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Abstract

Infants start developing rudimentary language skills and can start understanding

simple words well before their first birthday [1]. This development has also been shown

primarily using Event Related Potential (ERP) techniques to find evidence of word

comprehension in the infant brain [2, 3]. While these works validate the presence of

semantic representations of words (word meaning) in infants, they do not tell us about

the mental processes involved in the manifestation of these semantic representations

or the content of the representations. To this end, we use a decoding approach where

we employ machine learning techniques on Electroencephalography (EEG) data to

predict the semantic representations of words found in the brain activity of infants.

We perform multiple analyses to explore word semantic representations in two groups

of infants (9-month-old and 12-month-old). Our analyses show significantly above

chance decodability of overall word semantics, word animacy, and word phonetics.

As we analyze brain activity, we observe that participants in both age groups show

signs of word comprehension immediately after word onset, marked by our model’s

significantly above chance word prediction accuracy. We also observed strong neural

representations of word phonetics in the brain data for both age groups, some likely

correlated to word decoding accuracy and others not. Lastly, we discover that the

neural representations of word semantics are similar in both infant age groups. Our

results on word semantics, phonetics, and animacy decodability, give us insights into

the evolution of neural representation of word meaning in infants.
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Chapter 1

Introduction

Human beings have a marvellous capability of using language to communicate and

understand each other. This extraordinary skill starts developing early on in one’s

life and continues to evolve as we grow up. When we hear or read words, our brain

processes this information and provides us with a semantic understanding of these

words. But how does our brain process this information, and how does it map the text

that we read or a word that we hear to its meaning? That question is of paramount

interest as it gives us a preview of the inner workings of the human mind. Accordingly,

many studies have explored the neural responses (brain-activity) to word stimuli [5–

9]. These neural responses to stimuli have primarily been explored in adults but less

studied in infants. The present work examines the neural responses recorded from

infants from two age groups while they were presented with a set of word stimuli.

Each word in a language has some meaning associated with it. This meaning

is usually referred to as semantics and represents the conceptual ideas attached to

each word (e.g., cat is an animal, apple is a fruit and is edible). These semantics

can be modeled computationally using mathematical models obtained from statistical

modeling of large corpora of text. The trained semantic models of text express various

characteristics of words such as gender, plurality, etc. [10]. These semantic models

have been beneficial for studying language processing in the brain.

One can then put together recorded brain activity and semantic models to study
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the processes involved in the brain during word understanding. We can then use a

decoding approach where a machine learning model is used to predict the stimuli from

recorded brain activity.

Previous studies conducted on brain-imaging data recorded from adults have shown

success in decoding word semantics [5, 11, 12]; we extend this idea to brain-imaging

data recorded from infants. Specifically, we analyze the change in neural response

patterns as the infants hear single words. Infants in two age groups (9-month-old and

12-month-old) listened to single words spoken by a native English speaker while their

EEG data was recorded. We then trained a machine learning model to decode the

semantic representations of the words from the brain activity.

Our analyses on brain-imaging data collected from infants provide evidence that,

• EEG data recorded from 9-month-old and 12-month-old infants can be used

with a machine learning approach to reveal semantic information.

• Both 9-month-old and 12-month-old infants show high decoding accuracy of

words immediately after word onset.

• Individual word stimuli properties such as phonetics can be decoded with high

accuracy from both 9-month-old and 12-month-old infants.

• The neural responses of 9-month-old and 12-month-old infants show similar

representations of word semantics.

In the following chapters, we will look at existing literature in the domain of se-

mantic research, the methodology used for our analyses, and the results.
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1.1 Thesis Organization

In this thesis, we apply computational techniques to EEG data to explore infants’

neural responses as they process word stimuli. The next chapter provides background

work that will help situate the work presented here. We first cover studies that use

machine learning techniques for brain decoding and describe computational models

for representing word semantics. We also discuss the existing semantic research in

infants. Chapter 3 outlines the design of our study and the various components

involved. We describe the stimuli, the data collection process, the prediction frame-

work, performance metrics, and the statistical significance testing methodology. In

chapter 4, we report our findings and discuss the results obtained. Finally, in chapter

5, we conclude by recapitulating our study, summarizing our results, and considering

future directions.
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Chapter 2

Background

In this chapter, we first provide a short overview of machine learning techniques for

brain-imaging related analyses, then explain computational models for word seman-

tics, and finally discuss existing research in representations of single word semantics

in the human brain. Throughout the rest of this thesis, we use computational models

of word semantics and machine learning to study word meaning comprehension in the

infant brain.

2.1 Machine Learning for brain decoding

Machine Learning has been gaining ground as one of the primary analysis techniques

for neuroscience research. With the advent of convenient and easy-to-use software

packages, there is no hindrance in considering machine learning for neuroimaging

analysis [13]. A machine learning model is usually a mathematical function h(X) that

maps a set of inputs X to a set of outputs Y . Effectively, h learns a transformation

which, when applied to the input data X, results in predictions Y . The function

h is generally learned by optimizing an objective function (loss function) using an

optimization algorithm. Under the umbrella of machine learning, multiple algorithms

exist, each suitable for a different task. They can be applied to any type of brain-

imaging data (fMRI, MEG, EEG, fNIRS etc.) [14, 15].
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Functional Magnetic Resonance Imaging (fMRI), Magnetoencephalography (MEG),

and Electroencephalography (EEG) are imaging modalities that record brain-activity.

fMRI is a non-invasive brain-imaging technique that records brain-activity by mea-

suring changes in blood oxygenation level as the participant is engaged in information

processing. It provides excellent spatial resolution and is ideal for voxel-level analyses.

fMRI also has the advantage of recording the whole brain data as a three-dimensional

image, thus providing insights into various regions of the brain. However, fMRI data

is expensive to collect and suffers from poor temporal resolution. fNIRS also mea-

sures changes in blood oxygenation level but has higher temporal resolution than

fMRI. On the other hand, techniques such as Magnetoencephalography (MEG) and

Electroencephalography (EEG) are more suited for temporal analyses of neural re-

sponses. In our study, we use EEG data as it has the advantage of high temporal

resolution. EEG is a non-invasive technique because it records brain activity in the

form of electrical signals from electrodes placed on the participants’ scalp. EEG also

requires minimal experimental set-up, and is less expensive to collect. Therefore, it is

an ideal brain-imaging technique when participants tend to move a lot (e.g., infants).

