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Abstract. Most richness estimators currently in use are derived from models that consider
sampling with replacement or from the assumption of infinite populations. Neither of the
assumptions is suitable for sampling sessile organisms such as plants where quadrats are often
sampled without replacement and the area of study is always limited. In this paper, we propose
an incidence-based parametric richness estimator that considers quadrat sampling without
replacement in a fixed area. The estimator is derived from a zero-truncated binomial
distribution for the number of quadrats containing a given species (e.g., species i) and a
modified beta distribution for the probability of presence–absence of a species in a quadrat.
The maximum likelihood estimate of richness is explicitly given and can be easily solved. The
variance of the estimate is also obtained. The performance of the estimator is tested against
nine other existing incidence-based estimators using two tree data sets where the true numbers
of species are known. Results show that the new estimator is insensitive to sample size and
outperforms the other methods as judged by the root mean squared errors. The superiority of
the new method is particularly noticeable when large quadrat size is used, suggesting that a few
large quadrats are preferred over many small ones when sampling diversity.

Key words: maximum likelihood estimate; modified beta distribution; presence–absence; quadrat
sampling; richness estimator; sampling without replacement; zero-truncated binomial distribution.

INTRODUCTION

The number of species (or richness) in an area is the

most basic diversity measurement. Although complete

enumeration of species might be possible in a relatively

small area of a few hectares, richness has to be estimated

from sampling in situations where census is not feasible.

Many methods have been developed to address this

problem (Palmer 1990, Bunge and Fitzpatrick 1993,

Colwell and Codington 1994, Hellmann and Fowler

1999, Chiarucci et al. 2003, Chao 2005, Magnussen et al.

2006). In general, there are three types of estimators:

species–area curves, abundance-based methods, and

incidence-based methods. Abundance-based methods

require information about abundance, while incidence-

based methods are based on species presence–absence

data. These estimators are not only designed for

handling different types of data but also differ in their

mathematical assumptions. Some of them are derived

purely from mathematical inspiration with little practi-

cal significance (e.g., the multinomial estimator), while

others are developed from practical consideration. As a

result, their performances vary considerably. Compari-

son analysis for many of the estimators has been

conducted using various empirical data (Palmer 1990,

Colwell and Codington 1994, Chazdon et al. 1998,

Magnussen et al. 2006), but there is still lack of general

consensus. Among the many criteria used to judge

estimators, unbiasedness and insensitivity to sample size

are most basic. The latter is particularly useful for the

practical purpose. Given the difficulty and cost of

sampling, it is highly desired to develop estimators that

can give a reasonable estimate even when the sample size

is small.

Sampling with and without replacement are two basic

sample devices. It is intuitive that sampling without

replacement is more efficient as long as sedentary

organisms (e.g., plants) are concerned, although the

majority of the methods currently in use are actually

designed for sampling with replacement or for infinite

populations. This reflects the historical fact that most

richness estimators were initially derived from the mark–

recapture method for animals. Schreuder et al. (1999)

attempted to adjust this type of estimator by adding a

finite population correction term; see also Magnussen

et al. (2006). But this has not proven to be successful (see

Empirical test). As we will show later, if these methods

are unconditionally applied to data from sampling

without replacement, considerable overestimation can

result if sampling proportion, denoted by q ¼ t/T,

becomes large (see The proposed model ).

In this study, we developed an incidence-based

richness estimator for quadrats sampled without re-

placement (see Plate 1). Our new method only requires
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data on species presence–absence in each quadrat. The

method was derived from two basic assumptions: (1) the

number of occupied quadrats of a species follows a zero-

truncated binomial distribution, and (2) the probability

of presence/absence of a species in a quadrat follows a

modified beta distribution. It is an unbiased estimator

when the parameters of the modified beta distribution

are given, and its variance is also given. A comparison

analysis against the other nine incidence-based estima-

tors using two large-scale empirical data sets has shown

that our method is relatively insensitive to sample size

and outperforms the other estimators.

