
Event Triggered Cubature Kalman Filter

by

Marzieh Kooshkbaghi

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Control Systems

Department of Electrical and Computer Engineering

University of Alberta

c○ Marzieh Kooshkbaghi, 2020



Abstract

The Event-triggered state estimation problem has been at the forefront of systems research

for several decades and has seen multiple successful applications in diverse areas such as

signal processing, target tracking, and navigation systems. Event-triggered state estimation

offers a promising solution to data traffic congestion, in which information between sensors

and estimators, takes place aperiodically in an event-based manner. In this research we

tackle some practical problems encountered in this field and endeavour to improve the state

of the art.

In the first part, we develop the necessary theory to develop a discrete-time event-

triggered cubature Kalman filter for nonlinear systems with noisy measurements. We show

that the proposed filter offers excellent performance in the state estimation of the high

dimensional nonlinear systems compared to the other previously proposed nonlinear filters

which typically suffer from possible divergence, or curse of dimensionality. In addition,

the proposed filter has bounded state estimation error while reducing the communication

burden.

In the next part of this research, we study the effect of the packet dropout in the

transmission of information on the state estimator performance. Packet dropouts are caused

by imperfect communication channels, and are therefore unavoidable when information is

received by the filter via a communication network. We first develop the nonlinear filter to

reduce the estimation error. Then we show that if the packet arrival rate is lower bounded,

then the error covariance matrix is bounded. In addition, by properly tuning the value of

the event-triggered threshold, one can guarantee the boundedness of the estimation error.

Then, we consider the effect of transmission delay in the triggered measurement from

the sensors to the remote nonlinear estimator. We first discuss the difficulties involved in

dealing with time-delays in the context of state estimation and formulate the need for a new

algorithm. Then we develop a proper nonlinear filter and show that by using the proposed

event-triggered cubature Kalman filter, accurate estimates of the states can be achieved

despite time delays, while reducing transmission of information between system and the
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filter. To show the advantages of the proposed filters, we evaluate the performance of the

proposed filters applied to a synchronous machine.

In the next part, we turn our attention to the developing of a nonlinear filter for more

realistic scenario. We develop a nonlinear event-triggered adaptive filter for high dimen-

sional nonlinear systems. The adaptive mechanism is important whenever there are sudden

changes in the system states. We show that although the upper bound of the error covari-

ance matrix and the estimation error could be affected, one can guarantee the convergence

and the boundedness of the state estimation error by properly designing the nonlinear filter

and tuning the event-triggered threshold value and the rate of the packet arrival.

Finally, the effect of the transmission delay and the sudden changes of the states are

considered and we develop a nonlinear filter for high dimensional nonlinear systems which

could tackle these issues while reducing the amount of data transferring between the sensors

and the remote state estimator.
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Chapter 1

Introduction

1.0.1 Background

Cyber-Physical System (CPS) is a term used to describe “a ubiquitous and smart integration

of sensing devices, computing processors and communication networks that reliably interacts

with the physical world (with the probable involvement of humans in the loop) in real

time” [1]. CPSs play an important role in many diverse areas such as smart ecosystems.

Typical example of CPSs are energy systems, medical systems, smart grids, transportation

networks, process control and automation and wearable devices.

Cyber physical systems usually exchange information among physical components and

cyber components through wired or wireless communication channels. The use of wireless

communication channels brings multiple benefits such as low wiring cost but introduces the

need to carefully manage the communication resources. For instance, wireless sensors and

processors may have constrained energy provided by batteries, so the energy management

is of a great importance. On the other hand, band-limited networks are used as a means of

communication between sensors, state estimators, controllers, and the actuators which can

introduce several challenges such as transmission delay and packet dropouts.

In the traditional approach, signals are transmitted in a periodic or time-triggered man-

ner which means that activities take place at predefined points in time. Time triggered

approach is easy to implement but it occupies excessive bandwidth. In general, communi-

cation should only occur when relevant information needs to be transmitted between system

components. Event-triggered data transferring is a promising solution.

The event-triggered approach is an alternative to classical periodic sampling, in which

information between system components is exchanged only when a specified triggering con-

dition (TC) is violated, as opposed to periodically. The TC can be defined in different forms

and varies depending on the nature of the system.The primary benefit of event-triggered
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sampling is a, possibly significant, reduction in data transmission between different com-

ponents of the networked system while maintaining comparable performance. The price

paid for this reduction is additional complexity in the analysis and design, originated in the

non-periodic nature of the sampling.

Parallel to the event-triggered transmission problem which has been thoroughly inves-

tigated in the recent years, state estimation for complex networks has gained significant

attention [24–26]. State estimators can be used to estimate the target state of a dynamical

system from a noisy signal received from the remote sensors through the communication

channel. The estimated states can be used for monitoring CPSs, or energy management in

power networks. For example, in power systems, voltages, frequencies and the angles of the

generators can be estimated by using PMU data.

It is important to note that both observers and state estimators can be used to esti-

mate system states, but there are some differences between them. Dynamic observers are

commonly used for deterministic systems to generate unmeasured internal states in real-

time, given a set of output measurements (and sometimes inputs). Sliding mode observers,

unknown input observers, nonlinear observers are examples of observers designed using dif-

ferent techniques and applicable to systems with certain characteristics. State estimators,

on the other hand, are designed to deal with random process disturbances, measurement

noises, and uncertainty in the system models. Examples of well established state estimators

include Kalman filters, Extended Kalman filters (EKF), Unscented Kalman filters (UKF)

and Cubature Kalman filters (CKF). State estimators are used in multiple applications

ranging from aerospace systems to medical devices.

Event-based state estimation has been a challenging problem over the last decade. The

primary characteristic of the event-based state estimation systems is that they can provide

performance very similar to classical state estimation approaches while reducing the trans-

mission of information between plant and state estimators. The main problem is then to

design the triggering mechanism/state estimator in a way that the desired stability and/or

performance for the event-triggered system is achieved which is more difficult compared

with the periodic counterparts . This is also more challenging when the model of the sys-

tem mismatches to the practical one and the packet dropouts and delays happen during the

data transferring through the communication channel.
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1.0.2 Literature Survey

Research on the event-based systems done in late 1990’s [27], has attracted much attention

due to its capacity to reduce the communication and computational costs while maintaining

system performance.

In [27], Astrom focused on “Lebesgue sampling” which is performed along vertical axis

and provides sampled values of the signal when a certain event-triggered condition is vi-

olated. In this reference, the authors consider a first order stochastic system and showed

that the event-based sampling can improve the performance compared to periodic sampling

in terms of smaller output variance at the same average sampling rate. The results of this

work were extended to the second-order case in [64].

[65] is one of the first work in which an event-triggered PID controller is defined and

the stability of the system is studied. In this work, the time-triggered and event-triggered

controller performance for a double-tank process is compared and it is shown that by using

an event-based mechanism, the control execution is reduced while the controller performance

is satisfactory.

Encouraged by this early work, much research has been reported on the event-based

control, including closed loop stability and performance. In [28], a Lyapunov method was

used to analyze the asymptotic behaviour of the event-triggered nonlinear system for a

given state feedback controller, and a lower bound on the inter-sample period was proposed.

Periodic event based control is proposed in [29], which indicates that events can only be

activated at some sampling instants of the periodic sampled data system. In [29, 66–68],

the authors studied the effect of the event-triggered mechanism on the performance of the

controller, and a trade-off between the system performance and the control law complexity

was derived.

Event-triggered state estimation has also received attention. In [69], the performance of

the periodic and the event-based sampling state estimation for the first and second order

systems are studied.

Event-triggering scheme designing is one of the important issues in event-triggered state

estimation. Normally, it is difficult to design a triggering mechanism to gain all state

estimation goals. In [35,70–72], the authors propose to design the event-triggering schemes

by using constrained optimization problem. In these literature, they consider to design

the triggering condition by optimizing certain performance under the constraints on sensor

transmissions.
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The main goal of this thesis is to design an event-triggered state estimator based on the

predefined event-triggered mechanism. Event-triggering condition determines the measure-

ment information available to the estimator. Different conditions have been proposed. The

description of different event-triggered conditions are given in [32,73].

In [20,74], an event-triggered filter with “send-on-delta” mechanism, which is the most

practical event-triggering condition, is defined. In “send-on-delta” mechanism, new mea-

surement is sent to the estimator when the distance between the current measurement and

the last sent measurement exceeds a predefined threshold. “Innovation-level-based” event-

triggered mechanism is applied to state estimator in [30, 53, 75, 77]. In this mechanism,

the predicted measurement is sent to the scheduler from the estimator. Based on the cur-

rent measurement and the predicted measurement, the event-triggered mechanism decides

whether to send the current measurement to the estimator. The drawback of this type

of triggering condition, however, is that extra feedback communication from the estimator

(local filters or remote filters) to the sensor is needed to obtain the predicted measure-

ment. So it increases the hardware and energy requirements in the implementation of the

event-triggering scheme. “Variance-Based” condition is studied in [76], in which the estima-

tion error covariance is compared to the minimum achievable estimation error covariance

obtained based on the periodic measurements and if the difference exceeds the predefine

threshold, the new measurement would be sent to the remote state estimator.

Besides to the triggering mechanism designing problems, estimator design is the most

important problem of the event-based state estimation. At each time instant, the estimator

receives point valued/set valued information from the sensors. When the event-triggering

condition is satisfied, the outputs of the sensors (point valued information) are exactly

known to the estimators. On the other hand, the estimator might have knowledge of

the information in event-triggering set (set valued information) when the event-triggering

condition is not satisfied. Different estimators have been proposed.

In [20], a minimum mean square error estimator was derived for linear systems with

stochastic disturbances based on hybrid information from multiple sensors, which provide

their measurement updates according to separate event-triggering conditions. The approx-

imate Gaussian approach is introduced and the conditional densities are assumed to be

Gaussian to handle the non-Gaussian distribution caused by the exploitation of the event-

triggered measurement information. It is shown that the optimal estimator depends on the

conditional mean and covariance of the measurement innovations. The trade-off between

performance and communication rate is also studied. In [32], an event-based estimator with
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hybrid measurement updates is proposed. This reference uses the sum-of-Gaussian approach

to approximate the uniform distribution with a sum of a finite number of Gaussian distri-

butions to reduce the computational complexity. In this approach, parameters need to be

tuned carefully to guarantee the asymptotic boundedness of the estimation error covariance

matrix. In [30], an event-based state estimation problem for linear time invariant systems

in the framework of Maximum Likelihood (ML) was studied and the computation of upper

and lower bounds for the communication rate was discussed. In [31], the state estimation

problem for a class of stochastic event-triggering conditions is considered and MMSE esti-

mates were obtained without introducing additional approximations. In [33], the authors

consider the noises and the event-triggering conditions as stochastic and non-stochastic un-

certainties and an event-based estimate was obtained by minimizing the worst-case mean

square error. In [78], the application of the set-valued filters with set-valued measurements

to the event-triggered state estimators are discussed and the properties of the proposed

filter is studied. Reference [34] considers the event-based finite-horizon state-estimation for

scalar systems. Reference [35] extended their work to vector systems.

All of the above mentioned references focus on linear systems. Dynamic systems used

in many applications are often nonlinear. Bayesian filtering is applied to an important class

of state estimation problems, which are describable by a discrete-time nonlinear state-space

model with additive Gaussian noise. A major difficulty in this problem is that when the

system equations are nonlinear, the posterior density cannot be described by a finite number

of statistics, and an approximation must be made.

Well established sub-optimal popular solutions include the Extended Kalman Filter

(EKF) [2], based on the first order linearization, and the Unscented Kalman Filter (UKF)

[3], based on the so-called “unscented” transformation.

Both filters, EKF and UKF, have been applied extensively for online dynamic state

estimation of nonlinear systems, however, they both have limitations: EKF uses a linear

approximation of the system model which introduces error in state estimates and and can

cause the solutions to diverge from the true state [4, 16]. In general, UKF performs better

than EKF in terms of robustness and speed of convergence, but it suffers from computational

complexity, sometimes referred to as the curse of dimensionality, [5–7].

Cubature Kalman filters, recently proposed in [8], offer an attractive and numerically

stable solution with low computational effort to the nonlinear state estimation problem. The

CKF assumes that the predictive density of the joint state-measurement random variable

is Gaussian. In this way, the optimal Bayesian filter reduces to the problem of how to

5



compute various multi-dimensional Gaussian weighted moment integrals which can be done

efficiently using a cubature rule. CKFs, have been used in several applications including

navigation, maneuvering and tracking of robots [9–11]. A number of implementations have

been reported to show that the CKF has superior performance over UKF [21,22]. Stochastic

stability and convergence of CKFs was reported in [12,13].

Despite the interest in the event-based linear state estimation, event-based nonlinear

estimations have received comparatively less attention. In [14], an event-based CKF for

Smart grid is presented using an“Innovation-Level-Based” event-triggered condition based

on the difference between the current and predicted measurement. As mentioned earlier, the

drawback of this type of triggering condition, however, is that the feedback communication

from the estimator (local filters or remote filters) to the sensor is needed to obtain the

predicted measurement. In comparison to this recent result, we consider “Send-on-Delta”

event-trigger condition in which the feedback communication from the estimator is not

needed which reduces the hardware and energy requirements for implementing the event-

triggering scheme [15].

The nonlinear filters mentioned above work poorly in the presence of sudden changes in

the states. In many practical applications, sudden changes in the states leads to the bias in

the estimation process [45]. Examples include important applications, such as maneuver-

ing aircraft tracking, underwater target tracking, and eye tracking for vision-based human

computer interaction applications, and most control applications requiring state estimation

as part of the control law.

Adaptive filters provide a solution that can cope with sudden changes in the system

states. Among all adaptive nonlinear filtering methods, strong tracking filter (STF) has

attracted considerable attention [36]. STF introduces a suboptimal fading factor to the

error covariance matrix that reduces the effect of old measurements while enhancing the

effect of new measurements to modify the error covariance matrix and the filter gain in

real-time, thus enhancing estimation quality [37]. It is shown theoretically in [45] that the

process noise covariance in the state model is corrected by introducing the dynamic fading

factor to error covariance matrix, which results in an improvement of the state estimation.

STF can be applied along with most nonlinear state estimators such as EKF, UKF, and

CKF. References [41–44] propose strong tracking extended and unscented Kalman filters.

In [38–40] a strong tracking cubature Kalman filter for maneuvering target tracking is

studied.

Nonlinear state estimators mentioned above assume that the communication channel is
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reliable. In CPSs, perfect communication is impossible because of network effects, such as

packet dropouts, and network delay in the communication channels. Thus, the problem of

designing nonlinear filter with packet dropout in the communication channels has attracted

significant attention. Reference [16] studies EKF with packet dropout while [23] focuses on

stochastic stability of extended Kalman filters with packet dropout. Reference [17] shows

that in the existence of a lower bound for the communication rate, the estimation error is

bounded. In [18] stochastic stability of UKFs in the presence of packet dropout is studied.

Reference [5], studies the stochastic stability of unscented Kalman filter in the presence of

event-triggered mechanism and packet dropout. In [46], a strong tracking filter for a system

with delayed measurements is proposed.

EKF and UKF, with one sampling time randomly delayed measurements have been

proposed in [48]. In [47], a generic framework of a Gaussian approximation (GA) filter was

proposed.

1.1 Summary of Contributions

In the previous section we discussed that, recently, the event based state estimation has

found wide application in cyber physical systems, control systems, system monitoring, and

signal processing. However, so far, there have been very few results reported about event-

triggered nonlinear state estimation, and there are some important open problems which

remain unsolved. In this thesis we aim at providing solutions to the nonlinear event-triggered

state estimation problem. In this section we provide a brief summary of the main contri-

butions. More detailed explanation of the results can be found in the related chapters.

In Chapter 3 1, an event-triggered discrete time Cubature Kalman filter for high dimen-

sional nonlinear system with highly nonlinear state space model with noisy measurements

over a wireless network is developed. We show that our proposed nonlinear filter with a

well designed event-triggered mechanism can significantly reduce the communication data

between the system sensors and the filter while the estimation error is kept bounded, thus

reducing potential network-related congestion issues. Our solution makes use of a so-called

“Send-on-Delta” type event-triggering condition in which a new sample is triggered if the

measured signal deviates by “delta” from the most recent sample. Thus, the sensor node

does not broadcast a new message while the sampled signal remains within a certain interval

1The results of this chapter has been published in the article: M. Kooshkbaghi, H. J. Marquez, “Event-
Triggered State Estimation of High Dimensional Nonlinear Systems with Highly Nonlinear State Space
Model Using Cubature Kalman Filter,” CCECE 2019, May 2019, Canada
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of confidence. We also show the advantages of employing cubature Kalman filters over the

more established and more explored extended Kalman filters and unscented Kalman filters,

frequently used in the literature, to estimate the nonlinear systems. We argue that better

estimates can be obtained using the CKF and justify our claims in our simulations, both

using periodic and event-triggered sampling. We show that the event-triggered approach

allows us to obtain excellent estimates, while reducing the flow of information with respect

to classical periodic systems.

In Chapter 4 2, we study the effect of the packet dropout during data transmission from

the system to the remote state estimator in the communication channels, on the design of

the event-triggered CKF. All CPSs require transferring data from the measurement sensors

to the state estimator through an imperfect wired or wireless sensor network with typical

practical issues which may result in undesirable effects such as data packet drop out. A

binary random variable is introduced to model the arrival of a measurement and we define

an upper bound for the rate of the packet dropout to guarantee the convergence of the

proposed filter. Then we study the boundedness of the estimation error and we derive a

relation between the estimation error upper bound and the event-triggered threshold value.

In Chapter 5, we consider delay in the communication channels. As we mentioned be-

fore, the communication channels are not perfect and reliable. In practice, the presence of

time delays and packet dropouts are inevitable in applications with wired/wireless commu-

nications channels caused by aging and network congestion. Unfortunately, the designed

event based state estimators can not be extended to the case with time delay in the com-

munication channels. In the presence of the delay in communication channels, the real time

measurements may not be received by the estimator, and the state estimation will not be

updated properly. In addition, the posterior PDF of the measurement noise needs to be

updated. CKF algorithm with one-step randomly delayed measurements is proposed in [47].

To the best of the author’s knowledge, CKF algorithm with the event-triggered mechanism

and randomly delayed measurements have not been reported which is the contribution of

this chapter.

In Chapter 6 3 , we evaluate the performance of the proposed CKF under different

communication conditions, namely in the presence of different triggering threshold and

2The results of this chapter has been accepted for publication in the article: M. Kooshkbaghi, H. J.
Marquez, “Event-Triggered Discrete-Time Cubature Kalman Filter for Nonlinear Dynamical Systems with
Packet Dropout,” IEEE Transactions on Automatic Control Sep. 2019.

3The results of this chapter has been published in the article: M. Kooshkbaghi, H. J. Marquez, and W.
Xu, “Event-Triggered Approach to Dynamic State Estimation of a Synchronous Machine Using Cubature
Kalman Filter,” IEEE Transactions on Control Systems Technology, DOI: 10.1109/TCST.2019.2923374.
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different delay probabilities when applied to a synchronous machine. We show the advantage

of employing the proposed cubature Kalman filters over the more established and more

explored filters such as extended Kalman filters and unscented Kalman filters, frequently

used in the literatures to estimate the states of synchronous machines.

In Chapter 7 4, We consider another topic of interest in the theory of the event-triggered

state estimator when there are sudden changes in the states. The previously proposed non-

linear filters such as Cubature Kalman filter have poor performance in the presence of the

sudden changes in the states which leads to the bias in the estimation process. The concept

of strong fading factor in the state error covariance matrix based on the residual sequence

is a promising solution for these kinds of problems [49, 51, 62]. So, we will develop a new

filtering algorithm, a strong tracking discrete-time event-triggered cubature Kalman filter

(STDECKF), to reduce the amount of data transmission between the measuring sensors

and the remote state estimator and to reduce the low accuracy of the filtering under sud-

den changes in the states condition. We compare the performance of the newly designed

event-triggered state estimator in the different condition. In addition, we show that under

some condition, the proposed filter estimation error and the estimation error covariance are

bounded.

Finally, in Chapter 8, we develop a new event-triggered filtering algorithm, based on

the orthogonality principle, considering delay in the communication channels and the sud-

den changes in the states. In this situation, we need to reduces the effect of old/delay

measurements on the filtering process and to enhance the effect of new measurements to

modify the error covariance matrix. A fading factor is used to enhance the performance

of the filter while the data transmission between the sensors and the remote filter is re-

duced. To the best of the author’s knowledge, strong tracking CKF algorithm with the

event-triggered mechanism and randomly delayed measurements have not been reported

which is the contribution of this chapter.

4The results of this chapter has been submitted for publication in the article: M. Kooshkbaghi, H. J.
Marquez,“Strong Tracking Discrete-Time Event-Triggered Cubature Kalman Filter for Nonlinear Dynamical
Systems with Packet Dropout,” Internationa Journal of Robust and Nonlinear Control, September 2019.

9



Chapter 2

Discrete-Time Cubature Kalman
Filter

Over the past decades, the state estimation of nonlinear systems has attracted significant

attention from the research community. There are many efficient nonlinear filtering algo-

rithms which have been proposed. Among those, extended Kalman filters and unscented

Kalman filters are widely used for nonlinear systems. The EKF and UKF algorithm are

described briefly in the Appendix. EKF is based on the first order linearization, and there-

fore its performance deteriorates when dealing with systems with high nonlinearities. On

the other hand, unscented Kalman filter typically offers better performance than extended

Kalman filters, but suffer from the so-called curse of dimensionality [52] and its application

is limited to low order systems. Recently, Cubature Kalman filter (CKF) were proposed

in [8], based on a Bayesian filter under Gaussian approximation. CKF has less computa-

tional complexity and offers numerical stability compared to the other widely used nonlinear

filters. These properties make CKF a proper choice for high dimensional nonlinear systems

with high nonlinearities.

In this chapter, we summarize the discrete-time cubature Kalman filter proposed in [8]

that will be used in later chapters.

Notation : R represents the field of real numbers, Rn and Rn×m are the set of n-

dimensional real vectors and and n × m real matrices, respectively. AT represents the

transpose of A ∈ Rn×m, and B−1 is the inverse of B ∈ Rn×n. E{x} is the expectation

of the random variable x and p{x|y} the probability distribution of x with respect to y,

respectively. ∥.∥ denotes the Euclidean norm of the vector x ∈ Rn.
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2.0.1 Problem Statement

Consider the nonlinear discrete-time system and the nonlinear measurement model given

in (2.1) and (2.2), respectively.

xk+1 = f(xk, uk) + ωk, (2.1)

yk+1 = h(xk+1) + νk+1, (2.2)

where xk ∈ Rnx is the state vector, uk ∈ Rnu is the control input vector, yk ∈ Rny is the

measurement vector, k ∈ N is a discrete time factor. ω and ν are the process noise and the

measurement noise respectively, which are assumed to be uncorrelated zero-mean Gaussian

white noise sequences with covariance Q ∈ Rnx×nx and R ∈ Rny×ny , respectively. f(.)

and h(.) are the continuously differentiable nonlinear state function and the measurement

function with respect to the system state xk.

The objective of this chapter is to summarize the design of the optimal state estimator

for the nonlinear system with the state space model stated in (2.1) and (2.2). A detailed

design of the filtering algorithm is given in the following subsection.

2.0.2 Baysian Filter In The Gaussian Domain

In this subsection, we present the discrete-time optimal Bayesian filter. Under the Gaussian

assumption of the density functions, the recursive Bayesian filter can be derived in two Time

and Measurement update steps as follows,

• Time update: The mean of the Gaussian predictive density is as follows,

x̂k+1|k = E[xk+1|Dk], (2.3)

where Dk = {ui, yi} , i = 1...k, shows the history of input measurement pairs up to

time k. Substituting (2.1) in (2.3) we have,

x̂k+1|k =E[f(xk, uk) + νk|Dk] =

∫︂
Rnx

f(xk, uk)p(xk|Dk)dxk

=

∫︂
Rnx

f(xk, uk)N(xk; x̂k, P̂ k)dxk.

(2.4)

Note that νk is assumed to be zero-mean and uncorrelated with the past measure-

ments, and the N(xk; x̂k, Pk) is conventional symbol for a Gaussian density. The error

covariance is as follows,

P̂ k+1|k =E[(xk+1 − x̂k+1|k)(xk+1 − x̂k+1|k)
T |y1:k]

=

∫︂
Rnx

f(xk, uk)f(xk, uk)
TN(xk; x̂k, P̂ k)dxk

− x̂k+1|kx̂
T
k+1|k +Qk.

(2.5)
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• Measurement update: The predicted measurement and the associated covariance

are as follows,

ŷk+1|k =

∫︂
Rnx

f(xk, uk)N(xk+1; x̂k+1|k, P̂ k+1|k)dxk+1, (2.6)

P̂ yy,k+1|k =

∫︂
Rnx

h(xk+1)h(xk+1, )
TN(xk+1; x̂k+1|k, P̂ k+1|k)dxk+1

− ŷk+1|kŷ
T
k+1|k +Rk+1.

(2.7)

The cross-covariance is,

P̂ xy,k+1|k =

∫︂
Rnx

xk+1h(xk+1)
TN(xk+1; x̂k+1|k, P̂ k+1|k)dxk+1 − x̂k+1|kŷ

T
k+1|k, (2.8)

and the conditional Gaussian density of the joint state and the measurement can be

written as follow,

p([xTk+1 yTk+1]
T |Dk) = N(

(︃
x̂k+1|k
ŷk+1|k

)︃
,

(︄
P̂ k+1|k P̂ xy,k+1|k

P̂
T
xy,k+1|k P̂ yy,k+1|k

)︄
). (2.9)

The Bayesian filter computes the posterior density when it receives a new measure-

ment. The posterior density is as follows,

p(xk+1|Dk+1) = N(xk+1; x̂k+1, P̂ k+1) (2.10)

where,

x̂k+1 = x̂k+1|k +Kk+1(yk+1 − ŷk+1|k)

P̂ k+1 = P̂ k+1|k −Kk+1P̂ yy,k+1|kK
T
k+1

Kk+1 = P̂ xy,k+1|kP̂
−1
yy,k+1|k

(2.11)

The optimal Bayesian filter includes various multi-dimensional Gaussian weighted moment

integrals which are all of the form “nonlinear function Gaussian density” that are present

in (2.4)-(2.8) which can be approximately computed by using a “Cubature” rule.