Machine Learning can be applied to brain-imaging data in many ways. Among

these, the encoding and decoding approaches have been successfully used to study

language in the human brain. A decoding approach is one where the stimulus is

predicted from the neural responses [15, 16] and an encoding approach is one where

the neural responses are predicted from the stimuli [8]. A decoding problem can be

used to see if the brain-imaging data contains information for a stimuli set. On the

other hand, an encoding approach can be helpful to understand the computational

rules responsible for the neural response given a stimulus. In this work, we use the

decoding approach where we train a machine learning model on brain-imaging data

collected from infants to predict the stimuli presented to them.
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2.2 Computational Models of Semantic Represen-

tation of Words

Every word has a meaning attached to it which allows us to comprehend the overall

meaning of, for example, a sentence. While humans have a mental representation of

word meaning, computers do not know the meaning attached to the words. Fortu-

nately, each word can be represented in a numerical format, allowing computers to

have a representation of word meaning. To put it another way, attaching semantic

meaning to words can be accomplished by establishing a numerical representation

for each. This can be achieved by assigning each word in a vocabulary a vector of

real numbers called a word vector. Each word vector is a list of multiple real val-

ues, which effectively represents the word meaning in a higher dimensional numerical

space. These word vectors are typically built using the words’ co-occurrence statis-

tics with other words. This leverages the concept of distributional semantics, which

means that words with similar meanings frequently occur in similar contexts [17]

(for example, the word ’orange’ frequently occurs with ’fruit’ than with ’mountain’).

Therefore, similar words have similar real-valued word vectors and thus are close to

each other in the higher dimensional space. Due to this property of word vectors,

they are useful for representing word semantics in computers, i.e., word meaning.

Specifically, semantics for a word can be represented by its equivalent word vector.

Word2Vec is a fantastic example of a modern word vector model introduced in [18],

that provided two neural network based algorithms for learning vector representations

of words. These were the Continuous Bag of Words (CBOW) and Skip-gram models,

both of which were shown to provide high performance on Natural Language Process-

ing (NLP) based tasks [19]. In general, word vector models provide n-dimensional

vectors of numbers for each word. These word vectors can then help represent the

semantics of the stimuli words in downstream tasks such as decoding. In the work

laid out in this thesis, we will use the word vectors from the Skip-gram model of
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Word2Vec to represent the word semantics in a numerical format and then decode

these word vectors from the brain-imaging data.

2.3 Semantic Research using brain-imaging data

2.3.1 Semantic Decoding in Adults

Semantic representation of words in the human brain has been studied fairly ex-

tensively and new discoveries are constantly being made. Current brain-imaging

techniques provide us with a lot of data for finding patterns that lead to ideas and

insights. However, such studies have usually been conducted on brain imaging data

collected from adults. This is primarily because collecting data from adults is gener-

ally seamless and easy.

To decode these semantic representations from the brain, machine learning presents

itself as one of the major analyses techniques. A cognitive state classification con-

ducted by Mitchell et al. in 2004 [20] showed that machine learning methods can be

employed for decoding semantic categories of written stimuli from whole brain fMRI

(functional magnetic resonance imaging) data collected from adults. In this study,

university students participated in various tasks while their fMRI data was collected.

Then a comparative analysis was performed using different machine learning algo-

rithms (Gaussian Näıve Bayes, Support Vector Machines and k-Nearest Neighbors)

on the fMRI data to classify cognitive states. This indicated that machine learning

models can be successfully applied to brain-imaging data .

Other studies that required participants to perform a language related task, also

showed that the word semantics information is encoded in the brain. A study con-

ducted in 2014 by Fyshe et al. built vector space models of words by incorporating

brain-imaging data [21]. Eighteen participants took part in the study and their MEG

and fMRI data were recorded while they viewed sixty concrete nouns. To represent

these sixty nouns, vector space models that encode semantic information were built.

7



A simple L2 regularized linear regression model was used to predict these word vec-

tors from brain-imaging data. It was observed that when brain-imaging data and

text were leveraged to build the word vectors, the regression model outperformed

in predicting the word vectors compared to predicting them when the word vectors

were built using only text. The finding that the word vectors built by leveraging

brain-imaging data in addition to text were better at representing word semantics

than text alone shows that the brain-imaging data had semantics encoded in it.

Another study conducted by Sudre et al. in 2012 used MEG data where machine

learning was used to decode perceptual and semantic features of 60 concrete nouns

[9] using a classification approach. By decoding perceptual and semantic features,

an MEG based classifier was able to determine two different concrete nouns not

seen during training. The temporal analyses conducted provided insights into the

difference between the time course of MEG magnitude and the decodable semantic

information; it showed that perceptual information can be decoded before semantic

information. This study showed that applying machine learning to timeseries data

can help us discover dynamic patterns that vary with time.

Machine Learning has also been used with MEG data to decode phrase stimuli

semantics from brain-imaging data. For example, Fyshe et al. in 2019 showed that a

simple linear model (ridge regression) was able to track the neural decoding of adjec-

tive and noun phrase semantics from MEG data [5]. A total of thirty adjective-noun

phrases were present in the stimuli set, out of which twenty-eight were used for train-

ing and two for model performance evaluation. The decoding model also predicted

the semantics of the adjective-noun phrases, indicating that neural responses contain

information pertaining to the stimuli much later after stimuli offset. All in all, ma-

chine learning methods are a great choice for semantic decoding research and also for

studies involving temporal analyses of brain-imaging data.
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2.3.2 Decoding infant brain-activity

As we have seen with brain-imaging data recorded from adults, machine learning

can also be applied to brain-imaging data collected from infants. In fact, classical

and modern machine learning techniques have been used to investigate EEG data in

developmental studies. For example, Gibbon et al. used Support Vector Machine

(SVM) and Convolutional Neural Network (CNN) to show that rhythmic stimuli

can be accurately classified from EEG data collected from infants of 8-weeks-old

[22]. Another study used SVM on EEG data obtained from 6-month-old infants

to accurately classify their risk of developing language related disorders [23]. This

supports the idea that machine learning can be used on brain-imaging data collected

from infants in downstream tasks, and using computational models can also provide

us with valuable insights into the dataset over traditional methods such as Event

Related Potential (ERP).

Other techniques such as the Multivariate Pattern Analysis (MVPA) technique

have also been used to decode the infant mind. Studies such as [24] used functional

near-infrared spectroscopy (fNIRS) brain-imaging data (a technique that measures

changes in cortical blood oxygenation) in a task that classifies a set of stimuli into

audio or visual categories. In this study, two datasets were used where in the first

dataset, infants viewed either a visual stimulus or an audio stimulus, and in the second

dataset, the infants viewed a combination of audio-visual stimuli. fNIRS data was

collected while the infants were presented with the stimuli. Then, a correlation-based

accuracy metric was used to decode unlabelled stimuli from a held-out test infant’s

data. Above chance accuracy was observed for both datasets providing evidence that

fNIRS can be a useful technique to study the human brain. Using fNIRS and fMRI

techniques is ideal when spatial information is vital. On the other hand, our study

uses EEG for a language related task as it is ideal for observing changes in neural

responses over time.
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Compared to the plethora of semantic decoding research conducted with neu-

roimaging data collected from adults, there is a scarcity of research where machine

learning techniques have been applied to decode semantics from infant neuroimaging

data. Semantic research in infants has traditionally been carried out using Event Re-

lated Potentials (ERP), a characteristic of EEG data [25]. A study conducted in 2012

by Parise et al. [2] used ERP data collected from 9-month-old infants to show that

the participants can detect a mismatch between an object and a word label that pre-

ceded the object suggesting that a semantic link is formed between the word stimuli

and object stimuli. Infants aged 9-month-old were presented with live audio stimulus

from their mother in one experimental condition and from an experimenter in another

condition. Then a congruent or an incongruent object relative to the preceding audio

stimulus was shown on a screen placed in front of infants. The infants had seemed

to activate the object features associated with familiar words in the mother-speech

condition and matched to the image that occurred in front of them, thus indicating

that the infants understood their mother’s speech.