THE PROPOSED MODEL

Assume that there are S species labeled by 1, 2, . . ., S

in a fixed region that could be divided into T disjoint

quadrats with roughly equal areas. If each species within

the sampled quadrats is registered as present or absent,

let Ui stand for the total number of quadrats with species

i in the study region. Note that a realization of Ui could

be viewed as a measure of the degree of species i

scattering on the region. To ensure all species being

present when all quadrats in a study region are surveyed,

the zero point of any qualified probabilistic models must

be eliminated. A simple assumption on Ui could be given

by following a zero-truncated binomial distribution with

parameters T and pi, i ¼ 1, 2, . . ., S. The conditional

probability mass function (pmf) of Ui given pi could be

formulated as

PðUi ¼ ujpiÞ ¼
T

u

� �
pu

i ð1� piÞT�u

1� ð1� piÞT

u ¼ 1; 2; . . . ; T:

ð1Þ

Suppose that a simple random sample of t quadrats is

chosen without replacement from the region composed

of T quadrats. It is self-evident that once the other T� t

quadrats are exhaustively surveyed, the total number of

species present in the region will become known. Let Xi

denote the number of quadrats of species i in a sample of

t quadrats; the conditional pmf of Xi given both Ui and

pi is a hypergeometric distribution:

PðXi ¼ xjUi; piÞ ¼

Ui

x

� �
T � Ui

t � x

� �

T
t

� � ð2Þ

where maxf0, t� T þ Uig � x � minfUi, tg.
When Eq. 2 is averaged over all possible realizations

of Ui, the conditional pmf of Xi only given pi can be

derived from EUi
[P(Xi ¼ x jUi, pi)] and explicitly

expressed as

PðXi ¼ xjpiÞ ¼
t

x

� �
px

i ð1� piÞt�x

1� ð1� piÞT
� ð1� piÞTIðx ¼ 0Þ

1� ð1� piÞT

x ¼ 0; 1; 2; . . . ; t: ð3Þ

where I(�) is an indicator function. Once all quadrats are

sampled from the region, i.e., t ¼ T, this condition

distribution is exactly the same as the one in Eq. 1. To

reduce the number of parameters in Eq. 3 and to

simplify the derivation of the unconditional distribution

P(Xi) from Eq. 3, we consider p1, p2, . . ., and pS as

a random sample from a distribution with the proba-

bility density function (pdf) being a modified beta

distribution:

pð pÞ ¼ Kða; bÞ½1� ð1� pÞT �pa�1ð1� pÞb�1

0 , p , 1

where a . 0, b . 0, and

Kða; bÞ ¼ CðaÞCðbÞ
Cðaþ bÞ �

CðaÞCðbþ TÞ
Cðaþ bþ TÞ

� ��1

is a normalizing factor. Note this modified beta

distribution inherits almost all the properties of the

standard beta distribution which is widely used to model

data of range [0, 1]. Furthermore, these two distribu-

tions are equivalent when T is large. Consequently, the

unconditional distribution of Xi is given by

PðXi ¼ xÞ

¼

Kða; bÞ t

x

� �
Cðx þ aÞCðt þ b� xÞ

Cðt þ aþ bÞ x . 0

Kða; bÞ CðaÞCðt þ bÞ
Cðt þ aþ bÞ �

CðaÞCðT þ bÞ
CðT þ aþ bÞ

2
4

3
5 x ¼ 0:

8>>>>>>><
>>>>>>>:

ð4Þ

RICHNESS ESTIMATORS

Let fk¼RS
i¼1 I(Xi¼ k) represent the number of species

observed in exactly k quadrats out of the sample, k¼ 1,

2, . . ., t. Note that f0 is unobservable if t , T. Under the

proposed model in the previous section, ( f0, f1, f2, . . ., ft)

is a multinomial distribution with a total S and

probabilities (q0, q1, q2, . . ., qt) subject to Rt
k¼0 qk ¼ 1,

where qk¼P(Xi¼ k) in Eq. 4 for brevity. Consequently,

the likelihood function could be explicitly expressed as

LðS; a; bÞ ¼ S!

ðS� DÞ!
Yt

k¼1

fk!

qS�D
0

Yt

k¼1

q fk
k ð5Þ

where D¼Rt
k¼1 fk denotes the number of distinct species

in the sample. According to the basis of the likelihood

function on the observed number of species D or on ( f1,

f2, . . ., ft), the likelihood function in Eq. 5 can be

decomposed into two ingredients and expressed as L(S,

a, b) ¼ Lb(S, a, b) 3 Lc(a, b) (Sanathanan 1972, 1977),

where
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LbðS; a; bÞ ¼
S!