2.0.3 Cubature Kalman Filter

We now summarize the fundamentals of the cubature Kalman filter proposed in [8]. As it

is shown in Subsection 2.0.2, the Bayesian paradigm relies on the fact that the conditional

density of the state at each measurement, or the posteriori density of the state, contains a

complete description of the state at that time. In addition, the filtering algorithm consists

of two steps: (i) (time update) propagates the posteriori density between measurement

instants, and (ii) (measurement update) uses the Bayes’ rule to update the propagated
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posteriori measurements at each measurement instant. The time and measurement update

procedures, however, require solving multidimensional integrals of the form:

I(f) =

∫︂
Rnx

f(x)N(x; x̂, P̂ )dx, (2.12)

where nx is the dimension of the state, the covariance P̂ satisfies P̂ = SST . When the system

is nonlinear, solving this integral is either very difficult or impossible and an approximation

must be made.

The CKF uses a third-degree spherical-radial cubature rule to select 2nx cubature points

to approximate the integral as follows:

I(f) ≈
2nx∑︂
i=1

1

2n
f(x̂+ Sξi). (2.13)

The 2nx cubature points are selected as follows

ξi =

{︄√
nei i = 1, 2, · · · , nx

−
√
nei−n i = n+ 1, n+ 2, · · · , 2nx,

(2.14)

where ei ∈ Rnx×1, is the ith elementary column vector. The CKF algorithm consists of a

time update step and a measurement update step in which the approximation described

is used to estimate the new covariance matrices and states. In the time update step, we

calculate the cubature points as follows,

Xi,k = Skξi + x̂k i = 1, 2, ..., 2nx. (2.15)

where x̂k is the posteriori state estimate and P̂ k = SkS
T
k . Then the propagated cubature

points and the predicted state and associated covariance can be calculated using (2.16),

(2.17) and (2.18), respectively.

X∗
i,k+1|k = f(Xi,k, uk) i = 1, 2, ..., 2nx, (2.16)

x̂k+1|k =
1

2nx

2nx∑︂
i=1

X∗
i,k+1|k, (2.17)

P̂ k+1|k =
1

2nx

2nx∑︂
i=1

X∗
i,k+1|kX

∗T
i,k+1|k − x̂k+1|kx̂

T
k+1|k +Qk. (2.18)

In the measurement update step we compute new cubature points, and propagated cubature

points using (2.19) and (2.20):

Xi,k+1|k = Sk+1|kξi + x̂k+1|k i = 1, 2, ..., 2nx, (2.19)
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Yi,k+1|k = h(Xi,k+1|k, uk+1) i = 1, 2, ..., 2nx. (2.20)

The predicted measurement as well as the innovation covariance and the cross-covariance

can be calculated as follows:

ŷk+1|k =
1

2nx

2nx∑︂
i=1

Yi,k+1|k, (2.21)

P̂ yy,k+1 =
1

2nx

2nx∑︂
i=1

Yi,k+1|kY
T
i,k+1|k − ŷk+1|kŷ

T
k+1|k +Rk+1, (2.22)

P̂ xy,k+1 =
1

2nx

2nx∑︂
i=1

Xi,k+1|kY
T
i,k+1|k − x̂k+1|kŷ

T
k+1|k. (2.23)

Finally, the Kalman gain, and the state estimation and the corresponding error covariance

are given by:

Kk+1 = P̂ xy,k+1P̂
−1
yy,k+1, (2.24)

x̂k+1 = x̂k+1|k +Kk+1(yk+1 − ŷk+1|k), (2.25)

P̂ k+1 = P̂ k+1|k −Kk+1P̂ yy,k+1K
T
k+1. (2.26)
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Chapter 3

Event-Triggered Discrete-Time
Cubature Kalman Filter

In this chapter 1 , we present a complete theory of the discrete-time event-triggered Cuba-

ture Kalman filter (DECKF) applicable to high dimensional nonlinear systems with noisy

measurements. A scenario is considered in which local measurements are transmitted to

a remote state estimator when an event-triggered condition is satisfied. The presence of

the triggering rule thus reduces data transmission between local sensors and the remote

estimator, resulting in a more efficient use of energy and communication resources. In the

proposed filter, first “Send-on-delta event-triggered” mechanism is used, which reduces the

feedback communication between the sensors and the remote state estimators compared to

the other event-triggered schemes such as “innovation-level-based” mechanism, to deter-

mines whether or not information is to be sent through the communication channel to the

remote filter.

We then propose a cubature Kalman filter to estimate the system states based on the

received measurements. We show that by choosing a proper triggering threshold, the es-

timation error and the prediction error covariance of the state estimator remain bounded

while reducing the data communication between the sensors, compared to traditional state

estimator without event-triggered mechanism.

The rest of this chapter is organized as follows. In Section 3.1 the nonlinear system

model, and the event-triggered rule are defined. In Section 3.2, the complete theory of the

discrete-time event-triggered CKF for nonlinear systems is studied. Simulation results are

presented in Section 3.3 to show the efficiency of the proposed filter and finally Section 3.4

summarizes the results of this chapter.

1The results of this chapter has been published in the article: M. Kooshkbaghi, H. J. Marquez, “Event-
Triggered State Estimation of High Dimensional Nonlinear Systems with Highly Nonlinear State Space
Model Using Cubature Kalman Filter,” CCECE 2019, May 2019, Canada
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Figure 3.1: A System with Event-Triggered Mechanism

3.1 Problem formulation

3.1.1 System model

Recalling from Chapter 2, we consider the nonlinear discrete-time system model as follows,

xk+1 = f(xk, uk) + ωk, (3.1)

yk+1 = h(xk+1) + νk+1. (3.2)

xk ∈ Rnx and yk ∈ Rny are the state vector, and output measurement vector, respectively.

uk ∈ Rnu is the control input. The process noise ω and the measurement noise ν are

uncorrelated zero-mean Gaussian white noise sequences with Covariance Q ∈ Rnx×nx and

R ∈ Rny×ny , respectively.

3.1.2 Event-triggered data transferring mechanism

The block diagram of the networked system with the event-triggered CKF is shown in

Figure 3.1. Here the sensor measures the system’s output yk in a periodic manner. Sensor

outputs are sent to the event detector which determines whether or not information is to be

sent through the communication channel to the remote CKF. The event detector works as

follows: let yk represent the current sensor measurement and y denotes the last measurement

transmitted through the channel. Define now the binary decision variable γk as follows:

γk =

{︃
1 if (yk − ȳ)T (yk − ȳ) > δ
0 otherwise.

(3.3)

The parameter δ > 0 is the threshold of the event-triggered mechanism. The event detector

updates the output value and sends new information through the communication channel

if and only if γk = 1. Thus, defining

ȳk = yk + (1− γk)(y − yk), (3.4)

we see that

ȳk =

{︃
yk if γk = 1

yk − ek otherwise,
(3.5)

where ȳk is the measurement transmitted at time k, and ek = (yk − ȳ).
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As mentioned before, in this chapter, we develop a design framework for CKFs for

nonlinear discrete-time systems with the event-triggered data transmission defined in (3.3).

Note 3.1: With the event-triggering mechanism, the conditional densities are no longer

Gaussian, and the numerical integration of the multi-dimensional integrals used in comput-

ing the mean and the covariance of nonlinear filter become computationally too expensive.

There are some proposed approaches which directly tackle the non-Gaussian issues caused

by the event-triggering conditions. For instance, in [32] the sums of Gaussians approach, is

introduced to approximate the non-Gaussian density function. In [31], a class of stochastic

event-triggering conditions were proposed to obtain the estimation without additional ap-

proximation. In this work, we assume that all conditional densities remain approximately

Gaussian after event-triggered sampling [53]. This assumption has been widely used in many

references [77], [5, 6].

3.2 Discrete-Time Event-Triggered Cubature Kalman Filter

In this section, we consider the nonlinear system in the presence of the event-triggered mech-

anism and we derive CKF estimation error covariance and CKF gain. Note that in order to

derive the nonlinear filtering problem with the event-triggered mechanism, the linearization

with first order approximation is implemented to facilitate the following discussion.

Theorem 3.1: Consider the system (3.1)-(3.2) with the event-triggered mechanism

(3.3)-(3.4). The cubature Kalman filter estimation error covariance and the filter gain are

as follows,

P̂ k+1 =(I −Kk+1Bk+1)P̂ k+1|k(I −Kk+1Bk+1)
T +Kk+1(1− γk+1)E{ek+1e

T
k+1}

× (1− γk+1)
TKT

k+1 + (1− γk+1)E
{︂
(I −Kk+1Bk+1)˜︁xk+1|ke

T
k+1K

T
k+1

−Kk+1νk+1e
T
k+1K

T
k+1 −Kk+1ek+1ν

T
k+1K

T
k+1 +Kk+1ek+1x̃

T
k+1|k

× (I −Kk+1Bk+1)
T
}︂
+Kk+1RK

T
k+1,

(3.6)

Kk+1 =
(︂
1 + a1(1− γk+1)

)︂
P̂ k+1|kB

T
k+1

[︂(︂
1 + a1(1− γk+1)

)︂
Bk+1P̂ k+1|kB

T
k+1+(︂

1 + a2(1− γk+1)
)︂
Rk+1 + (1 + a−1

1 + a−1
2 )(1− γk+1)δI

]︂−1
.

(3.7)

In this expression, Bk+1 = βk+1Hk+1, where Hk+1 = ∂h(x)
∂x |x=x̂k+1|k

is the Jacobian matrix

and βk+1 = diag(β1,k+1, β2,k+1, ..., βnyk+1) is an unknown diagonal matrix representing the

error incurred in neglecting the higher order terms of the series. ˜︁xk+1|k and P̂ k+1|k are the

prediction error and the prediction error covariance, respectively. a1 > 0 and a2 > 0 are

two positive arbitrary parameters.
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Proof. The event-triggered system estimation error (difference between the real state

xk+1 and the posterior state x̂k+1) and the event-triggered system prediction error (differ-

ence between the real state xk+1 and the predicted state x̂k+1|k), are as follows:

˜︁xk+1 = xk+1 − x̂k+1, (3.8)

˜︁xk+1|k = xk+1 − x̂k+1|k. (3.9)

Substituting (3.1) and (2.17) into (3.9) and expanding f(xk, uk) in Taylor series, we obtain:

˜︁xk+1|k = ∇f(x̂k, uk)˜︁xk + ∞∑︂
j=1

1

(2j + 1)!
∇(2j+1)f(x̂k−1, uk)x̃

(2j+1)
k + ωk, (3.10)

where ∇ = ∂
∂x |x=x̂k

. (3.10) can be written as follows,

˜︁xk+1|k = Ak˜︁xk + ωk. (3.11)

Ak = ∂f(x)
∂x |x=x̂k

is the Jacobian matrix. Similarly, for the measurement prediction er-

ror (difference between the real system measurement yk+1 and the predicted measurement

ŷk+1|k), we have, ˜︁yk+1|k = Bk+1˜︁xk+1|k + νk+1. (3.12)

Substituting (3.4) in (2.25), we have,

x̂k+1 = x̂k+1|k +Kk+1

(︂˜︁yk+1|k − (1− γk+1)ek+1

)︂
, (3.13)

replacing (3.13) into (3.8), and taking (3.12) into account, the estimation error is as follows,

˜︁xk+1 = (I −Kk+1Bk+1)˜︁xk+1|k −Kk+1νk+1 +Kk+1(1− γk+1)ek+1, (3.14)

substituting (3.14) in (3.11), we obtain the following,

˜︁xk+1|k = Ak(I −KkBk)˜︁xk|k−1 −AkKkνk +AkKk(1− γk)ek + ωk. (3.15)

Substituting (3.14) into P̂ k+1 = E{˜︁xk+1x̃
T
k+1}, the estimation error covariance matrix, (3.6)

can be obtained.

To derive the filter gain we use the following Lemma 3.1 ,

Lemma 3.1: For any two vectors x, y ∈ Rn, the following inequality holds: xyT+yxT ≤

εxxT + ε−1yyT , where ε > 0 is a scalar [5].

The following inequalities follow immediately by application of Lemma 3.1 with a1 > 0

and a2 > 0.

(I −Kk+1Bk+1)˜︁xk+1|ke
T
k+1K

T
k+1 +Kk+1ek+1x̃

T
k+1|k(I −Kk+1Bk+1)

T ≤

a1(I −Kk+1Bk+1)˜︁xk+1|kx̃
T
k+1|k(I −Kk+1Bk+1)

T + a−1
1 Kk+1ek+1e

T
k+1Kk+1,

(3.16)

18



−Kk+1νk+1e
T
k+1K

T
k+1 −Kk+1ek+1ν

T
k+1K

T
k+1 ≤

a2Kk+1λk+1νk+1ν
T
k+1K

T
k+1 + a−1

2 Kk+1ek+1e
T
k+1Kk+1.

(3.17)

Substituting (3.16) and (3.17) in (3.6) we have,

P̂ k+1 ≤ (I −Kk+1Bk+1)P̂ k+1|k(I −Kk+1Bk+1)
T +Kk+1Rk+1K

T
k+1

+Kk+1(1− γk+1)E{ek+1e
T
k+1}(1− γk+1)

TKT
k+1 + (1− γk+1)E

{︂
a1(I−

Kk+1Bk+1)˜︁xk+1|kx̃
T
k+1|k(I −Kk+1Bk+1)

T + a−1
1 Kk+1ek+1e

T
k+1K

T
k+1

+ a2Kk+1νk+1ν
T
k+1K

T
k+1 + a−1

2 Kk+1ek+1e
T
k+1K

T
k+1

}︂
.

(3.18)

The upper bound of the error covariance matrix is as follows,

P k+1 =
(︂
1 + a1(1− γk+1)

)︂
(I −Kk+1Bk+1)P̂ k+1|k(I −Kk+1Bk+1)

T + (1 + a2

× (1− γk+1))Kk+1Rk+1K
T
k+1 + (1− γk+1)(1 + a−1

1 + a−1
2 )Kk+1δIK

T
k+1.

(3.19)

The filtering gain Kk+1 will be designed by minimizing the upper bound of the error co-

variance matrix. Taking the partial derivative of the P k+1, the event-triggered CKF gain,

(3.7) can be obtained.
∂trP k+1

∂Kk+1
= 0. (3.20)

This completes the proof.

Note that the uses of Lemma 3.1 bring in conservatism for the filter design. Even

so, the parameters a1 and a2 can be chosen appropriately to reduce such conservatism.

In the next chapter, we briefly explain this isssue. Table 3.1, provides the algorithm of

the proposed event-triggered discrete-time cubature Kalman filter. Note that the proposed

DECKF is a derivative-free filter, which does not require computation of the Jacobian

matrix. Suppose that P̂ k+1|k is the predicted state error covariance matrix, then based on

P̂
xy
k+1|k = P̂ k+1|kB

T
k+1, one can derive the following Bk+1 = (P̂ xy,k+1|k)

T (P̂ k+1|k)
−1 [39],

where P̂ xy,k+1|k is the cross-covariance matrix. CKF algorithm consists of prediction steps

and update steps. In the prediction steps, the CKF propagates the estimate from the last

time step to the current time step before the arrival of fresh measurement data. In the

update steps, the filter updates the estimate using collected measurements.

3.3 Simulation Results

In this section the effectiveness of the proposed method is illustrated by a tracking scenario

where the objective is to track the trajectory of the two link robot arm in Figure 3.2. We

compare the trade-off between the communication rate and the estimation quality under

different conditions such as different triggering threshold values.
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Figure 3.2: Two link robot arm illustrating how the Cartesian coordinates (x; y) of the end
effector is mapped to the given angles.

The state space model of the system is as follows.

θk+1 = θk + ωk, (3.21)

Yk =

(︃
cos(θ1,k) cos(θ1,k + θ2,k)
sin(θ1,k) sin(θ1,k + θ2,k)

)︃(︃
l1
l2

)︃
+ νk, (3.22)

where states, θ = [θ1 θ2]
T , show the joint angles of the arm and Y = [x y]T , shows

the position of the end effector of the robot arm. The length of the links are considered

as l1 = 1, and l2 = 2, respectively. Noises which perturb the state and the measurement

equations are ω ∼ N(0, diag[0.01, 0.1]) , and ν ∼ N(0, 0.005I).

Figure 3.3 and Figure 3.4 show the comparison between the tracking results of a system

with the event-triggered threshold of δ = 0.01, and δ = 0.05, respectively. The number of

data transmission for the system without event-triggered mechanism, δ = 0, is 6300 which

reduces significantly to 3900 and 1190 for δ = 0.01 and δ = 0.05, respectively. Figure

3.5 shows the result for the time that δ > 0.1, which the filter diverges. In Figure 3.6,

we compare the RMSE results of the filter with different event-triggered threshold. From

the results, it can be concluded that by increasing the triggering threshold the estimation

quality would be degraded. Also, from the tracking and RMSE results, we select δ = 0.05 as

the threshold of event triggered mechanism as it has a good tracking result while it reduces

the communication rate.

3.4 Summary

In this chapter, we present a complete theory of a nonlinear filter for high dimensional

nonlinear systems under the event-triggered mechanism. As mentioned in the introduction,

the event-triggered formulation is an alternative to conventional periodic discrete-time sam-

pling which can render similar performance while reducing communication between sensors
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Figure 3.3: Tracking results with triggering threshold δ = 0.01
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Figure 3.4: Tracking results with triggering threshold δ = 0.05
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Figure 3.5: Tracking results with triggering threshold δ > 0.1
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Figure 3.6: RMSE results with different event-triggered thresholds
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and remote filters. We consider “send-on-delta” triggering mechanism which reduces the

feedback communication between the sensors and the remote state estimators compared to

the other triggering schemes. The event-triggered nonlinear filter gain is derived to reduce

the estimation error and make the error covariance matrix bounded. Applied to nonlinear

system model, our results show excellent tracking of the true states, despite an impressive

communication reduction between the sensors and the remote filter.
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Table 3.1: Algorithm 1. Event-Triggered Discrete-Time Cubature Kalman Filter

Time update steps:
The mean x0 and covariance P0 of initial state are both known.
1) Factorize:

P̂ k = SkS
T
k

2) Derive the Cubature Points:
Xi,k = Skξi + x̂k i = 1, 2, ..., 2nx
3) Propagate the Points:
X∗

i,k+1|k = f(Xi,k, uk) i = 1, 2, ..., 2nx
4) Estimate the predicted state:

x̂k+1|k = 1
2nx

∑︁2nx
i=1X

∗
i,k+1|k

5) Calculate the predicted state error covariance:

P̂ k+1|k = 1
2nx

∑︁2nx
i=1X

∗
i,k+1|kX

∗T
i,k+1|k − x̂k+1|kx̂

T
k+1|k +Qk

Measurement update steps:
1) Factorize:

P̂ k+1|k = Sk+1|kSk+1|k
2) Calculate the Cubature points:
Xi,k+1|k = Sk+1|kξi + x̂k+1|k i = 1, 2, ..., 2nx
3)Propagate the points:
Yi,k+1|k = h(Xi,k+1|k, uk+1)

4)Predicted the measurement:

ŷk+1|k = 1
2nx

∑︁2nx
i=1 Yi,k+1|k

5) Calculate the innovation covariance matrix:

P̂ yy,k+1 =
1

2nx

∑︁2nx
i=1 Yi,k+1|kY

T
i,k+1|k − ŷk+1|kŷ

T
k+1|k +Rk+1

6) Calculate the cross-covariance matrix:

P̂ xy,k+1 =
1

2nx

∑︁2nx
i=1Xi,k+1|kY

T
i,k+1|k − x̂k+1|kŷ

T
k+1|k

7) Compute the filter gain:

Kk+1 =
(︂
1 + a1(1− γk+1)

)︂
P̂ xy,k+1

×
[︂
(1 + a1(1− γk+1))P̂

T
xy,k+1P̂

−1
k+1|kP̂ xy,k+1

+(1 + a2(1− γk+1))Rk+1 + (1 + a−1
1 + a−1

2 )(1− γk+1)δI
]︂−1

8) Estimate the updated state:
x̂k+1 = x̂k+1|k +Kk+1(yk+1 − ŷk+1|k)

9) Compute the state error covariance:

P k+1 =
(︂
1 + a1(1− γk+1)

)︂
(I −Kk+1P

T
xy,k+1P

−1
k+1|k)

×P̂ k+1|k(I −Kk+1P
T
xy,k+1P

−1
k+1|k)

T+(︂
1 + a2(1− γk+1)

)︂
Kk+1Rk+1K

T
k+1+

(1− γk+1)(1 + a−1
1 + a−1

2 )Kk+1λk+1δIK
T
k+1
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Chapter 4

Event-triggered Discrete-time
Cubature Kalman filter in the
presence of packet dropouts

In this chapter,1 we develop an event-triggered discrete time Cubature Kalman filter ap-

plicable to high dimensional nonlinear dynamic system with strong nonlinearities when the

packet drop outs occur during data transmission in the communication channels. We show

that by choosing a proper event-triggered threshold and properly tuning the threshold of the

event-triggered mechanism and the rate of the packet dropout, the proposed method reduces

the number of data transmission between the sensors and the state estimator with respect

to traditional discrete time Cubature Kalman filter. In addition, we develop a complete

theory to show the boundedness of the state estimation error, estimation error covariance

and the stochastic stability of the proposed filter. A lower bound for the communication

rate is also obtained to guarantee the convergence of the proposed filter.

The remainder of this chapter is as follows. In Section 4.1, the nonlinear system model

is defined, and we introduce the event-triggered rule, the packet dropout and the CKF. In

Section 4.2, we will design a discrete-time event-triggered CKF for nonlinear systems. In

Section 4.3, we study the boundedness of the state estimation error. In Section 4.3, we

illustrate our results using a simulated example.

1The results of this chapter has been accepted for publication in the article: M. Kooshkbaghi, H. J.
Marquez, “Event-Triggered Discrete-Time Cubature Kalman Filter for Nonlinear Dynamical Systems with
Packet Dropout,” IEEE Transactions on Automatic Control Sep. 2019
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4.1 Problem formulation

4.1.1 System model

In this chapter, recalling from Chapter 3, we consider the following nonlinear discrete-time

model, equations (4.1) and (4.2), with the current transmitted measurement,(4.3), defined

in Chapter 3, as follows,

xk+1 = f(xk, uk) + ωk, (4.1)

yk+1 = h(xk+1) + νk+1, (4.2)

ȳk = yk + (1− γk)(y − yk), (4.3)

4.1.2 Packet dropouts

Packet dropouts can occur during data transmission through the communication channel

resulting in data losses. We define λk to be the binary random variable modelling packet

dropout:

λk =

{︃
1 data is received
0 otherwise.

(4.4)

Measurements are received by the state estimator if and only if λk = 1. Note that the packet

dropout happens while data is transferred through the communication channel (γk = 1).

We assume throughout this thesis that the packet dropout rate is unknown, and we define

the packet arrival rate, or packet delivery rate, as follows,

λ = E[λk]. (4.5)

The packet dropout rate affects the boundedness of the estimation error. Our goal is to

design a discrete-time CKF to reduce the impact of the event-triggered mechanism and the

packet dropout on the state estimation error.

Note 4.1: Following references [19] and [63], we define the probability density distri-

bution of the observation noise νk with respect to λk as follows,

p(νk|λk) =
{︃
N(0, Rk) λk = 1
N(0, σ2I) λk = 0

, (4.6)

where σ −→ ∞.

We assume that the remote state estimator receives λk and γk, at each time step. This

assumption has been used in many references [5, 6, 19, 63]. In the absence of observation,

the state estimator receives no new information and it will not update the state estimation

and the corresponding covariance.
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4.2 Design of Discrete-time Event-triggered Cubature Kalman
Filter with packet dropout

In this section, to derive the nonlinear filtering problem with the event-triggered mechanism

and the packet dropout, the linearization with first order approximation is implemented to

facilitate the following discussion.

Theorem 4.1: Consider the system (4.1)-(4.2) along with the current transmitted mea-

surement (measurement transmitted under the event-triggered mechanism) (4.3) and the

packet dropout parameter, λk. Under these conditions, the CKF estimation error covari-

ance P̂ k+1, and the filter gain are given by:

P̂ k+1 =(I −Kk+1λk+1Bk+1)P̂ k+1|k(I −Kk+1λk+1Bk+1)
T +Kk+1λk+1Rλ

T
k+1K

T
k+1

+Kk+1λk+1(1− γk+1)E{ek+1e
T
k+1}λTk+1K

T
k+1 + (1− γk+1)E

{︂
(I −Kk+1

× λk+1Bk+1)˜︁xk+1|ke
T
k+1λ

T
k+1K

T
k+1 +Kk+1λk+1ek+1x̃

T
k+1|k(I −Kk+1λk+1

×Bk+1)
T −Kk+1λk+1νk+1e

T
k+1λ

T
k+1K

T
k+1 −Kk+1λk+1ek+1ν

T
k+1λ

T
k+1K

T
k+1

}︂
.

(4.7)

Kk+1 =
(︂
1 + a1(1− γk+1)

)︂
λk+1P̂ k+1|kB

T
k+1

[︄(︂
1 + a1(1− γk+1)

)︂
Bk+1P̂ k+1|kB

T
k+1

+
(︂
1 + a2(1− γk+1)

)︂
Rk+1 + (1 + a−1

1 + a−1
2 )(1− γk+1)δI

]︄−1

.

(4.8)

In this expression, Bk+1 = βk+1Hk+1, where Hk+1 =
∂h(x)
∂x |x=x̂k+1|k

is the Jacobian ma-

trix and βk+1 = diag(β1,k+1, β2,k+1, ..., βnyk+1) is an unknown diagonal matrix representing

the error incurred in neglecting the higher order terms. ˜︁xk+1|k and P̂ k+1|k are the prediction

error and the prediction error covariance, respectively. a1 and a2 are two positive arbitrary

parameters.