A crucial component in language acquisition is the N400 component of an ERP.

The N400 signal has been linked to semantic processing of language [26] and is a key

component in early language acquisition. For example, 12-month-old infants have

been shown to have the presence of the N400 signal indicating that semantic com-

prehension occurs as early as one year of age. This was shown in a study conducted

Friedrich et al. in 2012 [3] where the relation between the N400 ERP signal and the

development of behavioral language skills was investigated. A picture-word priming

paradigm was set up to examine infants’ word production and comprehension skills.

With the help of this paradigm, it was found that the N400 signal can be detected

in infants who have particularly high early production skills but not detected in in-

fants who have normal language development at 12 months of age. Overall, the ERP

technique has been successfully used to confirm the semantic processing of words in

infants.
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2.4 Conclusion

The plethora of brain-imaging data, semantic word vectors, and compute resources

available has allowed machine learning to be a widely used analysis technique. Apply-

ing such computational models on brain-imaging data has allowed us to understand

how the brain represents language semantics. Although an abundance of research

involving neural decoding tracking has been conducted on brain-imaging data col-

lected from adults and semantic research in infants using traditional techniques such

as ERP, there is a lack of research where machine learning has been used to track

the neural decoding of words on infant brain-imaging data. To address this gap, we

extend the idea of tracking semantic neural decoding to infants in this thesis. In the

next chapter, we explain the methodology used for this study, after which we discuss

our results.
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Chapter 3

Methods

3.1 Introduction

Our study focuses on tracking the neural responses to word stimuli using EEG data

collected from nine-month-old and twelve-month-old infants. In this chapter, we

explain each component of our experimental design framework. We describe the

stimuli and their types, the acquisition of the EEG data, the processing steps before

running the machine learning prediction framework, the evaluation metric (2 vs 2

accuracy), and significance testing methods.

3.2 Stimuli

The stimuli presented to the participants consisted of two parts, an audio stimulus

and a visual stimulus. The audio stimuli represented single words, which were spoken

into a microphone by a native English female speaker (the experimenter). The visual

stimuli represented images shown on a screen placed in front of the participant.

3.2.1 Audio Stimuli

The word stimuli set consisted of sixteen total words equally divided into animate and

inanimate words. The stimuli words were selected using the reported average age of

acquisition from the MacArthur–Bates Communicative Development Inventory (CDI)

[27], and previous experimental studies [1, 28–31].
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Table 3.1 shows the list of sixteen words grouped by animacy. It is useful to note

that each spoken word takes a different duration, but requires less than one second

to speak.

Stimuli Words

Animate Inanimate

baby banana

bear bottle

bird cookie

bunny cracker

cat cup

dog juice

duck milk

mom spoon

Table 3.1: Stimuli words used in the study.

3.2.2 Visual Stimuli

For each audio stimuli, an image followed. Sixteen images matching the auditory

stimuli were presented to the participants. Each image was publicly available on

Google Images and had black backgrounds. The images represented the real-life

objects equivalent to the corresponding word label (word stimulus) and not toys. For

example, the image for the word label dog showed a real-life dog and not a toy dog.

Figure 3.1 shows an example of an animate and an inanimate image presented to the

infants.

3.2.3 Stimuli Presentation

Before each trial, the computer displayed a dynamic video as an attention getter

on the screen, which displayed a small rotating asterisk that changed colors. This
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(a) Dog as an animate image in the stimuli
set.

(b) Cup as an inanimate image in the stimuli
set.

Figure 3.1: An example of an animate and inanimate image presented to the partic-
ipants after the word stimuli.

Word
Onset

Image
Onset

Image
Offset

Wait for attention
1200 ms1100 ms

Experimenter

1000 ms
1000 - 20000 ms

Figure 3.2: Timing diagram showing stimulus presentation design. The word stimulus
was in audio format and the image was shown on a screen. Before each trial, a dynamic
video was shown with a rotating asterisk that changed colors. After word onset, the
rotating asterisk was shown for at least 1100ms. Next, an image appeared on the
screen that lasted for 1200ms. After the image offset, a blank screen followed that
lasted 1000ms.

video was used to ensure the participants’ attention based on the criteria that they

were either looking at the rotating asterisk or the experimenter. The experimenter

spoke the word marking the word stimuli onset, following which the rotating asterisk

was shown for 1100ms. Next, the image was presented on the screen that lasted for

1200ms. Finally, a blank screen was shown for 1000ms (see Figure 3.2 for details).

On average, the time between image offset and the next word stimulus varied from

2100ms to 2500ms because participants’ attention was required, and the reaction time

of the speaker was accounted for to the next word stimulus provided by a computer

software.
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For each trial, the Eprime software [32] provided a stimulus word through the

experimenter’s headphones, such that the infants and the parents could not hear the

word stimulus for the next trial. Then, as the speaker said the word, the microphone

in front of the speaker registered the word stimulus and would signal the Eprime

software to present an image after, at least 1100ms after the word onset. For the

computer to register the onset of the spoken word stimulus, a threshold level of 65dB

was used.

An image was shown for 1200ms on the screen in front of the participant after

each word stimulus. For half of the trials, the image matched the word label (for

example, an image of dog was shown for the preceding word label dog). For the other

half of the trials, the image did not match the preceding word label (for example,

an image of a cup was shown for the preceding word label banana). Half of the

mismatched images matched the preceding word for its animacy category, and the

remaining half mismatched the animacy category of the word. This resulted in four

cases of word-image pairs. These were:

1. Animates congruent.

2. Animates incongruent.

3. Inanimates congruent.

4. Inanimates incongruent.

In the congruent case, the image matched the animacy group of the word (e.g.,

animate word baby and an image of the animate object cat), and in the incongruent

case, the animacy did not match the preceding word stimulus (e.g., inanimate word

cup and an image of the animate object dog). The images were presented in a semi-

random order such that there could not be more than two presentations of the same

word type (animate or inanimate) in a sequence. For our study, because we are trying
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to analyze the neural responses of word semantics, we will use the data recorded only

during the word stimuli presentation for both congruent and incongruent trials.