ðS� DÞ!D!
ð1� q0ÞDqS�D

0

and

Lcða; bÞ ¼
D!

Yt

k¼1

fk!

Yt

k¼1

qk

1� q0

� �fk

: ð6Þ

Lb(S, a, b) can be easily recognized as a binomial
likelihood function with respect to D and Lc(a, b) is a
conditional likelihood function based on ( f1, f2, . . ., ft)
only. Following Sanathanan’s (1972, 1977) results, the
parameters estimation could be derived from two
versions of the likelihood function depicted as follows:
1) Unconditional MLE, maximum likelihood estimate

(UMLE): the MLE of the parameters (S, a, b) is directly
searched by maximizing Eq. 5 with respect to all
parameters at once.
2) Conditional MLE (CMLE): unlike the procedure

of UMLE that only has one step to evaluate, the process
of the CMLE involves two steps. One needs to find the
MLE (a, b) first based on Lc(a, b), then maximize Lb(S,
â, b̂) with respect to S to obtain the CMLE of S,
denoted by

ŜCMLE ¼ D

1� Cðâþ b̂Þ
Cðb̂Þ

CðT þ b̂Þ
CðT þ âþ b̂Þ

1� Cðâþ b̂Þ
Cðb̂Þ

Cðt þ b̂Þ
Cðtþ âþ b̂Þ

2
66664

3
77775: ð7Þ

If â and b̂ of Eq. 7 are replaced by the true values of a
and b, ŜCMLE is a conditional, unbiased estimator of S in
the sense that E [ŜCMLE j (â, b̂) ¼ (a, b)] ¼ S. It is,
however, worthwhile to mention that the difference
between the two versions of the MLE’s with respect to S
is negligible based on our simulation and the results (not
shown) using the two data sets in Empirical test. The
conditional MLE (Eq. 7) is analytically and computa-
tionally simpler. For computational convenience, we will
only use the conditional likelihood function Lc(a, b) to
estimate S in Eq. 7. When â goes to zero, the proposed
estimator (Eq. 7) is still well defined and has an
alternative form of

Ŝ
�
CMLE ¼ D

C 0ðT þ b̂Þ
CðT þ b̂Þ

� C 0ðb̂Þ
Cðb̂Þ

C 0ðt þ b̂Þ
Cðt þ b̂Þ

� C 0ðb̂Þ
Cðb̂Þ

2
66664

3
77775

where C0(x) is the first derivative of the gamma function
with respect to x.

To derive the variance of the proposed estimator (Eq.
7), the variance decomposition formula can be applied to
ŜCMLE with respect to the observed number of species D:

VarðŜCMLEÞ ¼ E½VarðŜCMLEjDÞ� þ Var½EðŜCMLEjDÞ�

’ EðD2ÞVar½gðâ; b̂ÞjD� þ VarðDÞðE½gðâ; b̂ÞjD�Þ2

where g(â, b̂)¼ ŜCMLE/D is a function of â and b̂ only. In

addition to directly estimating E(D2) and E [g(â, b̂) jD]

by the method of moment, there are two more terms

which need to be estimated in the approximate formula

of Eq. 8. Since D is approximately distributed from a

binomial distribution with parameters S and E(D)/S, an

approximate variance of D is accordingly given by

Var(D) ’ E[D](1� E[D]/S). On the other hand, Var[g(â,
b̂) jD] has an approximate formula:

Var½gðâ; b̂ÞjD�’ ]g

]a
;
]g

]b

� �
½Iða; bÞ��1 ]g

]a
;
]g

]b

� �>
ð9Þ

where I(a, b) is the Fisher information matrix of (a, b)
with respect to the likelihood function Lc(a, b). The

variance estimator of ŜCMLE is then completed as

follows:

dVarðŜCMLEÞ ¼ D2dVar½gðâ; b̂ÞjD�

þ Dð1� D=ŜCMLEÞg2ðâ; b̂Þ ð10Þ

where dVar[g(â, b̂) jD] is obtained by substituting

the CMLE (â, b̂) into Eq. 9. As will be seen in the

empirical test below, the performance of the variance

estimator (Eq. 10) is satisfactory for most scenarios

considered there.