Proof. Note that recalling from Chapter 3, by substituting (4.3) in (3.13) and con-

sidering the packet dropout in the communication channels, the state estimation and the

estimation error are as follows,

x̂k+1 = x̂k+1|k +Kk+1λk+1

(︂˜︁yk+1|k − (1− γk+1)ek+1

)︂
. (4.9)

˜︁xk+1 = ˜︁xk+1|k −Kk+1λk+1

(︂˜︁yk+1|k − (1− γk+1)ek+1

)︂
. (4.10)

Substituting ˜︁yk+1|k from (3.12), in (4.10) we have,

˜︁xk+1 =(I − λk+1Kk+1Bk+1)˜︁xk+1|k − λk+1Kk+1

(︂
νk+1 − (1− γk+1)ek+1

)︂
. (4.11)
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Finally, considering (3.11), the estimation of the prediction state is as follows,

˜︁xk+1|k =Ak(I −KkλkBk)˜︁xk|k−1 −AkKkλkνk +AkKkλk(1− γk)ek + ωk. (4.12)

The estimation error covariance matrix is P̂ k+1 = E{˜︁xk+1x̃
T
k+1}. Substituting (4.11) in

P̂ k+1, we obtain (4.7). The following inequalities follow immediately by application of

Lemma 3.1 for any a1 > 0 and a2 > 0:

(I −Kk+1λk+1Bk+1)˜︁xk+1|ke
T
k+1λ

T
k+1K

T
k+1 +Kk+1λk+1ek+1x̃

T
k+1|k(I −Kk+1λk+1Bk+1)

T ≤

a1(I −Kk+1λk+1Bk+1)˜︁xk+1|kx̃
T
k+1|k(I −Kk+1λk+1Bk+1)

T + a−1
1 Kk+1λk+1ek+1e

T
k+1λ

T
k+1Kk+1,

(4.13)

−Kk+1λk+1νk+1e
T
k+1λ

T
k+1K

T
k+1 −Kk+1λk+1ek+1ν

T
k+1λ

T
k+1K

T
k+1

≤ a2Kk+1λk+1νk+1ν
T
k+1λ

T
k+1K

T
k+1 + a−1

2 Kk+1λk+1ek+1e
T
k+1λ

T
k+1Kk+1.

(4.14)

Substituting (4.13) and (4.14) into (4.7) we have,

P̂ k+1 ≤ (I −Kk+1λk+1Bk+1)P̂ k+1|k(I −Kk+1λk+1Bk+1)
T +Kk+1λk+1Rk+1λ

T
k+1K

T
k+1

+Kk+1λk+1(1− γk+1)E{ek+1e
T
k+1}(1− γk+1)

TλTk+1K
T
k+1 + (1− γk+1)E

{︂
a1(I

−Kk+1λk+1Bk+1)˜︁xk+1|kx̃
T
k+1|k(I −Kk+1λk+1Bk+1)

T + a−1
1 Kk+1λk+1ek+1e

T
k+1λ

T
k+1K

T
k+1

+ a2Kk+1λk+1νk+1ν
T
k+1λ

T
k+1K

T
k+1 + a−1

2 Kk+1λk+1ek+1e
T
k+1λ

T
k+1K

T
k+1

}︂
.

(4.15)

It follows that the upper bound of the error covariance matrix can be written as follows:

P k+1 =
(︂
1 + a1(1− γk+1)

)︂
(I −Kk+1λk+1Bk+1)P̂ k+1|k(I −Kk+1λk+1Bk+1)

T

+
(︂
1 + a2(1− γk+1)

)︂
Kk+1λk+1Rk+1λ

T
k+1K

T
k+1 + (1− γk+1)(1 + a−1

1 + a−1
2 )Kk+1

× λk+1δIλ
T
k+1K

T
k+1.

(4.16)

The upper bound of the error covariance matrix is minimized when its matrix derivative

with respect to the gain matrix is zero, i.e.
∂Pk+1

∂Kk+1
= 0, which leads to the filter gain (4.8).

∂trP k+1

∂Kk+1
= 0 (4.17)

solving (4.17) we obtain the filter gain (4.8), which completes the proof.

Remark 4.1: The estimation error and the estimation error covariance matrix of the

classical CKF are as follows,

˜︁xk = ˜︁xk|k−1 −Kk˜︁yk|k−1,

P̂ k = (I −KkBk)P̂ k|k−1(I −KkBk)
T +KkRK

T
k .
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Comparing (4.10) and (4.7) to the classical CKF we see that the event-triggered mechanism

introduces additional terms affecting the upper and the lower bounds of the estimation error

and the estimation error covariance, respectively. These changes affect the design of the

filter gain and the boundedness of the estimation error. In the next sections, we study the

boundedness of the proposed filter estimation error in the presence of the event-triggered

mechanism and packet dropout.

Table 4.1, provides the algorithm of the proposed Discrete-Time Event-triggered Cuba-

ture Kalman Filter. Note that the DECKF is a derivative-free filter, which does not require

computation of the Jacobian matrix.

In the next section we study how the event-triggered mechanism affects the boundedness

of the estimation error of the event-triggered CKF.

4.3 Boundedness of the estimation error for the even-triggered
CKF

In this section, we study the stochastic stability of the proposed CKF. We assume that the

linearized form of the system (4.1)-(4.2) is uniformly observable [23], and that the following

conditions are satisfied [12]:

q̂minI ≤ Q̂k;Qk ≤ qmaxI; f
2
minI ≤ FkF

T
k ≤ f2maxI

rminI ≤ Rk ≤ rmax;α
2
minf

2
minI ≤ AkA

T
k ≤ α2

maxf
2
maxI

β2minI ≤ βkβ
T
k ≤ β2maxI;β

2
minh

2
minI ≤ BkB

T
k ≤ β2maxh

2
maxI

h2minI ≤ HkH
T
k ≤ h2maxI;α

2
minI ≤ αkα

T
k ≤ α2

maxI,

(4.18)

where fmin, fmax, hmin, hmax, βmin, βmax, αmin, αmax ̸= 0, and rmax, qmax, q̂min, r̂min > 0 are

all real numbers.

Lemma 4.1: Assume that there is a stochastic process Vk(ξk) with the following conditions:

υmin∥ξk∥2 ≤ Vk(ξk) ≤ υmax∥ξk∥2, (4.19)

E[Vk(ξk)|ξk−1]− Vk−1(ξk−1) ≤ µ−τVk−1(ξk−1), (4.20)

where υmin, υmax, µ > 0 and 0 < τ ≤ 1 and all are real numbers. Then the stochastic process

is exponentially bounded in mean square sense, i.e.

E[∥ξk∥2] ≤
υmax

υmin
E[∥ξ0∥2](1− τ)k +

µ

υmin

k−1∑︂
i=1

(1− τ)i. (4.21)

Proof. The proof is straightforward, [24].
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Table 4.1: Algrithm 1. Discrete-Time Event-Triggered Cubature Kalman Filter

Time update:

The mean x0 and covariance P0 of initial state are both known.
Step 1: Factorize:

P̂ k = SkS
T
k

Step 2: Calculate the Cubature Points:
Xi,k = Skξi + x̂k i = 1, 2, ..., 2nx
Step3: Propagate the Cubature Points:
X∗

i,k+1|k = f(Xi,k, uk) i = 1, 2, ..., 2nx
Step 4: Estimate the predicted state:

x̂k+1|k = 1
2nx

∑︁2nx
i=1X

∗
i,k+1|k

Step 5: Calculate the predicted state error covariance:

P̂ k+1|k = 1
2nx

∑︁2nx
i=1X

∗
i,k+1|kX

∗T
i,k+1|k − x̂k+1|kx̂

T
k+1|k +Qk

Measurement update:

Step 1: Factorize:

P̂ k+1|k = Sk+1|kSk+1|k
Step 2: Calculate the Cubature points:
Xi,k+1|k = Sk+1|kξi + x̂k+1|k i = 1, 2, ..., 2nx
Step 3: Calculate the propagate Cubature points:
Yi,k+1|k = h(Xi,k+1|k, uk+1) i = 1, 2, ..., 2nx
Step 4: Estimate the predicted measurement:

ŷk+1|k = 1
2nx

∑︁2nx
i=1 Yi,k+1|k

Step 5: Calculate the innovation covariance matrix:

P̂ yy,k+1 =
1

2nx

∑︁2nx
i=1 Yi,k+1|kY

T
i,k+1|k − ŷk+1|kŷ

T
k+1|k +Rk+1

Step 6: Calculate the cross-covariance matrix:

P̂ xy,k+1 =
1

2nx

∑︁2nx
i=1Xi,k+1|kY

T
i,k+1|k − x̂k+1|kŷ

T
k+1|k

Step 7: Compute the filter gain:

Kk+1 = (1 + a1(1− γk+1))λk+1P̂ xy,k+1

×[(1 + a1(1− γk+1))P̂
T
xy,k+1P̂

−1
k+1|kP̂ xy,k+1

+(1 + a2(1− γk+1))Rk+1 + (1 + a−1
1 + a−1

2 )(1− γk+1)δI]
−1

Step 8: Estimate the updated state:
x̂k+1 = x̂k+1|k +Kk+1λk+1(yk+1 − ŷk+1|k)

Step 9: Compute the upper bound of state estimation error covariance:

P k+1 = (1 + a1(1− γk+1))(I −Kk+1λk+1P
T
xy,k+1P

−1
k+1|k)

×P̂ k+1|k(I −Kk+1λk+1P
T
xy,k+1P

−1
k+1|k)

T+

(1 + a2(1− γk+1))λk+1Kk+1Rk+1K
T
k+1+

(1− γk+1)(1 + a−1
1 + a−1

2 )Kk+1λk+1δIK
T
k+1
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Theorem 4.2: Assuming that the system (4.1)-(4.2) is uniformly observable and the

inequalities (4.18) are satisfied, if the packet arrival probability has a lower bound

λ > 1− 1

α2
maxf

2
max(1 + a1(1− γ))

, (4.22)

where γ := lim supN−>∞
1

N+1

∑︁N
k=0E(γk) is the average communication rate, then the error

covariance matrix satisfies the following bound:

E[P k+1] ≤ E[P̂ k+1|k] ≤ pI, (4.23)

where p > 0.

Proof. State estimation error and the error covariance matrix are updated with new/old

data, so it is trivial that E[P k+1] ≤ E[P̂ k+1|k]. In addition, recalling from Chapter 3 and

according to (3.11) the prediction error covariance matrix is

E[P̂ k+1|k] = E[AkP̂ kA
T
k +Qk]. (4.24)

Taking the upper bound of P̂ k, (4.16), into account we have,

E[P̂ k+1|k] ≤ E[AkP kA
T
k +Qk]. (4.25)

Substituting P k and Kk in (4.25) we have,

E[P̂ k+1|k] ≤ E

[︄
Ak

(︄
P̂ k|k−1 −

(︂
1 + a1(1− γk)

)︂
λkP̂ k|k−1B

T
k

[︂(︂
1 + a1(1− γk)

)︂
Bk

× P̂ k|k−1B
T
k +

(︂
1 + a2(1− γk)

)︂
Rk + (1 + a−1

1 + a−1
2 )(1− γk)δI

]︂−1

×BkP̂ k|k−1

)︄
AT

k +Qk

]︄
.

(4.26)

Using the inequality (A + B)−1 > A−1 − A−1BA−1 , and defining A =
(︂
1 + a1(1 −

γk)
)︂
BkP̂ k|k−1B

T
k , and B = (1 + a2(1 − γk))Rk + (1 + a−1

1 + a−1
2 )(1 − γk)δI, according

to the bounds of the matrices in (4.18), we obtain,

E[P̂ k+1|k] < α2
maxf

2
max

(︂
1 + a1(1− γ)

)︂
(1− λ)P̂ k|k−1 +

(︂λα2
maxf

2
maxrmax

β2minh
2
min

+ q̂
)︂
In, (4.27)

where rmax = max ∥ (1 + a2(1 − γk))Rk + (1 + a−1
1 + a−1

2 )(1 − γk)δI ∥. According to

this, we have, E[P̂ 2|1] < α2
maxf

2
max(1 + a1(1− γ))(1− λ)pIn + pIn, where p = max{∥ P̂ 1|0 ∥

, λα
2
maxf

2
maxrmax

β2
minh

2
min

+ q̂}, and E[P̂ 1|0] > 0. Iterating and using an induction algorithm, we obtain,

E[P̂ k+1|k] < p

k∑︂
i=0

[α2
maxf

2
max(1 + a1(1− γ))(1− λ)]i. (4.28)
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The proposed filter converges when λ > 1− 1
α2
maxf

2
max(1+a1(1−γ))

. This completes the proof.

Remark 4.2: The lower bound of the packet delivery rate is related to the average

communication rate or the event-triggered threshold. Thus, by properly tuning the threshold

we can guarantee the boundedness of the error covariance matrix and the estimation error.

Note 4.2: Application of Lemma 3.1 considerably simplifies computation of the error

covariance matrix upper bound and/or filter gain, albeit introducing some conservatism in

the filter design. If chosen appropriately, the parameters a1 and a2 can help reduce such

conservatism. Note that the filter gain always minimizes P k+1 for any value of a1 and a2

and provides the optimal filter gain. The tradeoff in the selection of a1 can be summarized

as follows: According to Theorem 4.2, if the packet arrival probability λ has a lower bound

λ > 1 − 1
α2
maxf

2
max(1+a1(1−γ))

, then the error covariance matrix satisfies the bound (4.23).

Since λ is given, to satisfy this bound, a1 should be chosen to minimize the right hand side

of this inequality. If a1 is chosen very large (a1 >> 1), then the right hand side approaches

1, which means that the system cannot tolerate packet dropouts. On the other hand, very

small values of a1 result in large values of the error covariance matrix (4.16). Thus, a1

should be chosen in the range 0 < a1 < 1. The larger a1 within this range, the lower the

tolerance to packet dropouts. A similar tradeoff exists for a2.

Theorem 4.3: Consider the nonlinear system (4.1)-(4.2) with event-triggered data

transmission and the packet dropout and assume that inequalities (4.18) are satisfied. If

0 < pminI ≤ P k+1|k+1 ≤ P̂ k+1|k ≤ pmaxI, (4.29)

and for some ε > 0, E[
⃦⃦˜︁x1|0⃦⃦2] ≤ ε, then the prediction error ˜︁xk+1|k is bounded in mean

square sense.

Proof. The proof of Theorem 4.3 consists of showing that the conditions of Lemma 4.1

are satisfied. Defining the Lyapunov function as follows,

Vk+1(˜︁xk+1|k) = ˜︁xTk+1|kP̂
−1
k+1|k˜︁xk+1|k. (4.30)

Theorem 2 in [4], shows that (4.29) holds. Assuming those bounds are pmin and pmax we

have:

υmin

⃦⃦˜︁xk+1|k
⃦⃦2 ≤ Vk+1(˜︁xk+1|k) ≤ υmax

⃦⃦˜︁xk+1|k
⃦⃦2
, (4.31)

where υmin = 1
pmax

, and υmax = 1
pmin

. Consider now the second condition of Lemma 4.1 .

We need to find real numbers τk, and µk such that 0 < τk < 1 and µk > 0, respectively.
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Using (4.12), the predicted state error covariance is given by,

P̂ k+1|k =E{˜︁xk+1|kx̃
T
k+1|k} = Q̂k +

[︂
Ak(I − λkKkBk)

]︂
P̂ k|k−1

[︂
Ak(I − λkKkBk)

]︂T
, (4.32)

where,

Q̂k =∆Pk|k−1 + (AkKk)λkRk(AkKk)
T +Qk + (1− γk)E{Mke

T
kN

T
k +NkekM

T
k

+Nkeke
T
kN

T },
(4.33)

M = [Ak(I −KkλkBk)˜︁xk|k−1 − AkKkλkυk + ωk], N = (AkKkλk), and ∆Pk|k−1 shows the

difference between step 5 of time update part of Table 4.1 , and (4.32). (4.32) can be

rewritten as follows,

P̂ k+1|k =[Ak(I −KkλkBk)]
{︂
[Ak(I −KkλkBk)]

−1Q̂k[Ak(I −KkλkBk)]
−T

+ P̂ k|k−1

}︂
[Ak(I −KkλkBk)]

T .
(4.34)

Setting Υk = [Ak(I −KkλkBk)]
T Q̂

−1
k [Ak(I −KkλkBk)] and considering the characteristics

of the matrix norm and the assumptions in (4.18), we have,

Υk ≤ [(αmaxfmax)(1 + λkβmaxhmaxK)ˆ ]2

q̂min

,

where the upper bound of K̂ is,

∥Kk∥ ≤ [pmaxβmaxhmax][(βminhmin)
2pmin + rmin]

−1.

Using properties of matrix inverse and taking the inverse of Υk and substituting in (4.34),

we obtain the following inequality [24],

[Ak(I − λKkBk)]
T P̂

−1
k+1|k[Ak(I − λKkBk)] ≤ (1− τk)P̂

−1
k|k−1, (4.35)

where,

(1− τk) =
[︂
1 +

q̂min

[(αmaxfmax)(1 + βmaxhmaxK)ˆ ]2pmax

]︂−1
> 0. (4.36)

It is easy to observe that 0 < τk < 1. Substituting (4.12) into Vk+1(˜︁xk+1|k), the conditional

expectation is as follows:

E{Vk+1(˜︁xk+1|k)|˜︁xk+1|k} = µk + ˜︁xTk|k−1[Ak(I − λkKkBk)]
T P̂

−1
k+1|k

× [Ak(I − λkKkBk)]˜︁xk|k−1,
(4.37)
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where,

µk =E
{︂
υTk [AkλkKk]

T P̂
−1
k+1|kAkλkKkυk + ωT

k P̂
−1
k+1|kωk|˜︁xk+1|k

}︂
+ (1− γk)

×

(︄
E
{︂
(AkλkKkek)

T P̂
−1
k+1|kAkλkKkek + ωT

k P̂
−1
k+1|kAkλkKkek

+ (AkλkKkek)
T P̂

−1
k+1|kωk + eTk λ

T
kK

T
k A

T
k P̂

−1
k+1|kAk

λkKkυk + eTk λ
T
kK

T
k A

T
k P̂

−1
k+1|k

× [Ak(I − λkKkBk)]˜︁xk|k−1 + ˜︁xTk|k−1[Ak(I − λkKkBk)]
T P̂

−1
k+1|kAkλkKkek

− υTk [AkλkKk]
T P̂

−1
k+1|kAkλkKke|˜︁xk+1|k}

)︄
(4.38)

Both sides of µk are scalars. Using Lemma 3.1 and computing the trace of µk we have,

µk ≤ tr

{︄
([AkλkKk]

T P̂
−1
k+1|kAkλkKkRk) + (P̂

−1
k+1|kQk) + (1− γk)

×
{︂
(λTkK

T
k A

T
k P̂

−1
k+1|kAkλkKkδI) + a3

(︂
[P̂

−1
k+1|kAk

(I − λkKkBk)]P̂ k|k−1

× [P̂
−1
k+1|kAk(I − λkKkBk)]

T
)︂
+ a4(P̂

−1
k+1|kQk[P̂

−1
k+1|k]

T )

+ a5(P̂
−1
k+1|kAkλkKkRk[P̂

−1
k+1|kAk

λkKk]
T )

+ (a−1
3 + a−1

4 + a−1
5 )(AkλkKkδI[AkλkKk]

T )

}︄
.

(4.39)

a3, a4, and a5 are positive scalars. It is immediate that µk is positive and it has an upper

bound µmax. Substituting (4.35) in (4.37), and taking account of Vk+1(˜︁xk+1|k) and (4.39)

we have,

E[Vk+1(˜︁xk+1|k)|˜︁xk+1|k]− Vk(˜︁xk|k−1) ≤ µmax−τVk(˜︁xk|k−1).

Thus, according to Lemma 4.1, ˜︁xk+1|k, is bounded in mean square sense.

Note 4.3: Inequalities (4.31), (4.36) and (4.39) are satisfied for any value of the pa-

rameters αk and βk, while the value of the upper and lower bound of the inequalities may

change. Thus, we conclude that the stability of the filter does not depend on the values αk

and βk.

From (3.11), and the assumptions in (4.18), we conclude that the mean squared error

of the estimation is as follows,

E{∥˜︁xk∥2} ≤ (fminαmin)
−2E{

⃦⃦˜︁xk+1|k
⃦⃦2

+ ∥ωk∥2} (4.40)

Note that, according to Theorem 4.3, the upper bound of µk in (4.39) depends on the

event-triggered threshold, which affects on the upper bound of E[
⃦⃦˜︁xk+1|k

⃦⃦2
] (Lemma 4.1 ).

Thus, by choosing a proper event-triggered mechanism, one can limit the upper bound of

the estimation error (4.40).
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4.4 Simulation Results

In this section, we consider an application of the CKF to the air traffic control problem

given in [8]. The state of the aircraft at time k is xk = [ηk, ηk̇, yk, yk̇,Ψ]T , where Ψ is the

turn rate, η and y, represent position, and η̇ and ẏ represent the velocities along the x-axis

and y-axis, respectively. The kinematics of the turning motion is modelled by the following

nonlinear process and measurement equations,

xk+1 =

⎛⎜⎜⎜⎜⎜⎝
1 sin(ΨT )

Ψ 0−(1−cos(ΨT ))
Ψ 0

0 cos(ΨT ) 0 − sin(ΨT ) 0

0 (1−cos(ΨT ))
Ψ 1 sin(ΨT )

Ψ 0
0 sin(ΨT ) 0 cos(ΨT ) 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠xk + ωk. (4.41)

The radar, stationed at [20000, 20000] metres measures the range (position) r, and the

bearing θ.

zk+1 =

(︃
rk
θk

)︃
=

⎛⎝√︂x21k+1
+ x23k+1

tan−1 x3k+1

x1k+1

⎞⎠+ νk. (4.42)

T is the time-interval which is assumed to be 1 sec in our simulations. The process noise

wk ∼ N(0, Q) is white noise with zero mean and covariance Q = diag[q1M q1M q2T ],

where M = [T
3

3
T 2

2 ; T
2

2 T ] , q1 = 0.1m2s−3 and q2 = 1.75 ∗ 10−4s−3, respectively. The

measurement noise, vk ∼ N(0, R), is white noise with zero mean and covariance R =

diag[100 10]. a1 and a2 are considered 0.02.

Scenario A: In this scenario, we consider the event-triggered CKF without packet

dropout using different threshold values. The initial state value is as follows,

x0 = diag[104m 150ms−1 3.5 ∗ 104m 0ms−1 − 3os−1]T . The initial error covariance is

as follows, P̂ 0 = diag[100m2 10m2s−2 100m2 10m2s−2 0.1rad 2s−2] .

The initial state estimate x̂0 is chosen randomly from N(x0, P̂ 0) in each run. We set

λ = 1 in step 7, 8, and 9 of Table 4.1, to represent the absence of packet dropouts. Figure

4.1.(a) shows the results of the target tracking with the event-triggered threshold of 100, 500,

1000. The resulting number of data transmission events are 180, 142, and 70, respectively.

Comparison between tracking results shows that by properly tuning the event-triggered

mechanism threshold, a desired estimation quality can be achieved while communication

rate is reduced dramatically.

The simulation results in Figure 4.3(a) with different initial values, x0 = diag[103m

300ms−1 103m 0ms−1 −2os−1]T and P0|0 = diag[100m4 10m4s−2 100m4 10m4s−2 0.1rad2s−2]

show that, as expected, a smaller event-triggered threshold results in better estimations.
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Scenario B: We repeat scenario A but we include the packet dropouts assuming rates of

0.2, Figure 4.1(b) and 0.5, Figure 4.1(c). When the packet dropout occurs we have λk = 0,

resulting in a filter gain Kk = 0, and consequently no update in the estimate of the state,

in step 8 of Table 4.1.

The results show that, as expected, when the packet dropout rate increases for the same

event-triggered mechanism threshold, the quality of the tracking deteriorates. Figure 4.3.(b)

shows the tracking result with and without packet dropout assuming a fixed event-triggered

threshold of 500, with different initial values.

Once again, we see that as the packet dropout rate increases, the quality of the estimate

deteriorates, however the tracking error remains bounded.

To compare the filter performance under different conditions, we use the root-mean

square error (RMSE) of the states. As an example, for the position, we define the RMSE

in position at time k , as

RMSEposition(k) =

⌜⃓⃓⎷ 1

N

N∑︂
n=1

(ηnk − η̂nk)
2 + (ynk − ŷnk)

2.

(ηnk , y
n
k ) and (η̂nk , ŷ

n
k) are the true and estimated states at the n-th Monte Carlo run, re-

spectively. We make 20 independent Monte Carlo runs. Figure 4.2 shows the performance

comparison without packet dropout and with packet dropout rates of 0.2 and 0.5 for the

fixed event-triggered threshold of 500, based on 20 Monte Carlo runs.

As expected, performance degrades as the packet dropout rate increases. However, the

figure also shows that by properly tuning the event-triggered threshold for the given packet

dropout rate, one can achieve acceptable state estimation results.

Figure 4.4 compares the estimation error of the DECKF and DEUKF. We do not present

the tracking results of the EKF because of the limitations mentioned in Chapter 3 and the

Appendix. Note that, the dimension of the states used here is higher than three, and the

scaling factor of UKF is k = −2 which results in non-positive covariance which halts the

operation, so we assume that k = 1. The figure shows significantly better results for the

DECKF compared to EUKF.

4.5 Summary

In this chapter, we developed a new discrete-time event-triggered Cubature Kalman Filter

(CKF) for the nonlinear dynamic systems over a wireless network with the packet dropout

in the transmission lines. We developed a complete theory to derive the lower bound of the

packet delivery rate, so the proposed filter could ensure that the prediction error covariance
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Figure 4.1: Tracking results of DECKF (a) without packet dropout. (b) packet dropout
rate: 0.2. (c) packet dropout rate: 0.5.
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dropout
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is bounded when the packet delivery rate has a lower bound. We then showed that the

estimation error can be guaranteed to be bounded by properly tuning the threshold of the

event-triggered mechanism. An example is given to illustrate the filter’s performance.
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Chapter 5

Event-Triggered Cubature Kalman
Filter for One Step Randomly
Delayed Measurements

In this chapter we develop a new event-triggered cubature Kalman filter for discrete-time

high dimensional nonlinear systems with strong nonlinearities under the assumption that

the sensors exchange data via imperfect communication channels and the measurements are

randomly delayed by one sampling time.