3.3 Data Acquisition and Processing

A total of 46 infants participated in our study. Of this initial sample, 21 9-month-old

(10 female, 11 male) infants were included in the final analysis. Seven additional

9-month-old infants were tested but excluded from the final sample due to fussi-

ness (n=5), poor electroencephalogram (EEG) impedance (n=1), and excessive body

movements (n=1). Fourteen 12-month-old (7 female, 7 male) infants were included in

the final sample. An additional four 12-month-old infants were tested but excluded

due to language criteria (n=1) and fussiness (n=3). All infants were raised in native

English speaking households, had no cognitive impairments, and were born full-term.

Infant brain imaging data were collected using Electroencephalography (EEG) at

the Infant Studies Centre, University of British Columbia (Ethics ID H19-01411).

EEG is a brain-imaging technique that involves placing electrodes on the scalp to

record the electrical activity of the brain. It is a non-invasive and affordable method

that provides excellent temporal resolution. EEG is ideal for our study as we needed

high temporal precision to analyze the changes in brain activity over time.

We used a Geodesic 64 channel EEG cap which had a data capturing frequency of

1000 hertz. Channels 61-64 were removed during pre-processing since these channels

corresponded to cheek channels which were not present on all caps. Channel 65 was

used as a reference. In addition, we removed bad channels by visually identifying

all segments for channels that had comparatively (and consistently) unusually high

noise levels or had flat readings (indicating a poor electrode connection). In addition,

if there was a cluster of bad channels, we did not include that baby’s data in our

analysis. We used the EEG data in its raw format for all our experiments with no

downsampling as this might lead to data loss. The EEG data were filtered for 0.1 Hz

to 50Hz, segmentation for the range -200ms to 1000ms where 0ms marked the onset
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of the word stimuli, baseline corrected from -200ms to 0ms, and referenced using

averaging referencing. We used EGI Netstation 5.4.2 software1 to record the data,

and Eprime was used to present the stimuli and control the timing of the experiment.

The experimental procedure was carried out using Eprime software with Chronos

hardware [32].

Infants were seated on their parent’s lap in front of a computer monitor for the

duration of the experiment. Next to the screen was the experimenter who provided the

word stimulus (see Figure 3.3). Before initiating a trial, we ensured that participants

were relatively still and attentive to either the speaker or the screen before moving

on to the next trial.

Figure 3.3: Experimental room setup where the data was collected. The participants
sat on their parent’s lap and the experimenter provided the word stimuli. Following
the word stimuli, an image was shown on the screen placed in front of the participant.

1https://www.egi.com/research-division/net-station-eeg-software
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In the end, we had a total of 1026 samples of EEG data recorded from 9-month-old

infants and a total of 683 samples of EEG data recorded from 12-month-old infants.

We also made sure that any misalignment of the EEG data to the word onset was

manually corrected.

3.4 Prediction Framework

3.4.1 Word vectors

To obtain a vector representation of word semantics, we used word vectors from the

Word2Vec model [18] pretrained on the Google News Dataset (an internal Google

dataset containing news articles and comprising about a hundred billion tokens2).

These word vectors represent the semantic properties of the stimuli. Each word

vector has 300-dimensions. For our study, we used the vectors acquired from the

skip-gram algorithm, a neural network trained to predict the context for a given

word. We chose vectors from Word2Vec because the existing studies show that word

vector representations of stimuli can be decoded from brain-imaging data in adults

[6, 7, 9, 12, 33, 34].

3.4.2 Prediction Model

Our primary analyses use a simple machine learning algorithm. Specifically, we use

the Ridge Regression model from scikit-learn [35], which was trained on the EEG data

to predict the word vectors. Ridge regression reduces the weights for the correlated

features by driving them to be close to zero, unlike L1 (or Lasso) regression which sets

the weights for the correlated features to exactly zero. In addition, ridge regression

has a closed-form solution whereas, L1 regression does not.

To train the model, we learn a mapping h from X to Y . h takes the brain-imaging

data X and predicts word vectors Ŷ .

h(X) = Ŷ (3.1)

2https://code.google.com/archive/p/word2vec/
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or

h(X) = X × ŵ = Ŷ (3.2)

To learn the mapping h, we estimate the weights ŵ by minimizing the loss function:

ŵ = argmin
w

||Xw− Y ||22 + λwTw (3.3)

The term λwTw is called the ridge or the L2 regularizer and the hyperparameter λ

controls the regularization strength.

In Figure 3.4, we show the pipeline for the data flow which includes the prediction

model.

EEG 
(X) 

Machine 
Learning 

(h) 

Predictions 
(Ŷ) Stimuli

Figure 3.4: Components of the prediction pipeline. EEG data (X) were recorded
while the participants heared the the word stimuli. Then a machine learning model
(h) was trained on the input EEG data (X) to predict the word vectors (Y ) for the
word stimuli.

The EEG dataset collected is represented by X ∈ RN×p, where N is the number

of samples and p = sensors × time, is the number of features. A machine learning

model learns a function h that transforms the input EEG data X into a different m

dimensional space Y . This v dimensional space consists of the 300-dimensional word

vectors that represent the semantics of the word stimuli Y ∈ RN×v.

Our data has a total of p = 60 × 1000 = 60000 features for 60 sensors and 1000

time points for each sensor. We divided our data into equal length chunks of 100ms

windows and used a sliding step of 10ms. Therefore, for each window, we trained

a ridge regression model, which takes in a data matrix of size N × t, where t =

60× 100 = 6000 is the total number of features (60000 total data points for 1 second

of data chunked into 100ms windows). So our original data matrix XN×p is now XN×t

(t < p) on which the model is trained to predict the 300-dimensional word vectors

(see Figure 3.5).
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Figure 3.5: The Ridge Regression predicts the 300-dimensional word vectors (N × v)
by multiplying the input brain-imaging data matrix X (size N × t) with the weight
matrix W (size t × v), where N is the number of EEG samples, t is the number of
features for the brain-imaging data, and v is the number of the dimensions for the
word vectors.

The data matrix XN×t is then divided into training and testing subsets Xtrain and

Xtest. The word vector representations Y is similarly divided into Ytrain and Ytest. The

training subset Xtrain along with Ytrain is then used to train multiple ridge regression

models to learn the mapping from the brain imaging data (Xtrain) to the word vectors

(Ytrain) (see Figure 3.6). For our test set Xtest, we average all the trials for a stimulus

word within an age group resulting in 16 total samples (one sample of each stimulus

word) to increase the signal-to-noise ratio. For example, if the test set contains five

EEG samples for the word ’baby’, we average these five samples to obtain one sample.

This process is carried out for each word in the stimuli set, giving us 16 EEG samples

for Xtest.

During our analyses, we also tested the pre-onset decoding accuracy, which served

as a baseline measurement. Thus, we use 1200ms of EEG data for each trial, ranging

from -200ms to 1000ms, where 0ms marked the word stimuli onset.

We used Monte-Carlo nested cross-validation procedure with negative mean squared

error to optimize the hyperparameter λ for the ridge regression model (see eq. 3.3).

