensing. PMs fabricated by a number of 
groups [23-27] have refractive index order periodicity in 3D and 2D, 
however PMs can also have structural periodicity in one dimension 
(1D), yielding their own interesting optical properties and colors as 
well. In this submission, we review our recent work on pNIPAm micro-
gels based the 1D PM structure [28-33].

1D PMs are generally composed of periodically arranged layers of 
alternating refractive index in only one dimension (e.g. x, y, or z axis 
only) such as Bragg mirrors, interferometers, waveguides, and Fabry-
Pérot etalons; the reflected/refracted light at the interface of each layer 

leads to constructive/destructive interference, resulting in color. Re-
cently, Fabry-Pérot etalons (simply etalons) were investigated in our 
group [28-34] and others. [35-37] Etalons are composed of a dielectric 
cavity confined between two reflective surfaces (Scheme 1). After en-
tering the etalon, light resonates in the dielectric cavity, and therefore 
produces light interference. This interference gives rise to specific wave-
lengths of light that are reflected. Interestingly, the material can exhibit 
visible color tunability if the dielectric layer is of the appropriate thick-
ness, and can be made to change thickness. Furthermore, the refractive 
index of the dielectric layer can also affect the visible color. This is ac-
counted for by equation (1): 

         
 2 cosm ndλ θ=                                                                    (1)

where the specific wavelength maximum of the peak (λ) depends 
on the peak order (m), refractive index of the dielectric(n) and the 
spacing between the mirrors (d), as well as the angle of incidence(θ). 
[38] In our etalons, Au and pNIPAm-based microgels serve as the mir-
rors and the dielectric layer, respectively.

Fabrication of pNIPAm Microgel Based Etalons
To fabricate an etalon, a Au coated glass cover slip (2 nm Cr was 

used as an adhesion layer followed by 15 nm Au) was made using a 
thermal evaporation system (New Windsor, NY) at a rate of ~1 Å s-1 
(Cr), and ~0.2 Å s-1 (Au), respectively. Then, the Cr/Au coated sub-
strates (simply Au substrates) were annealed at 250°C for 3 h, followed 
by rinsing with ethanol, dried with N2 prior to use. After pNIPAm based 
microgels were deposited on Au substrate, followed by deposition of 
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Scheme 1: A typical Fabry–Pérot etalon.
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an additional 2 nm Cr/ 15 nm Au layer using the aforementioned in-
strument. Herein, we desire “perfect” microgel monolayers on the Au 
substrate. To accomplish this, a so called “paint-on” protocol was devel-
oped by our group. As seen in Scheme 2, the paint-on protocol requires 
centrifuging a solution of microgels (microgels synthesized according 
to [30]) until they were concentrated at the bottom of the centrifuge 
tube. This takes 30-60 min, depending on the diameter of the microgels. 

 

Dilute solution
of particles

Centrifuge
30 mins
8400 rcf

Remove
supernatant

2 nm Cr
15 nm Au

Glass Glass-Au Glass-Au

Deposit

Spread with
pipette tip

Rotate,
Spread with
pipette tip

EtOH
N2 dry

40µL of
particles

Scheme 2: The “paint-on” protocol for etalon fabrication. Reprinted with per-
mission from [29] Copyright (2012) American Chemical Society.

 
Figure 1: Experimental setup for investigating the optical properties of the et-
alons.
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Figure 2: λmax versus temperature for etalons. Squares (■) indicate data tak-
en at pH 3.0, and triangles (▲) indicate data taken at pH 6.5. Reproduced 
with permission from [30] Copyright (2012) WILEY-VCH Verlag GmbH & Co. 
KGaA, Weinheim.
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Figure 3: Reaction scheme for (a) the functionalization of the acrylic acid 
moieties on the microgel with 3-aminophenylboronic acid (APBA) followed 
by the activation of the boronic acid with base and (b) a cartoon depiction of 
the glucose responsivity of an APBA-functionalized microgel etalon at pH 9. 
Reproduced with permission from [32] Copyright 2010, Springer. 
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Figure 4: λmax of APBA modified microgels based etalons as a function of time 
after introduction of a 3 mg/mL glucose solution. Reproduced with permission 
from [32] Copyright 2012, Springer.

 
Figure 5: APBA-functionalized microgel based etalons show visible color 
differences when they are soaked in (a) 5 mM pH 9 carbonate buffer ver-
sus (b) a pH 9 carbonate buffer containing 3 mg/mL glucose for 2 hours. 
Various etalon controls, e.g., (c, d) etalons fabricated by exposure to APBA 
only, and (e, f) EDC only, show no significant color change (top) before and 
(bottom) after glucose exposure. To make the etalon’s color more apparent, 
the image brightness of the select region of the etalon was increased using 
image processing software. Scale bars are 5 mm. Reproduced with permis-
sion from [32] Copyright 2012, Springer. 
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material that changes color in response to glucose addition, as depicted 
in Figure 3.Therefore, the APBA modified microgels based etalons were 
fabricated, and we studied their spectral responsive properties with glu-
cose. As seen in Figure 4, there is a significant spectral red-shift (~134 
nm) in the presence of 3 mg/mL solution of glucose (pH 9 carbonate 
buffer) and the majority of the spectral shift occurs within 30 minutes 
of glucose introduction, therefore yielding a visible color changes (Fig-
ure 5). Given that APBA can bind to other diols as well, APBA modi-
fied microgel etalons can exhibit a colorimetric and spectral response 
to other biologically relevant molecules as well, thus, further specificity 
will need to be built in for future biosensing efforts.