We first discuss the difficulties involved in dealing with time-delays in the context of

state estimation and formulate the need for a new algorithm. Then we show that using the

proposed event-triggered cubature Kalman filter and properly tuning the event-triggered

threshold, can lead to accurate estimates of the state despite time delays, while reducing

transmission of information between system and filter. An example shows the effectiveness

of the proposed algorithm.

5.1 Problem formulation

The nonlinear discrete-time system model and the nonlinear measurement model are de-

scribed as follows,

xk+1 = f(xk, uk) + ωk, (5.1)

zk+1 = h(xk+1) + νk+1, (5.2)

where xk ∈ Rnx is the state vector, and zk ∈ Rnz is the measurement vector. Other

parameters are defined in Chapter 2. Recalling from Chapter 3, we consider that our

system works under even-triggered mechanism. So, the current transmitted measurement
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(5.3) is as follows,

z̄k = zk + (1− γk)(z − zk) (5.3)

where zk is the current measurement and z is the last sent measurement. z̄k is the current

transmitted measurement after the triggering condition is satisfied.

5.1.1 Delay

In this subsection, we summarize the derivation of the Gaussian filter for the system with

one randomly delay measurement described in (5.1)-(5.2). Note that the one-step randomly

delayed measurement model is as follows,

yk+1 = (1− σk+1)zk+1 + σk+1zk, (5.4)

where, {σk; k > 1} is a sequence of uncorrelated Bernoulli random variables which can be

0 or 1 with,

p(σk = 1) = E[σk] = pk,

p(σk = 0) = 1− E[σk] = 1− pk,

E[(σk − pk)
2] = (1− pk)pk.

(5.5)

It is worth mentioning that the one-step posterior predictive PDF of the state, p(xk+1|Yk),

and the one-step posterior predictive PDF of the delayed measurement, p(yk+1|Yk), are

assumed to be Gaussian, where Yk+1 = {yi}k+1
i=1 , shows the set of the available measurements.

The statistics of the observation at time k depends on both statistics of xk−1 and νk−1.

To derive the filter with measurement delays, we should consider jointly the state and

noise vectors. Thus, we define the following augmented vector as xak+1 =

(︃
xk+1

νk+1

)︃
. The

conditional mean and the covariance are as follows,

x̂ak+1 =

(︃
x̂k+1

ν̂k+1

)︃
; P̂

a
k+1 =

(︄
P̂ k+1 P̂

xν
k+1

(P̂
xν
k+1)

T P̂
νν
k+1

)︄
(5.6)

where, P̂
νν
k+1 = E[ν̃k+1ν̃

T
k+1|Yk+1], P̂

xν
k+1 = E[x̃k+1ν̃

T
k+1|Yk+1]. In addition, νk+1 is un-

correlated to Yk, so the prediction state x̂ak+1|k and the prediction covariance P̂
a
k+1|k are as

follows,

x̂ak+1|k =

(︃
x̂k+1|k
0m×1

)︃
; P̂

a
k+1|k =

(︃
P̂ k+1|k 0n×m

0m×n Rk+1

)︃
(5.7)

where m is the dimensionality of the measurement noise. So we need to derive P̂
xν
k+1, P̂ k+1,

and P̂
νν
k+1 to find the augmented covariance. First we use linearization to facilitate the filter
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derivation. Linearization of f(xk) and h(xk) around xk = x̂k yields to the following,

xk+1 ≈ fk(x̂k) +Ak(xk − x̂k) + ωk (5.8)

zk ≈ hk(x̂k) +Bk(xk − x̂k) + νk (5.9)

where, Ak = αkFk, and Bk = βkHk. Fk = ∂f(x)
∂x |x=x̂k

and Hk = ∂h(x)
∂x |x=x̂k

are the Jacobian

matrix, αk = diag(α1,k, α2,k, ..., αnxk), and βk+1 = diag(β1,k, β2,k, ..., βnyk) are unknown

diagonal matrix representing the error incurred in neglecting the higher order terms of the

Taylor series. Moreover the predicted state and covariance are as follows,

x̂k+1|k = fk(x̂k) (5.10)

P̂ k+1|k = AkP̂ kA
T
k +Qk. (5.11)

Next, linearizing hk+1(xk+1) around xk+1 = x̂k+1|k we have,

zk+1 ≈ hk+1(x̂k+1|k) +Bk+1(xk+1 − x̂k+1|k) + νk+1. (5.12)

where Bk+1 = βkHk+1, and Hk+1 =
∂h(x)
∂x |x=x̂k+1|k

.

Now we summarize the equations which are used in the developing of the Gaussian

filter for the system described by (5.1) and (5.2) with randomly delayed measurements as

follows [41],

x̂k+1 = x̂k+1|k +Kx
k+1ỹk+1|k, (5.13)

ŷk+1|k = (1− pk+1)ẑk+1|k + pk+1ẑk (5.14)

ỹk+1|k = (1− σk+1)(zk+1 − ẑk+1|k) + σk+1(zk − ẑk) + (σk+1 − pk+1)(ẑk − ẑk+1|k), (5.15)

P̂ k+1 = P̂ k+1|k −Kx
k+1P̂

yy
k+1|k(K

x
k+1)

T , (5.16)

Kx
k+1 = P̂

xy
k+1|k(P̂

yy
k+1|k)

−1, (5.17)

P̂
xy
k+1|k = E[x̃k+1ỹ

T
k+1|k|Yk] = (1− pk+1)P̂

xz
k+1|k + pk+1P̂

xz
k+1,k, (5.18)

P̂
xz
k+1|k = E[x̃k+1|kz̃

T
k+1|k|Yk] = P̂ k+1|kB

T
k+1, (5.19)
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P̂
xz
k+1,k = E[x̃k+1|kz̃

T
k |Yk] = AkP̂ kB

T
k +AkP̂

xν
k , (5.20)

ν̂k+1 = Kν
k+1ỹk+1|k, (5.21)

P̂
νν
k+1 = Rk+1 −Kν

k+1P̂
yy
k+1|k(K

ν
k+1)

T , (5.22)

Kν
k+1 = P̂

νy
k+1|k(P̂

yy
k+1|k)

−1, (5.23)

P̂
νy
k+1|k = E[νk+1ỹ

T
k+1|k|Yk] = (1− pk+1)Rk+1, (5.24)

P̂
xν
k+1 = E[x̃k+1ν̃

T
k+1|Yk] = −Kx

k+1P̂
yy
k+1|k(K

ν
k+1)

T , (5.25)

P̂
yy
k+1|k = (1− pk+1)P̂

zz
k+1|k + pk+1P̂

zz
k+1|k + (1− pk+1)pk+1(ẑk+1|k − ẑk)(ẑk+1|k − ẑk)

T ,

(5.26)

P̂
zz
k+1|k = E[z̃k+1|kz̃

T
k+1|k|Yk] = Bk+1P̂ k+1|kB

T
k+1 +Rk+1, (5.27)

P̂
zz
k = E[z̃kz̃

T
k |Yk] = BkP̂ kB

T
k +BkP̂

xν
k + (BkP̂

xν
k )T + P̂

νν
k , (5.28)

ẑk+1|k = E[zk+1|Yk] = hk+1(x̂k+1|k), (5.29)

ẑk = E[zk|Yk] = hk+1(x̂k) + ν̂k, (5.30)

where Kx
k+1 and Kν

k+1 express the gain matrices of the filtering estimated state and mea-

surement noise, respectively.

5.2 The DECKF with One-Step Randomly Delayed Mea-
surements

In this section, we develop the discrete-time event-triggered cubature Kalman filter in the

presence of delay in the communication channels. Note that we should derive the Kalman

gain to reduce the estimation error and the error covariance matrix considering one step

randomly delayed measurements.

Theorem 5.1: Consider the system (5.1) and (5.2) with the defined current transmitted

measurement (5.3). Assume that the measurement are transmitted with one step randomly
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delay through the communication channels.The state estimator gain can be obtained as fol-

lows,

Kk+1 = O(T )−1 (5.31)

where, O and T are equal to the following,

O = m1(1− pk+1)Bk+1P̂ k+1|k + pk+1AkP̂ kB
T
k+1 + pk+1AkP̂

xν
k (5.32)

T = pk+1BkP̂
xν

k + pk+1(BkP̂
xν

k)
T +m1(1− pk+1)Bk+1P̂ k+1|kB

T
k+1 +m2(1− pk+1)Rk+1

+m3pk+1BkP̂ kB
T
k +m4pk+1P̂

νν
k +m5(1− pk+1)(1− γk+1)δ +m6pk+1(1− γk)δ

+ pk+1(1− pk+1)(ẑk − ẑk+1|k)(ẑk − ẑk+1|k)
T

(5.33)

where, m1 = (1 + a1(1 − γk+1) + a5(1 − γk)), m2 = (1 + a2(1 − γk+1) + a6(1 − γk)),

m3 = (1 + a3(1 − γk+1) + a7(1 − γk)), m4 = (1 + a4(1 − γk+1) + a8(1 − γk+1)), m5 =

(1+a−1
1 +a−1

2 +a−1
3 +a−1

4 ), m6 = (1+a−1
5 +a−1

6 +a−1
7 +a−1

8 ). a1−a8 are arbitrary positive

parameters.

Proof. Substituting (5.3) in (5.4), the current transmitted measurement is as follows,

ȳk+1 = (1− σk+1)
[︂
zk+1 + (1− γk+1)(z − zk+1)

]︂
+ σk+1

[︂
zk + (1− γk)(z − zk)

]︂
(5.34)

Substituting (5.9), (5.12) and (5.14) in (5.34), the measurement prediction error can be

written as follows,

ȳk+1 − ŷk+1|k = ˜︁yk+1|k = (1− σk+1)
[︂
Bk+1(xk+1 − x̂k+1|k) + νk+1

]︂
+ σk+1

[︂
Bk(xk − x̂k) + νk

− ν̂k

]︂
+ (σk+1 − pk+1)

[︂
hk(x̂k)− hk+1(x̂k+1|k) + ν̂k

]︂
+ (1− σk+1)(1− γk+1)ek+1

+ σk+1(1− γk)ek (5.35)

Using ˜︁xk+1 from (2.25), and considering (5.35), the estimation error can be written as

follows,

˜︁xk+1 =
(︂
I −Kk+1(1− σk+1)Bk+1

)︂˜︁xk+1|k −Kk+1

(︂
(1− σk+1)νk+1 + σk+1[Bk(˜︁xk) + ˜︁νk]

+ (σk+1 − pk+1)[hk(x̂k)− hk+1(x̂k+1|k) + ν̂k] + (1− σk+1)(1− γk+1)ek+1

+ σk+1(1− γk)ek

)︂
(5.36)
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so the estimation error covariance matrix can be written as follows,

P̂ k+1 = E{˜︁xk+1˜︁xTk+1} =
(︂
I −Kk+1(1− pk+1)Bk+1

)︂
P̂ k+1|k

(︂
I −Kk+1(1− pk+1)Bk+1

)︂T
+ (1− pk+1)Kk+1Rk+1K

T
k+1 + pk+1Kk+1BkP̂ k(Kk+1Bk)

T + pk+1Kk+1P̂
νν

kK
T
k+1

+ pk+1(1− pk+1)Kk+1(ẑk − ẑk+1|k)(ẑk − ẑk+1|k)
TKT

k+1 + (1− pk+1)Kk+1(1− γk+1)

× δKT
k+1 + pk+1

(︂
(1− γk)Kk+1δK

T
k+1 +Kk+1BkP̂

xν
kK

T
k+1 +Kk+1(Kk+1BkP̂

xν
k)

T

−AkP̂ kB
T
k+1K

T
k −Bk+1Kk+1P̂

T
kA

T
k −AkP̂

xν
kK

T
k+1 −Kk+1P̂

xν
kA

T
k

)︂
+ (1− γk+1)

× E

{︄
−
(︂
I −Kk+1(1− σk+1)Bk+1

)︂˜︁xk+1|ke
T
k+1(1− σk+1)

TKT
k+1 + (1− σk+1)Kk+1νk+1

× eTk+1(1− σk+1)
TKT

k+1 + σk+1Kk+1Bk(˜︁xk)eTk+1(1− σk+1)
TKT

k+1 + σk+1Kk+1˜︁νkeTk+1

× (1− σk+1)
TKT

k+1 − (1− σk+1)Kk+1ek+1˜︁xTk+1|k

(︂
I −Kk+1(1− σk+1)Bk+1

)︂T
+ (1− σk+1)Kk+1ek+1((1− σk+1)νk+1)

TKT
k+1 + (1− σk+1)Kk+1ek+1(σk+1Bk(˜︁xk))TKT

k+1

+ (1− σk+1)Kk+1ek+1(σk+1˜︁νk)TKT
k+1

}︄
+ (1− γk)E

{︄(︂
I −Kk+1(1− σk+1)Bk+1

)︂˜︁xk+1|k

× eTk (σk+1)
TKT

k+1 + (1− σk+1)Kk+1νk+1e
T
k (σk+1)

TKT
k+1 + σk+1Kk+1Bk(˜︁xk)eTk (σk)TKT

k+1

+ σk+1Kk+1˜︁νkeTk (σk+1)
TKT

k+1 + σk+1Kk+1ek

(︂
I −Kk+1(1− σk+1)Bk+1)˜︁xk+1|k

)︂T
+ σk+1Kk+1ek((1− σk+1)νk+1)

TKT
k+1 + σk+1Kk+1ek(σk+1Bk(˜︁xk))TKT

k+1

+ σk+1Kk+1ek(σk+1˜︁νk)TKT
k+1

}︄
(5.37)

using Lemma 3.1 of Chapter 3 we have the following equations,

E

{︄
−
(︂
I −Kk+1(1− σk+1)Bk+1

)︂˜︁xk+1|ke
T
k+1(1− σk+1)

TKT
k+1

− (1− σk+1)Kk+1ek+1

(︂
(I −Kk+1(1− δk+1)Bk+1)˜︁xk+1|k

)︂T}︄
≤

E

{︄
a1(I −Kk+1(1− pk+1)Bk+1)P̂ k+1|k(I −Kk+1(1− pk+1)Bk+1)

T

+ a−1
1 (1− pk+1)Kk+1δK

T
k+1

}︄
,

(5.38)

E

{︄
(1− σk+1)Kk+1νk+1e

T
k+1(1− σk+1)

TKT
k+1 + (1− σk+1)Kk+1ek+1((1− σk+1)νk+1)

TKT
k+1

}︄

≤ E

{︄
a2(1− pk+1)Kk+1Rk+1(Kk+1)

T + a−1
2 (1− pk+1)Kk+1δK

T
k+1

}︄
,

(5.39)
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E

{︄
σk+1Kk+1Bk(˜︁xk)eTk+1(1− σk+1)

TKT
k+1 + (1− σk+1)Kk+1ek+1(σk+1Bk(˜︁xk))TKT

k+1

}︄

≤ E

{︄
a3pk+1Kk+1BkP̂ k(Kk+1Bk)

T + a−1
3 (1− pk+1)Kk+1δK

T
k+1

}︄
,

(5.40)

E

{︄
δk+1Kk+1˜︁νkeTk+1(1− σk+1)

TKT
k+1 + (1− σk+1)Kk+1ek+1(σk+1˜︁νk)TKk+1

}︄

≤ E

{︄
a4pk+1Kk+1P̂

νν
kK

T
k+1 + a−1

4 (1− pk+1)Kk+1δK
T
k+1

}︄
,

(5.41)

E

{︄
(I −Kk+1(1− σk+1)Bk+1)˜︁xk+1|ke

T
k (σk+1)

TKT
k+1 + σk+1Kk+1ek

× ((I −Kk+1(1− σk+1)Bk+1)˜︁xk+1|k)
T

}︄
≤ E

{︄
a5(I −Kk+1(1− pk+1)Bk+1)P̂ k+1|k

× (I −Kk+1(1− pk+1)Bk+1)
Ta−1

5 pk+1Kk+1δK
T
k+1

}︄
,

(5.42)

E

{︄
(1− σk+1)Kk+1νk+1e

T
k (σk+1)

TKT
k+1 + σk+1Kk+1ek((1− σk+1)νk+1)

TK

T

⎫⎪⎬⎪⎭
k+1

≤ E

{︄
a6(1− pk+1)Kk+1Rk+1(Kk+1)

T + a−1
6 pk+1Kk+1δK

T
k+1

}︄
,

(5.43)

E

{︄
σk+1Kk+1Bk(˜︁xk)eTk (σk+1)

TKT
k+1 + σk+1Kk+1ek(σk+1Bk(˜︁xk))TKT

k+1

}︄

E

{︄
≤ a7pk+1Kk+1BkP̂ k(Kk+1Bk)

T + a−1
7 pk+1Kk+1δK

T
k+1

}︄
,

(5.44)

E

{︄
σk+1Kk+1˜︁νkeTk (σk+1)

TKT
k+1 + σk+1Kk+1ek(σk+1˜︁νk)TKT

k+1

}︄

≤ E

{︄
a8pk+1Kk+1P̂

νν
kK

T
k+1 + a−1

8 pk+1Kk+1δK
T
k+1

}︄
,

(5.45)

where a1−a8 > 0. Inserting (5.38)-(5.45) in (5.37), the upper bound of the estimation error
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covariance P k+1 is as follows,

P k+1 =
(︂
1 + a1(1− γk+1) + a5(1− γk)

)︂
(I −Kk+1(1− pk+1)Bk+1)P̂ k+1|k

× (I −Kk+1(1− pk+1)Bk+1)
T − pk+1(AkP̂ kB

T
k+1K

T
k+1 +Bk+1Kk+1P̂

T
kA

T
k )

− pk+1(AkP̂
xν

kK
T
k+1 +Kk+1P̂

xν
kA

T
k ) +

(︂
1 + a2(1− γk+1) + a6(1− γk)

)︂
(1− pk+1)

×Kk+1Rk+1(Kk+1)
T +

(︂
1 + a3(1− γk+1) + a7(1− γk)

)︂
pk+1Kk+1BkP̂ k(Kk+1Bk)

T

+
(︂
1 + a4(1− γk+1) + a8(1− γk)

)︂
pk+1Kk+1P̂

νν
kK

T
k+1 + pk+1(1− pk+1)Kk+1

× (ẑk − ẑk+1|k)(ẑk − ẑk+1|k)
TKT

k+1 + (1 + a−1
1 + a−1

2 + a−1
3 + a−1

4 )

× (1− pk+1)(1− γk+1)Kk+1δK
T
k+1 + (1 + a−1

5 + a−1
6 + a−1

7 + a−1
8 )pk+1(1− γk)Kk+1

× δKT
k+1 + pk+1(Kk+1BkP̂

xν
k KT

k+1 +Kk+1(Kk+1BkP̂
xν

k)
T )

(5.46)

The filter gain (5.31) can be derived by
∂Pk+1

∂Kk+1
= 0, which completes the proof.

In the next subsection, we describe the discrete-time event-triggered cubature Kalman

filter algorithm with one step randomly delayed measurements. In some steps of the algo-

rithm, we need to obtain the upper bound of P̂
yy
k+1|k. From (5.35) we have,

P̂
yy
k+1|k = (1− pk+1)P̂

zz
k+1|k + pk+1P̂

zz
k + (1− pk+1)pk+1(ẑk+1|k − ẑk)(ẑk+1|k − ẑk)

T

+ (1− pk+1)(1− γk+1)δ + pk+1(1− γk)δ + (1− pk+1)(1− γk+1)E{z̃Tk+1|kek+1

+ eTk+1z̃k+1|k}+ pk+1(1− γk)E{z̃Tk ek+1 + eTk+1z̃k}

(5.47)

where P̂
zz
k+1|k = E[z̃k+1|kz̃

T
k+1|k|Yk], P̂

zz
k = E[z̃kz̃

T
k |Yk]. Using Lemma 3.1, the upper bound

of P̂
yy
k+1|k can be written as follows,

P
yy
k+1|k = (1− pk+1)

(︂
1 + b1(1− γk+1)

)︂
P̂

zz
k+1|k + pk+1

(︂
1 + b2(1− γk)

)︂
P̂

zz
k + (1− pk+1)pk+1

× (ẑk+1|k − ẑk)(ẑk+1|k − ẑk)
T + (1− pk+1)(1− γk+1)

× (1 + b−1
1 )δ + pk+1(1− γk)(1 + b−1

2 )δ

(5.48)

where, b1, b2 > 0.

5.2.1 DECKF with One Step Randomly Delayed Measurements Algo-
rithm

The event-triggered cubature Kalman filter with one-step randomly delayed measurements

recursively propagates the first two-order moments, namely, the mean x̂ak+1 and covariance,

P̂
a
k+1, by the following steps,
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First we should initialize the mean, (x̂a0)
T = [x̂0 0]T and the covariance P̂

a
0 =

[︃
P̂ 0 0
0 R0

]︃
.

Then we should follow time update steps and measurement update steps to derive the

P̂
xν
k+1, P̂ k+1, and P̂

νν
k+1 to find the augmented covariance in (5.6). Note that the proposed

DECKF is a derivative-free filter, which does not require computation of the Jacobian

matrix. Suppose that P̂ k+1|k is the predicted state error covariance matrix, then based

on P̂
xy
k+1|k = P̂ k+1|kB

T
k+1, one can derive the following Bk+1 = (P̂

xy
k+1|k)

T (P̂ k+1|k)
−1 [39],

where P̂
xy

k+1|k is the cross-covariance matrix. So the algorithm of DECKF with one-step

randomly delayed measurement can be written as follows,

Time-Update:

1) Factorize P̂
a
k = Sa

k(S
a
k)

T to calculate the cubature points,

Xi,k = [(ξxi,k)
T (ξνi,k)

T ]T = Sa
kξi + x̂ak

where i = 1, 2, ..., L and L = 2(n + m). n,m show the dimensionality of the states, and

measurement noise, respectively. ξxi,k and ξνi,k are the state and noise cubature points.

2) Propagate the Cubature Points,

X∗x
i,k+1|k = f(ξxi,k, uk)

Υ∗x
i,k+1|k = h(ξxi,k, uk)

3) Estimate the predicted state and the predicted state error covariance as follows,

x̂k+1|k =
1

2L

2L∑︂
i=1

X∗x
i,k+1|k

P̂ k+1|k =
1

2L

2L∑︂
i=1

X∗x
i,k+1|k(X

∗x
i,k+1|k)

T − x̂k+1|kx̂
T
k+1|k +Qk

Measurement Update:

1) Factorize P̂ k+1|k = Sk+1|kS
T
k+1|k to calculate the Cubature points,

Xi,k+1|k = Sk+1|kξi + x̂k+1|k i = 1, 2, ..., 2n

2) Propagate Cubature points as follows,

Yi,k+1|k = h(Xi,k+1|k, uk+1) i = 1, 2, ..., 2n

3) Compute the measurement means and covariances, ẑk+1|k, ẑk, P̂
zz
k+1|k, P̂

zz
k , P̂

xz
k+1|k,

and P̂
xz
k+1,k by the following equations,

ẑk+1|k =
1

2n

2n∑︂
i=1

Yi,k+1|k
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ẑk =
1

2L

2L∑︂
i=1

(Υ∗x
i,k+1|k + ξνi,k)

P̂
zz
k+1|k =

1

2n

2n∑︂
i=1

Yi,k+1|kY
T
i,k+1|k − ẑk+1|kẑ

T
k+1|k +Rk+1

P̂
zz
k =

1

2L

2L∑︂
i=1

(Υ∗x
i,k+1|k + ξνi,k)(Υ

∗x
i,k+1|k + ξνi,k)

T − ẑk(ẑk)
T

P̂
xz
k+1|k =

1

2n

2n∑︂
i=1

Xi,k+1|kY
T
i,k+1|k − x̂k+1|kẑ

T
k+1|k

P̂
xz
k+1,k =

1

2L

2L∑︂
i=1

X∗x
i,k+1|k(Υ

∗x
i,k+1|k + ξνi,k)

T − x̂k+1|kẑ
T
k+1|k

where P̂
xz
k+1|k = E[x̃k+1|kz̃

T
k+1|k|Yk] and P̂

xz
k+1,k|k = E[x̃k+1|kz̃

T
k |Yk] .