The Monte-Carlo procedure is useful when there are few data samples because it
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Figure 3.6: Train and Test sets. Randomly, 80% of the data is used as the train set
and the remaining 20% of the data is used as the test set (train and test sets are
mutually exclusive).

allows for a large number of train-test partitions to obtain the model performance

estimate. During each sampling iteration of the Monte-Carlo procedure, we randomly

sampled 80% of the dataset which constituted as Xtrain and the rest 20% constituted

as the test set. For the inner loop of the nested cross-validation procedure, we used

a k-fold split of the training set (Xtrain) with k=5 resulting in 20% of Xtrain being

used as validation set for hyperparameter tuning. For the EEG data collected from

9-month-old infants (number of samples=1026), this resulted in 821 samples forXtrain

and 205 samples for Xtest for each sampling iteration. About 164 samples from Xtrain

were used for selecting the hyperparameter inside each cross-validation fold. For the

EEG collected from 12-month-old infants, we had a total of 683 samples from which

about 546 samples comprised of the training set (Xtrain), and the remaining samples

comprised of Xtest. About 109 samples from Xtrain were used for hyperparameter

tuning. We averaged all the EEG samples in Xtest to obtain 16 total samples (one

sample for each word in the stimuli set). We used 50 Monte-Carlo sampling iterations
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for our analyses.

3.4.3 2 versus 2 Test

To evaluate the model performance, we used the 2 vs 2 test procedure. The test

procedure works as follows. We first consider two instances from the predictions (ŷi,

ŷj) and two instances from the ground truth vectors (yi, yj). We then use a distance

metric to calculate the distance between the two pairs of vectors. We use the cosine

distance criterion d(u, v) where u and v are the word vectors. The chance accuracy

of the 2 vs 2 test is 50% because there are two possible assignments of the predicted

vectors to the ground truth vectors.

The 2 vs 2 test passes if:

d(yi, ŷi) + d(yj, ŷj) < d(yi, ŷj) + d(yj, ŷi) (3.4)

The 2 vs 2 test is depicted in Figure 3.7. Considering two pairs of true labels and

predicted labels, we calculate the cosine distance between the matching pairs of the

true and predicted labels (green lines), and also calculate the cosine distance between

the non-matching pairs of the true and predicted labels (red dashed lines). Then we

use equation 3.4 to evaluate the 2 vs 2 test. The true and predicted labels are the

vector representations of the word stimuli.

Since our test set contains the average of all the trials for a stimulus word, the total

number of instances in our test set is 16. And the total number of pairs evaluated by

the 2 vs 2 test are
(︁
16
2

)︁
= 120.

3.4.4 Testing for Above Chance Accuracy

To determine the analysis windows with above chance accuracy, we compared our

results to random chance accuracy using the permutation test [36]. The permutation

test is performed by randomizing the assignment of stimuli word vectors to their

corresponding EEG data so that each word vector is randomly matched to any sample
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Figure 3.7: 2 vs 2 test showing pairwise comparisons of true and predicted labels.
The test passes if the sum of the cosine distance between matching word vector pairs
(represented by solid green lines) is less than the sum of the cosine distance between
the non-matching word vector pairs (represented by red dashed lines).

of the EEG data. This mimics a situation where no association exists between the

input EEG data X and the output word vectors Y . We ran our decoding framework

on the dataset for 100 permutation iterations. As expected, since there is no relation

between the input EEG data and the output word vectors, the accuracy when running

the prediction framework on this shuffled dataset is chance (50% for 2 vs 2 test). We

then fit a gaussian kernel density function to the obtained 2 vs 2 accuracies from

the permuted dataset to generate a null distribution. Finally, we compared the non-

permuted accuracies to the accuracies obtained from the permutation test to establish

statistical significance.

Once the null distribution is obtained, a p-value is calculated for the original

non-permuted accuracy. To correct the p-values for multiple comparisons over time

(α < 0.01), we use the Benjamini-Hochberg-Yekutieli False Discovery Rate (FDR)

correction method with no dependency assumption [37], as it is a less conservative

metric than other methods (e.g., Bonferroni correction) but still provides a robust for

correcting for multiple comparisons.

3.4.5 Testing for Difference Between Conditions

After we trained our machine learning model to decode word semantics from EEG

data, we used a different significance testing method called the non-parametric cluster

permutation test [38] to compare the significant difference in accuracy values between
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different experimental conditions. The two conditions in our analyses are the two age

groups (9-month-old and 12-month-old infants). The test is conducted as follows.

First, we obtain the 2 vs 2 accuracies for each condition, resulting in fifty accuracy

values for each sampling iteration (see 3.4.2). Next, we calculate a test statistic

between the accuracy values for the two conditions, which gives us the observed test

statistic. We then permute these accuracies by putting them into a single set, from

which two random subsets of accuracies are drawn; this is called a random partition.

We repeat this process 10000 times. We calculate the test statistic between the

two subsets in each random partition and compare it to the observed test statistic,

resulting in a p-value. Finally, we report the largest cluster of time points containing

at least three or more consecutive windows with a significant difference in accuracy

values (p < 0.01).

3.5 Conclusion

In this chapter, we discussed the various components of our study. A total of thirty-

five infants participated in an audio-visual task while their EEG data was recorded.

We then trained a simple machine learning model on the EEG data to predict the

vector representations of the word stimuli. To evaluate model performance, we used

the 2 vs 2 test, and the non-parametric cluster permutation test for finding significant

differences between experimental conditions. In the next chapter, we will discuss

the analyses conducted for tracking the neural representation of word semantics and

discuss the results.
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Chapter 4

Results and Discussion

4.1 Introduction

In chapter 3, we discussed the methodology of our study. In this chapter, we describe

the various analyses to track the evolution of the semantic representation of words

in infants. For each analysis, we first explain the steps involved and then observe

the results. We start by inspecting individual word stimuli features such as animacy

in Analysis 4.2 then move on to Analysis 4.3, where we discuss decoding overall

semantic representation of words from neural responses. We also decode the phonetic

representations of word stimuli in Analysis 4.4 and then inspect the similarity of the

neural responses between the two age groups in Analysis 4.5. Lastly, we discuss the

idea of fine-tuning word vectors for possibly better semantic modeling of infant neural

data in Analysis 4.6. In the end, we summarize our results and discuss important

findings.

4.2 Analysis 1: Decoding representations of Word

Animacy

In the first experiment, we explored whether infants’ neural representations include

word animacy information. Since our stimuli set consists of 16 words equally divided

into animate and inanimate words (see Chapter 3, Section 3.2.1 for details), we trained

a classification model on the EEG data to predict whether a word belonged to the
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animate category or the inanimate category. For this binary classification problem, we

trained a logistic regression model from scikit-learn [35] that takes the input EEG data

X to predict the animacy category of the word Y . Unlike other analyses (described

later in this chapter), the output is not the vector representation of the word stimuli

but simply a binary label (0 or 1). We ran this analysis for each age group separately,

and we trained and tested the model on the same age group.