EVALUATION OF THE ESTIMATOR

Other incidence-based estimators

We now test and compare the performance of our

estimator (Eq. 7) against three major incidence-based

estimators and their corrected forms.

1) The first-order jackknife estimator (Heltshe and

Forrester 1983):

S̃jack1 ¼ Dþ t � 1

t

� �
f1:

2) The bootstrap estimator (Smith and van Belle

1984):

S̃boot ¼ Dþ
Xt

k¼1

fk 1� k

t

� �t

:

3) The Chao2 estimator (Chao 1987, Colwell and

Coddington 1994):

S̃Chao2 ¼ Dþ t � 1

t

� �
f 2
1

2f2
:

As stated above, for a random sample of quadrats

taken without replacement, these estimators will over-

estimate species richness when the sampling proportion

is large. For example, when t ¼ T, none of the three

estimators will attain the true species richness S unless

XS

i¼1

IðUi ¼ 1Þ ¼ 0

with respect to S̃jack1 and S̃Chao2, and
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XS

i¼1

IðUi ¼ kÞ ¼ 0

for all k with respect to S̃boot. The magnitude of the bias

of S̃jack1, S̃boot, and S̃Chao2 are, respectively,

½ðT � 1Þ=T�
XS

i¼1

IðUi ¼ 1Þ

XT

k¼1

XS

i¼1

IðUi ¼ kÞð1� k=TÞT

and

½ðT � 1Þ=T�
XS

i¼1

IðUi ¼ 1Þ
" #2�

2
XS

i¼1

IðUi ¼ 2Þ
" #

at t¼ T. This explains why S̃jack1 and S̃boot overestimate

the true species richness when the sampling percentages

are more than 70% in Hellmann and Fowler (1999). The

resulting positive biases for the most estimators in the

study of Hellmann and Fowler (1999) are due to the

sampling device (sampling quadrats without replace-

ment [Chiarucci et al. 2003:292]) or due to the

assumption of infinite population (Schreuder et al.

1999).

To overcome this problem, Schreuder et al. (1999) use

a finite population correction term to adjust those

estimators, say S̃any, whose derivations are based on

sampling with replacement. The corrected formula is

Ŝany ¼ Dþ ð1� t=TÞðS̃any � DÞ: ð11Þ

This will lower the number of unseen species so that the

corrected estimators attain the true richness when t¼T.

We denote the corrected formula of the above three

estimators as Ŝjack1, Ŝboot, and ŜChao2.
Mingoti and Meeden (1992) assume that the number

of quadrats with species i in the sample, Xi, is from a

beta-binomial distribution with parameters a . 0 and

b . 0 for the beta distribution. Based on this parametric

mixture model, they proposed a richness estimator:

ŜMM

¼ Dþ f1
tâ
ðt þ b̂� 1Þ 1� Cðt þ âþ b̂Þ

Cðt þ b̂Þ
CðT þ b̂Þ

CðT þ âþ b̂Þ

" #

where â and b̂ are the maximum likelihood estimators of

a and b, respectively. When â goes to zero, the estimator

is still well-defined and given by

Ŝ
�
MM ¼ Dþ f1

t
ðt þ b̂� 1Þ

XT�1

j¼t

1

j þ b̂
:

Haas et al. (2006) proposed a series of nonparametric

estimators based on the generalized jackknife procedure.

However, their basic model is different from ours in the

way that they assumed Xi comes from a binomial

distribution with parameters Ui . 0 and q ¼ t/T.