4) Calculate the measurement, measurement noise means and covariances by the follow-

ing equations,

ν̂k+1 = Kν
k+1ỹk+1|k

Kν
k+1 = P νy

k+1|k(P
yy
k+1|k)

−1

P̂
νy
k+1|k = (1− pk+1)(1 + (1− γk+1))Rk+1

P̂
νν
k+1 = Rk+1 −Kν

k+1P
yy
k+1|k(K

ν
k+1)

T

P
yy
k+1|k = (1− pk+1)

(︂
(1 + b1(1− γk+1))P̂

zz
k+1|k + pk+1(ẑk+1|k − ẑk)(ẑk+1|k − ẑk)

T

+ (1 + b−1
1 )(1− γk)δ

)︂
+ pk+1((1 + b2(1− γk))P̂

zz
k + pk+1(1− γk)(1 + b−1

2 )δ

5) Compute the filter gain: Kk+1 = O(T )−1,where

O = m1(1− pk+1)(P̂
xz
k+1|k)

T (P̂ k+1|k)
−1P̂ k+1|k + pk+1P̂

xz
k+1,k,

and,

T = pk+1(P̂
xz
k|k−1)

T (P̂ k|k−1)
−1P̂

xν
k + pk+1

(︂
(P̂

xz
k|k−1)

T (P̂ k|k−1)
−1P̂

xν
k

)︂T
+m1(1− pk+1)(P̂

xz
k+1|k)

T

× (P̂ k+1|k)
−1P̂ k+1|k

(︂
(P̂

xz
k+1|k)

T (P̂ k+1|k)
−1
)︂T

+m2(1− pk+1)Rk+1 +m3pk+1(P̂
xz
k|k−1)

T (P̂ k+1|k)
−1

× P̂ k

(︂
(P̂

xz
k|k−1)

T (P̂ k|k−1)
−1
)︂T

+m4pk+1P̂
νν

k +m5(1− pk+1)(1− γk+1)δ +m6pk+1(1− γk)δ

+ pk+1(1− pk+1)(ẑk − ẑk+1|k)(ẑk − ẑk+1|k)
T

6) Estimate P̂
xν
k+1 as follows,

P̂
xν
k+1 = −Kk+1P

yy
k+1|k(K

ν
k+1)

T
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7) Estimate the updated state:

x̂k+1 = x̂k+1|k +Kk+1(yk+1 − ŷk+1|k)

8) Compute the upper bound of estimation error covariance:

P k+1 =
(︂
1 + a1(1− γk+1) + a5(1− γk)

)︂(︂
I −Kk+1(1− pk+1)(P̂

xz
k+1|k)

T (P̂ k+1|k)
−1
)︂
P̂ k+1|k

×
(︂
I −Kk+1(1− pk+1)(P̂

xz
k+1|k)

T (P̂ k+1|k)
−1
)︂T

− pk+1

(︂
P̂

xz
k+1,kK

T
k+1 +Kk+1(P̂

xz
k+1,k)

T
)︂

+
(︂
1 + a2(1− γk+1) + a6(1− γk)

)︂
(1− pk+1)Kk+1Rk+1(Kk+1)

T +
(︂
1 + a3(1− γk+1)

+ a7(1− γk)
)︂
pk+1

(︂
Kk+1(P̂

xz
k|k−1)

T (P̂ k|k−1)
−1P̂ k(Kk+1(P̂

xz
k|k−1)

T (P̂ k|k−1)
−1)T +

(︂
1

+ a4(1− γk+1) + a8(1− γk)
)︂
Kk+1P̂

νν
kK

T
k+1 + (1− pk+1)Kk+1(ẑk − ẑk+1|k)(ẑk − ẑk+1|k)

T

×KT
k+1

)︂
+ (1 + a−1

1 + a−1
2 + a−1

3 + a−1
4 )(1− pk+1)Kk+1(1− γk+1)Kk+1δK

T
k+1

+ pk+1

(︂
(1 + a−1

5 + a−1
6 + a−1

7 + a−1
8 )(1− γk)Kk+1δK

T
k+1 +Kk+1P̂

xzT

k|k−1(P̂ k|k−1)
−1P̂

xν
k

×KT
k+1 +Kk+1(P̂

xzT

k|k−1(P̂ k|k−1)
−1P̂

xν
k)

TKT
k+1

)︂
So, the augmented mean and covariance in (5.6) can be calculated.

5.3 Numerical implementation and verification

In this section the effectiveness of the proposed method is illustrated by simulation results.

We consider the univariate non-stationary growth model under event-triggered mechanism

with one randomly delayed measurement. We study the performance of the DECKF that

we proposed in Section 5.2 and we compare the results to the DECKF that we proposed

in Chapter 3 under different condition, namely different triggering threshold values. A

univariate non-stationary growth model is modelled as follows,

xk+1 = 0.5xk + 25
xk

1 + x2k
+ 8cos(1.2k) + ωk k ≥ 0

zk =
x2k
20

+ νk k ≥ 1

(5.49)

The initial value of the state, x0, is a Gaussian variable with zero mean and variance of one.

The process noise wk ∼ N(0, Q) and the measurement noise vk ∼ N(0, R) are the white

noise with zero mean and covariance Q = 10 and R = 1, respectively. We use the root

mean square error (RMSE) to compare the performance of the two filters in the presence

of delay. RMSE at time k is,

RMSE(k) =

⌜⃓⃓⎷ 1

N

N∑︂
n=1

(ηnk − η̂nk)
2,
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Figure 5.1: RMSE results of the filters with event-triggered threshold 1 and delay probability
p=0.5

where ηnk is the true, and η̂nk is the estimated state at the n-th Monte Carlo run, respectively.

In the first scenario, we consider that p = 0.5 and we compare the results of the filters

with two different event-triggered thresholds of δ = 1 and δ = 2.

Figure 5.1 and Figure 5.2 show that the RMSE results of the proposed filter are lower

than the filter proposed in Chapter 3, which means that the proposed filter has better

estimation performance in the presence of delayed measurements, and the proposed gain

matrix reduces the estimation error which improves the filter performance.

In the next scenario, we compare the performance of the proposed filter in the presence

of different delay probabilities, namely p = 0.2 and p = 0.5, and different event-triggered

thresholds, δ = 1 and δ = 2. The number of data transmissions are shown in Table.5.1.

By comparing the results of the filter in Figure 5.3 and the Table.5.1, one can conclude

the following: 1) increasing the triggering threshold and the delay probabilities, the esti-

mation performance degrades, however, one can achieve a reasonable estimation quality by

properly tuning the event-triggered threshold with respect to the delay probability. 2) By

choosing a good triggering threshold, one can reduce the number of data transmission and

communication burden while obtaining accurate state estimation results.
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Figure 5.2: RMSE results of the filters with event-triggered threshold 2 and delay probability
p=0.5
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Figure 5.3: RMSE results of the proposed DECKF with different event-triggered threshold
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Table 5.1: RMSE results of the proposed filter

Threshold value Delay probability number of data transmission

1 0.2 92

1 0.5 84

2 0.5 75

5.4 Summary

A new nonlinear filter algorithm for the filtering problems of high dimensional nonlinear

systems under the event- triggered protocol with one-step delay in measurement is proposed.

We show that when the communication channels are not perfect, the triggered measurements

are transferred with delay and the state estimator can not be updated in real-time.

In the presence of delay in the communication, the previous data effects the filtering

process, so a new filter gain should be achieved to consider the effects of the delayed mea-

surements on the state estimation and to make the state estimation errors and the error

covariance matrix bounded.

So, we develop a new filter algorithm to deal with this issue and we compare the esti-

mation results of the proposed filter under different event-triggered conditions considering

different delay probabilities. The simulation results show that by properly choosing the

event-triggered threshold, one can guarantee the estimation quality while the extra com-

munication burden would be decreased. Also, compared to the previously proposed filter,

the new filter has less state estimation error in the presence of delay in the communication

channels.
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Chapter 6

Application of Discrete-Time
Event-Triggered Cubature Kalman
Filter to a Synchronous Machine

In this chapter, 1 our interest is in the application of the proposed event-triggered cubature

Kalman filters in Chapter 3 and Chapter 5 to a synchronous generator using noisy signals

from phasor measurement units (PMUs) devices. We show the advantage of employing the

proposed cubature Kalman filters over the more established and more explored filters such

as extended Kalman filters and unscented Kalman filters, frequently used in the literatures

to estimate the states of synchronous machines.

We argue that better estimates can be obtained using the CKF and justify our claims

in our simulations, both using periodic and event-triggered sampling. We show that the

event-triggered approach allow us to obtain excellent estimates, while reducing the flow of

information with respect to classical periodic systems.

First we study the application of the proposed nonlinear filter in Chapter 3 with a well

designed event-triggered mechanism and we show that the proposed filter can significantly

reduce data communication between the PMUs and the remote filter while the estimation

error is kept bounded, thus reducing potential network-related congestion issues.

Our solution makes use of a so-called “Send-on-Delta” type event-triggering condition

in which a new sample is triggered if the measured signal deviates by “delta” from the most

recent sample. Thus, the sensor node does not broadcast a new message while the sampled

signal remains within a certain interval of confidence.

Then, we consider that the communication channels are not perfect and the measure-

1The results of this chapter has been published in the article: M. Kooshkbaghi, H. J. Marquez, and W.
Xu, “Event-Triggered Approach to Dynamic State Estimation of a Synchronous Machine Using Cubature
Kalman Filter,” IEEE Transactions on Control Systems Technology, DOI: 10.1109/TCST.2019.2923374.
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ments are transferred with one step random delay to the state estimator. We compare the

estimation results of the proposed filter in Chapter 5 with the proposed filter in Chapter 3

and we show the performance improvement of the filter proposed in Chapter 5.

6.1 Dynamic of Single Machine Infinite Bus (SMIB)

Figure 6.1 shows a schematic of the system connection, in which synchronous machine

connected to power distribution system via the transmission lines. The synchronous machine

can be described by the following fourth-order nonlinear model [54,55],

Ψ̇=ω0∆ω,

∆ω̇=
1

J
(Tm − Te −D∆ω),

ė
′
q=

1

T
′
do

(Efd − e
′
q − (xd − x

′
d)id),

ė
′
d=

1

T ′
qo

(−e′d + (xq − x
′
q)iq), (6.1)

where the variables are defined in Table 6.1. Note that the values are in (p.u), except when

explicitly noted.

G PMU
Power 

distribution 
system 

Transformers

Figure 6.1: Synchronous Machine Interconnection.

Defining state variables, x =

⎡⎢⎢⎣
Ψ

∆ω

e
′
q

e
′
d

⎤⎥⎥⎦ , and ū =

[︃
Tm
Efd

]︃
=

[︃
ū1
ū2

]︃
, equation (6.1) can be

rewritten the state space form as follows,

ẋ1=ω0x2,

ẋ2=
1

J
(ū1 − Te −Dx2),

ẋ3=
1

T
′

do

(︂
ū2 − x3 − (xd − x

′
d)id

)︂
,

ẋ4=
1

T ′
qo

(︂
−x4 + (xq − x

′
q)iq

)︂
. (6.2)
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Table 6.1: Definition of Variables and Constants

Variables (pu) Definition

d, q Rotor direct axis and quadrature axis

D, J Damping factor and inertia constant

T
′
do, T

′
qo d and q axis transient open circuit time constants

Tm, Te Mechanical input and electrical torque

ed ,eq Direct and quadratic axis voltage

Ψ(elec.rad)
First state, rotor angle with respect to the machine
terminals (load angle)

e
′
d, e

′
q Transient voltage of d- and q-axis

id, iq ,Efd Direct and quadratic axis current, Field voltage

xd, xq Direct and quadratic axis reactance

x
′
d, x

′
q Direct and quadratic axis transient reactance

∆ω , ω0(elec.rad/s) 2nd state, rotor speed and nominal sync speed

Vt , Pt Voltage and Active power at terminal bus

The electric air-gap torque Te, is given by Te = Pt + RaI
2
t , and neglecting the stator

resistance Ra, we have:

Te ∼= Pt = edid + eqiq. (6.3)

The d-and q-axis voltages, (ed, eq), and currents, (id, iq), are given by:

ed=Vt sinΨ,

eq=Vt cosΨ. (6.4)

id = It sin(Ψ + Φ)=
e
′
q − Vt cosΨ

x
′
d

,

iq = It cos(Ψ + Φ)=
Vt sinΨ

xq
. (6.5)

The terminal bus voltage and current are ET = Vt =
√︂
e2d + e2q , and It =

√︂
i2d + i2q ,

respectively.

Replacing the variables, Ψ and e
′
q, with the state variables x1 and x3, (6.5) becomes,

id=
x3 − Vt cosx1

x
′
d

,

iq=
Vt sinx1
xq

. (6.6)

Substituting (6.4) and (6.6) in (6.3), we obtain the electrical output power in terms of the

states as follows:

Te ∼= Pt
∼=
Vt

x
′
d

x3 sinx1 +
V 2
t

2
(
1

xq
− 1

x
′
d

) sin 2x1. (6.7)
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Finally, substituting (6.6) and (6.7) in (6.1), we obtain the state space model of the fourth-

order nonlinear synchronous machine:

ẋ =
d

dt

⎡⎢⎢⎣
Ψ

∆ω

e
′
q

e
′
d

⎤⎥⎥⎦ =

⎡⎢⎢⎣
ẋ1
ẋ2
ẋ3
ẋ4

⎤⎥⎥⎦ ,

u =

⎡⎣ TmEfd

Vt

⎤⎦ =

⎡⎣u1u2
u3

⎤⎦ ,
ẋ1 = ω0x2,

ẋ2 =
1

J

[︂
u1 −

(︂u3
x

′
d

x3 sinx1 +
u23
2
(
1

xq
− 1

x
′
d

) sin 2x1

)︂
−Dx2

]︂
,

ẋ3=
1

T
′

do

[︃
u2 − x3 − (xd − x

′
d)(

x3 − u3 cosx1
x

′
d

)

]︃
,

ẋ4=
1

T ′
qo

[︃
−x4 + (xq − x

′
q)(

u3 sinx1
xq

)

]︃
,

y1 =
u3

x
′
d

x3 sinx1 +
u23
2
(
1

xq
− 1

x
′
d

) sin 2x1. (6.8)

The global structure of (6.8) can be represented as follows,

ẋ=f(x,u) +w,

y=h(x,u) + v. (6.9)

where f and h are the system and output functions, respectively. x is the state variable

vector, u is the input vector, w and v are the process and the measurement noises. (6.9)

can be written in discrete-time form (3.1) and (3.2) as follows,

xk+1=f(xk, uk) + ωk,

yk+1=h(xk+1, uk+1) + νk+1. (6.10)

Note: The filter operates with Vt, Tm, Efd, and Pt as inputs, where Pt is obtained

using a PMU. We assume that PMUs are installed at the terminal buses of the generator

and provide measurements of the bus voltage and line current. Since the main objective

of this section is to discuss the effect of the event-triggering mechanism on the CKF esti-

mation of SMIB, we do not consider the dynamics of Tm, Efd, and consider them instead

as known inputs (see also [55–57]). In the next section, we show the effectiveness of the

proposed filters under different conditions, namely different triggering thresholds and delay

probabilities in the communication channels.
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6.2 Estimation Results

In this section, we apply the event-triggered CKF proposed in Chapter 3 and Chapter 5 to

the derived fourth-order nonlinear synchronous generator model described by (6.8) to ensure

the estimation performance of the proposed filters. The block diagram of the networked

system with event-triggered cubature Kalman filter is shown in Figure 6.2. Note that

PMU
measurmentSynchronous 

Machine

Event
detector

Nonlinear discrete-time
Cubature Kalman Filter

Figure 6.2: Block diagram of the overall networked system

although our example is applied to a single machine, the same approach is also applicable

to a large scale system that includes multiple generators. Each of the generators can be

described using the fourth-order model given by (6.8), [58].

The overall state space model (6.11) for all generators is high dimensional with high

degree of nonlinearities.

ẋ = Ax+Bu+ ϕ(x),y = h(x). (6.11)

A =

⎡⎢⎢⎢⎣
0 ω0IG 0 0

0 diag(−D
J ) 0 0

0 0 diag( −1

T
′
do

) 0

0 0 0 diag( −1
T ′
qo
)

⎤⎥⎥⎥⎦ ,

B =

⎡⎢⎢⎢⎣
0 0 0

diag( 1J ) 0 0
0 diag( 1

T
′
do

)0

0 0 0

⎤⎥⎥⎥⎦ ,

ϕ =

⎡⎢⎢⎢⎢⎢⎣
0

−(u3

x
′
d

x3 sinx1 +
u2
3
2 ( 1

xq
− 1

x
′
d

) sin 2x1
1

T
′
do

(−(xd − x
′
d)(

x3−u3 cosx1

x
′
d

))

1
T ′
qo
(−(xq − x

′
q)(

u3 sinx1
xq

))

⎤⎥⎥⎥⎥⎥⎦ .
The parameter G in matrix A is the number of the generators in the distribution system.

Known parameters of the SMIB, and the active power produced by generator, Pt, which is

accessible using a PMU device, are sent to the state estimator through the limited bandwidth

communication channels. To reduce the communication burden, the measurement output,

58



Table 6.2: SMIB parameters amount

Parameters Value (pu) Parameters Value (pu)

D ,J 0.05 ,10 xd ,xq 2.15,1.365

V , ω0nominal 1.02, 377 x
′
d ,x

′
q 0.37 , 0.37

T
′
do, T

′
qo 0.131,0.01 Tm , Efd 0.8, 2.4

Pt, is sent to the event detector to check the event-triggering condition. We study the effect

of the event-triggering formulation on state estimation of the synchronous generator by

using two separate scenarios; namely, with and without the event-triggered mechanism. We

show that event-triggered data transmission leads to a significant reduction in transmission

of information through the limited bandwidth communication channel, without significant

deterioration in the quality of the estimated signals.

Scenario A: In this scenario, we apply the cubature Kalman filter without event-

triggered mechanism and compare the results to the UKF. We achieve continuous flow of

information by setting the event-triggering threshold parameter δ = 0 in the SMIB system.

We employ the system represented in Figure 6.2 under the following conditions:

We assume Tm to be constant, Efd is a step function, Vt and the observation signal,

Pt = (y1), are the inputs to the nonlinear filter in each step through the communication

channels, while [Ψ,∆ω, eq, ed] are the outputs, or estimated states, of the nonlinear filter.

The values of the inputs and other SMIB parameters are shown in Table 6.2. The initial

covariance matrix is P0 = diag([102 102 102 102]). The process and measurement noise

covariance matrices are wk ∼ (0, Qk) = (0, 10−2 × I4×4) and vk ∼ (0, Rk) = (0, 10−2 × I).

Figure 6.3 shows the result of the dynamic state estimation for the CKF without event-

triggered mechanism using MATLAB. As expected, the results show the effectiveness of the

CKF with all the states converge to the true values real states. In this scenario, the number

of data transmission points between the remote CKF and the system is 120000.

Scenario B: In this scenario, to check the effectiveness of the proposed discrete time

event-triggered cubature Kalman filter under time variant unknown input, we apply the

proposed filter with different kinds of Efd (constant, step) and mechanical input Tm (con-

stant, step, ramp) with different event-triggered mechanism threshold to the SMIB system.

The value of the parameters are as the previous subsection. Tm, Efd, Vt and the observation

signal, Pt = (y1), are the inputs of the nonlinear filter in each step. The measurable output

Pt = (y1) is sent to event detector. a1 and a2 are considered 0.02. To obtain a desired trade-

off between the estimation error and the number of data transfers, we compare different

threshold values.
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Figure 6.4 shows the results of the dynamic state estimation of the proposed filter with

the event-triggered mechanism thresholds of δ = 0.05, δ = 0.1, and δ > 0.1. We assume

that the input signal Efd is a step function while Tm is a constant. The state estimation

results maintains good estimation properties for small values of the threshold parameter

and only begins to diverge as the threshold increases over δ > 0.1. The number of data

transmission points between the remote cubature Kalman filter and the event detector, for

event-triggered threshold of δ = 0.05 and δ = 0.1, reduces from 120000 to only 700 and

500 values, respectively. Comparison between the value of the event-triggered mechanism

threshold and the number of data transfers is shown in Table. 6.3.

As the results show, it can be concluded that by properly tuning the event-triggered

mechanism threshold, a desired estimation quality can be achieved while the communication

rate is reduced dramatically.

To confirm the effectiveness of the proposed filter under general conditions, the sim-

ulations are repeated for two other conditions, the first for Tm= step and Efd=constant

(Figure 6.5), and the second for Tm= ramp and Efd=step (Figure 6.6). The simulation

results for different input conditions demonstrate the accuracy of the estimated states.

To compare various nonlinear filter performances, we use the root-mean square error

(RMSE) of the states. For instance, for the first state, we define the RMSE in angle at time

k, as

RMSE(k) =

⌜⃓⃓⎷ 1

N

N∑︂
n=1

(Ψn
k − Ψ̂

n
k)

2, (6.12)

where Ψn
k and Ψ̂

n
k are the true and estimated states at the n-th Monte Carlo run. We make

20 independent Monte Carlo runs. All the filters are initialized with the same condition

in each run. Figure 6.7 shows the performance comparison between the proposed discrete

time event-triggered cubature Kalman filter (DECKF) and event-triggered UKF (EUKF)

for different event-triggered threshold. We don’t present the results of the EKF as it uses

linearization which leads to large errors in state estimation results. Note that, as mentioned

in the Appendix, UKF can be used in systems with dimension up to three. The dimension of

the states used here is higher than three, so the weight of the centre sigma point is negative

which result in non-positive covariance [8].

In this simulation, we assume that n+k=5 (which is used to select the sigma points

and the weight of the sigma points) and the estimation results are not optimal, so the

RMSEs estimated by DECKF are lower than the RMSEs estimated by EUKF. For both

filters, DECKF and EUKF, the performance is degraded as the threshold increases, since
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Table 6.3: Comparison between different Event-triggered threshold

Threshold value Number of data transfers Convergence

0 , 0.05, 0.1 120000, 700, 500 ✓
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Figure 6.3: States estimation results of DECKF with no event-triggered mechanism and
Efd= Step, Tm= Constant

less information would be transferred to state estimator as the threshold increases. For

instance, the performance of DECKF with event-triggered threshold of 0.05 lies between

CKF without event-triggered mechanism (event-triggered threshold equals to zero) and

DECKF with event-triggered threshold of 0.1. As it is clear from the simulation result

(Figure 6.7), the performance of the proposed filter, DECKF is better than the EUKF.

Scenario C: In this scenario, we compare the performance of the proposed filter in

Chapter 5 and the filter proposed in Chapter 3, in the presence of delay in the commu-

nication channels. We consider that the event-triggered threshold is 0.05 and the delay

probability rate is 0.2. Figure 6.8 shows the RMSE results of the two proposed filters. As

we mentioned before, in the presence of delay in the communication channels, the previous

data affects the filtering process. The DECKF which is proposed in Chapter 5 considers

the effects of the delayed measurements on the state estimation process compared to the

filter proposed in Chapter 3, thus the state estimation errors, the error covariance matrix

of the DECKF of Chapter 5 are less than those of the filter proposed in Chapter 3.
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Figure 6.4: States estimation results of DECKF with different thresholds and Efd=Step,
Tm= Constant
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Figure 6.5: States estimation results of DECKF with different thresholds and Tm=Step,
Efd=Constant
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Figure 6.6: States estimation results of DECKF with different thresholds and Tm=Ramp,
Efd=Stept
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1 2 3 4 5 6 7
Time, k

×10
4

10
-2

10
-1

10
0

10
1

R
M

S
E

Old DECKF

New DECKF
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6.3 Summary

In this chapter, we considered the dynamic state estimation of a synchronous generator

using a discrete-time event-triggered cubature Kalman filter (DECKF). As mentioned in

the introduction, the event-triggered formulation is an alternative to conventional periodic

discrete-time sampling which can render similar performance while reducing communication

between sensors and remote filters. Event-triggered systems are becoming predominant in

applications in which communication between components is established via a communica-

tion channel, with the consequent communication restrictions, such as smart grid applica-

tions, etc. Applied to a fourth-order nonlinear model of a synchronous generator, our results

show excellent tracking of the true states, despite an impressive communication reduction

between the sensors and the remote filter. More specifically: comparison of a discrete-time

cubature Kalman filter with periodic sampling, and the event-triggered formulation, shows

that using a conservative triggering threshold (δ = 0.05), we obtain nearly undistinguish-

able performance despite reducing communication to less than 1%. The article explicitly

reinforces the use of the cubature Kalman filter as opposed to the more established and

well explored extended Kalman filter and unscented Kalman filter. To justify our claims,

we compare the cubature Kalman filter presented here to the unscented Kalman filter and

show that the cubature filter provides a more accurate estimate of the true states, both

using periodic sampling and/or event-triggered sampling.

In addition, we study the effectiveness of the proposed filter in Chapter 5 in the presence

of delay in the communication channels. We show that the proposed filter has less estimation

error and provide better estimation of the states compared to the previously proposed filters.
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Chapter 7

Strong Tracking Discrete-Time
Event-Triggered Cubature Kalman
Filter with Packet Dropout

In this chapter, 1 a new filtering algorithm, a strong tracking discrete-time event-triggered

cubature Kalman filter (STDECKF), is developed to reduce the amount of data transmis-

sion between the measuring sensors and the remote state estimator and to reduce the low

accuracy of the filtering.

This filter uses the strong tracking filtering technology to improve the performance of

cubature Kalman filter in the presence of sudden changes in the states of nonlinear system.

The time-varying fading factor is derived from the orthogonality principle conditions and it

tunes the predicted state error covariance and the gain of the filter based on the residuals

between available and predicted measurements which improves the filtering performance.

We show that the estimation error is bounded provided that the event-triggered threshold

is properly tuned with respect to the packet dropout rate and the proposed filter displays

higher accuracy when compared to its DECKF (non-adaptive) counterpart.

The remainder of the chapter is as follows. In Section 7.1, we define the nonlinear system

model, and we define the event-triggered data transferring mechanism, the packet dropout

and the strong tracking filter. In Section 7.2, we will develop a strong tracking discrete-time

event-triggered cubature Kalman filter for nonlinear systems and we study the boundedness

of the state estimation error. In Section 7.3, we compare the results of the proposed filter

with the previous filter by using a simulated example.

1The results of this chapter has been submitted for publication in the article: M. Kooshkbaghi, H. J.
Marquez,“Strong Tracking Discrete-Time Event-Triggered Cubature Kalman Filter for Nonlinear Dynamical
Systems with Packet Dropout,” Internationa Journal of Robust and Nonlinear Control, September 2019.
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7.1 Problem formulation

7.1.1 System Model

Consider the nonlinear discrete-time system and the nonlinear measurement model given

in (7.1) and (7.2), respectively.

xk+1 = f(xk, uk) + ωk (7.1)

yk+1 = h(xk+1) + νk+1 (7.2)

In addition, recalling from Chapter 3 and Chapter 4, the current transmitted measurement

(7.3) and the packet dropout binary random variable (7.4), are defined as follows,

ȳk = yk + (1− γk)(y − yk) (7.3)

λk =

{︃
1 data is received
0 otherwise

(7.4)

7.1.2 Strong Tracking Filter (STF)

As mentioned in the introduction, the strong tracking filters display important character-

istics, making them attractive in many applications. When there are sudden changes in

the states, nonlinear filters such as EKF, UKF, or CKF have poor estimation performance.

Strong tracking filters introduce a fading factor based on the residual to reduce the influ-

ence of the history data and to modify the predicted state error covariance matrix, the gain

matrix and the model of the system in real time. To derive STF, we use the Extended

Orthogonality Principle which defines as follows,

Definition 7.1: Extended Orthogonality Principle

For the discrete-time nonlinear systems, the optimal state estimation can be achieved by

the following extended orthogonality principle [59],

E{(xk+1 − x̂k+1|k+1)(xk+1 − x̂k+1|k+1)
T } = min (7.5)

such that,

E{˜︁yk+j+1|k+j˜︁yTk+1|k} = 0 k = 0, 1, ... j = 1, 2, ... (7.6)

To modify the state error covariance matrix at time k, the time-varying fading factor,

Λk, is introduced as follows to adjust the predicted state error covariance matrix in the real

time,

P̂ k = Λk+1P̂ k (7.7)
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where P̂ k is the error covariance matrix and Λk is obtained by solving the (7.5) and (7.6).