To produce each accuracy point on the graph, we trained the model on windows of

size 100ms with a 10ms sliding step giving us a timeseries of accuracy values. For each

time window, we denote the accuracy at the end of the time window (for window 100-

200ms, accuracy is shown at 200ms); this configuration is used for all the graphs in

the rest of this thesis. Using 100ms windows will provide us with enough information

from the EEG data to analyze the word stimuli. The animacy decoding results are

shown in Figure 4.1 with significantly above chance accuracy (p < 0.01) and chance

accuracy being 50%.

In Figure 4.1 results, we observed multiple points with above chance accuracy using

EEG data collected from 9-month-old infants indicating that word animacy informa-

tion is present in the neural responses of 9-month-old infants. After the word onset,

the accuracy started rising at about 100ms and remained high until the end of the time

course. The accuracy dipped quickly at around 350ms, after which it rose sharply at

400ms and stayed consistent till the end of the recording. On the other hand, when

we attempted to decode the word animacy category from EEG data collected from

12-month-old infants, we did not observe above chance decoding accuracies anywhere

in the time course. However, this does not necessarily indicate that animacy infor-

mation is not encoded in the 12-month-old infants’ neural responses. It is not exactly

clear why word animacy cannot be decoded from 12-month-old infants’ EEG data.

It might be a case where the logistic regression model cannot learn the mapping be-

tween the EEG data and animacy category of the word, or it might just be a case of

poor signal-to-noise ratio for decoding animacy, possibly due to the presence of EEG
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artefacts (movement, poor electrode conductance etc.). Further research is required

to evaluate other machine learning models of binary classification for predicting word

animacy from the EEG data.
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Figure 4.1: Accuracy for decoding word animacy category from the stimuli word.
Green curve - 9-month-old infants; Purple curve - 12-month-old infants. Each point
on the graph represents an accuracy value for the model trained on a 100ms window
(100ms to the left of the accuracy point) with a 10ms sliding step. Green dots show
significantly above chance accuracy points for 9-month-olds (p-value < 0.01, FDR
corrected for multiple comparisons over time). No significantly above chance accu-
racy points were obtained for 12-month-infants. The shaded (pink) area shows the
significant difference in accuracies between the two age groups using non-parametric
cluster permutation test [38].
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4.3 Analysis 2: Representations of Word Seman-

tics

In the previous section, we described the animacy classification analysis, where we

used a simple logistic regression model to predict the animacy category of the word

stimuli from the EEG data. In this section, we decode the overall semantic represen-

tation of words from the EEG data. To achieve this, we trained a ridge regression

model on EEG data X, collected from infants to predict the 300-dimensional word

vectors Y obtained from the pretrained Word2Vec model (see Chapter 3 Section 3.4.2

for details). Since these word vectors represent word semantics, significantly above

chance accuracy will suggest the presence of word semantic information in the infant

neural recordings. As we use the 2 vs 2 accuracy (see section 3.4.3) to evaluate model

performance, the chance accuracy is 50%. We report significantly above chance ac-

curacy p < 0.01. The results for the semantic decoding analysis is shown in Figure

4.2.

Referring to Figure 4.2, we found that we were able to decode the stimuli word

vectors from the EEG data collected from 9-month-old and 12-month-old infants.

This provides evidence of word semantic information in infant neural data recorded

from both age groups. Since our analyses are carried out over 100ms chunks of

EEG data with a 10ms sliding window, we can track the neural decoding results

over time. Interestingly, for 9-month-old infants, just after the onset of the word

stimulus, starting at around 60ms, all accuracy values were significantly above chance

and remained high till the end of recording (green dots in Figure 4.2). This result

suggests that infants as young as 9-month-old can distinguish between words in a basic

vocabulary. We also observed two peaks of accuracy greater than 60% indicating two

points in the trial (one at around 100ms and the second around 700ms), indicating

that the word semantic representations in the neural recordings were the strongest at

these two points. On the other hand, when the prediction framework was run on the

28



EEG data recorded from 12-months-old infants, we also found multiple above chance

accuracy points (purple dots in Figure 4.2). The accuracy peaked close to 60% around

100ms and is sustained till about 450ms, after which it slowly decreased. However,

the decodability of word vectors lasted only till 750ms, quickly dropping after that.

We also observed that from around 620ms to 1000ms, there is a significant difference

in accuracy values between the age groups (pink shaded area). This suggests that

the neural representations for both groups of infants contain information about word

semantics, but the neural representations of words are stronger for the 9-month-

old infants than those of 12-month-old infants for the latter half of the trial. Such a

result may indicate that 9-month-old infants hold on to the word semantic information

longer than the 12-month-old infants to understand the word stimuli. In some research

that uses looking time paradigms, older infants are quicker in directing their gaze to

the matching picture of a spoken word than younger infants [1]. This may support the

hypothesis that younger infants need longer to understand the meaning of a spoken

word. However, more research is required to investigate such an effect.

In this analysis, we saw that the evoked neural responses in infants from both

age groups were correlated with the stimuli word vector representations. However,

we were unsure whether the above chance accuracy could be attributed to the word

semantics only there other aspects that contributed to such a high decoding accuracy.

We investigate this issue in the next analysis.
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Figure 4.2: 2 vs 2 accuracy for predicting pretrained Word2Vec word vectors from
EEG data collected from 9-month-old and 12-month-old infants. Each point on the
graph represents an accuracy value for the model trained on a 100ms window (100ms
to the left of the accuracy point) with a 10ms sliding step. The green dots above
the x-axis represent the points where the accuracy is reliable for 9-month-old infants,
and the purple dots represent reliable above chance accuracy for 12-month-old infants
(p-value < 0.01, FDR corrected for multiple comparisons over time).

4.4 Analysis 3: Presence of Phonetic representa-

tions of Word Stimuli

In Analysis 4.3, we decoded the overall word semantic representations from the EEG

data. We were also interested in the presence of other aspects of word stimuli in the

EEG data. As we know that infants in early age groups are very sensitive to phonetic

differences in speech sounds [2, 39], we investigated the presence of word phonetics

in the neural responses.
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We carry out this analysis as follows. Each word in our stimuli set comprises multi-

ple letters (ranging between three to six letters). We map the letters to their respective

phonemes, where each phoneme was used in its IPA notation1. Whenever possible, we

used the Canadian pronunciation, and the General American (GA) pronunciation if

the Canadian pronunciation was not available, defined in Dictionary.com2 and Wiki-

tionary3. Then, we map each phoneme to a 36-dimensional vector obtained from [40].

We concatenated each phoneme vector into one long vector P and zero-padded all

the concatenated vectors to make them of equal size, resulting in a 216-dimensional

long vector. Finally, we predict these 216-dimensional vectors from the EEG data

using a ridge regression model. The process of creating these concatenated phoneme

vectors is shown in 4.3.