Therefore, samples from their distribution are approx-

imate to a simple random sample when T is large

enough. In contrast, ours is an exact model rather than

an approximation. Under the assumption that all U ¼
(U1, U2, . . ., US) are equal (very unlikely in reality), they

presented an estimator:

Ŝj1 ¼ D 1� ð1� qÞf1Xt

i¼1

ifi

2
66664

3
77775

�1

ð12Þ

which is referred to as the first-order jackknife estimator

in their paper. If U are heterogeneous, they added one

more term, involving the coefficient of variation (CV) of

U, to Eq. 12 in order to reduce the bias of Ŝj1. The

corrected estimator is

Ŝj2 ¼
D� ð1� qÞlnð1� qÞĉ2f1=q

1� ð1� qÞf1=
Xt

i¼1

ifi

where

ĉ2 ¼ max 0; Ŝj1

Xt

i¼1

iði� 1Þfi

Xt

i¼1

ifi

 !2
þ qŜj1Xt

i¼1

ifi

� 1

2
666664

3
777775

is the estimate of squared CV of U. This estimator is

called as the second-order jackknife estimator in Haas

et al. (2006). As will be seen below, the estimator Ŝj1
systematically underestimates the true species richness

for the two test data sets. Ŝj2 improves the estimation but

considerable bias still remains.

Empirical test

Two data sets of large forest plots are used to test and

compare our estimator with those introduced previous-

ly. The data are census data and are common in their

field survey protocol. In each plot, all free-standing trees

and shrubs �1 cm diameter at breast height were

enumerated, individually located on a reference map,

and identified to species.

The Barro Colorado Island (BCI) plot is 50 ha (1000

3 500 m), located in Barro Colorado Island, Panama

(Condit et al. 1996). Six censuses have so far been

surveyed. The 1985 census is used here. There are 299

species and 238 018 individuals. The Pasoh plot is 50 ha

(1000 3 500 m), locating in Pasoh Forest Reserve,

Malaysia (Kochummen et al. 1990, Abdul Rahim et al.

2004). The first census conducted during 1985–1987 was

used in this study. There are 817 species and 320 904

individuals.

The performance of the estimators can be tested by

taking quadrat samples without replacement from each

plot. Four sizes of quadrats are used: 535 m, 10310 m,
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203 20 m, and 503 50 m. For each of the four quadrat

sizes, six sampling proportions (q¼ 0.015, 0.05, 0.1, 0.2,

0.3, and 0.5) are implemented to investigate the effect of

sample sizes on the richness estimators. For a given

quadrat size and sampling proportion, 500 replicates are

generated. We then compute the mean of observed

numbers of species, denoted by D̄, the means of the

estimates of our proposed estimator ( ¯̂SCMLE) and other

estimators. In total, we compare our method against

nine competitors. Six of them are shown in Figs. 1 and 2

for assessing the effect of sampling without replacement

on estimators S̃jack1, S̃boot, and S̃Chao2 and their corrected

forms Ŝjack1, Ŝboot, and ŜChao2. The other three estima-

tors, ¯̂SMM, ¯̂Sj1, and
¯̂Sj2, have taken the sample size into

account and are compared in Tables 1 and 2.

The results for four quadrat sizes plotted against the

sampling proportions are shown in Figs. 1 and 2. It is

clear that the three unadjusted estimators, S̃jack1, S̃boot,

FIG. 1. The Barro Colorado Island (BCI), Panama plot with species richness in relation to four quadrat sizes (range 53 5 m to
50 3 50 m). Sampling fraction is the proportion of quadrats sampled.
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and S̃Chao2, quickly overestimate the true richness as the

sample proportions increase. The adjusted estimators,

Ŝjack1, Ŝboot, and ŜChao2, provide the lower mean esti-

mates and approach true richness as sampling intensity

increases. However, they are quite sensitive to sampling

intensity, especially at small sampling proportions. It

appears that ŜCMLE and ŜChao2 are the two estimators

least sensitive to the effect of sampling intensity.

The comparison of our estimator ( ¯̂SCMLE) against

the methods ( ¯̂SMM, ¯̂Sj1, and
¯̂Sj2) of Mingoti and Meeden

(1992) and Haas et al. (2006) is given in Tables 1 and 2.

The estimators are evaluated by the sample root mean

squared errors (RMSE):

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX500

i¼1

ðŜi � SÞ2
�

500

vuut

where Ŝi is the computed estimate for a given estimator

for the ith replicate and S is the true species richness of a

FIG. 2. The Pasoh, Malaysia plot with species richness in relation to four quadrat sizes (range 53 5 m to 503 50 m). Sampling
fraction is the proportion of quadrats sampled.
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given plot (e.g., S ¼ 299 for the BCI plot). The sample

standard errors r and the mean of the estimated

standard errors ¯̂r for the variance estimator (Eq. 10)

are also included in the tables.