The predicted state error covariance is as follows,

P̂ k+1|k = Λk+1AkP̂ kA
T
k +Qk (7.8)

As mentioned in [61] and [60], DECKF has the highest accuracy among all variations

of the Kalman filters applicable to nonlinear systems (UKF and EKF) for high dimensional

systems, but may present deviations from the true state in the presence of sudden changes

in the states. To overcome this problem, a strong tracking discrete-time event-triggered

cubature Kalman filter is proposed. Note that the strong tracking filter can not be directly

applied to the DECKF algorithm, so in the next section, STDECKF algorithm based on

the extended orthogonality principle is developed.

7.2 Strong Tracking Filter Discrete-Time Event-Triggered
Cubature Kalman Filter

In this section, a suboptimal fading factor , Λk is derived to modify the discrete-time event-

triggered cubature Kalman filter to have a strong tracking estimation of the states of the

nonlinear system. Note that the linearization with first order approximation is implemented

to facilitate the following discussion.

Theorem 7.1: Consider the system (7.1) and (7.2) with the defined event-triggered

mechanism (7.3) and the packet dropout (7.4). Using the cubature Kalman filter state

estimator, the sub-optimal time-varying fading factor can be calculated as follows,

Λk+1 = max{1, tr[Nk+1]

tr[Mk+1]
}, (7.9)

and Nk+1 and Mk+1 can be defined as follows,

Nk+1 =
(︂
(1 + a1(1− γk+1)

)︂
λk+1V

0
k+1 −

(︂
1 + a2(1− γk+1)

)︂
Rk+1

−(1 + a−1
1 + a−1

2 )(1− γk+1)δI −
(︂
1 + a1(1− γk+1)

)︂
Bk+1QkB

T
k+1 (7.10)

Mk+1 =
(︂
1 + a1(1− γk+1)

)︂
Bk+1(AkP̂ kA

T
k )B

T
k+1 (7.11)

where, Ak = αkFk, and Bk+1 = βk+1Hk+1. Fk = ∂f(x)
∂x |x=x̂k

and Hk+1 = ∂h(x)
∂x |x=x̂k+1|k

are

the Jacobian matrix, αk = diag(α1,k, α2,k, ..., αnxk), and βk+1 = diag(β1,k+1, β2,k+1, ..., βnyk+1)

are unknown diagonal matrix representing the error incurred in neglecting the higher order

terms of the Taylor series respectively. β2minI ≤ βkβ
T
k ≤ β2maxI and α2

minI ≤ αkα
T
k ≤ α2

maxI
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where βmin, βmax, αmin, αmax ̸= 0. V 0
k+1 = E{˜︁yk+1|k˜︁yTk+1|k} is the residual covariance.

a1 > 0 and a2 > 0 are two positive arbitrary parameters.

The following Remark is used in the proof of Theorem 7.1.

Remark 7.1: The innovation measurement at time k, denoted by ˜︁yk+1|k, has the fol-

lowing features [46]:

• Zero mean: The innovation has zero mean E[˜︁yk+1|k] = 0.

• White sequence: Innovation is whitened measurement.

E{˜︁yk+j+1|k+j˜︁yTk+1|k} = 0 k = 0, 1, ... j = 1, 2, ...

• Uncorrelated with past measurements:

E{˜︁yk+1|ky
T
k+1−j} = 0 j = 1, 2, ...

Proof. Recalling from Chapter 4, the estimation error and the prediction error of the

event-triggered system can be defined as follows:

˜︁xk+1 = (I − λk+1Kk+1Bk+1)˜︁xk+1|k − λk+1Kk+1νk+1 + λk+1Kk+1(1− γk+1)ek+1 (7.12)

˜︁xk+1|k = Ak(I −KkλkBk)˜︁xk|k−1 −AkKkλkνk +AkKkλk(1− γk)ek + ωk. (7.13)

where ek = y−yk. In addition, the measurement prediction error can be written as follows,

˜︁yk+1|k = Bk+1Ak˜︁xk +Bk+1ωk + νk+1 (7.14)

using a similar derivation method yields,

˜︁yk+1+j|k+j = Bk+1+jAk+j˜︁xk+j +Bk+1+jωk+j + νk+1+j (7.15)

The initial state x0, ωk and νk which generate the states and observations are mutually

independent. Considering it into account and substituting (7.14) and (7.15) into (7.6), we

have,

E{˜︁yk+1+j|k+j˜︁yTk+1|k} = E
{︂
(Bk+1+jAk+j˜︁xk+j +Bk+1+jωk+j + νk+1+j)˜︁yTk+1|k

}︂
= E

{︂
(Bk+1+jAk+j˜︁xk+j)˜︁yTk+1|k

}︂ (7.16)

(7.12) can be written as follows,

˜︁xk+j = (I − λk+jKk+jBk+j)˜︁xk+j|k+j−1 − λk+jKk+jνk+j + λk+jKk+j(1− γk+j)ek+j

(7.17)

68



substituting (7.17) into (7.16) yields,

E{˜︁yk+1+j|k+j˜︁yTk+1|k} = E

{︄
Bk+1+jAk+j

[︂
(I − λk+jKk+jBk+j)˜︁xk+j|k+j−1

− λk+jKk+jνk+j + λk+jKk+j(1− γk+j)ek+j

]︂˜︁yTk+1|k

}︄ (7.18)

As we mentioned before the initial state x0, ωk and νk which generate the states and

observations are mutually independent. Recall from Chapter 3 we have, ˜︁xk+1|k = Ak˜︁xk+ωk.

Thus, substituting ˜︁xk+j|k+j−1 into (7.18), yields,

E{˜︁yk+1+j|k+j˜︁yTk+1|k} =E

{︄
Bk+1+jAk+j

[︂
(I − λk+jKk+jBk+j)Ak+j−1˜︁xk+j−1

+ λk+jKk+j(1− γk+j)ek+j

]︂˜︁yTk+1|k

}︄ (7.19)

from (7.16) and (7.19), using the iterative operation, and considering the ˜︁yTk+1|k features

which are mentioned in Remark 7.1, the following form can be derived,

E{˜︁yk+1+j|k+j˜︁yTk+1|k} = Bk+1+jAk+j

j∏︂
i=2

(I − λk+jKk+jBk+j)Ak+j−1E
{︂
[xk+1 − x̂k+1]˜︁yTk+1|k

}︂
(7.20)

recalling x̂k+1, (4.9), from Chapter 4 and substituting it in E
{︂
[xk+1−x̂k+1]˜︁yTk+1|k

}︂
of (7.20)

we have,

E
{︂
[xk+1 − x̂k+1]˜︁yTk+1|k

}︂
= E

{︂
[xk+1 − x̂k+1|k−Kk+1λk+1(˜︁yk+1|k − (1− γk+1)ek+1)]˜︁yTk+1|k

}︂
(7.21)

considering the ˜︁yTk+1|k features again, (7.21) can be written as follows,

E
{︂
[xk+1 − x̂k+1]˜︁yTk+1|k

}︂
= E{˜︁xk+1|k˜︁yTk+1|k} −Kk+1λk+1E{˜︁yk+1|k˜︁yTk+1|k} = P̂ xyk+1|k

−Kk+1λk+1E{˜︁yk+1|k˜︁yTk+1|k} = P̂ k+1|kB
T
k+1 −Kk+1λk+1V

0
k+1

(7.22)

where V 0
k+1 = E{˜︁yk+1|k˜︁yTk+1|k} is the residual covariance, and it can be estimated as

V 0
k+1 =

{︄ ˜︁y1|0˜︁yT1|0 k = 0
ρV 0

k +˜︁y
k+1|k˜︁yTk+1|k
1+ρ k ≥ 1

where 0 < ρ ≤ 1 is the forgetting factor and is generally set as ρ = 0.95.
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Substituting Kk+1, (4.8), in (7.22) yields,

E
{︂
[˜︁xk+1˜︁yTk+1|k]

}︂
= P̂ k+1|kB

T
k+1

[︄
I − λk+1

(︂
(1 + a1(1− γk+1)

)︂
λk+1

[︂(︂
1 + a1(1− γk+1)

)︂
×Bk+1P̂ k+1|kB

T
k+1 +Rk+1

(︂
1 + a2(1− γk+1)

)︂
+ (1 + a−1

1 + a−1
2 )(1− γk+1)δI

]︂−1
)V 0

k+1

]︄
.

(7.23)

Substituting (7.23) in (7.20) yields,

E
{︂
[˜︁yk+j+1˜︁yTk+1|k]

}︂
= Bk+1+jAk+j

j∏︂
i=2

(︂
(I − λk+jKk+jBk+j)Ak+j−1

)︂
× P̂ k+1|kB

T
k+1

[︄
I − λk+1

(︂
(1 + a1(1− γk+1)

)︂
λk+1

×
[︂(︂

1 + a1(1− γk+1)
)︂
Bk+1P̂ k+1|kB

T
k+1

+
(︂
1 + a2(1− γk+1

)︂
)Rk+1

+ (1 + a−1
1 + a−1

2 )(1− γk+1)δI
]︂−1

)V 0
k+1

]︄
.

(7.24)

An appropriate fading factor Λk+1 should be chosen to satisfy the principle of extended

orthogonality in (7.6). So we should have,[︄
I − λk+1

(︂
(1 + a1(1− γk+1)

)︂
λk+1 ×

[︂(︂
1 + a1(1− γk+1)

)︂
Bk+1P̂ k+1|kB

T
k+1

+
(︂
1 + a2(1− γk+1)

)︂
Rk+1 + (1 + a−1

1 + a−1
2 )(1− γk+1)δI

]︂−1
)V 0

k+1

]︄
= 0,

(7.25)

which is equivalent to

λk+1

(︂
(1 + a1(1− γk+1)

)︂
λk+1V

0
k+1 −

(︂
1 + a2(1− γk+1)

)︂
Rk+1

− (1 + a−1
1 + a−1

2 )(1− γk+1)δI =
(︂
1 + a1(1− γk+1)

)︂
Bk+1P̂ k+1|kB

T
k+1.

(7.26)

Substituting (7.8) into (7.26) yields,

λk+1

(︂
(1 + a1(1− γk+1)

)︂
λk+1V

0
k+1 −

(︂
1 + a2(1− γk+1)

)︂
Rk+1

− (1 + a−1
1 + a−1

2 )(1− γk+1)δI =
(︂
1 + a1(1− γk+1)

)︂
Bk+1(Λk+1AkP̂ kA

T
k +Qk)B

T
k+1.

(7.27)
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The traces of the both sides of (7.27) can be calculated as follows,

tr

[︄
λk+1

(︂
(1 + a1(1− γk+1)

)︂
λk+1V

0
k+1 −

(︂
1 + a2(1− γk+1)

)︂
Rk+1 − (1 + a−1

1 + a−1
2 )

× (1− γk+1)δI −
(︂
1 + a1(1− γk+1)

)︂
Bk+1QkB

T
k+1

]︄

= tr

[︄
Λk+1

(︂
1 + a1(1− γk+1)

)︂
Bk+1(AkP̂ kA

T
k )B

T
k+1

]︄
.

(7.28)

Define

Mk+1 =
(︂
1 + a1(1− γk+1)

)︂
Bk+1(AkP̂ kA

T
k )B

T
k+1, (7.29)

and

Nk+1 =
(︂
(1 + a1(1− γk+1)

)︂
λk+1V

0
k+1 − (1 + a2(1− γk+1))Rk+1

− (1 + a−1
1 + a−1

2 )(1− γk+1)δI −
(︂
1 + a1(1− γk+1)

)︂
Bk+1QkB

T
k+1.

(7.30)

It follows that (7.28) is equivalent to tr[Λk+1Mk+1] = tr[Nk+1], and the fading factor can

be obtained by Λk+1 =
tr[Nk+1]
tr[Mk+1]

. The fading factor is effective when Λk+1 ≥ 1, so the fading

factor is calculated by Λk+1 = max{1, tr[Nk+1]
tr[Mk+1]

}

STF requires calculation of the linearization of the nonlinear measurement (Hessian)

matrix. To combine the STF with event-triggered Cubature Kalman filter and to propose

a derivative-free STDECKF , the equivalent equation of the STF needs to be derived.

Suppose that P̂
l
k+1|k is the predicted state error covariance matrix before introducing

fading factor, then based on P̂ xy,k+1|k = P̂ k+1|kB
T
k+1, one can derive the following Bk+1 =

(P̂
l
xy,k+1|k)

T (P̂
l
k+1|k)

−1 [39], where P̂
l
xy,k+1|k is the cross-covariance matrix without fading

factor. So, Nk+1 and Mk+1 can be written as follows,

Nk+1 =
(︂
(1 + a1(1− γk+1)

)︂
λk+1V

0
k+1 −

(︂
1 + a2(1− γk+1)

)︂
Rk+1 − (1 + a−1

1 + a−1
2 )

× (1− γk+1)δI −
(︂
1 + a1(1− γk+1)

)︂
(P̂

l
xy,k+1|k)

T (P̂
l
k+1|k)

−1Qk(P̂
l
k+1|k)

−1(P̂
l
xy,k+1|k),

(7.31)

Mk+1 =
(︂
1 + a1(1− γk+1)

)︂
×
(︂
P̂

l
yy,k+1|k −Rk+1 − (P̂

l
xy,k+1|k)

T (P̂
l
k+1|k)

−1Qk(P̂
l
k+1|k)

−1(P̂
l
xy,k+1|k)

)︂
.

(7.32)

In the following, we summarize the strong tracking discrete-time event-triggered cuba-

ture Kalman filter algorithm.

First we should initialize the mean, (x̂0) and the covariance P̂ 0. Then we should follow

time update steps and measurement update steps to derive the state estimation x̂k+1, the

upper bound of the error covariance matrix P k+1 and the filter gain Kk+1.
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Time-Update:

First we should factorize P̂ k = Sk(Sk)
T to calculate the cubature points, Xi,k = Skξi +

x̂k, where i = 1, 2, ..., 2nx.

Then we propagate the Cubature Points,

X∗
i,k+1|k = f(Xi,k, uk) (7.33)

To estimate the predicted state and the predicted state error covariance as follows,

x̂k+1|k =
1

2nx

2nx∑︂
i=1

X∗
i,k+1|k (7.34)

P̂
l
k+1|k =

1

2nx

2nx∑︂
i=1

X∗
i,k+1|k(X

∗
i,k+1|k)

T − x̂k+1|kx̂
T
k+1|k +Qk (7.35)

Fading Factor Calculation :

Like the time update steps, first we factorize P̂
l
k+1|k = Sl

k+1|kS
l
k+1|k to calculate the

cubature points X l
i,k+1|k = Sl

k+1|kξi + x̂k+1|k. Then we propagate the Cubature points as

follows,

Y l
i,k+1|k = h(X l

i,k+1|k, uk+1) i = 1, 2, ..., 2nx (7.36)

Now the the predicted measurement estimation ŷlk+1|k, the innovation covariance matrix

P̂
l
yy,k+1|k and the cross-covariance matrix P̂

l
xy,k+1|k are as follows,

ŷlk+1|k =
1

2nx

2nx∑︂
i=1

Y l
i,k+1|k (7.37)

P̂
l
yy,k+1|k =

1

2nx

2nx∑︂
i=1

Y l
i,k+1|kY

lT
i,k+1|k − ŷlk+1|kŷ

lT
k+1|k +Rk+1 (7.38)

P̂
l
xy,k+1|k =

1

2nx

2nx∑︂
i=1

X l
i,k+1|kY

lT
i,k+1|k − x̂lk+1|kŷ

lT
k+1|k (7.39)

We can derive Nk+1 and Mk+1 as follows,

Nk+1 =
(︂
(1 + a1(1− γk+1)

)︂
λk+1V

0
k+1 −

(︂
1 + a2(1− γk+1)

)︂
Rk+1 − (1 + a−1

1 + a−1
2 )

× (1− γk+1)δI −
(︂
1 + a1(1− γk+1)

)︂
(P̂

l
xy,k+1|k)

T (P̂
l
k+1|k)

−1Qk(P̂
l
k+1|k)

−1(P̂
l
xy,k+1|k),

(7.40)

Mk+1 =
(︂
1 + a1(1− γk+1)

)︂
×
(︂
P̂

l
yy,k+1|k −Rk+1 − (P̂

l
xy,k+1|k)

T (P̂
l
k+1|k)

−1Qk(P̂
l
k+1|k)

−1(P̂
l
xy,k+1|k)

)︂
.

(7.41)
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so the fading factor can be obtained as follows,

Λk+1 = max{1, tr[Nk+1]

tr[Mk+1]
} (7.42)

Measurement update:

Now we use the fading factor derived in the previous step to update the measurement.

First we calculate the predicted state error covariance as follows,

P̂ k+1|k =
Λk+1

2nx

2nx∑︂
i=1

X∗
i,k+1|kX

∗T
i,k+1|k − Λk+1x̂k+1|kx̂

T
k+1|k +Qk (7.43)

Then we factorize the error covariance matrix as P̂ k+1|k = Sk+1|kSk+1|k. Now we calculate

the cubature points and we propagate the cubature points,

Xi,k+1|k = Sk+1|kξi + x̂k+1|k i = 1, 2, ..., 2nx (7.44)

Yi,k+1|k = h(Xi,k+1|k, uk+1) i = 1, 2, ..., 2nx (7.45)

The predicted measurement estimate ŷk+1|k, the innovation covariance matrix P̂ yy,k+1|k and

the cross-covariance matrix P̂ xy,k+1|k are as follows,

ŷk+1|k =
1

2nx

2nx∑︂
i=1

Yi,k+1|k (7.46)

P̂ yy,k+1|k =
1

2nx

2nx∑︂
i=1

Yi,k+1|kY
T
i,k+1|k − ŷk+1|kŷ

T
k+1|k +Rk+1 (7.47)

P̂ xy,k+1|k =
1

2nx

2nx∑︂
i=1

Xi,k+1|kY
T
i,k+1|k − x̂k+1|kŷ

T
k+1|k (7.48)

Finally, we can derive the filter gain Kk+1, update the state estimation x̂k+1 and the upper

bound of the state error covariance P k+1 as follows,

Kk+1 = (1 + a1(1− γk+1))λk+1P̂ xy,k+1|k[(1 + a1(1− γk+1))P̂
T
xy,k+1|kP̂

−1
k+1|kP̂ xy,k+1|k

+ (1 + a2(1− γk+1))Rk+1 + (1 + a−1
1 + a−1

2 )(1− γk+1)δI]
−1

(7.49)

x̂k+1 = x̂k+1|k +Kk+1λk+1(yk+1 − ŷk+1|k) (7.50)

P k+1 = (1 + a1(1− γk+1))(I −Kk+1λk+1P
T
xy,k+1|kP

−1
k+1|k)P̂ k+1|k

× (I −Kk+1λk+1P
T
xy,k+1|kP

−1
k+1|k)

T + (1 + a2(1− γk+1))λk+1Kk+1Rk+1K
T
k+1

+ (1− γk+1)(1 + a−1
1 + a−1

2 )Kk+1λk+1δIK
T
k+1

(7.51)

It is worth mentioning that the fading factor is designed to minimize the error covariance

matrix in the presence of sudden changes in states. Using the following theorems, one can
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show that by introducing the fading factor into the error covariance matrix and by properly

tuning the triggering threshold, the boundedness of the error covariance matrix/estimation

error can be guaranteed under some conditions.

Theorem 7.2: Assuming that the system (7.1) and (7.2) is uniformly observable [23].

Recalling from Chapter 4, (4.18), consider the following conditions are satisfied,

q̂minI ≤ Q̂k;Qk ≤ qmaxI; rminI ≤ Rk ≤ rmaxI

f2minI ≤ FkF
T
k ≤ f2maxI;α

2
minf

2
minI ≤ AkA

T
k ≤ α2

maxf
2
maxI

h2minI ≤ HkH
T
k ≤ h2maxI;β

2
minh

2
minI ≤ BkB

T
k ≤ β2maxh

2
maxI

β2minI ≤ βkβ
T
k ≤ β2maxI;α

2
minI ≤ αkα

T
k ≤ α2

maxI

(7.52)

where fmin, fmax, hmin, hmax, βmin, βmax, αmin, αmax ̸= 0 , and rmax, qmax, q̂min, r̂min > 0

and all are real numbers.

If the packet arrival probability has a lower bound,

λ > 1− 1

α2
maxf

2
max(1 + a1(1− γ))

,

where γ := limN→∞
1

N+1

∑︁N
k=0E(γk) is the average communication rate, the error covari-

ance matrices will satisfy,

E[P k+1] ≤ E[P̂ k+1|k] ≤ pI, (7.53)

where p > 0.

Proof. We use the same procedure which is used in Chapter 4 to prove this theorem.

Recalling from Chapter 3, we have ˜︁xk+1|k = Ak˜︁xk +ωk. According to this equation, ˜︁xk+1|k,

and the existence of an upper bound for the error covariance matrix P k, we have,

E[P̂ k+1|k] ≤ E[AkP kA
T
k +Qk] (7.54)

Introducing the fading factor we have, P k = ΛkP k. Substituting P k and Kk from (7.51)

and (7.49) in (7.54) we have,

E[P̂ k+1|k] ≤ E

[︄
ΛkAk

(︂
P̂ k|k−1 − (1 + a1(1− γk)

)︂
λkP̂ k|k−1B

T
k

×
[︂(︂

1 + a1(1− γk)
)︂
BkP̂ k|k−1B

T
k +

(︂
1 + a2(1− γk)

)︂
Rk

+ (1 + a−1
1 + a−1

2 )(1− γk)δI
]︂−1

BkP̂ k|k−1)A
T
k +Qk

]︄ (7.55)

Using this inequality (A + B)−1 > A−1 − A−1BA−1 , and defining, A =
(︂
1 + a1(1 −

γk)
)︂
BkP̂ k|k−1B

T
k , and B =

(︂
1 + a2(1− γk)

)︂
Rk + (1 + a−1

1 + a−1
2 )(1− γk)δI, according to
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the bounds of the matrices in (7.52), we obtain,

E[P̂ k+1|k] < Λα2
maxf

2
max

(︂
1 + a1(1− γ)

)︂
(1− λ)E[P̂ k|k−1]

+ (Λ
λα2

maxf
2
maxrmax

β2minh
2
min

+ q̂)In
(7.56)

where rmax = max ∥ (1 + a2(1 − γk))Rk + (1 + a−1
1 + a−1

2 )(1 − γk)δI ∥. Assume that

E[P̂ 1|0] > 0 and recursively, using an inductive method, the upper bound of the P̂ k+1|k can

be achieved as follows,

E[P̂ k+1|k] <

{︄[︂
α2
maxf

2
max(1 + a1(1− γ)(1− λ)

]︂k
Λ ∥ P̂ 1|0 ∥ +(Λ

λα2
maxf

2
maxrmax

β2minh
2
min

+ q̂)

×
k−1∑︂
i=0

[︂
α2
maxf

2
max

(︂
1 + a1(1− γ)

)︂
(1− λ)

]︂i}︄
In

(7.57)

Setting, p = max
{︂
Λ ∥ P̂ 1|0 ∥,Λ

λα2
maxf

2
maxrmax

β2
minh

2
min

+ q̂
}︂
we have,

E[P̂ k+1|k] < p
k∑︂

i=0

[︂
α2
maxf

2
max(1 + a1(1− γ))(1− λ)

]︂i
(7.58)

The proposed filter converges when λ > 1− 1
α2
maxf

2
max(1+a1(1−γ))

. This completes the proof.

So, one can conclude that the fading factor may affect p while the lower bound of packet

arrival rate is related to the average communication rate or the event-triggered threshold.

Thus, by properly tuning the threshold we can guarantee the boundedness of the error

covariance matrix/estimation error.

The boundedness of the DECKF under some conditions is studied as follows,

Theorem 7.3 : Consider the nonlinear system (7.1) and (7.2) with event-triggered data

transmission and the packet dropout. Assume that the condition is satisfied such that,

pmin ≤ P k+1 ≤ P̂ k+1|k ≤ pmax, (7.59)

where pmax and pmin > 0 . Assume that the initial prediction error, E[
⃦⃦˜︁x1|0⃦⃦2] ≤ ε,

is bounded, where ε > 0. Then the prediction error ˜︁xk+1|k and estimation error ˜︁xk are

bounded in mean square sense.

Proof. We use the same procedure which is used in Chapter 4 to prove this theorem.

First, recalling from Chapter 4, we introduce the following Lemma 7.1 which is used in the

proof.
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Lemma 7.1: Assume that there is a stochastic process Vk(ξk) with the following condi-

tions:

υmin∥ξk∥2 ≤ Vk(ξk) ≤ υmax∥ξk∥2 (7.60)

E[Vk(ξk)|ξk−1]− Vk−1(ξk−1) ≤ µ−τVk−1(ξk−1) (7.61)

where υmin, υmax, µ > 0 and 0 < τ ≤ 1 and all are real numbers. Then the stochastic process

is exponentially bounded in mean square sense [24],

E[∥ξk∥2] ≤
υmax

υmin
E[∥ξ0∥2](1− τ)k +

µ

υmin

k−1∑︂
i=1

(1− τ)i (7.62)

Now, define the Lyapunov function as follows,

Vk+1(˜︁xk+1|k) = ˜︁xTk+1|kP̂
−1
k+1|k˜︁xk+1|k (7.63)

from the result of the Theorem 2 of [4], we have,

υmin

⃦⃦˜︁xk+1|k
⃦⃦2 ≤ Vk+1(˜︁xk+1|k) ≤ υmax

⃦⃦˜︁xk+1|k
⃦⃦2

(7.64)

where υmin = 1
pmax

, and υmax = 1
pmin

. From (7.8) one can conclude that the lower and

upper bounds of the P̂ k+1|k, pmin and pmax, are affected by the fading factor.