The presence of phonetic components in the neural responses will be indicated by

significantly above chance accuracy. Figure 4.4 shows the results of predicting the

phoneme vectors from the neural responses.

It is interesting to see that for 9-month-old infants (orange curve in Figure 4.4a,

we were able to decode phonetic information from EEG data with significant above

chance accuracy. This indicates that phonetic information is encoded in the neural

responses of 9-month-old infants. We observed significantly above chance accuracy

immediately after word onset, which lasted until 1000ms. On the other hand, when

we observe the accuracy for the 12-month-old infants (black curve in Figure 4.4a), we

notice an initial rise in decoding accuracy around word onset, which lasts till around

380ms and quickly dropping after that. This suggests that even though the EEG data

from 12-month-old infants encode phonetic information, it is transient and not as long

lasting as the phonetic representations for the 9-month-old infants. The pink shaded

area shows regions with significant differences between decoding accuracy for phoneme

vectors for 9-month-old infants and 12-month-old infants. Starting around 400ms, the

1https://en.wikipedia.org/wiki/International Phonetic Alphabet
2https://www.dictionary.com/
3https://www.wiktionary.org/
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Figure 4.3: Phoneme vector creation process for a sample word cup from the stimuli
set. The stimulus word is broken down into its individual IPA phonemes. For each
IPA phoneme, a vector is retrieved from Mielke et al. [40]. Finally, a long vector
is created by concatenating individual phoneme vectors. For shorter words, zero-
padding is used to obtain equal length vectors. We show 3-dimensional phoneme
vectors for simplicity. Actual vectors are 36 dimensions long.

neural representations differ greatly, resulting in a divergence of the accuracy curves.

We also compare the results between the current phoneme decoding analysis and

the semantic decoding analysis described in Analysis 4.3, in Figure 4.4b for 9-month-

old infants and in Figure 4.4c for 12-month-old infants.

In Figure 4.4b, we see that for 9-month-old infants, the accuracy curve for the

phoneme decoding analysis (orange) traces close to the accuracy curve for the se-

mantic decoding analysis (green). On the flip side, when we compare the phoneme

decoding analysis and semantic decoding analysis for 12-month-old infants, we see

that in Figure 4.4c, the curve for phoneme decoding analysis (black) and semantic

decoding analysis (purple) trace each other closely till around 400ms after which the
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phoneme decoding accuracy drops sharply but semantic decoding accuracy persists

till about 750ms. This effect is depicted by the pink shaded area showing a significant

difference in accuracy from around 370ms to 1000ms.

In this analysis, we tried to understand the presence of word phonetic information

in the neural responses. We observed that the EEG data for infants in both age

groups captures the phonetic representations of words, but the phonetic decoding

accuracy in the two age groups differs significantly. The next section will investigate

how similar the neural responses are across the two age groups for our stimuli set.

4.5 Analysis 4: Shared Representations of Word

Semantics between age groups

All the previous experiments trained and evaluated machine learning models on the

same age group, which investigated the decodability of word stimuli from the neural

responses. We were also interested in the similarity of neural responses for the stimuli

between age groups. In other words, are the neural responses from one age group

similar to the other age group? We can answer this question by running the prediction

framework on EEG data recorded from one age group (for example, 9-month-old

infants) and evaluate its performance on the EEG data collected from the other

age group (for example, 12-month-old infants). Suppose the pattern learned by the

machine learning model from one age group is useful for decoding the word semantics

from the EEG data obtained from the other age group. In that case, it will indicate

that the neural responses are similar across the two age groups.

Similar to Analysis 4.3, we train the model on the EEG data to predict the 300-

dimensional word vectors obtained from the Word2Vec model. Successful decoding

across age groups will be indicated by significantly above chance accuracy.
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(a) Decoding accuracy for predicting phonemes from EEG data
recorded from 9-month-old and 12-month-old infants.
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(b) Comparison of accuracy for predict-
ing phonemes (orange) and Word2Vec se-
mantic vectors (green) from EEG data
recorded from 9-month-old infants.
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(c) Comparison of accuracy for predict-
ing phonemes (black) and Word2Vec se-
mantic vectors (purple) from EEG data
recorded from 12-month-old infants.

Figure 4.4: Phoneme decoding accuracy and its comparison to the decoding accu-
racy of pretrained Word2Vec word vectors. Shaded areas show significant differences
in accuracies, and dots above the x-axis show points of significantly above chance
accuracy (p-value < 0.01).
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Figure 4.5: 2 vs 2 accuracy for predicting pretrained Word2Vec word vectors from
EEG data across age groups. Each point on the graph represents an accuracy value
for the model trained on a 100ms window (100ms to the left of the accuracy point)
with a 10ms sliding step. The green dots denote above chance accuracy for the model
trained on 9-month-old and tested on 12-month-old infants, and purple dots denote
above chance accuracy for the model trained on 12-month-old infants and tested on
9-month-old infants (p-value < 0.01, FDR corrected for multiple comparisons over
time). The shaded area shows where the accuracy curve is significantly different for
the two conditions.

In Figure 4.5, when we trained the machine learning model on 9-month-old infants’

EEG and tested on 12-month-old infants’ EEG data (green curve), we observed signif-

icantly above chance accuracy. Similarly, when we trained the model on 12-month-old

infants’ EEG data, we predicted the word vectors from 9-month-old infants’ EEG data

with significantly above chance accuracy (purple curve). This suggests that neural

representations for both age groups are similar at multiple time points.
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4.6 Analysis 5: Decoding Fine-tuned Representa-

tions of Word Semantics

In Analysis 4.3, we ran our prediction framework to predict the word vectors ob-

tained from the pretrained Word2Vec model. Since the pretrained Word2Vec model

is trained on the Google News Corpus, the word vectors will likely be oriented to the

semantic representations of adults. Perhaps, we can change these word vectors to

better represent the semantic representation of words in infants. Word vectors char-

acteristic of infants’ representation of word semantics may lead to better infant neural

data predictions than pretrained word vectors. To this end, we fine-tuned the pre-

trained Word2Vec model on two datasets, the children’s book test dataset [41] and the

Childes corpus dataset [42]. We used the Word2Vec implementation in the Gensim

Python Package [43], which we fine-tuned using one thousand iterations of gradient

descent with default learning rates; start = 0.025 and reduces to end = 0.0001 with

the iterations of gradient descent. Finally, we proceeded to decode these fine-tuned

word vector representations from the EEG data for which the results are shown in

4.6.

In Figure 4.6 we see that fine-tuned word vectors can be decoded with significantly

above chance accuracy using the EEG data recorded from both groups of infants.