As the sampling proportions increase, ¯̂SCMLE and
¯̂SMM consistently approach the true richness and their

RMSE correspondingly decreases with q (Tables 1 and

2). The performance of the two nonparametric estima-

TABLE 1. For the Barro Colorado Island (BCI), Panama plot, a comparison of the performance of ŜCMLE, ŜMM, Ŝj1, and Ŝj2.

Quadrat size
(m) and number q D̄

ŜCMLE ŜMM Ŝj1 Ŝj2

Mean RMSE r ¯̂r Mean RMSE Mean RMSE Mean RMSE

5 3 5, 20 000 0.015 167.2 367.1 69.7 14.9 23.7 363.1 70.8 171.5 127.6 323.9 39.3
0.05 226.9 337.0 40.7 14.6 21.1 315.2 25.4 227.7 71.4 380.9 87.3
0.10 246.6 318.2 21.4 9.5 14.8 304.1 13.9 247.0 52.2 389.9 94.9
0.20 264.0 307.6 10.9 6.7 9.5 299.9 9.7 264.1 35.1 393.8 98.6
0.30 273.8 304.6 7.6 5.2 7.3 299.7 7.3 273.8 25.4 393.7 97.7
0.50 285.0 301.7 4.6 3.7 4.9 299.4 4.7 285.1 14.2 383.6 86.6

10 3 10, 5000 0.015 165.6 370.0 74.9 23.9 36.4 361.2 71.2 171.9 127.2 2412 60.5
0.05 225.2 325.9 31.0 15.4 22.5 310.5 22.5 226.4 72.8 301.0 17.0
0.10 245.7 312.3 16.8 10.2 14.1 302.1 14.0 246.2 53.0 317.1 24.4
0.20 263.6 305.0 9.1 6.8 9.2 300.1 9.5 263.9 35.3 330.3 34.6
0.30 273.5 303.1 6.8 5.4 7.0 300.2 7.6 273.7 25.6 336.0 39.6
0.50 285.0 301.0 4.2 3.7 4.6 299.7 4.8 285.1 14.2 335.9 38.4

20 3 20, 1250 0.015 162.6 338.7 60.9 46.3 55.5 334.7 60.7 174.1 125.2 200.1 99.8
0.05 223.2 311.9 20.2 15.5 21.1 302.9 19.5 225.4 73.8 260.9 39.6
0.10 243.7 302.3 10.3 9.8 13.4 296.9 12.8 244.6 54.6 279.2 22.0
0.20 261.9 299.9 7.4 7.4 8.9 298.9 10.0 262.3 36.9 297.3 10.0
0.30 272.1 299.4 5.9 5.9 6.8 299.0 7.8 272.4 26.9 305.0 11.0
0.50 284.2 299.2 4.0 4.0 4.5 299.0 5.0 284.3 15.0 311.1 14.0

50 3 50, 200 0.015 168.6 308.7 61.0 60.3 59.9 311.3 64.3 201.2 98.7 201.2 98.7
0.05 221.3 301.1 18.0 17.9 22.9 297.5 19.8 227.4 71.9 237.2 62.3
0.10 241.4 295.9 12.7 12.3 14.1 294.6 15.4 244.1 55.1 256.6 43.0
0.20 260.2 296.3 9.1 8.7 9.1 297.5 11.2 261.4 37.9 275.7 24.5
0.30 271.4 298.4 6.4 6.3 7.0 300.1 8.1 272.1 27.2 286.8 13.7
0.50 284.0 298.9 4.3 4.3 4.5 299.6 5.2 284.3 15.1 296.6 5.5

Notes: There are 299 observed tree species. Quadrat number is the total number of quadrats in the BCI plot for the given quadrat
size, RMSE is root mean squared error, q is the proportion of quadrats sampled, and D̄ is the richness averaged over the sampled
quadrats; ŜCMLE, proposed richness estimator; ŜMM, Mingoti and Meeden’s estimator; Ŝj1, the first-order jackknife estimator
by Haas et al.; Ŝj2, the second-order jackknife estimator by Haas et al.; r, sample standard error; ¯̂r, average estimated standard
error.