The first condition of Lemma 7.1 is satisfied. Now, we should find real numbers τk , and

µk such that 0 < τk < 1 and µk > 0, respectively. Using (7.13), the predicted state error

covariance can be written as follows,

P̂ k+1|k =E{˜︁xk+1|kx̃
T
k+1|k} =[︂

Ak(I − λkKkBk)
]︂
P̂ k|k−1

[︂
Ak(I − λkKkBk)

]︂T
+ Q̂k

(7.65)

where Q̂k is ∆Pk|k−1 + (AkKk)λkRk(AkKk)
T + Qk + (1− γk)E

{︂
Oke

T
k S

T
k + SkekO

T
k +

Skeke
T
k S

T
}︂
, O =

[︂
Ak(I−KkλkBk)˜︁xk|k−1−AkKkλkνk+ωk

]︂
, S = (AkKkλk), and ∆Pk|k−1

shows the difference between (7.43) and (7.65). (7.65) can be rewritten as follows,

P̂ k+1|k =
[︂
Ak(I −KkλkBk)

]︂{︂
P̂ k|k−1 + [Ak(I −KkλkBk)]

−1

× Q̂k[Ak(I −KkλkBk)]
−T
}︂[︂
Ak(I −KkλkBk)

]︂T (7.66)

setting Υk =
[︂
Ak(I−KkλkBk)

]︂T
Q̂

−1
k

[︂
Ak(I−KkλkBk)

]︂
, and considering the characteristics

of the matrix norm and the assumption in (7.52), we have,

Υk ≤

[︂
(αmaxfmax)(1 + λkβmaxhmaxK)ˆ

]︂2
q̂min

(7.67)
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where the upper bound of K̂ is,

∥Kk∥ ≤ [pmaxβmaxhmax][(βminhmin)
2pmin + rmin]

−1

as we mentioned before the upper bounds of the P̂ k+1|k, pmin and pmax, are affected by the

fading factor which affect the upper bound of the filter gain K̂ . Using the matrix inverse

laws and taking the inverse of Υk (or both sides of (7.67)) and substituting it in (7.66), it

is possible to show that the following inequality is satisfied [24],[︂
Ak(I − λkKkBk)

]︂T
P̂

−1
k+1|k

[︂
Ak(I − λkKkBk)

]︂
≤ (1− τk)P̂

−1
k|k−1 (7.68)

where

(1− τk) =

[︄
1 +

q̂min[︂
(αmaxfmax)(1 + βmaxhmaxK)ˆ

]︂2
pmax

]︄−1

> 0 (7.69)

It can be concluded that 0 < τk < 1 is always satisfied while the upper/lower bound value

of pmin and pmax may be changed by introducing the fading factor. Substituting (7.13) into

(7.63), the conditional expectation is as follows:

E{Vk+1(˜︁xk+1|k)|˜︁xk+1|k} = µk + ˜︁xTk|k−1

[︂
Ak(I − λkKkBk)

]︂T
P̂

−1
k+1|k

[︂
Ak(I − λkKkBk)

]︂˜︁xk|k−1

(7.70)

where µk is as following,

µk = E
{︂
νTk [AkλkKk]

T P̂
−1
k+1|kAkλkKkνk|˜︁xk+1|k

}︂
+ E

{︂
ωT
k P̂

−1
k+1|kωk|˜︁xk+1|k

}︂
+ (1− γk)

×

(︄
E
{︂
eTk λ

T
kK

T
k A

T
k P̂

−1
k+1|kAkλkKkek|˜︁xk+1|k

}︂
+ E

{︂˜︁xTk|k−1[Ak(I − λkKkBk)]
T P̂

−1
k+1|k

×AkλkKkek|˜︁xk+1|k

}︂
− E

{︂
νTk [AkλkKk]

T P̂
−1
k+1|kAkλkKkek|˜︁xk+1|k

}︂
+ E

{︂
ωT
k P̂

−1
k+1|kAkλkKkek|˜︁xk+1|k

}︂
+ E

{︂
eTk λ

T
kK

T
k A

T
k P̂

−1
k+1|k[Ak(I − λkKkBk)]˜︁xk|k−1|˜︁xk+1|k

}︂
− E

{︂
eTk λ

T
kK

T
k A

T
k P̂

−1
k+1|kAk

λkKkνk|˜︁xk+1|k

}︂
+ E

{︂
eTk λ

T
kK

T
k A

T
k P̂

−1
k+1|kωk|˜︁xk+1|k

}︂)︄
(7.71)

both side of (7.71) are scalars. By applying the Lemma 3.1, the trace of µk is s follows,

µk ≤ tr

{︄(︂
[AkλkKk]

T P̂
−1
k+1|kAkλkKkRk

)︂
+ (P̂

−1
k+1|kQk) + (1− γk)

{︂
(λTkK

T
k A

T
k P̂

−1
k+1|kAkλkKkδI)

+ a3

(︂
[P̂

−1
k+1|kAk

(I − λkKkBk)]P̂ k|k−1[P̂
−1
k+1|kAk(I − λkKkBk)]

T
)︂
+ a4(P̂

−1
k+1|kQk[P̂

−1
k+1|k]

T )

+ a5(P̂
−1
k+1|kAkλkKkRk[P̂

−1
k+1|kAk

λkKk]
T ) + (a−1

3 + a−1
4 + a−1

5 )(AkλkKkδI[AkλkKk]
T )

}︄
(7.72)
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where a3, a4, and a5 are positive scalars. It is immediate that µk is positive and it has and

upper bound µmax. Insert (7.68) into (7.70), and considering (7.63), and (7.72) we have,

E[Vk+1(˜︁xk+1|k)|˜︁xk+1|k]− Vk(˜︁xk|k−1) ≤ µmax−τVk(˜︁xk|k−1).

Thus, all of the conditions in Lemma 7.1 are satisfied and the stochastic process, ˜︁xk+1|k,

is bounded in mean square sense. From the definition of ˜︁xk+1|k, and the assumptions in

(7.52), it is possible to show that the mean squared error of the estimation is as follows,

E{∥˜︁xk∥2} ≤ (fminαmin)
−2E{

⃦⃦˜︁xk+1|k
⃦⃦2

+ ∥ωk∥2} (7.73)

So the estimation error is upper bounded. It is worth mentioning that the upper bound

value µmax is affected by the event-triggered threshold and the fading factor which affects

the upper bound (boundedness) of the ˜︁xk+1|k and ˜︁xk+1.

It can be concluded that by introducing the fading factor to the error covariance matrix

and by properly tuning the event-triggered threshold, the boundedness of the estimation

error is guaranteed while the upper/lower bound of the inequalities may change.

7.3 Simulation Results

In this section we consider an illustrative example to verify the performance of the proposed

STDECKF using the motion model of unmanned under water vehicle (UUV) adopted from

[62]. A 4-DOF constant velocity kinematics model is used for tracking purposes as follows,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
y
z
ψ
u
v
w
r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
k

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x+ uTcos(ψ)− vTsin(ψ)
y + uTsin(ψ) + vTcos(ψ)

z + wT
ψ + rT
u
v
w
r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
k−1

+ ωk−1, (7.74)

where x, y, z and ψ show position and heading of UUV, and u, v, w, and r show the linear

velocity and angular velocity of UUV. ω shows the noise of the system which is white noise,

ωk ∼ N(0, Q), with zero mean and covarianceQ =
[︁
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

]︁
.

The observation model is as follows,

zk = Hxk + νk, (7.75)

where xk and zk are the state vector and the observation vector respectively. νk is

observation noise which is white noise, νk ∼ N(0, R), with zero mean and covariance
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R =
[︁
10 10 10 10 10

]︁
, and H is the observation matrix which can be defined as

follows,

H =

⎡⎢⎢⎢⎢⎣
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎦ (7.76)

Here we use three different scenarios to show the effectiveness of the proposed filter under

different conditions, namely with different event-triggered mechanism threshold value and

different packet dropout rate.

Scenario A:

In this scenario, we use the root mean square error (RMSE) to compare the performance

of the STDECKF and the DECKF proposed in [60, 61] in the presence of different event-

triggered threshold values and constant packet dropout rate.

The position RMSE is defined as follows,

RMSE(k) =

⌜⃓⃓⎷ 1

N

N∑︂
n=1

(xnk − x̂nk)
2 + (ynk − ŷnk)

2 + (znk − ẑk
n)2

where, xnk , y
n
k , and znk are the true, x̂nk , ŷ

n
k , and ẑnk are the estimated states at the n-th

Monte Carlo run, respectively. The initial values of x0 and P0 are as follows,

x0 =
[︁
2 3 π/2 π/3 − 1 3 1 1

]︁
P0 =

[︁
0.01 0.01 0.01 0.01 0.1 0.1 0.1 0.1

]︁
. The initial state estimate x̂0 is chosen randomly from N(x0, P0) in each run. We make 20

independent Monte Carlo runs.

Figure 7.1.(a),(b),(c) show the RMSE results of the proposed STDECKF and the DECKF

proposed in [60, 61] for different event-triggered threshold of λ = 1, 2, 4 and the constant

packet dropout rate of 10%, respectively. The RMSE results show that although by in-

creasing the event-triggered threshold value, the estimation quality will be degraded but

the proposed STDECKF has better state estimation performance compared to DECEKF

for the same triggering condition.

In addition, Figure 7.2 shows the trajectory tracking and RMSE results of the pro-

posed STDECKF under the same condition. Note that the for different event-triggering

threshold values of λ = 1, 2, 4, the number of data transmission reduces from 1000 (without

event-triggered mechanism) to 900, 660 and 440, respectively. Comparison between tracking

results shows that by properly tuning the event-triggered mechanism threshold, a desired
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estimation quality can be achieved while communication rate is reduced dramatically.

Scenario B: To guarantee the performance improvement of the proposed filter, we

repeat the simulation for other different conditions. Different from scenario A, now we

consider that the packet dropout rates are different and the triggering threshold value is

constant. We compare the RMSE results of STDECKF and DECKF in the presence of

different packet dropout rate of 10% and 20% and the constant event-triggered threshold

of λ = 2. Figure 7.1.(d) shows the comparison results. The RMSE results show the per-

formance improvement of the proposed filter compared to the previously proposed DECKF

for different conditions.

Scenario C: As we mentioned before, the developed STDECKF has better performance

in the presence of sudden changes in the states compared to the previously proposed filters.

So, to show the effectiveness of the proposed filter in tracking of the abrupt changes in

the states, we repeat the simulation using STDECKF and DECKF in the presence of

event-triggered threshold λ = 1 and the packet dropout rate 10%. As the Figure 7.3

shows, the proposed STDECKF can effectively track the abrupt motion of the state of

the target compared to the previously proposed DECKF and the estimation trajectory

converges better to the real trajectory.

So from the simulation results one can conclude that: (a) the proposed STDECKF has

better performance and less estimation error in the presence of different conditions compared

to the previously proposed filter, (b) the proposed filter has a good estimation quality despite

the abrupt changes in the states, and (c) like the DECKF, the proposed STDECKF can

achieve a desired estimation quality with less communication rate by properly choosing an

event-triggered threshold value.

7.4 Summary

In this work, a strong tracking discrete-time event-triggered cubature Kalman filter for

nonlinear dynamic system with packet dropout is developed. We show that the proposed

filter reduces the amount of data transmission between the measuring sensors and the remote

state estimator and it has better performance compared to other filters in the presence of

sudden changes in the sates. The event-triggered mechanism reduces the amount of data

transferring between the sensors and the remote cubature Kalman filter and we show that

by choosing a proper event-triggered threshold and properly tuning the threshold of the
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event-triggered mechanism with respect to the rate of the packet dropout, the proposed

method can guarantee the boundedness of the state estimation error, covariance and the

stochastic stability of the system. Simulation results show the effectiveness of the proposed

technique and we compared the improvement in the results to the DECKF.
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Chapter 8

Strong Tracking Event-Triggered
Filter with One Step Randomly
Delayed Measurements

In this chapter, we focus on the filtering problem of the nonlinear discrete-time systems in

the presence of one step randomly delayed measurements and sudden changes in the states.

A new filtering algorithm, a strong tracking discrete-time event-triggered cubature Kalman

filter (STDECKF), is proposed to send the data from the nonlinear system to the remote

state estimator when some specific condition, namely triggering condition, is satisfied to

reduce the amount of data transmissions in the communication channels and to reduce the

estimation errors when there is randomly delay and/or sudden changes in the states during

data transmission.

Based on the principle of extended orthogonality, the proposed strong tracking filter

uses a time-variant fading factor to reduce the effect of the delayed measurement and the

abrupt changes in the states on the the state prediction error covariance to improve the

performance of cubature Kalman filter and to reduce the estimation errors.

The remainder of this chapter is as follows. Section 8.1, presents the problem state-

ment. Section 8.2 introduces the derivation procedure of the strong tracking DECKF in the

presence of delayed measurement and sudden changes in the states while the algorithm is de-

scribed in Section 8.3. Simulation results are shown in Section 8.4 to show the effectiveness

of the proposed filter.
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8.1 Problem formulation

Consider the nonlinear discrete-time system model and the nonlinear measurement model

as follows,

xk+1 = f(xk, uk) + ωk, (8.1)

zk+1 = h(xk+1) + νk+1, (8.2)

where xk ∈ Rnx is the state vector, and zk ∈ Rnz is the measurement vector. Other

parameters are defined in Chapter 2. Assume that our system works under event-triggered

mechanism and the communication channels are not perfect which might lead to delay in

the transferring of the measurements to the remote state estimator. So, recalling from

Chapter 3, the current transmitted measurement (8.3) is defined as follows,

z̄k = zk + (1− γk)(z − zk) (8.3)

where zk is the current measurement and z is the last sent measurement. z̄k is the current

transmitted measurement after the triggering condition is satisfied. In addition recalling

from Chapter 5, if we have one-step randomly delay in the communication channels, the

measurement is defined as follows,

yk+1 = (1− σk+1)zk+1 + σk+1zk, (8.4)

where, {σk; k > 1} is a sequence of uncorrelated Bernoulli random variables which can be

0 or 1 with,

p(σk = 1) = E[σk] = pk,

p(σk = 0) = 1− E[σk] = 1− pk,

E[(σk − pk)
2] = (1− pk)pk.

(8.5)

8.2 Derivation of the STDECKF with One-Step Randomly
Delayed Measurements

The proposed filter in Chapter 5 with one-step randomly delayed measurement depends

upon the past measurement data and it may lead to divergence in the state estimation in

the presence of delay and sudden changes in the states. So, in this section, a suboptimal

fading factor, Λk should be derived to modify the previous proposed discrete-time event-

triggered cubature Kalman filter to eliminate the effect of past data on the estimation

process and to have a strong tracking estimation of the states of the nonlinear system in
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the presence of sudden changes in the states and one step randomly delayed measurement.

Recalling from Chapter 7, the Λk is introduced as follows to the error covariance matrix,

P̂ k = Λk+1P̂ k (8.6)

also, the predicted error covariance matrix is modified as follows,

P̂ k+1|k = Λk+1AkP̂ kA
T
k +Qk (8.7)

where, Ak = αkFk. Fk = ∂f(x)
∂x |x=x̂k

is the Jacobian matrix, αk = diag(α1,k, α2,k, ..., αnxk)

is unknown diagonal matrix representing the error incurred in neglecting the higher order

terms of the Taylor series. In the following, we derive the Λk+1. Note that the linearization

with first order approximation is implemented to facilitate the following discussion.

Theorem 8.1: Consider the system (8.1) and (8.2) with the defined current transmitted

measurement (8.3). Assume that the measurement are transmitted with one randomly delay

through the communication channels (8.4). Using the cubature Kalman filter state estimator

designed in Theorem 7.1, the sub-optimal time-varying fading factor can be calculated by

Λk+1 = max{1, tr[Nk+1]

tr[Mk+1]
} (8.8)

Mk+1 and Nk+1 are as follows,

Mk+1 = m1Λk+1

(︂
(1− pk+1)Bk+1AkP̂ kA

T
kB

T
k+1 +m3pk+1BkP̂ kB

T
k

)︂
(8.9)

Nk+1 = m1λk+1V
0
k+1 − pk+1BkP̂

xν
k − pk+1(BkP̂

xν
k)

T −m2(1− pk+1)Rk+1 −m4pk+1P̂
νν

k

−m5(1− pk+1)(1− γk+1)δ −m6pk+1(1− γk)δ − pk+1(1− pk+1)(ẑk − ẑk+1|k)

× (ẑk − ẑk+1|k)
T −m1(1− pk+1)Bk+1QkB

T
k+1

(8.10)

where, m1 = (1 + a1(1 − γk+1) + a5(1 − γk)), m2 = (1 + a2(1 − γk+1) + a6(1 − γk)),

m3 = (1 + a3(1 − γk+1) + a7(1 − γk)), m4 = (1 + a4(1 − γk+1) + a8(1 − γk+1)), m5 =

(1+a−1
1 +a−1

2 +a−1
3 +a−1

4 ), m6 = (1+a−1
5 +a−1

6 +a−1
7 +a−1

8 ). a1−a8 are arbitrary positive

parameters. Recalling from Chapter 7, Bk+1 = βk+1Hk+1 and Hk+1 = ∂h(x)
∂x |x=x̂k+1|k

is

the Jacobian matrix. βk+1 = diag(β1,k+1, β2,k+1, ..., βnyk+1) is unknown diagonal matrix

representing the error incurred in neglecting the higher order terms of the Taylor series

respectively. In addition, Bk = βkHk and Hk = ∂h(x)
∂x |x=x̂k

. V 0
k+1 = E{˜︁yk+1|k˜︁yTk+1|k} is the

residual covariance.

Proof. First recalling from Chapter 5, xk+1 − x̂k+1|k can be written as follows by using

(5.8) and (5.10),

xk+1 − x̂k+1|k = Ak(xk − x̂k) + ωk. (8.11)
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Substituting (8.11) in (5.35) results in (8.12) as follows,

˜︁yk+1|k =
[︂
(1− σk+1)Bk+1Ak + σk+1Bk

]︂
(xk − x̂k) + (1− σk+1)Bk+1ωk + (1− σk+1)νk+1

+ σk+1(νk − ν̂k) + (σk+1 − pk+1)
[︂
hk(x̂k)− hk+1(x̂k+1|k) + ν̂k

]︂
+ g(ek) (8.12)

where ek = (z− zk) and g(ek) = (1−σk+1)(1− γk+1)ek+1+σk+1(1− γk)ek. Using a similar

derivation method yields,

˜︁yk+1+j|k+j =
[︂
(1− σk+j+1)Bk+j+1Ak+j + σk+j+1Bk+j

]︂
(xk+j − x̂k+j) + (1− σk+j+1)Bk+j+1

× ωk+j + (1− σk+j+1)νk+j+1 + σk+j+1(νk+j − ν̂k+j) + (σk+j+1 − pk+j+1)[︂
hk+j(x̂k+j)− hk+j+1(x̂k+j+1|k+j) + ν̂k+j

]︂
+ g(ek+j) (8.13)

Note that the initial state x0, νk and ωk which generate the states and the observations

are mutually independent. Considering these and the ˜︁yk+1|k features into account (Re-

mark 7.1 ), to obtain the fading factor one should use the extended orthogonality principle,

E{˜︁yk+j+1|k+j˜︁yTk+1|k} = 0. So, by substituting (8.12) and (8.13) in E{˜︁yk+j+1|k+j˜︁yTk+1|k}, we

have,

E
{︂˜︁yk+1+j|k+j˜︁yTk+1|k

}︂
=
[︂
(1− pk+j+1)Bk+j+1Ak+j + pk+j+1Bk+j

]︂
E
{︂
(xk+j − x̂k+j)˜︁yTk+1|k

}︂
(8.14)

Recalling from Chapter 3, the event-triggered state estimation can be written as follows,

x̂k+1 = x̂k+1|k +Kk+1(ȳk+1 − ŷk+1|k) (8.15)

using (8.15) we can derive, xk+j − x̂k+j as the following,

xk+j − x̂k+j = xk+j − x̂k+j|k+j−1 −Kk+j

(︂˜︁yk+j|k+j−1 − (1− γk+j)ek+j

)︂
=

{︄[︂
I − (1− σk+j)Bk+jKk+j

]︂
Ak+j−1 −Kk+jσk+jBk+j−1

}︄

× (xk+j−1 − x̂k+j−1) + ωk+j−1 −Kk+j

{︄
(1− σk+j)Bk+jωk+j−1

+ (1− σk+j)υk+j + σk+j(υk+j−1 − υ̂k+j−1) + (σk+j − pk+j)

×
[︂
hk+j−1(x̂k+j−1)− hk+j(fk+j−1(x̂k+j−1)) + υ̂k+j−1

]︂
+ g(ek+j−1)

− (1− γk+j)ek+j

}︄

(8.16)

substituting (8.16) in (8.14) and considering the features of ˜︁yk+1|k into account (Remark
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7.1 ), we have the following,

E{˜︁yk+1+j|k+j˜︁yTk+1|k} =
[︂
(1− pk+j+1)Bk+j+1Ak+j + pk+j+1Bk+j

]︂{︄[︂
I − (1− pk+j)

×Bk+jKk+j

]︂
Ak+j−1 −Kk+jpk+jBk+j

}︄
× E

{︂
[xk+j−1 − x̂k+j−1]˜︁yTk+1|k

}︂
(8.17)

From (8.14) and (8.17) and using the iteration, we have,

E{˜︁yk+1+j|k+j˜︁yTk+1|k} =

[︄
(1− pk+j+1)Bk+j+1Ak+j + pk+j+1Bk+j

]︄
j∏︂

i=2

{︄[︂
I − (1− pk+i)Bk+iKk+i

]︂
Ak+i−1 −Kk+ipk+iBk+i

}︄

× E

{︄
[xk+1 − x̂k+1]˜︁yTk+1|k

}︄ (8.18)

considering (8.15), E
{︂
[xk+1 − x̂k+1]˜︁yTk+1|k

}︂
of (8.18) can be written as follows,

E
{︂
[xk+1 − x̂k+1]˜︁yTk+1|k

}︂
= E

{︄[︂
xk+1 − x̂k+1|k −Kk+1(˜︁yk+1|k − (1− γk+1)ek+1)

]︂˜︁yTk+1|k

}︄
= E

{︂
[xk+1 − x̂k+1|k]˜︁yTk+1|k

}︂
−Kk+1E{˜︁yk+1|k˜︁yTk+1|k}

= P̂
xy
k+1|k −Kk+1E{˜︁yk+1|k˜︁yTk+1|k} = P̂

xy
k+1|k −Kk+1V

0
k+1,

(8.19)

where V 0
k+1 = E{˜︁yk+1|k˜︁yTk+1|k} is the covariance of the residual which can be estimated as

follows,

V 0
k+1 =

{︄ ˜︁y1|0˜︁yT1|0 k = 0
ρV 0

k +˜︁y
k+1|k˜︁yTk+1|k
1+ρ k ≥ 1

(8.20)

Recalling from Chapter 5, by substituting (5.19) and (5.20) in (5.18) we have,

P̂
xy
k+1|k = (1− pk+1)P̂ k+1|kB

T
k+1 + pk+1(AkP̂ kB

T
k +AkP̂

xν
k ) (8.21)

where, P νν
k+1 = E[ν̃k+1ν̃

T
k+1|Yk+1], P

xν
k+1 = E[x̃k+1ν̃

T
k+1|Yk+1]. So, substituting (8.21) in

(8.19) we have,

E
{︂
[xk+1 − x̂k+1|k+1]˜︁yTk+1|k

}︂
= (1− pk+1)P̂ k+1|kB

T
k+1 + pk+1(AkP̂ kB

T
k +AkP

xν
k )

−Kk+1V
0
k+1 (8.22)
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From (5.31), the CKF gain with one step randomly delayed measurement can be written

as follows,

Kk+1 = m1

[︂
(1− pk+1)Bk+1P̂ k+1|k + pk+1AkP̂ kB

T
k+1 + pk+1AkP̂

xν
k

]︂
×
[︂
pk+1BkP̂

xν
k + pk+1(BkP̂

xν
k)

T +m1(1− pk+1)Bk+1P̂ k+1|kB
T
k+1 +m2(1− pk+1)Rk+1

+m3pk+1BkP̂ kB
T
k +m4pk+1P̂

νν
k +m5(1− pk+1)(1− γk+1)δ

+m6pk+1(1− γk)δ + pk+1(1− pk+1)(ẑk − ẑk+1|k)(ẑk − ẑk+1|k)
T
]︂−1

(8.23)

Substituting (8.23) in (8.22) we have,

E
{︂
[xk+1 − x̂k+1]˜︁yTk+1|k

}︂
=

{︄
(1− pk+1)P̂ k+1|kB

T
k+1 + pk+1(AkP̂ kB

T
k +AkP̂

xν
k )

}︄{︄
I

−m1V
0
k+1

[︄
pk+1BkP̂

xν
k + pk+1(BkP̂

xν
k)

T +m1(1− pk+1)

×Bk+1P̂ k+1|kB
T
k+1 +m2(1− pk+1)Rk+1 +m3pk+1BkP̂ kB

T
k

+m4pk+1P̂
νν

k +m5(1− pk+1)(1− γk+1)δ +m6pk+1(1− γk)δ

+ pk+1(1− pk+1)(ẑk − ẑk+1|k)(ẑk − ẑk+1|k)
T

]︄−1}︄
(8.24)

substituting (8.24) in (8.18) yields to the following,

E{˜︁yk+1+j|k+j˜︁yTk+1|k} =
[︂
(1− pk+j+1)Bk+j+1Ak+j + pk+j+1Bk+j

]︂
×

j∏︂
i=2

{︂
[I − (1− pk+i)Bk+iKk+i]Ak+i−1 −Kk+ipk+iBk+i

}︂
×
{︂
(1− pk+1)P̂ k+1|kB

T
k+1 + pk+1(AkP̂ kB

T
k +AkP̂

xν
k )
}︂

×
{︂
I −m1V

0
k+1[pk+1BkP̂

xν
k + pk+1(BkP̂

xν
k)

T +m1(1− pk+1)

×Bk+1P̂ k+1|kB
T
k+1 +m2(1− pk+1)Rk+1 +m3pk+1BkP̂ kB

T
k

+m4pk+1P̂
νν

k +m5(1− pk+1)(1− γk+1)δ +m6pk+1(1− γk)δ

+ pk+1(1− pk+1)(ẑk − ẑk+1|k)(ẑk − ẑk+1|k)
T ]−1

}︂
(8.25)
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A proper fading factor should be chosen such that the following equality holds,

I −m1V
0
k+1

[︄
pk+1BkP̂

xν
k + pk+1(BkP̂

xν
k)

T +m1(1− pk+1)Bk+1P̂ k+1|kB
T
k+1

+m2(1− pk+1)Rk+1 +m3pk+1BkP̂ kB
T
k +m4pk+1P̂

νν
k +m5(1− pk+1)(1− γk+1)δ

+m6pk+1(1− γk)δ + pk+1(1− pk+1)(ẑk − ẑk+1|k)(ẑk − ẑk+1|k)
T

]︄−1

= 0

(8.26)

(8.26) can be written as follows,

m1

(︂
(1− pk+1)Bk+1P̂ k+1|kB

T
k+1 +m3pk+1BkP̂ kB

T
k

)︂
=

m1V
0
k+1 − pk+1BkP̂

xν
k − pk+1(BkP̂

xν
k)

T −m2(1− pk+1)Rk+1 −m4pk+1P̂
νν

k

−m5(1− pk+1)(1− γk+1)δ −m6pk+1(1− γk)δ − pk+1(1− pk+1)(ẑk − ẑk+1|k)(ẑk − ẑk+1|k)
T

(8.27)

Substituting (8.6) and (8.7) in (8.27) we have,

m1Λk+1

(︂
(1− pk+1)Bk+1AkP̂ kA

T
kB

T
k+1 +m3pk+1BkP̂ kB

T
k

)︂
=

m1V
0
k+1 − pk+1BkP̂

xν
k − pk+1(BkP̂

xν
k)

T −m2(1− pk+1)Rk+1 −m4pk+1P̂
νν

k

−m5(1− pk+1)(1− γk+1)δ −m6pk+1(1− γk)δ − pk+1(1− pk+1)(ẑk − ẑk+1|k)(ẑk − ẑk+1|k)
T

−m1(1− pk+1)Bk+1QkB
T
k+1

(8.28)

The trace of both side of (8.28) can be calculated as follows,

tr

[︄
m1Λk+1

(︂
(1− pk+1)Bk+1AkP̂ kA

T
kB

T
k+1 +m3pk+1BkP̂ kB

T
k

)︂]︄
=

tr

[︄
m1V

0
k+1 − pk+1BkP̂

xν
k − pk+1(BkP̂

xν
k)

T −m2(1− pk+1)Rk+1 −m4pk+1P̂
νν

k

−m5(1− pk+1)(1− γk+1)δ −m6pk+1(1− γk)δ − pk+1(1− pk+1)(ẑk − ẑk+1|k)(ẑk − ẑk+1|k)
T

−m1(1− pk+1)Bk+1QkB
T
k+1

]︄
(8.29)

It follows that (8.29) is equivalent to tr[Λk+1Mk+1] = tr[Nk+1], where Mk+1 and Nk+1 are

as following,

Mk+1 = m1Λk+1

(︂
(1− pk+1)Bk+1AkP̂ kA

T
kB

T
k+1 +m3pk+1BkP̂ kB

T
k

)︂
(8.30)
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Nk+1 = m1V
0
k+1 − pk+1BkP̂

xν
k − pk+1(BkP̂

xν
k)

T −m2(1− pk+1)Rk+1 −m4pk+1P̂
νν

k

−m5(1− pk+1)(1− γk+1)δ −m6pk+1(1− γk)δ − pk+1(1− pk+1)(ẑk − ẑk+1|k)

× (ẑk − ẑk+1|k)
T −m1(1− pk+1)Bk+1QkB

T
k+1

(8.31)

and the fading factor can be obtained by,

Λk+1 =
tr[Nk+1]

tr[Mk+1]
(8.32)

which completes the proof.