Thus far, our group and others have focused on investigating the 
color tunability of a complete PM [29-33]. To move the field forward, 
one challenge is modulating the color of the material in specific regions, 
while not affecting the optical properties of another, spatially isolated, 
region. Recently our group investigated the ability of the etalon to be 
solvated, and the color modulated, in spatially isolated regions. Specifi-
cally, pH 3.0, 4.0, 7.0 solutions were deposited between three separate 
reflectance probes and an etalon, and the reflectance spectra for the dif-
ferent regions were collected as a function of temperature. As seen in 
Figure 6, the peak for the spot at pH 3.0 significantly blue-shifts with 
increasing temperature, while the spots at pH 4.0 and 7.0 shift mini-
mally over the same temperature range. Additionally, the colors of the 
individual spots are visibly distinct, and change independently as a 
function of temperature. For example, the pH 3.0 spot visibly changes 
color from green to red as the temperature increases, while the oth-
ers do not significantly change. Although three spots are close to each 
other, independent responsive behavior is observed as expected. This 
independent responsive behavior on a single etalon enhances the utility 
of the materials for sensing applications.

So far, our pNIPAm microgel based etalons also show potential ap-
plications in humidity sensing, pressure sensing, and organic solvent 
titration (data not shown). 

Conclusions
With the fascinating properties of pNIPAm microgels and the in-

vention of the “paint-on” protocol, it is quite simple to fabricate a variety 
of pNIPAm microgels based etalons. Given that tunable “lattice” spac-
ing dominates colors in ordered materials, pNIPAm microgels based 

Following centrifugation, the supernatant solution was removed, and a 
40 µL aliquot of the concentrated microgels was deposited onto the Au 
substrate at 30°C. This aliquot was then spread toward each edge using 
the side of a micropipette tip until the microgels covered the entire Au 
substrate. The spreading continued until the microgel solution was too 
viscous to spread over the surface. At that point, the microgels were al-
lowed to dry completely on the substrate for 2 h at 35°C. After 2 h, the 
dry film was rinsed with copious amounts of DI water and soaked in DI 
water overnight to remove microgels not bound directly to the Au. This 
method yields an extremely uniform etalon both spectrally and visu-
ally. [29] Moreover, homogeneity of the response of the etalons was also 
significantly enhanced from spot to spot using our painting protocol. In 
addition, this painting method can be applied to coat a variety of differ-
ent microgels on a variety of surfaces [31].

Application
To investigate the thermo- and pH-responsivity of the etalon, we 

secure it in a special chamber, Figure 1. The chamber allows us to di-
rectly measure the reflectance spectrum from the etalon, and allows us 
to very precisely control the temperature of the solution the etalon is 
in. Using this setup, we can easily monitor the wavelength maximum 
(λmax) in the reflectance spectrum for a given peak order as a function of 
temperature and pH. From Figure 2, we see that when the etalon is im-
mersed in pH 3.0 solution, the λmax shows a blue-shift of approximately 
300 nm over the given temperature range. This shift is attributed to the 
collapse of the microgels at high temperature bringing the Au mirrors 
closer to one another shifting λmax accordingly based on equation 1. 
Moreover, the most dramatic shift occurs between 29 and 35°C, which 
correlates with the behavior of the microgels in solution. At pH 6.5, this 
behavior is suppressed due to Coulombic repulsion deprotonated AAc 
in the microgel structure. This behavior shows the sensitivity of etalons 
toward temperature and pH changes. 

To assess whether etalons can potentially be developed for point-of-
care (POC) diagnostic applications, we used glucose sensitive etalons 
for the proof-of-concept. [32] Glucose sensitive microgels were synthe-
sized by modification of the microgels with aminophenylboronic acid 
(APBA) APBA-functionalized pNIPAm-based microgels have been 
shown to change solvation state in a manner that depended on glu-
cose concentration. Specifically, they swell in the presence of glucose. 
Therefore, fabrication of etalons from these microgels should yield a 
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etalons can be made to respond to pH and temperature, changing color 
visually and spectrally. APBA functionalized pNIPAm microgels ren-
dered etalons responsive to biologically molecules (i.e., glucose), thus 
the color of the etalon changes in the presence of biological analytes. 
Also, the independent tunable optical properties at different regions 
on a single etalon are realized. Even though pNIPAM micorgels have 
been widely studied, pNIPAm microgel based etalons require further 
research. Combining promising physical and chemical properties of 
pNIPAm microgels with optical properties of etalons, pNIPAm micro-
gel based etalons are likely to become quite appealing biosensors in the 
near future.
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