TABLE 2. For the Pasoh, Malaysia plot, a comparison of the performance of ŜCMLE, ŜMM, Ŝj1, and Ŝj2.

Quadrat size
(m) and number q D̄

ŜCMLE ŜMM Ŝj1 Ŝj2

Mean RMSE r ¯̂r Mean RMSE Mean RMSE Mean RMSE

5 3 5, 20 000 0.015 488.7 1025.5 223.1 79.5 104.5 992.3 193.7 512.9 304.3 768.9 60.7
0.05 665.2 875.8 62.6 21.4 30.1 855.2 46.5 669.1 148.1 899.0 86.9
0.10 718.8 854.3 39.9 14.0 19.2 839.3 29.1 720.4 96.9 915.8 102.3
0.20 759.8 838.6 23.3 8.5 12.2 825.0 14.5 760.3 56.9 904.1 89.7
0.30 778.5 831.5 16.0 6.7 9.1 821.4 10.3 778.8 38.5 895.1 80.4
0.50 797.5 824.1 8.4 4.5 5.8 818.7 6.1 797.5 19.8 877.8 62.3

10 3 10, 5000 0.015 483.5 978.3 181.5 83.3 100.4 955.7 164.0 513.5 303.8 683.0 137.5
0.05 661.9 861.9 50.0 22.0 29.2 846.2 39.7 666.7 150.5 826.9 25.0
0.10 716.3 846.2 32.1 13.3 18.8 833.9 24.4 718.3 99.0 855.3 42.9
0.20 758.4 834.7 20.0 9.4 11.9 824.6 14.8 759.1 58.2 863.8 50.0
0.30 777.3 828.5 13.2 6.4 8.9 819.7 9.4 777.7 39.6 860.1 45.4
0.50 797.5 823.4 7.9 4.6 5.7 819.0 6.4 797.6 19.7 855.8 40.4

20 3 20, 1250 0.015 472.7 916.3 134.1 90.2 101.9 907.4 129.0 519.9 297.7 598.9 219.8
0.05 657.1 849.4 40.5 24.3 29.2 840.8 37.5 664.6 152.7 759.4 60.5
0.10 714.2 839.7 27.2 15.0 18.7 833.0 25.0 717.2 100.1 801.2 22.1
0.20 757.8 832.0 17.3 8.7 11.9 824.9 14.3 758.8 58.5 823.9 13.7
0.30 776.7 826.4 11.5 6.7 8.8 820.2 9.9 777.2 40.1 829.0 16.1
0.50 797.0 822.0 6.7 4.5 5.6 818.4 6.0 797.2 20.2 832.8 17.6

50 3 50, 200 0.015 492.8 837.8 139.6 138.1 130.1 838.2 140.6 608.6 211.7 608.6 211.7
0.05 651.5 824.8 31.4 30.4 30.8 825.0 33.7 670.4 147.3 697.0 121.2
0.10 709.0 828.1 20.1 16.7 19.4 827.6 22.0 716.7 100.8 748.0 70.0
0.20 754.2 825.0 12.8 10.0 12.0 821.9 13.0 756.9 60.5 783.9 34.2
0.30 775.3 822.8 9.4 7.3 8.8 819.2 9.4 776.6 40.8 798.9 19.5
0.50 795.8 819.4 5.4 4.8 5.5 817.6 5.8 796.2 21.2 812.0 7.4

Notes: There are 817 observed tree species. See Table 1 for definitions of parameters.
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tors, Ŝj1 and Ŝj2, is inferior to
¯̂SCMLE and ¯̂SMM in terms of

RMSE and bias except for small quadrat size along with

the smallest sampling proportion. As expected, Ŝj1
systematically underestimates the true species richness

for all plots (Tables 1 and 2). Overestimation is also

observed for the bias corrected Ŝj2 of Haas et al. (2006).