8.3 Strong Tracking Event-Triggered Cubature Kalman Fil-
ter with Random one-step delay algorithm

In this section, we summarize the strong tracking event-triggered cubature Kalman filter in

the presence of delay. In the previous sections, we use linearization to facilitate the fading

factor derivation. Linearization of nonlinear systems add some errors which may lead to

divergence in the tracking results. To overcome this problem, we derive the equivalent STF

using cubature Kalman filter. Suppose that P̂
l
k+1|k is the predicted state error covariance

matrix before introducing fading factor, then based on P̂
xz
k+1|k = P̂ k+1|kB

T
k+1, one can derive

the following,

Bk+1 = (P̂
xzl

k+1|k)
T (P̂

l
k+1|k)

−1, (8.33)

where P̂
xzl

k+1|k is the cross-covariance matrix without fading factor. Now, we summarize

STDECKF algorithm which uses the time update and measurement update steps to update

the old states when it receives the new measurements.

Time Update

Step 1: First we factorize P̂
a
k = Sa

k(S
a
k)

T , then we calculate the cubature points as

follows,

Xi,k =
[︂
(ξxi,k)

T (ξνi,k)
T
]︂T

= Sa
kξi + x̂ak, (8.34)

where i = 1, 2, ..., L and L = 2(n +m) is the dimensionality of the augmented state xk
a.

n and m are the dimensionality of the states and measurement noise, respectively. ξxi,k

shows the cubature points corresponding to the state and ξνi,k shows the cubature points

corresponding to the measurement noise respectively.

Step 2: We propagate the cubature points as follows,

X∗x
i,k+1|k = f(ξxi,k, uk), (8.35)
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Υ∗x
i,k+1|k = h(ξxi,k, uk), (8.36)

where i = 1, 2, ..., L.

Step 3: We estimate the predicted states and predicted state error covariance as follows,

x̂k+1|k =
1

2L

2L∑︂
i=1

X∗x
i,k+1|k, (8.37)

P̂
l
k+1|k =

1

2L

2L∑︂
i=1

X∗x
i,k+1|k(X

∗x
i,k+1|k)

T − x̂k+1|kx̂
T
k+1|k +Qk, (8.38)

Now it is time to calculate the fading factor as follows,

Calculate fading factor

Step 1: Factorize P̂
l
k+1|k = Sl

k+1|kS
lT

k+1|k, and calculate the cubature points as follows,

X l
i,k+1|k = Sl

k+1|kξi + x̂k+1|k, (8.39)

where i = 1, 2, ..., 2n.

Step 2: We propagate the cubature points for i = 1, 2, ..., 2n as follows,

Y l
i,k+1|k = h(X l

i,k+1|k, uk+1). (8.40)

Step 3: Now it is time to calculate ẑlk+1|k, P̂
zz,l
k+1|k, ẑ

l
k, P̂

zz,l
k , P̂

xz,l
k+1|k, and P̂

xz,l
k+1,k as

follows,

ẑlk+1|k =
1

2n

2n∑︂
i=1

Y l
i,k+1|k, (8.41)

P̂
zz,l
k+1|k =

1

2n

2n∑︂
i=1

Y l
i,k+1|kY

lT

i,k+1|k − ẑlk+1|kẑ
lT

k+1|k +Rk+1, (8.42)

ẑlk =
1

2L

2L∑︂
i=1

(Υ∗x
i,k+1|k + ξνi,k), (8.43)

P̂
zz,l
k =

1

2L

2L∑︂
i=1

(Υ∗x
i,k+1|k + ξνi,k)(Υ

∗x
i,k+1|k + ξνi,k|k)

T − ẑlk(ẑ
l
k)

T , (8.44)

P̂
xz,l
k+1|k =

1

2n

2n∑︂
i=1

X l
i,k+1|kY

lT

i,k+1|k − x̂lk+1|kẑ
lT

k+1|k, (8.45)

P̂
xz,l
k+1,k =

1

2L

2L∑︂
i=1

X∗x
i,k+1|k(Υ

∗x
i,k+1|k + ξνi,k)

T − x̂lk+1|kẑ
lT

k+1|k. (8.46)

Step 4: Calculate the measurement and measurement noise means and the covariances

by the following equations,

ν̂lk+1 = Kν
k+1ỹk+1|k (8.47)
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Kν,l
k+1 = P νy,l

k+1|k(P
yy,l
k+1|k)

−1 (8.48)

P̂
νy,l
k+1|k = (1− pk+1)(1 + (1− γk+1))Rk+1 (8.49)

P̂
νν,l
k+1 = Rk+1 −Kν,l

k+1P
yy,l
k+1|k(K

ν,l
k+1)

T (8.50)

P
yy,l
k+1|k = (1− pk+1)

(︂
(1 + b1(1− γk+1))P̂

zz,l
k+1|k + pk+1(ẑ

l
k+1|k − ẑlk)(ẑ

l
k+1|k − ẑlk)

T

+ (1 + b−1
1 )(1− γk)δ

)︂
+ pk+1

(︂
(1 + b2(1− γk))P̂

zz,l
k + pk+1(1− γk)(1 + b−1

2 )δ
)︂

(8.51)

Step 5: Calculate Nk+1 and Mk+1 to find the fading factor as follows,

Nk+1 = m1λk+1V
0
k+1 − pk+1(P̂

xz,l
k+1|k)

T (P̂
l
k+1|k)

−1P̂
xν,l

k − pk+1((P̂
xz
k+1|kl)

T (P̂
l
k+1|k)

−1)T

−m2(1− pk+1)Rk+1 −m4pk+1P̂
νν,l

k −m5(1− pk+1)(1− γk+1)δ −m6pk+1(1− γk)δ

− pk+1(1− pk+1)(ẑ
l
k − ẑlk+1|k)(ẑ

l
k − ẑlk+1|k)

T −m1(1− pk+1)(P̂
xz,l
k+1|k)

T (P̂
l
k+1|k)

−1

×Qk((P̂
xz,l
k+1|k)

T (P̂
l
k+1|k)

−1)T

(8.52)

Mk+1 = m1Λk+1((1− pk+1)((P̂
zz,l
k+1|k)−Rk+1 − (P̂

xz,l
k+1|k)

T (P̂
l
k+1|k)

−1Qk(P̂
l
k+1|k)

−1(P̂
xz,l
k+1|k)

+m3pk+1(P̂
zz,l
k − (P̂

xz,l
k|k−1)

T (P̂
l
k|k−1)

−1P̂
xν,l
k − ((P̂

xz,l
k|k−1)

T (P̂
l
k|k−1)

−1P̂
xν,l
k )T − P̂

νν,l
k )

(8.53)

Step 6: Calculate fading factor,

Λk+1 = max{1, tr[Nk+1]

tr[Mk+1]
} (8.54)

Measurement Update

Step 1:Calculate the predicted state error covariance as follows,

P̂ k+1|k =
Λk+1

2L

2L∑︂
i=1

X∗x
i,k+1|k(X

∗x
i,k+1|k)

T − Λk+1x̂k+1|kx̂
T
k+1|k +Qk (8.55)

Step 2: We repeat step 1 to step 4 of the calculating fading factor part again to derive

ẑk+1|k, P̂
zz
k+1|k, ẑk, P̂

zz
k , P̂

xz
k+1|k, P̂

xz
k+1,k, ν̂k+1, K

ν
k+1, P̂

νy
k+1|k, and P̂

νν
k+1.

Step 3: We derive the event-triggered cubature Kalman gain Kk+1 = S(T )−1, where

S = m1(1− pk+1)(P̂
xz
k+1|k)

T (P̂ k+1|k)
−1P̂ k+1|k + pk+1P̂

xz
k+1,k, (8.56)

and,

T = pk+1(P̂
xz
k|k−1)

T (P̂ k|k−1)
−1P̂

xν
k + pk+1((P̂

xz
k|k−1)

T (P̂ k|k−1)
−1P̂

xν
k)

T +m1(1− pk+1)

× (P̂
xz
k+1|k)

T (P̂ k+1|k)
−1P̂ k+1|k((P̂

xz
k+1|k)

T (P̂ k+1|k)
−1)T +m2(1− pk+1)Rk+1

+m3pk+1(P̂
xz
k|k−1)

T (P̂ k+1|k)
−1P̂ k((P̂

xz
k|k−1)

T (P̂ k|k−1)
−1)T +m4pk+1P̂

νν
k

+m5(1− pk+1)(1− γk+1)δ +m6pk+1(1− γk)δ + pk+1(1− pk+1)(ẑk − ẑk+1|k)(ẑk − ẑk+1|k)
T

(8.57)
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Step 4: We estimate the updated state as follows,

x̂k+1 = x̂k+1|k +Kk+1λk+1(yk+1 − ŷk+1|k) (8.58)

Step 5: The state error covariance is as follows,

P k+1 =
(︂
1 + a1(1− γk+1) + a5(1− γk)

)︂(︂
I −Kk+1(1− pk+1)(P̂

xz
k+1|k)

T (P̂ k+1|k)
−1
)︂
P̂ k+1|k

×
(︂
I −Kk+1(1− pk+1)(P̂

xz
k+1|k)

T (P̂ k+1|k)
−1
)︂T

− pk+1

(︂
P̂

xz
k+1,kK

T
k+1 +Kk+1(P̂

xz
k+1,k)

T
)︂

+
(︂
1 + a2(1− γk+1) + a6(1− γk)

)︂
(1− pk+1)Kk+1Rk+1(Kk+1)

T +
(︂
1 + a3(1− γk+1)

+ a7(1− γk)
)︂
pk+1

(︂
Kk+1(P̂

xz
k|k−1)

T (P̂ k|k−1)
−1P̂ k(Kk+1(P̂

xz
k|k−1)

T (P̂ k|k−1)
−1)T +

(︂
1

+ a4(1− γk+1) + a8(1− γk)
)︂
Kk+1P̂

νν
kK

T
k+1 + (1− pk+1)Kk+1(ẑk − ẑk+1|k)(ẑk − ẑk+1|k)

T

×KT
k+1

)︂
+ (1 + a−1

1 + a−1
2 + a−1

3 + a−1
4 )(1− pk+1)Kk+1(1− γk+1)Kk+1δK

T
k+1

+ pk+1

(︂
(1 + a−1

5 + a−1
6 + a−1

7 + a−1
8 )(1− γk)Kk+1δK

T
k+1 +Kk+1P̂

xzT

k|k−1(P̂ k|k−1)
−1P̂

xν
k

×KT
k+1 +Kk+1(P̂

xzT

k|k−1(P̂ k|k−1)
−1P̂

xν
k)

TKT
k+1

)︂
(8.59)

8.4 Simulation results

In this section the effectiveness of the proposed method is illustrated by simulation results.

We consider the motion model of the UUV illustrated in Chapter 7, and we study the

performance of the proposed STDECKF in the presence of one step randomly delayed

measurement. The purpose of presenting this simulation result is to show the effectiveness

of the proposed filter in the presence of sudden changes in the states compared to the

previously proposed DECKF in [60,61].

We use the same motion model of the UUV considered in Chapter 7 [62],⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
y
z
ψ
u
v
w
r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
k

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x+ uTcos(ψ)− vTsin(ψ)
y + uTsin(ψ) + vTcos(ψ)

z + wT
ψ + rT
u
v
w
r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
k−1

+ ωk−1, (8.60)

zk = Hxk + νk, (8.61)

where x, y, z and ψ show position and heading of UUV, and u, v, w, and r show the linear

velocity and angular velocity of UUV. ω shows the noise of the system which is white noise,
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ωk ∼ N(0, Q), with zero mean and covarianceQ =
[︁
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

]︁
.

H is the observation matrix which can be defined as follows,

H =

⎡⎢⎢⎢⎢⎣
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎦ (8.62)

Recalling from Chapter 7, the initial values of x0 and P0 are considered as follows,

x0 =
[︁
2 3 π/2 π/3 − 1 3 1 1

]︁
P0 =

[︁
0.01 0.01 0.01 0.01 0.1 0.1 0.1 0.1

]︁
The initial state estimate x̂0 is chosen randomly from N(x0, P0) in each run. We use

the root mean square error (RMSE) to compare the performance of the proposed filters.

The position RMSE is defined as follows,

RMSE(k) =

⌜⃓⃓⎷ 1

N

N∑︂
n=1

(xnk − x̂nk)
2 + (ynk − ŷnk)

2 + (znk − ẑk
n)2

where, xnk , y
n
k , and z

n
k are the true, x̂nk , ŷ

n
k , and ẑ

n
k are the estimated states at the n-th Monte

Carlo run, respectively. twi different scenarios to show the effectiveness of the proposed filter

under different conditions, namely with different event-triggered mechanism threshold value

and different delay probabilities.

In the first scenario, we compare the RMSE results of the proposed STDECKF with

DECKF under different event-triggering threshold of 1 and 2. Note that the delay proba-

bility is the same for the both filters which are considered 10%. We make 20 independent

Monte Carlo runs. As the Figure 8.1 shows, the proposed STDECKF has better perfor-

mance in both conditions compared to the DECKF. To confirm the performance of the

proposed filter under general condition, we repeat the simulation results for other scenario.

In this scenario, we consider that the triggering threshold is kept constant during the sim-

ulation while we consider two different values for the delay probability. The simulation

results demonstrate the performance improvement of the proposed filter.

8.5 Summary

A new nonlinear filter algorithm for the filtering problems of high dimensional nonlinear

systems under the event-triggered protocol with one-step delay in measurement is proposed.
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Figure 8.1: RMSE results of STDECKF and DECKF with different Event-Triggered Thresh-
old (ETT) and constant Delay, (a) ETT=1, Delay =10%(b) ETT=2, Delay=10%
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Figure 8.2: RMSE results of STDECKF and DECKF (a) Event-Triggered Threshold=2
and Delay=10% (b) Event-Triggered Threshold=2 and Delay=5%
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We show when the communication channels are not perfect, the triggered measurements

are transferred with delay and the state estimator can not be updated in realtime and the

previous data affects on filtering process. In addition, when there are sudden changes in the

states, the filter gain has a delay to be updated and the estimation results can not track

the real states perfectly. So, we develop a new strong tracking CKF and we derive a fading

factor to modify the error covariance matrix to reduce the measurement delay and sudden

changes affects on the estimation results.

Simulation results show that the proposed STDECKF has better performance and less

estimation error in the presence of different conditions compared to the previously proposed

filter.
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Chapter 9

Conclusions and Future Work

State estimation is currently an active area of research and a significant body of work has

been already produced. For linear time invariant systems, Kalman filters constitute the

gold standard and an essential tool used to estimate the system state while minimizing the

variance of the estimation error. In general, however, the systems used in many applications

are nonlinear and proper nonlinear filters should be developed for the estimation purposes.

In addition, in the classical estimation formulation, information from the sensors is

directly available for processing. Over the past few years, however, systems and control

have become reliant upon wireless communication networks to establish the interconnection

of various system components in which the communication resources need to be carefully

managed.

In this thesis, we investigate the development of the nonlinear event-based state estima-

tor problem under different scenarios to solve the mentioned issues. The primary goal of this

thesis is the reduction in data transmission between different components of the networked

system while maintaining comparable performance under different condition. We consider

a discrete-time nonlinear system with additive Gaussian noise, and look at the problem of

sequentially estimating the state using Bayes’s rule. In this context, the posterior density

cannot be described by a finite number of statistics, and an approximation must be made.

We develop cubature Kalman filters, which offer an attractive, numerically stable solution

with low computational effort, to the nonlinear state estimation problem. The developed

CKF assumes that the predictive density of the joint state-measurement random variable

is Gaussian. In this way, the optimal Bayesian filter reduces to the problem of how to

compute various multi-dimensional Gaussian weighted moment integrals whose integrands

are all of the form nonlinear function×Gaussian density which can be done efficiently using

a cubature rule.
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The outcomes of our research attempts are further summarized as follows:

• First, under a Gaussian assumption on the conditional distribution of the state in the

presence of event-triggered mechanism, the event-based state estimator, discrete-time

event-triggered cubature Kalman filter, for high dimensional nonlinear system with

high nonlinearities is proposed. The proposed filter uses the “send on delta” event-

triggered mechanism which reduces the number of feedback communication between

sensors and the estimator. In addition, it reduces the measurement transmission

between the sensors and the remote state estimator while it can ensure the estimation

performance.

• Second, the effect of the packet dropout during the data transmission in the communi-

cation channels on the state estimation is investigated. We showed that if the packet

dropout rate has an upper bound, the error covariance matrix would be bounded. The

boundedness of the estimation error is also studied and it is shown that by properly

choosing an event-triggered mechanism regarding to the packet dropout rate, one can

achieve a bounded estimation error.

• Third, we assume that the sensor exchange the data via imperfect communication

channels and the measurements are randomly delayed by one sampling time. We

showed that the previous data affects the performance of the filter so we develop a

new filtering algorithm to derive the filter gain which reduces the delay measurement

affects on the filtering process and make the estimation error bounded.

• Fourth, we consider sudden changes in the states. Based on the “extended orthogonal-

ity principle”, we derive the strong tracking filter and we adjusted the error covariance

matrices in real time to have a better estimation performance. We showed that the

upper bound of the estimation error would be affected by the sudden changes of the

states and the packet dropout rate, so by properly adjusting the fading factor, and

the event-triggered threshold we could have convergence in the estimation.

• Finally, we study the scenario in which the nonlinear system states have abrupt

changes and the data is transferring through the communication channels with one-

step randomly delay. So, the affect of the delayed measurements are considered in

the designing of the new filter and the fading factor is introduced to reduce the affect

of the delay measurements and sudden changes in the states on the performance of
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the filter. The proposed filter reduces the estimation error while it needs less data

communication.

The research results, provided in this thesis can be extended and pursued in the following

areas:

• Event Triggered Square Root Cubature Kalman Filter: In each update cycle

of the CKF, some operations such as matrix inversion, matrix square rooting may de-

stroy the properties of the covariance matrix and the CKF may stop running. Square

root Cubature Kalman filter has recently proposed to enhances the numerical stabil-

ity, guarantees positive definiteness of the state covariance, and increases accuracy,

which has high practicability. Providing an even-triggered square root CKF consid-

ering delay and packet dropouts in the communication channels which guarantee the

boundedness of the estimation error can be an interesting area of research.

• Event-triggered CKF under cyber physical attack: As we mentioned before,

recently there have been a growing interest towards cyber-physical systems (CPSs).

CPSs are used in many applications such as autonomous vehicles, supply chains,

power and transportation networks. Many of these applications are safety-critical

which has triggered considerable attention to networked systems in the presence of

attacks. Considering the effect of attack on the designing of the event-triggered CKF

is an opening problem.
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Appendix A

Extended Kalman Filter

The EKF linearizes the nonlinear process and the measurement functions using the first-

order Taylor series expansion. The discrete time EKF algorithm consists of two steps, Time

update and measurement update,

Time Update

• Estimate the predicted state:

x̂k+1|k = f(x̂k, uk)

• Estimate the predicted state error covariance:

P̂ k+1|k = FkP̂ kF
T
k +Qk

where Fk = ∂f
∂x |x̂k,uk

, and Hk = ∂h
∂x |x̂k|k−1

are the Jacobian matrices.

Measurement Update

• Compute the Kalman gain:

Kk+1 = P̂ k+1|kH
T
k+1(Hk+1P̂ k+1|kHk+1 +Rk+1)

−1

• Calculate the error covariance matrix:

P̂ k+1 = (I −Kk+1Hk+1)P̂ k+1|k

• Compute the updated state estimation:

x̂k+1 = x̂k+1|k +Kk[yk − h(x̂k+1|k)]
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Appendix B

Unscented Kalman Filter

UKF has some important common properties shared with the CKF, such as using a set

of deterministic weighted points to compute the means and the covariances. In UKF,

unscented transformation (UT) was applied to propagate mean and covariance information

by nonlinear transformation. UKF algorithm is as follows,

Time Update

• Calculate sigma point, χi, and the weight of the sigma points ϖi as follows,

χi,k = x̂k i = 0

χi,k = x̂k + (

√︂
(n+ k)P̂ k)i i = 1, ..., n

χi,k = x̂k − (

√︂
(n+ k)P̂ k)i i = 1, ..., 2n

ϖ0 =
k

n+ k

ϖi =
1

2(n+ k)

ϖn+i =
1

2(n+ k)

Note that k is a scaling parameter that determines the spread of the sigma points around

the mean of the state x̂ which is usually chosen as k = 3− n [8].

• Transform the sigma points using the nonlinear system equation,

χi,k+1|k = f(χi,k) i = 0, 1, ..., 2n

• Obtain the estimate of the predicted state,

x̂k+1|k =

2n∑︂
i=0

ϖm
i χi,k+1|k
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• Estimate the predicted error covariance matrix,

P̂ k+1|k =
2n∑︂
i=0

ϖc
i (χi,k+1|k − x̂k+1|k)(χi,k+1|k − x̂k+1|k)

T +Qk

• Propagate the sigma points,

yi,k+1|k = h(χi,k+1|k) = 0, 1, ..., 2n

• Calculate the predicted measurement,

ŷk+1|k =
2n∑︂
i=0

ϖm
i yi,k+1|k

• Calculate the innovation covariance matrix

P̂ yy,k+1|k =
2n∑︂
i=0

ϖc
i (yi,k+1|k − ŷk+1|k)(yi,k+1|k − ŷk+1|k)

T +Rk+1

• Calculate the cross covariance matrix

P̂ xy,k+1|k =
2n∑︂
i=0

ϖc
i (χi,k+1|k − x̂k+1|k)(yi,k+1|k − ŷk+1|k)

T

• Calculate the Kalman gain, the updated state estimation and the updated state esti-

mation error covariance matrix as follows,

Kk+1 = P̂ xy,k+1|kP̂
−1
yy,k+1|k

x̂k+1 = x̂k+1|k +Kk[yk − h(x̂k+1|k)]

P̂ k+1 = P̂ k+1|k −Kk+1P̂ yy,k+1|kK
T
k+1

Note that ϖm
i = ϖc

i = ϖ. As you can see in the algorithm mentioned above, when the

system dimension increases (n > 3), however, UKF is highly susceptible to numerical errors.

The weight of the centre sigma point becomes negative and the covariance matrix is not

positive definite which causes the UKF to halt its operation. To overcome this problem,

CKF uses a different set of deterministic weighted points which has numerical stability and

is proper for high dimensional state space model [8].
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