However, we see a clear difference when comparing the results with the decoding

accuracy of pretrained (non fine-tuned) word vectors. In Figure 4.6a, we notice that

the decoding accuracy for pretrained word vectors (green) is high in the later stages

of the time course compared to the decoding accuracy for the fine-tuned word vectors

(orange). The pink shaded area shows the region where the accuracy values are

significantly different. Similarly, for 12-month-old infants, we see that in Figure 4.6b

the decoding accuracy for pretrained word vectors (purple) is generally higher than

the accuracy of fine-tuned word vectors (blue).
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(a) Accuracy comparison for predicting fine-
tuned word vectors (orange) and pretrained
word vectors (green) from EEG data col-
lected from 9-month-old infants.
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(b) Accuracy comparison for predicting fine-
tuned word vectors (blue) and pretrained
word vectors (purple) from EEG data col-
lected from 12-month-old infants.

Figure 4.6: Decoding accuracy for predicting fine-tuned word vectors and its com-
parison to pretrained Word2Vec word vector decoding accuracy. Shaded areas show
significant differences in accuracies, and dots above the x-axis show points of signifi-
cantly above chance accuracy (p-value < 0.01).

4.7 Discussion

Our results show that we can decode word stimuli from EEG data recorded from

infants using a machine learning approach. First, we showed that word animacy can

be decoded from neural responses. Second, we showed that overall word semantics can

be decoded from the neural responses from both groups of infants. Third, we observed

that the neural responses contained strong representations of the phonetic information

of the word stimuli. Fourth, we observed that there exist similar representations of

word semantics across 9-month-old and 12-month-old infants. Finally, we explored a

fine-tuning approach to make more ’child-like’ word semantic representations.

In the animacy decoding analysis (Analysis 4.2), we observed various points of

significantly above chance decoding accuracy from 9-month-old infants’ EEG data,

suggesting the presence of strong representations of word animacy in the neural re-
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sponses. However, no significantly above chance accuracies were observed for animacy

decodability for EEG data recorded from 12-month-old infants.

This inability to decode the word animacy category does not necessarily mean 12-

month-old infants do not have a representation of word animacy. It may just be the

case that the Logistic Regression model is not able to find patterns of word animacy

in the EEG data from 12-month-old infants, possibly due to EEG movement artefacts

or bad signal-to-noise ratio for word animacy. In addition, it also does not imply that

12-month-old’s EEG data cannot be used to decode word semantics, as we noticed in

Analysis 4.3.

While decoding the semantic word vectors in Analysis 4.3 (Figure 4.2), we found

that the neural responses of both groups of infants contained strong representations

of word semantics. In addition to previous studies [2, 3], which showed that infants

could detect semantic mismatch of the stimuli, the presence of multiple above chance

accuracy points in this analysis shows that infants indeed have a semantic representa-

tion of the stimuli word as well. We also observed a significant difference in decoding

accuracy in the latter half of the trial for the two groups of infants (pink shaded area

in Figure 4.2). However, more research is required to investigate such a difference in

accuracy.

Although we observed that overall semantic information can be decoded from the

EEG data of both groups of infants, we were also interested in decoding other aspects

of the word stimuli. In Analysis 4.4, we discovered that phonetic information of the

stimuli words can also be decoded from both groups of infants with significantly above

chance accuracy.

We observed that the phonetic decoding accuracy for 9-month-old infants closely

traced the decoding accuracy curve for semantics (Figure 4.4b). This might suggest

that a majority of neural signal used for decoding word semantics from 9-month-old

infants is correlated with the phonetic components of the words. On the other hand,

for 12-month-old infants, the phonetic information was decodable starting after word
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onset. However, it lasted only till around 400ms, unlike word semantic decodability,

which lasted till around 750ms (Figure 4.4c), suggesting that the neural representa-

tions for 12-month-old infants in the latter half of the trial are likely correlated to

word semantics rather than word phonetics. Observing both, Analysis 4.3 and Analy-

sis 4.4, we cannot rule out the possibility that the decodability of word phonemes may

act as a confound to the semantic decoding accuracy for both age groups. However,

for 9-month-old infants, the effect exists for the whole recording, while lasting only

till around 400ms for the 12-month-old infants.

We also investigated the similarity of the neural representations across age groups.

In Analysis 4.5, we observed that we were able to predict the word semantic repre-

sentation from either age group, indicating that the mental representations of words

are similar (Figure 4.5).

Such a result also suggests that even though developmental changes in neural

responses between the infants of the two age groups might exist, there is an over-

whelming similarity between them.

In the final analysis (Analysis 4.6), we explored a fine-tuning approach to obtain

word vectors that are more characteristic of the semantic representations of infants.

Surprisingly, we did not obtain better decoding accuracy using fine-tuned vectors,

which might have been caused due to the small size of the dataset and the non-

uniform distribution of word tokens. Nevertheless, we believe that improved word

vector representations of semantics could be developed for infants with datasets that

are larger, containing more occurrences of the word stimuli, which may lead to better

word vectors for representing word semantics in infants, possibly resulting in better

decoding accuracy.
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4.8 Conclusion

This chapter described the various analyses that decode the infant mind and scan for

word semantic information. We started by describing the analysis where we searched

for word animacy from the brain-imaging data. Next, we found the presence of

semantic information of words in the brain imaging data by accurately predicting word

vectors. We also observed significantly above chance accuracy for decoding phonetic

components of the word stimuli for both groups of infants. Next, we discovered that

neural responses for the two age groups contain similar information for the word

stimuli. Finally, we discussed the process of fine-tuning word vectors as a possible

approach for better modeling of infant semantic representation.
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Chapter 5

Conclusion & Future Work

While a vast body of research exists for tracking changes in the neural representation

of word semantics in adults [5, 6, 9, 12], there is a lack of research that examines

the neural representation of word semantics in early infants. We try to reduce this

research gap by using a decoding approach to predict word vectors from brain activity

recorded from infants. Using the techniques described in this thesis, we examined the

changes in neural patterns as the infants heard single word stimuli.

First, we summarised studies that have successfully utilized semantic models of text

and brain-imaging techniques to analyze the semantics representation of words in the

brain. In addition, we also discussed recent studies that have found the presence of

word semantics in infants. For our work, we used EEG data recorded from infants

as they heard single word stimuli. We then observed the evolution of the neural

responses over time. We first investigated the presence of basic semantic properties

such as animacy, after which we proceeded to decode semantic information from

the brain. We also inspected the presence of word phonetics in the infants’ neural

responses. Finally, we explored the similarity of neural representations of words in

the two age groups.

Summarizing the contributions, we found that,

• A machine learning approach is useful for investigating the semantic represen-

tation of words from 9-month-old and 12-month-old infants.
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• Semantic information can be decoded from both 9-month-old and 12-month-old

infants immediately after word onset.

• Individual word stimuli properties such as phonetic information can be decoded

from neural recordings from both groups of infants.

• Neural representation of word semantics are similar for both age groups.

Besides conventional techniques such as ERP, we provided evidence that machine

learning techniques effectively decode word representations from infant brain-imaging

data.

Even though we showed that word semantics can be decoded from infant brain

activity, this work only decodes single word semantics. A natural extension would be

to explore the decodability of more complex linguistic elements such as phrases from

infant brain activity which we hope to explore in the future.
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