ŜMM is the only method that is comparable to our

estimator in both RMSE and bias (Tables 1 and 2). The

relative small bias of ŜMM is partially due to its

derivation by the method of moment. Our proposed

estimator, ŜCMLE, is a likelihood-based estimator; it has

asymptotic properties. Our method consistently outper-

forms other estimators when quadrat size is relatively

large. This provides an advantage in field sampling

because it is easier to set up and survey a few larger

quadrats than many small ones.

DISCUSSION

Counting species presence or absence in quadrats is a

practical and convenient sampling scheme. The majority

of richness estimators in the literature are derived from

probabilistic models considering sampling with replace-

ment or assuming infinite population size (Bunge and

Fitzpatrick 1993, Chao 2005). Such a sampling scheme,

however, is seldom applied to sampling sessile organisms

such as plants where sampling without replacement,

instead, is used. It has been thought that an estimator

deriving from a model of sample-without-replacement

would usually involve combinations (or factorials) like

those in Eq. 2, thus making the derivation mathemat-

ically cumbersome. But the new model proposed in this

study has got over this awkward problem.

Empirical tests using the two real data sets have

shown the superior performance of the proposed

estimator (Eq. 7) to other existing estimators (Tables 1

and 2, Figs. 1 and 2). The superiority is particularly

noticeable when quadrat size is large. For example, at 50

3 50 m, ŜCMLE very quickly approaches true number of

species for the two data sets and in most cases its RMSE

is smallest among all other compared estimators. This

feature suggests that a few large quadrats should be

preferred over many small quadrats. This is clearly a

welcoming advantage in field sampling.

Most richness estimators, such as S̃boot and S̃Chao2,
were derived from models of sampling with replacement

or from the assumption of infinite population size. As

shown in this study, if such estimators are uncondition-

ally applied to data of sample-without-replacement, they

will overestimate the true richness when the proportion

of sampled quadrats is large. This violates the basic

property of that an estimator should approach the true

value when sample sizes approach to the entire study

region. Although Schreuder et al. (1999) attempt to

correct such estimators by adjusting the number of

unseen species with a finite population correction term

like Eq. 11, the performance of the corrected estimators

still do not work as well as our method (Figs. 1 and 2).

Mingoti and Meeden (1992) propose a richness

estimator based on the beta-binomial model. Their

model allows species, present in the sampled quadrats,

to have probabilities to be unseen. Based on their beta-

binomial model, it does not require all species to appear

when all quadrats are surveyed. Although this assump-

tion may be reasonable for animal species like birds

(birds may not be seen even entire area is surveyed

because of their mobility), it may not be appropriate for

sessile species. Haas et al. (2006) also devote to the same

topic and propose a range of estimators derived from the

generalized jackknife method, but their model was based

an approximation in order to avoid combinations like

those in Eq. 2. Our results in almost all cases of Tables 1

and 2 show that ŜCMLE outperforms Ŝj1 and Ŝj2. While

PLATE 1. Gutianshan nature Reserve (81 km2), Zhejiang, mainland China. A 24-ha stem-mapped plot is established to address
questions including the number of different tree species present. Photo credit: F. He.
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ŜCMLE is inferior to ŜMM at small quadrat sizes, it is

indistinguishable from it at intermediate quadrat sizes

but superior at large sizes. Another advantage of our

estimator is that the variance for ŜCMLE is available.

This is not the case in other estimators in Tables 1 and 2.

In practice, two crucial issues often arise: (1) How

large should the sampling quadrat be? and (2) How

many quadrats should be taken? Based on our results

(Tables 1 and 2 and Figs. 1 and 2), we would

recommend using at least 20 3 20 m, preferably 50 3

50 m, quadrat size if the purpose is to estimate richness.

In terms of the number of quadrats to be sampled, the

minimum is three (otherwise, the model becomes

statistically unidentifiable). The price to pay for taking

a small sample size is the inflation of the estimated

standard error. It is clear from Tables 1 and 2 and Figs.

1 and 2 that quadrat size and sample size compensate

each other. If quadrat size is large, we can use relatively

small sample size to attain the same level of accuracy

and precision. As a thumb of rule, based on our results,

we would recommend a minimum sampling scheme: 20

3 20 m quadrat size with 10% sampling intensity.
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